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Preface

It would not be an exaggeration to say that since the 1940s Feynman’s path integrals
substantially changed quantum physics. This concept led to the implementation of
many path integration methods of different levels of mathematical sophistication, see
[6], [84] and the numerous references therein. Spectacular progress in rigorous quan-
tum field theory (at least for low-dimensional space-time models) was achieved through
the Euclidean strategy in which the Minkowski space was converted into a Euclidean
space by passing to imaginary values of time. The corresponding quantum field was
constructed and studied in this Euclidean domain and then transferred to real time by a
certain procedure. Due to this development, Feynman–Wiener path integrals and hence
the theory of Markov processes as well as methods of classical statistical mechanics
were widely applied. The state of the art in this domain up to the time of their respec-
tive publication was presented in the monographs by B. Simon [273] and J. Glimm and
A. Jaffe [135]. The introduction to the former book gives a profound survey of ideas
and historical facts behind the Euclidean strategy.

Quantum statistical mechanics is close, both conceptually and technically, to quan-
tum field theory. Its rigorous version has been developed on the basis of the theory of
operator algebras, whose fundamentals can be found in the monographs by O. Bratteli
and D. W. Robinson [76], [77], G. G. Emch [114], and by M. Takesaki [300], [301],
[302]. However, for a big class of important quantum models, especially those de-
scribed by unbounded operators, these methods encountered considerable difficulties;
see the discussion on page 241 of [77] and also in [160], [161].

The present book is dedicated to the rigorous statistical mechanics of infinite sys-
tems of interacting quantum anharmonic oscillators. It can be considered as a natural
continuation of B. Simon’s book “The Statistical Mechanics of Lattice Gases: I”, where
both classical and quantum models of this kind are on the list of ‘models not to be dis-
cussed’, see pp. 19–26 in [277]. In addition, our book is connected with quantum field
theory by the fact that the free quantum field can be interpreted as an infinite system
of interacting quantum harmonic oscillators.

There is, however, one more important reason to develop the theory presented in
this book. Since the 1960s, systems of quantum oscillators have been widely used in
models of quantum solid state physics where they describe vibrations of light particles
localized near sites of crystal lattices and their interaction with other particles and fields.
In this context, we mention the book by A. A. Maradudin et al. [212], see also [154],
[155], and the series of articles by A. Verbeure and his collaborators [310], [316]. The
theory of quantum harmonic oscillators is relatively simple and therefore is quite well
elaborated. The case of anharmonic oscillators is more complex. However, systems
of anharmonic oscillators possess much richer properties and hence have much wider
applications, which strongly stimulates the development of their theory, including its
mathematically rigorous versions. Clearly, the properties of such systems depend
on the geometry of interactions and hence on the configuration of the equilibrium
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positions of the oscillators. In the model studied in this book, they constitute a countable
set L � Rd , equipped with the Euclidean distance and obeying a certain regularity
condition. A particular case is the model where L is a crystal lattice. More general
cases of L correspond to quantum particles irregularly distributed in Rd . Most of
our results apply to this general case, however, a number of them are valid for crystal
lattices only.

In classical (i.e., non-quantum) statistical mechanics, a complete description of the
equilibrium thermodynamic properties of an infinite-particle system can be given by
constructing its Gibbs states. For some quantum models with bounded Hamiltonians,
equilibrium thermodynamic states are defined as functionals on algebras of observ-
ables satisfying the Kubo–Martin–Schwinger (KMS) condition, see [145] and [77],
which is an equilibrium condition reflecting a consistency between the dynamics and
thermodynamics of the model. However, for an infinite system of interacting quantum
anharmonic oscillators, the KMS condition cannot be formulated and hence the KMS
states cannot even be defined. In this situation, a natural alternative is given by a ver-
sion of the Euclidean strategy based on path integral techniques, which was successful
in low dimensional quantum field theory. Because of their intuitive appeal, methods
employing integration in function spaces on the ‘physical’ level of strictness enjoy great
popularity among theoretical physicists working in quantum physics. This is assured
by numerous monographs and textbooks in this field having appeared or having been
reprinted recently, see e.g., [165], [178], [213], [220], [322]. Thus, the second goal of
this book is to provide a firm mathematical background of path integral methods used
in quantum statistical mechanics, based on the latest achievements in stochastic and
functional analysis. We also believe that the mathematical problems arising here will
stimulate development of the corresponding fields of mathematics.

In accordance with these goals, we address the book to both communities – physi-
cists and mathematicians. Theoretical physicists, especially those who are concerned
with the rigorous mathematical background of their results, can find here a concise
collection of facts, concepts, and tools relevant for the application of path integrals
and other methods based on measure and integration theory to problems of quantum
physics. They can also find the latest results in the mathematical theory of quantum
anharmonic crystals, which can be used as a basis for the study of equilibrium and
non-equilibrium statistical mechanical properties of models employing quantum an-
harmonic oscillators. Mathematicians are given an opportunity to learn what kind
of problems arise in quantum statistical mechanics and how to attack them. We be-
lieve that our methods are also applicable to other problems involving infinitely many
variables, for example, in biology and economics.

In view of its interdisciplinary nature, this book consists of ‘mathematical’ and
‘physical’ parts, preceded by an introduction, where we outline the ideas on which our
approach rests, formulate its main aspects, and briefly describe physical consequences
of the theory developed on the basis of this approach.

The first part, comprising three chapters, starts with a description of the model
considered throughout the book. For this model, we define local Gibbs states as func-
tionals on the corresponding algebras of local observables and give the mathematical
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background of the theory of such states, which includes elements of the theory of linear
operators in Hilbert spaces. Then we present a detailed description of the properties of
Schrödinger operators of single quantum oscillators, both harmonic and anharmonic.
Afterwards, we prepare the description of the local Gibbs states of our model in terms of
stochastic processes and associated path measures. Here we present a number of facts
from the theory of probability measures on topological spaces coming from various
sources. Most of the statements are proven here, addressing those readers who would
like to get into the details without using additional sources. Thereby, we develop a
description of local Gibbs states in terms of path space measures, which in this book
are called local Euclidean Gibbs measures. They have the same structure as the lo-
cal Gibbs measures of the corresponding classical models of unbounded spins. Here,
however, the ‘spins’ are not only unbounded, but also belong to an infinite-dimensional
Banach space. In the next chapter, we develop tools for studying local Euclidean Gibbs
measures, based on their approximation by the Gibbs measures of classical models with
unbounded finite-dimensional spins. With the help of this approximation, we derive a
number of correlation inequalities, which are then crucially used throughout the book.
In Chapter 3, which is the main point of the first part and perhaps of the whole book,
we introduce and study the (global) Euclidean Gibbs measures of our model. These
measures contain all information about equilibrium thermodynamic properties of the
model and play the same role as the KMS states do in the algebraic formulation of
quantum statistical mechanics.

The second part of the book is dedicated to a description of some physical proper-
ties of our model which is based on the Euclidean Gibbs measures constructed in the
first part. Here we present a complete theory of phase transitions and quantum effects.
This theory is mainly based on various correlation inequalities, on regularity proper-
ties of the paths of the underlying stochastic processes, and on the spectral properties
of the corresponding Schrödinger operators. It explains a large number of relevant
experimental data, confirming our approach. In this context, one has to mention pow-
erful methods of studying Gibbs states and phase transitions in classical lattice systems
based on cluster, polymer, and other expansions and estimates. Some of them, like
cluster expansions, have also found applications to quantum anharmonic crystals, see
the works by R. A. Minlos, e.g. [217], and the bibliographic notes below. We expect
that the general framework developed in this book will lead to a more effective use of
these methods in the future. At the same time, a number of such methods, for instance,
the Pirogov–Sinai theory of phase transitions [245], [321], are applicable to classical
models only. In our approach, quantum anharmonic crystals are described as systems
of classical albeit infinite-dimensional ‘spins’. Thus, we hope that by means of our
techniques the development of a version of the Pirogov–Sinai theory, applicable to our
and similar models, will be possible. A relevant problem which we also leave for the
future is the interpretation of our results in terms of states on von Neumann algebras
in the spirit of works by the groups of J. Fröhlich [66], R. Gielerak [131], [132], and
A. Verbeure [79], [313].

Although we did our best to make the book self-contained, the reader is supposed
to have certain preliminary knowledge at a graduate level, both in mathematics and
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physics. As a book of great impact on this area we strongly recommend B. Simon’s
monograph [274], and also the monographs [76], [77], [114], [145], [300], [301],
[302] as sources on the algebraic methods of quantum statistical mechanics. Since the
construction of our Euclidean Gibbs measures is carried out in the framework of the
Dobrushin–Lanford–Ruelle approach, we recommend learning its fundamentals from
the books [129], [249], [281].

The line of research described in this book has its roots in original work by the late
Raphael Høegh-Krohn, who discovered a fundamental duality in relativistic quantum
statistical mechanics by representing the basic correlation functions in terms of a certain
stochastic process, see [1]. For this, it seems more than appropriate to call this stochastic
process the Høegh-Krohn process, as we do in this book. This should be understood
as an expression of our admiration for a great mathematician, who departed much too
early. Our work on the book was completed on the eve of the 20-th anniversary of
Raphael’s death to confirm that his spirit is still among us.

This book has mostly been written at BiBoS (Bielefeld–Bonn Stochastics) Research
Centre at Bielefeld University. Some of its parts have been presented in lecture series at
the International Graduate College (IGK) ‘Stochastics and Real World Models’, Biele-
feld University. The underlying research, as well as the actual work on the book, were
financially supported by the Deutsche Forschungsgemeinschaft through the projects
No 436 POL 113/98/0-1 ‘Methods of stochastic analysis in the theory of collective
phenomena: Gibbs states and statistical hydrodynamics’ and No 436 POL 113/115/0-1
‘Quantum infinite particle systems in a functional integral approach’, as well as through
the SFB 701 ‘Spektrale Strukturen und topologische Methoden in der Mathematik’.
Yuri Kozitsky was also supported by the Komitet Badań Naukowych through the Grant
2P03A 02025. We sincerely appreciate this support for which we express our deep
gratitude to the corresponding institutions. Our research on the subject of the book was
strongly influenced by the works of our colleagues Ph. Blanchard, R. A. Minlos, and
L. Streit. A substantial part of our results was obtained in collaboration with T. Pasurek
(Tsikalenko). We want to express our deep respect for their role in the development
of this field, as well as our acknowledgment of their collaboration. We also thank our
colleagues A. Daletskii, K. Goebel, Y. Holovatch, T. Kuczumow, T. Kuna, O. Kutovyy,
E. Lytvynov, R. Olkiewicz, R. P. Streater, Z. Rychlik, and E. Zhizhina for interesting
discussions and continuous encouragement. Finally, we are grateful to two anonymous
referees for their constructive criticism which helped to improve the quality of the book.
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Introduction

A one-dimensional quantum harmonic oscillator is a quantized version of the model of a
particle performing sinusoidal oscillations in a parabolic potential field, corresponding
to Hooke’s law. A �-dimensional harmonic oscillator, � 2 N, performs independent
simultaneous oscillations in all � dimensions; its momentum and displacement are
�-dimensional vectors. For anharmonic oscillators, the corresponding potential fields
are usually super-quadratic and may have multiple minima. The latter peculiarity
entails essential changes in the particle dynamics as compared with the case of convex
potentials. A typical example from physics is a hydrogen bound O � H � O, consisting
of two negative oxygen ions and a positive hydrogen ion (proton), which here stands
for a quantum particle. Such a bound is the key structure element of many inorganic
and organic compounds. The potential field created by the oxygen ions has two minima
(wells), close to each of the ions. Then such a bound with the proton localized in one of
the wells is an electric dipole. These dipoles interact with each other, which can force
the protons to stay in one of the corresponding two wells. At the same time, the protons
oscillate between the wells, even in low-energy states. This motion through a potential
barrier, forbidden for classical particles, is called quantum mechanical tunneling, see
Subsection 1.1.3 below. It produces a strong delocalizing effect, especially at low
temperature.

Along with modeling localized quantum particles, quantum anharmonic oscillators
are also involved in models describing the interaction of vibrating quantum particles
with a radiation (photon) field or strong electron-electron correlations caused by the in-
teraction of electrons with vibrating light ions. Infinite systems of interacting quantum
particles of this kind possess interesting physical properties connected with ordering
(phase transitions) and quantum effects. Most of them are related to solids, such as
ionic crystals containing localized light particles oscillating in the field created by heavy
ionic complexes, like the hydrogen bounds mentioned above, or quantum crystals con-
sisting entirely of such particles, e.g., crystalline helium. In the Born–Oppenheimer
(called also adiabatic) approximation, the motion of heavy ions is neglected and the
oscillators are attached to the sites of a regular crystal lattice – one oscillator per site.
Other important physical objects of this kind are systems of localized light particles
irregularly distributed (admixed) in a certain medium. In the corresponding model,
the sites the oscillators are attached to constitute an irregular set and the localization
potentials may vary from site to site. This can also include the case where L is a
lattice but V`, as well as J``0 , are random. Often, as in the case of hydrogen bounds,
the described particles carry electric charges and their displacements from equilib-
rium positions produce dipole moments. Then the interaction between the particles
is of dipole–dipole type and thereby has slow spatial decay. In what follows, infinite
systems of interacting quantum anharmonic oscillators with possibly irregular spatial
distribution of their equilibrium positions and with long-range interactions can be used
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in modeling a wide variety of physical objects. A rigorous mathematical description
of such systems is still a challenging task, and one of the aims of the present book is
to provide a framework for such a construct.

In the sequel, by C, R, Z, N, and N0 we denote the sets of complex, real, integer,
positive integer, and nonnegative integer numbers, respectively. The main object of
our study is a system of interacting quantum anharmonic oscillators attached to the
elements of a countable set L � Rd equipped with the Euclidean distance j � j inherited
from Rd . We suppose that

sup
`2L

X
`02L

1

.1C j` � `0j/dC� < 1; (1)

for every � > 0, which in particular means that L has no accumulation points. The
condition (1) implies that subsets of Rd of small volume cannot contain a large number
of elements of L. In general, this will be the only condition imposed on the set L.
However, some of our results have been obtained in the case where L is a crystal
lattice, which is clearly indicated in the text. For simplicity, in such cases we always
assume that L D Zd . With a slight abuse of terminology we call our model a quantum
anharmonic crystal, even if L is not a lattice. The heuristic Hamiltonian of our model is

H D �1
2

X
`;`0

J``0 � .q`; q`0/C
X
`

H`; (2)

where the interaction term is harmonic – the simplest possible choice, which, however,
has a physical motivation (it is of dipole–dipole type). The indices in the sums run
through the set L, the displacement q` of the oscillator attached to a given ` 2 L is a �-
dimensional vector, whose components q.j /

`
, j D 1; : : : ; �, are position operators. By

. � ; � / and j � j we denote the scalar product and norm in R� . The one-site Hamiltonian

H` D H har
` C V`.q`/

defD 1

2m
jp`j2 C a

2
jq`j2 C V`.q`/; a > 0; (3)

describes an isolated quantum anharmonic oscillator of mass m and momentum p` D
.p
.1/

`
; : : : ; p

.�/

`
/. It is also called the Schrödinger operator of the oscillator. H har

`
is the

Schrödinger operator of a �-dimensional harmonic oscillator of rigidity a. The com-
ponents of p` and q`, which are operators in L2.R�/, obey the canonical commutation
relation

p
.j /

`
q
.j 0/

`0 � q.j 0/

`0 p
.j /

`
D �iı``0ıjj 0 ; j; j 0 D 1; : : : ; �; i D p�1:

In our presentation of this relation, Planck’s constant ¯ is included into the mass pa-
rameter

m D mph=¯2; (4)

wheremph is the physical mass of the particle. The anharmonic potentialsV` W R� ! R,
which may vary from site to site, are continuous functions obeying

bV jxj2r � cV � V`.x/ � V.x/;
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with constants bV > 0, cV � 0, r 2 N n f1g, and a continuous function V W R� ! R.
These bounds are responsible for the system stability. As for the interaction intensities,
the only general restriction is

OJ0 defD sup
`

X
`0

jJ``0 j < 1;

which is a stability condition as well. By imposing this condition we shall avoid
problems with infinite forces acting on a given oscillator. In general, we do not assume
that the model has special properties like translation invariance or that the interaction
has finite range. Therefore, our model can describe also systems with long-range
interactions and with spatial irregularities like impurities or the ones with random
components.

The Hamiltonian (2) has no direct mathematical meaning and usually is ‘repre-
sented’ by local Hamiltonians Hƒ corresponding to finite ƒ � L. Here and in the
sequel, the adjective ‘local’ characterizes a property, related to a finiteƒ � L, whereas
‘global’will always refer to the whole ‘lattice’L. Cases of infiniteƒ ¨ L are indicated
explicitly. EachHƒ describes the subsystem of oscillators attached to the lattice points
` 2 ƒ, and hence is obtained from (2) by restricting the corresponding sums to ƒ. It
is a self-adjoint lower bounded operator in the physical Hilbert space L2.R�jƒj/, the
elements of which are called wave functions. The operator Hƒ has discrete spectrum
and is such that

traceŒexp.��Hƒ/� < 1; for all � > 0. (5)

The quantum-mechanical states of the subsystem inƒ are defined by the wave functions
 2 L2.R�jƒj/ of unit norm in the following sense. Let Cƒ be the algebra of all
bounded linear operators in L2.R�jƒj/. Its elements are called local observables. For
the mentioned  , the state ! is defined on Cƒ as the linear functional

Cƒ 3 A 7! ! .A/ D . ;A /L2.R�jƒj/;

where . � ; � /L2.R�jƒj/ is the scalar product in L2.R�jƒj/. Such a state can be extended
to unbounded operators, which contain  in their domains. The state ! is pure
(also called extreme), which means that it cannot be expressed as a nontrivial convex
combination of other states. If  is the eigenfunction of Hƒ corresponding to the
eigenvalue E, then the energy of the subsystem in the state ! is ! .Hƒ/ D E.
By (5) and the Hilbert–Schmidt theorem it follows that there exists an orthonormal
basis f ngn2N0

of L2.R�jƒj/, consisting of eigenvectors of Hƒ. Let fEngn2N0
be

the set of the corresponding eigenvalues of Hƒ. According to the fundamental law of
statistical mechanics, the equilibrium state %ˇ;ƒ at a given value of the parameter ˇ D
1=kBT , called inverse temperature, is a mixture of the pure states! n

with coefficients
proportional to exp.�ˇEn/. Here kB > 0 and T > 0 are Boltzmann’s constant and
absolute temperature, respectively. By these arguments we are immediately led to the
formula

%ˇ;ƒ.A/ D trace.Ae�ˇHƒ/

trace.e�ˇHƒ/
: (6)
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This is the Gibbs state corresponding to the canonical ensemble. In the grand canonical
ensemble, one includes also states with different numbers of particles. As in our case
this number is constant and equal to jƒj, we shall consider canonical ensembles only.
Along with the thermodynamics of the considered system of oscillators, the Hamilto-
nian Hƒ determines its dynamics as well. There exist two equivalent approaches to
the description of the dynamics of a quantum system. In the Schrödinger approach,
the states ! evolve according to the Schrödinger equation, whereas the observables
remain constant in time. In the Heisenberg picture, the states are constant but the
observables evolve according to the following rule1

Cƒ 3 A 7! aƒt .A/
defD eitHƒAe�itHƒ ; t 2 R: (7)

AsHƒ is self-adjoint, the operators eitHƒ are unitary; hence, the mappings aƒt , t 2 R,
constitute a one-parameter group of automorphisms of Cƒ. In our context, it is more
appropriate to adopt the Heisenberg approach, at least because in both cases (6) and (7),
one deals with mappings defined on one and the same set Cƒ. Note that the fact, that
they are defined by the same operator Hƒ, is crucial. One might observe, however,
that the picture just drawn has some deficiency since therein the subsystem in ƒ is
described separately from the rest of the system, the influence of which is thereby
ignored. In the path integral approach developed below, this problem is settled by
considering conditional Gibbs measures, in which the interaction of the subsystem in
ƒ with the remaining part of the system is taken into account.

We have come to the point where we can start to build up our Euclidean approach.
In its first stage, we realize the state%ˇ;ƒ with the help of a path measure. Here multipli-
cation operators play a significant role. For a bounded Borel function, F W R�jƒj ! C,
the corresponding multiplication operator F acts according to

.F /.x/ D F.x/ .x/;  2 L2.R�jƒj/:

In this case, we can write

%ˇ;ƒ.F / D
R

R�jƒj F.x/Kˇ .x; x/dxR
R�jƒj Kˇ .x; x/dx

; (8)

where K� .x; y/ is the integral kernel of exp.��Hƒ/. This defines the restriction of
the state (6) to the abelian subalgebra consisting of all multiplication operators by
bounded Borel functions. Of course, such a result is not sufficient. To extend this kind
of representation to the remaining elements of Cƒ we proceed as follows. First we
prove that the linear span of the products

aƒt1.F1/ : : : a
ƒ
tn
.Fn/

with all possible choices of n 2 N, t1; : : : ; tn 2 R, F1; : : : ; Fn 2 Cb.R�jƒj/, is dense in
Cƒ in a certain (� -weak) topology, in which the state (6) is continuous. HereCb.R�jƒj/

1For convenience, we set t D time=¯, where ¯ is Planck’s constant.
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is the set of all bounded continuous functions F W R�jƒj ! C. Thereby, this state is
fully determined by its values on such products, that is, by the Green functions

GƒF1;:::;Fn
.t1; : : : ; tn/

defD %ˇ;ƒŒa
ƒ
t1
.F1/ : : : a

ƒ
tn
.Fn/�; F1; : : : ; Fn 2 Cb.R

�jƒj/: (9)

Let us formally set here tk D i�k , �k 2 R, k D 1; : : : ; n, and consider

„.�1; : : : ; �n/
defD trace

˚
e��1HƒF1e

�.�2��1/Hƒ

� � � � � Fn�1e�.�n��n�1/HƒFne
�.ˇ��n/Hƒ

�
;

(10)

which can be written in the form (8) provided 0 � �1 � � � � � �n � ˇ. Now the
problem of relating (10) to (9) can be settled by means of an analytic continuation from
the real to imaginary values of time. This is done by proving that each Green function
is the restriction of a function GƒF1;:::;Fn

, which is analytic in the following complex
tubular domain2

Dn
ˇ D f.z1; : : : ; zn/ 2 Cn j 0 < =.z1/ < � � � < =.zn/ < ˇg; (11)

and continuous on its closure xDn
ˇ

� Cn. Thereby, one shows that for any n 2 N, the
‘imaginary time’ subset

f.z1; : : : ; zn/ 2 Dn
ˇ j <.z1/ D � � � D <.zn/ D 0g

is a set of uniqueness for functions analytic in Dn
ˇ

. This means that if two such
functions take equal values on this set, then they are equal everywhere and thus equal
as functions. Therefore, the Green functions (9), and hence the state (6), are determined
by the so-called Matsubara functions

�ƒF1;:::;Fn
.�1; : : : ; �n/

defD GƒF1;:::;Fn
.i�1; : : : ; i�n/

D „.�1; : : : ; �n/=traceŒe�ˇHƒ � (12)

D traceŒF1e
�.�2��1/HƒF2e

�.�3��2/Hƒ : : : Fne
�.�nC1��n/Hƒ �=traceŒe�ˇHƒ �;

taken at ordered arguments 0 � �1 � � � � � �n � �1 C ˇ
defD �nC1, with all possible

choices of n 2 N and F1; : : : ; Fn 2 Cb.R�jƒj/. Their extensions to Œ0; ˇ�n are defined
as

�ƒF1;:::;Fn
.�1; : : : ; �n/ D �ƒF�.1/;:::;F�.n/

.��.1/; : : : ; ��.n//;

where � is the permutation of f1; 2; : : : ; ng such that ��.1/ � ��.2/ � � � � � ��.n/. This
multiple-time analyticity can be thought of as a consequence of the above mentioned
fact that the dynamics and thermodynamics of the subsystem are determined by the same
local Hamiltonian and hence are in equilibrium. As follows from the representation
(12), the Matsubara function �ƒF1;:::;Fn

can be written in the form

�ƒF1;:::;Fn
.�1; : : : ; �n/ D

Z
�ˇ;ƒ

F1.xƒ.�1// : : : Fn.xƒ.�n//�ˇ;ƒ.dxˇ;ƒ/; (13)

2For a z D x C iy 2 C, x; y 2 R, we write x D <.z/, y D =.z/.
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where �ˇ;ƒ is a certain probability measure on the local path space �ˇ;ƒ. It is canon-
ically associated with a ˇ-periodic Markov process3, for which the transition proba-
bilities are defined by the kernels K� .x; y/ mentioned above. This is the main point
of the first stage of our approach. As was mentioned above, this approach is called
Euclidean in view of the passage from the real to imaginary values of time. Corre-
spondingly, the measure �ˇ;ƒ is called a local Euclidean Gibbs measure. By standard
arguments, it is uniquely determined by the integrals (13); hence, since the Matsubara
functions �ƒF1;:::;Fn

uniquely determine the state %ˇ;ƒ, the representation (13) estab-
lishes a one-to-one correspondence between the local Gibbs states and local Euclidean
Gibbs measures.

Now suppose that we are given an algebra of observables C and a one-parameter
group of time automorphisms ˛t W C ! C, t 2 R, which determines the dynamics of
the underlying system. How can one find a � -weakly continuous state ! on C such
that the continuation of the Green functions of this state to imaginary values of time
is possible and thereby a kind of equilibrium can be established? Here we note that
the family of such states need not be a singleton. The answer to the above question is
related to the Kubo–Martin–Schwinger (KMS) property of !. For A;B 2 C, let us set

F !A;B.t/ D !.B˛t .A//; G!A;B.t/ D !.˛t .A/B/; t 2 R: (14)

Then ! is called a ˇ-KMS state if there exists a function F , analytic in D1
ˇ

and

continuous on its closure xD1
ˇ

, such that

F !A;B.t/ D F.t/; G!A;B.t/ D F.t C iˇ/; for all t 2 R.

In [144], see also page 202 in [145], it was suggested to use the KMS property of ! as
the defining property of an equilibrium state at a given value of ˇ. It turns out that if
! is a KMS state, then each Green function

G!A1;:::;An
.t1; : : : ; tn/ D !.˛t1.A1/ : : : ˛tn.An//;

for any n 2 N and A1; : : : ; An 2 C, has a multiple-time analyticity property, the same
as the Green functions (9). This fact was proven in [176]. Thus, a � -weakly continuous
KMS state is uniquely determined by the Matsubara functions corresponding to the
operators from a maximal abelian subalgebra of C. Let us now analyze the possibility
of using the idea just outlined in constructing global equilibrium states. As we have
seen, the crucial elements of this construction are the algebra of observables and the
group of time automorphisms. A candidate for such an algebra could be the norm-
completion of the algebra of local observables

Cloc D
[
ƒ

Cƒ; (15)

where the union is taken over all finite ƒ. It is a C �-algebra, but need not be a
von Neumann algebra. The group of time automorphisms could be obtained in the

3The periodic Markov property was introduced and studied in [177].
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infinite-volume limit ƒ % L from the automorphisms (7). For some systems with
bounded local HamiltoniansHƒ, e.g., quantum spin models or the ideal Fermi gas, this
‘algebraic’ way of constructing equilibrium states can be realized, see [77]. However,
in the case of the model (2), (3), it does not work since the construction of corresponding
infinite-volume time automorphisms is beyond the technical possibilities existing at this
time. As a consequence, the global KMS condition for this model cannot be formulated
and hence the KMS states cannot even be defined4.

What we have also learned from the above consideration is that the Matsubara func-
tions can determine equilibrium states. For our model, this can be done for the local
states by (12) and (13), where these functions are obtained as integrals with respect to
local Euclidean Gibbs measures. On the global level, general abstract techniques of
constructing equilibrium states from given (complete) sets of Matsubara functions were
elaborated in [66], [131], [132], [133]. As follows from these works, the number of
equilibrium states existing for the same values of the model parameters and temperature
is in correspondence with the number of sets of Matsubara functions, which can be con-
structed for these values. Therefore, all the information about the thermodynamics of
the considered model is contained in these functions. Our approach gives a way how to
obtain them. Here we exploit the fact that the local states are represented by probability
measures and hence can be interpreted as local Gibbs measures of classical lattice sys-
tems of unbounded spins. For such systems, a complete description of the equilibrium
thermodynamic properties is achieved by constructing their Gibbs states as probability
measures on appropriate configuration spaces. Here the use of the distributions of
configurations in a finite ƒ � L conditioned by configurations outside ƒ is standard.
The corresponding techniques constitute the Dobrushin–Lanford–Ruelle (DLR) the-
ory, which now is well-elaborated and widely used. By virtue of the Feynman–Kac
formula employed in its construction, each of the local Euclidean Gibbs measures �ˇ;ƒ
has the same structure as the local Gibbs measure of a classical lattice model. The only,
but essential, difference is that here even the single-site spaces are infinite-dimensional
(spaces of continuous paths). Therefore, the reference measure employed in the con-
struction of �ˇ;ƒ cannot be Lebesgue measure, which does not exist for such spaces.
Instead, we use a Gaussian measure, which serves as a local Euclidean Gibbs measure
of a single harmonic oscillator. In spite of the mentioned difficulty, the local Euclidean
Gibbs measures, as well as the corresponding local conditional Gibbs measures, possess
properties which allow for employing most of the DLR techniques adapted, however,
to infinite-dimensional single-site spaces. This is realized in the first part of the book.

As was mentioned above, the model (2) has various physical applications and the
corresponding physical objects are well studied, both experimentally and theoretically,
e.g., by means of numerical methods and computer simulations. At the same time, the
rigorous mathematical description of its equilibrium thermodynamic properties based
on a widely recognized method has not been given yet. In the first part of the present
book we develop a version of such a description. Therefore, it would be quite natural to

4 A more detailed analysis of similar problems, which appear in the theory of interacting Bose gases, can
be found on page 349 of [77].
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obtain in its framework a qualitative explanation of the basic known facts concerning
the thermodynamic properties of these physical objects. This is done in the second part
of the book.

Thus, the main points of the Euclidean approach developed below are

(a) Constructing the local Euclidean Gibbs measures�ˇ;ƒ as measures on path spaces
(spaces of continuous paths).

(b) Constructing and studying the conditional local Euclidean Gibbs measures and
hence the local Gibbs specifications.

(c) Constructing the set G t
ˇ

of tempered Euclidean Gibbs measures, describing the
whole infinite model as the set of probability measures which solve the DLR
(equilibrium) equations defined by the local Gibbs specification.

(d) Studying the properties of G t
ˇ

and thereby describing phase transitions and quan-
tum effects in the model considered.

This program is realized in the book as follows. Part I, as said above, is dedicated
to the mathematical background. It consists of Chapters 1–3. In Chapter 1, we start
by introducing the model and making natural stability assumptions regarding J``0

and V`. Then we introduce the state (6) and provide the essential facts concerning
linear operators in Hilbert spaces, the Schrödinger operators of single harmonic and
anharmonic oscillators, normal states, and von Neumann algebras. Afterwards, we
prove the density theorem which allows for describing local Gibbs states by the Green
functions corresponding to multiplication operators. Next, we give a complete proof of
the multiple-time analyticity of the Green functions, which leads us to the Matsubara
functions and then to the representation (13). In passing from the states (6) to the
measures �ˇ;ƒ, as a reference system we use the subsystem of noninteracting harmonic
oscillators. Its Green and Matsubara functions are obtained explicitly. Thereby, we
present and interpret a collection of concepts and tools from stochastic analysis, which
will be used subsequently. This includes a number of facts from the theory of probability
measures on complete separable metric spaces (called Polish spaces), in particular
on separable Hilbert spaces. As we show, the Euclidean Gibbs measure of a single
harmonic oscillator is the measure corresponding to the periodic Ornstein–Uhlenbeck
velocity process (periodic oscillator process), which for the first time appeared in
R. Høegh-Krohn’s paper [156]. We call them Høegh-Krohn process and Høegh-Krohn
measure respectively. The properties of the Høegh-Krohn measure play a significant
role in our construction and are, therefore, analyzed in detail. We construct and study
the local Euclidean Gibbs measures �ˇ;ƒ by using a version of the Feynman–Kac
formula. Chapter 1, as all subsequent chapters, is concluded with comments and
bibliographic notes.

In Chapter 2, for the local Euclidean Gibbs measures, we prove a number of corre-
lation inequalities and similar useful facts. The proof is based on the ‘lattice approx-
imation’ of the measures �ˇ;ƒ, in which the approximating measures are local Gibbs



Introduction 9

measures of classical models with ‘unbounded spins’. The main point here is the ap-
proximation of the Høegh-Krohn process (which is a periodic Markov process) by a
Markov chain. A similar approach is known in Euclidean quantum field theory. By
means of this approximation we rederive the basic correlation inequalities known for
classical spin models. Among the new results obtained here we mention the Lee–Yang
property for a certain type of anharmonic potentials V`, scalar domination inequalities
which allow for comparing scalar and vector versions of our model, and some new
inequalities for Matsubara and Ursell functions.

Chapter 3 is dedicated to the construction and description of the Euclidean Gibbs
states of the model (2) in complete generality. We start by discussing the thermody-
namic limit and limiting Gibbs states. Then we introduce the spaces of all configurations
�ˇ and tempered configurations �t

ˇ
. The space �ˇ is constructed from the spaces

of local configurations in a natural way. We equip �ˇ with the product topology that
turns it into a Polish space. This fact is essential in view of the DLR techniques which
we are going to use. The reason to introduce the space of tempered configurations
�t
ˇ

is twofold. First, since the interaction intensities J``0 may have infinite range, we

must impose some a priori restrictions on the L2-norms k	`kL2
ˇ

of the components of

configurations 	 2 �ˇ . Otherwise, the local conditional Euclidean Gibbs measures
�ˇ;ƒ. � j	/ cannot be defined. Second, even if J``0 had finite range, restrictions should
be imposed to exclude measures which in a sense are ‘improper’. By definition, tem-
pered Euclidean Gibbs measures are to be supported by�t

ˇ
. This is a usual procedure

in the DLR theory of Gibbs measures of systems of ‘unbounded spins’. However,
as we show afterwards, the real support of the tempered Euclidean Gibbs measures
is much smaller than �t

ˇ
and is independent of the way the latter set has been intro-

duced. As to this way, the restrictions are imposed by means of weights, fw˛g˛2� ,
that among other properties have the one by which each function � logw˛ , ˛ 2 �,
is a metric on L. We equip �t

ˇ
with a projective limit topology, so that it becomes a

Polish space as well. In Section 3.2, we prove that the kernels 
ˇ;ƒ obtained from the
local conditional Gibbs measures obey certain exponential moment estimates, which
play a key role in constructing and studying the tempered Euclidean Gibbs measures.
In Section 3.3, we prove that the set of such measures G t

ˇ
is non-void and weakly com-

pact. We also prove a number of statements characterizing G t
ˇ

, among them the support
property mentioned above. Next we develop an alternative approach to the construc-
tion of Euclidean Gibbs measures based on the Radon–Nikodym characterization. In
this approach, G t

ˇ
is defined as the set of measures obeying an integration-by-parts for-

mula. Subsequently, we present a more detailed study of the case of local interactions,
where the intensities J``0 have finite range, and of the translation-invariant case, where
L D Zd , V` D V , and J``0 are invariant with respect to the translations of L. In the
latter case, the set G t

ˇ
among others contains the so-called periodic elements. Finally,

for J``0 � 0 and � D 1, we introduce a stochastic order on G t
ˇ

, with respect to which it
has a minimal element, ��, and a maximal element, �C. This fact is then employed in
further studying G t

ˇ
. In particular, by means of these elements a uniqueness criterion

is obtained.
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Part II, comprising Chapters 4–7, is dedicated to the description of some physical
properties of the model defined by (2) and (3). Here we concentrate on those related to
phase transitions and critical points, as well as on quantum effects. In Chapter 4, we
discuss in more detail which physical systems can be modeled by the Hamiltonians (2)
and (3). Then we study the classical limit m ! C1, cf. (4), of the local Euclidean
Gibbs measures and show that they coincide with those of the corresponding system
of classical anharmonic oscillators. Next, we prove that G t

ˇ
is a singleton at high

temperatures and/or weak interactions. Chapter 5 is dedicated to the study of the
thermodynamic pressure, which up to a factor coincides with the free energy density.
Here we suppose that L is a lattice and the model is translation-invariant. We begin
by proving that the pressure exists and is the same for each state � 2 G t

ˇ
. Then we

describe its dependence on the external field and formulate a uniqueness criterion in
terms of differentiability of the pressure. Next, in Chapter 6, we study phase transitions.
According to our definition, a phase transition occurs if the set of tempered Euclidean
Gibbs measures contains more than one element that corresponds to the non-uniqueness
of equilibrium phases. We also analyze the connection of this definition with the one
based on an order parameter and with the definition of L. Landau. Then we prove
that a number of versions of our model, including those with irregular L, have a phase
transition under certain conditions. The proof is based on the reflection positivity
method, adapted here to the Euclidean approach, on correlation inequalities, and on
appropriate analytic methods developed in the first part of the book. Next, we consider
a hierarchical model of quantum anharmonic oscillators, which is a special case of the
model (2), (3). For this model, we prove a statement describing its critical point.

The final Chapter 7 is dedicated to the theory of quantum effects in our model.
Since the 1970s, understanding the influence of quantum effects on phase transitions is
one of the main tasks in the theory of systems of this kind. As is commonly accepted, a
ferroelectric phase transition in the KDP-type compounds is triggered by the ordering
of protons on the hydrogen bounds and, therefore, the model (2) is quite appropriate
to describe this class of physical objects. These ferroelectrics become less stable with
respect to a structural phase transition if one replaces protons by deuterons5. On
the other hand, high hydrostatic pressure, which increases tunneling of the particles by
bringing minima of the wells closer to one another, decreases the transition temperature.
We propose a theory, which qualitatively explains all these facts. It naturally comes
from the results obtained above and is based on the following arguments. The key
parameter here ism�2, wherem is the mass parameter (4) and� is the least difference
between the eigenvalues of the single-particle Hamiltonian H` (which depends on
m). In the harmonic case, m�2 is merely the oscillator rigidity and the stability of the
crystal corresponds to large values of this parameter. That is why we callm�2 quantum
rigidity. If the tunneling between the wells gets more intensive (closer minima), or
if the mass diminishes, m�2 gets bigger and the particle ‘forgets’ the details of the
potential energy in the vicinity of the origin (including instability) and oscillates as if
its equilibrium at zero were stable, as in the harmonic case. We provide a complete

5This amounts to altering the particle mass in (3) without changing any other parameters.
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mathematical background for these arguments. First, we prove that the quantum rigidity
is a continuous function of m and that m�2 ! C1 as m ! 0. Then we prove that
the model has no phase transitions, at any temperature, if m�2 < OJ0, where OJ0 is
the total energy of the interaction of the particle with the rest of the system. This can
be considered as a further confirmation that our Euclidean approach is adequate to
describe a large class of phenomena arising in solid state physics.





Part I

Mathematical Background





Chapter 1

Quantum Mechanics and Stochastic Analysis

1.1 The Model and Preliminaries

In Subsection1.1.1, we introduce our main model, the description of which is per-
formed in terms of linear operators on the corresponding Hilbert spaces. Then in
Subsection 1.1.2, we present a concise collection of notions and facts about linear op-
erators and Hilbert spaces, which are employed in the sequel. As the main element of
our model is a quantum oscillator, in Subsection 1.1.3 we present its detailed theory.
First, we consider a harmonic oscillator described by the Schrödinger operator H har.
We establish its domain, eigenfunctions, and the corresponding eigenvalues. After-
wards, we develop the theory of the Schrödinger operator H D H har C V , where V
is an anharmonic potential. Here, along with known facts, we also use some recent
results obtained in the theory of such operators. Thereafter, we study the dependence
of the gap parameter of the spectrum of H on the particle mass, which is used in the
theory of physical properties of our model developed in Part II.

Throughout the book by C, R, RC Z, N, and N0 we denote the sets of complex, real,
positive real, integer, positive integer, and nonnegative integer numbers, respectively.
For a complex number z D x C iy, x; y 2 R, we write x D <.z/, y D =.z/, and
Nz D x � iy.

1.1.1 The Model

The model we consider in this book is a system of interacting quantum anharmonic
oscillators indexed by the elements of a countable set L � Rd , d 2 N (one oscillator
per each ` 2 L). The set L is equipped with the Euclidean distance

j` � `0j D Œj`1 � `0
1j2 C � � � C j`d � `0

d j2�1=2; `; `0 2 L; (1.1.1)

inherited from the metric space Rd . We impose a regularity condition,

sup
`2L

X
`02L

1

.1C j` � `0j/dC� < 1; (1.1.2)

which has to hold for every � > 0. This means that L has no accumulation points. In
particular, L can be a crystalline lattice. We shall always assume that L D Zd if L is
a lattice. For the sake of simplicity, we call our model quantum anharmonic crystal,
even if L is not a crystal.

The quantumanharmonic oscillator is a mathematical model of a localized quantum
particle moving in a potential field with possibly multiple stable equilibrium positions
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and sufficiently fast growth at infinity. We suppose that the space in which such a
particle moves is R� , � 2 N, that is, our particle performs �-dimensional oscillations
around a certain point, specific for each particle. Its displacement from this point is
described by the operator q` D .q

.j /

`
/�jD1, ` 2 L. Correspondingly, the momentum

of the particle is a vector, p` D .p
.j /

`
/�jD1. The Schrödinger operator (also called

Hamiltonian) of a single anharmonic oscillator of mass m > 0 is

H` D H har
` C V`.q`/

defD 1

2m
jp`j2 C a

2
jq`j2 C V`.q`/; a > 0: (1.1.3)

Here j � j stands also for the norm in R� . The first two terms constitute the Hamil-
tonian H har

`
of a quantum harmonic oscillator of mass m and rigidity a, whereas V`

is an anharmonic correction, which is a function, V` W R� ! R. We shall also call
it anharmonic potential. The total potential energy is the sum of the harmonic part
ajq`j2=2 and the anharmonic potential; its minima correspond to the stable equilibrium
positions of the oscillator. The Hamiltonian (1.1.3), as well as the momentum p` and
displacement q`, are operators acting in a single-site physical Hilbert space H`, which
in our case is the space L2.R�/ of square-integrable wave functions  W R� ! C. As
usual, two such functions which differ on a subset of R� of zero Lebesgue measure
define the same element of L2.R�/. The scalar product and norm in this space are

.;  /H`
D
Z

R�

N.x/ .x/dx; k kH`
D
q
. ; /H`

; (1.1.4)

where N is the complex conjugate of . Wave functions of unit norm determine states
of the particle in the following sense. By definition, the Borel � -algebra B.R�/ of
subsets of R� is the smallest � -algebra which contains all open sets. For B 2 B.R�/,
the quantity

P .B/ D
Z
B

j .x/j2dx (1.1.5)

is chosen to be the probability that the particle in state  is contained in set B . A
brief presentation of the main notions of the theory of linear operators acting in Hilbert
spaces is given in the next subsection, where we also return to the interpretation of
wave functions as states, see Definition 1.1.12 and the discussion following it.

The components of the displacement and momentum operators q.j /
`

, p.j /
`

, j D
1; : : : ; �, satisfy on their common domain the canonical commutation relation

Œq
.j /

`
; p
.j 0/

`0 � D q
.j /

`
p
.j 0/

`0 � p.j 0/

`0 q
.j /

`
D iı``0ıjj 0 ; i D p�1; (1.1.6)

where ı is the Kronecker symbol. The Planck constant ¯, which usually appears in
(1.1.6), has been included into the particle mass, i.e., the mass parameter m in (1.1.3)
is

m D mph=¯2; (1.1.7)

where mph is the physical mass of the particle.
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The quantum anharmonic crystal we study throughout this book is described by a
‘heuristic Hamiltonian’

H D �1
2

X
`;`0

J``0 � .q`; q`0/C
X
`

H`; (1.1.8)

where the indices of the sums run through the set L, the brackets . � ; � / stand for the
scalar product in R� , andH` is the Hamiltonian (1.1.3). The set L obeys the condition
(1.1.2) only. We reiterate that the model is called a quantum anharmonic crystal, even
in the general case where L is not a crystal at all. The first term in (1.1.8) describes the
interaction between the particles. The interaction intensities

J`` D 0; J``0 D J`0` 2 R; `; `0 2 L; (1.1.9)

constitute the so-called dynamical matrix .J``0/L�L. Our choice of interaction term is
motivated by physical applications and will be discussed in the second part of the book.
We shall refer to this ‘heuristic Hamiltonian’as the model we consider. The anharmonic
potentials V` and the dynamical matrix .J``0/L�L are subject to the following

Assumption 1.1.1. All V` W R� ! R are continuous and such that V`.0/ D 0. Fur-
thermore, there exist an integer r � 2, constants bV > 0, cV � 0, and a continuous
function V W R� ! R, V.0/ D 0, such that for all ` and x 2 R� ,

bV jxj2r � cV � V`.x/ � V.x/: (1.1.10)

Finally, we assume that
OJ0 defD sup

`

X
`0

jJ``0 j < 1: (1.1.11)

By imposing (1.1.11) we shall avoid problems with infinite forces acting on a given
oscillator. The lower bound in (1.1.10) is responsible for confining the particle to the
vicinity of the point q` D 0. According to this bound the anharmonic potentials have
a super-quadratic growth, due to which they dominate the first term in (1.1.8). The
upper bound in (1.1.10) guarantees that the oscillations of the particles located far from
the origin are not suppressed. An example of V` to bear in mind is an even polynomial

V`.x/ D
rX
sD1

b
.s/

`
jxj2s � .h; x/; b

.s/

`
2 R; r � 2; (1.1.12)

in which h 2 R� is an external field and the coefficients b.s/
`

vary in certain intervals,
such that both estimates in (1.1.10) hold. Thereby, the main object of our study is the
model described by the Hamiltonians (1.1.3), (1.1.8). Its particular cases are specified
in the following

Definition 1.1.2. The model (1.1.3), (1.1.8) is called rotation-invariant if V`.x/ D
V`.Ux/ for all ` and all orthogonal transformations U W R� ! R� . In the case � D 1,
it merely means that V`.x/ D V`.�x/ for all `. The model is ferromagnetic if J``0 � 0

for all `; `0. The interaction has finite range if there exists R > 0 such that J``0 D 0

whenever j` � `0j > R.



18 1 Quantum Mechanics and Stochastic Analysis

Note that if we discuss the scalar case � D 1, we say that the model (1.1.3), (1.1.8)
is symmetric if V`.x/ D V`.�x/ for all `.

1.1.2 Linear Operators in Hilbert Spaces

Basic notions

A Hilbert space H is a linear space over the complex field C endowed with a scalar
product . � ; � /H and the corresponding norm k � kH , cf. (1.1.4), which is complete as a
normed space. The latter means that every Cauchy sequence of its elements f ngn2N

has a limit in H , that is, there exists  2 H such that  n !  , as n ! C1. The
latter means that

lim
n!C1 k n �  kH D 0:

By definition, a Cauchy sequence has the property that for any " > 0, there exists
n" 2 N such that k n �  mkH < " whenever n;m > n". We always assume that
dim H > 0, which just means that each of our Hilbert spaces contains nonzero vectors.
We also assume that the map .;  / 7! .;  /H is linear with respect to the second
argument and is anti-linear with respect to the first one, cf. (1.1.4); that is, for all , 1,
2,  ,  1;  2 2 H and all ˛1; ˛2 2 C,

.; ˛1 1 C ˛2 2/H D ˛1.;  1/H C ˛2.;  2/H ;

.˛11 C ˛22;  /H D N̨1.1;  /H C N̨2.2;  /H : (1.1.13)

As .;  /H D . ; /H , the second line follows from the first one. The scalar product
and norm obey the polarization identity,

.;  /H D 1

4

˚k C k2H � k � k2H � ik C ik2H C ik � ik2H
�
; (1.1.14)

and the Cauchy–Schwarz inequality,

j.;  /H j � kkH � k kH : (1.1.15)

By the latter inequality one obtains that .m;  n/H ! .;  /H whenever  n !  

and m ! , as n;m ! C1. Thus, the map .;  / 7! .;  /H is continuous. Let
A and B be two non-void subsets of H . By definition, they are mutually orthogonal if
. ; /H D 0 for each 2 A and each  2 B. For a non-void A � H , its annihilator
is set to be

A? D f 2 H j 8 2 A W .;  /H D 0g: (1.1.16)

A subset of a Hilbert space is called linear if it is closed under the linear operations.
Such subsets are also called algebraic subspaces. By definition, A is a dense subset of
H if each  2 H is the limit of a sequence fngn2N � A. If a linear subset is closed
in norm (contains the limits of all its Cauchy sequences), we say that it is a subspace
of the Hilbert space H . The set (1.1.16) is a subspace of H for any A. Below subsets
closed in norm are called merely closed.
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Remark 1.1.3. If A � H is dense, then A? D f0g, that is, the only vector which can
be orthogonal to all elements of a dense subset is the zero vector.

Indeed, for a given  2 A?, let fngn2N � A be such that n ! . Then by the
continuity of the scalar product one gets .; /H D 0.

A subset B � H is called an orthonormal family if: (a) each  2 B is normalized,
i.e., kkH D 1; (b) any two distinct ; 2 B are orthogonal, i.e., .;  /H D 0.
Such a family is called complete if B? D f0g. Every Hilbert space contains complete
orthonormal families. If B � H is such a family, then for every  2 H , there exists
a subset fkgk2K � B, K being at most countable, such that

 D
X
k2K

.k;  /Hk : (1.1.17)

A Hilbert space H is called separable if it contains a countable dense subset. H is
separable if and only if it contains a complete orthonormal family B which is at most
countable. If B is finite, i.e., jBj D N , then dim H D N . Otherwise, H is infinite-
dimensional. If H is separable, every  2 H can be written as in (1.1.17) with one
and the same orthonormal family fkgk2K, which is then called an orthonormal basis
of H . Sometimes, the sum on the right-hand side of (1.1.17) is said to be the Fourier
series of  . In the sequel, if not explicitly stated otherwise, we consider separable
Hilbert spaces only.

Let H1 and H2 be Hilbert spaces and D be a linear subset of H1. A linear operator1

from H1 to H2 with domain D is a map, T W D � H1 ! H2, such that

8 ;  2 D ; 8˛; ˇ 2 C W T .˛ C ˇ/ D ˛T C ˇT;

which in particular means that T maps the zero vector of H1 into the zero vector of
H2. To indicate that D is the domain of T we write D D Dom.T /. By Ran.T /
we denote the range of T , that is, the set of all T ,  2 Dom.T /. Finally, the set
Ker.T / D f 2 H1 j T D 0g is called the kernel of T , it always contains the zero
vector. Note that it may happen that Ker.T / D Dom.T / D f0g. The operator O , for
which Dom.O/ D Ker.O/ D H , is called the zero operator. For A � Ran.T /, by
T �1A we denote the pre-image of A, that is, T �1A D f 2 Dom.T / j T 2 Ag.
One observes that Ker.T / is a linear subset of H1, whereas Ran.T / is a linear subset
of H2.

A linear operator T W Dom.T / � H1 ! H2 is called invertible if there exists
a linear operator Q W Ran.T / � H2 ! H1, that is Dom.Q/ D Ran.T /, such that
Q D  whenever T D . Then Q is called the inverse of T and is denoted
by T �1. It is uniquely determined by T . Furthermore, T is invertible if and only if
Ker.T / D f0g. In this case, Ker.Q/ D f0g and Q�1 D T .

Suppose that for given Hilbert spaces H1 and H2, there exists a linear operator,
T W H1 ! H2, with Dom.T / D H1, Ker.T / D f0g, and Ran.T / D H2. Then T is

1As throughout the whole book we consider only linear operators, by saying operator we shall always
mean linear operator.
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invertible and T �1, which maps H2 onto H1, has the same properties as T . In this case,
both T and T �1 are called isomorphisms, whereas the spaces H1 and H2 are called
isomorphic. An isomorphism T W H ! H is called an automorphism. For N 2 N,
the linear space CN D fx D .x1; : : : ; xN / j xj 2 C; j D 1; : : : ; N g is endowed with
the scalar product .x; y/ 7! .x; y/CN D Nx1y1 C � � � C NxNyN . Thereby, it becomes
an N -dimensional complex Hilbert space. Every complex Hilbert space H , such that
dim H D N , is isomorphic to CN . Linear operators � W H ! C are called linear
functionals.

Bounded operators

A linear operator T W H1 ! H2 is called bounded if Dom.T / D H1 and there exists
C > 0 such that

kTkH2
� CkkH1

; (1.1.18)

for all  2 H1. The infimum of C obeying (1.1.18) is called the norm of T . It can be
calculated from the formulas

kT k D sup
�2H1; �¤0

kTkH2

kkH1

D sup
�2H1; k�kH1

D1
kTkH2

: (1.1.19)

Therefore,
8 2 H1 W kTkH2

� kT k � kkH1
: (1.1.20)

Let fTngn2N be a sequence of bounded operators. We say that fTngn2N converges to
a bounded operator T in norm if kT � Tnk ! 0 as n ! C1. We say that fTngn2N

converges to T strongly if kT � Tn kH2
! 0 for all  2 H1. By (1.1.20) the

convergence in norm implies strong convergence. For infinite-dimensional spaces, the
converse is not true.

As in the general case of mappings between normed spaces, a linear operator
T W Dom.T / � H1 ! H2 is called continuous at a given point (vector)  2 Dom.T /
if for every sequence f ngn2N such that  n !  in H1, one has T n ! T in
H2. Such an operator is called continuous (on its domain) if it is continuous at every
 2 Dom.T /. Suppose that T is continuous at  and take any other  2 Dom.T /.
For a sequence fngn2N � Dom.T /, such that n ! , we set  n D n C . � /.
By linearity, f ngn2N � Dom.T /. At the same time,  n !  and hence T n !  .
By the linearity of T this yields Tn ! ; thus, T is continuous also at  and thereby
everywhere on its domain. In summary, if T fails to be continuous at a single point, it
is nowhere continuous, and to check the continuity of T on Dom.T /, one only has to
check it at  D 0. Bounded operators are continuous. Indeed, if a sequence f ngn2N

converges to 0 2 H1, then by (1.1.20) one has kT nkH2
! 0. The converse is also

true – any continuous linear operator T W H1 ! H2 is bounded.
Let C.H1;H2/ be the set of all bounded linear operators T W H1 ! H2. For short,

we write C.H / D C.H ;H /. Each T 2 C.H / defines the mapping H 3  7!
. ; T  /H 2 C. The set

Num.T / D f. ; T  /H j  2 H ; k kH D 1g (1.1.21)
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is called the numerical range of T . The mapping 7! . ; T  /H uniquely determines
T in the following sense.

Proposition 1.1.4. If T;Q 2 C.H / are such that . ; T  /H D . ;Q /H for all
 2 H , then T D Q.

Proof. One can easily check that for any T 2 C.H /,

.; T  /H D 1

4
f. C  ; T . C  //H � . �  ; T . �  //H
� i. C i ; T . C i //H C i. � i ; T . � i //H g:

(1.1.22)

Then the assumed property of T and Q is equivalent to .; T  /H D .;Q /H ,
holding for all  ;  2 H . Therefore, .T � Q/ is orthogonal to every  and hence
Q D T .

For T 2 C.H /, its adjoint operator T � W H ! H is defined by the condition

8 ; 2 H W .; T  /H D .T �; /H : (1.1.23)

T � is hereby uniquely determined and bounded. T is called self-adjoint if T D T �.
By definition, the identity operator I is such that I D  for all  2 H . Both I and
O are apparently self-adjoint.

Let K be a subspace of H . Then K? is also a subspace, K?? defD .K?/? D K ,
and each  2 H can uniquely be decomposed into the sum of  2 K and 0 2 K?,
that is, H D K ˚ K?. By PK and PK? we denote the linear operators which act on
 D  C 0 according to

PK. C 0/ D ; PK?. C 0/ D 0: (1.1.24)

These are the orthogonal projections onto the subspaces K and K? respectively. They
are bounded and self-adjoint.

The set C.H / can be endowed with the following point-wise operations:

8 2 H W
.T CQ/ 

defD T CQ ;

.TQ/ 
defD T .Q /;

.˛T / 
defD ˛.T  /; ˛ 2 C:

(1.1.25)

Then, for all T 2 C.H /, it follows that

IT D TI D T; O C T D T; OT D TO D O:

For the projections introduced above, we have

P 2K D PK ; P 2
K? D PK? ; I D PK C PK? ; PKPK? D PK?PK D O:
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With the operations (1.1.25) the set C.H / becomes a complex associative algebra with
the zero and unit elements being O and T , respectively. This means that C.H / is a
linear space over the field C equipped with an associative product, which is distributive
with respect to the addition. It can also be viewed as an associative ring with respect to
the addition and multiplication introduced in (1.1.25), equipped with the multiplication
by complex numbers (scalars). We note, however, that in general, complex associative
algebras need not have unit elements.

The linear operations in (1.1.25) can also be defined for bounded operators
T W H1 ! H2 with H1 ¤ H2. With these operations the set C.H1;H2/ becomes
a complex linear space. It is complete in the norm (1.1.19) and hence is a complex
Banach space. A particular case is the space of all bounded linear functionals C.H ;C/.
It is called the dual space of H . By (1.1.13) and (1.1.15) for each  2 H , the map
H 3  7! .;  /H is an element of C.H ;C/. It turns out that every element of
C.H ;C/ can be realized in this way. This means that for every � 2 C.H ;C/, there
exists  2 H , such that �. / D .;  /H for all 2 H . The corresponding statement
is known as the Riesz lemma, see e.g., Theorem II.4 on page 43 in [255], according to
which C.H ;C/ is isomorphic to H .

A complex associative algebra C is called a normed algebra if it is equipped with
a norm that has the property

kABk � kAk kBk for all A;B 2 C. (1.1.26)

If C is complete in this norm (that is, C is a Banach space), then it is called a Banach
algebra. A mapping A 7! A� of C into itself is called an involution if the following
conditions are satisfied:

.i/ .A�/� D A;

.ii/ .AC B/� D A� C B�;
.iii/ .AB/� D B�A�;
.iv/ .˛A/� D N̨A�:

(1.1.27)

Definition1.1.5. A complex associative algebra with an involution is called a �-algebra.
A Banach �-algebra is called a C �-algebra if for all its elements,

kA�Ak D kAk2: (1.1.28)

One observes that by (1.1.26) kA�Ak � kA�k kAk; hence, (1.1.28) and claim (i)
in (1.1.27) imply kAk D kA�k.

As we already know, C.H / is a complex associative algebra. Endowed with the
operator norm (1.1.19) and with the involution T 7! T � defined by (1.1.23) it becomes
a C �-algebra with the unit element I . We say that T 2 C.H / is invertible in C.H /

if T �1 2 C.H /. Clearly, in this case Ran.T / D H and T T �1 D T �1T D I .
Furthermore, U 2 C.H / is called unitary if U � D U�1. By CU .H / we denote
the set of all unitary operators. It consists of all those U with Ran.U / D H , for
which .U;U /H D .;  /H for all  ;  2 H . Clearly, CU .H / contains I and is
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a group. For each U 2 CU .H /, the map C.H / 3 T 7! U �T U is a norm preserving
automorphism of C.H / since kT k D kU �T U k. We say that Q and T are unitary
equivalent if Q D U �T U for some U 2 CU .H /.

A linear operator T W H ! H with Dom.T / D H is called compact, if for any
bounded sequence f ngn2N (i.e., k nkH � C for all n and someC > 0) the sequence
fT ngn2N contains a convergent subsequence. Clearly, each compact operator is
continuous and hence belongs to C.H /.

Definition 1.1.6. An operator T 2 C.H / is said to be of finite rank if Ran.T / is a
finite-dimensional subspace of H .

For a finite rank operator T , each bounded sequence in Ran.T / contains a conver-
gent subsequence. Hence, a finite rank operator is compact.

Proposition 1.1.7. If T is compact and Q 2 C.H /, then both TQ and QT are
compact.

Proof. Let f ngn2N be a bounded sequence. Then fQ ngn2N is also bounded and
hence fTQ ngn2N contains a convergent subsequence. Thus, TQ is compact.

Furthermore, fngn2N, where n
defD T n, contains a convergent subsequence, say

fnk
gk2N, for which fQnk

gk2N D fQT nk
gk2N is also a convergent sequence as

Q is continuous.

Definition 1.1.8. An operator A 2 C.H / is said to be positive if . ;A /H � 0 for
all  2 H .

By CC.H / we denote the set of all positive elements of C.H /. For A 2 CC.H /,
one has

. ;A /H D . ;A /H D .A ; /H D . ;A� /H I
hence,A� D A in view of Proposition 1.1.4. If both ˙A are positive, then . ;A /H D
0 for all  2 H . This immediately yields A D O , see Proposition 1.1.4. Then the
relation

A � B if A � B 2 CC.H / (1.1.29)

is an order on C.H /. A is positive if and only if A D B2 for some self-adjoint
B 2 C.H /. In this case, there exists a unique positiveB , such thatA D B2. ThisB is
called the square root of A and is denoted by

p
A; it can be calculated from the series

p
A D kAk

h
I �

1X
nD1

cn
�
I � kAk�1A

�n i
; (1.1.30)

where the numbers cn are the coefficients of the Taylor expansion of the function
Œ0; 1� 3 x 7! p

1 � x, see e.g., pages 33, 34 in [76] or pages 195, 196 in [255].
The series in (1.1.30) converges in norm, which in particular means that A and

p
A
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commute. For a self-adjoint B 2 C.H /, we set jBj D p
B2. Then each such B can

be written in the form

B D BC � B�; where B˙ D 1

2
.jBj ˙ B/, (1.1.31)

both B˙ being positive. Since jBj and B commute, one has

BCB� D 1

4

�jBj2 � B2� D O:

In view of this property, the representation B D BC � B� is often referred to as the
orthogonal decomposition of B . We also note that jBj D BC C B�.

An arbitrary A 2 C.H / can be decomposed according to

A D Ar C iAi ; A� D Ar � iAi ; (1.1.32)

where both

Ar D 1

2

�
AC A�� and Ai D 1

2i

�
A � A��

are self-adjoint. Combining (1.1.32) with (1.1.31) we conclude that each A 2 C.H /

has the representation

A D ˛1B1 C ˛2B2 C ˛3B3 C ˛4B4; (1.1.33)

for some ˛i 2 C and Bi 2 CC.H /, i D 1; : : : ; 4. For any A 2 C.H /, one has
A�A 2 CC.H / since .; A�A/H D kAk2

H
� 0. Thus, for every A 2 C.H /, there

exists a positive operator

jAj defD p
A�A: (1.1.34)

It turns out that each B 2 CC.H / can be written as B D A�A for some A 2 C.H /,
see Theorem 2.2.12 on page 36 in [76].

Since C.H / is a linear space, one can define linear functionals � W D� � C.H / !
C, where D� is a linear subset – the domain of � . Let C�.H / be the set of such
functionals obeying the following two conditions: (a) D� D C.H /; (b) � is norm-
continuous. The latter property means that for every sequence fAngn2N � C.H /,
such that kAn �Ak ! 0, n ! C1, for some A 2 C.H /, one has �.An/ ! �.A/, as
n ! C1.

Definition 1.1.9. A linear functional � W C.H / ! C is said to be positive if �.A/ � 0

whenever A 2 CC.H /.

Every positive linear functional is automatically norm-continuous, see Proposi-
tion 2.3.11 in [76]. However, if dim H D C1, a positive linear functional� W C.H / !
C might not be strongly continuous. That is, for the convergence�.An/ ! �.A/ it is not
enough thatAn be strongly convergent toA, see Subsection 1.2.2 below. We recall that
a sequence fAngn2N � C.H / strongly converges toA 2 C.H / if kAn �A kH ! 0

for every  2 H .
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By standard arguments one proves that every positive � 2 C�.H / obeys the
Cauchy–Schwarz inequality, cf. (1.1.15),

j�.A�B/j2 � �.A�A/�.B�B/; A;B 2 C.H /: (1.1.35)

Let � W C.H / ! C be a positive linear functional, such that both � and �� are positive.
Then �.A/ D 0 for allA 2 C.H /, i.e., it is the zero functional. Indeed, as ˙�.B/ � 0

for all B 2 CC.H /, � takes zero values on CC.H /, which by the representation
(1.1.33) yields �.A/ D 0.

For �; Q� 2 C�.H /, we say that � dominates Q� if � � Q� is a positive linear func-
tional. In view of the property of positive linear functional just shown, � D Q� if these
functionals dominate each other, and thereby domination is an order.

Proposition 1.1.10. Let � 2 C�.H / be positive and such that �.I / D 0. Then � is
the zero functional.

Proof. For any A 2 C.H /, by (1.1.35) one has

j�.A/j2 D j�.IA/j2 � �.I /�.A�A/;

which yields �.A/ D 0.

For any  2 H , the map

C.H / 3 A 7! � .A/ D . ;A /H 2 C (1.1.36)

is a positive linear functional. It is nonzero if and only if  ¤ 0. Such a functional is
continuous in the strong topology. Indeed, by (1.1.15) one has

j� .An/ � � .A/j D j. ; .An � A/ /H j � k kH kAn � A kH ; (1.1.37)

which yields � .An/ ! � .A/ whenever An ! A strongly.

Proposition 1.1.11. Let � 2 C�.H / be positive and dominated by the functional
(1.1.36). Then � is strongly continuous.

Proof. Since � is linear, it is enough to prove its continuity at zero, cf. (1.1.37). Let
An ! O , strongly as n ! C1. Then �.jAnj2/ ! 0 since

0 � �.jAnj2/ � � .jAnj2/ D kAn k2H :
At the same time, by (1.1.35)

j�.An/j2 D j�.IAn/j2 � �.I /�.jAnj2/;
which yields the property stated.

Definition 1.1.12. A positive linear functional ! W C.H / ! C is called a state on
C.H / if it is normalized, i.e., !.I / D 1.
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If � 2 C�.H / is positive and nonzero, then ! D �=�.I / is a state. Let !1, !2 be
states on C.H / and ˛ be in Œ0; 1�. Then the convex combination ! D ˛!1C .1�˛/!2
is also a state on C.H /. Such a combination is called trivial if ! D !1 or ! D !2;
otherwise, it is called nontrivial.

Definition 1.1.13. A state ! on C.H / is called pure (or extreme) if ! D ˛!1 C .1 �
˛/!2 for some states !1, !2 and ˛ 2 Œ0; 1�, implies ! D !1 or ! D !2. That is, such
! cannot be a nontrivial convex combination of other states.

Proposition 1.1.14. A state ! on C.H / is pure if and only if the fact that a positive
nonzero � 2 C�.H / is dominated by ! implies that � D ˛! for some ˛ > 0.

Proof. Let ! be a pure state, which dominates a given nonzero positive � 2 C�.H /.
Then �2 D ! � � is positive, ! dominates also �2, and �.I / C �2.I / D 1. Then

˛
defD �.I / > 0, see Proposition 1.1.10. If ˛ D 1, then ! D � . If ˛ < 1, we set

!1 D �=˛ and !2 D �=.1 � ˛/. Then ! D ˛!1 C .1 � ˛/!2. By the purity of ! it
follows that ˛! D � in each of the cases ! D !i , i D 1; 2. Now let ! possess the
assumed property and ! D ˛!1 C .1 � ˛/!2 for some ˛ 2 .0; 1�. Then ! dominates
˛!1; hence, ! D !1, which immediately yields also ! D !2 if ˛ 2 .0; 1/.

Let us return to the functional (1.1.36). It is a state if k kH D 1. In this case, we
shall denote it by ! and call it a vector state. As is easily seen, for  of unit norm,
the vector  D ˛ with ˛ 2 C, such that j˛j D 1, defines the same vector state, that
is, !� D ! . If dim H D 1, then H is isomorphic to C and every linear operator
T W H ! H is a multiplication operator by a certain # 2 C. Such T is positive if
# � 0. The only state here is the map T 7! !0.T / D # . As a unique state, !0 is pure.
It is a vector state.

Theorem 1.1.15. Let H be an arbitrary separable complex Hilbert space and  2 H

be any vector of unit norm. Then the vector state ! is a pure state on C.H /.

Proof. Suppose that a positive � 2 C�.H / is dominated by ! . To prove the theorem
we have to show that � D ˛! for some ˛ � 0. Let P be the orthogonal projection
on the one-dimensional space H spanned by  . Then the algebra

P C.H /P 
defD fP AP j A 2 Hg

is isomorphic to the algebra of all linear operators on the linear space C in the following
sense. For B 2 P C.H /P , there exists # 2 C, such that B D # . Then the
isomorphism is B 7! # . Thus, the only state on P C.H /P is the map B 7! # .
Since every positive B 2 P C.H /P belongs to CC.H /, the restriction of � to
P C.H /P is dominated by the corresponding restriction of ! . Therefore, one
finds ˛ � 0, such that �.B/ D ˛! .B/ for all B 2 P C.H /P . Let us show now
that for any A 2 C.H /,

�.A/ D �.AP / D �.P A/ D �.P AP /: (1.1.38)
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Set Q D I � P . Then Q 2 CC.H / as Q is self-adjoint and Q2
 D Q . This

yields 0 � �.Q / � ! .Q / D 0. Therefore, by (1.1.35)

j�.AQ /j2 � �.A�A/�.Q / D 0;

which in view of �.A/ D �.AP C AQ / D �.AP / C �.AQ /, yields the first
equality in (1.1.38). The second equality can be obtained in the same way. The third
equality is just a consequence of the first two. Clearly, the equalities (1.1.38) are valid
also for ! . Thus, for any A 2 C.H /, one has

�.A/ D �.P AP / D ˛! .P AP / D ˛! .A/;

which completes the proof.

Let us now get back to the probability of the event defined in (1.1.5), where H D
L2.R�/. By definition, the indicator function of a Borel set B � R� is

IB.x/ D
´
1 if x 2 BI
0 otherwise:

(1.1.39)

It determines a linear operator PB W L2.R�/ ! L2.R�/ by

.PB /.x/ D IB.x/ .x/; x 2 R� : (1.1.40)

IfB 0 is such that the set .BnB 0/[.B 0nB/ has zero Lebesgue measure, the operatorPB0

coincides with PB since IB.x/ .x/ and IB0.x/ .x/ coincide as elements of L2.R�/.
In the Hilbert spaces L2.R�/, � 2 N, operators of this type are called multiplication
operators. Then

. ; PB /H D kPB k2
L2.R�/

D
Z
B

j .x/j2dxI

thus, PB is bounded and positive. Its range is a subspace of L2.R�/ and P 2B D PB ;
hence, it is an orthogonal projection. Let  2 L2.R�/ be of unit norm. Then the
left-hand side of (1.1.5) is the value of the corresponding vector state at PB , that is,

P .B/ D ! .PB/ D . ; PB /L2.R�/;

and HB D Ran.PB/ is the subspace of L2.R�/ consisting of states localized in B .
Two such subspaces HB and HB0 are mutually orthogonal if the set B \ B 0 has zero
Lebesgue measure.

Unbounded operators

Clearly, if dimH > 1, the set of all linear operators T W H ! H with all possible
linear domains contained in H is bigger than C.H /. The algebraic operations (1.1.25)
can be extended to these operators as well. However, here one has to be careful with
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the domains of the resulting operators. For two such operators T and Q, their linear
combination can act only on those  2 H , which belong to the domains of both
operators. Thus, we define

Dom.˛T C ˇQ/ D Dom.T / \ Dom.Q/: (1.1.41)

It may happen that this intersection consists of the zero vector alone. In such a case,
˛T C ˇQ is a trivial operator, which sends the zero vector into itself. Similarly, the
domain of the product TQ consists of those  2 Dom.Q/ for whichQ 2 Dom.T /.
Therefore, in this case,

Dom.TQ/ D Q�1Dom.T /; (1.1.42)

which allows, however, for Dom.TQ/ D f0g.
A sequence f ngn2N � Dom.T / is called T -convergent if both f ngn2N and

fT ngn2N are convergent sequences. Note that if T is continuous on its domain
and f ngn2N is a convergent sequence, then fT ngn2N is a convergent sequence
automatically.

Definition 1.1.16. An operator T is called closed if for every T -convergent sequence
f ngn2N, its limit  is in Dom.T / and

T D lim
n!C1T n:

Obviously, if T is invertible and closed, its inverse is closed as well. If T is
continuous and closed, then Dom.T / is also closed and hence is a subspace of H .
Endowed with the Hilbert space structure inherited from H , it becomes a Hilbert
space, say H1, and T can be redefined as an element of C.H1;H /. The definition of
the numerical range can be generalized as follows, cf. (1.1.21),

Num.T / D f. ; T  /H j  2 Dom.T /; k kH D 1g: (1.1.43)

Definition 1.1.17. An unbounded operator T is called positive if

Num.T / � Œ0;C1/:

If for two linear operators T and Q, Dom.T / � Dom.Q/, and 8 2 Dom.T / W
T D Q , then Q is said to be an extension of T , and T – the restriction of Q to
Dom.T /. In this case, we write Q 	 T .

An operator T is called closable if it has a closed extension. T is closable if and
only if for every T -convergent sequence f ngn2N, such that  n ! 0 and T n ! ,
it follows that  D 0. If T is closable, the set of its closed extensions has a (unique)
minimal element zT . This means that Dom. zT / is contained in the domains of all other
closed extensions. zT is called the closure of T . For a closed operator Q, a subset of
its domain is called a core of Q, if Q is the closure of its restriction to this subset.

It turns out that T belongs to C.H / already when it is closed and Dom.T / D
H , without assuming continuity. This fact is known as the closed graph theorem.
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Therefore, the set of all linear operators T W H ! H falls into the following three
groups: (a) C.H /; (b) continuous operators defined on non-dense linear subsets of H ;
(c) nowhere continuous operators. Group (c) contains unbounded operators; it is non-
void if and only if dim H D C1.

By the closed graph theorem mentioned above, the domain of a closed unbounded
linear operator is a proper subset of H . Among such operators, one can distinguish
those defined on dense subsets of the corresponding Hilbert spaces. Two operators T
and Q, which satisfy the condition

8 2 Dom.Q/; 8 2 Dom.T / W .Q; /H D .; T  /H ; (1.1.44)

are called formally adjoint to each other. For T being a densely defined linear operator,
let us show that there exists a unique linear operator Q, with maximal domain, such
that (1.1.44) holds. Set

D D f 2 H j 9C > 0 8 2 Dom.T / W j. ; T/H j � C kkH g: (1.1.45)

Then, for each  2 D , the map Dom.T / 3  7! . ; T/H defines a bounded linear
functional � on a dense subset of H , which clearly can be extended to an element of
C.H ;C/. By the Riesz lemma, there exists ' 2 H , such that

�./ D .'; /H D . ; T/H ;

which holds for all  2 Dom.T /. The composition

D 3  7! � 7! Q. /
defD ' 2 H

defines a linear map Q W D ! H . In this case, we use the notation Q D T �, which
makes sense for densely defined operators T only.

Definition 1.1.18. For a densely defined linear operator T , the operator T � is called
the adjoint of T .

T � is always closed, even if T is not closed or closable. However, it may happen
that Dom.T �/ D f0g. If T is closable, T � is densely defined and hence there exists
T �� D .T �/�. In this case, from (1.1.44) one readily concludes that T � T ��, that is,
T �� is a closed extension of T .

A densely defined linear operator T is called symmetric if T � is an extension of T ,
i.e.,

T � 	 T: (1.1.46)

Thus, a symmetric operator is closable and T � is densely defined. If

T D T �; (1.1.47)

T is called self-adjoint. From (1.1.46) we readily derive that a densely defined operator
T is symmetric if and only if

8 ;  2 Dom.T / W .T;  /H D .; T  /H : (1.1.48)
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This holds if and only if Num.T / � R. One can show that T �� D zT if T is closable.
Hence, if T is symmetric, then T � 	 T ��, and, therefore, T ��� 	 T �� (see the proof
of Proposition 1.1.4). Thus, for a symmetric linear operator T , its closure T �� is also
symmetric. A symmetric operator T is called essentially self-adjoint if its closure zT
is self-adjoint. In this case, it is easy to check that a symmetric linear operator T is
essentially self-adjoint if and only if T � is symmetric. Furthermore, for an essentially
self-adjoint T , we have zT D T � and Num.T �/ is the closure of Num.T /.

Usually, one defines a linear operator by its action on certain vectors and then tries
to extend this action to a maximal set, which could be a core of some self-adjoint
operator. As an example let us consider the components of the displacement and
momentum operators q.j /

`
, p.j /

`
, j D 1; : : : ; �, which obey (1.1.6). For a suitable

function  2 L2.R�/, their action is canonically defined as

.q
.j /

`
 /.x/ D xj .x/; .p

.j /

`
 /.x/ D �i

@

@xj
 .x/; x 2 R� ; (1.1.49)

by which q.j /
`

is a multiplication operator. Clearly, such ‘suitable’ functions should
be differentiable and square-integrable, even after being multiplied by xj . Thus, it
is impossible to extend these operators to the whole space L2.R�/. For a function
' W R� ! C and n 2 N�

0, that is n D .n1; : : : ; n�/, nj 2 N0, j D 1; : : : ; �, we set
jnj D n1 C � � � C n� and

xn D x
n1

1 : : : xn�
� ; '.n/.x/ D @jnj'

@x
n1

1 : : : @x
n�
�

.x/: (1.1.50)

As usual, see page 133 in [255], let S.R�/ be the complex linear space of the functions
' W R� ! C such that

8n;m 2 N�
0 W k'kn;m defD sup

x2R�

˚ˇ̌
.1C xn/'.m/.x/

ˇ̌�
< 1: (1.1.51)

Clearly, S.R�/ � L2.R�/ and the action in (1.1.49) of both operators is well defined
on  2 S.R�/, with values again in S.R�/. Furthermore, S.R�/ is dense in L2.R�/
and the operators q.j /

`
, p.j /

`
, j D 1; : : : ; �, obey (1.1.6) on S.R�/. Thus, for the time

being, one can set

Dom.q.j /
`
/ D Dom.p.j /

`
/ D S.R�/:

According to (1.1.48), with this domain both operators are symmetric. For q.j /
`

, it is

obvious; for p.j /
`

, this can be shown by integrating by parts. In the next subsection, we

construct self-adjoint extensions of such q.j /
`

and p.j /
`

. It is worth noting that the linear
space S.R�/ equipped with the topology defined by the family fk � kn;m j n;m 2 N�

0g
becomes a complete locally convex space. This is the Schwartz space of test functions.
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Spectra

If T is a closed linear operator, T � �I is also closed for any � 2 C. For such an
operator, the subset

R.T / D f� 2 C j .T � �I /�1 2 C.H /g (1.1.52)

is called the resolvent set of T . Note that by this definition Ran.T � �I / D H if
� 2 R.T /. The resolvent set is always open, and may be void or equal to C. Its
complement S.T / D C n R.T / is called the spectrum of T . If T 2 C.H /, then S.T /
is a non-void bounded subset of C. For � 2 R.T /, the operator

R	 .T / D .T � �I /�1 (1.1.53)

is called the resolvent of T . One can easily show that for any �; �0 2 R.T /, the
resolvents R	 .T / and R	 0.T / commute and obey the resolvent identity

R	 .T / �R	 0.T / D .� � �0/R	 .T /R	 0.T /: (1.1.54)

For C � C, its complex conjugate is the set xC D f� j N� 2 Cg. Clearly, R.T �/ D R.T /
and hence S.T �/ D S.T /. Thus,

if T 2 C.H / and T � D T , S.T / � Œa; b�;

if T 2 CC.H /, S.T / � Œ0; c�;
(1.1.55)

for certain real a, b, a < b, and positive c.
For closed unbounded operators, we have the following fact, see Theorem X.1,

page 136 in [256], or Theorem 3.16, page 271 in [172].

Proposition 1.1.19. Let T be closed and symmetric. Then the spectrum of T is one
of the following subsets of the complex plane: (a) the closed upper half-plane; (b) the
closed lower half-plane; (c) the entire plane C; (d) a subset of the real line. T is
self-adjoint if and only if S.T / � R. In this case, the resolvent R	 .T / exists for all
� 2 C n R, and obeys the estimates

kR	 .T /k � j=.�/j�1; k.T � <.�/I /R	 .T /k � 1: (1.1.56)

Corollary 1.1.20. If T is closed and symmetric and R.T / \ R ¤ ;, then T is self-
adjoint.

Proof. Since R.T / is open and contains a point x 2 R, its intersections with both upper
and lower half-planes is non-void. Hence, by Proposition 1.1.19 we have S.T / � R
and thereby T is self-adjoint.

Any non-zero vector  , such that T D � for a certain complex �, is called
an eigenvector (or an eigenfunction) of T , whereas � is called the eigenvalue which
corresponds to the eigenvector . Clearly, � 2 S.T /; it is called an isolated eigenvalue
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if there exists " > 0 such that the disc f� 2 C j j���j < "g contains no other points of
S.T /. Let 1 and 2 be eigenfunctions, corresponding to the same eigenvalue�. Their
linear combinations are also eigenfunctions, corresponding to this �. By definition, an
eigenvalue � has finite multiplicity if the set of all corresponding eigenfunctions K
 is
a finite-dimensional subspace of H . Then dim K
 is called the multiplicity of �. Such
an eigenvalue is called simple if dim K
 D 1.

Spectra of compact operators have a special structure. Namely, by the Riesz–
Schauder theorem2, for each such T , S.T / is a countable set with no accumulation
points other than zero. Each nonzero � 2 S.T / is an eigenvalue of finite multiplicity
and N� is an eigenvalue ofT � with the same multiplicity. The following known statement
gives further information on the spectra of compact operators

Proposition 1.1.21 (Hilbert–Schmidt Theorem). Suppose that H is infinite-dimen-
sional and T 2 C.H / is self-adjoint and compact. Then there exists an orthonormal
basis f ngn2N of H such that T n D �n n and �n ! 0 as n ! C1.

For positive compact operators, a corollary of this theorem yields the following
property.

Proposition 1.1.22. Let T ¤ O be positive and compact. Then it can be written as

T D
X
k2K

�kPk; �k > 0; for all k 2 K, (1.1.57)

where K may be finite or countable, �k and Pk , k 2 K, are eigenvalues and orthogonal
projections onto finite-dimensional subspaces, respectively.

Definition 1.1.23. A positive compact operator T is said to be a trace-class operator
if the sequence of its eigenvalues is summable. Then its trace is set to be

trace.T / D
X
k2K

�k : (1.1.58)

Q 2 C.H / is called a Hilbert–Schmidt operator if Q�Q is a trace-class operator.

Note that for Q 2 C.H /, the operator Q�Q is positive since . ;Q�Q /H D
kQ k2

H
� 0. Let f ngn2N be a bounded sequence. Then for any n;m, by the

Cauchy–Schwarz inequality (1.1.15) one gets

kQ n �Q mk2H � kQ�Q. n �  m/kH � k n �  mkH :

Hence, if Q�Q is compact, then so is Q. Therefore, every Hilbert–Schmidt operator
is compact. One observes that (1.1.58) can be rewritten as

trace.T / D
X
n2N

. n; T  n/H ; (1.1.59)

2The details on this theorem, as well as on the Hilbert–Schmidt theorem given below, can be found on
page 203 of [255].
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where f ngn2N is any orthonormal basis of H . Vice versa, if for a T 2 CC.H / and a
given orthonormal basis f ngn2N, the series in (1.1.59) converges, then T is trace-class
and possesses the properties (1.1.57) and (1.1.58). As T is positive, the summands in
(1.1.59) are positive and the convergence of the series and its absolute convergence are
equivalent.

Definition 1.1.24. T 2 C.H / is called a trace-class operator if the series in (1.1.59)
absolutely converges for every orthonormal basis f ngn2N of H .

Note that here the condition of the absolute convergence for every basis is crucial.
One can show that for each such an operator, the sum in (1.1.59) is independent of the
choice of the basis; hence, trace.T / is well defined. Directly from (1.1.59) we deduce
the following important fact, cf. Proposition 1.1.7.

Proposition 1.1.25. For a trace-class operator T and any Q 2 C.H /, the operators
TQ andQT are trace-class and trace.QT / D trace.TQ/. If T is positive, then

jtrace.QT /j � kQk � trace.T /: (1.1.60)

Another class of operators with relatively simple spectra is the class of closed oper-
ators with compact resolvent. Their spectra are described by the following statement,
see Theorem 6.29 on page 187 of [172].

Proposition 1.1.26. Let T be a closed operator, such that R	0
.T / is compact at least

for some �0 2 R.T /. Then R	 .T / is compact for all � 2 R.T / and its spectrum S.T /
consists entirely of isolated eigenvalues of finite multiplicity.

The spectrum of an operator is called discrete if it is as in the above statement. Such
a spectrum is called non-degenerate if each eigenvalue is simple.

We recall that B.R/ denotes the Borel � -algebra of subsets of R. A function
f W R ! R is called a Borel function if for everyB 2 B.R/, the f -pre-image f �1.B/
is in B.R/. Let fBngn2N � B.R/ be such that Bn \ Bm D ; for n ¤ m. For this
sequence, we define

C D
1[
nD1

Bn; Cm D
m[
nD1

Bn; m 2 N; (1.1.61)

and say that fBngn2N is a partition of C . Note that C 2 B.R/. Let P be the family of
all projections PB , B 2 B.R/, defined by (1.1.40).

Proposition 1.1.27. The family P has the following properties:

(a) each element of P is an orthogonal projection;

(b) PR D I and P; D O;

(c) PB1
PB2

D PB1\B2
for all B1; B2 2 B.R/;
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(d) if fBngn2N is a partition of C 2 B.R/ and Cm, m 2 N, are as in (1.1.61),
then PCm

D Pm
nD1 PBn

for all m 2 N, and the sequence fPCm
gm2N strongly

converges to PC .

Proof. By (1.1.39) it follows that IR.x/ D 1 and I;.x/ D 0 for all x 2 R, which
by (1.1.40) yields (a) and (b). Since IB1

IB2
D IB1\B2

, also (c) follows. As each
x 2 Cm belongs exactly to one Bn, n D 1; : : : ; m, one has ICm

.x/ D Pm
nD1 IBn

.x/.
Furthermore, each x 2 C belongs to a certain Cm; hence, ICm

.x/ ! IC .x/ for all
x 2 R (i.e., point-wise), which readily impliesZ

R
ŒIC .x/ � ICm

.x/�j .x/j2dx ! 0;

that is, kPCm
 � PC kL2.R/ ! 0 for all  2 H .

In Proposition 1.1.27, the family P was constructed in a concrete Hilbert space,
L2.R/.

Definition 1.1.28. For a Hilbert space H , let P D fPB j B 2 B.R/g � C.H / be a
family that possesses the properties described by Proposition 1.1.27. Then P is called
a projection-valued measure.

Let P D fPB j B 2 B.R/g be a projection-valued measure. Given  2 H ,
the map B.R/ 3 B 7! . ; PB /H determines a probability measure on R, which
we denote by � . For a bounded Borel function f W R ! R, a self-adjoint operator
Tf 2 C.H / is defined as follows, see Proposition 1.1.4 and (1.1.22),

. ; Tf  /H D
Z

R
f .�/� .d�/;  2 H : (1.1.62)

Then for  2 H , � is called a spectral measure for Tf . Now let f W R ! R be a
Borel function, not necessarily bounded. Set

Df D ˚
 2 H j RRŒf .�/�

2� .d�/ < 1�
: (1.1.63)

It turns out that for any such f , Df is dense in H and the family of integrals as in
(1.1.62) but with  2 Df determines a self-adjoint operator with domain Df . Let T
be the operator corresponding to f .�/ D �. Then

. ; T  /H D
Z

R
�� .d�/;  2 Dom.T /;

Dom.T / D ˚
 2 H j RR �

2��.d�/ < 1�
:

(1.1.64)

This representation suggests a way of defining functions of self-adjoint operators. If
T is as in (1.1.64) and f W R ! R is a Borel function, then the representation

. ; f .T / /H D
Z

R
f .�/� .d�/ (1.1.65)
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defines a self-adjoint operator with domain (1.1.63). The following statement, the
proof of which can be found in [255], see Theorem VIII.6 on page 263, establishes a
correspondence between projection-valued measures and self-adjoint operators.

Proposition 1.1.29 (Spectral Theorem). Let H be a separable complex Hilbert space.
There exists a one-to-one correspondence between projection-valued measures and
self-adjoint operators in H established by (1.1.64). If f W R ! R is a Borel function,
then the operator f .T / defined by (1.1.65) with domain (1.1.63) is self-adjoint. If f
is bounded, then f .T / 2 C.H /.

By (1.1.22) the spectral measures � ,  2 Dom.T /, see (1.1.64), determine a
complex-valued Borel measure ��; such that

.; T  /H D
Z

R
���; .d�/; ;  2 Dom.T /: (1.1.66)

And similarly as in (1.1.65),

.; f .T / /H D
Z

R
f .�/��; .d�/; ;  2 Dom.T /; (1.1.67)

which holds for any bounded Borel function f W R ! R. An important application of
the spectral theorem is the following statement, see Theorem VIII.7 on page 265 of
[255].

Proposition 1.1.30. For a self-adjoint operator T , let exp.itT /, t 2 R, be defined by
(1.1.65). Then

(a) for any t 2 R, U.t/ D exp.itT / is unitary;

(b) the family UT D fU.t/ j t 2 Rg is a one-parameter group under composition
such that U.t C s/ D U.t/U.s/;

(c) for any s 2 R and  2 H , U.t/ ! U.s/ in H as t ! s;

(d) .U.t/ �  /=t ! iT in H as t ! 0 if and only if  2 Dom.T /.

Claim (c) says that the group UT is strongly continuous. At the same time, UT is a
subgroup of the group of all unitary operators CU .H /. T is called the generator of UT .
It turns out that every strongly continuous one-parameter unitary group is generated by
a self-adjoint operator, see Theorem VIII.8 on page 266 of [255].

Proposition 1.1.31 (Stone Theorem). For every strongly continuous one-parameter
unitary group U D fU.t/ j t 2 Rg on a Hilbert space H , there exists a self-adjoint
operator T on H such that U.t/ D exp.itT / for all t 2 R.
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1.1.3 Quantum Oscillators

Harmonic oscillator

The Hamiltonian of a one-dimensional quantum harmonic oscillator is, cf. (1.1.3),

H har D 1

2m
p2 C a

2
q2; a > 0: (1.1.68)

The operators q and p act on the elements of S.R/ � L2.R/ according to (1.1.49).
Thus, for the time being, we assume that Dom.H har/ D S.R/, cf. (1.1.41). In the
description of the harmonic oscillator, we use the Hermite functions 'n W R ! R,
n 2 N0, which can be defined as

'n.x/ D .2nnŠ/�1=2.�1/n
�1=4ex2=2Dne�x2

; D D d

dx
:

It is easy to check that each 'n solves the equation��D2 C x2
�
'n.x/ D .2nC 1/'n.x/

and can also be written in the form

'n.x/ D hn.x/e
�x2=2; (1.1.69)

where hn is a Hermite polynomial. In order to relate the functions 'n to the operator
(1.1.68) we introduce

 n.x/ D �1=2'n.�x/; � D .ma/1=4; (1.1.70)

where m and a are as in (1.1.68). In view of (1.1.69), each  n belongs to S.R/, see
(1.1.51), and solves the equation�

� 1

2m
D2 C a

2
x2
�
 n.x/ D ı

�
nC 1

2

�
 n.x/; (1.1.71)

where
ı

defD
p
a=m: (1.1.72)

Therefore, we have

H har n D Ehar
n  n; Ehar

n D .nC 1=2/ı; n 2 N0: (1.1.73)

The family f ngn2N0
is an orthonormal basis for L2.R/, see Lemma 3 on page 142 in

[255]. In the description of the harmonic oscillator, it is convenient to use creation A�

and annihilation A operators defined as

A� D 1p
2

�
�q � i

�
p

�
; A D 1p

2

�
�q C i

�
p

�
: (1.1.74)
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By (1.1.49) and (1.1.70) one gets

A� n D p
nC 1 nC1; n 2 N0;

A n D p
n n�1; n 2 N;

A 0 D 0;

N n
defD A�A n D n n; n 2 N0:

(1.1.75)

As linear combinations of p and q, the operators A and A� map S.R/ into itself. For
 2 S.R/, by (1.1.75) one obtains

kA k2
L2.R/

D
X
n2N

nj. ; n/L2.R/j2;

kA� k2
L2.R/

D
X
n2N0

.nC 1/j. ; n/L2.R/j2:
(1.1.76)

Thus, the operators A and A� can be extended to all those  2 L2.R/ for which the
series in (1.1.76) converge. In view of this, we set

Dom.A/ D Dom.A�/ D D1; (1.1.77)

where for ~ 2 N,

D~ defD ˚
 2 H j P1

nD1 n~ j. ; n/L2.R/j2 < 1�
: (1.1.78)

Note that each D~ is a linear subset of L2.R/ and

S.R/ D
\
~2N

D~ ; (1.1.79)

see Theorem V.13 on page 143 in [255].

Theorem 1.1.32. With the domains (1.1.77) both A and A� are closed.

Proof. Let fkgk2N � D1 be A-convergent. Then there exist ;˚ 2 L2.R/ such that
k !  and Ak ! ˚ , as k ! C1. We have to show that  2 D1 and A D ˚ .
As a convergent sequence, fAkgk2N is bounded in L2.R/. Set

sup
k2N

kAkk2
L2.R/

D sup
k2N

X
n2N

nj.k;  n/L2.R/j2 D C: (1.1.80)
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Given N 2 N, we pick l 2 N, such that k � lk2L2.R/
< 1=N , and estimate

NX
nD1

nj.;  n/L2.R/j2 D
NX
nD1

nj. � l C l ;  n/L2.R/j2
(1.1.81)

� 2

NX
nD1

nj. � l ;  n/L2.R/j2 C 2

1X
nD1

nj.l ;  n/L2.R/j2

� 2N

NX
nD1

j. � l ;  n/L2.R/j2 C 2C � 2.1C C/:

Passing here to the limit N ! C1, we obtain  2 D1. To prove that A D ˚ let us
estimate

kA � ˚k2
L2.R/

D kA. � k/C Ak � ˚k2
L2.R/

� 2kA. � k/k2L2.R/
C 2kAk � ˚k2

L2.R/
;

(1.1.82)

which holds for any k 2 N. Furthermore, for any l; N 2 N,

kA. � k/k2L2.R/
D

NX
nD1

n
ˇ̌
. n;  � k/L2.R/

ˇ̌2

C
1X

nDNC1
n
ˇ̌
. n;  � l C l � k/L2.R/

ˇ̌2

� N k � kk2
L2.R/

C 4

1X
nDNC1

n
ˇ̌
. n; /L2.R/

ˇ̌2

C 4

1X
nDNC1

n
ˇ̌
. n; l/L2.R/

ˇ̌2 C 2kA.l � k/k2L2.R/
:

(1.1.83)

Let " > 0 be fixed. Then there exists l" 2 N, such that kA.l � k/k2L2.R/
< "=20,

whenever k; l � l", which we assume to hold in the sequel. Then we fix l and pick N
such that both following estimates hold, cf. (1.1.81),

1X
nDNC1

nj. n; /L2.R/j2 < "=40;
1X

nDNC1
nj. n; l/L2.R/j2 < "=40:

Finally, we pick k such that

kAk � ˚k2
L2.R/

< "=10 and k. � k/k2L2.R/
< "=10N:

Employing all these estimates in (1.1.83) and then in (1.1.82) we arrive at

kA � ˚k2
L2.R/

< ":



1.1 The Model and Preliminaries 39

As " > 0 is an arbitrary number, the latter yields A D ˚ and thereby the closedness
ofAwith domain D1 follows. In the same way, one proves the closedness ofA�.

By (1.1.75) one easily gets that for all ; 2 D1,

.A�; /L2.R/ D .; A /L2.R/; .A; /L2.R/ D .; A� /L2.R/:

As D1 is the maximal set where bothA andA� can be defined, see (1.1.76), this yields
that

A� D A�; .A�/� D A; and ŒA;A�� D AA� � A�A D I: (1.1.84)

Clearly, the latter property holds on D2 – the domain of the products AA� and A�A,
see (1.1.42). By (1.1.74) we have

q D .AC A�/=
p
2�; p D �i�.A � A�/=p2I (1.1.85)

hence,
H har D .A�AC I=2/ı D .N C I=2/ı: (1.1.86)

As we shall see below, both p and q are not closed on D1.

Theorem 1.1.33. The operatorH har with the domain

Dom.H har/ D D2 (1.1.87)

is self-adjoint. The resolvent of H har is compact and the spectrum of H har consists of
simple isolated eigenvalues.

Proof. Clearly, H har is symmetric. Exactly as in the proof of Theorem 1.1.32 one
shows that H har is closed on D2. Furthermore, by (1.1.73) one obtains that for all
 2 D2,

.;H har/L2.R/ � E0kk2
L2.R/

;

which yields
Num.H har/ � Œı=2;C1/: (1.1.88)

From the latter fact and (1.1.73) one can deduce that H har is invertible and .H har/�1
is compact. Therefore, the resolvent set of H har contains zero, that is, the intersection
of R.H har/ with the real line is non-void. By Corollary 1.1.20 this yields that H har is
self-adjoint. The compactness of R	 .H har/ follows by Proposition 1.1.26, by which
one also obtains that the spectrum of H har consists of isolated eigenvalues of finite
multiplicity. For � D 1, they are simple according to Proposition 3.3 on page 65
in [63].

From now on, we assume that H har has domain (1.1.87).
Let us turn to the vector case where q D .q.1/; : : : ; q.�//, p D .p.1/; : : : ; p.�//,

� > 1. By H .j / andHj , j D 1; : : : ; �, we denote the copies of L2.R/ andH har given
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by (1.1.68), respectively. SetH har
j D I ˝ � � � ˝Hj ˝ � � � ˝ I , whereHj is on the j -th

position, and

L2.R�/ D
�O

jD1
H .j /; H har D

�X
jD1

H har
j : (1.1.89)

Furthermore, for n D .n1; : : : ; n�/ 2 N�
0 and x D .x1; : : : x�/ 2 R� , we set

 n.x/ D . n1
˝ � � � ˝  n�

/.x1; : : : ; x�/ D  n1
.x1/ : : :  n�

.x�/: (1.1.90)

Then f ngn2N�
0

is an orthonormal basis of L2.R�/ and

H har n D Ehar
n  n D ı.jnj C �=2/ n; jnj D n1 C � � � C n� : (1.1.91)

By Theorem 1.1.33 we have the following

Theorem 1.1.34. The operatorH har with the domain

Dom.H har/ D ˚
 2 L2.R�/ j P1

n2N�
0

jnj2 j. ; n/H j2 < 1�
(1.1.92)

is self-adjoint. Its spectrum consists of isolated eigenvalues of finite multiplicity.

Now let us look at the domain and spectrum of H har having in mind the fact that
H har is a differential operator. ByC1

0 .R
�/we denote the set of infinitely differentiable

functions ' W R� ! C, for each of which the support, i.e., the closure of the set
fx 2 R� j '.x/ ¤ 0g, is compact. For  2 L2.R�/ and j D 1; : : : ; �, we define the
map

C1
0 .R

�/ 3  7! �
j
� . / D �

Z
R�

N.x/ @ 
@xj

.x/dx; (1.1.93)

where @ .x/=@xj is the usual partial derivative of  2 C1
0 .R

�/. This map is a
linear functional on L2.R�/ with domain C1

0 .R
�/. Clearly, if �j� and �j coincide

as functionals, then  and  coincide as elements of L2.R�/. Moreover, if  is
differentiable in the usual sense, e.g.,  2 S.R�/, then

�
j
� . / D

Z
R�

@ N
@xj

.x/ .x/dx:

In view of this, the linear functional defined by (1.1.93) is referred to as the weak
derivative of . It exists for all  2 L2.R�/ and will be denoted by @.x/=@xj . For
n 2 N�

0, the weak derivative of order n, cf. (1.1.50), that is,

.n/.x/ D @jnj
@x
n1

1 : : : @x
n�
�

.x/

is defined as the linear functional

C1
0 .R

�/ 3  7! �
.n/
� . / D .�1/jnj

Z
R�

N.x/ .n/.x/dx: (1.1.94)
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In the general case of  2 L2.R�/, the functional (1.1.94) may be unbounded. If
 2 S.R�/, then integrating by parts we obtain

�
.n/
� . / D

Z
R�

N.n/.x/ .x/dx: (1.1.95)

In this case, � .n/� can be extended to a bounded linear functional � .n/� W L2.R�/ ! C.
Then, by the Riesz lemma, there exists an element of L2.R�/, which we denote by
.n/, such that (1.1.95) holds for all  2 L2.R�/.

The equation (1.1.71) is an ordinary differential equation, the strict solution of
which is the function  n. Here strict means usual or classical since  n, as an element
of S.R�/, is a differentiable function. Given k 2 N [ f1g, by C k.R�/ we denote the
set of all functions ' W R� ! C which have continuous partial derivatives '.n/ of order
jnj � k. Let � be a complex number and W W R� ! R be a measurable function.

Definition 1.1.35. A function  2 L2.R�/ is said to be a strict solution (respectively,
a weak solution) of the differential equation

� 1

2m

�X
jD1

@2

@x2j
.x/CW.x/.x/ D �.x/; (1.1.96)

if it is in C 2.R�/ and satisfies this equation (respectively, satisfies (1.1.96) with
@2=@x2j , j D 1; : : : ; � being weak derivatives).

It is known, see e.g., page 149 in [255], that if W is continuous and  2 C 2.R�/,
then  is a weak solution of the equation (1.1.96) if and only if it is its strict solution. A
corollary of Weyl’s lemma, see Theorem IX.26, page 54 in [256], yields the following

Proposition 1.1.36. Let  be a weak solution of the equation (1.1.96), where W is
in C1.R�/. Then also  is in C1.R�/, that is, each weak solution of the equation
(1.1.96) is also its strict solution if W 2 C1.R�/.

We note here that the above weak solution  will be in C 2.R�/ already if W 2
C ~.R�/ with certain ~ > 0, which depends on �.

Let us proceed considering the harmonic oscillator described by the Hamiltonian
H har. Clearly, a given  2 L2.R�/ is a weak solution of (1.1.96) withW.x/ D ajxj2=2
if and only if . ;H har/L2.R�/ D �. ; /L2.R�/ holds for all  2 C1

0 .R
�/. As

C1
0 .R

�/ is dense in L2.R�/, the latter holds if and only if  is an eigenfunction
corresponding to the eigenvalue �. Therefore, by Proposition 1.1.36 we obtain the
following

Proposition 1.1.37. The spectrum ofH har consists of the eigenvalues

Ehar
n D .jnj C �=2/ı; n 2 N�

0;

only. If � D 1, these eigenvalues are simple.
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Proof. By Theorem 1.1.34, the spectrum of H har is discrete. For each eigenvalue �,
the corresponding function is a weak solution and hence a strict solution of (1.1.96)
with W.x/ D ajxj2=2. Then it should be one of  n and hence � is the corresponding
eigenvalue Ehar

n , see (1.1.91).

As a consequence of the result just proven we obtain that the set of the eigenfunctions
(1.1.90) is a basis of L2.R�/, cf. Lemma 3 on page 142 in [255].

Now we return to the weak derivatives introduced above and set

W2;2.R�/ D ˚
 2 L2.R�/ j .n/ 2 L2.R�/ for all jnj � 2

�
: (1.1.97)

This is the classical Sobolev space of order 2 in L2.R�/. Clearly, the linear operations
preserve W2;2.R�/. For ; 2 W2;2.R�/, we set

.;  /W2;2.R�/ D
X

0�jnj�2
..n/;  .n//L2.R�/; (1.1.98)

where .n/ with n D .0; : : : ; 0/ stands for . One can show that (1.1.98) is a scalar
product, which turns W2;2.R�/ into a separable Hilbert space, see e.g., pages 172, 173
in [209]. The following fact is well-known, see e.g., Theorem IX.27 on page 54 in
[256].

Proposition 1.1.38. For every � 2 N, the operator jpj2 D .p.1//2 C � � � C .p.�//2

with Dom.jpj2/ D W2;2.R�/ is self-adjoint.

Let us now introduce multiplication operators by Borel functions, cf. (1.1.40).

Definition 1.1.39. Let F W R� ! C be a Borel function and

AF defD ˚
 2 L2.R�/ j RR� jF.x/j2j .x/j2dx < 1�

: (1.1.99)

Then the operator F.q/ with Dom.F.q// D AF which acts as

.F.q/ /.x/ D F.x/ .x/

is called the multiplication operator by the function F .

In particular, the components of q D .q.1/; : : : ; q.�// are multiplication operators.
Given j D 1; : : : ; �, let Aj be the set (1.1.99) with F.x/ D xj and let  2 Aj be
of unit norm. Furthermore, for these j and , let �j� be the projection of the measure

j.x/j2dx onto the j -th axis of R� . By Proposition 1.1.29 the family f�j�g�2Aj defines

a self-adjoint operator with domain Aj . At the same time, for  2 Aj , one has

.; q.j //L2.R�/ D
Z

R�

xj j.x/j2dx D
Z

R
��

j
�.d�/;

which means that the operator mentioned above is q.j /, see Proposition 1.1.4 which
can obviously be extended to unbounded densely defined operators. Thus, q.j / is self-
adjoint on Aj . Clearly, Aj can contain elements whose weak derivatives are not in
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L2.R�/. From this we see that the sum ACA�, see (1.1.85), cannot be closed on D1

as all elements of the latter set are in the domain of p. Similarly, one can show that p
is not closed on D1 as well.

By Proposition 1.1.29 we have the following

Proposition 1.1.40. If F is a real-valued Borel function, then the multiplication oper-
ator F.q/ with Dom.F.q// D AF is self-adjoint.

In the sequel, every multiplication operator F.q/ is assumed to be defined on the
corresponding set AF , that is, by writing, e.g., Dom.jqj2r/, we shall always mean AF

with F.q/ D jqj2r . Clearly, for all r 2 N,

S.R�/ � W2;2.R�/ \ Dom.jqj2r/: (1.1.100)

Proposition 1.1.41. The operatorH har defined as the sum

H har D 1

2m
jpj2 C a

2
jqj2; (1.1.101)

with
Dom.H har/ D W2;2.R�/ \ Dom.jqj2/ (1.1.102)

is self-adjoint.

Proof. We recall that by Theorem 1.1.34, H har is self-adjoint on (1.1.92). Thus, we
have to show that

RHS.1.1.92/ D W2;2.R�/ \ Dom.jqj2/: (1.1.103)

Let us do this for � D 1. As the sum of p2=2m and aq2=2, the operator (1.1.101) has
the property

W2;2.R/ \ Dom.q2/ 3  7! H har 2 L2.R/;
which in view of (1.1.86) yields that such  is in D2. To prove the opposite inclusion
we take any  2 D2 and obtain, see (1.1.87) and (1.1.49),

.2/ D .�p2/ D �2

2

h
A2 C �

A�
�2 � .2N C 1/

i 1X
nD0

. n; /L2.R/ n D
1X
nD0

˛n n;

where

˛n D �2

2

hp
.nC 1/.nC 2/. nC2; /L2.R/

C
p
.n � 1/n. n�2; /L2.R/ � .2nC 1/. n; /L2.R/

i
:

As  2 D2, the sequence f˛ng is square summable; hence, .2/ 2 L2.R/. Exactly
in the same way one shows that q2 2 L2.R/ if  2 D2. Thus, (1.1.103) holds for
� D 1. The extension of this result to arbitrary � is obvious.
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We conclude considering the harmonic case by proving the following statement
where the  n’s are the eigenfunctions of H har with � D 1.

Lemma 1.1.42. For every integer r � 2, it follows that

q2r n D 1

2r�2r

rX
kD�r


r.kIn/ nC2k; (1.1.104)

where the coefficients are such that 
r.kIn/ D 0 if n C 2k < 0 and 
r.kIn/ > 0

otherwise. Furthermore,


r.kIn/ � 3r�1.2nC 4r C 1/r ; (1.1.105)

which holds for all k; n 2 N0.

Proof. By (1.1.85)

q2r D 1

2r�2r

h
A2 C .2N C 1/C �

A�
�2ir

:

Since  n, n 2 N0 are as in (1.1.70) and (1.1.75), by direct calculation we obtain
(1.1.104). Here for n C 2k < 0, as well as for jkj > r , we set 
r.kIn/ D 0.
Otherwise, Œ
r.kIn/�2 is a polynomial in n of degree 2r . It can be calculated from


r.kIn/ D 
r�1.k � 1In/
p
.nC 2k/.nC 2k � 1/

C 
r�1.kIn/.2nC 4k C 1/

C 
r�1.k C 1In/
p
.nC 2k C 2/.nC 2k C 1/;

(1.1.106)

with the initial elements


1.�1In/ D
p
n.n � 1/;


1.0In/ D 2nC 1;


1.1In/ D
p
.nC 2/.nC 1/:

(1.1.107)

We note that
8k D 1; : : : ; r W 
r.kIn/ D 
r.�kInC 2k/: (1.1.108)

The estimate (1.1.105) is obtained by induction over r in (1.1.106) and then by (1.1.107).

Anharmonic oscillator: domain and spectrum

The Hamiltonian of the �-dimensional quantum anharmonic oscillator is

H D H har C V.q/ D 1

2m
jpj2 C a

2
jqj2 C V.q/; (1.1.109)
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where the potential V obeys Assumption 1.1.1. Here and in the sequel, the operator
H har is supposed to be defined on the set given by (1.1.102) and (1.1.92). According
to the definition of the sum of operators we set

Dom.H/ D Dom.H har/ \ AV D W2;2.R�/ \ AV : (1.1.110)

Obviously, C1
0 .R

�/ is contained in (1.1.110). As V has the lower bound (1.1.10), by
Theorem X.28, page 184 in [256], we obtain the following

Proposition 1.1.43. The sumH har CV.q/ is essentially self-adjoint onC1
0 .R

�/. More
precisely, the restriction of (1.1.109) toC1

0 .R
�/ is an essentially self-adjoint operator.

The operatorHmin as in the above proposition is called the minimal operator defined
by the sumH har CV.q/, whereas the operator (1.1.109) with domain (1.1.110) is called
the maximal operator, see e.g., page 274 in [172]. Since the closure zH is an extension
of H , one has

Dom. zH/ 	 W2;2.R�/ \ AV : (1.1.111)

It turns out that the opposite inclusion can also be proven under a certain additional
condition imposed on the potential V . For � > 0, we set B� D fx 2 R� j jxj � �g
and let jB�j stand for the volume of B�.

Definition 1.1.44. A continuous function F W R� ! Œ0;C1/ is said to belong to the
class Bs.R�/ with s 2 .0;C1/, if there exists C > 0 such that the reverse Hölder
inequality�

1

jB�j
Z
B�

ŒF .x C y/�sdx

�1=s
� C

jB�j
Z
B�

F.x C y/dx (1.1.112)

holds for all y 2 R� and � > 0. The class B1.R�/ consists of those F W R� !
Œ0;C1/, for which (1.1.112) holds with supx2B�

F.xCy/ on the left-hand side. The
smallest C in (1.1.112) is called the Bs-constant of F .

Proposition 1.1.45. If s0 > s, then Bs0.R�/ � Bs.R�/. All positive polynomi-
als belong to B1.R�/. Moreover, for F 2 B1.R�/, also g ı F 2 B1.R�/,
where g W Œ0;C1/ ! Œ0;C1/ is increasing, convex, and such that for any # � 1,
g.# t/=g.t/ is bounded on Œ0;C1/ (as for example, g.t/ D t with � � 1).

Proof. We prove only the final part of the statement – see [48] for the rest. For given
# � 1, we set �.#/ D supt�0 g.# t/=g.t/. As F belongs to B1.R�/, for any y 2 R�

and � > 0,

sup
x2B�

F.x C y/ � C

jB�j
Z
B�

F.x C y/dx:

Therefrom, by monotonicity and Jensen’s inequality one gets

sup
x2B�

.g ı F /.x C y/ �
�
C

jB�j
Z
B�

F.x C y/dx

�

� �.C /

jB�j
Z
B�

.g ı F / .x C y/ dx: �
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Employing Theorem 1.1 of [48] we obtain the following

Proposition 1.1.46. Let V obey (1.1.10) and be such that

a

2
jxj2 C V.x/C cV 2 B2.R

�/: (1.1.113)

Then there exist positive constants C1 and C2, such that for all  2 C1
0 .R

�/,

kH har kL2.R�/ � C1k.H C cV I / kL2.R�/;

k.V .q/C cV I / kL2.R�/ � C2k.H C cV I / kL2.R�/:
(1.1.114)

Theorem 1.1.47. If V is as in Proposition 1.1.46, then the operator (1.1.109) with
domain (1.1.110) is self-adjoint.

The proof of this theorem is based on a simple fact, which we are going to use also
in other situations. In view of this, we formulate it in a more general form in the next
statement.

Lemma 1.1.48. Let T and Q be closed linear operators on a Hilbert space H , and
let D � H be a core of the two. If for all  2 D , one has

kQkH � kTkH ; (1.1.115)

then Dom.T / � Dom.Q/.

Proof. As D is a core ofT , for arbitrary 2 Dom.T /, one finds a sequence fngn2N �
D , which is T -convergent to . For any n;m 2 N, by (1.1.115) we have

kQn �QmkH � kTn � TmkH :

Thus, fngn2N � D is also Q-convergent to  and thereby  2 Dom.Q/.

Proof of Theorem 1.1.47. In view of (1.1.111) and (1.1.110), the proof will be done if
we show that

Dom. zH/ � Dom.H har/ \ AV D W2;2.R�/ \ AV ;

which readily follows by Lemma 1.1.48 and the estimates (1.1.114). Here we have
used the fact that C1

0 .R
�/ is a core for H , H har, and V.q/.

For a positive self-adjoint operatorT W H ! H , an orthonormal set f'ngn2N0
� H

is called a trial system if 'n 2 Dom.
p
T / for all n 2 N0. The next statement gives a

way of estimating eigenvalues of operators, which are either compact or have compact
resolvents. It is an adaptation of a known result, see e.g., pages 300 and 301 in [209]
or pages 75–79 in [257].
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Proposition 1.1.49. Let T W H ! H be a positive and self-adjoint linear operator.
Suppose also that S.T / consists entirely of eigenvalues �n, n 2 N0, of finite multi-
plicity, and there exists an orthonormal basis of H consisting of the corresponding
eigenfunctions  n. Then for every n 2 N0, one has

�nC1 D max
'0;:::;'n

min
˚
.; T/H j  2 K?

n ; kkH D 1
�
; (1.1.116)

�n D min
'0;:::;'n

max f.; T/H j  2 Kn; kkH D 1g ; (1.1.117)

where the first max and min are taken over all trial systems for T , and Kn is the linear
span of '0; : : : ; 'n.

Proof. For l 2 N0, by Hl we denote the linear span of 0; : : : ;  l . Let us show that for
any trial system, there exists  2 HnC1 such that k kH D 1 and  2 K?

n . Fix f'kg
and let T be any finite-dimensional subspace of H , which contains both HnC1 and Kn.

If dimT D m, then dimT c D m� n, where T c defD T \ K?
n . The vector in question

can be taken from T c \ HnC1, which contains nonzero vectors, since one would have
dimT > m otherwise. In the same way, one shows the existence of  2 Kn such that
 2 H ?

n�1.
Let �nC1 be the right-hand side of (1.1.116). Then

�nC1 � min
 2H?

n

. ; T  /H D . nC1; T  nC1/H D �nC1:

On the other hand, for each '0; : : : ; 'n, one finds  2 HnC1, k kH D 1, such that
 2 K?

n . Then �nC1 � . ; T  /H � �nC1 which proves (1.1.116). Now let �n be
the right-hand side of (1.1.117). Then

�n � max
 2Hn

. ; T  /H D . n; T  n/H D �n:

At the same time, for each '0; : : : ; 'n, one finds  2 Kn, kkH D 1, such that
 2 H ?

n�1. Then �n � .; T/H � �n, which completes the proof.

Now let V not necessarily belong to Bs.R�/. For cV being as in (1.1.10) and
 2 Dom.H/ given by (1.1.110), we have

.; ŒH C cV I �/L2.R�/ D .;H har/L2.R�/

C .; ŒV .q/C cV I �/L2.R�/

� Ehar
0 D ı�=2:

(1.1.118)

In the next statement, zH stands for the closure of the operator defined in (1.1.109),
(1.1.110).

Theorem 1.1.50. Suppose that V obeys (1.1.10) only. Then the spectrum of zH consists
entirely of eigenvalues of finite multiplicity Ek , k 2 N0, which obey the estimate

8k 2 N0 W Ek � .k C �=2/ı � cV ; (1.1.119)
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where cV and ı are the same as in (1.1.10) and in (1.1.91), respectively. If � D 1, the
eigenvalues are simple.

Proof. Both H har and zH C cV I are self-adjoint and positive, see (1.1.118). Then
there exist .H har/˙1=2 and . zH CcV I /

˙1=2, see Proposition 1.1.29. This, in particular,
means that Ran. zH C cV I /

1=2 D L2.R�/. Also by (1.1.118) it follows that

kQk � 1; where Q
defD .H har/1=2. zH C cV I /

�1=2: (1.1.120)

In view of (1.1.91), the operator .H har/�1=2 is compact. By Proposition 1.1.7 this
yields that . zH C cV I /

�1=2 is also compact and hence zH has compact resolvent. Then
the general properties of the spectrum of zH follow by Proposition 1.1.26, by which, and
by Proposition 1.1.21, we also have that there exists an orthonormal basis f kgk2N0

of L2.R�/ consisting of the eigenfunctions of zH . Let us show that f kgk2N0
is a trial

system for H har. Clearly, each  k belongs to Dom.
p
H C cV I /. By (1.1.118) one

obtains that for all  in C1
0 .R

�/, which is a core for both H and H har, it follows that

k
p
H har kL2.R�/ � k

p
H C cV I kL2.R�/:

Therefrom by Lemma 1.1.48 one obtains

Dom.
p
H C cV I / � Dom.

p
H har/;

which yields  k 2 Dom.
p
H har/ for all k 2 N0. Now we prove (1.1.119). For

k 2 N0, by Hk we denote the linear span of  l with l � k. Then for n 2 N�
0, such

that jnj � k, by (1.1.117) and (1.1.120) we get

Ehar
n � max

˚k.H har/1=2k2
L2.R�/

j  2 Hk; kkL2.R�/ D 1
�

D max
˚kQ. zH C cV I /

1=2k2
L2.R�/

j  2 Hk; kkL2.R�/ D 1
�

� max
˚k. zH C cV I /

1=2k2
L2.R�/

j  2 Hk; kkL2.R�/ D 1
�
;

which by (1.1.91) yields (1.1.119). The claimed simplicity of Ek follows by Proposi-
tion 3.3 on page 65 of [63].

For particular cases of V , one can get a more precise bound than (1.1.119). The
corresponding technique comes from the theory of differential equations. We recall
that the notion of a strict and a weak solution was introduced in Definition 1.1.35. Let
us begin by establishing the following fact.

Theorem 1.1.51. Let V be in C1.R�/ and obey (1.1.113). Then

Dom. zH/ D W2;2.R�/ \ AV ; (1.1.121)

and every eigenfunction  k , k 2 N0, of zH is a strict solution of the equation

� 1

2m
� .x/C

�a
2

jxj2 C V.x/
�
 .x/ D Ek .x/; (1.1.122)

where Ek is the corresponding eigenvalue and � is the Laplacian in R� .
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Proof. The first part of the statement, i.e., (1.1.121) follows by Theorem 1.1.47. Fur-
thermore, as in the proof of Proposition 1.1.37 we obtain that every eigenfunction of zH
is a weak solution of the corresponding equation (1.1.122). Thus, by Proposition 1.1.36
it is also a strict solution of this equation.

Now let us consider the simplest case of (1.1.109), where � D 1 and

H D T
defD H har C bq2r D 1

2m
p2 C a

2
q2 C bq2r ;

r 2 N; r � 2; b > 0;

(1.1.123)

which by Theorem 1.1.46 is self-adjoint on

Dom.T / D Dom.H har/ \ Dom.q2r/: (1.1.124)

The spectrum of T is described in Theorem 1.1.50. Let fngn2N0
be an orthonormal

basis of L2.R/ consisting of the eigenfunctions of T . Set

Tn D �nn; n 2 N0: (1.1.125)

We recall that each�n is simple. Since both ṅ , where ṅ .x/
defD n.˙x/, correspond

to the same eigenvalue, each n is either even or odd. Exactly as in the proof of the
closedness of A, see Theorem 1.1.32 and also (1.1.87), one shows that

Dom.T / D ˚
 2 L2.R/ j Pk2N0

�2
k
j.; k/L2.R/j2 < 1�

: (1.1.126)

By Theorem 1.1.50 �k � .k C 1=2/ı, which can also be proven directly with the
help of (1.1.116). More precise information on the growth of �k can be obtained
by studying the corresponding differential equations. Each k is a strict solution
of the corresponding one-dimensional version of (1.1.122) subject to the condition
.˙1/ D 0, see Theorem 1.1.51. This allows us to employ a number of classical
results, e.g., following the line of arguments developed in [305]. The next statement
will also be used in obtaining a more accurate bound for �n.

Proposition 1.1.52 (Sturm Theorem). Letg andh be continuous real-valued functions,
defined on .c; d/ � Œ0;C1/, such that g.x/ < h.x/ on a certain interval .a; b/ �
.c; d/. Let u (respectively, v) be a solution of the equation (1.1.127) (respectively,
(1.1.128)), where

u00.x/C g.x/u.x/ D 0; (1.1.127)

v00.x/C h.x/v.x/ D 0: (1.1.128)

Assume also that there exist ˛; ˇ 2 .a; b/, ˛ < ˇ, such that u.˛/ D u.ˇ/ D 0 and
u.x/ > 0 for all x 2 .˛; ˇ/. Then there exists � 2 .˛; ˇ/, such that v.�/ D 0.
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Proof. The assumed properties of u and v imply that u0.˛/ � 0, u0.ˇ/ � 0. Suppose
v is positive on .˛; ˇ/, and hence nonnegative at the endpoints. Then subtracting the
equations and integrating by parts we get

v.ˇ/u0.ˇ/ � v.˛/u0.˛/ D
Z ˇ

˛

Œh.x/ � g.x/�u.x/v.x/dx > 0;

which is impossible.

Now we are in a position to get a more accurate bound for �n. Recall that in
(1.1.123), as well as in the lemma below, m stands for the particle mass.

Lemma 1.1.53. The eigenvalues �n, n 2 N0, of the operator (1.1.123) have the
following property. There exist �� > 0 and n� 2 N, which depend on the parameters
a, b, m, and r only, such that for all n � n�,

�n � ��n2r=.rC1/: (1.1.129)

Proof. First, we point out that the equation

�v00.x/C q.x/v.x/ D �v.x/; x 2 R;

with a continuous function q, such that q.x/ ! C1 as x ! ˙1, has solutions
v 2 L2.R/ only for � belonging to a discrete set f�ngn2N0

, such that �n ! C1 as
n ! C1. For each n 2 N0, the corresponding solution vn has exactly n zeros in R.
Furthermore, if xn is such that q.x/��n > 0 for all x > xn, then the number of zeros
of vn which exceed xn is at most 1. If q is even, then the solutions v2n, n 2 N, are even
(respectively, v2n�1, n 2 N, are odd), and the number of zeros of v2n on .0;C1/ is
n (respectively, the number of zeros of v2n�1 on .0;C1/ is n � 1), see Theorem 3.5
on page 66 of [63].

For � > 0, let w.�/ be the positive solution of the equation

1

2
aw C bwr D �:

Then w.�/, and hence �w.�/, are increasing functions. Let �� > 0 be the solution of

�w.�/ D 9r2

8m
: (1.1.130)

As �n � .nC 1=2/ı, one can pick an integer n� � 3, such that for n � n�,

�n � ��: (1.1.131)

We fix such an n and set
xn D

p
w.�n/: (1.1.132)

Clearly,

xn <

�
�n

b

�1=2r
: (1.1.133)
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Now for � > �n, let us consider the function �.x; �/ defined on x 2 .0; xn/ by

�.x; �/ D �
2�m � amx2 � 2bmx2r��1=4 cos �.x; �/;

�.x; �/ D
Z x

0

�
2�m � amt2 � 2bmt2r�1=2 dt:

(1.1.134)

Set �n.x/ D �.x; 2‚n/ and �n.x/ D �.x; 2‚n/. By a direct calculation,

� 1

2m
� 00
n .x/C

	
a

2
x2 C bx2r � '.x; 2�n/



�n.x/ D �n�n.x/; (1.1.135)

where

'.x; �/ D � ��n � a=2C br.2r � 1/x2r�2

4m.� � ax2=2 � bx2r/

� 5

8m

�
ax=2C brx2r�1

� � ax2=2 � bx2r
�2
:

Clearly, '.x; �/ � '.xn; �/; thus,

'.x; 2�n/ � '.xn; 2�n/

� �n

�
1 � 1

x2n�n
� 9r

2 � 2r
8m

�
> 0:

(1.1.136)

The latter estimate holds sincex2n�n � 9r2=8m, see (1.1.130), (1.1.131), and (1.1.132).
Along with (1.1.135) we consider the problem

.T  /.x/ D � 1

2m
 00.x/C Œax2=2C bx2r � .x/ D �n .x/; (1.1.137)

x 2 R with  2 L2.R/. Its solution is n. In view of the facts mentioned at the very
beginning of this proof, 2n has at leastn�1 zeros on .0; x2n/. Givenn 2 N, let l be the
number of zeros of �2n. Comparing the equations (1.1.135) and (1.1.137) and taking
into account the estimate (1.1.136) we conclude that l � n�2, see Proposition 1.1.52.
These zeros can be found from the equation cos �2n.x/ D 0, cf. (1.1.134). The
function �2n.x/ is increasing on .0; x2n/. The m-th zero of �2n is defined by the
equation �2n.	m/ D .mC 1=2/
 , m D 0; : : : ; l � 1, where, see (1.1.134),

�n.x/ D 2
p
m�n

Z x

0

	
1 � at2=2C bt2r

2.ax2n=2C bx2rn /


1=2
dt � 2x

p
m�n:

Therefore, for n � 3, we have

�2n.x2n/ � �2n.	l�1/ D .l � 1=2/
 � .n � 5=2/
 � n
=6;

which together with the estimate

�2n.x2n/ � 2x2n�
1=2
2n

p
m < 2

p
m
�
�1Cr
2n =b

�1=2r
;
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see (1.1.133), yields

�2n > n
2r=.rC1/

�

b1=2r

12
p
m

� 2r
1Cr

:

Therefore, taking into account that �2nC1 > �2n, we obtain (1.1.129) with

�� D
�




24
p
m

�2r=.rC1/
b1=.1Cr/: (1.1.138)

For r D 1 and b D a=2, the estimate (1.1.129) takes the form �n � .
=24
p
2/ın,

which can be compared with the exact value �n D .nC 1=2/ı.

To extend the result just obtained to more general operators than that given by
(1.1.123) we employ a comparison technique, based on the following notion.

Definition 1.1.54. Let Q and T be densely defined linear operators, such that
Dom.Q/ 	 Dom.T /. Then Q is T -bounded if there exist positive a and b, such
that for all  2 Dom.T /,

kQ kH � akT kH C bk kH : (1.1.139)

The infimum of a in (1.1.139) is called the T -bound for Q. If this infimum is zero,
one writes Q 
 T .

The following statement is very useful in establishing domains of sums of operators,
see Section X.2 of [256].

Proposition 1.1.55 (Kato–Rellich Theorem). LetT be self-adjoint andQ be symmetric
and T -bounded with the T -bound a < 1. Then the operator T CQ is self-adjoint on
Dom.T /.

We use this statement to extend the result of Lemma 1.1.53 to more general types
of H .

Theorem 1.1.56. Let T be as in (1.1.123) and W W R ! R be continuous and have
the following property. For every ˛ > 0, there exists ˇ > 0 such that, for all x 2 R,

ŒW.x/�2 � ˛b2x4r C ˇ; (1.1.140)

where r and b are as in (1.1.123). Then the operator T C W.q/ is self-adjoint on
Dom.T / given by (1.1.124).

Proof. By (1.1.140) the multiplication operator W.q/ is symmetric on Dom.q2r/, see
(1.1.99) and (1.1.100), and, therefore, on Dom.T /. By (1.1.114) it follows that

8 2 Dom.T / W kH har kL2.R�/ � C1kT kL2.R�/;

kbq2r kL2.R�/ � C2kT kL2.R�/;
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for some positive constants C1 and C2. Then by (1.1.140) we obtain

8 2 Dom.T / W kW.q/ k2
L2.R/

� ˛kbq2r k2
L2.R/

C ˇk k2
L2.R/

< ˛C2kT k2
L2.R/

C ˇk k2
L2.R/

:

For positive a; b; x; y; z, the estimate x2 � a2y2 C b2z2 implies x � ay C bz.
Therefore, W 
 T and the proof follows by the Kato–Rellich theorem.

A direct generalization of the latter statement is the following

Theorem 1.1.57. Let � be an arbitrary positive integer and V be as in Theorem 1.1.46.
Let also W W R� ! R be continuous and such that

ŒW.x/�2 � ˛ŒV .x/C cV �
2 C ˇ;

with ˛ < 1=C2 and a certain ˇ > 0, C2 being the same as in (1.1.114). Then the
operatorH D H har CW.q/C V.q/ is self-adjoint on

Dom.H/ D Dom.H har/ \ AV :

Now we obtain an extension of Lemma 1.1.53.

Theorem 1.1.58. Let V and r be as in (1.1.10) and V obey the conditions of Theo-
rem 1.1.51. Then for every � � 1, the eigenvalues Ek , k 2 N0, of the operator
(1.1.109) have the following property. There exist E� > 0 and k� 2 N n f1g such that
for all k � k�,

Ek � E�k2r=.rC1/: (1.1.141)

Proof. We recall that the space L2.R�/ is the tensor product of � copies of L2.R/. Let
T be as in (1.1.123) with b D bV , bV being the same as in (1.1.10). For j D 1; : : : ; �,
we set

Tj D I ˝ � � � ˝ I ˝ T ˝ I ˝ � � � ˝ I;

where a copy of the operator (1.1.123) is on the j -th position. Consider

S
defD

�X
jD1

Tj D H har C Pr.qI b/;

Pr.xI b/ defD b

�X
jD1

.x.j //2r ; x 2 R� ;

(1.1.142)

where b 2 .0; bV � and H har is as in (1.1.91). In view of Proposition 1.1.43, S is
essentially self-adjoint on C1

0 .R
�/ and self-adjoint on

Dom.S/ D Dom.H har/ \ APr :
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Let k be the (unique) normalized eigenfunction of T corresponding to the eigenvalue
�k , k 2 N0. Then

n D n1
˝ n2

˝ � � � ˝ n�
; n 2 N�

0

is the eigenfunction of S corresponding to the eigenvalue

˙n D �n1
C � � � C�n�

:

The growth of ˙n, as jnj ! C1, is described by Lemma 1.1.53. By Theorem 1.1.51
we have that each eigenfunction  k of zH belongs to Dom.S/. In view of (1.1.10), we
have that for all x 2 R� ,

G.x/
defD V.x/ � Pr.xI b/C cV � 0: (1.1.143)

Let f kgk2N0
be an orthonormal basis of L2.R�/ consisting of eigenfunctions of

zH . Given k 2 N0, let Hk be the linear span of  0; : : : ;  k and �k D f 2 Hk j
kkL2.R�/ D 1g. Then by (1.1.117) one obtains that for any n 2 N�

0, such that jnj � k,

˙n � max
�2�k

.; S/L2.R�/: (1.1.144)

But by (1.1.143)

.; S/L2.R�/ D .;H/L2.R�/ C cV � .;G.q//L2.R�/ � .;H/L2.R�/ C cV ;

which immediately yields in (1.1.144)

˙n � Ek C cV :

Thereafter, the stated property follows by Lemma 1.1.53.

Anharmonic oscillator: tunneling and gap estimates

Now let us consider the case where � D 1 and V.x/ is even. Figure 1.1 presents an
example of the corresponding potential .a=2/x2 C V.x/. Such double well potentials
are typical for hydrogen bounds (see Introduction), e.g., in KDP-type ferroelectrics.

The dynamics of oscillators with convex potentials and with potentials like the one
depicted in Figure 1.1 are qualitatively different. For quantum oscillators, however,
this difference is not so essential due to a purely quantum effect, called tunneling. If the
energy of the classical oscillator is lower than the height of the barrier separating the
wells, the oscillator is forced to oscillate within the well. By symmetry, such oscillations
in the opposite well correspond to the same energy. Thus, the classical oscillator can
be in two different states with the same energy, which for its quantum counterpart is
impossible as each of the corresponding eigenvalues is simple, see Theorem 1.1.50.
Therefore, the quantum oscillator leaves the wells, even if its energy is lower than
the barrier. This phenomenon can be interpreted in the following way. As we know,
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E1

E0 a�a

Figure 1.1. Double well potential.

the localization of a quantum particle is a random event, see (1.1.5), whose probability
distribution is expressed in terms of the corresponding wave function. Thus, if the state
(the eigenfunction ofH ) is, say, 0, and the corresponding energy (the eigenvalue ofH )
is E0, the probability to find the particle in a Borel subset B is given by (1.1.5) with
this  0. If one takes B D Œ�a; a�, see Figure 1.1, this probability could be positive if
j 0.x/j2 were essentially positive in this interval. The point is that it is positive; thus,
the particle can enter the area which is forbidden for its classical counterpart. In fact,
 0.x/ has an oscillatory character for x such that E0 � Œ.a=2/x2 C V.x/� � 0, and
decreases otherwise – the faster, the bigger the difference Œ.a=2/x2 C V.x/� � E0 is,
see page 165 in [305]. But if this difference is not too big and the interval Œ�a; a� is not
too long, the probability expressed by the integral in (1.1.5) is positive. This motion
between the wells in low energy states is called tunneling. Due to it the degeneracy
occurring in the classical case is lifted, which manifests itself in the tunneling splitting
of the degenerate eigenvalue E0 into two simple eigenvalues E0 and E1, which are
close to each other. The gap parameter� D E1�E0 is called the tunneling frequency.
It is small if the parameter m is big. This means that the tunneling disappears in the
macro-scale limit mph ! C1, as well as in the classical limit ¯ ! 0, see (1.1.7).
In quantum anharmonic crystals, tunneling plays a very important role in the quantum
effects studied in Chapter 7, where we also describe how � tends to zero in the limit
m ! C1. As we show there, the gap parameter is responsible for the quantum
stabilization, the theory of which is developed in Section 7.1.

Until the end of this subsection, for � D 1 and

H D H har CW.q/C brq
2r D 1

2m
p2 C a

2
q2 CW.q/C brq

2r ; (1.1.145)

we study the dependence of the gap parameter on the massm. Here br D bV , bV and r
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are as in (1.1.10), and

W.q/ D
r�1X
sD1

bsq
2s; bs 2 R; for all s D 2; : : : ; 2r � 1. (1.1.146)

As we know,H is self-adjoint on Dom.T / given by (1.1.124), see Theorem 1.1.56. Its
eigenvalues En, n 2 N0, are described in Theorem 1.1.58. More precise information
about them is given in the following

Theorem 1.1.59. The eigenvalues of the operator (1.1.145) have the property

lim
n!C1.EnC1 �En/ D C1:

Proof. For a certain positive c < C1, let

g W R ! Œ0; c�; g.x/ D g.�x/; (1.1.147)

be an infinitely differentiable function, obeying the conditions:

(a) g.0/ D 0;

(b) supx2R jg0.x/j < 1;

(c) 8x 2 R W g00.x/ � �a �W 00.x/ � 2r.2r � 1/brx2.r�1/:
(1.1.148)

The latter condition guarantees that

U 00.x/ � 0; (1.1.149)

where

U.x/
defD g.x/C 1

2
ax2 CW.x/C brx

2r :

Now we set

T D 1

2m
p2 C U.q/; (1.1.150)

and let n and �n, n 2 N0, be the eigenfunctions and the corresponding eigenval-
ues of T . By  n, n 2 N0, we denote the eigenfunctions of (1.1.145). In view of
Theorem 1.1.57,

Dom.H/ D Dom.T /;

which means that both sets fngn2N0
and f ngn2N0

can be used as trial functions for
T and H C cI , see Proposition 1.1.49 and Theorem 1.1.47. As g is positive,

8 2 Dom.H/ W .;H/L2.R/ � .; T/L2.R/:

Hence, by (1.1.117) one obtains, cf. (1.1.144),

En � �n; n 2 N0: (1.1.151)
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On the other hand, by the same bound (1.1.117)

�n � max
˚
.; T/L2.R/ j  2 Kn; kkL2.R/ D 1

�
� c C max

˚
.;H/L2.R/ j  2 Kn; kkL2.R/ D 1

�
D c CEn;

(1.1.152)

where Kn is the linear span of f 0; : : : ;  ng. Then the stated property will follow if
we show that

lim
n!C1.�nC1 ��n/ D C1: (1.1.153)

As the function U is convex, see (1.1.149), for any � > 0 the equation

� D U.x/ (1.1.154)

has a unique solution on RC, which we denote by x.�/. Clearly, x.�/ is increasing,
concave, and differentiable. Furthermore, br Œx.�/�2r=� ! 1, that is,

x.�/ D O
�
�1=2r

�
; as � ! C1, (1.1.155)

and hence

x0.�/ D 1

U 0.x.�//
D O

�
��1C1=2r�: (1.1.156)

Now for n 2 N, we set xn D x.�n/. By Theorem 1.1.58 �n � ��n2r=.rC1/ for all
n 2 N0 and a certain �� > 0. In addition to the convexity, the function U is three
times differentiable, such that for k D 1; 2; 3,

U .k/.x/

U .k�1/.x/
D O

�
1

x

�
; x ! 1; (1.1.157)

cf. (7.8.1) in [305], page 151. Therefore, by a modification of the method used in the
proof of Lemma 1.1.53 one can prove that

p
8m




Z xn

0

Œ�n � U.x/�1=2 dx D nC 1=2CO

�
1

n

�
; (1.1.158)

see (7.7.4) in [305], page 151. It is worthwhile to note that the error term here tends to
zero as n ! C1. Thereby,

In
defD
Z xnC1

0

Œ�nC1 � U.x/�1=2 dx �
Z xn

0

Œ�n � U.x/�1=2 dx

D 
p
8m

CO

�
1

n

�
:

(1.1.159)

It can also be written as In D Jn CKn, where

Jn D
Z xn

0

Œ�nC1 ��n� dx
Œ�nC1 � U.x/�1=2 C Œ�n � U.x/�1=2 ;

Kn D
Z xnC1

xn

Œ�nC1 � U.x/�1=2 dx:

(1.1.160)
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Now for n 2 N, we set 'n.t/ D U.txn/=�n. This function is convex. Furthermore,
'n.0/ D 0, 'n.1/ D 1, and 'n W Œ0; 1� ! Œ0; 1�. Therefore, 'n.t/ � t , which implies

Jn D xn Œ�nC1 ��n�p
�n

Z 1

0

dt

Œ�nC1=�n � 'n.t/�1=2 C Œ1 � 'n.t/�1=2

� xn Œ�nC1 ��n�
2
p
�n

Z 1

0

dtp
1 � t D xn Œ�nC1 ��n�p

�n
:

At the same time, as x.�/ is concave, x0.�/ � x0 .�n/ for � � �n. Hence,

Kn D
Z �nC1

�n

Œ�nC1 � ��1=2 x0.�/d�

� x0 .�n/
Z �nC1

�n

Œ�nC1 � ��1=2 d�

D 2

3
x0 .�n/ Œ�nC1 ��n�3=2 :

Now suppose that the sequence�nC1��n, n 2 N0, contains a bounded subsequence.
That is, there exists a sequence of integers fnkgk2N0

, tending to C1, such that

�nkC1 ��nk
� �� (1.1.161)

for all k 2 N0 and some finite �� > 0. Then the above estimates and (1.1.161) yield
Jnk

! 0, see (1.1.155), and Knk
! 0, see (1.1.156), which contradicts (1.1.159).

It is easy to see that in Theorem 1.1.59 the concrete form of the anharmonic potential
in (1.1.145) was not especially important. The only properties we needed were its
three-times differentiability, the asymptotic properties (1.1.157), and the concavity of
x.�/. The latter is readily guaranteed by the estimate (1.1.10), according to which the
potential energy of (1.1.145) is ‘asymptotically convex’. Concerning the choice of the
function (1.1.147), it has to be convex enough in the vicinity of the origin in order to
compensate the eventual non-convexity of the potential energy. Far from the origin it
should be slightly concave and increasing to c as x ! ˙1. An example here can be
g.x/ D cŒ1 � exp.�˛2x2/� with sufficiently small ˛ > 0 and big enough c.

Now let us turn to the study of the dependence of the eigenvalues of (1.1.145),
and hence of the gap parameter, on the mass m. To visualize this dependence the
corresponding quantities will be supplied with the subscript m. In particular, the
Hamiltonian (1.1.145) is now written as Hm. Its gap parameter is

�m D min
n2N

.En �En�1/: (1.1.162)

In the next statement, by writing f � g we mean that lim.f =g/ D 1.
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Theorem 1.1.60. For every integer r � 2, the gap parameter (1.1.162) of the Hamil-
tonian (1.1.145) is a continuous function of m 2 .0;C1/, such that

�m � �0m
�r=.rC1/; as m ! 0, (1.1.163)

with a certain �0 > 0.

The proof of this theorem is based on the analytic perturbation theory for self-adjoint
operators and will be preceded by the introduction of the corresponding notions and
facts. But before let us discuss some consequences of Theorem 1.1.60. In the harmonic
case, we have, see (1.1.73) and (1.1.72),

�har
m D ı D

p
a=mI hence; a D mŒ�har

m �
2; (1.1.164)

which agrees with (1.1.163). As we shall see below in Subsection 7.1.1, the parameter

rm D m�2m (1.1.165)

plays a crucial role in the description of quantum effects in quantum anharmonic crys-
tals. Since in the harmonic case rm coincides with the oscillator rigidity, we will call it
the quantum rigidity of the oscillator. By Theorem 1.1.60, rm is a continuous function
of m and

rm � �20m
�.r�1/=.rC1/; as m ! 0. (1.1.166)

Hence, rm ! C1, as m ! 0, since r � 2.
In the sequel, a domain will also mean a connected open subset of Cn, with n 2 N

depending on the context. A typical example is the disc

D".�/
defD fz j jz � �j < "g:

Definition 1.1.61. Let C � C be a domain. A map C 3 z 7!  z 2 H is called
analytic at � 2 C if there exist " > 0 and a dense set A � H such that for every
 2 A, the map z 7! .;  z/H 2 C is analytic and bounded in D".�/ � C. The map
C 3 z 7!  z 2 H is called analytic in C if it is analytic at every � 2 C.

Definition 1.1.62. Let C � C be a domain and for every z 2 C, let T .z/ be a closed
operator with a non-void resolvent set. Then fT .z/ j z 2 Cg is called an analytic
family of type (A) in C if the following conditions are satisfied:

(a) all T .z/, z 2 C, have the same domain Dom.T .z// D A;

(b) for each  2 A, the map C 3 z 7! T .z/ 2 H is analytic in C.

If C D C, then fT .z/ j z 2 Cg is called an entire family of type (A).

Remark 1.1.63. An analytic family of type (A) has a compact resolvent for all z 2 C
or for no z 2 C, see Theorem 2.4 on page 377 of [172].
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For the families defined by the series T .z/ D T CzQ1Cz2Q2C� � � , a criterion of
analyticity is presented by another Kato–Rellich theorem, see Theorem 2.6 on page 377
of [172] and also Lemma on page 16 of [257]. We recall that the relative boundedness
of operators was introduced in Definition 1.1.54.

Proposition 1.1.64. Let T be a closed linear operator with a non-void resolvent set,
and Qn W H ! H , n 2 N, be linear operators, such that Dom.Qn/ 	 Dom.T /.
Suppose also that there exist positive a, b, and c, such that

8 2 Dom.T /; n 2 N W kQn kH � cn�1 .akT kH C bk kH / : (1.1.167)

Then for jzj < 1=c, the series

T .z/ D T C zQ1 C z2Q2 C � � � (1.1.168)

defines an operator with Dom.T .z// D Dom.T /. For every z 2 D1=.aCc/.0/, the
operatorT .z/ is closable and the closures zT .z/ constitute an analytic family of type (A)
in D1=.aCc/.0/.

Definition 1.1.65. An analytic family of type (A) is called self-adjoint if: (a) its domain
C is symmetric with respect to the real axis; (b) T .z/ is densely defined for each z 2 C;
(c) ŒT .z/�� D T . Nz/, which in particular means that T .z/ is self-adjoint for real z.

Yet another Kato–Rellich theorem describes the eigenvalues of such families, see
Theorem 3.9 on page 392 in [172].

Proposition 1.1.66. Let T .z/, z 2 C, be a self-adjoint analytic family of type (A).
Suppose that C contains an interval I � R, and let T .z/, z 2 C, have compact
resolvent. Then there exists a sequence of scalar-valued functions�n.z/ and a sequence
of vector-valued functions n.z/, all analytic in the vicinity of I, such that for z 2 I, the
�n.z/’s represent all the repeated eigenvalues of T .z/ and the n.z/’s form a complete
orthonormal family of the associated eigenvectors of T .z/.

Remark 1.1.67. In Proposition 1.1.66, each �n.z/ is analytic in a domain, Cn 	 I,
which may depend on n. Thus, for sure, only finite families of �n.z/ have common
domains of analyticity.

Proof of Theorem 1.1.60. Given n 2 N0, we set

d.mIn/ D EnC1 �En;
where m is the mass. Then according to Theorem 1.1.59,

�m D d.mI k1/ D � � � D d.mI ks/; (1.1.169)

for a certain s 2 N and k1; : : : ; ks 2 N0. If each En is a continuous function of m,
then so is each d.mIn/. Therefore, if m0 is close to m, then

�m0 D minfd.m0I k1/; : : : ;d.m0I ks/g;
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and hence is close to �m. Thus, to complete the proof of the continuity of �m we
have to establish the continuity of the eigenvalues, which will be done by means of
Proposition 1.1.66.

Given ˛ > 0, let U˛ W L2.R/ ! L2.R/ be the unitary operator

.U˛ / .x/ D p
˛ .˛x/: (1.1.170)

By (1.1.49)
U�1
˛ pU˛ D ˛p; U�1

˛ qU˛ D ˛�1q:
For a fixed m0 and a given m, we set

˛ D �1=2 D .m=m0/
1=2.rC1/:

Then
U�1
˛ HmU˛

defD yHm D ��rT .� � 1/; (1.1.171)

where

T .� � 1/ D Hm0
CQ.� � 1; q/

D 1

2m0
p2 C �r�1.b1 C a=2/q2 C �r�2b2q4 C � � � C brq

2r ;
(1.1.172)

Q.z; q/ D z
�
pr�1.z/.b1 C a=2/q2

C pr�2.z/b2q4 C � � � C pr�s.z/bsq2s C � � � C br�1q2.r�1/i ;
and

pk.z/ D
k�1X
lD1

kŠ

lŠ.k � l/Šz
l�1:

Therefore,
Q.z; q/ D zQ1.q/C � � � C zr�1Qr�1.q/;

where every Qs.q/ is an even real polynomial in q, such that degQs D 2.r � s/,
s D 1; : : : ; r � 1. By Theorem 1.1.56 Hm0

is self-adjoint on

Dom.Hm0
/ D W2;2.R/ \ Dom.q2r/:

Since each Qs.x/ obeys (1.1.140) with arbitrarily small ˛ and big enough ˇ, as in the
proof of Theorem 1.1.56 one shows that for any " > 0, there exists a ı > 0, big enough,
such that for all s D 1; 2; : : : ; r � 1 and  2 Dom.Hm0

/,

kQs.q/kL2.R/ �
� "
2

�s�1 h� "
2

�
kHm0

kL2.R/ C ıkkL2.R/

i
:

Then by Proposition 1.1.64, T .z/, z 2 D1=".0/, with T .z/ given by (1.1.172), is an
analytic family of type (A) since each T .z/ is already closed. This in particular means
that the resolvent set of each T .z/ is non-void, see Definition 1.1.62. As T .0/ D Hm0
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has compact resolvent, then so does each T .z/, z 2 D1=".0/, see Remark 1.1.63. In
what follows, the family T .z/, z 2 D1=".0/, is self-adjoint, see Definition 1.1.65, and
hence satisfies the conditions of Proposition 1.1.66. Therefore, for any k 2 N, one
finds a domain Ck � D1=".0/, such that the eigenvalues �0.z/; : : : ; �k.z/ of T .z/ are
analytic in Ck , and hence real and continuous at zero as functions of � � 1. In view
of (1.1.171), for � 2 .1 � �; 1C �/, each ��r�n.� � 1/ is an eigenvalue of yHm, and
hence of Hm, as these operators are unitary equivalent. This yields the continuity in
question.

To prove (1.1.163) we rewrite (1.1.171) as

yHm D ��rS.�/; S.�/ D H .0/
m0

CQ.�; q/; (1.1.173)

where as above � D .m=m0/
1=.rC1/. But

Q.�; q/ D �
�
�r�2.b1 C a=2/q2 C �r�3b2q4 C � � � C br�1q2.r�1/�;

H .0/
m0

D 1

2m0
p2 C brq

2r :

Repeating the above perturbation arguments one concludes that the family S.z/ is self-
adjoint and analytic near zero. Hence, the gap parameter (1.1.169) tends, as � ! 0, to
that of the operatorH .0/

m0
, which we denote by�0. Thereby, the asymptotics (1.1.163)

follows by (1.1.173) and by the unitary equivalence of yHm and Hm.

1.2 Local Gibbs States

In this section, we study the properties of finite collections of interacting anharmonic
oscillators, which includes also their thermodynamic states. In Subsection 1.2.1, we
introduce and study local HamiltoniansHƒ, which are the Schrödinger operators of sets
of interacting quantum anharmonic oscillators, indexed by finiteƒ � L. This study is
based on the theory of single quantum oscillators developed above. By means of Hƒ
we introduce local Gibbs states %ˇ;ƒ. As these states are normal, in Subsection 1.2.2
we present elements of the theory of such states on von Neumann algebras. Here
we introduce the notion of a complete family of multiplication operators, which is
important for representing the states %ˇ;ƒ via path integrals. In Subsection 1.2.3, we
prove Høegh-Krohn’s theorem according to which the states %ˇ;ƒ are determined by
their values on the operators evolving from complete families. Such values, considered
as functions of time, are called Green functions. They, and their extensions to complex
values of time variables, are studied in Subsection 1.2.4. The main result here is
Theorem 1.2.32, by which the states %ˇ;ƒ are determined by Matsubara functions,
constructed for multiplication operators belonging to a complete family. Such functions
can also be defined by path integrals. In Subsection 1.2.5, this is done for noninteracting
systems of harmonic oscillators, which in the subsequent sections is extended to finite
systems of interacting anharmonic oscillators.
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1.2.1 Local Hamiltonians and Gibbs States

In the sequel, the adjective ‘local’ characterizes a property, related to a finite ƒ � L,
whereas ‘global’ will always refer to the whole model, i.e., toƒ D L. Cases of infinite
ƒ ¨ L are indicated explicitly. The family of all non-void finite subsets ƒ � L
(respectively, all subsets) will be denoted by Lfin (respectively, by L). For ƒ 2 Lfin,
the local physical Hilbert space is

Hƒ D L2.R�jƒj/ D
O
`2ƒ

H`: (1.2.1)

The definitions of the spaces C1
0 .R

�jƒj/ and W2;2.R�jƒj/ are obvious extensions of

those given in Subsection 1.1.3. In Hƒ, the operators q.j /
`

and p.j /
`

are defined as
the corresponding tensor products of the operators given by (1.1.49) and the identity
operators. Likewise,

H
.0/
ƒ

defD
X
`2ƒ

H`; (1.2.2)

with
Dom.H .0/

ƒ / D W2;2.Rj�jƒj/ \ Aƒ: (1.2.3)

Here, cf, (1.1.99),

Aƒ
defD ˚

 2 Hƒ j RR�jƒj

Q
`2ƒ ŒV`.x`/�

2 j .x/j2dx < 1�
: (1.2.4)

As was already mentioned, the Hamiltonian (1.1.8) has no direct mathematical meaning
and is usually ‘represented’ by local Hamiltonians. For ƒ 2 Lfin, we set

Hƒ D �1
2

X
`;`02ƒ

J``0 � .q`; q`0/C
X
`2ƒ

H`

D 1

2m

X
`2ƒ

jp`j2 C
�X
`2ƒ

a

2
jq`j2 C V`.q`/ � 1

2

X
`;`02ƒ

J``0 � .q`; q`0/
�
:

(1.2.5)

In the latter line, the multiplication operator in .: : : / is the potential energy of the
system of oscillators located inƒ. Since the corresponding function is below bounded,
continuous, and tending to C1 as

P
`2ƒ jx`j2 ! C1,Hƒ is essentially self-adjoint

on C1
0 .R

�jƒj/, see Proposition 1.1.43. From now on, by the Hamiltonian Hƒ we
mean the self-adjoint operator being the closure of (1.2.5) as defined on C1

0 .R
�jƒj/.

Exactly as in Theorem 1.1.50, one can prove that the spectrum of the HamiltonianHƒ
is discrete with no accumulation points other than infinity. Its more detailed description
is given in the statement below, where r and cV are as in (1.1.10).

Theorem 1.2.1. The eigenvalues Es , s 2 N0, ofHƒ obey the estimate

8s � sƒ W Es � �ƒs; (1.2.6)
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with certain �ƒ > 0 and sƒ 2 N. If all V` simultaneously are infinitely differentiable
or obey (1.1.113), then

8s � sƒ W Es � �ƒs
2r=.rC1/; (1.2.7)

with appropriate �ƒ > 0 and sƒ 2 N, not necessarily the same as in (1.2.6). If V` are
as in (1.1.113), then also

Dom.Hƒ/ D W2;2.Rj�jƒj/ \ Aƒ: (1.2.8)

Proof. We prove only (1.2.7) as the proof of (1.2.6) is based on the same arguments
and Theorem 1.1.50. Given ` 2 ƒ, by S` we denote the tensor product of the identity
operators and a copy of the operator (1.1.142) with b D bV =2, standing at `-th position.
For n` 2 N�

0, let ˙n`
be its eigenvalue. Set

Sƒ D
X
`2ƒ

S`:

Then the eigenvalues of Sƒ are

˙nƒ
D
X
`2ƒ

˙n`
; nƒ D .n`/`2ƒ 2 N�jƒj

0 : (1.2.9)

For each ` 2 ƒ, we pick c` � cV in such a way that

8xƒ 2 R�jƒj W Wƒ.xƒ/
defD
X
`2ƒ

1

2
bV

�
x
.j /

`

�2r C
X
`2ƒ

.c` � cV /

� 1

2

X
`;`02ƒ

J``0.x`; x`0/ � 0:

(1.2.10)

Let G`.x`/ be as in (1.1.143) with V D V` and b D bV . Then

8xƒ 2 R�jƒj W Fƒ.xƒ/
defD

X
`2ƒ

G`.x`/CWƒ.xƒ/ � 0: (1.2.11)

Let  s , s 2 N0, be the eigenfunctions of Hƒ. As each V` obeys the conditions of
Theorem 1.1.51, these eigenfunctions belong to the domain of the sum on the right-
hand side of (1.2.5). Hence,  s 2 Dom.Sƒ/ for all s 2 N0. Let Hs be the linear span
of  0; : : : ;  s and �s D f 2 Hs j kkHƒ

D 1g. Then by (1.1.117) one gets that, for
any nƒ, such that jnƒj � s,

˙nƒ
� max
�2�s

.; Sƒ/Hƒ
:

At the same time, for  2 �s , one has

.; Sƒ/Hƒ
D .;Hƒ/Hƒ

C
X
`2ƒ

c` � .; Fƒ.qƒ//Hƒ

� .;Hƒ/Hƒ
C
X
`2ƒ

c`

� Es C
X
`2ƒ

c`:
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Then the proof follows from (1.2.9) and Theorem 1.1.58.

Directly from (1.2.6) one gets the following

Corollary 1.2.2. For any ˇ > 0, the operator exp.�ˇHƒ/ is of trace-class.

Set Cƒ D C.Hƒ/. The elements of Cƒ are called observables. In the definition
below, T > 0 is absolute temperature and kB is Boltzmann’s constant. A temperature
state on Cƒ is defined as a mixture of (pure) vector states Cƒ 3 A 7! . s; A s/Hƒ

as follows, cf. Definitions 1.1.12 and 1.1.13.

Definition 1.2.3. Forƒ 2 Lfin and a given inverse temperature ˇ D 1=kBT , the local
Gibbs state %ˇ;ƒ on Cƒ is

%ˇ;ƒ.A/ D trace ŒA exp.�ˇHƒ/�
trace Œexp.�ˇHƒ/� ; A 2 Cƒ: (1.2.12)

In the Heisenberg approach to quantum mechanics, the dynamics of the subsystem
of oscillators located in ƒ is described by the maps

Cƒ 3 A 7! atƒ.A/ D U tƒAŒU
t
ƒ�

�1; (1.2.13)

where t 2 R is time and
U tƒ D exp .itHƒ/ : (1.2.14)

As Hƒ is self-adjoint, by Proposition 1.1.30 we have easily

Proposition 1.2.4. For each t 2 R, U tƒ is a unitary operator on Hƒ and U tCsƒ D
U tƒU

s
ƒ for all t; s 2 R. For any  2 Hƒ and s 2 R,

U tƒ ! U sƒ; as t ! s.

By this statement, the maps (1.2.13) are norm-preserving, i.e., katƒ.A/k D kAk
for all A 2 Cƒ. They are linear, bijective, and such that for all A;B 2 Cƒ,

atƒ.AB/ D atƒ.A/a
t
ƒ.B/;

�
atƒ.A/

�� D atƒ.A
�/: (1.2.15)

The latter property means that each atƒ is a �-automorphism of the corresponding
C �-algebra. Moreover, for any s; t 2 R,

asƒ
�
atƒ.A/

� D asCtƒ .A/; (1.2.16)

and for s D 0, asƒ is the identity map. Therefore, the maps A 7! atƒ.A/ 2 Cƒ, t 2 R,
form a one-parameter group. This group, denoted by Aƒ, is called the group of time
automorphisms which determine the time evolution of the elements of Cƒ.

Remark 1.2.5. The state (1.2.12) can be extended to some unbounded operators.
Indeed, given a trace-class operator T , the operators AT and TA may be trace-class
not only for bounded operators A. For example, if T D exp.�ˇHƒ/, ˇ > 0 and
A D exp.�Hƒ/, � 2 C, the operator AT is trace-class provided <.�/ < ˇ.
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The set of all operators to which the above state %ˇ;ƒ can be extended is denoted
by xCˇ;ƒ. Since the trace is cyclic, cf. Proposition 1.1.25, that is,

trace.ABC/ D trace.BCA/ D trace.CAB/; (1.2.17)

the state %ˇ;ƒ has the property

%ˇ;ƒ.a
t
ƒ.A/B/ D %ˇ;ƒ.Aa�t

ƒ .B//; A;B 2 Cƒ; t 2 R: (1.2.18)

Taking the identity operator I as B one obtains

%ˇ;ƒ.a
t
ƒ.A// D %ˇ;ƒ.A/: (1.2.19)

Therefore, the local Gibbs states are invariant with respect to the time evolution; more-
over, the time automorphisms can be extended to xCˇ;ƒ and atƒ W xCˇ;ƒ ! xCˇ;ƒ.

The fact that the local Gibbs state may be extended to the operators exp.�Hƒ/with
complex � gives us the possibility to define the operators (1.2.14) and hence the time
automorphisms also for complex t D � C i� . For example, the operator

a�Ci�
ƒ .B/ D exp.��Hƒ/a�ƒ.B/ exp.�Hƒ/;

with B 2 Cƒ, � 2 R, and � 2 .0; ˇ/ is an element of xCˇ;ƒ. In what follows, the
function

FA;B.� C i�/ D %ˇ;ƒ.Aa�Ci�
ƒ .B//; A;B 2 Cƒ; (1.2.20)

can be defined on the strip f� C i� 2 C j � 2 R; � 2 Œ0; ˇ/g.

Definition 1.2.6. Let A D fa� j � 2 Rg be a one-parameter group of automorphisms
and! be a state on the algebra of observables Cƒ. Then! is called a ˇ-Kubo–Martin–
Schwinger (ˇ-KMS) state relative to the group A if for any A;B 2 Cƒ, there exists
a function F !A;B.z/, analytic in the open strip ft D � C i� j � 2 R; � 2 .0; ˇ/g and
continuous on its closure, which satisfies the Kubo–Martin–Schwinger condition

F !A;B.�/ D !.Aa� .B//; F !A;B.� C iˇ/ D !.a� .B/A/; (1.2.21)

for all � 2 R.

Although the function (1.2.20) is defined on the strip f� C i� 2 C j � 2 R; � 2
Œ0; ˇ/g, so far we know nothing about its analytic properties; hence, we do not know
if the state (1.2.12) is a ˇ-KMS state relative to the group Aƒ of the automorphisms
(1.2.13). If we knew this, by means of the Gelfand–Naimark–Segal construction (see
e.g., page 46 of [244]), we would get a very important property of this state. It is the
multiple-time analyticity (see Theorem 2.1 in [176]), which plays a key role in our
theory. Below, in Theorem 1.2.32, we establish this analyticity directly and obtain the
KMS property of %ˇ;ƒ as a consequence.
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1.2.2 Von Neumann Algebras and Normal States

Given two sets, X and Y , let F be a family of maps f W X ! Y . Often, it is useful to
find a subset X0 � X , such that every f 2 F can be identified by its values on X0.
For example, a continuous function f W R ! R can be identified by its values on a
dense subset of R, e.g., on the set of rational numbers. Another example is the set of
functions of a single complex variable, holomorphic in a domainD � C. Here as such
a set one may take a subset of D with an accumulation point other than infinity. In
the present subsection, we find subsets of Cƒ, which can be used for identifying local
Gibbs states.

On the algebra Cƒ along with the norm topology we will use the strong, � -weak,
and � -strong topologies. Given A 2 Cƒ and  2 Hƒ, we set kAk D kA kHƒ

.
Then k � k is a seminorm. The strong topology is defined as a locally convex topology
on Cƒ, generated by the family of seminorms fk � k j  2 Hƒg. A sequence of
operators, fAngn2N � Cƒ, converges in this topology (strongly converges) to a certain
A 2 Cƒ if for every  2 Hƒ, the sequence fAn gn2N � Hƒ converges in Hƒ

to A . This agrees with the definition of the strong convergence given above.
Let Fƒ be the set of sequences ‰ D f ngn2N � Hƒ, such that

k‰k2Fƒ

defD
1X
nD1

k nk2Hƒ
< 1: (1.2.22)

For ‰;ˆ 2 Fƒ and A 2 Cƒ, we set

kAk‰ D
h 1X
nD1

kA nk2Hƒ

i1=2
; kAk‰;ˆ D

1X
nD1

ˇ̌
.n; A n/Hƒ

ˇ̌
: (1.2.23)

Obviously, for any A 2 Cƒ,

kAk‰ � kAk � k‰kFƒ
; (1.2.24)

that is, A‰
defD fA ngn2N 2 Fƒ if‰ 2 Fƒ. Both k � k‰ and k � k‰;ˆ are seminorms on

Cƒ. The locally convex topology on Cƒ generated by the seminorms fk � k‰g with all
possible choices of ‰ 2 Fƒ is called the � -strong topology . Respectively, the locally
convex topology on Cƒ generated by the seminorms fk�k‰;ˆg with all possible choices
of ‰;ˆ 2 Fƒ is called the � -weak topology. A sequence fAngn2N � Cƒ converges
to a certain A 2 Cƒ in the � -strong topology (respectively, in the � -weak topology)
if for any ‰ 2 Fƒ (respectively, for any ‰;ˆ 2 Fƒ), one has kAn � Ak‰ ! 0

(respectively, kAn � Ak‰;ˆ ! 0), as n ! C1. The strong, � -strong, and � -weak
topologies are weaker than the norm topology. Furthermore, the � -strong topology
is stronger than the strong and � -weak topologies. At the same time, the latter two
topologies are incomparable in general (see page 70 of [76]).

In our case, where the Hilbert space Hƒ is infinite-dimensional, multiplication
Cƒ�Cƒ 3 .A;B/ 7! AB 2 Cƒ is not � -strongly continuous. However, its restriction



68 1 Quantum Mechanics and Stochastic Analysis

to bounded subsets of Cƒ is continuous in the following sense, see Proposition 2.4.1
on page 67 of [76]. For r > 0, we set

Kr
ƒ D fA 2 Cƒ j kAk � rg: (1.2.25)

Proposition 1.2.7. For every r > 0, the topologies induced on Kr
ƒ by the strong and

� -strong topologies, respectively, coincide. The map Kr
ƒ�Cƒ 3 .A;B/ 7! AB 2 Cƒ

is � -strongly continuous.

In the sequel, we use the following corollaries of this statement. Recall that the
automorphisms atƒ were introduced in (1.2.13) and (1.2.14).

Proposition 1.2.8. For every A 2 Cƒ, the map R 3 t 7! atƒ.A/ 2 Cƒ is strongly and
hence � -strongly continuous.

Proof. In view of the property (1.2.16), it is enough to prove the stated continuity at
t D 0. For  2 Hƒ, we set  D A. Then

kA � atƒ.A/k� � k.U tƒ � I / kHƒ
C kAk � k.U�t

ƒ � I /kHƒ
: (1.2.26)

By Proposition 1.2.4, both terms can be made arbitrarily small by taking small enough
jt j, which yields the strong continuity. The � -strong continuity follows from this fact
by Proposition 1.2.7.

Proposition 1.2.9. Given k 2 N and r > 0, let the operators Aj 2 Cƒ and the

sequences fA.m/j g1
mD1 � Kr

ƒ, j D 1; : : : ; k, be such that for each j , A.m/j ! Aj ,
� -strongly. Then

A
.m/
1 : : : A

.m/

k
! A1 : : : Ak; as m ! C1, (1.2.27)

also � -strongly.

Proof. Given ˆ 2 Fƒ, by (1.1.26) and (1.2.24) it follows that

kA.m/1 : : : A
.m/

k
� A1 : : : Akkˆ

� kA.m/1 : : : A
.m/

k�1k � kA.m/
k

� Akkˆ C kA.m/1 : : : A
.m/

k�1 � A1 : : : Ak�1kAkˆ

� kA.m/1 : : : A
.m/

k�1k � kA.m/
k

� Akkˆ C kA.m/1 : : : A
.m/

k�2k � kA.m/
k�1 � Ak�1kAkˆ

C � � � C kA.m/1 k � kA.m/2 � A2kA3:::Akˆ C kA.m/1 � A1kA2:::Akˆ;

which yields the convergence to be proven.

We recall that the set of all positive elements CC
ƒ � Cƒ (see Definition 1.1.8) can

be used to define an order on Cƒ. ForA;B 2 Cƒ, one setsA � B ifA�B 2 CC
ƒ. It is

an order since if both A�B and B �A belong to CC
ƒ, then .; A/Hƒ

D .; B/Hƒ

for all  2 Hƒ. By Proposition 3.1.14 this yields A D B . A net fA˛g � Cƒ is called
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increasing if A˛ � A˛0 for any ˛ � ˛0. Let fA˛g � CC
ƒ be increasing and bounded.

The latter means that there exists A 2 CC
ƒ, such that A � A˛ for all ˛. An upper

bound QA of this net is called the least upper bound if for every upper bound A, one has
A � QA. It turns out that, see Lemma 2.4.19 in [76], the following holds.

Proposition 1.2.10. Every bounded increasing net fA˛g � Cƒ has a least upper
bound QA, and A˛ ! QA in the � -strong topology.

In the theory of quantum Gibbs states, an important role is played by von Neumann
algebras. Let M be a subset of the algebra of all bounded linear operators Cƒ on the
complex Hilbert space Hƒ defined by (1.2.1). By M0 we denote its commutant – the
subset of Cƒ consisting of those operators which commute with each element of M.

This set is clearly nonempty as it contains CI
defD f�I j � 2 Cg. For any A;B 2 M0

and ˛; ˇ 2 C, one has ˛ACˇB 2 M0 andAB 2 M0,BA 2 M0, which means that M0
is an algebra. If M is self-adjoint (i.e., A� 2 M for everyA 2 M), the commutant M0
is also self-adjoint; hence, it is a � -algebra. Moreover, M0 is closed in the strong and
� -weak topologies and therefore is closed also in the � -strong and norm topologies.
Since M0 is again a subset of Cƒ, one can define its commutant, which in turn is the
bicommutant M00 of the initial set M. Successively, we define commutants of higher
orders

M.n/ D �
M.n�1/

�0
;

for which,

M � M00 D M.iv/ D M.vi/ D � � � ;
M0 D M000 D M.v/ D M.vii/ D � � � :

Definition 1.2.11. A �-subalgebra M � Cƒ is called a von Neumann algebra if

M D M00:

Since the commutant of the whole algebra Cƒ is exactly CI , its bicommutant is
again Cƒ; hence, both Cƒ and CI are von Neumann algebras. Every von Neumann
algebra we consider is a subalgebra of the algebra of bounded linear operators on a
certain Hilbert space. Thus, the definition of positive elements and of the corresponding
ordering on M is the same as above, see Definition 1.1.8 and (1.1.29), respectively.

As in the case of C �-algebras, on every von Neumann algebra M one can define a
state.

Definition 1.2.12. A state ! on a von Neumann algebra is called normal if for any
bounded increasing net of positive elements fA˛g with the least upper bound A, the
least upper bound of the net f!.A˛/g is !.A/.

As was mentioned above, see Remark 1.2.5, the local Gibbs states can be extended
to some unbounded operators defined on dense subsets of the Hilbert space Hƒ. Such
operators should satisfy certain conditions, which are summarized in the following
notion (see page 87 of [76] or page 164 of [244]).
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Definition 1.2.13. Let M be a von Neumann algebra of bounded linear operators on
Hƒ. A closed operator A on Hƒ is said to be affiliated with M if for every T 2 M0:
(a) T maps the domain of A into itself; (b) the operator AT is an extension of TA.

In the sequel, we use the following fact, see page 164 of [244].

Proposition 1.2.14. A necessary and sufficient condition for a self-adjoint operator A
to be affiliated with M is that f .A/ 2 M for every bounded Borel function f defined
on the spectrum of A.

By this statement the displacement and momentum operators (1.1.49) are affiliated
with the algebra Cƒ.

By Proposition 1.1.25 one can show that for any A 2 Cƒ,

j%ˇ;ƒ.A/j � kAk: (1.2.28)

Thus, as each state, the local Gibbs state %ˇ;ƒ is continuous in the norm topology. Its
continuity in a weaker topology would be a stronger property. The following statement
(see Theorem 2.4.21 in [76]) establishes such a property for the states %ˇ;ƒ.

Proposition 1.2.15. Let ! be a state on a von Neumann algebra M of linear bounded
operators acting on a Hilbert space H . The following properties of ! are equivalent:

(a) ! is normal;

(b) ! is � -weakly continuous;

(c) there exists a density matrix, i.e., a positive trace-class operator T W H ! H

with trace.T / D 1, such that

!.A/ D trace.AT / for all A 2 M. (1.2.29)

Hence, we have the following

Proposition 1.2.16. The local Gibbs states %ˇ;ƒ, ƒ 2 Lfin, are normal and thereby
� -weakly continuous.

An example of a von Neumann algebra, which plays an important role in the sequel,
is given by the algebra of all bounded multiplication operators. Let a Borel function,
F W R�jƒj ! C, be essentially bounded, which means that there exists a subset of R�jƒj
of zero Lebesgue measure, such that F is bounded on its complement. As usual, we
define

kF kL1 D inffC > 0 j jF j � C outside of a Lebesgue measure zero setg:
The set of all such functions is denoted byL1.R�jƒj/. The setCb.R�jƒj/ of all bounded
continuous functions F W R�jƒj ! C is a subset of L1.R�jƒj/. Both Cb.R�jƒj/ and
L1.R�jƒj/ are commutative �-algebras with respect to the point-wise linear operations,
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multiplication, and involutionF 7! NF , where as above, NF means complex conjugation.
Every F 2 L1.R�jƒj/ defines a linear multiplication operator, also denoted by F , see
Definition 1.1.39. Obviously, two such functions F;F 0 2 L1.R�jƒj/ which differ on
a set of zero Lebesgue measure define the same multiplication operator. On the other
hand, if two functions from Cb.R�jƒj/ define the same multiplication operator, then
they coincide. Furthermore,

kF k2Hƒ
D
Z

R�jƒj
jF.x/j2j .x/j2dx � kF k2L1k k2Hƒ

;

which means that the multiplication operator F is bounded and its norm kF k does
not exceed kF kL1 . One can show, however, that these two norms coincide (see e.g.,
page 88 of [104]). Let Mƒ be the set of all multiplication operators by functions from
L1.R�jƒj/. The following statement can be proven e.g., by means of Proposition 4.22,
page 89 of [104].

Proposition 1.2.17. The set Mƒ of all multiplication operators by functions from
L1.R�jƒj/ satisfies

Mƒ D M0
ƒ D M00

ƒ;

in particular, Mƒ is a maximal commutative von Neumann algebra contained in Cƒ.

Definition 1.2.18. A �-subalgebra D � Cƒ is called non-degenerate if the closure of
the set

fA j A 2 D;  2 Hƒg � Hƒ

is Hƒ.

Note that if D contains the identity operator, it is automatically non-degenerate.
Important information about von Neumann algebras is given by the following state-

ment – the von Neumann density theorem (see Corollary 2.4.15 in [76]).

Proposition 1.2.19. Given a Hilbert space H , let D be a non-degenerate �-subalgebra
of C.H /. Then it is dense in its bicommutant D00 in the strong, � -strong, and � -weak
topologies. Therefore, every von Neumann algebra is closed in these topologies.

The set CI is a non-degenerate von Neumann algebra of multiplication operators;
hence, it is closed in the mentioned topologies. Let Dƒ � Cƒ be a non-degenerate
�-algebra of bounded multiplication operators. As its commutant D0

ƒ contains all
bounded multiplication operators, and hence D00

ƒ � Mƒ, the algebra Dƒ is � -weakly,
� -strongly and strongly dense in the algebra Mƒ if and only if D00

ƒ D Mƒ. Then one
can say that such an algebra has ‘enough’ elements. Let Fƒ be a self-adjoint family of
bounded multiplication operators on Hƒ. By definition, the algebra C.Fƒ/ generated
by this family is the minimal algebra which contains Fƒ. It is the linear span of all finite
products of the elements of Fƒ. If Fƒ is closed also with respect to the multiplication,
then C.Fƒ/ is just the linear span of Fƒ. As a corollary of Proposition 1.2.17 we have
the following



72 1 Quantum Mechanics and Stochastic Analysis

Proposition 1.2.20. Let Fƒ be a self-adjoint family of bounded multiplication opera-
tors and C.Fƒ/ be the algebra generated by this family. Then C.Fƒ/

00 D Mƒ if and
only if F0

ƒ D Mƒ. In this case, C.Fƒ/ is dense in Mƒ in the � -strong, � -weak, and
strong topologies.

Definition 1.2.21. A family, Fƒ, of multiplication operators is said to be complete if:
(a) it is self-adjoint; (b) it contains the identity operator; (c) F0

ƒ D Mƒ.

According to Proposition 1.2.20, if Fƒ is complete, the algebra C.Fƒ/ is dense in
Mƒ in the topologies mentioned there.

We recall that B.R�jƒj/g stands for the Borel � -algebra of subsets of R�jƒj. Given
B 2 B.R�jƒj/, let Hƒ.B/ be the range of the projection (1.1.40), which is a subspace
of Hƒ. Such projections have the properties PB D P �

B and PBPB0 D PB\B0 , i.e., the
family fPB j B 2 B.R�jƒj/g is closed under involution and multiplication. In the case
of multiplication operators by bounded continuous functions, we have the following
result. By definition, a family of functions from Cb.R�jƒj/ separates points if for any
distinct x; y 2 R�jƒj, one can find a member of this family, F , such thatF.x/ ¤ F.y/.
In the sequel, if we say that a family of multiplication operators by bounded continuous
functions separates points, we mean that the corresponding family of functions does so.

Theorem 1.2.22. Let a family, Fƒ, of multiplication operators by bounded continuous
functions possess the following properties: (a) it is self-adjoint; (b) it separates points;
(c) I 2 Fƒ. Then F0

ƒ D Mƒ and thereby Fƒ is complete.

Remark 1.2.23. Obviously, the algebra Cb.R�jƒj/ is complete.

The proof of Theorem 1.2.22 is given in Subsection 1.3.4 below where we develop
the corresponding tools based on measure theory.

1.2.3 Høegh-Krohn’s Theorem

We recall that the dynamics of the subsystem of oscillators attached to the points ofƒ
is described by the group of time automorphisms atƒ, see (1.2.13). For a self-adjoint
set of multiplication operators Fƒ � Cƒ, let A.Fƒ/ be the algebra generated by the
operators atƒ.F /, F 2 Fƒ, t 2 R. In view of the property (1.2.15), A.Fƒ/ is a
�-algebra. It is the linear span of the set of operators

A D a
t1
ƒ.F1/ : : : a

tn
ƒ.Fn/; n 2 N; t1; : : : ; tn 2 R; F1; : : : Fn 2 Fƒ: (1.2.30)

The main result of this subsection is the following theorem of Høegh-Krohn [156], see
also [195].

Theorem 1.2.24. Let Fƒ � Mƒ be complete. Then the local Gibbs state %ˇ;ƒ can be
identified by its values on the algebra A.Fƒ/. This means that if ! is a normal state
on Cƒ and

!.A/ D %ˇ;ƒ.A/; (1.2.31)

for all A having the form (1.2.30), then ! D %ˇ;ƒ.
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The proof of this theorem will be done in several steps. First we prove the following
fact. Set

Dƒ D � 1

2m

X
`2ƒ

�X
jD1

�
@

@x
.j /

`

�2
D 1

2m

X
`2ƒ

jp`j2;

Dom.Dƒ/ D W2;2
�
R�jƒj�;

(1.2.32)

where m and p`, ` 2 ƒ, are the same as in (1.1.3). By Proposition 1.1.38 Dƒ is
self-adjoint. Comparing (1.1.3) and (1.2.5) with (1.2.32) one obtains

Hƒ D Dƒ �Wƒ;
Wƒ

defD 1

2

X
`;`02ƒ

J``0.q`; q`0/ �
X
`2ƒ

�
.a=2/jq`j2 C V`.q`/

�
:

(1.2.33)

For any t 2 R, exp.itDƒ/ is a unitary operator on Hƒ, see Proposition 1.1.30. For
t D 0, one has exp.itDƒ/ D I . For t ¤ 0, this operator can be defined by its integral
kernel (see e.g., page 6 of [274])

K.x; yI t / D
�

im

2
t

��jƒj=2
exp

�
� im

2t

X
`2ƒ

jx` � y`j2
�
; x; y 2 R�jƒj: (1.2.34)

For t D 0, the kernel is
K.x; yI 0/ D ı.x � y/; (1.2.35)

where ı is the Dirac delta-function, which is a distribution satisfyingZ
R�jƒj

ı.x � y/ .y/dy D  .x/: (1.2.36)

For any t 2 R,
exp.itDƒ/ exp.�itDƒ/ D I:

Thus, for t ¤ 0, the kernel of this product may be written as

Œexp.itDƒ/ exp.�itDƒ/� .x; y/ D
Z

R�jƒj
K.x; zI t /K.z; yI �t /dz

D
� m

2
t

��jƒj Z
R�jƒj

exp
�

� im

2t

X
`2ƒ

jx` � z`j2 C C im

2t

X
l2ƒ

jz` � y`j2
�

dz

D exp
�

� im

2t

X
`2ƒ

.jx`j2 � jy`j2/
�

�
�
m

2
t

��jƒj Z
R�jƒj

exp
�

im

t

X
`2ƒ

.z`; x` � y`/
�

dz D ı.x � y/:
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Given � D .�
.j /

`
/ 2 R�jƒj, we set

Q.�/ D
Y
`2ƒ

�Y
jD1

Q
.j /

`
.�
.j /

`
/; Q

.j /

`
.�
.j /

`
/ D exp

�
i� .j /
`
q
.j /

`

�
;

P.�/ D
Y
`2ƒ

�Y
jD1

P
.j /

`
.�
.j /

`
/; P

.j /

`
.�
.j /

`
/ D exp

�
i� .j /
`
p
.j /

`

�
:

(1.2.37)

Both Q.�/, P.�/ are unitary operators on Hƒ. By (1.1.49) for  2 S.R�jƒj/,

�
P
.j /

`
.�
.j /

`
/ 
�
.x/ D

1X
nD0

Œ�
.j /

`
�n

nŠ

�
@

@x
.j /

`

�n
 .x/ D  

�
x C �

.j /

`
e
.j /

`

�
;

where e.j /
`

2 R�jƒj has the component with the indices ` and j equal to 1 and the zero
remaining components. By continuity this action can be extended to all elements of
Hƒ. Similarly, for any  2 Hƒ,

Q
.j /

`
.�
.j /

`
/ .x/ D exp

�
i� .j /
`
x
.j /

`

�
 .x/:

Thereby, the operators (1.2.37) act as follows:

.Q.�/ / .x/ D exp .i� � x/ .x/;

.P.�/ / .x/ D  .x C �/; (1.2.38)

� � x defD
X
`2ƒ

�X
jD1

�
.j /

`
x
.j /

`
:

These formulas immediately yield Weyl’s commutation rule

P.�/Q.�/ D exp .i� � �/Q.�/P.�/: (1.2.39)

By (1.2.32) the operators Dƒ and p.j /
`

, ` 2 ƒ, j D 1; : : : ; �, commute. Thus, by
Theorem VIII.13 of [255] one has

Proposition 1.2.25. For any t 2 R and � 2 R�jƒj, the operators exp .itDƒ/ and P.�/
commute.

Proposition 1.2.26. If a given B 2 Cƒ commutes with all P.�/ and allQ.� 0/, �; � 0 2
R�jƒj, then B 2 CI .

Proof. Set Q D fQ.�/g�2R�jƒj . It is a complete family, see Definition 1.2.21 and
Theorem 1.2.22. Then Q0 D Mƒ; hence, each B 2 Q0 is a multiplication operator.
That is,

.B /.x/ D B.x/ .x/;  2 Hƒ;
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where B. � / is a Borel function. Thus, by (1.2.38) for any � 2 R�jƒj, one has

.P.�/B / .x/ D B.x C �/ .x C �/;

.BP.�/ / .x/ D B.x/ .x C �/;

which yields that B. � / is constant.

Given t 2 R and � 2 R�jƒj, we set

R.�; t/ D exp.�itDƒ/Q.�/ exp.itDƒ/: (1.2.40)

Lemma 1.2.27. For any t 2 R and � 2 R�jƒj, it follows that

R.�; t/ D exp
�

it

2m
� � �

�
P.�.t=m/�/Q.�/;

R.��; t/ D exp
�

� it

2m
� � �

�
Q.��/P..t=m/�/:

(1.2.41)

Proof. One observes that each line in (1.2.41) follows from the other one by the com-
mutation rule (1.2.39). By (1.2.34) and (1.2.38) for t ¤ 0 and  2 S.R�jƒj/, one
has

ŒR.�; t/ � .x/ D
� m

2
t

��jƒj Z
R�jƒj

 Z
R�jƒj

exp


im

2t
.x � y/ � .x � y/

C i� � y � im

2t
.y � z/ � .y � z/

�
dy

�
 .z/dz

D
Z

R�jƒj

	� m

2
t

��jƒj Z
R�jƒj

exp


im

t
y � .z C .t=m/� � x/

�
dy




� exp


im

2t
Œx � x � z � z�

�
 .z/dz

D
Z

R�jƒj

Y
`2ƒ

�Y
jD1

ı
�
z
.j /

`
C .t=m/�

.j /

`
� x.j /

`

�

� exp


im

2t
Œx � x � z � z�

�
 .z/dz

D exp
�

� it

2m
� � � C i� � x

�
 .x � .t=m/�/

�
	

exp
�

� it

2m
� � �

�
Q.�/P.�.t=m/�/ 



.x/

D
	

exp
�

it

2m
� � �

�
P.�.t=m/�/Q.�/ 



.x/;

which can obviously be extended to the whole space Hƒ.
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Lemma 1.2.28. Given F 2 Mƒ, if

A.F I t / D exp.itDƒ/F exp.�itDƒ/ (1.2.42)

is a multiplication operator for all t 2 R, then F 2 CI .

Proof. For � 2 R�jƒj, we set

A� .F I t / D Q.�/A.F I t /Q.��/: (1.2.43)

By (1.2.40)

Q.�/ exp.itDƒ/ D exp.itDƒ/R.�; t/;

exp.�itDƒ/Q.��/ D R.��; t/ exp.�itDƒ/:
(1.2.44)

Then
A� .F I t / D exp.itDƒ/R.�; t/FR.��; t/ exp.�itDƒ/;

and by (1.2.41)

A� .F I t / D exp.itDƒ/P.�.t=m/�/Q.�/FQ.��/P..t=m/�/ exp.�itDƒ/:

Taking into account that F (respectively, exp.˙itDƒ/) commutes with Q.�/ (respec-
tively, with P.˙.t=m/�/, see Proposition 1.2.25), one gets

A� .F I t / D P.�.t=m/�/A.F I t /P..t=m/�/: (1.2.45)

Thus, as A.F I t / is a multiplication operator, it commutes with all Q.�/ and hence
by (1.2.43) coincides with A� .F I t / for any � 2 R�jƒj. Then by (1.2.45) it commutes
with allP.�/, � 2 R�jƒj, which yields by Proposition 1.2.26A.F I t / 2 CI , and hence
F 2 CI .

In the sequel, we shall use the Trotter–Kato product formula (see Theorem 1.1,
page 4 of [274]).

Proposition 1.2.29. Let A and B be essentially self-adjoint operators on a separable
Hilbert space so that the operator A C B defined on Dom.A/ \ Dom.B/, is also
essentially self-adjoint. Then for all t 2 R,

exp .it .AC B// D lims
n!C1 Œexp .i.t=n/A/ exp .i.t=n/B/�n : (1.2.46)

If, moreover, A and B are bounded from below, then for all t � 0,

exp .�t .AC B// D lims
n!C1 Œexp .�.t=n/A/ exp .�.t=n/B/�n ; (1.2.47)

where lims means strong limit.

The following statement is the second key element, along with Lemma 1.2.28, in
the proof of Theorem 1.2.24. We recall that the �-algebra A.Dƒ/ mentioned in this
theorem is the linear span of the operators (1.2.30).
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Lemma 1.2.30. Let a family of multiplication operators Dƒ be complete. Then

A.Dƒ/
00 D Cƒ:

Proof. The proof will be done by showing that A.Dƒ/
0 D CI . By definition, an

arbitrary B 2 A.Dƒ/
0 commutes with every atƒ.F /, t 2 R, F 2 Dƒ. Hence,

exp .�itHƒ/ B exp .itHƒ/ F D F exp .�itHƒ/ B exp .itHƒ/ ;

for any t 2 R and F 2 Dƒ. This immediately yields that atƒ.B/ commutes with every
F 2 Dƒ; hence, atƒ.B/ 2 Mƒ for any t 2 R, see Definition 1.2.21. In particular,
B 2 Mƒ. If in (1.2.33) one substitutes q` by x` 2 R� , then the corresponding function
Wƒ will be continuous on R�jƒj, see Assumption 1.1.1. This means that the operator
exp .isWƒ/ belongs to Mƒ for any real s and hence commutes with atƒ.B/ for any
real t . Then for any n 2 N and t 2 R,

exp .i.t=n/Wƒ/ a
t=n
ƒ .B/ exp .�i.t=n/Wƒ/ D a

t=n
ƒ .B/;

which yields

exp .i.t=n/Hƒ/ � exp .i.t=n/Wƒ/ a
t=n
ƒ .B/ exp .�i.t=n/Wƒ/ � exp .�i.t=n/Hƒ/

D a
2t=n
ƒ .B/:

By iteration,

Œexp .i.t=n/Wƒ/ exp .i.t=n/Hƒ/�
n B

� Œexp .�i.t=n/Wƒ/ exp .�i.t=n/Hƒ/�
n D atƒ.B/:

(1.2.48)

The left-hand side of (1.2.48) is an element of Mƒ; hence, atƒ.B/ 2 Mƒ. Passing
here to the limit n ! C1, by Proposition 1.2.29 and (1.2.33) one gets

8t 2 R W exp .itDƒ/ B exp .�itDƒ/ D atƒ.B/: (1.2.49)

This means that for any t 2 R, both B and atƒ.B/ belong to Mƒ, which by Lem-
ma 1.2.28 and (1.2.49) is possible if and only if B 2 CI .

Proof of Theorem 1.2.24. In view of Proposition 1.2.16, the local Gibbs states are � -
weakly continuous; hence, they are uniquely determined by their values on a � -weakly
dense subset of the corresponding algebra of observables. But by Proposition 1.2.19
and Lemma 1.2.28, A.Fƒ/ is � -weakly dense in Cƒ. By linearity, the values of the
state %ˇ;ƒ on the algebra A.Fƒ/ are linear combinations of its values on the operators
(1.2.30).

Corollary 1.2.31. Let Q be a family of multiplication operators by continuous func-
tions, which has the following properties: (a) is closed under multiplication and invo-
lution Q 3 Q 7! Q�; (b) separates points; (c) I 2 Q. Then the state %ˇ;ƒ is uniquely
determined by its values on the operators (1.2.30) with F1; : : : ; Fn 2 Q. The family
fQ.�/ j � 2 Rg of the operators defined by (1.2.37) possesses these properties.
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Proof. By Proposition 1.2.22, the family Q is complete. Then the property claimed
follows by Theorem 1.2.24. The family fQ.�/ j � 2 Rg consists of multiplication
operators by continuous functions; it contains the identity operator I D Q.0/; it
is closed under multiplication, Q.�/Q.� 0/ D Q.� C � 0/, and involution Q.�/ 7!
Q�.�/Q.��/. Finally, it obviously separates points.

1.2.4 Green and Matsubara Functions

For n 2 N, A1; : : : ; An 2 Cƒ, and t1; : : : ; tn 2 R, we set

G
ˇ;ƒ
A1;:::;An

.t1; : : : ; tn/ D %ˇ;ƒ
�
a
t1
ƒ.A1/ : : : a

tn
ƒ.An/

�
: (1.2.50)

Considered as a mapping Rn 3 .t1; : : : ; tn/ ! C this expression is called a Green
function constructed on the operators A1; : : : ; An.

Given a domain O � Cn, let Hol.O/ be the set of all holomorphic functions
f W O ! C, and

Dn
ˇ

defD f.t1; : : : ; tn/ 2 Cn j 0 < =.t1/ < � � � < =.tn/ < ˇg: (1.2.51)

Dn
ˇ

is a domain, its closure is denoted by xDn
ˇ

. Finally, we set

Dn
ˇ .0/

defD f.t1; : : : ; tn/ 2 Dn
ˇ j <.ti / D 0; i D 1; : : : ; ng: (1.2.52)

In view of the linearity of the local Gibbs state %ˇ;ƒ, it can be identified by the values of
the Green functions (1.2.50) constructed on operators, which constitute a family satisfy-
ing the conditions of Corollary 1.2.31. The next statement establishes the multiple-time
analyticity and thereby the KMS property of the state %ˇ;ƒ.

Theorem 1.2.32. For each collection A1; : : : ; An 2 Cƒ,

(a) the Green function Gˇ;ƒA1;:::;An
defined by (1.2.50) is the restriction to Rn of a

member of Hol.Dn
ˇ
/, for which we will use the same notation;

(b) the function Gˇ;ƒA1;:::;An
2 Hol.Dn

ˇ
/ mentioned in (a) is continuous on the closure

of Dn
ˇ
; moreover, for all .t1; : : : ; tn/ 2 xDn

ˇ
,

jGˇ;ƒA1;:::;An
.t1; : : : ; tn/j � kA1k : : : kAnkI (1.2.53)

(c) the set (1.2.52) is such that for arbitrary f; g 2 Hol.Dn
ˇ
/, the equality f D g

on Dn
ˇ
.0/ implies that f D g on the whole Dn

ˇ
.

Proof. We recall that the spectrum of the HamiltonianHƒ (1.2.5) consists of the eigen-
values Es > 0, see Theorem 1.2.1. Let f sgs2N be an orthonormal basis consisting of
the corresponding eigenvectors. Set

A
.i/
ss0 D . s; Ai s0/Hƒ

; Ai 2 Cƒ; i D 1; : : : ; n: (1.2.54)
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Then

G
ˇ;ƒ
A1;:::;An

.t1; : : : ; tn/ D 1

Zˇ;ƒ

X
s1;:::;sn2N

A.1/s1s2 expŒi.t2 � t1/Es2 �

� � � � � A.n�1/
sn�1sn

expŒi.tn � tn�1/Esn �
� A.n/sns1 expŒi.t1 � tn C iˇ/Es1 �;

(1.2.55)

where
Zˇ;ƒ D trace .exp Œ�ˇHƒ�/ : (1.2.56)

For i D 1; : : : ; n, we set

ti D �i C i�i ; �i 2 R; �i 2 Œ0; ˇ�; (1.2.57)

and also

Cnˇ D f.�1; : : : ; �n/ 2 Rn j 0 < �1 < � � � < �n < ˇg;
xCnˇ D f.�1; : : : ; �n/ 2 Rn j 0 � �1 � � � � � �n < ˇg: (1.2.58)

Clearly, xCn
ˇ

is the closure of Cn
ˇ

in Rn. Then

Dn
ˇ D f.t1; : : : ; tn/ 2 Cn j .�1; : : : ; �n/ 2 Cnˇ g;

xDn
ˇ D f.t1; : : : ; tn/ 2 Cn j .�1; : : : ; �n/ 2 xCnˇ g:

(1.2.59)

To prove the multiple-time analyticity stated in claim (a) one can use the fact that
each summand of the series (1.2.55) is an entire function of .t1; : : : ; tn/ 2 Cn. Thus,
our goal will be achieved if we show that the series (1.2.55) converges uniformly on
compact subsets of Dn

ˇ
. Each such a subset can be embedded into the set

Dn
ˇ .K/

defD f.t1; : : : ; tn/ 2 Dn
ˇ j .�1; : : : ; �n/ 2 Kg; (1.2.60)

with a closed K � Cn
ˇ

. Each K in turn can be embedded into a finite union of the
parallelepipeds

Knc;d D
nY
iD1
Œci ; di �; 0 < c1 < d1 < c2 < d2 < � � � < dn�1 < cn < dn < ˇ:

(1.2.61)
Thus, the multiple-time analyticity will follow from the uniform convergence of the
series (1.2.55) on the sets Dn

ˇ
.Kn

c;d
/with all possible choices of ci anddi , i D 1; : : : ; n.

For each such a choice, one has the following estimate of the summands of (1.2.55):ˇ̌
A.1/s1s2 expŒi.t2 � t1/Es2 � : : : A.n�1/

sn�1sn
expŒi.tn � tn�1/Esn �

� A.n/sns1 expŒi.t1 � tn C iˇ/Es1 �
ˇ̌

� ˇ̌
A.1/s1s2

ˇ̌
expŒ�.c2 � d1/Es2 �

� � � � � ˇ̌A.n�1/
sn�1sn

ˇ̌
expŒ�.cn � dn�1/Esn �

� ˇ̌A.n/sns1 ˇ̌ expŒ�.ˇ � dn C c1/Es1 �:

(1.2.62)
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Taking into account that the eigenfunctions  s are normalized and that for a bounded
operator, ˇ̌

A.i/si siC1

ˇ̌ D ˇ̌
. si ; Ai siC1

/
ˇ̌ � kAik; (1.2.63)

we obtain the convergence to be proven, as well as the estimate (1.2.53) but so far for
.t1; : : : ; tn/ 2 Dn

ˇ
only.

In the proof of claim (b), we use the boundary @Dn
ˇ

of the tubular domain (1.2.51).
By (1.2.58), (1.2.59) the tuple .t1; : : : tn/ belongs to @Dn

ˇ
if and only if .�1; : : : ; �n/ 2

xCn
ˇ

n Cn
ˇ

, that is, certain �i ’s should coincide with each other or with the endpoints 0,
ˇ. For k D 1; : : : ; n � 1, let us consider

n D .n0; n1; : : : ; nk; nkC1/; n0; nkC1 2 N0; n1; : : : ; nk 2 N; (1.2.64)

subject to the condition

n0 C n1 C � � � C nk C nkC1 D n: (1.2.65)

Given n and j D 1; : : : ; k, we set

N .j /
n D fm 2 N j n0 C � � � C nj�1 C 1 � m � n0 C � � � C nj g: (1.2.66)

We also set

N .0/
n D f1; 2; : : : ; n0g;

N .0/
n D ;; for n0 D 0,

N .kC1/
n D fm 2 N j n0 C � � � C nk C 1 � m � ng;

N .kC1/
n D ;; for nkC1 D 0.

(1.2.67)

For #0; #1; : : : ; #k; #kC1 2 Œ0; ˇ� obeying the condition

0 D #0 < #1 < � � � < #k < #kC1 D ˇ; (1.2.68)

we set

„ˇn.#1; : : : ; #k/

D f.t1; : : : ; tn/ 2 Cn j �i D #j for i 2 N .j /
n , i D 1; : : : ; n, j D 0; : : : ; k C 1g,

(1.2.69)

and
„ˇn D

[
„ˇn.#1; : : : ; #k/; „ˇ D

[
„ˇn ; (1.2.70)

where the first union is taken over all #1; : : : ; #k obeying (1.2.68), whereas the second
one is taken over all n (with all possible choices of k) obeying (1.2.65). Then

@Dn
ˇ D „ˇ [†ˇ ; (1.2.71)
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where †ˇ is the skeleton of the tubular domain Dn
ˇ

, which is

†ˇ D
n[

jD0
†
ˇ
j ;

†
ˇ
0 D f.t1; : : : ; tn/ 2 Cn j �1 D � � � D �n D ˇg;

†ˇn D f.t1; : : : ; tn/ 2 Cn j �1 D � � � D �n D 0g;
†
ˇ
j D f.t1; : : : ; tn/ 2 Cn j �1 D � � � D �j D 0; �jC1 � � � D �n D ˇg:

(1.2.72)

For <.ti / D �i 2 R, cf. (1.2.57), we set

Bi D a
�i

ƒ .Ai /; i D 1; : : : ; n; (1.2.73)

and for a given n,

C0 D I; if n0 D nkC1 D 0,

C0 D Bn1C���CnkC1 : : : Bn; if n0 D 0, nkC1 > 0,

C0 D B1 : : : Bn0
; if n0 > 0, nkC1 D 0,

C0 D Bn0C���CnkC1 : : : Bn � B1 : : : Bn0
; if n0, nkC1 > 0,

Cj D Bn0C���Cnj �1C1 : : : Bn0C���Cnj
; for j D 1; : : : ; k,

(1.2.74)

which are bounded operators on Hƒ. As in (1.2.54) we set

C
.j /
ss0 D . s; Cj s0/Hƒ

; j D 0; 1; : : : ; k:

Then for .t1; : : : ; tn/ 2 „ˇn.#1; : : : ; #k/, one may write the series (1.2.55) in the form

G
ˇ;ƒ
A1;:::;An

.t1; : : : ; tn/ D �
Zˇ;ƒ

��1 X
s0;:::;sk2N

C .0/s0s1
e�#1Es1

� C .1/s1s2
e�.#2�#1/Es2 : : : C .k/sks0

e�.ˇ�#k/Es0 :

(1.2.75)

As above, one can show that this series, as a function of .#1; : : : ; #k/ 2 Ck
ˇ

, converges

uniformly on the parallelepipeds Kk
c;d

, which yields the continuity of the Green func-

tion on the set „ˇ [ Dn
ˇ

. Thus, in view of (1.2.71), to prove claim (b) one has to

show that for any sequence f.t .m/1 ; : : : ; t
.m/
n /gm2N � „ˇ [ Dn

ˇ
, which converges to a

point .t1; : : : ; tn/ 2 †ˇ , the corresponding sequence of values of the Green function
converges to its value at such .t1; : : : ; tn/. To this end we first prove that the series
(1.2.55) converges at every .t1; : : : ; tn/ 2 †ˇ . Take .t1; : : : ; tn/ 2 †ˇj , j D 0; : : : ; n,
see (1.2.72). For this .t1; : : : ; tn/, we rewrite (1.2.50) in the form

G
ˇ;ƒ
A1;:::;An

.t1; : : : ; tn/

D �
Zˇ;ƒ

��1 �
C1X
sD1

. s; BjC1 : : : BnB1 : : : Bj s/Hƒ
e�ˇEs ;

(1.2.76)
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Bi being defined by (1.2.73). Then, as in (1.2.63), one getsˇ̌
. s; BjC1 : : : BnB1 : : : Bj s/Hƒ

ˇ̌ � kBjC1 : : : BnB1 : : : Bj k
� kA1k : : : kAnk;

which yields in (1.2.76)ˇ̌
G
ˇ;ƒ
A1;:::;An

.t1; : : : ; tn/
ˇ̌ � kA1k : : : kAnk: (1.2.77)

Now let us prove that

G
ˇ;ƒ
A1;:::;An

.t
.m/
1 ; : : : ; t .m/n / ! G

ˇ;ƒ
A1;:::;An

.t1; : : : ; tn/; m ! C1; (1.2.78)

for
„ˇ [ Dn

ˇ 3 .t .m/1 ; : : : ; t .m/n / ! .t1; : : : ; tn/ 2 †ˇ :
Let j D 0; : : : ; n be such that .t1; : : : ; tn/ 2 †ˇj , see (1.2.72). Then

.t
.m/
1 ; : : : ; t .m/n / ! .t1; : : : ; tn/; as m ! C1,

means that

�
.m/

k
! �k; for all k D 1; : : : n,

�
.m/

k
! 0; for k � j ,

and

�
.m/

k
! ˇ; for k > j .

In this case, one has

Zˇ;ƒ �Gˇ;ƒA1;:::;An
.t
.m/
1 ; : : : ; t .m/n /

D trace
˚
B
.m/
jC1 expŒ�".m/jC1Hƒ� (1.2.79)

� B.m/jC2 expŒ�".m/jC2Hƒ� : : : B
.m/
n expŒ�".m/n Hƒ�

� B.m/1 expŒ�".m/1 Hƒ� : : : B
.m/
j expŒ�".m/j Hƒ� � expŒ�.ˇ=2/Hƒ�

�
;

where the operators B.m/
k

, k D 1; : : : ; n, are given by (1.2.73) with �k D �
.m/

k
.

Furthermore, ".m/
k

# 0 as m ! C1, for all k D 1; : : : ; j � 1; j C 1; : : : ; n and

"
.m/
j " ˇ=2. The right-hand side of (1.2.79) can be considered as the value of the

functional

Cƒ 3 A.".m/1 ; : : : ; ".m/n / 7! trace
˚
A."

.m/
1 ; : : : ; ".m/n / expŒ�.ˇ=2/Hƒ�

�
: (1.2.80)

By Proposition 1.2.15 this functional is continuous in the � -weak and hence in the
� -strong topologies. Thus, the convergence (1.2.78) will hold if

A."
.m/
1 ; : : : ; ".m/n / ! BjC1 : : : BnB1 : : : Bj expŒ�.ˇ=2/Hƒ�; (1.2.81)
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� -strongly as m ! C1. The operator A.".m/1 ; : : : ; "
.m/
n / is the product of B.m/

k

and the operators expŒ�".m/
k
Hƒ�, k D 1; : : : ; n with ".m/j " ˇ=2 and ".m/

k
# 0, for

k ¤ j . By Proposition 1.2.8, for each k, B.m/
k

! Bk , � -strongly. Thus, in view of
Proposition 1.2.9, to prove (1.2.81) we have to show that

expŒ�".m/j Hƒ� ! expŒ�.ˇ=2/Hƒ�;
expŒ�".m/

k
Hƒ� ! I; k D 1; : : : ; j � 1; j C 1; : : : ; n;

(1.2.82)

� -strongly as m ! C1. Note that one cannot expect that the same convergence
holds in the norm topology. Let us take any ˆ D fngn2N 2 Fƒ, see (1.2.22), and let
f sgs2N be as in (1.2.54). The condition (1.2.22) yields

X
s2N

˛s
defD

X
n;s2N

ˇ̌
. s; n/Hƒ

ˇ̌2
< 1: (1.2.83)

Thus, see (1.2.23),���I � expŒ�".m/
k
Hƒ�

���2
ˆ

D
X
n;s2N

ˇ̌
. s; n/Hƒ

ˇ̌2 �
1 � expŒ�".m/

k
Es�

�2

�
s0X
sD1

�
1 � expŒ�".m/

k
Es�

�2
˛s C

X
s�s0C1

˛s;

which holds for any s0 2 N. Given � > 0, one finds s0 such that the second term
gets smaller than �=2. Afterwards, one picks m0 such that for all m > m0, the first
term also gets smaller than �=2. This yields that expŒ�".m/

k
Hƒ� converges � -strongly

to the identity operator. The convergence (1.2.82) of expŒ�".m/j Hƒ� can be proven in
the same way.

To complete the proof of claim (b) we employ the maximum modulus principle
(see e.g., [269], pages 21, 22), by which the module of a function, holomorphic in the
domain Dn

ˇ
and continuous on its closure, achieves its maximal value on the Shilov

boundary of Dn
ˇ

, which is its skeleton (1.2.72). Therefore, the estimate (1.2.53) follows
from (1.2.77).

To prove claim (c) let us show that a function f 2 Hol.Dn
ˇ
/, which is zero on

D
ˇ
n .0/, is identically zero on the whole domain Dn

ˇ
. To this end we use the following

known fact from complex analysis3: if a function ', that is holomorphic in a domain
D � Cn, vanishes at some point a 2 D together with all its partial derivatives, then
'  0. For a point t0 D .t1; : : : ; tn/ 2 Dn

ˇ
and a small enough ı > 0, the imaginary

ı-neighborhood of t0 is set to be

Uı.t
0/ D f.t1; : : : ; tn/ 2 Dn

ˇ j j=.ti / � =.t0i /j < ı; <.ti / D <.t0i /; i D 1; : : : ; ng:
3See Theorem 5, page 21 in [269].
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Clearly, for every t0 2 Dn
ˇ
.0/, one finds small enough ı > 0, such that Uı.t0/ � Dn

ˇ
.

Suppose now that a given f 2 Hol.Dn
ˇ
/ vanishes in Uı.t0/ for a certain t0 2 Dn

ˇ
.0/

and an appropriate ı > 0. As a holomorphic function, f has the series expansion

f .t/ D
X
k2Nn

0

ck.t � t0/k;

where tk D t
k1

1 : : : t
kn
n , see (1.1.50). This series converges in some open subset of Dn

ˇ
,

which we suppose to contain Uı.t0/. Set ti D �i C i�i , i D 1; : : : ; n. Then restricting
the above expansion to Uı.t0/ we find thatX

k2Nn
0

ijkjck.� � �0/k  0;

for all j�i � �0i j < ı. As the latter series is still absolutely convergent, we can differ-
entiate it with respect to � and then set � D �0, which immediately will yield ck D 0

for all k 2 Nn
0 . Then by Theorem 5 of [269] f  0 in Dn

ˇ

Corollary 1.2.33. For each ƒ 2 Lfin, the local Gibbs state %ˇ;ƒ is a ˇ-KMS state
relative to the groups of time automorphisms Aƒ.

Proof. The function FA;B mentioned in Definition 1.2.6 is set to be

FA;B.t C i�/ D G
ˇ;ƒ
A;B .0; t C i�/; t 2 R; � 2 .0; ˇ/:

By claims (a) and (b), this function is analytic in ft C i� j t 2 R; � 2 .0; ˇ/g and
continuous on the closure of this set. By (1.2.55)

G
ˇ;ƒ
B;A .t; 0/ D 1

Zˇ;ƒ.0/

X
s1;s22N

Bs2s1 exp.�itEs1/As1s2 exp.i.t C iˇ/Es2/

D 1

Zˇ;ƒ.0/

X
s1;s22N

As1s2 exp.i.t C iˇ/Es2/

� Bs2s1 exp.�i.t C iˇ/Es1/ exp.�ˇEs1/
D G

ˇ;ƒ
A;B .0; t C iˇ/:

Therefore, the KMS condition (1.2.21) is satisfied.

The restriction of the function Gˇ;ƒA1;:::;An
to Dn

ˇ
.0/, that is,

�
ˇ;ƒ
A1;:::;An

.�1; : : : ; �n/
defD G

ˇ;ƒ
A1;:::;An

.i�1; : : : ; i�n/; (1.2.84)

is called a Matsubara function; it is defined on xCn
ˇ

, see (1.2.58). In the sequel, we use
the extension of (1.2.84) to Œ0; ˇ�n defined as follows. For given .�1; : : : ; �n/ 2 Œ0; ˇ�n,
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let � be the permutation of f1; : : : ; ng such that ��.1/ � ��.2/ � � � � � ��.n/. Then we
set

�
ˇ;ƒ
A1;:::;An

.�1; : : : ; �n/ D �
ˇ;ƒ
A�.1/;:::;A�.n/

.��.1/; : : : ; ��.n//; (1.2.85)

with the right-hand side defined by (1.2.84).
In addition to the notion of a positive operator, see Definition 1.1.8, we introduce

now another notion of this kind4. Recall that Hƒ D L2.R�jƒj/.

Definition 1.2.34. An operatorA 2 Cƒ is said to be positivity preserving if .A /.x/ �
0 for almost all x 2 R�jƒj, whenever  .x/ � 0 for almost all x 2 R�jƒj.

A multiplication operator F is positive if and only if the corresponding Borel
function F W R�jƒj ! R is almost everywhere nonnegative. In this case, F is positivity
preserving. For a  2 Hƒ, ˇ > 0, and the operator Dƒ defined by (1.2.32), by
(1.2.34) we have

.exp .�ˇDƒ/  /.x/

D
�
m

2
ˇ

��jƒj=2 Z
R�jƒj

exp
�

� m

2ˇ

X
`2ƒ

jx` � y`j2
�
 .y/dy:

(1.2.86)

Let the above wave function be nonnegative almost everywhere. Then by (1.2.86),

.exp .�ˇDƒ/  / .x/ > 0; (1.2.87)

for all x. Therefore, exp .�ˇDƒ/ is positivity preserving for any ˇ. By (1.2.33) and
(1.2.47) we have

exp.�ˇHƒ/ D exp.�ˇDƒ C ˇWƒ/

D lims
n!C1 Œexp .�.ˇ=n/Dƒ/ exp ..ˇ=n/Wƒ/�

n :
(1.2.88)

Note that exp.�Wƒ/ is bounded for any � � 0, see (1.1.10), and hence positivity
preserving. Since the product of finite number of positivity preserving operators, as
well as the strong limit of a sequence of such operators, are positivity preserving, the
operator exp.�ˇHƒ/ is also positivity preserving for any ˇ > 0.

Theorem 1.2.35. The Matsubara functions (1.2.85) are continuous on Œ0; ˇ�n and have
the following properties:

(a) positivity: for all positive bounded multiplication operators F1; : : : Fn,

�
ˇ;ƒ
F1;:::;Fn

.�1; : : : ; �n/ � 0; (1.2.89)

(b) shift invariance: for every � 2 Œ0; ˇ�,
�
ˇ;ƒ
A1;:::;An

.�1; : : : ; �n/ D �
ˇ;ƒ
A1;:::;An

.�1 C �; : : : ; �n C �/; (1.2.90)

where addition is modulo ˇ.
4See Definition 18.3 in [176], where in Section 18 one can find detailed information about this notion.
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Proof. The continuity follows directly from claim (b) of Theorem 1.2.32. Let us prove
(1.2.89). By (1.2.56),

Zˇ;ƒ D
1X
sD1

e�ˇEs > 0: (1.2.91)

As the operator exp.��Hƒ/ is positivity preserving for all � > 0, by Theorem 18.4 of
[176] it follows that

tracefF1 expŒ�.�2 � �1/Hƒ�Fn�1 expŒ�.�n � �n�1/Hƒ�
� Fn expŒ�.ˇ � �n C �1/Hƒ�g � 0:

Then by (1.2.91), one gets

�
ˇ;ƒ
F1;:::;Fn

.�1; : : : ; �n/ D 1

Zˇ;ƒ
tracefF1 expŒ�.�2 � �1/Hƒ�

� � � � � Fn�1 expŒ�.�n � �n�1/Hƒ�
� Fn expŒ�.ˇ � �n C �1/Hƒ�g

� 0:

(1.2.92)

The shift invariance (1.2.90), corresponding to the KMS periodicity (1.2.21), follows
immediately from (1.2.92).

In view of Theorem 1.2.24 and Corollary 1.2.31, the Green functions constructed
according to (1.2.50) on multiplication operators, which form a family satisfying the
conditions of Corollary 1.2.31, fully determine the local Gibbs states %ˇ;ƒ. Claim (c)
of Theorem 1.2.32 yields in turn that these states are determined by the Matsubara
functions (1.2.84) constructed on such operators. Therefore, the system of Matsub-
ara functions constructed on multiplication operators, which form a family with the
mentioned properties, contains the whole information about the local Gibbs states. The
main point of the Euclidean approach is the representation of such Matsubara functions
as integrals with respect to probability measures on certain infinite-dimensional spaces.

The positivity property (1.2.89) corresponds to the stochastic positivity of the states
(1.2.12). According to Definition 3.1 in [176], the state is stochastically positive with
respect to the abelian subalgebra Mƒ of the algebra Cƒ if for all positive elements of
Mƒ, the Matsubara functions constructed on such operators have the property (1.2.89).
Correspondingly (see Definition 3.2 in [176]), the tuple .Cƒ;Mƒ;Aƒ; %ˇ;ƒ/ is a
stochastically positive KMS system. It is worth noting, that here the first element of the
tuple is the algebra of all bounded linear operators T W Hƒ ! Hƒ. In accordance with
the general theory developed in [176], see also [175], the stochastic positivity mentioned
above will allow us to construct probability measures (associated with certain stochastic
processes) and to obtain the representations mentioned above. First we construct such
probability measures for the system described by (1.1.3), (1.2.5) but with all V` D 0

and all J``0 D 0, that is, for the system of noninteracting quantum harmonic oscillators.
Then the measures corresponding to the original model will be obtained as perturbations
of such measures.
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1.2.5 Gibbs States of Noninteracting Harmonic Oscillators

The Hamiltonian of a system of noninteracting harmonic oscillators located in ƒ has
the form, see (1.1.3) and (1.2.5),

H har
ƒ D

X
`2ƒ

�X
jD1

H har
`;j ; (1.2.93)

where H har
`;j

is a copy of the operator (1.1.68). This decomposition yields

exp.�ˇH har
ƒ / D

Y
`2ƒ

�Y
jD1

exp
� � ˇH har

`;j

�
: (1.2.94)

Moreover, the Hilbert space Hƒ, see (1.2.1), can be decomposed according to

Hƒ D L2
�
R�jƒj� D

O
`2ƒ

�O
jD1

H
.j /

`
; H

.j /

`
D L2.R/; (1.2.95)

thereby,

%har
ˇ;ƒ D

O
`2ƒ

�O
jD1

%`;j ; (1.2.96)

where the state

%`;j .A/ D trace
�
A exp.�ˇH har

`;j /
�
=trace

�
exp.�ˇH har

`;j /
�
; A 2 C`;j ; (1.2.97)

is defined on the algebra C`;j of all bounded linear operators on the Hilbert space

H
.j /

`
. Until the end of this subsection we consider only the one-dimensional oscillator

described by the Hamiltonian (1.1.68); hence, we drop the sub- and superscripts `; j
and write p, q, H har, H , C and % instead of p.j /

`
, q.j /
`

, H har
`;j

, H
.j /

`
, C`;j , and %`;j ,

respectively.
One observes that, cf. (1.1.73) and (1.1.86),

N n D n n; H har n D .nC 1=2/ı nI (1.2.98)

thus, for any � 2 C and n 2 N0, it follows that, see (1.1.65),

exp.�H har/A exp.��H har/ n D e�	ıpn n�1 D e�	ıA n;
exp.�H har/A� exp.��H har/ n D e	ı

p
nC 1 nC1 D e	ıA� n;

which yields

at .A/ D exp.itH har/A exp.�itH har/ D e�iıtA;

at .A�/ D exp.itH har/A� exp.�itH har/ D eiıtA�;
(1.2.99)
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and

at .q/ D exp.itH har/q exp.�itH har/ D 1

�
p
2

�
e�iıtAC eiıtA�

�
: (1.2.100)

This allows for calculating explicitly the Green function

G2.t1; t2/
defD %

�
at1.q/at2.q/

�
; t1; t2 2 D2

ˇ ; (1.2.101)

and the corresponding Matsubara function �2.�1; �2/ D G2.i�1; i�2/. Taking into
account that %.AA/ D %.A�A�/ D 0, we get

G2.t1; t2/ D 1

2�2

�
ei.t1�t2/ı%.A�A/C ei.t2�t1/ı%.AA�/

�
: (1.2.102)

By (1.1.75) and (1.1.86)

traceŒA�A exp.�ˇH har/� D
1X
nD0

�
 n; A

�A exp.�ˇH har/ n
�

H

D
1X
nD0

ne�ˇı.nC1=2/

D e�ˇı=2e�ˇı�1 � e�ˇı��2:
Similarly,

traceŒAA� exp.�ˇH har/� D e�ˇı=2�1 � e�ˇı��2;
traceŒexp.�ˇH har/� D e�ˇı=2�1 � e�ˇı��1:

Employing this in (1.2.102), we obtain

G2.t1; t2/ D 1

2�2

�
e�ˇı

1 � e�ˇı e
i.t1�t2/ı C 1

1 � e�ˇı e
i.t2�t1/ı

�
;

�2.�1; �2/ D 1

2�2Œ1 � e�ˇı �
�
e�.�2��1/ı C e�.ˇ��2C�1/ı�; �1 � �2:

(1.2.103)

For .t1; : : : ; t2n/ 2 D2n
ˇ

and 0 � �1 � � � � � �2n � ˇ, we set

G2n.t1; : : : t2n/ D %.at1.q/ : : : at2n.q//;

�2n.�1; : : : �2n/ D G2n.i�1; : : : i�2n/:
(1.2.104)

In the sequel, we use the symmetric extensions (1.2.85) of the Matsubara functions
(1.2.104). In particular,

�2.�1; �2/ D 1

2�2Œ1 � e�ˇı �
�
e�j�2��1jı C e�.ˇ�j�2��1j/ı�: (1.2.105)
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Theorem 1.2.36. The symmetric extensions (1.2.85) of the Matsubara functions
(1.2.104) have the property

�2n.�1; : : : �2n/ D
X

�2.�i1 ; �i2/ : : : �2.�i2n�1
; �i2n

/; (1.2.106)

where the sum is taken over all possible partitions of the set f1; : : : ; 2ng onto the
unordered pairs .i1; i2/; : : : ; .i2n�1; i2n/.

Proof. Clearly, it is enough to prove the statement for 0 � �1 � � � � � �n < ˇ. In this
case, one can write

�2n.�1; : : : �2n/ D %
�
ai�1.q/ai�2.q/ : : : ai�2n.q/

�
: (1.2.107)

Set

�C
2n D %.Aai�2.q/ : : : ai�2n.q//; ��

2n D %.A�ai�2.q/ : : : ai�2n.q//:

Then by (1.2.99), (1.2.100), and (1.2.104)

�2n.�1; : : : �2n/ D e�1ı

�
p
2
�C
2n C e��1ı

�
p
2
��
2n: (1.2.108)

By (1.1.84), (1.2.100), for j D 2; : : : ; 2n, one has

Aai�j .q/ D ai�j .q/AC ŒA; ai�j .q/�

D ai�j .q/AC e��j ı=�
p
2;

A�ai�j .q/ D ai�j .q/A� C ŒA�; ai�j .q/�

D ai�j .q/A� � e�j ı=�p
2;

(1.2.109)

and

A exp.�ˇH har/ D exp.�ˇH har/Ae�ˇı ;

A� exp.�ˇH har/ D exp.�ˇH har/A�eˇı :
(1.2.110)

Then by (1.2.109),

�C
2n D e��2ı

�
p
2
�2n�2.�3; : : : ; �2n/C %.ai�2.q/Aai�3.q/ : : : ai�2n.q//

D e��2ı

�
p
2
�2n�2.�3; �4; : : : ; �2n/C e��3ı

�
p
2
�2n�2.�2; �4; : : : ; �2n/ (1.2.111)

C � � � C e��2nı

�
p
2
�2n�2.�2; �3; : : : ; �2n�1/C %.ai�2.q/ai�3.q/ : : : ai�2n.q/A/:
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Making use of the cyclicity of the trace and of the commutation rules (1.2.110) we get

%.ai�2.q/ai�3.q/ : : : ai�2n.q/A/ D e�ˇı%.Aai�2.q/ai�3.q/ : : : ai�2n.q//

D e�ˇı�C
2n;

which yields by (1.2.111),

�C
2n D 1

�
p
2

2nX
iD2

e��i ı

1 � e�ˇı �2n�2.�2; : : : ; �i�1; �iC1; : : : ; �2n/:

Similarly,

��
2n D 1

�
p
2

2nX
iD2

e�i ı

eˇı � 1�2n�2.�2; : : : ; �i�1; �iC1; : : : ; �2n/:

Inserting these two expressions into (1.2.108) we arrive at

�2n.�1; : : : ; �2n/ D
2nX
iD2

�2.�1; �i /�2n�2.�2; : : : ; �i�1; �iC1; : : : ; �2n/:

Applying the same procedure to �2n�2 we finally get (1.2.106).

With the help of the result just proven we express the Matsubara functions of a
complete family of multiplication operators5 in terms of the integral kernel of the
operator S , that is, by means of �2.�; � 0/. To this end, for � 2 R, we set Q.�/ D
exp.i�q/ (cf. (1.2.37)). Then everyQ.�/ is the multiplication operator by the function
exp.i�x/. By Corollary 1.2.31 the state % (1.2.97) is uniquely determined by its values
on the operators,

at1.Q.�1// : : : a
tn.Q.�n//; n 2 N; �1; : : : ; �n 2 R:

Lemma 1.2.37. For every �; t 2 R, it follows that

at .Q.�// D exp
�
i�at .q/

�
: (1.2.112)

Proof. By (1.1.99) for all t 2 R, we have

Dom.at .q// D Dom.q/ D ˚
 2 L2.R/ j RR x

2j .x/j2dx < 1�
:

Now we take  2 Dom.q/ and, for a fixed t 2 R, set  D exp.�itH har/, cf. (1.2.13)
and (1.2.14). Let �� and � be the spectral measures of q corresponding to  and  ,
respectively, see (1.1.64). Then

.; at .q//L2.R/ D
Z

R
x� .dx/;

5See Definition 1.2.21 and Corollary 1.2.31.



1.2 Local Gibbs States 91

that is, � is the spectral measure of at .q/ corresponding to . Thus,

.; a.Q.�///L2.R/ D . ;Q.�/ /L2.R/

D
Z

R
exp.i�x/� .dx

D �
; exp

�
i�at .q/

�

�
L2.R/

;

which by Proposition 1.1.4 completes the proof, taking into account that Dom.q/ is
dense in L2.R/.

According to Theorems 1.2.24 and 1.2.32 the family of the Matsubara functions

�
1;:::;
n
.�1; : : : ; �n/ D G
1;:::;
n

.i�1; : : : ; i�n/; n 2 N; (1.2.113)

where 0 � �1 � � � � � �n � ˇ and

G
1;:::;
n
.t1; : : : ; tn/

defD %
�
at1.Q.�1// : : : a

tn.Q.�n//
�
;

completely determines the state %. For the harmonic oscillators considered here, these
functions may be computed explicitly.

Theorem 1.2.38. For every n 2 N, one has

�
1;:::;
n
.�1; : : : ; �n/ D exp


� 1

2

nX
i;jD1

�2.�i ; �j /�i�j

�
; (1.2.114)

where the Matsubara function �2 is taken in its symmetrized version (1.2.105).

Proof. As in the case of Theorem 1.2.36, we prove the statement for ordered 0 � �1 �
� � � � �n < ˇ. To this end we consider the dependence of the function (1.2.114) on the
real parameters �1; : : : ; �n. Set

‰n.�1; : : : ; �n/ D �
1;:::;
n
.�1; : : : ; �n/: (1.2.115)

Clearly, this function is differentiable. By (1.2.112)

@

@�1
‰n.�1; : : : ; �n/ D i�C%

�
A exp

�
i�1a

i�1.q/
�
: : : exp

�
i�nai�n.q/

��
(1.2.116)

C i��%
�
A� exp

�
i�1a

i�1.q/
�
: : : exp

�
i�nai�n.q/

��
;

where
�˙ D e˙i�1=�

p
2:

This can be considered as a differential equation for the function (1.2.115) subject to
the initial condition

‰n.0; �2; : : : ; �n/ D ‰n�1.�2; : : : ; �n/: (1.2.117)
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By means of the commutation relations (1.2.109), (1.2.110), similarly as it was done
in obtaining (1.2.111), we transform (1.2.116) into the following equation

@

@�1
‰n.�1; : : : ; �n/ D �‰n.�1; : : : ; �n/

� nX
iD1

�2.�1; �i /�i

�
; (1.2.118)

the solution of which satisfying (1.2.117) is

‰n.�1; : : : ; �n/ D exp


� 1

2
�2.�1; �1/�

2
1 �

nX
iD2

�2.�1; �i /�i

�
‰n�1.�2; : : : ; �n/:

Applying this procedure to the function‰n�1.�2; : : : ; �n/we finally arrive at (1.2.114).

In what follows, the state % is completely determined by the two-point Matsubara
function �2.�; � 0/ defined by (1.2.105). The same situation occurs also for the �-di-
mensional harmonic oscillator. Let us return to the decomposition (1.2.93), (1.2.96),
which we rewrite here as

H har
ƒ D

X
`2ƒ

H har
` ; H har

` D
�X

jD1
H har
`;j ;

%har
ˇ;ƒ D

O
`2ƒ

%`; %` D
�O

jD1
%`;j ;

(1.2.119)

where the Hamiltonian H har
`

and the state %` describe the �-dimensional rotational
invariant harmonic oscillator. The latter decomposition allows us to determine the
state %` by its values on the operators

a
t1
`
.Q`.�1// : : : a

tn
`
.Q`.�n//; (1.2.120)

where, cf. (1.2.37),

Q`.�/ D exp
�

i
�X

jD1
�.j /q

.j /

`

�
; � D .�.1/; : : : ; �.�// 2 R� ; (1.2.121)

and

at`.Q`.�//
defD exp

�
itH har

`

�
Q`.�/ exp

��itH har
`

�
D exp

�
i
�X

jD1
�.j /at`.q

.j /

`
/
�
;

(1.2.122)

where we have also used Lemma 1.2.37. Here at is the same as in (1.2.112). Set

G
ˇ;`

Q.
1/;:::;Q.
n/
.t1; : : : ; tn/ D %`

�
a
t1
`
.Q`.�1// : : : a

tn
`
.Q`.�n//

�
;

�
ˇ;`

Q.
1/;:::;Q.
n/
.�1; : : : ; �n/ D G

ˇ;`

Q.
1/;:::;Q.
n/
.i�1; : : : ; i�n/:

(1.2.123)

Then as a consequence of Theorem 1.2.38 we have the following
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Corollary 1.2.39. The Matsubara functions (1.2.123) satisfy

�
ˇ;`

Q.
1/;:::;Q.
n/
.�1; : : : ; �n/ D exp


� 1

2

nX
i;jD1

�X
kD1

�2.�i ; �j /�
.k/
i �

.k/
j

�

D exp


� 1

2

nX
i;jD1

�
‚.�i ; �j /�i ; �j

� �
;

(1.2.124)

where the � � �-matrix ‚.�; � 0/ is defined by its elements

‚.�; � 0/jk D ıjk�2.�; �
0/ D ıjk

2�2
� e

�j��� 0jı C e�.ˇ�j��� 0j/ı

1 � e�ˇı : (1.2.125)

As we shall see in the next section, the latter formula can be related to the Fourier
transform of a Gaussian measure on the Hilbert space L2

ˇ
D L2.Œ0; ˇ� ! R�/. This

fact is crucial for our theory – it will allow us to construct the local Gibbs states described
in this section by means of probability measures. In the next section we study such
measures and related stochastic processes in more detail.

1.3 Stochastic Analysis

In this section, we present basic facts and notions from stochastic analysis which are
then used in the description of the Gibbs states of the model (1.1.3), (1.1.8) in terms of
path measures. In Subsection 1.3.2, we introduce Gaussian processes. Among them
is the Høegh-Krohn process which we employ to describe the Gibbs state of a single
harmonic oscillator. Then, in Subsection 1.3.3, we present elements of the theory of
stochastic processes with emphasis on their Hölder continuity and related properties.
As we employ various realizations of our basic processes, we present here the Kura-
towski theorem by which we relate these realizations with each other. Afterwards, in
Subsections 1.3.4 and 1.3.5, we present a number of facts from the theory of probabil-
ity measures on Polish and Hilbert spaces, respectively. In Subsection 1.3.6, we study
in detail properties of the Høegh-Krohn process, as well as construct Markov chains,
approximating this process. Finally, in Subsection 1.3.7 we present a description of
the Gibbs states of harmonic oscillators by means of the Høegh-Krohn process.

1.3.1 Beginnings

Let X be a nonempty set. A family of its subsets X is called a � -algebra (or � -field), if

(a) X 2 X;

(b) for any A 2 X, Ac
defD X n A also belongs to X;
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(c) if for every n 2 N, An 2 X, then[
n2N

An 2 X:

The pair .X;X/ will be called a measurable space. The map � W X ! Œ0;C1� is
called a measure on .X;X/ if it is � -additive and �.;/ D 0. The � -additivity means
that for all fBngn2N � X, such that Bn \ Bm D ; whenever n ¤ m, one has

�
� 1[
nD1

Bn

�
D

1X
nD1

�.Bn/: (1.3.1)

Sometimes, we say that � is a measure on X if it is clear which � -algebra is meant.
The measure � is called finite if �.X/ < 1; it is a probability measure if �.X/ D 1.
In this case, the triple .X;X; �/ is called a probability space. If

X D
1[
n�1

An; such that �.An/ < 1, for all n 2 N,

then � is called � -finite.
Let .X;X/ and .Y ;Y/ be measurable spaces and f W X ! Y be a map. Then f is

called measurable if for everyB 2 Y, its pre-imagef �1.B/ belongs to X. Sometimes,
in order to indicate which � -algebras are meant we say that f is X=Y-measurable.
Let � be a measure on .X;X/ and f W X ! Y be measurable. For B 2 Y, we set

�f .B/
defD .� ı f �1/.B/ D �

�
f �1.B/

�
: (1.3.2)

Then �f is a measure on .Y ;Y/. It is also called the distribution of f .
If X is a topological space, its Borel � -algebra is the smallest � -algebra containing

all open subsets. Let X and Y be topological spaces, X and Y being their Borel � -alge-
bras. If f W X ! Y is continuous, then it is X=Y-measurable. We say that a sequence
of maps fn W X ! Y , n 2 N, converges point-wise to a map f W X ! Y , if for every
x 2 X, fn.x/ ! f .x/ as n ! C1. The point-wise limit of a sequence of measurable
maps is measurable.

If Y D R and .X;X; �/ is a probability space, a measurable function f W X ! Y
is called a random variable. Let � be a measure on .X;X/. A measurable function
f W X ! R is integrable with respect to � (�-integrable), ifZ

X
jf .x/j�.dx/ < 1:

In the sequel, we often use the following known fact, see e.g., Theorem D, page 110
of [147],

Proposition 1.3.1 (Lebesgue dominated convergence theorem). Let� be a measure on
.X;X/ and ffngn2N, fn W X ! R, be a sequence of�-integrable functions, convergent
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point-wise to a function f W X ! R. Suppose also that there exists a �-integrable
function g W X ! Œ0;C1/, such that

8x 2 X; 8n 2 N W jfn.x/j � g.x/: (1.3.3)

Then f is also �-integrable and

lim
n!C1

Z
X
fn.x/�.dx/ D

Z
X
f .x/�.dx/:

The main object of our study in this section will be certain families of random
variables called stochastic processes. We begin by introducing a particular kind of
such processes.

1.3.2 Gaussian Processes

Kolmogorov extension theorem

Let I be any index set. For each ˛ 2 I , let X˛ be a copy of the Euclidean space
X D R� , � 2 N, and B˛ be its Borel � -algebra. For I 0 � I , we set

XI 0 D
Y
˛2I 0

X˛: (1.3.4)

The elements of XI 0
are xI

0 D .x˛/˛2I 0 . In this case, x˛ 2 X˛ are called the
components of xI

0
. Equipped with the component-wise linear operations each XI 0

becomes a real linear space. For I 00 � I 0, let 
I 00;I 0 W XI 0 ! XI 00
be the projection

xI
0 7! xI

00
such that the components of xI

0
and xI

00
indexed by the same ˛ 2 I 00

coincide. Given xI
0

and I 00 � I 0, J D I 0 n I 00, we write

xI
0 D xI

00 � xJ ; where xI
00 D 
I 00;I 0

�
xI

0�
and xJ D 
J;I 0

�
xI

0�
. (1.3.5)

The pre-image of xI
00

in XI 0
is the set


�1
I 00;I 0

�
xI

00� D fxI 0 D xI
00 � xJ j xJ 2 XJ g:

Similarly, for a subset AI
00 � XI 00

, we write


�1
I 00;I 0

�
AI

00� D fxI 0 D xI
00 � xJ j xI 00 2 AI 00

; xJ 2 XJ g � XI 0
:

Let 0I
0

stand for the zero element of XI 0
, that is, all the components of 0I

0
are equal

to the zero element of X D R� . For I 00 � I 0, the set fxI 00 � 0J j xI 00 2 XI 00g is
a subspace of XI 0

, which is isomorphic to XI 00
; hence, it can and will be identified

with XI 00
.

Let J � I be finite. We denote by jJ j its cardinality and set J c D I n J . The
family of all finite subsets of I will be denoted by �.I /. For J 2 �.I /, XJ is
a Euclidean space; by BJ we denote its Borel � -algebra. For AJ 2 BJ , the set
fxI D xJ � xJ c j xJ 2 AJ ; xJ

c 2 XJ
c g � XI , is called a cylinder subset of XI

with base AJ .
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Definition 1.3.2. BI is the smallest � -algebra of subsets of XI which contains all
cylinder subsets with all possible choices of finite J � I and AJ 2 BJ . It is called
the � -algebra generated by the cylinder subsets.

Assume that for every finite J � I , a probability measure �J on BJ is given. The
family of such measures f�J gJ2�.I / is said to be consistent if for any J 2 �.I / and
J 0 � J , we have

�J
0 D �J ı 
�1

J 0;J :

The family f�J gJ2�.I / determines a probability measure on BI according to the
following known theorem the proof of which can be found e.g., in [274].

Proposition 1.3.3 (Kolmogorov’s extension theorem). If the family of probability mea-
sures f�J gJ2�.I / described above is consistent, there exists a unique probability mea-
sure �I on .XI ;BI / such that

�J D �I ı 
�1
J;I :

Given J 2 �.I /, we set

'�J .yJ / D
D

exp
�

i
X
˛2J

.y˛; � /
�E
�J

D
Z

exp
�

i
X
˛2J

.y˛; x˛/
�
�J .dxJ /; yJ 2 XJ ;

(1.3.6)

where . � ; � / is the scalar product in R� . Here and in the sequel, for a probability
measure � and a �-integrable function f , we write

hf i� D
Z
f d�: (1.3.7)

The above '�J is the Fourier transform of the measure�J , called also the characteristic
function of �J . By Bochner’s theorem it is continuous on XJ , positive definite, and
'�J .0/ D 1. The positive definiteness of '�J is the following property: for every
n 2 N, yJ1 ; : : : y

J
n 2 XJ , and for all .	1; : : : 	n/ 2 Cn n f0g,

nX
k;lD1

'�J .yJk � yJl /	k N	l > 0: (1.3.8)

Conversely, each function with the above three properties is a characteristic function
of a certain probability measure on XJ and this measure is uniquely determined by
its characteristic function. Here it is important that XJ is finite-dimensional. The
consistency of the family of measures f�J gJ2�.I / can be formulated in terms of their
characteristic functions. Namely, this family is consistent if and only if for every
J 0 � J 2 �.I / and for any yJ

0 2 XJ 0
, the corresponding characteristic functions

satisfy the condition

'�J .yJ
0 � 0JnJ 0

/ D '�J 0 .yJ
0
/: (1.3.9)
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The notion of a Gaussian process

Let X W I � XI ! R� be such that X˛.x/
defD X.˛; x/ D x˛ . For every fixed ˛ 2 I ,

X˛ is measurable. Let M be the set of mappings � W I � I ! R� � R� , the values
of which may naturally be associated with real � � � matrices, possessing the follow-
ing properties. First, each � 2 M is symmetric, that is, �.˛; ˛0/ D �T .˛; ˛0/ and
�.˛; ˛0/ D �.˛0; ˛/ for all .˛; ˛0/ 2 I � I . Here �T .˛; ˛0/ stands for the transposed
�.˛; ˛0/ (as a � � �-matrix). Second, for any J 2 �.I / and every nonzero 	J 2 XJ ,

X
˛;˛02J

.�.˛; ˛0/	˛; 	˛0/ > 0: (1.3.10)

Let a 2 XI and � 2 M be given. Then for a given J 2 �.I /, we set

'a;� .y
J / D exp

�
i
X
˛2J

.a˛; y˛/ � 1

2

X
˛;˛02J

.�.˛; ˛0/y˛; y˛0/
�
: (1.3.11)

It is the characteristic function of a Gaussian measure, say �J , on the Euclidean space
XJ , for which

hX .j /˛ i�J D a.j /˛ ; ˛ 2 J; j D 1; : : : ; �I

cov�J .X .j /˛ ; X
.k/
˛0 /

defD hX .j /˛ X
.k/
˛0 i�J � hX .j /˛ i�J � hX .k/˛0 i�J

D �jk.˛; ˛
0/:

(1.3.12)

The family f�J gJ2�.I / is consistent since the condition (1.3.9) is readily satisfied.
Therefore, it defines a measure on the whole space XI . This measure � will be called a
Gaussian measure on .XI ;BI /, its first moments and covariance are given by (1.3.12),
which now holds for all ˛ 2 I . In case I � R, the mapping X is called a Gaussian
random process. Now we give some examples, for which the corresponding measures
are symmetric, that is a D 0I .

Basic processes

1. Brownian motion. Here I D Œ0;C1/ and for s; t 2 Œ0;C1/,

�jk.s; t/ D ıjk min.s; t/; j; k D 1; 2; : : : ; �; (1.3.13)

where ıjk is Kronecker’s symbol. Let us check whether this � obeys (1.3.10). To this
end we use the representation

min.s; t/ D
Z C1

0

IŒ0;s�.�/IŒ0;t�.�/d�; (1.3.14)



98 1 Quantum Mechanics and Stochastic Analysis

where IB is the indicator function (1.1.39). Then we take ft1; t2; : : : tng � Œ0;C1/,
n 2 N, such that t1 < t2 < � � � < tn, and compute

�X
j;kD1

nX
l1;l2D1

ıjk min.tl1 ; tl2/	
.j /

l1
N	.k/
l2

D
�X

jD1

nX
l1;l2D1

	
.j /

l1
N	.j /
l2

Z C1

0

IŒ0;tl1
�.�/IŒ0;tl2

�.�/d�

D
�X

jD1

Z C1

0

ˇ̌̌ nX
lD1

	
.j /

l
IŒ0;tl �.�/�

ˇ̌̌2
d�

� 0:

The Gaussian process with the covariance (1.3.13) is called a �-dimensional Brownian
motion or Wiener process. Usually, in the definition of the Wiener process, as well as
of the Gaussian processes introduced below, one includes the requirement that their
paths are continuous. This property will be discussed in detail in the next subsection.

2. Brownian bridge. For ˇ > 0, we set I D Œ0; ˇ� and

�jk.s; t/ D ıjk Œˇmin.s; t/ � st � ; s; t 2 Œ0; ˇ�; j; k D 1; 2; : : : ; �: (1.3.15)

Let us prove that this � obeys (1.3.10). Here again we use the representation (1.3.14)
but with the integral taken over Œ0; ˇ�. Then we choose ft1; : : : ; tng � Œ0; ˇ� as above
and write

�X
j;kD1

nX
l1;l2D1

�jk.tl1 ; tl2/	
.j /

l1
	
.k/

l2

D ˇ2
�X

jD1

n
ˇ�1

Z ˇ

0

ˇ̌̌ nX
lD1

	
.j /

l
IŒ0;tl �.�/

ˇ̌̌2
d� �

ˇ̌̌ nX
lD1

	
.j /

l
ˇ�1

Z ˇ

0

IŒ0;tl �.�/d�
ˇ̌̌2o

D ˇ2
�X

jD1
ˇ�1

Z ˇ

0

ˇ̌̌ ˇX
lD1

	
.j /

l
IŒ0;tl �.�/ �

ˇX
lD1

	
.j /

l
ˇ�1

Z ˇ

0

IŒ0;tl �.�/d�
ˇ̌̌2

d�

� 0:

The corresponding Gaussian random process is called the �-dimensional Brownian
bridge which starts at t D 0 and ends at t D ˇ.

3. Oscillator (Ornstein–Uhlenbeck) process. Here I D Œ0;C1/ and

�jk.s; t/ D ıjk
1

2a
exp .�ajs � t j/ ; a > 0: (1.3.16)
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To check that this � obeys (1.3.10) we rewrite it as

�jk.s; t/ D ıjk
1

2a
exp .�as/ exp.�at/max fexp.2as/; exp.2at/g ;

and use the calculations from the above example. Another proof is based on the
representation

1

2a
exp .�ajs � t j/ D 1

2


Z C1

�1
expŒix.t � s/�
x2 C a2

dx; (1.3.17)

by which

�X
j;kD1

nX
l1;l2D1

�jk.tl1 ; tl2/	
.j /

l1
	
.k/

l2
D 1

2


�X
jD1

Z C1

�1
1

x2 C a2
jF .j /.	; x/j2dx � 0;

where

F .j /.	; x/ D
nX
lD1

exp.itlx/	
.j /

l
; j D 1; : : : ; �:

By definition, the corresponding random process is the �-dimensional oscillator pro-
cess. It is also called a �-dimensional Ornstein–Uhlenbeck velocity process.

4. Høegh-Krohn’s process. This process is also known as a periodic Ornstein–Uhlen-
beck velocity process (see e.g., [94] and [177]). We call it Høegh-Krohn’s process since
it first appeared in Høegh-Krohn’s paper [156]. For this process, one sets I D Œ0; ˇ�,
ˇ > 0 and

�jk.s; t/ D ıjk

2�2Œ1 � exp.�ˇı/�
� fexp .�ıjs � t j/C exp .�ı.ˇ � js � t j//g ;

(1.3.18)

where � > 0 and ı > 0 are parameters. For � D .ma/1=4 and ı D .a=m/1=2 (see
(1.1.70), (1.1.72)), the above �jk coincides with the kernel (1.2.125). Set

js � t jˇ D minfjs � t j; ˇ � js � t jgI (1.3.19)

this can be considered as the distance on the circle of length ˇ which one obtains by
identifying the endpoints of the interval Œ0; ˇ�. Then the above �jk.s; t/ as a function
of s; t 2 Œ0; ˇ� depends on js � t j and remains unchanged if one replaces js � t j by
js�t jˇ . This means that it can be extended periodically to the whole R. This enables us
to prove that � defined by (1.3.18) obeys the condition (1.3.10) by means of a Fourier
transformation, similarly as it was done for the oscillator process. Set

K D fk D .2
=ˇ/~ j ~ 2 Zg: (1.3.20)
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Then

1

2�2Œ1 � exp.�ˇı/� fexp .�ıjs � t j/C exp .�ı.ˇ � js � t j//g

D
X
k2K

ı��2

ı2 C k2
exp Œik.t � s/� ;

(1.3.21)

which yields

�X
j;kD1

nX
l1;l2D1

�jk.tl1 ; tl2/	
.j /

l1
	
.k/

l2
D

nX
jD1

X
k2K

ı��2

ı2 C k2
jF .j /.	; k/j2 � 0;

with

F .j /.	; k/ D
nX
lD1

exp.itlk/	
.j /

l
; j D 1; : : : ; �:

1.3.3 Stochastic Processes in General

The notion of a stochastic process

Let .�;F ;P/ be a complete probability space, which means that if A 2 F and
P.A/ D 0, then any B � A belongs to F . To simplify notation we set h � i D h � iP

until the end of this subsection, see (1.3.7).
Let I be a subset of R. A map X W I �� ! R� is called a stochastic process with

state space R� if for every t 2 I , the mapX.t; � / W � ! R� is measurable, i.e., for any
Borel set A � R� , its pre-image f! 2 � j X.t; !/ 2 Ag is an element of F . For every
fixed ! 2 �, the map I 3 t 7! X.t; !/ is an element of XI , with X D R� . We shall
denote this map by X. � ; !/ and call it a path. For such I , let the measurable space
.XI ;BI / be as in the previous subsection. Then the map � 3 ! 7! X. � ; !/ 2 XI is
F =BI -measurable. The distribution of this map defines a probability measure �I , on
.XI ;BI /. It is called the distribution of X . Analogously we obtain the measures �I

0

for any I 0 � I .

Definition 1.3.4. Two processes X and Y defined on the same probability space are
said to be versions of each other if for all t 2 I ,

P.X.t; � / D Y.t; � // D 1:

Given t 2 I and two processes, X and Y , we set

At D f! j X.t; !/ D Y.t; !/g; A D
\
t2I

At : (1.3.22)

One observes that if I is uncountable, the set A need not be measurable.
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Definition 1.3.5. The processes X and Y are said to be indistinguishable, if the set A
given by (1.3.22) is measurable and P.A/ D 1.

Of course, indistinguishable processes are versions of each other, but the converse
is not true in general.

Continuity

Now we want to address the question whether for a given stochastic process there
exists a version that possesses certain desirable properties. If the index set is of the
form I D R, I D Œ0;C1/, I D Œa; b� with a; b 2 R, a < b, such a property can be
continuity. To exploit it we first present a number of facts about continuous functions.
In view of the applications below, we consider the case of I D Œa; b� only.

Let j � j be the Euclidean norm on R� and at the same time stand for the absolute
value of a real number. By C Œa; b� we denote the set of all continuous functions
x W Œa; b� ! R� . For x 2 C Œa; b�, ı > 0, and D � Œa; b�, we set

wD.x; ı/ D supfjx.t/ � x.s/j j jt � sj < ı; s; t 2 Dg: (1.3.23)

Furthermore, we write w.x; ı/ D wŒa;b�.x; ı/. For D � Œa; b� and x W D ! R� , a
function Qx W Œa; b� ! R� is called an extension of x to Œa; b� if x.t/ D Qx.t/ for all
t 2 D.

Proposition 1.3.6. Let D be a dense subset of Œa; b�. A function x W D ! R� has a
continuous extension to Œa; b� if and only if wD.x; ı/ ! 0 as ı # 0. This extension Qx
is unique and for all ı 2 .0; b � a/,

wD.x; ı/ D w. Qx; ı/: (1.3.24)

The proof of this statement is immediate.
For an appropriate x 2 C Œa; b� and � > 0, we set

K� .x/ D sup
n jx.t/�x.s/j

jt�sj� j t ¤ s; t; s 2 Œa; b�
o
; (1.3.25)

and
C� Œa; b� D fx 2 C Œa; b� j K� .x/ < 1g: (1.3.26)

The elements of the latter set are called Hölder continuous functions of order � .

Proposition 1.3.7. LetD be a dense subset of Œa; b�. For a function x W D ! R� and
� > 0, suppose that the sequence f2n�wD.x; 2�n.b � a//gn2N is bounded. Then x
has a Hölder continuous extension to Œa; b� of order � .

Proof. Since wD.x; ı/ � wD.x; ı
0/ for ı < ı0, the assumed boundedness implies that

wD.x; ı/ ! 0 as ı # 0. Then by Proposition 1.3.6, x has a continuous extension Qx
for which (1.3.24) holds. Let us show that Qx 2 C� Œa; b�. Set

B0 D f.s; t/ 2 Œa; b�2 j .b � a/=2 � jt � sj � b � ag;
Bn D f.s; t/ 2 Œa; b�2 j .b � a/=2nC1 � jt � sj < .b � a/=2ng; n 2 N:
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Then

f.s; t/ 2 Œa; b�2 j s ¤ tg D
1[
nD0

Bn;

and either K� . Qx/ D jb � aj�� j Qx.b/ � Qx.a/j, or else

K� . Qx/ D sup
n2N0

fsupfj Qx.t/ � Qx.s/j � jt � sj�� j .s; t/ 2 Bngg

�
�

2

b � a
��

sup
n2N0

f2n�w. Qx; 2�n.b � a//g ;
(1.3.27)

which completes the proof.

Two indistinguishable processes, sayX andY , have the same paths P-almost surely,
that is, X. � ; !/ D Y. � ; !/ for P-almost all !. At the same time, the processes which
are just versions of each other may have different paths.

Definition 1.3.8. A stochastic process X W Œa; b� �� ! R� is called continuous (re-
spectively, Hölder continuous of order � > 0) if X. � ; !/ 2 C Œa; b� (respectively,
X. � ; !/ 2 C� Œa; b�) for all ! 2 �. A process X is said to have a continuous version
(respectively, Hölder continuous version of order � > 0) if there exists its version zX
which is continuous (respectively, Hölder continuous of order � ).

Clearly, a Hölder continuous process is continuous. The existence of Hölder con-
tinuous versions of a given process is established by the following known statement.
Recall that we have set h � i D h � iP, see (1.3.7).

Theorem 1.3.9 (Kolmogorov Lemma). Let a process X on Œa; b� be such that for all
t; s 2 Œa; b�,

hjX.t; � / �X.s; � /jpi � C jt � sj1Cq; (1.3.28)

with certain positive C and p, q, such that 0 < q < p. Then for every � 2 .0; q=p/,
X has a Hölder continuous version of order � .

In view of the importance of this statement, we present its complete proof here. It
is based on the following two facts, which will also be extensively employed in the
other parts of the book. The first one is Chebyshev’s inequality

P .f! j f .!/ � �g/ � hf i=�; (1.3.29)

which holds for any � > 0 and any measurable function f W � ! Œ0;C1/. Indeed,

hf i �
Z

f!jf .!/�g
f .!/P.d!/

� �

Z
f!jf .!/�g

P.d!/ D � � P .f! j f .!/ � �g/ :

The second fact is established by the following statement, which is a part of the Borel–
Cantelli lemma, see e.g., [75].
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Proposition 1.3.10 (Borel–Cantelli Lemma). Given a probability space .�;F ;P/ and
a sequence fAngn2N � F , let

C D f! j ! 2 An for infinitely many ng D
1\
nD1

1[
mDn

Am:

Then 1X
nD1

P.An/ < 1

implies P.C / D 0.

Proof. For any " > 0, one finds n 2 N, such that

P.C / � P
� 1[
mDn

Am

�
�

1X
mDn

P.Am/ < ":

Proof of Theorem 1.3.9. For n 2 N, we set

Dn D ftk D aC .b � a/2�nk j k D 0; 1; : : : ; 2ng; D D
[
n2N

Dn: (1.3.30)

Clearly, D is countable and dense in Œa; b�. Given n 2 N and k 2 f0; 1; : : : ; 2ng, let
us consider

Zn;k.!/
defD jX.tkC1; !/ �X.tk; !/j: (1.3.31)

By (1.3.28) it follows that

hZp
n;k

i � C.b � a/1Cq2�n.1Cq/:

Then for ˛ 2 .0; q=p/, by (1.3.29) we get

P.Zn;k > 2
�n˛/ D P.Zp

n;k
> 2�n˛p/ � C.b � a/1Cq2�n�n.q�˛p/: (1.3.32)

Therefore,
1X
nD1

2nX
kD0

P.Zn;k > 2
�n˛/ < 1;

which by Proposition 1.3.10 yields that there exist A 2 F , such that P.A/ D 1, and
nA 2 N, for which

Zn;k.!/ < 1; for all ! 2 A;

Zn;k.!/ � 2�n˛; for all n > nA, k D 0; : : : 2n, ! 2 A.
(1.3.33)

For s; t 2 D, such that 0 � t � s < .b � a/2�n, one can find k 2 f0; : : : ; 2n � 1g, for
which maxfjt � tkC1j; js � tkjg < .b � a/2�n. Then by the triangle inequality,

jX.s; !/ �X.t; !/j � jX.tkC1; !/ �X.tk; !/j
C jX.s; !/ �X.tk; !/j C jX.t; !/ �X.tkC1; !/j: (1.3.34)
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Furthermore, one finds integers l; m � n, for which s 2 Dl and t 2 Dm. Thus,

s D aC .b � a/2�nk C
lX

iDnC1
�i2

�j ;

t D aC .b � a/2�n.k C 1/C
mX

jDnC1
� 0
j 2

�j ; �i ; �
0
j D 0; 1:

Thereby, one finds ki 2 f0; 1; : : : ; 2ig and �j 2 f0; 1; : : : ; 2j g, such that

jX.s; !/ �X.tk; !/j �
lX

iDnC1
Zi;ki

.!/;

jX.t; !/ �X.tkC1; !/j �
mX

jDnC1
Zj;�j .!/:

Then by (1.3.33) and (1.3.34) one obtains

jX.s; !/ �X.t; !/j � Zn;k.!/C
lX

iDnC1
Zi;ki

.!/C
mX

jDnC1
Zj;�j .!/

� 2�n˛ C 2

1X
jDnC1

2�j˛ D 2�n˛ Œ1C 2=.2˛ � 1/� ;
(1.3.35)

which holds for all ! 2 A and t; s 2 D, such that jt � sj < .b � a/2�.nC1/ for all
n > nA. Thereby, for every ! 2 A, one finds C.!/ > 0, such that

2n˛wD .X. � ; !/; 2�n.b � a// � C.!/:

By Proposition 1.3.7 this yields that for every! 2 A, the functionX. � ; !/ has a Hölder
continuous extension of order ˛, which we denote by zX. � ; !/, such that

wD.X. � ; !/; ı/ D w. zX. � ; !/; ı/; for all ı 2 .0; .b � a//. (1.3.36)

For ! 2 Ac , we set zX.t; !/ D 0 for all t 2 Œa; b�. Then zX. � ; !/ is Hölder continuous
of order ˛ for all ! 2 �. Let us show now that zX is a version of X . For t 2 D, we
have zX.t; !/ D X.t; !/ for all ! 2 A. Since zX is continuous andD is dense in Œa; b�,
for any t 2 Œa; b� nD, one finds a sequence fsngn2N � D, such that sn ! t and hence
X.sn; !/ ! zX.t; !/ for all ! 2 A. On the other hand by (1.3.28) and the Chebyshev
inequality (1.3.29) one obtains that for every positive " and �, there exists n."; �/ 2 N,
such that for all n > n."; �/,

P .f! j jX.sn; !/ �X.t; !/j > �g/ < ": (1.3.37)
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Now let us pick a sequence fnkgk2N, such that nk � n.2�k; 2�k/ for all k 2 N. Then

P
�˚
! j jX.snk

; !/ �X.t; !/j > 2�k�� � 2�k;

which for the event

B
defD

\
n�1

[
k�n

˚
! j jX.snk

; !/ �X.t; !/j > 2�k� (1.3.38)

yields P.B/ D 0, see Proposition 1.3.10. Thus, for ! 2 Bc , the estimate jX.snk
; !/�

X.t; !/j � 2�k fails to hold for finitely many k only; hence, X.snk
; !/ ! X.t; !/ for

such !. Therefore, for ! 2 Bc \A, one has zX.t; !/ D X.t; !/ for all t 2 Œa; b�. But
P.Bc \ A/ D 1; thereby, zX is a version of X , which completes the proof.

Along with Theorem 1.3.9 we are going to use a result known as the Garsia–
Rodemich–Rumsey (GRR) lemma. Since this lemma has many applications, we
present its complete proof here.

Theorem 1.3.11 (GRR lemma). Let p;‰ W Œ0;C1/ ! Œ0;C1/ be continuous and
strictly increasing functions, such that p.0/ D ‰.0/ D 0 and limt!C1‰.t/ D C1.
Given T > 0 and  2 C.Œ0; T � ! R�/, we set

„.t; s/ D ‰

� j.t/ � .s/j
p.jt � sj/

�
; t; s 2 Œ0; T �; (1.3.39)

and

B D
Z T

0

Z T

0

„.t; s/dtds: (1.3.40)

If B < 1, then for any 0 � s < t � T ,

j.t/ � .s/j � 8

Z t�s

0

‰�1 �4B=u2�p.du/; (1.3.41)

where ‰�1 is the inverse of ‰.

Proof. First let us prove the following fact. For given strictly positive a, b, and d , and
for x; y 2 C.Œ0; d � ! Œ0;C1//, suppose thatZ d

0

x.t/dt � a;

Z d

0

y.t/dt � b:

Then there exists � 2 Œ0; d � such that x.�/ < 2a=d and y.�/ < 2b=d . Indeed,
otherwise

2a D
Z d

0

.2a=d/dt �
Z d

0

x.t/dt � a;

and likewise for y and b.
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Now we set

I.t/ D
Z T

0

„.t; s/ds (1.3.42)

and pick two non-increasing sequences, ftngn2N0
� Œ0; T � and fdngn2N0

� Œ0; T �,
satisfying

p.dn/ D p.tn/=2; (1.3.43)

which in particular means that dn < tn for all n. Now, for given tn�1 and dn�1, we have
to show how to choose tn. To this end we set x D I , y D „.tn�1; � /, and d D dn�1.
By (1.3.40) and (1.3.42) we have a D B and b D I.tn�1/. Then the above arguments
yield the existence of tn 2 Œ0; dn�1� such that both estimates

I.tn/ � 2B=dn�1; „.tn; tn�1/ � 2I.tn�1/=dn�1 (1.3.44)

hold true. By construction, tn � dn�1; thus,

dn < tn � dn�1 < tn�1; (1.3.45)

and tn ! 0 as n ! 1. Let us show now how to choose t0. Set d�1 D T . By (1.3.40)
and (1.3.42) there exists t0 2 Œ0; T � such that I.t0/ � B=T < 2B=T .

By (1.3.45) it follows that

p.tn � tnC1/ � p.tn/ D 2p.dn/ D 4Œp.dn/ � p.dn/=2� � 4Œp.dn/ � p.dnC1/�:

Combining the latter estimate with (1.3.44) and (1.3.45) we get

j.tn/ � .tnC1/j � ‰�1
�
2I.tn/

dn

�
p.tn � tnC1/

� ‰�1
�

4B

dndn�1

�
4Œp.dn/ � p.dnC1/�

� 4‰�1
�
4B

d2n

�
Œp.dn/ � p.dnC1/�

� 4

Z dn

dnC1

‰�1 �4B=u2�p.du/:
Summing over n 2 N0, we obtain

j.t0/ � .0/j � 4

Z T

0

‰�1 �4B/=u2�p.du/: (1.3.46)

Thus, the variation of .t/ on the interval Œ0; t0� � Œ0; T � is bounded by the integral
over the whole Œ0; T �. To estimate the variation on Œt0; T � we replace .t/ by .T � t /
and repeat the above construction, which yields

j.T / � .t0/j � 4

Z T

0

‰�1 �4B/=u2�p.du/;
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and thereby

j.T / � .0/j � 8

Z T

0

‰�1 �4B=u2�p.du/: (1.3.47)

Now we fix s; t 2 Œ0; T �, s < t , and introduce

Q.u/ D 

�
s C t � s

T
u

�
; Qp.u/ D p

�
s C t � s

T
u

�
;

z„.u; v/ D ‰

� j Q.u/ � Q.v/j
Qp.ju � vj/

�
; u; v 2 Œ0; T �:

(1.3.48)

Then Z T

0

Z T

0

z„.u; v/dudv D
�

T

t � s
�2 Z t

s

Z t

s

„.u; v/dudv

� .T=.t � s//2 B defD zB:
The functions (1.3.48) readily satisfy the conditions of the theorem; hence, they obey
the estimate (1.3.47), that is,

j Q.T / � Q.0/j � 8

Z T

0

‰�1 �4 zB=u2
�

Qp.du/;

which yields (1.3.41) after an obvious change of variables.

In the sequel, the GRR lemma will be used mostly in situations where one needs
to interchange integration with taking supremum. This will be done by means of the
following corollary of Theorem 1.3.11.

Proposition 1.3.12 (GRR inequality). Let X be the Hölder continuous version of the
process which obeys (1.3.28). For # 2 .0; b � a�, ˛ 2 .0; q=p/, we set

L˛;#.!/ D sup
n jX.t;!/�X.s;!/j

jt�sj˛ j 0 < jt � sj < #
o
: (1.3.49)

Then
hLp
˛;#

i � D.˛; p; q/C#1Cq�˛p; (1.3.50)

whereD.˛; p; q/ > 0 is a constant, independent of # , andC is the same as in (1.3.28).

Proof. For fixed # and � 2 Œa; b � #�, we set

B� .!/ D
Z #

0

Z #

0

jX.� C t; !/ �X.� C s; !/jp
jt � sj2C˛p dtds: (1.3.51)

Then by Fubini’s theorem and (1.3.28),

hB� i � 2C#1Cq�˛p

.q � ˛p/.1C q � ˛p/ : (1.3.52)
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On the other hand,

L
p

˛;#
.!/ D sup

�2Œa;b�#�
sup

t;s2Œ0;#/; t¤s
jX.� C t; !/ �X.� C s; !/jp

jt � sj˛p ;

and by (1.3.41) with ‰.t/ D tp and p.t/ D t˛C2=p we get

jX.� C t; !/ �X.� C s; !/jp
jt � sj˛p � 23pC2

�
1C 2

˛p

�p
B� .!/;

which along with (1.3.52) yields (1.3.50) with

D.˛; p; q/ D 23.pC1/

.q � ˛p/.1C q � ˛p/
�
1C 2

˛p

�p
: (1.3.53)

It can be instructive to look at the result just proven as follows. By (1.3.28)

sup
n D jX.t;� /�X.s;� /jp

jt�sj˛p

E ˇ̌
0 < jt � sj � #

o
� C#1Cq�˛p:

At the same time, by (1.3.50) we have
D
sup

n jX.t;� /�X.s;� /jp
jt�sj˛p

E ˇ̌
0 < jt � sj � #

oE
� D.˛; p; q/C#1Cq�˛p:

We also note that for ˛0 < ˛,

f! j L˛;#.!/ < C1g � f! j L˛0;#.!/ < C1g: (1.3.54)

A consequence of Theorem 1.3.9 is the following statement.

Proposition 1.3.13. For any � 2 .0; 1=2/, the Brownian bridge and the Høegh-Krohn
processes possess Hölder continuous versions of order � .

Proof. For any Gaussian �-dimensional random vector X and any p 2 N, one has

hjX j2pi D �
C.p; �/hjX j2i�p ; (1.3.55)

with a certain constant C.p; �/ > 0. We apply this identity to X D X.t; � / � X.s; � /,
which is a Gaussian random vector, and obtain

hjX.t; � / �X.s; � /j2pi � Œ�C.p; �/~js � t j�p ; (1.3.56)

where ~ D ˇ for the Brownian bridge, and ~ D ı��2 D 1=m for the Høegh-Krohn
process. For p � 2, we set q D p � 1 and apply Theorem 1.3.9, which gives the
property stated with any � < .p � 1/=2p; hence, for any � < 1=2 since p in (1.3.56)
can be taken arbitrarily big.
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From now on, by the Høegh-Krohn process we mean the Hölder continuous version
as in Proposition 1.3.13. In the sequel, we will use the following spaces of continuous
functions:

Cˇ
defD fx 2 C.Œ0; ˇ� ! R�/ j x.0/ D x.ˇ/g;

C �ˇ
defD fx 2 C� .Œ0; ˇ� ! R�/ j x.0/ D x.ˇ/g; � 2 .0; 1=2/:

(1.3.57)

Remark 1.3.14. The Høegh-Krohn process satisfies (1.3.28) with jt � sj replaced by
the distance jt � sjˇ defined by (1.3.19).

Canonical realization

The results obtained above may be summarized as follows. The process X W Œa; b� �
� ! R� considered as a map � 3 ! 7! X. � ; !/ 2 .R�/Œa;b� may have a version, say
zX , for which all values of this map belong to the subset C Œa; b�

defD C.Œa; b� ! R�/ of
.R�/Œa;b�, consisting of continuous functions. Note, however, that the set C Œa; b� need
not belong to the cylindric � -algebra BŒa;b�, see Definition 1.3.2. On the other hand,
C Œa; b� is a Banach space, and, therefore, can be endowed with the corresponding Borel
� -algebra B.C Œa; b�/. So, if we can prove that the map � 3 ! 7! zX. � ; !/ 2 C Œa; b�
is F =B.C Œa; b�/-measurable, we shall be able to deal with a ‘concrete’ probability
space .C Œa; b�;B.C Œa; b�/; �/ instead of .�;F ;P/, where � is the image measure of
P under zX . Let us do this. The first step is to prove the measurability just mentioned.

Proposition 1.3.15. Let the processX W Œa; b��� ! R� be continuous. Then the map
� 3 ! 7! X. � ; !/ 2 C Œa; b� is F =B.C Œa; b�/-measurable.

Proof. Let zB be the � -algebra of subsets of C Œa; b� generated by the maps C Œa; b� 3
x 7! x.t/, with rational t , i.e., with t 2 QŒa;b�

defD Q \ Œa; b�. Clearly, X is F = zB-
measurable. So, it suffices to show that zB D B.C Œa; b�/. Since the maps x 7! x.t/

are continuous, we have zB � B.C Œa; b�/. As the Banach space C Œa; b� is separable,
it is second countable, which means here that each of its open subsets is a countable
union of the ballsBr.y/ D fxj supt2Œa;b� jx.t/�y.t/j < rg, r > 0. Then, to complete

the proof it suffices to show that each Br.y/ 2 zB. Given r > 0, y 2 C Œa; b�, and
t 2 QŒa;b�, the set Ktr.y/ D fxjjx.t/ � y.t/j � rg is in zB. Let frngn2N be any
sequence of positive numbers such that rn " r . Then

Br.y/ D
[
n2N

\
t2QŒa;b�

Ktrn.y/ 2 zB;

which yields B.C Œa; b�/ � zB and hence zB D B.C Œa; b�/.

Corollary 1.3.16. Let � and � be two probability measures on .C Œa; b�;B.C Œa; b�//,
such that for every k 2 N, A 2 B.Rk�/, and t1; : : : ; tk 2 Œa; b�,

� .fx j .x.t1/; : : : ; x.tk// 2 Ag/ D �.fx j .x.t1/; : : : ; x.tk// 2 Ag/:
Then � D �.
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Proof. Clearly, zB is generated by the maps x 7! x.t/ with all t 2 Œa; b�. Then,
�.B/ D �.B/ for all B 2 zB, which by the above statement yields � D �.

Definition 1.3.17. For a continuous process X W Œa; b� �� ! R� , let the probability
measure� on B.C Œa; b�/ be theX -image of P. Then the process 	 W Œa; b��C Œa; b� !
R� such that

	. � ; x/ D x; for all x 2 C Œa; b�,
is called the canonical realization of the process X on the space C Œa; b�.

Kuratowski theorem

In the sequel, it will be convenient for us to deal with more than one realization of a
given process. To relate such realizations with each other we will use the following
known theorem, see [204], page 489, or Theorem 3.9, page 21 in [239].

Proposition 1.3.18 (Kuratowski theorem). Let Y1, Y2 be Polish spaces and B1, B2

be their Borel � -algebras respectively. If  W Y1 ! Y2 is a measurable injection, then
.B/ 2 B2 for any B 2 B1.

If the map  in the above theorem is bijective then the � -algebras B1 and B2 are
isomorphic and  is called a measurable isomorphism.

Now let Y be a Polish space and d be its metric. GivenE 2 B.Y /, we set B.E/ D
fA \ E j A 2 B.Y /g. It is a subset of B.Y / and B.E/ D fB � E j B 2 B.Y /g.
Suppose now that the set E is equipped with another metric, say Qd , such that for any
x; y 2 E, d.x; y/ � Qd.x; y/. Suppose also that the metric space .E; Qd/ is complete
and separable. Let zB.E/ be the corresponding Borel � -algebra.

Lemma 1.3.19. The above � -algebras coincide, that is B.E/ D zB.E/.
Proof. Let  W E ! Y be the embedding map, that is, the map which sends the
metric space .E; Qd/ into the metric space Y such that .y/ D y for all y 2 E. By
construction, this map is an injection; by the assumption regarding the metrics  it is
continuous, hence measurable. Then by the Kuratowski theorem E 2 B.Y /. Thus,
B.E/ � zB.E/. Since for any A � E, A and .A/ consist of the same elements,
every B 2 zB.E/ belongs to B.E/; hence, zB.E/ � B.E/.

The Kuratowski theorem admits an extension, which does not use the topology of
the state space. Let .E;E/ be a measurable space. We say that a family, D � E ,
generates E if E is the smallest � -algebra of subsets of X which contains D .

Definition 1.3.20. A measurable space .E;E/ is countably generated if there exists a
countable D � E , which generates E . It is called separable if E contains all single point
subsets fxg, x 2 E. Finally, a countably generated space .E;E/ is a standard Borel
space if there exists a complete separable metric space Y and a measurable bijection
 W Y ! E, such that the measure spaces .Y ;B.Y // and .E;E/ are isomorphic.
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The following extended version of Kuratowski’s theorem holds, see Theorem 2.4
on page 135 of [239].

Proposition 1.3.21. Let .E;E/ be a standard Borel space and .K;K/ be separable and
countably generated. Suppose also that  W E ! K is injective and E=K-measurable.
Then K0 D .E/ belongs to K and the measurable spaces .E;E/ and (K0;K 0/ are
isomorphic. Here K 0 D fB \ K0 j B 2 Kg.

Consider again the proof of Proposition 1.3.15. The space .C Œa; b�; zB/ is sep-
arable and countably generated whereas the space .C Œa; b�;B.C Œa; b�// is standard
as C Œa; b� is separable. Let  W C Œa; b� ! C Œa; b� be the identity map. As zB �
B.C Œa; b�/, this map is B.C Œa; b�/= zB-measurable, which by Proposition 1.3.21 yields
zB D B.C Œa; b�/.

Now let us return to the sets of periodic continuous functions x W Œ0; ˇ� ! R�

introduced in (1.3.57). They are equipped with the norms:

kxkCˇ
D sup

t2Œ0;ˇ�
jx.t/j;

and, cf. (1.3.25),

kxkC�
ˇ

D jx.0/j C ˇ� � sup
s;t2Œ0;ˇ�; s¤t

jx.s/ � x.t/j
js � t j�

ˇ

D jx.0/j C ˇ�K� .x/; � > 0:

(1.3.58)

With these norms they become real Banach spaces. Since for all �; � 0 2 Œ0; ˇ�,
jx.�/ � x.� 0/j � ˇ�K� .x/;

one has kxkCˇ
� kxkC�

ˇ
for all � > 0. Recall thatL2

ˇ
stands for the real Hilbert space

L2.Œ0; ˇ� ! R�). Then for all 0 < � < � 0, it follows that

ˇ�1=2kxkL2
ˇ

� kxkCˇ
� kxkC�

ˇ
� kxk

C�0

ˇ

: (1.3.59)

Therefore, C �
0

ˇ
� C �

ˇ
� Cˇ � L2

ˇ
. As metric spaces, L2

ˇ
, Cˇ , C �

ˇ
are complete. At

the same time, the spacesL2
ˇ

ndCˇ are separable, but the Hölder spacesC �
ˇ

, � 2 .0; 1/
are not separable (see e.g., page 37 of [203]). By (1.3.59) the embedding mapsC �

0

ˇ
,!

C �
ˇ
,! Cˇ ,! L2

ˇ
are continuous, hence measurable. Then by Proposition 1.3.18 the

embedding Cˇ ,! L2
ˇ

is a measurable injection. In what follows, by Lemma 1.3.19
the Borel � -algebras of subsets of Cˇ generated by the topology induced on Cˇ from
L2
ˇ

and its own topology coincide. One can show that for any � 2 .0; 1=2/, C �
ˇ

is

a Borel subset of Cˇ or L2
ˇ

(see e.g., page 278 of [256]), although some measurable

subsets of C �
ˇ

may not be measurable in Cˇ and L2
ˇ

.
Now let X W Œ0; ˇ��� ! R� be the Høegh-Krohn process. By Proposition 1.3.13

it is Hölder-continuous. Hence, it has a canonical realization on Cˇ . Set

�ˇ D P ıX�1: (1.3.60)
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Then �ˇ .C �ˇ / D 1 for any � 2 .0; 1=2/, and for any A 2 B.Cˇ /,

�ˇ .A/ D �ˇ .A \ C �ˇ /: (1.3.61)

Similarly, one can construct the realization of the Høegh-Krohn process on a wider
space, provided it is still a separable metric space, as e.g., L2

ˇ
.

1.3.4 Probability Measures on Polish Spaces

In this subsection, we collect a number of facts concerning probability measures on
Polish spaces, which will be used in the subsequent parts of the book. Recall that
a metric space is called Polish if it is complete and separable. Until the end of this
subsection E will stand for such a space. By P .E/ we denote the set of all probability
measures defined on the Borel � -algebra B.E/. A function f W E ! R is called Borel
if it is B.E/=B.R/-measurable, i.e., f �1.B/ 2 B.E/ for each Borel subset B � R.
By Bb.E/ we denote the set of all bounded real-valued Borel functions. The set of
bounded continuous functions Cb.E/ is a subset of Bb.E/.

Proposition 1.3.22. For every � 2 P .E/ and all p � 1, the set Cb.E/ is dense in
Lp.E; �/.

The proof of this statement will be given below.

Definition 1.3.23. A family of probability measures M on a topological space Y is
called tight if for any " > 0, there exists a compact subset D" � Y , such that for all
� 2 M, �.D"/ > 1 � ". A probability measure is tight if the one-element family f�g
is tight.

Proposition1.3.24. Every probabilitymeasure onaPolish space, E, is tight. Moreover,
for every such � and any B 2 B.E/,

�.B/ D inff�.A/ j A 	 B; A is openg
D supf�.D/ j D � B; D is compactg: (1.3.62)

The proof of these facts can be found e.g., in [57], page 158 or in [222], pages 1–5.

Proposition 1.3.25. Every probability measure on E may be uniquely determined by
its values on compact subsets of E.

This property of compact sets means that if, for given �; � 2 P .E/, one has
�.D/ D �.D/ for all compact D � E, then � D �. Let D.E/ be the family of all
compact subsets of E. Then by Proposition 1.3.25 the family fID j D 2 D.E/g of
indicator functions (1.1.39) is a measure-defining class. That is, a family of functions
F � Bb.E/ is a measure-defining class if for any �; � 2 P .E/, the equality hf i� D
hf i� for all f 2 F, implies6 � D �.

6Recall that hf i� stands for the integral of f with respect to �.
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Now we want to obtain conditions under which families of bounded continuous
functions f W E ! R are measure-defining. The result we are going to get will be
used in particular to make an alternative proof of Theorem 1.2.22. We recall that
the notion of completeness of a family of multiplication operators was introduced in
Definition 1.2.21.

Theorem 1.3.26. Let F be a family of bounded continuous functions f W E ! R,
which possesses the following properties: (a) for any x; x0 2 E, x ¤ x0, there exists
f 2 F such that f .x/ ¤ f .x0/; (b) for any f; g 2 F, the point-wise product f � g
also belongs to F. Then F is a measure-defining class, that is, if for given probability
measures �; � on E, one has hf i� D hf i� for all f 2 F, then � D �.

The proof of this theorem is given below and will be based on two facts formulated as
Propositions 1.3.27 and 1.3.28, preceded by preparatory observations. For a family F
of bounded functions f W E ! R, let†.F/ be the � -algebra of subsets of E generated
by F, i.e., the smallest � -algebra of subsets of E with respect to which all the elements
of F are measurable. If F consists of Borel functions, the algebra†.F/ is a subalgebra
of B.E/. If the family F is rich enough, then†.F/ D B.E/. The following statement,
which we borrow from the book [308], page 6, Theorem 1.2, describes the families of
continuous functions which generate the whole B.E/.

Proposition 1.3.27. Let E be a Polish space, and let F be a family of bounded con-
tinuous functions f W E ! R, which separates points of E. Then †.F/ D B.E/. In
particular, †.Cb.E// D B.E/.

The second fact we use to prove Theorem 1.3.26 is taken from the book [215],
page 28, Theorem 20.

Proposition 1.3.28. Let E be a nonempty set and V be a real linear space of bounded
functions f W E ! R, including the constant functions. Suppose that the space V
possesses the followingproperty: if a bounded increasing sequenceof positive functions
ffngn2N � V converges point-wise in E to f , then f 2 V . Let V � V be closed
with respect to point-wise multiplication,†.V/ denote the � -algebra generated by V,
and†.V/b be the set of all bounded functions f W E ! R, measurable with respect to
†.V/. Then †.V/b � V .

Proof of Theorem 1.3.26. Given � and � 2 P .E/, we set

V D ff 2 Bb.E/ j hf i� D hf i�g: (1.3.63)

This set equipped with the linear operations becomes a real linear space, satisfying
the conditions of Proposition 1.3.28 which follows from Levi’s theorem, see page 305
of [180]. The subset F � V is closed under multiplication; by Proposition 1.3.27
it generates the whole � -algebra B.E/. Hence, by Proposition 1.3.28 the space V
containsBb.E/, which means that these two sets coincide; hence, the condition hf i� D
hf i� is satisfied on the whole of Bb.E/.
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Proof of Proposition 1.3.22. Given p � 1, we define

V D ff 2 Bb.E/ j 9ffngn2N � Cb.E/; fn ! f in Lp.E; �/g: (1.3.64)

The set V satisfies all the assumptions of Proposition 1.3.28. Thus, we apply it with
V D Cb.E/, see Proposition 1.3.27. Since Bb.E/ is dense in Lp.E; �/, the assertion
follows.

Proof of Theorem 1.2.22. The proof will be done if we show that the bicommutant
of the family Fƒ is Mƒ – the algebra of all multiplication operators by bounded
measurable functions. As Fƒ consists of multiplication operators and Mƒ is a maximal
commutative subalgebra of Cƒ consisting of multiplication operators, it follows that
F00
ƒ � Mƒ.

According to Definition 1.2.11, F00
ƒ is a von Neumann algebra. Then, as a linear

space, it obeys the conditions of Proposition 1.3.28, see Propositions 1.2.10 and 1.2.19.
On the other hand, by Proposition 1.3.27 †.Fƒ/ is the Borel � -algebra B.R�jƒj/.
Hence, by Proposition 1.3.28 Mƒ � F00

ƒ, which completes the proof.

Now we introduce a topology on the set of probability measures P .E/. Given
� 2 P .E/, n 2 N, positive "1; : : : "n, and f1; : : : ; fn 2 Cb.E/, we set

U
"1;:::;"n

f1;:::;fn
.�/ D ˚

� 2 P .E/ j ˇ̌RE fid� � R
E fid�

ˇ̌
< "i ; i D 1; : : : ; n

�
: (1.3.65)

Definition 1.3.29. The topology on P .E/ for which the subsets (1.3.65) define a base
of neighborhoods is called the weak topology.

In this topology, P .E/ is separable, since E is separable, and can be completely
metrized, since E is complete. Therefore, it is a Polish space (see Theorem 2.1.1,
page 19 of [75] or Theorem 6.2, page 43 and Theorem 6.5, page 46 of [239]). For more
details on the weak topology see [65], Chapters V, VI of [64], Chapter 2 of [75], and
Chapter II of [239].

We say that a net f��g�2‚ � P .E/ weakly converges to a measure � 2 P .E/, in
writing �� ) �, if it converges in the weak topology. This holds if and only if

8f 2 Cb.E/ W
Z

E
f d�� !

Z
E
f d�: (1.3.66)

As a metrizable space is first countable, in the study of its topological properties, it
is enough to consider sequences only. Thus, in the sequel we consider sequences of
measures f�ngn2N � P .E/ rather than nets.

It turns out that the weak convergence holds if (1.3.66) occurs for functions be-
longing to certain proper subsets of Cb.E/. Such subsets are called weak convergence
defining classes. Let d be any metric on E consistent with its topology7. A function
f W E ! R is called Lipschitz if

kf kL defD sup
x;y2E; x¤y

jf .x/ � f .y/j=d.x; y/ < 1: (1.3.67)

7This means that the topology of E and the metric topology defined by d are equivalent.
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Such a function is evidently continuous. If f is bounded, one can define

kf kBL D kf kL C sup
x2E

jf .x/j: (1.3.68)

Clearly, k � kBL is a norm. By BL.E; d / we denote the set of all bounded Lipschitz
functions. It is a subset of C u

b .E; d / – the set of all bounded functions, f W E ! R,
uniformly continuous with respect to the metric d . By definition, each such a function
has the property: for every " > 0, there exists ı > 0 such that jf .x/ � f .y/j < ",
whenever d.x; y/ < ı. The point here is that ı is the same for all x and y.

For �; � 2 P .E/, we set

D.�; �/ D sup
f 2BL.E;d/; kf kBL�1

ˇ̌hf i� � hf i�
ˇ̌
: (1.3.69)

The following statements are versions of Proposition 13.3.2 and Theorem 13.3.3, page
310 of [107], respectively.

Proposition 1.3.30. For any metric space .E; d /,D defined in (1.3.69) is a metric on
P .E/.

Proposition 1.3.31. Let .E; d / be a separable metric space. Then the following three
kinds of the convergence of a sequence f�ngn2N � P .E/ to a measure � 2 P .E/, as
n ! C1, are equivalent:

(a) �n ) �;

(b) hf i�n
! hf i�, for all f 2 BL.E; d /;

(c) D.�n; �/ ! 0.

Since BL.E; d / � C u
b .E; d /, the latter statement yields

Proposition 1.3.32. Let .E; d / be a separable metric space. A sequence, f�ngn2N, of
probability measures on E weakly converges to a measure � 2 P .E/, if and only if

8f 2 C u
b .E; d / W

Z
E
f d�n !

Z
E
f d�: (1.3.70)

There exists a connection between compactness in the weak topology and tightness,
see Definition 1.3.23. The following fact is a direct corollary of Theorem 2, page 94 of
[64] (see also Theorems 6.1, 6.2 page 37 of [65] and Theorem 2.3.1, page 25 of [75]).

Proposition 1.3.33 (Prokhorov’s Theorem). A family M � P .E/ is relatively compact
in the weak topology if and only if it is tight.

Let .E; d / be Polish. For r > 0 and y 2 E, we setBr.y/ D fx 2 E j d.x; y/ � rg.
Let M � P .E/ be a family of measures such that for somey 2 E (hence, for all suchy),Z

E
d.x; y/�.dx/ < 1; for all � 2 M. (1.3.71)
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Definition 1.3.34. A continuous function  W E ! Œ0;C1/ is said to be a compact
function if for every a > 0, the set

Aa D fx 2 E j .x/ � ag
is compact.

Proposition 1.3.35. Let a family M � P .E/ be such thatZ
E
.x/�.dx/ � M; for all � 2 M, (1.3.72)

for certain positive M and compact . Then M is tight and hence relatively weakly
compact.

Proof. For any� 2 M, by Chebyshev’s inequality (1.3.29) one obtains�.Aa/ > 1�"
if a > M=", which yields the tightness of M, see Definition 1.3.23.

There exists yet another interesting property of measures on Polish spaces, formu-
lated as Proposition 1.3.36 and Theorem 1.3.37 below. It occurs if E is a real separable
Fréchet space. Recall that a linear topological space is called a Fréchet space if its zero
element has a countable base of neighborhoods consisting of sets, which are balanced,
absorbing, and convex. For such a space E, we define T˙ W E � E ! E, by

T˙.x1; x2/ D .x1 ˙ x2/=
p
2: (1.3.73)

The following is known as Fernique’s theorem, see [95], page 16, and also the original
source [118].

Proposition 1.3.36 (Fernique’s Theorem). Let E be a real separable Fréchet space
and  W E ! Œ0;C1� be a measurable sub-additive function with the property that
.˛x/ D j˛j.x/ for all ˛ 2 R and x 2 E. Next, let � 2 P .E/ be such that the
measure �˝ � on E2 is invariant under the transformation

E2 3 .x1; x2/ 7! .T�.x1; x2/; TC.x1; x2// 2 E2: (1.3.74)

If �.fxj.x/ < C1g/ D 1, then there exists ˛ > 0 such thatZ
E

exp
�
˛2.x/

�
�.dx/ < 1: (1.3.75)

We shall use a version of Fernique’s theorem, which describes sequences of mea-
sures. Its proof, which we give below, is a slight modification of the proof of Theo-
rem 1.3.24 in [95].

Theorem 1.3.37. Let the space E and the functional  be as in Proposition 1.3.36,
and f�N gN2N � P .E/ be a sequence, each element of which is such that �N ˝ �N
is invariant under the transformation (1.3.74). Assume also that for all N 2 N,Z

E
2.x/�N .dx/ � b; (1.3.76)
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for a certain b > 0. Then, for every

˛ 2 .0; &=b/; where & D
 p

2 � 1
4

!2
log 3, (1.3.77)

and all N 2 N, it follows thatZ
E

exp
�
˛2.x/

�
�N .dx/ � C˛

defD
1X
nD0

3�2n.1�˛b=&/: (1.3.78)

Proof. Given 0 < s � t , we set

B�
s D fx 2 E j .x/ � sg; BC

t D fx 2 E j .x/ � tg: (1.3.79)

Then, for any �N ,

�N .B
�
s / � �N .BC

t / D .�N ˝ �N /.B
�
s � BC

t /

D .�N ˝ �N /
�˚
.x1; x2/ j T�.x1; x2/ 2 B�

s ; TC.x1; x2/ 2 BC
t

��
D .�N ˝ �N /

�f.x1; x2/ j .x1 � x2/ � p
2sI .x1 C x2/ � p

2tg�
� .�N ˝ �N /

�f.x1; x2/ j j.x1/ � .x2/j � p
2sI .x1/C .x2/ � p

2tg�
� .�N ˝ �N /

�f.x1; x2/ j minf.x1/I.x2/g � .t � s/=p2g�
D
h
�N

�
BC
.t�s/=p2

�i2
:

(1.3.80)

Here we have used the assumed properties of . Next we divide both sides of (1.3.80)
by Œ�N .B�

s /�
2 and arrive at

�N .B
C
t /

�N .B�
s /

�
2
4�N

�
BC
.t�s/=p2

�
�N .B�

s /

3
5
2

: (1.3.81)

By means of Chebyshev’s inequality (1.3.29) we obtain from (1.3.76)

�N .B
C
s / � b=s2:

Thus, for
s � 2

p
b; (1.3.82)

one gets �N .B�
s / � 3=4 and �N .BC

s / � 1=4 for all N 2 N. For this s, we define
tn D p

2tn�1 C s; n 2 N, and t0 D s. That is,

tn D s.1C p
2C � � � C 2n=2/; n 2 N0:

Thereby,

tn < 2
n=2�; where � D 2

p
2p

2 � 1 �
p
b. (1.3.83)
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Iterating (1.3.81) we receive

�N .B
C
tn
/ � �N .B

�
s /

	
�N .B

C
s /

�N .B�
s /


2n

� 3�2n

:

Thus, in view of (1.3.83), it follows that

�N

�
BC
2n=2�

�
� 3�2n

: (1.3.84)

Since
BC
� D

[
n2N0

�
BC
2n=2�

n BC
2.nC1/=2�

�
;

we have for ˛ < &=b,

sup
N

nR
B

C
�

exp
�
˛2.x/

�
�N .dx/

o
�

1X
nD0

exp.2nC1˛�2/ sup
N

n
�N

�
BC
2n=2�

�o

�
1X
nD0

3�2n.1�˛b=&/;

which yields (1.3.78).

1.3.5 Probability Measures on Hilbert Spaces

Separable Hilbert spaces are Polish spaces and measures defined on such spaces possess
the properties described in Subsection 1.3.4. At the same time, they have additional
properties related to their specific structure, which are summarized in the current sub-
section. Here H stands for a real separable Hilbert space endowed with the scalar
product . � ; � /H, corresponding norm and with the standard Borel � -algebra. Most of
its properties coincide with the corresponding properties of complex Hilbert spaces
described in Subsection 1.1.2. In this case, we shall refer to their description in this
subsection.

Along with H, we also consider a larger Hilbert space, H�. For such spaces, we
suppose that the embedding operator O W H ! H� is of Hilbert–Schmidt type, see
Definition 1.1.23, and that the image of H in H� is dense in H�. The topology induced
from H� on H is then weaker than its own topology. We shall call H� a Hilbert–
Schmidt extension of the space H. For a detailed description of such extensions, we
refer to the book [62].

Given � 2 P .H/, we set

'�.z/ D
Z

H
exp.i.z; x/H/�.dx/; z 2 H: (1.3.85)

Since the function H 3 x 7! exp.i.z; x/H/ 2 C is bounded and continuous for any
z 2 H, the above integral is well defined. The function '� is called the characteristic



1.3 Stochastic Analysis 119

function (or the Fourier transform) of the measure �. It determines the measure in the
following sense.

Proposition 1.3.38. Let �;�0 2 P .H/ be such that '� D '�0 . Then � D �0.

Proof. The family of functions fexp.i.z; � /H/ j z 2 Hg certainly satisfies the condi-
tions of Theorem 1.3.26 and thereby is a measure-defining class.

Other properties of characteristic functions (1.3.85) are described by the renowned
Minlos–Sazonov theorem (see [217] and e.g., page 15 of [283]), which is an infinite-
dimensional version of the classical Bochner theorem. We recall that a function
' W H ! C is called positive definite if for any n 2 N, arbitrary x1; : : : ; xn 2 H
and c1; : : : ; cn 2 C,

nX
j;kD1

'.xj � xk/cj Nck � 0:

Proposition 1.3.39 (Minlos–Sazonov theorem). A function ' W H ! C is the charac-
teristic function of a measure � 2 P .H/ if and only if the following three conditions
are satisfied:

(a) '.0/ D 1;

(b) ' is positive definite;

(c) there exists a Hilbert–Schmidt extension H� of the space H such that the map
H� 	 H 3 x 7! '.x/ 2 C is continuous with respect to the topology induced
by H� on H.

Since H is a metric space, the weak topology on the set P .H/ is defined in the
usual way (see Definition 1.3.29). Let K � P .H/ be such that for every � 2 K ,Z

H
kxk2H�.dx/ < 1: (1.3.86)

Furthermore, let fxngn2N � H be an orthonormal basis of H. The following statement,
the proof of which can be found on page 154 of [239], gives a condition for K to be
relatively compact in the weak topology.

Proposition 1.3.40. If

lim
N!C1 sup

�2K

Z
H

� 1X
nDNC1

.x; xn/
2
H

�
�.dx/ D 0; (1.3.87)

then the set K is weakly relatively compact.

Another statement, also taken from [239], page 153, shows the role of the charac-
teristic functions in establishing weak convergence. Here we employ positive bounded
operators. In the case of real spaces, the corresponding property is defined as follows.
A bounded linear operator A W H ! H is called positive if it is: (a) self-adjoint, i.e.,
.Ax; x/H D .x; Ax/H for all x 2 H; (b) .x; Ax/H � 0 for all x 2 H.
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Proposition 1.3.41. Let a sequence f�ngn2N � P .H/ be weakly relatively compact
and let the sequence of their characteristic functions f'�n

gn2N converge point-wise
to a function ' W H ! C. Then this ' is the characteristic function of a measure
� 2 P .H/ and the sequence f�ngn2N converges weakly to �.

A measure � 2 P .H/ is called Gaussian, if, cf. (1.3.11),

'�.x/ D exp
�
i.a; x/H � 1

2
.x; Sx/H

�
; (1.3.88)

where a 2 H and S W H ! H is linear, positive, and trace-class, see Definitions 1.1.23
and 1.1.24. The vector a is called the mean value of �, whereas S is its covariance
operator.

Theorem 1.3.42. Let a sequence of zero mean Gaussian measures f�mgm2N on a sep-
arable Hilbert space H be given. Let also each �m have covariance operator Sm.
Suppose that the sequence fSmgm2N converges in the trace norm to an operator
S W H ! H, which by (1.3.88) defines a zero mean Gaussian measure � . Then it
follows that �m ) � .

Proof. For a trace-class operator A W H ! H, its trace norm is

kAktrace D tracejAj defD
1X
nD1

.xn; jAjxn/H; (1.3.89)

where fxngn2N is an orthonormal basis of H and jAjDp
A�A, see (1.1.34). Note that

the value of the sum in (1.3.89) is independent of the choice of the basis fxngn2N. By
the positivity of Sm, kSmktrace D trace.Sm/ for each m 2 N, see (1.1.58).

If A� D A, then A D AC � A�, where both A˙ are positive, see (1.1.31). Fur-
thermore, jAj D AC C A�, which immediately yields that

.x; Ax/H � .x; jAjx/H:
Then for self-adjoint A and B , we have

.x; Ax/H D .x; Bx/H C .x; .A�B/x/H � .x; Bx/H C .x; jA�Bjx/H: (1.3.90)

For a given " > 0, let m" be such that for all m > m",

tracejSm � S j < "=2: (1.3.91)

Then for any N 2 N, by (1.3.90) we have

1X
nDNC1

.xn; Smxn/H �
1X

nDNC1
.xn; Sxn/H C

1X
nDNC1

.xn; jSm � S jxn/H

�
1X

nDNC1
.xn; Sxn/H C tracejSm � S j:
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For " as in (1.3.91), one can pick N" such that for all N > N",

1X
nDNC1

.xn; Sxn/H < "=2;

which yields that for all m > m" and N > N",

1X
nDNC1

.xn; Smxn/H < ": (1.3.92)

As every Sm is of trace-class, for each m D 1; : : : ; m", one can pick Nm such that
(1.3.92) holds for each such m and N > Nm. Therefore, for

N > maxfN1; : : : ; Nm"
; N"g;

the inequality (1.3.92) holds for all m 2 N. Hence,

lim
N!C1 sup

m2N

1X
nDNC1

.xn; Smxn/H D lim
N!C1 sup

m2N

Z
H

� 1X
nDNC1

.xn; x/
2
H

�
�m.dx/ D 0:

This yields (1.3.87); thus, the sequence f�mgm2N is weakly relatively compact. Since
each �m is Gaussian, its characteristic function is, cf. (1.3.88),

'�m
.y/ D exp

�
� 1

2
.y; Smy/H

�
; y 2 H:

As the trace norm convergence of fSmgm2N implies its strong convergence, we have

'�m
.y/ ! exp

�
� 1

2
.y; Sy/H

�
; for all y 2 H.

Thereby, the assertion follows by Proposition 1.3.41.

Now let us consider measures on H, which possess exponential moments.

Definition 1.3.43. By M.H/ we denote the set of all probability measures on H for
each of which, there exists a > 0, such thatZ

H
exp.akxk2H/�.dx/ < 1: (1.3.93)

Characteristic functions of such measures possess useful analytic properties. To de-
scribe them we should pass to complex variables by introducing the following extension
of the space H:

Hc D fz D x C iy j x; y 2 Hg: (1.3.94)

We endow this set with the natural linear operations over the field C and with the norm

kzkHc D
q

kxk2H C kyk2H;
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which turns Hc into a complex Banach space. Furthermore, for a linear operator
T W H ! H, (respectively, for u 2 H), and z D x C iy, we set T z D T x C iTy
(respectively, .u; z/H D .z; u/H D .u; x/H C i.u; y/H).

Now let us provide some facts from the infinite-dimensional holomorphy, taken
mainly from the monographs [97], [221], [225].

Definition 1.3.44 ([97], pages 144, 152). Given a complex Banach space E, letU � E
be open. A function ' W U ! C is called G-holomorphic on U if for every u 2 U

and v 2 E, the function of a single complex variable C 3 � 7! '.u C �v/ 2 C is
holomorphic in some neighborhood of zero. AG-holomorphic function on U is called
holomorphic on U if it is continuous. A function f W E ! C is called holomorphic if
it is holomorphic on E.

By Hol.E/we denote the set of all holomorphic functions on E. A functionf W E !
C is called locally bounded if it maps bounded subsets of E into bounded subsets of C.

Proposition 1.3.45 ([97], page 153). A G-holomorphic function on E is continuous
and hence holomorphic if and only if it is locally bounded.

Given n 2 N, let En stand for the n-th Cartesian power of E. Let alsoˆ W En ! C
be linear with respect to each of its arguments. Such functions are called n-linear. A
function 
 W E ! C is called an n-monomial if there exists an n-linear function ˆ,
such that 
.u/ D ˆ.u; : : : ; u/. By construction, an n-monomial isG-holomorphic on
E and, by Proposition 1.3.45, it is continuous (and hence holomorphic) if and only if

k
k defD sup
u2B

j
.u/j < 1; (1.3.95)

where B is the unit ball in E, i.e., B D fu 2 Ej kukE � 1g. The set of all continuous
n-monomials ˘n.E/ endowed with the norm (1.3.95) becomes a Banach space (see
page 22 of [97]). The set ˘0.E/, i.e., the set of all complex-valued constant functions
on E, will be identified with C. A function ' W E ! C is holomorphic if and only if for
every u 2 E, there exists a sequence of monomials f
ngn2N0

, 
n 2 ˘n.E/, dependent
on u, such that

'.uC v/ D
1X
nD0


n.v/
defD

1X
nD0

1

nŠ
'.n/.u/.v/; '.0/.u/ D '.u/; (1.3.96)

and the series converges for all v belonging to some neighborhood of 0 2 E. It is the
Taylor expansion of ' centered at u, whereas the monomials '.n/.u/ are called the
derivatives of ' at u. Such monomials are characterized by the following statement –
an infinite-dimensional analog of the Cauchy theorem.

Proposition 1.3.46 ([225], pages 21, 23). Let ' 2 Hol.E/. Then for every u; v 2 E,
n 2 N, and r > 0,

'.n/.u/.v/ D nŠ

2
 i

Z
j	 jDr

'.uC �v/

�nC1 d�; (1.3.97)
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and hence, ˇ̌
'.n/.u/.v/

ˇ̌ � nŠ

rn
sup

	 W j	 jDr
j'.uC �v/j: (1.3.98)

The latter estimate is called the Cauchy inequality.
Now let us turn to the analytic properties of characteristic functions of measures

obeying (1.3.93).

Lemma 1.3.47. For every � 2 M.H/, its characteristic function '� can be extended
to a function from Hol.Hc/.

Proof. For � 2 M.H/ and � 2 C, we set

A�.�/ D
Z

H
exp.�kxk2H/�.dx/: (1.3.99)

By Definition 1.3.43 there exists a 2 .0;C1/ such that A�.a/ < 1. Let us show
that A� is holomorphic in the disc f� 2 C j j�j < ag. To this end we fix x 2 H and
set f .�/ D exp.�kxk2H/. It is an entire function of a single complex variable and its
derivatives at zero are f .n/.0/ D kxk2nH , n 2 N0. By the Cauchy inequality for f we
have

kxk2nH � nŠ

an
exp.akxk2H/;

which immediately yields

A.n/� .0/ D
Z

H
kxk2nH �.dx/ � nŠ

an

Z
H

exp.akxk2H/�.dx/ D nŠ

an
A�.a/:

Thus, A� is holomorphic in the disc j�j < a. By the Cauchy–Schwarz inequality, see
(1.1.15), it follows that

Z
H

kxknH�.dx/ �
�Z

H
kxk2nH �.dx/

�1=2
� 1

an=2

q
nŠA�.a/: (1.3.100)

Given u; v 2 Hc , we set ui D =.u/ and

'�.uC �v/ D
Z

H
exp.i.u; x/H C i�.v; x/H/�.dx/

D
1X
nD0

.i�/n

nŠ
gn.u; v/;

(1.3.101)

where

gn.u; v/ D
Z

H
Œi.v; x/H�

n exp.i.u; x/H/�.dx/: (1.3.102)
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Then by (1.3.100) and the Cauchy–Schwarz inequality it follows that

jgn.u; v/j � kvknH
Z

H
kxknH exp.�.ui ; x/H/�.dx/

� kvknH
�Z

H
kxk2nH �.dx/

�1=2 �Z
H

exp.�2.ui ; x/H/�.dx/
�1=2

� kvknH
�
nŠ

an
A�.a/

�1=2 � 1X
mD0

2m

mŠ
kukmH

Z
H

kxkmH�.dx/
�1=2

� kvknH
�
nŠ

an

�1=2
A�.a/

� 1X
mD0

1p
mŠ

	
2kukHp

a


m �1=2
;

which means that the power series on the right-hand side of (1.3.101) converges uni-
formly on compact subsets of C to an entire function of �. Thus, the function '� is
G-holomorphic. Furthermore,

j'�.z/j �
Z

H
exp.�.zi ; x/H/�.dx/

D exp

�
1

4a
kzik2H

�Z
H

exp

�
� 1

4a
kzi � 2axk2H C akxk2H

�
�.dx/

� exp

�
1

4a
kzik2H

�
A�.a/;

(1.3.103)

where zi D =.z/. Hence, the function '� is locally bounded, which in view of
Proposition 1.3.45 completes the proof.

By the statement just proven the function

f�.z/ D
Z

H
exp..z; x/H/�.dx/; z 2 Hc ; (1.3.104)

is also holomorphic whenever � 2 M.H/. In this case, the estimate (1.3.103) implies

j'�.z/j � exp

�
1

4a
kzk2H

�
A�.a/;

jf�.z/j � exp

�
1

4a
kzk2H

�
A�.a/;

(1.3.105)

and

jf�.z/j � exp

�
1

4a
kzrk2H

�
A�.a/; zr D <.z/: (1.3.106)

The function f� will be called the Laplace transform of the measure � 2 M.H/.
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1.3.6 Properties of the Høegh-Krohn Process

The Høegh-Krohn process was constructed in Subsection 1.3.2; its canonical realization
is the process on .Cˇ ;BCˇ

; �ˇ / described in Subsection 1.3.3. The measure �ˇ is
Gaussian and such that

�ˇ .C
�
ˇ / D 1; for any � 2 .0; 1=2/. (1.3.107)

This measure is the Euclidean Gibbs measure for a single harmonic oscillator and
thereby is the basic element of the construction of Euclidean Gibbs measure for the
whole model. That is why we study this measure in detail.

The measure

The measure �ˇ can also be considered as a measure on the Hilbert space L2
ˇ

. We

recall that the scalar product in L2
ˇ

is

.x; y/L2
ˇ

D
�X

jD1

Z ˇ

0

x.j /.�/y.j /.�/d�: (1.3.108)

The measure �ˇ is uniquely determined by its Fourier transform, cf. (1.3.88),Z
L2

ˇ

exp.i.x; y/L2
ˇ
/�ˇ .dy/ D exp


�1
2

�
x; Sˇx

�
L2

ˇ

�
; (1.3.109)

where Sˇ W L2
ˇ

! L2
ˇ

is a strictly positive trace-class operator. Its kernel is given

in (1.3.18). If in this kernel one sets � D .am/1=4; ı D .a=m/1=2 (see (1.1.70),
(1.1.72)), it will coincide with the matrix element (1.2.125) which by (1.2.123) and
(1.2.124) determine the state %`. The operator Sˇ can also be written in the form

Sˇ D ı��2�1 ˝ ��.d=d�/2 C ı2
��1 �

; (1.3.110)

where 1 is the identity operator in R� . There exists an orthonormal basis of L2
ˇ

con-
sisting of the eigenvectors of Sˇ . Let f}j g; j D 1; : : : ; �, be the canonical basis of

R� (this means }.j /j 0 D ıjj 0). For k 2 K defined in (1.3.20), we set

ek.�/ D

8̂<
:̂
.
p
2=ˇ/ cos k�; k > 0I

�.p2=ˇ/ sin k�; k < 0Ip
1=ˇ; k D 0:

(1.3.111)

Then the basis ofL2
ˇ

mentioned above consists of �j;k D }j˝ek , k 2 K; j D 1; : : : �,
such that

Sˇ �j;k D sk.�; ı/�j;k; sk.�; ı/ D ı��2

ı2 C k2
D 1

mk2 C a
: (1.3.112)
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By (1.3.21) the integral kernel Sjj
0

ˇ
.�; � 0/ of the operator (1.3.110) is

S
jj 0

ˇ
.�; � 0/ D ıjj 0Sˇ .�; �

0/; j; j 0 D 1; : : : ; �; �; � 0 2 Œ0; ˇ�;
Sˇ .�; �

0/ defD
X
k2K

sk.�; ı/ek.�/ek.�
0/ D ˆˇ .j� � � 0jˇ /; (1.3.113)

where for � 2 .0; ˇ/, we have set

ˆˇ .�/
defD 1

2
p
amŒ1 � exp.�ˇpa=m/�

�
n
expŒ��

p
a=m�C expŒ�.ˇ � �/

p
a=m�

o
:

(1.3.114)

Clearly, ˆˇ .�/ � ˆˇ .0/; hence,

Sˇ .�; �
0/ � Sˇ .�; �/

D 1C exp.�ˇpa=m/
2
p
amŒ1 � exp.�ˇpa=m/�

defD �:

(1.3.115)

Proposition 1.3.48. The kernel (1.3.113) obeys the estimates

Sˇ .0; 0/ � Sˇ .�; � 0/ � 1

2m
� j� � � 0jˇ ;

sup
t2Œ0;ˇ�

ˇ̌
Sˇ .t; �/ � Sˇ .t; � 0/

ˇ̌ � 1

2m
� j� � � 0jˇ ;

(1.3.116)

thus, for any p 2 N, one has

˝ ˇ̌
x.�/ � x.� 0/

ˇ̌2p ˛
�ˇ

� �.�=2C p/

�.�=2/

�
2

m

�p
� j� � � 0jp

ˇ
: (1.3.117)

Proof. For the function (1.3.114), one gets

ˇ̌
ˆˇ .�/ �ˆˇ .� C #/

ˇ̌ � sup
t2Œ0;ˇ�

ˇ̌
ˆ0
ˇ .t/

ˇ̌ � j#jˇ D 1

2m
� j#jˇ ; (1.3.118)

which yields both estimates in (1.3.116). The estimate (1.3.117) is obtained from the
identities

˝�
x.j /.�/ � x.j /.� 0/

�2p˛
�ˇ

D .2p/Š

pŠ
� �Sˇ .0; 0/ � Sˇ .�; � 0/

�p
andDn �X

jD1

�
x.j /.�/ � x.j /.� 0/

�2opE
�ˇ

D 22p � �.�=2C p/

�.�=2/
� �Sˇ .0; 0/ � Sˇ .�; � 0/

�p
;
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where the first identity is a more detailed version of (1.3.55) for a one-dimensional
Gaussian random variable, and the second identity follows from the first one after
some calculations.

Now we employ (1.3.117) to estimate hkxk2
C�

ˇ

i�ˇ
, which then can be used in esti-

mating exponential moments of �ˇ by means of Fernique’s theorem. By (1.3.58) one
has

kxk2C�
ˇ

� 2
�jx.0/j2 C Œˇ�K� .x/�

2 �
: (1.3.119)

Furthermore, by (1.3.115),

hjx.0/j2i�ˇ
D �Sˇ .0; 0/ D ��: (1.3.120)

For every p 2 N,

hK2� i�ˇ
� �hK2p� i�ˇ

�1=p D �hL2p
�;ˇ

i�ˇ

�1=p
; (1.3.121)

where the latter is defined by (1.3.49) and hence can be estimated in (1.3.50) with
q D p � 1 and C taken from (1.3.117). Thereafter, one obtains

hkxk2C�
ˇ

i�ˇ
� b� ; � 2 .0; 1=2/; (1.3.122)

where

b� D 2�� C 28C3=p.1C 1=�p/2

Œ.p � 1 � 2�p/.p � 2�p/�1=p

�
�
�.�=2C p/

�.�=2/

�1=p
� ˇ
m
;

p D Œ1=1 � 2��C 1:

(1.3.123)

Here Œ � � denotes integral part. Now we apply Theorem 1.3.37 and obtain the following

Proposition 1.3.49. For every � 2 .0; 1=2/ and � 2 .0; &=b� /, it follows that

Z
L2

ˇ

exp
�
�kxk2C�

ˇ

�
�ˇ .dx/ � C� .�/

defD
1X
nD0

3�2n.1�
b�=&/: (1.3.124)

Tightness

We fix the rigidity parameter a > 0 and consider the dependence of �ˇ on the massm,
which we indicate by writing �m

ˇ
. Furthermore, by writing �.m/, b� .m/ we indicate

the m-dependence of the parameters defined by (1.3.115) and (1.3.123), respectively,
cf. Theorem 1.1.60.

Theorem 1.3.50. For any m0 > 0, the family f�m
ˇ

gm2Œm0;C1/ � P .Cˇ / is tight.
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Proof. By the Arzela–Ascoli theorem the balls

B�R D fx 2 Cˇ j kxkC�
ˇ

� Rg; � > 0; R > 0; (1.3.125)

are compact in Cˇ . For m � m0, one readily gets from (1.3.115) that �.m/ � �.m0/,
and hence b� .m/ � b� .m0/. Then

hkxk2C�
ˇ

i�m
ˇ

� b� .m0/;

which by Proposition 1.3.35 yields the proof.

Finite-dimensional approximations

Here we fix also the massm and construct approximations of the measure �ˇ by mea-
sures concentrated on finite-dimensional subspaces ofCˇ , which possess certain useful
properties. Then we show that the sequences of such approximating measures converge
weakly, as measures on Cˇ , to �ˇ . The construction is based on Proposition 1.3.33
and Theorem 1.3.42.

In view of (1.3.112), the covariance operator Sˇ defined by (1.3.110) can be written
in the form

Sˇ D
�X

jD1

X
k2K

sk.�; ı/Pj;k; (1.3.126)

wherePj;k is the orthogonal projection inL2
ˇ

on the one-dimensional subspace spanned

by the eigenvector �j;k . Let fs.n/gn2N be a sequence, each element of which s.n/ D
fs.n/
k

gk2K is a summable sequence of positive numbers. For such s.n/, we set

S
.n/

ˇ
D

�X
jD1

X
k2K

s
.n/

k
Pj;k; (1.3.127)

which is a positive trace-class operatorS .n/
ˇ

W L2
ˇ

! L2
ˇ

. The sequence fS .n/
ˇ

gn2N con-

verges in the trace norm to the operator (1.3.126) if and only if the sequence fs.n/gn2N

converges in l1.K/ to fsk.�; ı/gk2K . Each S .n/
ˇ

by (1.3.109) determines a zero mean

Gaussian measure �n on L2
ˇ

. Suppose that �n.Cˇ / D 1 for every n 2 N. Thus, each
�n can be redefined as a Gaussian measure on the Banach space Cˇ . To construct the
approximation in question we consider the following sequence of operators (1.3.127).
Given L 2 N, we set N D 2L and

KN D fk D .2
=ˇ/~ j ~ D �.L � 1/;�.L � 2/; : : : ; 0; : : : ; Lg: (1.3.128)

Thereafter, we set

s
.N/

k
D ı��2

.2N=ˇ/2 Œsin .ˇk=2N/�2 C ı2
; for k 2 KN ,

s
.N/

k
D 0; for k 2 K n KN .

(1.3.129)
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Let S .N/
ˇ

be defined by (1.3.127) with this fs.N/
k

gk2K . Hence, each S .N/
ˇ

is a finite-
rank operator, see Definition 1.1.6. Let also �N be the zero mean Gaussian measure
on L2

ˇ
for which S .N/

ˇ
is the covariance operator. Such a measure is concentrated on

a finite-dimensional subspace of L2
ˇ

consisting of trigonometric polynomials; thus, it
can be redefined as a measure on the Banach space Cˇ .

Theorem 1.3.51. For the sequence of measures introduced above, it follows that �N )
�ˇ in the sense of convergence of measures on the Banach space Cˇ .

Remark 1.3.52. Since the topology of Cˇ is stronger than the topology induced on
the set Cˇ � L2

ˇ
from the Hilbert space L2

ˇ
, there exist fewer functions f W Cˇ ! R,

continuous in this induced topology than those continuous in the norm topology of
the space Cˇ . Therefore, the weak topology in the sense of the Hilbert space L2

ˇ
is

weaker than the weak topology in the sense of the Banach space Cˇ . Hence, to prove
Theorem 1.3.51 it is not enough to use Theorem 1.3.42 only.

The proof of Theorem 1.3.51 will be done in several steps. First, one observes that

each ˛k
defD .ˇk=2N/, k 2 KN , belongs to .�
=2; 
=2�. Hence,

.˛k cos˛k/
2 � .sin ˛k/

2 � ˛2k : (1.3.130)

Therefore, for k 2 KN ,

sk.�; ı/ � s
.N/

k
� c

.N/

k

defD ı��2

k2 Œcos .ˇk=2N/�2 C ı2
: (1.3.131)

Lemma 1.3.53. The sequence of the operators fS .N/
ˇ

gN22N introduced in (1.3.127)–
(1.3.129) converges in the trace norm to Sˇ .

Proof. We have to show that

lim
N!C1

X
k2K

js.N/
k

� sk.�; ı/j D 0:

By (1.3.131) this is equivalent to the following, see (1.3.18),

lim
N!C1

X
k2KN

s
.N/

k
D
X
k2K

sk.�; ı/ D �jj .0; 0/ D 1

2�2
� 1C e�ˇı

1 � e�ˇı : (1.3.132)

Given " 2 .0; 1/, we set

K 0
N D fk D .2
=ˇ/� 2 KN j j�j � L.2=
/ arcsin "g;

K 00
N D KN n K 0

N :
(1.3.133)

Then

8k 2 K 0
N W Œsin ˛k�

2 � "2; Œcos˛k�
2 � 1 � "2I

8k 2 K 00
N W Œsin ˛k�

2 > "2; Œcos˛k�
2 < 1 � "2:

(1.3.134)
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Taking this into account we getX
k2K00

N

s
.N/

k
�

X
k2K00

N

ı��2

.2N=ˇ/2 "2 C ı2
<

ı��2N
.2N=ˇ/2 "2 C ı2

! 0; (1.3.135)

as N ! C1. On the other hand, by (1.3.131) and (1.3.134)X
k2K0

N

sk.�; ı/ �
X
k2K0

N

s
.N/

k
�

X
k2K0

N

c
.N/

k

�
X
k2K0

N

ı��2

k2.1 � "2/C ı2

D
X
k2K0

N

sk
�
�Œ1 � "2�1=4; ıŒ1 � "2��1=2�:

(1.3.136)

Since " can be taken arbitrarily small, one gets from this estimate that

lim
N!C1

X
k2KN

s
.N/

k
D lim
N!C1

X
k2K0

N

s
.N/

k
D
X
k2K

sk.�; ı/;

which completes the proof.

Therefore, by Theorem 1.3.42 the sequence of measures f�N g converges to the
measure �ˇ weakly in the Hilbert space L2

ˇ
. Now we show that this sequence is tight

in Cˇ which, by Proposition 1.3.33, will give us the convergence to be proven.

Lemma 1.3.54. For every � 2 .0; 1=2/, there exists Qb� > 0 such that for all N 2 N,Z
L2

ˇ

kxk2C�
ˇ
�N .dx/ � Qb� : (1.3.137)

Thus, the sequence f�N gN2N is tight in the Banach space Cˇ .

Proof. By (1.3.127) for any �N and j; j 0 D 1; : : : ; �, one obtains

hx.j /.s/x.j 0/.t/i�N
D
X
k2K

�
S
.N/

ˇ
�k;j .s/

�
�k;j 0.t/

D ıjj 0

X
k2K

s
.N/

k
ek.s/ek.t/:

(1.3.138)

For a fixed " > 0, by (1.3.131), (1.3.133), and (1.3.134) it follows that

s
.N/

k
� ı��2

k2.1 � "2/C ı2
; k 2 K 0

N I

s
.N/

k
� ı��2

.2N=ˇ/2"2 C ı2
<

ı��2

k2.2"=
/2 C ı2
; k 2 K 00

N I

s
.N/

k
D 0 � ı��2c

k2 C ı2c
; k 2 K n KN ;
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where the latter estimate holds for any c > 0. Thereby, for all k 2 K ,

s
.N/

k
� ı��2c=.k2 C ı2c/; c D maxfŒ1 � "2��1; .
=2"/2g: (1.3.139)

The minimal value of c is achieved at " D 
=
p

2 C 4, in view of which we set

c D 1C 
2=4: (1.3.140)

Thereafter, by (1.3.138) and (1.3.112) we obtain

hjx.0/j2i�N
D �ˇ�1 X

k2KN

s
.N/

k
�
X
k2K

�ˇ�1ı��2c
k2 C ı2c

D �ˇ�1 X
k2KN

1

.m=c/k2 C a
;

(1.3.141)

where c is given in (1.3.140).
To estimate the integral of the second term in (1.3.119) we employ Proposi-

tion 1.3.12, as it was done in (1.3.121). Since the measures �N , N 2 N, are Gaussian,
we can use the factorization (1.3.55) to obtain,

hjx.�/ � x.� 0/j2pi�N
� 22p

�.�=2C p/

�.�=2/
A
p
N � j� � � 0jp

ˇ
; (1.3.142)

where the constant AN has to be found from the p D 1 case. Applying (1.3.139) we
get from (1.3.138) the estimate

hjx.�/ � x.� 0/j2i�N
� �

p
c
X
k2K

Qı Q��2

k2 C Qı2 Œek.�/ � ek.� 0/�2;

with Q� D � and Qı D ı
p
c. Then by (1.3.117),

hjx.�/ � x.� 0/j2i�N
� �

p
c Qı Q��2j� � � 0jˇ

D �c

m
� j� � � 0jˇ ;

(1.3.143)

which is independent of N . For a given � 2 .0; 1=2/, one sets p D Œ1=1 � 2��, cf.
(1.3.123), and obtains, see (1.3.121),

hK2� i�N
� �hL2p

�;ˇ=2
i�N

�1=p
� 27C3=p.1C =�p/2

Œ.p � 1 � 2�p/.p � 2�p/�1=p �
�
�.�=2C p/

�.�=2/

�1=p
� cˇ

1�2�

m
:

Thereafter, the estimate (1.3.137) follows from (1.3.141) and the latter estimate with Qb
as in (1.3.123) but with m replaced by m=c with c being as in (1.3.140). In particular,
this means that � in the first summand has to be replaced by, cf. (1.3.115),

Q� D
r

c

4am
� 1C exp

� � ˇpac=m�
1 � exp

� � ˇpac=m� :
Now the stated tightness follows from (1.3.137) by Proposition 1.3.35.
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Proof of Theorem 1.3.51. As a tight sequence, f�N gN2N has accumulation points in
P .Cˇ /, each of which ought to be �ˇ in view of Theorem 1.3.42 and Lemma 1.3.53.

In Chapter 2, we shall use the following extension of Theorem 1.3.51. Let V W R !
R be continuous and such that V.t/ � bV t

2r � cV , the constants bV and cV being the
same as in (1.1.10). Consider

�.dx/ D 1

Z
exp

�
�
Z ˇ

0

V .x.�// d�

�
�ˇ .dx/;

Z D
Z
Cˇ

exp

�
�
Z ˇ

0

V .x.�// d�

�
�ˇ .dx/;

(1.3.144)

and

�N .dx/ D 1

ZN
exp

�
� ˇ

N

N�1X

D0

V

�
x

�
�

N
ˇ

���
�N .dx/;

ZN D
Z
Cˇ

exp
�

� ˇ

N

N�1X

D0

V

�
x

�
�

N
ˇ

���
�N .dx/:

(1.3.145)

with N D 2L, L 2 N.

Theorem 1.3.55. The sequence f�N g of measures introduced in (1.3.145) converges
weakly to the measure � in the sense of convergence of measures on the Banach
space Cˇ .

Proof. For an even N , we set

FN .x/ D exp
�

� ˇ

N

N�1X

D0

V

�
x

�
�

N
ˇ

���
; x 2 Cˇ :

All these functions FN are bounded and continuous, and for all x 2 Cˇ ,

FN .x/ ! exp

�
�
Z ˇ

0

V.x.�//d�

�
; N ! C1:

For a bounded continuous function G W Cˇ ! R and even N;M 2 N, we set

aNM D
Z
Cˇ

G.x/FN .x/�M .dx/:

With the help of Theorem 1.3.51 and Lebesgue’s dominated convergence theorem, see
Proposition 1.3.1, one easily shows that

lim
N!C1 lim

M!C1 aNM D lim
M!C1 lim

N!C1 aNM

D
Z
Cˇ

G.x/ exp

�
�
Z ˇ

0

V .x.�// d�

�
�ˇ .dx/:

(1.3.146)
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Therefrom, by a standard diagonal procedure one gets

aNN !
Z
Cˇ

G.x/ exp

�
�
Z ˇ

0

V.x.�//d�

�
�ˇ .dx/; N ! C1:

which yields the proof.

As we shall see below, the property of�ˇ described by Proposition 1.3.49 plays a key
role in our theory. Along with this property we employ also a property of the measures
�N , N 2 N, which can be thought of as a uniform integrability of expf�kxk2

C�
ˇ

g. We
recall that the absolute constant & was defined in (1.3.77).

Theorem 1.3.56. For � 2 .0; 1=2/, let Qb� be as in (1.3.137). Then for any � 2
.0; &= Qb� / and N 2 N, the following holds:Z

L2
ˇ

exp
�
�kxk2C�

ˇ

�
�N .dx/ � zC� .�/ defD

1X
nD0

3�2n.1�
 Qb�=&/: (1.3.147)

Proof. The proof follows immediately from the estimate (1.3.137) by Theorem 1.3.37.

Notably, in (1.3.147) we can integrate over the space Cˇ .

Corollary 1.3.57. For � 2 .0; 1=2/, let Qb� be as in (1.3.137). Let also � be in .0; &= Qb� /
for some � 2 .0; 1=2/. Then the sequence of measures

Q�N .dx/ D 1

ZN .�/
exp.�kxk2Cˇ

/�N .dx/;

N D 2L; L 2 N; ZN .�/ D
Z
Cˇ

exp.�kxk2Cˇ
/�N .dx/;

(1.3.148)

converges weakly, as measures on Cˇ , to the measure

�.dx/ D exp.�kxk2Cˇ
/�ˇ .dx/

ıZ
exp.�kxk2Cˇ

/�ˇ .dx/: (1.3.149)

Proof. Fix any � 2 .0; 1=2/. By (1.3.59) and (1.3.147)

1 � ZN .�/ � zC� .�/: (1.3.150)

For every � 2 .0; &= Qb� /, there exists � > 0 such that � C � 2 .0; &= Qb� /. Then by
(1.3.59) and (1.3.150) we getZ

Cˇ

exp.�kxk2C�
ˇ
/ Q�N .dx/

� ŒZN .�/�
�1
Z
Cˇ

expŒ.� C �/kxk2C�
ˇ
��N .dx/

� zC� .� C �/:
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Thus, by Proposition 1.3.35 the sequence f Q�N gN2N is tight and hence relatively weakly
compact. Let � 2 P .Cˇ / be any of the accumulation points of this sequence and
fNngn2N � N be such that Q�Nn

) � as n ! C1. Set

f .x/ D exp.��kxk2Cˇ
/;

� > 0 being the same as in (1.3.148). Then f 2 Cb.Cˇ /; hence,

hf i Q�Nn
! hf i�; as n ! C1,

which yields

lim
n!C1 1=ZNn

.�/ D
Z
Cˇ

exp.��kxk2Cˇ
/�.dx/:

Now we take any  2 Cb.Cˇ / and set g.x/ D .x/f .x/. Then

hgi Q�Nn
! hgi�; as n ! C1.

Thereby, taking into account Theorem 1.3.51 we obtainZ
Cˇ

.x/�ˇ .dx/ D
Z
Cˇ

.x/ exp.��kxk2Cˇ
/�.dx/

ıZ
Cˇ

exp.��kxk2Cˇ
/�.dx/;

which holds for arbitrary  2 Cb.Cˇ /. As the latter set is measure-defining, this yields
that the measure � is as in (1.3.149).

Now let us return to the measures (1.3.144), (1.3.145). Similarly as above, we
obtain the following corollary of Theorem 1.3.55.

Corollary 1.3.58. Let the measures � and �N be as in Theorem 1.3.55 and � be as in
Corollary 1.3.57. Then the for arbitrary ~ > 0, the sequence of measures

Q�N .dx/ D 1

ZN .�; ~/
exp

�
�kxk2Cˇ

C ~kxk2
L2

ˇ

�
�N .dx/;

ZN .�; ~/ D
Z
Cˇ

exp
�
�kxk2Cˇ

C ~kxk2
L2

ˇ

�
�N .dx/

(1.3.151)

converges weakly, as measures on Cˇ , to the measure

�.dx/ D 1

Z.�; ~/
exp

�
�kxk2Cˇ

C ~kxk2
L2

ˇ

�
�.dx/;

Z.�; ~/ D
Z
Cˇ

exp
�
�kxk2Cˇ

C ~kxk2
L2

ˇ

�
�.dx/:

(1.3.152)

Proof. By (1.3.145) and (1.3.151) it follows that

Q�N .dx/ D 1

zZN .�; ~/
‰N .x/ Q�N .dx/;
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where Q�N is the same as in (1.3.148), zZN .�; ~/ is a normalizing factor, and

‰N .x/ D exp

~kxk2

L2
ˇ

� ˇ

N

N�1X

D0

V

�
x

�
�

N
ˇ

���
: (1.3.153)

For every x 2 Cˇ , we have

‰N .x/ ! ‰.x/
defD exp

�
~kxk2

L2
ˇ

�
Z ˇ

0

V.x.�//d�
�
; N ! C1:

Since V.t/ � bV jt j2r � cV , by Jensen’s inequality we obtain

‰.x/ � exp


ˇcV C ~kxk2

L2
ˇ

� bV
�Z ˇ

0

j.x.�//j2d�

�r�

� exp

ˇcV C r � 1

r

�
~r

bV r

�1=.r�1/�
:

Thereafter, the proof follows by Corollary 1.3.57 with the help of the diagonal method
used in the proof of Theorem 1.3.55.

1.3.7 Harmonic Oscillators and the Høegh-Krohn Process

With the help of the decomposition (1.2.119) and the representation (1.3.109), the
Gibbs state %` of a �-dimensional harmonic oscillator can be fully determined by the
Høegh-Krohn process. This connection between the measure �ˇ and the state %` is
described by the following theorem, cf. Corollary 1.2.39. We recall that the maximal
commutative subalgebra Mƒ of the algebra Cƒ consists of multiplication operators
by functions F 2 L1.R�jƒj/. By M` and C` we denote these algebras for ƒ D f`g;
�
ˇ;`
A1;:::;An

stands for the Matsubara function with ƒ D f`g.

Theorem 1.3.59. For any F1; : : : Fn 2 M` and �1; : : : �n, such that 0 � �1 � � � � �
�n � ˇ, it follows that

�
ˇ;`
F1;:::;Fn

.�1; : : : ; �n/

D %`
�
F1 exp.�.�2 � �1/H har

` /F2 : : : Fn exp.�.�1 � �n/H har
` /

�
D
Z
L2

ˇ

F1.x.�1// : : : Fn.x.�n//�ˇ .dx/

D
Z
Cˇ

F1.x.�1// : : : Fn.x.�n//�ˇ .dx/:

(1.3.154)

Proof. By Corollary 1.2.31 the family fQ`.�/ j � 2 R�g of multiplication operators
defined in (1.2.121) is � -weakly dense in M`; hence, the theorem can be proven by
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showing that (1.3.154) holds for Fi D Q`.�i /, �i 2 R� , i D 1; : : : ; n. For such
operators, by (1.3.11) and (1.3.12) one obtainsZ

L2
ˇ

F1.x.�1// : : : Fn.x.�n//�ˇ .dx/

D exp


� 1

2

nX
i;jD1

�X
kD1

�kk.�i ; �j /�
.k/
i �

.k/
j

�

D exp


� 1

2

nX
i;jD1

�X
kD1

�2.�i ; �j /�
.k/
i �

.k/
j

�

D exp


� 1

2

nX
i;jD1

.‚.�i ; �j /�i ; �j /

�

D �
ˇ;`

Q.
1/;:::;Q.
n/
.�1; : : : ; �n/:

(1.3.155)

Here we have also used (1.2.105), (1.2.124), (1.2.125), and (1.3.18).

Now let us extend the above theorem to the states of noninteracting harmonic
oscillators in arbitrary ƒ 2 Lfin. Set

L2ˇ;ƒ D
Y
`2ƒ

L2ˇ;` D fxƒ D .x`/`2ƒ j x` 2 L2ˇ g;

Cˇ;ƒ D
Y
`2ƒ

Cˇ;` D fxƒ D .x`/`2ƒ j x` 2 Cˇ g;
(1.3.156)

and
�ˇ;ƒ.dxƒ/ D

O
`2ƒ

�ˇ .dx`/: (1.3.157)

We equip L2
ˇ;ƒ

with the scalar product, cf. (1.3.108),

.xƒ; yƒ/L2
ˇ;ƒ

D
X
`2ƒ

.x`; y`/L2
ˇ

D
X
`2ƒ

�X
jD1

Z ˇ

0

x
.j /

`
.�/y

.j /

`
.�/d�; (1.3.158)

and with the corresponding norm k � kL2
ˇ;ƒ

, which turns it into a real separable Hilbert

space. In a similar way, we equip Cˇ;ƒ with the norm

kxƒkCˇ;ƒ
D sup
`2ƒ

sup
�2Œ0;ˇ�

jx`.�/j; (1.3.159)

where, as above, j � j stands for the Euclidean norm on R� .
Like�ˇ , the measure�ˇ;ƒ can be considered as a probability measure on the Hilbert

space L2
ˇ;ƒ

, concentrated on the set Cˇ;ƒ, or as a probability measure on the Banach
space Cˇ;ƒ. The next statement is a straightforward corollary of Theorem 1.3.59.
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Theorem 1.3.60. For any F1; : : : Fn 2 Mƒ and �1; : : : ; �n, such that 0 � �1 � � � � �
�n � ˇ, it follows that

%har
ˇ;ƒ

˚
F1 exp

��.�2 � �1/H har
ƒ

�
F2 : : : Fn exp

��.�1 � �n/H har
ƒ

��
D
Z
L2

ˇ;ƒ

F1.xƒ.�1// : : : Fn.xƒ.�n//�ˇ;ƒ.dxƒ/

D
Z
Cˇ;ƒ

F1.xƒ.�1// : : : Fn.xƒ.�n//�ˇ;ƒ.dxƒ/:

(1.3.160)

This theorem defines Euclidean Gibbs states for a model of noninteracting harmonic
oscillators. Our next aim is to get them for the model (1.1.3), (1.2.5). This is the subject
of the next section, where the states in question are constructed as perturbations of the
states of noninteracting harmonic oscillators.

1.4 Local Gibbs States via Stochastic Analysis

The main aim of this section is to obtain the representation of local Matsubara
functions corresponding to systems of interacting anharmonic oscillators, similar to
(1.3.160). We begin by obtaining such a representation for the partition function
Zˇ;ƒ D trace Œexp.�ˇHƒ/�. The main tool for this is a version of the Trotter–Kato
product formula, adapted to the trace operation. As a consequence, we construct a
probability measure onCˇ;ƒ, which plays the same role as the measure�ˇ;ƒ in the rep-
resentation (1.3.160). Afterwards, we prove that the Matsubara functions constructed
on multiplication operators by bounded Borel functions can be represented as integrals
with respect to this measure. Such a representation is then naturally extended to all
integrable functions, which opens the possibility to introduce Matsubara functions for
unbounded multiplication operators, which will be used in the description of a number
of physical properties of the model (1.1.3), (1.2.5). This is done in Subsection 1.4.1.
For bounded operators, the properties of the corresponding Matsubara functions are
described in Theorem 1.2.32. However, for unbounded operators, this theorem cannot
be used directly and the only possible way is to employ the mentioned integral repre-
sentation. This is realized in Subsection 1.4.2. In Subsection 1.4.3, we introduce and
study the so-called periodic local Gibbs states, which describe translation-invariant ver-
sions of our model. Finally, Subsection 1.4.4 is dedicated to the study of some analytic
properties of local Gibbs states based on the integral representation mentioned above.
A typical result here is the statement that the partition function with J``0 replaced by
tJ``0 can be extended to an entire function of t 2 C.
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1.4.1 Local Euclidean Gibbs States

Given ƒ 2 Lfin, we set

Kƒ D Kƒ.qƒ/ D �1
2

X
`;`02ƒ

J``0.q`; q`0/C
X
`2ƒ

V`.q`/: (1.4.1)

This operator acts in the Hilbert space Hƒ, see (1.2.1) and (1.2.95), and is self-adjoint
on Aƒ, defined in (1.2.4). Then the Hamiltonian (1.2.5) can be written

Hƒ D H har
ƒ CKƒ: (1.4.2)

Notice, that it is essentially self-adjoint on the set C1
0 .R

�jƒj/ of all infinitely differen-
tiable functions with compact support. We endow Hƒ with the following orthonormal
basis. For n D .n

.j /

`
/ 2 N�jƒj, we set

jnj D
�X

jD1

X
`2ƒ

n
.j /

`
;

and

‰n D
�O

jD1

O
`2ƒ

 
n

.j /

`

; (1.4.3)

where the functions  n, n 2 N0 are the same as in (1.1.70). The set f‰ngn2N�jƒj is the
basis we aimed to get. The operator H har

ƒ is self-adjoint on the domain, cf. (1.1.87)

Dom.H har
ƒ / D ˚

‰ 2 Hƒ j Pn2N�jƒj jnj2 ˇ̌.‰;‰n/Hƒ

ˇ̌2
< 1�

: (1.4.4)

Clearly,
C1
0 .R

�jƒj/ � Dom.H har
ƒ / \ Aƒ: (1.4.5)

By definition, an essentially self-adjoint operator A on the Hilbert space H is lower
bounded if there exists a real constant, say C , such that for all  2 Dom.A/,

. ;A /H � C. ; /H : (1.4.6)

As the anharmonic potentials V`, ` 2 ƒ, obey Assumption 1.1.1, the above operator
Kƒ, as well as the HamiltoniansH har

ƒ , Hƒ, are lower bounded, cf. Theorem 1.2.1. To
proceed further we need the Trotter–Kato product formula, but in a stronger version
than the one given by Proposition 1.2.29. This version, presented below, was obtained
in [150], Theorem 3.1 (see also [105], [158], [226], [227] for further developments).

Proposition 1.4.1. Let A and B be lower bounded self-adjoint operators on a Hilbert
space H , such that the operator AC B defined on Dom.A/ \ Dom.B/ is essentially
self-adjoint. Given t > 0, let additionally the operator exp.�tA/ be of trace class.
Then exp.�t .AC B// is a trace-class operator and

lim
n!C1 trace Œexp.�.t=n/A/ exp.�t=n/B/�n D trace Œexp.�t .AC B//� :
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Lemma 1.4.2. For every ˇ > 0 and ƒ 2 Lfin,

lim
n!C1 trace

�
exp.�.ˇ=n/H har

ƒ / exp.�ˇ=n/Kƒ/
�n D trace exp.�ˇHƒ/: (1.4.7)

Proof. By (1.4.5) the operators H har
ƒ , Kƒ, and Hƒ obey the conditions of Proposi-

tion 1.4.1, by which (1.4.7) follows.

For xƒ 2 Cˇ;ƒ, we set

Eˇ;ƒ.xƒ/ D �1
2

X
`;`02ƒ

J``0

Z ˇ

0

.x`.�/; x`0.�//d� C
X
`2ƒ

Z ˇ

0

V`.x`.�//d�: (1.4.8)

Proposition 1.4.3. The function Eˇ;ƒ W Cˇ;ƒ ! R is continuous and lower bounded,
that is, there exists Cƒ 2 R, such that

8xƒ 2 Cˇ;ƒ W Eˇ;ƒ.xƒ/ � Cƒ: (1.4.9)

Proof. In view of (1.1.11), one obtainsˇ̌̌ X
`;`02ƒ

J``0.x`; x`0/L2
ˇ

ˇ̌̌
� OJ0

X
`2ƒ

kx`k2L2
ˇ

: (1.4.10)

Therefore, the first summand in (1.4.8) is continuous as a map L2
ˇ;ƒ

! R and hence
continuous as a map Cˇ;ƒ ! R. The second summand is continuous in view of
the continuity of the functions V`, see Assumption 1.1.1. By (1.1.10) and Jensen’s
inequality one gets Z ˇ

0

V`.x`.�//d� � �ˇcV C ˇ1�rbV kx`k2rL2
ˇ

;

which along with (1.4.10) yields that the estimate (1.4.9) holds for

Cƒ D �ˇjƒj
"
cV C r � 1

b
1=.r�1/
V

� OJ0
2r

�r=.r�1/#
; (1.4.11)

where bV , cV , and r are the same as in (1.1.10).

Our next statement establishes an integral representation for the partition function
corresponding to the Hamiltonian (1.2.5). By means of (1.1.73) and (1.2.93), (1.2.96)
one obtains

Zhar
ˇ;ƒ

defD trace exp.�ˇH har
ƒ /

D �
trace exp.�ˇH har/

��jƒj

D
	
e�ˇı=2

1 � e�ˇı


�jƒj
:

(1.4.12)
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Proposition 1.4.4. For any ˇ > 0 and ƒ 2 Lfin,

Zˇ;ƒ
defD trace Œexp.�ˇHƒ/�
D Zhar

ˇ;ƒ

Z
Cˇ;ƒ

exp
��Eˇ;ƒ.xƒ/��ˇ;ƒ.dxƒ/: (1.4.13)

Proof. By Proposition 1.4.1 and Lemma 1.4.2 one has

Zˇ;ƒ D lim
n!C1 trace

�
exp.�.ˇ=n/Kƒ/ exp.�.ˇ=n/H har

ƒ /
�n

D lim
n!C1 trace

˚
F expŒ�.�2 � �1/H har

ƒ �F : : : F expŒ�.�1 � �n C ˇ/H har
ƒ �
�

D Zhar
ˇ;ƒ lim

n!C1 %har
ˇ;ƒ

˚
F expŒ�.�2 � �1/H har

ƒ �F : : : F expŒ�.�1 � �n/H har
ƒ �
�
;

(1.4.14)

where �k D ˇ.k � 1/=n, k D 1; : : : ; n and F is the multiplication operator by the
function

F.y/ D exp Œ�.ˇ=n/Kƒ.y/� ; y D .y`/`2ƒ 2 R�jƒj;

Kƒ.y/
defD �1

2

X
`;`02ƒ

J``0.y`; y`0/C
X
`2ƒ

V`.y`/:
(1.4.15)

Now we apply Theorem 1.3.60 to the last line in (1.4.14) and obtain

Zˇ;ƒ D Zhar
ˇ;ƒ lim

n!C1„n; (1.4.16)

where

„n D
Z
Cˇ;ƒ

exp


� ˇ

n

n�1X
kD0

Kƒ

�
xƒ

�
k

n
ˇ

���
�ˇ;ƒ.dxƒ/: (1.4.17)

Since the functionKƒ.y/ defined by (1.4.15) is lower bounded, the function under the
integral is positive and bounded by a constant. For every xƒ 2 Cˇ;ƒ, this function
converges, as n ! C1 to the function

exp
��Eˇ;ƒ.xƒ/� I

hence, by Lebesgue’s dominated convergence theorem, Proposition 1.3.1, one has

lim
n!C1„n D

Z
Cˇ;ƒ

exp
��Eˇ;ƒ.xƒ/��ˇ;ƒ.dxƒ/;

which completes the proof.

Thereafter, for every ƒ 2 Lfin, one can introduce the probability measure

�ˇ;ƒ.dxƒ/ D 1

Nˇ;ƒ
exp

��Eˇ;ƒ.xƒ/��ˇ;ƒ.dxƒ/; (1.4.18)
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where
Nˇ;ƒ D Zˇ;ƒ=Z

har
ˇ;ƒ (1.4.19)

is a normalization constant. Like the Gaussian measure�ˇ;ƒ, this measure is defined on
the Banach spaceCˇ;ƒ. At the same time, by Kuratowski’s theorem it can be redefined
as a measure on the Hilbert space L2

ˇ;ƒ
, concentrated on the subset consisting of

periodic continuous functions.
The next statement is an analog of Theorem 1.3.59.

Theorem 1.4.5. Let the probability measure �ˇ;ƒ be as in (1.4.18). Then for any
F1; : : : ; Fn 2 Mƒ, the Matsubara function constructed on these operators has the
integral representation

�
ˇ;ƒ
F1;:::;Fn

.�1; : : : ; �n/ D
Z
Cˇ;ƒ

F1.xƒ.�1// : : : Fn.xƒ.�n//�ˇ;ƒ.dxƒ/: (1.4.20)

Proof. The proof will be done by passing from taking trace to integration performed
in the representation (1.2.92), exactly as it was done in the proof of Proposition 1.4.4.
One observes that for a sequence of trace-class operators fTngn2N, which converges
in the trace norm to a certain T , and an arbitrary A 2 Cƒ,

lim
n!C1 trace.ATn/ D trace.AT /: (1.4.21)

In view of the periodicity property given by (1.2.90), in (1.4.20) we can set �1 D 0.
We also set

�i D �iC1 � �i ; i D 1; 2; : : : ; n � 1; �n D ˇ � �n: (1.4.22)

By the representation (1.2.92),

�
ˇ;ƒ
F1;:::;Fn

.0; �2; : : : ; �n/ D 1

Zˇ;ƒ
trace.‡/; (1.4.23)

where

‡ D F1 exp .��1Hƒ/ F2 exp .��2Hƒ/ : : : Fn exp .��nHƒ/ : (1.4.24)

For m1; : : : ; mn 2 N, we define

Li D exp

�
� �i

mi
Kƒ

�
; Mi D exp

�
� �i

mi
H har
ƒ

�
; i D 1; : : : ; n; (1.4.25)

and

‡m1;:::;mn
D F1 .L1M1/

m1 F2 .L2M2/
m2 : : : Fn .LnMn/

mn : (1.4.26)

Then by (1.4.21) and Proposition 1.3.60 it follows that

‡ D lim
m1;:::;mn!C1‡m1;:::;mn

(1.4.27)
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in the trace norm. Now let us rewrite (1.4.26) in the following way:

‡m1;:::;mn
D

nY
kD1

h
Fk exp

� � .t .k/1 � t .k�1/
mk�1C1/H

har
ƒ

�
� Lk exp

� � .t .k/2 � t .k/1 /H har
ƒ

�
: : : Lk exp

� � .t .k/mkC1 � t .k/mk
/H har

ƒ

�i
;

(1.4.28)

where we have set (cf. (1.4.25))

t
.0/
m0C1 D t

.1/
1 D 0; t

.k�1/
mk�1C1 D t

.k/
1 ;

t .k/s D �1 C � � � C �k�1 C
�
s � 1
mk

�
�k;

s D 1; 2; : : : ; mk C 1; k D 1; : : : ; n; �0 D 0:

(1.4.29)

By (1.4.22) �1 C � � � C �n D ˇ; hence, t .n/mnC1 � t .n/mn
D t

.1/
1 � t .n/mn

Cˇ and (1.4.28) can
be rewritten as

‡m1;:::;mn
D

n�1Y
kD1

h
Fk exp

� � .t .k/1 � t .k�1/
mk�1C1/H

har
ƒ

�
� Lk exp

� � .t .k/2 � t .k/1 /H har
ƒ

�
: : : Lk exp

� � .t .k/mkC1 � t .k/mk
/H har

ƒ

�i
� Ln exp

� � .t .n/2 � t .n/1 /H har
ƒ

�
: : : Ln exp

� � .t .1/1 � t .n/mn
C ˇ/H har

ƒ

�
:

Then by Theorem 1.3.60,

trace.‡m1;:::;mn
/

D Zhar
ˇ;ƒ

Z
Cˇ;ƒ

h nY
kD1

Fk.xƒ.�1 C � � � C �k�1//
i

�
	 nY
kD1

mkY
sD1

Lk

�
xƒ

�
�1 C � � � C �k�1 C s � 1

mk
�k

��

�ˇ;ƒ.dxƒ/

D Zhar
ˇ;ƒ

Z
Cˇ;ƒ

h nY
kD1

Fk.xƒ.�k//
i
‰m1;:::;mn

.xƒ/�ˇ;ƒ.dxƒ/;

(1.4.30)

where we have set

‰m1;:::;mn
.xƒ/

D exp
n

�
nX
kD1

mkX
sD1

�k

mk
Kƒ

�
xƒ

�
�1 C � � � C �k�1 C s � 1

mk
�k

��o
:

(1.4.31)

One observes that the last line in (1.4.30) depends on m1; : : : ; mn only through the
above ‰m1;:::;mn

.xƒ/. At the same time, for any xƒ 2 Cˇ;ƒ, the right-hand side of
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(1.4.31) converges, as minfm1; : : : ; mng ! C1, to the function

exp
� �Eˇ;ƒ.xƒ/

�
:

Then by (1.4.30),

trace.‡/ D Zhar
ˇ;ƒ

Z
Cˇ;ƒ

h nY
kD1

Fk.xƒ.�k//
i

exp
��Eˇ;ƒ.xƒ/��ˇ;ƒ.dxƒ/;

which by (1.4.18) and (1.4.23) gives (1.4.20).

Since the measure (1.4.18) uniquely determines the local Gibbs states (1.2.12), we
will call it a local Euclidean Gibbs measure. As linear functionals, such measures can
also be referred to as local Euclidean Gibbs states. They are ˇ-periodic and satisfy the
Osterwalder–Schrader positivity (OS-positivity) condition (see [235], and also [137]
and [176]). This means that for any F1; : : : Fn 2 Mƒ and any �1; : : : �n 2 Œ0; ˇ�,Z

Cˇ;ƒ

xF1.xƒ.ˇ � �1// : : : xFn.xƒ.ˇ � �n//

� F1.xƒ.�1// : : : Fn.xƒ.�n//�ˇ;ƒ.dxƒ/ � 0:

(1.4.32)

The OS-positivity follows from the stochastic positivity of the local Gibbs states proven
in Theorem 1.2.35 (see Theorem 6.1 in [176]).

1.4.2 Matsubara Functions for Unbounded Operators

We recall that the extension of the states (1.2.12) to unbounded operators was discussed
in Subsection 1.1.2. There, by xCˇ;ƒ we denoted the sets of operators to which the states
(1.2.12) can be extended. Here we describe certain families of unbounded operators
and the properties of the Matsubara functions constructed on such operators. Of course,
we are going to include into these families the operators q.j /

`
, which play a special role

in our theory (see Subsection 1.2.4).
Our first result in this direction is a generalization of Theorem 1.2.32.

Theorem 1.4.6. Let F1; : : : ; Fn W R�jƒj ! C be measurable functions, such that for
every ˇ > 0 and every � 2 Œ0; ˇ�, the functions Cˇ;ƒ 3 xƒ 7! Fi .xƒ.�//, i D
1; : : : ; n, are �ˇ;ƒ-integrable. Then the Green functions (1.2.50) constructed on the
corresponding multiplication operators F1; : : : ; Fn have the properties established by
Theorem 1.2.32, except for claim (b).

Proof. For every ˛ > 0, the functions Cˇ;ƒ 3 xƒ 7! Fi .xƒ.0//, i D 1; : : : ; n, are
�˛;ƒ-integrable. Employing this fact and (1.4.20) one can show that

traceŒFi exp.�˛Hƒ/� D Z˛;ƒ

Z
C˛;ƒ

Fi .xƒ.0//�˛;ƒ.dxƒ/ < 1: (1.4.33)



144 1 Quantum Mechanics and Stochastic Analysis

Hence, the operators yFi defD Fi exp.�˛Hƒ/ are bounded. Let f sgs2N be an orthonor-
mal basis of Hƒ, consisting of the eigenfunctions ofHƒ, the same as in (1.2.54). Then
for every ˛ > 0, the matrix elements

F
.i/
ss0

defD . s; Fi s0/Hƒ
D exp.˛Es0/. s; yFi s0/Hƒ

D exp.˛Es0/ yF .i/ss0

exist for all s; s0 2 N. This yields that for the Green functions constructed on
F1; : : : ; Fn, one has the representation (1.2.55) which can also be rewritten in the
form

G
ˇ;ƒ
F1;:::;Fn

.t1; : : : ; tn/

D 1

Zˇ;ƒ

X
s1;:::;sn2N

yF .1/s1s2
expŒi.t2 � t1 � i˛1/Es2 �

� � � � � yF .n�1/
sn�1sn

expŒi.tn � tn�1 � i˛n�1/Esn �
� yF .n/sns1

expŒi.t1 � tn � i˛n C iˇ/Es1 �;

(1.4.34)

where the positive numbers ˛1; : : : ; ˛n may be arbitrarily small. Since the operators
yF1; : : : ; yFn are bounded, the right-hand side of (1.4.34) is analytic in the domain

yDˇ
˛1;:::;˛n

D f.t1; : : : ; tn/ 2 Cn j 0 < =.t1/ < =.t2/ � ˛1 < =.t3/ � ˛2
< � � � < =.tn/ � ˛n�1 < ˇ � ˛ng;

which is nonempty for sufficiently small ˛1; : : : ; ˛n. Moreover, the Dirichlet series in
(1.4.34) converges uniformly on the closure of each such a yDˇ

˛1;:::;˛n
. Since for every

compact subset of D
ˇ
n , one finds positive ˛1; : : : ; ˛n, such that this subset is contained

in the closure of the corresponding yDˇ
˛1;:::;˛n

, the series (1.4.34) converges uniformly
on compact subsets of Dn

ˇ
.

Definition 1.4.7. The family P
.�/
ƒ consists of continuous functions F W R�jƒj ! C,

such that for all ˛ > 0, the functions

R�jƒj 3 uƒ 7! jF.uƒ/j exp
�

� ˛
X
`2ƒ

ju`j2
�

(1.4.35)

are bounded.

In the case of one-element subsets ƒ D f`g, we write simply P.�/. It is worth
noting that P

.�/
ƒ is a �-algebra.

Corollary 1.4.8. For any F1; : : : ; Fn 2 P
.�/
ƒ , the Green functions constructed on

the corresponding multiplication operators have the properties described by Theo-
rem 1.4.6.
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Proof. Given Fi 2 P
.�/
ƒ and ˛i > 0, �i 2 Œ0; ˇ�, i D 1; : : : ; n, let the function

Gi W Cˇ;ƒ ! C be defined as

Gi .xƒ/ D Fi .xƒ.�i // exp
�

� ˛i
X
`2ƒ

jx`.�i /j2
�
:

Then the function

Gi .xƒ/ exp
�
˛i
X
`2ƒ

jx`.�i /j2 �Eˇ;ƒ.xƒ/
�

is bounded on Cˇ;ƒ and measurable, thus, it is �ˇ;ƒ-integrable. This means that the
function Cˇ;ƒ 3 xƒ 7! Fi .xƒ.�i // satisfies the conditions of Theorem 1.4.6.

We recall that the Hilbert spaceL2
ˇ;ƒ

and the corresponding scalar product . � ; � /L2
ˇ;ƒ

were defined in (1.3.156) and (1.3.158). For reasons which will become clear in the
next section, we modify the measures (1.4.18) as follows:

�
yƒ

ˇ;ƒ
.dxƒ/ D 1

Nˇ;ƒ.yƒ/
exp

�
�Eˇ;ƒ.xƒ/C .xƒ; yƒ/L2

ˇ;ƒ

�
�ˇ;ƒ.dxƒ/;

Nˇ;ƒ.yƒ/ D
Z
Cˇ;ƒ

exp
�
�Eˇ;ƒ.xƒ/C .xƒ; yƒ/L2

ˇ;ƒ

�
�ˇ;ƒ.dxƒ/:

(1.4.36)

Here yƒ 2 Cˇ;ƒ and hence the function . � ; yƒ/L2
ˇ;ƒ

is measurable on Cˇ;ƒ. Clearly,

the integral in (1.4.36) exists; thus, �yƒ

ˇ;ƒ
is a probability measure on Cˇ;ƒ. We stress

that it is a local Euclidean Gibbs measure only if the components of yƒ D .y`/`2ƒ are
constant functions of � 2 Œ0; ˇ�. For .�1; : : : ; �n/ 2 Œ0; ˇ�n, we set

�
ˇ;ƒ
F1;:::;Fn

.�1; : : : ; �nIyƒ/ D
Z
Cˇ;ƒ

F1.xƒ.�1// : : : Fn.xƒ.�n//�
yƒ

ˇ;ƒ
.dxƒ/: (1.4.37)

Theorem 1.4.9. For any yƒ 2 Cˇ;ƒ and arbitrary F1; : : : ; Fn 2 P
.�/
ƒ , the functions

(1.4.37) are continuous in .�1; : : : ; �n/.

Proof. We rewrite (1.4.37) in the form

�
ˇ;ƒ
F1;:::;Fn

.�1; : : : ; �nIyƒ/ D
Z
Cˇ;ƒ

F1.xƒ.�1// : : : Fn.xƒ.�n//

�‰ˇ;ƒ.xƒIyƒ/�ˇ;ƒ.dxƒ/;
(1.4.38)

where

‰ˇ;ƒ.xƒIyƒ/ D 1

Nˇ;ƒ.yƒ/
exp

�
�Eˇ;ƒ.xƒ/C .xƒ; yƒ/L2

ˇ;ƒ

�
: (1.4.39)

As all Fi ’s are continuous, all the functions Cˇ;ƒ 3 xƒ 7! Fi .xƒ.�i //, as well as the
functions Œ0; ˇ�n 3 .�1; : : : ; �n/ 7! Fi .xƒ.�i // are continuous. Set

R.xƒ/ D max
iD1;:::;n sup

�i 2Œ0;ˇ�
jFi .xƒ.�i //j: (1.4.40)
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Since all Fi ’s belong to P
.�/
ƒ , the function

ŒR.xƒ/�
n‰ˇ;ƒ.xƒIyƒ/ � 0

is �ˇ;ƒ-integrable; hence,

�.dxƒ/ D ŒR.xƒ/�
n‰ˇ;ƒ.xƒIyƒ/�ˇ;ƒ.dxƒ/ (1.4.41)

is a finite Borel measure on Cˇ;ƒ. It is tight since Cˇ;ƒ is a Polish space. Therefore,
for any " > 0, there exists a compact subset Y " � Cˇ;ƒ, such that

�
�
Cˇ;ƒ n Y "� < "=4: (1.4.42)

Given ı > 0, we set

„ı D sup
ˇ̌̌
�
ˇ;ƒ
F1;:::;Fn

.�1; : : : ; �nIyƒ/ � �ˇ;ƒF1;:::;Fn
.� 0
1; : : : ; �

0
nIyƒ/

ˇ̌̌
; (1.4.43)

where the supremum is taken over the subsets of Œ0; ˇ�n defined by the condition, cf.
(1.3.23),

max
iD1;:::;n j�i � � 0

i j < ı:

Then for such ı and a fixed xƒ 2 Cˇ;ƒ, we set

Wı.xƒ/ D max
iD1;:::;n sup

j�i �� 0
i
j<ı

ˇ̌
Fi .xƒ.�i // � Fi .xƒ.� 0

i //
ˇ̌
: (1.4.44)

Since all Fi W R�jƒj ! C are continuous, in order that Y " be compact it is necessary
and sufficient that the following conditions be satisfied simultaneously (see page 213
of [239]):

lim
ı#0

sup
xƒ2Y "

Wı.xƒ/ D 0;

sup
xƒ2Y "

R.xƒ/ < 1;
(1.4.45)

where R was defined in (1.4.40). Now let us estimate „ı . By (1.4.40), (1.4.41),
(1.4.43), and (1.4.44) one obtains

„ı � n

Z
Y "

Wı.xƒ/ŒR.xƒ/�
n�1‰ˇ;ƒ.xƒIyƒ/�ˇ;ƒ.dxƒ/C 2�.Cˇ;ƒ n Y "/:

In view of (1.4.45), one can choose ı so small, that the first summand on the right-hand
side is less than "=2. The second one is also less than "=2 by (1.4.42), which completes
the proof.

Unlike in Theorem 1.4.6, here we have no information about the analytic properties
of the functions (1.4.38) if the components of yƒ are not constant.
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1.4.3 Periodic Local Gibbs States

If L is a crystal lattice, the corresponding Gibbs states possess additional properties,
which can be used in the analysis of such states. Recall that in this case, we suppose
that L is the lattice Zd endowed with the metric (1.1.1).

Definition 1.4.10. The model (1.1.3), (1.1.8) is said to be translation-invariant if the
anharmonic potentials are the same at each site, i.e., V` D V , and the dynamical matrix
.J``0/ is invariant with respect to the translations of the lattice. The latter means that
for every `0 2 Zd , one has J.`C`0/.`0C`0/ D J``0 for all `; `0.

For `s D .`s1; : : : ; `
s
d
/ 2 Zd , s D 0; 1, such that `0j < `

1
j for all j D 1; : : : ; d , we

set
ƒ D f` D .`1; : : : ; `d / j `0j � j̀ � `1j ; j D 1; : : : ; dg: (1.4.46)

Such sets will be called boxes. As usual, we define

ƒC ` D f`0 C ` j `0 2 ƒg:
For a boxƒ, by P.ƒ/we denote the family of boxes which has the following properties:

(a) P.ƒ/ D fƒ0 j 9` 2 Zd W ƒ0 D ƒC `gI
(b) Zd D

[
ƒ02P.ƒ/

ƒ0I (1.4.47)

(c) 8 ƒ0; ƒ00 2 P.ƒ/ W ƒ0 ¤ ƒ00 ) ƒ0 \ƒ00 D ;:
Therefore, P.ƒ/ is the partition of the lattice by the translates ofƒ. Clearly the lattice
Zd is an additive group and those ` which appear in the definition of P.ƒ/ constitute
its subgroup, which we denote by Zd

ƒ. In what follows, P.ƒ/ D fƒC ` j ` 2 Zd
ƒg.

The factor-group Zd=Zd
ƒ may be interpreted as the group of all translations of the

torus which one obtains by identifying the opposite walls of the box ƒ. The distance
between the points of this torus is set to be

j` � `0jƒ D min
Q̀2Zd

ƒ

j` � .`0 C Q̀/j: (1.4.48)

Given `; `0 2 ƒ and j D 1; : : : ; d , we write j j̀ � `0
j jƒ meaning the above distance

between ` and .`1; : : : ; j̀�1; `0
j ; j̀C1; : : : ; `d / 2 ƒ.

If the dynamical matrix .J``0/ is translation-invariant, its elements depend on the
differences j j̀ � `0

j j, j D 1; : : : ; d , only, i.e., there exists a function, f W Zd ! R,
such that

J``0 D f .j`1 � `0
1j; : : : ; j`d � `0

d j/: (1.4.49)

For this function and a box ƒ, we set

Jƒ``0 D f .j`1 � `0
1jƒ; : : : ; j`d � `0

d jƒ/; `; `0 2 ƒ: (1.4.50)
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Then the matrix .Jƒ
``0/`;`02ƒ is invariant under the action of the factor-group. By means

of it we introduce the periodic Hamiltonian

H
per
ƒ D �1

2

X
`;`02ƒ

Jƒ``0.q`; q`0/C
X
`2ƒ

�
H har
` C V.q`/

�
; (1.4.51)

whereH har
`

is the same as in (1.1.3). By means of the local Hamiltonian we introduce
the periodic local Gibbs state %per

ˇ;ƒ
, defined by the same formula (1.2.12). Note that

such states can be defined for boxes only. Clearly, they possess all the properties
established for the states %ˇ;ƒ. In particular, we can represent them by means of
periodic local Euclidean Gibbs measures

�
per
ˇ;ƒ

.dx/ D 1

N
per
ˇ;ƒ

expŒ�Eper
ˇ;ƒ

.xƒ/��ˇ;ƒ.dxƒ/;

E
per
ˇ;ƒ

.xƒ/ D �1
2

X
`;`02ƒ

Jƒ``0.x`; x`0/L2
ˇ;ƒ

C
X
`2ƒ

Z ˇ

0

V.x`.�//d�;

N
per
ˇ;ƒ

D
Z
Cˇ;ƒ

expŒ�Eper
ˇ;ƒ

.xƒ/��ˇ;ƒ.dxƒ/:

(1.4.52)

The periodic Matsubara functions constructed according to (1.4.20) with the measure
�

per
ˇ;ƒ

have the same relationship with the Green functions corresponding to the state

%
per
ˇ;ƒ

. In addition, the moments

hx.j1/

`1
.�1/ : : : x

.jn/

`n
.�n/i�per

ˇ;ƒ
; `1; : : : ; `n 2 ƒ; j1; : : : ; jn D 1; : : : ; �; (1.4.53)

are invariant with respect to the action of Zd=Zd
ƒ.

1.4.4 Analytic Properties of Local Gibbs States

Given yƒ 2 L2
ˇ;ƒ

, let us consider, cf. (1.4.36),

�ˇ;ƒ.t; �/
defD
Z
Cˇ;ƒ

exp
� t
2

X
`;`02ƒ

J``0.x`; x`0/L2
ˇ

C �.xƒ; yƒ/L2
ˇ

�

� exp
�

�
X
`2ƒ

Z ˇ

0

V.x`.�//d�
�
�ˇ;ƒ.dxƒ/;

(1.4.54)

where t and � are complex variables. Then �ˇ;ƒ.1; 1/ D Nˇ;ƒ.yƒ/. Similarly, for
a box ƒ, one defines � per

ˇ;ƒ
.t; �/. By letting t vary in the interval Œ0; 1� we obtain an

interpolation between the zero and the full interaction. Likewise, one can switch on
and off the linear term. Our aim is to show that the dependence of �ˇ;ƒ on t and � is
analytic. To this end we use the Vitali theorem which we present here in the version
suitable for our purpose. More details on this theorem can be found in [273].
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Proposition 1.4.11. Given a domain O � C, let a sequence of functions fn W O ! C,
n 2 N, holomorphic in O, have the following properties: (a) for every compact subset
K � O, there exists CK > 0, such that supz2K jfn.z/j � CK for all n 2 N; (b) there
exists a function f W O ! C and a subset S � O, which has an accumulation point
z0 2 C, such that fn.z/ ! f .z/, as n ! C1, for every z 2 S . Then this sequence
ffngn2N converges to f uniformly on compact subsets of O and hence f is also
holomorphic in O.

Now we present our result.

Proposition 1.4.12. The above introduced �ˇ;ƒ and � per
ˇ;ƒ

are entire functions of both
variables.

Proof. We prove that �ˇ;ƒ is an entire function of one variable, say t , at a fixed value
of the other one. Then the claimed property of �ˇ;ƒ will follow by Hartogs’ theorem,
see e.g., [269]. The case of � per

ˇ;ƒ
is completely analogous.

Thus, we fix � 2 C and consider

�
.n/

ˇ;ƒ
.t; �/

defD
Z
Cˇ;ƒ

�
1C t

2n

X
`;`02ƒ

J``0.x`; x`0/L2
ˇ;ƒ

�n

� exp
�
�.xƒ; yƒ/L2

ˇ;ƒ
�
X
`2ƒ

Z ˇ

0

V.x`.�//d�
�
�ˇ;ƒ.dxƒ/:

(1.4.55)

For each n 2 N, � .n/
ˇ;ƒ

is a polynomial in t . Clearly, for big enough n, one has

ˇ̌̌
ˇ
�
1C t

2n

X
`;`02ƒ

J``0.x`; x`0/L2
ˇ

�n
exp

�
�.xƒ; yƒ/L2

ˇ;ƒ

� ˇ̌̌ˇ
� exp

� jt j
2

X
`;`02ƒ

jJ``0 j.kx`k2L2
ˇ

C kx`0k2
L2

ˇ

/C j� j � kxƒkL2
ˇ;ƒ

� kyƒkL2
ˇ;ƒ

�
;

(1.4.56)

which holds for all t 2 C. By Assumption 1.1.1 the function on the right-hand side of
(1.4.56) is integrable with respect to the measure

exp
�

�
X
`2ƒ

Z ˇ

0

V.x`.�//d�
�
�ˇ;ƒ.dxƒ/:

Thus, by Lebesgue’s dominated convergence theorem, see Proposition 1.3.1, at every
fixed t 2 R one has

�
.n/

ˇ;ƒ
.t; �/ ! �ˇ;ƒ.t; �/: (1.4.57)

On the other hand, the estimate (1.4.56) yields for f� .n/
ˇ;ƒ

g the bounds necessary for
the Vitali theorem to be applied. Then the proof follows. The claimed property with
respect to the variable � is obtained in the same way.
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Definition 1.4.13. Given ƒ 2 Lfin, the family Eƒ consists of continuous functions
f W Cˇ;ƒ ! C, such that for all � > 0 and xƒ 2 Cˇ;ƒ,

jf .xƒ/j � Df exp
�
�
X
`2ƒ

kx`k2Cˇ

�
; (1.4.58)

with a certain positive Df , which may depend on � . For a one-point ƒ D f`g, we
write Ef`g D E`.

Clearly, for any F1; : : : ; Fn 2 P�
ƒ, see Definition 1.4.7, and arbitrary �1; : : : ; �n 2

Œ0; ˇ�, the function

Cˇ;ƒ 3 xƒ 7! F1.xƒ.�1// : : : Fn.xƒ.�n//

belongs to Eƒ. By Proposition 1.3.49, all elements of the latter family are integrable
with respect to the measures (1.4.18) and (1.4.52). For t; � 2 C and f 2 Eƒ, we set

�ˇ;ƒ.t; � jf / D �
�ˇ;ƒ.t; �/

��1 Z
Cˇ;ƒ

f .xƒ/

� exp
�
t

2

X
`;`02ƒ

J``0.x`; x`0/L2
ˇ

C �.xƒ; yƒ/L2
ˇ

�

� exp
�

�
X
`2ƒ

Z ˇ

0

V.x`.�//d�
�
�ˇ;ƒ.dxƒ/;

(1.4.59)

where �ˇ;ƒ.t; �/ is the same as in (1.4.54).

Theorem 1.4.14. For any f 2 Eƒ, the function (1.4.59) is meromorphic in a domain,
which contains the set f.t; �/ 2 C2 j t; � 2 Rg. If ƒ is a box, the same property
is exhibited by the function which one obtains by replacing J``0 with Jƒ

``0 defined by
(1.4.50).

Proof. As in the proof of Proposition 1.4.12, it is enough to show that (1.4.59) is a
meromorphic function of t at any fixed � 2 R. For real t and � , the function (1.4.54)
is positive. For � 2 R, by Proposition 1.4.12,

�
�ˇ;ƒ.t; �/

��1
is meromorphic, as a

function of t , in a domain, which contains R. Furthermore, the integral in (1.4.59) is an
entire function of .t; �/, which can be proven similarly as Proposition 1.4.12. Hence,
as a product of an entire and a meromorphic functions, the function (1.4.59) is also
meromorphic. The case of the periodic measures (1.4.52) is analogous.

1.5 Comments and Bibliographic Notes

Section 1.1: The model (1.1.3), (1.1.8) with L being a crystal lattice and with finite
range interaction is widely used in theoretical and mathematical physics. Its derivation
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from more ‘physical’ models can be found in [86] and [284]. The metric j` � `0j,
`; `0 2 L, see (1.1.1), which we use in the condition (1.1.2) can easily be replaced by
another metric. Further discussions of the connection of the model (1.1.3), (1.1.8) with
real physical objects will be given in Chapter 4.1.

There exist at least two reasons for studying systems of interacting oscillators –
both classical and quantum. First, they are used in solid state physics as models of
crystalline substances, see [86], [179], [284], [309]. Second, they are employed as
lattice approximations in Euclidean quantum field theory, see [135], [273]. The case
of harmonic oscillators, which is much simpler, was studied in detail in [60], [149],
[310], [316], [311], [312]. Here we mention also the recent research in [119], where a
system of quantum harmonic oscillators with randomly distributed rigidities and with
anharmonic interaction terms was studied.

The material presented in Subsection 1.1.2 is quite standard, with the only exception
that we payed a little bit more attention to the notion of a state and purity of vector
states, see Theorem 1.1.15. This is important for understanding the nature of a Gibbs
state, which is a mixture of vector states. For more details on the theory of linear
operators in Hilbert spaces we refer to such well-known books as [172], [209], [214],
[255], [256]. See also B. Simon’s survey [278], where the latest results in the theory
of Schrödinger operators are discussed.

Subsection 1.1.3 contains an updated theory of a single quantum oscillator, based
among others on quite recent results of [48] (see also [270]). Due to these results,
in Theorem 1.1.47 we have established the class of anharmonic potentials for which
we know exactly the domain of self-adjointness of the Hamiltonian (1.1.109). Among
others benefits, by Theorem 1.1.47 we obtain that the eigenfunctions of the opera-
tor (1.1.109) are strict (classical) solutions of the Schrödinger equation, see Theo-
rem 1.1.51. With the help of Theorem 1.1.47 we also control the domains of analytic
families of operators employed in the proof of Theorem 1.1.60. More on Sturm’s theo-
rem and its applications can be found in B. Simon’s article [279]. A detailed study of
the eigenvalues of the Hamiltonian (1.1.123) is presented in the paper [49].

Due to quantum mechanical tunneling, quantum particles move between the re-
gions separated by potential barriers, which is classically forbidden. It is an important
example, which demonstrates how unusual the behavior of quantum particles can be
from the point of view of classical mechanics. Quite often, see [88], [148], [166],
[275], [276], a mathematical theory of this phenomenon is concentrated on semiclassi-
cal expansions for the gap parameter E1 �E0, which in our case would be in negative
powers ofm, see (1.1.7), and hence reasonable for big values ofm. Our analysis given
in Theorem 1.1.60 is essentially different. First, we prove that the gap �m (which
needs not beE1�E0, see (1.1.162)) is a continuous function ofm. Then we obtain the
small m asymptotic formula (1.1.163), which will be used in Part II in the description
of quantum effects in our model, where, in Theorem 7.1.1 we obtain also the bound
�m � Cm�1, valid for some types of the anharmonic potentials V . The tunneling
effects are well-known in modern physics and widely used in technology. We refer to
the recent physical monographs [42], [299], where detailed explanations and a wide
variety of applications of tunneling effects are presented.
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Section 1.2: Fundamentals of the theory of local Gibbs states of quantum systems can
be found in [262], [263], see also [77] for a more recent setting. In [76], [77], as
well as in [114], [145], [244], [265], one can find material related to Subsection 1.2.2.
The Høegh-Krohn theorem, in a weaker version, was first proven in [156]; its present
form has been taken from [195], see also [196] for a more general setting. It is worth
noting that without such results there is no information about the � -weak closure
of the algebra A.M/, generated by the operators evolving from the algebra of all
multiplication operators M. A typical condition imposed on this closure, see e.g.,
page 332 in [175], is that it is ‘large enough’ to be a C �-algebra of observables rep-
resenting the underlying physical system. Theorem 1.2.32 establishes a relationship
between local states (1.2.12) and their realizations as local Euclidean Gibbs measures.
The main property described by this theorem is known as multiple-time analyticity. A
similar statement appeared already in [43], see also [44], [45]. For the model consid-
ered here, statements (a) and (b) of Theorem 1.2.32 were formulated in [5]. At the
same time, the uniqueness related to statement (c) has never been discussed before
explicitly8. In Theorem 3.2 of [176], it was proven that every KMS state possesses
a kind of multiple analyticity. Here we stress that all the three properties stated in
Theorem 1.2.32 are crucial. Due to these properties and to the density established in
Theorem 1.2.24, we have obtained a complete characterization of the local state %ˇ;ƒ
by the set of Matsubara functions constructed on multiplication operators constituting
a complete family.

The approach to describing Gibbs states of quantum systems in terms of functional
integrals can be traced back to works by K. Symanzik [296], [297], [298] and J. Ginibre
[134]. E. Nelson in [229], [230] proposed to use the Markov property of the Euclidean
field for continuing it back to the Minkowski world. More about the beginnings of the
Euclidean strategy in quantum field theory can be found in F. Guerra’s article [141]. A
more abstract and systematic approach to functional integrals is presented in [96], see
also [5], [82], [83].

In K. Symanzik’s works [296], [297], [298], the representation of particle correla-
tion functions in terms of functional integrals arises in connection with the (heuristic)
construction of Euclidean quantum fields, whereas J. Ginibre in [134] uses such rep-
resentations directly in the statistical mechanics of quantum particles. Later on, the
development of this approach was continued in [156], [5]. The key concept of the latter
works was based on the fact that the Hamiltonian of the free particle H free D p2=2m

generates a Brownian motion, which means that this process is defined by the Markov
semi-group exp.�tH free/, t � 0. Adding a potential energy, as in the Hamiltonian
(1.1.3), can be handled by means of the celebrated Feynman–Kac formula, see also
[274]. An inconvenience of this approach is that the trace of exp.�tH free/ is infinite for
any t > 0. In our approach, we start with the Hamiltonian H har, which generates the
process introduced and studied by R. Høegh-Krohn in [156]. From the very beginning
this allows us to establish the right probabilistic framework for the construction of our
main objects – the Euclidean Gibbs measures of the model. In Subsection 1.2.5, we de-

8In fact, claim (c) provides a key argument for proving Proposition 3.3 in [176].
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scribe the Gibbs states of a single scalar harmonic oscillator in detail. Complementary
material can be found in [255] and in [77].

Section 1.3: As the Høegh-Krohn process, which is one of the main elements of our
theory, is a periodic Markov Gaussian process, we begin Subsection 1.3.2 by introduc-
ing the general notion of a Gaussian process. Here we also present standard examples,
including Høegh-Krohn’s process itself. Our approach is quite standard; more details
on this subject can be found in [94], [163], [274]. Periodic Gaussian Markov pro-
cesses were studied in [177]. The construction performed in Subsection 1.3.3 is also
standard. Since we crucially use continuous and Hölder continuous realizations of the
Høegh-Krohn process and those constructed from them, we describe this property in
detail. This construction employs Kolmogorov’s extension theorem and the Garsia–
Rodemich–Rumsey (GRR) lemma. In view of their importance and aiming to make
the book self-contained, we give detailed proofs of these statements. The proof of the
first one is quite standard, see e.g., [47], [274]. The proof of the GRR lemma is based
on the original source [127] and on the version given in [292]. We remark that the
GRR lemma was employed in [3] to establish the Hölder continuity of paths in models
of Euclidean quantum field theory.

The stochastic processes we use in our theory can be realized as processes in the
Hilbert spaces L2 or in the spaces of continuous or Hölder-continuous periodic paths,
which is a very useful fact for this theory. Therefore, we study canonical realizations of
stochastic processes in detail employing the Kuratowski theorem [204] in the version
given in [239]. In Subsection 1.3.4, we present relevant facts from the theory of mea-
sures on complete separable metric spaces, based on the books [64], [65], [222], [239],
[308]. General aspects of the theory of measures on topological spaces are taken from
[47], [57], [75], [107], [147], [180]. Special attention is given to the weak topology
on spaces of probability measures on Polish spaces, based on [64], [75], [65], [239].
We also present here Fernique’s theorem and prove its generalization for sequences of
measures. Here we use the original source [118] and the proof of this theorem given
in [95]. Fernique’s theorem is crucially used in proving the convergence of finite-
dimensional approximations of the local Gibbs measures, as well as in establishing
support properties of the global Euclidean Gibbs measures. As was mentioned above,
we employ the realizations of our main stochastic processes in the Hilbert space L2.
Thus, in Subsection 1.3.5 we present a number of facts from the theory of measures on
real Hilbert spaces, taken mainly from the books [62] and [283]. Since the measures
we use are sub-Gaussian, their Fourier transforms have remarkable analytic properties,
which we describe employing a number of facts on infinite-dimensional holomorphy,
taken mostly from the monographs [97], [221], [225]. In Subsection 1.3.6, the proper-
ties of the Høegh-Krohn process are studied in detail. Special attention is given to the
dependence of this process on the particle mass, which is used in the sequel to describe
the classical limit m ! C1 and quantum effects. Notably, the use of Feynman func-
tional integrals for obtaining the classical limit ¯ ! 0 can be traced back to the very
beginning of the theory of such methods, see [96] and the corresponding references
therein.
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In the subsequent parts of the present book, one of the main tools in studying
the Euclidean Gibbs measures is their approximation by Gibbs measures of certain
classical systems of ‘unbounded spins’. This approximation, performed in Chapter 2,
is based on the corresponding approximation of the Høegh-Krohn measure, which is
constructed in Subsection 1.3.6 with the help of the GRR lemma (Theorem 1.3.11 and
Proposition 1.3.12) and of the generalized Fernique theorem mentioned above. This
approximation can be considered as an approximation of the Høegh-Krohn process by
Markov chains. In the context of the Euclidean quantum field theory, such a technique
is called lattice approximation, see [142] and Chapter IX of [273]. A similar technique
is also known for the Wiener processes on manifolds [40].

In Subsection 1.3.7, we perform the main construction of Section 1.3 which yields
the realization of the Gibbs states of a single harmonic oscillator in terms of the Høegh-
Krohn measure. It is the starting point in the realization of the local Gibbs states of
interacting anharmonic oscillators in terms of path measures.

Section 1.4: In this section, we construct the mentioned realization of the local Gibbs
states of the model (1.1.3), (1.1.8) in terms of measures on path spaces, which we call
Euclidean local Gibbs measures. Here we use the analogous construction elaborated
above for noninteracting harmonic oscillators and a version of the Feynman–Kac for-
mula. With the help of stronger versions of the Trotter–Kato product formula, obtained
recently in [105], [158], [226], [227], we prove the main result of this section – Theo-
rem 1.4.5, which gives a representation of the Matsubara functions corresponding to
bounded multiplication operators in the form of moments of the local Euclidean Gibbs
measures. In Subsection 1.4.2, we extend the above result to unbounded operators,
which will allow us to include such operators into the theory. In Subsection 1.4.3, we
introduce a special type of local Gibbs states, which can be constructed if L is a crystal
lattice. These are periodic states, which one obtains by imposing periodic conditions
on the boundaries of the subsets where such measures are constructed. In the sequel,
periodic local Gibbs states play an important role, e.g., in establishing the existence
of phase transitions. Many of the technical results which we use throughout the book
are based on the properties of the local Euclidean Gibbs measures connected with their
dependence on the interaction intensities J``0 , on the anharmonic potentials V`, as well
as on ‘external fields’, which may depend on ` and � . The study of these properties
begins in Subsection 1.4.4. Its main result, Theorem 1.4.14, is then extensively em-
ployed for deriving differential equations describing the corresponding properties of
the moments of such measures.



Chapter 2

Lattice Approximation and Applications

A characteristic feature of the local Euclidean Gibbs measures studied in this book
is that the corresponding ‘one-particle’ space Cˇ is infinite-dimensional. In classical
statistical mechanics, Gibbs measures of lattice models have finite-dimensional one-
particle spaces. A typical example here is the model with unbounded spins where
such a space is R� , see [59], [206]. Our aim in this chapter is to create a framework,
in which local Euclidean Gibbs measures are approximated by local Gibbs measures
of classical lattice models. This will allow us to apply here a number of methods
elaborated for the latter models. Among them there are those based on correlation
inequalities and analytic properties of the Laplace transforms of local Gibbs measures.
In the mentioned approximation, the ‘imaginary time’ variable � 2 Œ0; ˇ� is discretized
and turned into an extra dimension of the lattice. The corresponding approach is
then called the lattice approximation of Euclidean Gibbs measures. In Section 2.1,
we construct such approximating measures and prove that they converge weakly to
the corresponding Euclidean Gibbs measures. Thereby, we rederive basic correlation
inequalities, known for the corresponding classical Gibbs measures (Section 2.2), as
well as the logarithmic Sobolev inequality (Section 2.3). In Section 2.4, we analyze
how the Lee–Yang property can be established for Euclidean Gibbs measures. In
Section 2.5, we derive a number of correlation inequalities, specific to the path measures
we consider.

2.1 Lattice Approximation

Since we are going to use the lattice approximations in various situations, we construct
them for formally new local Euclidean measures, which, however, have the form of
(1.4.36). Forƒ 2 Lfin and yƒ 2 Cˇ;ƒ, we consider the following probability measure,

�
yƒ

ˇ;ƒ
.dxƒ/ D ˆˇ;ƒ.xƒIyƒ/

O
`2ƒ

�`.dx`/;

ˆˇ;ƒ.xƒIyƒ/ D 1

Yˇ;ƒ.yƒ/
exp


1

2

X
`;`02ƒ

I``0.x`; x`0/L2
ˇ

C
X
`2ƒ

.x`; y`/L2
ˇ

�
;

�`.dx`/ D 1

Z`
exp

�
�
Z ˇ

0

W`.x`.�//d�

�
�ˇ .dx`/:

(2.1.1)

Here Z` and Yˇ;ƒ.yƒ/ are normalization factors, �ˇ is the Høegh-Krohn measure,
the functions W` W R� ! R and the interaction intensities I``0 are supposed to obey
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Assumption 1.1.1 (see p. 17). The properties of the measure �ˇ were described in
Subsection 1.3.6. In particular, according to Theorem 1.3.51 it can be approximated
by the finite-dimensional Gaussian measures �N , N D 2L, L 2 N, see (1.3.129).
Correspondingly, the measure �` can be approximated by

�N` .dx`/ D 1

ZN
`

exp


� ˇ

N

N�1X

D0

W`

�
x`

�
�

N
ˇ

���
�N .dx`/; (2.1.2)

see (1.3.144) and (1.3.145). Thus, for even N 2 N, we set

�Nƒ .dxƒ/ D
O
`2ƒ

�N` .dx`/ and �ƒ.dxƒ/ D
O
`2ƒ

�`.dx`/: (2.1.3)

For f 2 Eƒ, see Definition 1.4.13, the integrals

hf i
�

yƒ
ˇ;ƒ

D
Z
Cˇ;ƒ

f .xƒ/�
yƒ

ˇ;ƒ
.dxƒ/ (2.1.4)

will be approximated byZ
Cˇ;ƒ

f .xƒ/ˆˇ;ƒ.xƒIyƒ/�Nƒ .dxƒ/

D
Z
Cˇ;ƒ

f .N/.xƒ/ˆ
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(2.1.5)

Here

f .N/.xƒ/
defD f .x
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ƒ /;

ˆ
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(2.1.6)
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`2ƒ ; x
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; : : : ; x
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`
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.j;N/

`

defD
X
k2KN

Pj;kx`; j D 1; : : : ; �:
(2.1.7)

Here Pj;k , j D 1; : : : ; �, k 2 K , are the orthogonal projections onto the eigenvectors
�j;k , see (1.3.126), (1.3.127), as well as (1.3.20), (1.3.111).

We begin by proving the first of the statements which constitute the base of the
lattice approximation of the measure (2.1.1).

Theorem 2.1.1. For every f 2 Eƒ and all yƒ 2 Cˇ;ƒ, the following convergence
holds: Z

Cˇ;ƒ

f .N/.xƒ/ˆ
.N/.xƒIyƒ/�Nƒ .dxƒ/

�!
Z
Cˇ;ƒ

f .xƒ/ˆ.xƒIyƒ/�ƒ.dxƒ/; N ! C1:

(2.1.8)
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Proof. Let � > 0 be as in Corollary 1.3.58. Then the function

Cˇ;ƒ 3 xƒ 7! f .xƒ/ exp
�

� �
X
`2ƒ

kx`k2Cˇ

�

is bounded, see Definition 1.4.13. Furthermore, for

~ >
1

2

�
1C sup

`2ƒ

X
`02ƒ

jI``0 j
�
;

the function
Cˇ;ƒ 3 xƒ 7! ˆ.xƒIyƒ/ exp

�
� ~

X
`2ƒ

kx`k2L2
ˇ

�

is also bounded, cf. (1.4.10). Then the proof follows by Corollary 1.3.58 and (2.1.5).

In order to exploit the result just proven we have to rewrite the right-hand side
of (2.1.5) as an integral over a finite-dimensional space with respect to the Gibbs
measure of a classical lattice model. An important class of functions for which such
lattice approximations of the corresponding integrals will be constructed constitute the
functions

Cˇ;ƒ 3 xƒ 7! F1.xƒ.�1// : : : Fn.xƒ.�n//; �1; : : : ; �n 2 Œ0; ˇ�; (2.1.9)

with F1; : : : ; Fn 2 P
.�/
ƒ , see Definition 1.4.7. They belong to Eƒ and are used in

�F1;:::;Fn
.�1; : : : ; �n/

D
Z
Cˇ;ƒ

F1.xƒ.�1// : : : Fn.xƒ.�n//�
yƒ

ˇ;ƒ
.dxƒ/

D hF1.xƒ.�1// : : : Fn.xƒ.�n//i�yƒ
ˇ;ƒ

:

(2.1.10)

By Theorem 1.4.9 the functions �F1;:::;Fn
are continuous on Œ0; ˇ�n. Since the above

introduced x.N/
`

, ` 2 ƒ, belong to finite-dimensional subspaces of L2
ˇ

, they can be
written as linear combinations of x`.�ˇ=N/, � D 0; 1; : : : ; N �1, cf. (1.3.145), which
can be chosen as variables for the mentioned finite-dimensional integrals. For f given
by (2.1.9), it is convenient to construct the lattice approximations if the arguments
�1; : : : ; �n belong to the set Qˇ � Œ0; ˇ� consisting of the values of � for which �=ˇ is
rational. Then, for given �1; : : : ; �n 2 Qˇ , one finds �1; : : : ; �n 2 f0; : : : ; N �1g, such
that �s D .�s=N/ˇ, s D 1; : : : ; n. In this case, we obtain the lattice approximations
of the functions (2.1.10) only for the arguments belonging to Qˇ . But in view of their
continuity this will be enough for recovering the corresponding properties for all values
of their arguments.

In what follows, we choose n 2 N, �1; : : : ; �n 2 Qˇ , yƒ D .y`/`2ƒ 2 Cˇ;ƒ, and
keep them fixed. Then we pick the sequences of integers fN .k/gk2N,N .k/ being even,
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f�.k/s gk2N, s D 1; : : : ; n, such that N .k/ ! C1, �.k/s ! C1 as k ! C1, and for
all k 2 N, the following holds:

�s D
 
�
.k/
s

N .k/

!
ˇ; s D 1; : : : ; n: (2.1.11)

In the sequel, we drop the superscript .k/ assuming that N and �s , s D 1; : : : ; n, tend
to infinity in such a way that (2.1.11) holds. The set of values of such N is denoted
by N .�1; : : : ; �n/. Then by writing N ! C1 we assume that N tends to infinity
in this set. Now we are in a position to represent the right-hand side of (2.1.5) as a
finite-dimensional integral with respect to a Gibbs measure of a classical system of
unbounded spins S`.�/ 2 R� , ` 2 ƒ, � D 0; : : : ; N � 1. For such ` and � and y` as
in (2.1.1), we set

h
.j /

`
.�/ D

r
ˇ

N
y
.j /

`

�
�

N
ˇ

�
; j D 1; : : : ; �; (2.1.12)

and introduce

P
hƒ

ˇ;ƒ
.dSƒ/ D 1

Dˇ;ƒ.hƒ/
exp

n1
2

X
`;`02ƒ

I``0

N�1X

D0

.S`.�/; S`0.�//

� mN 2

2ˇ2

X
`2ƒ

N�1X

D0

jS`.�C 1/ � S`.�/j2j

C
X
`2ƒ

N�1X

D0

.S`.�/; h`.�//
oO
`2ƒ

N�1O

D0

QN
` .dS`.�//;

(2.1.13)

where Sƒ D .S`/`2ƒ, S` D .S`.�//
D0;:::;N�1, addition � C 1 is modulo N , m is
as in (1.1.3), the interaction intensities I``0 are the same as in (2.1.1), Dˇ;ƒ.hƒ/ is a
normalization factor, and, cf. (2.1.2),

QN
` .dS`.�// D exp

(
� ˇ

N
W`

 s
N

ˇ
S`.�/

!
� a

2
jS`.�/j2

)
dS`.�/; (2.1.14)

a > 0 being the same as in (1.1.3).

Theorem 2.1.2. For every F1; : : : ; Fn 2 P
.�/
ƒ , �1; : : : ; �n 2 Qˇ , yƒ 2 Cˇ;ƒ, and

N 2 N .�1; : : : ; �n/, the following representation holds:Z
Cˇ;ƒ

F1.xƒ.�1// : : : Fn.xƒ.�n//ˆ.xƒIyƒ/�Nƒ .dxƒ/

D K
.N/

ˇ;ƒ

Z
R�N jƒj

F1 .Sƒ.�1// : : : Fn .Sƒ.�n// P
hƒ

ˇ;ƒ
.dSƒ/

D K
.N/

ˇ;ƒ
hF1 .Sƒ.�1// : : : Fn .Sƒ.�n//i

P
hƒ
ˇ;ƒ

:

(2.1.15)
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Here K.N/
ˇ;ƒ

is a positive constant, �s D .�s=ˇ/N , s D 1; : : : ; n, and the probability

measure P hƒ

ˇ;ƒ
is given by (2.1.13).

Proof. We will deal with the following types of functions Cˇ;ƒ ! R:

(i) xƒ 7! x
.j /

`
.�/; ` 2 ƒ; j D 1; : : : ; �; � 2 Qˇ ;

(ii) xƒ 7! .x`; x`0/L2
ˇ
; xƒ 7! .x`; y`/L2

ˇ
; `; `0 2 ƒ: (2.1.16)

To change the variables in the integral on the right-hand side of (2.1.5) we use the
Fourier transform

x
.j /

`
.�/ D

X
k2K

Ox.j /
`
.k/ek.�/; j D 1; : : : ; �;

Ox.j /
`
.k/ D .�j;k; x`/L2

ˇ
D
Z ˇ

0

x
.j /

`
.�/ek.�/d�;

(2.1.17)

where the functions ek , k 2 K , are defined in (1.3.111). Then for � 2 Qˇ , one finds
� 2 f0; : : : ; N � 1g such that � D .�=N/ˇ. Recall that N D 2L, L 2 N. Thus, the
function of type (i) taken at x.N/ƒ D .x

.1;N/
ƒ ; : : : ; x

.�;N/
ƒ / can be written

x
.j;N/

`
.�/ D

X
k2KN

Ox.j /
`
.k/ek ..�=N/ˇ/

D
s
N

ˇ

X
p2PN

Ox.j /
`
..N=ˇ/p/ "p.�/;

(2.1.18)

where

PN D fp D .2
=N/� j � D �.L � 1/; : : : ;�1; 0; 1; : : : ; Lg; (2.1.19)

and, cf. (1.3.111),

"p.�/ D

8̂<
:̂
p
2=N � cos.�p/; if p > 0I

�p2=N � sin.�p/; if p < 0I
1=

p
N; if p D 0:

(2.1.20)

For the functions of type (ii) taken at x.N/ƒ , we have

.x
.N/

`
; x
.N/

`0 /L2
ˇ

D
X
k2KN

�X
jD1

Ox.j /
`
.k/ Ox.j /

`0 .k/

D
X
p2PN

�X
jD1

Ox.j /
`
..N=ˇ/p/ Ox.j /

`0 ..N=ˇ/p/;

(2.1.21)
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and

.x
.N/

`
; y`/L2

ˇ
D

X
k2KN

�X
jD1

Ox.j /
`
.k/ Oy.j /

`
.k/;

Oy.j /
`
.k/ D

Z ˇ

0

y
.j /

`
.�/ek.�/d�:

(2.1.22)

Now we pass to the spin variables yS .j /
`
.p/, j D 1; : : : ; �, � D 0; 1; : : : ; N � 1,

p 2 PN , by setting
yS .j /
`
.p/ D Ox.j /

`
..N=ˇ/p/; (2.1.23)

for which we introduce the Fourier transform, see (2.1.19) and (2.1.20),

S
.j /

`
.�/ D

X
p2PN

yS .j /
`
.p/"p.�/;

yS .j /
`
.p/ D

N�1X

D0

S
.j /

`
.�/"p.�/:

(2.1.24)

Then by (2.1.18) we have

x
.j;N/

`
..�=N/ˇ/ D

s
N

ˇ
S
.j /

`
.�/; (2.1.25)

and hence

ˇ

N

N�1X

D0

W`

�
x
.N/

`
.�/
�

d� D ˇ

N

N�1X

D0

W`

 s
N

ˇ
S`.�/

!
: (2.1.26)

By means of (2.1.23) and (2.1.24) we obtain

�
x
.N/

`
; x
.N/

`0

�
L2

ˇ

D
X
p2PN

� yS`.p/; yS`0.p/
�

D
N�1X

D0

.Sl.�/; Sl 0.�// ; (2.1.27)

and, cf. (2.1.12),

�
x
.N/

`
; y`

�
L2

ˇ

D
X
k2KN

. Ox`.k/; Oy`.k// D
N�1X

D0

.S`.�/; h`.�// ;

h
.j /

`
.�/

defD
X
p2PN

Oy.j /
`
..N=ˇ/p/ "p.�/;

Oy.j /
`
.k/

defD .�j;k; y`/L2
ˇ
; j D 1; : : : ; �:

(2.1.28)
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The next step is to construct the measure (2.1.13). We begin by introducing a finite-
dimensional analog of the measure �N . This is the following Gaussian measure on
R�N :


.N/.d yS`/ D
O
p2PN


.N/p .d yS`.p//; (2.1.29)

where 
.N/p is the isotropic Gaussian measure on R� , such thatZ
R�

exp .i.u; v// 
.N/p .du/ D exp
�

� 1

2
� .N/p .v; v/

�
;

� .N/p D 1

m .2N=ˇ/2 Œsin.p=2/�2 C a
;

(2.1.30)

i.e., � .N/p D s
.N/

.N=ˇ/p
, see (1.3.129). In view of (2.1.24), the measure 
.N/ can also be

written in the coordinates S`.�/, � 2 f0; 1; : : : ; N � 1g. Here we remark that the map
yS` 7! S` defined by (2.1.24) is an orthogonal transformation in the Euclidean space
R�N . In what follows, we have


.N/.dS`/ D 1

CN
exp

n
� mN 2

2ˇ2

N�1X

D0

jS`.�C 1/ � S`.�/j2

� a

2

N�1X

D0

jS`.�/j2
oN�1O

D0

dS`.�/;

(2.1.31)

with the convention that S`.N / D S`.0/. For every bounded continuous function
f W Cˇ ! R and a givenN D 2L, one finds a bounded continuous function W R�N !
R, such that f .x.N/

`
/ D .S`/, where x.N/

`
and S` D .S`.�//
2f0;:::;N�1g, are related

to each other by (2.1.19), (2.1.23), and (2.1.24). Then for such functions, we haveZ
Cˇ

f .x`/�N .dx`/ D
Z
Cˇ

f .x
.N/

`
/�N .dx`/ D

Z
R�N

.S`/

.N/.dS`/:

Furthermore, for such f and , by (2.1.2) and (2.1.26) it follows thatZ
Cˇ

f .x`/�
N
` .dx`/ D

Z
Cˇ

f .x
.N/

`
/�N` .dx`/

D 1

ZN
`

Z
Cˇ

f .x
.N/

`
/ exp


� ˇ

N

N�1X

D0

W`

�
x`

�
�

N
ˇ

���
�N .dx`/

D 1

ZN
`

Z
R�N

.S`/ exp

(
� ˇ

N

N�1X

D0

W`

 s
N

ˇ
S`.�/

!)

.N/.dS`/:

(2.1.32)

Taking into account (2.1.2), (2.1.3), (2.1.5)–(2.1.7) and (2.1.31), (2.1.32), we conclude
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that Z
Cˇ;ƒ

F1.xƒ.�1// : : : Fn.xƒ.�n//ˆ.xƒIyƒ/�Nƒ .dxƒ/

D Dˇ;ƒ.h/

Yˇ;ƒ.yƒ/

Z
R�N jƒj

F1 .Sƒ.�1// : : : Fn .Sƒ.�n// P
hƒ

ˇ;ƒ
.dSƒ/;

where

P
hƒ

ˇ;ƒ
.dSƒ/ D 1

Dˇ;ƒ.h/
exp

8<
:12

X
`;`02ƒ

I``0

N�1X

D0

.S`.�; S`0.�//

C
X
`;`02ƒ

N�1X

D0

.S`.�; h`.�//

� ˇ

N

X
`2ƒ

N�1X

D0

W`

 s
N

ˇ
S`.�/

!)O
`2ƒ


.N/.dS`/;

i.e., it is as in (2.1.13).

2.2 Basic Correlation Inequalities

Correlation inequalities proved to be useful in studying classical lattice systems. Typ-
ically, they involve moments of Gibbs measures. The approximation established by
Theorems 2.1.1 and 2.1.2 can be employed to derive such inequalities also for the
moments of the measure (2.1.1). This will be done in the current section.

The inequalities for classical lattice systems which we are going to use describe the
scalar ferromagnetic case. Thus, in this section we assume that, cf. Definition 1.1.2,

� D 1 and J``0 � 0 for all `; `0.

In the statements below, we derive the basic correlation inequalities for a number of
particular versions of the measure (2.1.1). The scheme of the proof of each of these
statements is the same. One approximates this version by the corresponding classical
Gibbs measure for which the inequality in question holds. Then by Theorems 2.1.1
and 2.1.2 this inequality is obtained for the considered version of the measure (2.1.1).
In view of this, below we just mention the source statements concerning the classical
measure. Each time the functions W` obey Assumption 1.1.1 and the particular cases
of the measure (2.1.1) are specified by further restrictions imposed on these functions.

Before stating our first result we introduce some new notions. By writing xƒ � x0
ƒ

we mean that x`.�/ � x0
`
.�/ for all ` 2 ƒ and � 2 Œ0; ˇ� (we recall that all x` are

continuous functions from Œ0; ˇ� to R). A function f W Cˇ;ƒ ! R is called increasing
if xƒ � x0

ƒ implies f .xƒ/ � f .x0
ƒ/.
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Our first statement follows from Theorem VIII.16, page 280 in [273]. It holds since
the approximating measure (2.1.13) is the Gibbs measure of a general ferromagnet.
We recall that the family Eƒ was introduced in Definition 1.4.13.

Theorem 2.2.1 (FKG Inequality). If the functions f; g 2 Eƒ are increasing, then the
inequality

hfgi
�

yƒ
ˇ;ƒ

� hf i
�

yƒ
ˇ;ƒ

hgi
�

yƒ
ˇ;ƒ

(2.2.1)

holds for all yƒ 2 Cˇ;ƒ.

One observes that in Theorem 2.2.1 we do not suppose any special properties of
the functions W` in addition to Assumption 1.1.1. However, in the next statement we
require something more. Clearly, every W` W R ! R can be decomposed into its even
and odd parts, that is,

W`.u/ D W o
` .u/CW e

` .u/;

W e
` .u/ D 1

2
.W`.u/CW`.�u//;

W o
` .u/ D 1

2
.W`.u/ �W`.�u//:

(2.2.2)

Our next statement follows from Theorem VIII.14 of [273] (see also pages 120–122 of
[274]). We recall that the family of functions P

.�/
ƒ was introduced in Definition 1.4.7.

Theorem 2.2.2 (GKS Inequalities). Given `1; : : : ; `n; : : : , `nCm 2 ƒ, n;m 2 N, let
the functions Fi 2 P

.1/

f`i g, i D 1; : : : ; n; : : : ; nCm be either even or odd and positive

on RC. Suppose also that all W o
`
’s, are negative on RC and yƒ � 0. Then

hF1.x`1
.�1// : : : Fn.x`n

.�n//i�yƒ
ˇ;ƒ

� 0: (2.2.3)

If in addition, one assumes that all Fi ’s are increasing and all W o
`
’s are decreasing,

then

hF1.x`1
.�1// : : : Fn.x`n

.�n//

� FnC1.x`nC1
.�nC1// : : : FnCm.x`nCm

.�nCm//i�yƒ
ˇ;ƒ

� hF1.x`1
.�1// : : : Fn.x`n

.�n//i�yƒ
ˇ;ƒ

� hFnC1.x`nC1
.�nC1// : : : FnCm.x`nCm

.�nCm//i�yƒ
ˇ;ƒ

:

(2.2.4)

Remark 2.2.3. If all W`’s are even, the above inequalities hold also for yƒ � 0.

The next statements require more specific properties of the functions W`.

Definition 2.2.4. The anharmonic potential W` is said to be of Brydges–Fröhlich–
Spencer (BFS) type if it can be written as W`.u/ D w`.u

2/, where the function w` is
convex on RC. The measure (2.1.1) is of Brydges–Fröhlich–Spencer (BFS) type if all
W`, ` 2 L, are of BFS type.
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The anharmonic potential W` is said to be of Ellis–Monroe (EM) type if W`.u/ D
w`.u

2/ with

w`.u/ D b
.1/

`
t C � � � C b

.r/

`
t r ; r 2 N;

b
.1/

`
2 R; b

.s/

`
� 0; s D 2; : : : ; r � 1; b

.r/

`
> 0; r � 2:

(2.2.5)

The anharmonic potential W` is said to be of Ellis–Monroe–Newman (EMN) type if
W` is an even continuously differentiable function, such thatW 0

`
is convex on Œ0;C1/.

The measure (2.1.1) is said to be of Ellis–Monroe (EM) type (respectively, of Ellis–
Monroe–Newman (EMN) type) if allW`, ` 2 L, are of EM type (respectively, of EMN
type)

Clearly, every measure of EM type is also of EMN and BFS types. The next result
follows from the inequality (12.192), page 254 in [117]. In Theorem 2.2.5 and in the
sequel, �0

ˇ;ƒ
is the measure (2.1.1) with yƒ D 0.

Theorem 2.2.5. Let the measure �yƒ

ˇ;ƒ
be of BFS type and yƒ � 0. Then for all

`; `0 2 ƒ and �; � 0 2 Œ0; ˇ�,
hx`.�/x`0.� 0/i

�
yƒ
ˇ;ƒ

� hx`.�/i�yƒ
ˇ;ƒ

� hx`0.� 0/i
�

yƒ
ˇ;ƒ

� hx`.�/x`0.� 0/i�0
ˇ;ƒ
: (2.2.6)

For zero-mean Gaussian random variables X1; : : : ; X2n, n 2 N, the following is
known:

hX1 : : : X2ni D
X
�

nY
kD1

hX�.2k�1/X�.2k/i; (2.2.7)

cf. (1.3.55). Here the sum is taken over all partitions of the set f1; : : : ; 2ng onto
unordered pairs of its elements. If X1; : : : ; X2n are such that the inequality obtained
from the latter expression by replacing “D” with “�”, these variables are said to obey
the Gaussian upper bound principle. The result below follows from the fact that this
principle holds for the measures (2.1.13), see Section 12.1, page 230 in [117].

Theorem 2.2.6 (Gaussian Upper Bound). Let the measure (2.1.1) be of BFS type. Then
the inequality

hx`1
.�1/ : : : x`2n

.�2n/i�0
ˇ;ƒ

�
X
�

nY
kD1

hx`�.2k�1/
x`�.2k/

i�0
ˇ;ƒ

(2.2.8)

holds for all `1; : : : ; `2n 2 ƒ and �1; : : : ; �2n 2 Œ0; ˇ�.
The next result can be obtained by means of the corresponding statement proven in

[140] (see also [111], [112], [113], [295], and page 260 in [117]). It is known as the
Griffiths–Hurst–Sherman (GHS) inequality.
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Theorem 2.2.7 (GHS Inequality). Let the measure (2.1.1) be of EMN type and yƒ � 0.
Then the inequality

hx`1
.�1/x`2

.�2/x`3
.�3/i�yƒ

ˇ;ƒ

� hx`1
.�1/i�yƒ

ˇ;ƒ

� hx`2
.�2/x`3

.�3/i�yƒ
ˇ;ƒ

C hx`2
.�2/i�yƒ

ˇ;ƒ

� hx`1
.�1/x`3

.�3/i�yƒ
ˇ;ƒ

C hx`3
.�3/i�yƒ

ˇ;ƒ

� hx`1
.�1/x`2

.�2/i�yƒ
ˇ;ƒ

� 2hx`1
.�1/i�yƒ

ˇ;ƒ

� hx`2
.�2/i�yƒ

ˇ;ƒ

� hx`3
.�3/i�yƒ

ˇ;ƒ

(2.2.9)

holds for all `1; `2; `3 2 ƒ and �1; �2; �3 2 Œ0; ˇ�.
Now we set

fˇ;ƒ.xƒIyƒ/ D
Z
Cˇ;ƒ

exp
�
.xƒ; 	ƒ/L2

ˇ;ƒ

�
�
yƒ

ˇ;ƒ
.d	ƒ/; (2.2.10)

where �yƒ

ˇ;ƒ
is the measure (2.1.1), and the real Hilbert space L2

ˇ;ƒ
and its scalar

product are as defined in (1.3.156) and (1.3.158), respectively. By the Kuratowski
theorem (Proposition 1.3.18) the measure �yƒ

ˇ;ƒ
can be redefined on L2

ˇ;ƒ
with the

property �yƒ

ˇ;ƒ
.Cˇ;ƒ/ D 1. By Assumption 1.1.1,Z

�ˇ;ƒ

exp
�
a.xƒ; xƒ/L2

ˇ;ƒ

�
�
yƒ

ˇ;ƒ
.dxƒ/ < 1;

for all a > 0, which means that �yƒ

ˇ;ƒ
2 M.L2

ˇ;ƒ
/, see Definition 1.3.43. Then by

Lemma 1.3.47 the function fˇ;ƒ.�Iyƒ/ can be extended to a function holomorphic on
the complexification of L2

ˇ;ƒ
. Therefore, it can be expanded into a convergent series

as follows, see (1.3.96):

fˇ;ƒ.xƒIyƒ/ D
C1X
nD0

1

nŠ
f
.n/

ˇ;ƒ
.0Iyƒ/.xƒ/ (2.2.11)

where

f
.n/

ˇ;ƒ
.0Iyƒ/.xƒ/ D

X
`1;:::;`n2ƒ

Z
Œ0;ˇ�n

h	`1
.�1/ : : : 	`n

.�n/i�yƒ
ˇ;ƒ

� x`1
.�1/ : : : x`n

.�n/d�1; : : : d�n:

(2.2.12)

The coefficients in the latter representation are the Matsubara functions (2.1.10) with
Fj .	ƒ/ D 	

j̀
, j D 1; : : : ; n. They are continuous with respect to �1; : : : ; �n 2 Œ0; ˇ�.

By (2.1.1) and (2.2.10) for any y0
ƒ 2 Cˇ;ƒ,

fˇ;ƒ.xƒ C y0
ƒIyƒ � y0

ƒ/ D ŒYˇ;ƒ.yƒ/=Yˇ;ƒ.yƒ � y0
ƒ/�fˇ;ƒ.xƒIyƒ/: (2.2.13)



166 2 Lattice Approximation and Applications

Since fˇ;ƒ.0Iyƒ/ D 1, the function

'ˇ;ƒ.xƒIyƒ/ D logfˇ;ƒ.xƒIyƒ/;
D � logŒYˇ;ƒ.yƒ/=Yˇ;ƒ.	 � �/�C 'ˇ;ƒ.yƒ C �j	 � �/ (2.2.14)

is holomorphic in xƒ in some neighborhood of the origin of the complexification
of L2

ˇ;ƒ
and hence in some domain which contains L2

ˇ;ƒ
. Thus, one can expand

'ˇ;ƒ. � Iyƒ/ into the convergent Taylor series, similarly to (2.2.11), that is,

'ˇ;ƒ.xƒIyƒ/ D
C1X
nD1

1

nŠ
'
.n/

ˇ;ƒ
.0Iyƒ/.xƒ/; (2.2.15)

with

'
.n/

ˇ;ƒ
.0Iyƒ/.xƒ/ D

X
`1;:::;`n2ƒ

Z
Œ0;ˇ�n

U`1;:::;`n
.�1; : : : ; �nIyƒ/

� x`1
.�1/ : : : x`n

.�n/d�1; : : : d�ln ;

(2.2.16)

where the Ursell functions U`1;:::;`n
.�1; : : : ; �nIyƒ/ can be expressed in terms of the

above Matsubara functions, e.g.,

U`1;`2
.�1; �2Iyƒ/ D hx`1

.�1/x`2
.�2/i�yƒ

ˇ;ƒ

� hx`1
.�1/i�yƒ

ˇ;ƒ

� hx`2
.�2/i�yƒ

ˇ;ƒ

:
(2.2.17)

Set

eƒ D .e`/`2ƒ 2 �ˇ;ƒ; e`.�/ D 1; for all ` 2 ƒ; � 2 Œ0; ˇ�, (2.2.18)

and

ˇ;ƒ.z/ D 'ˇ;ƒ.zeƒIyƒ/; z 2 C: (2.2.19)

Corollary 2.2.8. For every yƒ 2 Cˇ;ƒ, ˇ;ƒ is a holomorphic function on some
domain of C, which contains the real line R. Its restriction to R is convex.

Proof. The holomorphy of ˇ;ƒ can be derived from the corresponding property of
'ˇ;ƒ. � Iyƒ/. By (2.2.13), (2.2.17), and (2.2.18) it follows that

00
ˇ;ƒ.z/ D

X
`1;`22ƒ

Z
Œ0;ˇ�2

U`1`2
.�1; �2Iyƒ C zeƒ/d�1d�2 � 0; (2.2.20)

where we have used the FKG inequality (2.2.1), which holds for all z 2 R. Therefrom,
the stated convexity follows.
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For yƒ D 0, we have

U`1;:::;`4
.�1; : : : ; �4I 0/ D hx`1

.�1/ : : : x`4
.�4/i�0

ˇ;ƒ

� hx`1
.�1/x`2

.�2/i�0
ˇ;ƒ

� hx`3
.�3/x`4

.�4/i�0
ˇ;ƒ

� hx`1
.�1/x`3

.�3/i�0
ˇ;ƒ

� hx`2
.�2/x`4

.�4/i�0
ˇ;ƒ

� hx`1
.�1/x`4

.�4/i�0
ˇ;ƒ

� hx`2
.�2/x`3

.�3/i�0
ˇ;ƒ
:

(2.2.21)

The following inequality is a particular case of the Gaussian upper bound (2.2.8). It can
also be proven by means of Theorem 2.4 and Corollary 2.5 of [295] (see also page 231
of [117]).

Theorem 2.2.9 (Lebowitz Inequality). If �ˇ;ƒ is of BFS type, the inequality

U`1;:::;`4
.�1; : : : ; �4I 0/ � 0 (2.2.22)

holds for all `1; : : : ; `4 2 ƒ and �1; : : : ; �4 2 Œ0; ˇ�.
The next statement gives a lower bound for the above Ursell function. It holds

for a more special choice of the functions W` and can be deduced from the inequality
obtained in [81] (see equation (3.15) in that paper).

Theorem 2.2.10. Let all W` in (2.1.1) be of the form

W`.u/ D W.u/ D b1u
2 C b2u

4; b1 2 R; b2 > 0: (2.2.23)

Then the estimate

U`1;:::;`4
.�1; : : : ; �4I 0/ � �4Šb2

X
`2ƒ

Z ˇ

0

U`1`.�1; � I 0/U`2`.�2; � I 0/

� U`3`.�3; � I 0/U`4`.�4; � I 0/d�
(2.2.24)

holds for all `1; : : : ; `4 2 ƒ and �1; : : : ; �4 2 Œ0; ˇ�.
The next statement gives a sign rule for all Ursell functions. It also holds for W`

being of the form of (2.2.23) and can be deduced from Shlosman’s result [271], valid
for the Ising model by means of the classical Ising approximation (for more details see
Chapter IX in [273]).

Theorem 2.2.11 (Shlosman Sign Rule). Let the functionsW` in (2.1.1) be as in (2.2.23).
Then the sign rule

.�1/n�1U`1;:::;`2n
.�1; : : : ; �2nI 0/ � 0 (2.2.25)

hold for all n 2 N, `1; : : : ; `2n 2 ƒ, and �1; : : : ; �2n 2 Œ0; ˇ�.
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2.3 The Logarithmic Sobolev Inequality

The logarithmic Sobolev inequality, as well as the Poincaré inequality which is close
to it, have various applications in the theory of lattice systems. Given n 2 N, let� be a
probability measure on the Euclidean space Rn. For this � and an appropriate function
f W Rn ! RC, we set

Var�.f / D hf 2i� � hf i2�; (2.3.1)

and
Ent�.f / D hf logf i� � hf i� � loghf i�: (2.3.2)

Suppose now that the function f has weak gradient in L2.Rn; �/, cf. (1.1.93), and let
jrf j be its Euclidean norm. Then the Poincaré inequality is

Var�.f / � ~ � hjrf j2i�: (2.3.3)

The least constant ~ such that (2.3.3) holds for all functions f W Rn ! RC with the
properties mentioned above is called the spectral gap constantCSG.�/. The logarithmic
Sobolev inequality is

Ent�.f
2/ � 2~ � hjrf j2i�: (2.3.4)

The least constant ~ such that (2.3.4) holds for all functions f W Rn ! R having
gradient is called the log-Sobolev constant CLS.�/. The normalization in (2.3.4) is
chosen such that the classical inequality

CSG.�/ � CLS.�/ (2.3.5)

holds.
Our aim in this section is to prove that the measure (2.1.1) obeys similar inequalities

and to estimate the constant (2.3.5) corresponding to this measure in the simplest case
of a one-point set ƒ D f`g. That is, we consider

�y`.dx`/ D 1

Y.y`/
exp

�
.x`; y`/L2

ˇ
�
Z ˇ

0

W`.x`.�//d�

�
�ˇ .dx`/

D ˆˇ;`.x`Iy`/�`.dx`/;
(2.3.6)

which is a probability measure on the Hilbert spaceL2
ˇ

D L2.Œ0; ˇ� ! R�/, possessing
the property �y`.Cˇ / D 1. Note that here, unlike the preceding section, we consider
the case of general � 2 N. By definition, a function f W L2

ˇ
! R has gradient

f 0.x/ 2 L2
ˇ

, if for every x` and 	` in L2
ˇ

,

�
@

@t
f .x` C t	`/

�
tD0

D .f 0.x`/; 	`/L2
ˇ
; t 2 R; (2.3.7)

cf. (1.1.93). Recall that the family Eƒ was introduced in Definition 1.4.13.
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Definition 2.3.1. The measure �y` obeys the Poincaré inequality (respectively, the
logarithmic Sobolev inequality) if there exists positive ~ (respectively, ~ 0) such that
for all f 2 E` having gradient, the estimate (i) below (respectively, (ii) below) holds:

.i/ Var�y` .f
2/ � ~hkf 0k2

L2
ˇ

i�y` ;

.ii/ Ent�y` .f
2/ � 2~ 0hkf 0k2

L2
ˇ

i�y` :
(2.3.8)

The least values of ~ and ~ 0 will be called the spectral gapCSG.�
y`/ and the logarithmic

Sobolev CLS.�
y`/ constants, respectively.

Let us decompose W` in (2.3.6) as

W` D W1;` CW2;`; (2.3.9)

where W1;` 2 C 2.R�/ is such that

� a < b defD inf
u;v2R� ; v¤0

�
W 00
1;`.u/v; v

�
=jvj2 < C1; (2.3.10)

a being the same as in (1.1.3). As for the second term, we set

0 � ı.W2;`/ D Osc.W2;`/
defD sup

u2R�

W2;` � inf
u2R�

W2;` � C1: (2.3.11)

Theorem 2.3.2. For any y` 2 Cˇ , the measure (2.3.6) obeys the logarithmic Sobolev
inequality with the constant

CLS.�
y`/ � expŒˇı.W2;`/�

.aC b/
: (2.3.12)

Proof. By (2.1.13) and (2.1.14) the lattice approximation of (2.3.6) is the following
measure:

P
h`

N .dS`/ D 1

D.h`/
exp

(
�mN

2

2ˇ2

N�1X

D0

jS`.�C 1/ � S`.�/j2

C
N�1X

D0

.S`.�/; h`.�// � ˇ

N

N�1X

D0

W2;`

 s
N

ˇ
S`.�/

!)
(2.3.13)

� exp

(
� ˇ

N

N�1X

D0

W1;`

 s
N

ˇ
S`.�/

!
� a

2

N�1X

D0

jS`.�/j2
)
N�1O

D1

dS`.�/;

whereN D 2L,L 2 N, and h`.�/ is the same as in (2.1.28). In the convex case where
W2;`  0, the logarithmic Sobolev constant of P h`

N does not exceed 1=(Hessian of the
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potential energy), that is 1=.a C b/. The non-convex part contributes in the form of
the following factor, see equation (2.9), page 202 in [291]:

exp

"
Osc

 
ˇ

N

N�1X

D0

W2;`

 s
N

ˇ
S`

!!#
� expŒˇı.W2;`/�:

Note that the latter estimate is uniform in N . Therefore,

CLS.P
h`

N / � expŒˇı.W2;`/�=.aC b/: (2.3.14)

By (2.3.7)

.x`/
defD kf 0k2

L2
ˇ

D
�X

jD1

X
k2K

h
.f 0.x`/; �j;k/L2

ˇ

i2
: (2.3.15)

Given N D 2L, L 2 N, let S` and x.N/
`

be connected with each other by (2.1.18),

(2.1.23), and 2.1.24). Let also g W R�N ! R be such that f .x.N/
`
/ D g.S`/ for all

such x.N/
`

and S`. As in [291], page 202, we use the inequality

Ent�y` .f
2/ � hŒf 2 logf 2 � f 2 log t � f 2 C t �i�y` ;

which holds for all t > 0. Then, for f 2 E` by Theorem 2.1.1 and (2.3.14) we have

Ent�yƒ .f
2/ � lim

N!C1

Z
Cˇ

	
f 2.x`/ logf 2.x`/ � f 2.x`/ loghg2i

P
h`
N

� f 2.x`/C hg2i
P

h`
N



ˆ.x`; y`/�

.N/

ˇ
.dx`/

D lim
N!C1

Z
R�N

	
g2.S`/ logg2.S`/ � g2.S`/ loghg2i

P
h`
N

(2.3.16)

� g2.S`/C hg2i
P

h`
N



P
h`

N .dS`/

� ˚
expŒˇı.W2;`/�=2.aC b/

� � lim
N!C1hjrgj2i

P
h`
N

:

Similarly as in (2.3.15)

jrgj2 D
�X

jD1

X
p2PN

�
"p.�/.@g=@S

j

`
.�//

�2

D
�X

jD1

X
k2KN

h
.f 0.x.N/

`
/; �j;k/L2

ˇ

i2 �
�X

jD1

X
k2K

h
.f 0.x.N/

`
/; �j;k/L2

ˇ

i2
:

Employing this estimate in (2.3.16) we arrive at

Ent�yƒ .f
2/ � expŒˇı.W2;`/�

2.aC b/
� lim
N!C1

Z
Cˇ

.x`/ˆ
.N/

`
.x`Iy`/�N` .dx`/:

If f is such that  2 E`, by Theorem 2.1.1 the latter limit exists and is equal to the
right-hand side of (2.3.8).
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2.4 The Lee–Yang Property

In this section, we prove that the measure (2.1.1) has a useful property if the functions
W` belong to a certain class. To introduce it we need the Laguerre entire functions, see
[159] and [192], [201].

Definition 2.4.1. The Laguerre entire functions (of first kind) are either polynomials
of a single complex variable with real non-positive zeros only, or the uniform limits of
sequences of such polynomials taken on compact subsets of C.

By F Laguerre we denote the set of all such functions. It is known that ' 2 F Laguerre

if and only if it possesses the representation

'.z/ D Ce�0zzm
C1Y
jD1

.1C �j z/; C 2 C;

C1X
jD1

�j < 1; �j � 0; j 2 N0:

(2.4.1)

If '.0/ ¤ 0, then m D 0; if �0 D 0, the function ' is of order at most 1 with minimal
type.

Definition 2.4.2. A rotation-invariant probability measure� on R� possesses the Lee–
Yang property if there exists '� 2 F Laguerre such that

'�.j Ohj2/ D
Z

R�

exp
�
. Oh; u/��.du/; Oh 2 R� : (2.4.2)

Such a measure is called sub-Gaussian if the parameter �0 in the representation (2.4.1)
of '� is equal to zero.

As the measure� is rotation-invariant, one can choose the direction of Oh arbitrarily,

e.g., Oh D .h; 0; : : : ; 0/, h 2 R. Then the function f�.h/
defD '�.h

2/ can be written

f�.h/ D exp.�0h
2/

C1Y
jD1

.1C �jh
2/ (2.4.3)

and hence extended to an even entire function of h 2 C. This function is ridge, which
means that

jf�.x C iy/j � f�.x/; for all x; y 2 R, (2.4.4)

see [139] for the concept and properties on ridge functions. The latter fact follows
directly from the definition (2.4.2). Also from (2.4.2) one easily derives the following
property.
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Proposition 2.4.3. The function f�.h/ D '�.h
2/ is such that the function

p�.h/
defD logf�.h/;

is convex as it has the property

p00
�.h/ � 0; for all h 2 R. (2.4.5)

So far, no necessary conditions for measures to possess the Lee–Yang property
are known. The most general sufficient condition for measures having the form
C exp Œ�V.u/� du to possess the Lee–Yang property which is known so far, reads
as follows, see [185] and [192].

Proposition 2.4.4. Suppose that

�.du/ D C exp Œ�V.u/� du; V .u/ D v.juj2/; u 2 R� ; (2.4.6)

where v is such that, for a certain b � 0, the function bCv0 belongs to F Laguerre. Then
� possesses the Lee–Yang property. The parameter �0 in the representation (2.4.1)
of '� equals zero if v0 is an increasing function.

If v is a polynomial of degree 1, the measure (2.4.6) is Gaussian and its '� is
represented according to (2.4.1) with �j D 0, j 2 N. If v is a polynomial of higher
degree, the order of growth of '� is deg v=.2 deg v � 1/, which implies that �0 D 0.
It is easy to see that the polynomial v.t/ D b1t C b2t

2 (cf. (2.2.23)) obeys the above
condition for any b1 2 R. If v is a transcendental entire function, the corresponding
'� is of order 1=2 and maximal type.

Given � 2 N, if a measure � on R� has the Lee–Yang property, then for all b � 0,
the measure

�b.du/ D exp.bjuj2/�.du/=
Z

exp.bjuj2/�.du/ (2.4.7)

also has this property, see Theorem 3.2 in [192]. For � D 1, the class of measures �
such that the corresponding measures �b possess the Lee–Yang property for all b 2 R
was described in Theorem 2 of the paper [231].

Proposition 2.4.5 (Newman). Given probability measure � on R, let the measure
�b possess the Lee–Yang property for all real b. Then either �.du/ D Œı�a.du/ C
ıa.du/�=2, ıa being the Dirac measure centered at a > 0, or else �.du/ D �.u/du
with density

�.u/ D Ku2m exp
��˛u4 � ˇu2�˚.u2/;

˚.�/ D
Y
j2J

��
1C �j �

�
exp

����j �� ; (2.4.8)

where K > 0 is a normalization constant; m 2 N0; the set J may be void, finite, or
countable; the numbers �j > 0 obey the condition

P
j2J �2j < C1. Finally, ˛ � 0;

if ˛ > 0, then ˇ may be arbitrary real. For ˛ D 0, one demands ˇ CP
j2J �j > 0.



2.4 The Lee–Yang Property 173

Under the conditions imposed on the numbers �j , j 2 J ,˚� can be extended to an
entire function. Therefore, if �, being of the form (2.4.6), has the property described
by Proposition 2.4.5, then the function V has to be

V.u/ D v.u2/ D ˛u4 C ˇu2 � log˚.u/; (2.4.9)

with ˛, ˇ, and ˚ as in (2.4.8). Note that in this case, if � is not Gaussian,

v00.t/ D 2˛ C
X
j2J

�
�j

1C �j t

�2
> 0: (2.4.10)

Turning back to the measure (2.1.1) we conclude that for � D 1, if all W` have the
form (2.4.9), the corresponding measure is of EM- and hence of BFS type.

The main result of this section is contained in the following statement.

Theorem 2.4.6. Suppose that � D 1; 2 and (a) for � D 1, eachW` has the form (2.4.9);
(b) for � D 2, W`.u/ D ˛`juj4 C ˇ`juj2, with ˛` > 0 and ˇ` 2 R for all `. Then
the Laplace transform fˇ;ƒ (2.2.10) of the measure (2.1.1), which by Lemma 1.3.47
can be extended to a holomorphic function on the complexification of L2

ˇ;ƒ
, has the

following property – the function of z 2 C defined by

gˇ;ƒ.z/ D fˇ;ƒ.z
2eƒI 0/ (2.4.11)

can be written in the form (2.4.1). Here eƒ D .e`/`2ƒ 2 Cˇ;ƒ is such that, for all
` 2 ƒ and � 2 Œ0; ˇ�, e`.�/ D 1.

The proof of this theorem will be done in several steps. First we prove an auxiliary
statement.

Lemma 2.4.7. Let the measure (2.1.1) be as in Theorem 2.4.6. Then the Laplace
transform

F
.N/

ˇ;ƒ
.hƒ/ D

Z
RN jƒj

exp
�X
`2ƒ

N�1X

D0

h`.�/S
.1/

`
.�/
�
P 0ˇ;ƒ.dSƒ/ (2.4.12)

of the approximating measure (2.1.13) can be extended to an entire function of hƒ D
.hl.�// 2 CN jƒj such that

F
.N/

ˇ;ƒ
.hƒ/ ¤ 0; if <Œh`.�/� > 0, for all � D 0; : : : ; N � 1; ` 2 ƒ. (2.4.13)

Proof. The measure (2.1.13) can be rewritten in the form

P 0ˇ;ƒ.dSƒ/ D 1

Dˇ;ƒ.0/
exp


1

2

X
`;`02ƒ

N�1X

;
0D0

KN``0.�; �
0/.S`.�/; S`0.�0//

�

O
`2ƒ

N�1O

D0

zQ.N/.dS`.�//;

(2.4.14)
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with

KN``0.�; �
0/ D I``0ı

0 C mN 2

ˇ2
ı``0ı

0�1 � 0 (2.4.15)

and

zQ.N/.dS`.�// D exp
�

� mN 2

ˇ2
jS`.�/j2

�
Q.N/.dS`.�//; (2.4.16)

whereQ.N/ is as in (2.1.14). For � D 1, the measure zQ.N/ has the Lee–Yang property
for allN by Proposition 2.4.5. For� D 2, the same holds by Proposition 2.4.4. Thereby,
in view of the positivity (2.4.15) the proof of the lemma follows by Corollaries 3.3 and
4.4 in [208].

Corollary 2.4.8. Let the measure (2.1.1) be as in Theorem 2.4.6. Then the function

G
.N/

ˇ;ƒ
.z/ D F

.N/

ˇ;ƒ
.z2Iƒ/; z 2 C; (2.4.17)

can be represented in the form of (2.4.1), in which �0 D 0 if the entire functions w`
grow at infinity faster than a polynomial of degree 1. Here Iƒ D .I`.�//`2ƒ with
I`.�/ D 1 for all � D 0; : : : ; N � 1 and ` 2 ƒ.

From the latter statement, the proof of Theorem 2.4.6 will be obtained by passing
to the limit N ! C1. Here we employ the Vitali theorem, see Proposition 1.4.11.

Proof of Theorem 2.4.6. By (2.4.12), (2.4.17) and Corollary 2.4.8, for all x; y 2 R,
one has ˇ̌

F
.N/

ˇ;ƒ
..x C iy/Iƒ/

ˇ̌ � F
.N/

ˇ;ƒ
.xIƒ/;

F
.N/

ˇ;ƒ
.xIƒ/ � F

.N/

ˇ;ƒ
.x0Iƒ/ if 0 < x < x0.

(2.4.18)

By (2.4.17), (2.4.11), and Theorems 2.1.1, 2.1.2 for any x > 0, the sequence of positive
numbers fF .N/

ˇ;ƒ
.xIƒ/gN2N converges to fˇ;ƒ.xeƒI 0/. Thus, by (2.4.18) the sequence

fF .N/
ˇ;ƒ

.zIƒ/gN2N is uniformly bounded in the strip fz 2 C j j<.z/j � xg; hence, it is
uniformly bounded on every compact K � C by

sup
N2N

F
.N/

ˇ;ƒ
.Iƒ sup

z2K
jzj/;

which by the Vitali theorem gives the convergence F .N/
ˇ;ƒ

.zIƒ/ ! fˇ;ƒ.zeƒI 0/; uni-

form on compact subsets of C. Thereby, F .N/
ˇ;ƒ

.z2Iƒ/ ! fˇ;ƒ.z
2eƒI 0/ in the same

sense. This yields the result to be proven as the family F Laguerre is closed with respect
to this uniform convergence (see e.g., [201]).

2.5 More Inequalities

In this section, we derive a number of more specific inequalities, which we are going
to use in the study of our Euclidean Gibbs measures.
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2.5.1 The Vector Case: Scalar Domination

Here � in (2.1.1) will be an arbitrary positive integer number. Let �F1;:::;Fn
be the

function (2.1.10). The measure (2.1.1) is supposed to be invariant with respect to the
group of all orthogonal transformations O.�/, which holds if and only if each W` can
be written in the form

W`.u/ D w`.juj2/; u 2 R� ; (2.5.1)

where w` W Œ0;C1/ ! R is continuous. Our first result is a version of the GKS
inequality (2.2.3). Below and in the sequel, by writing yƒ � 0 we mean y.j /

`
.�/ � 0

for all `, � and j D 1; : : : ; �. We recall that the family P
.�/
ƒ of functionsF W R�jƒj ! C,

which appear in the Matsubara functions (2.1.10), was introduced in Definition 1.4.7.

Theorem 2.5.1. Let all W`’s in (2.1.1) be rotation-invariant. Suppose also that the
functions Fi 2 P

.�/

f`i g, `i 2 ƒ, i D 1; : : : ; n, depend on x.j /
`i

only, with one and

the same j 2 f1; : : : ; �g, and, as functions of such x.j /
`i

, they obey the conditions of
Theorem 2.2.2. Then for all �1; : : : ; �n 2 Œ0; ˇ� and yƒ � 0, it follows that

�F1;:::;Fn
.�1; : : : ; �n/ � 0: (2.5.2)

The proof of this and the next theorem will be given below. The following result is
based on the comparison of the Matsubara functions from the previous theorem with
the corresponding functions defined by the measure (2.1.1) with � D 1. This will
give us a scalar domination estimate. For this, however, we have to impose additional
conditions on the functions W`. To distinguish between the scalar and vector cases,
in case � D 1, all quantities will be supplied by the tilde. For example, the measure
(2.1.1) and the corresponding Matsubara functions are denoted by Q�ˇ;ƒ and z�F1;:::;Fn

,
respectively. Those with arbitrary � 2 N will be written as before, i.e., without the
tilde.

Theorem 2.5.2. Suppose that the functions w` in (2.5.1) are convex. Suppose also
that the functions Fi 2 P

.�/

f`i g, `i 2 ƒ, i D 1; : : : ; n, are as in Theorem 2.5.1, and for

each Fi , there exists zFi 2 P
.1/

f`i g, which obeys the conditions of Theorem 2.2.2, such

that Fi .x`i
/ D zFi .x.j /`i

/. Finally, let yƒ � 0 and the measure Q�y
.j /
ƒ

ˇ;ƒ
be defined by

(2.1.1) with � D 1 and Qyƒ D y
.j /
ƒ , j being the same as above. Then for arbitrary

�1; : : : ; �n 2 Œ0; ˇ�, the functions (2.1.10) corresponding to these measures obey the
estimate

�F1;:::;Fn
.�1; : : : ; �n/ � z� zF1;:::; zFn

.�1; : : : ; �n/: (2.5.3)

Remark 2.5.3. It is important that in the above theorems all Fi ’s depend on their x.j /
`i

with one and the same j . Obviously, (2.5.3) is the scalar domination estimate.

To prove (2.5.3) we use the convexity of the w`’s. For a function ' W R ! R,
we denote its corresponding one-sided derivatives at a given t 2 R by D˙'.t/. It is
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known, see e.g., [277], pages 34–37 and Lemma 1 in [250], that convex functions have
the following properties.

Proposition 2.5.4. For a convex function ' W R ! R, it follows that:

(a) the one-sided derivatives D˙'.t/ exist for every t 2 R; the set ft 2 R j
DC'.t/ ¤ D�'.t/g is at most countable;

(b) for every t 2 R and � > 0,

DC'.t/ � D�'.t C �/ � DC'.t C �/I (2.5.4)

(c) the point-wise limit ' of a sequence of convex functions f'ngn2N is a convex
function; if ' and all 'n’s are differentiable at a given t , '0

n.t/ ! '0.t/ as
n ! C1;

(d) if a sequence of convex functions ffng is such that 0 � fn.x/ � C for some
C > 0 all n 2 N and x 2 .a; b/, a < b, then it contains a subsequence ffnk

g,
which converges point-wise on .a; b/.

Proof of Theorems 2.5.1 and 2.5.2. We recall that the spaceCˇ;ƒwas defined in (3.1.5).

For j being as in the hypothesis of the theorems, we decompose xƒ D . Nxƒ; x.j /ƒ /,
where

Nx` 2 C.Œ0; ˇ� ! R��1/; x
.j /

`
2 C.Œ0; ˇ� ! R/; ` 2 ƒ:

Thereby,
Cˇ;ƒ D xCˇ;ƒ � zCˇ;ƒ:

Likewise, yƒ D . Nyƒ; y.j /ƒ / and u D . Nu; u.j // for u 2 R� . Then the Høegh-Krohn
measure �ˇ (which is a Gaussian measure) can also be decomposed according to

�ˇ .dx`/ D � N�ˇ ˝ Q�� .d Nx`; dx.j /` /; (2.5.5)

where the Gaussian measures N�ˇ and Q� are defined in (1.3.109) as measures on the
spaces L2.Œ0; ˇ� ! R��1/ and L2.Œ0; ˇ� ! R/, respectively (see Subsection 1.3.6).
Thereby, the functions W` can be written, see (2.5.1),

W`.u/ D w`
�j Nuj2 C .u.j //2

�
: (2.5.6)

For �; t 2 RC, we set

B`.�; t/ D w`.� C t / � w`.�/ � w`.t/;

Q`. Nx`; x.j /` / D
Z ˇ

0

B`
�j Nx`.�/j2; .x.j /` .�//2

�
d�:

(2.5.7)

Then by means of the decomposition (2.5.5) the measure (2.1.1) can be written

�
yƒ

ˇ;ƒ
.dxƒ/ D Dˇ;ƒ exp

n
�
X
`2ƒ

Q`. Nx`; x.j /` /
o

�
�

N� Nyƒ

ˇ;ƒ
˝ Q�y

.j /
ƒ

ˇ;ƒ

�
.d Nxƒ; dx.j /ƒ /;

(2.5.8)
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where Dˇ;ƒ is a normalization constant and the Gibbs measures N� Nyƒ

ˇ;ƒ
and Q� Qyƒ

ˇ;ƒ
de-

scribe the systems of � � 1- and one-dimensional interacting anharmonic oscillators,
respectively. This allows for rewriting the Matsubara function in the following way

�F1;:::;Fn
.�1; : : : ; �n/ D Dˇ;ƒ

Z
xCˇ;ƒ

„.1j NxƒI �1; : : : ; �n/

�‚.1j Nxƒ/ N� Nyƒ

ˇ;ƒ
.d Nxƒ/;

(2.5.9)

where for # 2 Œ0; 1�, we have set

„.#j NxƒI �1; : : : ; �n/ D 1

‚.#j Nxƒ/
Z

zCˇ;ƒ

F1.x`1
.�1// : : : Fn.x`n

.�n//

� exp
n

� #
X
`2ƒ

Q`. Nx`; x.j /` /
o

Q�y
.j /
ƒ

ˇ;ƒ
.dx.j /ƒ /;

(2.5.10)

and

‚.#j Nxƒ/ D
Z

zCˇ;ƒ

exp
n

� #
X
`2ƒ

Q`. Nx`; x.j /` /
o

Q�y
.j /
ƒ

ˇ;ƒ
.dx.j /ƒ /: (2.5.11)

For every fixed Nx`, the function x.j /
`

7! Q`. Nx`; x.j /` /, defined by (2.5.7), is even. Thus,
for every # 2 Œ0; 1� and Nx` 2 xCˇ;ƒ, the integral in (2.5.10) is taken with respect to
a probability measure, which satisfies the conditions of Theorem 2.2.2. Then (2.5.2)
follows from (2.2.3).

For the one-sided derivative of the function (2.5.7) with respect to t , by (2.5.4) we
have

DCB`.�; t/ D DCw`.t C �/ �DCw`.t/ � 0; for � � 0; (2.5.12)

hence, it is increasing in t for any fixed � � 0. Let the functions zF1; : : : ; zFn be as
supposed in Theorem 2.5.2. Then

„.0j NxƒI �1; : : : ; �n/ D
Z
�ˇ;ƒ

zF1.x.j /`1
.�1// : : : zFn.x.j /`n

.�n// Q� Qyƒ

ˇ;ƒ
.dx.j /ƒ /

D z�ˇ;ƒzF1;:::; zFn
.�1; : : : ; �n/:

(2.5.13)

As in Theorem 1.4.14, one can prove that for every fixed xƒ 2 Cˇ;ƒ, the expression

(2.5.11) defines an entire function of # . Then, since the function of x.j /ƒ under the
integral in (2.5.10) belongs to Eƒ, the right-hand side of (2.5.10) is a holomorphic
function of # in a domain which contains the real line. Thus, we can compute the
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derivative

@

@#
„.#j NxƒI �1; : : : ; �n/

D �
X
`2ƒ

Z ˇ

0

nD zF1.x.j /`1
.�1// : : : zFn.x.j /`n

.�n//B`

�
j Nx`.�/j2;

�
x
.j /

`
.�/
�2�E

�

�
D zF1.x.j /`1

.�1// : : : zFn.x.j /`n
.�n//

E
�

�
D
B`
�j Nx`.�/j2;

�
x
.j /

`
.�/
�2�E

�

o
d�:

(2.5.14)

Here for a fixed Nxƒ 2 xCˇ;ƒ, the measure  is defined on zCˇ;ƒ as

.dx.j /ƒ / D 1

‚.#j Nxƒ/ exp
n

� #
X
`2ƒ

Q`. Nx`; x.j /` /
o

Q� Qyƒ

ˇ;ƒ
.dx.j /ƒ /:

Since the measure Q� Qyƒ

ˇ;ƒ
and the functions

zFi and x
.j /

`i
7! B`i

�ˇ̌ Nx`i
.�/
ˇ̌2
;
�
x
.j /

`i
.�/
�2�
; i D 1; : : : ; n;

satisfy the conditions of Theorem 2.2.2, the estimates (2.2.4) and (2.5.12) yield in
(2.5.14)

@

@#
„.#j NxƒI �1; : : : ; �n/ � 0;

for all # 2 R, Nxƒ 2 xCˇ;ƒ, and �1; : : : ; �n 2 Œ0; ˇ�. The latter fact and the estimate
(2.2.3) yield in turn

„.1j NxƒI �1; : : : ; �n/ � „.0j NxƒI �1; : : : ; �n/
D z�ˇ;ƒzF1;:::; zFn

.�1; : : : ; �n/:
(2.5.15)

Using this inequality in (2.5.9) we get

�
ˇ;ƒ
F1;:::;Fn

.�1; : : : ; �n/ � z�ˇ;ƒzF1;:::; zFn
.�1; : : : ; �n/

�Dˇ;ƒ
Z

xCˇ;ƒ

Z
zCˇ;ƒ

exp
n

�
X
`2ƒ

Q`. Nx`; x.j /` /
o

�
�

N� Nyƒ

ˇ;ƒ
˝ Q� Qyƒ

ˇ;ƒ

�
.d Nxƒ; dx.j /ƒ /

D z�ˇ;ƒzF1;:::; zFn
.�1; : : : ; �n/

Z
Cˇ;ƒ

�
yƒ

ˇ;ƒ
.dxƒ/

D z�ˇ;ƒzF1;:::; zFn
.�1; : : : ; �n/;

which completes the proof.
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The above theorem has the following

Corollary 2.5.5. Let the conditions of Theorem 2.5.2 be satisfied. Then for every�yƒ

ˇ;ƒ
-

integrable function G W Cˇ;ƒ ! RC, which does not depend on x.j /ƒ , the inequalities

0 � hF1.x`1
.�1// : : : Fn.x`n

.�n//G.xƒ/i�yƒ
ˇ;ƒ

� h zF1.x`1
.�1// : : : zFn.x`n

.�n//i Q� Qyƒ
ˇ;ƒ

� hG.xƒ/i�yƒ
ˇ;ƒ

(2.5.16)

hold for all �1; : : : ; �n 2 Œ0; ˇ�.
To prove this result one writes, cf. (2.5.9),

hF1.xƒ.�1// : : : Fn.xƒ.�n//G.xƒ/i�yƒ
ˇ;ƒ

D Dˇ;ƒ

Z
xCˇ;ƒ

„.1j NxƒI �1; : : : ; �n/G.xƒ/‚.1j Nxƒ/ N� Nyƒ

ˇ;ƒ
.d Nxƒ/;

which by (2.5.15) yields (2.5.16).

2.5.2 Zero Field Domination

Here we set again � D 1. In this case, Theorem 2.2.5 states that the zero external field
correlation function dominates the corresponding correlation function with yƒ � 0 if
the measure (2.1.1) is of BFS type. In this subsection, we are going to get a similar
result, but for arbitrary yƒ. For this, however, we have to impose further restrictions
on the functions W`. Namely, we suppose them to be even, see (2.5.1), and such that
the functions w` are the polynomials (2.2.5), i.e., the measure (2.1.1) has to be of
EM type. The correlation functions of this measure will be compared with the ones
corresponding to the measure O�0

ˇ;ƒ
, given by (2.1.1), with the functions W` replaced

by

yW`.u/ defD 2W`
�
u=

p
2
� D b

.1/

`
u2 C

rX
sD2

21�sb.s/
`
u2s; u 2 R: (2.5.17)

Such functions obey the relation

W`

�
uC vp
2

�
CW`

�
u � vp
2

�
D yW`.u/C yW`.v/C

r�1X
sD1

b
.s/

`
.u/v2s; (2.5.18)

where

b
.s/

`
.u/ D

rX
pDsC1

�
2p
2s

�
21�pb.p/

`
u2.p�s/: (2.5.19)
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To simplify notation we write O�ˇ;ƒ for O�yƒ

ˇ;ƒ
with yƒ D 0. Consider

K
yƒ

``0 .�; �
0/ D hx`.�/x`0.� 0/i

�
yƒ
ˇ;ƒ

� hx`.�/i�yƒ
ˇ;ƒ

� hx`0.� 0/i
�

yƒ
ˇ;ƒ

: (2.5.20)

For the same `; `0 2 ƒ and �; � 0 2 Œ0; ˇ�, we set

yK``0.�; � 0/ D hx`.�/x`0.� 0/i O�ˇ;ƒ
: (2.5.21)

Theorem 2.5.6. For arbitrary yƒ 2 Cˇ;ƒ and all `; `0 2 ƒ, �; � 0 2 Œ0; ˇ�,
0 � K

yƒ

``0 .�; �
0/ � yK``0.�; � 0/: (2.5.22)

Proof. We rewrite (2.5.20) in the form

K
yƒ

``0 .�; �
0/ D 1�

Yˇ;ƒ.yƒ/
�2
“
Cˇ;ƒ�Cˇ;ƒ

x`.�/ � Qx`.�/p
2

� x`0.� 0/ � Qx`0.� 0/p
2

� exp
n X
`12ƒ

.x`1
C Qx`1

; y`1
/L2

ˇ

C 1

2

X
`1;`22ƒ

I`1`2
Œ.x`1

; x`2
/L2

ˇ
C . Qx`1

; Qx`2
/L2

ˇ
�

�
X
`12ƒ

Z ˇ

0

ŒW`1
.x`1

.t//CW`1
. Qx`1

.t//�dt
o

O
`12ƒ

�
�ˇ ˝ �ˇ

�
.dx`1

; d Qx`1
/:

Then we apply the orthogonal transformation

z`1
.t/ D Œx`1

.t/ � Qx`1
.t/�=

p
2; Qz`1

.t/ D Œx`1
.t/C Qx`1

.t/�=
p
2; (2.5.23)

`1 2 ƒ, t 2 Œ0; ˇ�, which yields

K
yƒ

``0 .�; �
0/ D 1�

Yˇ;ƒ.yƒ/
�2
“
Cˇ;ƒ�Cˇ;ƒ

z`.�/z`0.� 0/

� exp
n X
`12ƒ

p
2. Qz`1

; y`1
/L2

ˇ

C 1

2

X
`1;`22ƒ

I``0 Œ.z`1
; z`2

/ˇ C . Qz`1
; Qz`2

/L2
ˇ
� �

X
`12ƒ

Q`1
.z`1

; Qz`1
/

�
X
`12ƒ

Z ˇ

0

Œ yW`1
.z`1

.t//C yW`1
. Qz`1

.t//�dt
o

�
O
`12ƒ

�
�ˇ ˝ �ˇ

�
.dz`1

; d Qz`1
/;

(2.5.24)
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where we have set, see (2.5.18) and (2.5.19),

Q`1
.z`1

; Qz`1
/ D

r�1X
sD1

Z ˇ

0

b
.s/

`1
. Qz`1

.t//Œz`1
.t/�2sdt: (2.5.25)

Since all b.s/
`

in (2.5.19) are nonnegative, all the coefficients in (2.5.25) are nonnegative
as well, which holds for all Qz`1

.t/. For # 2 Œ0; 1�, we set

„``0.#j Qzƒ; �; � 0/ D hz`.�/z`0.� 0/i�# . � jQzƒ/; (2.5.26)

where the expectation is taken with respect to the measure

#.dzƒj Qzƒ/ D 1

‚.#j Qzƒ/ exp
n

� #
X
`12ƒ

Q`1
.z`1

; Qz`1
/

C 1

2

X
`1;`22ƒ

I`1`2
.z`1

; z`2
/L2

ˇ

�
X
`12ƒ

Z ˇ

0

yW`1
.z`1

.�//d�
o O
`12ƒ

�ˇ .dz`1
/;

(2.5.27)

with

‚.#j Qzƒ/ D
Z
Cˇ;ƒ

exp
n

� #
X
`12ƒ

Q`1
.z`1

; Qz`1
/

C 1

2

X
`1;`22ƒ

I`1`2
.z`1

; z`2
/L2

ˇ

�
X
`12ƒ

Z ˇ

0

yW`1
.z`1

.�//d�
o O
`12ƒ

�ˇ .dz`1
/:

(2.5.28)

As in Subsection 2.5.1, both„ and‚ as functions of # are differentiable on the interval
.0; 1/ and continuous at its endpoints. Thus, one can calculate the derivative

@

@#
„``0.#j Qzƒ; �; � 0/ D � 1

‚.#j Qzƒ/
r�1X
sD1

X
`12ƒ

Z ˇ

0

b
.s/

`1
. Qz`1

.t//

�
nD �
z`1
.t/
�2s
z`.�/z`0.� 0/

E
�# . � jQzƒ/

�
D �
z`1
.t/
�2s E

�# . � jQzƒ/

D
z`.�/z`0.� 0/

E
�# . � jQzƒ/

o
dt:

For every Qzƒ 2 Cˇ;ƒ, the measure (2.5.27) has the form (2.1.1) with yƒ D 0, thus the
GKS inequalities (2.2.3), (2.2.4) hold for its moments. Then by (2.2.4), it follows that

@

@#
„``0.#j Qzƒ; �; � 0/ � 0;
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hence
0 � „``0.1j Qzƒ; �; � 0/ � „``0.0j Qzƒ; �; � 0/ yK``0.�; � 0/; (2.5.29)

which holds for all Qzƒ, `; `0 2 ƒ, and �; � 0 2 Œ0; ˇ�. On the other hand, the represen-
tation (2.5.24) may be rewritten as

K
yƒ

``0 .�; �
0/ D 1�

Yˇ;ƒ.yƒ/
�2
Z
Cˇ;ƒ

„.1j Qzƒ; �; � 0/‚.1j Qzƒ/

� exp
n X
`12ƒ

p
2. Qz`1

; y`1
/L2

ˇ
C

X
`1;`22ƒ

I`1`2
. Qz`1

; Qz`2
/L2

ˇ

�
X
`12ƒ

Z ˇ

0

yW`1
. Qz`1

.�//d�
o O
`12ƒ

�ˇ .d Qz`1
/:

Applying here (2.5.29) and taking into account (2.5.28) one arrives at (2.5.22).

2.5.3 Estimates of Moments and Correlation Functions

In this subsection, we derive some estimates for the moments and correlation functions
of the Euclidean local Gibbs measures (1.4.18), (1.4.52) with � D 1. As we shall
see in Part II, correlation functions like (2.5.20) play a significant role in the physi-
cal applications. First, employing the correlation inequalities obtained in the previous
section, we prove two general statements. Here we study the dependence of the mo-
ments and correlation functions of the measures (2.1.1) on the interaction intensities
I D .I`;`0/`;`02ƒ. Until the end of this subsection, in order to indicate this dependence
we shall write �I;yƒ

ˇ;ƒ
and �I

ˇ;ƒ
if yƒ D 0. Correspondingly, we set

K
yƒ

``0 .I j�; � 0/ D hx`.�/x`0.� 0/i
�

I;yƒ
ˇ;ƒ

� hx`.�/i�I;yƒ
ˇ;ƒ

� hx`0.� 0/i
�

I;yƒ
ˇ;ƒ

; (2.5.30)

with `; `0 2 ƒ and �; � 0 2 Œ0; ˇ�. For two matrices I D .I``0/`;`02ƒ and ‡ D
.‡``0/`;`02ƒ, we set ‡ � I if for all `; `0 2 ƒ, one has ‡``0 � I``0 .

Theorem 2.5.7. Let the measures �I;yƒ

ˇ;ƒ
and �‡;yƒ

ˇ;ƒ
be defined by (2.1.1) with ‡ �

I � 0 and with the same yƒ 2 Cˇ;ƒ, yƒ � 0. Suppose also that allW`’s are of EMN
type. Then for all `; `0 2 ƒ and �; � 0 2 Œ0; ˇ�,

0 � K
yƒ

``0 .I j�; � 0/ � K
yƒ

``0 .‡ j�; � 0/: (2.5.31)

Proof. For # 2 Œ0; 1�, we set

‚.#/ D
Z
Cˇ;ƒ

exp

#

2

X
`;`02ƒ

Œ‡``0 � I``0 �.x`; x`0/L2
ˇ

�
�
I;yƒ

ˇ;ƒ
.dxƒ/; (2.5.32)

#.dxƒ/ D 1

‚.#/
exp


#

2

X
`;`02ƒ

Œ‡``0 � I``0 �.x`; x`0/L2
ˇ

�
�
I;yƒ

ˇ;ƒ
.dxƒ/; (2.5.33)
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and
„``0.#j�; � 0/ D hx`.�/x`0.� 0/i�#

� hx`.�/i�#
� hx`0.� 0/i�#

: (2.5.34)

One observes that the measure (2.5.33) is of the same type as the one in (2.1.1); hence,
the inequalities established in Section 2.2 hold for its moments. Clearly,

„``0.0j�; � 0/ D K
yƒ

``0 .I j�; � 0/; „``0.1j�; � 0/ D K
yƒ

``0 .‡ j�; � 0/: (2.5.35)

As above, to prove the theorem we are going to exploit the interpolation (2.5.35). Since
yƒ � 0, by (2.2.3) we get

hx`.�/i�#
� 0; hx`.�/x`0.� 0/i�#

� 0; (2.5.36)

which holds for all # 2 Œ0; 1�. We use this fact and the GHS inequality (2.2.8) to show
that

@

@#
hx`.�/i�#

D 1

2

X
`1;`22ƒ

Œ‡`1`2
� I`1`2

�

Z ˇ

0

˚hx`.�/x`1
.t/x`2

.t/i�#

� hx`.�/i�#
� hx`1

.t/x`2
.t/i�#

�
dt � 0:

Then by (2.5.36) and the latter estimate,

@

@#
„``0.#j�; � 0/ D 1

2

X
`1;`22ƒ

Œ‡`1`2
� I`1`2

�

Z ˇ

0

˚hx`.�/x`0.� 0/x`1
.t/x`2

.t/i�#

� hx`.�/x`0.� 0/i�#
� hx`1

.t/x`2
.t/i�#

�
dt

(2.5.37)� hx`.�/i�#
� @
@#

hx`0.� 0/i�#

� hx`0.� 0/i�#
� @
@#

hx`.�/i�#
� 0:

Here we have taken into account that ‡ � I and that the term in f: : : g is nonnegative,
which follows from the GKS inequality (2.2.4). The lower bound in (2.5.31) follows
from the GKS inequality (2.2.3).

Remark 2.5.8. Since allW`’s are supposed to be even, the estimate (2.5.31) holds also
if yƒ � 0.

Our second statement describes the moments of the measure �I;yƒ

ˇ;ƒ
.

Theorem 2.5.9. Let yƒ and the functions W`, Fi 2 P
.1/

f`i g, i D 1; : : : ; n, be as in
Theorem 2.2.2. Then for all �1; : : : ; �n 2 Œ0; ˇ�,˝
F1.x`1

.�1// : : : Fn.x`n
.�n//

˛
�

I;yƒ
ˇ;ƒ

� ˝
F1.x`1

.�1// : : : Fn.x`n
.�n//

˛
�

‡;yƒ
ˇ;ƒ

; (2.5.38)

whenever I � ‡ .
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Proof. To prove this statement one considers˝
F1.x`1

.�1// : : : Fn.x`n
.�n//

˛
�#

and shows by Theorem 2.2.2, as it was done directly above, that this moment is an
increasing function of # .

A particular case of this statement may be related to Theorem 2.5.7.

Corollary 2.5.10. If all W`’s are even and yƒ D 0, then (2.5.31) holds whenever
I � ‡ .

Note that here we do not supposeW`’s to be of EM type. Similarly, one can compare
the moments of the measures (2.1.1) with different anharmonic potentialsW`. Suppose
one has two such potentials, say W` and zW`, ` 2 ƒ, both obeying Assumption 1.1.1.
The measure (2.1.1) with the latter potential is denoted by Q�yƒ

ˇ;ƒ
.

Theorem 2.5.11. Let bothW` and zW`, ` 2 ƒ, be even and such that for every ` 2 ƒ,

W`.u`/ � zW`.u`/ � W`. Qu`/ � zW`. Qu`/; whenever u2` � Qu2` . (2.5.39)

Then for any yƒ � 0, `1; : : : ; `n 2 ƒ, and �1; : : : ; �n 2 Œ0; ˇ�,
hx`1

.�1/ : : : x`n
.�n/i�y`

ˇ;ƒ

� hx`1
.�1/ : : : x`n

.�n/i Q�y`
ˇ;ƒ

: (2.5.40)

Proof. The functions F`.u`/ D W`.u`/ � zW`.u`/ obey the conditions of Theo-
rem 2.2.2. Then for # 2 Œ0; 1� we introduce

‚.#/ D
Z
Cˇ;ƒ

exp
n
#
X
`2ƒ

Z ˇ

0

�
W`.x`.�// � zW`.x`.�//d�

�o
�
yƒ

ˇ;ƒ
.dxƒ/;

#.dxƒ/ D 1

‚.#/
exp

n
#
X
`2ƒ

Z ˇ

0

�
W`.x`.�// � zW`.x`.�//d�

�o
�
yƒ

ˇ;ƒ
.dxƒ/;

and employ the interpolation based on the inequalities (2.2.4), as it was in the proof of
Theorem 2.5.7.

Now let us employ the statements proven above to study the moments and cor-
relation functions of the local Euclidean Gibbs measures for � D 1. Recall that the
measure �ˇ;ƒ corresponding to the zero boundary conditions was defined by (1.4.18),
whereas the measure �per

ˇ;ƒ
corresponding to the periodic conditions on the boundaries

of the box ƒ was defined by (1.4.52). We set

Kƒ``0.�; �
0jp/ D hx`.�/x`0.� 0/i�per

ˇ;ƒ
� hx`.�/i�per

ˇ;ƒ
� hx`0.� 0/i�per

ˇ;ƒ
: (2.5.41)

Let also Kƒ
``0.�; �

0/ stand for the correlation function (2.5.20) corresponding to the
measure �ˇ;ƒ.
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Theorem 2.5.12. Suppose that for all `, V`.u/ D �h`uC v`.u
2/, where h` � 0 and

the functions v` have the form (2.2.5); or, alternatively, for all `, V`’s are even functions
satisfying Assumption 1.1.1. Suppose also that J``0 � 0 for all `; `0. Then:

(a) for any box ƒ,
0 � Kƒ``0.�; �

0/ � Kƒ``0.�; �
0jp/I (2.5.42)

(b) for any ƒ;ƒ0 2 Lfin, such that ƒ � ƒ0,

0 � Kƒ``0.�; �
0/ � Kƒ

0

``0.�; �
0/: (2.5.43)

Both estimates hold for all `; `0 and �; � 0 2 Œ0; ˇ�.
Proof. By the definition of the periodic potential Jƒ

``0 , see (1.4.50), it follows that
Jƒ � J ; hence, (2.5.42) follows from Theorem 2.5.7 and Corollary 2.5.10. To prove
claim (b) we set, for `; `0 2 ƒ0,

I``0 D
´
J``0 if `; `0 2 ƒ;

0 otherwise.
(2.5.44)

Then J D .J``0/`;`02ƒ0 � I D .I``0/`;`02ƒ0 and (2.5.43) also follows from Theo-
rem 2.5.7 and Corollary 2.5.10.

Finally, from Theorem 2.5.9 we have

Theorem 2.5.13. Let the functions V`, Fi 2 P
.1/

f`i g, i D 1; : : : ; n, be as in Theo-
rem 2.2.2. Then for all �1; : : : ; �n 2 Œ0; ˇ� and all boxes ƒ, it follows that˝

F1.x`1
.�1// : : : Fn.x`n

.�n//
˛
�ˇ;ƒ

� ˝
F1.x`1

.�1// : : : Fn.x`n
.�n//

˛
�

per
ˇ;ƒ

: (2.5.45)

Furthermore, for any ƒ;ƒ0 2 Lfin, such that ƒ � ƒ0,˝
F1.x`1

.�1// : : : Fn.x`n
.�n//

˛
�ˇ;ƒ

� ˝
F1.x`1

.�1// : : : Fn.x`n
.�n//

˛
�ˇ;ƒ0

: (2.5.46)

2.5.4 Estimates for Ursell Functions

Recall that the Ursell function U`1;:::;`4
.�1; : : : ; �4I 0/ is defined in (2.2.21).

Theorem 2.5.14. Let the measure (2.1.1) be ferromagnetic and of EM type. Then the
inequality Z ˇ

0

Z ˇ

0

U`1;:::;`4
.�; �; �1; �2I 0/d�1d�2

�
Z ˇ

0

Z ˇ

0

U`1;:::;`4
.�; � 0; �1; �2I 0/d�1d�2

(2.5.47)

holds for all `1; : : : ; `4 2 ƒ and �; � 0 2 Œ0; ˇ�.
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The proof of this theorem is based on an inequality for classical spin systems, which
may have interesting applications in its own right. Thus, we derive this inequality now.
Let a finite set „ and a matrix M��0 D M�0� � 0, �; �0 2 „, have the following
properties. There exists a bijection � W „ ! „, � ı � D id, such that „ admits a
disjoint decomposition„C [„�, for which � W „C ! „�. Furthermore, we suppose
that:

.i/ M��0 D M�.�/�.�0/; for all �; �0 2 „, (invariance);

.ii/ M��0 � M��.�0/; for all �; �0 2 „C, (decay).

Now for ƒ 2 Lfin and � 2 „, let

�.du.�/ƒ / D exp

1

2

X
`;`02ƒ

I``0u
.�/

`
u
.�/

`0 �
X
`2ƒ

w`.Œu
.�/

`
�2/

�
du.�/ƒ ; (2.5.48)

where I``0 � 0 and w` are as in (2.2.5). Thus, � is a finite measure on Rjƒj. Set

�.du/ D 1

Z
exp


1

2

X
`2ƒ

X
�;�02„

M��0u
.�/

`
u
.�0/

`

�O
�2„

�.du.�/ƒ /; (2.5.49)

where u D .u
.�/

`
/`2ƒ; �2„ and 1=Z� is a normalization constant. Let h � i� be the

expectation with respect to this measure and

U`1`2`3`4
.�1; �2; �3; �4/ D hu.�1/

`1
u
.�2/

`2
u
.�3/

`3
u
.�4/

`4
i�

� hu.�1/

`1
u
.�2/

`2
i� � hu.�3/

`3
u
.�4/

`4
i�

� hu.�1/

`1
u
.�3/

`3
i� � hu.�2/

`2
u
.�4/

`4
i�

� hu.�1/

`1
u
.�4/

`4
i� � hu.�2/

`2
u
.�3/

`3
i�:

(2.5.50)

Thereby, we set

D`1`2`3`4
.�1; �2/ D

X
�3;�42„

U`1`2`3`4
.�1; �2; �3; �4/: (2.5.51)

Obviously,
D`1`2`3`4

.�1; �2/ D D`1`2`3`4
.�.�1/; �.�2// (2.5.52)

for all `1; : : : ; `4 2 ƒ and �1; �2 2 „.

Proposition 2.5.15. For all `1; : : : ; `4 2 ƒ and �1; �2 2 „C, it follows that

D`1`2`3`4
.�1; �2/ � D`1`2`3`4

.�1; �.�2//: (2.5.53)

Proof. Note that D`1`2`3`4
.�1; �2/ � 0, which follows by the Lebowitz inequality

(2.2.22). Taking into account (2.5.52) one concludes that (2.5.53) is equivalent to

yD`1`2`3`4
.�1; �2/ � 0; (2.5.54)



2.5 More Inequalities 187

where

yD`1`2`3`4
.�1; �2/

defD D`1`2`3`4
.�1; �2/CD`1`2`3`4

.�.�1/; �.�2//

�D`1`2`3`4
.�1; �.�2// �D`1`2`3`4

.�.�1/; �2/:

For ` 2 ƒ and � 2 „C, we introduce

�
.�/

`
D 1p

2

�
u
.�/

`
C u

.�.�//

`

�
; t

.�/

`
D 1p

2

�
u
.�/

`
� u.�.�//

`

�
: (2.5.55)

Then

yD`1`2`3`4
.�1; �2/ D 2

n
ht .�1/

`1
t
.�2/

`2
‚`3

‚`4
i� � ht .�1/

`1
t
.�2/

`2
i� � h‚`3

‚`4
i� (2.5.56)

� ht .�1/

`1
‚`3

i� � ht .�2/

`2
‚`4

i� � ht .�1/

`1
‚`4

i� � ht .�2/

`2
‚`3

i�
o
;

where
‚` D

X
�2„

u
.�/

`
D p

2
X
�2„C

�
.�/

`
:

In the new variables � D .�
.�/

`
/`2ƒ; �2„C

, t D .t
.�/

`
/`2ƒ; �2„C

, the measure (2.5.49)
takes the form, cf. (2.5.24),

�.d�; dt / D 1

Z
exp


1

2

X
`2ƒ

X
�;�02„C

h
MC
��0�

.�/

`
�
.�0/

`
CM�

��0 t
.�/

`
t
.�0/

`

i

C 1

2

X
�2„C

X
`;`02ƒ

I``0

h
�
.�/

`
�
.�/

`0 C t
.�/

`
t
.�/

`0

i
�
X
�2„C

X
`2ƒ

Q`.�
.�/

`
; t
.�/

`
/

�
X
�2„C

X
`2ƒ

h
Ow`
�h
�
.�/

`

i2�C Ow`
�h
t
.�/

`

i2�i�
d�dt;

(2.5.57)

where
M�̇�0 D M��0 ˙M��.�0/ � 0

and

Ow`.#/ D b
.1/

`
# C

rX
sD2

21�sb.s/
`
#s; (2.5.58)

cf. (2.5.17), (2.5.18), and (2.5.19),

Q`.�; ı/ D
r�1X
sD1

� rX
pDsC1

�
2p
2s

�
21�pb.p/

`
�2.p�s/

�
ı2s; �; ı 2 R: (2.5.59)

As the off-diagonal coefficients M�̇�0 and I``0 in expf � g in (2.5.57) are non-negative,
we have that, for all `; `0 2 ƒ and � 2 „C,

ht .�/
`
‚`0i� � 0; (2.5.60)
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which is a kind of Ginibre inequality, see Theorem 2.2 in [295]. Furthermore, in view of
the mentioned property of the non-diagonal coefficients and of the form of the functions
w`, we have

ht .�1/

`1
t
.�2/

`2
‚`3

‚`4
i� � ht .�1/

`1
t
.�2/

`2
i� � h‚`3

‚`4
i�; (2.5.61)

which is a version of the inequality (16c) in [295]. Now we use (2.5.60) and (2.5.61)
in (2.5.56) and get (2.5.54).

Proof of Theorem 2.5.14. Obviously, the measure (2.1.13) may be written in the form
of (2.5.49). Therefore, the inequality (2.5.47) is obtained from (2.5.53) with �2 D �1
in the limit N ! C1.

2.6 Comments and Bibliographic Notes

Section 2.1: In the integration theory on infinite-dimensional spaces, finite-dimensional
approximations are quite natural. In Euclidean quantum field theory, they are known
under the name lattice approximations, by means of which a number of techniques of
classical statistical mechanics were adapted and employed there, see [143], Chapter 9
in [135], and Chapter VIII in [273]. For Wiener integrals on Riemannian manifolds, a
similar approach was developed in [40]. A general scheme of simplicial approximations
of random fields on Riemannian manifolds was elaborated in [39].

In our context, main elements of the lattice approximation scheme were elaborated
in [15]. The most important fact here is that the approximating measure (2.1.13) is
ferromagnetic. It allowed for transferring the main correlation inequalities known for
classical ferromagnetic lattice models. Note that the version presented here is not
unique – one can develop another one based on the integral kernels of the operator
exp.��H har

`;j
/, see (1.2.93).

Section 2.2: Here we present only the inequalities which are used in the subsequent
parts of the book. In principle, all correlation inequalities which hold for measures like
(2.1.13) can be derived. As a standard source for such inequalities we recommend the
books [117], [274].

Section 2.3: There exists a very extensive literature on the logarithmic Sobolev inequal-
ity and its applications in the theory of Gibbs measures of classical lattice models, see
[207], [291], [293], [294], [319], [320]. By the lattice approximation developed in this
chapter, the results obtained by N. Yoshida in the latter two papers can be proven also
for the corresponding local Euclidean Gibbs measures.

Section 2.4: The Lee–Yang property proved to be useful in statistical mechanics, in the
theory of phase transitions in particular, see e.g., [157], [262] and Chapter 4 in [135].
This property has also been used in Euclidean quantum field theory, see Chapter IX
in [273]. In the papers [185], [186], [198], the Laguerre entire functions, see [159],
[192], [201], [202], were employed to describe this property. In the case � D 1,
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the measures possessing the Lee–Yang property are exactly those whose characteristic
functions can be extended to even entire functions non-vanishing outside the real axis.
A complete description of such measures is an old problem of complex analysis, which
is still unsolved. As a particular item, it includes the problem of the zeros of the
Riemann �-function. For a detailed discussion of this problem, see [159], [304]. A
partial result in this domain was obtained by G. Pólya in [247], where he studied the
zeros of Riemannian entire functions. He showed that the characteristic function of the
measure (2.4.6) withV.u/ D a cosh u, a > 0 is an entire function possessing real zeros
only. Here we note that Proposition 2.4.4 includes this Pólya’s result. Characteristic
functions are ridge in the sense that j.xC iy/j � .iy/ as the ridge for such functions
is the imaginary axis, whereas for the functions (2.4.3), (2.4.4), it is the real axis. In
their brilliant paper, A. A. Goldberg and I. V. Osrtovskii [139] proved that a ridge entire
function , which is of finite order, is non-vanishing outside the real axis if and only if
it has the following infinite-product representation, cf. (2.4.3),

.z/ D Ce��0z
2

1Y
jD1

.1 � �j z2/; �j � 0; j 2 N0; (2.6.1)

which means, in particular, that its order is at most 2. This establishes the form of the
functions f� for the measures possessing the Lee–Yang property. Putting all these facts
together one concludes that the Laguerre entire functions constitute a proper setting
for developing the notion of the Lee–Yang property. More on this subject can be found
in [192].

It turns out that an even entire function, which is ridge and non-vanishing, has the
property described by Proposition 2.4.3. It follows from the fact that the numbers �j ,
j 2 N0 have the property

C1X
jD1

�j .1 � �j t /
.1C �j t /2

� 0; for all t � 0, (2.6.2)

which can be proven as follows. Since  is ridge, for any x; y 2 R,

C1Y
jD1

�
.1C �j .x

2 � y2//2 C 4�jx
2y2

� �
C1Y
jD1

�
1C �jx

2
�2
:

Therefrom, we get

C1X
jD1

log
�
1C 2�j t .1 � #/C �2j t

2.1C #/2
� � 2

C1X
jD1

log.1C �j t /;

which holds for all t; # � 0. Then (2.6.2) is obtained as the condition for the derivative
of the left-hand side of the latter inequality at # D 0 to be non-positive. The convexity
of the function log.ih/ can be checked by computing its second derivative and taking
into account (2.6.2).
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The main result of this section, Theorem 2.4.6, will be used in Chapter 6 where we
study phase transitions in the model (1.1.3), (1.1.8). For the .4/2 model of Euclidean
quantum field theory, a similar statement was proven by B. Simon and R. B. Griffiths,
see Theorem 6 in [280]. As will be shown in Section 4.2, the m ! C1 limit of
measures like (2.1.1) are the local Gibbs measures of a classical anharmonic crystal. In
this limit, Theorem 2.4.6 can be formulated in a stronger version, see Theorem 4.2.3.

Section 2.5: Along with the standard inequalities proven in Section 2.2, in the study
of the Euclidean Gibbs measures we use a number of new inequalities, which are
proven in this section. The scalar domination in the form of Theorem 2.5.2 gives us
the only tool to describe e.g., quantum effects in the vector case. A weaker version
of this theorem, valid for EM potentials, was proven in [188], [189]. The zero field
domination (2.5.22) was proven and used in [14], see also [15], [16]. Estimates proven
in Subsection 2.5.3 play an important role in the construction of the Euclidean Gibbs
states in the next chapter. The estimate (2.5.47) along with Theorem 2.4.6 will be
useful in the description of the critical point of a version of the model (1.1.3), (1.1.8),
which we perform in Chapter 6.



Chapter 3

Euclidean Gibbs Measures of Quantum Crystals

In Chapter 1, the local properties of the model (1.1.8) were described by means of
the local Hamiltonians (1.2.5) and (1.4.51), which define the local Gibbs states %ˇ;ƒ
and %per

ˇ;ƒ
The main result in this direction is the representation of the local states

by means of probability measures – local Euclidean Gibbs measures, see (1.4.18),
(1.4.15). The key elements of this construction are the Høegh-Krohn and the multiple-
time analyticity theorems which establish a one-to-one correspondence between the
local states and the corresponding Euclidean Gibbs measures. In the current chapter,
we employ this correspondence to construct global Gibbs measures, which describe
thermodynamic properties of the whole infinite model. This construction is carried
out in the framework of the DLR approach – a standard tool of classical statistical
mechanics, see [129], [249], adapted here to the case of infinite-dimensional spins and
infinite-range interactions.

We start by discussing the thermodynamic limit and limiting Gibbs states (Sub-
sections 3.1.1 and 3.1.2). Then, in Subsection 3.1.3, we introduce the spaces of all
configurations �ˇ , and tempered configurations �t

ˇ
. The space �ˇ is constructed

from the spaces of local configurations in a natural way. We equip�ˇ with the product
topology that turns it into a Polish space. This fact is essential in view of the DLR
techniques which we are going to use. The introduction of tempered configurations is
connected with the necessity to control the spatial growth of kx`kL2

ˇ
-norms in order to

exclude situations where infinite forces act on a given oscillator. Such situations can
occur in view of the infinite range of interactions. By definition, tempered Euclidean
Gibbs measures are to be supported by �t

ˇ
. The use of tempered configurations is a

standard procedure in the DLR theory of Gibbs measures of lattice models with ‘un-
bounded spins’. The mentioned growth control is carried out by means of a family
of weights. This family fw˛g˛2� consists of functions w˛ W L � L ! .0; 1�, which
among other features have the property that every � logw˛ , ˛ 2 �, is a metric on L.
We equip �t

ˇ
with the projective limit topology, determined by the weights, so that

it becomes a Polish space as well. Thereafter, in Subsection 3.1.4 we construct the
local Gibbs specification corresponding to our model. The key element of this con-
struction is the local energy functional Eˇ;ƒ.xj	/, which describes also the influence
of the configuration outsideƒ on the configuration inƒ. By means of the local Gibbs
specification we define the Euclidean Gibbs measures of our model. In Section 3.2,
we describe a number of properties of the local Gibbs specification, which play a key
role in constructing and studying tempered Euclidean Gibbs measures. In Section 3.3,
we prove that the set of such measures G t

ˇ
is non-void and weakly compact. We also

prove a number of statements characterizing G t
ˇ

. Next, in Section 3.4, we develop
an alternative approach to the construction of Euclidean Gibbs measures, based on
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the Radon–Nikodym characterization. In this approach, G t
ˇ

is defined as the set of
measures obeying an integration-by-parts formula. Subsequently, we study in detail
the case of local interactions (Section 3.5), where the intensities J``0 have finite range,
and the translation-invariant case (Section 3.6), where L D Zd , V` D V , and J``0

are invariant with respect to the translations of L. In the latter case, the set G t
ˇ

among
others contains the so-called periodic elements. Finally, in Section 3.7, for J``0 � 0

and � D 1, we introduce a stochastic order on G t
ˇ

, with respect to which G t
ˇ

has a
minimal element, ��, and a maximal element, �C. By means of these elements we
derive a uniqueness criterion for G t

ˇ
.

3.1 Gibbs States and Euclidean Gibbs Measures

We begin this section by introducing the framework for the description of bulk properties
of our model and by analyzing the possibilities to obtain the limiting Gibbs states and
to relate them to the Euclidean Gibbs measures. Since from now on we deal with the
whole ‘lattice’ L, it is convenient to adopt the following simplifications. If we say that
something holds for all `, we mean it holds for all ` 2 L; expressions like

P
` meanP

`2L. We recall that Lfin (respectively, L) stands for the family of all non-void finite
(respectively, all) subsets of L.

3.1.1 Thermodynamic Limit

Given ƒ;ƒ0 2 Lfin, such that ƒ � ƒ0, by definition the map ~ W Cƒ ! Cƒ0 acts as
follows:

Cƒ 3 A 7! ~.A/ D A˝ I 00 2 Cƒ0 ;

where I 00 is the unit element of the algebra Cƒ00 , ƒ00 D ƒ0 n ƒ. Then ~.Cƒ/ is a
subalgebra of Cƒ0 , it is isomorphic to Cƒ. Usually, the distinction between ~.Cƒ/
and Cƒ is ignored and the latter algebra is considered as a subalgebra of Cƒ0 . Thus, one
can speak about the family fCƒ j ƒ 2 Lfing which by constructions has the following
properties:

(a) if ƒ � ƒ0, then Cƒ � Cƒ0 ;

(b) if ƒ \ƒ0 D ;, then the algebras Cƒ, Cƒ0 commute.

Then the union
Cloc D

[
ƒ2Lfin

Cƒ (3.1.1)

is a �-algebra, which consists of local observables. It can be normalized by letting kAk
be the norm of A in the corresponding Cƒ. The norm completion of this algebra of
local observables is aC �-algebra, called the quasi-local algebra and denoted by C, see
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Section 2.6 in [76] for more details on this topic. Clearly, to construct this algebra one
can use families of local algebras, smaller than fCƒgƒ2Lfin . Let L be an increasing
sequence of finite subsets ƒ � L, which exhausts L. This means that L is ordered
by inclusion and that any finite subset of L is contained in some element of L. Such
sequences will be called cofinal. Then the algebra C can be obtained as the norm
completion of the union, as in (3.1.1), taken over any cofinal sequence L.

For a cofinal sequence L and an appropriate sequence fAƒgƒ2L, by limLAƒ we
mean the limit of the net fAƒgƒ2L. By limƒ%LAƒ we mean the limit of the net
fAƒgƒ2Lfin . Such limits, if they exist, are called thermodynamic limits.

If L D Zd , among all cofinal sequences one can distinguish the sequence of boxes

fƒLgL2N; ƒL D .�L;L�d \ Zd ; L 2 N: (3.1.2)

Sometimes, a more precise control of the way in which the elements of a cofinal
sequence L grow is needed. Let P.ƒL/ be the partition of the lattice Zd defined by
(1.4.47). Givenƒ 2 Lfin, letNC

L .ƒ/ (respectively,N�
L .ƒ/) be the number of elements

of P.ƒL/which have nonempty intersection withƒ (respectively, which are contained
in ƒ).

Definition 3.1.1. The sequence L is a van Hove sequence (i.e., it tends to Zd in the
sense of van Hove) if

lim
L
N�
L .ƒ/ D C1; lim

L

�
N�
L .ƒ/=N

C
L .ƒ/

� D 1; (3.1.3)

for every L 2 N.

Given ` 2 Zd , its nearest neighbors are those `0 2 Zd , for which j`� `0j D 1. For
a 2 Rd and � � Rd , by the distance between a and � we mean

dist.a;�/ D inf
b2�

ja � bj:

Definition 3.1.2. Givenƒ 2 Lfin, the boundary @ƒ consists of the elements ofƒ, each
of which has a nearest neighbor outside ƒ.

One can easily prove the following

Proposition 3.1.3. Given a cofinal sequence L, the following statements are equiva-
lent:

(i) L is a van Hove sequence;

(ii) infL j@ƒj=jƒj D 0;

(iii) there exist sequences fLṅ gn2N � N, tending to infinity with L�
n < LC

n for all
n 2 N, such that, for any n 2 N, one findsƒ 2 L, such that the following holds:

ƒL�
n

� ƒ � ƒ
L

C
n
; lim

n!C1
�
LC
n =L

�
n

� D 1: (3.1.4)
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3.1.2 Gibbs States

By construction, every state on the quasi-local algebra C can be restricted to any local
algebra Cƒ. Since states on a C �-algebra are norm-continuous, a state on the algebra
C is completely determined by its restrictions to the local algebras Cƒ. We recall that
a state on Cƒ is normal if it is defined by means of the trace operation (1.2.29) (see
Definition 1.2.12 and Proposition 1.2.15); thus, the local Gibbs states (1.2.12), (1.4.52)
are normal. The way of constructing Gibbs states as thermodynamic limits of the states
(1.2.12) and (1.4.52) can be based on the following arguments. Since such a state is
determined by its values on local algebras, we may fix someƒ0 and consider a cofinal
sequence L, each element of which contains ƒ0 as a subset. Suppose that for every
A 2 Cƒ0

, the sequence f%ˇ;ƒ.A/gL converges. Then the limits of all such sequences
define a linear functional ƒ0

W Cƒ0
! C, which is a weak* limit of the sequence

of states f%ˇ;ƒgL. We recall that a net of states f!˛g on a C �-algebra A converges
uniformly to a state ! if

sup
A2AW kAk�1

j!.A/ � !˛.A/j ! 0:

Since in general a weak* limit need not be continuous, we cannot claim that ƒ0
is a

state. In this situation we can use the following facts, see Theorem 2.6.16, page 133 in
[76],

Proposition 3.1.4. The uniform topology and the weak� topology restricted to the set
of all normal states on any Cƒ,ƒ 2 Lfin coincide. The set of all normal states is closed
in both of these topologies.

Thus, the functional ƒ0
is a normal state. By construction the system of all such

states is consistent, which means that if ƒ � ƒ0, then the restriction of ƒ0 to Cƒ
coincides with ƒ. Therefore, the family fƒgƒ2Lfin defines a state on the quasi-local
algebra C, the restrictions of which to any Cƒ coincides with the corresponding ƒ.
This state is locally normal. It can be called limiting Gibbs state of our model. In
principle, this state may depend on the sequence L along which the limit was taken. In
what follows, the whole variety of the limiting Gibbs states can be obtained by taking
limits along various cofinal sequences of the local states (1.2.12) and (1.4.52). If all
local states are rotation-invariant, the limiting Gibbs states should also be rotation-
invariant. Thus, we have no possibility to describe phase transitions by making use of
such limiting Gibbs states only.

As was mentioned above, the second way of constructing Gibbs state relies on the
KMS conditions. To formulate them one needs the group of time automorphisms which
determines the dynamics of the whole infinite system. These automorphisms should
be obtained as limits of local time automorphisms (1.2.13), (1.2.14), that is, as

at .A/ D lim
L

atƒ0.A/;

which should be obtained for all t 2 R,ƒ 2 Lfin andA 2 Cƒ. If these limits exist, one
can try to construct from them a strongly continuous group defined on the algebra of



3.1 Gibbs States 195

quasi-local observables C. However, for our model there is no way to get such limits.
In this case, it is quite natural to use the representation of the local Gibbs states by
means of the Euclidean Gibbs measures elaborated in Section 1.4. In this approach,
equilibrium states are constructed as probability measures with the help of equilibrium
conditions, analogous to the KMS ones, which are known as the Dobrushin–Lanford–
Ruelle conditions. Realization of this idea will be presented in the subsequent sections
of this chapter. Additional comments on the problem of constructing Gibbs states for
our model are given in Section 3.8.

3.1.3 Configuration Spaces

We recall that L (respectively, Lfin) stands for the family of all subsets (respectively,
of all finite subsets) of L and Cˇ is the Banach space of continuous periodic functions
from Œ0; ˇ� to R� . For ƒ 2 Lfin, in (1.3.156) we introduced the Banach space Cˇ;ƒ
as the space of ‘vectors’ xƒ D .x`/`2ƒ. Now we need such ‘vectors’ with infinite ƒ.
Thus, we set

�ˇ;ƒ D fxƒ D .x`/`2ƒ j x` 2 Cˇ g; �ˇ D fx D .x`/`2L j x` 2 Cˇ g: (3.1.5)

In order to relate the spaces �ˇ;ƒ with different ƒ to each other we introduce projec-
tions. For ƒ � ƒ0, we set 
ƒ;ƒ0.xƒ0/ D xƒ, where the components of both xƒ, xƒ0

indexed by the same ` 2 ƒ coincide. We equip each �ˇ;ƒ0 with the component-wise
real linear operations and with the product topology, i.e., the weakest topology in which
all the projections

�ˇ;ƒ0 3 xƒ0 7! 
ƒ;ƒ0.x/Dxƒ 2 Cˇ;ƒ; ƒ 2 Lfin; (3.1.6)

are continuous. Thereafter, we can also define Borel � -algebras Bˇ;ƒ and Bˇ D Bˇ;L.
The elements of�ˇ are called configurations. In the case ofƒ 2 Lfin, the space�ˇ;ƒ
is nothing but the Banach spaces Cˇ;ƒ, defined in (1.3.156). For such spaces, we use
both notations; however, for infinite ƒ, we use the notation �ˇ;ƒ only.

As above, for ƒ D ƒ0 [ƒ00, such that ƒ0 \ƒ00 D ;, we write xƒ D xƒ0 � xƒ00 ,
meaning that xƒ0 D 
ƒ0;ƒ.xƒ/ and xƒ00 D 
ƒ00;ƒ.xƒ/. Given ƒ0 � ƒ 2 L, we
define the map

�ˇ;ƒ0 3 xƒ0 7! xƒ0 � 0ƒ00 2 �ˇ;ƒ; (3.1.7)

where ƒ00 D ƒ n ƒ0 and 0ƒ00 is the zero element of �ˇ;ƒ00 . It is a linear continuous
embedding. As usual, we identify �ˇ;ƒ0 with its image and consider it as a subspace
of the space �ˇ;ƒ. Correspondingly, Bˇ;ƒ0 is considered as a subalgebra of Bˇ;ƒ.

The product topology on�ˇ can also be defined in the following way. For x 2 �ˇ
and ` 2 L, we set

p`.x/ D sup
�2Œ0;ˇ�

jx`.�/j: (3.1.8)

It is a semi-norm on�ˇ and the system fp`g`2L separates the points of�ˇ . Thus, this
system fp`g`2L defines a locally convex topology on �ˇ , which is equivalent to the
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product topology introduced above. Since fp`g`2L is countable, the topological space
�ˇ is metrizable, and the corresponding metric can be

d.x; x0/ D
X
`

2�j`j � p`.x � x0/
1C p`.x � x0/

: (3.1.9)

The configuration space �ˇ equipped with this metric is complete and separable;
hence, the set of probability measures P .�ˇ / possesses all the properties described
in Subsection 1.3.4. Correspondingly, the weak topology on P .�ˇ / is the topology
defined by the neighborhoods (1.3.65) with f 2 Cb.�ˇ /.

As was mentioned above, for ƒ0 � ƒ we consider the Borel � -algebra Bˇ;ƒ0 as a
subalgebra of Bˇ;ƒ. Thus, we set

B loc
ˇ D

[
ƒ2Lfin

Bˇ;ƒ: (3.1.10)

Obviously, B loc
ˇ

can be obtained by taking the union over any cofinal sequence L.

Definition 3.1.5. A function f W �ˇ ! R is called local if it is measurable with
respect to B loc

ˇ
. A bounded function f W �ˇ ! R is called quasi-local if it is a limit,

uniform on�ˇ , of a sequence of bounded local functions. By C loc
b .�ˇ / (respectively,

C
qloc
b .�ˇ /) we denote the set of all local (respectively, all quasi-local) continuous

bounded functions f W �ˇ ! R.

Proposition 3.1.6. The � -algebra B loc
ˇ

, as well as the set of all local continuous

bounded functions C loc
b .�ˇ /, are measure determining. That is, if for any �; � 2

P .�ˇ /, one has

8B 2 B loc
ˇ W �.B/ D �.B/; or 8f 2 C loc

b .�ˇ / W
Z
�ˇ

f d� D
Z
�ˇ

f d�;

then � D �.

Proof. We recall that the indicator function IB was defined by (1.1.39). Set

�loc D fIB j B 2 B loc
ˇ g: (3.1.11)

Clearly, for any � 2 P .�ˇ /,

�.B/ D
Z
�ˇ

IBd�:

Then the proof follows by the fact that both sets �loc andC loc
b .�ˇ / satisfy the conditions

of Theorem 1.3.26.

As we show in the next statement, the set C loc
b .�ˇ / has one more useful property.
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Proposition 3.1.7. A sequence f�ngn2N � P .�ˇ / weakly converges to a measure
� 2 P .�ˇ / if and only if

8f 2 C loc
b .�ˇ / W lim

n!C1

Z
�ˇ

f d�n D
Z
�ˇ

f d�: (3.1.12)

Proof. By (1.3.66) the above holds if �n ) �. Let us show that any f 2 Cb.�ˇ /,
which is uniformly continuous with respect to the metric (3.1.9), can uniformly be
approximated by functions from C loc

b .�ˇ /. For such a function f and a finite subset
ƒ, we set fƒ.x/ D f .xƒ � 0ƒc /. Since f is uniformly continuous, for any " > 0,
there exists ı > 0 such that

8x; x0 2 �ˇ W d.x; x0/ < ı implies jf .x/ � f .x0/j < ": (3.1.13)

Then for any " > 0, one finds ƒ" 2 D , such thatX
`2ƒc

"

2�j`j < ıI

hence, by (3.1.9) for all ƒ 	 ƒ",

kf � fƒkCb.�ˇ/
defD sup

x2�ˇ

jf .x/ � fƒ.x/j < ":

Since the measures �n, as linear functionals on Cb.�ˇ /, are continuous in the above
norm, the weak convergence of the sequence f�ngn2N follows from (3.1.12) by Propo-
sition 1.3.32.

In the construction of Euclidean Gibbs measures, we will deal with functions of
the following kind, cf. (1.4.8),

.xƒ; 	/ 7!
X

`2ƒ; `02ƒc

J``0.x`; 	`0/L2
ˇ
; ƒ 2 Lfin: (3.1.14)

Clearly, such a function can be defined for all 	 2 �ˇ only if the interaction has finite
range. Otherwise, one should restrict 	 to a subset of �ˇ , naturally defined by the
condition

8` 2 L W
X
`0

jJ``0 j � j.x`; 	`0/L2
ˇ
j < 1; (3.1.15)

which can be rewritten in terms of growth restrictions imposed on fj	`jL2
ˇ
g`2L. Of

course, these restrictions should be defined by the decay ofJ``0 . Configurations obeying
such restrictions are called tempered. To introduce them we use weights.

Definition 3.1.8. Weights are the maps w˛ W L � L ! .0;C1/, indexed by

˛ 2 � D .˛; x̨/; 0 � ˛ < x̨ � C1; (3.1.16)

which satisfy the following conditions:



198 3 Euclidean Gibbs Measures

(a) for any ˛ 2 � and `, w˛.`; `/ D 1;

(b) for any ˛ 2 � and `1; `2; `3,

w˛.`1; `2/ � w˛.`2; `3/ � w˛.`1; `3/I (3.1.17)

(c) for any ˛; ˛0 2 �, such that ˛ < ˛0, and arbitrary `; `0,

w˛0.`; `0/ � w˛.`; `
0/; lim

j`�`0j!C1
w˛0.`; `0/=w˛.`; `0/ D 0: (3.1.18)

The concrete choice of w˛ depends on the decay of J``0 , which will be subject to
the following

Assumption 3.1.9. For all ˛ 2 �,

sup
`

X
`0

log.1C j` � `0j/ � w˛.`; `0/ < 1; (3.1.19)

OJ˛ defD sup
`

X
`0

jJ``0 j � �w˛.`; `0/
��1

< 1: (3.1.20)

Given ı > 0, which is a parameter of the theory, there exists ˛ 2 �, such that

OJ˛ � OJ0 < ı: (3.1.21)

One observes that the conditions (3.1.19) and (3.1.20) are competitive. Let us
present now the basic examples which will be used in the sequel.

Suppose that

sup
`

X
`0

jJ``0 j � exp
�
˛j` � `0j� < 1; for a certain ˛ > 0. (3.1.22)

Then by x̨ we denote the supremum of ˛ obeying (3.1.22) and set

w˛.`; `
0/ D exp

��˛j` � `0j� ; ˛ 2 � D .0; x̨/: (3.1.23)

In this case, lim˛!0
OJ˛ D OJ0; hence, (3.1.21) is satisfied for any ı > 0.

In the second case, instead of (3.1.22) we suppose that

sup
`

X
`0

jJ``0 j � �1C j` � `0j�˛d < 1; (3.1.24)

for a certain ˛ > 1. Then x̨ is set to be the supremum of ˛ obeying (3.1.24) and

w˛.`; `
0/ D �

1C "j` � `0j��˛d ; � D .1; x̨/; (3.1.25)

where the parameter " > 0 is chosen for (3.1.21) to be satisfied. If

jJ``0 j � J.1C j` � `0j/�d�� ; � > 0;

then x̨ D �=d , which implies � > d .
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Given `0 2 L, s D .s`/`2L 2 RL, and ˛ 2 �, we set

jsjl1.`0;˛/
D
X
`

js`jw˛.`0; `/; jsjl1.`0;˛/ D sup
`

fjs`jw˛.`0; `/g ;

and introduce the Banach spaces

lp.`0; ˛/ D ˚
s 2 RL j jsjlp.`0;˛/ < 1�

; p D 1;C1: (3.1.26)

By means of (3.1.17) one can prove that the topologies defined on lp.`0; ˛/, p D
1;C1, by the corresponding norms with different `0 are equivalent.

Remark 3.1.10. By (3.1.18) for ˛ < ˛0, the embedding l1.`0; ˛/ ,! l1.`0; ˛
0/ is

compact. By (3.1.20) for every ˛ 2 �, the operator s 7! Js, where

.Js/` D
X
`0

J``0s`0 ;

is bounded in both lp.`0; ˛/, p D 1;C1. Its norm does not exceed OJ˛ .

We recall thatL2
ˇ

is the real Hilbert spaceL2 .Œ0; ˇ� ! R�/. For˛ 2 � and `0 2 L,
we define

kxk`0;˛D
hX

`

kx`k2L2
ˇ

w˛.`0; `/
i1=2

; (3.1.27)

and
�
`0;˛

ˇ
D ˚

x 2 �ˇ
ˇ̌kxk`0;˛ < 1�

: (3.1.28)

Then we endow �
`0;˛

ˇ
with the metric

�`0;˛.x; y/ D kx � yk`0;˛ C
X
`

2�j`0�`j � kx` � y`kCˇ

1C kx` � y`kCˇ

; (3.1.29)

which turns it into a Polish space. The set of tempered configurations is defined to be

�t
ˇ D

\
˛2�

�
`0;˛

ˇ
: (3.1.30)

For any `0; `1 2 L and ˛ 2 �, by the triangle inequality (3.1.17) one obtains

Œw˛.`0; `1/�
1=2kxk`1;˛ � kxk`0;˛ � Œw˛.`0; `1/�

�1=2kxk`1;˛I (3.1.31)

hence, all �`;˛
ˇ

, ` 2 L, are homeomorphic to each other. Therefore, the definition
(3.1.30) is independent of the particular choice of `0, but it certainly depends on the
choice of the weights. Equipped with the projective limit topology, �t

ˇ
becomes a

Polish space as well. For any ˛ 2 � and `0, we have continuous dense embeddings
�t
ˇ
,! �

`0;˛

ˇ
,! �ˇ . Then by the Kuratowski theorem (Proposition 1.3.18), it follows

that�`0;˛

ˇ
; �t

ˇ
2 Bˇ and the Borel � -algebras of all these Polish spaces coincide with

the ones induced on them by Bˇ . Thus, we set

B.�t
ˇ / D fB \�t

ˇ j B 2 Bˇ g: (3.1.32)
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Definition 3.1.11. A measure � 2 P .�ˇ / is called tempered, if �.�t
ˇ
/ D 1.

Now let us turn to the model we consider.

3.1.4 Tempered Euclidean Gibbs Measures

Given 	 2 �t
ˇ

and ƒ 2 Lfin, we set, cf. (3.1.14) and (3.1.15),

Eˇ;ƒ.xj	/ D Eˇ;ƒ.xƒ/ �
X

`2ƒ;`02ƒc

J``0.x`; 	`0/L2
ˇ
; (3.1.33)

where Eˇ;ƒ.xƒ/ was defined in (1.4.8). Note that x D xƒ � xƒc ; hence,

Eˇ;ƒ.xj	/ D Eˇ;ƒ.xƒ � 0ƒc j0ƒ � 	ƒc /: (3.1.34)

We call Eˇ;ƒ.xj	/ the energy functional, corresponding to the boundary condition 	 .
Among other properties, it has the one of describing the connection of the configuration
in ƒ, i.e., xƒ, with the one outside ƒ, i.e., 	ƒc .

Lemma 3.1.12. For every `0 2 L, ˛ 2 �, and ƒ 2 Lfin, the map

�
`0;˛

ˇ
��`0;˛

ˇ
3 .x; 	/ 7! Eˇ;ƒ.xj	/;

is continuous. Furthermore, for every ball

B`0;˛.R/ D fx 2 �`0;˛

ˇ
j �`0;˛.0; x/ < Rg; R > 0;

it follows that
inf

x2�ˇ ; �2B`0;˛.R/
Eˇ;ƒ.xj	/ > �1;

sup
x;�2B`0;˛.R/

ˇ̌
Eˇ;ƒ.xj	/ˇ̌ < C1:

(3.1.35)

Proof. As the functions V` W R� ! R are continuous, the map .x; 	/ 7! Eˇ;ƒ.xƒ/ is
continuous and locally bounded. Furthermore,ˇ̌̌ X

`2ƒ; `02ƒc

J``0.x`; 	`0/L2
ˇ

ˇ̌̌
�

X
`2ƒ; `02ƒc

jJ``0 j � kx`kL2
ˇ

� k	`0kL2
ˇ

D
X
`2ƒ

kx`kL2
ˇ
Œw˛.`0; `/�

�1=2

�
X
`02ƒc

jJ``0 j �w˛.`0; `/=w˛.0; `0/
�1=2

(3.1.36)

� k	`0kL2
ˇ
Œw˛.`0; `

0/�1=2



3.1 Gibbs States 201

�
X
`2ƒ

kx`kL2
ˇ
Œw˛.`0; `/�

�1=2

�
X
`02ƒc

jJ``0 j � Œw˛.`; `0/��1=2

� k	`0kL2
ˇ
Œw˛.`0; `

0/�1=2

� OJ˛kxk`0;˛k	k`0;˛

X
`2ƒ

Œw˛.`0; `/�
�1;

where we used the triangle inequality (3.1.17). Similarly, by means of the Minkowski
inequality and (3.1.17) we getˇ̌̌ X

`2ƒ; `02ƒc

J``0.x`; 	`0/L2
ˇ

ˇ̌̌
� 1

2

X
`2ƒ; `02ƒc

jJ``0 j � kx`k2L2
ˇ

C 1

2

X
`2ƒ; `02ƒc

jJ``0 j � k	`0k2
L2

ˇ

(3.1.37)

� 1

2
OJ0
X
`2ƒ

kx`k2L2
ˇ

C 1

2
OJ˛k	k2`0;˛

X
`2ƒ

1

w˛.`0; `/
:

The estimate (3.1.36) and Proposition 1.4.3 yield the stated continuity and the upper
bound in (3.1.35). To prove the lower bound we employ Jensen’s inequality and the
super-quadratic growth of V` assumed in (1.1.10). This yields

Eˇ;ƒ.xj	/ � �cV ˇjƒj C bV ˇ
1�rX

`2ƒ
kx`k2rL2

ˇ

� 1

2

X
`;`02ƒ

J``0.x`; x`0/L2
ˇ

�
X

`2ƒ; `02ƒc

J``0.x`; 	`0/L2
ˇ
:

Therefrom, for a fixed ˛ 2 �, by (3.1.37) for arbitrary x 2 �ˇ and 	 2 B`0;˛.R/, we
get

Eˇ;ƒ.xj	/ � �cV ˇjƒj C bV ˇ
1�rX

`2ƒ
kx`k2rL2

ˇ

� 1

2
OJ˛k	k2`0;˛

X
`2ƒ

Œw˛.`0; `/�
�1 � OJ0

X
`2ƒ

kx`k2L2
ˇ

� �ˇjƒj
"
cV C r � 1

b
1=.r�1/
V

� OJ0
r

�r=.r�1/#

� 1

2
OJ˛R2

X
`2ƒ

Œw˛.`0; `/�
�1;

(3.1.38)

cf. (1.4.11).
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Now for ƒ 2 Lfin and 	 2 �t
ˇ

, we introduce

Nˇ;ƒ.	/ D
Z
Cˇ;ƒ

exp
��Eˇ;ƒ.xƒ � 0ƒc j	/��ˇ;ƒ.dxƒ/; (3.1.39)

which is the relative partition function corresponding to the state inƒ, cf. (1.4.13). An
immediate corollary of the estimates (1.3.124) and (3.1.38) is the following

Proposition 3.1.13. For everyƒ 2 Lfin, the function�t
ˇ

3 	 7! Nˇ;ƒ.	/ 2 .0;C1/

is continuous. Moreover, for any R > 0,

inf
�2B`0;˛.R/

Nˇ;ƒ.	/ > 0; sup
�2B`0;˛.R/

Nˇ;ƒ.	/ < 1: (3.1.40)

Now by means of the energy functionalEˇ;ƒ.xj	/we introduce the local Euclidean
Gibbs measure which corresponds to the boundary condition defined by the configura-
tion 	. For the sake of brevity, we will call it the measure with the boundary condition
	. Thus, for 	 2 �t

ˇ
, we set, see (3.1.34),

�ˇ;ƒ.dxƒj	/ D 1

Nˇ;ƒ.	/
exp

��Eˇ;ƒ.xƒ � 0ƒc j	/��ˇ;ƒ.dxƒ/; (3.1.41)

and �ˇ;ƒ. � j	/ D 0 if 	 2 �ˇ n�t
ˇ

. By Lemma 3.1.12 we get the following property
of this measure.

Remark 3.1.14. For every fixed 	 2 �t
ˇ

, the Radon–Nikodym derivative of �ˇ;ƒ. � j	/
with respect to the measure �ˇ;ƒ is a bounded continuous function on Cˇ;ƒ.

For the measure (3.1.41), we define the Matsubara functions, cf. (1.4.20),

�
ˇ;ƒ
F1;:::;Fn

.�1; : : : ; �nj	/ D
Z
Cˇ;ƒ

F1.xƒ.�1// : : : Fn.xƒ.�n//�ˇ;ƒ.dxƒj	/; (3.1.42)

where �1; : : : ; �n 2 Œ0; ˇ� and F1; : : : ; Fn 2 Mƒ. Recall that the family of functions
P
.�/
ƒ was introduced in Definition 1.4.7. As a corollary of Theorem 1.4.9, we have the

following property of the functions (3.1.42).

Proposition 3.1.15. For any 	 2 �t
ˇ
, the Matsubara functions (3.1.42) are continuous

in .�1; : : : ; �n/ 2 Œ0; ˇ�n. They can also be defined for multiplication operators by
functions from the family P

.�/
ƒ . These extensions are continuous in .�1; : : : ; �n/ 2

Œ0; ˇ�n as well.

Proof. For 	 2 �t
ˇ

, we set

y` D
X
`02ƒc

J``0	`0 : (3.1.43)

As in (3.1.36), one proves that for every `0 and ˛ 2 �, the map x 7! y` defined by
(3.1.43) continuously maps �`0;˛ into L2

ˇ
. Hence, yƒ D .y`/`2ƒ is an element of

L2
ˇ;ƒ

and the stated continuity follows by Theorem 1.4.9.
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Let .�;F / be a measurable space. A map 
 W F � � ! R is called a measure
kernel (respectively, a probability kernel) if: (a) for any ! 2 �, the map 
. � j!/ is a
measure (respectively, a probability measure); (b) for any B 2 F , the map 
.Bj � / is
measurable. A typical example of a probability kernel is the indicator function (1.1.39).
On the measure space .�ˇ ;Bˇ / we define the measure kernels


ˇ;ƒ.Bj	/ D
Z
Cˇ;ƒ

IB.xƒ � 	ƒc /�ˇ;ƒ.dxƒj	/; (3.1.44)

where 	 2 �ˇ andƒ 2 Lfin. By the definition of the measure �ˇ;ƒ. � j	/ for allB 2 Bˇ ,
it follows that


ˇ;ƒ.Bj	/ D 0 if 	 2 �ˇ n�t
ˇ ; (3.1.45)

hence, 
ˇ;ƒ is a measure kernel on .�ˇ ;Bˇ /. By construction, the kernels 
ˇ;ƒ with
differentƒ 2 Lfin satisfy the following consistency condition. For anyƒ0 � ƒ 2 Lfin,Z

�ˇ


ˇ;ƒ0.Bjx/
ˇ;ƒ.dxj	/ D 
ˇ;ƒ.Bj	/; (3.1.46)

which holds for every B 2 Bˇ and 	 2 �t
ˇ

. Furthermore, by (3.1.38) it follows that
for any 	 2 �ˇ , � 2 .0; 1=2/, `0 2 L, ~ > 0, and � < &=b� ,Z

�ˇ

exp
nX
`2ƒ

�
�kx`k2C�

ˇ
C ~kx`k2L2

ˇ

�o

ƒ.dxj	/ < 1; (3.1.47)

where & and b� are the same as in (1.3.124).

Definition 3.1.16. The set ˘ˇ D f
ˇ;ƒgƒ2Lfin of the kernels (3.1.44) is called the
local Gibbs specification for the model (1.1.8).

ByCb.�
`0;˛

ˇ
/ (respectively, byCb.�

t
ˇ
/) we denote the Banach space of all bounded

continuous functions f W �`0;˛

ˇ
! R (respectively, f W �t

ˇ
! R), equipped with the

supremum norm. In view of (3.1.31), the sets Cb.�
`0;˛

ˇ
/ are the same for all `0 2 L.

For every ˛ 2 �, one has a natural continuous embedding Cb.�
`0;˛

ˇ
/ ,! Cb.�

t
ˇ
/.

Lemma 3.1.17 (Feller Property). The specification ˘ˇ is such that for every ˛ 2 �,
ƒ 2 Lfin, and for any f 2 Cb.�`0;˛/, the function

�
`0;˛

ˇ
3 	 7! 
ˇ;ƒ.f j	/ defD

Z
�ˇ;ƒ

f .xƒ � 	ƒc /�ˇ;ƒ.dxƒj	/ (3.1.48)

belongs to Cb.�
`0;˛

ˇ
/. The linear operator f 7! 
ˇ;ƒ.f j � / is a contraction on

Cb.�
`0;˛

ˇ
/.
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Proof. By Lemma 3.1.12 and Proposition 3.1.13 the integrand

G
f
ƒ.xƒj	/ defD f .xƒ � 	ƒc / exp

��Eˇ;ƒ.xƒ � 0ƒc j	/� =Nˇ;ƒ.	/
is continuous in both variables. Moreover, by (3.1.35) and (3.1.40) the map

�
`0;˛

ˇ
3 	 7! sup

xƒ2�ˇ;ƒ

jGfƒ.xƒj	/j

is bounded on every ball B`0;˛.R/. This allows us to apply Lebesgue’s dominated
convergence theorem, which yields the stated continuity. Obviously,

sup
�2�`0;˛

ˇ

ˇ̌

ˇ;ƒ.f j	/ˇ̌ � sup

�2�`0;˛

ˇ

jf .	/j; (3.1.49)

which completes the proof.

Note that for 	 2 �t
ˇ

, any ˛ 2 �, and f 2 Cb.�
`0;˛

ˇ
/, by (3.1.44) one has


ˇ;ƒ.f j	/ D
Z
�ˇ

f .x/
ˇ;ƒ.dxj	/: (3.1.50)

For � 2 P .�ˇ /, the map � 7! �
ˇ;ƒ, where

�
�
ˇ;ƒ

�
.B/ D

Z
�ˇ


ˇ;ƒ.Bjx/�.dx/; B 2 Bˇ ; (3.1.51)

defines a new probability measure on �ˇ . If �
ˇ;ƒ D � for any ƒ 2 Lfin, then one
can say that this � is consistent with the set ˘ˇ .

Definition 3.1.18. A measure � 2 P .�ˇ / is said to be a tempered Euclidean Gibbs
measure of the model (1.1.8) if for any ƒ 2 Lfin, it satisfies the condition

�
ˇ;ƒ D �: (3.1.52)

This condition considered as an equation, which defines tempered Euclidean Gibbs
measures, is called the Dobrushin–Lanford–Ruelle (DLR) equation.

The set of all measures which solve the equation (3.1.52), i.e., the set of all tempered
Euclidean Gibbs measures existing at a givenˇ, is denoted by G t

ˇ
. Apriori, one does not

know whether this set is non-void. In Section 3.3, we prove that it is indeed non-void.
So far we can prove the following assertion.

Proposition 3.1.19. For every � 2 G t
ˇ

and � 2 .0; 1=2/, it follows that

�.�t
ˇ / D 1; �.fx 2 �t

ˇ j 8` W x` 2 C �ˇ g/ D 1: (3.1.53)
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Proof. By (3.1.44) and (3.1.45),


ˇ;ƒ.�ˇ n�t
ˇ j	/ D 0; for every ƒ 2 Lfin and 	 2 �ˇ .

Then by (3.1.52),
�.�ˇ n�t

ˇ / D 0 H) �.�t
ˇ / D 1:

The second equality in (3.1.53) follows from (3.1.47).

Given ˛ 2 �, by W˛ we denote the usual weak topology on the set of all proba-
bility measures P .�

`0;˛

ˇ
/, defined by means of Cb.�

`0;˛

ˇ
/. In view of (3.1.31), it is

independent of the choice of `0. By W t we denote the weak topology on P .�t
ˇ
/. With

these topologies the sets P .�
`0;˛

ˇ
/ and P .�t

ˇ
/ become Polish spaces (Theorem 6.5,

page 46 of [239]). In general, the convergence of f�ngn2N � P .�t
ˇ
/ in every W˛ ,

˛ 2 �, does not yet imply its W t-convergence. However, as we show in Lemma 3.2.6
and Corollary 3.3.3 below, the topologies induced on G t

ˇ
by W˛ and W t coincide.

Lemma 3.1.20. For each ˛ 2 �, every W˛-accumulation point � 2 P .�t
ˇ
/ of the

family f
ˇ;ƒ. � j	/ j ƒ 2 Lfin; 	 2 ˝ tg is a tempered Euclidean Gibbs measure.

Proof. For each ˛ 2 �, Cb.�
`0;˛

ˇ
/ is a measure-defining class for P .�t

ˇ
/. Then a

measure � 2 P .�t
ˇ
/ solves (3.1.52) if and only if for any f 2 Cb.�

`0;˛

ˇ
/ and all

ƒ 2 Lfin, Z
�t

ˇ

f .x/�.dx/ D
Z
�t

ˇ


ˇ;ƒ.f jx/�.dx/: (3.1.54)

Let f
ˇ;ƒk
. � j	k/gk2N converge in W˛ to some � 2 P .�t

ˇ
/. For every ƒ 2 Lfin, one

finds kƒ 2 N such that ƒ � ƒk for all k > kƒ. Then by (3.1.46) one hasZ
�t

ˇ

f .x/
ˇ;ƒk
.dxj	k/ D

Z
�t

ˇ


ˇ;ƒ.f jx/
ˇ;ƒk
.dxj	k/:

Now by Lemma 3.1.17, one can pass to the limit k ! C1 and get (3.1.54).

In the remaining part of this section we present a number of facts about the DLR
equation and its solutions. One may observe that for any �; � 2 G t

ˇ
and � 2 .0; 1/, the

measure �� C .1 � �/� belongs to G t
ˇ

. This means that the latter set is convex. We
recall that a state is extreme (pure) if it cannot be written as a nontrivial combination
of other states, see Definition 1.1.13.

Definition 3.1.21. An element of G t
ˇ

is called extreme if it cannot be written as a
nontrivial combination of other elements of G t

ˇ
. The set of all such elements will be

denoted by ex.G t
ˇ
/.
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Along with the family of local events (3.1.10) we introduce the family

Tˇ D
\
ƒ2Lfin

Bˇ;ƒc ; (3.1.55)

called the tail � -algebra. The following fact is known, see Theorem 7.7 on page 118
in [129].

Proposition 3.1.22. A measure, � 2 G t
ˇ
, is extreme in G t

ˇ
if and only if it is trivial on

Tˇ , i.e., for any A 2 Tˇ , either �.A/ D 1 or �.A/ D 0.

Some of Gibbs measures (but not all of them) can serve as mathematical models of
equilibrium states of physical systems. According to the basic principles of statistical
mechanics, in equilibrium states macroscopic quantities are non-random. Thereby, a
Gibbs measure � which corresponds to such a state, should have the property that tail-
measurable functions are constant�-almost surely. Hence, Gibbs measures describing
equilibrium of the underlying physical system should be trivial on Tˇ . A more detailed
discussion of the connection between tail triviality and equilibrium states can be found
in [129], see Comment 7.8 on page 119 therein.

Now let us turn to the case where the model (1.1.3), (1.1.8) is translation-invariant,
see Definition 1.4.10. Here the lattice L D Zd is considered as an additive group. For
`0 2 L, ƒ 2 L, and x 2 �ˇ , we set

ƒC `0 D f`C `0 j ` 2 ƒg; t`0
.x/ D .y

`0

`
/`2L; y

`0

`
D x`�`0

: (3.1.56)

Furthermore, for B 2 B.�ˇ /, we also set

t`.B/ D ft`.x/ j x 2 Bg: (3.1.57)

Clearly, t`.B/ 2 B.�ˇ / and t`.�t
ˇ
/ D �t

ˇ
for all `.

Definition 3.1.23. A probability measure� 2 P .�ˇ / is said to be translation-invariant
if �.t`.B// D �.B/ for every ` and B 2 Bˇ .

Proposition 3.1.24. The Gibbs specification f
ˇ;ƒgƒ2Lfin of the translation-invariant
model (1.1.3), (1.1.8) is translation-invariant, which means that


ˇ;ƒ.t`.B/j	/ D 
ˇ;ƒC`.Bjt`.	//; B 2 B.�ˇ /; 	 2 �t
ˇ : (3.1.58)

The proof follows directly from the translation invariance of the Hamiltonians
(1.1.3), (1.2.5).

Remark 3.1.25. The translation invariance of the local Gibbs specification ˘ˇ D
f
ˇ;ƒgƒ2Lfin does not mean that each probability kernel 
ˇ;ƒ is translation-invariant
as a measure. Moreover, it does not mean that all Euclidean Gibbs measures defined
by this specification are translation-invariant. One can only claim that if the set G t

ˇ

consists of one element only, this element is translation-invariant.
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Set
B inv
ˇ D fB 2 Bˇ j 8` W t`.B/ D Bg; (3.1.59)

i.e., B inv
ˇ

is the set of all translation-invariant events. By construction, �t
ˇ

belongs to

B inv
ˇ

. We say that a measure� 2 P .�/ is trivial on B inv
ˇ

if for everyB 2 B inv
ˇ

, one has

�.B/ D 0 or �.B/ D 1. By P inv.�ˇ / we denote the set of all translation-invariant
probability measures on .�ˇ ;Bˇ /.

Definition 3.1.26. A probability measure � 2 P inv.�ˇ / is said to be ergodic (with
respect to the group Zd ) if it is trivial on B inv

ˇ
.

Ergodic measures are characterized by a mixing property, which we formulate here
as in the book [277], see Theorem III.1.8 on page 244 therein. Let ƒL, L 2 N, be the
box (3.1.2).

Proposition 3.1.27 (Von Neumann Ergodic Theorem). Given � 2 P inv.�ˇ /, the fol-
lowing statements are equivalent:

(i) � is ergodic;

(ii) for all f; g 2 L2.�ˇ ; �/,

lim
L!C1

1

jƒLj
 X
`2ƒL

�Z
�ˇ

f .x/g.t`.x//�.dx/�hf i� � hgi�
��

D 0: (3.1.60)

There exists a connection between ergodicity and triviality on the tail algebra
(3.1.55), see e.g., Proposition 14.9 in [129], page 293.

Proposition 3.1.28. Let � 2 P inv.�ˇ /. Then for each A 2 B inv
ˇ

, there exists B 2 Tˇ ,
such that �Œ.A n B/ [ .B n A/� D 0. In particular, � is ergodic if it is trivial on Tˇ .

Corollary 3.1.29. For a translation-invariant model (1.1.3), (1.1.8), if the set G t
ˇ

is a
singleton, its unique element is ergodic.

Important information about the measures � 2 G t
ˇ

is contained in their Matsubara
functions. Let F1; : : : ; Fn be local bounded multiplication operators. This means that
there exists ƒ 2 Lfin, such that F1; : : : ; Fn 2 Mƒ. For these Fj ’s and a � 2 P .�t

ˇ
/,

we set

�
�
F1;:::;Fn

.�1; : : : ; �n/ D
Z
�t

ˇ

F1.x.�1// : : : Fn.x.�n//�.dx/; (3.1.61)

where �1; : : : ; �n 2 Œ0; ˇ�. As the set of functions F ’s corresponding to all local multi-
plication operators is a measure-defining class, the Matsubara functions constructed for
all such operators uniquely determine the measure �. For local F1; : : : ; Fn, one can
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construct the local Matsubara functions �ˇ;ƒF1;:::;Fn
.�1; : : : ; �nj	/ defined by (3.1.42).

Then by (3.1.52),

�
�
F1;:::;Fn

.�1; : : : ; �n/

D
Z
�t

ˇ

Z
�t

ˇ

F1.x.�1// : : : Fn.x.�n//
ˇ;ƒ.dxj	/�.d	/
(3.1.62)

D
Z
�t

ˇ

 Z
�ˇ;ƒ

F1..xƒ � 0ƒc /.�1// : : : Fn..xƒ � 0ƒc /.�n//�ˇ;ƒ.dxƒj	/
�
�.d	/

D
Z
�t

ˇ

�
ˇ;ƒ
F1;:::;Fn

.�1; : : : ; �nj	/�.d	/:

As we know, the local Matsubara functions (3.1.42) corresponding to 	 D 0 coincide
with the functions (1.4.20) and hence with (1.2.84). The latter functions have the
property (1.2.90) connected with the KMS property of the local Gibbs states. For
nonzero 	, one cannot expect the invariance (1.2.90) for the functions (3.1.42). Thus,
the same is true also for (3.1.61).

Definition 3.1.30. A measure � 2 G t
ˇ

is said to be � -shift-invariant if its Matsubara
functions (3.1.61) possess the property that for all � 2 Œ0; ˇ�,

�
�
F1;:::;Fn

.�1; : : : ; �n/ D �
�
F1;:::;Fn

.�1 C �; : : : ; �n C �/; (3.1.63)

where addition is modulo ˇ.

3.2 Properties of Gibbs Specifications

As was already noted, so far we have no knowledge about the existence of tempered
Euclidean Gibbs measures corresponding to the model (1.1.3), (1.1.8). In this section,
we prove statements which later will allow us to prove that these measures do exist, as
well as to establish a number of properties of their set G t

ˇ
. These statements establish

exponential moment estimates for the probability kernels 
ˇ;ƒ defined by (3.1.44),
(3.1.45). Note that here we do not suppose any additional properties of the model, i.e.,
we consider the model (1.1.3), (1.1.8) satisfying Assumption 1.1.1 only.

3.2.1 Exponential Moment Estimates

To simplify notation, in this section we write
` meaning the kernel
ˇ;ƒ withƒ D f`g.

Lemma 3.2.1. For any ~, # > 0, and � 2 .0; 1=2/, there exists C3.2.1 > 0 such that
for all ` 2 L and 	 2 �t

ˇ
,Z

�ˇ

exp

�kx`k2C�

ˇ
C~kx`k2L2

ˇ

�

`.dxj	/� exp


C3.2.1C#

X
`0

jJ``0 j�k	`0k2
L2

ˇ

�
: (3.2.1)

Here � > 0 is the same as in (1.3.124) and (3.1.47).
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Proof. Note that by (3.1.47) the left-hand side is finite and the second term in expf�g
on the right-hand side is also finite since 	 2 �t

ˇ
. For any # > 0, by the Minkowski

inequality one has, see (1.1.11),

ˇ̌̌X
`0

J``0.x`; 	`0/L2
ˇ

ˇ̌̌
�

OJ0
2#

kx`k2L2
ˇ

C #

2

X
`0

jJ``0 j � k	`0k2
L2

ˇ

; (3.2.2)

which holds for all x; 	 2 �t
ˇ

. By this estimate and (1.4.8), (3.1.33), (3.1.39), (3.1.44)
we get

LHS.3.2.1/ � Œ1=Y`.#/� � exp
n
#
X
`0

jJ``0 j � k	`0k2
L2

ˇ

o

�
Z
Cˇ

exp


�kx`k2C�

ˇ
C .~ C OJ0=2#/kx`k2L2

ˇ

�
Z ˇ

0

V`.x`.�//d�

�
�ˇ .dx`/;

(3.2.3)

where

Y`.#/ D
Z
Cˇ

exp


�

OJ0
2#

� kx`k2L2
ˇ

�
Z ˇ

0

V`.x`.�//d�

�
�ˇ .dx`/:

Thereafter, (3.2.1) follows from the estimate (3.2.3) with

C3.2.1 D � logY.#/C ˇcV C logC� .�/C ˇ.r � 1/
b
1=.r�1/
V

�
~

r
C

OJ0
2#r

�r=r�1
(3.2.4)

and

Y.#/ D
Z
Cˇ

exp


�

OJ0
2#

� kx`k2L2
ˇ

�
Z ˇ

0

V.x`.�//d�

�
�ˇ .dx`/; (3.2.5)

where bV , cV , and V are the same as in (1.1.10), andC� .�/ is defined in (1.3.124).

Remark 3.2.2. As the right-hand side of (3.2.4) is an increasing function of OJ0, the
constant C3.2.1 is uniform for all interaction potentials QJ``0 , for which sup`

P
`0 j QJ``0 j

does not exceed the parameter OJ0 appearing in (3.2.4), (3.2.5).

By Jensen’s inequality we readily get from (3.2.1) the following Dobrushin-type
bound.

Corollary 3.2.3. For all ` and 	 2 �t, the kernels 
`. � j	/, obey the estimateZ
�ˇ

h.x`/
`.dxj	/ � C3.2.1 C .#=~/
X
`0

jJ``0 j � h.	`0/; (3.2.6)

with
h.x`/ D �kx`k2C�

ˇ
C ~kx`k2L2

ˇ

: (3.2.7)
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For translation-invariant lattice systems with the single-spin space R and ferromag-
netic pair interactions, integrability estimates like

log

 Z
RL

exp.�jx`j/
`.dxjy/
�
< AC

X
`0

I``0 jy`0 j

were first obtained by J. Bellissard and R. Høegh-Krohn, see Proposition III.1 and
Theorem III.2 in [59]. Dobrushin’s type estimates like (3.2.6) were also obtained
and used in [85], [282]. The methods employed there were essentially based on the
properties of the model and hence cannot be of use in our situation. Our approach is
much simpler; at the same time, it is applicable in both cases – classical and quantum.
Its peculiarities are: (a) first we prove the exponential integrability (3.2.1) and then
derive the Dobrushin bound (3.2.6) rather than prove it directly; (b) the function (3.2.7)
consists of two additive terms, the first of which guarantees the compactness while the
second one controls the interaction.

Now by means of (3.2.1) we obtain moment estimates for the kernels 
ˇ;ƒ with
arbitrary ƒ 2 Lfin. Let the parameters � , ~, and � be as in (3.2.1). For ` 2 ƒ 2 Lfin,
we define

n`.ƒj	/ D log

 Z
�ˇ

exp
�
�kx`k2C�

ˇ
C ~kx`k2L2

ˇ

�

ˇ;ƒ.d!j	/

�
; (3.2.8)

which is finite in view of (3.1.47).

Lemma 3.2.4. For every ˛ 2 �, there exists C3.2.9.˛/ > 0, which obviously depends
also on � , �, and ~, such that for all `0 and 	 2 �t

ˇ
,

lim sup
ƒ%L

X
`2ƒ

n`.ƒj	/w˛.`0; `/ � C3.2.9.˛/: (3.2.9)

Hence,

lim sup
ƒ%L

n`0
.ƒj	/ � C3.2.9.˛/; for any ˛ 2 �. (3.2.10)

Thereby, for all 	 2 �t
ˇ
, there exists C3.2.11.`; 	/ > 0 such that for all ƒ 2 Lfin

containing `,

n`.ƒj	/ � C3.2.11.`; 	/: (3.2.11)

Proof. Given ~ > 0 and ˛ 2 �, we fix # > 0, such that

#
X
`0

jJ``0 j � # OJ0 � # OJ˛ < ~: (3.2.12)
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Then integrating both sides of (3.2.1) with respect to the measure 
ˇ;ƒ. � j	/ we get

n`.ƒj	/ � C3.2.1 C #
X
`02ƒc

jJ``0 j � k	`0k2
L2

ˇ

C log

 Z
�ˇ

exp
�
#
X
`02ƒ

jJ``0 j � kx`0k2
L2

ˇ

�

ˇ;ƒ.dxj	/

�
(3.2.13)

� C3.2.1 C #
X
`02ƒc

jJ``0 j � k	`0k2
L2

ˇ

C #=~
X
`02ƒ

jJ``0 j � n`0.ƒj	/:

Here we have used (3.2.12) and the multiple Hölder inequalityZ �Yn

iD1 '
�i

i

�
d� �

Yn

iD1

�Z
'id�

��i

; (3.2.14)

in which � is a probability measure, 'i � 0 (respectively, �i � 0), i D 1; : : : ; n, are
functions (respectively, numbers such that

Pn
iD1 �i � 1). Then (3.2.13) yields

n`0
.ƒj	/ �

X
`2ƒ

n`.ƒj	/w˛.`0; `/
(3.2.15)

� 1

1 � # OJ˛=~
h
C3.2.1

X
`02ƒ

w˛.`0; `
0/C # OJ˛

X
`02ƒc

k	`0k2
L2

ˇ

w˛.`0; `
0/
i
:

Therefrom, for all 	 2 �t
ˇ

, we get

lim sup
ƒ%L

n`0
.ƒj	/ � lim sup

ƒ%L

X
`2ƒ

n`.ƒj	/w˛.`0; `/

� C3.2.1

1 � # OJ˛=~
X
`

w˛.`0; `/
defD C3.2.9.˛/;

(3.2.16)

which gives (3.2.9) and (3.2.10). The proof of (3.2.11) is straightforward.

We recall that the norm k � k`0;˛ was defined in (3.1.27). Given ˛ 2 �, `0 2 L, and
� 2 .0; 1=2/, we set

k	k`0;˛;� D
hX

`

k	`k2C�
ˇ
w˛.`0; `/

i1=2
: (3.2.17)

Lemma 3.2.5. For every ˛ 2 �, `0 2 L, and 	 2 �t
ˇ
, one finds a positive C3.2.18.	/,

such that for all ƒ 2 Lfin,Z
�ˇ

kxk2`0;˛

ˇ;ƒ.dxj	/ � C3.2.18.	/: (3.2.18)

Furthermore, for every ˛ 2 �, `0 2 L, � 2 .0; 1=2/, and 	 2 �t
ˇ

for which the norm
(3.2.17) is finite, one finds a C3.2.19.	/ > 0, such that for all ƒ 2 Lfin,Z

�ˇ

kxk2`0;˛;�

ˇ;ƒ.dxj	/ � C3.2.19.	/: (3.2.19)
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The right-hand sides of both estimates, (3.2.18) and (3.2.19), are the same for all inter-
action potentials QJ``0 for which the parameters (3.1.20) (respectively, sup`

P
`0 j QJ``0 j)

do not exceed OJ˛ (respectively, OJ0), appearing in (3.2.16) (respectively, in (3.2.4),
(3.2.5)).

Proof. For any fixed 	 2 �t
ˇ

, by the Jensen inequality and (3.2.15) one has

lim sup
ƒ%L

Z
�ˇ

kxk2`0;˛

ˇ;ƒ.dxj	/

� lim sup
ƒ%L

	
1

~

X
`2ƒ

n`.ƒj	/w˛.`0; `/C
X
`2ƒc

k	`k2L2
ˇ

w˛.`0; `/




� C3.2.9.˛/=~:

(3.2.20)

Hence, the set consisting of the left-hand sides of (3.2.18) indexed by ƒ 2 Lfin is
bounded. The proof of (3.2.19) is analogous. The uniformity stated in the concluding
part of the lemma follows by Remark 3.2.2 and by the fact that the constant C3.2.9 is an
increasing function of OJ˛ .

3.2.2 Weak Convergence of Tempered Measures

Recall that f W �ˇ ! R is called a local function if it is Bˇ;ƒ=B.R/ measurable for
a certain ƒ 2 Lfin.

Lemma 3.2.6. Let f�ngn2N � P .�t
ˇ
/ have the following properties: (a) for every

˛ 2 � and `0 2 L, each of its elements obeys the estimateZ
�t

ˇ

kxk2`0;˛
�n.dx/ � C3.2.21.`0; ˛/; (3.2.21)

with one and the same constant C3.2.21.`0; ˛/; (b) for every local f 2 Cb.�
t
ˇ
/,

fhf i�n
gn2N � R is a Cauchy sequence. Then f�ngn2N converges in W t to a cer-

tain � 2 P .�t
ˇ
/.

Proof. The topology of the space �t
ˇ

is consistent with the following metric, cf.
(3.1.29),

�.x; y/ D
1X
kD1

2�k kx � yk`0;˛k

1C kx � yk`0;˛k

C
X
`

2�j`0�`j kx` � y`kCˇ

1C kx` � y`kCˇ

; (3.2.22)

where f˛kgk2N � � D .˛; x̨/ is a monotone strictly decreasing sequence convergent
to ˛. In fact, the metric (3.2.22) may depend on the choice of this sequence, as well
as on the choice of `0, but all such metrics define the same topology of the space �t

ˇ
.

Let us denote by C u
b .�

t
ˇ

I �/ the set of all bounded functions f W �t
ˇ

! R, which are
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uniformly continuous with respect to the metric (3.2.22). Thus, to prove the lemma
it suffices to show that, under its conditions, fhf i�n

gn2N is a Cauchy sequence for
every f 2 C u

b .�
t
ˇ

I �/, see Proposition 1.3.32. Given ı > 0, we choose ƒı 2 Lfin and
kı 2 N, such that

X
`2ƒc

ı

2�j`0�`j < ı=3;
1X

kDkı

2�k D 2�kıC1 < ı=3: (3.2.23)

For this ı and a certain R > 0, we pick ƒı.R/ 2 Lfin, such that

sup
`2Lnƒı.R/

˚
w˛kı�1

.`0; `/=w˛kı
.`0; `/

�
<

ı

3R2
; (3.2.24)

which is possible in view of (3.1.18). Finally, for R > 0, we set

BR D fx 2 �t
ˇ j kxk`0;˛kı

� Rg: (3.2.25)

By (3.2.21) and the Chebyshev inequality one has that for all n 2 N,

�n
�
�t
ˇ n BR

� � C3.2.21.`0; ˛kı
/=R2: (3.2.26)

Now for f 2 C u
b .�

t
ˇ

I �/, ƒ 2 Lfin, and n;m 2 N, we haveˇ̌hf i�n
� hf i�m

ˇ̌ � ˇ̌hfƒi�n
� hfƒi�m

ˇ̌
C 2maxfhjf � fƒji�n

I hjf � fƒji�m
g; (3.2.27)

where we have set fƒ.x/ D f .xƒ � 0ƒc /. By (3.2.26)

hjf � fƒji�n
� 2C3.2.21.`0; ˛kı

/kf k1=R2

C
Z
BR

jf .x/ � f .xƒ � 0ƒc /j�n.dx/: (3.2.28)

For chosen f 2 C u
b .�

tI �/ and " > 0, one finds ı > 0, such that for all x; y 2 �t
ˇ

,

jf .x/ � f .y/j < "=6; whenever �.x; y/ < ı.

For these f , ", and ı, one picks R."; ı/ > 0, such that

C3.2.21.`0; ˛kı
/kf k1= ŒR."; ı/�2 < "=12: (3.2.29)

Now one takesƒ 2 Lfin, which contains bothƒı andƒı ŒR."; ı/� defined by (3.2.23),
(3.2.24). For this ƒ, x 2 BR.";ı/, and k D 1; 2; : : : ; kı � 1,

kx � xƒ � 0ƒc k2`0;˛k

D
X
`2ƒc

kx`k2L2
ˇ

w˛kı
.`0; `/

h
w˛k

.`0; `/=w˛kı
.`0; `/

i

� ı

3 ŒR."; ı/�2

X
`2ƒc

kx`k2L2
ˇ

w˛kı
.`0; `/ <

ı

3
;

(3.2.30)
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see (3.2.24) and (3.2.25). Then by (3.2.22), (3.2.23), it follows that

8x 2 BR.";ı/ W �.x; xƒ � 0ƒc / < ı; (3.2.31)

which together with (3.2.29) yields in (3.2.28),

hjf � fƒji�n
<
"

6
C "

6
�n
�
BR.";ı/

� � "

3
:

By assumption (b) of the lemma, one finds N" such that for all n;m > N",ˇ̌hfƒi�n
� hfƒi�n

ˇ̌
<
"

3
:

Applying the latter two estimates in (3.2.27) we get that f�ngn2N is a Cauchy sequence
in the topology W t in which the space P .�t

ˇ
/ is complete.

Remark 3.2.7. The weak convergence of the projections of �n onto Cˇ;ƒ can be
established with the help of the Lipschitz functions f 2 BL.Cˇ;ƒ; k � kCˇ;ƒ

/, see
(1.3.69) and (1.3.159).

3.3 Properties of Tempered Euclidean Gibbs Measures

In this section, we describe general properties of the set G t
ˇ

corresponding to the model
(1.1.3), (1.1.8) which satisfies the conditions of Assumption 1.1.1 only. More specific
cases where the model has some extra properties will be described in the subsequent
sections.

The exponential moment estimates for the kernels 
ˇ;ƒ proven above give us a tool
for establishing the existence of the tempered Euclidean Gibbs measures, as well as a
number of their properties. We begin by deriving an a priori integrability estimate,
similar to (3.2.1), (1.3.124). Recall that the Hölder norm k � kC�

ˇ
was defined in

(1.3.58).

Theorem 3.3.1. For every � 2 .0; 1=2/, � 2 .0; &=b� /, and ~ > 0, there exists a
positive constant, C3.3.1.�; �; ~/, such that for any ` and for all � 2 G t

ˇ
,

Z
�ˇ

exp
�
�kx`k2C�

ˇ
C ~kx`k2L2

ˇ

�
�.dx/ � C3.3.1.�; �; ~/; (3.3.1)

where & and b� are the same as in (1.3.124).

Remark 3.3.2. According to (3.3.1), the one-site projections of each � 2 G t
ˇ

are
sub-Gaussian. The bound C3.3.1.�; �; ~/ does not depend on ` and is the same for all
� 2 G t

ˇ
. For � D 0, this bound is independent of � . The estimate (3.3.1) plays a

crucial role in the study of the set G t
ˇ

.
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Proof. Let us show that every � 2 P .�/ which solves the DLR equation (3.1.52)
ought to obey the estimate (3.3.1) with one and the same C3.3.1. To this end we apply
the bounds for the kernels 
ˇ;ƒ. � j	/ obtained above. Consider the functions

GN .x`/
defD exp

�
min

n
�kx`k2C�

ˇ
C ~kx`k2L2

ˇ

IN
o�
; N 2 N:

By (3.1.52), Fatou’s lemma, and the estimate (3.2.10) with an arbitrarily chosen ˛ 2 �

we getZ
�ˇ

GN .x`/�.dx/ D lim sup
ƒ%L

Z
�ˇ

	 Z
�ˇ

GN .x`/
ˇ;ƒ.dxj	/


�.d	/

�
Z
�ˇ

	
lim sup
ƒ%L

Z
�ˇ

exp
�
�kx`k2C�

ˇ
C ~kx`k2L2

ˇ

�

ˇ;ƒ.dxj	/



�.d	/

� expC3.2.9.˛/
defD C3.3.1.�; �; ~/:

In view of the second support property in (3.1.53) of any measure solving the equation
(3.1.52) we can pass here to the limit N ! C1 and obtain (3.3.1).

Corollary 3.3.3. For every ˛ 2 �, the topologies induced on G t
ˇ

by W˛ and W t

coincide.

Proof. The assertions in this corollary follow immediately by Lemma 3.2.6 and the
estimate (3.3.1).

In the sequel, we will use yet another moment estimate for the tempered Euclidean
Gibbs measures. It is a direct corollary of (3.3.1).

Corollary 3.3.4. For any � > 0, ˛ 2 �, and `0, there exists a positive constant
C3.3.2.�/ such that, for every � 2 G t

ˇ
,

Z
�ˇ

exp
�
�kxk2`0;˛

�
�.dx/ � C3.3.2.�/: (3.3.2)

Proof. For ƒ 2 Lfin, we set

Iƒ D
Z
�ˇ

exp
�
�
X
`2ƒ

kx`k2L2
ˇ

w˛.`0; `/
�
�.dx/; (3.3.3)

and
w˛ D

X
`

w˛.`0; `/; (3.3.4)

which is finite by (3.1.20). Since each � 2 G t
ˇ

, if it exists, should be a probability
measure, the bound C3.3.1 in (3.3.1) is greater than 1 for any ~ > 0. Taking this into
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account we apply in (3.3.3) the Hölder inequality (3.2.14) with �` D w˛.`0; `/=w˛
and the estimate (3.3.1) with ~ D �w˛ . In this way, we obtain

Iƒ � C3.3.1.�; 0; �w˛/:

Obviously, Iƒ � Iƒ0 if ƒ � ƒ0; hence, the sequence fIƒgƒ2L converges to the
left-hand side of (3.3.2), which ought to be bounded by the same C3.3.1.�; 0; �w˛/.
Thus, the estimate (3.3.2) holds true with C3.3.2.�/ D C3.3.1.�; 0; �w˛/. Note that such
C3.3.2.�/ is independent of � , see Remark 3.3.2.

By repetition of the above argument with replacing the bound (3.3.1) by (3.2.11)
we prove the following

Corollary 3.3.5. For any � > 0, ˛ 2 �, `0, and 	 2 �ˇ , there exists a positive
C3.3.5.�; 	/, such that for every ƒ 2 Lfin,Z

�ˇ

exp
�
�kxk2`0;˛

�

ˇ;ƒ.dxj	/ � C3.3.5.�; 	/: (3.3.5)

Now we are in a position to prove the existence of tempered Euclidean Gibbs
measures and compactness of their set G t

ˇ
. For models with non-compact spins, here

they are even infinite-dimensional, such a property is far from being evident.

Theorem 3.3.6. For every ˇ > 0, the set of tempered Euclidean Gibbs measures G t
ˇ

is non-void and W t- compact.

Proof. Consider the following scale of Banach spaces (cf. (3.1.28)):

�
`0;˛;�

ˇ
D ˚

x 2 �ˇ
ˇ̌ kxk`0;˛;� < 1�

; `0 2 L; � 2 .0; 1=2/; ˛ 2 �; (3.3.6)

where the norm k � k`0;˛;� was defined in (3.2.17). For any pair ˛; ˛0 2 �, such that

˛ < ˛0, the embedding �`0;˛;�

ˇ
,! �

`0;˛
0

ˇ
is compact, see Remark 3.1.10. This fact

and the estimate (3.2.19), which holds for any 	 2 �
`0;˛;�

ˇ
, imply by Prokhorov’s

criterion the relative compactness of the set f
ˇ;ƒ. � j	/gƒ2Lfin in W˛0 . Therefore, the
set f
ˇ;ƒ. � j0/gƒ2Lfin is relatively compact in every W˛ , ˛ 2 �. Then Lemma 3.1.20
yields that G t

ˇ
¤ ;. By the same Prokhorov criterion and the estimate (3.3.1), we get the

W˛-relative compactness of G t
ˇ

. Then in view of the Feller property (Lemma 3.1.17),
the set G t

ˇ
is closed and hence compact in every W˛ , ˛ 2 �, which by Corollary 3.3.3

yields the result to be proven.

For ƒ 2 Lfin, we have introduced the families of functions Eƒ, see Defini-
tion 1.4.13. For a pair ƒ � ƒ0, one can define a natural embedding Eƒ ,! Eƒ0 .
Then we set

E D
[
ƒ2Lfin

Eƒ: (3.3.7)
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It is clear that for every f 2 E, there exist ƒf 2 Lfin and Df > 0, such that

jf .x/j � Df
X
`2ƒf

exp
�
�kx`k2Cˇ

�
; for all x 2 �t

ˇ , (3.3.8)

which holds with any � > 0. We recall that ex.G t
ˇ
/ stands for the set of all extreme

elements of G t
ˇ

.

Lemma 3.3.7. For every� 2 ex.G t
ˇ
/ and any cofinal sequence L, the following holds:

(a) the sequence f
ˇ;ƒ. � j	/gƒ2L converges in W t to this � for �-almost all 	 2 �t
ˇ
;

(b) for every f 2 E and �-almost all 	 2 �t
ˇ
,

lim
L

Z
�ˇ

f .x/
ˇ;ƒ.dxj	/ D hf i�:

Proof. Claim (c) of Theorem 7.12, page 122 in [129], implies that for any local f 2
Cb.�

t
ˇ
/,

lim
L

Z
�ˇ

f .x/
ˇ;ƒ.dxj	/ D hf i�; for �-almost all 	 2 �t
ˇ . (3.3.9)

Then the convergence stated in claim (a) follows from Lemmas 3.2.5 and 3.2.6. Given
f 2 E and N 2 N, we set �.N/

ˇ
D fx 2 �ˇ j jf .x/j > N g and

fN .x/ D
´
f .x/ if jf .x/j � N ;

Nf .x/=jf .x/j otherwise.

Each fN belongs to Cb.�
t
ˇ
/ and fN ! f point-wise as N ! C1. Then by (3.3.9)

there exists a Borel set „� � �t
ˇ

, such that �.„�/ D 1 and for every N 2 N,

lim
L

ˇ;ƒ.fN j	/ D �.fN /; for all 	 2 „�. (3.3.10)

Note that by (3.2.8), (3.2.11), (1.3.59), and (3.3.8) for any 	 2 „� one finds a positive
C3.3.11.f; 	/ such that for all ƒ 2 Lfin, which contain ƒf , it follows thatZ

�ˇ

jf .x/j2
ˇ;ƒ.dxj	/ � C3.3.11.f; 	/: (3.3.11)

Hence

j
ˇ;ƒ.f j	/ � 
ˇ;ƒ.fN j	/j � 2

Z
�

.N /

ˇ

jf .x/j
ˇ;ƒ.dxj	/

� 2

N
�
Z
�ˇ

jf .x/j2
ˇ;ƒ.dxj	/ � 2

N
� C3.3.11.f; 	/:
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Similarly, by means of (1.3.59), (3.3.8), and Theorem 3.3.1, one gets

hjf � fN ji� � 2

N
�Df C3.3.1:

The latter two inequalities and (3.3.10) allow for estimating j
ˇ;ƒ.f j	/�hf i�j, which
completes the proof.

Given `1; : : : ; `n and �1; : : : ; �n, not necessarily distinct, we consider the monomial

f .x/ D x`1
.�1/ : : : x`n

.�n/; (3.3.12)

which obviously belongs to the family E defined by (1.4.58) and (3.3.7). Let F be the
family of all such monomials. It is closed with respect to multiplication and separates
the points of �t

ˇ
. Then, if for �1; �2 2 G t

ˇ
, one has hf i�1

D hf i�2
for all f 2 F ,

then�1 D �2, see Theorem 1.3.26. On the other hand, for such monomials we have the
GKS inequalities (2.2.3), (2.2.4). Combining these two facts we prove the following

Theorem 3.3.8. If the model (1.1.3), (1.1.8) is scalar and ferromagnetic, the family
f
ˇ;ƒ. � j0/gƒ2Lfin has only one W t-accumulation point.

Proof. As was established in the proof of Theorem 3.3.6, the family f
ˇ;ƒ. � j0/gƒ2Lfin

is W t-relatively compact; hence, it possesses accumulation points, which are elements
of G t

ˇ
. Let L be any cofinal sequence and f be a monomial (3.3.12). Then there exists

ƒ0 2 L, such that for all ƒ 	 ƒ0,

hf i�ˇ;ƒ. � j0/ D hf i�ˇ;ƒ
;

see (3.1.44). Then by Theorem 2.5.13, the sequence fhf i�ˇ;ƒ. � j0/gƒ2L is monotone
increasing. On the other hand, by means of (3.2.19) we easily see that this sequence
is bounded and hence convergent. Let its limit be c.f;L/. Now we take two cofinal
sequences L and L0. For any ƒ 2 L, one finds ƒ0 2 L0 such that ƒ � ƒ0. Then by
(2.5.46),

hf i�ˇ;ƒ. � j0/ � hf i�ˇ;ƒ0 . � j0/;

which yields c.f;L/ � c.f;L0/. By interchanging the sequences L and L0 we see
that the opposite inequality also holds, which completes the proof.

Next we describe some regularity properties of the elements of G t
ˇ

. For ƒ 2 Lfin

and � 2 G t
ˇ

, let �ƒ be the projection of � onto Cˇ;ƒ. By this we mean the measure
on Cˇ;ƒ, such that for every Borel subset B � Cˇ;ƒ,

�ƒ.B/ D �.B ��ˇ;ƒc /: (3.3.13)

Theorem 3.3.9. For every ƒ 2 Lfin and any � 2 G t
ˇ
, the projection �ƒ is absolutely

continuous with respect to the measure �ˇ;ƒ. The corresponding Radon–Nikodym
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derivative �ƒ W Cˇ;ƒ ! R is a continuous function, which obeys the estimates

exp
� � logNC

ˇ;ƒ
�Eˇ;ƒ.xƒ/

� � �ƒ.xƒ/ � C3.3.2.�/

� exp
�

� logN�
ˇ;ƒ �Eˇ;ƒ.xƒ/C

OJ0
2

X
`2ƒ

kx`k2L2
ˇ

�
;

(3.3.14)

where ˛ is an element of �,

� D OJ˛
X
`2ƒ

1=w˛.`0; `/; (3.3.15)

and

N˙
ˇ;ƒD

Z
Cˇ;ƒ

exp
�

�Eˇ;ƒ.xƒ/˙
OJ0
2

X
`2ƒ

kx`k2L2
ˇ

�
�ˇ;ƒ.dxƒ/: (3.3.16)

Proof. One observes that both N˙
ˇ;ƒ

are finite in view of the super-quadratic growth
of V`, see (1.1.10). For any bounded continuous function f W Cˇ;ƒ ! R, we have, by
(3.1.54),Z

�ˇ

f .xƒ/�.dx/ D
Z
�ˇ

f .xƒ/�ƒ.dxƒ/ D
Z
Cˇ;ƒ

Z
�ˇ

f .xƒ/�ˇ;ƒ.xƒj	/�.d	/:

Thus,
�ƒ.xƒ/ D exp

� �Eˇ;ƒ.xƒ/
�
 ƒ.xƒ/; (3.3.17)

where, see (3.1.39) and (3.1.41),

 ƒ.xƒ/ D
Z
�ˇ

exp
�

� logNˇ;ƒ.	/C
X

`2ƒ; `02ƒc

J``0.x`; 	`0/L2
ˇ

�
�.d	/: (3.3.18)

Then we use in (3.1.39) the estimate (3.2.2) with # D 1 and obtain

exp
�

� 1

2

X
`2ƒ; `02ƒc

jJ``0 j � k	`0k2
L2

ˇ

�
N�
ˇ;ƒ � Nˇ;ƒ.	/

� exp
�1
2

X
`2ƒ; `02ƒc

jJ``0 j � k	`0k2
L2

ˇ

�
NC
ˇ;ƒ

:

(3.3.19)

Now we combine in (3.3.18) the estimate (3.2.2) with the latter double inequality and
arrive at

�
NC
ˇ;ƒ

��1 �  ƒ.xƒ/ � �
N�
ˇ;ƒ

��1
exp

� OJ0
2

X
`2ƒ

kx`k2L2
ˇ

�

�
Z
�ˇ

exp
� X
`2ƒ; `02ƒc

jJ``0 j � k	`0k2
L2

ˇ

�
�.d	/:

(3.3.20)
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Employing the triangle inequality (3.1.17), as it was done in (3.1.36), we get

X
`2ƒ; `02ƒc

jJ``0 j � k	`0k2
L2

ˇ

�
X
`2ƒ

1

w˛.`0; `/

X
`0

jJ``0 j
w˛.`; `0/

� k	`0k2
L2

ˇ

w˛.`0; `
0/

� OJ˛ � k	k2`0;˛

X
`2ƒ

1

w˛.`0; `/
D �k	k2`0;˛

;

see (3.3.15). Applying this estimate in (3.3.20) together with the integrability estimate
(3.3.2) we finally arrive at (3.3.14). The continuity of  ƒ follows by the Lebesgue
dominated convergence theorem and the estimate (3.2.2). The continuity of Eˇ;ƒ has
been discussed in the proof of Lemma 3.1.12.

Employing the estimate (3.3.5) in place of (3.3.2) one can prove the following

Corollary 3.3.10. For every ƒ � � 2 Lfin and any 	 2 �ˇ , the projection of the
measure 
ˇ;�. � j	/ onto Cˇ;ƒ is absolutely continuous with respect to �ˇ;ƒ. The

corresponding Radon–Nikodym derivative ��ƒ;� W Cˇ;ƒ ! R is a continuous function,
which obeys

exp
� � logNC

ˇ;ƒ
�Eˇ;ƒ.xƒ/

� � �
�
ƒ;�.xƒ/

� C3.3.5.�; 	/ � exp
�

� logNC
ˇ;ƒ

�Eˇ;ƒ.xƒ/C
OJ
2

X
`2ƒ

kx`k2L2
ˇ

�
;

(3.3.21)

where � and N˙
ˇ;ƒ

are the same as in (3.3.14).

The set of tempered configurations �t
ˇ

was introduced in (3.1.28), (3.1.30) by

means of rather slack conditions, imposed on the L2
ˇ

-norms of x`. The elements of
G t
ˇ

are supported by �t
ˇ

, see (3.1.53). Let us show now that these elements have a
much smaller support, similar to the one occurring in the J. L. Lebowitz and E. Presutti
paper [206]. Recall that the ‘lattice’ L is endowed with the metric (1.1.1) which has
the property (1.1.2). Given b > 0 and � 2 .0; 1=2/, we define

„.b; �/ D f	 2 �ˇ j .8`0 2 L/ .9ƒ�;`0
2 Lfin/ .8` 2 ƒc�;`0

/ W
k	`k2C�

ˇ
� b log.1C j` � `0j/g; (3.3.22)

which in view of (3.1.19) is a Borel subset of �t
ˇ

.

Theorem 3.3.11. For every � 2 .0; 1=2/, there exists b > 0, which depends on � and
on the parameters of the model only, such that for all � 2 G t

ˇ
,

�.„.b; �// D 1: (3.3.23)
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Proof. To some extent we shall follow the line of arguments used in the proof of
Lemma 3.1 in [206]. Given `; `0, b > 0, � 2 .0; 1=2/, and ƒ � L, we introduce

„`.`0; b; �/ D f	 2 �ˇ j k	`k2C�
ˇ

� b log.1C j` � `0j/g;
„ƒ.`0; b; �/ D

\
`2ƒ

„`.`0; b; �/:
(3.3.24)

For a cofinal sequence L, we set

„.`0; b; �/ D
[
ƒ2L

„ƒc .`0; b; �/; „.b; �/ D
\
`02L

„.`0; b; �/: (3.3.25)

The latter „.b; �/ is a subset of �t
ˇ

and is the same as the one given by (3.3.22). To
prove the theorem let us show that for any � 2 .0; 1=2/, there exists b > 0 such that
for all `0 and � 2 G t

ˇ
,

�
�
�ˇ n„.`0; b; �/

� D 0: (3.3.26)

By (3.3.24) we have

�ˇ n„ƒc .`0; b; �/

D f	 2 �ˇ j .9` 2 ƒc/ W k	`k2C�
ˇ
> b log.1C j` � `0j/g

� f	 2 �ˇ j .9` 2 �c/ W k	`k2C�
ˇ
> b log.1C j` � `0j/g;

(3.3.27)

for any ƒ � �. Therefore,

�
� \
ƒ2L

�
�ˇ n„ƒc .`0; b; �/

� � D lim
L
�
�
�ˇ n„ƒc .`0; b; �/

�
; (3.3.28)

which holds for any cofinal sequence L. By (3.3.27),

�
�
�ˇ n„ƒc .`0; b; �/

� D �
� [
`2ƒc

�
�ˇ n„`.`0; b; �/

� �

�
X
`2ƒc

�
�˚
	 j k	`k2C�

ˇ
> b log.1C j` � `0j/

��
D
X
`2ƒc

�
�˚
	 j exp

�
�k	`k2C�

ˇ

�
> .1C j` � `0j/b
�

��
:

Applying here the Chebyshev inequality and the estimate (3.3.1) we get

�
�
�ˇ n„ƒc .`0; b; �/

� � C3.3.1

X
`2ƒc

.1C j` � `0j/�b
:

Then, by (1.1.2) and (3.3.28),

�
�
�ˇ n„.`0; b; �/

� D lim
L
�
��
�ˇ n„ƒc .`0; b; �/

�� D 0;

whenever b > d=�. Thus, (3.3.26) holds.
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3.4 Analytic Approach to Euclidean Gibbs Measures

In this section, we develop yet another approach to the description of the Euclidean
Gibbs measures of the model (1.1.3), (1.1.8). It is based on the flow characterization
of the Euclidean Gibbs measures in terms of their Radon–Nikodym derivatives with
respect to the shift transformations of the configuration space �ˇ . Then we char-
acterize such measures in terms of their logarithmic derivatives, which allow us to
derive integration by parts formulas. Obviously, here we have to assume, in addition
to Assumption 1.1.1, that the anharmonic potentials V` are differentiable.

3.4.1 Flow Description of Euclidean Gibbs Measures

To harmonize notation we introduce the following compound index i D .j; k; `/, where
j D 1; : : : ; �, k 2 K (defined by (1.3.20)) and ` 2 L. For such i, we set

i D }j ˝ ek ˝ ı` D �j;k ˝ ı`; (3.4.1)

where f}j gjD1;:::� is the canonical basis of R� , ek were defined in (1.3.111), and
ı` W L ! f0; 1g is ı`.`0/ D ı``0 . The set of all such i will be denoted by I . Then
figi2I is a subset of �ˇ . For t 2 R, i 2 I , and B 2 Bˇ , we set

B C ti D fx C ti j x 2 Bg: (3.4.2)

Then for a given � 2 P .�ˇ /, we define

�t�i.B/ D �.B C ti/: (3.4.3)

If this new measure is absolutely continuous with respect to �, its Radon–Nikodym
derivative can give us important information about � itself. As an example, let us
consider the Gaussian measure � D �ˇ;L defined by (1.3.157), which exists as a
product measure. By standard methods one calculates

d�t�i

d�
.x/ D d�

t�j;k

ˇ

d�ˇ
.x`/

D exp
�

� t2

2
.S�1
ˇ �j;k; �j;k/L2

ˇ
� t .S�1

ˇ �j;k; x`/L2
ˇ

�

D exp
�

� t2

2
� 1

mk2 C a
� t

mk2 C a
.�j;k; x`/L2

ˇ

�
defD a.0/t�i

.x/:

(3.4.4)

These Radon–Nikodym derivatives uniquely determine the measures �ˇ;` and hence
� by the properties of Gaussian measures.

Proposition 3.4.1. Let a probability measure � on the real Hilbert space L2
ˇ

be such
that for any t 2 R and j D 1; : : : ; �, k 2 K , the shifted measure �t�j;k is absolutely
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continuous with respect to � with the Radon–Nikodym derivative

d�t�j;k

d�
.	/ D exp

�
� t2

2
.S�1
ˇ �j;k; �j;k/L2

ˇ
� t .S�1

ˇ �j;k; 	/L2
ˇ

�
; 	 2 L2ˇ : (3.4.5)

Then � D �ˇ , where the latter is the Høegh-Krohn measure described in Subsec-
tion 1.3.6; in particular, its Fourier transform has the form (1.3.109).

Proof. First of all, one observes that the vectors f�j;kgjD1;:::;�I k2K constitute a basis
of the space L2

ˇ
. Let L2

ˇ;fin be the set of all finite linear combinations of these vectors.

It is a dense linear subset of L2
ˇ

. For any � 2 L2
ˇ;fin, one finds n 2 N, t1; : : : ; tn 2 R,

j1; : : : ; jn D 1; : : : ; � and k1; : : : ; kn 2 K such that

� D t1�j1;k1
C � � � C tn�jn;kn

:

Then, see (1.3.112),

S�1
ˇ � D .t1=sk1

/�j1;k1
C � � � C .tn=skn

/�jn;kn
;

which meansL2
ˇ;fin � Dom.S�1

ˇ
/ and S�1

ˇ
W L2

ˇ;fin ! L2
ˇ;fin. Applying (3.4.5) n times

one gets
d�

d�
.	/ D exp

�
� 1

2
.S�1
ˇ �; �/L2

ˇ
� .S�1

ˇ �; 	/L2
ˇ

�
: (3.4.6)

This immediately yields that the Fourier transform of the measure �, i.e., the function

'�.�/ D
Z
L2

ˇ

exp
�

i.�; 	/L2
ˇ

�
�.d	/; � 2 L2ˇ ; (3.4.7)

can be extended to L2
ˇ

˚ iL2
ˇ;fin. Indeed, for � 2 L2

ˇ
and �0 2 L2

ˇ;fin, we set � D Sˇ �
0

and obtain by (3.4.7) and (3.4.6) that

'�.� C i�0/ D
Z
L2

ˇ

exp
�

i.�; 	/L2
ˇ

� .�0; 	/L2
ˇ

�
�.d	/

D exp

�
1

2
.S�1
ˇ �; �/L2

ˇ

�Z
L2

ˇ

exp
�
i.�; 	/L2

ˇ

�
�.d	/

D exp

�
1

2
.Sˇ �

0; �0/L2
ˇ

�
'��.�/:

(3.4.8)

In particular,

'�.i�/ D exp

�
1

2
.Sˇ �; �/L2

ˇ

�
; � 2 L2ˇ;fin;

which yields

'�.�/ D exp

�
�1
2
.Sˇ �; �/L2

ˇ

�
; � 2 L2ˇ;fin: (3.4.9)
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By the Minlos–Sazonov theorem, the characteristic function '� is continuous onL2
ˇ

(it
is continuous even in a weaker topology, see Proposition 1.3.39). Then the representa-
tion (3.4.9) can be extended to the whole space L2

ˇ
. Comparing (3.4.9) and (1.3.109),

by Proposition 1.3.38 one gets � D �ˇ .

Given x 2 �ˇ , i D .j; k; `/, j D 1; : : : ; �, k 2 K , ` 2 L and t 2 R, we set

Wi.x`; t / D
Z ˇ

0

�
V`.x`.�/C t�j;k.�// � V`.x`/

�
d�; (3.4.10)

and
aVt�i

.x/ D exp
�
t
X
`0

J``0.�j;k; x`0/L2
ˇ

�Wi.x`; t /
�
: (3.4.11)

As in the proof of Proposition 3.1.15, one shows that the map

�t
ˇ 3 x 7!

X
`0

J``0.�j;k; x`0/L2
ˇ

2 R

is continuous. We recall that all V`’s are continuous; hence, the above aVt�i
is a contin-

uous function on �t
ˇ

. Now, having in mind (3.4.4), we set

at�i
.x/ D a.0/t�i

.x/ � aVt�i
.x/: (3.4.12)

Definition 3.4.2. Given i 2 I and t 2 R, by Mat	i
we denote the set of measures

� 2 P .�t
ˇ
/ which are quasi-invariant with respect to the shifts (3.4.3) and are such

that
d�t�i

d�
.x/ D at�i

.x/; x 2 �t
ˇ : (3.4.13)

Furthermore, we set
Ma

defD
\

t2R; i2I

Mat	i
: (3.4.14)

The main result of this subsection is the following theorem which gives a flow
characterization of the set of tempered Euclidean Gibbs measures.

Theorem 3.4.3. For the model considered, it follows that

G t
ˇ D Ma: (3.4.15)

Proof. We recall that for a given ` 2 L, we have setƒ` D L n f`g. Every � 2 P .�t
ˇ
/

can be disintegrated with respect to its projection �ƒ`
onto �ˇ;ƒ`

, that is,

�.dx`; dxƒ`
/ D ��.dx`jxƒ`

/�ƒ`
.dxƒ`

/; (3.4.16)

where ��.dx`jxƒ`
/ is a probability measure on the Banach space Cˇ;f`g D Cˇ . It

is not unique, which means that the measure � can be decomposed like (3.4.16) with
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the same projection measure �ƒ`
and with some other measure Q��, which, however,

should satisfy the condition

8B 2 Bˇ;f`g W ��.Bjxƒ`
/ D Q��.Bjxƒ`

/; �ƒ`
-almost surely: (3.4.17)

Let ` in (3.4.16) be the same as in i D .j; k; `/. Then, obviously,

�t�i.dx`; dxƒ`
/ D �

t�j;k
� .dx`jxƒ`

/�ƒ`
.dxƒ`

/: (3.4.18)

If � 2 G t
ˇ

, then one can take the measure (3.1.41) with ƒ D f`g as ��. Indeed, by
(3.1.44), for any ƒ 2 Lfin, one has


ˇ;ƒ.dxj	/ D �ˇ;ƒ.dxƒj	/
O
`02ƒc

ı�`0 .dx`0/; (3.4.19)

where ı�`0 .dx`0/ is the Dirac measure concentrated at x`0 D 	`0 . Now we insert the
measure �, as given by (3.4.16), and the kernel 
ˇ;ƒ, given by (3.4.19) withƒ D f`g,
into the DLR equation (3.1.52). This yields

��.dx`jxƒ`
/�ƒ`

.dxƒ`
/ D

Z
�ˇ

�ˇ;f`g.dx`j	ƒ`
/
O
`02ƒc

ı�`0 .dx`0/

� ��.d	`j	ƒ`
/�ƒ`

.d	ƒ`
/

D �ˇ;f`g.dx`jxƒ`
/�ƒ`

.dxƒ`
/

�
Z
Cˇ

��.d	`jxƒ/

D �ˇ;f`g.dx`jxƒ`
/�ƒ`

.dxƒ`
/;

where we have taken into account that the conditional measure (3.1.41) depends only on
the configuration 	ƒc (see (3.1.33)) and that the conditional measure �� is�ƒ`

-almost
surely a probability measure. Thus, for �ƒ`

-almost all xƒ`
2 �ˇ;ƒ`

both conditional
measures coincide.

By (3.1.33), (3.1.41),

d.�ˇ;f`g/t�j;k . � jxƒ`
/

d�ˇ;f`g. � jxƒ`
/

.x`/ D at�i
.x/; (3.4.20)

which, by (3.4.18), yields G t
ˇ

� Ma. In order to prove the inverse inclusion we take
an arbitrary � 2 Ma and represent it in the form of (3.4.16). Then, by (3.4.18)

d�
t�j;k
� . � jxƒ`

/

d��. � jxƒ`
/
.x`/ D at�i

.x/: (3.4.21)

Now let us introduce the following conditional measure on Cˇ :

�.dx`jxƒ`
/ D exp

�
�
X
`02ƒ`

J``0.x`; x`0/L2
ˇ

C
Z ˇ

0

V`.x`.�//d�
�
��.dx`jxƒ`

/:

(3.4.22)
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For �ƒ`
-almost all xƒ`

it is a Borel measure, though, it may not be finite. By (3.4.21),

d� t�j;k . � jxƒ`
/

d�. � jxƒ`
/
.x`/ D at�i

.x/ � �aVt�i
.x/
��1 D a.0/t�i

.x/: (3.4.23)

Then by Proposition 4 of [260], �.Cˇ jxƒ`
/ < 1 for �ƒ`

-almost all xƒ`
. Thus,

up to a normalization constant, � coincides with the measure �ˇ , which follows from
Proposition 3.4.1. Then, by (3.4.22), one immediately gets ��. � jxƒ`

/ D �ˇ;f`g. � jxƒ`
/

for �ƒ`
-almost all xƒl

, which completes the proof.

3.4.2 Integration by Parts

As we shall show in this subsection, there exists one more property of Gibbs measures,
which is equivalent to the quasi-invariance described above and which can be used
to characterize the set G t

ˇ
. This property is described in terms of the logarithmic

derivatives. Clearly, here we should assume, in addition to Assumption 1.1.1, that the
anharmonic potentials V` are of class C 1.R�/.

We start by making precise the notion of the derivative of a function f W �ˇ ! R
at a given x 2 �ˇ in the direction  2 �ˇ . Namely, we say that such a function is
differentiable in the above sense if the function R 3 t 7! f .xCt/ 2 R is differentiable
at t D 0. In this case we write

@�f .x/ D
�
@

@t
f .x C t/

�
tD0

D lim
t!0

.f .x C t/ � f .x// =t: (3.4.24)

We shall also use one-sided derivatives

@�̇ f .x/ D lim
t!˙0 .f .x C t/ � f .x// =t: (3.4.25)

Let i, i 2 I be as in (3.4.1) and

ˆ`.x/
defD

Z ˇ

0

V`.x`.�//d�; (3.4.26)

where ` is the same as in i D .j; k; `/. Then

@�i
ˆ`.x/

defD .F`.x/; �j;k/L2
ˇ
; (3.4.27)

where F` W �t
ˇ

! Cˇ is defined by its values

.F`.x// .�/ D .rV`/ .x`.�//: (3.4.28)

Given i, i 2 I , we set

bi.x/ D
�
@

@t
at�i

.x/

�
tD0
: (3.4.29)
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Then by (3.4.4), (3.4.10) and (3.4.26)-(3.4.28),

bi.x/ D �.S�1
ˇ �j;k; x`/L2

ˇ
C
X
`0

J``0.�j;k; x`0/L2
ˇ

� .F`.x/; �j;k/L2
ˇ
: (3.4.30)

On the other hand, by the chain rule

a.tC�/�i
.x/ D d���i

d�
.x C ti/ � d�t�i

d�
.x/

D a��i
.x C ti/at�i

.x/at�i
.x C #i/a#�i

.x/;

we get

@

@t
at�i

.x/ D
�
@

@�
a.tC�/�i

.x/

�
�D0

D at�i
.x/bi.x C ti/; (3.4.31)

and

@�i
at�i

.x/ D
�
@

@#
at�i

.x C #i/

�
#D0

D
�
@

@#

�
a.tC#/�i

.x/

a#�i
.x/

��
#D0

D @

@t
at�i

.x/ � at�i
.x/bi.x/ D at�i

.x/ Œbi.x C ti/ � bi.x/� :

(3.4.32)

One can consider (3.4.31) as a differential equation subject to the initial condition
a0.x/ D 1, the solution of which is

at�i
.x/ D exp

�Z t

0

bi.x C #i/d#

�
: (3.4.33)

Definition 3.4.4. Given i D .j; k; l/ 2 I , the family Fi consists of the functions
f W �t

ˇ
! R possessing the following properties: (a) at every x 2 �t

ˇ
, there exists

the derivative @�i
f .x/; (b) both f and @�i

f are continuous functions on�t
ˇ

; (c) there
exist �; ~ > 0, n 2 N, n > r , where r is the same as in (1.1.10), and a bounded
continuous local function g W �ˇ ! R, such that

f .x/ D g.x/ exp

�
� �

Z ˇ

0

jx`.�/j2nd� � ~
X
`0

jJ``0 j � kx`0k2
L2

ˇ

�
: (3.4.34)

Obviously, for every t 2 R and f 2 Fi, the functions

@�i
f .x/; f .x/bi.x C ti/; f .x/at�i

.x/; f .x C ti/at�i
.x/ (3.4.35)

belong to Fi as well. Moreover, the family Fi is closed under multiplication and
separates points of �t

ˇ
. Then, since �t

ˇ
is a Polish space, this family is a measure-

defining set in the sense of Theorem 1.3.26.
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Let Mbi
stand for the class of measures � 2 P .�t

ˇ
/ which satisfy the integration-

by-parts formula Z
�t

ˇ

@�i
f .x/�.dx/ D �

Z
�t

ˇ

f .x/bi.x/�.dx/; (3.4.36)

for all f 2 Fi. Recall that the set Mta	i
was introduced in Definition 3.4.2.

Theorem 3.4.5. For every i 2 I ,

Mbi
D
\
t2R

Mta	i
:

Therefore,

G t
ˇ D Ma D Mb

defD
\
i2I

Mbi
:

Proof. First we show that every � satisfying (3.4.13) with a certain t 2 R obeys also
(3.4.36). For any f 2 Fi,Z

�t
ˇ

f .x � ti/�.dx/ D
Z
�t

ˇ

f .x/�t�i.dx/ D
Z
�t

ˇ

f .x/at�i
.x/�.dx/:

Thus, for t ¤ 0, we haveZ
�t

ˇ

Œ.f .x � ti/ � f .x//=t � �.dx/D
Z
�t

ˇ

f .x/
�
.at�i

.x/ � 1/=t��.dx/: (3.4.37)

In view of (3.4.24) and (3.4.31), the equality (3.4.37) may be rewritten in the form

�
Z
�t

ˇ

@�i
f .x � #i/�.dx/ D

Z
�t

ˇ

f .x/a��i
.x/bi.x C �i/�.dx/; (3.4.38)

with certain �; # 2 R such that 0 � j� j < jt j, 0 � j#j < jt j. Both functions under the
integrals in (3.4.38) are bounded and continuous on �ˇ . Moreover, for any x 2 �t

ˇ
,

@�i
f .x � #i/ ! @�i

f .x/; a��i
.x/bi.x C �i/ ! bi.x/;

as t ! 0. Thus, by Lebesgue’s dominated convergence theorem, the limit of (3.4.38)
is (3.4.36).

Now let us show that a measure �, which satisfies (3.4.36) with every f 2 Fi, is
quasi-invariant with respect to the shifts (3.4.2) with any t 2 R and the corresponding
Radon–Nikodym derivatives are given by (3.4.13). In view of (3.4.35), the function
Qft .x/ defD f .x C ti/at�i

.x/ belongs to Fi for any f 2 Fi and t 2 R; hence, the
integration-by-parts formula (3.4.36) may be applied to this function. This yieldsZ

�t
ˇ

��
@�i
f
�
.x C ti/at�i

.x/C f .x C ti/at�i
.x/bi.x C ti/

�
�.dx/ D 0;

(3.4.39)
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where we have also used (3.4.32). In the same way as we have proven that (3.4.37)
tends to (3.4.36) as t ! 0, we can show that

@

@t

Z
�t

ˇ

Qft .x/�.dx/ D
Z
�t

ˇ

@ Qft .x/
@t

�.dx/;

which, by (3.4.39), yields

@

@t

Z
�t

ˇ

Qft .x/�.dx/ D 0:

Therefore, for all t 2 R,Z
�t

ˇ

f .x C ti/at�i
.x/�.dx/ D

Z
�t

ˇ

f .x/�.dx/ D
Z
�t

ˇ

f .x C ti/�
t�i.dx/;

(3.4.40)
which holds for every f 2 Fi. Since Fi is a measure-defining set, the integrals in
(3.4.40) uniquely determine the measure (see Theorem 1.3.26). This yields�t�i.dx/ D
at�i

.x/�.dx/.

In what follows, Theorem 3.4.5 gives one more characterization of Euclidean Gibbs
measures. Namely, a measure � 2 P .�t

ˇ
/ is a Euclidean Gibbs measure of the model

described by the heuristic Hamiltonian (1.1.8) if and only if it satisfies the integration-
by-parts formulas (3.4.36), (3.4.41) with the prescribed logarithmic derivatives bi, for
all i 2 I . These logarithmic derivatives (3.4.30) are expressed through the potentials
J``0 andV` which determine the model (1.1.8); hence, they are the same for all elements
of G t

ˇ
.

Remark 3.4.6. Let f W �t
ˇ

! R be as in Definition 3.4.4 but possessing only bounded

continuous one-sided derivatives @�̇i
f . Then for any � 2 Mbi

and any such f , the
integration-by-parts formula (3.4.36) holds in the formZ

�t
ˇ

@�̇i
f .x/�.dx/ D �

Z
�t

ˇ

f .x/bi.x/�.dx/: (3.4.41)

The proof of (3.4.41) is exactly the same as for Theorem 3.4.5. Here one should
take into account that the function at�i

is differentiable, hence, @C
�i

at�i
D @�

�i
at�i

.
We conclude this subsection by establishing an analog of the formulas (3.4.36),

(3.4.41) for the kernels (3.1.44), which, for any fixed 	 2 �t
ˇ

, are elements of P .�t
ˇ
/.

Given i D .j; k; `/, let ƒ 2 Lfin contain `. Then by (3.1.41), (3.1.44),

d.
ˇ;ƒ/t�i

d
ˇ;ƒ
.xj	/ D at�i

.x/; (3.4.42)

which holds for all 	 2 �t
ˇ

, t 2 R and for 
ˇ;ƒ. � j	/-almost all x 2 �t
ˇ

. As above,

this immediately yields that for all f 2 L1.�ˇ ; 
ˇ;ƒ. � j	//,Z
�t

ˇ

f .x � ti/
ˇ;ƒ.dxj	/ D
Z
�t

ˇ

f .x/at�i
.x/
ˇ;ƒ.dxj	/:
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Proceeding as in the proof of Theorem 3.4.5, from this identity one can show that the
kernel 
ˇ;ƒ. � j	/ satisfies integration-by-parts formulas like (3.4.36), (3.4.41), e.g.,Z

�t
ˇ

@�̇i
f .x/
ˇ;ƒ.dxj	/ D �

Z
�t

ˇ

f .x/bi.x/
ˇ;ƒ.dxj	/; (3.4.43)

with the same functions f 2 Fi and bi and with i D .j; k; `/ such that ` 2 ƒ.
Therefore, 
ˇ;ƒ. � j	/ 2 Mbi

with such i. Here one has to remark that these facts
do not yield that 
ˇ;ƒ belongs to the classes Ma D Mb, because (3.4.42) and the
corresponding integration-by-parts formulas hold not for all i 2 I .

Now let L be a tending to infinity sequence of finite subsetsƒ � L. Given 	 2 �t
ˇ

,
suppose that the sequence of probability measures f
ˇ;ƒ. � j	/gL converges in W t to a
measure � 2 P .�t

ˇ
/. Since for f 2 Fi, the functions under the integrals in (3.4.43)

are bounded, both sides of this equation converge, as ƒ ! L, to the integration-by-
parts formula for the measure�. This formula holds for all i 2 I , because the sequence
L exhausts the lattice; hence, � 2 Mb D G t

ˇ
. Therefore, if for a given 	 2 �t

ˇ
and

a cofinal sequence L, the sequence of probability kernels f
ˇ;ƒ. � j	/gL converges in
W t to a measure � 2 P .�t

ˇ
/, this � should be a tempered Euclidean Gibbs measure.

3.5 The Case of Local Interactions

Here we consider the model (1.1.8) with interaction intensities which have finite range,
see Definition 1.1.2. In this case, for a given oscillator, the set of oscillators interacting
directly with this oscillator is finite, which agrees with the notion of locality used in
this book. Then the second term in the energy functional (3.1.33) makes sense for
all 	 2 �ˇ . Therefore, one can define a priori a wider class of probability measures
satisfying the DLR equation (3.1.52).

For ƒ 2 Lfin, we introduce the set

@Cƒ D f`0 2 ƒc j 9` 2 ƒ W J``0 ¤ 0g; (3.5.1)

which also belongs to Lfin. Thus,ˇ̌̌ X
`2ƒ; `02ƒc

J``0.x`; 	`0/L2
ˇ

ˇ̌̌
� jƒj OJ0 sup

`2ƒ

�
kx`kL2

ˇ

�
� sup
`02@Cƒ

�
k	`0kL2

ˇ

�
: (3.5.2)

This proves the following statement, cf. Lemma 3.1.12.

Lemma 3.5.1. If the interaction has finite range, the map

�ˇ ��ˇ 3 .x; 	/ 7! Eˇ;ƒ.xj	/; (3.5.3)

is continuous for any ƒ 2 Lfin. Furthermore, for every R > 0,

inf
x2�ˇ ; �2B

@Cƒ
.R/
Eˇ;ƒ.xj	/ > �1;

sup
x2Bƒ.R/; �2B

@Cƒ
.R/

Eˇ;ƒ.xj	/ < C1;
(3.5.4)
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where
Bƒ.R/ D fx 2 �ˇ j sup

`2ƒ
kx`kL2

ˇ
� Rg: (3.5.5)

Then the partition function (3.1.39) can be defined for all 	 2 �ˇ . It is then
continuous and obeys the estimates (3.1.40) withB`0;˛ replaced byB given by (3.5.5).
Correspondingly, the local Gibbs measure (3.1.41) can also be defined for all 	 2 �ˇ ,
which allows us to introduce, cf. (3.1.44),

z
ˇ;ƒ.Bj	/ D
Z
Cˇ;ƒ

IB.xƒ � 	ƒc /�ˇ;ƒ.dxƒj	/; 	 2 �ˇ ; ƒ 2 Lfin; (3.5.6)

which is a probability kernel. The set z̆
ˇ D fz
ˇ;ƒgƒ2Lfin is called the local Gibbs

specification for the model (1.1.8). Exactly as in Lemma 3.1.17 one proves that the
map f 7! z
ˇ;ƒ.f j � / defined by (3.1.48) is a contraction on Cb.�ˇ /.

Definition 3.5.2. A measure � 2 P .�ˇ / is called a Euclidean Gibbs measure for the
model (1.1.8), if for any ƒ 2 Lfin, it solves the DLR equation, see (3.1.51),

�z
ˇ;ƒ D �: (3.5.7)

The set of all such measures will be denoted by zGˇ .

Unlike the tempered Euclidean Gibbs measures introduced in Definition 3.1.18, the
elements of zGˇ have no prescribed supporting properties. As a result, the latter set may
contain measures which have no physical relevance and hence should be excluded from
the consideration. We perform this by imposing restrictions on the support of ‘proper’
elements of zGˇ . To this end we use weights and tempered configurations. Let fw˛g˛2�

be any system of weights possessing the properties established by Definition 3.1.8.
Since the interaction J``0 has finite range, the condition (3.1.20) is automatically sat-
isfied; hence, the only condition left is (3.1.19). Its meaning is that the configurations
x.x`/`2L with logarithmic growth of kx`k2L2

ˇ

, see (3.1.27), should be among the tem-

pered configurations. On the other hand, the bigger set of tempered configurations we
would like to have, the stronger decay of the weights w˛.`; `0/, as j`� `0j ! C1, we
should admit.

In what follows, for a given system of weights fw˛g˛2� , which obeys the conditions
of Definition 3.1.8 and (3.1.19), let the set of tempered configurations be defined by
(3.1.30). Let also P .�t

ˇ
/ be as in Definition 3.1.11. Then we set

zG t
ˇ D zGˇ \ P .�t

ˇ /; (3.5.8)

which need not coincide with the set of tempered Euclidean Gibbs measures G t
ˇ

intro-
duced in Definition 3.1.18. However, simple arguments based on the DLR equation
lead to the conclusion that

zG t
ˇ D G t

ˇ : (3.5.9)
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But, for the elements of G t
ˇ

, we have proven Theorem 3.3.11, i.e., these elements
have much smaller support than �t

ˇ
. Therefore, any restriction of the support of the

elements of zGˇ , i.e., imposed by any system of weights obeying (3.1.16)–(3.1.18),
(3.1.19), leads to (3.3.23). On the other hand, it is easy to show that, for any countable
set of configurations X � �ˇ , there exists a system of weights with the properties just
mentioned, such that the set �t

ˇ
defined by means of these weights contains X.

Let us summarize the arguments presented above. For models with non-local inter-
actions, the restrictions on the supporting properties of the Gibbs measures should be
imposed ab initio, since this is the only way to define the second term in (3.1.33) and
hence the kernels (3.1.44). These restrictions are imposed by means of weights, obeying
the conditions (3.1.16)–(3.1.18), (3.1.19), (3.1.20). The latter two conditions are com-
petitive, and, in principle, there exist models for which they contradict each other. If
there exists a system of weights obeying all these conditions, then the set G t

ˇ
is non-

empty, Theorem 3.3.6. A posteriori its elements have much smaller support than �t
ˇ

,
see (3.3.23). Significantly, this support does not depend on the particular choice of
the weights. The same scheme of constructing Gibbs measures by imposing a priori
growth restrictions with the help of weights can also be applied to models with local
interactions. At the same time, for such models one can define Gibbs measures without
any restriction on the support of its elements. In this case, the set of Gibbs measures zGˇ
might contain ‘physically irrelevant’elements, which have to be excluded from the the-
ory. This is done by imposing support conditions like (3.5.8), which, however, can be
chosen in such a way that any given countable set of configurations belongs to�t

ˇ
. Once

the support restrictions are imposed, the set of Gibbs measures obeying these conditions
is exactly the same as the one constructed according to the scheme which yields G t

ˇ
.

3.6 Periodic Euclidean Gibbs Measures

In this section, we set L D Zd and consider a translation-invariant version of the
model (1.1.8), see Definition 1.4.10, with J``0 being of general type. By means of the
measures (1.4.52) we define, cf. (3.1.44),



per
ˇ;ƒ

.B/ D 1

N
per
ˇ;ƒ

Z
�ˇ;ƒ

exp
� �Eper

ˇ;ƒ
.xƒ/

�
IB.xƒ � 0ƒc /�ˇ;ƒ.dxƒ/; (3.6.1)

where ƒ is a box, see (1.4.46). The set of all such boxes will be denoted by Lbox.
Comparing (3.6.1) with (1.4.52) one gets, cf. (3.4.19),



per
ˇ;ƒ

.d.xƒ � xƒc // D �
per
ˇ;ƒ

.dxƒ/
O
`02ƒc

ı0`0 .dx`0/; (3.6.2)

where 0`0 is the zero vector in the Banach space Cˇ . We note that 
per
ˇ;ƒ

is a measure

on the space�t
ˇ

, whereas �per
ˇ;ƒ

is a measure on Cˇ;ƒ. At the same time, the projection

of 
per
ˇ;ƒ

onto Cˇ;ƒ is exactly �per
ˇ;ƒ

.
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For a certain ` 2 ƒ, we set �` D L n f`g. Let also �`
ˇ;ƒ

be the projection of 
per
ˇ;ƒ

onto Bˇ;�`
. On the single-spin space Cˇ we define the measure

�`ˇ;ƒ.dx`j	/ D 1

N`.	/
exp


1

2

X
`02ƒ

Jƒ``0.x`; 	`0/L2
ˇ

�
Z ˇ

0

V.x`.�//d�
�
�ˇ .dx`/;

(3.6.3)
where 	 2 �t

ˇ
and

N`.	/ D
Z
Cˇ

exp

1

2

X
`02ƒ

Jƒ``0.x`; 	`0/L2
ˇ

�
Z ˇ

0

V.x`.�//d�
�
�ˇ .dx`/: (3.6.4)

Like in (3.4.16) we disintegrate



per
ˇ;ƒ

.dx/ D �`ˇ;ƒ.dx`jx�`
/�`ˇ;ƒ.dx�`

/: (3.6.5)

Let us prove that the measure (3.6.3) satisfies the exponential moment estimate (3.2.1)
with the same constant C3.2.1 and parameters ~ and # . As the interaction potential
Jƒ
``0 , given by (1.4.50), is invariant under the action of the group Zd=Zd

ƒ, the sumP
`02ƒ jJƒ

``0 j is independent of `. Furthermore, there exists `0 2 ƒ such that, for any
` 2 ƒ, j` � `0jƒ D j` � `0j, see (1.4.48). Thus,X

`02ƒ
jJƒ``0 j D

X
`02ƒ

jJ`0`0 j � OJ0: (3.6.6)

Then, as in (3.2.2), we have

ˇ̌̌ X
`02ƒ

Jƒ``0.x`; 	`0/L2
ˇ

ˇ̌̌
�

OJ0
2#

kx`k2L2
ˇ

C #

2

X
`02ƒ

jJƒ``0 j � k	`0k2
L2

ˇ

:

Applying this estimate in (3.6.3) and (3.6.4) we obtain the following analog of (3.2.1)Z
Cˇ

exp
n
�kx`k2C�

ˇ
C ~kx`k2L2

ˇ

o
�`ˇ;ƒ.dx`j	/

� exp
n
C3.2.1 C #

X
`02ƒ

jJƒ``0 j � k	`0k2
L2

ˇ

o
:

(3.6.7)

We recall that the norm kxk`0;˛;� was defined in (3.2.17).

Lemma 3.6.1. For every˛ 2 �, � 2 .0; 1=2/, and `0, there exists a constantC3.6.8 > 0,
such that for all boxes ƒ, Z

�t
ˇ

kxk2`0;˛;�



per
ˇ;ƒ

.dx/ � C3.6.8: (3.6.8)

Thereby, the family of all measures (3.6.1) is W t-relatively compact.
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Proof. For ` 2 ƒ, we set, cf. (3.2.8),

n`.ƒ/ D log

 Z
�t

ˇ

exp
h
�kx`k2C�

ˇ
C ~kx`k2L2

ˇ

i

ˇ;ƒ.dx/

�
: (3.6.9)

As the measure 
ˇ;ƒ.dx/ is translation-invariant, the above quantity is independent
of `. Then we take~ and# such that# OJ0 < ~, cf. (3.2.12), and perform the calculations
which led to the estimate (3.2.13). Thereafter, we get

n`.ƒ/ � C3.2.1 C .#=~/
X
`02ƒ

jJƒ``0 j � n`0.ƒ/

D C3.2.1 C .# OJ0=~/ � n`.ƒ/;
and hence

n`.ƒ/ � C3.2.1

1 � # OJ0=~
: (3.6.10)

By the Jensen inequality, we haveZ
�t

ˇ

kx`k2C�
ˇ



per
ˇ;ƒ

.dx/ � n`.ƒ/=~;

which yields (3.6.8) with

C3.6.8 D RHS.3.6.10/ �
X
`

w˛.`0; `/:

The W t-relative compactness of the family of all measures 
per
ˇ;ƒ

follows from the
estimate (3.6.8) by the arguments used in the proof of Theorem 3.3.6.

Let M
per
ˇ

� P .�t
ˇ
/be the set of all accumulation points of the family f
per

ˇ;ƒ
gƒ2Lbox .

Our next goal is to prove that M
per
ˇ

� G t
ˇ

. Note that each � 2 M
per
ˇ

can be obtained as

a W t-limit of a sequence f
per
ˇ;ƒ

gƒ2Lbox taken along a cofinal sequence of boxes Lbox.

Lemma 3.6.2. Given � 2 .0; 1=2/, let � and ~ be as in (3.3.1). Then there exists
C3.6.11 > 0, such that for every ` and � 2 M

per
ˇ

,Z
�t

ˇ

exp
�
�kx`k2C�

ˇ
C ~kx`k2L2

ˇ

�
�.dx/ � C3.6.11: (3.6.11)

Proof. By (3.6.9), (3.6.10), for every ƒ 2 Lbox and ` 2 ƒ,Z
�t

ˇ

exp
�
�kx`k2C�

ˇ
C ~kx`k2L2

ˇ

�



per
ˇ;ƒ

.dx/ � exp
�

C3.2.1

1 � # OJ0=~
�
:

Passing here to the limit along the sequence Lbox for which limLbox 

per
ˇ;ƒ

D �, we
arrive at (3.6.11).
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As in the proof of Theorem 3.3.11, by means of the latter statement we get the
following

Corollary 3.6.3. Let � 2 .0; 1=2/, b > 0, and „.b; �/ be as in (3.3.23). Then for
every 
per

ˇ;ƒ
, ƒ 2 Lbox, as well as for every � 2 M

per
ˇ

, it follows that



per
ˇ;ƒ

.„.b; �// D �.„.b; �// D 1: (3.6.12)

Theorem 3.6.4. Every accumulation point of the family f
per
ˇ;ƒ

gƒ2Lbox is a tempered

Euclidean Gibbs measure of the model (1.1.3), (1.1.8), i.e., M
per
ˇ

� G t
ˇ
. The elements

of M
per
ˇ

, called periodic Euclidean Gibbs measures, are translation-invariant.

Proof. For givenƒ 2 Lbox and� � ƒ, we disintegrate 
ˇ;ƒ, cf. (3.6.5), according to


ˇ;ƒ.dx/ D ��ˇ;ƒ.dx�jx�c /��ˇ;ƒ.dx�c /: (3.6.13)

Exactly as in the proof of Lemma 3.1.17, one shows that for any `0, ˛ 2 �, and
f 2 Cb.�

`0;˛

ˇ
/, the function

�
`0;˛

ˇ
3 	 7! hf i�


ˇ;ƒ
. � j�
c / D

Z
�t

ˇ

f .x� � 	ƒn� � 0ƒc /��ˇ;ƒ.dx�j	�c / (3.6.14)

belongs to f 2 Cb.�
`0;˛

ˇ
/ and, cf. (3.1.49),

jhf i�

ˇ;ƒ

. � j�
c /j � jf .	/j: (3.6.15)

Given � 2 M
per
ˇ

, let Lbox be the sequence such that limLbox 

per
ˇ;ƒ

D �. To prove the

theorem we have to show that for any � 2 Lfin, ˛ 2 �, and f 2 Cb.�
`0;˛

ˇ
/, one has,

cf. (3.1.54),Z
�t

ˇ

f .x/
ˇ;�.dxj	/�.d	/ �
Z
�t

ˇ

f .x/�.dx/

D lim
Lbox

 Z
�t

ˇ

f .x/
ˇ;�.dxj	/
per
ˇ;ƒ

.d	/ �
Z
�t

ˇ

f .x/

per
ˇ;ƒ

.dx/

�

D lim
Lbox

 Z
�t

ˇ

f .x� � 	�c /
�

ˇ;�.dxj	/ � ��ˇ;ƒ.dx�j	�c /

�



per
ˇ;ƒ

.d	/

�

D 0:

(3.6.16)

In view of the estimate (3.6.8) and Lemma 3.2.6, the function f in (3.6.16) can be
taken from Cb.�ˇ;�/. As the sequence f
per

ˇ;ƒ
gLbox is W t-convergent, it is tight, see

Proposition 1.3.33. Thus, for any " > 0, one finds a compact subset K" � �t
ˇ

, such

that for all 
per
ˇ;ƒ

, ƒ 2 Lbox,



per
ˇ;ƒ

.Kc" / < ": (3.6.17)
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In view of (3.6.12), one can takeK" � „.b; �/; hence, there exist ˛ 2 �, � 2 .0; 1=2/,
`0, and R" > 0 and such that

K" � B"
defD fx 2 �t

ˇ j kxk`0;˛;� � R"g;
see the proof of Theorem 3.3.6. Then we haveZ

�t
ˇ

f .x�/
h

ˇ;�.dxj	/ � ��ˇ;ƒ.dx�j	�c /

i



per
ˇ;ƒ

.d	/

D
Z
K"

f .x�/
h

ˇ;�.dxj	/ � ��ˇ;ƒ.dx�j	�c /

i



per
ˇ;ƒ

.d	/

C
Z
Kc

"

f .x�/
ˇ;�.dxj	/
per
ˇ;ƒ

.d	/ �
Z
Kc

"

f .x�/

per
ˇ;ƒ

.dx/:

(3.6.18)

The second summand in the latter expression can be estimated by means of (3.1.49)
and (3.6.17). Similarly, one estimates the third summand. Let us estimate the first one.
By (1.4.48) and (1.4.50), it follows that for a given�, one findsƒ 2 Lbox, big enough,
such that Jƒ

``0 D J``0 for all `; `0 2 �, which holds also for all ƒ0, such that ƒ � ƒ0.
Then for such big ƒ, by (3.6.13) we have, cf. (3.6.3),

��ˇ;ƒ.dx�j	�c / D 1

†�
ˇ;ƒ

.	�c /
exp


1

2

X
`;`02�

J``0.x`; x`0/L2
ˇ (3.6.19)

C
X
`2ƒ

X
`02ƒn�

Jƒ``0.x`; 	`0/L2
ˇ

�
X
`2�

Z ˇ

0

V.x`.�//d�
�
�ˇ;�.dx�/;

where †�
ˇ;ƒ

.	�c / is a normalization constant. For # 2 Œ0; 1�, we set

.#/.dx�/ D 1

‚.#/
exp

n
#
h X
`2�; `02�c

J``0.x`; 	`0/L2
ˇ

�
X
`2ƒ

X
`02ƒn�

Jƒ``0.x`; 	`0/L2
ˇ

i

C 1

2

X
`;`02�

J``0.x`; x`0/L2
ˇ

C
X
`2ƒ

X
`02ƒn�

Jƒ``0.x`; 	`0/L2
ˇ

(3.6.20)

�
X
`2�

Z ˇ

0

V.x`.�//d�
o
�ˇ;�.dx�/;

where

‚.#/ D
Z
�ˇ;


exp
n
#
h X
`2�; `02�c

J``0.x`; 	`0/L2
ˇ

�
X
`2ƒ

X
`02ƒn�

Jƒ``0.x`; 	`0/L2
ˇ

i

C 1

2

X
`;`02�

J``0.x`; x`0/L2
ˇ

C
X
`2ƒ

X
`02ƒn�

Jƒ``0.x`; 	`0/L2
ˇ

(3.6.21)

�
X
`2�

Z ˇ

0

V.x`.�//d�
o
�ˇ;�.dx�/:
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Thereafter, we set
'.# I 	/ D hf i�.#/ ; (3.6.22)

where f is the same as in (3.6.18). Thenˇ̌̌
hf i�ˇ;
. � j�/ � hf i�


ˇ;ƒ
. � j�
c /

ˇ̌̌
� sup
#2Œ0;1�

j'0.# I 	/j: (3.6.23)

By (3.6.20) and (3.6.21), the derivative can be calculated:

'0.# I 	/ D
X

`02ƒn�
.	`0 ; �ƒ`0 /L2

ˇ
C

X
`02ƒc

.	`0 ; �`0/L2
ˇ
; (3.6.24)

where

�ƒ`0 .�/ D
X
`2�

�
J``0 � Jƒ``0

�
‡#.� If /;

�`0.�/ D
X
`2�

J``0‡#.� If /;
(3.6.25)

and
‡#.� If / D hf .x�/x`.�/i�.#/ � hf .x�/i�.#/ � hx`.�/i�.#/ : (3.6.26)

Since f is bounded and 	 is supposed to belong to K", we can estimate

j‡#.� If /j � ‡max (3.6.27)

uniformly with respect to 	, � , and ƒ.
Given ` 2 �, we set ƒ` D f`0 2 ƒ j j` � `0jƒ < j` � `0jg. As ƒ is big enough,

ƒ` � ƒ n� for all ` 2 �. Let ƒ� 2 Lbox be the biggest element of Lbox such that[
`2�

ƒ` � ƒc�: (3.6.28)

It is clear thatƒ� is bigger for biggerƒ andƒ� ! L asƒ ! L. Keeping these facts
in mind we estimate the derivative (3.6.24) for 	 2 B"

j'0.# I 	/j � 3ˇR"‡max

X
`2�

X
`02ƒc




jJ``0 j; (3.6.29)

where the right-hand side can be made arbitrarily small by choosing big enough ƒ.
Hence, for any " > 0, the first summand in (3.6.18) is small for bigƒ, which completes
the proof.
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3.7 FKG order

In this section, we set � D 1 and J``0 � 0. The anharmonic potentials V` are supposed
to obey Assumption 1.1.1 only. That is, they need not be even and may be site-
dependent. In this case, the moments of the conditional Euclidean Gibbs measures
(3.1.41), and hence of the kernels (3.1.44), obey the FKG inequality, see Theorem 2.2.1.
The aim of this section is to employ this fact for the study of the corresponding Euclidean
Gibbs measures.

For x; Qx 2 �ˇ , we write x � Qx if x`.�/ � Qx`.�/ for all ` and � 2 Œ0; ˇ�. This
defines an order on the set of configurations �ˇ . By means of this order we are going
to order G t

ˇ
. To this end we introduce the following family of increasing functions, see

(3.3.7) and (3.3.8),

KC.�t
ˇ / D ff 2 E j f .x/ � f . Qx/; if x � Qxg: (3.7.1)

We recall that measure-defining families of bounded continuous functions are described
in Theorem 1.3.26. The family (3.7.1) does not meet the conditions of this theorem.
However, as we are going to show now, this family is measure-defining as well.

A continuous function f W �t
ˇ

! R is said to be a cylinder function if it can be
written

f .!/ D .x`1
.�1/; : : : ; x`n

.�n//; (3.7.2)

with certain n 2 N, `1; : : : ; `n, �1; : : : ; �n, and a continuous  W Rn ! R.

Lemma 3.7.1. Given �; Q� 2 G t
ˇ
, suppose that

hf i� D hf i Q�; for all f 2 KC.�t
ˇ /. (3.7.3)

Then � D Q�.

Proof. By K
cyl
C .�t

ˇ
/we denote the subset of KC.�t

ˇ
/ consisting of cylinder functions.

Suppose that the equality (3.7.3) holds for all f 2 K
cyl
C .�t

ˇ
/. Then

Z
�t

ˇ

x`.�/�.dx/ D
Z
�t

ˇ

x`.�/ Q�.dx/; for all `; � . (3.7.4)

For fixed `1; : : : ; `n, �1; : : : ; �n, let P and zP be the projections of the measures � and
Q� on Rn, respectively. That is, each of P and zP obeysZ

�t
ˇ

f .x/�.dx/ D
Z

Rn

.u1; : : : ; un/P.du/;

for f and  as in (3.7.2). Then by (3.7.3), it follows thatZ
Rn

.u1; : : : ; un/P.du/ �
Z

Rn

.u1; : : : ; un/ zP .du/; (3.7.5)
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for all increasing . Let yP be the probability measure on R2n such that

P.du/ D
Z

Rn

yP .du; dv/; zP .dv/ D
Z

Rn

yP .du; dv/:

That is, yP is a coupling of P and zP . Of course, the above equalities do not determine
yP uniquely. The Wasserstein distance between P and zP can be defined as follows, see

e.g., [107],

D.P; zP / D inf
Z

R2n

ju � vj yP .du; dv/; (3.7.6)

where the infimum is taken over all couplings of P and zP . Consider

M D f.u; v/ 2 R2n j ui � vi ; for all i D 1; : : : ; ng.

This set is closed in R2n. Then by Strassen’s theorem, see page 129 of [210], from
(3.7.5) it follows that there exists a coupling yP�, such that

yP� .M/ D 1: (3.7.7)

Thereby,

D.P; zP / �
Z
M

ju � vj yP�.du; dv/

�
nX
iD1

Z
R2n

.vi � ui / yP�.du; dv/

D
nX
iD1

Z
Rn

ui

h zP .du/ � P.du/
i

D 0:

The latter equality follows from (3.7.4). Since the subset of E consisting of all cylinder
functions (3.7.2) is a defining family for G t

ˇ
, see Theorem 1.3.26, the equality of all

the projections of � and Q� yields � D Q�.

Thereby, for �; Q� 2 G t
ˇ

, we set � � Q� if

hf i� � hf i Q�; for all f 2 KC.�t
ˇ /. (3.7.8)

In view of Lemma 3.7.1, this defines an order on G t
ˇ

. Obviously, the corresponding
order can be introduced on the subset of P .�t

ˇ
/ consisting of measures, for which the

first moments exist, cf. (3.7.4).
Now we study the properties of G t

ˇ
related to the order just introduced. First we

prove that the measures (3.1.41) possess a property, arising from Theorem 2.2.1, which
obviously holds for such measures.

Proposition 3.7.2. In the scalar ferromagnetic case � D 1 and J``0 � 0, the measures
�ˇ;ƒ. � j	/ have the property:

�ˇ;ƒ. � j	/ � �ˇ;ƒ. � j Q	/; whenever 	 � Q	 .
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Proof. For an increasing function f 2 Eƒ and # 2 Œ0; 1�, we set �# D 	 C #. Q	 � 	/

and
'.#/ D hf i�ˇ;ƒ. � j	# /: (3.7.9)

This function in differentiable in # 2 .0; 1/ and continuous at the endpoints of Œ0; 1�,
see Theorem 1.4.14. Furthermore,

hf i
�ˇ;ƒ. � jQ�/ � hf i�ˇ;ƒ. � j�/ D '0.�/; (3.7.10)

for a certain � 2 .0; 1/. The derivative '0 can be calculated explicitly:

'0.#/ D
X
`2ƒ

Z ˇ

0

˚hf .xƒ/x`.�/i�ˇ;ƒ. � j	# / � hf i�ˇ;ƒ. � j	# / � hx`.�/i�ˇ;ƒ. � j	# /

�
d�:

By (2.2.1), the expression in f: : : g is non-negative; hence, '0.#/ � 0 for all # 2 .0; 1/.

We recall that the kernels (3.1.44) are probability measures on�t
ˇ

for every 	 2 �t
ˇ

.
Then we have

Corollary 3.7.3. For any 	; Q	 2 �t
ˇ
, the kernels (3.1.44) of the scalar ferroelectric

model (1.1.3), (1.1.8) have the property


ˇ;ƒ. � j	/ � 
ˇ;ƒ. � j Q	/; whenever 	 � Q	 .
Now let us turn to the study of the set G t

ˇ
related to the order (3.7.8). We recall

that the invariance with respect to translations and � -shifts were defined in Definitions
3.1.23 and 3.1.30, respectively, see also Definitions 1.4.10 and 3.1.21.

Theorem 3.7.4. Let the model (1.1.3), (1.1.8) be scalar and ferromagnetic. Then for
every tempered Euclidean Gibbs measures� 2 G t

ˇ
and any f; g 2 KC.�t

ˇ
/, it follows

that
hf � gi� � hf i�hgi�: (3.7.11)

Furthermore, the set G t
ˇ

has a maximal element, �C, and a minimal element, ��, in
the sense of the order (3.7.8). These elements are extreme and � -shift invariant. They
are translation-invariant if the model is translation-invariant; if all V`’s are even, then
�C.B/ D ��.�B/ for all B 2 B.�t

ˇ
/.

Proof. The FKG inequality (3.7.11) follows from Theorem 2.2.1 and Lemma 3.3.7
since the FKG inequality (2.2.1) holds for the measures 
ˇ;ƒ. � j	/ for all 	 2 �t

ˇ
.

Let us show that for every � 2 G t
ˇ

, there exists Q� 2 G t
ˇ

, such that � � Q�. Clearly,
it is enough to prove this property for extreme elements of G t

ˇ
only. Given� 2 ex.G t

ˇ
/,

let f
ˇ;ƒ. � j	/gƒ2L converge to this �, see Lemma 3.3.7. For this 	 , one takes Q	 � 	 .
Then the sequence f
ˇ;ƒ. � j Q	/gƒ2 zL, zL � L, converges to a certain Q� 2 ex.G t

ˇ
/, which

obviously dominates �.
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Now let M � G t
ˇ

be a totally ordered set, which can be considered as a net f�˛g˛2�

with the totally ordered index set � (as � one can take M itself). As a subset of the
set G t

ˇ
, which is compact in the topology W t (see Theorem 3.3.6), this net is relatively

compact; hence, it contains a subnet f�˛.�/g�2J converging in W t to a certain�� 2 G t
ˇ

.
Since the subnet is also totally ordered, it follows that

�� D sup
�2J

�˛.�/;

i.e.,�� is an upper bound of f�˛.�/g�2J . Then, if M were unbounded, it would contain
a subset, M0, each subnet of which does not converge, which is impossible in view
of the compactness of G t

ˇ
. Thereby, every totally ordered subset of G t

ˇ
is bounded;

hence, by the Kuratowski–Zorn lemma, G t
ˇ

has maximal elements. Let �1 and �2 be
two such elements. For any f 2 KC.�t

ˇ
/, both hf i�1

� hf i�2
and hf i�2

� hf i�1

should hold. This yields
hf i�1

D hf i�2
;

which by Lemma 3.7.1 yields �1 D �2, that proves uniqueness. Thereby, we denote
the unique maximal element of G t

ˇ
by �C. The proof of the existence and uniqueness

of the minimal element �� is similar.
Now let us prove that both these elements are extreme. To this end we use claim

(a) of Lemma 3.3.7. For some `0 2 L, we set

	
`0

`
.�/ D Œb log.1C j` � `0j/�1=2: (3.7.12)

The set f
ˇ;ƒ. � j	`0/gƒ2Lfin is W t-relatively compact, see Lemma 3.2.6 and the proof
of Theorem 3.3.6. Let �`0 2 G t

ˇ
be its accumulation point. The above 	`0 belongs

to „.`0; b; �/ for any � 2 .0; 1=2/, see (3.3.25). Thus, for any 	 2 „.`0; b; �/, one
finds ƒ� 2 Lfin such that 	`.�/ � 	

`0

`
.�/ for all � 2 Œ0; ˇ� and ` 2 ƒc

�
. Therefore,

for any cofinal sequence L, one finds ƒ 2 L, which contains this ƒ� , and hence

ˇ;ƒ0. � j	/ � 
ˇ;ƒ0. � j	`0/ for all ƒ0 	 ƒ. Now we fix � 2 .0; 1=2/ and choose b in
(3.7.12) such that (3.3.23) holds. Then passing to the infinite volume limit along L we
get

8� 2 ex.G t
ˇ / W � � �`0 ; (3.7.13)

which yields�`0 D �C, since the maximal element is unique. Similarly, as�� one may
take an accumulation point of the set f
ˇ;ƒ. � j � 	`0/gƒ2Lfin . Since the configuration

(3.7.12) is independent of � , Matsubara functions �ˇ;ƒF1;:::;Fn
.�1; : : : ; �nj˙	`0/, defined

by (3.1.42), have the property (1.2.90). Then these functions corresponding to the
accumulation points�˙�`0 also have this property, which means that the latter measures
are � -shift invariant.

Given `0 2 L, we set

t`0
.!/ D .!`�`0

/`2L; t`0
.B/ D ft`0

.!/ j ! 2 Bg:
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Then if the model is translation-invariant, one has


ˇ;ƒC`.t`.B/jt`.	// D 
ˇ;ƒ.Bj	/; (3.7.14)

which ought to hold for all `, B , and 	. For � 2 G t
ˇ

, we define

t�`0
.�/.B/ D �.t`0

.B//; B 2 B.�ˇ /:

This t�
`0
.�/ is an element of G t

ˇ
. So, we have a map which preserves the latter set. It

also preserves the order (3.7.8), which can easily been proven by its definition. Then, as
�C is maximal, t�

`0
.�C/ � �C and .t�

`0
/�1.�C/ � �C. Applying to the latter relation

t�
`0

, we get �C � t�
`0
.�C/, which means t�

`0
.�C/ D �C. Similarly, t�

`0
.��/ D ��.

The proof of the property connected with the parity of V`’s may be done in the same
way.

For the potentials V` being of the EMN type, see Definition 2.2.4, another property
connected with the FKG order can be proven.

Proposition 3.7.5. Let all V` be of EMN type. Then for every ƒ 2 Lfin, ` 2 ƒ,
� 2 Œ0; ˇ�, and any � 2 Œ0; 1�, it follows that

� � hx`.�/i�ˇ;ƒ. � j�/ C .1 � �/ � hx`.�/i�ˇ;ƒ. � j0/
� hx`.�/i�ˇ;ƒ. � j��/ � hx`.�/i�ˇ;ƒ. � j�/;

(3.7.15)

which holds for all 	 � 0 and h � 0.

Proof. The upper bound for hx`.�/i�ˇ;ƒ. � jt�/ follows directly from Proposition 3.7.2.
To prove the lower bound we use the GHS inequality, i.e., Theorem 2.2.7. One observes
that hx`.�/i�ˇ;ƒ. � j��/ is a two times differentiable function of � 2 R and

@2

@�2
hx`.�/i�ˇ;ƒ. � j��/

D
X

`12ƒ; `22ƒc

J`1`2

X
`0

1
2ƒ; `0

2
2ƒc

J`0
1
`0

2

�
Z ˇ

0

Z ˇ

0

	`2
.�1/	`0

2
.� 0
1/
n
hx`.�/x`1

.�1/x`0
1
.� 0
1/i�ˇ;ƒ. � j��/

� hx`.�/i�ˇ;ƒ. � j��/ � hx`1
.�1/x`0

1
.� 0
1/i�ˇ;ƒ. � j��/

� hx`1
.�1/i�ˇ;ƒ. � j��/ � hx`.�/x`0

1
.� 0
1/i�ˇ;ƒ. � j��/

� hx`0
1
.� 0
1/i�ˇ;ƒ. � j��/ � hx`1

.�1/x`.�/i�ˇ;ƒ. � j��/

C 2hx`.�/i�ˇ;ƒ. � j��/ � hx`1
.�1/i�ˇ;ƒ. � j��/ � hx`0

1
.� 0
1/i�ˇ;ƒ. � j��/

o
d�1d� 0

1 � 0;

where we used (2.2.9). Therefrom, the lower bound in (3.7.15) follows by the concavity
of the function t 7! hx`.�/i�ˇ;ƒ. � jt�/ just shown.
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3.8 Comments and Bibliographic Notes

Section 3.1: For quantum systems described by bounded local Hamiltonians, the Gibbs
states are constructed as KMS states on algebras of quasi-local observables, see Sec-
tion 6.2 in [77]. The time automorphisms employed to define the corresponding KMS
condition, cf. Definition 1.2.6, are obtained as the limits ƒ % L of the local auto-
morphisms (1.2.13). However, for quantum anharmonic crystals, such limits do not
exist and hence there is no way to define the Gibbs states of the whole model as KMS
states. If one needs to consider also unbounded operators, see [248], [267], as it is
the case here, the situation becomes much more complicated and the construction of
Gibbs states even for simple models turns into a very hard task; for more details see
the discussion in [160], pages 169, 170, and in [161]. Thus, the construction of Gibbs
states of a quantum crystal by means of the Euclidean Gibbs measures performed in
Chapter 3 seems to be the only possible way to describe equilibrium thermodynamic
properties of such models. This construction, initiated by the papers [5], [156] was then
continued in [136], [137], [50], [51], [52], [53], [54]. Our presentation is mainly based
on the results of [11], [12], [13], [14], [15], [18], [19], [20], [22], [23], [28], [29], [30],
[32], [191], [199], [200]. Certain ideas on how to construct Gibbs measures of systems
of unbounded spins, developed in the articles [59], [85], [206], [264], have also been
taken into account. Examples based on the DLR approach in Euclidean quantum field
theory can be found in [7], [130].

For every Euclidean Gibbs measure �, one can define corresponding Matsubara
functions (3.1.61). If the measure is shift-invariant, these functions possess the prop-
erty (3.1.63). There exist methods, see [66], [131], [132], [133], which allow one to
construct a von Neumann algebra of observables and a KMS state from a ‘complete’
family of Matsubara functions. In our case, as such a family one can take the set of all
Matsubara functions

�
�
F1;:::;Fn

.�1; : : : ; �n/ D
Z
�t

ˇ

F1.xƒ1
.�1// : : : Fn.xƒn

.�n//�.dx/ (3.8.1)

corresponding to a given � 2 G t
ˇ

. Here all means the functions (3.8.1) with all n 2 N,

all choices of subsetsƒi 2 Lfin and of bounded continuous functionsFi W R�jƒi j ! C.
The realization of this construction for the model studied in this book is left for the
future.

Section 3.2: The main property of local Gibbs specifications established here is the
integrability estimate (3.2.1), by which we have proven a Dobrushin-like estimate
(3.2.6). This integrability estimate, together with the fact, established by Lemma 3.2.6,
that sequences of measures obeying such estimates converge weakly if they converge
weakly locally, allow one to prove the existence of tempered Euclidean Gibbs measures.
The estimates (3.2.1), (3.2.6) were deduced from the corresponding results of [199],
[200]. This way seems to be completely new as it has never been used in similar
constructions before.
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Section 3.3: Theorem 3.3.1 gives an a priori uniform integrability estimate for tempered
Euclidean Gibbs measures in terms of model parameters. For classical systems of
unbounded spins, the problem of deriving such estimates was first posed in the paper
[59], see the discussion following Corollary 3.2.3. For quantum anharmonic crystals,
similar estimates were obtained in the analytic approach, described in Section 3.4,
see [21], [22], [24], [31]. The method we used to prove Theorem 3.3.1 is much
more elementary than the one based on the analytic approach. At the same time,
this theorem gives an improvement of the corresponding results of [21], [22] because:
(a) the estimate (3.3.1) gives a much sharper bound; (b) we do not suppose that the
potentials V` are differentiable (a key element of the analytic approach). Theorem 3.3.6
establishes the existence of tempered Euclidean Gibbs measures. A standard tool for
proving such results for classical models is the celebrated Dobrushin criterion, see
Theorem 1 in [101]. To apply it in our case one has to find a compact1 function h on
the single-spin space Cˇ such that for all ` and 	 2 �t

ˇ
, the following estimate holds,

cf. (3.2.6), Z
�ˇ

h.x`/
`.dxj	/ � AC
X
`0

I``0h.	`0/; (3.8.2)

where
A > 0; I``0 � 0 for all `; `0, and sup

`

X
`0

I``0 < 1.

Then the estimate (3.8.2) would yield that for any 	 2 �t
ˇ

, such that

sup
`

h.	`/ < 1;

the family f
ˇ;ƒ. � j	/gƒ2Lfin is relatively compact in the weak topology on P .�ˇ /,
but not yet in W˛ , W t . As a next step one has to show that any accumulation point of
f
ˇ;ƒ. � j	/gƒ2Lfin is a Gibbs measure, which is much stronger than the fact established
by our Lemma 3.1.20. Such a scheme was used in [59], [85], [282] where the existence
of Gibbs measures for lattice systems with the single-spin space R was proven. The
methods used there heavily employed specific properties of the models, like attractive-
ness of the interaction and translation invariance. A direct extension of that scheme to
quantum models seems to be impossible. The scheme we used to prove Theorem 3.3.6
is based on the compactness of the family f
ˇ;ƒ. � j	/gƒ2Lfin in the topologies W˛ ,
W t . After obvious modifications it can be applied to similar models with more general
interaction potentials. Theorem 3.3.9 establishes a regularity of the elements of G t

ˇ
.

A weaker property of this kind, which is exhibited by tempered Gibbs measures of
classical systems of unbounded spins, was proven in Theorem 4.1 in the paper [206].
The support property (3.3.23) is a stronger version of the property established in [59],
[206]. Thus, one can call „.b; �/ a Lebowitz–Presutti type support. In [206], the
support property was proven by means of Ruelle’s superstability estimates [264], ap-
plicable to translation-invariant models only. The extension of the Lebowitz–Presutti

1See Definition 1.3.34
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result to translation-invariant quantum models was done in the papers [237], [238],
where superstable Gibbs measures were specified by the support property

sup
N2N

n
.1C 2N/�d

X
`W j`j�N

kx`k2L2
ˇ

o
� C.x/; �-a.s.

Regarding this property we remark that by the Birkhoff–Khinchine ergodic theorem,
for any translation-invariant measure � 2 P .�t

ˇ
/, which obeys the estimate (3.3.1), it

follows that for every � 2 .0; 1=2/, ~ > 0, and �-almost all x,

sup
N2N

n
.1C 2N/�d

X
`W j`j�N

exp
�
��kx`k2C�

ˇ
C ~kx`k2L2

ˇ

�o
� C.�; ~; x/: (3.8.3)

In particular, every periodic Euclidean Gibbs measure constructed in Section 3.6 has
this property.

Section 3.4: As was mentioned above, the analytic approach in the version presented
here was elaborated in [21], [22], [31]. In a more general context, its basic elements
were elaborated in [71], [72], [73]. In comparison to the one based on the DLR equation,
the analytic approach gives an alternative definition of the tempered Euclidean Gibbs
measures. It is based on the assumption of differentiability of the anharmonic potentials.
Along with deriving integrability estimates like (3.3.1), this approach can be used to
obtain correlation inequalities, which is very important if the model is of a more general
type, where the ferromagnetic inequalities do not hold.

Section 3.5: Here we only remark that the set zGˇ is too big. As was shown in [60],
for a one-dimensional harmonic system such a set contains infinitely many elements.
At the same time, one can easily show that in this case there exists only one tempered
Gibbs measure.

Section 3.6: In the second part of this book, periodic Euclidean Gibbs measures will
be used for proving the existence of phase transitions. By construction, any of these
measures is translation-invariant. If there exists a non-ergodic periodic Gibbs measure,
the set G t

ˇ
contains more than one element – a fact which corresponds to the presence

of a phase transition.

Section 3.7: The FKG order, which we introduce on the set G t
ˇ

for scalar ferromagnetic
quantum crystals, proved to be a useful tool in the study of this set. The results obtained
in the second part of the book with the use of the FKG order are much stronger. In
the theory of Gibbs random fields, this notion seems to have first been introduced in
[249], see also [251]. Connections between the FKG inequality and the properties of
a random field were studied in [232], [233]. A wider look at the notion of stochastic
order is presented in the book [223].





Part II

Physical Applications





Chapter 4

Quantum Anharmonic Crystal as a Physical Model

In Part I, we have developed a version of the mathematical theory of equilibrium
thermodynamic properties of a quantum anharmonic crystal. Its cardinal element is
the use of Euclidean Gibbs measures. In this theory, the quantum anharmonic crystal
is described as a rather nonphysical system of interacting ‘classical’ spins, which are
unbounded and infinite-dimensional. A natural question arising afterwards might be to
which extent this theory is adequate and hence useful in studying real physical systems.
In view of this, the main aim of the second part of this book is to apply our theory to
the description of equilibrium thermodynamic properties of the physical substances
which can be modeled with the use of quantum anharmonic crystals. For obvious
reasons, such a description can only be qualitative; hence, we shall mostly concentrate
on fundamental properties, such as phase transitions, caused by the interaction between
the particles, and quantum effects, competing with phase transitions. These spectacular
phenomena are well studied in both experimental and theoretical physics. However,
their rigorous mathematical description is still a challenging task.

The current chapter has a preparatory character. We begin it by discussing which
physical substances can be modeled by the Hamiltonians (1.1.3), (1.1.8). Then we
analyze the classical limit of the model, which should be in agreement with basic
physical concepts. Finally, we prove that at high temperatures and/or weak interactions
the set of all tempered Euclidean Gibbs measures is a singleton, which corresponds to
the absence of phase transitions. In the subsequent chapters, we study phase transitions
and the role of quantum effects in detail.

4.1 Modeling Physical Substances

In theoretical physics, the quantum anharmonic oscillator is a model of a quantum par-
ticle moving in a potential field with possibly multiple minima, which has a sufficient
growth at infinity and hence localizes the particle. Most of the models of interacting
quantum oscillators are related with solids such as ionic crystals containing localized
light particles oscillating in the field created by heavy ionic complexes, or quantum
crystals consisting entirely of such particles. For instance, a potential field with multiple
minima is seen by a helium atom located at the center of the crystal cell in bcc helium,
see page 11 in [179]. The same situation exists in other quantum crystals, He, H2 and to
some extent Ne, where even zero point oscillations create large anharmonic effects. An
example of the ionic crystal with localized quantum particles moving in a double-well
potential field is given by a KDP-type ferroelectric with hydrogen bounds in which such
particles are protons or deuterons performing one-dimensional oscillations along the



250 4 Anharmonic Crystal as a Physical Model

bounds, see [70], [284], [306], [309]. It is believed that structural phase transitions in
such ferroelectrics are triggered by the ordering of protons. Another relevant physical
object of this kind is a system of apex oxygen ions in YBaCuO-type high-temperature
superconductors, see [123], [224], [288], [289], [290]. Quantum anharmonic oscilla-
tors are also used in models describing interaction of vibrating quantum particles with a
radiation (photon) field, see [146], [151], [234], or strong electron-electron correlations
caused by the interaction of electrons with vibrating ions, see [120], [121], responsi-
ble for such phenomena as superconductivity, and charge density waves. Finally, we
mention systems of light atoms, like Li, inculcated into ionic crystals, like KCl. The
quantum particles in this system are not necessarily regularly distributed. For more
information on this subject, we refer to the survey [153].

In the aforementioned systems, collective phenomena, like phase transitions, are
triggered by the corresponding effects in the subsystem of light quantum particles.
Often such particles carry electric charges – a proton (a deuteron) in a KDP-type ferro-
electric may serve as an example. In view of this fact, the displacement of the particle
from its equilibrium point produces a dipole moment; hence, the main contribution to
the two-particle interaction is proportional to the product of the displacements of the
particles and is of long range. These arguments have been taken into account in the
choice of the interaction term in the Hamiltonian (1.1.8). However, a slight modifi-
cation of our technique could allow for extending most of our results (at least those
regarding the existence of Euclidean Gibbs measures) to more general types of inter-
action. For a detailed explanation of how to derive a model like (1.1.3), (1.1.8) from
physical models of concrete substances, we refer the reader to the survey [284].

In classical systems undergoing phase transitions, ordering caused by the interaction
between the particles is achieved in competition with thermal fluctuations. In quantum
systems, ordering competes also with quantum effects, which can be strong, especially
at low temperatures. This possibility was first discussed in [266]. Later on a number of
publications dedicated to the study of quantum effects in such systems had appeared,
see e.g., [218], [315] and the references therein. For better understanding, illuminating
exactly solvable models of systems of interacting quantum anharmonic oscillators were
introduced and studied, see [246], [285], [313], [314]. In these works, the quantity
¯2=mph, see (1.1.7), was used as a parameter describing the rate of quantum effects.
Such effects became strong in the small mass limit, which was in agreement with
the experimental observations, e.g., on the isotopic effect in the ferroelectrics with
hydrogen bounds, see [70], [309], see also [224] for the data on the isotopic effect
in the YBaCuO-type high-temperature superconductors. However, in those works no
other mechanisms of the appearance of quantum effects were discussed. At the same
time, experimental data, see e.g., the table on page 11 in the monograph [70] or the
article [303], show that high hydrostatic pressure applied to KDP-type ferroelectrics
prevents them from ordering by strengthening quantum effects. It is believed that the
pressure shortens the hydrogen bounds and makes the tunneling motion of the quantum
particles more intensive. This can be taken into account in the model (1.1.3), (1.1.8) by
a corresponding modification of the anharmonic potentials V`. One of our main tasks
in Part II is to give a complete qualitative theory of this phenomenon.
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There exists one more possibility to relate the theory developed in Part I with
fundamental properties of the corresponding physical substances. According to the
Bohr–Heisenberg correspondence principle, in the classical limit ¯ ! 0 a quantum
model should turn into its classical analog. This means that the limiting model should
behave exactly as the corresponding classical model, which in our case is the model of
interacting classical anharmonic oscillators (classical anharmonic crystal). However,
in concrete situations it is quite hard to implement the mentioned principle as the
classical and quantum theories have essentially different mathematical structures. The
fact that in the Euclidean approach quantum anharmonic oscillators are described as
‘classical’ spins opens the possibility to get a deeper insight into this problem. In view
of (1.1.7), the parameter responsible for the classical limit is the reduced particle mass
m D mph=¯2. One observes that the limitm ! C1 excludes the kinetic energy term
in (1.1.3), which is in agreement with the fact that the kinetic energy of a classical
model plays no role in the description of its equilibrium thermodynamic properties.
In Theorem 4.2.1 below, we show that the local Euclidean Gibbs measures converge,
as m ! C1, to the corresponding local Gibbs measures of the classical anharmonic
crystal.

In Theorem 3.3.6, we have proven the existence of tempered Euclidean Gibbs mea-
sures for our model. Then the next natural question would be how many of such
measures may exist at certain fixed values of ˇ and the model parameters. Besides
its purely mathematical significance, the answer to this question would give important
information about physical properties of the model. Namely, the multiplicity (respec-
tively, uniqueness) of the elements of G t

ˇ
corresponds to the multiplicity (respectively,

uniqueness) of equilibrium phases of the underlying physical system. Therefore, a
physical notion of a phase transition can be associated with a property of the set of
tempered Euclidean Gibbs states, which is a mathematical object. Then the study
of this property can clarify the connections between the theory of the model (1.1.3),
(1.1.8) developed here and the properties of the corresponding physical systems. In
this chapter, we prove that for high temperatures (i.e., for small ˇ), there exists exactly
one tempered Euclidean Gibbs measure. This high-temperature uniqueness holds also
for small values of the interaction parameter OJ0, defined in (1.1.11). For OJ0 D 0, the set
G t
ˇ

is a singleton, which can readily be proven with the help of Kolmogorov’s extension
theorem, Proposition 1.3.3. Thus, the high-temperature uniqueness may be viewed as
the stability of the latter property under small perturbations1 of OJ0. It holds for all
values of the mass m; hence, also in the classical limit m ! C1. In the subsequent
chapters, we clarify the role of the mass m in the appearance of phase transitions, that
is, in the appearance of non-uniqueness for the Euclidean Gibbs states.

1In [174], there is given an example of an ‘unstable’ spin model, for which arbitrary perturbations of the
Gibbs state with zero interaction destroys uniqueness.
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4.2 The Classical Limit

The classical analog of the model (1.1.3), (1.1.8) is the classical anharmonic crystal.
Its basic element is the classical anharmonic oscillator with the same potential energy
as in (1.1.3), (1.1.8). The natural framework for the construction of Gibbs states of a
classical anharmonic crystal is the DLR approach. Let us briefly summarize its main
steps. For J``0 , V` as in (1.1.3), (1.1.8), and given ˇ > 0, ƒ 2 Lfin, we set, cf. (1.4.8)
and (3.1.33),

Ecl
ˇ;ƒ.uƒ/ D �ˇ

2

X
`;`02ƒ

J``0.u`; u`0/C ˇ
X
`2ƒ

V`.u`/; uƒ 2 R�jƒj; (4.2.1)

and

�ˇ;ƒ.duƒ/ D
O
`2ƒ

�ˇ .du`/;

�ˇ .du`/ D .aˇ=2
/�=2 exp
��aˇju`j2=2

�
du`;

(4.2.2)

where a is the same as in (1.1.3). By definition, the local Gibbs measure of our classical
anharmonic crystal is

�cl
ˇ;ƒ.duƒ/ D 1

N cl
ˇ;ƒ

exp
� �Ecl

ˇ;ƒ.uƒ/
�
�ˇ;ƒ.duƒ/;

N cl
ˇ;ƒ D

Z
R�jƒj

exp
� �Ecl

ˇ;ƒ.uƒ/
�
�ˇ;ƒ.duƒ/:

(4.2.3)

Let the weights w˛ , ˛ 2 �, be as in (3.1.27). Then, for u D .u`/`2L 2 .R�/L, ˛ 2 �,
and `0 2 L, we set, cf. (3.1.27),

kuk2˛;`0
D
X
`

ju`j2w˛.`0; `/; (4.2.4)

where j � j is the Euclidean norm in R� . Thereby, we introduce

�
`0;˛
cl

defD fu 2 .R�/L j kuk˛;`0
< 1g; �t

cl
defD
\
˛2�

�
`0;˛
cl : (4.2.5)

Like the set of tempered temperature loops (3.1.30), the set of ‘classical’ tempered
configurations�t

cl is independent of `0. We equip�`0;˛
cl with the metric �cl

`0;˛
.u; v/ D

ku � vk`0;˛ , which turns it into a Polish space. Then the set �t
cl is equipped with the

projective limit topology, in which it is a Polish space as well. For v 2 �t
cl, we set

Ecl
ˇ;ƒ.ujv/ D Ecl

ˇ;ƒ.u/ � ˇ
X

`2ƒ; `02ƒc

J``0.u`; v`0/: (4.2.6)

As in Lemma 3.1.12, one proves that the map

�
`0;˛
cl ��`0;˛

cl 3 .u; v/ 7! Ecl
ˇ;ƒ.ujv/
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is continuous and the estimates

inf
u2�t

cl; v2B`0;˛

Ecl
ˇ;ƒ.ujv/ > �1; sup

u;v2B`0;˛

Ecl
ˇ;ƒ.ujv/ < C1

hold for any bounded B`0;˛ � �
`0;˛
cl . Then one defines, cf. (3.1.39),

N cl
ˇ;ƒ.v/ D

Z
R�jƒj

exp
� �Ecl

ˇ;ƒ.uƒ � 0ƒc jv/��ˇ;ƒ.duƒ/; (4.2.7)

where the Gaussian measure �ˇ;ƒ is as in (4.2.2). Next we define the stochastic kernels,
cf. (3.1.44),


cl
ˇ;ƒ.Bjv/ D

Z
.R�/ƒ

IB.uƒ � vƒc /�cl
ˇ;ƒ.duƒjv/; B 2 B.�t

cl/;

�cl
ˇ;ƒ.duƒjv/ D 1

N cl
ˇ;ƒ

.v/
exp

� �Ecl
ˇ;ƒ.uƒ � 0cƒjv/��ˇ;ƒ.duƒ/: (4.2.8)

Here B.�t
cl/ is the corresponding Borel � -algebra and �cl

ˇ;ƒ
. � jv/ is a probability mea-

sure on the Euclidean space R�jƒj. It is the conditional local Gibbs measure of the
classical analog of the model (1.1.3), (1.1.8). By means of the kernels (4.2.8) we de-
fine the set of tempered Gibbs measures G cl

ˇ
, exactly as it was done in Definition 3.1.18.

Let us now return to the quantum case. To describe the limitm ! C1 we introduce
the following sets of configurations

�const
ˇ;ƒ D fxƒ 2 �ˇ;ƒ j 9uƒ 2 R�jƒj 8` 2 ƒ 8� 2 Œ0; ˇ� W x`.�/ D u`g; (4.2.9)

where ƒ 2 Lfin. Clearly, �const
ˇ;ƒ

is isomorphic to R�jƒj. For C � �const
ˇ;ƒ

and A 2
B.R�jƒj/, we write C ' A if, for every xƒ 2 C , there exists uƒ 2 A such that
xƒ.�/ D uƒ for all � ; and for every uƒ 2 A, one finds xƒ 2 C with the same
property. For f 2 Cb.�ˇ;ƒ/, let f 2 Cb.R�jƒj/ be such that for any xƒ 2 �const

ˇ;ƒ
,

such that xƒ.�/ D uƒ for all � 2 Œ0; ˇ�, one has

f .xƒ/ D f .uƒ/: (4.2.10)

The main result of this section is given by the following statement, in which we write
�m
ˇ

, �m
ˇ;ƒ

, �m
ˇ;ƒ

to indicate the dependence on the mass parameter (1.1.7).

Theorem 4.2.1. For every ƒ 2 Lfin and f 2 Cb.�ˇ;ƒ/, it follows that

hf i�m
ˇ;ƒ

! hf i�cl
ˇ;ƒ
; as m ! C1, (4.2.11)

where f is as in (4.2.10).

Proof. By (1.3.112) the covariance operator Sm
ˇ

of the measure �m
ˇ

converges, in the

trace norm inL2
ˇ

, to the operator S1
ˇ

with the same eigenvectors and with the eigenval-

ues s1
k

D a�1ık;0, k 2 K . This yields that the limiting measure �1
ˇ

is concentrated
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on constant paths x.�/ D Ox0=
p
ˇ, with h Ox.j /0 Ox.j 0/

0 i�1
ˇ

D ıjj 0=a. Therefore, it is
connected with the measure �ˇ defined by (4.2.2) as follows. For B 2 Bˇ;f`g, let
A 2 B .R�/ be such that A ' B \�const

ˇ;f`g. Then

�1
ˇ .B/ D �1

ˇ

�
B \�const

ˇ;f`g
�

D �ˇ .A/I
hence,

�1
ˇ;ƒ.B/ D �ˇ;ƒ.A/; (4.2.12)

where
�1
ˇ;ƒ

defD
O
`2ƒ

�1
ˇ

andB 2 Bˇ;ƒ andA 2 B.R�jƒj/ are such thatA ' B\�const
ˇ;ƒ

. By Theorem 1.3.50 for
anym0 > 0, the net f�m

ˇ;ƒ
gm�m0

� P .�ˇ;ƒ/ is tight, which implies �m
ˇ;ƒ

) �1
ˇ;ƒ

as

m ! C1. Since the function exp.�Eˇ;ƒ/ belongs to Cb.�ˇ;ƒ/, the aforementioned
weak convergence of �m

ˇ;ƒ
yields

Z
�ˇ;ƒ

f .xƒ/ exp
	
1

2

X
`;`02ƒ

J``0

Z ˇ

0

.x`.�/; x`0.�//d��
X
`2ƒ

Z ˇ

0

V`.x`.�//d�


�mˇ;ƒ.dxƒ/

mC1����!
Z

R�jƒj
f .uƒ/ exp

	
ˇ

2

X
`;`02ƒ

J``0.u`; u`0/ � ˇ
X
`2ƒ

V`.u`/



�ˇ;ƒ.duƒ/:

The convergence Nm
ˇ;ƒ

! N cl
ˇ;ƒ

follows from the above one by setting f D 1. This
proves (4.2.11).

In the statement below we write %m
ˇ;ƒ

to indicate the m-dependence of the state
(1.2.12). Its proof readily follows from the Euclidean representation (1.4.20) and the
convergence established in Theorem 4.2.1.

Corollary 4.2.2. For every ˇ > 0, ƒ 2 Lfin, and any F 2 Cb.R�jƒj/, it follows that

lim
m!C1 %mˇ;ƒ.F / D

Z
R�jƒj

F.uƒ/�
cl
ˇ;ƒ.duƒ/: (4.2.13)

The result just proven allows us to strengthen Theorem 2.4.6.

Theorem 4.2.3. Let each V`.u/ D v`.juj2/ in (4.2.1) be such that for a certain b` � 0,
b` C a=2C v0

`
.�/ 2 F Laguerre. Then, for � D 1; 2 and any ƒ 2 Lfin, the function

fˇ;ƒ.hƒ/ D
Z

R�jƒj
exp

�X
`2ƒ

h`u
.1/

`

�
�cl
ˇ;ƒ.duƒ/ (4.2.14)

can be extended to an entire function of hƒ D .h`/`2ƒ 2 Cjƒj such that

fˇ;ƒ.hƒ/ ¤ 0; if <.h`/ � 0, for all ` 2 ƒ.
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Proof. To prove this theorem one just repeats the arguments the proof of Lemma 2.4.7
was based on. Namely, by Proposition 2.4.4, the single-site measure

�cl
` .du`/

defD exp
�

� ˇa

2
ju`j2 � ˇv`.ju`j2/

�
du`

possesses the Lee–Yang property. Then the measure (4.2.3) takes the form

�cl
ˇ;ƒ.duƒ/ D 1

Zcl
ˇ;ƒ

exp
�
ˇ

2

X
`;`02ƒ

J``0.u`; u`0/

�O
`2ƒ

�cl
` .du`/:

As J``0 � 0 for all `; `0 2 ƒ, the property stated follows by Corollaries 3.3 and 4.4
of [208].

Now let us make some summarizing comments. In general, one cannot expect that
the Euclidean Gibbs measures of the initial model of quantum anharmonic oscillators
will converge to a given classical Gibbs measures, as m ! C1. All the more, as
we shall see in Chapters 6 and 7, for certain values of the model parameters and ˇ,
the set G t

ˇ
is a singleton for small values of m, and is not a singleton for large m.

Therefore, it would be more correct to speak about the dependence on m of the whole
set G t

ˇ
rather than of its single elements. Additional information on this item can

be found in Section 4.4 below. On the level of local states, the m ! C1 limit is
described by Theorem 4.2.1. Its corollary describes the classical limits of the states
(1.2.12) restricted to the commutative algebra of multiplication operators by bounded
continuous functions. It is worthwhile to remark here that one can hardly imagine how
to get the m ! C1 limits of such states directly from their definition (1.2.12).

4.3 The High-Temperature Uniqueness

In the theory of Gibbs states it is very important to establish under which conditions the
set G t

ˇ
consists of exactly one element. If jG t

ˇ
j > 1, the model has a phase transition,

studied in detail in Chapter 6. If the oscillators do not interact, G t
ˇ

is a singleton.
Indeed, in this case the measures (3.1.41), (3.1.44) are merely the products of the one-
point measures describing individual anharmonic oscillators. As a result, the condition
(3.1.46) turns into the consistency condition the Kolmogorov theorem is based on,
see Proposition 1.3.3. Therefore, it would be reasonable to expect the uniqueness
of the Euclidean Gibbs measures for small values of the interaction parameter OJ0,
see (1.1.11). As we shall see below, the same effect can be obtained by choosing
small values of the inverse temperature ˇ – that is why the uniqueness of this kind is
called high-temperature uniqueness. As was mentioned above, we are going to obtain
a condition for such a uniqueness, which is independent of the mass m and hence
would be applicable also in the classical limit. To this end we employ the logarithmic
Sobolev inequality proven in Section 2.3. We recall that the anharmonic potentials
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V` obey Assumption 1.1.1. Thus, as in (2.3.9) we decompose each V` into the sum
V`;1 C V`;2, where V`;1 2 C 2.R�/ is such that

� a � b
defD inf

`
inf

u;v2R� ; v¤0
�
V 00
1;`.u/v; v

�
=jvj2 < C1; (4.3.1)

where a is the same as in (1.1.3). For the second summand, we set, cf. (2.3.11),

0 � !
defD sup

`

Osc.V2;`/: (4.3.2)

We recall that the interaction is said to have finite range ifJ``0 D 0whenever j`�`0j > R
for some R > 0, see Definition 1.1.2. The main result of this section is the following

Theorem 4.3.1. Let the interactionJ``0 have finite range. Then the set G t
ˇ

is a singleton
whenever the following condition is satisfied:

eˇ!

aC b
<
1

OJ0
: (4.3.3)

Before proving this statement let us make some comments. The uniqueness condi-
tion (4.3.3) certainly holds in the limit OJ0 ! 0. If

! D 0 and OJ0 < aC b; (4.3.4)

the condition (4.3.3) holds for all ˇ. In this case the potential energy of every local
Hamiltonian (1.2.5) is a convex function of uƒ 2 R�jƒj. The second inequality in
(4.3.4) is a stability condition. In the anharmonic case, the model is stable since the
anharmonic potential is super-quadratic. Hence, the inequality (4.3.4) is just a sufficient
condition. In the harmonic case, it turns into a necessary condition. The discussion of
the stability problems will be continued in Chapter 7.

If the inequality (4.3.4) holds and ! > 0, the condition (4.3.3) is satisfied in the
high-temperature limit ˇ ! 0. Note that (4.3.3) does not contain the particle massm;
hence, the property stated holds also in the classical limit.

The proof of Theorem 4.3.1 will be done by means of the Dobrushin uniqueness
criterion, which can be applied to a model with finite range interactions only. This
criterion is based on estimating the Dobrushin matrix. This matrix is expressed by
means of the Wasserstein distance between the kernels 
ˇ;ƒ. � j	/ with different 	 .

The Wasserstein distance between measures on Euclidean spaces was introduced
in Section 3.7, see (3.7.6). Here we introduce it in a more general context. Let X be a
Polish space with metric d . Recall that by P .X/ we denote the set of all probability
measures on X. Consider

P1
defD ˚

� 2 P .X/ j R d.x; x0/�.dx/ < 1�
(4.3.5)

for some and hence for all x0 2 X. By definition, for �; � 2 P1, the Wasserstein
distance is

D.�; �/
defD inf

Z
X2

d.x; x0/P.dx; dx0/; (4.3.6)



4.3 The High-Temperature Uniqueness 257

where the infimum is taken over the set of all probability measures on X � X, which
marginal distributions are � and �, respectively. One can show that D is a metric on
P1. By the Kantorovich–Rubinstein duality the Wasserstein distance has yet another
form

D.�; �/ D sup
f 2Lip1.X/

ˇ̌̌
ˇ
Z
f d� �

Z
f d�

ˇ̌̌
ˇ; (4.3.7)

where
Lip1.X/D ff W X ! R j kf kL � 1g ;

see (1.3.67). In view of Proposition 1.3.31, the metric topology defined on P1 by the
Wasserstein distance is equivalent to the weak topology induced from P .X/.

Now let us turn to our problem. As was mentioned above, the Dobrushin criterion
employs the Dobrushin matrix. In our context, it is

CDob
``0 D sup


DŒ
`. � j	/; 
`. � j�/�

k	`0 � �`0kL2
ˇ

�
; (4.3.8)

where the supremum is taken over all 	; � 2 �t
ˇ

which differ only at `0. Here by 
`
we denoted the kernel (3.1.44) corresponding toƒ D f`g. According to the Dobrushin
criterion, the uniqueness stated will follow if

sup
`

X
`0W `0¤`

CDob
``0 < 1: (4.3.9)

In view of (3.1.47), the map

L2ˇ 3 	`0 7! f .	`0/
defD

Z
�ˇ

f .x`/
`.dxj	/; f 2 Lip1.L
2
ˇ / (4.3.10)

has the following derivative in direction � 2 L2
ˇ

:

�rf .	`0/; �
�
L2

ˇ

D J``0

 Z
�ˇ

f .x`/.x`; �/L2
ˇ

`.dxj	/

�
Z
�ˇ

f .x`/
`.dxj	/ �
Z
�ˇ

.x`; �/L2
ˇ

`.dxj	/

�
:

(4.3.11)

The expression in f: : : g is the covariance of the functions f and '	 .x`/ D .x`; �/L2 .
Thus, applying in (4.3.11) the Cauchy–Schwarz inequality we getˇ̌̌�rf .	`0/; �

�
L2

ˇ

ˇ̌̌
� jJ``0 j � ŒVar.f /�1=2 � �Var.'	 /

�1=2
; (4.3.12)

where the variances, see (2.3.1), are taken with respect to the measure 
`. � j	/. The
function '	 has the derivative (2.3.7)

'0
	 .x`/ D �I
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hence, by (2.3.8) and (2.3.5),

Var.'	 / � CLSŒ
`. � j	/� � k�k2
L2

ˇ

; (4.3.13)

whereCLS is the logarithmic Sobolev constant of the corresponding measure. For every
	 2 �t

ˇ
, the measure 
`. � j	/ has the form (2.3.6) with V` D W`; hence, its constant

CLS obeys the bound (2.3.12), i.e.,

CLSŒ
`. � j	/� � eˇ!=.aC b/; (4.3.14)

where a, b, and ! are the same as in (4.3.3). Now let us estimate the variance of
f . Here we cannot apply (2.3.8) directly as the function f may not be differentiable.
Nevertheless, after some additional efforts we will be able to do this.

Lemma 4.3.2. For every f 2 Lip1.L
2
ˇ
/, the variance in (4.3.12) has the bound

Var.f / � eˇ!=.aC b/: (4.3.15)

Proof. Let E be the family Eƒ with ƒ D f`g, see Definition 1.4.13. Obviously, for
each f 2 Lip1.L

2
ˇ
/, its restriction to Cˇ belongs to E. Then by Theorem 2.1.1,

Var.f / D lim
N!C1 Var

P
h`
N

.g/; (4.3.16)

where, as in (2.3.16), the function g W R�N ! R is such that f .x.N/
`
/ D g.S`/ for

x
.N/

`
and S` related to each other by (2.1.18), (2.1.23), (2.1.24). The measure P h`

N is
given by (2.3.13) with h` being as in (2.1.28), in which y` D P

`0 J``0	`0 . By (2.1.18),
(2.1.23), (2.1.24), it follows that

kx.N/
`

k2
L2

ˇ

D
X
k2KN

j Qx`.k/j2 D
X
p2PN

j Qx`..N=ˇ/p/j2 D
X
p2PN

ˇ̌ QS`.p/
ˇ̌2 D jS`j2 :

For distinct x`, y`, and for the corresponding Sx
`

, Sy
`

, one has

jg.Sx
`
/ � g.Sy

`
/j

jSx
`

� Sy`j D jf .x.N/
`
/ � f .y.N/

`
/j

kx.N/
`

� y.N/
`

kL2
ˇ

I

hence, g 2 Lip1.R
�N /. If for every S`, such a function has a gradient, one finds a unit

vector e 2 R�N such that

j.rg/.S`/j D ..rg/.S`/; e/ D lim
t!0

1

t
Œg.S` C te/ � g.S`/� � 1: (4.3.17)

Then for this function, by (2.3.14), (2.3.5), and (2.3.3) we have

Var
P

h`
N

.g/ � eˇ!=.aC b/: (4.3.18)
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In the general case, g can be approximated by its regularizations

.%n � g/.S`/ D
Z

R�N

g.S` � s/%n.s/ds; n 2 N;

where

%n.s/ D n�N%.ns/R
R�N %.s/ds

is a mollifier. The function % � 0 is infinitely differentiable with compact support.
Then the function .%n � g/ has gradient and belongs to Lip1.R

�N /, see Lemma 1.8,
page 21 in [307], where one can also find that the sequence f.%n � g/gn2N converges
to g uniformly on R�N . Putting all these facts together we conclude that the variance
of g obeys (4.3.18) also in this case. Thus, by (4.3.16) we get the bound which was to
be proven.

Proof of Theorem 4.3.1. By (4.3.7), (4.3.10), (4.3.12), and the mean value theorem we
have

DŒ
`. � j	/; 
`. � j�/� D sup
f 2Lip1.L

2
ˇ
/

ˇ̌̌�rf .#	`0 C .1 � #/�`0/; 	`0 � �`0

�
L2

ˇ

ˇ̌̌

� jJ``0 j � k	`0 � �`0kL2
ˇ

p
CLSŒ
`. � j	/� � sup

f 2Lip1.L
2
ˇ
/

ŒVar.f /�1=2 :

Taking here into account (4.3.14), (4.3.15), and (4.3.8) we get

CDob
``0 � jJ``0 j � eˇ!=.aC b/: (4.3.19)

Thus, the uniqueness condition (4.3.9) is satisfied if (4.3.3) holds.

4.4 Comments and Bibliographic Notes

Section 4.1: As was mentioned at the beginning of this section, the model (1.1.3), (1.1.8)
is widely used in the description of physical systems, in the thermodynamic behavior
of which localized light particles play an important role. Usually, the anharmonic
potential is taken as a polynomial (1.1.12), the simplest form of which is the so-called
4 polynomial with r D 2. A ‘derivation’ of this model from a more realistic physical
model is given in the review paper [284]. Various physical substances modeled in
this way are described in the monographs [70], [80], [153], [179], [309]. Here we
mention also the monograph [212] and the paper [149] where a system of harmonic
oscillators was used to describe the dynamics of crystals. Systems of oscillators – both
classical and quantum – were studied in [86] and in a series of papers [310], [311],
[312], [316]. Systems of interacting anharmonic oscillators were used to model the
interaction of electrons with vibrating ions in solids, see [120], [121], [286], [287].
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Finally, we mention the papers [146], [151], [197] where quantum oscillators were
used to describe the interaction of the photon field with solids.

Gibbs measures in general, and those we study in this book in particular, can be
heuristically seen as equilibrium measures of certain systems of stochastic differen-
tial equations (SDE’s). This is the interpretation initiated by G. Parisi and Y. S. Wu in
[236] and called ‘stochastic quantization’. The evolution time entering the SDE is often
called ‘computer time’, inasmuch as the SDE can be used to simulate ‘computer time’
phenomena described by the equilibrium measure. The rigorous study of stochastic
quantization was done in connection with one- and two-dimensional Euclidean quan-
tum fields, see e.g., [164], [90], [261], [173] for the one-dimensional case, and [167],
[35], [4], [92], [91], [216] for the two-dimensional case. For some extensions to the
three-dimensional case, see [33]. Stochastic quantization was also studied in connec-
tion with polymer measures [36]. For lattice and continuous models with unbounded
spins, stochastic quantization (also called Glauber dynamics) was studied in [2], [26],
[27], [28], [32], [93].

Section 4.2: Theorem 4.2.1 establishes the classical limit of the local Euclidean Gibbs
measures, which is then used to obtain this limit for the corresponding local Gibbs states,
restricted to the algebra of multiplication operators by bounded continuous functions.
As was noted in the concluding part of this section, on the global level it would be
more correct to speak about classical limits of the sets G t

ˇ
rather than their individual

members. In this case one could use the fact that each G t
ˇ

is a compact subset of the
Polish space P .�t

ˇ
/, see Theorem 3.3.6. Let K be the family of all compact subsets of

P .�t
ˇ
/. One equips it with the Hausdorff metric h defined as follows. For A;B 2 K,

h.A;B/ D inffı > 0 j A � Oı.B/ and B � Oı.A/g;
where Oı.A/ is the union of the balls of radii ı, centered at the elements of A. Recall
that P .�t

ˇ
/ is a metric space. Then the convergence G t

ˇ
! G cl

ˇ
, as m ! C1, can be

studied in this metric. Furthermore, it is clear that two convex sets A;B 2 K coincide
if and only if their extreme boundaries coincide. Then, in view of Lemma 3.3.7, to
study the classical limit of the sets P .�t

ˇ
/ one has to evaluate the Wasserstein distance

between two 
ˇ;ƒ. � j	/ with different values of m and with the same ƒ and 	 . We
leave this problem for future investigations.

Path integrals provide an ideal tool for describing the relationship between classi-
cal and quantum mechanics. In fact, asymptotic developments in powers of relevant
parameters measuring the ‘quantumness’ of the system can be achieved by infinite-
dimensional versions of the stationary phase method, respectively, Laplace or saddle
point method. This leads in particular to detailed studies of the approach to classical
mechanics from quantum mechanics formulated in terms of rigorous Feynman path
integrals, see for example, [5]. For related works with respect to the Wiener measure
see e.g., [34], [37], [38] and for applications in statistical mechanics see [110]. The
classical limit of a simpler version of the model (1.1.3), (1.1.8) was first described
in [13].



4.4 Comments and Bibliographic Notes 261

Section 4.3: The proof of Theorem 4.3.1 was done by means of an extension of the
method originally used in [28], [29], [30], see also [23] for further generalizations.
All these results were obtained by means of a combination of the logarithmic Sobolev
inequality and a contraction condition. The latter is widely known as the Dobrushin
uniqueness criterion, see Theorem 4 in [101] as well as [103] for more sophisticated
versions. This criterion was derived for Gibbs states of classical lattice models with
finite-range interactions and bounded spins. Due to the latter fact, one can estimate the
Wasserstein distance DŒ
`. � j	/; 
`. � j�/� uniformly with respect to the configurations
	 and �. Later on, a similar method was elaborated for Gibbs states of systems of
interacting finite-state spins on graphs with locally bounded degree, see [56] and [174]
for the recent development. For unbounded spins, proving uniqueness, especially by
means of cluster expansions, see [218], encounters essential problems. There exists
a modification of the original Dobrushin criterion, in which one needs to estimate the
coefficients of the Dobrushin matrix only for 	 and � belonging to some compact sets.
It was proposed by R. A. Dobrushin and E. A. Pechersky in [102] and later applied
in [58], [243] also to Gibbs states of systems of classical particles in continuum. A
detailed analysis of all these methods, as well as their extensions to super-quadratic
interactions and to interactions with infinite range, can be found in Sections 2.3 and 4.4
of [242], see also [241].



Chapter 5

Thermodynamic Pressure

In this chapter, we set L D Zd and study thermodynamic pressure. As we shall see
below, pressure is very useful for the study of the set G t

ˇ
. It is defined for local states and

then obtained in the limitƒ % L. The limiting pressure is a thermodynamic function;
up to a factor it coincides with the free energy density and contains information about
the macroscopic properties of the model.

5.1 The Existence of Thermodynamic Pressure

In this section, we again consider the translation-invariant version of the model (1.1.3),
(1.1.8), see Definition 1.4.10. Besides this condition, the interaction potential J``0 and
the function V are supposed to obey Assumption 1.1.1 only.

Givenƒ 2 Lfin, the pressure inƒ corresponding to the boundary condition 	 2 �t
ˇ

is

pƒ.	/ D 1

jƒj logNˇ;ƒ.	/; (5.1.1)

where Nˇ;ƒ.	/ is given in (3.1.39). If ƒ is a box, one can define the pressure corre-
sponding to the periodic boundary conditions, see (1.4.52),

p
per
ƒ D 1

jƒj logN per
ˇ;ƒ

: (5.1.2)

For � 2 G t
ˇ

, we set

p
�
ƒ D

Z
�ˇ

pƒ.	/�.d	/: (5.1.3)

If for a cofinal sequence L, the limit

p�
defD lim

L
p
�
ƒ (5.1.4)

exists, we shall call it the pressure in the state�. Note that it may depend on L. Finally,
we introduce

p D lim
L
pƒ.0/; pper D lim

Lbox

p
per
ƒ ; (5.1.5)

if these limits exist for some cofinal sequences L � Lfin and Lbox � Lbox. Good
candidates to study the convergence in (5.1.4), (5.1.5) are van Hove sequences, see
Definition 3.1.1. To see this, for ƒ 2 Lfin we set

OJ.ƒ/D 1

jƒj
X

`2ƒ; `02ƒc

jJ``0 j: (5.1.6)
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Proposition 5.1.1. If L is a van Hove sequence, then

lim
L

OJ.ƒ/ D 0: (5.1.7)

Proof. Given a van Hove sequence L, let fƒ
L˙

n
gn2N be the sequences of boxes (3.1.2)

with the properties described by claim (ii) of Proposition 3.1.3. For a given ƒ 2 L,
we pick n 2 N such that ƒL�

n
� ƒ � ƒ

L
C
n

, see (3.1.4). Then

OJ.ƒ/ � 1

jƒL�
n

j
X

`2ƒ
L

C
n

X
`02ƒc

L�
n

jJ``0 j

� 1

jƒL�
n

j
X

`2ƒL�
n

X
`02ƒc

L�
n

jJ``0 j C 1

jƒL�
n

j
X

`2ƒ
L

C
n

nƒL�
n

X
`0

jJ``0 j

D 1

jƒL�
n

j
X

`2ƒL�
n

X
`02ƒc

L�
n

jJ``0 j C OJ0 �
	�

LC
n

L�
n

�d
� 1



:

In view of (3.1.4), to prove the statement we have to show that the first summand in
the latter expression tends to zero as n ! C1, i.e., to prove (5.1.7) for sequences of
boxes (3.1.2) only. By (1.1.11) for given ` 2 L and " > 0, one findsL" 2 N, such thatX

`02Kc
";`

jJ``0 j < "=2; (5.1.8)

where K";` D f`0 j j` � `0j � L"g. Note that N" D jK";`j is independent of `.
Now let us take a sequence fƒLn

gn2N of boxes (3.1.2) and pick n 2 N such that
Ln > L". If `0 2 ƒcLn

and ` 2 ƒLn�L" , then j` � `0j > L". Thus, only for
the points ` 2 ƒLn

n ƒLn�L" , the intersections of the corresponding K";` with ƒcLn

are non-empty. The number of pairs of such points does not exceed the number of
the points in ƒLn

n ƒLn�L" times the cardinality of K";`, that is, it does not exceed
2dL".2Ln/

d�1 �N". Thus, we have

OJ.ƒLn
/ D 1

jƒLn
j

X
`2ƒLn nƒLn�L"

X
`02ƒc

Ln
\K";`

jJ``0 j

C 1

jƒLn
j
X
`2ƒLn

X
`02ƒc

Ln
\Kc

";`

jJ``0 j

� 2dL".2Ln/
d�1 �N" � OJ0=.2Ln/d C "=2;

where we have taken into account (5.1.8). Now we make the first summand in the latter
expression less than "=2 by taking big enough n, which completes the proof as " > 0
is arbitrarily small.
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Now we are in a position to prove the following

Theorem 5.1.2. For every van Hove sequence L, the limiting pressure p defined in
(5.1.5) exists and is independent of the particular choice of L.

Proof. Let us recall that we are considering the translation-invariant case, where all V`
coincide. For # 2 Œ0; 1�, ƒ 2 Lfin, and � � ƒ, we set, cf. (2.5.32), (2.5.33),

‚�;ƒ.#/ D
Z
�ˇ;ƒ

exp

1

2

X
`;`02�

J``0.x`; x`0/L2
ˇ

C #

�
1

2

X
`;`02ƒn�

J``0.x`; x`0/L2
ˇ

C
X

`2ƒn�; `02�
J``0.x`; x`0/L2

ˇ

�

�
X
`2ƒ

Z ˇ

0

V.x`.�//d�
�
�ˇ;ƒ.dxƒ/;

(5.1.9)

and

��;ƒ.#/ D log‚�;ƒ.#/=jƒj: (5.1.10)

For � D ;,

�;;ƒ.0/ D log

 Z
Cˇ

exp

�
�
Z ˇ

0

V.x`.�//d�

�
�ˇ .dx`/

�
; (5.1.11)

which is independent of ƒ. For � ¤ ;, we have

��;ƒ.0/ D j�j
jƒj � p�.0/C jƒj � j�j

jƒj � �;;ƒ.0/;

��;ƒ.1/ D pƒ.0/;

(5.1.12)

which extends also to the case � D ;. Thereafter, we set

�
.#/
�;ƒ.dxƒ/ D 1

‚�;ƒ.#/
exp


1

2

X
`;`02�

J``0.x`; x`0/L2
ˇ

C #

�
1

2

X
`;`02ƒn�

J``0.x`; x`0/L2
ˇ

C
X

`2ƒn�; `02�
J``0.x`; x`0/L2

ˇ

�

�
X
`2ƒ

Z ˇ

0

V.x`.�//d�
�
�ˇ;ƒ.dxƒ/:

(5.1.13)

Obviously, �.1/�;ƒ is independent of� and coincides with the measure (1.4.18). For the
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same reason as in Subsection 2.5.3, ��;ƒ.#/ is differentiable and

� 0
�;ƒ.#/ D 1

2jƒj
X

`;`02ƒn�
J``0h.x`; x`0/L2

ˇ
i
�

.#/

;ƒ

C 1

jƒj
X

`2ƒn�; `02�
J``0h.x`; x`0/L2

ˇ
i
�

.#/

;ƒ

defD …
.1/
�;ƒ.#/C…

.2/
�;ƒ.#/:

(5.1.14)

For � D ;, we set ….2/
;;ƒ.#/  0. Then, by (5.1.11),

jpƒ.0/ � �;;ƒ.0/j � sup
#2Œ0;1�

j….1/
;;ƒ.#/j: (5.1.15)

For � ¤ ;, by (5.1.12),

j�j
jƒj � jp�.0/ � pƒ.0/j � sup

#2Œ0;1�

n
j….1/

�;ƒ.#/j C j….2/
�;ƒ.#/j

o

C jƒj � j�j
jƒj � jpƒ.0/ � �;;ƒ.0/j :

(5.1.16)

By simple calculations we get

j….1/
;;ƒ.#/j � 1

4jƒj
X
`;`02ƒ

jJ``0 j � hkx`k2L2
ˇ

C kx`0k2
L2

ˇ

i
�

.#/

ˇ;ƒ

� OJ0C3.2.18.0/=2;

(5.1.17)

where we have taken into account also the fact that the estimate (3.2.18) is uniform in
# 2 Œ0; 1�. Employing the latter estimate in (5.1.15) we get

�;;ƒ.0/ � OJ0C3.2.18.0/=2 � pƒ.0/ � �;;ƒ.0/C OJ0C3.2.18.0/=2; (5.1.18)

where both bounds are independent ofƒ, see (5.1.11). This means that for any cofinal
sequence L, the sequence fpƒ.0/gƒ2L contains a convergent subsequence. For the
sequence of boxes (3.1.2), let fLngn2N be such that there exists

p
defD lim

n!C1pƒLn
.0/: (5.1.19)

Now we show that this p is the limit (5.1.5) for any van Hove sequence L. Given
such a sequence L, for an element ƒ 2 L, and a fixed n 2 N, let L�

n .ƒ/ � P.ƒLn
/

(respectively, LC
n .ƒ/ � P.ƒLn

/) be the set of the translates ofƒLn
which are contained

in ƒ (respectively, which have nonempty intersections with ƒ). Here P.ƒLn
/ is the

same as in (1.4.47). We also set

ƒṅ D
[
�2L˙

n

�: (5.1.20)
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For ƒ ¤ ƒ�
n , let us estimate the difference between pƒ.0/ and pƒ�

n
.0/. To this end

we use (5.1.16) with � D ƒ�
n ; hence, we have to estimate ….i/

ƒ�
n ;ƒ

, i D 1; 2. As in
(5.1.17), we get

j….1/
ƒ�

n ;ƒ
.#/j � ŒC3.2.18.0/=2� � jƒj � jƒ�

n j
jƒj � 1

jƒj � jƒ�
n j

X
`;`02ƒnƒ�

n

jJ``0 j

� ŒC3.2.18.0/=2� � jƒC
n j � jƒ�

n j
jƒ�
n j � 1

jƒj � jƒ�
n j

X
`2ƒnƒ�

n ; `
02L

jJ``0 j

D
h OJ0C3.2.18.0/=2

i
�
 
NC
Ln
.ƒ/

N�
Ln
.ƒ/

� 1
!
:

Similarly,

j….2/
ƒ�

n ;ƒ
.#/j � C3.2.18.0/jƒ�

n j
jƒC
n j � 1

jƒ�
n j

X
`2ƒ�

n ; `
02Lnƒ�

n

jJ``0 j

� C3.2.18.0/ OJ.ƒ�
n /:

In what follows, taking into account (5.1.16), (5.1.15), (5.1.7), and the latter two
estimates we arrive at

jpƒ.0/ � pƒ�
n
.0/j � jƒj

jƒ�
Ln

j sup
#2Œ0;1�

nˇ̌̌
…
.1/
ƒ�

Ln
;ƒ.#/

ˇ̌̌
C
ˇ̌̌
…
.2/
ƒ�

Ln
;ƒ.#/

ˇ̌̌o

C jƒj � jƒ�
Ln

j
jƒ�
Ln

j sup
#2Œ0;1�

ˇ̌̌
…
.1/
ƒ�

Ln
;ƒ.#/

ˇ̌̌

�
 
NC
Ln
.ƒ/

N�
Ln
.ƒ/

� 1
!

� N
C
Ln
.ƒ/

N�
Ln
.ƒ/

� OJ0C3.2.18.0/

C NC
Ln
.ƒ/

N�
Ln
.ƒ/

� OJ.ƒ�
n /C3.2.18.0/:

(5.1.21)

Now let us estimate the difference between pƒ�
n
.0/ and pƒLn

.0/. By the translation
invariance of the model, the latter quantity coincides with the pressure at every translate
of the box ƒLn

. To get the estimate in question we introduce

‚n.#/ D
Z
�ˇ;ƒ

exp

1

2

X
�2L�

n .ƒ/

X
`;`02�

J``0.x`; x`0/L2
ˇ

C #
X

�;�02L�
n .ƒ/; �¤�0

X
`2�

X
`02�0

J``0.x`; x`0/L2
ˇ

�
X
`2ƒ�

n

Z ˇ

0

V.x`.�//d�
�
�ˇ;ƒ�

n
.dxƒ�

n
/;

(5.1.22)
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and
�n.#/ D log‚n.#/=jƒ�

n j; # 2 Œ0; 1�: (5.1.23)

Then

�n.0/ D jƒLn
j

jƒ�
n j

X
�2L�

n .ƒ/

p�.0/ D pƒLn
.0/; �n.1/ D pƒ�

n
.0/; (5.1.24)

and

jpƒLn
.0/ � pƒ�

n
.0/j � sup

#2Œ0;1�
j� 0
n.#/j: (5.1.25)

The latter derivative can be calculated from (5.1.22), (5.1.23),

� 0
n.#/ D 1

jƒ�
n j

X
�;�02L�

n .ƒ/; �¤�0

X
`2�

X
`02�0

J``0 � h.x`; x`0/L2
ˇ
i
�

.#/
n
; (5.1.26)

where the expectation is taken with respect to the probability measure

�.#/n .dxƒ�
n
/ D 1

‚n.#/
exp


1

2

X
�2L�

n .ƒ/

X
`;`02�

J``0.x`; x`0/L2
ˇ

C #
X

�;�02L�
n .ƒ/; �¤�0

X
`2�

X
`02�0

J``0.x`; x`0/L2
ˇ

�
X
`2ƒ�

n

Z ˇ

0

V.x`.�//d�
�
�ˇ;ƒ�

n
.dxƒ�

n
/:

Proceeding as above, e.g., in obtaining (5.1.17), we get

jpƒLn
.0/ � pƒ�

n
.0/j � C3.2.18.0/

jƒ�
n j

X
�;�02L�

n .ƒ/; �¤�0

X
`2�

X
`02�0

jJ``0 j

� C3.2.18.0/

jƒ�
n j

X
�2L�

n .ƒ/

X
`2�

X
`02�c

jJ``0 j

D C3.2.18.0/ OJ.ƒLn
/:

(5.1.27)

Since the sequence of boxes fƒLn
gn2N itself is a van Hove sequence, for a given " > 0,

we can choose n such that C3.2.18.0/ OJ.ƒLn
/ < "=2, see (5.1.7). As the sequence L

under consideration is also a van Hove sequence, we can choose ƒ big enough and
make the right-hand side of (5.1.21) also less than "=2. Thus, for these n and ƒ,

jpƒ.0/ � pƒLn
.0/j < ";

which in view of (5.1.19) completes the proof.
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Our next aim is to show that all p�’s defined by (5.1.4), as well as pper given by
(5.1.5), exist and coincide withp. Thereby, the pressurep given by (5.1.5) will become
a universal characteristic of the set G t

ˇ
.

Theorem 5.1.3. For every� 2 G t
ˇ

and any van Hove sequence L, the limiting pressure
in the state � exists and coincides with the pressure p given by (5.1.5). For any van
Hove sequence Lbox, the limiting pressure pper exists and also coincides with p.

Proof. Let us prove the first part of the theorem. By the Jensen inequality we obtain
from (3.1.39) that for t1; t2 2 R and 	 2 �t

ˇ
,

Nˇ;ƒ..t1 C t2/	/ � Nˇ;ƒ.t1	/ exp
n
t2
X
`2ƒ

X
`02ƒc

J``0h.x`; 	`0/L2
ˇ
i�ˇ;ƒ. � jt1�/

o
:

We set here first t1 D 0, t2 D 1, then t1 D �t2 D 1, and obtain

pƒ.0/C 1

jƒj
X
`2ƒ

X
`02ƒc

J``0h.x`; 	`0/L2
ˇ
i�ˇ;ƒ. � j0/

� pƒ.	/ � pƒ.0/C 1

jƒj
X
`2ƒ

X
`02ƒc

J``0h.x`; x`0/L2
ˇ
i�ˇ;ƒ. � j�/;

(5.1.28)

where we used the fact that

h.x`; 	`0/L2
ˇ
i�ˇ;ƒ. � j�/ D h.x`; x`0/L2

ˇ
i�ˇ;ƒ. � j�/;

see (3.1.46). Thereby, we integrate (5.1.28) with respect to the considered measure
� 2 G t

ˇ
, take into account (3.1.51), and after some calculations arrive at

jp�ƒ � pƒ.0/j � C OJ.ƒ/; (5.1.29)

where
C D maxf

p
C3.2.18~�1 logC3.3.1I ~�1 logC3.3.1g;

where ~ is the same as in (3.3.1). Then by (5.1.7) and Theorem 5.1.2 we get the proof
of the first part.

In the case of periodic boundary conditions, we will proceed in the spirit of the
proof of Theorem 5.1.2. Thus, we introduce the function

�ƒ.#/ D 1

jƒj log

 Z
�ˇ;ƒ

exp
�
#

2

X
`;`02ƒ

ŒJƒ``0 � J``0 �.x`; x`0/L2
ˇ

C 1

2

X
`;`02ƒ

J``0.x`; x`0/L2
ˇ

�
X
`2ƒ

Z ˇ

0

V.x`.�//d�
�
�ˇ;ƒ.dxƒ/

�
;

(5.1.30)

where ƒ is a box and # 2 Œ0; 1�. It is differentiable on # 2 .0; 1/ and obeys the
boundary conditions

�ƒ.1/ D p
per
ƒ ; �ƒ.0/ D pƒ.0/: (5.1.31)
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The derivative is

� 0
ƒ.#/ D

X
`2ƒ

X
`02�0

`
.ƒ/

ŒJƒ``0 � J``0 � � h.x`; x`0/L2
ˇ
i�#
; (5.1.32)

where, cf. (1.4.48), (1.4.50),

�0
`.ƒ/ D f`0 2 ƒ j j` � `0jƒ < j` � `0jg;

and �# is the probability measure whose density with respect to �ˇ;ƒ is the function
under the integral in (5.1.30), properly normalized. Then, similarly as above, one
estimates

jh.x`; x`0/L2
ˇ
i�#

j � C;

where the constant is independent of ƒ and # . For a given " > 0 and any ` 2 ƒ,
`0 2 �0

`
.ƒ/, both j` � `0j and j` � `0jƒ exceed L" if the box ƒ is big enough. Then

we obtain from (5.1.32) the estimate

j� 0
ƒ.#/j � C

jƒj
X
`2ƒ

X
`02�0

`
.ƒ/

jJƒ``0 � J``0 j

� 2C

jƒj
X
`2ƒ

X
`02K";`

jJ``0 j � "C;

where we have taken into account (5.1.8). Thereby, the proof of the second part of the
theorem follows by (5.1.31) and Theorem 5.1.2.

5.2 Dependence on the External Field

In this section, we assume that the anharmonic potential contains an external field term,
i.e., it is V.u/� . Oh; u/, Oh 2 R� . Without loss of generality, one may set Oh D .h; : : : ; 0/,
h 2 R. Thus, we study the properties of the pressure as a function of h. To indicate

the h-dependence we write pƒ.h; 	/, pƒ.h/
defD pƒ.h; 0/, p

per
ƒ .h/, p

�
ƒ.h/, p.h/. For

ƒ 2 Lfin, the local Euclidean Gibbs measure (1.4.18) can be written in the form

�ˇ;ƒ.dxƒ/ D
�
Nˇ;ƒ.0/

Nˇ;ƒ.h/

�
�
.0/

ˇ;ƒ
.dxƒ/; (5.2.1)

where the latter measure corresponds to h D 0. Then

Nˇ;ƒ.h/ D Nˇ;ƒ.0/

Z
�ˇ;ƒ

exp

�
h
X
`2ƒ

Z ˇ

0

x
.1/

`
.�/d�

�
�
.0/

ˇ;ƒ
.dxƒ/: (5.2.2)

The same representation can also be written for the periodic measure (1.4.52). By
(5.1.1) and Proposition 1.4.12, pƒ.h/ and pper

ƒ .h/, as functions of h, are analytic in a
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subset of C, which contains the real line. Thus, one can compute the derivatives and
obtain by (1.2.12), (1.4.20) and (1.4.52) the following expressions:

@

@h
pƒ.h/ D ˇMƒ.h/;

@

@h
p

per
ƒ .h/ D ˇM

per
ƒ .h/; (5.2.3)

where

Mƒ.h/
defD 1

jƒj
X
`2ƒ

%ˇ;ƒ
�
q
.1/

`

�
; M

per
ƒ .h/

defD %
per
ˇ;ƒ

�
q
.1/

`

�
(5.2.4)

are local magnetizations, corresponding to the zero and periodic boundary conditions,
respectively. Furthermore, the second derivatives can be written in the form

@2

@h2
pƒ.h/

D 1

jƒj
Z
�ˇ;ƒ

Z
�ˇ;ƒ

hX
`2ƒ

Z ˇ

0

.x`.�/ � Qx`.�// d�
i2
�ˇ;ƒ.dxƒ/�ˇ;ƒ.d Qxƒ/;

@2

@h2
p

per
ƒ .h/

D 1

jƒj
Z
�ˇ;ƒ

Z
�ˇ;ƒ

hX
`2ƒ

Z ˇ

0

.x`.�/ � Qx`.�// d�
i2
�

per
ˇ;ƒ

.dxƒ/�
per
ˇ;ƒ

.d Qxƒ/:

(5.2.5)

Therefore, both pƒ.h/ and pper
ƒ .h/ are convex functions of h. Now let p.h/ be the

pressure, the existence of which was established in Theorem 5.1.3. Then by Proposi-
tion 2.5.4 it has the following properties.

Theorem 5.2.1. The pressure p.h/ is a convex function of h 2 R. Therefore, the set

R
defD fh 2 R j D�p.h/ < DCp.h/g (5.2.6)

is at most countable. For any h 2 Rc and any van Hove sequence L (hence, for any
sequence of boxes Lbox), it follows that

lim
L
Mƒ.h/ D lim

Lbox

M
per
ƒ .h/ D ˇ�1p0.h/ defD M.h/: (5.2.7)

By this theorem, the global magnetization M.h/ is a nondecreasing function of
h 2 Rc ; it is continuous on each open connected component of this set. That is,
M.h/ is continuous on the intervals .a�; aC/ � Rc , where a˙ are two consecutive
elements of R. At each such a˙, the global magnetization is discontinuous. One
observes, however, that the set Rc may have empty interior; hence, M.h/ may be
nowhere continuous.
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Theorem 5.2.2. Let the model be ferromagnetic and translation-invariant. Then there
existsm� > 0, which may depend on ˇ but is independent of the interaction intensities,
with the following property. For every m > m�, there exist h˙, h� < hC, which may
also depend on the model parameters and ˇ, such that

M.h/ < 0; for h 2 Rc \ .�1; h�/; M.h/ > 0; for h 2 Rc \ .hC C 1/.

Proof. Let us consider the following measure on Cˇ :

�ˇ .dx/ D 1

Nˇ
exp

�
�
Z ˇ

0

V.x.�//d�

�
�ˇ .dx/;

Nˇ D
Z
Cˇ

exp

�
�
Z ˇ

0

V.x.�//d�

�
�ˇ .dx/;

(5.2.8)

where �ˇ is Høegh-Krohn’s measure. By (1.3.117) it follows that

˝ ˇ̌
x.�/ � x.� 0/

ˇ̌2p ˛
�ˇ

� QV .ˇ; �; p/m
�pj� � � 0jp; (5.2.9)

where

QV .ˇ; �; p/ D 2p exp .�ˇcV / �.�=2C p/

Nˇ�.�=2/
;

cV being the same as in (1.1.10). Let us fix some p 2 Nnf1g and ˛ 2 .0; 1=2�1=2p/.
Thereby, for # 2 .0; ˇ/, we set, cf. (1.3.49),

�#.x/ D sup
 jx.�/ � x.� 0/j2p

j� � � 0j2˛p
ˇ̌ j� � � 0j � #

�
: (5.2.10)

Then by Proposition 1.3.12 it follows from (5.2.9) that

h�#i�ˇ
� DV .˛; �; p/m

�p#p.1�2˛/; (5.2.11)

where, see (1.3.53),

DV .˛; �; p/
defD 23.2pC1/.1C 1=˛p/2p

.p � 1 � 2p˛/.p � 2p˛/ �QV .ˇ; �; p/:

For c > 0 and n 2 N, we set

C˙
ˇ .nI c/ D fx 2 Cˇ j ˙x.j /.kˇ=n/ � c; j D 1; : : : ; �I k D 0; 1; : : : ; ng:

(5.2.12)
Thereby, for " 2 .0; c/ and n � 2, we also set

A.cI "/ D fx 2 Cˇ j �1=n.x/ � .c � "/2pn2˛pg;
B˙."; c/ D A.cI "/ \ C˙

ˇ .nI c/: (5.2.13)
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Then for any � 2 Œ0; ˇ�, one finds k 2 N such that j� � kˇ=nj � 1=n, and hence for
any j D 1; : : : ; �,

jx.j /.�/ � x.j /.kˇ=n/j � �
�1=n.x/

�1=2p
n�˛;

which yields ˙x.j /.�/ � " if x 2 B˙."; c/. Let us estimate �ˇ ŒB˙."; c/�. By (5.2.11)
and Chebyshev’s inequality (1.3.29) one gets

�ˇ
�
Cˇ n A.cI "/� � n�2˛p

.c � "/2p h�1=ni�ˇ

� DV .˛; �; p/

Œmn.c � "/2�p :

Set

†.nI c/ D min
˚
�ˇ
�
CC
ˇ
.nI c/�I �ˇ �C�

ˇ .nI c/��:
Thereby,

�ˇ
�
B˙."; c/

� D �ˇ
�
C˙.nI c/ n �Cˇ n A.cI "/��

� †.nI c/ � �ˇ
�
Cˇ n A.cI "/�

� †.nI c/ � DV .˛; �; p/

Œmn.c � "/2�p
defD �.m/;

(5.2.14)

which is positive for all

m � m�
defD 1

n.c � "/2 �
�
DV .˛; �; p/

†.nI c/
�1=p

: (5.2.15)

Now for a box ƒ, we introduce the following functions on �ˇ;ƒ:

Yƒ.xƒ/ D 1

2

X
`;`02ƒ

Jƒ``0

�X
jD1

Z ˇ

0

x
.j /

`
.�/x

.j /

`0 .�/d�;

Xƒ.xƒ/ D
X
`2ƒ

Z ˇ

0

x
.1/

`
.�/d�:

(5.2.16)

Thereby, from (1.4.52) one gets

p
per
ƒ .h/ D logNˇ

C 1

jƒj log

 Z
�ˇ;ƒ

exp ŒYƒ.xƒ/C hXƒ.xƒ/�
Y
`2ƒ

�ˇ .dx`/

�
:

(5.2.17)
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Suppose now that h > 0. Then restricting the integration in (5.2.17) to ŒBC."; c/�ƒ,
we get

p
per
ƒ .h/ � hˇ"C logNˇ C 1

2
ˇ�"2

X
`02ƒ

Jƒ``0 C log �ˇ ŒB
C."; c/�

� hˇ"C logNˇ C log �.m/:

(5.2.18)

As the right-hand side of the latter estimate is independent of ƒ, the inequality holds
also for the limiting pressure p. For any positive h 2 Rc , by the convexity of p one
has

M.h/ � ˇ�1 Œp.h/ � p.0/� =h
� "C 1

ˇh

˚�p.0/C logNˇ C log �.m/
�
:

Picking h big enough we get the positivity stated. The negativity can be proven by
similar arguments.

In the above theorem, the anharmonic potential was of general type. However, for a
certain specific kind of V , one can get much more precise information about the set R.

Theorem 5.2.3. Let � D 1; 2 and assume that the model is ferromagnetic, translation-
invariant, and such that the anharmonic potential V obeys the conditions of Theo-
rem 2.4.6. Then for all ˇ > 0, the pressure p.h/ is infinitely differentiable at each
h ¤ 0. That is, the set (5.2.6) is either R D ; or R D f0g.
Proof. The proof will be done by showing that p.h/ can be extended to a holomorphic
function in a domain, which contains both positive and negative half-lines. To this end
we use Theorem 2.4.6 and the convergence established in the previous section.

Up to a multiplicative constant, Nˇ;ƒ.h/, given by (5.2.2), is the Laplace trans-

form (2.2.10) of the measure �.0/
ˇ;ƒ

.dxƒ/, which obviously is sub-Gaussian. Thereby,
according to Theorem 2.4.6, Nˇ;ƒ.h/ can be extended to an entire function of h 2 C
possessing the representation

Nˇ;ƒ.h/ D Nˇ;ƒ.0/

1Y
jD1

.1C �jh
2/

with positive �j ’s obeying the summability condition (2.4.1). This yields

p0
ƒ.h/

h
D

1X
jD1

2�j

1C �jh2
: (5.2.19)

Therefore, all the functions pƒ.h/ are holomorphic in the domain C n A, where

A D AC [ A�; A˙ D fz D ˙i t j t 2 Œ.�1/�1=2;C1/g;
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which includes the whole real line R. Then, for h 2 C n A, h D x C iy, one hasˇ̌̌
ˇ 2�j

1C �jh2

ˇ̌̌
ˇ
2

D 4�2j

Œ1C �j .x2 � y2/�2 C 4�2j x
2y2

� 4�2j

Œ1C �j .x2 � y2/�2 :

For � > 0, we set

B� D fz D x C iy 2 C j x � 0; x2 � y2 � �2g:
Applying the above estimate in (5.2.19) we get for h 2 B� ,ˇ̌̌

ˇp0
ƒ.h/

h

ˇ̌̌
ˇ �

1X
jD1

2�j

1C �j �2
p0
ƒ.�/

�
: (5.2.20)

By Corollary 2.4.3 all pƒ.h/’s are convex; hence, by Proposition 2.5.4 and Theo-
rem 5.1.2, the limiting pressure p.h/ is convex on R. Thus, it is not differentiable on a
subset E � R, which is at most countable. This means that for any " > 0, the interval
.0; "/ � R contains points at which p0.h/ exists. Moreover, by the same statement at
each such h, p0

ƒ.h/ ! p0.h/, as ƒ ! Zd along a van Hove sequence L. Thus, we
take an arbitrary " and pick � 2 .0; "/ such that p0.�/ exists. As the sequence fp0

ƒ.�/g
converges to p0.�/, it is bounded. Now we take t > � and set

B�;t D fz D x C iy 2 C j x2 � y2 � �2; x 2 Œ0; t �g: (5.2.21)

This set contains Œ�; t � � R. Then, for h 2 B�;t , one has

jhj D
p
x2 C y2 �

p
2x2 � �2 �

p
2t2 � �2;

and, by the estimate (5.2.20),

jp0
ƒ.h/j �

�p
2.t=�/2 � 1

�
p0
ƒ.�/:

Since the sequence fp0
ƒ.�/gƒ2L is bounded, the sequence of holomorphic in B�;t

functions fp0
ƒgƒ2L is uniformly bounded onB�;t . Moreover, one has p0

ƒ.z/ ! p0.z/
for all z 2 Œ�; t � except possibly for a countable subset of this interval. Thus, the
subset of Œ�; t � on which p0

ƒ.z/ ! p0.z/ has an accumulation point, which yields by
Proposition 1.4.11 that p0 is holomorphic on B�;t ; hence, p is infinitely differentiable
on .�; t/. Since this is true for any t > � and � may be chosen arbitrarily close to zero
(recall that � 2 .0; "/ with any " > 0), this is true for all h 2 .0;C1/. As all the
functions pƒ and p are even, the same is true also for h 2 .�1; 0/. Thus, the only
point where the stated differentiability of p may fail to hold is h D 0.

For � D 1, the class of anharmonic potentials for which the pressure is differentiable
at each h ¤ 0, can be essentially extended. We recall that the EMN class of anharmonic
potentials was introduced in Definition 2.2.4.
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Theorem 5.2.4. Let � D 1 and assume that the model is ferromagnetic, translation-
invariant, and with the anharmonic potential of the EMN type. Then for all ˇ > 0, the
pressure p.h/ is differentiable at each h ¤ 0.

Proof. Here we employ the GHS inequality, see Theorem 2.2.7. By (5.2.3) and (5.2.4)
we get

@2

@h2
ˇM

per
ƒ .h/ D 1

jƒj
X

`1;`2;`32ƒ

Z ˇ

0

Z ˇ

0

Z ˇ

0

Uƒ`1`2`3
.�1; �2; �3I h/d�1d�2d�3; (5.2.22)

where ƒ is a box and

Uƒ`1`2`3
.�1; �2; �3I h/ D hx`1

.�1/x`2
.�2/x`3

.�3/i�per
ˇ;ƒ

� hx`1
.�1/i�per

ˇ;ƒ
� hx`2

.�2/x`3
.�3/i�per

ˇ;ƒ

� hx`2
.�2/i�per

ˇ;ƒ
� hx`1

.�1/x`3
.�3/i�per

ˇ;ƒ

� hx`3
.�3/i�per

ˇ;ƒ
� hx`1

.�1/x`2
.�2/i�per

ˇ;ƒ

C 2hx`1
.�1/i�per

ˇ;ƒ
� hx`2

.�2/i�per
ˇ;ƒ

� hx`3
.�3/i�per

ˇ;ƒ

is an Ursell function, cf. (2.2.16). If the anharmonic potential in �per
ˇ;ƒ

contains non-
negative h, by Theorem 2.2.7 we have

Uƒ`1`2`3
.�1; �2; �3I h/ � 0; h � 0;

which by (5.2.22) yields that �M per
ƒ .h/ is convex on .0;C1/. By (3.6.8) one obtains

that for every fixed h, M per
ƒ .h/ � C.h/, where the constant is independent of ƒ. By

(5.2.5) M per
ƒ .h/ is increasing; hence, M per

ƒ .h/ � C.h�/ for all h 2 .0; h�/. There-
fore, by claims (c) and (d) of Proposition 2.5.4 the sequence fM per

ƒ .h/gLbox contains a
subsequence, such that M per

ƒn
.h/ ! M.h/ for all h 2 .0; h�/. Then, by claim (c) of

Proposition 2.5.4, p.h/ is differentiable at each h 2 .0; h�/ and hence at each h > 0

since h� is arbitrary. The case of negative h is handled in the same way.

5.3 Uniqueness Criteria

In Section 4.3, we have proven that the set G t
ˇ

is a singleton for high temperatures and/or
weak interactions. Here we obtain a condition for the uniqueness connected with the
FKG order and its modification based on the use of the pressure. Then we apply them
to our model assuming that the anharmonic potential V is as in Proposition 2.4.4.

In the statement below, we suppose that the model (1.1.3), (1.1.8) is ferromagnetic
and scalar, i.e., � D 1, but not necessarily translation-invariant. For such models, we
know from Theorem 3.7.4 that the set G t

ˇ
has maximal and minimal elements, �C and

��, respectively.
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Theorem 5.3.1. The set G t
ˇ

is a singleton if and only if, for all `,Z
�ˇ

x`.0/�C.dx/ D
Z
�ˇ

x`.0/��.dx/: (5.3.1)

Proof. Certainly, (5.3.1) holds if jG t
ˇ

j D 1. Let us prove the converse. Since the
measures �˙ are shift-invariant, (5.3.1) yields

8� 2 Œ0; ˇ� W
Z
�ˇ

x`.�/�˙.dx/ D
Z
�ˇ

x`.0/�˙.dx/;

and thereby (3.7.3). Hence, by Lemma 3.7.1, �C D ��, which gives the uniqueness
in question. Note that, if the model is translation-invariant, (5.3.1) holding at a some `
already yields the uniqueness stated.

Theorems 3.7.4 and 5.3.1 have the following

Corollary 5.3.2. If V`.x/ D V`.�x/ for all `, the set G t
ˇ

is a singleton if and only if
hx`.0/i�C

D 0 for all `.

Now we derive a uniqueness condition based on Theorem 5.3.1 and the use of the
pressure. Thus, we have to assume again the translation invariance of the model. By
(3.1.39), Proposition 1.4.12, and (5.1.1), for every 	 2 �t

ˇ
, the pressure pƒ.h; 	/ is an

infinitely differentiable function of h and, cf. (5.2.3),

@

@h
pƒ.h; 	/ D 1

jƒj
X
`2ƒ

Z ˇ

0

hx`.�/i�ˇ;ƒ. � j�/d�; (5.3.2)

@2

@h2
pƒ.h; 	/ D 1

jƒj
X
`;`02ƒ

Z ˇ

0

Z ˇ

0

Kƒ``0.�; �
0j	/d�d� 0; (5.3.3)

where, cf. (2.5.41),

Kƒ``0.�; �
0j	/ defD hx`.�/x`0.� 0/i�ˇ;ƒ. � j�/

� hx`.�/i�ˇ;ƒ. � j�/ � hx`0.� 0/i�ˇ;ƒ. � j�/
(5.3.4)

is a correlation function. By (2.2.1), for all 	 2 �t
ˇ

,

Kƒ``0.�; �
0j	/ � 0; (5.3.5)

for all `; `0 and �; � 0. Therefore, the pressure pƒ.h; 	/ is a convex function of h, cf.
Theorem 5.2.1.

Theorem 5.3.3. If the limiting pressure of the scalar ferromagnetic model is differen-
tiable at a given h 2 R, then the set of all tempered Euclidean Gibbs states G t

ˇ
of this

model is a singleton.
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Proof. By Theorem 5.1.3, p D p�C D p�� . By claim (a) of Proposition 2.5.4, p is
convex. For every ƒ 2 Lfin and � 2 G t

ˇ
,

@

@h
p
�˙
ƒ .h/ D

Z
�ˇ

@

@h
pƒ.h; 	/�˙.d	/

D 1

jƒj
X
`2ƒ

Z ˇ

0

�Z
�ˇ

hx`0.� 0/i�ˇ;ƒ. � j�/d�
�
�˙.d	/

D 1

jƒj
X
`2ƒ

Z ˇ

0

hx`0.�/i�˙
d� D ˇhx`0.0/i�˙

;

(5.3.6)

where we have taken into account that both extreme measures �˙ are translation and
shift invariant, see Theorem 3.7.4. Then passing in (5.3.6) to the limit along a van Hove
sequence we get (5.3.1) and hence the uniqueness stated.

Remark 5.3.4. The fact that the pressure is the same in all states, crucial for the proof
of the theorem above, follows from the existence of van Hove sequences. The latter
property is related to the amenability of the graph .Zd ; E/, whereE is the set of edges
connecting nearest neighbors. For nonamenable graphs, e.g., for Cayley trees, phase
transitions at nonzero h are possible, see [168], unlike here, see Theorem 5.3.5 below
which we prove based on Theorem 5.3.3.

The Lee–Yang property of the local Euclidean Gibbs measures described by Theo-
rem 2.4.6 can be used to establish the corresponding properties of the limiting pressure.

Theorem 5.3.5. Let themodel be scalar, ferromagnetic, translation-invariant, andwith
the anharmonic potential V obeying the conditions of Theorem 2.4.6 or Theorem 5.2.4.
Then G t

ˇ
is a singleton for all h ¤ 0.

Proof. Follows immediately from Theorems 5.2.3, 5.2.4, and 5.3.3.

5.4 Comments and Bibliographic Notes

Section 5.1: The role of the pressure in the theory of Gibbs states of classical models
is studied in great detail in [162], [258], [277]. The proof of the main statement of
this section – Theorem 5.1.2 – is crucially based on the moment estimates obtained in
Sections 3.2 and 3.3. Here we have taken into account the arguments of J. L. Lebowitz
and E. Presutti employed in [206] for the same purposes. Instead of the moment
estimates, the authors of [206] used a method based on the superstability arguments
developed by D. Ruelle in [264]. In our case, such arguments were incorporated in
the method by which the moment estimates were obtained. This made the proof of
Theorem 5.1.2 more automatic. We note that a similar result was proven in [59].
Theorems 5.1.2 and 5.1.3 establish the existence of the pressure as a thermodynamic
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function describing the whole set G t
ˇ

. Here we mention the paper [41] where for an
isotropic �-vector version of our model, a 1=� power expansion of the pressure was
constructed. This fact that the limiting pressure is independent of the sequence of
subsets ƒ 2 Lfin along which it is obtained is closely related to the properties of the
lattice L which secure the existence of van Hove sequences and hence the validity
of Proposition 5.1.1. For the Ising model on a nonamenable graph where van Hove
sequences do not exist, it is possible to have a nonuniqueness of Gibbs states for a
nonzero external field h, see [168], [211]. On the lattice L D Zd , this would be
impossible by Theorem 5.3.5, which is applicable to the classical 4 and hence to the
Ising model, see Theorem 4.2.3.

Section 5.2: The existence of the pressure as a thermodynamic function allows one to
introduce one more thermodynamic function – the global magnetization. It is defined
at each value of the external field for which the pressure is differentiable. For Gibbs
random fields with bounded interaction, there exists a very powerful technique of
studying these fields by means of the pressure, see [162], [277]. A particular result
of this theory states that each nondifferentiability of the pressure corresponds to the
nonuniqueness of the Gibbs states. Unfortunately, the case considered here is much
more robust, so we failed to get a similar result for the set G t

ˇ
. For classical lattice

systems with unbounded spins, a statement like our Theorem 5.2.2 is obtained almost
for granted, cf. the very end of the proof of Theorem 3.5 in [124]. In our case where
the ‘spins’ are paths, the only way to fix their signs is to apply the GRR lemma,
Theorem 1.3.11, and thereby the GRR estimate (1.3.50). In Section 6.3, with the
help of Theorem 5.2.2 we prove the existence of phase transitions for asymmetric
anharmonic potentials. For h 2 Rc , the pressure is differentiable and hence the
global magnetization exists. In general, the only information about this set is that its
complement R is at most countable, which does not exclude the possibility for Rc to
have empty interior and hence for the magnetization M.h/ to be nowhere continuous.
Thus, it would be much desirable to know more on this subject. It turns out, that the
only possibility available so far is to show that R can contain at most zero, which
occurs only for the EMN potentials, see Theorem 5.2.4, or in the case where the
Lee–Yang theory can be applied. The latter case was described in Theorem 5.2.3.
Its proof is performed by means of an appropriate analytic function technique since
the pointwise convergence of the sequences fpƒ.h/gƒ2L for h 2 R is not enough
to secure the analyticity desirable. The technique is based on the Vitali theorem and
on the boundedness of the sequences fpƒ.h/gƒ2L on compact subsets of C obtained
from the Lee–Yang property of the model. The scheme used here is similar to that used
in [193].

Section 5.3: The use of the pressure combined with the FKG order introduced in Sec-
tion 3.7 allowed for obtaining a very strong uniqueness condition for Euclidean Gibbs
measures – for each pair �1; �2 2 P .�t

ˇ
/, such that �1 � �2, the coincidence of the

first moments only already implies the coincidence of the measures, see Lemma 3.7.1.
The proof of this property is based on the Strassen theorem, see Theorem 2.4 in [210].
A consequence of Lemma 3.7.1 is Theorem 5.3.3 which gives the uniqueness criterion
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based on the differentiability of the pressure. As was mentioned above, we failed to
prove the converse, i.e., that the nondifferentiability of p implies the nonuniqueness of
tempered Euclidean Gibbs measures.



Chapter 6

Phase Transitions

The study of phase transitions is among the main problems of equilibrium statistical
mechanics, both classical and quantum. There exist several approaches to describe
these phenomena. Their common point is that the macroscopic equilibrium properties
of a statistical mechanical model can be different at the same values of the model
parameters. In the language adopted in this book, the model has a phase transition
if the set of its tempered Euclidean Gibbs states contains more than one element.
That is, one speaks about the possibility for the multiple states to occur rather than
the transition between these states or between their uniqueness and multiplicity. The
description of the dynamics of phase transitions is beyond the scope of equilibrium
statistical mechanics.

If the considered model is translation-invariant, the multiplicity of its Euclidean
Gibbs states is equivalent to the existence of non-ergodic elements of G t

ˇ
, see Corol-

lary 3.1.29. Thus, to prove that this model has a phase transition it is enough to show
that there exists an element of G t

ˇ
, which fails to obey the condition (3.1.60). We shall

use this fact in the translation-invariant case. For models which are not translation-
invariant, we shall use a comparison method, based on correlation inequalities. Its
main idea is that the model has a phase transition if the translation-invariant model
with which we compare it has a phase transition. Of course, all the models we are
discussing here are particular realizations of the general model considered in the book.

One of the most effective tools for establishing phase transitions in a translation-
invariant lattice model is the method based on exploiting the reflection positivity of
the model. This property of the model (1.1.3), (1.1.8) is connected with a special
choice of the interaction intensities J``0 . In particular, the model with nearest neighbor
interactions (i.e., with J``0 D J , for j` � `0j D 1, and J``0 D 0 otherwise) has this
property. By means of the reflection positivity one derives an estimate, called infrared
bound, according to which for large J > 0, the decay of correlations in a periodic
Euclidean Gibbs state (studied in Section 3.6) is so slow that the condition (3.1.60)
does not hold.

The present chapter is organized as follows. In Section 6.1, we give a precise defi-
nition of the notion and study its connection with more ‘physical’ definitions of phase
transitions. We also show how to prove the non-ergodicity of the periodic Euclidean
Gibbs states. Then in Section 6.2, we give a detailed presentation of the reflection
positivity method in the context of the Euclidean approach. In Section 6.3, the above
methods are applied to the proof of phase transitions in various ferromagnetic ver-
sions of our model. Section 6.4 is dedicated to the description of the critical point of a
hierarchical version of the model, in which the interaction has a special metric property.
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6.1 Phase Transitions and Order Parameters

Let us begin by introducing the main notion of this chapter.

Definition 6.1.1. The model described by the Hamiltonians (1.1.3), (1.1.8) has a phase
transition if jG t

ˇ
j > 1 at certain values of ˇ and the model parameters.

We note that here we demand the existence of multiple tempered Euclidean Gibbs
measures. For models with finite range interactions, there may exist Euclidean Gibbs
measures, which are not tempered, see Section 3.5. Such measures should not be taken
into account. Another observation is that in Definition 6.1.1 we do not assume any
symmetry of the model, the translation invariance including. If the model is rotation-
invariant (symmetric for � D 1, see Definition 1.1.2), the unique element of G t

ˇ
should

have the same symmetry. If jG t
ˇ

j > 1, the symmetry can be ‘distributed’ among
the elements of G t

ˇ
. In this case, the phase transition is connected with symmetry

breaking. In the sequel, we consider mostly phase transitions of this type. However,
in Subsection 6.3.3 we study phase transitions without symmetry breaking.

As was mentioned above, for translation-invariant models one can establish multi-
plicity of the elements of G t

ˇ
by showing the existence of a translation-invariant state

� 2 G t
ˇ

, which fails to have the mixing property (3.1.60). To present an idea of how to
do this, let us consider the simplest case where the interaction is of nearest neighbor type
with intensity J > 0 and the model is rotation-invariant. Then the measures (3.6.2),
and hence the accumulation points of the sequence f
per

ˇ;ƒ
gƒ2Lbox , are rotation-invariant

as well. Given ` and j D 1; : : : ; �, we set

f
.j /

`
.x/ D

Z ˇ

0

x
.j /

`
.�/d�: (6.1.1)

By Theorem 3.3.1 and Lemma 3.2.5, this function is square integrable with respect to
all � 2 G t

ˇ
and all local Gibbs measures. Thus, for a periodic Gibbs measure �, which

by construction is translation and rotation-invariant, we set

D
�

``0D
�X

jD1
hf .j /
`
f
.j /

`0 i�: (6.1.2)

By (2.5.2) and (3.3.1),

0 � D
�

``0 � C; (6.1.3)

where C is the same for all such measures. Furthermore, by the rotational symmetry
we have hf .j /

`
i� D 0; thus, the phase transition occurs if

lim
L!C1

1

jƒLj
X
`02ƒL

D
�

``0 D lim
L!C1

1

jƒLj2
X

`;`02ƒL

D
�

``0 > 0: (6.1.4)
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In view of the translation invariance,D�

``0 is a function of the distance (1.1.1) and hence
can be written

D
�

``0 D 1

.2
/d

Z
.��;��d

yD�
p e

i.p;`�`0/dp; i D p�1; (6.1.5)

where yD� is defined by the Fourier series

yD�
p D

X
`0

D
�

``0e
�i.p;`�`0/; p 2 .�
; 
�d : (6.1.6)

In general, yD� is a distribution. By the lower bound in (6.1.3), the possible singularity
of yD� occurs at p D 0 if D�

``0 is not summable. On the other hand, the upper bound
in (6.1.3) allows one to anticipate the singularity type. Suppose one has a pair, D``0

and yDp , connected by (6.1.5), (6.1.6). If D``0 is constant, i.e., D``0 D ~ > 0, then
yDp D .2
/d~ı.p/, ı being the Dirac delta-function. Therefore, it would be reasonable

to set
yD�
p D .2
/d~ı.p/C g.p/; (6.1.7)

where g is measurable and finite almost everywhere on .�
; 
�d . Its role is to produce
the eventual spatial decay of D�

``0 . Then the phase transition occurs if ~ > 0, see
(6.1.4).

Suppose that the following two estimates hold. The first one is the infrared bound

g.p/ � �=J jpj2; for almost all p 2 .�
; 
�d , (6.1.8)

where � > 0 is a constant. Its name is connected with the ‘infrared’ singularity of the
right-hand side. The J ! C1 asymptotics corresponds to a ‘totally correlated’ case
of D�

``0 D ~. The second mentioned estimate is

D
�

``
� # > 0; (6.1.9)

where # should be independent of J . By these two estimates and (6.1.5), (6.1.6) we
get

~ � # � �

.2
/dJ

Z
.��;��d

dp=jpj2: (6.1.10)

For d � 3, the latter integral exists. Therefore, ~ > 0 and hence the state � is
non-ergodic for large enough J .

The main difficulty with deriving estimates like (6.1.8), (6.1.9) is that they cor-
respond to limiting objects, whereas the techniques available are applicable rather to
local Euclidean Gibbs states. Therefore, for practical use we develop a ‘local’ version
of the above arguments. For ƒ as in (3.1.2), we set

Dƒ
``0 D

�X
jD1

˝
f
.j /

`
f
.j /

`0

˛
�

per
ˇ;ƒ

; (6.1.11)



6.1 Phase Transitions and Order Parameters 283

which can be rewritten

Dƒ
``0 D ˇ

Z ˇ

0

Kƒ``0.�; �
0jp/d� 0; (6.1.12)

where the correlation function is, cf. (2.5.41),

Kƒ``0.�; �
0jp/ D ˝ �

x`.�/; x`0.� 0/
� ˛
�

per
ˇ;ƒ

: (6.1.13)

The right-hand side in (6.1.12) is independent of � due to the periodicity (1.2.90). To
introduce the Fourier transform in the boxƒwe employ the conjugate setƒ� (Brillouin
zone), consisting of the vectors p D .p1; : : : ; pd /, such that

pj D �
 C 


L
sj ; sj D 1; : : : ; 2L; j D 1; : : : ; d: (6.1.14)

Then the Fourier transform is

x
.j /

`
.�/ D 1

jƒj1=2
X
p2ƒ�

Ox.j /p .�/ei.p;`/;

Ox.j /p .�/ D 1

jƒj1=2
X
`2ƒ

x
.j /

`
.�/e�i.p;`/; j D 1; : : : ; �:

(6.1.15)

In order that x.j /
`
.�/ be real, the Fourier coefficients should satisfy

Ox.j /p .�/ D Ox.j /�p.�/:

By the rotation invariance of the state h � i�per
ˇ;ƒ

, as well as by its invariance with respect

to the translations of the torus ƒ, it follows that

h Ox.j /p .�/ Ox.j 0/
p0 .� 0/i�per

ˇ;ƒ
D ıjj 0ı.p C p0/

X
`02ƒ

hx.j /
`
.�/x

.j /

`0 .�
0/i�per

ˇ;ƒ
ei.p;`0�`/:

In view of this property, we set

yKƒp .�; � 0jp/ D
X
`02ƒ

Kƒ``0.�; �
0jp/ei.p;`0�`/;

Kƒ``0.�; �
0jp/ D 1

jƒj
X
p2ƒ�

yKƒp .�; � 0jp/ei.p;`�`0/;
(6.1.16)

and

yDƒ
p D ˇ

Z ˇ

0

yKƒp .�; � 0jp/d� 0 D
X
`02ƒ

Dƒ
``0e

i.p;`0�`/: (6.1.17)

One observes that the latter representation of yDƒ can be extended to all p 2 .�
; 
�d .
From (6.1.16) and (6.1.17) one gets

yDƒ
p D yDƒ�p D

X
`02ƒ

Dƒ
``0 cos.p; `0 � `/; (6.1.18)
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and

Dƒ
``0 D 1

jƒj
X
p2ƒ�

yDƒ
p e

i.p;`�`0/ D 1

jƒj
X
p2ƒ�

yDƒ
p cos.p; ` � `0/: (6.1.19)

Furthermore, for uƒ D .u`/`2ƒ, u` 2 R, we have

�
uƒ;D

ƒuƒ
�
l2.ƒ/

defD
X
`;`02ƒ

Dƒ
``0u`u`0

D
�X

jD1

�	X
`2ƒ

u`

Z ˇ

0

x
.j /

`
.�/d�


2�
�

per
ˇ;ƒ

� 0:

(6.1.20)

Therefore, the operator Dƒ W l2.ƒ/ ! l2.ƒ/ is strictly positive; hence, all its eigen-
values (6.1.17), (6.1.18) are also strictly positive.

Suppose now that we are given a continuous function yB W .�
; 
�d ! .0;C1�

with the following properties:

.i/
Z
.��;��d

yB.p/dp < 1;

.ii/ yDƒ
p � yB.p/; for all p 2 ƒ� n f0g,

(6.1.21)

holding for all boxes ƒ. One observes that the latter estimate is a local version of the
infrared bound (6.1.8). Then we set

B``0 D 1

.2
/d

Z
.��;��d

yB.p/ cos.p; ` � `0/dp; `; `0 2 L; (6.1.22)

and, for a box ƒ,

Bƒ``0 D 1

jƒj
X

p2ƒ�nf0g
yB.p/ cos.p; ` � `0/; `; `0 2 ƒ: (6.1.23)

We also set Bƒ
``0 D 0 if either of `; `0 belongs to ƒc .

Proposition 6.1.2. For every `; `0, it follows that Bƒ
``0 ! B``0 as L ! C1:

Proof. By (6.1.21), yB.p/ cos.p; `�`0/ is an absolutely integrable function in the sense
of the improper Riemann integral. The right-hand side of (6.1.23) is its integral sum;
thereby, the convergence stated follows in a standard way.

Now we get a local version of (6.1.10).

Lemma 6.1.3. For every box ƒ and any `; `0 2 ƒ, one has

Dƒ
``0 � �

Dƒ
`` � Bƒ``

�C Bƒ``0 : (6.1.24)
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Proof. By (6.1.19), (6.1.23), and claim (ii) of (6.1.21), one has

Dƒ
`` �Dƒ

``0 D 2

jƒj
X

p2ƒ�nf0g
yDƒ
p sin2.p; ` � `0/

� 2

jƒj
X

p2ƒ�nf0g
yB.p/ sin2.p; ` � `0/

D Bƒ`` � Bƒ``0 ;

which yields (6.1.24).

Corollary 6.1.4. For every � 2 M
per
ˇ

, it follows that

D
�

``0 � �
D
�

``
� B``

�C B``0 ; (6.1.25)

holding for any `; `0.

Proof. Given � 2 M
per
ˇ

, one finds the sequence fLngn2N � N, such that D
ƒLn

``0 !
D
�

``0 , see Theorem 3.6.4 and Lemma 3.6.1. Then (6.1.25) follows from (6.1.24) and
Proposition 6.1.2.

One observes that the first summand in (6.1.25) is independent of `, whereas the
second one is a priori neither positive nor summable. Suppose now that there exists a
positive # , such that for any box ƒ,

Dƒ
`` � #; (6.1.26)

which clearly would yield (6.1.9). Then the phase transition occurs if

.i/ # > B``I

.ii/ lim
j`�`0j!C1

B``0 D 0:
(6.1.27)

We return to these conditions later after we find the function yB obeying (6.1.21).
Now let us consider other possibilities to describe phase transitions in translation-

and rotation-invariant versions of our model. Given a box ƒ, we introduce

Pƒ D 1

.ˇjƒj/2
X
`;`02ƒ

Dƒ
``0

D
Z
�ˇ;ƒ

ˇ̌̌
ˇ 1

ˇjƒj
X
`2ƒ

Z ˇ

0

x`.�/d�

ˇ̌̌
ˇ2�per

ˇ;ƒ
.dxƒ/:

(6.1.28)

Definition 6.1.5. The order parameter of the model is set to be

P
defD lim sup

ƒ%Zd

Pƒ: (6.1.29)

IfP > 0 for given values of ˇ and the model parameters, then there exists a long-range
order.
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One observes that P is positive if both conditions (6.1.27) are satisfied. The ap-
pearance of the long-range order, which in a more ‘physical’ context is identified with
phase transition, does not imply the phase transition in the sense of Definition 6.1.1.
At the same time, the latter definition describes models without translation invariance.
On the other hand, Definition 6.1.5 is based on the local states only and hence can be
formulated without employing Euclidean Gibbs states. Yet another ‘physical’approach
to phase transitions in translation-invariant models like (1.1.3), (1.1.8) is based on the
properties of the pressure p, which by Theorems 5.1.2 and 5.1.3 exists and is the same
in every state. It does not employ the set G t

ˇ
and is based on the continuity of the global

magnetization (5.2.7), that is, on the differentiability of p as a function of the external
field h.

Definition 6.1.6 (Landau Classification). The model has a first-order phase transition
if p0 is discontinuous at a certain h�. The model has a second-order phase transition if
there exists h� 2 R such that p0 is continuous but p00 is discontinuous at h D h�.

As in Definition 6.1.1, here we do not assume any symmetry of the model. The
relationship between the first-order phase transition and the appearance of the long-
range order can be established with the help of the following result, the proof of which
will be done by a slight modification of the arguments used in [109], see Theorem 1.1
and its corollaries. Let f�ngN2N (respectively, fMngn2N) be a sequence of probability
measures on R (respectively, positive real numbers, limMn D C1) such that, for
every y 2 R,

f .y/ D lim
n!C1

1

Mn

log
Z
eyu�n.du/ (6.1.30)

exists and is finite. By the Hölder inequality (3.2.14), for every � 2 Œ0; 1�, x; y 2 R,
and n 2 N, it follows that

fn.�x C .1 � �/y/ defD 1

Mn

log
Z

exp Œ�xuC .1 � �/yu� �n.du/
� �fn.x/C .1 � �/fn.y/:

Thus, each fn and hence f are convex. This yields that f has one-sided derivatives
f 0̇ .0/, see Proposition 2.5.4.

Theorem 6.1.7 (Griffiths). Let the sequence of measures f�ngN2N be as above. If
f 0C.0/ D f 0�.0/ D  (i.e., f is differentiable at y D 0), then

lim
n!C1

Z
g.u=Mn/�n.du/ D g./; (6.1.31)

for any continuous g W R ! R, such that jg.u/j � �e~juj with certain �; ~ > 0.
Furthermore, for each such a function g,

lim sup
n!C1

Z
g.u=Mn/�n.du/ � max

z2Œf 0
�.0/;f

0
C.0/�

g.z/: (6.1.32)
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In particular, if f 0�.0/ D �f 0C.0/, then for any k 2 N,

f 0C.0/ � lim sup
n!C1

�Z
.u=Mn/

2k�n.du/

�1=2k
: (6.1.33)

The proof of this theorem will be based on the following lemma. For a fixed ı > 0,
we set

a˙ D f 0̇ .0/˙ ı; bC
n D

Z C1

aCMn

�n.du/; b�
n D

Z a�Mn

�1
�n.du/; (6.1.34)

where f , Mn, and �n are as in (6.1.30).

Lemma 6.1.8. For the above sequences, it follows that

lim sup
n!C1

�
bṅ
�1=Mn

< 1: (6.1.35)

Proof. For any n 2 N and y 2 R,

1

Mn

log
Z
eyu�n.du/ � 1

Mn

log
Z C1

aCMn

eyu�n.du/

� 1

Mn

log eaCMny

Z C1

aCMn

�n.du/

D aCy C log
�
bC
n

�1=Mn
:

Then if (6.1.35) fails to hold, we have f .y/ � aCy. Since f .0/ D 0, the latter
contradicts the definition of aC. The second part of the proof can be done in the same
way.

By (6.1.35), it follows that there exists b 2 .0; 1/, such that for all n 2 N,

bṅ � bMn : (6.1.36)

Proof of Theorem 6.1.7. For any n 2 N, one hasZ aCMn

a�Mn

g.u=Mn/�n.du/ � max
z2Œa�;aC�

g.z/: (6.1.37)

Then Z
g.u=Mn/�n.du/ � BC

n .g/C B�
n .g/C max

z2Œa�;aC�
g.z/; (6.1.38)

where

BC
n .g/ D

Z C1

aCMn

g.u=Mn/�n.du/; B�
n .g/ D

Z a�Mn

�1
g.u=Mn/�n.du/:
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We recall that jg.u/j � � exp.~juj/ and f is given by (6.1.30). For " > 0, we pick
� > aC such that

� exp Œ��~ C f .2~/� < "=2: (6.1.39)

For this � , we set
( .g; �/ D max

z2ŒaC;��
jg.z/j: (6.1.40)

Then

jBC
n .g/j �

Z �Mn

aCMn

jg.u=Mn/j�n.du/C
Z C1

�Mn

jg.u=Mn/j�n.du/

� ( .g; �/bC
n C �e��~

Z C1

�Mn

exp .2~u=Mn/ �n.du/

� ( .g; �/bMn C �e��~
�Z

exp .2~u/�n.du/

�1=Mn

:

Here we used (6.1.36) and the Hölder inequality (3.2.14). Now we take into account
(6.1.30) and (6.1.39), as well as the fact that b < 1, and choose n big enough to make
each summand in the latter expression less than "=2, which finally yields jBC

n .g/j < "
for such n. Similarly, one estimates jB�

n .g/j. Applying this in (6.1.38) we arrive at
(6.1.32) since ı > 0 is arbitrary. If f 0C.0/ D f 0�.0/ D , then by (6.1.37),

lim sup
n!C1

Z
g.u=Mn/�n.du/ � g./: (6.1.41)

On the other hand,Z
g.u=Mn/�n.du/ �

Z .�Cı/Mn

.��ı/Mn

g.u=Mn/�n.du/

D g. C tı/

Z .�Cı/Mn

.��ı/Mn

�n.du/;

for some t 2 Œ�1; 1�. As ı is arbitrary, this yields

lim inf
n!C1

Z
g.u=Mn/�n.du/ � g./;

which along with (6.1.41) leads to (6.1.31). The estimate (6.1.33) readily follows from
(6.1.32).

Let the anharmonic potential be of the form V.u/ D v.juj2/� hu.1/. Then we can
write, cf. (5.2.2),

N
per
ˇ;ƒ

.h/ D N
per
ˇ;ƒ

.0/

Z
�ˇ;ƒ

exp
�
h
X
`2ƒ

Z ˇ

0

x
.1/

`
.�/d�

�
�
0;per
ˇ;ƒ

.dxƒ/; (6.1.42)
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where �0;per
ˇ;ƒ

is the local periodic Euclidean Gibbs measure with h D 0. Now let

fLngn2N � N be such that the sequences of local measures f�0;per
ˇ;ƒLn

g and f�per
ˇ;ƒLn

g
converge to the corresponding periodic Euclidean Gibbs measures �0 and �, respec-
tively. Set

Xn D
n
xƒLn

2 �ˇ;ƒLn

ˇ̌ 9u 2 R W P
`2ƒLn

R ˇ
0
x
.1/

`
.�/d� D u

o
: (6.1.43)

Clearly, each such Xn is measurable and isomorphic to R. Let �n, n 2 N, be the
projection of f�0;per

ˇ;ƒLn
g onto this Xn. Then

p.h/ D p.0/C f .h/; (6.1.44)

wheref is given by (6.1.30) with such�n andMn D jƒLn
j D .2Ln/

d . Then by means
of Theorem 6.1.7 we have that in the general case where the model (1.1.3), (1.1.8) is
just rotation and translation-invariant, the existence of the long-range order implies
first-order phase transition. For certain cases, we have more specific information about
the relationships between all types of phase transitions introduced above. We still
suppose that the model is rotation and translation-invariant.

Theorem 6.1.9. If � D 1, differentiability of the pressure at h D 0 (i.e., the lack of
first-order phase transitions) yields jG t

ˇ
j D 1 and the lack of the long-range order. If

d � 3 and the interaction is ferromagnetic and of nearest neighbor type, and if the
estimates (6.1.21), (6.1.26) hold, then for J > J�, the long-range order exists and both
phase transitions – of first order and in the sense of Definition 6.1.1 – take place.

Proof. The first part of this theorem merely repeats Theorem 5.3.3. For d � 3, B`` is
finite, see (6.1.21), (6.1.22). Therefore, by (6.1.26) and (6.1.25), there exists� 2 M

per
ˇ

,

for which D�

``0 does not tend to zero as j` � `0j ! C1, which implies the existence
of a non-ergodic � 2 G t

ˇ
and hence the fact jG t

ˇ
j > 1.

In the subsequent sections, we prove that the estimates (6.1.21), (6.1.26) do hold
if the model parameters satisfy certain conditions and study also the cases of nonlocal
interactions and non translation-invariant models.

Now let us turn to phase transitions of second order in rotation-invariant models.
For ˛ 2 .0; 1�, we set, cf. (6.1.28),

P
.˛/
ƒ D ˇ�2

jƒj1C˛

Z
�ˇ;ƒ

ˇ̌̌
ˇX
`2ƒ

Z ˇ

0

x`.�/d�

ˇ̌̌
ˇ2�per

ˇ;ƒ
.dxƒ/; (6.1.45)

whereƒ is a box. Then P .1/ƒ D Pƒ and the existence of a positive limit (6.1.29) yields
a first-order phase transition in the general case where the model is just rotation and
translation-invariant. Also in this case, we have the following
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Proposition 6.1.10. If there exists ˛ 2 .0; 1/, such that for a sequence fLng, there
exists the finite limit

lim
n!C1P

.˛/
ƒn

defD P .˛/ > 0; (6.1.46)

then the model has at h D 0 a second-order phase transition.

Proof. One observes that
P
.˛/
ƒ D p00

ƒ.0/=ˇ
2jƒj˛: (6.1.47)

As the first derivative p0.0/ exists, we get

p00.0/ D lim
ı!0C

�
p0.ı/ � p0.�ı/� =2ı D lim

ı!0C
lim

L!C1p00
ƒL
.h/;

for a certain h 2 .�ı; ı/. By Proposition 1.4.12, p00
ƒ.h/ is continuous in h for every

fixed ƒ; hence, by (6.1.46), (6.1.47), it follows that p00
ƒL
.h/ can be made arbitrarily

big by choosing a sufficiently big ƒL and a sufficiently small ı.

It is easy to understand that Proposition 6.1.10 remains true if one replaces in
(6.1.45) the periodic local measure �per

ˇ;ƒ
by the one corresponding to the zero boundary

condition, i.e., by �ˇ;ƒ. Then the limit in (6.1.46) may be taken along any van Hove
sequence L. We recall that Proposition 6.1.10 describes the rotation-invariant case.
The existence of a positiveP .˛/ with ˛ > 0 can be interpreted as follows. According to
the central limit theorem for independent identically distributed random variables, for
our model with J``0 D 0 and V` D V , the only possibility to have a finite positive limit
in (6.1.46) is to set ˛ D 0. If P .0/ > 0 for nonzero interaction, one can say that the
dependence between the temperature loops is weak; it holds for small OJ0. Of course,
in this case P .˛/ D 0 for any ˛ > 0. If P .˛/ gets positive for a certain ˛ 2 .0; 1/,
one can say that strong dependence between the loops appears. In this case, the central
limit theorem holds with an abnormal normalization. However, this dependence is not
so strong as to make p0 discontinuous, which occurs at ˛ D 1, where a new law of
large numbers comes to power. In statistical physics, the point at which P .˛/ > 0 for
˛ 2 .0; 1/ is called a critical point. The quantity P .0/ is called the susceptibility, it
gets discontinuous at the critical point. Its singularity at this point is connected with
the value of ˛ for which P .˛/ > 0. The above analysis allows one to extend the notion
of the critical point to models that are not translation-invariant.

Definition 6.1.11. The rotation-invariant model has a critical point if there exist a van
Hove sequence L and ˛ 2 .0; 1/ such that

lim
L

1

jƒj1C˛

Z
�ˇ;ƒ

ˇ̌̌
ˇX
`2ƒ

Z ˇ

0

x`.�/d�

ˇ̌̌
ˇ2�ˇ;ƒ.dxƒ/ > 0 (6.1.48)

for certain values of the model parameters, including h, and ˇ.

In the translation-invariant case, a critical point and a second-order phase transition
mean the same – a fact that follows from Proposition 6.1.10. Below we study the
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critical point in models of the type of (1.1.3), (1.1.8), in which the set L is equipped
with a special (hierarchical) metric instead of the Euclidean metric (1.1.1). Therefore,
instead of the translation invariance, such models have a special symmetry determined
by this metric.

6.2 Reflection Positivity and Infrared Bound

As was mentioned above, the method which we are going to use for obtaining the
infrared estimates (6.1.8), (6.1.21) is based on a special property of the local Euclidean
Gibbs states of the version of our model for which L D Zd , the interaction is of nearest
neighbor type, and V` D V . From the mathematical point of view the infrared estimate
can be characterized as a certain sophisticated version of the Hölder inequality (3.2.14).
The proof of phase transitions in more general versions of our model (1.1.3), (1.1.8)
will be made by comparing these models with reference models, for which the phase
transition is established by means of the infrared estimates. The comparison is based
on correlation inequalities.

6.2.1 Reflection positive functionals

Letƒ 2 Lfin, consisting of an even number of points, be given. It may be the box (3.1.2),
which contains jƒj D .2L/d points. Suppose we are given a bijection � W ƒ ! ƒ,
�ı� D id, such thatƒ falls into two disjoint partsƒ˙ with the property that � W ƒC !
ƒ�. We shall call � reflection. For xƒ 2 �ˇ;ƒ, we set %.xƒ/ D .x�.`//`2ƒ. We recall
that

�ˇ;ƒ D fxƒ D .x`/`2ƒ j x` W Œ0; ˇ� ! R� ; x`.0/ D x`.ˇ/g; � 2 N;

is the Banach space of continuous temperature loops, and that Eƒ is the set of con-
tinuous functions f W �ˇ;ƒ ! R obeying the estimate (1.4.58). Eƒ is closed with
respect to the multiplication and linear operations over R, i.e., it is a real algebra. On
this algebra we define the map �� W Eƒ ! Eƒ, also called reflection, by setting

��.f /.xƒ/ D f Œ%.xƒ/�: (6.2.1)

Clearly, for any f; g 2 Eƒ and �; � 2 R,

��.�f C �g/ D ���.f /C ���.g/; ��.f � g/ D ��.f / � ��.g/: (6.2.2)

Along with the functions f 2 Eƒ, we consider the affine functions

�ˇ;ƒC
3 xƒC

7! 	ƒC
D .	`/`2ƒC

; 	` D ˛`x` C a`; ˛` 2 R; a` 2 L2ˇ ; (6.2.3)

and set
��.	`/ D ˛`x�.`/ C a`; ` 2 ƒC: (6.2.4)
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By EC
ƒ (respectively, E�

ƒ) we denote the subalgebra of Eƒ consisting of functions
dependent on xƒC

(respectively, xƒ�) only. Then ��.E
C
ƒ/ D E�

ƒ and �� ı �� D id.

Definition 6.2.1. A linear functional ! W Eƒ ! R is said to be reflection positive (RP)
with respect to ��, if

8f 2 EC
ƒ W !Œf � ��.f /� � 0; (6.2.5)

and for any affine function (6.2.3),

8 ` 2 ƒC W !
h
.	`; ��.	`//L2

ˇ

i
� 0: (6.2.6)

Let � be a finite measure on Cˇ . For � � ƒ, we set

��.dxƒ/ D
O
`2�

�.dx`/; (6.2.7)

and suppose that each f 2 Eƒ is �ƒ-integrable. Finally, let � and �� be any of the
maps possessing the properties described above.

Proposition 6.2.2. The functional

Eƒ 3 f 7! !�.f / D
Z
�ˇ;ƒ

f .xƒ/�ƒ.dxƒ/ (6.2.8)

is RP with respect to this ��.

Proof. Given f 2 EC
ƒ, let ' W �ˇ;ƒC

! R be such that f .xƒ/ D '.xƒC
/. Then

!�Œf � ��.f /� D
Z
�ˇ;ƒC

'.xƒC
/�ƒC

.dxƒC
/

�
Z
�ˇ;ƒ�

'.xƒ�/�ƒ�.dxƒ�/

D
	 Z

�ˇ;ƒC

'.xƒC
/�ƒC

.dxƒC
/


2
� 0:

Likewise,
!�

h
.	`; ��.	`//L2

ˇ

i
D kh	`i�k2

L2
ˇ

� 0:

In the above example, the multiplicative structure of the measure (6.2.7) is crucial.
It results in the positivity of!� with respect to all reflections � W ƒ ! ƒ. One observes
that the functional (6.2.8) is symmetric, i.e.,

!�Œf � ��.g/� D !�Œg � ��.f /�; for all f; g 2 EC
ƒ, (6.2.9)

and similarly with respect to its values on the functions (6.2.3). In the sequel, we shall
suppose that all RP functionals are symmetric. Therefore, all such functionals obey
the following Schwarz-type inequality.
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Lemma 6.2.3. If a state ! on Eƒ is symmetric and RP with respect to a given ��, then
for any f; g 2 EC

ƒ,

˚
!Œf � ��.g/�

�2 � !Œf � ��.f /� � !Œg � ��.g/�; (6.2.10)

and for any two affine maps (6.2.3),

n
!
h
.	`; ��.�`//L2

ˇ

io2 � !
h
.	`; ��.	`//L2

ˇ

i
� !
h
.�`; ��.�`//L2

ˇ

i
: (6.2.11)

Proof. For � 2 R, by (6.2.2) we have

!Œ.f C �g/ � ��.f C �g/� D !Œ.f C �g/ � .��.f /C ���.g//� � 0:

As ! is a linear functional, the latter can be written as a 3-nomial, whose positivity for
all � 2 R is equivalent to (6.2.10). The proof of (6.2.11) is analogous.

Our next step is to obtain a generalization of the inequality (6.2.11), which we then
use to obtain the Gaussian domination estimate and thereby the infrared bound. Let
us consider a doubled system of temperature loop. This means that for every ` 2 ƒ,
we have a pair z` D .x`; y`/ 2 Cˇ � Cˇ . One can consider this pair as one vector
z` W C Œ0; ˇ� ! R2� . By zEƒ we denote the algebra of functions f .z`/ obeying the
estimate (1.4.58) with respect to this doubled vector. As above, we have a reflection
� W ƒ ! ƒ, which defines also the reflection �� acting according to (6.2.1) and (6.2.4)
on both components of z`’s. The functions f 2 zEƒ which depend on zƒC

only

constitute the subalgebra zEC
ƒ. For �` 2 R and a` 2 L2

ˇ
, ` 2 ƒ, we set

	`.z`/ D �`x`; �`.z`/ D �`.y` C a`/; ` 2 ƒC: (6.2.12)

Let the functions f; g;2 zEC
ƒ be such that expŒf C ��.g/� 2 zEƒ. Then for the affine

functions (6.2.12), it follows that

exp
h
f C ��.g/C

X
`2ƒC

.	`; ��.�`//L2
ˇ

i
2 zEƒ: (6.2.13)

Suppose that a given linear RP functional Q! W zEƒ ! R is such that the series

C1X
k1;:::;knD0

1

k1Š : : : knŠ
� Q!
n
.F � ��.G// �

h
.	`1

; ��.	`1
//L2

ˇ

ik1

� � � � �
h
.	`n

; ��.	`n
//L2

ˇ

ikn
o
; n D jƒCj; F D ef ; G D eg ;

(6.2.14)

as well as the one with 	` replaced by �`, are absolutely convergent.
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Lemma 6.2.4. Let the functional Q! and the functions f; g 2 zEC
ƒ, 	`, �` be as above.

Then n
Q!
h

exp
�
f C ��.g/C

X
`2ƒC

.	`; ��.�`//L2
ˇ

�io2

� Q!
h

exp
�
f C ��.f /C

X
`2ƒC

.	`; ��.	`//L2
ˇ

�i

� Q!
h

exp
�
g C ��.g/C

X
`2ƒC

.�`; ��.�`//L2
ˇ

�i
:

(6.2.15)

Proof. By the above assumptions,

Q!
h

exp
�
f C ��.g/C

X
`2ƒC

.	`; ��.�`//L2
ˇ

�i

D !
h
F � ��.G/

Y
`2ƒC

exp
�
.	`; ��.�`//L2

ˇ

�i

D
C1X

k1;:::;knD0

1

k1Š : : : knŠ
� Q!
�
F � ��.G/

�
�
h�
	`1
; ��.�`1

/
�
L2

ˇ

ik1

� � � � �
h�
	`n
; ��.�`n

/
�
L2

ˇ

ikn
�
;

(6.2.16)

and the latter series is absolutely convergent. Then by (6.2.10), (6.2.11) and the Schwarz
inequality for sums we get

LHS.6.2.16/ D jLHS.6.2.16/j

�
C1X

k1;:::;knD0

1

k1Š : : : knŠ
�
ˇ̌̌
ˇ Q!
�
F � ��.G/

� �
h �
	`1
; ��.�`1

/
�
L2

ˇ

ik1

� � � � �
h �
	`n
; ��.�`n

/
�
L2

ˇ

ikn

�ˇ̌̌
ˇ

�
C1X

k1;:::;knD0


1

k1Š : : : knŠ
� Q!
�
F � ��.F /

� �
h �
	`1
; ��.	`1

/
�
L2

ˇ

ik1

� � � � �
h �
	`n
; ��.	`n

/
�
L2

ˇ

ikn

��1=2

�


1

k1Š : : : knŠ
Q!
�
G � ��.G/

� �
h �
�`1
; ��.�`1

/
�
L2

ˇ

ik1

� � � � �
h �
�`n
; ��.�`n

/
�
L2

ˇ

ikn

��1=2
defD ˝.f; g/:
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Thereby,

˝.f; g/ �
 C1X
k1;:::;knD0

1

k1Š : : : knŠ
� Q!
 �
F � ��.F /

� �
h�
	`1
; ��.	`1

/
�
L2

ˇ

ik1

� � � � �
h�
	`n
; ��.	`n

/
�
L2

ˇ

ikn
��1=2

�
 C1X
k1;:::;knD0

1

k1Š : : : knŠ
� Q!
 �
G � ��.G/

� �
h�
�`1
; ��.�`1

/
�
L2

ˇ

ik1

� � � � �
h�
�`n
; ��.�`n

/
�
L2

ˇ

ikn
��1=2

D


Q!
	

exp
�
f C ��.f /C

X
`2ƒC

.	`; ��.	`//L2
ˇ

�
�1=2

�


Q!
	

exp
�
g C ��.g/C

X
`2ƒC

.�`; ��.�`//L2
ˇ

�
�1=2
;

which yields (6.2.15).

6.2.2 Gaussian Domination

First we prove an auxiliary result. Given � 2 Lfin, let �0 be its nonempty subset and
�; � be finite Borel measures on �ˇ;�, such that every f 2 E� is integrable with
respect to both ones.

Lemma 6.2.5. Let the sets �, �0 and the measures �; � be as above. Then for every
` 2 �0 and a` 2 L2

ˇ
, it follows that

 Z
�ˇ;


Z
�ˇ;


exp
�

� 1

2

X
`2�0

kx` � y` � a`k2L2
ˇ

�
�.dx�/�.dy�/

�2

�
Z
�ˇ;


Z
�ˇ;


exp
�

� 1

2

X
`2�0

kx` � y`k2L2
ˇ

�
�.dx�/�.dy�/

�
Z
�ˇ;


Z
�ˇ;


exp
�

� 1

2

X
`2�0

kx` � y`k2L2
ˇ

�
�.dx�/�.dy�/:

(6.2.17)

Proof. We take two copies of � and denote them by ƒC and ƒ�, respectively. Then
by ƒ0̇ � ƒ˙ we denote the subsets consisting of the elements of �0. For an ` 2
ƒC, by �.`/ we denote its counterpart in ƒ�. Then � is a reflection and �.ƒ0C/ D
�.ƒ0�/. Finally, we set ƒ D ƒC [ ƒ� and ƒ0 D ƒ0C [ ƒ0�. Now let zEƒ0 be
the algebra of functions f .zƒ0/, zƒ0 D .xƒ0 ; yƒ0/ 2 �ˇ;ƒ0 � �ˇ;ƒ0 , the same as in
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(6.2.13) and Lemma 6.2.4. Correspondingly, zEC
ƒ0 (respectively, zE�

ƒ0) will stand for
the subalgebras consisting of functions dependent on zƒ0

C
(respectively, zƒ0

C
) only.

Thereby, we introduce the measures

O�.dx�/ D exp
�

� 1

2

X
`2�0

kx`k2L2
ˇ

�
�.dx�/;

O�.dx�/ D exp
�

� 1

2

X
`2�;

kx`k2L2
ˇ

�
�.dx�/;

(6.2.18)

and define the functional

zEƒ0 3 f 7! Q!.f /
D
Z
�ˇ;ƒ

Z
�ˇ;ƒ

f .xƒ0 ; yƒ0/ O�.dxƒC
/ O�.dxƒC

/ O�.dxƒ�/ O�.dxƒ�/:
(6.2.19)

This functional has the same structure as the one described by Lemma 6.2.4; hence, it
is positive with respect to the reflection �� defined by (6.2.1), (6.2.4). Set

‡� D
Z
�ˇ;


O�.dx�/; ‡� D
Z
�ˇ;


O�.dx�/; (6.2.20)

and

f .xƒ0 ; yƒ0/  0; g.xƒ0 ; yƒ0/ D �
X
`2ƒ0

C

	
.y`; a`/L2

ˇ
C 1

2
ka`k2L2

ˇ



;

	`.x`; y`/ D x`; �`.x`; y`/ D y` C a`; for ` 2 ƒ0C; (6.2.21)

	`.x`; y`/ D �`.x`; y`/ D 0; for ` 2 ƒC nƒ0C.

The latter affine functions are of the type of (6.2.12). Thereby,

LHS.6.2.17/ D 1

.‡�‡�/2

n
Q!
h

exp
�
f C ��.g/C

X
`2ƒC

.	`; ��.�`//L2
ˇ

�io2
:

Applying here the estimate (6.2.15) and taking into account (6.2.20) we arrive at

LHS.6.2.17/

� 1

.‡�‡�/2

Z
�ˇ;ƒ

Z
�ˇ;ƒ

exp
� X
`2ƒ0

C

.x`; x�.`//L2
ˇ

�

� O�.dxƒC
/ O�.dxƒC

/ O�.dxƒ�/ O�.dxƒ�/

�
Z
�ˇ;ƒ

Z
�ˇ;ƒ

exp
� X
`2ƒ0

C

.y`; y�.`//L2
ˇ

�

� O�.dxƒC
/ O�.dxƒC

/ O�.dxƒ�/ O�.dxƒ�/;

which is exactly the right-hand side of (6.2.17).
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Now we return to the model (1.1.3), (1.1.8), which we suppose here to be translation-
invariant, ferromagnetic, and of nearest neighbor type. The latter means that J``0 D
J > 0 if the distance (1.1.1) equals one, andJ``0 D 0 otherwise, cf. Definition 1.1.2. As
we are going to show, the model with such interaction intensities is refection positive.
This is the simplest case of J``0 with such a property. Possible generalizations are
discussed in Section 6.5 below.

Let ƒ be the box (3.1.2). We impose periodic conditions on its boundaries; hence,
‘the periodic interaction’ (1.4.50) in this case is Jƒ

``0 D J if the distance (1.4.48)
equals 1, and Jƒ

``0 D 0 otherwise. The periodic local Euclidean Gibbs measure of this
model is, cf. (1.4.52),

�
per
ˇ;ƒ

.dxƒ/ D 1

Zƒ.0/
exp

�
� J

2

X
h`;`0i2E

kx` � x`0k2
L2

ˇ

�
�ˇ;ƒ.dxƒ/; (6.2.22)

whereE is the set of unordered pairs h`; `0i, `; `0 2 ƒ, such that j`�`0jƒ D 1. One can
consider E as the set of edges of the graph .ƒ;E/ in which the vertices are elements
of ƒ. Furthermore,

�ˇ;ƒ.dxƒ/ D exp
�
Jd

X
`2ƒ

kx`k2L2
ˇ

�
X
`2ƒ

Z ˇ

0

V.x`.�//d�
�
�ˇ;ƒ.dxƒ/; (6.2.23)

and

Zƒ.0/ D
Z
�ˇ;ƒ

exp
�

� J

2

X
h`;`0i2E

kx` � x`0k2
L2

ˇ

�
�ˇ;ƒ.dxƒ/: (6.2.24)

Note that we do not suppose here V.u/ to be rotation-invariant. With every edge
h`; `0i 2 E we associate b``0 2 L2

ˇ
and consider

Zƒ.b/ D
Z
�ˇ;ƒ

exp
�

� J

2

X
h`;`0i2E

kx` � x`0 � b``0k2
L2

ˇ

�
�ˇ;ƒ.dxƒ/: (6.2.25)

Definition 6.2.6. The model considered here admits Gaussian domination if

Zƒ.b/ � Zƒ.0/; (6.2.26)

for any b D .b``0/h`;`0i2E , b``0 2 L2
ˇ

.

The set of edges E has the following structure. For j 2 f1; : : : ; dg and l 2
f1; : : : ; Lg, let us consider the hyperplanes

…
.j /

l;>
D f` 2 ƒ j ` D .`1; : : : ; j̀�1; l; j̀C1; : : : ; `d /g;

…
.j /

l;<
D f` 2 ƒ j ` D .`1; : : : ; j̀�1; l � L; j̀C1; : : : ; `d /g:

(6.2.27)

We also set
…
.j /

LC1;? D …
.j /

1;7; (6.2.28)
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and introduce

E
.j /

l;? D ˚h`; `0i j ` 2 ….j /

l;? and `0 2 ….j /

lC1;?
�
;

E
.j /

l
D E

.j /

l;>
[E.j /

l;<
:

(6.2.29)

Then, for every fixed j , we have L different families E.j /1 ; : : : ; E
.j /
L , each consisting

of 2 � .2L/d�1 edges, and such that

E D
[

lD1;:::;LI jD1;:::;d
E
.j /

l
: (6.2.30)

Furthermore, for every such E.j /
l

, the graph .ƒ;E n E.j /
l
/ is disconnected and falls

into two connected components, .ƒC.j; l/; EC.j; l// and .ƒ�.j; l/; E�.j; l//, where

ƒC.j; l/ D
� l[
l 0D1

…
.j /

l 0;<

�
[
� L[
l 0DlC1

…
.j /

l 0;>

�
;

ƒ�.j; l/ D
� L[
l 0DlC1

…
.j /

l 0;<

�
[
� l[
l 0D1

…
.j /

l 0;>

�
;

(6.2.31)

and
E˙.j; l/ D fh`; `0i 2 E j `; `0 2 ƒ˙.j; l/g: (6.2.32)

By (6.2.31),

ƒC.j; l/ D ˚
.`1; : : : ; `d / 2 ƒ j j̀ 0 2 f�LC 1; : : : ; Lg; for j 0 ¤ j I

j̀ 2 f�LC 1; : : : ;�LC lg [ fl C 1; : : : ; Lg�: (6.2.33)

For l 2 f1; : : : ; Lg and k 2 f�LC 1; : : : ;�LC lg [ fl C 1; : : : ; Lg, we set

�l.k/ D 2l C 1 � k mod 2L: (6.2.34)

Then we define the map �jl W ƒC.j; l/ ! ƒ�.j; l/ by setting

�j;l W .`1; : : : ; j̀�1; j̀ ; j̀C1; : : : ; `d /
! .`1; : : : ; j̀�1; �l. j̀ /; j̀C1; : : : ; `d /:

(6.2.35)

For ` 2 ƒ�.j; l/, we set �j;l.`/ D ��1
j;l
.`/; hence, such a �j;l is a reflection. If

h`; `0i 2 E.j /
l

and ` 2 ƒC.j; l/, then �j;l.`/ D `0. By �j;l we denote ��j;l
, see (6.2.1)

and (6.2.4).

Theorem 6.2.7. Let the model (1.1.3), (1.1.8) be translation-invariant, but not nec-
essarily rotation-invariant, with ferromagnetic interaction of nearest neighbor type.
Then it admits Gaussian domination.
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Proof. Let j; l be as above and o D ˙1. Then for b D .b``0/h`;`0i2E , we set

�
T oj;lb

�
``0

D

8̂<
:̂
b``0 if h`; `0i 2 Eo.j; l/;
b�j;l .`/�j;l .`

0/ if h`; `0i 2 E�o.j; l/;
0 if h`; `0i 2 E.j /

l
.

(6.2.36)

With the help of Lemma 6.2.5 we prove (6.2.26) by comparing Zƒ.b/ with the one
with fewer nonzero b``0 . Let us do this for b``0 with h`; `0i belonging to E.j /

l
with

j D 1 and l D 1. To this end we rewrite (6.2.25) as follows:

Zƒ.b/ D
Z
�ˇ;ƒC.1;1/

Z
�ˇ;ƒ�.1;1/

exp
�

� J

2

X
h`;`0i2E .1/

1

kx` � x`0 � b``0k2
L2

ˇ

�

� �C
ƒC.1;1/

.dxƒC.1;1//�
�
ƒ�.1;1/

.dxƒ�.1;1//;

(6.2.37)

where

�oƒo.1;1/
.dxƒo.1;1//

D exp
�

� J

2

X
h`;`0i2Eo.1;1/

kx` � x`0 � b``0k2
L2

ˇ

�
�ˇ;ƒo.1;1/.dxƒo.1;1//:

(6.2.38)

Furthermore, we set

��
ƒC.1;1/

.dxƒC.1;1//

D exp
�

� J

2

X
h`;`0i2EC.1;1/

kx` � x`0 � b�1;1.`/�1;1.`0/k2L2
ˇ

�

� �ˇ;ƒC.1;1/.dxƒC.1;1//;

(6.2.39)

and

�C
ƒ�.1;1/

.dxƒ�.1;1//

D exp
�

� J

2

X
h`;`0i2EC.1;1/

kx�1;1.`/ � x�1;1.`0/ � b``0k2
L2

ˇ

�

� �ˇ;ƒ�.1;1/.dxƒ�.1;1//:

(6.2.40)

Now we apply Lemma 6.2.5 with

�0 D ƒ0C D …
.1/
2;> D f` 2 ƒC.1; 0/ j h`; `0i 2 E.1/1 g;
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to (6.2.37) and obtain

ŒZƒ.b/�
2 �

Z
�ˇ;ƒC.1;1/

Z
�ˇ;ƒ�.1;1/

exp
�

� J

2

X
h`;`0i2E .1/

0

kx` � x`0k2
L2

ˇ

�

� �C
ƒC.1;1/

.dxƒC.1;1//�
C
ƒ�.1;1/

.dxƒ�.1;1//

�
Z
�ˇ;ƒC.1;1/

Z
�ˇ;ƒ�.1;1/

exp
�

� J

2

X
h`;`0i2E .1/

1

kx` � x`0k2
L2

ˇ

�

� ��
ƒC.1;1/

.dxƒC.1;1//�
�
ƒ�.1;1/

.dxƒ�.1;1//

D Zƒ.T
C
1;1b/Zƒ.T

�
1;1b/:

(6.2.41)

In the same way we estimate both Zƒ.T1̇;1b/, employing this time E.1/2 and T o1;2.
Repeating this procedure an appropriate number of times we finally arrive at

ŒZƒ.b/�
2dL �

Y
o1;1;:::;od;LD˙1

Zƒ
�
T
od;L

d;L
: : : T

o1;1

1;1 b
� D ŒZƒ.0/�

2dL

: (6.2.42)

Here we have taken into account that T
od;L

d;L
: : : T

o1;1

1;1 b D 0 for any b and any sequence
o1;1; : : : ; od;L D ˙1, which readily follows from (6.2.30) and (6.2.36).

6.2.3 Infrared Bound

Now we apply Theorem 6.2.7 to obtain the function yB which gives the bound (6.1.21).
Here we again assume that the model is rotation-invariant.

Let .ƒ;E/ be the graph introduced in the previous subsection. Let also XE be the
real Hilbert space

XE D fb D .b``0/h`;`0i2E j b``0 2 L2ˇ g; (6.2.43)

equipped with the scalar product

.b; c/XE
D

X
h`;`0i2E

.b``0 ; c``0/L2
ˇ
: (6.2.44)

To simplify notation we shall denote elements of E by e, i.e., e D h`; `0i is the edge
which connects the vertices ` and `0.

A bounded linear operator Q W XE ! XE can be defined by means of its kernel
Q
jj 0

ee0 .�; �
0/, j; j 0 D 1; : : : ; �, e; e0 2 E, and �; � 0 2 Œ0; ˇ�. That is,

.Qb/.j /e .�/ D
dX

j 0D1

X
e02E

Z ˇ

0

Q
jj 0

ee0 .�; �
0/b.j

0/
e0 .� 0/d� 0: (6.2.45)
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The object of our study in this subsection is the operator defined by the kernel

Q
jj 0

h`1;`
0
1

ih`2;`
0
2

i.�; �
0/ D

�h
x
.j /

`1
.�/ � x.j /

`0
1

.�/
i

�
h
x
.j 0/

`2
.� 0/ � x.j 0/

`0
2

.� 0/
i�
�

per
ˇ;ƒ

; (6.2.46)

where the expectation is taken with respect to the measure (6.2.22), which we suppose
here to be rotation-invariant as well. This operator is positive. Indeed,

.b;Qb/XE
D
�h X

h`;`0i2E
.x` � x`0 ; b``0/L2

ˇ

i2�
�

per
ˇ;ƒ

� 0:

The kernel (6.2.46) can be expressed in terms of the periodic Matsubara functions;
thus, as a function of �; � 0, it has the periodicity property (1.2.90) and hence can be
written in the form (1.3.113), (1.3.115). Let us obtain such a representation. By the
periodicity (1.2.90) and rotation invariance,

h Ox.j /
`
.k/ Ox.j 0/

`0 .k0/i�per
ˇ;ƒ

D 0 if k ¤ k0, and j ¤ j 0,

where Ox.j /
`
.k/ is the same as in (2.1.17). Taking this into account we employ in (6.2.46)

the Fourier transformation (2.1.17) and obtain

Q
jj 0

h`1;`
0
1

ih`2;`
0
2

i.�; �
0/ D ıjj 0

X
k2K

yQh`1;`
0
1

ih`2;`
0
2

i.k/ek.�/ek.� 0/; (6.2.47)

with

yQh`1;`
0
1

ih`2;`
0
2

i.k/ D
�h

Ox.j /
`1
.k/ � Ox.j /

`0
1

.k/
i

�
h

Ox.j /
`2
.k/ � Ox.j /

`0
2

.k/
i�
�

per
ˇ;ƒ

: (6.2.48)

In view of the periodic conditions imposed on the boundaries of the box ƒ, the latter
kernel, as well as the one given by (6.2.46), are invariant with respect to the translations
of the corresponding torus, see Subsection 1.4.3 for more details. This allows us to
‘diagonalize’ the kernel (6.2.48) by means of a spatial Fourier transformation (6.1.14),
(6.1.15). Then the spatial periodicity of the state h � i�per

ˇ;ƒ
yields

h Ox.j /.p; k/ Ox.j /.p0; k/i�per
ˇ;ƒ

D 0 if p C p0 ¤ 0. (6.2.49)

Taking this into account we obtain

yQh`1;`
0
1

ih`2;`
0
2

i.k/ D
X
p2ƒ�

h Ox.j /.p; k/ Ox.j /.�p; k/i�per
ˇ;ƒ

�
�
ei.p;`1/ � ei.p;`0

1
/
�
=jƒj1=2

�
�
e�i.p;`2/ � ei.�p;`0

2
/
�
=jƒj1=2:

(6.2.50)
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Since the summand corresponding to p D 0 equals zero, the sum can be restricted
to ƒ� n f0g. This representation, however, cannot serve as a spectral decomposition,
similar to (6.2.47), because the eigenfunctions here are not normalized. Indeed,X

h`;`0i2E

�
ei.p;`/ � ei.p;`0/

�
=jƒj1=2 �

�
e�i.p;`/ � e�i.p;`0/

�
=jƒj1=2 D 2E.p/;

where

E.p/
defD

dX
jD1

Œ1 � cospj �: (6.2.51)

Then we set

�``0.p/ D
�
ei.p;`/ � ei.p;`0/

�
=
p
2jƒjE.p/; p 2 ƒ� n f0g; (6.2.52)

and

yQ.p; k/ D 2E.p/h Ox.j /.p; k/ Ox.j /.�p; k/i�per
ˇ;ƒ
; p 2 ƒ� n f0g: (6.2.53)

Thereby,

Qh`1;`
0
1

ih`2;`
0
2

i.�; � 0/

D
X

p2ƒ�nf0g

X
k2K

yQ.p; k/�`1`
0
1
.p/�`2`

0
2
.�p/ek.�/ek.� 0/; (6.2.54)

which is the spectral decomposition of the operator (6.2.46). Now we show that the
eigenvalues (6.2.53) have a specific upper bound1.

Theorem 6.2.8. For every p 2 ƒ� n f0g and k 2 K , the eigenvalues (6.2.53) obey the
estimate

yQ.p; k/ � 1=J; (6.2.55)

where J is the same as in (6.2.22). From this estimate one gets

h Ox.j /.p; k/ Ox.j /.�p; k/i�per
ˇ;ƒ

� 1

2JE.p/
; p 2 ƒ� n f0g: (6.2.56)

Proof. The estimate in question will be obtained from the Gaussian domination (6.2.26).
For t 2 R and a given b 2 XE , we consider the function .t/ D Zƒ.tb/. By Theo-
rem 6.2.7 it has a maximum at t D 0; hence, 00.0/ � 0. Computing the derivative
from (6.2.25) we get

00.0/ D J.b;Qb/XE
� kbk2XE

;

where the operator Q is defined by its kernel (6.2.46). Then the estimate (6.2.55) is
immediate.

1Their natural lower bound is zero as the operator (6.2.46) is positive.
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By (1.3.111), (6.2.47), and (6.2.53), we readily obtain

h. Oxp.�/; Ox�p.� 0//i�per
ˇ;ƒ

D �

2ˇE.p/

X
k2K

yQ.p; k/ cosŒk.� � � 0/�; p ¤ 0;

which yields, see (6.1.16), (6.1.17), and (6.2.55),

yDƒ
p D ˇ�

2E.p/
yQ.p; 0/ � ˇ�

2JE.p/
; p ¤ 0: (6.2.57)

Comparing this estimate with (6.1.21) we have the following

Corollary 6.2.9. If the model (1.1.3), (1.1.8) is translation and rotation-invariant with
ferromagnetic interaction of nearest neighbor type, then the infrared estimate (6.1.21)
for this model holds with

yB.p/ D ˇ�

2JE.p/
; p 2 .�
; 
�d n f0g: (6.2.58)

Proposition 6.2.10. For d � 3, B``0 defined by (6.1.22) with yB.p/ given by (6.2.58)
has the property: B``0 ! 0 as j` � `0j ! C1.

Proof. Though the validity of this statement follows from a standard fact (the Riemann–
Lebesgue lemma, see page 116 in [209]), we give its direct proof here as the same
method will also be used below. For p D .p1; Np/, Np D .p2; : : : ; pd / 2 .�
; 
�d�1,
we set

a. Np/ D 1C
dX
jD2

.1 � cospj /: (6.2.59)

For s 2 N, we also set

.s; Np/ D 1

2


Z �

��
cosp1s

a. Np/ � cosp1
dp1;

b.s/ D
Z
.��;��d�1

.s; Np/d Np:
(6.2.60)

Thereby, the property in question will be proven if we show that the sequence
fsd�2b.s/gs2N is bounded. To get an explicit form for .s; Np/ we use the follow-
ing known formula

1

2


Z �

��
ei
ld�

a � cos�
D 1p

a2 � 1 exp.�� jl j/;

� D log.aC
p
a2 � 1/;

(6.2.61)

which holds for all a > 1 and l 2 Z. Then

.s; Np/ D 1p
Œa. Np/�2 � 1 exp.�˛. Np/s/; (6.2.62)
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where
˛. Np/ D log

h
a. Np/C

p
Œa. Np/�2 � 1

i
:

By (6.2.59) for Np 2 .�
; 
�d�1, one can show that

a � j Npj �
p
Œa. Np/�2 � 1; ˛ � j Npj � ˛. Np/

with certain positive a and ˛. Here j Npj is the Euclidean norm. Then by (6.2.62),

sd�2b.s/ � sd�2
Z
.��;��d�1

1

aj Npj exp .�˛j Npjs/ d Np

� sd�2
Z

Rd�1

1

aj Npj exp .�˛j Npjs/ d Np

� cd˛
2�da�1

Z C1

0

td�3e�tdt D cd˛
2�da�1�.d � 2/;

where cd is the Lebesgue measure of the unit sphere in Rd�1.

6.3 Examples of Phase Transitions

In this section, we apply the technique developed above to prove phase transitions in
concrete versions of the model (1.1.3), (1.1.8). The version obeying the conditions of
Corollary 6.2.9 has phase transition if the corresponding Dƒ

``
obeys (6.1.26) with

# >
1

.2
/d

Z
.��;��d

ˇ�

2JE.p/
dp: (6.3.1)

Extensions of this result to the ferromagnetic models which are not translation-invariant
and/or have interactions of general type will be made by means of correlation inequal-
ities, proven in Chapter 2. However, as most of them are valid only for � D 1 and for
special types of the anharmonic potentials, our results in this direction will be restricted
to the scalar models with symmetric V`. In Subsection 6.3.3, we prove that the scalar
models with asymmetric anharmonic potentials have first-order phase transitions.

6.3.1 Phase Transitions in Rotation Invariant Models

In this subsection, we prove the existence of phase transitions in the model described
by Corollary 6.2.9. For 4-type anharmonic potentials,

V.u/ D �bjuj2 C b2juj4; b > a=2; b2 > 0; (6.3.2)

where a is as in (1.1.3), the bound (6.1.26) will be found explicitly. We begin by
considering this special case.
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Lemma 6.3.1. Let V be as in (6.3.2). Then for every ƒ 2 Lbox,

Kƒ``.�; � jp/ � .2b � a/�
4b2.� C 2/

defD #�: (6.3.3)

Proof. Let A be an operator, affiliated with the algebra Cƒ, see Definition 1.2.13, and
let A� be its adjoint. Then, cf. (1.2.55), we have

%
per
ˇ;ƒ

�
ŒA�; ŒH per

ƒ ; A��
�

D %
per
ˇ;ƒ

�
A�H per

ƒ AC AH
per
ƒ A� � A�AH per

ƒ �H per
ƒ AA��

D 1

Z
per
ˇ;ƒ

X
s;s02N

ˇ̌
A�
ss0

ˇ̌2 �
E

per
s0 �Eper

s

� ˚
exp

��ˇEper
s

� � exp
��ˇEper

s0

��
� 0:

(6.3.4)

HereEper
s , s 2 N, are the eigenvalues of the periodic Hamiltonian (1.4.51),Ass0 are the

corresponding matrix elements, %per
ˇ;ƒ

is the periodic local Gibbs state which was used

in Subsection 1.4.3 to construct the measure �per
ˇ;ƒ

. By the Euclidean representation
(1.4.20)

Kƒ``.�; � jp/ D
�X

jD1

D�
x
.j /

`
.0/
�2E

�
per
ˇ;ƒ

D
�X

jD1
%

per
ˇ;ƒ

h�
q
.j /

`

�2i
:

Now we set in (6.3.4) A D A� D p
.j /

`
, j D 1; : : : ; �, make use of the commutation

relation (1.1.6), and take into account the rotation invariance. Following this way we
arrive at

%
per
ˇ;ƒ

�
ŒA�; ŒH per

ƒ ; A��
� D %

per
ˇ;ƒ

�
�2b C aC 2b2jq`j2 C 4b2.q

.j /

`
/2
�

D �2b C aC 4b2.� C 2/
Dh
x
.j /

`
.0/
i2E

�
per
ˇ;ƒ

� 0;

(6.3.5)

which yields (6.3.3).

Now let us turn to the general case where V is just rotation-invariant, which in
particular means that the external field h equals zero. To indicate the dependence of
the pressure on the interaction intensity we write pper

ƒ .J /. Take any " > 0. Then the
pressure has the representation (5.2.17) (where one sets h D 0), by which we get, cf.
(5.2.18),

p
per
ƒ .J / � pper

ƒ .0/ � ˇ�Jd"2 C log �.m/: (6.3.6)

Clearly, pper
ƒ .J / is convex and differentiable; its derivative can be computed from

(5.2.17). Then

J

jƒj
X

h`;`0i2E

˝
.x`; x`0/L2

ˇ

˛
�

per
ˇ;ƒ

D J
@

@J
p

per
ƒ .J /

� p
per
ƒ .J / � pper

ƒ .0/;

(6.3.7)
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where E is the same as in (6.2.43). By the first GKS inequality, the left-hand side is
positive. Then the Cauchy–Schwarz inequality and the translation invariance of �per

ˇ;ƒ

yield ˝
.x`; x`0/L2

ˇ

˛
�

per
ˇ;ƒ

� ˝
.x`; x`/L2

ˇ

˛
�

per
ˇ;ƒ

D ˇKƒ``.�; � jp/:
Combining the latter estimate with (6.3.6), (6.3.7), we get the following

Lemma 6.3.2. For every � > 0, there exist positivem� and J�, which may depend on
ˇ, � , and on the potential V; such that for m > m� and J > J�,

Kƒ``.�; � jp/ � �: (6.3.8)

Proof. As was just shown,

Kƒ``.�; � jp/ � �"2 C log �.m/=ˇJd;

where �.m/may depend on ", see (5.2.14). Given � > 0, one picks " >
p
�=�, which

yields m�, see (5.2.15). For m > m�, �.m/ > 0; hence, one can find J� such that the
right-hand side of the latter estimate equals � for J D J�.

To proceed further we need the function f W Œ0;C1/ ! Œ0; 1/ defined implicitly
by

f .u tanh u/ D u�1 tanh u; for u > 0 and f .0/ D 1. (6.3.9)

It is differentiable, convex, and monotone decreasing on .0;C1/, such that tf .t/ ! 1.
For t � 6, f .t/ � 1=t to five-place accuracy, see Theorem A.2 in [109]. By direct
calculation,

f 0.u�/
f .u�/

D � 1

u�
� � � u.1 � �2/
� C u.1 � �2/ ; � D tanh u: (6.3.10)

Proposition 6.3.3. For every fixed ˛ > 0, the function

.t/ D t f̨ .t=˛/; t > 0; (6.3.11)

is differentiable and monotone increasing to ˛2 as t ! C1.

Proof. By (6.3.10),

0.t/ D 1

u�
� 2u.1 � �2/
� C u.1 � �2/ > 0; u� D u tanh u D t=˛:

The limit ˛2 is obtained from the corresponding asymptotic property of f .

Next, we need the following fact, known as Inequality of Bruch and Falk, see e.g.,
Theorem IV.7.5 in [277]. In view of its importance, we present a complete proof here.
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Proposition 6.3.4. Let A and A� be as in (6.3.4). Let also

b.A/ D ˇ�1
Z ˇ

0

%
per
ˇ;ƒ

�
A� expŒ��H per

ƒ �A expŒ�H per
ƒ �
�

d�;

g.A/ D %
per
ˇ;ƒ

.A�AC AA�/=2; c.A/ D %
per
ˇ;ƒ

�
ŒA�; ŒˇH per

ƒ ; A��
�
:

Then

b.A/ � g.A/f

�
c.A/

4g.A/

�
; (6.3.12)

where f is given by (6.3.9).

Proof. Set

'.�/ D %
per
ˇ;ƒ

�
A� expŒ��H per

ƒ �A expŒ�H per
ƒ �
�
; � 2 Œ0; ˇ�: (6.3.13)

Clearly,
g.A/ D Œ'.0/C '.ˇ/� =2;

and, see (6.3.4),

'.�/ D 1

Z
per
ˇ;ƒ

X
s;s02N

ˇ̌
A�
ss0

ˇ̌2
exp

��� �Eper
s0 �Eper

s

��
exp

��ˇEper
s

�

defD
1X
nD1

ane
�
n� ; �nC1 > �n > � � � > �1 � 0; an > 0:

(6.3.14)

Thereby,

b.A/ D ˇ�1
Z ˇ

0

'.�/d�; c.A/ D ˇ
�
'0.ˇ/ � '0.0/

�
; (6.3.15)

and

g.A/ D Œ'.0/C '.ˇ/� =2 D
1X
nD1

an.1C e�
nˇ /=2
defD

1X
nD1

bn: (6.3.16)

Taking into account the latter representation we rewrite (6.3.15) as

b.A/ D
1X
nD1

bn �
�
2

ˇ�n
tanh

ˇ�n

2

�
;

c.A/ D 4

1X
nD1

bn �
�
ˇ�n

2
tanh

ˇ�n

2

�
:

(6.3.17)

By (6.3.16),
1X
nD1

�n D 1; where �n
defD bn=g.A/.
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Therefrom,

RHS.6.3.12/ D g.A/f

� 1X
nD1

�n �
�
ˇ�n

2
tanh

ˇ�n

2

��

� g.A/

1X
nD1

�n � f
�
ˇ�n

2
tanh

ˇ�n

2

�

D
1X
nD1

bn �
�
2

ˇ�n
tanh

ˇ�n

2

�

D b.A/:

Here we have used the convexity of f and the definition (6.3.9).

Set

J.d/ D 1

.2
/d

Z
.��;��d

dp

E.p/
; (6.3.18)

where E.p/ is given by (6.2.51). The exact value of J.3/ can be expressed in terms
of complete elliptic integrals, see [318] and also [169] for more recent developments.
For d � 4, the following property was proven in [106] as Theorem 5.1.

Proposition 6.3.5. For d � 4, one has

1

d � 1=2 < J.d/ <
1

d � ˛.d/ <
1

d � 1; (6.3.19)

where ˛.d/ ! 1=2 as d ! C1.

Recall that m is the reduced particle mass (1.1.7).

Theorem 6.3.6. Let d � 3, the interaction be of nearest neighbor type, and the
anharmonic potential be of the form (6.3.2), which determines the parameter #�. Let
also the following condition be satisfied:

8m#2�J > J.d/: (6.3.20)

Then for every ˇ > ˇ�, where ˇ� is the unique solution of the equation

2ˇJ#�f .ˇ=4m#�/ D J.d/; (6.3.21)

the model has a phase transition in the sense of Definition 6.1.1.

Proof. One observes that

Œq
.j /

`
; ŒH

per
ƒ ; q

.j /

`
�� D 1=m; ` 2 ƒ: (6.3.22)
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Now we employ (6.3.12) with A D q
.j /

`
and obtain

b.A/ D ˇ�2D�f .j /
`

�2E
�

per
ˇ;ƒ

�
D�
x
.j /

`
.0/
�2E

�
per
ˇ;ƒ

f

0
@ ˇ

4m
˝
.x
.j /

`
.0//2

˛
�

per
ˇ;ƒ

1
A ;

where f .j /
`

is as in (6.1.1) and (6.1.11). By (6.3.9), #f .ˇ=4m#/ is an increasing
function of # . Thus, by (6.3.3) and (6.1.11),

Dƒ
`` � ˇ2�#�f .ˇ=4m#�/; (6.3.23)

which yields the bound (6.1.26). Thereby, the condition (6.3.1) takes the form

#�f .ˇ=4m#�/ > J.d/=2ˇJ: (6.3.24)

By Proposition 6.3.3, the function

.ˇ/ D 2ˇJ#�f .ˇ=4m#�/

is monotone increasing and hits the level J.d/ at certain ˇ�. For ˇ > ˇ�, the estimate
(6.3.24) holds, which yields jG t

ˇ
j > 1.

We remark that f .ˇ=4m#�/ ! 1 as m ! C1. In this limit, the condition
(6.3.20) turns into the corresponding condition for a classical model of 4 anharmonic
oscillators, which is in agreement with the conclusions of Chapter 4. Now let us turn
to a more general case.

Theorem 6.3.7. Let d � 3, the interaction be of nearest neighbor type, and the
anharmonic potential be rotation-invariant. Then for every ˇ > 0, there exist positive
m� andJ�, whichmaydependonˇ andon the anharmonic potential, such that jG t

ˇ
j > 1

for m > m� and J > J�.

Proof. Given positive ˇ and � , one has the bound (6.3.8) for big enough m and J .
Then one applies Proposition 6.3.4, which yields that (6.3.1) is satisfied if

�f .ˇ=4m�/ > J.d/=2ˇJ:

Then one sets m� to be as in (5.2.15) and J� to be the smallest value of J for which
both (6.3.8) and the latter inequality hold.

6.3.2 Phase Transitions in Symmetric Scalar Models

For � D 1, we can extend the above results to much more general J``0 and V`; however,
certain assumptions beyond Assumption 1.1.1 should be made.

As the basic element of our technique is the reflection positivity method, we still
suppose that L D Zd . At the same time, the model need not be translation-invariant.
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Suppose also that the interaction between the nearest neighbors is uniformly nonzero,
that is,

inf
j`�`0jD1

J``0
defD J > 0: (6.3.25)

Next we suppose that all V`’s are even continuous functions and the upper bound in
(1.1.10) can be chosen to obey the following conditions:

(a) for every `,

V.u`/ � V`.u`/ � V. Qu`/ � V`. Qu`/; whenever u2` � Qu2` ; (6.3.26)

(b) the function V has the form

V.u`/ D
rX
sD1

b.s/u2s` ; 2b.1/ < �aI b.s/ � 0; s � 2; (6.3.27)

where a is as in (1.1.3) and r � 2 is either positive integer or infinite;

(c) if r D C1, the series

˚.#/ D
C1X
sD2

.2s/Š

2s�1.s � 1/Šb
.s/#s�1; (6.3.28)

converges at some # > 0.

Since 2b.1/ C a < 0, the equation

aC 2b.1/ C ˚.#/ D 0; (6.3.29)

has a unique solution #� > 0. By the above assumptions all V` are ‘uniformly double-
welled’. If V`.u`/ D v`.u

2
`
/ and v` are differentiable, the condition (6.3.26) can be

formulated as an upper bound for v0
`
. Note that the pressure as a unified characteristic

of all Euclidean Gibbs states makes sense for translation-invariant models only. Thus,
Definition 6.1.6 is not applicable to the versions of models that do not have this property.

The main result of this subsection is given by the following statement.

Theorem 6.3.8. Let the model be as just described. Let also the condition (6.3.20)
with #� defined by the equation (6.3.29) and J defined by (6.3.25) be satisfied. Then
for every ˇ > ˇ�, where ˇ� is defined by the equation (6.3.21), the model has a phase
transition in the sense of Definition 6.1.1. If the model is translation-invariant, the
long-range order and the first-order phase transition take place at such ˇ.

Proof. The proof will be done by comparing the model considered with the reference
model which is the scalar model with the nearest neighbor interaction of intensity
(6.3.25) and with the anharmonic potential (6.3.27). In view of (6.3.26), the reference
model is more stable; hence, the phase transition in this model implies the same for the



6.3 Examples of Phase Transitions 311

model considered, which will be shown by means of the correlation inequalities. The
reference model is defined by its local periodic Hamiltonians

H low
ƒ D

X
`2ƒ

�
H har
` C V.q`/

� � J
X

h`;`0i2E
q`q`0 ; (6.3.30)

where ƒ is a box, for which E is as in (6.2.43), (6.2.44), and H har
`

is the same as in
(1.1.3). The local Hamiltonians corresponding to arbitrary ƒ 2 Lfin are defined in the
usual way. For the reference model, we have the infrared estimate (6.2.57) with � D 1.
Let us obtain the lower bound, see (6.3.3). To this end we use the inequalities (6.3.4)
and (6.3.5), which yields

0 � aC 2b.1/ C
rX
sD2

2s.2s � 1/b.s/˝ Œx`.0/�2.s�1/ ˛�low
ˇ;ƒ

� aC 2b.1/ C
rX
sD2

2s.2s � 1/ .2s � 2/Š
2s�1.s � 1/Š � b.s/

h˝
.x`.0//

2
˛
�low

ˇ;ƒ

is�1
:

(6.3.31)

Here �low
ˇ;ƒ

is the periodic Gibbs measure for the model (6.3.30). To get the second line

we used the Gaussian upper bound inequality (2.2.8), which is possible since all b.s/,
s � 2 are nonnegative. The solution of the latter inequality is˝

.x`.0//
2
˛
�low

ˇ;ƒ

� #�:

Then the proof of the phase transitions in the model (6.3.30) goes along the line of argu-
ments used in Theorem 6.3.6. Thus, for ˇ > ˇ�, hx`.0/i�low

C
> 0, see Corollary 5.3.2.

Let 
 low
ˇ;ƒ

, 
ˇ;ƒ,ƒ 2 Lfin, be the kernels (3.1.44) for the model (6.3.30) and the model
in question, respectively. Then by Theorem 2.5.11 for every `; `0,˝

x`.0/
˛
� low

ˇ;ƒ
. � j�`0 /

� ˝
x`.0/

˛
�ˇ;ƒ. � j�`0 /

;

where 	`0 is given by (3.7.12). We pass here to the limit ƒ % L and obtain that for
any `, ˝

x`.0/
˛
�C

� ˝
x`.0/

˛
�low

C
> 0;

which yields that jG t
ˇ

j > 1, see Corollary 5.3.2. If the model is translation-invariant,
by (2.5.40) we get

Pƒ � P low
ƒ :

Then the long-range order and the first-order phase transition follow.

6.3.3 Phase Transition in Asymmetric Scalar Models

The phase transitions proven so far have a common feature – the spontaneous symmetry
breaking. This means that the symmetry, e.g., rotation invariance, proper to the model
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and hence to the measure � 2 G t
ˇ

if jG t
ˇ

j D 1, is no longer possessed by the multiple
Gibbs measures appearing as the result of the phase transition. In this subsection, we
show that the translation-invariant scalar ferromagnetic version of the model (1.1.3),
(1.1.8) has a phase transition without symmetry breaking. However, we restrict our-
selves to the case of first-order phase transitions, see Definition 6.1.6. The reason for
this restriction can be explained as follows. The fact that D�

``0 , given by (6.1.2), does
not decay to zero as j` � `0j ! C1, see (6.1.4), implies that � is non-ergodic only
if � is symmetric. Otherwise, to show that � is non-ergodic one should prove that
the difference D�

``0 � hf`i� � hf`0i� does not decay to zero, which cannot be done by
means of our methods based on the infrared estimate.

In what follows, the only conditions imposed on the anharmonic potential are those
from Assumption 1.1.1. Obviously, we have to include the external field, that is, the
anharmonic potential is nowV.u/�hu. Since we are not going to impose any conditions
on the odd part of V , here we cannot apply the GKS inequalities (2.2.3), (2.2.4), the
comparison methods are based on. In view of this fact, we suppose that the interaction
is of nearest neighbor type. Thus, for a box ƒ, the periodic local Hamiltonian of the
model has the form (6.3.30).

In accordance with Definition 6.1.6, our goal is to show that the model parameters
(except for h) and the inverse temperature ˇ can be chosen in such a way that the set
R, defined by (5.2.6), is non-void. The main idea on how to do this can be explained as
follows. First we find a condition, independent of h, under whichD�

``0 does not decay
to zero for a certain periodic �. By Theorem 5.2.2, for fixed values of the parameters
mentioned above, there exist h˙, h� < hC, such that the magnetization (5.2.7) has the
property: M.h/ > 0 for h > hC and M.h/ < 0 for h < h�. Then, if R were void,
one would find h� 2 .h�; hC/ such that M.h�/ D 0. At such h�, the aforementioned
property of D� would yield the non-ergodicity of � and hence the first-order phase
transition, see Theorem 6.3.8. The realization of this scheme is based on the following

Lemma 6.3.9. For every ˇ > 0 and #�, there exist positive m� and J�, which may
depend on ˇ > 0 and #� but are independent of h, such that, for any box ƒ and any
h 2 R, ˝

Œx`.0/�
2
˛
�

per
ˇ;ƒ

� #�; if J > J� and m > m�. (6.3.32)

Proof. For a fixed h, we set

�hˇ .dx/ D 1

N h
ˇ

exp

�
h

Z ˇ

0

x.�/d�

�
�ˇ .dx/;

N h
ˇ D

Z
Cˇ

exp

�
h

Z ˇ

0

x.�/d�

�
�ˇ .dx/;

(6.3.33)

where �ˇ is as in (5.2.8). We also set

�hˇ;ƒ.dxƒ/ D
O
`2ƒ

�hˇ .dx`/; ƒ 2 Lfin:
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Then the local pressure corresponding to the Hamiltonian (6.3.30) by (5.2.17) can be
written

p
per
ƒ .J; h/ D p

per
ƒ .0; h/C 1

jƒj log
˝
exp .Yƒ/

˛
�h

ˇ;ƒ

: (6.3.34)

It is clearly a convex function of J for every fixed h. Thus, by (5.2.16), cf. (6.3.7),

J
@

@J
p

per
ƒ .J; h/ D J

jƒj
X

h`;`0i2E

Z ˇ

0

˝
x`.�/x`0.�/

˛
�

per
ˇ;ƒ

d�

� p
per
ƒ .J; h/ � pper

ƒ .0; h/:

(6.3.35)

As in (6.1.20), one can show that yKƒp .�; � jp/ � 0; hence, cf. (6.1.19),

˝
x`.�/x`0.�/

˛
�

per
ˇ;ƒ

D Kƒ``0.�; � jp/ � Kƒ``.�; � jp/ D ˝
Œx`.0/�

2
˛
�

per
ˇ;ƒ

:

Thereby, (6.3.35) yields˝
Œx`.0/�

2
˛
�

per
ˇ;ƒ

� �
p

per
ƒ .J; h/ � pper

ƒ .0; h/
�
=ˇJd: (6.3.36)

Let n, ˛, c, ", and p be as in (5.2.9)–(5.2.14) with � D 1. Then, for ˙h � 0, from
(6.3.34) we get, cf. (5.2.18),

p
per
ƒ .J; h/ � pper

ƒ .0; h/ � ˇJd"2 C log �hˇ
�
B˙."; c/

�
: (6.3.37)

Let us show now that for ˙h � 0,

�hˇ
�
B˙."; c/

� � �ˇ
�
B˙."; c/

�
: (6.3.38)

For h � 0, let I.x/ be the indicator function of the set CC
ˇ
.nI c/, see (5.2.12). For

ı > 0 and t 2 R, we set

)ı.t/ D

8̂<
:̂
0 t � c;

.t � c/=ı t 2 .c; c C ı�;

1 c � c C ı;

and

Iı.x/
defD

nY
kD0

)ı Œx.kˇ=n/�:

By Lebesgue’s dominated convergence theorem,

N h
ˇ �

h
ˇ

�
CC
ˇ
.nI c/� D

Z
Cˇ

I.x/ exp

�
h

Z ˇ

0

x.�/d�

�
�ˇ .dx/

D lim
ı#0

Z
Cˇ

Iı.x/ exp

�
h

Z ˇ

0

x.�/d�

�
�ˇ .dx/:

(6.3.39)
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As the function )ı is continuous and increasing, by the FKG inequality, see Theo-
rem 2.2.1, it follows thatZ

Cˇ

Iı.x/ exp

�
h

Z ˇ

0

x.�/d�

�
�ˇ .dx/ � N h

ˇ

Z
Cˇ

Iı.x/�ˇ .dx/:

Passing here to the limit we obtain from (6.3.39)

�hˇ

h
CC
ˇ
.nI c/

i
� �ˇ

h
CC
ˇ
.nI c/

i
;

which obviously yields (6.3.38). For h � 0, one just changes the signs of h and x. Now
letm� be as in (5.2.15). If we fix ˇ and the parameters that appear in (5.2.14), then for
m > m� given by (5.2.15), the right-hand side of (5.2.14) gets positive. Therefore, we
pick any positive #� < "2 and obtain (6.3.32) from (6.3.36)–(6.3.38) with, cf. (5.2.14),

J� D ."2 � #�/
	
ˇd log

�
†.nI c/ � DV .˛; 1; p/

Œmn.c � "/2�
�
�1

: (6.3.40)

Now we can prove the main statement of this subsection.

Theorem 6.3.10. Let the model be scalar, translation-invariant, and with the nearest-
neighbor ferromagnetic interaction. Let also d � 3. Then for every ˇ, there exist
m� > 0 and J� > 0 such that, for all m > m� and J > J�, there exists h� 2 R,
possibly dependent on m, ˇ, and J , such that p0.h/ gets discontinuous at h�, i.e., the
model has a first-order phase transition.

Proof. Let m� be as in (5.2.15) and J�, #� be as in Lemma 6.3.9. Fix any ˇ > 0 and
m > m�. Then, for J > J�, the estimate (6.3.32) holds, which yields the validity
of (6.3.23) for all boxes ƒ with such ˇ, m, and � D 1. Thereby, we increase J , if
necessary, up to the value at which (6.3.24) holds. Afterwards, all the parameters,
except for h, are set fixed. In this case, there exists a periodic state � 2 G t

ˇ
such

that the first summand in (6.1.25) is positive; hence, D�

``0 does not decay to zero as
j` � `0j ! C1, see Proposition 6.2.10. If p.h/ is everywhere differentiable, i.e., if
R D ;, then by Theorem 5.2.2 there should exist h� such that M.h�/ D 0; hence,
the state � with such h� is non-ergodic, which yields jG t

ˇ
j > 1 and hence a first-order

phase transition. Otherwise, R ¤ ;.

6.4 Critical Point of a Hierarchical Model

According to Definition 6.1.11, the critical point of the model corresponds to an abnor-
mal normalization in (6.1.45), i.e., the one with ˛ > 0. In general, to find such an ˛
and to prove (6.1.47) is a very hard problem, even for classical models. However, there
exists a class of models, for which such an ˛ is given from the very beginning. These
are the so-called hierarchical models, where the underlying set L is equipped with a
special metric. The first hierarchical model was introduced by F. J. Dyson in [108].
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6.4.1 The Model and the Main Result

The model we study in this section is a version of the general model (1.1.8) with � D 1

and L D N0. The interaction intensities J``0 are defined by means of a certain metric
on L, due to which they possess a specific symmetry, reflected in the name of the
model.

Given ~ 2 N n f1g, we set

ƒn;s D f` 2 N0 j ~ns � ` � ~n.s C 1/ � 1g; s; n 2 N0: (6.4.1)

Then, for n 2 N, one has

ƒn;s D
[

`2ƒk;s

ƒn�k;`; k D 1; 2; : : : ; n: (6.4.2)

The collection of families fƒn;sgs2N0
, n 2 N0, is called a hierarchical structure.

Given `; `0 2 L, we set

n.`; `0/ D minfn j 9ƒn;s W `; `0 2 ƒn;sg; d.`; `0/ D ~n.`;`
0/ � 1: (6.4.3)

Then any triple f`1; `2; `3g � L contains two elements, say`1; `2, such thatd.`1; `3/ D
d.`2; `3/. Thus, d.`; `0/ is a metric on L. In our model, the interaction potential is

J``0 D J
�
d.`; `0/C 1

��1�ı
; J; ı > 0: (6.4.4)

In order to employ the symmetry imposed by the hierarchical structure, as finite subsets

of L we shall use the sets (6.4.2) only. A standard choice is the sequence ofƒn;0
defD ƒn,

n 2 N0. The formal Hamiltonian (1.1.8) of the model with the interaction potential
(6.4.4) can be written also as

H D ��
2

1X
nD0

~�n.1Cı/X
`

� X
`02ƒn;`

q`0

�2 C
X
`

H`; (6.4.5)

where � D J.1� ~�.1Cı// > 0 andH` is as in (1.1.3). The anharmonic potential will
be taken in the form of (6.3.2), (2.2.23). Due to this choice, we shall be able to use
inequalities like (2.2.25). One more simplification can be made if we set

� D ~ı � 1; (6.4.6)

which affects the scale of ˇ only and hence can be done without any loss of generality.
The main peculiarity of the model (6.4.5) is that it is invariant with respect to the

transformations of L which preserve the hierarchical structure. Therefore, we define
the local Hamiltonians for sets ƒ having the form (6.4.2) only by setting

Hn;` D ��
2

nX
kD0

~�n.1Cı/� X
`02ƒn;`

q`0

�2 C
X
`

H`

D �1
2
�~�n.1Cı/� X

`02ƒn;`

q`0

�2 C
X

`02ƒ1;`

Hn�1;`0 ;

(6.4.7)
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with the initial element H0;` D H`. For these Hamiltonians, we introduce the local
Euclidean Gibbs measures �n;`, see (1.4.8), (1.4.18), employing the following energy
functions:

En;`.xƒn;`
/ D �1

2
�~�n.1Cı/

Z ˇ

0

� X
`02ƒn;`

x`0.�/
�2

d�

C
X

`02ƒ1;`

En�1;`0.xƒn�1;`0 /;

(6.4.8)

with

E0;` D
Z ˇ

0

��bŒx`.�/�2 C b2Œx`.�/�
4
�

d�: (6.4.9)

According to Definition 6.1.11, we consider

P
.˛/

n;`
D ˇ�2

jƒn;`j1C˛

Z
�ˇ;ƒ

	 X
`02ƒn;`

Z ˇ

0

x`0.�/d�


2
�n;`.d�/: (6.4.10)

We also set P .˛/n D P
.˛/
n;0 . Then the model has a critical point if there exists ˛ 2 .0; 1/

such that
lim

n!C1P .˛/n

defD P .˛/ > 0: (6.4.11)

Thus, the main object of our study will be the fluctuation operator

Q
.˛/

n;`
D 1

jƒn;`j.1C˛/=2
X

`02ƒn;`

q`0 D 1

~n.1C˛/=2
X

`02ƒn;`

q`0 ; ˛ 2 .0; 1/; (6.4.12)

which is characterized by an abnormal normalization. An evident candidate for the
index ˛ is the parameter ı which describes the decay of the interaction (6.4.4). To
simplify notation we write

Qn;`
defD Q

.ı/

n;`
; (6.4.13)

and the corresponding Matsubara functions (1.2.84), (1.4.20),

�
ˇ;ƒn;`

Q
.˛/

n;`
;:::;Q

.˛/

n;`

.�1; : : : ; �2k/ D �
.˛;n/

2k
.�1; : : : ; �2k/; k 2 N;

�
ˇ;ƒn;`

Qn;`;:::;Qn;`
.�1; : : : ; �2k/ D �

.n/

2k
.�1; : : : ; �2k/;

(6.4.14)

where we have taken into account that all such functions with the same n but different
` coincide by the hierarchical symmetry. Thereby,

Pn
defD P .ı/n D ˇ�1

Z ˇ

0

�
.n/
2 .�; � 0/d� 0; (6.4.15)

which is independent of � by (1.2.90). Now we can formulate the main result of this
section.
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Theorem 6.4.1. For themodel (6.4.5) one can choose the parametersm, b1
defD b�a=2,

and b2 in such a way that there will exist ˇ� > 0, dependent on b1, b2, m, with the
following properties: (a) if ˇ D ˇ�, then for all k 2 N, the convergence

�
.n/

2k
.�1; : : : ; �2k/ ! �1

2k.�1; : : : ; �2k/
defD .2k/Š

kŠ2kˇk�
(6.4.16)

holds uniformly on .�1; : : : ; �2k/ 2 Œ0; ˇ�2k; (b) if ˇ < ˇ�, for all ˛ > 0 the functions
�
.˛;n/

2k
, k 2 N, converge to zero in the same sense.

Remark 6.4.2. In fact, for ˇ < ˇ� one can prove that the sequences of Matsubara
functions (6.4.14) corresponding to the operators (6.4.12) with ˛ D 0 (i.e., to the nor-
mal fluctuations) are bounded. As stated above, for ˇ D ˇ�, the limiting Matsubara
functions are Gaussian, cf. (2.2.7), and independent of �j , which means that the crit-
ical fluctuations are Gaussian and non-quantum, cf. Theorem 4.2.1, like in quantum
hierarchical spin models [219].

Remark 6.4.3. The construction of tempered Euclidean Gibbs measures for the model
(6.4.5) is beyond the technical abilities of the theory developed above, see the discussion
between the definition of the weights (3.1.25) and Assumption 3.1.9 (see p. 198).
Therefore, the only aspect of the theory of this model related to phase transitions we
are able to establish is the one provided by Theorem 6.4.1. Note that the definition of the
critical point, as well as the definition of the first- and second-order phase transitions,
do not involve the set G t

ˇ
.

The proof of Theorem 6.4.1 will be performed in several steps. First we transform
the problem into the problem of controlling two particular sequences of numbers. Then
we make a preliminary investigation of these sequences. Afterwards, we formulate a
number of lemmas, by means of which we then prove the theorem. Later we prove the
lemmas.

6.4.2 Preliminary Statements

To prove our theorem we only need the Matsubara functions corresponding to the
operators Qn;`. Thus, we shall study the measures describing distributions of Qn;`
given by (6.4.12), (6.4.13). By (6.4.8), such measures �n;` D �n are defined by the
recursion relation2

�n.dx/ D 1

Zn
exp

�
�

2
kxk2

L2
ˇ

�
�?~n�1.~.1Cı/=2dx/; (6.4.17)

�0.dx/ D 1

Z0
exp .�E0;s.x// �ˇ .dx/; (6.4.18)

2Transformations of measures of this kind were studied in [184].



318 6 Phase Transitions

where the function E0;s is given by (6.4.9), Zn, n 2 N, are normalizing constants,
and ? stands for convolution. In order to simplify notation, we drop the labels ` and s.
Next we set, cf. (2.2.10),

fn.x/ D
Z
L2

ˇ

exp
�
.x; 	/L2

ˇ

�
�n.d	/

D
Z
Cˇ

exp
�
.x; 	/L2

ˇ

�
�n.d	/; x 2 Cˇ :

(6.4.19)

Expanding its logarithm into the series (2.2.15) we obtain the Ursell functions, cf.
(2.2.16),

U
.n/

2k
.�1; : : : ; �2k/

defD U
ı;ˇ;ƒn;s

2k
.�1; : : : ; �2k/; k 2 N: (6.4.20)

Each function U .n/
2k

can be written as a polynomial of the Matsubara functions �.n/2s ,
s D 1; 2; : : : ; k and vice versa. In particular,

U
.n/
2 .�1; �2/ D �

.n/
2 .�1; �2/;

U
.n/
4 .�1; : : : ; �4/ D �

.n/
4 .�1; : : : ; �4/ � �.n/2 .�1; �2/�

.n/
2 .�3; �4/

� �.n/2 .�1; �3/�
.n/
2 .�2; �4/ � �.n/2 .�1; �4/�

.n/
2 .�2; �3/:

(6.4.21)

Obviously, for every ˛ > 0 and k 2 N,

U
˛;ˇ;ƒn;s

2k
.�1; : : : ; �2k/ D jƒn;sjı�˛U .n/

2k
.�1; : : : ; �2k/

D ~n.ı�˛/U .n/
2k
.�1; : : : ; �2k/:

(6.4.22)

Note that the Ursell functions just introduced obey the sign rule (2.2.25).
In view of (1.2.90), the Matsubara and Ursell functions depend only on the periodic

distances j�i � �j jˇ D minfj�i � �j j; ˇ � j�i � �j jg. By Theorems 2.5.14 and 2.2.11,
we have the following property.

Lemma 6.4.4. For all n 2 N0 and k 2 N, the following estimates hold for all values
of �; � 0; �1; : : : ; �2k 2 Œ0; ˇ�:Z

�2
ˇ

U
.n/
4 .�; �; �1; �2/d�1d�2 �

Z
�2

ˇ

U
.n/
4 .�; � 0; �1; �2/d�1d�2; (6.4.23)

.�1/k�1U .n/
2l
.�1; �2; : : : ; �2k/ � 0: (6.4.24)

Set

Oun.k/ D
Z ˇ

0

U
.n/
2 .� 0; �/ cos.k�/d�

D
Z ˇ

0

U
.n/
2 .0; �/ cos.k�/d�; k 2 K; n 2 N0;

(6.4.25)
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where K is the same as in (1.3.20). Then

U
.n/
2 .�1; �2/ D 1

ˇ

X
k2K

Oun.k/ cosŒk.�1 � �2/�: (6.4.26)

Furthermore, we set

u
.n/

2k
D
Z ˇ

0

: : :

Z ˇ

0

U
.n/

2k
.�1; : : : ; �2k/d�1 : : : d�2k : (6.4.27)

Then
Oun defD Oun.0/ D ˇ�1u.n/2 : (6.4.28)

Lemma 6.4.5. For every n 2 N0 and k 2 K , Oun.k/ is a continuous function of ˇ,
obeying the estimates

0 � Oun.k/ � OunI (6.4.29)

Oun.k/ � ~�nı=mk2; k ¤ 0: (6.4.30)

Proof. By (6.4.25), (6.4.21), (6.4.14), (1.2.84), and (1.2.50) one obtains

U
.n/
2 .0; �/ D 1

Zn;`
trace

˚
Qn;` exp

���Hn;`�Qn;` exp
��.ˇ � �/Hn;`

��
:

Let E.n/s , s 2 N, be the eigenvalues of Hn;`, see (1.2.54). Let also  .n/s be the
corresponding eigenfunctions and set

Q
.n/
ss0 D. .n/s ;Qn;` 

.n/
s0 /Hƒn;`

:

Then the above representation of U .n/2 can be rewritten

U
.n/
2 .0; �/ D 1

Zn;`

X
s;s02N

ˇ̌̌
Q
.n/
ss0

ˇ̌̌2
exp

h
�ˇE.n/s C �.E.n/s �E.n/s0 /

i
;

which by (6.4.25) yields

Oun.k/ D 1

Zn;`

X
s;s02N

ˇ̌̌
Q
.n/
ss0

ˇ̌̌2 E
.n/
s �E.n/s0

k2 C .E
.n/
s �E.n/s0 /2

� � expŒ�ˇE.n/s0 � � expŒ�ˇE.n/s �
�
;

Zn;` D
X
s2N

expŒ�ˇE.n/s �:

(6.4.31)

Both above series converge uniformly, as functions of ˇ, on compact subsets of
.0;C1/, which yields continuity and positivity. The upper bound (6.4.29) follows
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from (6.4.31) or from (6.4.25). To prove (6.4.30) we estimate the denominator in
(6.4.31) by k2 ¤ 0 and obtain

Oun.k/ � 1

k2
1

Zn;`

X
s;s0

ˇ̌̌
Q
.n/
ss0

ˇ̌̌2
.E.n/s �E.n/s0 /

�
�

expŒ�ˇE.n/s0 � � expŒ�ˇE.n/s �
�

D 1

k2
1

Zn;`
trace

˚�
Qn;`;

�
Hn;`;Qn;`

��
exp

��ˇHn;`�� :
(6.4.32)

The double commutator is equal to jƒn;`j�ı=m, which yields (6.4.30).

The main idea of our method is that the convergence stated in the theorem will be
obtained by controlling the sequence f Oungn2N0

and ‘something else’. It turns out that
this ‘something else’ is just one more sequence of numbers. This significant feature
of our model comes from the Lee–Yang property of the measures �n;` and hence of
�n, n 2 N0, which they possess since the anharmonic potential (6.3.2) with any b and
b2 > 0 meets the conditions of Proposition 2.4.4. Therefore, the functions

gn.�/ D fn.�x/; � 2 C; n 2 N0;

where fn is given by (6.4.19), can be represented in the following way, see Theo-
rem 2.4.6 and (2.4.1):

gn.�/ D
1Y
jD1

.1C c
.n/
j �2/; c

.n/
1 � c

.n/
2 � � � � > 0;

1X
jD1

c
.n/
j < 1: (6.4.33)

Therefrom, the parameters (6.4.27) are

u
.n/
2s D 2.2s � 1/Š.�1/s�1

1X
jD1

h
c
.n/
j

isI (6.4.34)

hence,

ju.n/2s j � 2.2s � 1/Š
h
c
.n/
1

is�2 1X
jD1

h
c
.n/
j

i2
; s � 2;

ju.n/2s j � .2s � 1/Š
h
c
.n/
1

is�1
u
.n/
2 ; s 2 N;

(6.4.35)

and

ju.n/2s j � .2s � 1/Š.21�s=3/
h
u
.n/
2

is�2ju.n/4 j; s � 2;

ju.n/2s j � .2s � 1/Š21�shu.n/2
is
; s 2 N:

(6.4.36)

We have thus proven the following statement.



6.4 Critical Point of a Hierarchical Model 321

Lemma 6.4.6. The parameters (6.4.27) obey the estimates, see (6.4.28),

ju.n/2s j � .2s � 1/Š21�s Œˇ Oun�s ; s 2 NI (6.4.37)

ju.n/2s j � .2s � 1/Š
3 � 2s�1 Œˇ Oun�s�2 � ju.n/4 j; s � 2: (6.4.38)

From this we see that all the sequences fu.n/2s gn2N0
, s 2 N, are controlled by just

two of them: fu.n/2 g and fu.n/4 g.

6.4.3 Proof of Theorem 6.4.1

For n 2 N0, we set

�n D �
Z ˇ

0

Z ˇ

0

U
.n/
4 .�; �; �1; �2/d�1d�2: (6.4.39)

Then by Theorem 2.5.14 and the sign rule (2.2.25), one has

0 < ˇ�2ju.n/4 j � �n; for all n 2 N0, (6.4.40)

thus, we can control the sequence fu.n/4 g by controlling f�ng. We can now state the
main lemma for the proof of Theorem 6.4.1.

Lemma 6.4.7. For the model (6.4.5) with ı 2 .0; 1=2/, one can choose the parameters
b1, b2, and m in such a way that there will exist ˇ� > 0, dependent on b1, b2, and m
only, with the following properties: (a) for ˇ � ˇ�, limn!C1 �n D 0; (b) for ˇ D ˇ�,
limn!C1 Oun D 1; (c) for ˇ < ˇ�, there exists K.ˇ/ > 0 such that, for all n 2 N0,

Oun � K.ˇ/~�nı : (6.4.41)

The proof of this lemma will be given in Subsection 6.4.4 below. Lemmas 6.4.5
and 6.4.7 have two important corollaries.

Corollary 6.4.8. For every ˇ � ˇ� and s 2 N, the sequences f�.n/2s gn2N0
, fU .n/2s gn2N0

are relatively compact in the topology of uniform convergence on Œ0; ˇ�2s .

Proof. Since the Ursell function U .n/2s can be expressed as a polynomial of �.n/
2k

with
k D 1; : : : ; s and vice versa, it is enough to prove this statement for the Matsubara
functions only. By the Arzela–Ascoli theorem (see e.g., [221], p. 72) we have to show
that the sequence f�.n/2s gn2N0

is point-wise bounded and equicontinuous. By (6.4.30)
and (6.4.26),

�
.n/
2 .�; � 0/ � �

.n/
2 .0; 0/ � 1

ˇ
Oun.0/C ~�nı

ˇm

X
k2Knf0g

1

k2
: (6.4.42)
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For ˇ � ˇ�, the sequence f Oun.0/gn2N0
is bounded by Lemma 6.4.7. Together with the

Gaussian upper bound (2.2.8), this yields the uniform boundedness of �.n/2s on Œ0; ˇ�2s .
Furthermore,

�
.n/
2s .�1; : : : ; �2s/ � �.n/2s .#1; : : : ; #2s/ (6.4.43)

D
Z
Cˇ

2sX
kD1

x.�1/ : : : x.�k�1/ Œx.�k/ � x.#k/� x.#kC1/ : : : x.#2s/�n.dx/:

Applying here the Cauchy–Schwarz inequality (as to the scalar product in L2.Cˇ ; �n/
of Œx.�k/ � x.#k/� and the rest of x’s), the Gaussian upper bound (2.2.8) and the
left-hand inequality in (6.4.42), one gets

j�.n/2s .�1; : : : ; �2s/ � �.n/2s .#1; : : : ; #2s/j2

�
�
�
.n/
2 .0; 0/ � �.n/2 .�; #/

�
� 8s2.4s � 2/Š
.2s � 1/Š22s�1

�
�
.n/
2 .0; 0/

�2s�1
;

(6.4.44)

where .�; #/ is chosen amongst the pairs .�k; #k/, k D 1; : : : ; 2s, such that j� �#jˇ D
maxk j�k � #kjˇ . But by (6.4.26) and (6.4.30),

�
.n/
2 .0; 0/ � �.n/2 .�; #/ D 2

ˇ

X
k2K

Oun.k/ fsin Œ.k=2/ .� � #/�g2

� 2~�nı

ˇm

X
k2Knf0g

1

k2
fsin Œ.k=2/ .� � #/�g2

� C~�nı j� � #jˇ ;
with an appropriate C > 0.

The next fact follows directly from (6.4.30) and (1.3.20).

Corollary 6.4.9. For every ˇ,X
k2Knf0g

Oun.k/ ! 0; n ! C1:

Proof of Theorem 6.4.1. By Lemma 6.4.7, (6.4.38) and (6.4.39), (6.4.40), one obtains

that for all s � 2 and ˇ � ˇ�, limn!C1 u
.n/
2s D 0. Then by the sign rule (2.2.25), for

all s � 2, the sequences fU .n/2s gn2N0
converge to zero for almost all .�1; : : : ; �2s/ 2

Œ0; ˇ�2s , which, by Corollary 6.4.8, yields their uniform convergence to zero. By
(6.4.26)–(6.4.30), Corollary 6.4.9, and Lemma 6.4.7, one has for ˇ D ˇ�,

U
.n/
2 .�1; �2/ D 1

ˇ
Oun.0/C 1

ˇ

X
k2Knf0g

Oun.k/ cosŒk.�1 � �2/� ! 1=ˇ; (6.4.45)
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uniformly with respect to �1, �2. Now one can express each �.n/2s polynomially byU .n/
2k

with k D 1; : : : ; s and obtain the convergence (6.4.16) for ˇ D ˇ�. For ˇ < ˇ�, we
have the estimate (6.4.41), which yields, cf. (6.4.42) and (6.4.22),

�
˛;ˇ;ƒn;s

2 .�1; �2/ � �
˛;ˇ;ƒn;s

2 .0; 0/

� ~�n˛

ˇ

h
K.ˇ/C 1

m

X
k2Knf0g

1

k2

i
I (6.4.46)

hence, �˛;ˇ;ƒn;s

2 .�1; �2/ ! 0 as n ! C1, uniformly on Œ0; ˇ�2. The convergence of

the Matsubara functions �˛;ˇ;ƒn;s

2k
with k � 2 follows from the Gaussian upper bound

(2.2.8).

6.4.4 Proof of Lemma 6.4.7

In the proof of Lemma 6.4.7, an important role is played by a statement about differential
equations, which will serve us also in the subsequent section. We derive it here based
on another fact, known in the theory of ordinary differential equations.

For a domain D � R2, let f W D ! R be a continuous function. Suppose .0; u0/ 2
D . Then one can consider the initial value problem

Pu D f .t; u/; u.0/ D u0; Pu defD du=dt: (6.4.47)

For an appropriate function v, its defect Dv with respect to the equation (6.4.47) is
defined to be

Dv.t/ D Pv.t/ � f .t; v.t//:
Given functions v,w, suppose that the following holds: (a)w.0/ < v.0/; (b)Dw.t/ <
Dv.t/ for all t belonging to a certain � � R, which contains the initial point t D 0.
Then, according to Theorem V, page 65 of the book [317], it follows that

w.t/ < v.t/; for all t 2 �. (6.4.48)

Proposition 6.4.10. Let � D Œ0; 1� and f be continuous on Œ0; 1� � R. Let also
r W Œ0; 1� ! .�1; 0� be continuous and r.t/ < 0 for t > 0. Suppose we are given
functions u; v W Œ0; 1� ! R, which solve the following initial value problems:

Pu D f .t; u/C r.t/; u.0/ D a;

Pv D f .t; v/; v.0/ D a:
(6.4.49)

Then u.t/ < v.t/ for all t > 0.

Proof. Given � > 0, we set w.t/ D u.t/� �. Let Du be the defect with respect to the
second equation in (6.4.49). Then Dv D 0 and

Dw.t/ D f .t; u.t//C r.t/ � f .t; u.t/ � �/:
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As r.t/ < 0 and both f .t; u.t//, f .t; u.t/ � �/ are continuous on Œ0; 1�, one can
choose � so small that Dw.t/ < 0 for all t 2 Œ0; 1�. This yields (6.4.48) and hence
u.t/ � v.t/. Now it remains to exclude the case u.t�/ D v.t�/ for some t� > 0.
Consider the function y.t/ D v.t/ � u.t/, for which one has y.t/ � 0. If y.t�/ D 0,
then

Py.t�/ D �r.t�/ > 0;
hence, y.t� � ı/ < 0 for small enough ı > 0, which is impossible.

Set

�.�/ D ~�ı

1 � .1 � ~�ı/�
; � 2 �0; 1=.1 � ~�ı/

�
; (6.4.50)

and

.�/ D ~2ı�1Œ�.�/�4;  .�/ D 1

2
~2ı�1.1 � ~�ı/Œ�.�/�3: (6.4.51)

Lemma 6.4.11. Given n 2 N, let the condition

.1 � ~�ı/ Oun�1 < 1 (6.4.52)

be satisfied. Then

Oun < �. Oun�1/ Oun�1; (6.4.53)

Oun � �. Oun�1/ Oun�1 � �n�1 . Oun�1/; (6.4.54)

0 < �n � . Oun�1/�n�1; (6.4.55)

where �n is defined by (6.4.39).

Proof. For t 2 Œ0; ��, � D ~ı � 1, x 2 L2
ˇ

, and n 2 N, we set (cf. (6.4.19))

fn.xjt / D 1

Zn

Z
L2

ˇ

exp
�
.x; 	/L2

ˇ
C t

2
k	k2

L2
ˇ

�
�?~n�1

�
~.1Cı/=2d	

�
; (6.4.56)

where Zn is as in (6.4.17). Then

fn.xj�/ D fn.x/; fn.xj0/ D Z�1
n

h
fn�1

�
~�.1Cı/=2x

�i~
: (6.4.57)

For every t 2 Œ0; ��, the function (6.4.56) can be expanded in the series, cf. (2.2.11),
(2.2.12),

fn.xjt / D 1C
C1X
kD1

1

.2k/Š

Z ˇ

0

: : :

Z ˇ

0

f
.n/

2k
.�1; : : : ; �2kjt /x.�1/ : : : x.�2k/d�1 : : : d�2k;

(6.4.58)
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with the coefficients

f
.n/

2k
.�1; : : : ; �2kjt / D 1

Zn

Z
L2

ˇ

	.�1/ : : : 	.�2k/ exp
�
t

2
k	k2

L2
ˇ

�

� �?~n�1
�
~.1Cı/=2d	

�
;

(6.4.59)

which for t D � coincide with the corresponding Matsubara functions �.n/
2k

. By Theo-
rem 1.4.14 for every fixed .�1; : : : ; �2k/ 2 Œ0; ˇ�2k , as functions of t , the coefficients
(6.4.59) are differentiable and continuous on Œ0; ��. The corresponding derivatives are

@

@t
f
.n/

2k
.�1; : : : ; �2kjt / defD Pf .n/

2k
.�1; : : : ; �2kjt /

D 1

2

Z ˇ

0

f
.n/

2kC2.�1; : : : ; �2k; �; � jt /d�:
(6.4.60)

Now we expand logfn.xjt /, cf. (2.2.15), (2.2.16),

logfn.xjt / D
C1X
kD1

1

.2k/Š

Z ˇ

0

: : :

Z ˇ

0

u
.n/

2k
.�1; : : : ; �2kjt /x.�1/ : : : x.�2k/d�1 : : : d�2k :

(6.4.61)

The derivatives of the Ursell function u.n/
2k
.�1; : : : ; �2kjt / with respect to t can be

calculated from (6.4.60). In particular,

Pu.n/2 .�1; �2jt / D 1

2

Z ˇ

0

u
.n/
4 .�1; �2; �; � jt /d� C

Z ˇ

0

u
.n/
2 .�1; � jt /u.n/2 .�2; � jt /d� I

(6.4.62)

Pu.n/4 .�1; �2; �3; �4jt / D 1

2

Z ˇ

0

u
.n/
6 .�1; �2; �3; �4; �; � jt /d�

C
Z ˇ

0

u
.n/
4 .�1; �2; �3; � jt /u.n/2 .�4; � jt /d�

C
Z ˇ

0

u
.n/
4 .�1; �2; �4; � jt /u.n/2 .�3; � jt /d�

C
Z ˇ

0

u
.n/
4 .�1; �3; �4; � jt /u.n/2 .�2; � jt /d�

C
Z ˇ

0

u
.n/
4 .�2; �3; �4; � jt /u.n/2 .�1; � jt /d�:

(6.4.63)

Then for

�n.t/
defD

Z ˇ

0

u
.n/
2 .�1; �2jt /d�2 D

Z ˇ

0

u
.n/
2 .0; � jt /d� (6.4.64)
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we obtain the following system of equations:

P�n.t/ D 1

2
U.t/C Œ�n.t/�

2 ; (6.4.65)

PU.t/ D 1

2
V.t/C 2�n.t/U.t/

C 2

Z ˇ

0

Z ˇ

0

Z ˇ

0

u
.n/
2 .�2; �3jt /u.n/4 .0; �1; �2; �3jt /d�1d�2d�3;

(6.4.66)

subject to the initial conditions (see (6.4.57))

�n.0/ D ~�ı Oun�1.0/;

U.0/ D ~�2ı�1
Z ˇ

0

Z ˇ

0

u
.n/
4 .0; �1; �2; �2jt /d�1d�2

D �~�2ı�1�n�1:

(6.4.67)

Here

U.t/
defD
Z ˇ

0

Z ˇ

0

u
.n/
4 .0; �1; �2; �2jt /d�1d�2

D
Z ˇ

0

Z ˇ

0

u
.n/
4 .�; �; �1; �2jt /d�1d�2;

V .t/
defD
Z ˇ

0

Z ˇ

0

Z ˇ

0

u
.n/
6 .0; �1; �2; �2; �3; �3jt /d�1d�2d�3:

(6.4.68)

Along with the problem (6.4.65)–(6.4.67) we consider the problem

Py.t/ D Œy.t/�2; y.0/ D �n.0/ D ~�ı Oun�1.0/: (6.4.69)

Under the condition (6.4.52) its solution is

y.t/ D ~�ı Oun�1.0/
1 � t~�ı Oun�1.0/

D � Œ.t=�/ Oun�1.0/� � Oun�1.0/; t 2 Œ0; ��: (6.4.70)

The sign rule (2.2.25) is valid for the aboveu.n/
2k

for all t 2 Œ0; ��, which yieldsU.t/ < 0,
V.t/ > 0. Then by Proposition 6.4.10, the solution of (6.4.65) will be dominated by
(6.4.70), i.e.,

Oun.0/ D �n.�/ < y.�/ D �. Oun�1.0// Oun�1.0/;

which gives (6.4.53).
With the help of (6.4.23), (6.4.24) the third term on the right-hand side of (6.4.66)
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can be estimated as

2

Z ˇ

0

Z ˇ

0

u
.n/
2 .�2; �3jt /

�
ˇ�1

Z ˇ

0

Z ˇ

0

u
.n/
4 .�; �1; �2; �3jt /d�d�1

�
d�2d�3

� 2

�
ˇ�1

Z ˇ

0

Z ˇ

0

u
.n/
4 .�; �1; �2; �2jt /d�d�1

�

�
Z ˇ

0

Z ˇ

0

u
.n/
2 .�2; �3jt /d�2d�3 D 2�n.t/U.t/:

Applying this in (6.4.66) we arrive at (recall that U.t/ < 0 and V.t/ > 0)

PU.t/
U.t/

� 4y.t/ D 4~�ı Oun�1
1 � t~�ı Oun�1

; 8t 2 Œ0; ��: (6.4.71)

Integrating this one gets

U.t/ � U.0/

Œ1 � t~�ı Oun�1�4
; 8t 2 Œ0; ��; (6.4.72)

which yields in turn

U.�/ D ��n � �~2ı�1 Œ�. Oun�1/�4 �n�1 D �. Oun�1/�n�1;

and thereby (6.4.55). Now we set

h.t/ D 1

Œ1C t~�ı Oun�1�2
� �n

�
t

1C t~�ı Oun�1

�
� ~�ı Oun�1
1C t~�ı Oun�1

;

where t 2 Œ0; tmax�, tmax D �~ı�. Oun�1/. For this function we obtain from (6.4.65) the
equation

Ph.t/ D 1

2Œ1C t~�ı Oun�1�4
� U

�
t

1C t~�ı Oun�1

�
C Œh.t/�2; (6.4.73)

subject to the boundary conditions

h.0/ D 0; h.tmax/ D Œ1 � �~�ı Oun�1�2 � Œ�n.�/ � �. Oun�1/ Oun�1� : (6.4.74)

By means of (6.4.71), one can show that the first term on the right-hand side of (6.4.73)
is a monotone increasing function of t 2 Œ0; tmax�, which yields

h.tmax/ � h.0/ � tmaxU.0/=2:

Taking into account (6.4.74) and (6.4.67) one obtains from the latter

�n.�/ � �. Oun�1/ Oun�1 D Oun � �. Oun�1/ Oun�1

� �1
2
.1 � ~�ı/Œ�. Oun�1/�3~2ı�1�n�1;

which gives (6.4.54).
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Now we prove a statement that will allow us to control the initial elements of the
sequences f Oung and f�ng. With its help we shall choose the parameters b1, b2, and
m in such a way that Ou0 and �0 possess the properties securing the corresponding
convergence of these sequences. Set

& D &.ˇ; b1; b2; m/ D %ˇ;ƒ0;`
.q2` / D hx2` i�0

: (6.4.75)

From now on we suppose that b1 D b � a=2 < 0, cf. (6.3.2). Recall that the function
f was introduced in (6.3.9).

Lemma 6.4.12. The initial elements of the sequences f Oung, f�ng obey the following
estimates:�

ˇb1

6b2

�
f

�
3ˇb2

2mb1

�
� Ou0 � min


ˇ& I ˇb1

4b2

h
1C

p
1C .8b2=ˇb1/

i�
; (6.4.76)

�0 � 4Šb2Œ Ou0�4
	
f

�
3ˇb2

2mb1

�
�1
: (6.4.77)

Proof. One observes, see (6.4.25), that Ou0 is exactly ˇ�1Dƒ
``

for ƒ D f`g; hence, the
lower bound in (6.4.76) is nothing else but the estimate (6.3.23) with #� being as in
(6.3.3) and b1 D 2b � a. The bound Ou0 � ˇ& follows from the estimate (6.4.29)
(positivity) and the definition (6.4.26). To obtain the other upper bound we use the
integration-by-parts formula (3.4.36), in which we take i to be just k 2 K and i to
be ek , see (3.4.1). The logarithmic derivative of the measure �0 in this direction is,
cf. (3.4.30),

bk.x/ D �.mk2 � 2b1/
Z ˇ

0

ek.�/x.�/d� � 4b2
Z ˇ

0

ek.�/Œx.�/�
3d�:

Then we apply (3.4.36) to the function

g.x/ D
Z ˇ

0

ek.�/x.�/d�; (6.4.78)

and obtain for k D 0 the equation

1 D �2b1 Ou0 C 4b2

ˇ

Z ˇ

0

Z ˇ

0

�
.0/
4 .�; �; �; � 0/d�d� 0: (6.4.79)

By the GKS inequality (2.2.4), it follows that

�
.0/
4 .�; �; �; � 0/ � �

.0/
2 .�; �/ � �.0/2 .�; � 0/:

From this by the estimate Ou0 � ˇ& we have, in (6.4.79),

1 � �2b1 Ou0 C 4b2& Ou0 � �2b1 Ou0 C 4b2ˇ
�1Œ Ou0�2;
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which yields the second upper bound in (6.4.76).
By (2.2.10) with ƒ D f`g, which obviously is applicable in the case considered,

we get

�U .0/4 .�1; �2; �3; �4/ � 4Šb2

Z ˇ

0

U
.0/
2 .�1; �/U

.0/
2 .�2; �/U

.0/
2 .�3; �/U

.0/
2 .�1; �/d�;

which yields

�0 � 4Šb2Œ Ou0�2
Z ˇ

0

�
U
.0/
2 .�; � 0/

�2
d� � 4Šb2Œ Ou0�3ˇ&

� 4Šb2Œ Ou0�4
	
f

�
ˇ

4m&

�
�1
;

(6.4.80)

where we have used the upper bound for ˇ& obtained from

Ou0 � ˇ&f

�
ˇ

4m&

�
;

which is the estimate (6.3.12) written in the present context. As was mentioned above,
the function f is monotone decreasing; hence, if we replace & by its lower bound
b1=6b2, see (6.3.3), we obtain from (6.4.80) exactly the bound to be proven.

Now let us return to the functions (6.4.50) and (6.4.51). Recall that ı 2 .0; 1=2/.
Given � 2 .0; .1 � 2ı/=4/, we define �.�/ by the condition

�Œ�.�/� D ~�; (6.4.81)

which yields

�.�/ D ~ı � ~��

~ı � 1 D 1C 1 � ~��

~ı � 1 : (6.4.82)

Therefrom,
.�/ � ~2ıC4��1 < 1; for � 2 Œ1; �.�/�. (6.4.83)

Furthermore, we set

!.�/ D 2~1�ı�2� � .~
ı � ~��/.1 � ~��/
.~ı � 1/2 ; (6.4.84)

!max D sup
�2.0;.1�2ı/=4/

!.�/: (6.4.85)

The function � 7! !.�/ is continuous, and hence, for every ! < !max, one finds
" 2 .0; .1 � 2ı/=4/ such that ! < !."/. Thus, we set N� D �."/ and N! D !."/.
Therefore, for ! < N!, one has

�  .�/! C ��.�/ > �; for � 2 Œ1; N��. (6.4.86)

Now by means of Lemma 6.4.12 we find the interval where the ‘critical value’ ˇ� is
located.
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Lemma 6.4.13. The parameters b1, b2, andm can be chosen in such a way that there
will exist " 2 .0; .1 � 2ı/=4/ and the numbers ˇ0̇ , 0 < ˇ�

0 < ˇC
0 with the following

properties: (a) Ou0 D 1 for ˇ D ˇ�
0 and Ou0 < 1 for ˇ < ˇ�

0 ; (b) Ou0 D N� D �."/ for
ˇ D ˇC

0 and Ou0 < N� for ˇ < ˇC
0 ; (c) �0 < N! D !."/ for all ˇ 2 Œˇ�

0 ; ˇ
C
0 �.

Proof. The function f defined in (6.3.9) has the following bound, see Theorem A.4
in [109],

f .u/ � u�1.1 � e�u/: (6.4.87)

Then by (6.4.76), one has

4m#2�
	
1 � exp

�
� ˇ

4m#�

�

� Ou0 � 3

2
ˇ#�

"
1C

s
1C 4

3ˇ#�

#
; (6.4.88)

where #� D b1=6b2, cf. (6.3.3). This immediately yields that Ou0 ! 0 as ˇ ! 0. On
the other hand, by taking 4m#2� > N� (big mass and/or deep wells) one gets Ou0 > N� for
sufficiently large ˇ. By Lemma 6.4.5, Ou0 depends on ˇ continuously; hence, ˇ0̇ with
the properties stated do exist. By Proposition 6.3.3, the factor Œf .ˇ=4m#�/��1 on the
right-hand side of (6.4.77) is bounded. For ˇ 2 .0; ˇC

0 �, Ou0 � N� . Thus, one can pick
b2 such that the right-hand side of (6.4.77) is less than N!.

Next we prove the following inductive statement.

Lemma 6.4.14. Let Sn D .s1n; s
2
n; s

3
n/, n 2 N0, be the triple of the following state-

ments:

s1n D f9ˇC
n 2 Œˇ�

0 ; ˇ
C
0 � W Oun D N�; for ˇ D ˇC

n I Oun < N�; for ˇ < ˇC
n g;

s2n D f9ˇ�
n 2 Œˇ�

0 ; ˇ
C
0 � W Oun D 1; for ˇ D ˇ�

n I Oun < 1; for ˇ < ˇ�
n g;

s3n D f8ˇ 2 .0; ˇC
n / W �n < N!g:

Then .i/ S0 is true; .ii/ Sn�1 implies Sn.

Proof. S0 is true by Lemma 6.4.13. For ˇ D ˇC
n , by (6.4.50) �. Oun/ D ~" and

�. Oun/ < ~" for ˇ < ˇC
n . If ˇ D ˇC

n�1, by (6.4.86), (6.4.84), (6.4.54), and s3n�1 it
follows that

Oun � ~" N� � 1

2
.1 � ~�ı/~3"~2ı�1�n�1

> ~" N�
	
1 � ~2."�1/Cı.~ı � 1/ N!

N�



D N�:
(6.4.89)

For ˇ D ˇ�
n�1, the estimates (6.4.53) yield

Oun < 1: (6.4.90)

Taking into account Lemma 6.4.5 (continuity) and the estimates (6.4.89), (6.4.90), one
concludes that there exists at least one value Q̌C

n 2 .ˇ�
n�1; ˇ

C
n�1/ such that Oun D N� .
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Then we set ˇC
n D min Q̌C

n . The mentioned continuity of Oun yields also Oun < N� for
ˇ < ˇC

n . Thus, s1n is true. The existence of ˇ�
n 2 Œˇ�

n�1; ˇ
C
n�1/ can be proven in the

same way. For ˇ < ˇC
n < ˇ

C
n�1, we have �. Oun�1/ < ~", which yields

�n < ~
2ı�1~4"�n�1 � �n�1 < N!I

hence, s3n is true as well. The proof is concluded by remarking that

Œˇ�
n ; ˇ

C
n � � Œˇ�

n�1; ˇC
n�1� � Œˇ�

0 ; ˇ
C
0 �:

Lemma 6.4.15. There exists ˇ� 2 Œˇ�
0 ; ˇ

C
0 � such that, for ˇ D ˇ�, the following

estimates hold for all n 2 N0:
1 � Oun < N�: (6.4.91)

For ˇ < ˇ�, the above upper estimate, as well as the estimate (6.4.41), hold.

Proof. Consider the set�n
defD fˇ 2 .0; ˇC

n / j 1 � Oun < N�g. Just above we have shown
that it is nonempty and �n � Œˇ�

n ; ˇ
C
n /. Let us prove that �n � �n�1. Suppose that

there exists some ˇ 2 �n, which does not belong to�n�1. For this ˇ, either Oun�1 < 1
or Oun�1 � N� . Hence, either Oun < 1 or Oun > N� (which can be proven as above), which
is in conflict with the assumption ˇ 2 �n. Now let Dn be the closure of �n. Then

Dn D fˇ 2 Œˇ�
n ; ˇ

C
n � j 1 � Oun � �.ı/g; (6.4.92)

which is a nonempty closed set. Furthermore, Dn � Dn�1 � � � � � Œˇ�
0 ; ˇ

C
0 �. Set

D� D
\
n

Dn;

then D� � Œˇ�
0 ; ˇ

C
0 � is also nonempty and closed. Now let us show that, for every

ˇ 2 D�, the sharp upper bound in (6.4.91) holds for all n 2 N. Suppose Oun D N� for
some n 2 N. Then (6.4.89) yields Oum > O� for all m > n, which means that this ˇ
does not belong to allDm, and hence toD�. Set ˇ� D minD�. Then both inequalities
(6.4.91) hold for ˇ D ˇ�. Let us prove (6.4.41). Take ˇ < ˇ�: If Oun > 1 for all
n 2 N, then either (6.4.91) holds or there exists such an n0 that Oun0

� N� . Therefore,
either ˇ 2 D� or ˇ > inf ˇC

n : Both these cases contradict the assumption ˇ < ˇ�.
Thus, there exists n0 2 N such that Oun0�1 � 1 and hence Oun < 1 for all n � n0: In
what follows, the definition (6.4.50) and the estimate (6.4.53) imply that the sequences
f Oungn�n0

and f�. Oun/gn�n0
are strictly decreasing. Then for all n > n0, one has (see

(6.4.53))

Oun < �. Oun�1/ Oun�1 < � � � < �. Oun�1/�. Oun�2/ : : : �. Oun0
/ Oun0

<
�
�. Oun0

/
�n�n0 :

Since �. Oun0
/ < 1; one gets

1X
nD0

Oun < 1:
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Thus, 1Y
nD1

�
1 � .1 � ~�ı/ Oun�1

��1 defD K0 < 1:

Finally, we apply (6.4.53) once again and obtain

Oun < ~�nı�1 � .1 � ~�ı/ Oun�1
��1

: : :
�
1 � .1 � ~�ı/ Ou0

��1 Ou0
< ~�nıK0 N� defD K.ˇ/~�nı : �

Proof of Lemma 6.4.7. The existence of ˇ� has been proven in Lemma 6.4.15. Con-
sider the case ˇ D ˇ� where the estimates (6.4.91) hold. First we show that �n ! 0.
Making use of (6.4.55) we obtain

0 < �n � ~2ı�1 Œ�. Oun�1/�4 �n�1 < �n�1 < �n�2 < � � � < N!:
Therefore, the sequence f�ng is strictly decreasing and bounded; hence, it converges
and its limit, say ��, obeys the condition �� < �0 < N!. Assume that �� > 0. Then
(6.4.55) yields �. Oun/ ! ~"; hence, Oun ! Ou1 � N� . Passing to the limit n ! 1 in
(6.4.54) one obtains �� � N! which contradicts the above condition. Thus �� D 0. To
prove that Oun ! 1 we set

�n D �1
2
.1 � ~�ı/ Œ�. Oun�1/�3 ~2ı�1�n�1: (6.4.93)

Combining (6.4.53) and (6.4.54) we obtain

0 � Oun � �. Oun�1/ Oun�1 � �n ! 0: (6.4.94)

For ˇ D ˇ�, one has by Lemma 6.4.15 that f Oung � Œ1; N�/. By (6.4.94), all the
accumulation points of f Oung in Œ1; Nv� ought to solve the equation

u � �.u/u D 0:

There is only one such point: u� D 1, which hence is the limit of f Oung. For ˇ < ˇ�,
the estimate (6.4.41) yields Oun ! 0, then �. Oun.0// ! ~�ı . The latter and (6.4.55)
imply �n ! 0.

6.5 Comments and Bibliographic Notes

Section 6.1: According to the main definition of phase transition, this phenomenon
occurs if jG t

ˇ
j > 1. In the translation-invariant case, the main way of proving the

existence of phase transitions is to show that the set G t
ˇ

contains a non-ergodic element.
Usually, it is a periodic Euclidean Gibbs measure. In the general case, the model
under consideration is compared with a translation-invariant model, which is more
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stable with respect to phase transitions. The comparison is performed by means of
the correlation inequalities valid for the model under consideration. This fact imposes
certain restrictions on the choice of the latter. For classical lattice models, the method
of proving phase transitions by showing the non-ergodicity of periodic Gibbs states
was developed in [124]. At more or less the same time, an alternative rigorous theory
of phase transitions in classical lattice spin models was proposed. This is the Pirogov–
Sinai theory elaborated in [245], see also [282], based on contour estimates for the
Ising model originated by Peierls, see e.g., [282]. Later, the Pirogov–Sinai theory was
essentially extended and generalized into an abstract sophisticated method, applicable
also to classical lattice models with unbounded spins, see [321] and the references
therein. Finally, we mention that other techniques for the study of phase transitions,
based on statistical arguments, like the large deviation principle, entropy methods, etc.,
see [89], [129] and the references therein.

For quantum lattice models, the theory of phase transitions has essential pecu-
liarities, which distinguish it from the corresponding theory of classical systems. In
this context, it suffices to mention that the existence of phase transitions in the three-
dimensional isotropic quantum Heisenberg model has not yet been proven. Most of
the results in this domain were obtained by means of quantum versions of the method
of infrared bounds developed in [124]. The first publication in which the infrared
estimates were applied to quantum spin models seems to be the article [109]. After
certain modifications this method was applied to a number of models with unbounded
Hamiltonians [52], [53], [106], [181], [240], the main characteristic feature of which
was theZ2-symmetry broken by the phase transition. In [106], [240], by means of the
infrared estimates the appearance of the long-range order was proven for 4 models,
similar to the version of our model with V as in (6.3.2). In this case, inequalities like
(6.3.4) allow one to get the estimate (6.1.26) and thereby to prove that the correlation
function does not decay to zero if J is big enough. By (6.1.28) this yields P > 0.
In [52], [53], [181], the estimate analogous to (6.1.26) was obtained for general sym-
metric V by means of the representation of the correlation function as a path integral.
More or less the same approach was used in [15]. Here we also mention a version
of contour techniques, which allows for establishing the long-range order in quantum
crystals, see [25]. However, in all these papers, phase transitions in the sense of Defi-
nition 6.1.1 could not be even discussed. The first papers where such definition was
used are [199], [200].

As was already mentioned, in our approach the system of quantum anharmonic
oscillators is described as a system of ‘classical’ infinite-dimensional spins. This allows
us to apply here the original version of the method of infrared estimates elaborated in
[124] adapted to the infinite-dimensional case. Thus, in deriving the estimate (6.1.10)
we mostly follow the line of arguments taken from the latter paper. The ‘local’ version
of such arguments leading to the conditions (6.1.26), (6.1.27) was developed in [171],
where most of the material of this chapter concerning phase transitions can be found.

Our definition of phase transition employs the set G t
ˇ

. In the physical literature,
there exist alternative definitions, based directly on the thermodynamic properties of
the system. These are the definition employing the differentiability of the pressure
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(Definition 6.1.6, which is applicable to translation-invariant models only), and the
definition based on the long-range order. The relationship between the latter two
notions is established by means of the Griffiths theorem, Theorem 6.1.7, the proof of
which mostly repeats the arguments used for this purpose in [109]. As was mentioned
above, for translation-invariant models with bounded interaction, non-differentiability
of the pressure corresponds to the non-uniqueness of the Gibbs states, see [162], [277].
For our model, the problem of establishing this relation remains open.

Section 6.2: There exist several descriptions of the reflection positivity method. First
of all, one has to mention the original paper [124] as well as further developments in
[125], [126], [272]. Then we mention also the monographs [129], [253], [254], [277],
[282]. The version presented in subsections 6.2.1 and 6.2.2 is close to the text of [183],
where the related bibliography can also be found. With regard to the infrared bound
obtained in Subsection 6.2.3 we note that, in accordance with the conditions (6.1.21),
(6.1.26), and (6.1.27), it was obtained for the Duhamel function, see (6.2.57), rather
than for

yKƒp .�; �/ D
X
`02ƒ

Kƒ``0.�; � jp/ cos.p; ` � `0/;

which was used in the papers [15], [52], [53], [181].

Section 6.3: The simplest case of the 4 model with the nearest neighbor interaction
is described by Theorem 6.3.6. The sufficient condition for the phase transition to
occur which we obtained in the form of (6.3.20) contains three parameters: the particle
mass m; the interaction intensity J ; the anharmonicity parameter #�. The ‘softer’ is
the localizing field, the bigger is #�. For a more general symmetric scalar version of
the model, this description with obvious modifications remains valid, which we prove
by comparing the model considered with its translation-invariant version. These two
cases are studied in subsections 6.3.1 and 6.3.2, based on the corresponding materials
of the papers [199], [200].

In symmetric, respectively, rotation-invariant, models, the phase transitions are
accompanied by the symmetry breaking. Due to this symmetry, the condition (6.3.20),
as well as the corresponding conditions in a more general symmetric case, are quite
simple. Furthermore, the conditions (6.1.21), (6.1.26), and (6.1.27) correspond to the
models symmetric with respect to the transformation q` ! �q`, for all `. In the case
of asymmetric V`, so far there have no results been obtained about phase transitions
in quantum models. In classical models with unbounded spins, for proving phase
transitions by means of the infrared estimates, symmetry was not especially important,
see Theorem 3.5 in [124] and the discussion preceding this theorem. There might be
two explanations of such a discrepancy: (a) the symmetry was the key element but
only of the methods employed therein, and, as in the classical case, its lack does not
imply the lack of phase transitions; (b) the symmetry is crucial in view of e.g., quantum
effects, which stabilize the system, see Chapter 7. In Subsection 6.3.3, we prove that
the first-order phase transition without symmetry breaking occurs in our model under
the condition that the oscillator mass is sufficiently big and hence quantum effects are



6.5 Comments and Bibliographic Notes 335

not so strong. As a consequence, the dilemma mentioned above has been solved in
favor of explanation (a).

Section 6.4: In the language of limit theorems of probability theory, the long-range
order, see Definition 6.1.5, corresponds to the fact that a new law of large numbers
comes to power, see Theorem 6.1.7 and the discussion preceding Definition 6.1.11.
The critical point of the model corresponds to the case where the law of large numbers
still holds in its classical form (in the translation-invariant case this means absence of
the first-order phase transitions), but the central limit theorem holds true with an abnor-
mal normalization. Thus, the critical point can be detected by means of the fluctuation
operators corresponding to this normalization, which for the model considered in this
section is given by (6.4.12). In a general context, algebras of abnormal fluctuation
operators were studied in [79]. In application to quantum crystals, the correspond-
ing study was performed in [313], [314], where the reader can find a more detailed
discussion of this subject as well as the corresponding bibliography.

In classical statistical mechanics, hierarchical models have been known since 1969,
when F. J. Dyson introduced in [108] his model and used it as a tool for the study of
the one-dimensional Ising model with long-range interactions. A little bit later it was
understood that this model is interesting in its own right as due to the hierarchical
symmetry this model is self-similar. The latter property is related to the presence of
critical points, see [281]. As a consequence, a complete theory of critical points of
classical hierarchical models was developed. We refer the reader to the original works
by P. Bleher and Ya. Sinai [67], [69], to the survey article [68] and the monograph
[282], as well as to the publications [87] and [137], [185], [186], [187].

The reason why we consider the hierarchical version rather than e.g., the translation-
invariant one is the same as in the case of classical hierarchical models. Due to the
self-similarity of the model, the recursion relations between the Matsubara functions
(6.4.14) with consecutive n are relatively simple. Our choice of the anharmonic po-
tential (of 4 type) was due to the following reasons: (a) Shlosman’s sign rule (2.2.25)
allowed us to study the sequences of Ursell functions (6.4.20) by studying the corre-
sponding sequences of numbers (6.4.27); (b) by means of Theorem 2.4.6 we obtained
the estimates (6.4.37), (6.4.38), which reduced the study of an infinite number of the
latter sequences to the study of merely two sequences, see Lemma 6.4.7. As a con-
sequence, we managed to prove the main statement – Theorem 6.4.1. A preliminary
study of the model considered in this section was performed in [9], [10], [11]. The
approach presented in this section mostly repeats the one given in [8]. Here we point
out that this statement is the only one describing the critical point convergence in a
quantum model known in the literature. In the paper [219], the authors showed that the
critical point of a hierarchical quantum spin model is the same as that of its classical
counterpart.



Chapter 7

Quantum Effects

7.1 Quantum Stabilization

A spontaneous change of the structure of a crystalline substance is called a structural
phase transition. It occurs when the existing structure of the crystal becomes unstable
due to the interaction between the structural elements. In a number of physical systems,
ordering of light particles moving in multi-welled potential fields can trigger structural
phase transitions. This has been confirmed by the fact that the phase transitions were
suppressed by application of strong hydrostatic pressure, which makes the wells closer
to each other and increases tunneling of the light particles between the wells. The
same effect can be observed when the particles are replaced by similar particles but
with smaller mass, see [70], [303], [309] for the corresponding data on KDP-type fer-
roelectrics and [224] for the data on YBaCuO-type high-temperature superconductors.
Since the mechanism of this effect is purely quantum, it can be called quantum stabi-
lization. The aim of this section is to describe such effects in the model studied in this
book in the framework of the theory developed in Part I.

7.1.1 The Stability of Quantum Crystals

To understand what makes a crystal stable or unstable let us first consider the scalar har-
monic version of the model (1.1.8) with finite-range interactions – a quantum harmonic
crystal. In this case, the one-particle Hamiltonian is given by (1.1.68). Its spectrum
consists of the eigenvalues Ehar

n D .nC 1=2/ı, n 2 N0, ı D p
a=m, where a is the

oscillator rigidity, see (1.1.73) and (1.1.72). Then the gap parameter (1.1.162), i.e.,

�har D min
n2N

.Ehar
n �Ehar

n�1/

in this case is �har D ı. Thereby, cf. (1.1.165),

a D m�2har: (7.1.1)

The set of tempered Euclidean Gibbs measures of the harmonic crystal can be con-
structed similarly as it was done in Chapter 3, but with one exception. Such measures
exist only if the stability condition

sup
`

X
`0

jJ``0 j D OJ0 < a D m�2har (7.1.2)

is satisfied. In this case, G t
ˇ

is a singleton at all ˇ, which readily follows from Theo-

rem 4.3.1. At OJ0 D a, the harmonic crystal becomes unstable with respect to spatial
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translations; for d � 3, the set G t
ˇ

is still a singleton. For d D 1; 2, G t
ˇ

is empty.
As the right-hand side of (7.1.2) is independent of m, the same stability condition is
applicable to the classical harmonic crystal which is obtained in the limit m ! C1,
see Chapter 4. According to Assumption 1.1.1, the anharmonic potentials V` have a
super-quadratic growth, due to which the tempered Euclidean Gibbs measures of an-
harmonic crystals exist for all OJ0. In this case, the instability of the crystal is connected
with the change of equilibrium positions and hence with a structural phase transition.
A sufficient condition for the models described in Section 6.3 to have a phase transition
can be derived from the equation (6.3.24). It is

2ˇJ#�f .ˇ=4m#�/ > J.d/; (7.1.3)

which in the classical limit m ! C1 takes the form

2ˇJ#� > J.d/:

For d � 3 and hence finite J.d/, the latter condition can be satisfied by picking a big
enough ˇ. Therefore, the classical anharmonic crystals always have phase transitions
– no matter how small is the interaction parameter J . For finitem, the left-hand side of
(7.1.3) is bounded by 8m#2�J , and the bound is achieved in the limit ˇ ! C1. If for
given values of the interaction parameter J , the mass m, and the parameter #� which
characterizes the anharmonic potential, this bound does not exceed J.d/, the condition
(7.1.3) will not be satisfied for any ˇ. Although this condition is only sufficient, one
might expect that the phase transition cannot occur at all ˇ if the compound parameter
8m#2�J is small enough. This effect, if it really exists, could be called quantum
stabilization, since it is impossible in the classical analog of the model.

According to the arguments presented above, one might expect that the stability
condition for quantum anharmonic crystals, at least for their ferromagnetic scalar ver-
sions with the anharmonic potentials independent of `, has the form of (7.1.2), in which
the rigidity parameter a is replaced by its anharmonic analog (1.1.165). That is,

OJ0 < rm: (7.1.4)

In this section, we show that the model with the one-particle Hamiltonian (1.1.145)
obeying the condition (7.1.4) never has phase transitions. This means that the corre-
sponding set of tempered Euclidean Gibbs measures G t

ˇ
is a singleton at allˇ. The proof

is based on the methods developed mostly in Chapters 5 and 6. Then by means of the
correlation inequalities proven in Chapter 2 we show that a similar stability condition
yields the same uniqueness result for quite general ferromagnetic scalar anharmonic
crystals, not necessarily translation-invariant. For ferromagnetic translation-invariant
quantum anharmonic crystals with arbitrary � 2 N, under a condition similar to (7.1.4)
we prove that the pressure is two times differentiable with respect to the external field
h 2 R. This means that the phase transitions in the sense of Definition 6.1.6, as well as
the long-range order, are suppressed at allˇ and h. All these results follow from the fact
that under the condition (7.1.4), at all ˇ > 0 the pair correlation functionKƒ

``0.�; �
0j0/,

see (5.3.4), of the corresponding model decreases properly as j` � `0j ! 1.
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According to Theorem 1.1.60, the quantum rigidity rm of the oscillator with the
Hamiltonian (1.1.145) is a continuous function of m, which tends to C1 as m ! 0.
Therefore, the condition (7.1.4) certainly holds in the small-mass limit. Its large-
mass behavior is described by the following statement, where we suppose that the
Hamiltonian has the form (1.1.145), (1.1.146) with bs � 0 for all s D 2; : : : ; r � 1,
i.e., its anharmonic potential is exactly as in (6.3.27) with finite r 2 N. We recall that
for this potential, the parameter #� > 0 is the unique solution of the equation (6.3.29).

Theorem 7.1.1. Let � D 1 and V be as in (6.3.27). Then the gap parameter �m and
the quantum rigidity rm of the Hamiltonian with such V obey the estimates

�m � 1

2m#�
; rm � 1

4m#2�
: (7.1.5)

Proof. Let%m be the local Gibbs state (1.2.12) corresponding to the one-particle Hamil-
tonian with the assumed anharmonic potential. Then by means of the inequality (6.3.4)
and the Gaussian upper bound (2.2.8) we get, see (6.3.31),

aC 2b.1/ C ˚
�
%m.q

2/
� � 0;

by which

%m.q
2/ � #�: (7.1.6)

Let  n, n 2 N0 be the eigenfunctions of the Hamiltonian Hm corresponding to the
eigenvalues En. By Theorem 1.1.50, to each En there corresponds exactly one such
 n. Set

Qnn0 D . n; q n0/L2.R/; n; n0 2 N0:

As  n are either even or odd, we have Qnn D 0 for any n 2 N0. Let us consider

�.�; � 0/ D %m
�
q exp

��.� 0 � �/Hm
�
q exp

��.� � � 0/Hm
��
; �; � 0 2 Œ0; ˇ�;

which is the Matsubara function (1.2.92) corresponding to the state%m and the operators
F1 D F2 D q. Set

Ou.k/ D
Z ˇ

0

�.0; �/ cos k�d�; k 2 K D f.2
=ˇ/� j� 2 Zg: (7.1.7)

Then, cf. (6.4.31),

Ou.k/ D 1

Zm

C1X
n;n0D0

jQnn0 j2 En �En0

k2 C .En �En0/2

� fexp.�ˇEn0/ � exp.�ˇEn/g ;
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where Zm D trace exp.�ˇHm/. The term .En � En0/2 in the denominator may be
estimated from below by (1.1.162), which yields, cf. (6.4.32),

Ou.k/ � 1

k2 C�2m
� 1

Zm

C1X
n;n0D0

jQnn0 j2 .En �En0/

� fexp.�ˇEn/ � exp.�ˇEn0/g
� 1

k2 C�2m
� %m .Œq; ŒHm; q��/

D 1

m.k2 C�2m/
:

(7.1.8)

By this estimate we get

%m.q
2/ D �.0; 0/ D 1

ˇ

X
k2K

Ou.k/

� 1

ˇ

X
k2K

1

m.k2 C�2m/
D 1

2m�m
coth .ˇ�m=2/ :

(7.1.9)

Combining the latter inequality with (7.1.6) we obtain

�m tanh .ˇ�m=2/ < 1=.2m#�/;

which yields (7.1.5) in the limit ˇ ! C1.

Now let us analyze the quantum stability condition (7.1.4) in the light of the latter
results. The first conclusion is that unlike the case of harmonic oscillators, this condition
can be satisfied for all OJ0 by letting the mass be small enough. For the nearest-neighbor
interaction, one has OJ0 D 2dJ ; hence, if (7.1.4) holds, then

8dm#2�J < 1: (7.1.10)

This can be compared with the estimate

8dm#2�J > dJ.d/;

guaranteeing a phase transition, which one derives from (7.1.3). For finite d ,
dJ.d/ > 1, see Proposition 6.3.5; hence, there is a gap between the latter estimate
and (7.1.10), which, however, diminishes as d ! C1, since

lim
d!C1

dJ.d/ D 1:
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7.2 Decay of Correlations

In this section, we show that for ferromagnetic quantum crystals, both scalar and vector,
a stability condition like (7.1.4) yields a sufficient decay of the pair correlation function.
In the scalar case, this decay guarantees the uniqueness of tempered Euclidean Gibbs
measures. However, in the vector case it yields a weaker result – suppression of the
long-range order and of the phase transitions of any order in the sense of Definition 6.1.6.
The discrepancy arises from the fact that criteria like Theorem 5.3.1, based on the FKG
inequalities, are applicable to scalar models only.

7.2.1 The Main Statement

In this subsection, we consider the model (1.1.3), (1.1.8) which is: (a) translation-
invariant; (b) scalar; (c) the anharmonic potential is V.q/ D v.q2/ with v being
convex on RC, i.e., of BFS type, see Definition 2.2.4.

Let ƒ be a box (3.1.2), ƒ� be its conjugate (6.1.14), and Kƒ
``0.�; �

0jp/ be the
periodic correlation function (2.5.41). Recall that the periodic interaction potential
Jƒ
``0 was defined in (1.4.50). For the one-particle Hamiltonian (1.1.3), let Ou.k/ be as

in (7.1.7).

Theorem 7.2.1. Let the model be as described above. If

Ou.0/ OJ0 < 1; (7.2.1)

then

Kƒ``0.�; �
0jp/ � 1

ˇjƒj
X
p2ƒ�

X
k2K

exp Œi.p; ` � `0/C ik.� � � 0/�
Œ Ou.k/��1 � OJƒ0 C (ƒ.p/

; (7.2.2)

where
OJƒ0 D

X
`02ƒ

Jƒ``0 ; (7.2.3)

and

(ƒ.p/ D OJƒ0 �
X
`02ƒ

Jƒ``0 expŒi.p; ` � `0/�

D 2
X
`02ƒ

Jƒ``0 sin2.p; ` � `0/:
(7.2.4)

Proof. The main tool for the proof of the estimate (7.2.2) will be a multidimensional
version of Proposition 6.4.10. Along with the periodic local Gibbs measure (1.4.52)
we introduce

�
per
ˇ;ƒ

.dxƒjt /

D 1

N
per
ˇ;ƒ

.t/
exp


t

2

X
`;`02ƒ

Jƒ``0.x`; x`0/L2
ˇ

�
Z ˇ

0

X
`2ƒ

V.x`.�//d�
�
�ˇ;ƒ.dxƒ/;

(7.2.5)
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where t 2 Œ0; 1� and N per
ˇ;ƒ

.t/ is the corresponding normalization factor, which is just
�ˇ;ƒ.t; 0/, see (1.4.54) and Proposition 1.4.12 for the properties of �ˇ;ƒ. Thereby,
we set

X``0.�; � 0jt / D hx`.�/x`0.� 0/i�per
ˇ;ƒ

. � jt/; `; `0 2 ƒ: (7.2.6)

By Theorem 1.4.14, it is a meromorphic function of t . Then we get, cf. (6.4.62),

@

@t
X``0.�; � 0jt / D 1

2

X
`1;`22ƒ

Jƒ`1`2

Z ˇ

0

U``0`1`2
.�; � 0; � 00; � 00jt /dt

C
X

`1;`22ƒ
Jƒ`1`2

Z ˇ

0

X``1
.�; � 00jt /X`2`0.� 0; � 00jt /dt;

(7.2.7)

where

U`1`2`3`4
.�1; �2; �3; �4jt / D hx`1

.�1/x`2
.�2/x`3

.�3/x`4
.�4/i�per

ˇ;ƒ
. � jt/

� hx`1
.�1/x`2

.�2/i�per
ˇ;ƒ

. � jt/ � hx`3
.�3/x`4

.�4/i�per
ˇ;ƒ

. � jt/
� hx`1

.�1/x`3
.�3/i�per

ˇ;ƒ
. � jt/ � hx`2

.�2/x`4
.�4/i�per

ˇ;ƒ
. � jt/

� hx`1
.�1/x`4

.�4/i�per
ˇ;ƒ

. � jt/ � hx`2
.�2/x`3

.�3/i�per
ˇ;ƒ

. � jt/:

As the anharmonic potential in (7.2.5) is of BFS type, by the Lebowitz inequality we
have

U`1`2`3`4
.�1; �2; �3; �4jt / � 0; (7.2.8)

holding for all values of its arguments, see Theorem 2.2.9. As in the proof of Lem-
ma 6.4.11, we consider (7.2.7) as an integro-differential equation subject to the initial
condition

X``0.�; � 0j0/ D ı``0�.�; � 0/ D .ı``0=ˇ/
X
k2K

Ou.k/ cos k.� � � 0/: (7.2.9)

Besides, we also have
X``0.�; � 0j1/ D Kƒ``0.�; �

0jp/: (7.2.10)

Along with the Cauchy problem (7.2.7), (7.2.9) we consider the following equation:

@

@t
Y``0.�; � 0jt / D

X
`1;`22ƒ

	
Jƒ`1`2

C "

jƒj

 Z ˇ

0

Y``1
.�; � 00jt /Y`2`0.� 00; � 0jt /d� 00;

(7.2.11)
where " > 0 is a parameter, subject to the initial condition

Y``0.�; � 0j0/ D X``0.�; � 0j0/ D .ı``0=ˇ/
X
k2K

Ou.k/ cos k.� � � 0/: (7.2.12)
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Let us show that under the condition (7.2.1) there exists "0 > 0 such that, for all
" 2 .0; "0/, the problem (7.2.11), (7.2.12), t 2 Œ0; 1�, has the unique solution

Y``0.�; � 0jt / D 1

ˇjƒj
X
p2ƒ�

X
k2K

exp Œi.p; ` � `0/C ik.� � � 0/�
Œ Ou.k/��1 � t Œ OJƒ0 C "ıp;0�C t(ƒ.p/

; (7.2.13)

where OJ0, (ƒ.p/ are the same as in (7.2.3) and ıp;0 is the Kronecker symbol with
respect to each component of p. By means of the Fourier transformation

Y``0.�; � 0jt / D 1

ˇjƒj
X
p2ƒ�

X
k2K

yY .p; kjt / exp
�
i.p; ` � `0/C ik.� � � 0/

�
;

yY .p; kjt / D
X
`02ƒ

Z ˇ

0

Y``0.�; � 0jt / exp
��i.p; ` � `0/ � ik.� � � 0/

�
d� 0;

(7.2.14)

we bring (7.2.11), (7.2.12) into the form

@

@t
yY .p; kjt / D � OJƒ.p/C "ıp;0

� � � yY .p; kjt /�2; yY .p; kj0/ D Ou.k/; (7.2.15)

where, see (7.2.3),

OJƒ.p/ D
X
`02ƒ

Jƒ``0 exp
�
i.p; ` � `0/

� D OJƒ0 � (ƒ.p/: (7.2.16)

By (3.6.6) one has OJƒ0 � OJ0. Clearly, j OJƒ.p/j � OJƒ0 and Ou.k/ � Ou.0/. Then in view
of (7.2.1), one finds "0 > 0 such that, for all " 2 .0; "0/,� OJƒ.p/C "ıp;0

� Ou.k/ < 1
holds for all p 2 ƒ� and k 2 K . Thus, the problem (7.2.15) can be solved explicitly,
which via the transformation (7.2.14) yields (7.2.13).

Given � 2 .0; 1/, we set

Y
.�/

``0 .�; �
0jt / D Y``0.�; � 0jt C �/; t 2 Œ0; 1 � ��: (7.2.17)

Obviously, the latter function obeys the equation (7.2.11) for t 2 Œ0; 1 � �� with the
initial condition

Y
.�/

``0 .�; �
0j0/ D Y``0.�; � 0j�/ > Y``0.�; � 0j0/ D X``0.�; � 0j0/: (7.2.18)

The latter inequality is due to the positivity of the right-hand side of (7.2.11). Therefore,

Y
.�/

``0 .�; �
0jt / > 0; (7.2.19)

for all `; `0 2 ƒ, �; � 0 2 Œ0; ˇ�, and t 2 Œ0; 1 � ��.
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Let us show that under the condition (7.2.1), for all � 2 .0; 1/ and " 2 .0; "0/,
X``0.�; � 0jt / < Y .�/

``0 .�; �
0jt /; (7.2.20)

also for all `; `0 2 ƒ, �; � 0 2 Œ0; ˇ�, and t 2 Œ0; 1 � ��. To this end we introduce

Z˙
``0.�; �

0jt / defD Y
.�/

``0 .�; �
0jt /˙X``0.�; � 0jt /; t 2 Œ0; 1 � ��: (7.2.21)

Then one has from (7.2.7), (7.2.11) that

@

@t
Z�
``0.�; �

0jt / D 1

2

X
`1;`22ƒ

Jƒ`1`2

Z ˇ

0

n
ZC
``1
.�; � 00jt /Z�

`0`2
.� 0; � 00jt /

(7.2.22)

CZ�
``1
.�; � 00jt /ZC

`0`2
.� 0; � 00jt /

o
d� 00

C "

jƒj
X

`1;`22ƒ

Z ˇ

0

Y
.�/

``1
.�; � 00jt /Y .�/

`0`2
.� 0; � 00jt /d� 00 � S``0.�; � 0jt /;

whereS``0.�; � 0jt / stands for the first term on the right-hand side of (7.2.7). By (7.2.21)
and (7.2.18),

Z�
``0.�; �

0j0/ D Y``0.�; � 0j�/ �X``0.�; � 0j0/ > 0; (7.2.23)

which holds for all `; `0 2 ƒ, �; � 0 2 Œ0; ˇ�. For every `; `0 2 ƒ, both Y``0.�; � 0jt /,
X``0.�; � 0jt /, and henceZ˙

``0.�; �
0jt /, are continuous functions of their arguments. For

Y``0 , this follows from (7.2.14). ForX``0 , this follows from its analyticity as a function
of t proven in Theorem 1.4.14 and from the fact that it is a Matsubara function of �; � 0,
see Theorem 1.2.32. Set

�.t/ D inf
˚
Z�
``0.�; �

0jt / j `; `0 2 ƒ; �; � 0 2 Œ0; ˇ�� : (7.2.24)

By (7.2.23), it follows that �.0/ > 0. Suppose now that �.t0/ D 0 at some t0 2 Œ0; 1���
and �.t/ > 0 for all t 2 Œ0; t0/. Then by continuity of Z�

``0 , there exist `; `0 2 ƒ and
�; � 0 2 Œ0; ˇ� such that

Z�
``0.�; �

0jt0/ D 0 and Z�
``0.�; �

0jt / > 0 for all t < t0.

For these `; `0 2 ƒ and �; � 0 2 Œ0; ˇ�, the derivative .@=@t/Z�
``0.�; �

0jt / at t D t0
is positive since on the right-hand side of (7.2.22) the third term is positive and the
remaining terms are non-negative. But a differentiable function which is positive at
t 2 Œ0; t0/ and zero at t D t0 cannot increase at t D t0. Thus, �.t/ > 0 for all
t 2 Œ0; 1 � ��, which yields (7.2.20). By the latter estimate, we have

X``0.�; � 0j1 � �/ < Y``0.�; � 0j1/

D 1

ˇjƒj
X
p2ƒ�

X
k2K

exp Œi.p; ` � `0/C ik.� � � 0/�
Œ Ou.k/��1 � t Œ OJƒ0 C "ıp;0�C t(ƒ.p/

:

All the functions above depend on � and " continuously. Hence, passing to the limit
� D " ! 0 and taking into account (7.2.10) we obtain (7.2.2).



344 7 Quantum Effects

7.2.2 Decay of Correlations in Gibbs States

By Lemma 3.6.1 and Theorem 3.6.4 the set of W t-accumulation points of the family
f
per
ˇ;ƒ

gƒ2Lbox is a non-void subset of G t
ˇ

. Such accumulation points are called pe-
riodic Gibbs states. In the case considered here, they are symmetric, i.e., invariant
under the transformation �t

ˇ
3 x 7! �x. Let Lbox be the sequence of boxes (3.1.2)

such that f
per
ˇ;ƒ

gƒ2Lbox converges to a given periodic state �per. Then the sequence
of corresponding correlation functions (2.5.41) converges, at least point-wise, to the
correlation function in this state

K``0.�; � 0j�per/ D hx`.�/x`0.� 0/i�per : (7.2.25)

Recall that according to Theorem 3.3.8, there exists only one�0 2 G t
ˇ

which is the limit
of f
ˇ;ƒ. � j0/gƒ2L, for any cofinal sequence L. In the case considered here, �0 is also
symmetric. By K``0.�; � 0j�0/ we denote its correlation function. For p 2 .�
; 
�d ,
we also set

( .p/ D OJ0 �
X
`0

J``0 expŒi.p; ` � `0/� D 2
X
`0

J``0 sin2.p; ` � `0/: (7.2.26)

The next corollary of Theorem 7.2.1 gives an upper bound for correlation functions
mentioned above.

Theorem 7.2.2. Let the stability condition (7.1.4) be satisfied. Then for every periodic
tempered Euclidean Gibbs state, the correlation function (7.2.25) has the bound

K``0.�; � 0j�per/ � Y``0.�; � 0/
defD 1

ˇ.2
/d

X
k2K

Z
.��;��d

exp Œi.p; ` � `0/C ik.� � � 0/�
Œ Ou.k/��1 � OJ0 C ( .p/

dp

� 1

ˇ.2
/d

X
k2K

Z
.��;��d

exp Œi.p; ` � `0/C ik.� � � 0/�
m.�2m C k2/ � OJ0 C ( .p/

dp:

(7.2.27)

The same estimate is also satisfied for the correlation function K``0.�; � 0j�0/.
Proof. By (7.1.8), the estimate (7.2.1) holds if (7.1.4) is satisfied. Then the first estimate
in (7.2.27) is obtained by passing in (7.2.2) to the limitƒ % L along the corresponding
sequence Lbox. The second one follows by (7.1.8), according to which Œ Ou.k/��1 �
m.�2mCk2/. The second part of the theorem follows from the estimate (2.5.45).

Remark 7.2.3. The last line in (7.2.27) is the infinite volume correlation function for
the quantum harmonic crystal discussed at the beginning of Subsection 7.1.1. Thus,
under the condition (7.2.1) the decay of the correlation functions in the periodic states
and in �0 is at least as strong as it is in the stable quantum harmonic crystal.
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Theorem 7.2.4. If the function (7.2.26) is such that ( .p/ � (0jpj2, (0 > 0, as
p ! 0, the upper bound in (7.2.27) has an exponential spatial decay.

Proof. For ( .p/ � (0jpj2, (0 > 0, as p ! 0, the asymptotics of the bound in
(7.2.27) as

pj` � `0j2 C j� � � 0j2 will be the same as for the d C 1-dimensional free
field, which is well known, see claim (c) of Proposition 7.2.1, page 162 of [135].
Nevertheless, let us show that for J``0 D J ıj`�`0j;1, we have

Y``0.�; � 0/ � Cˇ exp.��0j` � `0j/; (7.2.28)

with

�0 D d�1=2 log

�
1C m�2m � 2dJ

J

�
;

Cˇ D 1

ˇ

X
k2K

1

m�2m � 2dJ Cmk2
:

(7.2.29)

Note that in this case ( .p/ D 2JE.p/, see (6.2.51). This is the same decay (with
�mı, see (7.1.1)) as for the correlation function of the stable harmonic crystal.

To prove (7.2.28) we use (6.2.61). Suppose that j`1 � `0
1j � j j̀ � `0

j j for all

j D 2; : : : ; d . Set Ò D .`2; : : : ; `d / and Op D .p2; : : : ; pd /. Then by (6.2.61),

Y``0.�; � 0/ D 1

2ˇJ.2
/d�1
X
k2K

Z
.��;��d�1

exp
˚
ik.� � � 0/C i. Op; Ò � Ò0/�

� 1p
a2 � 1 exp

��� j`1 � `0
1j
�

d Op;

where � is as in (6.2.61) with

a D 1

2J Ou.k/ �
dX
jD2

cospj > 1; (7.2.30)

which holds by (7.2.1). By means of the estimate (7.1.8) and the following evident
inequalities

j`1 � `0
1j � d�1=2j` � `0j;

p
a2 � 1 > a � 1; for a > 1;

we finally get (7.2.28), (7.2.29).

Let us now turn to the vector case. We suppose that the model is ferromagnetic and
translation-invariant, but � 2 N is arbitrary. The anharmonic potential is supposed to
have the form V.u/ D v.juj2/ with v being convex. By this assumption the model is
rotation-invariant. In the vector case, the eigenvalues of the one-point Hamiltonian are
no longer simple; hence, one cannot introduce a gap parameter like �m, which would
play a similar role in the quantum stabilization of the model. Thus, the only possibility
we have here is to compare the vector model with its scalar version, that is, with the
scalar model with the anharmonic potential v.u2/, u 2 R. To this end we will use
Theorem 2.5.2.
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Theorem 7.2.5. Let the vector model (1.1.3), (1.1.8) be as just described; let also
�m be the gap parameter of the scalar one-particle Hamiltonian with the anharmonic
potential v.u2/. Then, if the stability condition (7.1.4) is satisfied (in which OJ0 is the
interaction parameter of the model under consideration), the correlation function

K
jj

``0.�; �
0j�/ D hx.j /

`
.�/x

.j /

`0 .�
0/i�; j 2 f1; : : : ; �g; (7.2.31)

corresponding to any periodic Gibbs state � 2 G t
ˇ
, as well as to any Gibbs state being

the accumulation point of the family f
ˇ;ƒ. � j0/gƒ2Lfin , obeys the estimate (7.2.27)
with Ou.k/ calculated according to (7.1.7) for the scalar one-particle Hamiltonian with
the anharmonic potential v.u2/.

Proof. The proof follows immediately from the estimates (2.5.3) and (7.2.27).

7.3 Suppression of Phase Transitions

From the ‘physical’ point of view, the decay of correlations (7.2.28) already shows the
lack of any phase transition. However, in the mathematical theory, one should show this
by means of the definition of a phase transition. The most general one is Definition 6.1.1
according to which the lack of phase transitions corresponds to the uniqueness of
tempered Euclidean Gibbs states. Properties like differentiability of the pressure, cf.
Definition 6.1.6, or the lack of the order parameter, see Definition 6.1.5, may also
indicate the suppression of phase transitions, but in a weaker sense (if they do not imply
the uniqueness, cf. Theorem 5.3.3). The aim of this section is to demonstrate that the
decay of correlations of ferromagnetic versions of the model (1.1.3), (1.1.8) caused by
the quantum stabilization yields the two-times differentiability of the pressure, which in
the scalar case yields the uniqueness. This latter result is then extended to ferromagnetic
models, which are not necessarily translation-invariant.

7.3.1 The Uniqueness for Scalar Ferromagnets

The most general result for the scalar ferromagnets is the following

Theorem 7.3.1. Let the model (1.1.3), (1.1.8) be scalar and ferromagnetic, and L D
Zd . Let also the anharmonic potentials V` be even and such that there exists a convex
function v W RC ! R, for which, and for any V`,

V`.u`/ � v.u2`/ � V`. Qu`/ � v. Qu2`/ whenever u2` < Qu2` . (7.3.1)

For such v, let �m be the gap parameter of the one-particle Hamiltonian (1.1.3) with
the anharmonic potential v.q2/. Then the set of tempered Euclidean Gibbs measures
of this model is a singleton if the stability condition (7.1.4) involving �m and the
interaction parameter OJ0 of the considered model is satisfied.
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The proof of this theorem will be done in several steps. As in the proof of Theo-
rem 6.3.8, we compare the considered model, which we call basic, with the translation-
invariant model (reference model) for which the anharmonic potential is v.q2/, and the
other elements remain the same. The reference model is also called an up-model; it
is less stable than the basic model, cf. (6.3.26). All the elements of the theory corre-
sponding to the up-model will have the superscript up. The main idea of the proof is
that the quantum stabilization of the up-model will imply the same effect for the basic
model. Recall that in the scalar case, we have introduced the FKG order on the set
of tempered Euclidean Gibbs measures G t

ˇ
, with respect to which it has maximal and

minimal elements �˙, see Theorem 3.7.4.

Lemma 7.3.2. For every `, it follows that

hx`.0/i�C
� hx`.0/i�up

C
: (7.3.2)

Proof. Take � 2 .0; 1=2/ and b > 0 such that „.b; �/, see (3.3.22), is a full measure
set for all tempered Euclidean Gibbs measures of both reference and basic models.
Thereby, we take `0 and the configuration 	`0 defined by (3.7.12). Then for any ƒ,
such that ` 2 ƒ, by (2.5.40) it follows that

hx`.0/i�ˇ;ƒ. � j�`0 / � hx`.0/i�up
ˇ;ƒ

. � j�`0 /; (7.3.3)

since for all `0 and � , we have 	`0

`0 .�/ > 0. As was established in the proof of
Theorem 3.7.4, for any cofinal sequence L, the W t-limits of f
ˇ;ƒ. � j	`0/gƒ2L and
f
up
ˇ;ƒ

. � j	`0/gƒ2L are the corresponding maximal elements �C and �up
C , respectively.

Then passing to this limit in the latter inequality we get (7.3.2).

One observes that (7.3.2) justifies the name given to the up-model. In view of
this estimate and Corollary 5.3.2, for proving Theorem 7.3.1 it is enough to show that
hx`.0/i�up

C
D 0 for a certain, and hence for all, ` as the measure �up

C is translation-
invariant, see Theorem 3.7.4.

We recall that for given Q̀ and ˛ 2 �, the Banach space l1. Q̀; ˛/ was defined in
(3.1.26). Now for ƒ 2 Lfin, we introduce the matrix .Mƒ

``0/``02L as follows. For
`; `0 2 L, we set

Mƒ
``0 D

X
`12ƒ

J``1

Z ˇ

0

hx`1
.�1/x`0.� 0/i�up

ˇ;ƒ
. � j0/d� 0: (7.3.4)

Since the measure 
up
ˇ;ƒ

. � j0/ is shift-invariant, the above integral is independent of � .

Lemma 7.3.3. Let the stability condition (7.1.4) for the up-model be satisfied. Then
there exist ˛ 2 � and C˛ > 0 such that for any ƒ 2 Lfin and Q̀ 2 L, the norm of
the operatorMƒ W l1. Q̀; ˛/ ! l1. Q̀; ˛/, defined by the matrix .Mƒ

``0/``02L, obeys the
estimate

kMƒk˛ defD sup
`

X
`0

jMƒ
``0 j � Œw˛.`; `0/��1 � C˛: (7.3.5)
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Proof. First, let us show that there exists ˛ 2 � such that

OJ0 < OJ˛ < m�m: (7.3.6)

We recall that OJ˛ was defined in (3.1.20). Here the cases (3.1.22) and (3.1.24) should
be considered separately. In the first case, we have � D .0; x̨/ and the ˛ in question
exists since

lim
˛!0C

OJ˛ D OJ0; (7.3.7)

which readily follows from (3.1.22) and (3.1.23). In the second case, the weights are
given by (3.1.25) with a positive ", which we are going to pick now to secure (7.3.6).
To indicate the dependence of OJ˛ on this " we write OJ ."/˛ . Simple calculations yield

0 < OJ ."/˛ � OJ0 < "˛d OJ .1/˛ :

Thereby, we fix ˛ and take " obeying " < m�2m=˛d OJ .1/˛ , which yields (7.3.6).
Let us now estimate the norm of kMƒk˛ , defined in (7.3.5). By (3.1.26), (3.1.20),

and (3.1.17) one has

kMƒk˛ � OJ˛ � sup
`

X
`0

Lƒ``0 � Œw˛.`; `0/��1; (7.3.8)

where

Lƒ``0
defD

Z ˇ

0

hx`.�/x`1
.� 0/i�up

ˇ;ƒ
. � j0/d� 0: (7.3.9)

For any cofinal sequence L, the sequence fLƒ
``0gƒ2L is monotone increasing, see

(2.5.46), and its limit obeys the estimate (7.2.27), see the second part of Theorem 7.2.2.
Therefrom we obtain

Lƒ``0 �
Z ˇ

0

Y``0.�; � 0/d� 0

D 1

.2
/d

Z
.��;��d

exp Œi.p; ` � `0/�
Œ Ou.0/��1 � OJ0 C ( .p/

dp:
(7.3.10)

The matrix on the right-hand side of (7.3.10) determines an operator, which can be
written by means of the von Neumann series

RHS.7.3.10/ D Ou.0/
1X
nD0

I n; I``0 D Ou.0/J``0 :

As Ou.0/ < m�2m, see (7.1.8), by (7.3.6) one has

kIk˛ � m�2m
OJ˛ < 1:

Employing these estimates in (7.3.8) we get

kMƒk˛ � m�2m
OJ˛

1 �m�2m OJ˛
;

which yields the bound (7.3.5).
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Proof of Theorem 7.3.1. Let ƒ, `, and `0 be as in (7.3.3). Set

 ƒ.t/ D
Z
�ˇ

x`.0/

up
ˇ;ƒ

.dxjt	`0/; t 2 R: (7.3.11)

This function is obviously differentiable at any t 2 R, and  ƒ.0/ D 0. Then

0 � hx`.0/i�up
ˇ;ƒ

. � j�`0 / D  ƒ.1/ � sup
t2Œ0;1�

 0.t/: (7.3.12)

The derivative can be calculated explicitly:

 0
ƒ.t/ D

X
`12ƒ; `22ƒc

J`1`2
�
Z ˇ

0

Kƒ``1
.0; � jt	`0/	

`0

`2
.�/d�; (7.3.13)

Kƒ``1
.0; � jt	`0/ D hx`.0/x`1

.�/i�up
ˇ;ƒ

. � jt�`0 /

� hx`.0/i�up
ˇ;ƒ

. � jt�`0 / � hx`1
.�/i�up

ˇ;ƒ
. � jt�`0 /;

where 	`0

`2
.�/ D p

b log.1C j`2 � `0j/, which is positive and independent of � , cf.
(3.7.12). The correlation function in (7.3.13) can be considered as the local correlation
function (2.5.30) in the external field

y` D
X
`02ƒc

J``0	
`0

`0 .�/ > 0:

Then by (2.2.6), it follows that for all t 2 Œ0; 1�,
Kƒ``1

.0; � jt	`0/ � Kƒ``1
.0; � j0/ D hx`.0/x`1

.�/i�up
ˇ;ƒ

. � j0/: (7.3.14)

Applying this estimate in (7.3.13) and taking into account (7.3.4) we arrive at

 0
ƒ.t/ �

X
`02ƒc

Mƒ
``0	

`0

`0 ; (7.3.15)

where by the assumption (3.1.19), the configuration 	`0 belongs to l1.`0; ˛/ for any
˛ 2 �. Then by (7.3.5) the right-hand side of (7.3.15) can be made arbitrarily small
by taking ƒ to be big enough, which by (7.3.12) yields

hx`.0/i�up
ˇ;ƒ

. � j�`0 / ! 0; as ƒ % L.

Hence, by (7.3.2) and Corollary 5.3.2 the uniqueness to be proven follows.

7.3.2 Normality of Fluctuations in Vector Ferromagnets

In this subsection, we consider the model (1.1.3), (1.1.8) which is translation-invariant
and ferromagnetic, but with the dimension of the displacements � can be arbitrary.
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Furthermore, we suppose that the anharmonic potential is V.q/ D v.jqj2/ with v
being convex on RC. For this model, we show that quantum stabilization prevents it
from having phase transitions of the first and second order, which corresponds to a
certain normality of fluctuations. We recall that the mentioned phase transitions were
introduced in Definition 6.1.6.

To describe fluctuations we introduce the fluctuation operators, cf. (6.4.12),

Q
.j /
ƒ D 1pjƒj

X
`2ƒ

q
.j /

`
; ƒ 2 Lfin; j D 1; : : : ; �; (7.3.16)

which correspond to normal fluctuations.

Definition 7.3.4. The fluctuations of the displacements of oscillators are called normal
if the Matsubara functions (1.4.37) constructed on the operatorsF1 D Q.j1/; : : : ; Fn D
Q.jn/, remain bounded as ƒ % L.

If ƒ is a box, the parameter (6.1.45) can be written

P
.˛/
ƒ D 1

ˇ2jƒj˛
�X

jD1

Z ˇ

0

Z ˇ

0

�
ˇ;ƒ

Q
.j /
ƒ
;Q

.j /
ƒ

.�; � 0/d�d� 0: (7.3.17)

Thus, if the fluctuations are normal, phase transitions of the second order (and all the
more of the first order) are suppressed.

As in the proof of Theorem 7.2.5, the model considered (basic model) will be
compared with the scalar ferromagnetic (reference) model with the same particle mass
and the anharmonic potential v.q2/. Then the gap parameter �m which we use in the
sequel is the one calculated for the reference model. Our main result is presented in
the following

Theorem 7.3.5. Let the model be the same as in Theorem 7.2.5 and let the stability
condition involving the interaction parameter OJ0 of the model and the gap parame-
ter �m corresponding to its scalar analog be satisfied. Then the fluctuations of the
displacements of oscillators remain normal at all temperatures.

Proof. Forƒ 2 Lfin and n 2 N, let us consider the Matsubara functions constructed on
the operatorsF1 D Q.j1/; : : : ; Fn D Q.jn/. By the rotational invariance, the functions
with odd n disappear. For given F1 D Q.j1/; : : : ; F2n D Q.j2n/, we split the set

f1; 2; : : : ; 2ng D
�[
�D1

†� ; � � �;

into the groups

†� D fl 2 f1; 2; : : : ; 2ng j jl D i�g; i� 2 f1; 2; : : : ; �g:
That is, each†� contains as many elements as the number of times the given j� appears
in the collection fj1; j2; : : : ; j2ng. The groups †� are numbered in such a way that

j†� j defD s� � s�C1; � D 1; 2; : : : ; �:



7.3 Suppression of Phase Transitions 351

Clearly, s1C� � �Cs� D 2n. Then the corresponding Matsubara function can be written
as

�
ˇ;ƒ

Q
.j1/

ƒ
;:::;Q

.j2n/

ƒ

.�1; : : : ; �2n/ D hX1 : : : Xki�ˇ;ƒ. � j0/; (7.3.18)

where we have gathered into each X� all the x.j /’s with the same j D j� , that is,

X� D
Y
i2†�

�
1

jƒj
X
`2ƒ

x
.j�/

`
.�i /

�
: (7.3.19)

Then we iterate in (7.3.18) the Cauchy–Schwarz inequalityˇ̌hXY i�
ˇ̌ � �hX2i��1=2 � �hY 2i��1=2

a sufficient number of times and obtainˇ̌̌
�
ˇ;ƒ

Q
.j1/

ƒ
;:::;Q

.j2n/

ƒ

.�1; : : : ; �2n/
ˇ̌̌

�
h
hX2��1

� i�ˇ;ƒ. � j0/
i2�.��1/

�
��1Y
�D1

h
hX2�

� i�ˇ;ƒ. � j0/
i2��

:

(7.3.20)

Each Matsubara function hX2�

� i�ˇ;ƒ. � j0/ containsQ.j /
ƒ with one and the same j ; hence,

it can be estimated according to (2.5.3) by the corresponding Matsubara function in
the scalar model. The latter in turn can be estimated according to (2.2.7), which finally
yields

hX2�

� i�ˇ;ƒ. � j0/ � .2�s� � 1/ŠŠ
hz�ˇ; Qƒ.0; 0/

i2��1s�
; (7.3.21)

where .2N � 1/ŠŠ D 1 � 3 � 5 : : : .2N � 1/, Qƒ is a box (3.1.2), containing ƒ, and

z�ˇ; Qƒ.0; 0/ D
X
`2 Qƒ

hx0.0/x`.0/i Q�per

ˇ; Qƒ
(7.3.22)

is a Matsubara function in the scalar model, which can be estimated by (7.2.2), cf.
(7.2.29),

z�ˇ; Qƒ.0; 0/ � zCˇ defD 1

ˇ

X
k2K

1

m�2m � OJ0 Cmk2
: (7.3.23)

On the other hand, for all n; � 2 N and all combinations of j1; j2; : : : ; j2n, the follow-
ing holds:

1

.2n/
Š Œ.2�s� � 1/ŠŠ�2�.��1/ �

��1Y
�D1

Œ.2�s� � 1/ŠŠ�2�� �

2
��
2��2�Š�22��

�n
defD cn� ;

by which we get in (7.3.20)ˇ̌̌
�
ˇ;ƒ

Q
.j1/

ƒ
;:::;Q

.j2n/

ƒ

.�1; : : : ; �2n/
ˇ̌̌

� .2n/Š
h
c� zCˇ

in
:

This completes the proof.
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7.4 Comments and Bibliographic Notes

Section 7.1: In an ionic crystal, the ions usually form massive complexes the dynamics
of which determine the physical properties of the crystal, including its instability with
respect to structural phase transitions. Such massive complexes can be considered as
classical particles; hence, the phase transitions are described in the framework of clas-
sical statistical mechanics. At the same time, in a number of ionic crystals containing
localized light ions, see Section 4.1, certain aspects of the phase transitions are appar-
ently unusual from the point of view of classical physics. Their presence can only be
explained in a quantum-mechanical context, which points out the essential role of the
light ions in such phase transitions. This influence of the quantum effects on phase
transition was detected experimentally already in the early 1970s. Here we just men-
tion the data presented in [70], [303] on the KDP-type ferroelectrics and in [224] on
theYBaCuO-type superconductors. These data were then used for justifying the corre-
sponding theoretical models. On the theoretical level, the influence of quantum effects
on the structural phase transitions in ionic crystals was first discussed in the paper
[266], where the particle mass was chosen as the only parameter responsible for these
effects. The conclusion, obtained there by means of rather heuristic arguments, was
that the long-range order, see Definition 6.1.5, becomes impossible at all temperatures
if the mass is sufficiently small. Later a number of rigorous studies of quantum effects
inspired by this result as well as by the corresponding experimental data have appeared,
see [218], [315] and the references therein. For better understanding the mechanism
which produces these effects, a number of illuminating exactly soluble models were
introduced and studied, see [246], [285], [313], [314]. As in [266], in these works the
reduced mass (1.1.7) was considered as the only parameter responsible for the effects.
The result obtained was that the long-range order is suppressed at all temperatures in
the light mass limit m ! 0. Based on the study of the quantum crystals performed
in [11], [12], [14], [16], [18], in the paper [17] a mechanism for the appearance of
quantum effects was proposed. Its key parameter is m�2m, where �m is the least dif-
ference between the eigenvalues of the single-particle Hamiltonian H` (which surely
depends on m). This difference is well defined in the translation-invariant case and is
surely positive if � D 1. In the harmonic case, m�2m is merely the oscillator rigidity
and the stability of the crystal corresponds to large values of this quantity. That is why
the parameter m�2m was called quantum rigidity and the effect was called quantum
stabilization. If the tunneling between the wells gets more intensive (closer minima),
or if the mass diminishes, m�2m gets bigger and the particle ‘forgets’ about the details
of the potential energy in the vicinity of the origin (including instability) and oscillates
as if its equilibrium at zero were stable, as in the harmonic case. In Subsection 7.1.1,
we justify this approach and study the properties of the rigidity m�2m. A preliminary
investigation of these properties was done in [12], [194].

Section 7.2: As we show in this section, the quantum stabilization results in a suffi-
ciently fast decay of correlations in the translation-invariant scalar case. The proof
of Theorem 7.2.1, which is the main statement of the section, is based on a method
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from the theory of differential equations and inequalities. Its idea can be explained
as follows. The studied local correlation function is obtained as the solution of the
integro-differential equation (7.2.7). Along with this equation we construct another,
(7.2.11), which: (a) can be solved explicitly; (b) the solution dominates that of (7.2.7).
The point is that the equation (7.2.11) corresponds to a harmonic crystal, whose rigidity
is exactly the quantum rigidity of the initial model. This gives the decay of correlations
in the local periodic state, which afterwards is extended to describe the decay of corre-
lations in the tempered Euclidean Gibbs states. The corresponding results were mostly
obtained in [11], [12], [14], [16], [18] as well as in more recent publications [182],
[194]. Here we also mention the articles [205], [252] where the decay of correlations
in related classical systems was studied.

Section 7.3: Here we prove that the decay of correlations which occurs under the quan-
tum stability condition (7.1.4) yields the uniqueness of tempered Euclidean Gibbs mea-
sures for the scalar ferromagnetic version of our model, which need not be translation-
invariant. The only condition is (7.3.1) which allows us to compare the model with a
translation-invariant reference model (up-model), which is less stable with respect to
the phase transition, see Lemma 7.3.2. Then the stabilization of this reference model
implies the same property for the model considered. In the vector case where the
FKG cannot be introduced, the comparison of the model considered with its scalar
version yields only the absence of any abnormal fluctuations at any temperature. The
corresponding results were published in [188], [189], [190].
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