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III. Particles with Spin 

A. One-Body Problems 

Problein 129. Construction of Pauli matrices 

A particle of spin t has three basic properties: 
1. It bears an intrinsic vector property that does not depend upon 

space coordinates. 
2. This vector is an angular momentum (= spin) to be added to the 

orbital momentum of the particle. 
3. If one of the components of the spin is measured, the result can 

be only one of its two eigenvalues, +!fl or -!h. 
These properties can be described by using a two-component wave 

function and correspondingly 2 x 2 matrices for the spin operators. 
These matrices shall be constructed. 

Solution. Let S = ~O' be the spin vector operator; then according 

to property 2 the three components have to obey the commutation 
relations of angular momentum operators, 

(129.1 a) 

or, written in the dimensionless operators O'i' 

(129.1 b) 

Since, according to property 3, each (J'i has eigenvalues + 1 and -1 
only, it ought to be possible to represent these operators by 2 x 2 matrices 
in a two-dimensional Hilbert space. They cannot be all diagonal in the 
same Hilbert coordinate system since they do not commute. Let us 
choose the Hilbert coordinate system in such a way that 

(129.2) 
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is diagonal; then the unit vectors of the coordinate directions are 

~=G) and p=G) (129.3) 

so that 
(129.4) 

If a particle is in the state with Hilbert vector ~(P) its spin points in the 
positive (negative) z direction. 

We now write rrx and rry in the general form 

(129.5) 

To determine their matrix elements we first use the two commutators 
(129.1 b) linear in rrx and rry, viz. 

rrxrrz-rrzrrx= -2irry, (2~21 - 2a12 ) -(bll b12) or: = -2z o b21 b22 
and 

rryrrz-rrzrry = +2irrx, (2~21 -2b12) -(all a 12). or: = +2z o a21 a22 
This yields, 

all =a22=bll =b22 =0; b12 = - ia12; b2l = +ia2l (129.6) 

so that there yet remain only two matrix elements a12 and a 21 still to 
be fixed. The third commutation relation, 

leads to one relation between them, viz. 

(129.7) 

Eqs. (129.6) and (129.7) yet leave one complex number, say al2 , undeter­
mined. We arbitrarily fix that parameter: 

(129.8) 

then we obtain the representation by the three Pauli matrices, 

rrz = (1 0). 
o -1 

(129.9) 
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In terms of the eigenvectors of (Jz, Eq. (129.3), we may replace (129.9) 
by the equivalent relations 

(Jxrx={3; (Jyrx=i{3; (Jzrx=rx; 
(Jx{3=rx; (Jy{3= -irx; (Jz{3= -{3. 

(129.10) 

Problem 130. Eigenstates of Pauli matrices 

To determine the eigenvectors of the operators (Jx and (Jy and to show 
that laul 2 = 1 is a necessary condition. What are the properties of the 
two "shift operators" 

(130.1) 

and of the absolute square of the spin vector operator 

(130.2) 

Solution. Writing a instead of al2' the last problem gave the results 

(
0 (J -

x - l/a 

and hence, 

2a). 
o ' 

Let 

be a two-component wave function, then 

(Jx(:) = (::a} (Jy(:) = (~~~V} 

(J+(:) = (2;} (J_ (:) = (20J. 

(130.3) 

(130.4) 

(130.5) 

(130.6) 

The eigenvectors of (J x satisfy the equation (J x t/I = A t/I with A an 
eigenvalue, i. e. in components 

aV=AU and u/a=Av. 
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These relations are compatible with one another only for A = ± 1. 
Thus we fmd the eigensolutions 

for A1 = + 1: 
(130.7) 

The probabilities that the spin may point upward (i. e. in the + z direc­
tion) and downward are proportional to the absolute squares of the 
factors in front of the Hilbert vectors DC and p, viz. 1: 1/laI2• Since there 
is no reason why the one should be greater than the other, it follows that 

(130.8) 

The same consideration is possible for uy. 
Let us, from now on, definitely choose a = 1. Then we have eigen­

values A1 = + 1 and A2 = -1 for each of the three u;'s and the following 
eigenvectors. 

(0 1) u - . 
x- 1 0' 

( 0 -i) u - . 
y - i 0' 

(1 0) u - . 
z- 0 -1 ' 

1P1 =2-tG} 
1P1 =rtC} 

1P1 =(~} 

1P2 =2-t( _~} (130.9 a) 

1P2 =2-t ( _~} (130.9b) 

1P2=G)' (130.9 c) 

The three Pauli matrices are hermitian operators, U1 = Ui' with real 
eigenvalues. The two operators 

(130.10) 

are not hermitian, ut = u _ and u~ = u +. They have no eigenvalues or 
eigenvectors, because they cannot even be diagonalized. This may be 
seen as follows. 

The most general unitary matrix in two dimensions may be written 
(apart from an irrelevant phase factor) 

( cos8· sin8ei~ ) 
U = -sin8~i~; cos8ei(~+~) 
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with real parameters 8,~, 11. The unitary transformation of (J + then 
becomes 

and this cannot be made diagonal for any choice of the real parameters 
since sin8 and cos8 never vanish at the same argument 8. 

If the operators (J + and (J _ are applied to the Hilbert vectors r:x and 
{3 we fmd according to (130.6): 

(J+r:x=0; (J_r:x=2{3; 

(J+{3=2r:x; (J-{3=0; 

(J+(J_r:x=4r:x; 

(J+ (J_{3=0; 

When commuted with (Jz, these operators are essentially reproduced, 

(130.12) 

The operators (J + and (J _, in angular momentum normalization, 

(130.13) 

have the same property as the analogous operators L+ and L_ (prob­
lem 56) to shift the z component by one (in units h): 

S+r:x=O; 

S+{3=hr:x; 

S_ r:x=h{3; 

S_{3=O. 

State {3 with spin component -th is altered by S+ into state r:x with 
+th, and inversely by S_. Both, S+r:x and S_{3 must vanish because, 
according to this shift rule, they would lead to states with +!h and 
-!h not existing in the Hilbert space used. 

We finally investigate the absolute square of the spin operator, 

(130.14) 

It is easily seen that all three (Jf are the unit matrix so that 

G2=3(~ ~) 
is diagonal with its only value 3 for whatever Hilbert vector we choose, 
or-in less sophisticated wording-it is = 3. This can also be seen 
from the second form in (130.14) using the relations for (J+(J_ and (J_(J+ 
given in (130.11). 



6 Particles with Spin. One-Body Problems 

Eq. (130.14) leads to S2 = ih2 or, with S being the quantum number 
describing the spin, to h2 S(S + 1) with S = i. This is the meaning of a 
state to have "spini". 

Problem 131. Spin algebra 

To show that the three Pauli matrices together with unity form the 
complete basis of an algebra. 

Solution. If 1, (Jx, (Jy, (Jz form a complete basis, no number outside 
the algebra can be generated either by adding or by multiplying any 
pair of numbers of the form 

(131.1) 

with complex number coefficients ai . Obviously the rule obtains for 
addition, but it still has to be proved for a product of two numbers. 
For this purpose we shall construct a multiplication table of the Pauli 
matrices. 

Let i, k, I be an arbitrary cyclic permutation of the three subscripts 
x, y, z, then the (J;'s satisfy the commutation relations 

(131.2) 

and the normalization relations 

(Jf = 1. (131.3) 

Besides, the Pauli matrices obey anticommutation rules, 

(Ji (Jk + (Jk(Ji=O (i#k) (131.4) 

as may easily be verified. Then, by addition and subtraction of (131.2) 
and (131.4), we find the products 

(131.5) 

Hence, any product of two basis elements leads back again, except for 
a complex number factor, to another basis element. 

Multiplication table 

first second factor 
factor 1 Gx Gy Gz 

Gx Gy Gz 

Gx Gx 1 i Gz -iGy 
Gy Gy -iGz 1 iGx 

Gz Gz iGy -iGx 1 
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It should be noted that the product of all three Pauli matrices there­
fore simply becomes 

(131.6) 

Further, another argument may now be added for 0"+ and 0"_ having 
no eigenvalues. From the multiplication table one gets 

0"; = (0" x± iO"y)2 = 0"; - 0"; ± i(O"xO"y + O"yO"x) = O. 

This is an interesting result showing that in the Pauli algebra the square 
of a non-vanishing number may be zero. It is, by the way, corroborated 
by the fact that neither for 0"+ nor 0"_ do any reciprocal numbers exist. 

A number N for which the relation 

(131.7) 

holds is called an idempotent number. Such numbers belong to our 
algebra, viz. 

!(l+O"i) and !(l-O"i) (i=x,y,z). (131.8) 

In matrix representation we have e. g. 

applied to the basic Hilbert vectors IX and /J they give 

P+ IX=IX; P_IX=O; 

P+/J=O; P-/J=/J. 

Thus they suppress either /J or IX in a state vector of mixed spin orienta­
tions: 

P+(UIX+vf3)=UIX; P_(UIX+V/J)=V/J 

and leave us with the projection of the state vector upon one of the 
basic directions in Hilbert space. They are therefore called projection 
operators. 

NB. The Pauli algebra is essentially the same as the algebra of quaternions 
which uses i 0" k instead of 0" k as basis elements. 

Problem 132. Spinor transformation properties 

How can it be proved that the spin of a one-particle state, 

s = S d3 X 1/1 t (11/1 , (132.1) 

is a vector? It should be noted that the O"/s shall not transform with the 
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coordinates under space rotation, but the transformation properties of 
s shall rest entirely upon the wave function. 

Solution. In consequence of the group property of space rotations, 
it suffices to investigate an infinitesimal rotation, 

x; = Xi + L' 8ik X k; 8ki = -8i k (132.2) 
k 

with infinitesimal angles of rotation about the three axes, 

(132.3) 

If s is a vector, it has to obey the same transformation rule, 

(132.4) 

This has to be achieved by transforming onl:r the wave function, 

ljI' = (1 + e) ljI; ljIrt = ljIt (1 + ~) (132.5) 

with infinitesimal e. This transformation shall now be determined. 
We begin by stating that ljIt ljI is a scalar so that 

ljI't ljI' = ljIt (1 + ~)(1 + e) ljI = ljIt ljI 
or 

~= -e· 
Putting (132.4) and (132.5) in (132.1), we get 

s; = J d3 x ljIt(l- e)ui(l + e)ljI = Si + J d3x ljIt(ui e - e ui) ljI. 

(132.6) 

Comparison of this expression with (132.4) leads to the determining 
equations for the operator e: 

Uie-eUi = L' 8ik U k (i,k= 1,2,3). (132.7) 
k 

It can easily be shown that these equations are solved unambiguously by 

(132.8) 

because, using the commutation rules, we find for the left-hand side of 
Eq.(132.7), e.g. with i=1: 

in agreement with the right-hand side. Analogous results are found for 
i=2 or 3. 
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The operator (132.8) can be written in a simpler form using the angles 
of rotation in the notation (132.3), 

i 
~ ="2 :~;>!:kO"k. 

Applied to any two-component wave function, 

this leads to the transformed wave function 

with 

U' = (1 + ~ 1X3) U + ~(1X1 -iIX2)V; 

v' = ~(1X1 +iIX2)U + (1- ~ 1X3) v. 

(132.9) 

(132.10) 

(132.10') 

(132.11) 

A two-component function with these transformation properties is 
called a spinor. 

Problem 133. Spin electron in a central field 

To determine the wave functions of a spinning electron in a central 
spin-independent force field. The wave functions must be eigenfunctions 
of the two operators 

(133.1) 

with L the orbital momentum and S the spin of the electron. 

Solution. We begin with the z component of the angular momentum. 
Since 

L =!2~. 
z i ocp' 

we can write 

(133.2) 
. 0 1 

-1---
ocp 2 
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The eigenfunctions of this operator have the form 

(
C 1 ei(mrt)Q» 

ljJ = C2 ei(mj+t)Q> (133.3) 

with C1 and C2 still arbitrary functions of the variables rand 9. This 
can easily be seen by letting Jz operate on ljJ; the result is 

(133.4) 

so that hmj is an eigenvalue of the z component of the total angular 
momentum J. A better understanding of Eq. (133.3) is achieved by using 
the notation 

(133.3') 

because it is then seen that the first term describes the dependence 
of ljJ on the coordinates if the spin points upward, and the second term 
if it points downward. This coordinate dependence determines the com­
ponent hml of the orbital momentum Lwhich makes ml=O, ±1, ±2, ... 
an integer. With spin upward we have mj=ml+! and with spin down­
ward mj=ml-! so that mj becomes a half-integer. These are the 
addition rules well-known for the vector model. The characteristic 
feature of the wave function (133.3) or (133.3') is that mj is a "good 
quantum number" but that ml is not, because the state vector ljJ is a 
mixture of two parts with different values of mi' 

We now investigate the operator P. We have 

J2 = L2 +S2 +2(L' S) = I? +ih2 +h (Lz 
L_ 

if the Pauli matrices are used for S =!!.. (I. We therefore have to solve 
the eigenvalue problem 2 

PI/f=(I?+i h2 + hLz; hL+)ljJ=h2 'U+l)ljJ (133.5) 
hL_; L2+ih2-hLz ) 

if, in analogy to L 2, we arbitrarily call the eigenvalue h2 jU + 1). In order 
to make ljJ simultaneously an eigenfunction of Jz and J2 it must have 
the form (133.3) where now the dependence of C1 and C2 upon the 
variable 9 has to be determined. This can be done by putting 

ljJ = (f(r) Yi.mrt (9,<p)). 
g(r) Yi.mj+t(9,<p) 

(133.6) 

The spherical harmonics in (133.6) depend upon <p just in the way of 
Eq. (133.3). When PljJ is formed from (133.5) and (133.6), and we apply 
the general formulae (cf. Problem 56) 



we obtain 

Problem 133. Spin electron in a central field 

L+ J/,m = -IiVO+m+ l)(l-m) Y"m+1; 

L_ Y/,m= -IiV(l+m)(l-m+l) Y"m-l; 

Lz Y1,m = lim Y1,m; 

L2 Y"m = 1i210 + 1) J/,m' 

f(r) [10+ 1)+£+(mj-!)] J/,mj-t 

-g(r)VO+mj+!)(l-mj+!) J/,mrt 
Pt/J = 1i2 

- f(r)VO+mj+!)(l-m j-!) Y"mj+t 

+g(r) [10 + 1)+t-(mj+!)] J/,mj+t 

11 

(133.7a) 

(133.7b) 

(133.7 c) 

(133.7 d) 

so that the eigenvalue problem (133.5) leads to two linear algebraic 
equations for f(r) and g(r), viz. 

f[l(l+ l)+i+(m j -ll-j(j+ \l] -gVO+!?-my = 0; 

- fVU+W -mJ +g[t(l+ 1)+i-(mj+!)-jU+ 1)] = O. 
(133.8) 

The possibility of thus eliminating the spherical harmonics shows that 
the function (133.6) suffices to solve the problem. Thus 1 is still a "good" 
quantum number even in spin theory. 

The equations (133.8) are compatible with one another only if f(r) 
and g(r) differ only by a constant factor. We write 

f(r) = AF(r); g(r) = BF(r). (133.9) 

Then (133.8) permits to determine the ratio BfA. As the linear equations 
(133.8) are homogeneous, their determinant must vanish, 

uU+ 1)-0 +!?]2 -my - [(l+!)2 -mJ] = O. (133.10) 

Obviously, this condition is independent of mj' That is one of the sim­
plest consequences of a very general theorem of Wigner and Eckart. 
There are two different values of jU+ 1) satisfying (133.10), viz. 

l+!-mj . 
Solution!. j=l+!; B=-A 

l+!+mj , 

t/J( = Fk) ( Vl+t+ mj Y"mrt). 
V2T+1 - Vl+z-mj Y"mj+t 

(133.11) 

(133.12) 
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Both solutions are normalized. Since in all component functions a 
spherical harmonic of the same order 1 is split off, and since the potential 
is supposed not to depend upon spin, the function Fl is to be determined 
from the radial Schrodinger equation, 

h2 (If 1(1+1)) V() E - 2m Xl -~ Xl + r Xl = I Xl (133.13) 

with 
(133.14) 

NB. The formulae (133.11) and (133.12) may be applied to states with 1=0 
if attention is paid to the fact that the spherical harmonics then vanish if mj+t 
does not equal zero. Thus we get 

and 

./. Fo(r) (1) f 1 1 
'1'1 = V41t 0 or =0, mj = +2 

1/11= - ~ (n for I=O,mj=-t. 

The other function, 1/111, vanishes identically in both cases so that no solutions 
with negative j are originated. The same results are found by applying the oper­
ators J2 and Jz to a two-component function that depends on the radius only. 

Problem 134. Quadrupole moment of a spin state 

To determine the quadrupole moment of a one-electron state in a 
potential field of spherical symmetry, taking the electron spin into 
account. 

Solution. The eigenfunctions (cf. Eqs.(133.11, 12)) have the absolute 
squares 

It/lII2 J~~~~2 {(l+!+mj)IYI,mrtI2+(I+t-m)IY"mj+tI2} (134.1 a) 

if j=l+t, and 

It/lnl2 = 1~~~~2 {(l+!-mj)IY"mrtI2+(I+!+m)IY"mj+tI2} (134.1b) 

if j=I-!. It should be noted that Imjl~j, and that for 1=0 the func­
tion t/lu vanishes identically. 

Since (134.1 a, b) do not depend upon the angle q>, the argument 
of Problem 61 still holds, so that the non-diagonal elements of the 
quadrupole tensor have vanishing averages and that 

(134.2) 
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Thus again, we need only calculate (Qzz) according to the formula 

With the relation 

! 2 2 21(1+ I)-6m2 
jdQ(3cos .9-1)1Y;,ml = (21-1)(21+3) 

proved in Problem 61, and the abbreviation 
ao 

J drr4 lF,(rW = (r2), 
o 

(134.3) 

(134.4) 

(134.5) 

with the upper signs for j=l+t, the lower ones for j=l-t and 1~1. 
An elementary reordering in the curly bracket leads to 

~ 2 1) 12 2 21(1+1)-6 m· +- +--m· 
J 4 - 21+ 1 J 

(Qzz) = (r2) (21-1)(21+3) , (134.6) 

a formula to be compared with (61.8). 
It is possible, by using j instead of I, to write instead of (134.6) one 

comprehensive formula, 

2 1 ( 3m} ) (Qzz)=(r )."2 I- j (j+l) (134.7) 

wich obtains for both signs, j = 1 ± t, equally. Numerical results for 
the lowest values of j are listed in the accompanying table. 

States j <Qzz)/<r2 ) for 
mj=±t mj=±t mj=±t mj=±! 

St,Pt 1 0 2" 

P1-,D1- J. + t - t 2 

DJ,Fi: 5 +.!.2. +345 
20 

2" 35 -35 

Fi,Gi 7 +.!Q +261 
2 14 

2" 21 -TI -TI 
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It can be seen that for j=~ spherical symmetry obtains for S as well 
as for P states. Generally, it may be stated that with increasing values 
of Imjl the configuration passes from oblong to oblate figure of the 
electron distribution. 

The sum of the moments in each horizontal line of the table 
vanishes, since it leads to a closed shell of spherical symmetry. This 
can quite generally be shown as 

j j 

I 1=j+~ and I mJ=V(j+~)U+1) 
mj=t mj=t 

which by combination lead to 

Problem 135. Expectation values of magnetic moments 

For the spin electron in a central field there shall be derived the expec­
tation values of all three components of the vectors S, L, J and of the 
magnetic moment. 

Solution. If 

is the eigenspinor of a state, we have 

(135.1) 

The eigenspinors of J2 and Jz have been determined in Problem 133; 
they are 

Fk) 
U1 = l~ A j • z Yz m·-l.; V 21+ 1 ' 'J2 

with 

(135.3 a) 

and 

(135.3b) 
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In the expressions (135.1) underlying the expectation values of Sx and 
Sv this leads to products of different spherical harmonics so that 
<Sx) = 0 and <Sy) = O. On the other hand, we find 

00 

h f 21Fl(rW 2 2 
<Sz) ="2 drr 21+1 (Aj,l-Bj,l) (135.4) 

o 

and for the normalization integral 
00 00 

f drr2\~~~i2 (AJ,1 + BJ) = f drr2\FI(rW = 1. (135.5) 

o 0 

Thus we get 

<S ) =!!.. AJ,I-BJ,1 
z 2 A~I+B21 

), ), 

(135.6) 

which, in a state with j = 1 + t, is 

1 1 
<Sz)+ = hmj · 21+ 1 = hmj · 2j (135.7 a) 

and in a state with j= I-t, 

1 1 
<Sz)- = -hmj · 21+ 1 = -hmj ' 2(;+ 1)' (135.7 b) 

The expectation values of the three components of orbital momen­
tum follow in a similar way from 

Since the operators Lx ± i Ly change the first subscript of the spherical 
harmonics from 1 into 1 ± 1, these components again have vanishing 
expectation values (cf. Problem 58). For the component L z we have 

or 

Using (135.6), this can be written much more simply 

<Lz) = hmj-<Sz), (135.8) 

a formula which we might well have started with because of u being 
eigenspinor of lz=Lz+Sz with the eigenvalue hmj • 
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The expectation values of J x and J y of course vanish, as do these 
two components of Land S. 

The magnetic moment operator is 

e 
M= --(L+2S) 

2mc 
(135.9) 

for an electron of charge - e. Its expectation values in x and y direction 
vanish again, but 

may, according to (135.8), be written 

eli 
<Mz)= - -(mj+<Sz») 

2mc 

which, with (135.7 a, b) leads, for the states j=l+t, to 

(Mz)+= - ~m.(1 + ~)= _ ~m.2j+1 
2mc J 2J 2mc J 2j 

and, for the states j= -t, to 

(135.10) 

(135.11 a) 

eli ( 1) eli 2j+1 
(Mz)- = - 2mc mj 1 - 2U+ 1) = - 2mc mj 2j+i (135.11 b) 

NB. The last formulae show that a closed subshell (n, l) with either j = 1 +! 
or j = /-! has no resultant magnetic moment. 

eli 
The factor of - --mj in (135.11 a, b) is called the Lande g-factor of 

2mc 
the state. It permits <Mz ) to be written in the form 

eli e 
(Mz )= - 2mc mjgU)= - 2mc (Jz)gU) 

thus describing the deviation, originated by the spin, from the classical 
Maxwell relation between magnetic moment and mechanical moment, 
i. e. angular momentum. 

Problem 136. Fine structure 

The interaction of the intrinsic magnetic moment of an electron, 
e 

p= -g-S, 
mc 

(136.1) 



Problem 136. Fine structure 

and its orbital momentum L is described by a hamiltonian term, 

H' = _g_ ~ dV(r)(S.L). 
2m2c2 r dr 

The level splitting due to this interaction shall be determined. 

17 

(136.2) 

NB. The so-called g factor of the electron is almost 1. Its exact value has 
been found to be g= 1.001145. Since the complete theory of fine structure cannot 
be given in this unrelativistic treatment, this g factor should not here be taken 
too seriously. The same holds for the factor 2 in the denominator of (136.2), the 
so-called Thomas factor, not to be explained by unrelativistic considerations. 

Solution. The electron wave function in a central force field is a 
simultaneous eigenfunction of the operators Jz and J2, the angular 
structure of which has been given in the preceding problem. The operator 
(S· L) occurring in the hamiltonian (136.2) is then to be reduced to the 
quantum numbers j and I of the state '" = V, I) by 

J2 V, I) = {L2 +S2+2(L· S)} V, I) 

or 

1l2{jU+ 1)- [l(1+ 1)+i]}V,I)=2(L· S)V,I). 

The term (136.2) of the hamiltonian therefore simply adds to V(r) an 
energy perturbation 

V'(r) = ~ ~ dV(r) {jU+ 1)-1(1+ 1)-i}; 
4m2c2 r dr 

(136.3) 

since it depends upon the quantum numbersj and I, it will differ for differ­
ent values j=l±t with the same 1. 

First-order perturbation calculation gives a contribution 

E'· = (j II V'li I) 1,1 , , (136.4) 

to the energy of a level. In the notation of Eqs. (133.11) and (133.12), in the. 
normalization 

this leads to 

00 

J drr2IF/(r)1 2 = 1 
o 

00 

(136.5) 

gll2 f 1 dV 
Ej,l = -4 2 2 {jU+1)-I(I+1)-i} drr2lFkW- -. (136.6) 
mer dr 

o 
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The energy splitting between two levels of the same l, but with different 
j values then becomes proportional to the difference 

(l+!)(l+t)-(l-!)(l+!)=2l+ 1 

so that 

(136.7) 

The level of the smaller j value is the lower one (normal doublet). 
Some estimate of the integral (136.7) may be made by using the 

potential 

V= 
r 

1 dV 

r dr 
(136.8) 

Since this expression holds in the neighbourhood of the nucleus in all 
atoms, and since F{x.rl in this domain, the integrand in (136.7) becomes 
ocr21 - 1 so that the integral converges for l=1,2,3, ... but diverges 
logarithmically for S states (l = 0). As there is no level splitting but only 
a shift in an S state, this result is not of primary importance for the eval­
uation of spectroscopic data. The difficulty does not occur in a rigorous 
relativistic treatment of the problem (cf. Problem 203). 

Without evaluating in detail integrals of the type (136.7) it may 
safely be said that the result is of the order of Z e2 I a3 with a a length of 
the order of atomic radii. Since term energies in atoms are of the order 
Z e2 la, we then have roughly 

AEIEocA21a2 

with A=hlmc the Compton wavelength. This is a small quantity, 
hence the effect is a fme structure only and may be treated as a first-order 
perturbation as has been done above. 

Problem 137. Plane wave of spin ~ particles 

To expand a plane wave of spin! particles with either positive or negative 
helicity into a series of spherical harmonics. Let the wave run in z direction. 

Solution. The two-component wave spinors 

(137.1) 
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describe plane waves in z direction. In the state ljJ + the particles have spin 
in the direction of propagation; we then speak of helicity h = + 1. In 
ljJ_ we have the opposite spin direction, h= -1. If we decompose these 
spinors into eigenspinors of angular momentum, we have ml = 0 in 
both cases and mj=+! forljJ+,m j=-! forljJ_. 

It has been shown in problem 133 that, for a given orbital momentum 
I, there exist two eigenspinors of l z and J2, viz. 

and 

uI = Fl(r) ( VI+!+mjYI,mrt) ifJ'=I+! 
I,m} 1 ~ V 1 (137.2 a) 

V 21+ 1 - l+z-mj YI,m}+t 

II _ Fk) (Vl+!-mj Yl,mrt) . ._ 1. 
UI,m}-l~ V 1 IfJ-I-2 (137.2 b) 

V 21+ 1 l+z+mj YI,m}+t 

with FI(r) satisfying the radial Schrodinger equation. In the present 
force-free case the latter runs 

(137.3) 

and has solutions regular at the origin, in arbitrary normalization, 

1 
FI = -iL(kr). 

kr 
(137.4) 

The plane wave then shall be composed of solutions (137.2a) and (137.2 b) 
in the form 

ljJ= I (AluLm}+Blul~m)' (137.5) 
1=0 

Let us begin with the case of helicity h= +1 where mj= +!. Eq. 
(137.5) then may be written 

./, 1;' 1 . ( ((AI VT+I + B(0) YI,o ) 
'I' + = - L.. 11 kr) . (137.6) 

kr 1=0 V2f+1 (-AIVI +BIVT+I)Y"l 
In order to make the second line of the spin or vanish according to Eq. 
(137.1) we have to put 

(137.7) 

so that 

1 (1) 00 l~ 
ljJ + = kr 0 1~0 Al V 1+1 iL(kr) Yl,o' (137.8) 



20 Particles with Spin. One-Body Problems 

Comparing with the expansion of the plane wave (cf.(81.13)), 

there follows 

so that 

. 1 00 

e,kz = - L V4n(2Z+1)i'jz(kr)Y,,0 
kr '=0 

A,=V4n(l+1)i' , 

00 

t/I + = ~ L i' (Vf+1 ULt + VI ul~t) 
'=0 

is the correct expansion. 
In the opposite case, h= -1 and mj = -t, Eq.(137.5) yields 

(137.9) 

(137.10) 

(137.11) 

Now, according to (137.1), the first line of the spinor should vanish, i.e. 

B,=-VZ:1A,. (137.13) 

Comparison with (137.9) now renders 

A,= -V4n(Z+1)i' 

so that we arrive at the expansion 
00 

t/I-= -~ L e(Vf+1uL-t-VIul~-t)· 
'=0 

Problem 138. Free electron spin resonance 

(137.14) 

(137.15) 

A free electron is put inside a cavity in which there exist two magnetic 
fields, viz. a constant homogeneous field ~ in z direction, and a field 
;#" rotating in the x, y plane: 

Yfx =0; 

;e; =Yf'coswt; 

Yfy =0; 

Yfy' = Yf' sin w t ; 
Yf.. =Yl .} z 0, 

Yf'=o. z 

(138.1) 

At the time t = 0, the electron has its spin in + z direction, and the field 
;#" is switched on. The probability P of the electron having its spin 
inverted into the - z direction shall be determined as a function of time. 
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Solution. The hamiltonian of the problem runs 

H =f.l(O'z£'o + O'xYl'; + O'yYl';) 

21 

where - flO' is the intrinsic magnetic moment of the electron with 
f.l=eh/(2mc) except for quantum electro dynamical corrections. We write 

0' Yf..'+0' Yf..' = 1. Yl"(0' e-irot+O' eiwt) xx yy 2 + -

with O'±=O'x±iO'y. Thus the Schrodinger equation becomes 

_!!. aljJ = 1I{.1l 0' +1.Yl"(e- irot O' +eirotO'_)},/:. 
i at t'" 0 z 2 + 'I' 

The solution can be expressed by the eigenfunctions of O'z, i. e. 

ljJ(t) = u(t)rx+v(t)fJ. 

Putting (138.3) into (138.2) and using the relations [cr. (129.1O)J 

O'zrx=rx; O'+rx=O; 

O'zfJ=-fJ; 0'+fJ=2rx; 
we obtain 

h . . 
- -:- (urx+ iJ fJ) = f.l£'o(urx - v fJ) + f.lYl"(e- rrot vrx + errot ufJ). 

I 

Introducing the abbreviations 

f.l£'o 
-h-=wo; 

f.lYl" , 
-h-=w, 

and separating into rx and fJ parts, we find 

iu= wou+w'e-iwtv; 

iiJ= -wov+w'eirotu. 

This system is solved by 

u = Ae-H.!Htrojt; v = Be-Hu-tro)t. 

(138.2) 

(138.3) 

(138.4) 

(138.5) 

(138.6) 

A straightforward calculation leads to two solutions Q1 = + Q and 
Q2= -Q with 

Q = V(WO-!W)2+ W,2 

with amplitudes A 1, B1, respectively A 2 , B2 : 

and 
B = A ±Q-(wo-!w) 

1,2 1,2 W' . 

(138.7) 

(138.9) 
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In (138.8) we introduce the initial condition 1/1(0) = rt. or 

Al+A2=1; Bl+B2=0, (138.10) 

which with (138.9) finally leads to 

{ 
W _1. w } _i!Et w' !!!'t 

1/I(t)= cosQt- 0 Q2 isinQt e 2 rt.- Q isinQte 2 /3. (138.11) 

The probability of spin flip at time t is therefore 

(W')2 p= Q sin2 Qt, (138.12) 

its time average being independent of time, 

(138.13) 

If the homogeneous field £0 and thus, according to (138.4), the 
Larmor frequency Wo is continually varied, the average flip probability 
becomes a maximum if 

1 . _ _ hw 
1. e. ""0 - . 

2/1 
(138.14) 0)0=2 w , 

We call this the resonance field, J'l;es, and find 

_ 1 £'2 

P = 2 (Yl: - Ye. )2 + £'2· 
Ores 

(138.15) 

At resonance, P = i, independent of the strength of the rotating field 
£', the width of the resonance region, however, being determined by £'. 

NB. The method may either be used to determine f1 from the resonance field 
strength or, if f1 is sufficiently welI known, to determine the difference between the 
field applied and the field acting on the electron inside a molecule. In a similar way, 
proton resonance may be used to detect molecular structures. 

B. Two- and Three-Body Problems 

Problem 139. Spin functions for two particles 

To determine the spin eigenfunctions for a system of two particles of 
spin i (say, a neutron and a proton) which for a total spin vector 
operator 

(139.1) 

simultaneously diagonalize its component Sz and its absolute square, S2. 
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Solution. Let IXn, f3n be the Hilbert basis vectors for the neutron, 
and IXp, f3 p for the proton. Then the spin function X of the two-particle 
system is bound to be of the form 

X = AlXnlX p+ BlXnf3p+C f3,.lX p+D f3nf3 p. (139.2) 

From the definition of the spin operators (Problem 129) it follows that 

2 
h SzX = (O"nz+O"pz)x = AlXnlXp+ BlXnf3p-C f3nlXp- D f3nf3 p 

+ A IXnlXp - B IXn f3p + C f3nlXp - D f3nf3p. 

Each of the four terms of X, Eq. (139.2), therefore is an eigenfunction 
of Sz, viz. 

2 
IXnlXp for the eigenvalue +2 of hSz or +Ii of Sz; 

IXn f3 p for the eigenvalue 
2 

0 of hSz or 0 of Sz; 
(139.3) 

f3nlXp for the eigenvalue 0 
2 

of Sz; of hSz or 0 

f3nf3 p for the eigenvalue 
2 

-Ii of Sz. -2 of hSz or 

The spin components of + 1, 0, -1 in units Ii are in agreement with 
the half-classical vector model. The two functions IXnf3p and f3nlXp are 
still degenerate so that any linear combination of them still belongs 
to the eigenvalue zero. 

We now proceed to investigate the operator 

We find 

and thence, 

O"nxO" pxX = A f3nf3 p + B f3nlXp + C IXnf3p + DlXnlXp; 

O"nyO" pyX = - A f3nf3 p + B f3nlXp + C IXnf3p - DlXnlXp; 

O",.zO" pz X = A IXnlXp - B IXnf3p - C f3nlXp + D f3nf3 p 

(~y S2IXnIXp = 8lXn lXp ; (139.4 a} 

(~y S2(BIX,.f3p + C f3,.lX p) = 4(B + C) (IXn f3p + f3nlXp); (139.4 b) 

(~y S2 f3nf3 p = 8 f3nf3 p. (139.4c) 
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The functions IY.nlY.p and f3nf3p therefore are eigenfunctions to the eigen­
value 2h2 of the operator S2. In the usual notation, 

(139.5) 

they belong to the quantum number S = lor, in the half-classical 
language of the vector model, to the total spin S = 1 (in units h) with 
its component Sz either + 1 or -1. 

From (139.4 b) we construct two more eigenfunctions of S2 with 
Sz=O. Let 2 be the still unknown eigenvalue of S2jh2, then we have 

(B + C)(lY.nf3p + I3nlY.p) = A(BlY.nf3p+ C I3nlY.p). 

This yields two linear equations for Band C, 

(B+C)=AB and (B+C)=2C. 

Their determinant must vanish, 

I : ~ 2; _ ~ I = 0 or 1 - 2 = ± 1. 

The two eigenfunctions of S2 with Sz=O therefore become 

a) for2=2:B=C; X=lY.nI3p+I3nlY.p; 

b) for 2 = 0: B = - C; X = IY.nI3p - I3nlY.p; 

S= 1; (139.6 a) 

S = O. (139.6 b) 

The results have been collected in the following table where the 
functions have been normalized according to the rules 

(IY.IIY.) = (13113) = 1; (1Y.If3) = o. 

Triplet, S = 1 
(symmetrical 
spin function) 

Sz=+1 
o 

-1 

Singlet, S = 0 
(antisymmetrical Sz = 0 
spin function) 

NB. From (an + a p)2 = 6 + 2(0' n • 0) it follows that the triplet and singlet spin 
functions, say X, and X., given in the table, are eigenfunctions also of the operator 
(an'ap) so that 

(an 'o)X,=X,; (an 'ap}xs= -3 Xs' 

Of these relations use will be made in the following problem. 
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Problem 140. Spin-dependent central force between nucleons 

In a reasonable approximation, the interaction energy between a neutron 
and a proton in an S state may be described by a central force, different 
for symmetrical and antisymmetrical spin states. Such an interaction 
shall be expressed in terms of a spin-dependent potential 

a) using the spin exchange operator Enp, 
b) using the spin vectors an and a p of the two particles. 

Solution. A central force means that the interaction energy must 
depend only upon the distance r between the two particles. This energy 
shall be different for different spin-state symmetry, say, Vt(r) in the 
triplet case of parallel spins and V.(r) in the singlet case of anti parallel 
spins. 

a) Let X(sm sp) be a two-particle function. Then the spin exchange 
operator is defined by 

(140.1) 

(140.2a) 

and for the antisymmetrical singlet state, Xs(smsp)= -Xs(sp,sn), 

(140.2 b) 

Hence both kinds of functions are eigenfunctions of the exchange 
operator, with its respective eigenvalues + 1 and -1. As the three 
triplet and one singlet functions form a complete orthogonal set, 
Eqs. (140.2a, b) explain the exchange operator completely and uniquely. 

An interaction energy 
V = Vi(r)+ V2(r)Enp 

yields, according to (140.2a, b), 

V Xt = (Vi + V2 )xt; V XS = (Vi - V2)xs 
so that 

Yr = Vi + V2 and V. = Vi - V2 

are the interactions in the triplet and singlet states, respectively. Thence, 

(140.3) 

b) At the end of the preceding problem we have shown that the spin 
functions Xt and XS are eigenfunctions also of the operator (an'ap), viz. 

(140.4) 
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It follows that 1:np may be expressed linearly by (O"n· 0). Indeed, 

(140.5) 

leads to the wanted eigenvalues (140.2 a, b). Again, since there exist no 
other spin functions of the two-nucleon system, both operators are 
completely described by the eigenvalue problems (140.2 a, b) and (140.4) 
so that (140.5) holds in full generality. 

Replacing 1:np in (140.3) according to (140.5), we arrive at the result 

V = i(3 Yr + Vs) +i(Yr- Vs)(O"n· 0" p). (140.6) 

Problem 141. Powers of spin operators 

To show that the operator (0"1· 0"2)" for two particles 1 and 2 can be 
linearly expressed by (0"1·0"2). 

Solution. The operator (0"1·0"2) is completely described by the two 
eigenvalue relations 

(0"1·0"2}xt = Xt; (0"1·0"2}xs = -3Xs (141.1) 

for the three triplet and one singlet spin functions since these form a 
complete orthogonal set. It therefore suffices to investigate the applica­
tion of (0"1·0"2)" to these four spin functions. By iteration of (141.1) we 
get at once, 

(141.2) 

It follows that 
(141.3) 

can be linearly expressed by (0"1 ·0"2). Putting (141.3) in (141.2) we find, 
according to (141.1), 

(A+B}xt=Xt; (A-3B}xs=(-3}"Xs· 

It follows that 
A+B = 1; A-3B = (-3)" 

or that 
A = H3+( -3)nJ; B = H1-( -3}"J. (141.4) 

Thus, e. g., we get 

(0"1·0"2)2 = 3-2(0"1·0"2); (0"1·0"2)3 = -6+7(0"1·0"2). 

NB. The representation (140.6) of a spin-dependent force in the preceding problem 
is unique, because replacing it by a power series in (0" n • 0) would change nothing 
in the result. - The solution of the problem becomes even simpler if powers of the 
exchange operator J: 12 are considered. 
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Problem 142. Angular momentum eigenfunctions for two spin particles 

To construct the triplet state eigenfunctions of the operators l z and J2 
for a system of two spin! particles. Use Ii = 1 as unit of angular momen­
tum. 

Solution. Any eigenfunction for a triplet state can certainly be 
written in the form 

00 

1jJ= I {J/(r)Yz.m-1Xl.l+g/(r)Y/.mXl.0+h/(r)Yz.m+1Xl.-d, (142.1) 
/=0 

each of the three possible spin functions multiplying by a space factor 
formally written as a spherical harmonics expansion, with only the 
one restriction to generality that the second subscript of each Y is so 
chosen as to make 

thus making IjJ an eigenfunction of the operator l z • 

Let us now apply 

(142.2) 

to the function (142.1). It is then suitable to define the operators 

(142.3) 

in analogy to (cf. Problem 56) 

L+ = Lx+iLy and L_ = Lx-iLy. (142.4) 

Then J2 may equally well be written 

J2 = L2 +!(L+ 0" _ + L_ 0" +)+ LzO"z +i+t(O"l . 0"2), (142.5) 

where 0"±=0"1±+0"2± and O"z=0"1z+0"2z, Application of these oper­
ators to the triplet spin functions yields 

(
XU ) (0) 0" + Xl.O = 2V2 Xl.l ; 

Xl.-l Xl.O 

(
Xl.l) (Xl,O) 

0"_ ~l'O =2V2 Xi.-l ; 

Xl.-l ° 
(

Xl,l ) _ ( Xl,l ) 
O"Z Xl,O - 2 ° . 

Xl,-l -Xl,-l 

(142.6) 
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Hence, we obtain by straightforward computation 

J 2 XI,l = (U+2+2Lz)xI,1 + V2L+Xt,o; } 
J2 XI,O = V2 L_ XI,I +(L2+2)xI,O + V2L+ XI,-l; 

J2 Xl,-l = V2 L_ XI,o+(L2 +2-2Lz)XI,-I' 

Using (142.7) and the well-known relations [cf. (56.14)] 

L+ Yi,m = - V(l+m+l)(l-m) Yi,m+1;} 
L_ Yi,m = - V(l+m)(l-m+ 1) Yi,m-l; 
L z Yi,m = m Yi,m 

we get 
00 

J2 t/J = L {[fl (l(l+ 11+2m)-gl V2(l+m)(1-m+ 1)] Yi,m-l XI,I 
1=0 

(142.7) 

(142.8) 

+ [ - fz V2(1+m)(l-m+ 1)+gl(1(l+ 1)+2)-hl V2(l+m+ 1)(l-m)] Yi,mXI,O 

+[ -gIV2(l+m+l)(l-m)+hl(l(l+I)-2m)J Yi,m+1XI,-d. (142.9) 

In order to make t/J an eigenfunction of J2 this must be 

=jU+l)t/J, 

which gives three independent linear equations for fl' gl' hi showing 
that these three radial functions must be of the same form but with 
different amplitudes: 

fl = A1Fz(r); gl = B1Fl(r); hi = C1Fl(r) (142.10) 

where the constant amplitude factors AI' B l , C l may be determined from 
the following set of linear equations 

[l(l+ 1)+2m-iU+ I)JA1- V2(l+m)(1-m+ I)Bl = 0; 

- V2(l+m)(l-m+ I)Al+ [1(1+ 1)+2-jU+ I)J Bl - V2(1+m+ 1)(I-m)Cl=O; 

- V2(l+m+ 1)(1-m)Bl+[I(l+I)-2m-jU+l)]Cl = O. 

(142.11) 

The determinant of these equations must vanish; if it is expanded, one 
finds that it becomes independent of m and has the form 

[l(l+ 1)-jU+ 1)] {[1(l + 1) - iU+ 1)]2 + 2[1(1 + 1) - jU + 1)] -41(1 + I)} =0. 

This leads to the (positive) solutions 

j=1+1; j=l; j=1-1 (142.12) 
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for which the amplitudes A" B" C, then may be determined according 
to (142.11), except for a common normalization factor. Choosing arbi­
trarily the normalization 

Af+Bf+Cf = 1 

we arrive at the results compiled in the table. 

j A, B, 

1+1 
(l+m+l)(I+m) (l+m+l)(l-m+l) 
2(1+1)(21+1) (1+ 1)(21+ 1) 

(l-m+l)(l+m) m 
---

21(1+ 1) V1(1+1) 

(l-m+l)(l-m) (l+m)(l-m) 
21(21+1) 1(21+ 1) 

1-1 

Problem 143. Tensor force operator 

(142.13) 

C, 

(l-m+l)(l-m) 
2(1+1)(21+1) 

(l+m+l)(l-m) 
21(1+ 1) 

(l+m+l)(l+m) 
21(21+1) 

The so-called tensor force between two particles 1 and 2 of spin! is 
defined by the interaction energy 

V = W(r)T12 
with the operator 

(143.1) 

To apply this operator to the spin eigenfunctions of the two-particle 
system. 

Solution. The operator T12 is invariant under spin exchange. It 
therefore keeps the symmetry of the spin functions. Since there exists 
only one antisymmetrical spin function, Xo,o, this then must be an 
eigenfunction of the operator T12 . The three symmetrical spin functions, 
however, may be mixed up by its application. Since T12 is invariant 
also under exchange of the particle coordinates, i. e. under parity trans­
formation, it will conserve parity. This means that only spherical 
harmonics of even order will enter the expression T12 X. No higher 
angular momenta than 1 = 2 are to be expected. 

In order to get details let us first apply the one-particle operator 
(0" r) to the one-particle spin functions: 

(0" r) (;) = (axx+ayy+azz) (;) = G:~~:;~~:;). (143.2) 



30 Particles with Spin. Two- and Three-Body Problems 

It then follows directly that 

(

Cl.1C1.Z) ([(X+iY)/31 +ZCl.l] [(X+i Y)/3Z+ZCl.Z]) 
(0' 'r)(O' 'r) Cl.1/3Z = [(X+iy)/31 +ZCl.l] [(x-iY)Cl.z-z/3z] . 

1 Z /31C1.Z [(X-iY)Cl.1- Z/31] [(X + iY)/3z +ZCl.z] 

/31/3Z [(x-iY)Cl.1 -Z/31] [(x-iy)Cl.z -z/3z] 

With 
(x ± i y/ = rZ sinz .9 e±Zi<P; X Z + yZ = rZ sinz.9; 

(x ± i y)z = rZ sin.9 cos.9 e±i<P; ZZ = rZ cosz.9, 

this leads to 

r /31C1.Z 

fil/3z 

(0'1' r) ~O'z' r) (~: ;:) 

(

cosz.9 Cl.1 Cl.z + sin.9 cos .gei<P(Cl.l /3z + /31 Cl.z) + sin2 .9 e2 i<P /31/3 Z ) 

= sin .9 cos .ge - ~<P (Xl (X2 - cos2 .9 (Xl /32 + sin2.9 /31 (X2 - sin .9 cos .ge~<P /31 /3z . 

sin.9 cos.ge - ''I' (Xl (X2 + sinz.9 (Xl /3z - cosz .9 /31 (Xz - sin .9 cos .9 e'<P /31/3 2 

sinz.ge - 2i<P (Xl (X2 - sin .9cos.ge -i<P(Cl.l /32 + /31 (Xz) + cosZ.9 /31/32 

Using the notation XS,ms' i. e. for the triplet 

1 
Cl.l(X2=Xl,1; V2 «(Xl/3Z+/31(XZ)=Xl,0; /31/32=Xl,-1 (143.3) 

and for the singlet 
1 

Xo,o = V2 «(Xl /3z - /31 (XZ)' (143.4) 

we then have for the symmetrical functions of the triplet 

(O'l. r)(O'z.r)(Xl,l) (143.5) 
rZ Xl,O 

Xl,-l 

(
COSZ.9 X +ll2sin.9cos.gei<Px +sin2.gezi <Px _ ) ,1,1 V L. 1,0 1, 1 

= V2 sin .9 cos .ge -i<P Xl,l + (sin2.9 -c~sz.9) Xl,O - V2 sin .9 cos .gei <PX1' -1 

sin2.9 e - 2,'1' Xl,l - V2 sin.9 cos.9 e - ''I' Xl, 0 + cosz .9 Xl,-l 

and for the antisymmetrical singlet function, 

(0'1' r) (0'2 . r) 
r2 XO,O= -Xo,O' (143.6) 
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The second term of T12 has already been discussed in Problem 140: 

(tTl · tT 2) (Xl.ms) = (_~l.ms). (143.7) 
Xo.o Xo.o 

Combination of Eqs. (143.6) and (143.7) then gives at once 

T12 Xo.o = o. (143.8) 

The tensor operator therefore cannot contribute any dynamical term 
to a spin singlet state. 

There remains further discussion of the triplet. Introducing nor­
malized spherical harmonics according to the definitions of the table 
of Problem 67, we obtain from (143.5) and (143.7), 

T12 XI.l = i W (Y2 •OXl.l + V3Y2 •1 Xl.0 + V6Y2 •2 Xl.-I); 

T12 Xl.0 = i W (-V3 Y2 .- 1 XI.l -2 Y2.OXI.O - V3 Y2.1 Xl.-l); (143.9) 

T12 Xl.-l = i W (V6Y2.-2 Xl.1 + V3Y2.- 1 Xl.0+ Y2.OXl.-I)· 

These formulae not only show spin exchange symmetry and parity to 
be conserved, but also the z component of the total angular momentum. 
The orbital momentum, however, as well as its z component, are not 
good quantum numbers in a two-particle system with tensor interaction. 

Problem 144. Deuteron with tensor interaction 

The interaction between a proton and a neutron consists in part of a 
central force, and in part of a tensor force, 

v = ~(r)+ V;(r) Tpn. (144.1) 

The deuteron groundstate therefore is a mixture of Sand D state. The 
eigenfunction shall be constructed, except for radial Sand D factors 
for which a set of two coupled differential equations shall be derived, 
under the assumption of nuclear spin orientation in z direction. 

Solution. With the nuclear spin i = 1 (in units h) and its component 
in z direction also 1, we have for the most general S - D mixture, 

1/1 = fer) YO.OXI.I +g(r){Y2 •O Xl.l +..1. Y2 •1 Xl.0+ Jl Y2.2 Xl.-d (144.2) 

with the constants A. and Jl to be adjusted so that 

[21/1 = 21/1 . (144.3) 
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Here [ is the operator of total angular momentum (nuclear spin). 
According to the preceding problem we have 

[2 t/I = {Xl,1 (L2 +2+2Lz)+ Xl, 0 V2L+} (fYo,o +g Y2 ,o) 

+A{Xl,l V2L- + Xl, 0 (L2 +2)+ Xl,-l V2L+}g Y2 ,l 

+ Il{Xl,O V2L- + Xl,_l(L2 +2-2Lz)}g Y2 ,2 

and further 

[2 t/I = Xl,l [2fYo,o +(8 -2 vlJA)g Y2 ,o] 

+ Xl,O( -2v1J+ 8A - 2V2Il)g Y2,l + Xl,-l( -2V2A+41l)g Y2 ,2' 

The last relation satisfies (144.3) if 

A=vIJ, 1l=V6, (144.4) 

so that the angular momentum eigenfunction becomes 

The curly bracket in (144.5) is the same combination of spherical 
harmonics and spin functions as was obtained in the first line of Eq. 
(143.9) of the preceding problem, so that we may write in a more compact 
form: 

t/I = ~ {f(r) +! VSg(r) Tpn}xl,l' (144.6) 

Let us now normalize this function. From (144.5) there follows at 
once 

00 

J drr2 [P + lOg2] = 1. 
o 

It will be suitable to put 

f(r)=t/ls(r)cosw; g(r) = l~ t/lD(r)sinw 
VlO 

(144.7) 

so that 

(144.8) 

and 

t/I = ~ {t/ls(r)cosw + 2~ t/lD(r)SinwTpn} Xl,l' (144.9) 

Now, the Schrodinger equation for the relative motion (with h= 1, 
mp=mn=l, reduced mass=!, cf. Problem 150), 

(- V2+ v" + Yr Tpn-E)t/I = 0, 
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has to be satisfied by (144.9): 

{( - V2+ T{-E)coscol/ts + [2~ (- V2+ T{-E)sincol/tD + Yrcos co l/tS} Tpn 

+ 2~ Yrsincol/tD Tin} Xl,l = O. (144.10) 

Here, if applied to a triplet spin function, XI' the operator Tin may be 
linearly expressed by Tpn' viz. 

(144.11) 

This can easily be shown using the identity 

S(IX) = ~(u. r)(IX) = (C~S8; _. sin8ei<P) (IX) 
p r p sm8e l<P; -cos8 p 

for one-particle spin states. It then follows that the square of this operator, S2 = 1, 
so that 

S;n={~(Up. r)(un· r)f = 1. 

Since we already know (p. 24) that (up· un)xt= x. we fmd 

T;n=(Spn-W= 1-~Spn+~= 190 -~(Tpn+t) 

in perfect agreement with (144.11). 

Eq. (144.10) may now be written 

{ 2 20. ,I, } cosco(-V + T{-E)l/ts + -3- smco Yr'l'D Xl,l 

+ {sin co [ 2 ~ (- V2 + T{ - E) - ~ YrJ l/t D + cos co Yr l/t s } Tpn Xl,l = O. 

(144.12) 

The operator Tpn in the second line, when applied to Xi,i, yields only 
terms with 1=2 orthogonal to those with 1=0 in the first line. We 
may therefore decompose (144.12) into two coupled radial equations, viz. 

and 

. r,/,II 2,/,' 6 ,I, ( 2 ) ,I, J 20 ,I, SmCOL'I'D+-;:-'I'D- r2 '1'D+ E-v,,+3Yr 'I'D -cosco·-3-Yr'l's=0. 

(144.14) 

This is the set of differential equations required. 
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Problem 145. Electrical quadrupole and magnetic dipole 
moments of deuteron 

Given the deuteron wave function determined in the preceding problem. 
a) The electrical quadrupole moment of the deuteron shall be ex­

pressed in terms of the two integrals 

(145.1) 

b) The expectation value of the magnetic dipole moment shall be 
determined. 

Solution. a) The quadrupole tensor (cf. Problem 61) can be defined 
by 

In the original definition of this tensor, the factor i on the right-hand 
side had not been used. It occurs in the present problem in consequence 
of !r being the proton coordinate about the centre of mass, and only 
the proton contributing to the quadrupole moment since the neutron 
carries no electric charge. The deuteron charge distribution in the 
state M I = I being rotationally symmetrical about the z axis, averaging 
of the tensor elements over the angle cp leads to the relations 

(145.2) 

We therefore need only evaluate the expectation value of the operator 
Qzz, viz. 

<Qzz) = L fd't"Qzz'l/l' Z 

SPin 

1Wn f = - - I duZ Yz,oll/llz. 
2 5 spin 

(145.3) 

With the deuteron wave function determined in the preceding problem, 
viz. 

_ . 1 r 
l/I- cos w l/I s(r) Yo 0 Xl 1 + SlllW --l/I D(r) l Y Z 0 XlI + " VIO " 

+0YZ,lXl,O+t/6YZ,ZXl,-d, (145.4) 
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this yields by spin summation, 

00 

IV¥n f f '{I . l/ID 12 <Qzz)=- - drr4 dQY20 ' coswl/lSYOO+SlllW--Y20 + 
2 5 ' , VW' 

o 

The term with l/I~ vanishes in consequence of the orthogonality of the 
spherical harmonics. With the product l/Is l/ID the obvious integral 

! 2 1 j dQYo,oIY2 ,ol = ~ 

is coupled. It is a little more laborious to evaluate the three remaining 
integrals occurring with l/I1, viz. 

f dQ Y2,o 1 Y2,o12 = 2W-
7 4n' 

f dQY2,oIY2,112 = lW-l' 4n' 
(145.5) 

f 2 2W-dQY2 olY2 21 = -- -. ,. 7 4n 

Assembling all these details, we finally arrive at the simple formula 

1 1 
<Qzz) =--A cosw sinw - -Bsin2w. 50 20 

(145.6) 

If the admixture of D to S state is a small percentage, the parameter 
w is small and the second, negative term in (145.6) represents a small 
correction only to the first, positive part. Therefore, < Qzz) is positive 
so that the deuteron has an oblong shape in z direction. This is borne 
out by experiment. 

b) The magnetic dipole operator consists ofa spin part, flp(J pz+ fln(Jnz, 
and of an orbital momentum part to which only the proton contributes. 
The orbital momentum component L z for the two-particle problem is 
given by 
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of which only the first part will contribute to the magnetic moment 
whereas both terms contribute equal parts to the orbital momentum 
about the center of mass. Therefore only ! Lz enters the orbital part 
of the magnetic moment, 

e 1 
Jlorbit = -_.- L z • 

2mc 2 

The expectation value of the z component of the magnetic moment 
thus becomes 

(145.7) 
spin 

and the expectation values of x and y components vanish. 
Application of the operators (1 pz and (1nz to the triplet spin functions 

yields the relations, 
(1pz Xl,l =Xl,l; 

(1pzXl,O =Xo.o; 

(1nzXl,l =Xl,l; 

(1nz Xl,O = - Xo,o; 

(1 pz Xl, - 1 = - X!, - 1; (1 nz Xl, - 1 = - Xl, - 1 . 

If, therefore, we write a triplet wave function briefly in the form 

t/t=UX1,l +vXl,O+WXl,-l 
we get 

spin 

X {Jlp(UX1,l +vXO,O-WX1,-1) 

+Jln(UX1,1- VXO,O-WX1,-1) 

+ Jlorbit(U Xl,1 + V Xl,O + W Xl, -1)} 

and, by using the orthonormality of the spin functions, 

(145.8) 

<Jl> = J dr: {u* (Jlp + Jln + Jlorbit) U + V* Jlorbit v + W* ( - Jlp - Jln + Jlorbit) w} . 

Now we have (cf. (144.5)) 

u=jYO,o+gY2,o; v=V3"gY2,l; w=V6"gY2,2 

and therefore 

so that 

<Jl> = f dr: {(Jlp+Jln)(U*U-W*W) + 4~C (V*V+2W*W)} 

00 00 

= (Jl + Jln) f dr r2(j2 +g2 _6g2) + ~ f dr r2(3g2 +2·6g2). 
p 4mc 

o o 



Problem 146. Spin functions of three particles 37 

Measuring <fl) in units of nuclear magnetons, eh/(2mc), and replacing 
f and 9 by the normalized functions l/Is and l/ID (144.7), we finally arrive at 

<fl) =(flp + fln)-~ sin2 W(flp + fln-!) . (145.9) 

The admixture of D state therefore only causes a second-order correction 
in the magnetic moment. 

Problem 146. Spin functions of three particles 

To construct the eigenfunctions of Sz and S2 for a system of three particles 
of spin !. 

Solution. The total spin vector operator of the system is now 

h 
S = 2" (0"1 +0"2 +0"3)· 

Its z component apparently has the following eigenfunctions: 

X@ = 0(10(20(3 ; 

xC!) = AO(l 0(2133 +BO(l1320(3 +C 1310(20(3; 

X( -!) = A' 1311320(3 +B' 1310(2133 +C' 0(1132133; 

X( -~) = 131132133· 

(146.1) 

(146.2) 

The argument of X denotes the eigenvalue of Sz in units of h. Each of 
the two functions xC!) and X( -!) consists of three still degenerate 
functions. This degeneracy will now be dissolved by investigating the 
operator 

S2 = (~y (0"1 +0"2 +0"3? = (~y {9 + 2(0"1 ·0"2)+ 2(0"2 ·0"3)+ 2(0"3 ·0"1)} . 

(146.3) 
In Problem 140 it has been shown that 

(0"1·0"2)0(10(2=0(10(2; (0"1·0"2)0(1132=21310(2-0(1132; 

(0"1·0"2)1310(2=20(1132-1310(2; (0"1·0"2)131132=131132; 

or, even, more simply, that the operator 

L12 =!(1 +0"1·0"2) (146.4) 

merely exchanges the spin functions of the two particles 1 and 2, 

L12 x(1,2)=X(2, 1), (146.5a) 
in detail: 

(146.5b) 
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The operator (146.4) is therefore called the spin exchange operator of 
particles 1 and 2. 

We now can express (146.3) in terms of such exchange operators, 

S2 = (iJ {3 + 4(L 12 + L 23 + L31)} . (146.6) 

Application of this operator to the first and last of the four spin functions 
(146.2) leads to 

SZ X@ = (~y ·15 X(!); SZ X( -!) = (~y ·15 X( -!). (146.7) 

These two functions therefore are non-degenerate eigenfunctions of S2 
already to the eigenvalue S(S+ 1)= lJ or S=! for two different eigen­
values of Sz. In the vector model they correspond to parallel orientation 
of all three spins in z or - z direction. 

It is not so simple to deal with the degenerate functions X@ and 
X( -!). Here, application of (146.6) to X(!) yields 

SZX(!) =(~y {3X(!)+4[AIl(1Il(ZP3 +BPlIl(ZIl(3 +Cll(lPZIl(3] 

+4 [All(l PZIl(3 +BIl(1Il(ZP3 +C PlIl(ZIl(3] 

+4 [APlIl(ZIl(3 +Bll(l P21l(3 +CIl(1Il(ZP3]} 

= (~y {(7 A+4B+4C)1l(1Il(ZP3 +(4A+7 B+4C)1l(1 P21l(3 

+(4A +4B+7 C)PlIl(21l(3}. 

This shall become 

=11.2 S(S+1){AIl(11l(2P3+ Bll(lPZIl(3+ C PlIl(21l(3}· 

Thus we arrive at a linear system of three homogeneous equations, 

7 A+4B+4C=4S(S+ 1) A; 

4A+7 B+4C=4S(S+ 1) B; 

4A+4B+7C=4S(S+ 1) C 

(146.8) 

the determinant of which must vanish. This gives a cubic equation for 
the eigenvalues S(S + 1) possible with the solutions 

S(S+ 1)= lJ,iJ or S=!,t,!· (146.9) 

The same result would be obtained by applying SZ to X( -!) if the 
symbols Il( and P are exchanged throughout. 
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The first eigenvalue (146.9) leads unambiguously to the solution 
A = B = C of the system (146.8). Using a more complete notation for the 
spin functions, X(S, Sz), we find a quartet of four completely symmetrical 
functions, viz. 

x(%, f)=~1~2~3; 

(3 1) 1 X -, - = -(~1 ~2/33 +~1 /32~3 + /31 ~2~3); 
2 2 0 

(3 1) 1 X -, - - = -(fh/32~3 +/31 ~2/33 +1X1/32/33); 
220 

(146.10) 

(3 3) , 
X 2'-2 =/31/32/33· 

Besides this solution which corresponds to the four orientations of 
spin! in the vector model, the double solution S=! put in (146.8) 
leads three times to the same relation, 

A+B+C=O; 

we thus may express C = - (A + B), but cannot then obtain separate 
information on A and B: 

Two doublets, each with S=!, are still mixed up in these formulae 
and are still degenerate. 

It is usual to decompose and normalize the doublets by the two 
assumptions 

1 1 
A=B=- and A=-B=-. 

V6 V2 
(146.12) 

With the first assumption the doublet becomes 

(146.13) 
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this doublet is symmetrical with respect to exchanging particles 2 and 3 
(symbolic notation: 1,23). The other doublet will become 

( 1 1) 1 
X2 2' 2 = V2 rxdrx2/33-/32 rx3); 

X2(±'-±)= ~ /31 (/32 rx3- rx2/33); 

(146.14) 

it is antisymmetrical in 2 and 3 (in symbols: 1,23). 
Of course, it is quite arbitrary to select just particles 2 and 3 as 

affecting simple symmetry properties. By another choice of A and B, 
e.g. B= -tA, a function of symmetry 12,3 would have been obtained. 
Only further conditions imposed on the solution in special problems 
can lead to the dissolution of this remaining degeneracy. 

Problem 147. Neutron scattering by molecular hydrogen 

Let the particles 1 and 2 of the preceding problem be the two protons 
of an hydrogen molecule and 3 be a slow neutron with its de Broglie 
wavelength large as compared to the nuclear distance. The scattering 
cross section shall be determined for para and orthohydrogen, separ­
ately, with the central-force n-p interaction (cf. Problem 140) 

(147.1) 

To connect scattering lengths with potentials, the somewhat crude 
assumption may be made that the scattering length is proportional to 
the potential well depth. 

Solution. The motion ofthe neutron will be governed by its interaction 
with the two protons. If its wavelength is large, both protons are practical­
ly at the same position and we have only one relative coordinate vector r. 
Let us denote the neutron by subscript n (instead of 3), then the neutron­
molecule interaction may be written, according to (147.1), 

(147.2) 

with Vt(r) and Vs(r). 
Orthohydrogen is now defined by a symmetrical, parahydrogen by 

an antisymmetrical spin function so that, according to the results of 
the preceding problem, there exist the following eight spin functions of 
our three-body problem: 
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Xp (-21 , + -21) = 1 ~ (rJ.l /32 - /31 rJ.2)rJ.n} D~ub~et, 
V 2 spm 2' 

(
1 1) 1 !....-H2 , 

Xp 2'-2 = V2 (rJ.l/32-/31rJ.2)/3n 12,n 

Quartet, 

spin ~, 
o-H2' 
12 n 

These eight functions are eigenfunctions of the operator 

S2 = (0" 1 + 0"2 +0" n)2 
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(147.3) 

(147.4) 

(147.5) 

with the eigenvalues 15 in the quartet, and 3 in the doublet states. Since 

(147.6) 

with the three first terms all equal to 1, but the fourth contributing 
according to 

{ + 1 for orthohydrogen 
(0"1 '0"2) = 

we arrive at 
- 3 for parahydrogen, 

and 

or 

15=9+2+2(O"mO"l +0"2) {quartet 
for orthohydrogen 

3=9+2+2(O"n'0"1 +0"2) doublet 

3=9-6+2(O"mO"l +0"2) for parahydrogen doublet 

{ 
2 for orthohydrogen quartet 

(O"n,O"l +0"2) = -4 for orthohydrogen doublet 
o for parahydrogen doublet. 

(147.7) 

(147.8) 
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This, according to (147.2), leads to the following three different inter­
actions between the neutron and the hydrogen molecule: 

{ 
t(l'~- Vs)} {2 V; for quartet, o-H2 

1 1 . 3 
V=2"(3V;+ Vs)+ -(V;- Vs) = ;V;+~Vs for doublet, O-H2 

o 2" V;+r Vs for doublet, p-H2 • 

(147.9) 

Turning to the scattering question, we need only consider the 
limiting case of zero energy where the scattering length a is linearly 
connected with the potential depth constant as long as the potential 
hole is "small". It should, however, be noted that this is rather a crude 
assumption in the real neutron-proton interaction case. Making this 
approximation, we get the elastic scattering cross sections 

or 

O'ortho = 4na(2~)2 +t(tat+!as)2}; 

O'para = 4n(!at+tas)2 

0' ortho = n {(3 at + as)2 + 2(at - as)2} ; 

0' para = n(3 at + as)2. 
(147.10) 

NB. The best values for the scattering lengths at and as of the two-nucleon 
problem are l at = + 5.39 fm and as = -23.7 fm. Inserting these values into Eq. 
(147.10) yields O'ortho=55barn and O'para=1.77 barn. The characteristic feature 
of this somewhat rough result is the amazingly small value of the parahydrogen 
cross section. This is fully borne out by experimental evidence with thermal neutrons. 
The para cross section would vanish entirely with as = - 3 at; its smallness shows 
that anyhow as must be large and have the opposite sign to at. The triplet scattering 
length must be positive in order to allow for a 3S bound state, the deuteron, Hence, 
as < 0 so that no IS bound state can exist. It should be noted that this sign can only 
be determined by interference experiments of the kind described, not by scattering 
of neutrons at isolated protons producing incoherent waves. 

Our results apply to the limit of energy zero whereas, in experiment, the neutrons 
still have a few hundredths of an eV energy. Their wavelength therefore is not so 
very large in comparison with the molecular distance between the two protons. 
This causes inelastic transitions with parity change in the molecule between the 
rotational states J = 1 of ortho, and J =0 of parahydrogen, They occur because 
rnl #rn2 so that, with the abbreviation t(Vt- Vs)= U(r), we have for the spin 
dependent part of the interaction, 

U(rnl ) (un' U 1)+ U(rn2)(Un' (2) =t(U(rnl ) + U(rn2 ))(UmU 1 +(2) 

+t(U(rnl )- U(rn2))(UmUl -(2)' 

In consequence of the last term, the functions (147.3) to (147.5) no longer remain 
eigenfunctions ofthe potential; it is this last term that induces ortho-para transitions. 



IV. Many-Body Problems 

A. Few Particles 

Problem 148. Two repulsive particles on a circle 

Two particles are fixed on a circle with a mutual repulsion given by 

(148.1) 

to simulate e. g. the Coulomb repulsion between the two helium elec­
trons in the ground state. The conservation of angular momentum shall 
be derived, and the relative motion of the particles discussed. 

Solution. The Schrodinger equation 

h2 (02U 02U) 
- -2 2 ~ + ~ + VOCOS(IPI-IP2)U=E·U 

mr uIPl uIP2 
(148.2) 

permits factorization by introducing the variables 

(148.3) 

of relative and absolute motion. Then we have 

o 0 1 0 o 0 1 0 
-=-+--' 
OIPI or:x 2 0/3' 

-= --+--. 
OIP2 or:x 2 0/3 

Putting this into (148.2) we get 

h2 (02 U 1 02 U) - - --+ - -- +Vocosr:x·U=E·U. 
mr2 0r:x2 4 0/32 

Factorization now becomes possible into 

U(r:x,/3) = u(r:x) v (/3) (148.4) 
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and leads to the separate equations of motion 

h2 d2 u - -- -- + Vo cos IX' U = E . u 
mr2 dIX2 ~ 

and 

with 

(148.5) 

(148.6) 

(148.7) 

The absolute motion can be determined from (148.6). The total 
orbital momentum operator of the two-particle system is 

L = 4 (a: 1 + a:J = 4 :p 
so that (148.6) may as well be written 

1 
-J}v=E 'v 
28 p 

(148.6') 

with 8=2mr2 the total moment of inertia of both particles. Eq. (148.6') 
therefore is the eigenvalue problem of the operator of rotational energy. 
Since (148.6) is solved by 

v=eiMP ; M=O, ±1, ±2, ... , 

the eigenvalues of the rotational energy become 

(hM)2 
Ep = 28 

(148.8) 

(148.9) 

It is much more difficult to discuss the relative motion determined 
by the differential equation (148.5) of the Mathieu type. To alleviate 
the discussion we transform (148.5) to the standard form by putting 

(148.10) 

so that we get 
d2 v 
-2 + (A-2q cos2cp)v=0. (148.11) 
dcp 

We are looking for periodic solutions 1 with period 2n in the variable 
IX, or n in the variable cpo The coefficient of v in (148.11) being an even 

1 This makes a fundamental difference to the solutions in a periodic potential 
of lattice theory which are not periodical, but multiply with a phase factor in each 
period of the lattice potential, cf. Problems 28, 29. We therefore get discrete eigen­
values A here, but a band structure in the lattice problem. 
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function of cp, there are two symmetry types of solutions, even and odd. 
Their periodicity permits Fourier expansion so that we have 

Deven = Ao + Az cos2cp + A4 cos4cp + ... ; 

Dodd =Bz sin2cp+B4 sin4cp+ .. ·. 

It is usual to denote the eigenvalues of A. by ao, az, a4 , ... for even and 
by bz, b4 , ... for odd solutionsz. It is shown in the theory of Mathieu 
equations that the eigenvalues may be ordered in a sequence 

A. 
30r---+----r--~L-~~--~-=~ 

20~--1-~~~--+_--~--_1---4 

16 L_¥~~---t--

~j_-Z~~~-j--_t--_t--=t 

4 

o~~~~~--~--~~~--~_ 

-10 r---~~-+---t~:__t_--_+_---I 

-20 r-----t-----'k:----''''-+----t_~'<d_----1 

-30 ~--_+_--_1-----''k_--'''<---_1-----l 

(148.12) 

Fig. 61. Eigenvalues (A) for different potential hole depths (q), both in dimensionless 
scale as defined in Eq. (148.10). The two straight lines mark the potential maximum 

and minimum 

These eigenvalues are given, as functions of q, in Fig. 61; the relation 
(148.12) forbids intersections of the curves. At q=O we have 

2 We adopt, as far as reasonably possible, the mathematical notations of 
Abramowitz, M., Stegun, I. A., Handbook of Mathematical Functions, Chap. 20. 
New York: Dover Pub!., 1965. - The curves of Fig. 61 are partially constructed 
with the help of this Handbook. 
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for very large values of q there hold the asymptotic laws 

a2r(q) -+ -2q+2(2r+ 1) vq-H(r+ 1)2 +r2J;} 
b2r(q) -+ -2q+2(2r-l)vq-H(r-l)2+r2]. 

(148.14) 

The relations (148.13) and (148.14) can largely be understood by ele­
mentary considerations. 

If q=O, Eq. (148.11) simply becomes 

with periodic solutions 

Veven = A 2r cos 2 rip ; Vodd = B2r sin2r<p 

belonging to eigenvalues 1I.=(2r)2. This exactly corresponds to Eq. 
(148.13). 

If, on the other hand, q becomes very large, there will be a very 
deep potential hole around IX = 1t, almost fixing the two particles at 
opposite positions on the circle. It is then helpful to use, instead of qJ, 
a variable 

(148.15) 

From 
cos 2r qJ = ( -1)' cos 2r1]; sin 2rqJ = ( -1)' sin 2r1] 

it follows that the functions Veven and Vodd will be even and odd also with 
respect to the variable 1]. If the potential hole is very deep we may 
write in (148.11) 

cos2qJ = -cos21] ~ -1 +21]2 

and thus arrive, approximately, at the differential equation of the har­
monic oscillator, 

d2 v 
-2 + [(1I.+2q)-4q1] 2Jv=0. 
d1] 

Its well-known eigenvalues (cf. Problem 30) are 

II.n +2q = 2vq(2n+ 1); n=O, 1,2, ... 

(148.16) 

(148.17) 

with the eigenfunctions for even/odd n being even/odd in 1]. Eq. (148.17) 
is almost identical with (148.14) if we identify solutions at small and at 
large values of q as follows: 

n=O 1 2 3 4 5 6 .. . 

even (a2r) r=O 1 2 3 .. . 

odd(b2r) r= 1 2 3 
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The additional constant in (148.14) may be corroborated if we expand 
cos 211 one term further on; then a perturbation calculation using 
oscillator functions in first approximation yields instead of (148.17): 

An+ 2q = 2vq(2n+ 1)--tq(nI114In), (148.18) 

where the additional term turns out to bring (148.18) to perfect agree­
ment with (148.14). 

NB 1. In Fig. 61 we have drawn two diagonals, the lower one marking the 
depths of the potential bottoms ( - 2 q), the upper one the heights of potential sum­
mits ( + 2q). Eigenvalues must, of course, always lie above the bottom line. If they lie 
below the summit diagonal, they describe states of libration inside the potential 
hole. At q = 10, e. g., there are 4 such libration states inside the hole, the fifth (a4 ) 

eigenvalue leading to a vibration all around the circle, including coincidence of 
both particles. The first four states might be called anharmonic oscillator states; 
from the fifth state upwards they will correspond more and more to force-free 
motions of independent particles. 

NB 2. The relative motion of the two particles occurs under the action of a 
potential energy which has the same form (VO COSet) as that of a pendulum. In 
classical mechanics this leads to no more complicated functions than elliptical 
integrals, whereas in quantum mechanics we need Mathieu functions. This again, 
as in Problem 40, shows how much more involved is the mathematical situation 
in quantum than in classical mechanics. 

Problem 149. Three-atomic linear molecule 

The carbon dioxide molecule has a linear O=C=O form in equi­
librium. Let either equal or different oxygen isotopes be used, the 
C=O equilibrium distance be a and the force constant of the valence 
vibration f. The two valence vibration frequencies shall be determined 
in harmonic approximation using a one-dimensional model, thus neg­
lecting bending vibrations. 

Solution. Let Xl' X2' X3 be the positions along the X axis and 
ml , m2, m3 the masses of the three atoms, then the Schrodinger equation 
for the linear harmonic model runs 

h2 3 1 ij2 'P 1 - - I - -2 + - f[(x2-xl-a?+(x3 -x2-a)2] 'P=E'P. (149.1) 
2 i=l mi oX i 2 

In order to factorize the solution into centre-of-mass motion and in­
ternal motion we use the variables 

U=X2- xl- a , 

v=x3 -x2 -a, 

1 
X = M (ml Xl +m2x 2+m3 X 3) with M =ml +m2 +m3 · 

(149.2) 
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It then follows that 
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o o 
OX l = M oX - ou ; 

o m2 0 0 0 
-=- --+---' 
OX2 M oX OU OV' 

o m3 0 0 --- +-
OX3 M oX OV 

and we find by iterating these operations 

1 02 1 02 ( 1 1 ) 02 ( 1 1 ) 02 2 02 
m i OXf = M OX2 + ml + m2 ou2 + m2 + m3 Ov2 - m2 OUOV' 

allowing for separation of the centre-of - mass motion. Changing the 
definition of E in (149.1) to mean the energy of only the internal motion, 
we arrive at a Schrodinger equation in two variables, U and v, 

{ h2 [( 1 1 ) 02 ( 1 1 ) 02 2 02 J 
- 2" ml + m2 ou2 + m2 + m3 Ov2 - m2 OUOV 

+~!(U2+V2)-E}'1'=O. (149.3) 

The cross term, 02 lou OV, in the kinetic energy makes factorization 
impossible in these variables. If, however, we introduce a "rotated" 
system, 

U' = ucosO(+vsinO(, 

v' = - u sin 0( + v cos 0( 
(149.4) 

it is possible by a suitable choice of 0( to make the term with 0210u' OV' 
vanish, whereas the potential energy remains invariant under this trans­
formation: 

u2 + v2 = U,2 + V,2. 

The Schrodinger equation thus becomes 

-~(cosO(sinO( 022+(Cos20(-sin20()~-cosO(sinO( (22)J 
m2 OU' OU OV OV' 

+~ !(U'2+ V'2)-E} '1'=0. (149.5) 
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Here the factor of the mixed derivative will vanish if 

or 

( _1 __ ~) sin2e( = ~ cos2e( 
m3 ml m2 

2m 1 m3 
tan2e( = ----­

m2(m1 -m3) 

Using two mass constants A and B defined by 

~ = (~ + ~) sin2 e( + ~ COSet sine( + (_1_ + ~) cos2 e( 
B ml m2 m2 m2 m3 

the Schrodinger equation is now much simplified: 

[ h2 82 1 ] [h2 82 1 ] -- _+_ju'2 tp+ -- _+_jv'2 tp=Etp. 
2A 8U,2 2 2B 8V,2 2 

Solution by factorization into 

'l'(u', v') = t/t(u') cp(v'); E = EA + EB 
is now possible: 
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(149.6) 

(149.7) 

(149.8) 

(149.9) 

(149.10) 

The eigenvalues of these two harmonic oscillators are well known (cf. 
Problem 30), viz. 

EA=hwA(nA+!); 

EB = hwB(nB+!); 
(149.11) 

Eqs. (149.6) and (149.7) to determine A and B from the masses and (149.11) 
for the energies and frequencies form the solution of the problem. 

We now proceed to a closer inspection of these formulae in the 
normal case ml =m3 (equal oxygen isotopes) for which, according to 
(149.6), e( = n/4. The mass constants A and B then follow from (149.7) 

1 1 1 1 2 
-=-+-. 
B ml m2 
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Thence, 

(149.12) 

Since OJ A does not depend on ml it may be concluded that the carbon 
atom stays at rest in mode A vibrations and, since the centre of mass is 
supposed not to move, we must have a symmetrical vibration as indicated 
in Fig. 62 a. On the other hand, it can be shown that mode B vibrations, 

o c 
..-- ---e 

• 

o 
..-- b) 

a) 

Fig. 62a and b. The two valence vibrational modes of CO2 , No bending vibra­
tions are considered in this problem 

for which the carbon atom takes part in the motion, will become anti­
symmetric as shown in Fig. 62 b. To translate this classical description 
of normal vibrations into quantum mechanics, we construct the wave 
functions according to (149.9). In the ground state we have (in arbitrary 
normalization) 

'l' o(u', v') = exp ( - A2~ A u'l)- exp ( - B2~B V'l) , (149.13) 

both factors having a sole maximum at u' = 0 and v' = 0, respectively, 
where 

The zero-point vibration therefore occurs about the positions 
Xl + X3 = 2 X 2 with the carbon atom halfway between the two oxygen 
atoms, and X3 - Xl = 2 a, i. e. both oxygen atoms a distance 2a apart 
from each other: The most probable position of the ground state there­
fore is just the classical equilibrium position. 

If the A mode is excited to, say, its first excited state, a factor u' is to 
be added to 'l' o' Since a function 

_l..;'U· 2 

t/!(u')=u'e 2 
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has two maxima of opposite signs at u' = ±Jl -t, we now have the most 
probable positions shifted to 

(149.15) 

The most probable position in which to find a vibrating particle has its 
classical equivalent in the two turning points where its time of stay is 
longest. The two maximum values of u' in (149.15) therefore mark some­
thing like the classical vibration amplitudes. The condition Vi = 0 shows 
that the carbon atom most probably still lies halfway between the two 
oxygen atoms, but these are now alternately at a smaller or at a larger 
distance apart from each other, just as indicated on Fig. 62 a. 

If, on the other hand, the B mode is excited we have inversely for the 
maximum 

BWB 
Jl = -h- (149.16) 

so that the most probable distance between the two oxygen atoms 
(X3 - Xl) remains 2a as in equilibrium, both being shifted to and fro 
with respect to the carbon atom as indicated on Fig. 62 b. 

Problem 150. Centre-of-mass motion 

In classical mechanics the motion of the centre of mass in a many-body 
problem with only internal forces acting can be separated from the 
relative motion of the particles. It shall be shown that the same holds 
for quantum mechanics. Special attention shall be given to the case 
of only two particles. 

Solution. We start with the hamiltonian of a system of N particles 
not subjected to external forces, 

h2 NIl N N 

H= -- I -W+- I I'Vik(xi-xk'Yi-Yk,zi-zk) 
2 i=l m i 2 i=lk=1 

(150.1) 

and replace the 3 N coordinates Xi' Yi, Zi by the position coordinates 
X, Y, Z of the centre of mass and the coordinates (" 1'/;., ,;. defining 
the position of particle Jl (Jl= 1,2, ... , N -1) relative to particle N: 

x=~ I mixi ; M= I m i ; } 
M i=l i=l 

(;,=X;,-XN (Jl=1,2, ... ,N-l) 
(150.2) 
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and correspondingly for Y, Z, 1];., (;.. The use of these coordinates, of 
course, breaks up the natural symmetry of (150.1) by artificially dis­
tinguishing particle N from the rest. 

We easily obtain from (150.2) the operators 

and 

a m, a a 
-=- --+- (v=I,2, ... ,N-l); ax, M ax a~, 

~=mN ~-L~ 
aXN M ax ;. a~;. 

where the sums over Greek subscripts run from 1 to N -1. The essential 
feature of this result is the cancelling of all mixed derivatives a2/ax a~;. 
permitting separation of the hamiltonian, 

(150.3) 
in a centre-of-mass part, 

h2 ( a2 a2 a2 ) 
Ho = - 2M ax2 + ay2 + az2 ' (150.4) 

and a part describing the relative motion of the particles, 

(150.5) 

with the potential energy 

v=-!- I If V;".(~;'-~I',1];. -1]1"(;' -(,J + I V;'N(~;.,1];.,(;.) (150.6) 
;. I' ;. 

independent of the centre-of-mass coordinates. The solution of the 
Schrodinger equation, 

(Ho+Hr) U=E·U (150.7) 

then permits factorization into 
U = ({J(X, Y,Z) u(~;.,1];., (;.) (150.8) 
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h2 

- 2M V2 cp = Eocp; 

(Hr+ V)u = Eru; 

Eo+Er=E. 

Eq. (150.9) is solved by the plane wave 

53 

(150.9) 

(150.10) 

(150.11) 

(150.12) 

with R = (X, Y, Z). This is the centre-of-mass law as in classical mechanics: 
the total mass M of the system moves with constant momentum hK. 
The relative motion of the particles about the centre of mass, governed 
by (150.10), is quite independent thereof. 

The third term in Eq. (150.5) prevents further factorization of 
u«( ... 1JA,(;} Only in the case of the two-body problem, N =2 with A= J1= 1 
only, the hamiltonian of the relative motion simplifies to 

h2 {I 2 1 2} Hr = - -2 - '111 + - '111 + V12(~b1J1'(1)' 
m 1 m2 

(150.13) 

Introducing, as in classical mechanics, the reduced mass m* by putting 

1 1 1 - + - = -; (150.14) 
m 1 m2 m 

and omitting the subscripts of the relative coordinates (and of V12), 

we arrive at 

(150.15) 

i.e. at the Schrodinger equation of an equivalent one-body problem. 

NB. In Problem 67, the hydrogen atom has been treated as a one-body problem 
with its nucleus at rest. According to Eq. (150.15), we should more correctly intro­
duce the reduced mass m* of nucleus and electron, instead of m, the mass of the 
electron. No other change is required to take account of the participation of the 
nucleus in the relative motion about the centre of mass. Since the nuclear mass, 
say M, is very large as compared with m, Eq. (150.14) leads to 

m*=m(1 - :), 
\ 

approximately. Comparing e.g. the red spectral line H. (n=3 -+ n=2) of the hydro­
gen atom with the frequency 
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and the corresponding line of the deuterium atom, 

5 m1)e4 

v(DJ = 36 2h2 h' 

we find a line shift of 

m*-m* m 
v(DJ-v(HJ = ~v(HJ ~ 2M v(HJ 

mH H 

because MD~2MH' This difference is not very difficult to observe. It amounts to 
4.12cm- 1 at a wavelength of 6563A. Heavy hydrogen was discovered in 1931 
by Urey, Brickwedde and Murphy who observed this weak D. satellite of the H. 
line in natural hydrogen [Phys. Rev. 40,1 (1932)]. 

Problem 151. Virial theorem 

To prove that the vi rial theorem 

2Ekin+Epot=O 

holds for any quantum mechanical system kept together by Coulomb 
forces only. The proof shall be performed by a scale transformation of 
the wave function of the system keeping normalization constant. 

Solution. A system of N particles of masses mi and electric charges 
e j satisfies the Schrodinger equation 

h2 N 1 1 N N e.e 
- - L - Vf'l' + - L L ~ '1' = E '1' 

2 i =l mi 2 i =lk=l rik 

(151.1) 

with '1' being normalized according to 

(151.2) 

Kinetic and potential energy of the system in a state '1' may be com­
puted from the formulae 

(151.3 a) 

and 

(151.3 b) 

A scale transformation, 

(151.4) 

keeping (151.2) intact, means that the wave function 
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is replaced by 
(151.5) 

When introducing (151.5) into the energy expressions (151.3a,b) and 
passing over to the new variables (151.4), we find 

1 1 
V;=},.2V? -=.A.-

rik r;k 

so that instead of the true energy of the system 

E=Ekin + Epot , 
we obtain 

(151.6) 

This function of .A. apparently must be a minimum when we select from 
the set (151.5) of functions the correct solution of the Schrodinger 
equation, i. e. for .A. = 1. Therefore, 

oE(.A.) 
a;:-= 2.A.Ekin + Epot 

must vanish with .A. = 1, i. e. 
2 Ekin +Epot=O. (151.7) 

This is the virial theorem which was to be proved. 

NB. The theorem need not hold in approximate solutions. It is, therefore, 
remarkable that it can be proved for a Thomas-Fermi atom, cf. Problem 175. 

Problem 152. Slater determinant 

Let the wave function of a many-particle problem with N equal particles 
be factorized into a product of single-particle wave functions and 
antisymmetrized according to the Pauli principle. The expectation value 
of an operator describing the action of an external force field shall be 
reduced to single-particle integrals. 

Solution. Let u;(v) be a single-particle wave function of the v-th 
particle in state i, depending on its space coordinates and spin variable, 
all contracted into the symbol v. The antisymmetrized product for a 
system of N equal particles may then be written as the Slater determinant, 

U1 (1) U 1 (2) ... U 1 (N) 

t/J=C 
U2 (1)u2 (2) ... U 2 (N) 

(152.1) 
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or, by expansion of the determinant, 

I/I=C I (-It P(U b U2 ,··· UN), (152.2) 
p 

where P means any permutation of the functions Ui with their arguments 
v in standard ordering 1,2, ... , N. If P is an even (odd) permutation, the 
corresponding term in the sum over all permutations is positive (negative). 

An operator a describing an external force will act on all particles 
in the same way, i.e. 

N 

a= I a v· (152.3) 
v=l 

Its expectation value then is 

<l/Ilall/l) = ICl2 I (_I)P+P' <P'(U1'" UN) 1 Iavl P(U 1 ,··· UN) . (152.4) 
PP' 

Let us now single out of (152.4) one term, avo acting only upon 
functions of the v-th particle coordinates and spin. Any other coordinate 
set, say fl, will then occur in some other function, say uj ' in both permu­
tations P and P', because in any other combination the term would 
vanish by the orthogonality of the single-particle functions, 

(152.5) 

This means identity of permutations P and P', the signature in (152.4) 
always being + 1, and the term av thus contributing only one-particle 
integrals, 

N 

<p'lavIP)=bpp' I <ui(v)lavlui(v). (152.6) 
i= 1 

Now, in the wave function 1/1 a factor ui(v), with fixed i and v, is combined 
with a determinant of rank N -1. Therefore there still remain, among 
a total of N! possible permutations, (N -1)! permutations of the re­
maining N - 1 functions except Ui over the remaining N - 1 particles 
except v. Hence, 

N 

<l/Ilavll/l) = ICl2 (N -I)! I <ui(v)lavlui(v). (152.7) 
i= 1 

This result, of course, will hold for whatever term av we pick out of the 
sum (152.3), so that in <l/Ilall/l) we have a total of N equal expressions 
of the form (152.7). Hence, 

N 

<l/Ilall/l)=ICl2 N! I <ui(v)lavlui(v). (152.8) 
i= 1 
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It remains to determine the normalization constant C so that 

< t/JI t/J) = 1 (152.9) 

is the probability (viz. certainty) of finding N particles anywhere. This 
can be formally achieved by putting Q.= liN in Eq. (152.3) thus making 
Q= 1. Making use of the single-particle normalization, according to 
(152.5), Eq. (152.8) then yields 

or, using (152.9), 

N 1 
<t/JIt/J)=ICl2 N! L -=ICl 2 N! 

;=1 N 

C=N! -J 

Eq. (152.8) may then finally be written 

N 

<t/JIQIt/J) = L <ui(v)IQ~lui(V) 
i= 1 

(152.10) 

(152.11) 

as the simple sum of the expectation values of the single-particle states. 

NB. If we neglect symmetrization and replace (152.1) by the simple product 

tfr=ul(l)u2(2) ... uN(N) (152.12) 
we get 

N 

<tfriDitfr)= I <uviDviuv) (152.13) 
v=l 

and 
<tfri~)=I, (152.14) 

i.e. essentially the same results as we found in (152.11) and (152.9) for the anti­
symmetrized wave function. Neither for interaction between particles, contradicting 
the structure of (152.3), nor for the use of non-orthogonal single-particle functions, 
contradicting (152.5), do these relations hold. 

Problem 153. Exchange in interaction terms with Slater determinant 

For the factorized, antisymmetrized wave function of the preceding 
problem the expectation value of a particle-pair interaction, 

(153.1) 

shall be determined. 
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Solution. Using the same notation and normalization as in the 
preceding problem, the expectation value of one term of (153.1) may be 
written, 

<I/IIQ/lvll/l) = ~ I (_I)P+P' <P'(u1,··., uN)IQ/lvIP(u1,···, UN)' (153.2) 
N!pp' 

All functions Un with arguments neither Jl nor v must be identical pairs 
in P and p' if the corresponding term in the sum is not to vanish. There 
being N - 2 such pairs of functions of as many arguments, there still 
remain (N - 2)! permutations among them. If these all are identical in 
P and P', only one pair offunctions, say uiuj , will remain for arguments 
Jl and v in each non-vanishing term of (153.2), 

(N -2)! I 

<I/IIQ/lvll/l) = I {<Ui(Jl)uj(v)IQ/lvlui(Jl)Uj(V) 
N! ij 

(153.3) 

In the flrst, classical term of the curly bracket, the permutations P and 
P' coincide completely, even with respect to Jl and v, in the second, 
exchange term one different permutation (ij-ji) just changes the sign. 

Let us now consider the sum (153.1) of such operators. Then, 

1 
<I/IIQII/I) = I' I' {<Ui(Jl) Uiv) 1 Q/lvl Ui(Jl) uiv) 

2N(N-l) /lV ij 

- <UiJl) ui(v)1 Q/lvl U;(Jl) uj(v) } . (153.4) 

Here Jl and v are dummies so that the sum I' consists of N(N -1) equal 
/lV 

terms (Jl, v and v, Jl here being counted as different terms). Thence, the 
expectation value wanted, becomes 

<I/IIQII/I) = ! I' {<ui(l) uj (2) 1 Qdui(I)Uj(2) 
ij 

(153.5) 

Use of the symbols 1 and 2 is, of course, quite arbitrary. 
It should be emphasized again that here and in the preceding problem 

each single-particle wave function Ui comprises space as well as spin state. 

Problem 154. Two electrons in the atomic ground state 

The K shell of an atom is composed of two electIOns in the 1 s state. Its 
energy shall be approximated by using screened hydrogen wave functions 
in the fleld of a nucleus of charge Z e and inflnitely large mass. 
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Solution. The hamiltonian of the problem is (in atomic units, 
e=n=m=I): 

(154.1) 

the approximate wave function is according to the table of Problem 67 

1X3 
U =u(rl) u(r2) = - e-a(r l +r2) (154.2) 

11: 

with 
IX=Z -(1 (154.3) 

and (1 the screening constant. It is to be expected that 0 < (1 < 1, because 
the nuclear charge, in its effect on each electron, is only partly screened by 
the other electron. The two factors of (154.2) satisfy the wave equations 

( 1 2 IX) 1 2 . --V1 -- u(r1) = - -IX u(r1), 
2 r 1 2 

( 1 2 IX) 1 2 - - V2 - - u(r2) = - -IX u(r2) 
2 r 2 2 

so that 

HU= __ 1X2 --- + --1X2 --- +- U {( 1 Z-IX) (1 Z-d) I} 
2 rl 2 r2 r12 

and the energy becomes 

(154.4) 

With U according to (154.2) and using the normalization of each factor u, 
this yields 

(154.5) 

The first integral in (154.5) can be evaluated in an elementary way: 

To calculate the double integral 

II e-2a(rl +r2) 
J= dT1dT2---­

r12 

(154.6) 
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we expand 1/r12 into Legendre polynomials of the angle e between the 
vectors Y1 and Yz: 

{ 

1 00 (r)n - I ~ P"(cos e) 
1 rzn=o rz 

~= 1 00 (r)n - I -.2 P"(cos e) 
r 1 n=O r 1 

Then only the first term of the expansion (n=O) contributes to J, and 
we obtain 

With dTz =4nr~ drz and 0 :S;rz < 00, all the integrations become elemen­
tary again and lead to 

5nz 
J=-5· 

Sa 
(154.7) 

The energy expression (154.5) with the integrals (154.6) and (154.7) then 
becomes 

(154.S) 

Up to this point, we have not yet disposed of the value of a that we 
now choose optimally in the sense of variational calculus putting 

dE 
-=0. 
da 

(154.9) 

That leads to 
a=Z -156 (154.10) 

and 
E = - (Z - 156) z. (154.11) 

It should be remarked that this value of a makes (154.2) the exact solution of 
the hamiltonian 

H = - - (V 1 + V z) - a - + -° 1 2 2 (1 1) 
2 r1 rz 

(154.12) 

which permits factorization. Comparing (154.12) with (154.2) we find 

H'=H-HO= -u(~ +~) +~. 
rl rz r12 

Defining H' as perturbation, the energy shift of a first-order perturbation theory, 

iJE=Hd7:l d7: z UH'U, 

would vanish if the screening constant u is chosen according to (154.10). 
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We add a few numerical remarks. The theory describes atoms 
stripped of all electrons except the two in the K shell. There exist experi­
mental values for 

Z=2 3 4 6 8 
He Li+ Be++ C4 + 06 +. 

In all these cases, it is not E itself which has been observed, but the 
ionization energy I necessary to strip the ion of only one of the two K 
electrons. The remaining ion, keeping only its last electron, then has 
the energy 

E'= _!Z2 

so that the ionization energy becomes 

I =(Z -156)2 _!Z2 . (154.13) 

The accompanying table shows that the agreement of Eq. (154.13) with 
experiment improves continuously with increasing Z. This is reasonable, 
because the role of the interaction term 1/r12 becomes less important 
as the coupling of each electron to the centre becomes stronger with 
increasing Z. 

Z 
I in eV 

theor. exper. 

2 23,2 24,5 
3 74,1 75,6 
4 152,2 153,6 
6 390 393 
8 737 738 

Problem 155. Excited states of the helium atom 

In a neutral helium atom let one electron be in the 1 s ground state and 
the other in an n, 1 excited state (n~2, 1~ 1). The ionization energy for 
the (n, 1) electron shall then be determined for both, ortho and parahelium 
using hydrogen-like wave functions with screening of one nuclear charge 
by the 1 s electron. The method shall be applied numerically to the 2 p 
state (n=2, 1=1). 

Solution. If the 1 s electron is exposed to the full nuclear charge 2e, 
but the (n, 1) electron only to the screened charge e, we may describe 
the two one-electron states by solution of the differential equations 

(-~V2_~) u=E u' (- ~V2_~) v =E v I (155.1) 2 r 1, 2 r nl n n 
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1 
E =--

n 2n2 

(155.2) 

and Rnl the normalized radial functions of the hydrogen atom (see 
Problem 67). 

The Schr6dinger equation of the two-electron problem 

{- ~ vi - ~ V~ - ~ - ~ +~} ljJ=EljJ (155.3) 
2 2 rl r2 r12 

shall be approximately solved by the symmetrized product wave function 

(155.4) 

with e = + 1 for parahelium (spins antiparallel) and e = -1 for ortho­
helium (spins parallel). The function ljJ is normalized according to 
<ljJlljJ) =2. 

In order to satisfy (155.3) as well as possible by (155.4) we apply 
(1 nl to (155.3): 

1212221 
(1 nl- - Vi - - V2 - - - - + -lljJ) =E (1 nlljJ)· (155.5) 

2 2 r 1 r2 r12 
Since 

(111)=1; <nln)=l; <lln)=O 

(if 1 =F 0) the integrals will partially split up and partially vanish. For 
instance we have 

1 2 2 
(1nl- - Vi - -ln1)=0; 

2 r 1 

1 2 2 1 
(1nl-- V2 --11n)=En - <nl-In) etc. 

2 r2 r 

Since for all one-electron states the virial theorem (cf. Problem 151) 
leads to Epot =2E, we obtain 

1 1 
<nl-In)= -E~2t= -2En=2· 

r n 

Thus, finally, Eq. (155.5) leads to the energy expression 

3 
E=-2--+~+e@" 

2n2 
(155.6) 
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with the abbreviations 
1 rc= (lnl-Iln> (155.7) 

r12 
for the classical, and 

1 
@" = <1nI-ln 1> (155.8) 

r 12 

for the exchange integral of the electron-electron interaction. It remains 
to evaluate these two integrals. 

In both cases we expand Ijr12 into spherical harmonics of the angle 
912 between the position vectors rl and r 2 of the electrons: 

(155.9) 

When ftrst performing the integrations over the polar angles, we have 
to calculate the integrals 

rcang = ~dQ21 YI,m(2W ~ dQ l P;.(cos9u) (155.10) 
and 

(155.11) 

In rcang , the inner integral becomes 4n(;;.,o so that of the series (155.9) 
there remains only a contribution from the term A. = O. The classical 
interaction therefore is 

'iI ~ 4" I d" >1lu(,,)I' {:, I d" ..j IR.,(, ,)1' + I d" "IR.,(, ,)1,1. 
o 0 r2 hI55.12) 

In order to calculate the inner integral of (155.11) we use the spherical 
harmonics addition theorem, 

then 

and 

4n +J. 

P;.(cos9u) = --,- I YL,(1) Jrj2); 
. 211.+1/l=_). 

4n 
$ =--(; 

ang 21+ 1 I,k 

(155.13) 

(155.14) 
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The exchange integral therefore receives a contribution only from the 
term A=l of the series (155.9) so that 

@" = ~l n foo dr2 d u(r2) Rnl(r2){~ fr2 

dr 1 ri (rl)l u(r 1) Rnz{rl) 
2 + 1 r2 r2 

o 0 

+ I d" ,,(::) U(")R"'('+ (155.15) 

The higher the values of nand 1 of the excited electron, the more 
will our approximation improve because of decreasing overlap of the two 
one-electron wave functions. Except therefore for S states, the method 
will be worst for n = 2 and 1= 1, but may be well trusted elsewhere if in 
that special case it produces reasonable results. We therefore now proceed 
to calculate the energy for this special excited state of the helium atom 
and compare the result with experimental evidence. 

The normalized radial function Rnl then becomes 

1 -!.. 
R 2 • 1 = --re 2, 

j/24 
(155.16) 

and the radial integrals (155.12) and (155.15) can easily, though in a 
somewhat cumbersome way, be evaluated using (155.2) for u and (155.16) 
for R 2 •1 . The results are 

qj = i(1- 3US) = 0.24896 
and 

This leads to 
E= -2.12604+8'0.00382 

in atomic units. The ionization energy is the difference of E and the 
energy E + = - 2 of He + in the ground state (i. e. with one electron still 
in the 1 s state and the other removed), 

1= E+ - E=0.12604- 8,0.00382 
or 

1= (3.429 - 8·0.104) e V. 

This result may be compared with experiment as shown in the table. 
The results fit quite nicely, and even the splitting between para and 
ortho states is not as bad as might be expected from its being rather 
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sensitive to the overlap and mutual polarization of the two one-electron 
functions. It should be noted that the para state with the space sym­
metric wave function lies above the antisymmetric ortho state, the 

e 

para +1 
ortho -1 

difference 

ionization energy in eV 

theory 

3.325 
3.533 
0.208 

experiment 

3.368 
3.623 
0.255 

situation thus being the opposite of the one in the H2 molecule (Problem 
163). This can easily be verified in our calculation where the integral Iff, 
Eq. (155.8), gives the only contribution depending on the sign e; and 
since it derives from the mutual repulsion of the two electrons, Iff is 
positive, thus raising the energy level for e = + 1. 

Problem 156. Excited S states of the helium atom 

The method of the preceding problem shall be extended to the configura­
tion 1 s, ns using again the undisturbed wave function for the 1 s state, 
but making no specializing assumptions on the ns wave function. It 
shall be shown that, if overlap and exchange integrals are small, 
an effective potential field can be constructed in which the ns electron 
moves. 

Solution. The wave function will be written as a symmetrized 
product of one-electron states, 

IjJ = u(1) vn(2) + e vn(1) u(2) = 11 n) + eln 1) (156.1) 

with e = ± 1 and the 1 s state function in atomic units 

(156.2) 

Of the function for the ns state we know only that it does not depend 
on angles, and that it too is supposed to be normalized, 

(156.3) 

No further specialization of In) will be attempted. 
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The wave function t/J is an approximate solution of the Schrodinger 
equation 

(H-E)t/J=O 

with the atomic hamiltonian 

1221221 
H= --V 1 ----V2 --+-. 

2 r1 2 r2 r 12 

(156.4) 

(156.5) 

These are the basic equations of our problem. We start by forming 
the Hilbert product of (156.4) with <1 nl , 

<1 niH -Ell n) +e<lnIH -Eln I) =0 (156.6) 

and determining the integrals occurring with H given by (156.5). So far 
the formulae do not yet appreciably differ from those of the preceding 
problem. One main difference, however, is seen immediately since 
the two functions II) and In) are no longer orthogonal because they 
both belong to 1=0 but have different potential fields. Hence we have 
to introduce the overlap integral 

S=<lln)=<nll) . 

Further, let us again use the abbreviations 

1 
<lnl-lnl)=C. 

r12 

It then remains to evaluate the following integrals 

1 2 2 1 2 2 
<lnl--V1 --lIn) = <11--V --11)= -2; 

2 r1 2 r 

1 2 2 1 2 2 
<lnl-- V2 --lin) = <nl- -V - -In)=Kn; 

2 r2 2 r 

(156.7) 

(156.8) 

122 122 2 
<lnl--V1 --lnl)=(lnl--V2--lnl)=-2S. (156.9) 

2 r 1 2 r2 

In the last line, the identity 

<iIV2In) = <nIV2Ii) 

has been used. Eq. (156.6) then may be written 

- 2+ Kn+~ - E +e( -4S2 + C - E S2)=0 
or 

(156.10) 
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Since E + = - 2 is the energy of the He + ion ground state, the ionization 
energy 1= E + - E becomes 

Kn+~ +B($ _2S2) 
1- - -----::---

- 1+BS2 • 
(156.11) 

Either E or I may then be determined by evaluating the integrals S, 
Km ~, $ for a set of sufficiently pliable functions In) defined by Ritz 
parameters and extremizing E or I by their suitable choice. 

If the overlap integral S and the exchange integral $ are very small, 
Eqs. (156.10) and (156.11) simplify to 

(156.12) 

The same expressions would be achieved by neglecting symmetrization 
(i.e. with B=O), and it is in this sense only that symmetrization in many­
body problems may occasionally be omitted. 

Falling back upon the definitions (156.8) and (156.9) of the integrals 
Kn and ~, (156.12) may be written in more detail 

with the operator 
E= -2+<nIQln) 

1 2 2 f ' u(r')2 
Q= --V --+ d'C --. 

2 r Ir-r'l 

(156.13) 

(156.14) 

The choice of such a normalized function In) as makes E a minimum 
is performed by variation, 

o«nIQln) +A<nln»)=O 

with a Lagrange multiplicator A. Since 

o <nIQln) =2<onIQln); o<nln) =2<onln) 
we arrive at 

or, 10 n) being an arbitrary function, at the differential equation 

(Q+A)ln)=O. 

Rewriting (156.13) in the form 

<nIQ-E-2In)=0 

we see that A = - E - 2. Hence, In) is to satisfy the one-electron Schr6-
dinger equation 

(156.15) 
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with the effective potential 

2 f ,u(rY Veff(r) = - - + dT --. 
r Ir-r'l 

(156.16) 

This is exactly the electrostatic potential to be derived from the Poisson 
equation V2 Veff = +4np with the charge density p composed of the 
nuclear point charge + 2 and the negative space charge - u2 of the 18 
electron. Evaluation of (156.16) with the wave function u of Eq. (156.2) 
renders 

1 (1 ) -4r Veff = - -;: - -;: + 2 e . (156.17) 

If In) is determined from (156.15), this may be considered a sufficient 
approximation to all integrals of the energy expression (156.10) as long 
as S ~ 1 and tff ~ ~ are no more than slight corrections. 

Appendix. Numerical calculations along the general outline sketched 
before may become rather involved. As an example, we give numerical 
results for an abridged variational procedure making (156.12) extremal, 
which we have performed for the 28 state using the set of trial functions 

(156.18) 

normalized according to (212) = 1 and defined by the Ritz parameter p. 
These functions have finite value at r= 0, they have a zero as necessary 
for a 28 state, and show the correct asymptotic behaviour determined 
by the second term. The first term describes deviations from hydrogen­
like behaviour at small distances where the nuclear charge becomes 
less and less completely screened; since the 18 distribution is described 
by e- 2r , this effect should show approximately the same dependence 
on distance. 

The approximate function (156.18) leads to the following numerical 
results. 

nA2 = (i- ~~~p+96p2)-1; 

K2 =4nA2( -/6 +~~~p-11p2); 
~=nA2b52 - Nli68V11P+ 734162858 p2); 

S = 8 t/2nA(iz- t265P); 

tff = 128 n A 2 (4cf96 - 3g6i~5 P + /8°15265 p2) . 

The energy expression (156.12) has then been minimized by suitable 
choice of p. This leads to a quadratic equation in p with one positive 
solution p=0.1105. Without symmetrization this yields an ionization 



Problem 157. Lithium ground state 69 

energy 1= -(K2+~)=0.145 atomic units or 1=3.94 eV. If, with the 
same value of p, the full energy expression (156.11) is evaluated we find 

0,145 -0,021 8 . . 
1 = atomIC umts 

1+0,02258 

and arrive at the tabulated results. The theoretical approximation, 

symmetry 

para, e= +1 
ortho, e=-1 
difference 

ionization energy for 2s in eV 

theory experiment 

3.30 
4.62 
1.32 

3.97 
4.76 
0.79 

as always in variational procedures, leads to somewhat higher energy 
term values than the correct ones. The rather large ortho-para splitting 
is reproduced with an accuracy of about 35 % even by this very simplified 
approximation. 

Problem 157. Lithium ground state 

To calculate the binding energy of a lithium atom (Z = 3) in its ground 
state. For the two 18 electrons the screened hydrogen-like functions 
of Problem 154 may be used. Exchange is to be neglected. 

Solution. The hamiltonian of the problem is 

{ I 2 2 (1 1) I} H= --(V1+V2)-3 -+- +-
2 r 1 r2 r 12 

+ {_ ~ V~ _~} + {_I + _1 _~} 
2 r3 r13 r 23 r3 

(157.1) 

where the first curly bracket corresponds to the two-electron problem 
of Li +, the second bracket leads to the 28 function of the third electron 
in the field of the screened nucleus ofrest charge 1, and in the third term 
the remaining interactions are assembled. The treatment of the third 
electron thus indicated would be quite correct, were the radius of the K 
shell very small compared to the extension of the 28 wave function; 
since it is not, the use of a hydrogen function with central charge 1 for 
the third electron is an approximation. 

We write the eigenfunction in product form 

U(I, 2, 3) =u(l)u(2)v(3). (157.2) 
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Here u(r) means the 1 s function 

and 

3 
(/.2 

u(r) =_e-cxr 

Vn 
(/.=z - t6=2.6875 

(157.3) 

(157.4) 

the effective nuclear charge originated by the mutual screening effect of 
the two 1 s electrons in Li + (cf. Problem 154). From Problem 154 we 
further gather that the energy of the (1 S)2 state, 

E+ = ffdL1dL2U(I)U(2) {- .!..(V/ + Vl)-3 (.!.. +.!..) + _1_}U(I)U(2) ' 
2 r 1 r 2 r12 

(157.5) 
becomes 

(157.6) 

For the third electron we take the eigenfunction from the table of 
Problem 67 (hydrogen problem); in its lowest state, 2s, it is 

1 1 

v(r) = -- (l-tr) e-2r 

~ 
(157.7) 

and satisfies the differential equation 

(157.8) 

If we put the functions (157.3) and (157.7) into the energy expression, 

E = J J J dL 1 dL2 dL3 u(l) u(2) v(3) H u(l) u(2) v(3) (157.9) 

with the hamiltonian (157.1), the first bracket of (157.1) will contribute 
E+, Eq. (157.6), and the second bracket -t, according to (157.8), so that 

E=E+ -.!..+ fffdL1dL2dL3U(WU(2)2V(3)2 (~+_1 _~). (157.10) 
8 '13 '23 '3 

The last integral has still to be evaluated. It may be simplified into 

(157.11) 

Using [cf. Problem 44, Eq. (44.19)] 

f 
u(I)2 1 

dL1 -- = - {1-(1 +(/,'3) e- 2cxr3} 
'13 r3 
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we may combine 

With v according to (157.7) this integral is elementary though cumber­
some and yields 

(157.12) 

The energy of the ground state of the lithium atom then becomes 

2 1 !+3a+ 16a3 
E=-a --------

8 (1 +2a)S 
(157.13) 

Numerical computation with the value (157.4) for a gives the ionization 
energy 

+ 1 !+3a+16a3 
I=E -E=-----_=__ 

8 (1 + 2a)S 
(157.14) 

as 
1=0.1553 =4.23 eV. 

This is to be compared with the experimental value of 5.37 eV. The 
approximation, of course, is not very good. The reason for the difference 
is to be sought neither in the use of complete screening of the third 
electron by the K shell, nor in neglecting any small difference of the a 
values between atom and ion. Both these corrections are far too small to 
account for a discrepany of more than 1 e V. There remain two features of 
the wave function which may still account for it: its product form, and 
the neglect of symmetrization and hence of exchange binding. 

Problem 158. Exchange correction to lithium ground state 

To correct the energy of the lithium ground state, found in the preceding 
problem, by taking account of the correct symmetry of the eigenfunction. 

Solution. The eigenfunction must again describe a state with two 
electrons in the 18 state u(r) and one electron in the 28 state v(r), as 
defined in the preceding problem. Symmetrization requires the inclusion 
of spins. A totally antisymmetrical eigenfunction is then obtained by the 
Slater determinant (see Problem 152) 

u(l) a(I); u(2) a(2); u(3) a(3) 
1 

'" = - u(l) /3(1); u(2) /3(2); u(3) /3(3) (158.1) 
V6 

v(l) a(I); v (2) a(2); v(3) a(3) 
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in which the spin functions a and f3 describe opposite spin directions. 
The determinant (158.1) is an approximate solution of the Schr6dinger 
equation 

(H -E)I/I=O (158.2) 

with H the hamiltonian of the preceding problem. From 

<I/IIH - EII/I> =0, 

where the scalar Hilbert product includes spin summation, we then are 
led on, by performing the sum over spins, to 

f f f d't 1 d't2 d't3 {u(l)u(2)v(3) - v(l)u(2)u(3)}(H - E)u(l)u(2)v(3) =0 
(158.3) 

or, with the abbreviations 

E = f f f d't1d't2d't3u(l)u(2)v(3) HU(I)u(2)v(3) ; 

C = f f f d'tl d't2d't3 v(1)u(2)u(3)H u(l)u(2)v(3); 

S = f d'tl v(l)u(I) , 

to the corrected energy formula 

E-C 
E=--2· 

I-S 

(158.4) 

(158.5) 

(158.6) 

(158.7) 

Here, by E we denote the uncorrected energy as determined in Eq. 
(157.13) of the preceding problem, viz. 

(158.8) 

C is the exchange energy, and S the overlap integral of the functions u 
and v which, as we know, are not orthogonal. The main problem still 
remaining will then be the evaluation of the exchange energy (158.5). 
If we write the hamiltonian in the form 

H = (- ~ vi -~) + (- ~ v~ - ~) + (- ~ v~ - ~) 
2 rl 2 r2 2 r3 

3-a 3-a 2 1 1 1 
------+-+-+- (158.9) 

r 1 r2 r3 r 12 r13 r23 

then its application to u(l)u(2)v(3) leads in the first line of (158.9) simply 
to multiplication by -ta2 , -ta2 , -!, respectively, so that we get 
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2 1 2 I u(l) v(l) 2 I U(2)2 C=-(a +s)S -(3-a)S dr1 -(3-a)S dr2--
r1 r2 

Id 
u(3)v(3) II d u(1)v(1)·u(2)2 

- 2S r3 + S dr1 r2 -----
r3 r12 

II u(1)v(1)·u(3)v(3) II U(2)2·U(3)v(3) 
+ dr1 dr3 + S dr2dr3 . 

r13 r23 

Using the further abbreviations 

I uv 
V= dr-;; (158.10) 

X= drdr' . II u(r) v(r)· u(r') v(r') 

\r-r'\ ' 
(158.11) 

I I 
u(r)2 . u(r') v(r') 

Y= drdr' , 
\r-r'\ 

(158.12) 

the exchange energy becomes 

and the corrected energy (158.7), 

E [J+(3-a)U]S2+[(5-a)V-2Y]S-X (158.14) 
E= + 1-~ . 

As a last step, we may now proceed to evaluate the integrals S, Eq. 
(158.6), U, V, X, Y, Eqs. (158.10-12), with the functions 

l. 
a 2 

u(r) = Vn e- ar ; 
1 1 

v(r) = --(I-!r) e -,r . vsn 
A little difficulty arises only in the two-particle integrals X and Y where 
I/\r-r'\ can be expanded into Legendre polynomials for cos(r,r'). Only 
the term Po of this series contributes, since neither u nor v depend upon 
polar angles, hence the inner integral in X and Y becomes 

{

roo } u(r') v(r') 1 
I drl = 411: -I dr'rI2u(rl)v(r') + I dr'r'u(r')v(r') . 

\r-r'\ r 
o r 
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All other computations are elementary and yield the following results: 

U=(1.; 

66(1.6 + 26 (1.5 - 25(1.4 -16(1.3 - 23 (1.2 -.1(1. 
Y= 8 8 8 

2«(1.-1)(3(1.+!)4 . 

Numerical values with (1. = 2.6875 are 

8=0.203; 

J= -0.030; 

U =2.6875 

V=0.419 

X=0.0558; 

Y=0.303. 

[J+(3-(1.)UJ82 =+0.0334; 

[(5-(1.) V-2 YJ 8= +0.0735; 

The two positive contributions to the numerator in (158.14) therefore 
exceed the negative term - X, so that the exchange correction yields 
a smaller binding energy of the lithium atom. The reason for this rather 
unhappy result lies in the choice of v(r) which is far too small in the over­
lap zone, as the increasing effective charge to which the 2 s electron is 
subjected when penetrating into the 1 s core has been neglected. This 
causes a small error only in the uncorrected energy of the preceding 
problem, but will have a large effect upon the exchange correction. 
Since V and Yare linear, but X is quadratic in the overlap product uv, 
the third (negative) term in the numerator of (158.14) should be much 
larger whereas the second (positive) term would be only moderately 
increased by using a better approximation for v (r), so that the entire 
expression may easily change its sign. 

Problem 159. Dielectric susceptibility 

Let the states of an atom be described by the Schrodinger equation 
Hln)=En·ln), its ground state being 10). The dielectric polarizability (1. 
of the atom (or the susceptibility X of a substance consisting of N atoms 
per cm3) shall be determined. What can, in general, be said on the 
polarizability of alkali atoms? 
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Solution. If an electrical field tS is applied to the atom in z direction, 
it causes a perturbation energy 

W=etS ~>;. (159.1) 
;. 

with - e the electron charge and the subscript A. numbering the atomic 
electrons. The equation 

(H + W) t/t=Et/t 

is then approximately solved by 

t/t=IO) + If <nIWIO) In) 
n Eo-En 

or 

t/t= 10) + etS If <nIIz;.IO) In). 
n Eo-En 

(159.2) 

(159.3) 

The component in field direction of the dipole moment of this state 
has the expectation value 

pz= -e<t/tIIz;.It/t). (159.4) 

In first order this is composed of two terms: 

pz = - e {<OI~Z;.IO) 

+ If [<nIWIO) <OIIz;.ln) + <OIWln) <nIIz;.IO)]}. 
n Eo-En;. Eo-En;. 

The first term is the moment of the undisturbed state (if any). The second 
term describes the moment induced by the field. Denoting this latter 
moment by Pind the polarizability oc is defined by 

Pind=octS . (159.5) 
We thus find 

(159.6) 

Since Eo is supposed to be the ground state, the denominator will be 
positive. So therefore will be the polarizability, too. 

The susceptibility X connects the dielectric polarization P = N Pind 
with the field, 

P=x tS (159.7) 
so that 

(159.8) 

and X>O. 
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For alkali atoms consisting of a core plus one single outer electron, 
the excitation of a core electron requires much energy, thus leading to 
a large denominator in (159.8). For a rough orientation it therefore 
suffices to study excitations of the outer electron only, moving in the 
field of an unaffected core. Its eigenfunctions may be written 

10) = u{r) ; In) = vn{r) YI,m{ 8, cp) 

because the ground state 10) is an s state not depending on polar angles. 
With 

z=rcos8=r W Y 1 ,o 

the matrix element then becomes 

00 

(nlzIO) = J dr r3 vn{r) u{r)'~dQ Yi':m cos8. 
o 

This vanishes, except for excitation of states with 1= 1 and m=O, when 
it becomes 

00 

(nlzIO) = W f dr r3 vn{r) u{r) . 

o 

Further computations imply detailed knowledge of the radial parts 
of the eigenfunctions. 

If dimensionless units are not being used, it is easily seen that the 
polarizability 0( has the dimension of a volume so that it will, roughly 
speaking, be of the order of {1i 21m e2)3. 

NB. One can as well calculate the second-order Stark effect with an energy 
shift 

which must be = -!ext9'2. The result for ex is the same as above. 

Problem 160. Diamagnetic susceptibility of neon 

To compute the diamagnetic susceptibility of neon (Z = 10) using 
hydrogen-like wave functions with different screening constants an,l' 
The following screening constants may be used: 

a 1,0 =0.23 a2,o = 3.26 a 2,1 = 4.11 . 
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Solution. The diamagnetic susceptibility per mole is given by the 
formula [cf. (128.14)J 

e2 

X= - 6mc2NI <r2) (160.1) 

where N is the Loschmidt number (N = 6.02 x 1023) and the sum is to be 
extended over all electrons of one atom (or molecule). The expectation 
values of r2 in states with eigenfunctions 

1 
Un, I,m = -;: Xn,z{r) Yl,m(.9, <p) 

are given by the integrals 
00 

(r2) = J dr r21Xn,l12 . 
o 

(160.2) 

The radial parts of hydrogen-like wave functions may be taken from the 
table of Problem 67, with Z replaced by Z -0"; the resulting values of the 
integrals (160.2), in units of (h2 jme2? then become3 

for (n,1) = (1,0) (2,0) (2,1) 

42 30 

as may be checked by elementary integrations. The respective numbers 
of electrons in the three (n,1) states are 2, 2, 6. The order of magnitude of 
the susceptibilities will be determined by the factor 

e2 ( h2 )2 Xo = --2 N -2 = 0.790 X 10- 6 cm3jmole. 
6mc me 

We thus obtain for the susceptibility of neon: 

{ 2·3 2·42 6.30} 
XN.= -Xo (10-0"1,0)2 + (10-0"2,0)2 + (10-0"2,1)2 

= - 5.61 x 10- 6 cm3 jmole. 

This result may be compared with the experimental value of 

XN. = - 6.7 x 10- 6 cm3 jmole . 

3 These are special cases of the general relation 

n2 

<r2> = 2Z2 {5n2 +1-31{l+1)} 

(160.3) 

(160.4) 

the deduction of which is cumbersome and not very interesting. For details see 
Bethe, H. A., Salpeter, E. E., Encyclopedia of Physics, vol. 35 (1957), p. 103. 
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It should be remarked that the contribution of the outermost subshell 
(n, n is by far the biggest of the three terms in (160.4) contributing 
X(ls)= -0.05, X(2s)= -1.46 and X(2P)= -4.lOcm3/mole. Unfortu­
nately the screening effect is not only very big for the outermost electrons 
but also rather uncertain experimentally. 

Problem 161. Van der Waals attraction 

Two hydrogen atoms in their ground states are at a distance R from 
each other. The nuclei may be supposed at rest. It shall be shown that 
the interaction between the two atoms vanishes in first order of a per­
turbation calculation, and that a second-order approximation leads to 
Van der Waals attraction. Of the interaction part of the hamiltonian, 
only the leading term proportional to the lowest negative power of R is 
to be used (large distance approximation). 

Solution. Let us denote the position of electron 1 relative to nucleus 
a by r 1 with components Xl Y1 Zl and the position of electron 2 relative 
to nucleus b by r2 with components X2 Y2 Z2' The z direction shall 

Fig. 63. Notations. The distances marked by broken lines enter the interaction 
(161.3) 

coincide with the nuclear axis (Fig. 63). With the nuclei at rest, i.e. in 
Born-Oppenheimer approximation, we then have the hamiltonian 

H=HO+H' (161.1) 
with 

Ji2 e 2 e 2 

HO = - - (Vi + V~) - - - -
2m r l r2 

(161.2) 

describing two independent atoms, and 

e2 e2 e2 e2 

H'=-+-----
R r12 rlb r 2a 

(161.3) 
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their mutual interaction. We shall use H' as perturbation energy. If H' 
is expanded in a series of negative powers of R (i. e. for r 1 ~ Rand r 2 ~ R), 
the large-distance main term comes from the interaction of the two 
dipoles a1 and b2 with dipole moments Pl = -erl and P2= -er2 
respectively, viz. 

H' = PIP2 _ 3(P1 R)(P2 R) 
R3 R S • 

(161.4) 

In coordinate formulation, (161.4) becomes 

e2 

H' = R3 (Xl X2 + YIY2 -2Z1 Z2)· (161.5) 

This expression shall be used in the following calculations. 
Let uo(r) be the wave function of the atomic ground state. The 

zero-order wave function of the entire system then is the product 

(161.6) 

where symmetrization has been omitted since exchange contributions 
tend exponentially towards zero at large distances R and may thus be 
neglected. 

In zero-order approximation the sum of the two atom energies is 
the energy of the system. In first order we have to add 

E'=<UIH'IU)=O. 

It can easily be seen that this term needs must vanish. Taking, e. g., the 
first term of (161.5), we have 

e2 e2 e2 
R3 <UIXIX2IU) = R3 <uolxluo)2 = R3 {Jd'i.t~(r)xY, 

and these integrals describing dipole moments of atomic states with 
spherical symmetry indeed vanish4 • 

The second-order energy perturbation is 

Elf __ ", I<OIH'ln)12 , 
L. (161.7) 
n Eo-En 

4 They vanish not only for S states but always, if both atoms are in the same 
state, see the following problem. Even for two excited states, IUol2 depends upon 
polar angles as the square of a spherical harmonic. This can be decomposed into 
a sum of spherical harmonics of even orders only. In the integrand it is multiplied 
by a coordinate x, y, or z, i. e. with a spherical harmonic of first, hence of odd order. 
Orthogonality properties of spherical harmonics thus cause the product integral 
to vanish. 
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the sum being extended over all excited states, and a referring to the 
ground state. As En> Eo, all denominators of the sum are negative 
so that Elf < a and there arises an attraction. The matrix elements 
depend upon R only through the constant factor R - 3 in Eq. (161.5) which 
stands in front of each integral. Elf therefore must be of the form 

with C a positive constant. This is, however, the well-known distance 
dependence of the Van der Waals attraction. 

Literature. Schiff, L. I.: Quantum Mechanics. New York 1949. pp. 174-178. 

Problem 162. Excitation degeneracy 

Two hydrogen atoms at rest, a distance R apart, shall be in different 
quantum states, one in the ground state, the other in a P state. Dipole­
dipole interaction exists between them, as deduced in the preceding 
problem. It shall be shown that now there is a non-vanishing first-order 
contribution to the energy of the system, even at large distances where 
overlap of eigenfunctions may again be neglected. This first-order energy 
perturbation shall be calculated. 

Solution. Let 11m) be written for an atomic wave function with 
quantum numbers 1 and m. The ground state may then be described by 
lOa), and the three possible P states by 11 m) with m= 1, 0, -1. Zero­
order wave functions ofthe system, in product form, are then 

100,1m) and 11m,OO), (162.1) 

the first pair of quantum numbers referring to the first, the second pair 
to the second atom. 

The perturbation energy (161.5) may be used. Introducing the symbols 

e = x + i y, et = x - i Y (162.2) 

it may be reshaped into 

2 

H' = 2~3 (el e~ +e1 e2 -4Z1 Z2)' (162.3) 

This operator, being linear in the coordinates of either electron, has 
matrix elements with functions of type (162.1) different from zero only 
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if for each of the two electrons an S and a P state are combined5• These 
are the matrix elements 

The bilinear structure of H', Eq. (162.3), allows decomposition into 
atomic matrix elements: 

e2 

(1m 1 ,00IH'100,1m2 ) = 2R3 {(1mll~100) (001~11m2) 

+ (1mll~100) (001~11m2) 
- 4(1 m11z100) (001z11 m2)}. (162.4) 

Denoting the radial parts of the atomic wave functions by ft(r) and 
using the abbreviation 

co 

ro = J dr r3 fo(r)fl (r), 
o 

(162.5) 

the following results are obtained for the non-vanishing integrals 
occurring in (162.4): 

(111~100) = ~ro; 

(1-11~100) = - ~ro; 

(1 OlzIOO) = VI ro; 

(162.6) 

All other combinations of quantum numbers lead to vanishing matrix 
elements. Eq. (162.4) then becomes 

2 2 

(1m 1,00IH'100, 1m2) = ;:~ {1<>l,m, <>l,m2+j-<>-l,m, <>-l,m2 

(162.7) 

Thus, only with m1 =m2 the matrix element (162.7) does not vanish. 
Weare now prepared to write down the secular determinant of the 

six degenerate zero-order wave functions (162.1). If E' is the first-order 
perturbation and the six functions are used in the order 

100,11); 111,00); 100,10); 110,00); 100,1-1); 11-1,00) 

5 Coupling of any states with even I and odd l' = I ± 1 would do, e. g. P - D 
coupling. This however exceeds the limitations set by Eq. (162.1). 



82 Many-Body Problems. Few Particles 

the secular equation becomes 

-E' ~6 0 0 0 0 

h -E' 0 0 0 0 

0 0 -E' -16 0 0 

0 0 -16 -E' 0 0 
=0 (162.8) 

0 0 0 0 -E' ~6 
0 0 0 0 ~6 -E' 

with 
e2r~ 

(162.9) 6 = 2R3 • 

The determinant can be decomposed into three 2 x 2 ones, thus extremely 
simplifying its evaluation. The results are therefore immediately shown 
in the accompanying table. Here A stands for the sum of the m values of 
both atoms, i. e. for the component ofthe total electron orbital momentum 
along the nuclear axis. The classification symbols used are those of 
molecular spectroscopy, the signs 1: and II referring to A =0 and ± 1, 
respectively, and the subscripts 9 and u to wave functions even and odd. 
The two IIg states having the same energy are still degenerate; so are 
the two IIu states. The last column gives the interaction energy E' in 
multiples of 6. 

State A Wave function E' ( unnormalized) 

IIg 100,11)+ 111,00) +~e 
II. 1 100,11) -111,00) -~e 
'Eg 0 100,10)+ 110, 00) -~e 

'E. 0 100,10) -110,00) +~e 
IIg -1 100,1-1)+11-1,00) +~e 
II. -1 100,1-1)-11-1,00) -~e 

Introducing the hydrogen wave functions (see Problem 67) 

f = V6 re- r /2 
1 12 

in atomic units, the integral ro, Eq. (162.5), can be evaluated: 

r -1~6·128 o-V u 243 (162.10) 
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and, from Eq. (162.9), 

16384 ela~ 
B=----

19683 R3 
(162.11) 

with ao the Bohr radius. In all states, therefore, the interaction energy E' 
becomes proportional to R- 3 , decreasing more slowly than, and thus 
dominating, the Van der Waals energy (ex:: R - 6) at large distances. The 
sign of the interaction still depends upon the state of the system: in the 
states 1:u and JIg there is repulsion between the two atoms and attraction 
only in the states 1:g and JI u' 

Literature. Herzberg, G.: Spectra of diatomic molecules, p. 378. - Landau­
Lifschitz: Quantum Mechanics, p. 302. - Margenau, H.: Rev. Modern Phys. 11, 
1 (1939). - King, G. w., Van Vleck, J. H.: Phys. Rev. 55, 1165 (1939). 

Problem 163. Neutral hydrogen molecule 

To find the binding energy and equilibrium distance of the neutral 
hydrogen molecule by a method analogous to that of the Hi treatment 
given in Problem 44. 

Solution. This is a two-body problem in the Born-Oppenheimer 
approximation of fixed nuclei. Let the two nuclei (protons) be denoted 
by a and b, and the two electrons by 1 and 2, then we have the hamiltonian, 
in atomic units, 

1 1 1 1 (1 1 1 1) 1 H= -z(V l +V1 ) + - - - + - + - + - + - (163.1) 
r 12 ral rbi r a1 rb1 R 

with R the distance between the nuclei. At large distances R, the wave 
function should pass over into the product of the separate atoms, either 
becoming of the form f(r aI) f(rb1 ) if electron 1 forms an atom with 
nucleus a, and 2 with b, or of the form f(rbI) f(r a1 ) if the two electrons 
are exchanged. A reasonable approach at finite distances R will be a 
linear combination of two such products, and symmetry considerations 
lead to the choice of the symmetrical solution 

(163.2) 

for the ground state (with anti parallel electron spins, according to the 
Pauli principle). The antisymmetric combination, which is an eigen­
function as well, would lead to a larger energy with no attraction and no 
formation of a molecule at all. 
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If we put (163.2) into the Schr6dinger equation, 

HU=E·U 

with H the hamiltonian (163.1) we get 

(163.3) 

[ 1 1 1 1J F(ra1 )f(rb2)+ f(ral)F(rb2 ) + - - - - - - E + - f(ra1 )f(rb2 ) 
r12 rb1 ra2 R 

(163.4) 

where F stands as an abbreviation: 

( 1 2 1 ) F(ra1 ) = - - V 1 - - f(ra1 )· 
2 ral 

(163.5) 

We now apply the operator 

S d'tl S d't2 f*(r a1) !*(rb2)··· 

to Eq. (163.4). The function f is supposed to be normalized. Using the 
following abbreviations: 

s = S d't 1 f*(r al) f(rd 

for the overlap integral, 

and 

for the classical interaction integrals, 

Iff = Ide 1 _1 f*(r al) f(rbl) 
ra1 

and 

for the exchange integrals, and finally 

A = Sdrd*(ral)F(ral) 
and 

(163.6) 

(163.7) 

(163.8) 

(163.9) 

(163.10) 

(163.11) 

(163.12) 



Problem 163. Neutral hydrogen molecule 85 

for the two remaining integrals, we fmd by this procedure 

2(A+A'S)-2(<6'+GS)+(<6"+G') = (E - *)(1+S2) (163.13) 

or 
A + A'S 2 (<6' + G S) - (<6" + G') 1 

E=2 - +-. 
1+S2 1+S2 R 

(163.14) 

In a way analogous to that used in Problem 44 for Hi we now put 

f() ~3 -yr 
r = -e . 

1C 
(163.15) 

For y = 1 this would be the wave function of the atomic ground state; 
with y a variational Ritz parameter we may still get a better approx­
imation. Specializing to (163.15) we find, according to (163.5), 

so that (163.11) and (163.12) yield 

A= _h2+y(y-1); A'= -~lS+(y-1)G. (163.16) 

It can further be shown that the overlap integral S depends only upon 
the combination 

p=yR (163.17) 

which we may use as a second Ritz parameter besides y, and that th~ 
four remaining interaction integrals <6', <6", G, G' all become propor­
tional to y so that we may write 

<6'=yt'C(p); <6" =yt'C'(p); G=yC(p); G' =yC'(p). (163.18) 

The energy expression (163.14) thus becomes 

(163.19) 

with 

2(1 +~)+4SC -(~' +C') 1 
a(p) = --

1+S2 P 
(163.20) 

and 

(163.21) 
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depending only on p. We then get an energy minimum if 

oE 

or 

it amounts to 

- = -a+2by=O oy 

a2 

E=--. 
4b 

(163.22) 

(163.23) 

It remains to evaluate the five integrals (163.6-10). Three of them 
have been computed in the HI, Problem 44, viz. 

S = (l+p+j p2)e- P, 
_ 1 
C(j = -[I-(I+p)e- 2P], 

p 

"j = (1+p)e- p. 

The integral C(j' is a little more difficult but can still be evaluated in an 
elementary way if integration over the coordinates of the electron 2 is 
first performed using spherical polar coordinates with the origin in b 
and b 1 the polar axis: 

1 fd 1 -2rb2 ?2( ) - 'C 2 -e =T!> r b1 • 
11: r 12 

The second integration, over electron 1, then leads to integrals already 
evaluated, only some having factors 2 in the exponential. The result is 

_ 1 
C(j' = - [1-(1 + V p+ip2 +i p3)e- 2p]. 

p 

Real difficulties, however, are encountered in the last integral, Iff', which 
can no longer be reduced to elementary integrations. The result, first 
obtained by Sugiura, is -

with 

where 

D'_[.2._23p_lp2 ..l..p3]e- 2p + 6 cp(p) 
(0-820 5 -15 ---

5 p 

00 

z 
is the exponential integral. 
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It is easily seen that, for large r, this integral tends to zero as e- 2p and 
that, at p=O, it has a limit C'(O)=i in agreement with the theory of 
the heliu~ ground state emerging for nuclear distance zero (cf. Problem 
154). 

Numerical computation yields the following table. The binding 
energy of the molecule has a maximum at about R = 1.46 a. u. corre­
sponding to an equilibrium distance of Ro=O.77A (instead of the 
experimental value 0.742 A). The energy then is E = -1.139 which is 
to be compared with the binding energy of two separate hydrogen 
atoms in the ground state, 2Eo= -1. If the zero-point energy of the 
molecular vibrations is denoted by Flw, we therefore have a disso­
ciation energy of 

D=2Eo-(E+Flw)=0.139-Flw. 

The zero-point energy can be determined by the same procedure as in 
the case of Hi (Problem 44), but the energy parabola in the neighbour­
hood of the minimum is much less accurately determined by the table. 

P l' -E R 

1.3 1.145 1.120 1.133 
1.4 1.152 1.127 1.214 
1.5 1.160 1.131 1.293 
1.6 1.164 1.137 1.374 
1.7 1.166 1.139 1.458 
1.8 1.164 1.137 1.546 
1.9 1.161 1.134 1.635 
2.0 1.156 1.129 1.730 

However, we find a value close to 0.010 a. u. or 0.27 eV, with an error of 
about ±5%, in perfect agreement with experiment (hw=0.54eV). 
Thus, the dissociation energy turns out to be 

D=0.138 a.u.=3.75 eV 

whereas its experimental value is D=4.45 eV. The agreement is not 
so bad, as we have explained in the similar situation obtaining in the 
case of Hi. 

NB. It should be mentioned that, for large distances R or p, the parameter l' 
tends towards 1 and the function f to the atomic ground state wave function. 
In the original Heider-London method, this value was used throughout, so that 
there was no Ritz parameter 1'. In that rougher picture 0 the dissociation energy 
becomes only 2.90 eV and the equilibrium distance 0.88 A. The increasing values 
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of y which, according to the table, obtain during an adiabatic approach of the 
two atoms describe a contraction of their electron wave functions in binding. 

Literature. Heitler, W., London, F.: Z. Physik 44, 455 (1927). - Evaluation 
of the integral g': Sugiura, Y., Z. Physik 45, 484 (1927). - Variation of y: Wang, 
S. c., Phys. Rev. 31, 579 (1928); Rosen, N.: Phys. Rev. 38, 2099 (1931). - Better 
variational approximations: James, H. M., Coolidge, A. S., J. chern. Phys. 1, 825 
(1933); 3,129 (1935). 

Problem 164. Scattering of equal particles 

A beam of particles of charge e collides with a target conslstmg of 
particles of the same kind at rest. How does the angular distribution 
by scattering compare with that expected of classical physics, if allow­
ance is made for the correct symmetry of the wave function? This shall 
be discussed for unpolarized particle beams of spins O,!, and l. 

Solution. The Rutherford amplitude has been derived in Problem 
110 in the centre-of-mass system. It is 

* - iK*log sin2 !i 
X 2' e Z 1(8)= - -e .'10 ___ _ 

2k* . 2 8 
sm -

2 

l1o=r(l+ix*); 

here the abbrevations K* and k* refer to centre-of-mass values, 

eZ 
x*=-' 

hv' 

m*v 
k*- --' 

- h ' 

(164.1) 

(164.2) 

and m* is the reduced mass. For two equal particles, m* =!m. The 
relative velocity of the two particles, v, is independent of the frame of 
reference. Therefore, if K, k and E refer to the laboratory frame, we get 

so that 

x*=x; k*=!k; E*=!E 

- if( log sin2!i 
X z. e Z 

1(8)= - -k e ''10 

• Z 8 sm -
2 

l1o=r(l+ix). 

(164.3) 

(164.4) 

Further, the angle of deflection in the laboratory frame, e, for equal 
masses becomes 

(164.5) 
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with 9 the angle in the centre-of-mass system. The solid angle element 
therefore transforms according to 

dOJ=2n sin9d9=2n·4cosB sinBdB =4cosBdQ, (164.6) 

and the differential Rutherford cross section in the laboratory frame 
becomes 

- = 4 cos B - -- with - = -- = -. daR (X)2 1 x e2 e2 
dQ k sin4 B k mv2 2E 

(164.7) 

Even in classical mechanics, this formula has to undergo an essen­
tial correction. Since it is impossible to distinguish a scattered particle 
from a recoil particle, if both are of equal kind, both have to be added 
in the cross section. As, according to (164.5), the two paths will be per­
pendicular to each other, the recoil particle emerges from the target 

under the angle ~ - B and we get, instead of (164.7), 
2 

daclass (X)2 {1 1} --=4cosB - --+--. 
dQ k sin4 B cos4 B 

(164.8) 

This is the classical expression with which we have to compare the 
quantum mechanical result now to be derived. 

According to quantum theory, we have not to superimpose inten­
sities (i.e. cross sections) but amplitudes. Let u(r) be the unsymmetrized 
wave function in the centre-of-mass frame with r the relative coordinate 
vector. Its asymptotic behaviour, apart from logarithmic phases, is 

The plane wave part can be written 

describing one particle of velocity +!v and the other of velocity -lv 
in z direction. If centre-of-mass motion is superimposed by a factor 

particle 2 is brought to rest (target particle), and there remains the 
motion of particle 1 according to e2i k*zl = eikzl (colliding particle). This 
holds for the unsymmetrized wave function of the two-particle system. 
Its symmetrization means replacing u(r) by 

u(r)+eu(-r) with 8= ±l. 
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For the asymptotic spherical wave part this means replacing f(8) by 

f(8)+ f(n-8) 

leaving r unchanged, so that, with (164.4), instead of f(8) we get 

(164.9) 

and, instead of the classical cross section formula (164.8), 

da ( e2 )21 e-i>< log sin2 B e-i>< log cos2 B 12 
- = 4 cos e -- + ---::---
dQ m V2 sin2 e COS2 e (164.10) 

Evaluation of the last expression leads to 

(164.11) 

with an interference ter,m added to the classical expression. For com­
paring both, quantum theoretical and classical cross sections, the ratio 

(164.12) 

may be useful. 
As a last step we now have to decide which part of an un polarized 

beam will be symmetrical, and which antisymmetrical. If the scattering 
particles are fermions of spin i (two protons or two electrons) whose 
total wave function must be antisymmetrical, we have weights i for the 
spin-symmetrical, space-antisymmetrical triplet and! for the opposite 
symmetry of the singlet state so that we get 

da=ida _ +!da + 

with the subscript signs referring to the two signs of Gin (164.11). There­
fore, un polarized beam experiments in this case yield 

and 
Geff= -i+!=-i 

da 
--=1-
daclass 

tan2 ecos(fv-Iogtan2 e) 

1 +tan4 e 
(164.l3) 
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This function is shown in Fig. 64 for proton-proton scattering at an 
energy E=100keV. This is about the highest energy for which no very 
appreciable scattering anomaly occurs due to the short-range nuclear 
attraction between the protons (cf. the following problem). At this 
energy, we have x=0.50 for protons. The function (164.13) is invariant 

under the transformation e ~ ~ - e so that it need only be computed 
2 

for values 0 < e ~ 45°. Passing on to much lower energies, x becomes 
so large that cos(x log tan2 e) has several oscillations in this interval. 

1.0 

do­
dO-class 

0.5 

1'\ 
\ 

/ 
/ 

1\ / 
\ J 

Fig. 64. Scattering of two equal ferrnions. The figure shows the ratio of quantum 
theoretical to classical scattering intensity as a function of scattering angle. The 
curve has an infinite number of oscillations in the vicinities of 0° and 90°, with 

decreasing amplitudes 

Finally, for very large x, these oscillations will be so rapid that they 
can no longer be resolved experimentally so that the classical expression 
remams. 

If the particles are bosons without spin (e.g. two IX particles or two 
pions), only the space symmetrical state with e= + 1 occurs. Of course, 
for IX particles e2 has to be replaced by 4e2 . If the particles are bosons 
of spin 1 (e.g. two deuterons), the total spins possible are 2 (weight ~), 
1 (weight ~), and 0 (weight!) with space symmetry for total spins 2 and O. 
Then we get 

and 

(164.14) 
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Literature. The classical symmetrized expression (164.8) was first used by 
Darwin, C. G.: Proc. Roy. Soc. London, A120, 631 (1928). The quantum me­
chanical formula was derived by Mott, N. F., ibid: 126,259 (1930). This formula 
was corroborated experimentally with ct particles, as described in the papers by 
Chadwick, J.: Proc. Roy. Soc. London, A 128, 114 (1930) and by Blackett, P. M. S., 
Champion, F. c., ibid.: 130,380 (1931), and with protons by Gerthsen, c.: Ann. 
Physik 9, 769 (1931). 

Problem 165. Anomalous proton-proton scattering 

The short-range nuclear force between two protons gives rise to an 
attraction which causes a scattering anomaly above energies of about 
100 keY. This anomaly shall be described by an additional phase shift 
<5 0 in the partial wave 1=0. 

Solution. In Problem 112 we have treated anomalous scattering for 
charged particles without symmetrization and derived Eq. (112.5), in 
the centre-of-mass frame, 

f(8) = _ x e -i>dogsin2~ + _1_(e2itlO_1). 
8 2ik* 

2k* sin2-
2 

(165.1) 

Let us instead for what follows use the abbreviation 

(165.2) 

where the first term describes the Rutherford scattering of the Coulomb 
field and the second, 

1 2" 1., f =--(e 'UO-1)=-e,uosin<5 
a 2ik* k* 0, 

(165.3) 

is the anomaly amplitude. Symmetrization, then, according to the 
preceding problem, with 

leads to the relation 

du 
dQ = 4cosB {ilf(8)- f(n-8)12 +ilf(8)+ f(n-8)1 2}, 

or 

(165.4) 

(165.5) 
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In the ftrst square of (165.6), the anomaly not depending upon 9 cancels out. 
It is remarkable that even for higher energies, where higher angular momenta 
contribute to fa so that 

fa = 2 ~k* f (2/+ 1)e2i(m-qo)(e2i~'-l)P,(cos9), 
I 1=0 

in consequence of 
P,(cos(n-9)) = (-1)' P,(cos9), 

all contributions with even 1 would cancel out in the triplet, and all with odd 1 
in the singlet term. Thus, contributions would arise only from the terms 

is, 3p, lD, 3F, lG, ... 

This is in complete agreement with the Pauli principle applied separately to each 
of these partial waves (forbidding 3 S, 1 P, ... ). 

If the absolute squares are evaluated, Eq. (165.6) yields 
du 
- = 4cos€){lfR(8)12+lfR(1l:-8)12-Re[jR(8)f~(1l:-8)] 
dQ 

+Re[ja!~(8)] +Re[jaf~(1l:-8)] + IfaI 2}. (165.7) 

In the first line of this equation there stand the terms contributing to 
Coulomb scattering as discussed in the preceding problem; in the 
second line there stand two interference terms of Coulomb and anoma­
lous scattering, and the anomaly itself. With the explanations of the 
symbols fR and fa given above, these last three terms can easily be 
computed: 

2x sinc50 . 2 
Re[ja!~(8)] = - 2 -'-2 -cos(c5o+xlogsm €)); 

k sm €) 

2x sinc50 
Re [jaf~(1l: - 8)] = - 2 --2 - cos(c5o + x log cos2 €)); 

k cos €) 

2 4. 2 
Ifal = k2 sm c5 0 • 

It is usual to give the so-called scattering ratio, 

du 
R=-, 

duc 
(165.8) 

where duc means the Coulomb term only (as derived in the preceding 
problem or from the first line only of (165.7)). This becomes 

2. [COS(c50+xlOgsin2 €)) COS(c50+XlogCOS2 €))J 4. 2~ 
- -smc5o + + -sm Uo 

x sin2 €) cos2 €) x2 

R=1+---=------------~-~-----
1 1 cos(xlogtan2 €)) 

--+ --- -----,----,--
sin4 €) cos4 €) sin2 €) cos2 €) (165.9) 
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This formula holds upwards to such energies where 3 P scattering 
begins to playa role, i.e. upwards to a few MeV proton energy. 

Eq. (165.9) gives R = 1 for e = 0° and for e = 90° where the sin­
gularity of Coulomb scattering outgrows the finite anomaly. 

More significance attaches to the value of R at the angle e = 45° 
where we get 

2 1 
R(45°)=1 - -sinbocos(bo-Iog2) + 2"sin2 bo. (165.10) 

x x 

Let us first discuss this expression for a rather small proton energy, 
say, of 250keV. Then x=0.316 is still rather large and 150 very small, 
so that the second term in (165.10) by far outweighs the third one. 
Observation at 45° then easily decides on the sign of the additional 
force: If it is an attraction, 150 >0 and R(45°)<I; if it is a repulsion, 
80 <0 and R(45°) > 1. Experiment shows that the nuclear force is 
attractive. 

Let us now go on to higher energies, say, to IMeV (x=0.158). 
Fig. 65 shows the value of R(45°) then to be expected for different 
positive and negative values of 150 , according to (165.10). Since we 

Fig. 65. Anomalous proton-proton scattering at 1 MeV. The ratio of actual to pure 
Coulomb scattering at e = 45° is shown as a function of the phase angle 80 . 

Positive (negative) values of 80 correspond to short-range attraction (repulsion) 

have already decided in favour of 80 > 0 (attraction), there is a unique 
determination of 80 if R(45°» 1. This really is observed at 1 MeV, 
viz. R(45°) = 4.6. The phase angle then turns out to be 15 0 =32°. In this 
way 80 can be uniquely determined as a function of energy. 
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The ratios R at other angles of deflection may then be computed 
from (165.9) with the value of {}o so determined, and the whole curve 
of angular distribution for each energy be compared with experiment. 
Thus the theory can be corroborated in more detail. Perfect agreement 
has thus been obtained. 

Literature. Blatt, J. M., Jackson, J. D.: Rev. Modem Phys. 22, 77 (1950). -
Flugge, S.: Ergebn. exakt. Naturwiss. 26, 165 (1952). 

Problem 166. Inelastic scattering 

A beam of protons is passing a target consisting of alkali atoms. Ex­
citation cross sections for the outermost atomic electron, originally in 
its ground state, shall be determined by treating the proton-atom 
interaction as a perturbation. Momentum transfer to the atomic core 
shall be neglected (infinitely heavy nucleus). 

Solution. Let us use atomic units throughout (h= 1, e= 1, m= 1) 
and let '1 be the position vector of the proton, '2 of the electron. The 
hamiltonian may then be decomposed into three parts, 

with 

describing force-free motion of a proton of mass M, 

H2 = -tv~+ V(r2) 

(166.1) 

(166.2) 

(166.3) 

describing the motion of the outermost electron in the field of the 
atomic core, and 

(166.4) 

describing the interaction of the proton with the atomic core and the 
electron to be excited. This last term of the hamiltonian shall be re­
garded as a perturbation. Such a formulation of the problem is rea­
sonable as long as the energy of the proton is not big enough to excite 
anyone of the core electrons, so that we may simply deal with only 
the outermost electron and a rigid core. 

Let the eigenfunctions of the operator H2 be Uv (where the sub­
script v comprises the three quantum numbers n, I, m, and v = 0 denotes 
the ground state) with eigenvalues W" 

(166.5) 
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and let h k be the momentum of an undeflected beam proton. Then the 
zero-order solution of the Schr6dinger equation, neglecting H 12 , is 

(166.6) 

The first-order solution may be written as an expansion with respect 
to the complete orthogonal set {u.}, viz. 

U(r1, r2) = eik ' rl uO(r2) + I' F,,(r1)uir2) 

" 
(166.7) 

where J1.=0 is excluded from, and the integral over the continuum 
functions included in, the sum. 

Putting (166.7) in the Schr6dinger equation we arrive at 

I' {Vi F,,+ [k2_2M(fJ.j,- Wo)]F;.~2MH12F,,}u,,(r2)=2MH12 eik ' rl UO(r2)· 

In the first order of perturbation we neglect H12 on the left-hand side. 
With the notation 

(166.8) 
we then have 

I' {ViF,,(rd+k~Fird}u,,(r2) = 2MH12 ei k-rl uO(r2)· (166.9) 

" 
Multiplying (166.9) by u~(r2) and integrating over r2 we obtain a set 
of independent differential equations for the F:s: 

(166.10) 
with 

cP.(r1) = 2M eik ' rl J tF'2 u~(r2)H12 uO(r2). (166.11) 

Eq. (166.10) is an inhomogeneous equation and can be solved by using 
a Green's function, 

(166.12) 

In order to derive cross sections from the solution, we next have 
to study the asymptotic behaviour of (166.12) for '1 ~ 00. The integral 
(166.11) in cP.(r1) decreases as lid with large '1 since H12 is the inter­
action of a proton with the neutral atom, which according to (166.4), 
for 1'1 ~1'2' tends towards-(r1 ' r2)/1'f. The factor cP.(r') in (166.12) thus 
practically limits the integration domain in (166.12) to atomic dimensions. 
For 1'1 ~ 00 therefore 1'1 ~ 1" may be supposed so that 

(166.13) 
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This is an outgoing spherical wave, 

(166.14) 

with a scattering amplitude 

(166.15) 

still depending upon the direction in which the proton is finally de­
flected. It follows that the differential inelastic cross section for the 
proton, under excitation of the outermost alkali electron to the state v, 
then is 

(166.16) 

because the velocity of the outgoing protons, and thence their current, 
are lowered by the factor kv/k. This is an immediate consequence of 
interpreting (166.8) as energy conservation law. 

Let us now go into some more details with respect to the angular 
distribution of the inelastically scattered protons. In the exponent of 
(166.15) we introduce a vector kv in the direction of r 1 so that 

kvr' cos(r1' r') = kv' r' 

and, using (166.11) and (166.4), we get 

It is obvious that the term with V(r') does not contribute to inelastic 
collisions (v i= 0). This follows from orthogonality as well as from the 
physical fact that interaction of the proton with the core cannot excite 
an electron which forms no part of the core. Further introducing a 
vector Kv=k-kv for the change of momentum we then arrive at 

The integrand of the inner integral in this formula consists of two 
factors, both of which may be expanded into spherical harmonics of 
the angles 8' between Kv and r', and 8~ between r' and r 2: 
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and 

with 

1 (r')" R,,=- -
r2 r2 

1 (r2)" R,,-- -
r' r' 

(166.18) 

Referring all angles to the direction of Kv as polar axis, we may apply 
the addition theorem of spherical harmonics to Y",o(8~), viz. 

with 8', q/ defining the direction of y' and 82 , <fJ2 that of Y2 with respect 
to Kv' Then, in the inner integral of (166.17), the angular integrations 
may be performed and we get 

Using the abbreviation 

OCJ 

(r ) = V 4n i/ fdr' r'2 j /(K/) R 
g/ 2 2/+ 1 K/ / (166.19) 

o 

Eq. (166.17) becomes 

f(8d = 2M f J3r2u~(Y2)UO(Y2) I~O g/(r2) Y/,o(82)· (166.20) 

The integral (166.19) can be explicitly evaluated. Using y=K/ as 
integration variable and putting X= Kvr2' we find with (166.18), 
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These integrals are well known from the theory of Bessel functions: 

x 

J dyyI+1jl(y) = X+ 1jl+1(X); 

° 
00 

J dy y-l jl(Y) = X-1jl_1 (x) 
x 

so that the curly bracket above becomes 

jl+1(X)+jl-1(X) = (2/+ 1)jl(X). 
x 

Hence, 

(166.21) 

In the evaluation of the scattering amplitude (166.20), we can go 
one step farther. We know that the states u. may be factorized with a 
spherical harmonic. Since uo, the ground state, does not depend on 
angles, there are, therefore, in (166.20) products of two spherical har­
monics to be integrated. Orthogonality then selects only one term of 
the sum (166.20). With 

1 
u. == - Xn k2) Y1 m(:)2,o/Z) (166.22a) 

'z' , 

where K. has been used as axis of quantization, and 

1 
Uo = - Xo('Z) 

'2 

as the ground state, the scattering amplitude becomes 
00 

2M V ·1 f jl(K.,z) /(9 1) = -z (jmO 4n(2/+ 1)1 d,z Xn,kz) XO('2) . 
~ ~G 

° 

(166.22b) 

(166.23) 

The states of different m are degenerate. Only such a linear combina-
tion of them can be excited that its angular momentum has no component 
about the direction of the momentum transfer vector K •. No selection 
rules exist for I. It should further be remarked that the expression (166.23) 
still depends upon the angle of deflection, 9 1, of the proton since K. 
does, 

(166.24) 

k. being derived from the energy law (166.8) and independent of 91 . 

NB. The same results can be obtained by applying the Golden Rule (Problem 
183) to this process. 
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B. Very Many Particles: Quantum Statistics 

Problem 167. Electron gas in a metal 

In a rough approximation, the conduction electrons in a metal may be 
treated as freely moving with potential walls at the surface which prevent 
their leaving the metal. In a cube of silver (density p= 10.5 gm/cm\ 
atomic weight 108, one conduction electron per silver ion) there shall 
be determined 

a) the highest electron energy occurring in the ground state, 
b) the average kinetic electron energy, 
c) the pressure of the electron gas. 

Temperature excitation may be neglected. 

Solution. In a silver cube of volume L3 the possible electron energies, 
according to Problem 18, are given by 

h2 2 
11: 2 2 2 E = --2 (n 1 +n2 +n3 ) 

2mL 
(167.1) 

with n1,n2 ,n3 positive integers (=1,2,3, ... ). In each state described 
by a triple of quantum numbers (n 1 , n2 , n3 ) there are two electrons of 
opposite spin directions, according to the Pauli principle. Since in our 
metal cube a great many electrons have to be distributed, we shall 
essentially have large values of the quantum numbers. 

Let us consider a space with coordinates n l' n2 , n3 • Each lattice 
point with integer coordinates in its first octant corresponds to a state 
of energy (167.1). If we denote the radius from the origin in this space 
by n, so that 

(167.2) 

a spherical shell between radii nand n + dn in this octant will contain 

integer lattice points. Occupying each of them with two electrons of 
opposite spins, we have 11: n2 dn electrons between nand n + dn. As, on 
the other hand, the energy (167.1) depends only upon n, 

(167.3) 
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there will be, in the interval dn, 

or 
mL3 

dN=~23VEdE 
1t h 

electrons with energies between E and E + dE. 

101 

(167.4) 

a) The highest electron energy in the ground state of this electron 
gas, C, follows from the total number of electrons, N, in the cube to be a 
given constant: 

(167.5) 

Let us denote the electron density by 

(167.6) 

then we arrive at a formula independent of the volume of the metal 
considered: 

(167.7 a) 

or 

(167.7 b) 

As .¥=p/M with M the mass of a silver atom (M=1.80x 1O-22 gm) 
we have 

%=5.85 x 1022 cm- 3 

so that Eq. (167.7 b) leads to an upper energy limit of 

C=8.80x 1O-12 erg =5.55 eV. 

This is an energy so large compared to thermal energies (k T = 0.026 e V 
at 300 0 K) that thermal excitation may indeed only slightly change the 
distribution of electrons over the energy states. The reason for this 
effect, called degeneracy of the electron gas (Fermi gas), is, of course, 
the very small mass of the electron in the denominator of (167.7b). 

The energy limit C is, in general, called the Fermi energy of the elec­
tron gas. 
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b) The average energy of a conduction electron is determined by 

E= JdNE/JdN (167.8) 

or, according to (167.4), 

{ I { E= JdEVJiE JdEVJi=H. 
o 0 

(167.9) 

c) Pressure may always be defined, without using any thermody­
namics, by the work of compression if a volume V is diminished by dV: 

dW=pdV. 

This work is used to increase the total energy content U of the gas 
by dU, 

dW=dU. 

This total energy (at T= 0) is 

U=NE=!N,. (167.10) 

According to (167.7b), the Fermi energy' depends on % = N/V and 
therefore on V: 

Uoc v-t; dU 2 dV 

U 3 V 

Thus we find for the pressure, 

dU 2 U 2 
p= --= - -=-%C 

dV 3 V 5 
(167.11) 

With the numerical values of % and , determined above, this leads 
to a pressure of 

p = 2.06 X 1011 dyn/cm2 

or about 200,000 atmospheres. This immense pressure is counterbal­
anced by the strong Coulomb attraction between the conduction 
electrons and the lattice ions. 

Problem 168. Paramagnetic susceptibility of a metal 

To determine the paramagnetic susceptibility of a metal, for zero 
temperature, by treating the conduction electrons as a Fermi gas, 
neglecting the polarizability of the lattice ions. 
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Solution. According to the preceding problem the conduction 
electrons form a Fermi gas whose energy limit (the Fermi energy) is 

h2 

( = -(3n2 K)i, 
2m 

(168.1) 

with K the number of conduction electrons per unit volume. The 
energy difference, L1 E, between two consecutive electron levels follows 
from 

(168.2) 

In the vicinity of the Fermi energy this yields (writing L1 Eo oc C t = (/(f 
and putting (168.1) for (t), 

4 ( 
L1Eo = - --. 

3 KV 
(168.3) 

All levels E < ( are occupied by pairs of electrons of opposite spin 
directions, all levels E > ( are unoccupied, at zero temperature. 

If now a magnetic field is applied to the metal, energy can be gained 
by separating pairs of electrons and directing the spins of each pair 
so that both are parallel to the field strength .Ye. If v pairs are separated, 
the energy gain apparently becomes 

eh 
2v' J-l.Ye with J-l = --. 

2mc 

E E 

t.l1Eo-

1-

without field with field 

(168.4) 

Fig. 66. Spin-flip near Fermi energy under action of a magnetic field 

Such a separation is, of course, possible only by raising one electron 
of the pair to an unoccupied level beyond E = (. This means, however, 
an expenditure of kinetic energy counteracting the gain (168.4). Fig. 66 
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shows that the amount of energy expended in separating the first pair 
(by transferring an electron from the uppermost occupied to the lowest 
unoccupied level) is .1 Eo, for the second pair it is 3.1 Eo, for the third 
pair 5L1Eo, etc. In general, the separation of v pairs requires an ex­
penditure of 

[1 +3+5+ ... +(2v-1)JL1Eo = v2 L1Eo. (168.5) 

Equilibrium will be reached if the total energy change W of the gas 
affected by the magnetic field, 

is a minimum: 

i.e. for 

with 

dW 
-= -2/1Yl'+2vL1Eo=0, 
dv 

(/1Yl')2 
Wmin= ---. 

L1Eo 

(168.6) 

(168.7) 

(168.8) 

If more pairs were separated, the total energy of the gas would increase 
again. In equilibrium, the total magnetic moment of the metal becomes 

2/12Yl' 
vII=2v'/1 =-­

L1Eo 

and, by definition, its paramagnetic susceptibility per unit volume, 

vii 2/12 

X = Yl'V = V .1 Eo ' 

according to (168.3) and (168.1), 

e2 (3%)t 
X = 4nmc2 --;-

To evaluate this expression numerically we may write 
zp 

%=--, 
mHA 

(168.9) 

(168.10) 

expressing the electron density by the mass density p of the metal, the 
mass of one of its atoms mHA (with A the atomic weight) and its va­
lence z. Then we find, 

zp 3 
( )

.1. 

Xpara = 1.86 x 10- 6 A (168.11) 
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To compare this result with experimental values, the diamagnetic 
susceptibility of the lattice ions has to be subtracted. 

NB. In problem 160 we have calculated the diamagnetic susceptibility of neon 
which must be practically identical with that of Na +. It turned out to be 

Xdi.= -5.61 x 1O- 6 cm3/mole 

which, with a density of sodium metal of about 1 gm/cm3 = -b mole/cm3 is the 
same as 

Xdi. = -0.25 X 10- 6 

in the dimensionless scale used in the present problem. From (168.11), on the 
other hand, we obtain the electron contribution 

Xpara = +0.66 X 10- 6 • 

The expressions are of the same order of magnitude so that in some metals (e.g. 
in caesium) even a resultant diamagnetism is observed. 

Literature. Frenkel, J.: Z. Physik 49, 31 (1928). 

Problem 169. Field emission, uncorrected for image force 

To determine the electron current emitted from a metallic surface 
under the action of a high electric field strength C. The temperature 
can be supposed to be low; image force and lattice structure shall be 
neglected. 

Solution. Let z=O be the metallic surface. The interior (z<O) may 
have constant potential energy, V = 0, whereas the exterior (z>O) has 
potential Yo' Inside the metal the conduction electrons form the ground 
state of a Fermi gas, occupying all levels up to the Fermi energy (. 
Outside, there holds the potential 

V(z) = Vo-eCz. (169.1) 

As shown in Fig. 67 a potential barrier is formed beyond the surface. 
Let Ez be the part of the electron energy corresponding to its velocity 

V=Va 
~------~-------z 

--V=o 

Fig. 67. Field emission of electrons from a metal surface. Left-hand side: densely 
lying electron levels inside the metal up to the Fermi energy (. Right-hand side: 

Potential outside the metal under action of an electrical field 
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component in z direction; then the potential barrier has a transmission 
coefficient T, to be calculated in WKB approximation, 

(169.2) 

rapidly decreasing with decreasing E z . Here, V(z) is the expression 
(169.1) and 

Vo-Ez 
zo =---. 

etff 
(169.3) 

The integration in (169.2), performed in an elementary way, yields 

The electric current density (per cm2) is 

j=eJdnvz T 

(169.4) 

(169.5) 

with dn the number of conduction electrons per cm3 and per momentum 
space element dPxdpydpz. For the Fermi gas, there is 

d dPxdpydpz 
n=2 (h=2nh) 

h3 

inside the Fermi sphere, i. e. for 

(169.6) 

and, outside it, dn=O. With cylindrical coordinates p, <P,Pz in momen­
tum space according to 

px=pcos<p, py=psin<p, p2+p;:::;,2mC 

the integral (169.5) then may be written 

V1'in( V2m,-p; 

j = !: 2n f dpz f dp p(pz/m) T, 

o 0 

the integration being extended over all electrons with vz > O. If we use 
the auxiliary variable 

(169.7) 
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the integral simplifies to 

with 

~ 

4nem f j = J;3 des T(e) 

o 

(169.8) 

(169.9) 

To evaluate the integral (169.8) we use the fact that, starting from 
e = 0 (maximum energy Ez = '), the transmission coefficient T(e) de­
creases rapidly with increasing e. Therefore, mainly the electrons with 
small values of e contribute to the integral (169.8) and we may expand 

(vo-' +e)f = (Vo-,)f +!e(Vo-O~ + ... 

With the abbreviation 

(169.10) 

we then obtain 

and 

Again, the integrand falls off rapidly with increasing e so that we may 
extend the integration to infinity, without noticeable error, and finally 
arrive at 

(169.11) 

Numerical values. According to Eqs. (169.10) and (169.11) the electric 
current falls rapidly off with decreasing field strength iff, and with in­
creasing work function Vo - ,. If we measure the field strength in 
volts/em, the work function in eV and the current density in amp/cm2 , 

then we get the following numerical relations: 

q= 1.047 x 108 (Vo-Of/iff; I 
·-159 1010 (Vo-02 -tq J-. x 2 e . 

q 

(169.12) 
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For q of the order 1, a current density of the order 1010 amp/cm2 might 
be expected, i.e. almost every electron hitting the surface would leave 
the metal. Of course, model and approximations are equally untenable 
under these extreme conditions. For larger values of q the current 
rapidly falls off. Thus it may not be unreasonable to ask at which field 
strength we may expect a current density of 1 amp/cm2, with different 
values of the work function. One finds the following pairs of values: 

tC=106 volt/cm and Vo-,=0.083eV 
107 0.43 
108 2.19 

As Vo-' is always of the order of several eV's in metals, one should 
not observe any appreciable field emission below 108 volts/cm. In fact, 
experiment shows a threshold field strength of only about 106 volts/cm. 
This wide discrepancy can certainly not be explained by temperature 
excitation of the Fermi gas, which would only help to lower the work 
function by an amount between /0 and Tk e V (k T ~ lo e V at normal 
temperatures). It can, however, be explained by taking account of the 
image force, as is shown in the next problem. 

Problem 170. Field emission, corrected for image force 

The potential threshold for field emission of electrons from a metal 
surface is essentially lowered by the image force. Its effect upon the 
electron current emitted shall be investigated. 

Solution. The image force is originated by the distortion of the 
surface charge in the neighbourhood of any electron at a distance z> 0 
outside the metal. It can be calculated from classical electrostatics, 
neglecting effects of the metal structure if z is appreciably larger than 
the lattice constant, so that the metal may be treated as a continuum. 
It then turns out to be 

e2 

Vimage= --. 
4z 

(170.1) 

For smaller values of z the expression is rather bad, as is seen by its 
unphysical singularity at z=O. This error, however, does not affect the 
following considerations which depend entirely upon the height and 
breadth of the potential wall above electron energy. 

This potential wall then becomes 

e2 

V(z} = Vo - - - etCz 
4z 

(170.2) 
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with the notations of the preceding problem (Fig. 68). Weare interested 
in that part of it that extends between Zl and Z2' the two solutions of 
the quadratic equation V(z)=Ez • This yields 

(170.3) 

Both solutions are real if 

(VO-Ez)2 
etff< --- , 

e 

~-----------z 

====V=Q 

Fig. 68. Same as Fig. 67 but corrected for image force 

a condition which is satisfied even for field strengths of about 109 volts/em; 
for higher values the threshold would be submerged under the Fermi 
level of the electron sea. For the field strengths used in experiments, 
which are even beiow 107 volts/em, we may safely assume 

( VO-E)2 
e tff 4, --e-z 

and accordingly expand the radical in (170.3). The results are 

with 
Vo-Ez 

zo=---
etff 

(170.4) 

(170.5) 

(170.6) 

and zl4,z2. The summit of the barrier, according Vo Eg. (170.2), is now, 
due to the image force, shifted from z=O to Z= e/4tff and instead of 
Vo its height is only 
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According to (170.4) this does not involve much lowering of the thresh­
old but rather a flattening of the summit, so that we may expect a much 
larger transmission coefficient. Only the neighbourhood of Ez =, will 
contribute appreciably to the emission current (as in the preceding 
problem); for this energy Z1 = eZ I[ 4(Vo - m is at least of the order of 
the lattice constant, so that the singularity of the image force potential 
at z = 0 will become a matter of indifference. 

Again using the WKB approximation, we find the transmission 
coefficient 

T~exp{-2 v:' f.dZVV(Zl-Eo} 

or, writing V(z) in the form 

we have 

etff 
V(z) = - (z - z 1)(ZZ - z), 

Z 

z2 

- h 10gT= fdZ 
2V2metff z, 

(170.7) 

This integral is of elliptic type and may be reduced to standard 
integrals as follows: use, instead of z, the variable x=(z-z1)/(zz-z1), 
thus transforming the integral into 

Next put 

and 

Z1 
with c = --. 

Zz -Z1 

Zz -Z1 Z 
--=k 

Zz 

(1- kZ) sinz cp 
x = --..,,------,.-

1-kz sinz cp 

then the right-hand side of (170.7) becomes 

(170.8) 

(170.9) 
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The last integral may be reduced to the two complete elliptic integrals 
E(k) and K(k): 

" "2 

f dcp sin2 cp cos2 cp 1 [2 -k2 ] 
-(-I---k-2 s-in-2-cp-)''-s = -3 k-4 -1 _-k-2 E(k) - 2 K (k) . 

o 

(170.10) 

Eq. (170.10) may be proved as follows. Putting l-k2sin2cp=Ll2, the 
two complete integrals in standard form are defined by 

" " "2 "2 

K(k) = f d;; E(k) = f dcpLl. 

o o 

Now, there can be proved the following identity by simple differentiation, 

d { (1 2-e)} + - sin cp cos cp 3 - 2 . 
dcp LI (1-k )LI 

Integration of this identity yields directly 

" 2 
2 f sin2 cp cos2 cp 2 - k2 2 

3k dcp LIS =k2(I_k2)E(k)-k2K(k), 
o 

in agreement with (170.10). 
Eqs. (170.7) and (170.10) may then be unified into 

h 2 3 

---logT= -zH(2-k2)E(k)-2(I-e)K(k)]. (170.11) 
2V2metff 3 

This formula may be brought into a much simpler shape. Remembering 
that z 1 ~ Z2 so that k2 '::::.1, we may replace k2 by the parameter 

(170.12) 

and expand (170.11) into an extremely well converging series in this 
parameter6 according to 

K(k)=A+!(A-l)k,2 + ... ; E(k) = 1 +t(A-t)k'2+ ... 

6 Cf. Jahnke-Emde, 2nd edition (1933), p. 145. 
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with A=log(4/k'). If these expansions are put into (170.11), the right­
hand side becomes 

~ zt [1 + k'2 (~ - ~ log ~)J = ~ zt [1 - ~ k'2 (!.. + log ~)J . 
3 2 42 k' 3 0 2 2 k' 

Were k' = 0, we would fall back on the expression (170.9) for T without 
image force. Let us denote this by To; then the result is 

(170.13) 

with 

3 2 (1 4) A = - k' - + log - . 
2 2 k' 

(170.14) 

It remains to evaluate the current integral (169.8) with the new ex­
pression for T. Again, as in the preceding problem, it is essentially the 
vicinity of Ez =( that contributes to the current, so that we may expand 
A at Ez = ( or 8 = 0 and confine ourselves to the linear term in 8. This 
is practically the same as putting 

e3 1ff 
k'2:::::.(Z /z ) = (17015) 1 0 Ez ={ 4(Vo _ ()2 . 

and then performing the integration as in Problem 169. Instead of 
(169.11), which we will denote by jo, we then find 

j=joet;'q (170.16) 

with A ~ 1; the next better approximation would add a factor 

in the denominator. The essential thing, of course, is the exponential 
in (170.16). 

Let us finally discuss a few numerical consequences. Besides the 
relations (169.12) we now get 

k'2 = 3.58 x 1O- s lff/(Vo-()2 

in the same units of volts/em for Iff and eV's for Vo-(. With a rea­
sonable value of the work function, Vo - ( = 3 e V, and a field strength 
Iff = 107 volts/em, we then arrive at 

q=54.5, k'2=0.0397, A=0.208, et ;'q=1860, 

jo = 0.9 x 10- 8 amp/cm2 , 

j= 1.7 x 10- 5 amp/cm2 . 
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Problem 171. White dwarf 

Let the temperature of a white dwarf be high enough to ionize its atoms 
practically completely, and low enough to neglect gas pressure and 
radiation pressure compared to zero-point pressure of the degenerate 
electron gas. (The latter assumption is rather bad.) The distribution of 
density through the star shall be calculated for a given total mass of 
the star, from the equilibrium of zero-point pressure and gravitational 
pressure. 

Solution. In a spherical mass of gas the radial pressure gradient 
must be in equilibrium with the gravitational force density (barometric 
formula): 

dp 

dr 

GMr 
--2- P· 

r 
(171.1) 

Here G is the gravitational constant, Mr the mass inside a sphere of 
radius r, 

M r =4n J dr' r'2 p(r') , 
o 

(171.2) 

and p(r) is the mass density, i.e. the mass of all ions and free electrons 
inside 1 cm3 of star matter. For complete ionization with % electrons 
per c.c., there are %IZ ions (nuclei) so that 

% 
p=Z-mHA, 

with mHA the mass of one neutral atom. If there are different elements, 
A and Z represent average values. It should be noted, however, that the 
ratio 

A 
- = 21X 
Z 

(171.3) 

is almost independent of the chemical composition, IX varying from 1.0 
to 1.3 from light to heavy elements with the one exception of hydrogen 
where a=!. Therefore, 

p=2amH%, (171.4) 

depends essentially only upon the density of electrons. 
The pressure of the electron gas is, according to Problem 167, its 

zero-point pressure, 

2 h2 2 1-
Pe = -%-(3n %)3. 

5 2m 
(171.5) 
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The zero-point pressure of the ions, Pi' according to the proportionality 
with %t /m, would be much smaller: 

ssm 
pdpe=CK;/%)'m/mi= Z-' --. 

mHA 

Even in hydrogen (Z= 1, A= 1), we would have pdPe= 1/1838, the 
ratio being much smaller for all other elements. We shall, therefore, 
neglect Pi and identify Pe' Eq. (171.5), with the total pressure, p. 

It is not quite so easy to dispense with temperature effects. Only if '~kT 
can we assume the gas to be extremely degenerate so that its pressure is mainly 
zero-point pressure. For the electrons, the Fermi energy is 

h2 (3n2 p)t (p)t ,=- -- =1.64eV - . 
2m 2~mH ~ 

This is to be compared with kT"",l00eV at 106 degrees. Even with p=103, both 
quantities would be of the same order of magnitude. The ion gas would not at all 
be degenerate, then, and contribute in the same order, too.-The radiation pres­
sure is 

PR = 2.52 X 10- 15 T4 dyn/cm2, 

whereas from (171.5) and (171.4) there follows 

Pe= 3.16 x 1012(pM~ dyn/cm2. 

With T= 106 degrees, therefore, the radiation pressure is of the order of 109 dyn/cm2 
which may, indeed, be neglected under the density conditions of a white dwarf. 

From (171.5) and (171.4) we get the equation of state, 

5 h2 (3n2)f 5 
p=fp'; f= - - (amH)-' 

10m 2 

= 3.17 x 1012a-fgm-fcm4sec-2. 

Any connection between pressure and density of the form 

1+1. 
p=fp n 

(171.6) 

is called a poly trope of index n. The white dwarf, therefore, is built 
according to a poly trope of index n=l 

Putting (171.6) in the equilibrium condition (171.1) we get 

or, by differentiation, 

5 2 dp Gp 
-fp'-= --M 
3 dr r2 r 

5 f d (2 _1. dP) 2 
3 G dr r p 3 dr = - 4 n r p. (171.7) 
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Using, instead of p, the dimensionless function 

<p=(p/Po)t 
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(171.8) 

with a constant Po and, instead of the radius r, the dimensionless variable 

x=r/r1 

choosing the unit of length, r 1, according to 

2 5 f _L 

r1 =8nG Po3 , 

the differential equation (171.7) is reshaped into 

J2<p 2 d<p 2 
_+ __ +<p3=0, 
dx2 X dx 

(171.9) 

(171.10) 

(171.11) 

independent of all physical constants. If we choose Po to be the density 
at the centre of the star, we have to solve Eq. (171.11) with the boundary 
conditions 

<p(0) = 1; <p'(O)=O. (171.12) 

The solution of the non-linear equation (171.11) with boundary 
conditions (171.12) is uniquely to be obtained by numerical integration. 
This solution decreases monotonously, reaching <p = 0 at 

x=X=3.6537 (171.13 a) 

where its derivative is 

( d<P) =-D=-0.206. 
dx x=x 

(171.13 b) 

According to (171.8) this zero of <p corresponds to the surface of the 
star, say, r=R. The total mass of the star therefore becomes 

R X 

M =4n S drr2 p(r) = 4npori S dxx2 <pi. 
o 0 

This integral can be evaluated without detailed numerical knowledge 
of the function <p(x) by replacing its integrand according to (171.11): 

2 ~ d ( 2 d<P) 
X <p3 = - dx x dx . 

The result is 

M = 4n Po ri X 2 D = 34.5 Po ri . (171.14) 
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If the mass of the star is known by observation, there exist two 
relations between Po and r 1 , viz. Eqs. (171.10) and (171.14): . 

Pod=b 

. h 5f 18 _.>. .!. } w~t a = 8nG = 9.46 x 10 a 'gm' cm, (171.15) 

wIth b = 0.0290 M . 

This leads to 

and for the radius R of the star to 

R=r1 X =3.6537r1 • 

Finally, the average density is 

3D 
P = -Po=0.169po, 

X 

i.e. about i of the central density. 

(171.16) 

(171.17) 

(171.18) 

Numerical example. The companion of Sirius (a Can maj), Sirius B, 
has a mass determined from the motions of Sirius about the centre-of­
mass of this binary system. It is about the same as the mass of the sun, 
VIZ. M = 1.94 X 1033 gm. This leads to the following numerical values: 

r1 = 2.47 x 108 a-i cm; 
R = 8.98 x 108 a-j- cm; 

Po = 3.73 X 106 a5 gmcm- 3 ; 

p = 6.15 X 105 a 5 gm cm- 3 . 

Since observations lead to a radius about 10 of that of the sun, 
Ro=6.95 x 1010 cm, our model leads to a=0.445. This is not very far 
from a=O.5 for a hydrogen star, but on the wrong side. Our radius, 
however, is certainly too small. The neglect of a rather important part 
of the pressure accounts for that: the star will be inflated to a larger 
radius if temperature effects are accounted for. 

Problem 172. Thomas-Fermi approximation 

To calculate the electron density of an atom or a positive ion. To obtain 
a suitable approximation, it shall be supposed that regions within 
which the electrostatic potential varies but little contain enough electrons 
to justify treating them statistically. 
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Solution. There are two basic ideas underlying the model, one 
electrostatic and the other quantum statistical. Let us start with the 
electrostatic side of the problem. If nCr) electrons are contained in a 
unit volume at a distance r from the atomic nucleus, the electrostatic 
potential originated by both nucleus and electrons satisfies the Poisson 
equation, the first fundamental equation of our problem: 

';;PiP = 4ne·n(r) (172.1) 

with p(r) = -en(r) the charge density of the electron cloud. The solu­
tion of this equation is subject to the boundary conditions 

Ze 
iP = - for r--+O 

r 

in the vicinity of the nuclear charge Z e, and 

ze 
iP = - for r~R 

r -

(172.2) 

(172.3) 

if R is the radius of the positive ion of charge ze. This radius has still 
to be determined. 

There can be no singularity of charge density at r=R, so that not 
only the potential but the field strength as well must be continuous 
there. This, instead of (172.3), permits the boundary condition to be 
written in the form 

ze (diP) ze iP(R) = - and - = --. 
R dr R R2 

(172.4) 

We now come to the second principle underlying the calculation, 
viz. the quantum statistical part of the problem. Considering any vol­
ume element inside the atom or ion, we find that the momentum P of 
an electron found there will be connected with its energy by the relation 

p2 
E = - - eiP(r). 

2m 

In order to bind the electron, this energy must apparently be smaller 
inside the atom than the potential energy -eiP(R) at its surface. Hence, 
at a distance r from the nucleus, no electron can have a momentum 
larger than Pmax given by 

2 

Pmax = e[iP(r)-iP(R)J. 
2m 

(172.5) 
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Quantum statistics now couples Pmax with the electron density n(r) by 
the relation (cf. Problem 167) 

4n 3 3 
n=2 . 3 Pmax /(2nh) . (172.6) 

By comparing (172.5) and (172.6), we then arrive at the other fundamen­
tal equation 

1 3 

n(r) = 3n2 h3 {2me[<P(r)-<P(R)]}>. (172.7) 

From Eqs. (172.1) and (172.7), the two functions n(r) and <P(r) may, 
in principle, both be determined. Elimination of n(r) and use of the 
central symmetry of the system lead to 

1 d?- 4e 3 

V2 <p == - -2 (r<P) = --3 {2me[<P(r)-<P(R)]}>. 
r dr 3nh 

Using instead of <P(r) the dimensionless function 

r 
<p(r) = - [<P(r) - <P(R)] , 

Ze 

and instead of r the dimensionless variable 

( 9n2)t h2 1 h2 

x=r/a with a= -- -- = 0.88534Z-'-
128Z me2 me2 

we obtain the universal differential equation 

d?- <p <pf 

dx2 = Vx' 
the boundary conditions (172.2) and (172.4) passing over into 

<p(0) = 1 
and with X =R/a, 

z 
<p(X) = 0; X <p'(X) = --. 

Z 

(172.8) 

(172.9) 

(172.10) 

(172.11) 

(172.12) 

It should be noted that with these boundary conditions all Z - z electrons 
are indeed enclosed within the sphere of radius R. This can easily be shown by 
first deriving from (172.7) and (172.9), 

R x 3 

4n J n(r)r2 dr = Z J dxVxcp(X)2, 
o 0 
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and then using the differential equation (172.10) to replace ({Jt by ({J": 
x 

= ZJ dxxq/' = Z[xq/ -({J]~ = Z{({J(O) + X ({J'(X)} 
o 

or with the boundary conditions (172.11) and (172.12), 

= z( 1 - ~ ) = Z - z 

which is indeed the number of electrons. 
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The problem is thus reduced to the integration of (172.10) with the 
boundary conditions (172.11) and (172.12). To obtain a general survey 
of the diversity of solutions, the differential equation may be integrated 
with </J(O) = 1 and different initial tangent inclinations </J'(O)<O. In 
Fig. 69 four such solutions have been drawn. The lines (1) and (2) lead 
to finite radii Xl' X2 • Since </J'(X)<O for these solutions, according 
to Eq. (172.12), they belong to positive ions. For a neutral atom, (172.12) 
gives </J'(X) = 0, which is impossible for a finite X, thus leading to line 
(3) of Fig. 69 with an infinitely large atomic radius. Solutions of type (4) 

L---~ __ ~ _________ X 

Fig. 69. Solutions of Thomas-Fermi equation (172.10) with different initial tangents 

have no direct physical significance for free atoms or ions but may 
well serve for the description of atoms bound in a crystal lattice under 
changed boundary conditions. 

Our main interest will be concentrated on line (3) of neutral atoms. 
We shall call this the standard solution </Jo(x). It is numerically given in 
the accompanying table. It belongs to the initial tangent inclination 
</J~(O)= -1.58807. Its asymptotic behaviour is given by </Jo(x)--d44/X3 
(which, by the way, exactly satisfies the differential equation but has a 
singularity at x=O); for practical purposes, however, this expression 
is rather useless since, even at so large a value as X= 100, is still differs 
about 40% from </Jo(x). On the other hand, </Jo should show a much steeper 
decrease at large x, something certainly of an exponential type. The 
error of the Thomas-Fermi approximation, as of any statistical model, 
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rapidly increases with small particle numbers, and since the latter 
decrease below every limit at large distances the method cannot be 
expected to hold there any longer, whatever good results it may give 
for the inner parts of the atom. 

To obtain other solutions, not too far removed from the standard 
one, we write 

<p(x) = <Po (x) + k 110(X) (172.13) 

and linearize in the small deviation k110. From (172.10) we then find 

Jl110 = ~ (<po)t 110. 
dx2 2 x 

(172.14) 

In order to satisfy the boundary condition (172.11), we have 110(0)=0. 
We further standardize 110 -by choosing 11~(0)= 1, satisfying the bound­
ary conditions (172.12) by a suitable choice of the parameter k to be 
gathered from anyone of the following relations: 

k= _ <Po(x); 
110(X) 

k= - l1~~X) (z~ + <P~(X)); 
k = <p' (0) - <p~(0). 

(172.15 a) 

(172.15 b) 

(172.15c) 

Eq. (172.15 a) permits a simple relation to be found between k and the 
ionic radius X. The function 110(X) and its derivative l1~(X) are shown 
on the table. 

x IPo(x) -IPo(x) '10 (x) '10 (x) 

0.00 1.0000 1.5881 0.0000 1.0000 
0.02 0.9720 1.3093 0.0200 1.0028 
0.04 0.9470 1.1991 0.0401 1.0079 
0.06 0.9238 1.1177 0.0604 1.0144 
0.08 0.9022 1.0516 0.0807 1.0220 
0.10 0.8817 0.9954 0.1012 1.0306 

0.2 0.7931 0.7942 0.2069 1.0846 
0.3 0.7206 0.6618 0.3186 1.1528 
0.4 0.6595 0.5646 0.4378 1.2321 
0.5 0.6070 0.4894 0.5654 1.3210 
0.6 0.5612 0.4292 0.7023 1.4187 
0.7 0.5208 0.3798 0.8494 1.5246 
0.8 0.4849 0.3386 1.0075 1.6384 
0.9 0.4529 0.3038 1.1773 1.7599 
1.0 0.4240 0.2740 1.3597 1.8890 
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x tpo(x) - tp~(x) '1o(x) '1~(x) 

1.2 0.3742 0.2259 1.7650 2.1696 
1.4 0.3329 0.1890 2.2296 2.4805 
1.6 0.2981 0.1601 2.7593 2.8222 
1.8 0.2685 0.1370 3.3605 3.1954 
2.0 0.2430 0.1182 4.0396 3.6012 
2.2 0.2210 0.1028 4.8032 4.0406 
2.4 0.2017 0.0900 5.6582 4.5149 
2.6 0.1848 0.0793 6.6116 5.0253 
2.8 0.1699 0.0702 7.6708 5.5730 
3.0 0.1566 0.0625 8.8434 6.1594 
3.2 0.1448 0.0558 10.137 6.7858 
3.4 0.1343 0.0501 11.561 7.4538 
3.6 0.1247 0.0451 13.122 8.1646 
3.8 0.1162 0.0408 14.829 8.9198 
4.0 0.1084 0.0369 16.693 9.7208 
4.5 0.0919 0.0293 22.09 11.93 
5.0 0.0788 0.0236 28.68 14.47 
5.5 0.0682 0.0192 36.62 17.34 
6.0 0.0594 0.0159 46.08 20.59 
6.5 0.0522 0.0132 57.27 24.23 
7.0 0.0461 0.0111 70.39 28.30 
7.5 0.0410 0.0095 85.64 32.81 
8.0 0.0366 0.0081 103.27 37.80 
8.5 0.0328 0.0070 123.52 43.29 
9.0 0.0296 0.0060 146.66 49.32 
9.5 0.0268 0.0053 172.94 55.92 

10.0 0.0243 0.0046 202.67 63.11 

Problem 173. Amaldi correction for a neutral atom 

In the Poisson equation underlying the Thomas-Fermi model, it would 
be more correct to introduce the charge density of all but one of the 
electrons on the right-hand side, because the equation serves to determine 
the potential field in which one of the electrons moves. This correction 
leads to an alteration of the Thomas-Fermi model to be investigated 
for a neutral atom. 

Solution. Instead of (172.1) we now write 

Z-l 
V2 «P=4ne' --n(r) 

Z 
(173.1) 

where «P is the potential field originated by Z -1 electrons, acting on 
the Z'th one. This simple correction makes no difference as to which 
of the electrons is to be taken to be the probe, a neglect corresponding 
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to a nicety to the statistical picture. The boundary condition for small r 
is determined by the nucleus and therefore remains unchanged: 

Ze 
<P(r) = - for r -4 0, (173.2) 

r 

whereas at the atomic surface we now have 

e (d<P) <P(R) = -; --
R dr R-

(173.3) 

for a neutral atom, because there remains a surplus charge e of the 
nucleus not screened away by the other Z -1 electrons, thus still 
acting on the one considered. 

The other fundamental equation originating from quantum sta­
tistics remains unaltered, so that we still have 

1 3 

n(r) = 3rc2 h3 {2me[<P(r)-<P(R)]}2. (173.4) 

Eliminating n(r) from (173.1) and (173.4) and using again 
r 

cp = Ze [<P(r)-<P(R)], (173.5) 

the same universal differential equation 
3 

cp2 
(173.6) 

will be obtained if only tl]e variable x = ria is now defined by 

( 1)-t a=a 1 - Z (173.7) 

with a the characteristic length of Eq. (172.9). 
Since a> a this at first sight gives the impression that the atom 

has been made larger by the correction, in contrast to the physical 
meaning of the correction in the Poisson equation that lowers the 
electron-electron repulsive interaction, thus leading to a stronger bond 
and smaller atom. This discrepancy is, however, resolved by the altera­
tion in the boundary condition. Eq. (173.3), expressed in terms of the 
function cp(x), makes the boundary conditions of the atomic surface 
become 

1 
cp(X)=O and Xcp'(X)=--. 

Z 
(173.8) 

These conditions can no longer be satisfied except by a finite radius, 
thus more than compensating for the stretching effect of a. 
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Problem 174. Energy of a Thomas-Fermi atom 

The total energy content of a neutral Thomas-Fermi atom shall be 
calculated. A differential equation for the electron density nCr), resp. 
for the electrostatic potential tP(r) is to be derived by a variational 
procedure minimizing the energy. 

Solution. There are three contributions to the total energy of the 
atom, viz. the kinetic energy of the electrons, the potential energy E~~ 
of their interaction with the nucleus of charge Ze, and the potential 
energy E~J of their mutual interaction. 

The kinetic energy follows from the basic considerations of Problem 
167. If nCr) is the density of electrons at some place at a distance r 
from the nucleus, then the average kinetic energy of an electron at 
this place is 

The total kinetic energy of the electrons then becomes 

Ekin = J dr nCr) "B(r) 
or 

The two parts of potential energy follow from electrostatics, 

and 

E(2) = ~ 2 ffd d ' n(r)n(r') 
p~ err . 

2 Ir-r'l 

The total energy, i.e. the sum of (174.2), (174.3), and (174.4), 

(174.1) 

(174.2) 

(174.3) 

(174.4) 

E = fdr{xnt - Ze2 n + ~e2nfdr' n(r'),} == fdrY/ (174.5) 
r 2 Ir-r I 

must be minimized by a suitable choice of nCr) with the constraint 

J drn(r)=Z, (174.6) 

the latter integral being the total number of electrons. This is a varia­
tional problem to be solved by 

c5 Jdr(y/+An)=O (174.7) 
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with a multiplicator A. Putting Eq. (174.5) into (174.7) we find 

I d-rc5n(r) {~xnt - Ze2 + e2 Idr' n(r'), + A} = O. 
3 r Ir-r I 

(174.8) 

Here, in the last term, use has been made of the fact that variation of 
n(r) as well as of n(r') in the double integral twice leads to the same 
result. The extremal value of E will be obtained if the curly bracket in 
(174.8) vanishes. 

Since for an atom n only depends upon r, not upon direction, the 
third term in the curly bracket can by expansion into spherical harmonics 
be written 

CXJ 

I dr' n(r') = 4rn Idr'r'2 n(r')+4n Idr'r'n(r')' 
Ir-r'l 

o r 

The variational result from (174.8) therefore becomes 
CXJ 

5 2 Ze2 4ne2 I I -xn' - - + -- dr'r'2 n(r')+4ne2 dr'r'n(r')+A=O. 
3 r r 

o r 

By differentiation with respect to r, A can be eliminated, 

10 1 dn Ze2 4ne2 I 2 
-Kn-'- + - - -- dr'r' n(r')=O, 
9 dr r2 r2 

o 

the contributions from differentiating the integrals with respect to their 
limits cancelling each other out. Multiplying by r2 and again differen­
tiating removes the integral and leaves us with the differential equation 

(174.9) 

It is advantageous to pass over from n(r) to the electrostatic poten­
tial <1> (r), as introduced in Problem 172, according to 

n = _1_ (2me<1»t 
3n2 h2 

(174.10) 

which satisfies the Poisson equation V2 <1> = 4n e n. With the further 
abbreviation 

(174.11) 
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we then find 

(174.12) 

an equation which, with 

has already been derived in Problem 172. 
The relations (174.10) and (174.11) enable the fractional powers of n 

to be eliminated in the energy expressions (174.2), (174.3), (174.4) by 
putting 

. 1 C 3 

eIther n = - V2 f!> or n = - f!>, . 
4ree 4ree 

(174.13) 

We thus obtain 

3 f 2 Ekin = - d'rf!>V f!>; 
20re 

(174.14a) 

(1) __ zef V2 f!>. 
Epot - d'r, 

4re r 
(174.14b) 

(174.l4c) 

These integrals can be considerably simplified by making use of the 
central symmetry and by introducing instead of f!>(r) the function 

r 
qJ(r) = - f!>(r). 

Ze 
(174.15) 

We then have, 

and from (174.14a), 

(174.16a) 
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In the same way we find from (174.14 b), 

E(~= _ Zefd'C Ze q/'=Z2e2cp'(0). 
p 4n r r 

(174.16b) 

In order to evaluate the integral (174.14 c), we begin with the inner 
integral, 

co 

Then, (174.14c) leads to 
co 

(174.16c) 

It is convenient to use instead of r the dimensionless variable 

r 
X=-; 

a 

defined in Problem 172. Since, for small r or x, we have 

cp(X) = 1- ,ux+ ... , 

we may, in Eqs. (174.16a-c), put 

(174.17) 

-(cpcp')r=O=,u/a; (dCP) =-,u/a; [r(dCP)2J =0 
dr r=O dr r=O 

so that finally there remain the expressions 

3 Z2 e2 
Ekin ="5 -a-(,u-J); 

Z2 e2 
E(1) = - --II' 

pot r" 
a 

(2) _ 1 Z2 e2 
Epot - - --J 

2 a 

(174.18) 
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with 
00 

(174.19) 

Here, the integral J and the derivative Jl are independent of Z since 
they depend only upon properties of the universal function cp(x). Their 
numerical values can be determined from cp(x), Problem 172: 

Jl= -cp'(0)=1,588 J=0,454. (174.20) 

The total energy of the atom, i.e. the sum of the three expressions (174.18), 

Z2 e2 (2 1) Z2 e2 
E= - -a- SJl + 10 J = -0,680-a-, (174.21) 

then becomes proportional to V because a ex z-t. Numerically, 
7 7 

E= -0,7687 VRy= -20,93VeV. (174.22) 

Problem 175. Virial theorem for the Thomas-Fermi atom 

To prove the virial theorem for a neutral Thomas-Fermi atom, follow­
ing the procedure of Problem 151. What relation follows between Jl 
and J of Eq. (174.20) from the virial theorem, and what can be con­
cluded on the ratios of the three parts of energy? 

Solution. By scale transformation we replace n(r) by the set of 
functions 

n",(r)=23 n(2r) 

all satisfying the normalization condition 

jdrn;.(r)=Z. 

The energy expressions (174.2), (174.3), and (174.4) then transform as 

Ekin(2) = 22 Ekin ; 

thus yielding 

E(1)(2)=2E(1) . 
pot pot' 

E(2)(')- 'E(2) 
pot A -/I. pot' 

which leads through JE(2)/J2=0 for A= 1 as in Problem 151 to the 
virial theorem 

2Ekin+Epot=O. (175.1) 
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If the three energy expressions (174.18) are put into this relation, 
we arrive at 

(175.2) 

which is corroborated by the numerical values (174.20). The energy 
expressions (174.18) then may all be written in terms of J only, with 
the result 

and 
Z2 e2 

U=--J. 
a 

The total energy thus becomes the sum 

E=-iu 

(175.3) 

(175.4) 

(175.5) 

which again leads to the numerical results given at the end of the 
preceding problem. A comparison of (175.5) with the kinetic energy 
(175.3) corroborates the virial theorem. 

Problem 176. Tietz approximation of a Thomas-Fermi field 

The function 
1 

<p(x) = (1 + IXX)2 
(176.1) 

with a suitable value of IX, independent of Z, may be used as a fair ap­
proximation to the Thomas-Fermi function <Po(x) for a neutral atom. 
The constant IX shall be determined in such a way as to permit exact 
normalization of <p, and a numerical comparison shall be made of <p 
and <Po. 

Solution. In Problem 172 it has been shown that the electron density 
n(r) and the atomic potential 

Z 
V(r) = - - <Po(r) 

r 

(in atomic units) are coupled by the relation 

1 3 

n(r) = 311:2 (-2 V)2. 

The normalization condition, 

411: J drr2 n(r)=Z, 
o 

(176.2) 

(176.3) 

(176.4) 
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therefore may be written 

4 ,oos I' 
-(2Z)"2 drr"2 qig =Z. 
3n 0 

(176.5) 

This equation is satisfied exactly by the Fermi function CPo (x) with 

x=r/a; a=O.88534Z-t . (176.6) 

We now replace CPo by the approximate function iP, Eq. (176.1), but 
still keep this normalization. Introduction of the integration variable 

()( 

y=()(X = - r then leads to 
a 

00 

80 (a)t f dyVY 3;-VZ; (1+y)3 = l. 
o 

(176.7) 

The integral can be solved by the substitution of u = y2; one easily 
verifies 

in the limits O::;y< 00 therefore, the integral becomes n/8 and Eq. 
(176.7) yields 

(2Z)t ()( = 9 a=O.60570zt a, (176.8) 

or with Eq. (176.6), 

()(=O.53625. (176.9) 

In the accompanying table, the functions CPo and iP have been compared, 
using this value of ()(. 

x rp CfJo rp- CfJo 

0 1 1 0 
0.1 0.9008 0.8817 +0.0191 
0.2 0.8156 0.7931 +0.0225 
0.5 0.6219 0.6070 +0.0149 
1.0 0.4237 0.4240 -0.0003 
2.0 0.2328 0.2430 -0.0102 
5.0 0.0738 0.0788 -0.0050 

10.0 0.0247 0.0243 +0.0004 
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Literature. Tietz, T.: J. Chern. Physics 25, 787 (1956); Z. Naturforsch. 23a, 191 
(1968).-In Tietz's original papers a factor 0.64309 has been used instead of our 
normalizing factor 0.60570 in Eq. (176.8). Tietz's approximation therefore does 
not satisfy normalization. His deviations ip - CPo, however, are somewhat smaller 
in the most significant region 0<x<0.5, but are much bigger for x> 1. 

Problem 177. Variational approximation of Thomas-Fermi field 

To use a set of Tietz functions 
1 

iP(x) = (1 + CU)2 
(177.1) 

as trial functions with the Ritz parameter 0( for the approximate solution 
of a variational problem equivalent to the Thomas-Fermi differential 
equation. 

Solution. The differential equation 

q/' =x-t cpt (177.2) 

may be replaced by the variational problem, to make the integral 
00 

J = J dX(!cp'2 +~x-t cpt) (177.3) 
o 

an extremum with fixed boundary conditions cp(O) = 1 and cp( (0) = O. 
Putting the trial function (177.1) satisfying the boundary conditions in 
the integral (177.3) we have 

00 

J = f dx {(1 ~:2X)6 + ~x-t (1 +~X)5}' 
o 

For the evaluation of the integral we set O(x=t2 in the second term; 
then we may use the formula 

f dt 

(1+t2)5 

1 {t 7 t 35 t 35 t 35 1} 
="8 (1+t2)4 + 6" (1+t2)3 + 24 (1+t2f + 16 1+t2 + 16 tan- t 

which can easily be verified. We find 

J =~(O(+ NsO(-t). (177.4) 

The extremum condition dJ/dO(=O leads to 

( 35 )~ 0(= 256 3 =0.570. (177.5) 
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This value of IX deviates only slightly from IX = 0.536 which is found to 
satisfy the normalization condition 

(177.6) 
o 

of the preceding problem; with the present value of IX it yields 

3 n 32 
IX-'·- =-

8 35' 

i.e. the approximate field minimizing the integral J corresponds to n Z 
electrons instead of to Z in the atom. 

Problem 178. Screening of K electrons 

To determine the screening correction to the binding energy of a K 
electron by using the Tietz approximation to the Thomas-Fermi model. 

Solution. Suppose one of the two K electrons and one unit of the 
nuclear charge to be removed from the atom of charge Z. The result will 
be a neutral atom of charge Z -1. Then, add again the removed nuclear 
charge but neglect its influence upon the Z -1 remaining electrons. 
The result (in atomic units) is a charge distribution with the electrostatic 
potential 

1 Z-1 
<1>(r) = - + -- cp(x) 

r r 

with cp(x) the Thomas-Fermi function to the variable 

x =!:.; a=0.88534(Z-1)-t. 
a 

(178.1) 

(178.2) 

The potential energy of an electron (charge -1) moving in this potential 
would be 

V(r) = -<1>(r); (178.3) 

this therefore is the potential energy field in which the removed K 
electron would move if replaced into the atom. 

Let us now apply perturbation theory. Without screening we should 
have 

Z 
Vo(r) = --; 

r 
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with screening we have 

1 Z-1 Z-1 
V(r)= - - + -- cp(x) = Vo(r) + -- [1-cp(x)]. (178.4) 

r r r 

The eigenvalue Eo and eigenfunction uo(r) of the K electron without 
screening are 

(178.5) 

The first-order energy shift due to screening then becomes 

f Z-1 
LI Es = d7:U~ -r - (1- cp)uo 

or, after inserting uo, 

OCJ 

LlEs=4Z3(Z-1)J drre- 2Zr [1-cp(x)]. (178.6) 
o 

We now are prepared to introduce the Tietz approximation (Prob­
lem 176), 

1X=0.53625 (178.7) 

To evaluate the integral (178.6) we then use the auxiliary variable 

t=P(1 + IX x) (178.8) 
with 

a ~ 
P=2Z- = 3.302Z(Z-1)-3 (178.9) 

IX 

thus obtaining 
OCJ 

f ( p2 P3) LlE=Z(Z-1)ef! dte- t t-P--+-. 
s t t 2 

(178.10) 

f! 

The exponential integral occurring here 

(178.11) 
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is a well-known function whose asymptotic behaviour at large values 
of {J is described by the semiconvergent series 

e- P { I! 2! 3! } 
E1({J) = T 1 -73 + {J2 - {J3 ± ... . (178.12) 

The integral over the last term in (178.10) may be reduced to this 
function, 

(178.13) 

Thus we find 

(178.14) 

or by expansion, according to (178.12), for {J ~ 1, the semiconvergent 
series 

4 ( 9/2 24 150 ) 
LlEs=Z(Z-I)p 1 - P + {J2 - IF ± .... (178.15) 

Turning now to the numerical evaluation of the energy shift LI Es, 
we find {J from (178.9) indeed to be large (cf. table next page) so that 
(178.15) is a reasonable approximation. In the column marked (1- ... ) in 
the table the values of the bracket in (178.15) are reproduced; the series 
converges rapidly. The energy shifts, LIEs, lie between 26% and 12% 
of IEol if Z varies from 20 to 80. They are therefore corrections only 
which, however, are not so very small that a second-order perturbation 
calculation would not change them by several per cent. On the other 
hand, the Thomas-Fermi model used is too rough to make such a 
change in the values physically significant. 

In x-ray spectroscopy it is customary to describe the energy shift by 
a screening constant s defined by 

E= -!Z2+LlEs= -!(Z-S)2; (178.16) 

this definition renders 

S=Z(1 - V1 - ~~i). (178.17) 

The screening constants given in the table are computed according to 
this formula. Since LI Es~i IEol, we may roughly expand the radical 
in (178.17) and write 

LI Es LI Es 
s~Z--=-

21Eol Z' 
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which is about proportional to .zt. If we try a rough formula of this 
type, 

s=O".zt, 

we obtain the following pairs of values: 

Z=20 50 80 
0"= 1.03 1.12 1.15 

z f3 (1-"') LIEs IEol LIE, 
s 

s 
COIT. 

20 24.75 0.847 52.2 200 2.81 
30 32.25 0.880 95.2 450 3.36 
40 38.96 0.897 144.3 800 3.79 - 17.1 3.35 
50 45.12 0.910 198.0 1250 4.13 - 41.7 3.26 
60 50.90 0.921 257.3 1800 4.42 - 86.3 2.94 
70 56.35 0.927 318.6 2450 4.71 -160 2.34 
80 61.56 0.932 384.0 3200 4.96 -273 1.62 

It is, however, useless to go into such detail. One glance at the ex­
perimental values shows that our s values are rather good up to about 
Z = 50 but that, instead of the predicted slow rise of s with increasing Z 
beyond this value, the s values do not exceed a maximum of 3.7 and then, 
first slowly and above Z = 70 rapidly, begin to fall again. Such a dis­
crepancy at high values of Z clearly must be explained as a relativistic 
effect. This is, in essence, if only in a rough way, shown in the last two 
columns of the table. According to relativistic quantum mechanics (cf. 
Problem 203) the unperturbed K electron energy is lowered by the 
amount 

these shifts have to be added to the Ll Es screening shifts before calcu­
lating screening constants as given in the last column. Since 

LlE=LlEs+LlEr 

becomes, for large values of Z, increasingly smaller than the original 
Ll Es' the deviations from the un screened nuclear field, i. e. the corrected 
s values, will also become increasingly smaller. This is corroborated by 
experiment. In a strict sense, of course, relativistic corrections should 
not be applied only to Eo but to Ll Es as well. The results may there­
fore still be a little rough, but scarcely more so than corresponds to the 
general application of the Thomas-Fermi field which neglects all special 
shell structure effects. 



v. Non-Stationary Problems 

Problem 179. Two-level system with time-independent perturbation 

Given an atomic system with only two stationary states II) and 12) 
and energies liw! <liw2' At the time t=O, the system being in its 
ground state, a perturbation W not depending upon time is switched 
on. The probability shall be calculated of finding the system in either 
state at the time t. 

Solution. Let H be the hamiltonian of the unperturbed system with 

(179.1) 

defining its two stationary states. Then, the Schrodinger equation with 
pertur ba tion, 

Ii . 
- -;t/J=(H+ W)t/J, (179.2) 

I 

is to be solved in terms of the stationary functions: 

(179.3) 

It must be possible thus to construct the exact solution, because II) 
and 12) form a complete orthonormal set so that (179.3) is just the 
expansion of t/J with respect to this set with time-dependent coefficients. 
The latter have to be determined with initial conditions 

(179.4) 

If we put (179.3) into (179.2) and multiply! by either (II or (21, we 
find two differential equations of the first order for the coefficients: 

1 "Multiplication" here means the formation of scalar products in Hilbert 
space, i.e. matrix elements between a pair of states. 
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(179.5) 

Let us briefly write 

<Ill Wlv) = WVIl ' 

then, in consequence of the hermiticity of the operator W, the diagonal 
matrix elements W11 and W22 are real, whereas the complex off-diagonal 
elements are conjugate: 

Using the abbreviation 

(179.6) 

so that liwo is the energy difference between the two levels, Eqs. (179.5) 
may be written 

(179.7) 

Apparently it is possible to solve these equations by 

(179.8) 

This can immediately be seen when (179.8) is put into (179.7) leading 
to the linear equations 

(Wll -hw)A+ W21 B=0, 

W12 A+(W22 -hw+liwo)B=O. 

The determinant of these two equations vanishes for the two frequencies 

with 

Further, we obtain 

W11 1 
W"II = h + 2"y±a 

hy = W22 - Wll +liwo, 

ha= V!l+IW1212. 

(179.9) 

(179.10) 

(179.11) 
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Thence, 
c1 (t) = AIe- iWIt + Aue-iWI,t; 

1 . . . 
c2(t) = -- e"oot {(hwI- Wll)AIe-' WIt +(hwu - Wll)Alle-'WI,t}. 

W21 

The initial conditions (179.4) permit evaluation of the constants AI and 
Au. After a straightforward computation, we then arrive at the result: 

(179.12a) 

(179.12b) 

The probability, then, of finding the system in the excited state will be 

2 IWnl2. 2 
Ic2(t)1 =-2-2-sm at 

h a 
or, using (179.10), 

I ( 1
2 41Wnl2 . 2 

c2 t) = 2 2 sm at. 
(hI') +41WnI 

(179.13) 

The probability of finding it in the original ground state again, on 
the other hand, becomes 

IC1 (tW = cos2at + eYa y sin2 a t 

or 

(179.14) 

Note that the sum of (179.13) and (179.14) will be 1. The system is 
oscillating between the two levels with a time period n/a. 

Problem 180. Periodic perturbation of a two-level system 

Given the same two-level system as in the preceding problem. At the 
time t=O, however, let a periodic perturbation Wcoswt be switched 
on (e.g. a light wave) with its frequency w almost corresponding to 
the energy difference h Wo = h( W2 - w1) of the two levels. Again the 
probability of finding the system in either state after switching off the 
perturbation at the time t shall be found. 
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Solution. The Schrodinger equation 
n . 

- ---; t/! = [H + Wcoswt] t/! 
I 

is to be solved by the function 

t/!(t) = c1 (t) e- iW1/ Il) + c2 (t) e- iW2/ 12) 

with the initial condition 

Here, Ii) and 12) are solutions of the stationary state equations 

(180.l) 

(180.2) 

(180.3) 

(180.4) 

and Ii) and 12) may be supposed to be orthonormal. By putting (180.2) 
into (180.l) and by scalar multiplication of the result with either (II 
or (21, we arrive at two differential equations for c1 (t) and C2 (t), viz. 

n . . . 
- ---;l\ e-1W1/=coswt{ (II Wll) c1 e-, w11 + (II W12) c2 e-' W2t }; 

I 

n . . . 
- ---;c2 e-'W2t=coswt{ (21 Wll)c1 e-' W1/ + (21 W12) c2 e-' W2t }. 

I 

Let us here introduce the above abbreviation 

and write 
w-wo=Llw; 

then it is to be supposed that 

Eq. (180.5) thus becomes 

(180.5) 

(180.6) 

(180.7) 

iC1 = 21n {(lIWll)(eiwt+e-iwt)cl +(1IWI2)(ei.1wt+ e-i(w+wo)t)c2 }; 

iC2 = 21n {(21 Wll)(ei(w+wo)1 +e- i.1wI)c1 + (21 WI2)(eiwt +e- iwt)c2 }· 

Here we meet a very pronounced distinction between high-frequency 
terms with frequencies of the orders wand 2w, and low-frequency 
terms with Llw. Averaging over a time interval 2n/w, all high-frequency 
contributions will cancel. So, if we replace C1 and C2 by 

t+< 

Cit) = ~ f dt' cl'(t') with '[=n/w, 
2'[ 
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these averages satisfy the much simpler equations 

(180.8) 

where the slowly varying factors exp(±iLlwt) on the right-hand side 
are treated as constants in averaging. 

The differential equations (180.8) permit exact solution by differ­
entiation of either, and elimination of the other variable and its first 
derivative by using the original equations (180.8). We thus arrive at 

with 

[;1 -iLlwC1 +!.o2C1 =O;} 
[;2 +iLlwC2 +!.o2 C2 =0 

1 1 
.02 = h2 OIWI2><2IWI1> = h21 <2I WI1>12. 

Use of the abbreviation 

(180.9) 

(180.10) 

(180.11) 

leads to the following solutions satisfying the initial conditions (180.3): 

i Lim t { R t R t} 
C1 =e 2 COST + AsinT ; 

_iLl"'t Rt 
C2 =e 2 Bsin-. 

2 

(180.12) 

The remaining two integration constants A and B can be computed 
by putting (180.12) into the first-order equations (180.8). The result is 

Llw 
A=-i-· R' 

. <2IWI1> 
B=-l . 

hR 
(180.13) 

The probability of finding the system, at the time t, in the excited 
state is now 

(180.14) 

and that of finding it in its ground state again is 

Rt (LlW)2 Rt 
IC1 12 =cOS2 - + 2 2 sin2 -

2 .0 +(Llw) 2 
(180.15) 
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According to (180.14), the excitation is a typical resonance process, its 
probability rapidly decreasing with increasing values of ILiml. Needless 
to say, this holds only as long as condition (180.7) remains satisfied. 
The process is periodically repeated with the frequency R determined 
by Eq. (180.11), i.e. mainly by the value of the matrix element, so that 
after a time interval 

2nn 
tn=T' n=I,2,3, ... (180.16) 

the system will be found in the ground state again. If the periodic 
perturbation is performed, e.g. by a light wave switched on at time 
t = 0 and switched off again at t = tno no resultant change will have 
affected the system. 

Application. Let the hamiltonian H describe the Zeeman effect in a one-electron 
S state produced by a magnetic field Jt'o in z direction. Then n (W2 - Wl) is the 
level splitting between the two spin orientations, i.e. Wo =2fl.Yfo/n (with 12) the 
upper, II) the lower state). Let now the perturbation consist of a periodic magnetic 
field, Jt" coswt, so that 

W= -fl(O'·.Yt")coswt, 
en 

fl=-2mc' 

If the field Jt" is parallel to Jt'o, the matrix element <IIWI2) vanishes; the states 
II) and 12) are then independently perturbed and no transitions are induced. 
If, on the other hand, Jt" is chosen perpendicular to Jt'o, say in x direction, the 
diagonal matrix elements of W vanish and we find exactly the case described 
above with 

<IIWI2)=<2IWll)= -fl£"· 

Resonance will occur in this device if W~Wo, as before, and the system will 
alternate between its two magnetic states. This is the simplest case of paramagnetic 
resonance. 

Problem 181. Dirac perturbation method 

Let an atomic system have the non-degenerate stationary states t/lk' 
Let it be in its ground state t/lo at time t=O and then a perturbation 
be switched on (depending upon, or independent of, time) inducing 
transitions to other states t/l" The probability shall be determined of 
finding the system, after switching off the perturbation at time t, in a 
state t/l" supposing the perturbation to be small. 

Solution. Let the unperturbed states satisfy the Schrodinger equation 

Ii . . 
- --;t/lk=Ht/lk with t/lk=lk)e-w'kt ; Ek=limk (181.1) 

I 

and 
(181.2) 
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After switching on the perturbation W, we have the differential equation 

Ii . 
- --;- t/I =(H + W)t/I 

I 

with a wave function t/I which may be expanded into a series 

t/I = '2>k(t)t/lk' 
k 

In consequence of (181.2), it then follows from (181.4) thatl 

L lak(t)1 2 = 1. 
k 

(181.3) 

(181.4) 

(181.5) 

Each lakl 2 then is the probability of finding the system in the state t/lk 
at the time t. 

Introducing the sum (181.4) into the differential equation (181.3) 
we find 

or, forming the scalar product in Hilbert space with <II and making 
use of (181.2), 

al = - ~ Le-i(Wk-a,,)t <II Wlk)ak' 
Ii k 

(181.6) 

In this equation, so far, nothing has yet been neglected. It corresponds 
to the fact that the time rate of any state II) depends upon all states 
of the system combining with II) under the action of the perturbation. 
This, of course, is a consequence of (181.5): If one of the coefficients, 
ai' is changed, the other coefficients are bound to change as well in 
order to keep the sum (181.5) constant. (Cf. Problem 179 for a system 
with two states only.) 

If the perturbation is small, we may in first approximation insert 
on the right-hand side of (181.6) the initial values 

ak(O) = bkO ' (181.7) 

Then, the set of equations (181.6) becomes, for 1"# 0, 

(181.8) 

2 If a continuous part of the spectrum exists besides the discontinuous part, 
it can, by the use of a periodicity volume, be transformed into a formally dis­
continuous spectrum and thus be included into the sums (181.4) and (181.5) 
without further mathematical difficulties. 
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(This is a much more specialized behaviour than that of Problem 179, 
because it neglects backward transitions from II) to 10) and the like.) 
Integration of (181.8) yields 

az(t) = - * f dt<1I WIO) e-i(roo-wllt. (181.9) 

o 

The integral, of course, depends very much on how the perturbation 
W, and thus its matrix element, depend upon time. 

Our approximation is valid only if 

1</1 WIO)I t/h~ 1, (181.10) 

so that the coefficient az(t) remains small throughout. Since it follows 
from (181.10) that 

and the excitation energy in the numerator is usually much larger than 
the matrix element in the denominator, the exponent in (181.8) or 
(181.9) may still be quite large so that there occur periodic oscillations 
of az(t) which do not quite agree with the basic idea underlying our 
first-order perturbation approximation. However, in the following 
problems we shall show how to eliminate this difficulty. 

Problem 182. Periodic perturbation: Resonance 

Let the atomic system of the preceding problem be perturbed by a 
periodic field 

(182.1) 

Discuss resonance absorption and the effect of a finite frequency width 
of the irradiated field upon the transitions. 

Solution. If (182.1) is put into the general first-order perturbation 
formula (182.9) and the integration is performed, we get 

az(t) = _ ~ {</liFIO) e:(W'-WO-W)t -1 + </ltrtIO) e:(W,-wo+wJt -I}. 
h l~-~-~ l~-~+~ 

(182.2) 
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The excitation energy, Eex = h(wl - wo) being positive, the first term 
has resonance if hw=Eex whereas the second term never shows re­
sonance. Thus, if Bohr's frequency condition 

W=WI-WO (182.3) 

holds, the system can absorb energy from the alternating field applied: 

2 41</111"'10>12 sin2 !(wl-WO-W)t 
lal(t)1 = h2 • ( )2' (182.4) 

Wl-WO-W 

-2n -n o 
x-

Fig. 70. The naturalline shape sin2 x/x2 

This formula should still be corrected for the finite frequency width 
of the irradiated field. Let pew) dw be its intensity between wand 
w+dw, then we have 

or, with 

lal(tW =JdW p(w)·41</11IIIO>12 sin:!(wl-wo-~t 
h (Wl-WO-W) 

as integration variable, 

J I 111 \2 sin2x 
lal(tW =2t dxp(wl-wo+2x/t) <II h 10> . ~. 

(182.5) 

Here, the last factor, sin2 x/x2, has a pronounced maximum at x=O 
whence it decreases rapidly on both sides (Fig. 70) so that Ixl < n brings 
the main contribution to the integral 

J sin2x 
dx--=n. 

x2 
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Within this range of x values we have 12x/tl <2n/t or, since condition 
(181.10) of the preceding problem must hold, i.e. since 

Ii 
1<111f'"IO) I ~ -, 

t 

and since this matrix element will usually be very small compared 
with the excitation energy, we find that the argument of p may be 
replaced simply by W/-Wo. A similar argument obtains for the matrix 
element which too may be treated as a constant, independent of x, 
so that we arrive at 

la,(t)1 2 = 2ntl<Zl:- 10) r p(w/-wo)· (182.6) 

The probability of finding the system in any state II) thus increases in 
proportion to the time. Therefore we may reasonably define a transition 
probability 

1 2 Pt = -la,(t)1 
t 

(182.7) 

independent of time which becomes 

Pt=2nl<1I:- 10) 1
2p(w/-wo). (182.8) 

NB. The last result shows a close similarity to the Golden Rule to be discussed 
in Problem 183. It should, however, be borne in mind that the Golden Rule de­
scribes summation over close-lying final states, whereas we have introduced a 
summation over a continuum of initial field properties. It has not been shown 
here that this summation must necessarily be performed in the probabilities, 
Eq. (182.5), and not in the amplitude formula (182.2). 

Problem 183. Golden Rule for scattering 

Let a beam of particles with initial momentum Pi=liki be elastically 
scattered by a potential W(r) into states of final momentum Pf = Ii kf 
within the solid angle element d!+. The differential cross section da/dQf 
shall be derived by the Dirac perturbation method. 

Solution. We may gather from (181.9) that, in the first Dirac ap­
proximation, 

if' aAt) = - - dt<fl Wli)e-'(Wi-ror)t Ii . (183.l) 

o 
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This may be integrated, if the matrix element is supposed not to depend 
upon time, so that we arrive at the basic formula 

(183.2) 

N ow both the initial and final states are lying in the continuous spec­
trum. Using a normalization volume V, the respective wave functions 
are 

(183.3) 

There are, even for fmite volume V, a great many fmal states in the 
vicinity of <II and, in the limit V --+ 00, there will be an infinite number 
of them in an infinitesimal surrounding. To ask what is the probability 
of one fmal state <II with sharp kf thus becomes meaningless; we may 
only ask with what probability a certain interval will be reached. 

Let pAEf)dEf levels be lying in the interval dEf at the final energy 
Ef with their momenta within the solid angle element dDf' then the 
transition probability per unit time to this angular interval becomes 

(183.4) 

This definition is reasonable only because this expression does not 
depend on time and the integral goes over a very narrow energy region. 

If now we introduce the variable 

x=!(wf-Wi)t 

and put Ef=hwf so that we get 

2h 
dEf = -dx 

t 

we fmd, according to (183.2) and (183.4), 

where the considerations of the preceding problem will again hold for 
the integral, so that 

(183.5) 
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since integration over an extremely large interval in x about x = 0 corre­
sponds to a very narrow one only in energy about the resonance energy 
EJ=Ei • The differential notation, dT, is appropriate because of the 
infinitesimal interval dQJ still contained in PJ (which itself might 
perhaps better be written dpJ)' Eq. (183.5) is called the Golden Rule. 

This transition probability still depends in an obvious way upon the 
normalization volume V and the initial velocity Vo = hkdm of the 
particles hitting the obstacle, 

Vo 
dT= -du, 

V 
(183.6) 

where du is independent of V and therefore a quantity of physical signif­
icance. It has the dimension of cm2 and is identical with the differential 
cross section thus to be found from the Golden Rule expression (183.5): 

2n V 
du = -PJ(E)-I<fIWli>12. 

h Vo 
(183.7) 

Here we still have to evaluate the final state density PJ and the 
matrix element. 

The final state density may be derived from the fact that one state 
(if the particles have no spin) falls in an element d 3 p of momentum 
space of the amount (2 n h)3/v. Therefore, in an arbitrary element d3 p 
there will lie 

states. With 

we have 

so that 

J3pv 
8n3 h3 

du ( m V )2 kJ 12 -= -2 -1<fIWli> dQJ 
dQJ 2nh k i 

where we may omit the factor kJ/ki = 1 for elastic scattering. 

(183.8) 

(183.9) 

The matrix element, for a potential W(r) of central symmetry, 
formed with the plane waves (183.3) runs 

(183.10) 
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with K = kf - k i the momentum transfer vector (in units of h). The 
integration over the polar angles leads to 

00 

4n f sinKr <fIWli) = - drr2 W(r)--
V Kr 

(183.11) 

o 

so that finally we arrive at the cross section formula 
00 2 

du 2m f 2 sinKr 
-= - drr W(r)--
dOf h2 Kr ' 

o 

(183.12) 

i.e. the result of the first Born approximation (cf. Problem 105). This of 
course, was only to be expected since we treated the scattering potential 
as a perturbation already in our starting equation (183.1) and conse­
quently used plane waves to describe the initial and final states. 

Problem 184. Born scattering in momentum space 

To derive the differential scattering cross section in momentum space 
by a time-dependent perturbation method in the first approximation. 
Let the perturbation be switched on at t = 0 and be constant there­
after. 

Solution. According to Problem 14 the time-dependent Schrodinger 
equation 

h . h2 2 
- -:ljJ= - -'\1 ljJ+ V(r)ljJ 

I 2m 
(184.1) 

corresponds to the integro-differential equation in momentum space, 

h . h2 f - -: f(k, t) = - k2 f(k, t) + tP k' W(k - k') f(k', t) 
I 2m 

(184.2) 

with f(k, t) the Fourier transform of ljJ(r, t) and W(k) of V(r) in the 
normalization used in Problem 14. Eq. (184.2) may be somewhat simpli­
fied by writing f in the form 

We then find 

f(k, t) = v(k, t)e- irot ; h 2 
w=-k. 

2m 

av(k, t) 

at 
-* f d3 k' W(k-k')ei(ro-ro')tv(k',t). 

(184.3) 

(184.4) 
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To solve (184.4) in first approximation we replace v under the inte­
gral by the unperturbed function 

vo(k, t)= C(2n)! (j(k - ko), (184.5) 

i.e. by the Fourier transform of the plane wave 

t/to(r, t) = C eiko ·,.. 

Eq. (184.4) then simply becomes 

av(k ~ i . --'- = - - C(2n)! W(k-k )e'(CO-coo)t 
at Ii 0 

and yields the integral 

C 3 ei(w- wo)t_1 

v(k,t)= - -Ii (2n)2 W(k-ko) . 
W-Wo 

(184.6) 

(184.7) 

The probability of finding a particle of momentum k within tf3 k at the 
time t is then (cf. Problem 15) 

ICl2(2n? sin2 x 
Iv(k, tW tf3 k = 1i2 I W(k - koW t2 ~ k2 dk dQ 

with the abbreviation 

x=!(w-wo)t. 

This expression has still to be integrated over the energy resonance (cf. 
Problem 183); since 

and 

2m 
kdk = -dx 

lit 

+00 

f sin2 x 
dx-2- = n, 

x 
-00 

we find an expression linear in t, and the transition probability, defined 
by 

(184.8) 

becomes 

ICI2(2n)4mk 
dT= 1i3 IW(k-koWdQ. (184.9) 
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The differential cross section is defined by putting 

(184.10) 

therefore 

(184.11) 

This general formula may still be simplified for a central-force 
potential V(r) which permits integration over the polar angles in its 
Fourier transform: 

00 

1 f· 4n f sinKr W(k - ko) = --3 fi3 xe,k·r V(r) = --3 dr r2 V(r)--
(2n) (2n) Kr 

(184.12) 

o 

with K = k - ko the momentum transfer (in units of Ii), i. e. with 

(184.13) 

where 8 is the angle of deflection. Putting (184.12) into (184.11) we 
finally arrive at the well-known result of Born, 

d(J {2m fOO 2 sin Kr}2 - = - drr V(r)-- . 
dO. 1i2 Kr 

o 

(184.14) 

NB. The transition from the momentum function f to v is, generally 
speaking, the transition from Schrodinger to interaction representation 
as v would no longer depend upon time if there were no interaction 
W(k).-The cross section formula (184.14) has also been derived in 
Problem 105.-1t should further be noted that the Fourier transform 
W(k - ko) is-except for a normalization factor-the matrix element 
of the potential V(r) in ordinary space: 

This permits e.g. to write the cross section formula (184.11) as well in 
the form 

d(J = \ ~ (klVlko> \2 dO.. 
2nli 

(184.15) 
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Problem 185. Coulomb excitation of an atom 

Let an electron of velocity v pass an alkali atom at a distance b ("colli­
sion parameter"); let its velocity be large compared to the velocity of 
the valence electron in the atom. Its Coulomb interaction with the 
latter may originate an excitation, the cross section of which shall be 
determined by a perturbation procedure. 

Solution. The position of the atomic electron is shown in Fig. 71, 
its position r relative to the atomic core having coordinates x, y, Z, as 
indicated. Its interaction with the electron passing at the point P is 

with 

R2=(vt-X)2 + y2 +(b-Z)2. 

t z 
I P 

-------+I------~--·v 

I 
I 
I 

bl R 
I 
I 
I 
I 
I 
I 
I r 

---- -----_ x 

(185.1) 

(185.2) 

Fig. 71. Notations indicating position of the two interacting particles 

Here any deflection or deceleration of the passing electron has been 
neglected. Its classical treatment, of course, precludes effects of overlap 
such as exchange phenomena. It is a reasonable approximation for a 
wavelength small compared to the distance b and to the atomic dimen­
sions. Let us further assume the collision parameter b to be very large 
compared to the atomic dimensions so that we may expand 

(185.2') 
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The matrix element between the ground state (subscript: 0) and an 
excited state (k) then becomes, in this approximation, 

e2 

<k!V(t)IO) = 3 {vt<klxIO)+b<klzIO)}, (185.3) 
[(vt)2+b2]2 

the first (static) term in (185.2'), only contributing to the diagonal 
elements <01 VIO) of elastic scattering. 

If the unperturbed wave functions, Ik), satisfy a Schrodinger equation 

the perturbed wave function may be written 

t/I=e-irootIO) + I'ak(t)e-iroktlk) 
k 

with (cf. Problem 181) 

-00 

(185.4) 

(185.5) 

The probability of finding the atom in the excited state Ik) after passage 
of the colliding electron is then 

Pk= lak(ooW, (185.6) 

and the excitation cross section of the state Ik) is obtained by integra­
tion over the collision parameter: 

00 

O"k=2n J dbblak(oo W· (185.7) 
o 

Thus the problem is reduced mainly to the calculation of ak( (0) with 
the matrix element (185.3): 

+00 

ak(oo)= - ~e2 f dt ei(rok-roO)t 3 {vt<klxIO)+b<klzIO)}. 
h [V2t2+b2J2 

-00 

With the abbreviations 

v 
s =-t 

b 
(185.8) 
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this may be written 

{ 
+00 +OO} ie2 seifJ' eifJ ' 

ak(OO)= - - (klxIO) IdS 3 + (klzIO) IdS 3 • (185.9) 
hvb (1 +S2)2 (1 +S2)2 

-00 -00 

The two integrals can be determined using the integral representation 
of the modified Hankel function 

00 

I cosps 
ds 3 = PK1(P)· 

(1 +S2)2 
o 

This integral may equally well be written 

so that 

-00 
The derivative with respect to P is 

+00 

We therefore obtain 

e2 2 
ak(oo)= - hv· b {(klx 10)( -PKo(P))+i(klzI0)PK 1(P)}· 

If the atoms are not oriented, in the statistical average 

(185.10) 

(185.11) 

(185.12) 

(185.13) 

~-~ 

(klxIO) = (klzIO) = 0; l(klxI0)12= l(klzI0)12 (185.14) 

so that 

lak(ooW = (::y.; l(klxI0)12P2[K~(P)+Ki(P)], (185.15) 

According to (185.7) and (185.8) this leads to the excitation cross section 
of the state Ik): 

00 

O"k=8n:(::y l(klxI0)12 J dPP[KW3) + Ki(P)]. (185.16) 

o 
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The last integral can be evaluated for a finite lower bound 
00 

J df3 f3[K~(f3)+ Ki<f3)] = 13 Ko(fJ)Kl (13)· 
p 

For small values of 13, the limiting values to the functions are 

2 
Ko(f3)--+C + log Ii 

153 

(185.17) 

(185.18) 

with C=0.5772 ... the Euler constant. The integral therefore diverges at 
small values of 13 or, according to (185.8), of the collision parameter b. 
This divergence is caused by the expansion (185.2') of the interaction 
which only holds if the distance r of the atomic electron from the atomic 
nucleus is small compared to the collision parameter b. The divergence 
can to some extent be remedied by a cut-off at b=ro, with ro some­
thing like the atomic radius or, using (185.8), at 

rO(wk-wO) 
f3min = . (185.19) 

v 

Since v shall be large compared to the atomic electron velocity, f3min ~ 1 
so that the formulae (185.18) obtain. We then arrive at the cross section 
formula 

O"k=8n (e2)2 I<klx 10>1 2 {log (2V ) -c}. 
hv ro Wk-WO 

(185.20) 

No very exact knowledge of the cut-off radius is needed, since the loga­
rithm varies rather slowly with its argument. 

Literature. The method is an abridged form of that used in the theory of nuclear 
Coulomb excitation, cf. Alder, K., Winther, W.: Dan. Mat.-Fys. Medd. 29, 19 
(1955). 

Problem 186. Photoeffect 

A light wave oflinear polarization (19' II x, Jf'lIy) propagating in z direc­
tion falls on a hydrogen atom with the electron in its ground state. 
What is the angular distribution of photoelectrons emitted? What is the 
differential cross section of photo-emission? Retardation effects shall be 
neglected and the final state be approximated by a plane wave. 

Solution. The light wave may be described by a vector potential A 
with 

(186.1) 
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then the following field strength components can be derived: 

tffx = - + Ax= tffo sin [ w(t -~) + oJ 
:Yfy= a~x = tffoSin[ w(t -~) + oJ, 

all other components vanishing. The average Poynting vector in z 
direction is 

- c ---- C 2 
S=--CYf'. =--tff 4n x y 8n 0 

so that there are 

ctff~ 
n=--

8nl'zw 
(186.2) 

incident photons per cm2 and sec. 
The interaction energy between light and electron is, according to 

Problem 125, 

(186.3) 

where 
el'z . -io a 

W=---tffo,e --. 
2mw ax (186.4) 

Here the retardation factor, exp(i ~z) has been taken = 1. 

We then may apply the method developped in Problem 182. Only 
the interaction term W leads to a resonance denominator wf - Wi - w, 
thus satisfying energy_conservation. Putting 

we get 

and thence the transition probability If, from the initial state Ii) to 
the final state If), 

(186.5) 
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Here PJ' the fmal state density in the energy scale refers to the out­
going electron and is, according to (183.8), 

mV 
PJ = -3-2 ~dQJ 

8n h 
(186.6) 

if V is the normalization volume and h~ the momentum of the photo­
electron. The differential cross section for photo-emission into the 
solid angle element dQJ is Ff/n so that, gathering expressions from 
(186.2) and (186.4-6), we arrive at the general formula 

(186.7) 

We now are dealing with wave functions in a potential field of 
central symmetry, with the ground state Ii) independent of polar angles. 
Then, 

a dli) 
-Ii) = - sin.9coscp ax dr 

(186.8) 

is proportional to a spherical harmonic of the first order so that the 
matrix element must necessarily vanish if the electron is not emitted 
in a P state. 

Let the final state be approximately described by a plane wave, 

1 .k 1 ~ ~ If) = V-Te' ,rcosy = - L..(21+1)IN~r)P,(cosy) 
kr 1=0 

(186.9) 

where y is the angle between the directions of kJ with polar angles e, cP 
and r with angles .9 and cpo Then only the term 1= 1 (P term) can con­
tribute to the matrix element so that 

00 

a 3i f Nkr) dli)f . <fl-li) = - drr2-- -- dQcosysm.9coscp. 
ax VV kr dr 

o 

Because of 

cosy = cos.9 cose+sin.9 sinB(coscp coscP+ sincp sincP) 

the angular integral yields 



156 Non-Stationary Problems 

so that we arrive at 
00 

o 4ni f jl(~r) dli) <ii-Ii) = -sin(9cos<P drr2---
or VV ~r dr 

o 

and, according to (186.7), 

(186.10) 

Here the radial functionjl stemming from the plane-wave approximation 
should be replaced by a more correct expression for quantitative cal­
culations. The angular distribution of the photo-electrons, however, is 
correct and in complete agreement with the classical expectation, since 
sin2 (9 cos2 <p has a maximum in the direction x of the electrical field 
strength. 

NB.With 
r 

Ii> = n- t a--i e -a; 

for a K shell electron (screening constant s, cf. Problem 178) we get for the integral 
in (186.10) 

f
OO dli> 1 foo (sin x ) _2. J = drrjl(kjr)- = - dxx -- - cosx e kja 

dr k2a21;;a x 
o f V ILU 0 

where x=lyr. This integral can be evaluated in an elementary way and yields 

2 kJa2 

J = - vna . (1+kJa2)2· 

This formula can only hold for k,a~ 1, because otherwise the plane-wave ap­
proximation would be quite insufficient; so we may write 

and 
drY 32e2 

or, with 
dDt = mca5 • wkj 

finally, 
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This formula shows the main features of more exact calculations: rapid increase 
with Z - s, rapid decrease with growing quantum energy hw, roughly proportional 
to w- 3 •S, order of magnitude in atomic units e2 jhc, and correct angular distri­
bution. 

Literature. Stobbe, M.: Ann. Physik 7, 661 (1930). - Retardation effects in 
hydrogen: Sommerfeld, A., Schur, G., Ann. Physik 4,409 (1930). - Relativistic 
treatment: Sauter, F., Ann. Physik 11, 454 (1931). 

187. Dispersion of light. Oscillator strengths 

A light wave as defined in the preceding problem (but take ~ = 0) inter­
acts with an atom. The induced polarization shall be calculated from 
which the oscillator strengths may be derived. Only one electron shall 
be taken into account, and all matrix elements, neglecting retardation, 
reduced to matrix elements of electrical dipole moments. 

Solution. In the Dirac notation of Problem 181 the atomic wave 
function under the action of the light wave may be written 

l/I = La,(t)I/)e-ia>lt 
/ 

if II) is a state of the unperturbed atom. Using (182.2) for the coefficient 
a/(t) and omitting all switch-on effects of the light wave, we arrive at 

1 { ei(w,-wo-wlt 
l/I=IO)e-iwot - - L (/IWIO)---

h / 0)/ - 0)0 - 0) 

+ (/IWtIO) II) e-;w,t. 
ei(w,- wo+ wlt} 

0)/ - 0)0 + 0) 

Here 10) denotes the atomic ground state and II) any excited state so 
that 0)1 - 0)0> 0 and only the first term in the sum shows resonance. 
Neglecting the other term we then may start from the wave function 

l/I={IO) - ~e-;wt L (/IWIO) 1/)}e- iwot . 
h I 0)/ - 0)0 - 0) 

(187.1) 

Now we know that for the optical properties the induced dipole 
moment Pind plays the essential role. It follows from (187.1) according to 

Pind = -e{JtPxl/l*rl/l-(OlrIO)}. (187.2) 

Neglecting second-order corrections we thus get 

Pind = ~ L (Olrl/) (/IWIO)e-;wt+(/lrIO) (/IWIO)*e;wt 

h / 0)1 - 0)0 - 0) 

(187.3) 
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This expression can be much simplified if we replace the matrix ele­
ments (/IWIO) of the interaction 

eh a 
W= ---tffoi-

2mw ax 
(187.4) 

by matrix elements of the atomic moment p, in field direction, 

(/IPxIO) = -e(/lxIO). (187.5) 

This can be accomplished by using the relation 

a m 
(II a)k) = h(wk-w,)(/lxlk) (187.6) 

holding between any pair of states II) and Ik). 

Eq. (187.6) may be derived from the two Schrodinger equations 

{- 2h: V2+V}lk> = hUhlk>; {- :: V2+V} (II = hw,(ll 

from which there follows, by multiplying by x, forming matrix elements and 
subtracting both equations in order to eliminate the term with V: 

_ ~1: {(llxV2Ik>-(klxV211>*}=h(wk-w,)(llxlk>. (187.6') 

Now, according to 

f d 3 x(vX)V2u = - f £i3xV(vx)·Vu = - f £i3x( xVv·Vu+v ~~) 
the curly bracket on the left-hand side may be reshaped into 

-(lla~lk>+(kla~II>*= -2(lla~lk>, 
proportional to the left-hand side of (187.6) whereas on the right-hand side of 
(187.6') we already have the dipole matrix element wanted. 

Using (187.6), we may write the induced dipole moment (187.3) in 
the simpler form 

. __ ~ " (Olpl/) (/IpxIO)e-ia>t-(/lpIO) (/IpxIO)*eirot 
Pmd - 2·h L.. 

1 , W,- Wo - W 
(187.7) 

In a statistical distribution of atoms with dipole moments p oriented 
in all directions, the y and z components of Pind will cancel and an 
induced dipole moment remain only in the x direction, i.e. parallel to 
the electrical field applied. In the first term of (187.7) we further use the 
hermiticity of (01 P II) = (II P 10)* and then the statistical average re­
lation 
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where the expression on the right-hand side needs no further averaging, 
being independent of the atom's orientation. Thus we arrive at the 
result 

. _ ,&'0 ~ 1<llpI0)12 . 
Pmd - L.. smwt. 

31'1 , WI-WO-W 

Since ,&'0 sinwt =,&' is the instantaneous value of the field strength we 
may define atomic polarizability (X in the usual way by Pind = (X,&' so 
that 

(X = ~ L 1<lIpIO) 12 
3 I Ii(w,-wo-w) 

(187.8) 

In classical optics, the index of refraction, n, is derived from the 
formula 

n2 -1 4n 
--=-N(X 
n2 +2 3 

(187.9) 

with N the number of atoms per unit volume. (This expression is called 
the refraction.) The classical polarizability is then evaluated as a sum 
over all the electrons contributing (subscript A) and is written in the 
form 

(187.10) 

where W;. is the eigenfrequency of the A'th electron and f;., the so-called 
oscillator strength, gives the number of electrons per atom in a state of 
eigenfrequency W;., in this classical picture. That the oscillator strengths 
turned out experimentally not to be integers raised the first doubts in 
this classical picture. 

The quantum theoretical formula (187.8) gives formally a very 
similar result. We may write, 

then (187.9) leads to the refraction 

n2 -1 4n e2 f, 
-- = - N - L ----=------=­
n2 +2 3 m, (W,-WO)2-W2 

with the oscillator strengths 

(187.11) 

(187.12) 
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The formal similarity of the quantum theoretical result (187.11) with 
the classical one, (187.10), however, is deceptive. In Eq. (187.11) the 
sum does not run over electrons· but over excited states so that sum­
mation over a multitude of terms is necessary even for our one-electron 
problem. The eigenfrequencies w .. are replaced by frequency differences, 
W,-Wo° Finally, the oscillator strengths I, no longer mean numbers 
of electrons but are rather involved intensity constants to be computed 
from dipole transition matrix elements according to (187.12). It is 
therefore no longer surprising that these numbers turn out not to be 
integers. 

Problem 188. Spin flip in a magnetic resonance device 

Let a particle of spin !h and of magnetic moment p, pass in y direction 
through an homogeneous magnetic field ~o parallel to the z axis. The 
particle spin in this field will be oriented in either + z or - z direction. 
Let us assume it to point in positive z direction. When passing the point 
y=o at the time 1=0, the particle enters an additional homogeneous 
field ~' parallel to the x axis. It leaves this auxiliary field at y=l at 
t=/o. What is the probability of a spin flip during this time interval? 

Solution. In the Schrodinger equation 

h . h2 2 
- --; t/! = - - V t/! -Il' YEt/! 

I 2m 
(188.1) 

the last term is the interaction energy of the magnetic field YE with the 
magnetic moment I' of the particle. The latter is defined as the vector 
operator 

I' = P,(1 (188.2) 

with (1 the spin vector whose three components are the Pauli matrices 
(cf. Problem 129). 

For t<O, only the field ~ollz is acting on the particle; the solution 
of (188.1) then is 

t/! = ei(ky-rot) G) 
and the energy of the particle 

(188.3) 

(188.4) 
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If now, at t=O, the field .}f!"lIx is switched on, the state of the particle 
undergoes a change so that its wave function may be written 

with the abbreviation 

h2 k2 

hw = --. 
2m 

(188.5) 

(188.6) 

If path curvature by the Lorentz force acting perpendicular to the y 
direction may be neglected, it is safe to assume that the momentum 
hk in y direction is unchanged throughout. 

Putting (188.5) in (188.1) we have to be a little cautious about the 
magnetic interaction: 

and therefore 

Separating the two components of the Schrodinger equation, we thus 
arrive at 

To solve these equations we set 

a(t) = Aeiw't; b(t) = Beiw't; 

then (188.7) becomes the algebraic set of linear equations 

(J1..}f!'o - h w') A + J1..}f!" B = 0; 

J1..}f!" A - (J1..}f!'o + h w') B = O. 

The determinant vanishes for two different values of w', 

(188.7) 

(188.8) 



162 Non-Stationary Problems 

in what follows we shall write Wi and - Wi for these two roots. Then 
the set (188.7) will be solved by 

with 

a(t) = AI eiw't + Ane-iw't; 

b(t) = BI eiw't + Bn e-iw't 

+ V:Ye2 + :Ye'2 -,n'; 
B -- ° °A I.n - :Ye' I,n' 

There still remain two integration constants, AI and An, to be deter­
mined from the initial conditions, 

a(O)=I; b(O)=O. (188.9) 

This leads to 

and yields after some straightforward reshaping the formulae 

:Yeo . } a(t) = cosw't+i SlllW' t; 
V:Ye6 + :Ye'2 

:Ye' 
b( t) = i --;:::.~=:=::;- sin Wi t . 

V:Ye6 + :Ye'2 

(188.10) 

It can easily be checked that 

la(tW + Ib(tW = 1. 

The probability of spin flip, i.e. of finding the particle with spin 
downward, in the negative z direction, after its leaving the auxiliary 
field:Ye' at the time t=to=l/v will be, according to (188.10) and (188.8), 

(188.11) 

Eq. (188.11) shows that the experimental device may be used to deter­
mine the magnetic moment of an atom of spin!h (as an alkali atom in 
its ground state). If atoms are focussed if they do not undergo spin flip, 
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but defocussed if they do, and the magnetic fields are varied during the 
course of the experiment, the beam intensity will become a minimum, 

2 J'l'~ 
!a(tO)!min = J'l'~ + J'l"2 

if 

(188.12) 

Such a determination is, of course, possible only if a velocity selection 
is applied and v is well known. Our representation of the method has 
necessarily been simplified by neglecting detail like the deflection by the 
Lorentz force, field inhomogeneities used for focussing, stray fields and 
-most important-the non-static changes of the magnetic moment by 
the Zeeman effect. Our problem corresponds rather to the Paschen­
Back effect of decoupled moments which, however, may contradict the 
idea of fields weak enough to allow perpendicular momentum transfer 
to be neglected. 

NB. A particle "at the point y=O at the time t=O, etc." should, of course, 
be described by a wave packet, cf. Problem 17. For the present purpose, however, 
this is of little avail and has therefore been omitted. 



VI. The Relativistic Dirac Equation 

Remark. In this chapter we use the fourth coordinate x4=ict and Euclidian 
metric. Greek sUbscripts (e.g. XI<) run over fl = 1,2,3,4, Latin subscripts (xk) over 
k=1,2,3, only. 

Problem 189. Iteration of the Dirac equation 

To derive commutation relations of the 1's from the relativistic dispersion 
law of plane Dirac waves. An irreducible representation of the y's shall 
then be given that makes Y 4 diagonal. 

Solution. If the Dirac equation for the force-free case, 

is to be solved by a plane wave 

ljJ = C ei(kr - rot) 

the y's must satisfy the algebraic relation 

OJ 
k4 =-· 

C 

(189.1) 

(189.2) 

(189.3) 

Now the y's must be independent of the special choice of the kll's. The 
latter can only be eliminated from (189.3) by using the relativistic 
dispersion law, 

(189.4) 

which can be constructed from (189.3) by iteration: 

1(2 = (iL:kIlYILY = - L: L:kllkvYIlYv· 
Il Il v 

(189.5) 
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The latter equation becomes identical with (189.4) if, and only if, the 
double sum is reduced to diagonal terms of appropriate normalization, 
in fact, if 

Yfl YV+Yvyfl =2t5flV ' (189.6) 

If an analogous procedure is applied directly to the Dirac equation 
(189.l) without using plane waves, we have 

x2lj1 = (LYflOflYljI = L LYflYvOflOV' 
fl fl v 

With the anticommutators (189.6) this simply leads to 

D2lj1-x2lj1=O, 

i. e. to the Klein-Gordon equation. 

(189.7) 

There exist irreducible representations of the Yfl'S by 4 x 4 matrices. 
If Yfl is one such representation, any unitary transformation Ut Yfl U 
will produce another set. Therefore, one of the matrices, say Y4' may 
always be supposed to be diagonal. As yi = 1, its eigenvalues must be 
+ 1 and -1. Thus we may start the construction of the matrix set by 
writing 

(k= 1,2,3); Y4 = (~ _~) (189.8) 

with all bold face letters meaning 2 x 2 matrices. From (189.6) we then 
find 

(189.9a) 

(189.9b) 

From (189.9b) we get Ak=O, Dk=O for the three first matrices, and 
from (189.9a) it follows that 

(189.10) 

These are three anticommutation rules for 2 x 2 matrices allowing 
reduction to the Pauli matrices, Uk (cf. Problem 129). If a and b are two 
numbers, Eqs. (189.10) are satisfied by 

Bk=aUk; Ck=buk; ab= 1, (189.l1) 

so that any representation 

_ (0; b- 1 Uk) . 
Yk - b . 0 ' 

Uk> 
(189.l2) 
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satisfies the commutation rules (189.6). The standard representation 
(often used in the following problems) is obtained by the choice b= i; 
the four matrices then become 

~ - ~ - ~ ) ; 1'2 = ( ~ 
o 0 0 -1 

o 
o 
1 

o 

o -1) 1 0 
o 0 ' 

o 0 

o - i 

o 0 
o 0 

- i 0 
( ~ ~-~ ~). 

o 0 0-1 

NB. With b=a= lone obtains the set of matrices 

_(0 Ih) CXk -
Uk 0 

(189.13) 

(189.14) 

instead of the three '"h's. Together with Y4=P as above, they obey the same com­
mutation laws. They are connected with the y's by the relations 

Yk= -iPCXk; Y4=P, (189.15) 
The cx's are used to advantage in the Dirac hamiltonian, cf. Problem 200. 

Problem 190. Plane Dirac waves of positive energy 

To determine in standard representation the spinor amplitudes of plane 
Dirac waves of positive and negative helicity, but of positive energy 
only. 

Solution. With 
'" = Cei(kr-cot) (190.1) 

we obtain [cf. Eq. (189.3)] in standard representation the four compo­
nent equations 

(kx-iky)C4 +kzC3 + ( - ~ + ,,) C1 =0, 

(kx + iky) C3 -kzC4 + ( - ~ + ,,) C2 =0, 

-(kx-iky)C2 -kz C 1 + (~+ ,,)C3 =0, 

(190.2) 

-(kx+iky)C1 +kz C2 + (~ + ,,) C4 =0. 
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Using the abbreviations 

w 
kl1 = - - x; 

c 

k w 
- = - + x, 
1] c 

(190.3) 

we have in 1] a suitable parameter in which to express the most impor­
tant particle quantities, viz. its momentum 

its kinetic energy 

and its velocity 

21] 
p=hk=mc--, 1_1]2 

211 
V=C--. 

1 +112 

(190.4a) 

(190.4 b) 

(190.4c) 

It is also useful to introduce two polar angles 8 and cp, determining the 
direction of the vector k, 

k +ik =k sin 8e±i<P. kz=k cos8. x- y , 

The equations (190.2) may then be written in the form 

sin8e-i'PC4 +cos8C3 -1]C1 =0, 

sin8e+i'PC3 -cos8C4 - 1] C2 =0, 

.' 1 -sm8e-''PC2 -cos8C1 + - C3 =0, 
1] 

+. 1 
-sin8e ''PC1 +cos8C2 + -C4 =0. 

1] 

(190.5) 

(190.6) 

This is a homogeneous system of linear equations for the four CIl'S. 
Its determinant vanishes, as may be easily checked, but it can also be 
factorized in two factors each of which is zero. It is not therefore possible 
to express all the CIl'S as multiples of one of them, and there remain 
two CIl'S to be chosen arbitrarily. Therefore we shall proceed in another 
way. 

We first look for eigenfunctions of the helicity operator 

1 
h = - ~ a·k· k '-:- J J' 

J 

(190.7) 
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i.e. of the operator "spin component in the direction of k". Since, in 
standard representation, the spin matrices consist merely of doubled 
Pauli 2 x 2 matrices Sj' 

Gj = (~ ~), 
we fmd the definition (190.7): 

( 

cos8; sin8e- i ",; 

sin8ei ",. -cos8· 
h = ' , 

0; 0; 

0; 0; 

0; 

o· , 
cos8; 

sin8ei ",; 

sinL.). 
-cos8 

(190.8) 

Let the eigenvalue be h; then the eigenvalue problem h C=h· C can be 
decomposed into one pair of equations for C1 and C2 , 

C1 cos8+ C2 sin8e- i "'=hC1 ; 

C1 sin 8ei ", - C2 cos8=h C2 
(190.9) 

and the same pair for C3 and C4 • The determinant of (190.9) vanishes 
if h = ± 1; thus we arrive at two solutions: 

h= + 1 (spin parallel to k): 

and 

8 . 
C2 =tan-e''''C1 ; 

2 

h= -1 (spin antiparallel to k): 

8 . 
C4 =tan-e''''C3 

2 

C1 and C3 may still be chosen arbitrarily. 

(190.10) 

(190.11) 

Let us now put these results into the set of Eqs. (190.6). With the 
elementary identities 

. 8 
sm 8 tan - + cos 8 = 1 ; 

2 

. 8 8 
sm8-cos8tan"2 = tan "2; 

. 8 
sm8cot- - cos8=1; 

2 

8 8 
sin8+cos8cot- = cot-

2 2 
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all four equations (190.6) reduce to 

C3 =11 C l 

and to 

for h= + 1 

respectively. If, therefore, we normalize so that1 

v v 

we obtain the following spinor amplitudes: 

for h= +1 

and 

for h=-1 

[}. _i.tp 
cos -e 2 

2 

[}. + i.tp 
sin -e 2 

2 

[}. _ i.tp 
11cos- e 2 

2 

[}. _i.tp 
sin -e 2 

2 

-cos~e +ttp 
2 

[}. _i.tp 
. 2 -11sm -e 

2 

[}. +i.tp 
11cos-e 2 

2 

(190.12) 

(190.13) 

(190.14) 

(190.15) 

(190.16) 

NB. The unre1ativistic case, according to (190.4c), leads to '1~ 1. The com­
ponents 1/13 and 1/14 of the spinor then may be neglected, and we fall back upon 
the two-component Pauli spin theory. 

1 It should be noted that this normalization is Lorentz-invariant, the integral 
being proportional to the electric charge total inside the volume V. Another 
Lorentz-invariant normalization often used is iii 1/1 = 1. 
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Problem 191. Transformation properties of a spinor 

How does a spinor I/! transform under infinitesimal Lorentz trans­
formation? 

Solution. An infinitesimal Lorentz transformation is defined by 

x~ = x,. + l>:,.pxp; 8,.p = -8p,.; 18,.pl ~ 1. (191.1) 
p 

Here all 8kl are real, and the three 8k4 purely imaginary. The Dirac 
equation 

(191.2) 

shall be transformed into 

(191.2') 

with unchanged coefficients "I,. and x. The operators D,. are four­
vectors transforming under the same law as the coordinates (191.1): 

D~ = D,. + L 8,.pDp; (191.3) 
p 

the transformation formula of I/! may be 

I/!' = (1 + e) I/! (191.4) 

with an infinitesimal e linear in the 8,.p'S which is a Clifford number. 
We start with Eq. (191.2') in which we put D~ from (191.3) and I/!' 

from (191.4): 

~ y,.(D,. + ~ 8,.pDp) (1 +e)I/!+x(l + e) I/! = o. 

If we multiply from the left side by (1- e), the last term goes over into 
xl/!, i. e. into the last term of (191.2). The operator e therefore must 
be chosen in such a way as to make 

L(l-e)y,.(D,.+ L8,.pDp)(1 + e) I/! = LY,.D,.I/!. 
,. p ,. 

(191.5) 

From this equation e shall be determined. Neglecting all second-order 
contributions, we find 

L (y,.e-ey,.)D,.I/! + L L 8,.p y,.Dpl/! = 0 
,. ,. p 

or, exchanging the dummies J1 and p in the double sum (and writing v 
instead of p), 
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Since this relation is supposed to hold for any 1/1, each sum term is 
bound to vanish separately: 

11'~-~11' = L>:l'vlv' (191.6) 

The only Clifford number linear in the 81';S satisfying these four 
commutation relations is 

(191.7) 
P a 

This can easily be proved by direct evaluation of the commutators 
(191.6): We have 

11'~-~11' = * I I8p ,,.{yl'lp la-lp lall'); 
p " 

here we find 

so that 
11'1p l,,-lp l,,11' = 2(l"bI'P-lp bl'''); 

therefore 

11'~-~11' =! I I8p"(l,,bI'P-lp bl''') 
p " 

=!(I81'''1'' - I 8pl'lp ) = I8l'vlv, 
" p v 

and that was to be proved. 
Hence the spin or 1/1 transforms according to 

1/1' = 1/1 + * I I 8 p"lp 1,,1/1· 
p " 

Problem 192. Lorentz covariants 

Which Lorentz covariants of the form 

G = iii r1/l; iii = 1/It 14 

(191.8) 

(192.1) 

can be constructed, r being one of the 16 basis elements of the Clifford 
algebra? 

Solution. The 16 basis elements of the algebra can be grouped into 
five sets as follows: 

(1) 1, 

(2) 11, 12, 13, 14, 

(3) 1112' 11,13, 1114, 1213' 1214, 1314' 

(4) 121314, 131411, 141112, 111213' 

(5) 11121314' (192.2) 
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Expressions of the form (192.1) will be formed with each of these five 
sets separately. 

Before performing this programme in detail, however, let us inves­
tigate the transformation properties of any of the 16 quantities (192.1) 
under the infinitesimal Lorentz transformation 

X~ = Xp + L eppxp' 
p 

(192.3) 

In the preceding problem it has been shown that 1/1 under this trans­
formation becomes 

with 

p a 

The transform of G is 

G' = 1/I,t "/4 r1/l' = 1/It (l + ~t)y 4 r(1 + ~) 1/1 . 

Formally we may write 

G'=!iir1/l; r=Y4(1+~t)y4r(1+~). 

(192.4 a) 

(192.4 b) 

(192.5) 

This can be further simplified when we know a little more about the 
hermitian conjugate ~t. According to Eq. (192.4 b), it should obey the 
commutation relation 

~t Y 4 - Y 4 ~t = L etk "l'k 
k 

since yt = YV' Now, the rotation angles e4 k are purely imaginary so that 
e!k= -e4k' i. e. 

and 
(192.6) 

It further follows from (192.4b) with etl = ekl (real rotations in 3-space) 
that 

(192.7 a) 

has the hermitian conjugate 

(192.7 b) 

so that 
(192.8) 
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Putting (192.8) into (192.6) we obtain 

Y4~Y4= -~. (192.9) 

With this last result, the "transformed operator" r, Eq. (192.5), may 
finally be written 

(192.10) 

We now may easily apply this simple result to the five sets of quan­
tities defined by (192.2), consecutively. 

1. With r= 1, Eq. (192.10) gives immediately r = 1 so that we find 

G = Iii 0/ -+ G' = Iii 0/; G' = G. (192.11) 

The quantity G therefore behaves as a scalar. 
2. With r=yll' Eqs. (192.10) and (192.4b) yield 

r = Y/t + Lf./tvYv 
v 

so that we arrive at the transformation formulae 

G/t = liiY/to/-+ G~ = G/t + L f./tvGv, (192.12) 

i. e. the G It's transform as the components of a vector. 
3. It is suitable first to decompose the products Y/t Yv into a sym­

metrical and an antisymmetrical part, 

Y/t Yv = t(Y/t Yv+Yv Y/t) + t(Y/tYv-Yv Y/t)' 

The first part reduces to Duv , i. e. to the scalar (192.11) multiplied by 
the unit tensor. New evidence apparently comes only from the anti­
symmetrical part; so we confine our discussion to the combination 

(192.13) 

According to (192.4 b) we have 

~Y/tYv =(Y/t~ - Lf./tpYp)Yv = Y/t(Yv~ - Lf.vpYp)- Lf./tpYpYv 
p p p 

or 
Y/tYv~-~Y/tYv= L(f.vpY/tYp+f./tpYPYv) 

p 

so that the transformation formula runs as follows: 

G/tv = liiu/tvo/-+ G~v = G/tv + L (f./tpGpv+f.vpG/tp)' 
p 

(192.14) 

This is the behaviour of a tensor (of rank 2) under infinitesimal rotation. 
4. The products of three y's can be written in a simpler way by 

introducing the Clifford number 

(192.15) 
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Then the four products become 

1'21'31'4=1'11'5; -1'31'41'1=1'21'5; 1'41'11'2=1'31'5; -Yl1'21'3 =1'41'5' 

Since l' 5 anticommutes with all four 1'", 

1',,1'5+1'51',,=0, (192.16) 

it will commute with ~ so that Eq.(192.10) applied to r=1',,1'5 leads to 

r' = 1',,1'5+(1',,1'5~-~1',,1'5) = [1',,+(1',,~-~1',,)]1'5' 

Thus we essentially fall back upon case 2 and find the transformation 
laws of the components of a vector: 

(192.17) 

Strictly speaking, this is not a (polar) vector but a pseudovector, as will 
be shown in the following problem. 

5. According to (192.15) and (192.16) we obtain 

(192.18) 

i. e. for this last combination there holds the transformation law of a 
scalar. We shall see in the next problem that the quantity is more cor­
rectly classified a pseudoscalar. 

Problem 193. Parity transformation 

How do the five Lorentz covariants of the preceding problem transform 
under reflection of space coordinates (i. e. under parity transformation)? 

Solution. We start by investigating the behaviour of the spinor t/I 
under the reflection process under consideration. It is defined by the 
postulate that the Dirac equation 

L1'"D"t/I+xt/l = 0 (193.1) 

" shall transform into 
(193.1') 

" 
under the parity transformation 

(193.2) 

The same relations as (193.2) will hold for the operators all" A more 
detailed investigation is necessary of the vector potential. The electric 
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field components 8 k are coupled with the components A" by the 
relations 

Since the electric field is a polar 3-vector, it changes sign with the xk's 
under transformation. This leads to 

(193.3) 

Thus A" undergoes the same transformation as 0" and, in consequence 
thereof, D" transforms in the same way. Therefore, instead of Eq. (1') 
we may write 

- L YkDk,// +Y4 D4 t/I' +xt/l' = o. 
k 

It is immediately seen that with 

t/I' = Y4 t/I (193.4) 

this leads back to (193.1), thus determining the parity transformation 
of a spinor. 

Any quantity 

then transforms into 

G' = t/I'tY4rt/l' = t/lt rY4t/1 = iiiY4 r Y4t/1 

so that we may write 

Applied to the five covariants of the preceding problem we have 

(1) G = iii t/I ; r = 1; r' = 1; G' = G; 

(193.5) 

(193.6) 

The behaviour of these two quantities was the same under rotation, 
but it now is opposite under space reflection, (1) being called a (genuine) 
scalar and (5) a pseudoscalar. 

(2) G" = iiiy"t/I; r = Y,,; r,; = Y4YkY4 = -Yk; G~ = -Gk; (193.8) 

r~ =Y4 

(4) G"=iiiy,,Yst/l; r=y"Ys; 

r~=Y4YkYsY4= +YkYS; G~= +Gk; (193.9) 
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Both quantities behave as 4-vectors under rotation, but reversely under 
space reflection, (2) being called a (polar or genuine) vector and (4) an 
axial or pseudovector. 

(3) 

(193.10) 

Since there is only one tensor, no further classification is necessary. 

Problem 194. Charge conjugation 

To construct from the spinor t/I solving the Dirac equation for a particle 
of charge e the charge conjugate spinor t/lc describing the behaviour 
of a particle of the opposite charge -e. 

Solution. Let us use the abbreviation a/l=(e/hc)A/l with A/l the 
electromagnetic 4-potential in this problem. Then the Dirac equation 
for the particle of charge e runs 

LY/l(o/l-ia/l)t/I+xt/l = 0. (194.1) 
/l 

The equation to be constructed for the opposite charge then must be 

(194.2) 

The charge conjugate t/lc which solves the latter equation shall be 
connected with the solution t/I of (194.1). 

The operator 0/l+ia/l occurring in (194.2) can be introduced by 
using the adjoint equation of (194.1), 

Transposing the latter again, we find 

LYio/l+ia~~-x~ = ° 
/l 

where 

If we multiply the last equation with a Clifford number C, 

LCYio/l+ia/l)Y4t/1*-XCY4t/1* = 0, 
/l 

(194.3) 

(194.4) 
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the result becomes identical with (194.2) if we choose C so that the 
two relations 

(194.5) 

are satisfied. Here I/Ic may be eliminated in order first to determine C: 

where we omit Y41/1* and are left with the four relations 

Y/lC= -CY/l 
to determine C. 

(194.6) 

Since the problem is homogeneous, there is of course always an 
arbitrary factor in I/Ic. It is reasonable to fix it as far as possible by 
postulating that charge conjugation shall not alter the normalization, 

1/1: I/Ic = I/It 1/1 = (I/It 1/1)*. (194.7) 

Now, from (194.5) we have 
1/1: = lfr Y! ct, 

hence 
I/IJ I/Ic = lfr Y! ct C Y 41/1* = (I/I*)t (Y! ct Cy 4) (1/1*), 

and that becomes identical with (194.7) if 

y!ctCY4 = 1 

(194.8) 

It follows that C is an unitary operator. 
Specializing to standard representation we note that 

Y1= -Y1; Y2= +Y2; Y3= -Y3; Y4= +Y4· (194.9) 

Thence Eq. (194.6) leads to C commuting with Y1 and Y3' but anti­
commuting with Y2 and Y4. This will be performed by 

(194.10) 

which is the only one of the 16 basis elements of the Clifford algebra 
satisfying the four conditions (194.6). It may be noted that from (194.10) 
we find 

ct = - C; C2 = -1. (194.11) 

It then follows from (194.5) that the charge conjugate wave function 
in standard representation is 

(194.12) 
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Problem 195. Mixed belicity states 

A plane Dirac wave runs in z direction. It shall be shown that it is 
impossible to construct a spinor amplitude which simultaneously makes 
t/J an eigenfunction of ax. 

Solution. a) For a plane wave, 

t/J = C ei(kz - rot) (195.1) 

there follows, from the Dirac equation, the algebraic relation 

(195.2) 

for the spinor amplitude C. The operator Q defined by (195.2), however, 
does not commute with 

(195.3) 
since 

but 

Therefore t/J cannot be eigenfunction to both operators. 
b) In standard representation Eq. (195.2) would run as follows: 

kC3+(-~+X)Cl=0; 

-kC4+(-~+X)Cz=0; 

-kCl+(~+X)C3=0; 

kCz + (~+ x) C4 =0. 

With the abbreviations 

this leads to 

Q) 

-- x = kl1; 
c 

Q) k 
-+X=­
c 11 

(195.2') 

(195.3') 

(195.4) 
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On the other hand, the eigenvalue problem 

O"xC=A'C 

with A being an eigenvalue demands 

so that 

C4 = AC3 ; C3 = AC4 • 

(195.5) 

Both pairs of equations can only be satisfied for A = ± 1. Using (195.6) 
we may eliminate C2 and C4 from Eq. (195.4) thus arriving at 

C3 =l1Cl and AC3 = -l1ACl' 

two relations which contradict each other. Therefore the spin or C 
satisfying (195.4) cannot simultaneously satisfy (195.6) as had to be 
proved. 

NB. In the unrelativistic limit 1/ ..... 0, the amplitudes C3 and C4 and hence the 
second pair of equations (195.6) drop out so that no contradiction remains. 

Problem 196. Spin expectation value 

The expectation value of o"x shall be calculated for a superposition of 
two plane waves in z direction having opposite helicities. 

Solution. With the spinor amplitudes [cf. Eqs. (190.15, 16) for .9=0] 

° 11 

(196.1) 

for positive and negative helicities, respectively, we construct the mixed 
state amplitude, 

C = C+ cosaei/l+C_ sinae-i/l 

of the same normalization, 

(196.2) 

(196.3) 
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with arbitrary but real constants rx and {3. The expectation value of ax 
is then defined by 

From 

we obtain the products 

Then, 

or 

. 2·p 2·p 1-112 
( a > = -cosrx smrx(e I +e- I )-­

x 1 +112 

. 1-112 

(ax> = -sm2rxcos2{3-1 2· 
+11 

(196.4) 

(196.5) 

The absolute value of the expectation value of ax therefore always turns 
out to be smaller than 1. In the extreme relativistic case where 11 
approches unity, ax becomes very small so that almost complete 
orientation of the spin parallel or anti parallel to the direction of prop­
agation is obtained. In the unrelativistic limit, on the other hand, 
where 11 is very small, polarization perpendicular to the direction of 

propagation becomes possible with {3 = 0 and rx = =+= ~ leading to 
(ax> = ± 1. 

Problem 197. Algebraic properties of a Dirac wave spinor 

Given a potential V(z). The wave spinor of a state, with spin in either 
positive or negative z direction, may not depend upon x and y (one­
dimensional problem). As far as possible, the Clifford algebra shall be 
used without recourse to matrix representations. There will then remain 
four functions of z satisfying a set of coupled differential equations. 
They shall finally be expressed by the four component wave functions 
in standard representation. 
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Solution. The wave spinor may be written 

",(z,t) = e-iEt/fiu(z) (197.1) 

where the spinor u(z) satisfies the one-dimensional Dirac equation 

du Q() + 0 Q(z) = V(~;E. Y3 dz + Y4 Z U xu = ; (197.2) 

Sin<;e this equation is entirely built up within a sub-body of which the 
Clifford numbers 1, Y3' Y4' Y3 Y4 form the basis, it should be solved by 
a spinor of the form 

(197.3) 

Of course, if v solves the Dirac equation (197.2), so does any spinor 

u=vT (197.4) 

with T any constant Clifford number, including elements formed with 
Y1 and Y2· On the other hand, v commutes with the spin operator 

(197.5) 

of which it yet is no eigenspinor. The extension (197.4), however, permits 
the solution of the Dirac equation to be made an eigenspinor of az • 

We find 

So, if T is any eigenspinor of az , 

azT = ±T, 
we arrive at 

(197.6) 

(197.7) 

The two eigenvalues + 1 and -1 are called helicities (cf. Problem 190). 
N ow it can easily be seen that 

and 

are such eigenspinors with eigenvalues ± 1 of az : 

azT± = aA1 ±az) = az± 1 = ±(1 ±az) = ±T±. 

Our argument thus leads to 

u(z) = v(z) (1 + iY1 Y2) 

(197.8 a) 

(197.8b) 

(197.9) 
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where v(z) still remains to be determined by setting it into the Dirac 
equation (197.2). A simple calculation along these lines then leads to 

(B' +QC+XA)+Y3(A' -QD+xB)+Y4(D' +QA+xC) 

+Y3Y4(C' -QB +xD) = 0 (197.10) 

with the prime denoting differentiation. This expression is zero if, and 
only if, each of the four brackets vanishes. Thus we find the four func­
tions A, B, C, D to satisfy a set of coupled differential equations. 

B' +QC+xA = 0; A' -QD+xB = 0; 

D'+QA+xC=O; C'-QB+xD=O. (197.11) 

These equations become even simpler if combined into two pairs, 

and 

(B-D)' +(x-Q)(A-C) = 0; 

(A-C)' +(x+Q)(B-D) = 0 

(B+D)' +(x+Q)(A+C) = 0; 

(A + C)' +(x-Q)(B+D) = 0, 

(197.12a) 

(197.12b) 

so that the first pair of equations, (197.12a), only connects the two 
functions 

(197.13 a) 

with one another and the other pair, (197.12b), the two functions 

W2 = !(A+C); w4 = !(B+D). (197.13b) 

Putting these into v(z), Eq. (197.3), we finally find 

v(z) = (W2 +w4 Y3) (1 + Y4) + (W3 +Wl Y3) (1-Y4)· (197.14) 

Each of the two terms in (197.14) separately satisfies the Dirac equation 
(197.2) if Eqs. (197.12a, b) are satisfied. Multiplication on the right-hand 
side of each term with either F+ or L, Eqs. (197.8a, b), makes it an 
eigenspinor of (J'z too. 

It remains to show how the four functions W p. are connected with 
the four component wave functions up. of the standard representation. 
In this matrix description the Dirac equation (197.2) consists of the 
following component equations: 

-~U:3 +(Q+x)u 1 =0, } 
lU4 +(Q+X)U2 = 0, 

iU'l +(x-Q)u3 = 0, 

-iu'z +(x-Q)u4 = O. 

(197.15) 
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Comparing this set with (197.12a, b) we are led to identify 

(197.16) 
or 

A = -i(u2 +u3); B = U4 +U1; 

C = -i(u2 -u3); D = U4 -u1. (197.17) 

For U2=U4=O, the helicity will be +1, for U1=U3=O, it will be -1. 

Problem 198. Current in algebraic formulation 

To determine the components of the electrical current for the eigen-
spinor 

(198.1) 

of the preceding problem. 

Solution. The components of the electrical four-current are defined by 

(198.2) 

where, in our example, 

(198.3) 

since the Clifford numbers iY1 Y2' Y4' Y3 are hermitian operators. Thus 
we obtain 

s" = iec(1- iY1 Y2)(1-Y4)(Wj + Wh3)Y4 Y,,(w3 +W1 Y3)(1-Y4)(1- iY1 Y2). 
(198.4) 

For the components S1 and S2 the Clifford number Y" may be shifted 
through two places towards the end of the expression, whereas Y4 may 
be shifted one place towards its front: 

S1,2 =iec(1- iY1 h)(Y4 -1)(wj -W!Y3)(W3 -W1 Y3)(1 +Y4)Y1,2(1-iY1 h)· 

The operator 1- i Y1 Y2 commutes with Y3 as well as with Y 4' so that 

s1,2 = iec(Y4 -1){(iw3 12 + IW112) 
-(Wt w3 +WjW1)Y3}(1 +Y4)(1-iY1 Y2)Y1,2(1-iY1 Y2)' 

The last three factors give either, for J1= 1, 

(1- i Y1 Y2)(Y1 - i Y2) = Y1 + i Y2 - i Y2 - Y1 = ° 
or, for J1=2, 
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Therefore, as was to be expected, no current components exist per­
pendicular to the z direction. 

For S3 we may write in a similar way, 

S3 = iec(Y4 -1)(w! -Wh3)(W3 Y3 + wl )(1-Y4)(1-iYI Y2)2. 

The square at the end of this expression gives 

(1-iYI Y2f = 2(1-iYI Y2) 
so that we find 

(198.5) 

S3 = 2iec(Y4 -1){(w! WI -wt W3)+(\w312 -lwI12)Y3}(1-Y4)(1-iYI Y2)· 

Shifting the front factor (Y4 -1) one place towards the right, we get 

S3 = 2iec {(WtW3 -w!w1) (1-Y4) 

+(IWI12_lw312)Y3(1 +Y4)}(1-Y4)(1-iYI Y2)· 
Since 

(198.6) 

the second term in the curly bracket does not contribute and we arrive at 

S3 = 4iec(wt W3 -w! wl )(1-Y4)(1-iYI Y2). (198.7) 

Finally, we get in a similar fashion 

S4 = iec(1-iYI Y2)(1-Y4)(W!+wh3)(W3+W1 Y3)(1-Y4)(1-iYI Y2) 

= 2iec(1-Y4) {(lwI12 + Iw312)+(wt W3 +w! W1)Y3} (1-Y4)(1- iYI Y2) 

= 4iec(lwl1 2 + Iw312)(1-Y4)(1-iYI Y2). (198.8) 

The expressions for S3 and S4 are still Clifford numbers but of the 
same shape. They are to be compared with the normalization expression, 

uu = (1-iYI Y2)(1-Y4)(W! +Wh3)Y4(W3 +w1 Y3)(1-Y4)(1-iYI Y2) 

which by the same procedure may be brought into the form 

uu=4(lwI 12 -IW312) (1-Y4) (1-iYI Y2). (198.9) 

Gathering up the results, except for a common factor 

r = 4(1-Y4) (1-iYI Y2), 

we just have simple c-number expressions for the current density in 
z direction, 

(198.10) 

for the charge density p following from s4=icp, 

(198.11) 
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and for the normalization expression 

UU = (IWlI2_lw312)r. (198.12) 

Using the standard components, Ul =W1 and u3=iw3' introduced in 
the preceding problem, these expression may as well be written 

S3 = ec(uTu3+U~Ul)r; p = e(lul l2+ IU312)r; 

uu = (IUlI2 -lu3 12)r. (198.13) 

It should be noted that in standard representation the operator r 
becomes very simple. We have 

(
0000) o 0 0 0 

1-Y4 = 0 0 2 0 ; 

000 2 

thence we find the product 

r~ 16(~ o 0 0) 
000 
010 
000 

~ H), 
000 

(198.14) 

a matrix which, in diagonal form, consists of only one element. 

Problem 199. Conduction current and polarization cUl:rent 

a) The electrical current density (particle charge e), 

sv=iecliiYvt/l; sk=ik; s4=icp (199.1) 

shall be shown to satisfy the equation of continuity, 

"os" --0 d·· op 0 £... or IV] +::;-t = . 
" ox" v 

(199.2) 

b) The vector Sv shall be decomposed, 

(199.3) 

so that the space part of s~, the conduction current, is of the same form 
as the unrelativistic expression for jk. The remaining part, sf, is then 
called the polarization current. 
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Solution. a) In order to prove (199.1) we have to supplement the 
Dirac equation 

LY/l(o/l-ia/l)I/I+xl/l = 0; 
/l 

by an analogous differential equation for Iii = I/It Y 4. The operators 

have the complex conjugates 

Dt = Ok+iak, Dt = -(04 +ia4 ), 

since Xk and ak are real, but X 4 and a4 imaginary. The conjugate 
equation of (199.4 a), 

L D~ I/It Y/l + xl/lt = 0 
/l 

- L Dt Iii Yk + Dt Iii Y 4 + X Iii = 0 
k 

may be written 
(199.4b) 

From (199.4 a, b) it then follows by elimination of the mass terms that 

L {IiiY/l(o/l-iaJI/I+(o/l+iaJIiiY/l·I/I} = O. 
/l 

Here the all terms cancel and the rest may be written 

LOiIiiY/lI/I) =0, 
/l 

in agreement with the equation of continuity (199.2). 
b) The unrelativistic expression of the space part of the electrical 

current is, according to Problem 126, 

ik = ~e: (1/1 Ok 1/1* -1/1* Ok 1/1 + 2 i ak 1/1* 1/1), (199.5) 

i. e. mainly a bilinear combination of wave functions and their space 
derivatives. In order to give s., Eq. (199.1), a similar form, we may 
there replace either Iii according to (199.4 a) or 1/1 according to (199.4 b) 
by their first derivatives: 

iec" - iec- " 
Sv = - L.. (o/l+ iaJI/IY/l· Yvl/l = - -I/Iyv L.. Y/l(o/l- ia/l) 1/1. 

x /l x /l 
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Symmetrizing by taking half the sum of these two expressions and 
putting ec/'X,=eh/m, we fmd 

Using the commutation rules 

y"Yv+Yvy"=215,,v 

in the second and third terms, we may reshape this into 

or, splitting off the sum its diagonal term j1.=V, 

(199.6) 

(199.7) 

The first term of this decomposition exactly matches Eq. (199.5) and 
is therefore the conduction current s~ as defined above. The other term 
then is the so-called polarization current, 

(199.8) 

NB. This decomposition has first been studied by W. Gordon, Z. Physik 50, 
630 (1928). The space part of s~ may be written 

e - ehi iJ -
sP=mcurl(I/lSt/J)- 2mc iJt(I/la.t/J) 

where Sk = ~ Uk are the components of the spin vector (written in 4 x 4 reducible 

matrices) and the elk are the matrices defined at the end of Problem 189. In a plane 
wave the polarization current vanishes. 

Problem 200. Splitting up of Dirac equations into two pairs 

Write the Dirac equation in hamiltonian form and split up the resulting 
four-component equation of standard representation into a pair of two 
component equations. Pauli matrices will occur in the latter. Show that 
for rest mass zero (e. g. for a neutrino) two two-component theories 
are possible. 



Problem 200. Splitting up of Dirac equations into two pairs 189 

Solution. The Dirac equation 

~ yIlDIll/l+xl/l = 0; DIl = 0ll- ~: All;} 

A4=i<P; e<P=V; 04=-~Ot 

can be written, distinguishing time and space derivatives, 

Multiplication from the left by ehY4 renders 

he L Y4YnDnl/l-ihotl/l+ Vl/I+me2 Y4l/1 = 0 

or 

with 

the hamiltonian .. 

n 

_~ol/l=Hl/I 
i ot 

In standard representation we have 

-iSn) • 

o ' 

(200.1) 

(200.2) 

(200.3) 

with Sn the three Pauli matrices and 1 and 0 standing, respectively, for 
the 2 x 2 matrices of unity and zero. Then, 

. (0 Sn) CXn=lY4Yn= Sn 0 (200.4) 

so that the hamiltonian (200.2) splits up in the form 

(200.5) 

If here we introduce the two-component quantities l/Ia and l/Ib so that 
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is the four-component Dirac spinor, the differential equation splits up 
into the wanted pair of two-component equations, viz. 

- ~ atra = -ilie(s· D)t/lb+(V +me2 )t/la, } 
(200.6) 

Ii at/lb . ~ ~ - i at = -llie(s· D)t/la+(V -me2)t/lb 

or, for a stationary state of positive energy, E, 

(200.7) 

Neutrino theory: If m=O, the two equations become identical so 
that 

(200.8) 

are two possible solutions with t/la to be determined from 

{ ~ E- V} 
(S·D)-Ai~ t/la=O. (200.9) 

Since the two systems decouple, there emerge two independent two­
component theories of particles of rest-mass zero. It can easily be seen 
that, in the force-free case, the parameter A becomes identical with the 
helicity quantum number. For this purpose we study a plane wave in 
z direction, 

t/la = Ceikz 

with C a constant two-component spin or. The first term of (200.9) 
then becomes 

and its second term 

so that we have 

E 
-Ai-= -ikA 

lie 

(200.10) 

Therefore A is the eigenvalue of the spin component (in units of 1i12) 
in the direction of propagation ("helicity"). With the Pauli matrix 
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Eq.(200.10) then is solved for A.= +1 by 

(200.11 a) 

whereas for the helicity A. = -1 it is solved by 

(200.11 b) 

NB. Experience shows that neutrinos always have helicity h= -1 so that 
only the second theory actually describes natural phenomena. 

Now, the operator 
Ys =Yl Y2 Y3 Y4 

in standard representation becomes 

so that 

( 0 -1) 
Ys = -1 0 

( 1 -1) l+ys= -1 1; 1-YS=G~} 
If these operators act on any A. = + 1 solution of (200.9), i. e. on 

they lead to 

Acting on any A. = -1 solution of (200.9), i. e. on 

they render 

(200.12 a) 

(200.12 b) 

It cannot be decided whether, due to some unknown principle, only !/J _ is realized 
in nature, or whether the interaction operator producing neutrinos contains a 
factor l+ys, thus making creation of A= +1 neutrinos impossible. It should be 
noted, however, that 1 +Ys is an operator without defined parity. 

Problem 201. Central forces in Dirac theory 

To use the splitting up of the Dirac equations in standard representa­
tion into a pair of two-component equations (Problem 2(0) in order· 
to construct eigenspinors of a central potential field V(r) which are 
simultaneously eigenspinors of the total angular momentum operators 
J2 and Jz. The calculations may be restricted to mj = +1. 
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Solution. According to (200.7) we may start from the differential 
equations 

(20Ll) 

where Sn (n = 1,2,3) denote the three Pauli matrices, and 

~ =(~:) (201.2) 

is the Dirac spinor, composed of the two-component spinors ~a and ~b' 

The angular momentum operators, deriving from J = L + ~ (1, have 

four-component standard representations which do not mix the first 
two components (~a) with the other two (~b) since the four-component 
extension of the spin matrices, 

= (Sn 0) 
Un 0 ' Sn 

is diagonal in the Pauli matrices. If therefore ~a and ~b are two­
component eigenspinors of J2 and Jz , so will ~, Eq. (201.2), be. 

Now, in Problem 133, we have already constructed the two­
component eigenspinors Uj.l of J2 and Jz with quantum numbers 
j=l±! and mj= +!, viz. 

uI=u. ,_.1.= fl(r) ( Vl+Tft.o)=fj-t(r)( Vj+!Yj- t .o) (201.3a) 
},] 2 V21+1 -Vift.1 V2J -Vj-!Yj-t.1 

and 

u"=u, '+t= gl(r) (Vi ft. ° )= gj+t(r) (Vj+!Y}+t. o). (201.3b) 
1.1 V21+ 1 Vl+T ft. 1 V2U+ 1) Vj+t Yj +t.1 

We shall try to solve our problem by combinations of these two spinors, 
taking either 

(201.4 a) 

or 

(201.4 b) 

where the normalization of f(r) and g(r) is still left open and may be 
different in (201.4a) and (201.4 b). 
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To follow this programme, according to (201.1), we need the ex-
pressions 

S III ~ ~ III (Oz; Ox-iOy) III 
U' = L., SnUnU' =. u' . 

n=l ox+IOy; -oz 
(201.5) 

Using the well-known formulae 

. (l±m+2)(I±m+1) (' I) 
±(Ox±loy)(F(r) Y1,m) = (21+3)(21+1) F --;:F Yl+l,mtlo1.6a) 

(l=Fm)(l=Fm-1)(, 1+1) 
(21+1)(21-1) F +-r- F ¥i-1.m±1 

and 

(l+m+1)(I-m+1) (F' -~F) y: 
(21+3)(21+ 1) r 1+1.m 

(l+m)(l-m) (' 1+ 1 ) 
+ (21+1)(21-1) F +-r- F ¥i-1.m (201.6 b) 

we arrive after some cumbersome but elementary reshaping of the 
expressions 

Su l = 1 (vz+iozCft Y1.o)-Vl(ox-ioY)(!1 ¥i. 1») 
V21 + 1 vz+i(Ox+ioY)(!1 ¥i. 0) + VI OzUI ¥i.1) 

and 

(201.7 a) 

(201.7 b) 

for j=l-!. 
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In order now to satisfy Eqs. (20Ll), we first try the type of solution 
(201.4 a): 

sull_iE-:~me2 ul=O; SUI_i E -:;me2 ull=O. (201.8) 

Putting ul and ull from (201.3 a, b) and Sull, SUI from (201.7 a, b) into 
(201.8), we fmd (omitting the subscripts of f and g) 

II .E- V -me2 I 
Su -I he u 

_ 1 ~' j+~ .E-v-me2f )( Vj+tYj-t,o) -- g +-g-I 1;;-1 V2J r he -vj-"2 Yj-t,l 

and 

S I .E-V+me2 II 
u -I u 

he 

= 1 (f'_j-tf_iE-v+me2g)(V~+tYj+t,o). 
V2U+l) r he VJ+"2 Yj+t,l 

These expressions vanish if the radial functions fer) and g(r) satisfy the 
coupled differential equations 

g +-g-I =0, 
r he 

I j+~ .E-V(r)-me2f } 

(201.9 a) 
I j-t .E- V(r)+me2 

f - -f-I g=O. 
r he 

The type of solution (201.4 b), on the other hand, with ul and ull 
exchanged in (201.8) leads in the same way to formulae in which the 
role of the two equations (201.8) and thus the signs of the rest-mass 
terms are exchanged. Thus we arrive, not at (201.9a) but at the set of 
differential equations 

I j+~ .E-V(r)+me2 } g + -g-I f=O, 
r he 

I j-t .E- V(r)-me2 
f - -f-I g=O. 

r he 

(201.9 b) 

The differential equations (201.9a) and (201.9b) have still to be 
solved for any given potential VCr), separately, thus providing the 
complete solution. By their coupling they determine the relative nor­
malization of the two functions f and g. 
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It should be noted that, in contrast to the unrelativistic spin theory, 
contributions of different I values are mixed up in the four-component 
Dirac spinor so that I is no longer a good quantum number, but j and 
mj of course still are. 

Problem 202. Kepler problem in Dirac theory 

To specialize the solutions of the central-force problem to the potential 

Ze2 

V(r) = --
r 

and to determine the eigenvalues. 

(202.1) 

Solution. In the preceding problem we have found two sets of solu­
tions for the general central-force problem, the differential equations 
for whose radial parts had been written up in Eqs. (201.9 a) and (201.9b). 
Let us first discuss the system (201.9a). With the abbreviation 

Ze2 Z 
f3 = t;;; = 137' (202.2) 

which, it should be borne in mind, generally is a very small number, 
and 

f1 me2 -E 1 me2 +E 

a he f1a he 
or 

me2 -E he 
f1= 

me2 +E' 
a= (202.3) 

V(me2 -E)(me2 +E) 

the differential equations (201.9a) may be written for potential (202.1): 

g' + j:t g+{~ _ ~)f=O; } 
f' _j-t f-i(~+E)g=o. 

r f1a r 

(202.4) 

These equations are to be solved. 

We start by discussing their behaviour for very large and very small values of r. 
For r-+OC! Eqs. (202.4) become 

f'-~g=O 
fla 
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with normalizable solutions 

There is another set of type e+r,a which we need not discuss. For r--+O, on the other 
hand, we expect regular solutions of the form 

g=Ars - 1 ; !=Brs-1. 

Putting these in (202.4) we get 

(s-1)A+(j+t) A-iPB =0, 

(s-1) B-(j-t) B -iPA=O. 

Vanishing of the determinant of this set of linear equations leads to 

s=V(j+t)2-p2 . 

Combining these results, it seems reasonable to put 

9 = Cr'i- 1 e-r/aG(r); } 

f= --Cr'-l e-r/aF(r); 
Il 

then, from (202.4), there follow the differential equations 

(202.5) 

(202.6) 

(202.7) 

Adding and substracting these equations, respectively, and putting 

G+F = v(r); G-F = w(r) (202.8) 
we arrive at 

, s+p w } v +-v= -(k+q)-, 
r r 

, s-p 2 v 
w +(-r--~)w= -(k-q)--;:-

(202.9) 

with 

(202.10) 

From the first equation (202.9) we get 

1 1 
W= --k -{rv'+(s+p)v}; w'= --k-(rv"+(s+p+l)v'}. (202.11) 

+q +q 
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This we put in the second equation (202.9) which thus becomes a second­
order equation for only v, viz. 

(202.12) 

This is a Kummer's equation; its solution, in arbitrary normalization 
and regular at the origin, is the confluent series 

v = lFl (s+ p,2s+ 1; 2~). 
From (202.11) we then derive w(r) using the general formula 

G :z + a) lFl(a,e; z) = a lF1(a+ 1,e; z); 

the result is 

(202.13) 

(202.14) 

Putting the expressions (202.13) and (202.14) in (202.8) leads on 
to G and F and thence, using (202.6), we finally arrive at the radial 
functions 

- ~:~ lFl (s+p+ 1,2s+ 1; 2~)}; 
(202.15) 

f= - 2ip. Cr'-le-r/a{lFl(S+P,2S+1;2~) 

s+p ( r)} +-k-1F1 s+p+1,2s+1;2- . 
+q a 

The two confluent series are asymptotically proportional to e+ 2r/a , 

thus destroying normalizability unless their first parameters are zero 
or negative integer: 

s+p = -nr; nr = 0,1,2,3, ... (202.16) 

If s + p = 0, in the second confluent series we still have s + p + 1 = + 1; 
however, a factor s + p makes this part of Eqs. (202.15) vanish anyway 
in this particular case, so that (202.16) is the complete eigenvalue condi-
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tion. Replacing in (202.16) p by (202.10) and taking J1 from (202.3), we 
may introduce the energy and write 

~f3 
2 

This may be resolved for E: 

me2 +E} 
2 E = -(nr+s). 

me -

thus providing us with the energy level formula wanted. 

(202.17) 

We have so far not yet considered the second set of radial equations, 
(201.9 b), which follows by replacing J1 by -1/ J1 in (202.4) and conse­
quently, q by -q and p by -p so that the eigenvalue condition (202.16) 
is changed into s - p = - nr which, however, alters nothing whatsoever 
in the energy level formula. Each energy term therefore is degenerate 
with two solutions to it. 

If P> 1 (Z> 137) the exponent s, Eq. (202.5), will become imaginary for 
the ground state, so that the boundary condition at r = 0 cannot be simply satisfied. 
For very large Z the potential hole may even become so deep that for the lowest 
bound state E< -me2 • According to (202.3), a then becomes imaginary and the 
solutions g and j, Eq. (202.6), no longer decrease exponentially at large values of r. 
This is a consequence of the electron wave penetrating into the domain of negative 
energies (Klein's paradox), a phenomenon explained in some detail for a potential 
step in Problem 207 below (case e). 

Problem 203. Hydrogen atom fine structure 

For a hydrogen atom, the parameter f3 of the preceding problem be­
comes identical with Sommerfeld's fine-structure constant, 

e2 1 
a = he = 137· 

This parameter is small enough to justify power expansion of the results. 
This shall be performed, thus confirming the unrelativistic theory and 
adding its first relativistic correction. 

Solution. The expansion of s, Eq. (202.5), leads to 

s= j+- ---+O(a4 ). ( 1) a2 

2 2j+l 
(203.1) 
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If this is inserted into the energy formula (202.17), the principal quantum 
number, 

n= nr+j+~, 

may be introduced with advantage. We then have 

or 

Since 
me4 

me2 0(2 =-­
h2 

(203.2) 

(203.3) 

we arrive at the level formula for hydrogen, in first relativistic approxi­
mation: 

E = me2 
- 2~::2 [1 + :: G:~ -~)l (203.4) 

where the first term is the rest energy, the second term, for 0(2=0, the 
unrelativistic Balmer term (cf. Problem 67), and the square bracket pro­
vides a first relativistic correction of the order of 0(2 =0,532 x 10-4 or 
about 2~O percent of the binding energy. Since this correction depends 
upon j as well as upon n, each unrelativistic level will split up into 
several fine-structure components. 

Next let us expand the length parameter a, Eq. (202.3). This leads to 

(203.5) 

Without the relativistic correction in the square bracket, this is the 
well-known Bohr radius of the n-th hydrogen orbital. Since the argu­
ment 2rja occurs in the confluent series and e- r1a as a factor, in the 
radial wave functions (202.15), the atomic size is determined by a in 
a form quite similar to that in unrelativistic theory (cf. the following 
problem). 

To perform the transition from the relativistic wave functions 
(202.15) to those of the unrelativistic Schrodinger theory we need the 
expansions of the parameters f1 and q, Eqs. (202.3) and (202.10): 

0( [ 0(2 (n 1)~ 
f1 = 2n 1 + n2 2j+ 1 -"4 ~; (203.6) 

(203.7) 
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The factor in front of the second confluent series in (202.15), in un­
relativistic approximation, is 

s+p 
k+q 

nr _ nr 
j+!+n - nr+(2j+ 1)' 

(203.8) 

i. e. of the order of magnitude 1 (except in the case nr=O when it 
vanishes). The factor 11, according to (203.6) being of the order IX, there­
fore makes f about two powers of 10 bigger than g. In unrelativistic 
approach and arbitrary normalization we entirely neglect g and conclude: 

g=O, 

f= /-!e-~{lFl(-n,,2j+2;2~) 
(203.9) 

- ~. 11Fl(-nr+1,2j+2;2~)}. 
nr + J+ a 

If in the function f we put j=I+!, it is indeed transformed into the 
Schrodinger wave function [cf. (67.12)] 

(203.9S) 

where y= 1/a. This is readily seen as follows. With j=I+!, Eq. (203.2) 
renders for the principal quantum number n = nr + 1 + 1 so that 
nr=n-I-l and 

f = r1e- yr {lF1(l+1-n,21+3 ;2yr) 

n-I-1 } 
- n+I_11F1(l+2-n,21+3; 2yr) . 

Here we apply the general relation 

which permits with a = 1 + 1-n, c = 21 + 2, z = 2 y r transformation of 
the curly bracket 

into 
c 21+2 

-- IF1(a,c; z) = 1 11F1(l+ 1-n,21+2; 2yr) 
c-a n+ + 

as required in Eq. (203.9 S). 
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The second solution needs separate treatment. With Jl replaced by 
-1/Jl, we now have I the small and g the big solution. We use, except 
for a normalization factor, the unrelativistic approach 

g = ,..;-te- y, {1 F1 (- n,,2j + 2; 2yr)- 1F1 (1-n,,2j + 2; 2yr)),} (203.10) 

(=0 

where we now have to put j=l-t: 

g = rl - 1 e- Y' {1F1(-n.,2/+ 1; 2yr)-1F1(1-n,,2/+ 1; 21'r)}. 

To show that this is again the function (203.9S), we apply the general 
formulae 

d 
a{1F1(a+ 1,c-1;z)-1F1(a,c-1;z)} = z dz 1F1(a,c-1;z) 

and 

which indeed perform the desired transformation into 

g = r1e- yr 1F1(1-n,,21+2; 21'r) 

except for a factor 21'/(21 + 1). Here, according to (203.2), 1- nr = j +t- n 
which, with j = I-t, again becomes 1 + 1-n as in Eq. (203.9 S). 

Hitherto we have treated 1 as a convenient parameter without 
referring to its physical significance. In order to check the latter, let 
us calculate the expectation values of the operator L2 for the two types 
of solution. Using just the simple relation 

L2 Yl,m = h2 1(l + 1) Yl,m 

we get for both solutions the expectation value 
00 

J dr r2{U-t)U+t)III2+U+t)U+t)lgI2} 
o 

00 

J dr r2 {jI12 + Ig12} 
o 

(203.11) 

For the first solution we may neglect Ig12, which is then of an order r:t.2 

smaller than 1112; then it follows that 

(203. 12 a) 

corresponding to j-t=l. For the second solution, inversely, 1112 may 
be neglected and we arrive at 

(203. 12 b) 
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leading to j + t = l. These are exactly the substitutions used above. In 
other words, in unrelativistic approximation, when f and 9 are no longer 
mixed in the same wave spinor, 1 again becomes a good quantum number. 

Supplement. The eigenspinors are composed of 

and 

ul = _1-f (r) ( vr:-t ti-t,o ) 
V2J -Vl-"2 Yi-t,l 

in either of the two forms 

We have seen that for the first solution, l/I., g<~.f, for the other, l/Ib, f ~g so that 
they approximately simplify to 

Thus there remains the unrelativistic two-component spin theory in which now 
j= I+t for l/I. and j= I-t for l/Ib without any mixing of different I-values for the 
samej. 

We further know that the "big" function in l/I. is 
f =ri- t e-r,n IFdj+t -n,2j + 1; 2yr) with j=l+t 

and in l/Ib' 
g=ri+t e-r,n IFl(j+~-n,2j+3; 2yr) with j=l-t. 

If, and only if, the first parameter ofthe confluent series is zero or a negative integer, 
there exists a normalizable solution. Thus we arrive at the lowest possible states 
given in the following table. Their radial wave functions, either f or g, are identical 
with those of the unrelativistic theory treated in problem 67; their two-component 
character agrees with the unrelativistic spin theory, cf. Problem 133. 

Spectroscopic 
j Solution symbol for 

l/I. l/Ib l/I. l/Ib 
1 n~l n~2 nS-,- nP-,-"2 2 2 
3 n~2 n~3 nP-" nD-" "2 2 2 

f n~3 n~4 nD!d nF!d 
2 2 

The energy levels, according to (203.4), are, except for the residual energy, 

En,j = - E~ - LI En,j 

with (in multiples of the atomic unit me4 /h2 =27.2 eV) 

o 1 
En = 2n2 
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the unrelativistic Balmer binding energy, and 

L1En,j=2~~4G:t -}) 

its relativistic correction. For n=3 the energy values and their corrections are 
tabulated. The table shows that the splitting is larger the lower the level. That is 
the reason why the red H ~ line (n = 3-n = 2) appears to be roughly a doublet of 

(2.08-0.42) x 10- 6 x 27.2eV 
or 0.365 cm - 1 splitting. 

n EO n (2/~2) L1En,j for 106 x L1 En,j for 

j=t j=! j=~ j=t j=! j=~ 

1 1 1 6.68 '2 4' 

2 1 5 1 2.08 0.42 8 64 64 
3 1 1 1 1 0.74 0.25 0.08 Til 36 TOs 324 

Problem 204. Radial Kepler solutions at positive kinetic energies 

To determine the radial wave functions and their asymptotic behaviour 
if the electron in the Coulomb field has positive kinetic energy, E - m e2 > 0, 
at infinite distances from the centre of attraction. 

Solution. Since m e2 - E < 0, we replace the relations (202.3) of 
Problem 202 by the definitions 

E-me2 

1]k=--­
he 

(204.1 a) 

where k is now the wave number at infinity, This is equivalent with 

E-me2 V(E-me2 )(E+me2 ) 
1]= k= . 

E+me2 ' he 
(204.1 b) 

The differential equations to be solved then run as follows, 

g' +j:! 9+i( _1]k_~)f=O') 
r_ j - t f-i(~+~)g=o. 

r 1] r 

(204.2) 

We solve these equations in full analogy to Problem 202 by putting 

g=-21 (w+v)r- 1 eikr ; f=~(w-v)r-leikr (204.3) 
21] 
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with 
s= VU+t)2- p2. (204.4) 

After a straightforward calculation, using the abbreviations 

(204.5) 

and the variable 
z= -2ikr (204.6) 

we arrive at 
d2 w dw 
z- + [(2s+ l)-z] - - (s-iQ) w=O 

dz 2 dz 
(204.7) 

and 

1 [dW ] V=-. . z-+(s-iQ)w. 
]+t+zP dz 

(204.8) 

The solution of the differential equation (204.7), regular at the origin, in 
arbitrary normalization, is 

w=c lF1 (s-iQ,2s+1 ;z). 

From (204.8), using the formula 

we then find 

{z d: + a} lFl (a,c ;z)=a 1 Fda + 1,c; z), 

s-iQ . 
V= -C. 1 . Jl(1+s-zQ,2s+1;z). 

]+2+ ZP 

(204.9) 

(204.10) 

Eqs. (204.9) and (204.10) provide the complete solution of the radial 
problem in arbitrary normalization. 

For positive real values of r, the variable z, Eq. (204.6), is negative 
imaginary. We therefore may apply without further precaution the 
asymptotic formula 

. r(c) r(c) 
F, (a c· z)~e-l"a z-a + - eZ za-c 

1 1 , , r(c-a) r(a) (204.11) 

thus getting 

C r(2s + 1) e -~2q {e _i~~+iQI09 2kr i e - i~S -iQlog 2kr e - 2ikr} 

w~-~-~-- + ._-
(2kr}" r(l +s+iQ) r(s-iQ) 2kr 
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and 

C r{2s+1)e -"2Q s-iQ {e _i;s+iQIOg2kr 1 
v ~ - ------ --,----

(2krY j+!+iP ir{s+iQ) 2kr 

+ e e- 2ikr • 

i;s-iQIOg2kr } 

r(1 +s-iQ) 

Here, the second term in the w bracket and the first term in the v bracket 
are of an order 1/kr smaller than the other terms, respectively, and may 
thus be neglected. Therefore, using (204.3), we arrive at the results 

rg ~ C 1 ei(kr+ Q log 2kr) + C2 e-i(kr+Qlog 2kr), 

IJ r f ~ C 1 ei(kr+ Q log 2kr) - C2 e-i(kr+Qlog 2kr) 

with the complex amplitude constants 

"Q ins 
Cr{2s+1)e-T e 2 

C1 = 2(2kY r(1 +s+iQ)' 
nQ in 

Cr{2s+1)e-T s-iQ eT 
C = ------- --:--~ -----

2 2(2kY j+!+iP r{1+s-iQ)· 

(204.12) 

(204.13) 

The constants C 1 and C2 can, of course, only differ by a phase factor since 
incoming and outgoing partial waves must have equal amplitudes. Indeed 
both the factors by which they differ from one another, 

s-iQ n r{1 +s+iQ) 2"' 
--:---= eland = e I, 

j+!+iP r{1 +s-iQ) 
(204.14) 

are phase factors. For the second this is obvious; the first one yields 

- -1 t s-iQ 12 S2+Q2 
·+!+iP - U+!)2+p2 -

because of 
Q2 _ p 2 = f32 and S2 =U +!? - f32. 

We therefore fmally arrive at 

with 
ns 

~=kr+Q log2kr ---, -b. 
2 

(204.15) 

(204.16) 
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NB. The result may be compared with the unrelativistic theory where IJ ~ 1 
so that f ~ g. This gives 

fo::. + sin (kr+Q log2kr - % (s+ 1)-( -b) (204.17) 

where, according to (204.5) and (204.1 b), Q may be expressed by E and further by 
the velocity v at infinity. From the well-known relation 

( 2)-+ 
E=mc2 1- ~2 

one easily deduces 

i.e. Q becomes identical with x, Problem 110. From (204.1 b) one further gathers 
that 11k is the momentum of the electron, at infinity. The first two terms in the 
argument of (204.17) therefore agree with the classical expressions. The constant 
phase angles, in the same approximation, follow from 

s-+j+t=I+1 and P-+Q=x; 
they become 

n . 
= n + "21+argr(l+1+ix), 

and as the wave function is defined except for a sign (i.e., for a phase n) we arrive 
finally at 

fo::. +sin{kr+xlog2kr - ~l - argr(l+1+ix)} 

in complete agreement with the results of Problem 111, but for an attractive 
Coulomb potential. 

Problem 205. Angular momentum expansion of plane Dirac wave 

The angular momentum eigenspinors of Problem 190 shall be used to 
construct the plane wave, of helicity h= + 1, in z direction: 

(205.1) 
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Solution. We start by solving Eqs. (201.9 a, b) in the force-free case. 
Using the abbreviation 1'/, introduced for plane waves in Problem 190, 
we have with 

instead of (201.9 a) 

From (205.3 b) we get 

and by differentiation 

, j+! 
g +-g-ikl'/f=O; 

r 
j_l k 

l' __ 2 f-i-g =0. 
r 1'/ 

. k , j-! 
l-g=f --f 

1'/ r 

k . 1 . 1 
. '-f" 1-2 f ,+1-2 f l-g- -- -. 

1'/ r r2 

(205.2) 

(205.3 a) 

(205.3 b) 

(205.4) 

Putting these expressions into (205.3a), a second-order equation for f 
results: 

(205.5) 

with the solution 

(205.6) 

regular at the origin, in arbitrary normalization. Putting then (205.6) 
into (205.4), we find 

with the prime denoting differentiation with respect to the argument kr. 
The general formula 

then permits to write 

(205.7) 
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Thus the normalization of g is fixed relative to that of f. Eqs. (205.6) 
and (205.7) allow us to write the full four-component spinor according 
to (201.4 a) for givenj and mj= +t: 

I 1 1/1.=-
J kr 

(205.8) 

The second solution derived in Problem 201 is obtained by replacing 
11 by 1/11 in (205.3 a, b) so that f is still given by (205.6), but in (205.7) the 
factor 11 has to be put in the denominator instead of in the numerator. 
From (201.4 b) with an arbitrary normalization we get for the second 
solution, 

II 1 1/1. =-
J kr 

(205.9) 

In order to construct a solution like (205.1), we have to write 

1/1 = 'l)Ajl/l} + Bjl/lY) . (205.10) 
j 

In this expansion it is, of course, possible to change the dummy j in a 
different way in different sums. We shall do this by again using the 
orbital momentum quantum number 1 so that in all sums over 
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(with m=O or 1) we shall put j=l+!, and in all sums over 

we shall put j=l-!. We then obtain from (205.8) and (205.9): 

(A,+t Vf+l + B,-t ~ VI) Y"o 

'" = f it(kr) ( -Al+t VI + B,_t~ Vf+l) YI,1 
'=0 V21+1kr 

(205.11) 

Here it is correct to sum over all 1~0. In the terms j=l+!, this follows 
directly from j~l On the other hand, for j=l-! the sums would start 
with 1=1. In the second and fourth line, however, the zeroth term 
vanishes because YO,1 =0. There remain j=l-! terms in the first and 
third line with 1=0, but again these vanish due to the factor VI. 

In order to make the sum (205.11) identical with (205.1) we need only 
put 

(205.12) 

as can be directly checked. 

Problem 206. Scattering by a central force potential 

A plane Dirac wave of positive helicity is scattered by a central-force 
potential. To determine the asymptotic behaviour of the scattered wave 
if the phases are taken from the solutions of the radial wave equations. 

Solution. In Problem 201 it has been shown that there are two sets 
of radial equations, viz. 

'+3 } Set I: gj + 1 r 2 gj-ik1] Ij+i U(r)/j=O, 

. 1 k (206.1 a) 
I f 1-21 , 'U() 0 

j - - j-l-gj+l r gj= 
r 1] 
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with U(r) = V(r)/hc. It can easily be seen that, for U(r) decreasing more 
steeply than 1/r, the asymptotic solution may be written 

(206.2 a) 

with 

(206.3 a) 

The two functions are mutually shifted by a phase angle nl2 and their 
respective amplitudes, given in arbitrary normalization, are coupled in 
such a way that, as the unrelativistic limit (1]-+0) is approached, fj 
becomes the big and gj the small wave function. If fj is chosen to be real, 
gj is purely imaginary. The phase rlj is determined by integrating the set 
(206.1 a) with the boundary conditions gj(O)=O, fiO) =0. In the classical 
approach, j=l+t so that we get 

1 . ( n ) fk)-+-sm kr-l-+ rl,+.l ; 
r 2 2 

at large r. 

with the asymptotic solution 

and 

1 
j.-+-cos,. 

J r J 

(206.1 b) 

(206.2 b) 

(206.3 b) 

with other phase constants Pj than in case I. Since (206.1 b) differs from 
(206.1 a) by 1] being replaced by 1/1], in the classical limit there will gj 
become the big, and fj the small wave function. This leads to the iden­
tification j = 1- t in this approach: 
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We have further seen in Problem 201 that there exist two solutions 
t/J} and t/JY for each value of j belonging to spin in positive z direction, 
constructed from these two sets. They behave asymptotically as 

1 t/JI. -4-
J kr 

1 t/JI.I -4-

J kr 

__ 2-COSO". Y·_, 0 ~'+1. 
2j J J 2' 

Vj-t - ---cosO"· Y·_l. I 2j J J 2' 

Vj+! . in --- SInO"· Y'+l. 0 ./ 2(j+1) J J 2' 

. V j+~ . 
In --- SIn 0". Y'+l. I ./ 2(j+1) J J 2' 

- __ 2_ sin •. Y'+l 0 
i~·+1. 

1'/ 2(j+1) J J 2' 

- __ 2_ sin •. Y'+l. ! 
i~'+~ 

1'/ 2(j + 1) J J 2' 

__ 2_ cos •. Y·_l. 0 ~.+1. 

2j J J 2' -v j -! cos.· Y·_l. I 2j J J 2' 

The most general solution is 

t/J = I (Ajt/J} + Bj t/JY) 
j 

(206.4) 

(206.5) 

which, by changing the summation subscript j into I ±t everywhere so 
that spherical harmonics of the order I emerge in the sum, may be written 

1 00 1 
t/J-4-I--

kr 1=0 V21+ 1 

[VI + 1 A,+t cosO"l+t + ~ 0 B,-t sin .,-t] Y"o 

[-0 A,+t cOSO"l+t + ~ vz+l B,-t sin.,- t ] Y,,! 

[il'/ 0 A,-t sinO",-t + vz+l B,+t cOS.,+t] Y"o 

[il'/ vz+l A,-t sinO",-t - 0 B,+t cOS.,+t] Yi,I 

(206.6) 
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This has the same structure as the plane wave (205.11, 12) with which it 
becomes identical if OCj=O and /3j=O for allj. Let us write the plane wave 

(206.7) 

with 

A?+t = ~ C i']IT+T ; B?+t = 1] A?+t; } 

a?-t = T?-t = kr-l~. 
(206.8) 

The boundary conditions of a scattering problem, for r--+ 00, are then 
satisfied if, and only if, the difference 

(206.9) 

contains no incoming spherical wave parts of the form e-ikr/kr but only 
outgoing waves so that it may be identified with the scattered wave. 
This, according to (206.6), leads to four coefficient relations, viz. 

(206.10) 

These equations are satisfied if, and only if, 

(206.11) 

The scattered wave then can be shown by straightforward calculation 
to behave asymptotically as 
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Problem 207. Continuous potential step 

A plane wave of positive helicity h = + 1 is falling perpendicularly from 
negative z upon a potential step described by 

V(Z)=!Vo(1+tanhf), (207.1) 

i. e. with the potential increasing from V = 0 at z = - 00 to V = + Vo at 
Z= + 00, within a layer around z=o of a thickness of the order 1. The 
coefficient of transmission of the step shall be investigated for the cases 
of different step heights, viz. 

Case a: VO<E-mC2,} 

Caseb: E-mc2 <Vo<E+mc2 , 

Case c: E + m c2 < Vo . 

The three cases are sketched in Fig. 72. 

c 

(207.2) 

Fig. 72 a---c. Three potential steps of different heights. The energy domains in which 
the particle can move are indicated by hatching 
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Solution. This is a special case of Problem 197. For helicity h = + 1, 
the component functions u2 and U 4 vanish so that we are left with a set 
of only two differential equations, 

with 
V(z)-E 

Q= he ; 
me2 

X=--. 
he 

(207.3) 

(207.4) 

Let us introduce, instead of U 1 and U 3, their symmetric and antisymmetric 
combinations, 

(207.5) 

then, instead of (207.3), we have the equations 

-xCPs=icp~+QCPa; xCPa=icp~-Qcps (207.6) 

which permit a simpler elimination of one of the two functions than do 
the original equations (207.3). We find 

cP~ + [Q2 _ x2 + i Q'J CPs = O. (207.7) 

We have to solve this differential equation with fitting boundary condi­
tions and afterwards to derive CPa from the second equation (207.6) in 
order to solve the problem completely. 

The differential equation (207.7) can be written with rational coef­
ficient functions if we use the variable 

(207.8) 
instead of z with 

(207.9) 

Further, we shall introduce an energy unit 2he/l and use the dimension­
less abbreviations 

El 
e=--' 

2he' 

IVo 
Vo=-' 

2he 
(207.10) 

Eq. (207.7) then is transformed into 

X(I-X)~[X(I-X) dCPsJ + {[vo(l-x)-eJ2- e~+ivox(l-x)} CPs=O. 
dx dx 

(207.11) 
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If we put 
IPs=xV (I-x)/L f(x) 

with 

this reduces to the hypergeometrical equation 

x(l-x) f" + [(2 v + 1)-(2 v+2Jl+2)x] l' 
-(Jl+ v- i vo)(Jl+ v-i Vo + 1) f =0 
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(207.12) 

(207.13) 

(207.14) 

of which we need, as we shall immediately see, only the solution regular 
at x=O, 

(207.15) 

In order to see this, we next study the boundary conditions. According 
to (207.8) we have x=1 for Z= -00, and x=O for Z= +00. Further, 
according to (207.10) and (207.13), we have 

(207.16) 

hence Jl is always an imaginary parameter proportional to the particle 
momentum p=hk for V=O, i.e. on the far left. The hyper geometric 
series (207.15), in the neighbourhood of x= 1, may be transformed 
according to the rule 

r(c)r(c-a-b) 
2Fl(a,b,c;x) = 2Fl(a,b,a+b-c+ 1; I-x) 

r(c-a)r(c-b) 

c-a-b r(c)r(a+b-c) 
+(I-x) 2Fdc-a,c-b,c-a-b+l;l-x) 

r(a)r(b) 

which, with (207.8) and (207.15), leads for z-+ - 00, x~ 1 to 

or, with 
e2z/1 

l-x= -+e2z/1 

1 +e2z/1 
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and (207.16), to 
(207.17) 

A= r(2v+l)r(2Jl) . B= r(2v+l)r(-2Jl) 

r(v+ Jl-ivo)r(v+ Jl+ ivo+ 1)' r(v- Jl-ivo)r(v- Jl+ i Vo + 1) 

(207.18) 

where B differs from Ajust by the sign of Jl. The function <{Js therefore is, at 
large negative z, composed of an incoming wave with amplitude A and 
a reflected wave with amplitude B, conforming to the physical problem. 
Hence the special solution (207.15) satisfies the boundary condition at 
large negative values of z. The same composition of two waves holds for 
<{Ja if we apply the second equation (207.6) to the asymptotic function 
(207.17), 

<{Ja-+ A (~_~)eikZ+B(~+~)e-ikZ. 
me2 '" me2 '" 

(207.19) 

The electrical current density (cf. Problem 198, Eq. (198.13)) 

jz=ee(uI U3 +uj Ul) = tec(I<{J.1 2 -1<{JaI 2) (207.20) 

is then, except for interference terms, 

(207.21) 

with the incident current 

. 1 2{ (E k)2} 2 pe(E-pe) Jin=zeelAI 1- --2 -- =eelAI 22 
me '" (me) 

(207.22) 

and the reflected current 

. 1 2 { (E k)2} 2 pe(E+pe) 
Jrefl=zeelBI 1- me2 +; =eelBI (me 2)2 (207.23) 

where the energy formula 
E = V(pef+(me2)2 

is to be remembered. 
Let us now pass on to a discussion of the behaviour of the wave 

function on the right-hand side of the potential step, near x=O or for 
z-+ + 00. It then follows from (207.12) and (207.15) directly that 

where, according to (207.10) and (207.13) 

1 
v=-i-k'; 

2 
k'2 = (E - VO)2 - (me 2)2 

(hef 

(207.24) 

(207.25) 
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Here we have to distinguish three cases according to Eq. (207.2). If 
E- Vo>mc2 or Vo-E>mc2 (cases a and c), k'2> 0 and k' is real. If, on 
the other hand, IE - Vol <mc2 (case b), v will be real and k' imaginary. In 
the last case, with v>O, Eq. (207.24) describes total reflection of the 
incident wave so that the coefficient of reflection, 

. . IBI2 E+pc 
R=JrefJJin = A E-pc' (207.26) 

must become = 1. 
This can easily be derived from A and B, Eq. (207.18), by using the 

identity r(z+ 1)=zr(z), 

!!. = v+ Jl+ivo r(v+ Jl-ivo)r(v+ Jl+ivo). r( -2Jl) (207.27) 
A v-Jl+ivo r(v-Jl+ivo)r(v-Jl-ivo) r(2Jl) 

Since 
Jl= -iq 

is always imaginary, the last of the three fractions in (207.27) never 
contributes to the absolute square IB/AI2. If v is real (case b), the second 
factor also is the ratio of two conjugate numbers not contributing. 
There then remains 

I
BI2 V2+(vo-q)2 2vo(e-q) E-pc 
A = V2+(VO+q)2 = 2vo(e+q) = E+pc' 

so that (207.26) indeed yields R = 1. 
In cases a and c, on the other hand, v is imaginary so that a running wave 
exists on the far right, 

and according to (207.6), 

( k' E- Yo) ik' E' -p' C 'k' 
<(Ja= --+-- e Z = e' Z 

'X mc2 mc2 

where p'=lik' is the particle momentum for z-++oo, and E'=E- Yo. 
The electrical current transmitted is then, according to (207.20), 

. _1 { (E' -p' C)2} _ p' c(E' -p' c) 
Jlrans -"!ec 1 - 2 - ec ( 2)2 . 

mc mc 
(207.28) 

This yields, with (207.22), a coefficient of transmission, 

. . 1 p'c(E'-p'c) 
T=1trans/lin = IAI2' pc(E-pc) . (207.29) 
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In now computing IAI2 from Eq. (207.18) we use, besides T(z+ l)=zT(z), 
the general formula 

we then have, with 

n 
1T(±iyW= . h (yreal); 

ysm ny 

/1= -ia, V= -ia', 

2 a a+a'-vo sinh2nasinh2na' 111AI = _. . (207.30) 
a' a+a' +vo sinhn(a+a' +vo) sinhn(a+a'-vo) 

Combining (207.30) with (207.29), there occurs a factor 

p' c(E'-p' c).~. a+a' -vo (E' -p' c)(pc+ p' c- yo) 

pc(E-pc) a' a+a'+vo (E-pc)(pc+p'c+Vo) 

which can easily be shown to be = 1: if we replace Vo by E - E', the 
expression may be written 

(E'-p' c)(E' +p' c)-(E'-p' c)(E-pc) = 1 

(E -pc)(E + pc)-(E -pc)(E' - p' c) 

since E'2_(P' cf=(mc2)2=E2_(pc)2 in the first terms of numerator 
and denominator. We therefore finally obtain the coefficient of trans-
mission, 

sinh 2 n a sinh 2 n a' 
T= . 

sinh n(a + a' + vo) sinh n(a + a' - vo) 
(207.31) 

The denominator can be suitably reshaped so that the characteristic 
quantity Vo, proportional to the product of breadth and height of the 
step and independent of the particle energy, is isolated from the momen­
tum quantities a and a' : 

sinh 2 n a sinh 2 n a' 
T= . (207.32) 

sinh2n(a+ a') cosh2 nvo - cosh2 n(a + a') sinh2 nvo 

In case a of Eq. (207.2), we still have a+a'-vo>O or Vo«p+p')c. 
This is the normal case which also occurs in unrelativistic theory. In case c, 
on the other hand, we find a + a' - Vo < 0 and therefore T < O. The wave 
then penetrates, for large positive z, into the domain of negative energies 
(cf. Fig. 72) where negative electrical current accompanies positive momen­
tum. If nvo~ 1 or 

2nlic 
Vo~--, 

I 
the expression (207.32) becomes 

nip nip' "IVo 
T= -4sinh-sinh--e-fle 

Ii Ii 
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i. e. the penetrability of the potential step from positive to negative 
energies rapidly becomes very small with increasing "step size" Vo l. Since, 
in case c, Vo >mc2, the exponential in T contributes a factor smaller than 

nlmc 
e --ft- = e-1t11J.. 

with A=h/mc the Compton wavelength. 

Literature. Klein, 0.: Z. f. Physik 53,157 (1929); Sauter, F.: Z.f. Physik 69, 
742; 73,547 (1931). 

Problem 208. Plane wave at a potential jump 

A plane Dirac wave of arbitrary polarization falls obliquely on a potential 
jump smaller than its kinetic energy. The laws of reflection and refraction 
shall be derived, and the state of polarization of the transmitted wave 
calculated. 

Solution. Let the incident wave 1/1 be described by a wave vector k 
in the direction defined by polar angles 8, cp, the reflected wave 1/1' by k' 
in the direction 8', cp', and the transmitted wave 1/1" by k" in the direction 
8", cp". Let further z=O be the refracting surface and 1/1 and 1/1' be defined 
for z<O, 1/1" for z>O (see Fig. 73). 

~: 'P' 

k' 

k" 

k 

..J;rp zoo 

Fig. 73. The three wave vectors at a potential jump 

On the surface z = 0 there must hold for all values of x and y the 
relation 

(208.1) 

according to which the three k vectors have the same x and y components: 

k sin 8 cos cp = k sin 8' cos cp' = k" sin 8" cos cp" ; 

k sin 8 sin cp = k sin 8' sin cp' = k" sin 8" sin cp" . 
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These relations are satisfied if 

cp = cp' = cp" ; 

8'=n:-8; 

k sin8=k" sin 8" . 

(208.2) 

(208.3) 

(208.4) 

Eq. (208.2) shows that the three k vectors are lying in the same meridional 
plane, which we may choose to be the x, z plane, so that the y components 
of the three vectors vanish along with cp = 0, cp' = 0, cp" = O. Eq. (208.3) 
is the law of reflection, and Eq. (208.4) the law of refraction, the index of 
refraction being n = kIf /k. These two laws are very much the same as 
those holding for unrelativistic Schrodinger waves (Problem 45). 

Additional information arises for the polarization. Using cp =0 and 
8' = n: - 8, the three wave functions in standard representation run as 
follows: 

eikr 

IjI = -Vr=V=( 1=+=Yf2:=-) 
(

A cos i + B sin i ) 
A sin i - B cos ~ 

Yf(Acos i -Bsin i) 
Yf(A sin i + Bcos i) 

( 

C sin i + D cos i ) 
C cos i - D sin i 

Yf(C sin i - Dcos i) 
Yf( C cos i + D sin i) 

1jI" _ ei k" .. E sin 8~' _ F cos 8~' ( 

E cos ~' + F sin 8~' 

VV(1 + "2) "(E 8" F' 8") Yf Yf COST - SlllT 

Yf"(E sin 8~' + Fcos 8~') 

(208.5) 

Here, the first parts ofthe spinors, proportional to the constants A, C, and 
E, respectively, belong to waves with helicity + 1, the parts with B, D, 
and F to helicity - l. 

The boundary condition (208.1) applied to the amplitudes then 
leads to the following four-component relations: 

A + pB+pC + D=r(E +qF), 

p A - B + C - p D = r(q E - F), 

A-pB+pC-D=d(E-qF), 

pA+B+C + pD=rA(qE+F) 

(208.6) 
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with the abbreviations 

8 
p=tan-; 

2 
r= 

cos 9;' 

By combination we find from Eqs. (208.6) 

and 

A+pC=tr[(1 +..1.) E+(I-A) qF], 

pA + C=t r[(1 +A) qE -(1-..1.) F] 

B+pD=tr[ -(I-A)qE+(I+A)F], 

pB+D=tr[(1-A) E+(1 +A)qF]. 
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(208.7) 

(208.Sa) 

(208.Sb) 

From the first pair of equations we then eliminate C and from the other 
pair D so that there remain relations connecting the amplitude coef­
ficients E and F of the transmitted wave with A and B of the incident 
wave, viz. 

(l_p2) A=tr[(1 +,1,)(I-pq) E+(I-A)(P+q) F]; 

(l_p2) B=tr[ -(I-A)(P+q) E+(1 +A)(I-pq) F]. (20S.9) 

The expectation value of the he1icity (or, briefly, the polarization) of 
the incident wave is defined by 

A2_B2 
h = --::---0-

A2+B2 

and that of the transmitted wave by 

E2_F2 
h"=~--;; 

E2+F2 
From (208.9) we have 

1-(B/A)2 

1+ (B/A)2 

1-(F/E)2 

1 + (F/E)2 . 

-(I-A)(P+q)+ (1 +,1,)(I-pq)(F/E) 

B/A = (I+A)(I-pq)+(I-,1,)(P+q)(F/E) . 

(208.10) 

(208.11) 

(208.12) 

The expression can be much simplified by using the abbreviation 

1-..1. p+q '1-r(, 8+8" 
u=-_·--=--tan--

I+A I-pq '1+'1" 2 

which allows us to write 

(F/E)-u 
B/A = 1 +u(F/E)' 

(208.13) 

(208.14) 
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If, into this latter expression, h instead of BIA and h" instead of FIE are 
introduced according to (208.10) and (208.11), a simple calculation 
finally leads to 

h" = 1-u2 h-~V1-h2. 
1+u2 1+u2 

(208.15) 

If the incident wave is completely polarized in either of the two 
directions (h= ± 1) we find 

1-u2 

h"=+-­
-1 +u2 ' 

i. e. a partial depolarization will occur at the potential jump which is, 
however, of second order only in the parameter u. An entirely unpolarized 
beam (h = 0), on the other hand, leads to 

2u 
h"=---

1+u2 

the potential jump giving rise to at least partial polarization. The latter 
effect is of first order in u. Since u in reasonable arrangements generally 
turns out to be rather small (about 0.1), the partial polarization of an un­
polarized beam will be of greater interest than the partial depolarization 
of a beam of well-defined helicity. It should further be remarked that u 
vanishes for perpendicular incidence, so that grazing incidence will 
favour the effect. 

Problem 209. ReOected intensity at a potential jump 

To calculate the reflection coefficient of the plane wave of mixed helicity 
investigated in the preceding problem, and to derive the law of continuity 
of the electrical current at the surface. 

Solution. The electrical current density 

jl = i e ell} Y 4 YlljJ = e c ljJt (XlljJ 

can be expressed by the spin or components ljJ I' in standard representation 
as follows: 

j x = e c (ljJi ljJ 4 + ljJ! ljJ 3 + ljJ~ ljJ 2 + ljJ! ljJ 1) , 

jy = eci( -ljJi ljJ 4 + ljJ! ljJ 3 -ljJ~ ljJ2 + ljJ! ljJ 1), 

jz = e c(ljJi ljJ3 -ljJ! ljJ 4 + ljJ~ ljJ 1 -ljJ! ljJ 2) . 

Since the exponential factors of ljJ: and ljJv in a plane wave cancel out, 
there only remain the spinor amplitudes which, using the Dirac wave 
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functions of Eq. (208.5), are all real according to our choice of cp = O. 
Indeed, this leads to jy=O above. The two other components become for 
the incident wave 

2ec {( 8 . 8) ( 8 8) j x = 2 A cos - + B sm - Yf A sin - + B cos -
V(l +Yf ) 2 2 2 2 

+ ( A sin * -B cos *) Yf ( A cos * -B sin *)} ; 
jz = 2ec 2 {(A cos ~ + B sin~) Yf (A cos ~ - B sin ~) 

V(l + Yf ) 2 2 2 2 

- ( A sin * -B cos *) Yf ( A sin * + B cos *) } 
which may be simplified to 

By an analogous procedure we arrive at 

2ecYf 2ecYf 
jx' = (C2 + D2) sin 8' J" = - 2 (C2 + D2) cos 8 (209.2) 

V(l +Yf2) 'z V(l +Yf ) 

for the reflected 2, and at 

2ecYf" 
J'" = (E2 + F2) sin 8" . 

x V(l + Yf"2) , 

for the transmitted wave. 

(209.3) 

In order to calculate the three currents we first express the amplitude 
constants C, D, E, F by those, A and B, of the incident wave by solving 
the linear system (208.6) or (208.8 a, b). The result of this rather cumber­
some but elementary computation is 

C= 
-rxA+f3B 

D= -
f3A+rxB 

(209.4) 
,1 

, 
,1 

, 

E= 
pA+O"B 

F= 
-O"A+pB 

(209.5) 
2rA 2rA 

2 Interference terms of incident and reflected waves may be omitted for the 
present purpose since Jd3xeHk- k ')r=O. When dealing only with local dependence 
of densities, these interferences are of interest, cf. Problem 23. 
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with the abbreviations 

OC = 2(A2 + l)p(l + q2)-4Aq(1 + p2); 

13 = (A2 -1)(1- p2)(1 + q2); 

LI = (A+ 1?(1-pq)2 +(A-1?(P+q)2; 

p LI = (A+ 1)(LI-ocp)-(A-1)f3=4A(A+ 1)(1- pq)(1- p2); 

(1 LI = (A-1)(P LI-OC)+(A+ 1)f3p=4A(A-1)(P+q)(1- p2). 

From Eqs. (209.4) and (209.5) it further follows that 

Ll2 ·(C2 + D2)=(OC2 + f32)(A2 + B2); 

4r2 A2(E2 + F2)=(P2 + (12)(A2 + B2). 

(209.6) 

(209.7) 

If the expressions (209.6) are put into (209.7) we find by elementary 
though lengthy calculation, 

and 
(209.8) 

(209.9) 

It is now easy to express the reflected and transmitted currents by 
the incident one. We find for the z components perpendicular to the 
potential jump surface, 

and 

., C2 + D2 . oc2 + 132 • 

Jz= - A2+ B2 Jz= -~Jz 

." r( 1 + 1'/2 cos [)''' E2 + F2 . 
Jz = 1+1'/,,2·-1'/_· cos[). ·A2+B2Jz 

1'/" 1 + 1'/2 cos [)''' p2 + (12 . 
=_. __ . __ ._-J 

1'/ 1 +1'/"2 cos[). 4r2 A2 z· 

(209.10) 

In the last formula we introduce the definitions (208.7) which render 

1'/" 1 + 1'/2 cos [)''' 1 1 _ q2 
_· __ ·--·-=A--· 
1'/ 1 + 1'/"2 cos [). r2 1- p2 ' 

hence 

(209.11) 
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Eqs. (209.10) and (209.11) when combined with (209.8) and (209.9) then 
yield 
./ __ { _ 4A(1- p2)(1- q2)}.. ." 4A(1-p2)(1-q2). 

}z - 1 L1 }z,}z = L1 }z (209.12) 

with L1 defined in (209.6). From (209.12) there follows immediately the 
equation of continuity, 

(209.13) 
The quantity 

(209.14) 

is the coefficient of reflection. At normal incidence (p = 0, q = 0) it simply 
becomes 

R = (A-1)2 
A+1 

(209.15) 
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Problem 210. Quantization of Schrodinger field 

The quantization of a force-free Schrodinger wave field into particles 
obeying either Bose or Fermi statistics shall be discussed using suitable 
expressions for energy, momentum and electric charge of the field. 

Solution. Let us start by treating the force-free Schrodinger equation 
as a classical wave field, t/! being simply a scalar function of space coor­
dinates and time. Then, in the usual normalization, we have the following 
integral expressions (cf. Problems 3 and 5): the total field energy is 

w= - ;l:J d3xt/!*V2 t/!, 

the total momentum of the field is 

p=4 f d3xt/!*Vt/!, 

and the total electric charge of the field is 

(210.1) 

(210.2) 

(210.3) 

Here m and e are phenomenological constants not yet explained as 
particle properties since, so far, the field does not yet consist of particles. 

We further know that a Schrodinger field must satisfy two conjugate 
wave equations, 

Ii at/! li2 2 
-- -= --v t/!. 

i at 2m ' 

Ii at/!* li2 

_ -= --v2 t/!*. 
i at 2m 

(210.4) 

They may be solved by plane waves which we normalize within an arbit­
rary periodicity cube of volume 11; the complete solution then may be 
written in the form 

t/!(r,t)="fI- t L Ck ei(kr-wt) 

k 
(210.5) 
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with the law of dispersion following from (210.4), 

h2 P 
hw=-. (210.6) 

2m 

If we put (210.5) in the expressions (210.1) to (210.3) and use the 
orthonormality relation of the plane waves, 

we get 

~ f d3xei (k-k')r=bk ,k' 

11" 

Q = e~>t Ck' (210.7) 
k 

This classical theory now we shall quantize. The wave function t/J 
shall be replaced by an operator t/J which operates on Hilbert vectors X 
of particle numbers. The same then holds for the coefficients Ck of the 
Fourier series (210.5). They have to be replaced by such operators Ck 

and their hermitian conjugates 4 as to make the eigenvalues of ckck 

integers, viz. 
either N k = 0,1,2,3, ... in the Bose case 

or N k = 0,1 only in the Fermi case. 
(210.8) 

If this is done, the three expressions (210.7), too, become operators with 
the eigenvalues 

(210.9 a) 

p= 'LNkPk; Pk=hk; (210.9b) 
k 

(210.9 c) 

describing a system of particles without interactions of which N k are 
in the state k and have each the energy Ek , the momentum Pk and the 
charge e. 

Quantization leading to the required eigenvalues (210.8) is performed 
if the coefficients satisfy the following commutation rules!' 2: 

[Ck ; ct,] _ == Ck ct, - 4, Ck = b kk, in the Bose case 
or [ . t] - t t ~ . h F . 

Ck ,Ck' + = Ck Ck ' + Ck ' Ck = ukk' In t e erIDl case. 
(210.10) 

1 The commutator notation [a, b] = a b - b a used in this chapter differs by a 
factor i/h from the one used in chapter I. 

2 For the Bose case, it has been shown in Problem 31 that the eigenvalues 
(210.8) are the consequence of the commutation rule (210.10). The same method 
may be applied in the Fermi case. 
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From these relations the commutator of the wave functions can easily 
be constructed: 

[l/t(r,t); l/tt(r',t)] ± = ,.J~ L L [Ck; Ct.J± ei(kr-k'r')-i(w-w')t 

Y k k' 

=~ L eik(r-r')=(j(r_r'). 
k 

(210.11) 

This commutation relation apparently holds for both commutator signs. 

Problem 211. Scattering in Born approximation 

The quantized Schr6dinger theory shall be applied to the elastic scattering 
of a particle in a central force potential, V(r). 

Solution. Let the force-free quantized field of the preceding problem 
be disturbed by the potential V(r); then the hamiltonian W of the field 
has to be supplemented by the perturbation energy, 

(211.1) 

If we stick to the first approximation, we may put the plane-wave de­
composition (210.5) of the preceding problem into W' for l/t and l/tt, 
thus getting 

(211.2) 

The integrals in (211.2) are well known from the Born approximation 
(cf. Problem 105); with the abbreviation 

k-k'=K (211.3) 

we again arrive at the expression (note that its dimension is erg·cm3) 

00 

<k'lV Ik) = J d3 x V(r) eiKr =4n f dr r2 V(r) si~~r 
o 

and may briefly write 

(211.4) 

(211.5) 
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We now turn to describing the scattering process. If in the initial 
state there is just one particle in the state ko and all other one-particle 
states are empty, so that the initial Hilbert vector is 

Xi=10 ... 1ko ·"Ok, ... ), (211.6a) 

and if the final state is defined by there being just one particle in the 
state kf' 

(211.6b) 

then we need the matrix element 

(211.7) 

to determine the transition probability between these two states. 
U sing the general rules 

cklOk) =0; Ck 11k) = 10k) 
we find 

i. e. all terms of the sum over k in Eq. (211.5) vanish when W' is applied 
to Xi except the term k = ko and here the operator cko exactly annihilates 
the initial particle, thus generating the state vector of vacuum, 10). If 
now Ck ' is applied, all sum terms will contribute, viz. 

w' 11ko) = .J~ L <k'!V Iko) ei(ro'- roo)t 11k,) . 
r k' 

The matrix element (211.7) then again leaves only one term of this sum, 
in consequence of the orthogonality, 

therefore 

(211.8) 

From the matrix element we now finally proceed to the differential 
cross section using the Golden Rule, 

(211.9) 

with 

(211.10) 
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where all the quantities refer to the final state. Putting (211.10) in (211.9) 
and using the matrix element formula (211.8), the (large but otherwise 
arbitrary) periodicity volume "f" cancels out and we arrive at the result, 

(211.11) 

With the expression (211.4), this completely agrees with Born's first 
approximation formula, cf. Problems 105 and 184. 

Problem 212. Quantization of classical radiation field 

A classical Maxwell field in vacuo, underlying the condition of periodicity 
within a cube "f" = L3 , shall be quantized into photons, using the classical 
expressions of field energy and momentum. 

Solution. The classical radiation field is described by a vector 
potential A satisfying the differential equations 

02A=0 and divA=O (212.1) 

in the usual gauge leading to transverse waves, The physical meaning 
of these equations can either be explained by coupling A with the field 
strengths, 

1 . 
tE= --A; 3t'=rotA, (212.2) 

c 
or by the mechanical expressions of total field energy, 

W=~fd3X(tE2+3t'2)=_1 fd3X{~A2+(rotA)2}, (212.3) 
8n 8n c2 

and of total field momentum, 

p= _1_ f d3X (tE x 3t')=-~f d3x(A x rotA). 
4nc 4nc 

(212.4) 

The differential equations (212.1) are solved by plane waves in the 
usual standard form, 

A = V4~2 ~ Uk"(qk,, ei(kr-cat) + qZ" e-i(kr-wt») (212.5) 

with il=1,2 denoting the two states of transverse polarization and Uk" 
a unit vector. There hold three orthogonality relations, 

(212.6) 
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The normalization factor in front of the summation sign in (212.5) is 
arbitrary and merely conventional. The k vectors are restricted by the 
periodicity within the cube nJI = L3 to 

2n 
k=-n 

L 
(212.7) 

with integer components ni =0, ± 1, ± 2, ... The frequency OJ is connected 
with k through the law of dispersion, 

OJ=kc. (212.8) 

Since each term in the sum (212.5) consists of two complex conjugate 
members, the vector potential A is a real function of rand t, as necessary 
in the classical Maxwell theory. 

Putting (212.5) in the energy integral (212.3), we get 

W= c:,L L fd3X{- OJ OJ' Uk, .. ,uk .. -(k'x un:)(kx Uk;)} 
21' k .. k' .. ' c 

X {q e i(k'r-ro't) q* e-i(k'r-ro't)} 
k'''' - k'''' 

X {qkA ei(kr-rot)_qt .. e-i(kr-rot)}. 

Multiplication of the two last brackets and integration leaves either 
k' = -k in the products of type qq and q*q*, or k' =k for the types qq* 
and q* q. The first bracket then becomes, when use is yet made of (212.6), 

Hence, there remains 

if k'= -k, 

if k'= +k. 

W = L OJ2(qk .. qt .. + qt .. qkA.)· 
k .. 

(212.9) 

For the momentum, Eq. (212.4), a similar calculation leads to 

P = L OJ k(qkA.qt .. +qt .. qkA.)· (212.10) 
k .. 

Now we are ready to proceed to quantizing the classical radiation 
field by replacing the amplitudes qkA. and qt .. by operators and their 
hermitian conjugates. Written in the form 

(212.11) 
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with a real normalization factor Ck , the expressions (212.9) and (212.10) 
turn into 

W= L w2 q (b" .. bL +bLb"J; 
,,;. 

and (212.12) 
P = LwkCf (b";.bL+bLb,,J. 

,,;. 

With the operators b,,;. and bL chosen to satisfy the commutation rules 

(212.13) 

and all other combinations commuting, the eigenvalues of the operators 
bLbu become integers, N" .. , including zero, 

Nu =0,1,2,3, ... (212.14) 

and those of bkAbL become N,,;. + 1. (Cf. Problem 31). If we further put 

the operators (212.12) become 

and 

with eigenvalues 

"hw t t W= L.. 2 (bkAb,,;. +b";.b,,..) 
,,;. 

P= Lhk(bkAbL+bLb,,;.) 
,,;. 

W=Lhw(NkA+t); P=Lhk(N,,;.+t)· 
,,;. ,,;. 

(212.15) 

(212.16) 

(212.17) 

This permits interpretation of N kA as the number of photons in a state 
defined by k and A, each of the photons having the energy hw and the 
momentum in the wave propagation direction hk=hw/c. 

There occurs a zero-point energy, i. e. an energy of the vacuum, 

hw 
Wo=L-' 

kA 2 
(212.18) 

In spite of its being infinitely large, it has no serious physical consequences 
and may be normalized away by using 

(212.19) 
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i. e. the difference of the actual state from vacuum. In the momentum the 
zero-point contribution vanishes anyway, because in the sum pairs of 
terms with opposite k vectors cancel each other out. 

The vector potential A then becomes an operator, creating or an­
nihilating photons. It may be gathered from Eqs. (212.5), (212.11) and 
(212.15) that we shall write in quantum theory: 

A = " V2 7r c Ii {b ei(kr- cot) + bt e - i(kr- cot)} U (212.20) t "Ji k k.1. k A k.1. • 

Problem 213. Emission probability of a photon 

The probability that an electron from an excited state in a central potential 
field V(r) will jump to a lower level and emit a photon shall be determined. 
Retardation effects may be neglected. 

Solution. The interaction of matter (the electron) with radiation is 
given by the classical Maxwell expression, 

H'=~f d3x(A-j) (213.1) 

with A the vector potential and j the electrical current density of matter. 
The first has been translated into the theory of quantized fields in Problem 
2123 , 

A =" V27rIiC u(A)(b eikr+bt e- ikr) t k"Ji k kA kA • 

The current can be taken from the quantized Schrodinger field, 

n 

using the formula 

1i2 

--V2 un+ Vun=Enun 
2m 

. eli t t 
] = - -. (I/! VI/! - VI/! . I/!) 

2mz 

(with the electron charge - e), hence 

eli 
j = - --. L L (u:, VUn - Un Vu:,) c!, Cn • 

2mz n n' 

(213.2) 

(213.3) 

(213.4) 

3 Omission of the time factors of (212.20) and (210.5) in (213.2) and (213.3) 
corresponds to the transition from the Schrodinger to the Heisenberg picture. 
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The functions un{r) and u~,(r) are one-particle wave functions according 
to (213.3), the subscript n (or n') being a comprehensive notation for a 
set of three quantum numbers. The Cn and c!, are the operators used in 
Problem 210 and may satisfy either of the commutation rules 

Cn c!, ± c!, Cn = (inn" 

CnCn' ± Cn' cn=O. 
(213.5) 

Spontaneous emission of a photon is a process in which the electron 
jumps from an initial state nj to a final state nf or, in the wording of 
quantized wave theory, an electron in the initial state nj is annihilated 
and an electron in the final state n f created instead. At the same time a 
photon in a state (k,A) is created. Such a process will be originated by a 
term with the operator product 

in the hamiltonian. If we put (213.2) and (213.4) in (213.1) such a term 
will indeed occur; we write it in the form 

with 

1 f ~nfiC efi . <fI H'li)=- d3X -- -ie-,kru<k"l.(U*Vu -u Vu*) 
C k"fl" 2m nf n, n, nf 

(213.6 a) 

(213.6 b) 

the matrix element of H' between initial and final state. The transition 
probability then follows from the Golden Rule (cf. Problem 183), 

(213.7) 

The density P f of final states in the energy scale is completely deter­
mined by the photon: 

k2 dkdQk "fl" "fI" 2 
Pf= =--k dQk 

(2 n)3 ficdk 8 n3 fic 
(213.8) 

with dQk the solid angle element into which the photon is emitted. 
There remains the evaluation of the integral in (213.6 b), 

Retardation may be neglected if the wavelength of the emitted light is 
large compared with the atomic integration domain, i. e., if in the integrand 
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e - ikr = 1 is a good approximation. Of the two terms of the integral, the 
second then may be partially integrated, thus yielding 

1=2 J d3xu:, Vuni · 

From the Schrodinger equations for uni and u:, an identity may be 
derived (cf. Problem 187), 

_ 2m J 3 * I -r;z(Ei-Ef ) d xUn,runi 

and from the conservation of energy there follows 

Ei-Ef=hw 

so that the matrix element (213.6b) becomes 

e lp;hC 
<IIH'li) =~i V ~w<Iluk).)·rli) 

with 

(213.9) 

(213.10) 

By gathering the expressions (213.8) and (213.9) into (213.7), we then 
finally obtain 

(213.11 a) 

or, if we introduce v = w/2 TC instead of w, in the usual notation, 

(213.11 b) 

The remaining matrix element in this formula may still be decomposed 
into two factors according to 

<II uk).). r Ii) = uk).)· rif (213.12) 

with the first factor depending only upon the direction and polarization 
of the photon emitted, and the second only upon atomic parameters. 

Problem 214. Angular distribution of radiation 

The final formulae of the preceding problem shall be used to investigate 
the angular distribution of photons emitted in a p~s transition of one 
electron. 



Problem 214. Angular distribution of radiation 237 

Solution. Let e and cP be polar angles defining the direction of k. 
We then may define two polarization states, one with u~l) in the meridi­
onal plane, the other with uf) perpendicular to it. The two unit vectors 
then have the components 

U<1) =cos e sin cp. y , u~l)=-sine (214.1 a) 

and 

(214.1 b) 

To construct the components of 'if we first write the three components 
x, y, z of r in terms of spherical harmonics: 

(214.2) 

lf4n 
z=r V 3 Y1,o' 

Of these three expressions we then form matrix elements between the 
two electrons states, 

li)=v(r) Y1 ,m(8,cp); If)=u(r) Yo,o(8,cp). (214.3) 

It should be noted that Yo,o=(411rt is a constant. Thence we get, 

(214.4) 

with the abbreviation 
00 

R = J drr3 u*(r)v(r) = 01r if l (214.5) 
o 

for the radial integral. 
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The probability of emission of a photon of polarization A in the 
solid angle element dQk is, according to (213.11a) of the preceding 
problem, 

(214.6) 

With (214.1 a, b) for u~;') and (214.4) for r if we find for the scalar product 
u~;')' r if in the case A = 1 

R .~ 
--cosee-'~ 

V6 ' for m= +1: 

for m= 
R . 

0: ---sme 113 ' 
for m = -1: 

R .~ 
--cosee'~ 

V6 
and in the case ..1=2 

Thus, if we write 

for m = + 1: - i ~ e - itP, 

for m= 0: 0, 

R .~ 
for m = -1: +i V6 e'~. 

(214.7) 

(214.8) 

(214.9) 

the directional factor Du will be given by the expressions assembled 
in the accompanying table. In the case ..1=2, all directions of photon 

Directional factors DkA for 
m A=1 A=2 

+1 
o 

-1 

tcos2 e 
sin2 e 

tcos2 e 

1 
2" 
o 
1 
2" 

emission have equal probabilities; only from the initial state m=O are 
no photons of this polarization emitted at all. The P state with m=O, 
only decaying therefore under emission of a photon in polarization 
state ..1= 1, has an angular distribution as sin2 e, the main direction 
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of emission for m = 0 thus falling in the equatorial plane B = 90°. For 
A= 1 and m= ± 1, however, the distribution becomes proportional to 
cos2 B and the emission occurs preferably in the directions B = 0° 
and B= 180°. 

Problem 215. Transition probability 

What is the transition probability of an electron from a higher P to 
a lower S state by emission of a photon of any direction or polarization 
whatsoever? As an example, the mean lifetime of the 2 P state in a 
hydrogen atom shall be computed. 

Solution. In the preceding problem, the differential emission prob­
ability for the photon going into the solid angle element dQk in the 
direction B, cP was computed for m = + 1, 0, -1 and both states of 
polarization. Gathering these formulae and performing summation over 
both polarization states, we obtain 

for m = 0; (215.1 a) 

e2 ()J3 R2 1 
~Pk).= hc3 . 6ndQk'"2(1+cos2B) for m= ±l. (215.1b) 

Integration of these expressions over all directions of the photon then 
yields the same transition probability from P to S state for all three 
initial values of m, viz. 

e2 ()J3 R2 8 n 4 e2 ()J3 
P=-_·_·_=- __ R2 (215.2) 

hc3 6n 3 9 Iic3 

Since R has been defined in some detail in the preceding problem, 
we may now immediately turn to the example. From the 2P state of 
a hydrogen atom transitions are possible only to the 1 S ground state. 
The eigenfunctions of the two states are 

and 
If> = 2e- r Yo,o 

(215.3 a) 

(215.3 b) 

in atomic units (unit length: 1i2 jme2 ). It then follows from (214.5) that 
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or, if we make the notation independent of units again, 

(215.4) 

The light frequency ro, in our example, follows from the hydrogen level 
formula 

(215.5) 

Putting R2 from (215.4) and ro from (215.5) in (215.2) and suitably 
arranging the factors, we arrive at the result 

P = (~)8 (e2)3 me4 
3 he h2 • 

(215.6) 

The reciprocal value of this transition probability is the mean life­
time 1" of the 2P state, since there are no other ways of decaying in this 
special case. Hence, 

The quantity 

h3 
-4- = 2.4187 X 10- 17 sec me 

(215.7) 

(215.8) 

is a suitable time unit for lifetimes of excited electron states. The factor 

h~ = 137.0373 
e 

is the reciprocal fine-structure constant. The numerical value of the 
mean lifetime of the hydrogen 2P state then becomes 

1" = 1.5953 x 10- 9 sec. 

Problem 216. Selection rules for dipole radiation 

It has been shown in Problem 213 that the transition probabilities 
between one-electron states in an atom depend upon the matrix elements 
of the electrical dipole moment, if the photon wavelength is large 
compared to atomic dimensions. Selection rules shall be derived from 
this fact. What can be concluded for the normal Zeeman effect? 
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Solution. The probability that a photon is emitted into a solid angle 
element dQ" in the direction k (polar angles e, <1» in a state A. of 
polarization is, according to (213.11 b), 

e2 4n2 v3 

p".). = lie' ~dQ"I</lu~).). rli)12 (216.1) 

in dipole approximation. Here u~).) is a unit vector in the direction of 
polarization, viz. according to (214.1 a, b), either with the components 

u~) = cos e cos <1>; u(1) = cos e sin <1>' Y , u~1) = -sine (216.2 a) 
or 

U~2) = - sin <1>; U(2) = cos <1>' U<z2)=O. Y , (216.2b) 

The two atomic states have wave functions 

Ii) = qJi(r) Yz.m( 8, qJ); <II = qJJ(r) Yz~m'( 8, qJ) 

so that the matrix element of r has the components 

</lx±iyli)= oooo! drr3qJiqJJfdQYz~m'Sin8e±i'PYz.m,} 
(216.3) 

</lzli) = J drr3qJiqJJfdQYz~m,cos8 Yz.m· 
o 

We may now use the relations 

sin8e±i'P Yz.m: ±AI+1 • ±m+l YI+l.m±l =F AI. +m y l - 1•m±1'} (216.4) 

cos8 Yz.m - Bl+ 1.m Yz+l.m+ BI.m Yz-l.m 

with coefficients 

(l+m)(l+m-1) . 
(21+ 1)(21-1) , 

which permit angular integrations in (216.3), 

(l+m)(l-m) 

(21+ 1)(21-1) 

<II x ±i Yli) = KiJ {±AI+1. ±m+l <>/,.1+1 <>m'.m±l 

=FA,. +m<>/"I-l <>m',m±d, 

where the abbreviation KiJ stands for the radial part, 
00 

KiJ = J drr3 qJi(r)qJAr). 
o 

(216.5) 

(216.6a) 

(216.6b) 

(216.7) 

These matrix elements vanish if not If = I ± 1, thus providing us 
with the first basic selection rule for dipole transitions. Further, it is 
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seen that for m'=m±l only the matrix element of x±iy, and for 
m' =m of z, do not vanish. Any other changes of the quantum numbers I 
and m cannot occur in dipole transitions. 

Combining these selection rules with the polarization vectors 
(216.2 a, b), we may compute the matrix elements 

(II u~;') • r Ii) 

occurring in (216.1), for the two polarization states 2= 1 and 2=2. 
The results are summarized in the accompanying table. 

m' A 1'=1+1 1'=1-1 

m+1 
1 tcose e-i<l> KifAl+1,m+l -tcosee-i<l> Kif A l.- m 

2 -te-i<l> K if A l +l,m+l te-i<l> Kif Al,-m 

1 -sine Kif Bl+1,m - sin e Kif Bl,m m 2 0 0 

m-1 
1 -t cos e ei<l> Kif A l + 1, -m+ 1 t cos e ei<l> Kif Al,m 

2 -tei<l> KifAl+1,-m+l tei<l> Kif Al,m 

If the radiating atoms are not oriented in space, observation gives 
only intensity averages over all directions. The orientation, though, 
which is performed under Zeeman effect conditions gives more infor-

m= +2 ~~-------------­
+1~-.---------.---------------
O~-r'-------~~------'---­
-1~-+~------~~~-----+~--
-2~-+~-------+~+-------~r.-

m= +1--''-t-+----~Hr----~H­
O---L+-------~_r------~~-

-1----~--------~--------~-tim=-l tim=O tim=+l 

Fig. 74. Zeeman transitions D--.P. There are three lines of different polarization 
according to LI m = + 1,0, - 1 
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mati on. The polar axis 8 = 0 then coincides with the direction of the 
magnetic field. If we observe light emission in field direction, therefore, 
the matrix elements for m' = m will vanish, so that only the lines 
m' = m + 1 and m' = m - 1 are observed. In any direction perpendicular 
to the field, on the other hand, we have cos 8 = 0 so that m' = m ± 1 
lines appear in polarization state 2, but m' =m in state 1, only. 

As an example let us take the Zeeman transition from a D state 
(5 components) to a P state (3 components). If the frequency of the line 
emitted in absence of the magnetic field is wo, we then find three possible 
frequencies in the magnetic field (Fig. 74), viz. 

WI = WO+wL for m' = m-1'} .,p 
f ' 'h e~ Wo or m = m, WIt WL = -2- . 
f ' 1 me W-l = WO-WL or m = m+ 

Observing in field direction (8=0), we find the middle line (wo) does 
not occur and there is a doublet of frequencies Wo + WL and Wo - WL' 
In perpendicular observation all three lines occur, forming the full 
Zeeman triplet, though in different states of polarization. 

Problem 217. Intensities of Lyman lines 

To compare the intensities of emission of the two first Lyman lines of 
atomic hydrogen, LylX and Ly p. 

Solution. We are concerned with the two transitions 

LylX: 2p-" Is and Ly p: 3p-" 1s. 

The emission probability, integrated over all directions and summed 
up over both polarizations, is 

4 e2 w 3 

P=3 ne3 l<flrli)12; (217.1) 

the intensity of a spectral line (energy per second) is proportional to 
W· P so that for the two lines under consideration we have the intensity 
ratio 

Ia = (Ea)41 <1 slrl2p) 12. 
Ip Ep <1slrI3p) 

(217.2) 

Here the energy differences in atomic units are 

E -l 1 3 dE-II 4 a-"2-jJ=jJ an p-"2-T8=9' (217.3) 

We still have to calculate the two matrix elements. 
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From Problem 67 we know the wave function of the final state to be 

(217.4a) 

whereas for the initial state we have either in the Lycx case 

1 1 

12p) = re-Tr cos8 
4~ 

(217.4 b) 

or in the Ly fJ case 

4 ~ 1 ) 1 13p)= 1M: r--6 r2 e-,rcos8. 
27 V 2n 

(217.4c) 

Here we have arbitrarily used the p states with m=O, a choice which 
does not restrict generality as long as no directional effects are discussed. 
Since the vector r has components 

x±iy= rsin8e±iq> and z = rcos8, 

it is immediately seen that the matrix elements of x ± i Y vanish in 
consequence of the integration over qJ. Therefore only <11 z Ii) remains 
to be computed. We obtain, 

and 

Elementary evaluation leads to 

1 256 
<lslzI2p) = V2 . 243; 

Thus, Eq. (217.2) with (217.3) and (217.5) yields the final result 

1(1. = (27)4 . (256. 64)2 = 0 10 x 6 23 
1p 32 243 27 .5 . 

or 
1J1p = 3.18. 

(217.5) 

(217.6) 

Literature. Radial matrix elements for other pairs of hydrogen states are given 
by Bethe, H. A., Salpeter, E. E., in: Encyclopedia of Physics, vol. 35 (1956), cf. 
their section 63, and especially table 13. 
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Problem 218. Compton effect 

The scattering of a photon by a free electron at rest shall be investigated 
in the unrelativistic frame. 

Solution. In the presence of a radiation field, the electric current 
density of an electron field is described by 4 

j= _ eh.(",hi1",_v",t."')_~At/l"'=j'+j". 
2mz me 

The interaction energy of the two fields '" and A is 

W=~ f d3xj-A=W'+W". 

If for'" the quantized Schrodinger field, 

and for A the quantized radiation field 

(218.1) 

(218.2) 

(218.3) 

(218.4) 

are put in (218.2), it can easily be seen that W" (arising from j") will 
contribute to scattering in first-order, whereas W' (arising from j/) does 
so only in second-order approximation. We shall therefore in what 
follows confine our attention to the term 

(218.5) 

This interaction term can easily be understood from the viewpoint of the 

classical picture in which the electric field strength 8 = -.!. A of the incident 
e 

light wave plucks at the electron according to its equation of motion, 

.. '" eA· h . e A mr=-e0=- ; encer=- . 
e me 

This originates an induced current density j" = p r = ~ p A, if p denotes the 
me 

4 In the radiation problems previously dealt with, the last supplement term in 
(218.1) would not have contributed in first order. 
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charge density, and the interaction between the current and the radiation field is, 
according to Maxwell's theory, 

W"=~ r d3xj"'A=~rd3xpA2. 
c J mc- J 

If here we set p= -el/h/J, Eq. (218.5) results. 

The Compton scattering process is, in first order, described by a 
hamiltonian term with the operator combination 

(218.6) 

if a photon in the state (k,2) and an electron of momentum hq of the 
initial state are both annihilated and replaced by the newly created 
photon in the state (k', 2') and electron of momentum h q'. 

If we pick out of (218.5) the factor of the operator product (218.6), 
we have the matrix element, 

<II W" Ii) = - _~.~J d3 x 2nhe (uk')' u~~'»)ei(k+q-k'-q')r. 
me2 J 1""2likk' 

The integral in (218.7) vanishes unless 

k+q = k' +q', 

(218.7) 

(218.8) 

i. e. unless the law of momentum conservation holds for the process. 
If it holds, (218.7) becomes 

2 2 h ( (A). (A'») 
<IIW"li)= _~ Uk Uk' • 

me 1"" 'likk' 

For determining the cross section we apply the Golden Rule, 

da(k',2') = 2hn : Pf 1<11 W" Ii) 12 

where the final density of states follows from 

k,2 dk' dD' 1"" 
Pf= 8n3 dEf 

and the final energy is 

Ef = hek' + ;: q'2 = he {k' + 21x (k'-k- q)2} 

with x=me/h. 

(218.9) 

(218.10) 

(218.11) 

(218.12) 

Let us now deal with polarization. In Fig. 75 the directions k and 
k' of the photon before and after the collision are lying in the plane 
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of drawing. The vectors u~1) and u~V both lie in this plane, U~2) and u~~) 
(not drawn) are perpendicular to it. The scalar products in (218.9) 
can then be read directly from the figure: 

(u~1)· u~~») = cos 8; (u~1)· u~;'» = 0; 

(U~2) . u~~») = 0; (uF) . u~~») = 1. 

(1) 
Uk 

k 

k' 

(218.13 a) 

(218.13 b) 

Fig. 75. Compton effect. Definition of polarization vectors in the initial state (k) 
and final state (k') of the photon. Vectors U~l) and u~~) in the k, k' plane, vectors U~2) 

and u~~) (not drawn) perpendicular to it 

These relations show that there can only be transitions with both 
polarization vectors, before and after the collision, lying in the k, k' 
plane, or with both perpendicular to it. In the first case the transition 
probability becomes proportional to cos2 8, in the second case it is 
independent of the scattering angle. If the incident light is unpolarized 
we have to average over A. and to sum up over the final states A.' thus 
getting 

L(uk')'ui~')f =t(1+cos2 8). (218.14) 
;" 

For the further discussion, let us suppose the electron to be at rest 
in the initial state, 

q=O. (218.15) 

Then the law of energy conservation reads, according to (218.12), 

(218.16) 

This is a quadratic equation for the determination of k' because 

Its solution is 

k' = k cos 9-x + V x2 +2xk(1-cos8)- k2 sin2 9. (218.17) 
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To evaluate Pf' Eq. (218.11), we derive from (218.16) 

dEf _ { 1, }. dk' -lie 1+;(k-kcos8) , 

therefore, 

(218.18) 

and the differential scattering cross section, according to (218.10), 
(218.9), (218.14) and (218.18) becomes 

d = (~)2 k'2 t(1 + cos2 8) dD' 
(J me2 1 kk" 

1 +-(k' -kcos8) 
(218.19) 

x 

where k' still may be replaced by the full expression (218.17). 
So far, these are all rigorous unrelativistic formulae. They can, of 

course, be used only as long as the electron does not receive a kinetic 
energy comparable with m e2 : 

Ekin = lie(k-k') ~ me2 or k-k' ~ x. 

It is therefore reasonable to expand (218.17) and (218.19) in powers 
of k/x: 

and 

k' k P - = - - - (1 - cos 8) + ... 
x X x 2 

(218.20) 

The second-order contribution from W', Eq. (218.2) vanishes for q=O. In 
the relativistic treatment, the Dirac expression (199.1) for the current density is 
generally used which only in second order can originate Compton transitions. The 
expression, however, may be split up according to Problem 199, so that the 
relativistic treatment may be performed in complete analogy to the unrelativistic 
method of the present Problem. 

The total cross section then follows by elementary integration of 
(218.20) over all directions and may be written 

(J= 8n(~)2_1_ 
3 me2 k . 

1+2-
x 

(218.21) 
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It is well known from classical electrodynamics that the so-called 
Thomson cross section, 

8n ( e2 )2 
0'0 = 3 mc2 = 6.652 x 10- 25 cm2 , (218.22) 

represents the long-wavelength limit to our problem. The additional 
factor in (218.21), lowering the cross section with increasing photon 
energy (k/'X, = hw/mc2 ), is a first quantum theoretical correction, suf­
ficient as long as k/'X, ~ 1, or as long as the wavelength is still large 
compared with the Compton wavelength 1/'X,=h/mc. (For hw=mc2 

=0.51 MeV or k='X" the wavelength is A=2nh/mc.) 

NB 1. The second-order contribution from W', Eq. (218.2) vanishes for q=O. 
In the relativistic treatment, usually the current density expression (199.1) is used, 
which can only in second order originate Compton transitions. If this expression 
is split up according to Problem 199, we may formulate the relativistic treatment 
in complete analogy to the unrelativistic one of the present problem. 

NB 2. At higher photon energies the electron field has to be treated by the 
Dirac theory. The result then is the Klein-Nishina formula instead of (218.21). That 
our approximation can be used in rather a wide domain of energies may be seen 
from the following figures. For k/'X=0.2, Eq. (218.21) gives 0'/0'0=0.714 whereas the 
rigorous Klein-Nishina formula leads to 0.737. At k/'X = 1 the two values are 
0'/0'0 =0.333 from (218.21) and 0.431 (Kl.-N.). The real values of cross sections 
decrease much more slowly with increasing energy than those of our approxima­
tion, e.g. at k/'X= 1000 we find 0'/0'0=0.0050 instead of the exact value 0.0215. 

Problem 219. Bremsstrahlung 

In an unrelativistic treatment, the production of an x ray photon by an 
electron passing a heavy nucleus may be dealt with as a second-order 
process in which the nucleus is simply described by its electrostatic field 
and its mass is supposed to be infinitely large. The bremsstrahlung 
spectrum shall be calculated in this approximation. 

Solution. Reproduced in Fig. 76 are the two simplest possible graphs 
of this process. In the initial state there is the nucleus at rest and an 
electron of momentum hq, in the final state the infinitely heavy nucleus 
is still at rest, the electron has a smaller momentum hq' and a photon 
(k,A) has been created. This creation process, together with simple 
Rutherford scattering of the electron at the nucleus, gives rise to the 
two vertices in one or the other order of succession. In consequence of the 
infinite mass of the nucleus, not energy but momentum may be trans-
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ferred to it (M = 00, p fInite, pZj2M =0, v=o) so that between the 
initial and fInal states of the other particles energy conservation will 
still hold, but conservation of momentum will not. 

q 

a) b) 

Fig. 76a and b. Lowest Feynman graphs for bremsstrahlung in unrelativistic 
approach. Double line nucleus, single line electron, wavy line photon 

viz. 

The perturbation energy consists of two terms, 

H'=H1 +Hz (219.1) 

(219.2) 

the Coulomb interaction of the nucleus (charge Ze) and electron (charge 
density p= -eljJtljJ), and 

1 f en Hz = - d 3 x (A-j); j= - -2 . (IjJtVIjJ-VljJt.IjJ), 
C ml 

(219.3) 

the radiation interaction. The fIeld operators are 

A = " V2nnc u(.1.)(b eikr +bt e- ikr) L.. k "f/ k k .1. k.1. 
k • .1. 

(219.4) 

and 

(219.5) 

Putting (219.4) and (219.5) in (219.2) and (219.3) and performing the 
space integrations, we arrive at 

_ Zez t 4n 
H 1 - --- LCJLcv Z 

"f/ JLV iqJL-qvi 
(219.6) 
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and __ ~ ~ ~ V2nIiC . t t H2 - 2mc '-- L... k"f/' UkJ. (q,,+ q.)c"c. {bubk,q,,_qV +bubk,qv-q,.)· 
k,J. ",V (219.7) 

For graph a in Fig. 76, we have to look up the factors of CqC~ in HI 
and of cqa c~, bL in H 2 to obtain the matrix elements a 

(219.8 a) 

and 

(219.8b) 

No law of conservation holds at the first vertex but, at the second, 
conservation of momentum yields 

k+q'=qa 

so that, with Uu perpendicular to k, 

ukJ.·(qa+q') = 2ukJ.·q'· 

and 
4nZe2 1 

<q'IH1Iqb) = - -----;:;;:- . I' 12 ' 
I' q -qb 

(219.9a) 

(219.10 a) 

(219.11 a) 

(219.11 b) 

In this case, momentum conservation holds at the first vertex, 

and therefore 

ukdq+qb)=2uu ·q· 

The energy of the initial state, 

1i2 q2 
E·=-, 2m 

must be equal to the energy of the final state, 

1i2 q'2 
Ef =-- + lick, 

2m 

(219.9b) 

(219.10b) 

(219.12) 

(219.13) 
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Radiation Theory 

me 
x=-. 

h 

Using (219.9a, b) we find for the two intermediate states 

E = h2q; = ~( I +k)2. 
a 2m 2m q , 

h2 q2 h2 
Eb = _b + hek = - {(q_k)2+2xk}. 

2m 2m 

(219.14) 

(219.15) 

(219.16) 

With these abbreviations we now may write the second-order matrix 
element in the form 

<IIH/li) = <IIH2 Ia) <alHI Ii) + <IIHl lb)<bIH2 Ii), 
E;-Ea E;-Eb 

which, collecting the matrix elements from (219.8a,b) and (219.l1a, b) 
and the expressions for qa and qb' may be written in more detail 

II 'I· 4nZe2 eh V2nhe 1 {(Ukl·q/) (Ukl·q)} < H z)=-_·- -- +--
j/ me j/k Iq_ q'_kI 2 E;-Ea E;-Eb · 

(219.17) 

To find the cross section, we must apply the Golden Rule and 
therefore need the final state density PJ. This is a little difficult to de­
termine because, in consequence of non-conservation of momentum, 
the two final particles are emitted in independent directions. For one 
particle (1) we know that 

d3 PI j/ pi j/ 

PI = h3 dEI = ~ h3 dDI· 

The other particle (2), for which P2 must be a similar expression, is 
bound to lie within an interval dE2 whose width and position are 
already determined by energy conservation when the interval for the 
first particle is given. Hence, 

Pf=PIP2 dE2 

or, in our special case, if 1 is the unrelativistic electron (q/) and 2 the 
photon (k), so that 

pi = mhq'; p~ = ~ h2 k2 ; dE2 = hedk, 
VI V2 e 
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we have 
mhq' , h2 k 2 

PI = 8n3 h3 ifdQ . 8n3 h3 e ifdQk·hedk. (219.18) 

From the general formula 

if 2n 
d(J = -' - PII<fIHli>12, 

Vi h 

giving the differential cross section of the electron being scattered into 
dQ' and the photon of polarization A falling in the interval dk and 
within the solid-angle element dQk , we then find by inserting (219.17) 
and (219.18): 

e2 Z2 e4 q'k 1 {Uk)..q' UkA·q}2 , 
d(J=-'--'-' --+-- dQkdQdk 

he n2 q Iq-q'-kI 4 £.-E E.-Eb • 
1 a 1 ~1~1~ 

There remains the problem of determining the photon energy 
spectrum, whatever the directions of both particles or the polarization 
of the photon emitted. This means integration over the directions 
and summation over A. The integration procedures in such problems 
are often rather laborious. In the present case, however, they become 
very simple, as shall now be shown. 

q'(..:J': 1jJ') 

q "':-.-.-~ 
..:J' 

k 

x 

Fig. 77. Notations for bremsstrahlung 

In Fig. 77 the three momenta have been drawn in a coordinate 
system. They are not coplanar, i. e. if the x z plane is chosen so that q 
and k fall in this plane, q' will have a y component. The components 
of the three momenta thus become 

q=q(O,O,l); 

k = k(sin 8,0, cos 8); 

q' = q'(sin 8' cos q>', sin 8' sinq>', cos 8') 
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and of the two polarization vectors 

Uk! =(-cos8,0,sin8); uk2 =(0,1,0). 

For further evaluation of the cross section, we now make the tyi­
pically unrelativistic approximation to neglect the photon momentum 
compared to that of the electron, since from (219.14) it may be con­
cluded that k4:q and k4:q' because x is large. This allows us to simplify 
the energy denominators in (219.19). Making use of Eqs. (219.12), 
(219.15) and (219.16), we get 

h2 

Ei-Ea = 2m (q2_ q'2 -2q'·k-k2); 

h2 

Ei-Eb = -( -2xk+2q·k-k2). 
2m 

In both expressions the two last terms then may be neglected, and 2xk 
replaced by q2 - q'2 according to (219.14) so that 

(219.20) 

The two energy denominators in (219.19) thus becoming opposite and 
equal, we may simply subtract the two numerators for either A = 1 or 
A=2: 

Ukl·q' -Ukl·q=q'( -cos8sin8' coscp' +sin8cos8')-qsin8; 
, ,. ,. , (219.21) 

Uk2·q -Uk2 ·q=q sm8 smcp. 

To perform summation over A we then square and add these two ex­
pressions. 

Finally, the Rutherford denominator in (219.19) may be written in 
the same approximation 

(q_q' _k)4 ~ (q _q')4 = (q2 +q'2 -2qq' cos 8')2 . (219.22) 

Assembling all these factors, it is seen at once that the angles 8 and cp' 
occur in the sum of the squares of (219.21) only, so that integration 
over these angles can be performed separately in these terms by a 
straightforward elementary calculation: 
21< 

(219.23) 

o 
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Fortunately we fmd here the same bracket in the numerator of the 
cross section that according to (219.22) occurs twice in its denominator. 
Gathering up all these factors, we then arrive at 

+1 

d(J(k)=Z2 - . - - -( e2)3 16 q' dk J dcos8' 
lie 3 q k q2+q'2_2qq'cos8' 

-1 

where d(J(k) stands for the partial cross section of a photon created 
in the energy interval dk, whatever else may have happened. The in­
tegral permits elementary evaluation, 

+1 

J dcos8' 1 q+q' 
-::--.....,,------ = - log --, 
q2+ q'2_2qq' cos 8' qq' q-q' 

-1 

leaving us finally with the result 

16 (e2)3 (1 q+q') dk d(J(k) = _Z2 - -log -- -. 
3 lie q2 q-q' k 

(219.24) 

Using (219.14), the momenta may be eliminated from this formula 
and q' be expressed by the energies E of the incident electron, and 
Ek = Ii e k of the outgoing photon: 

1 q+q' -1 (q+q')2 -1 {(VE+~)2} 
og - og 2 2 - og . 

q-q' q -q' Ek 

E du 
k dEk 

0.2 0.4 0.6 0.8 1.0 
EklE----

Fig. 78. Bremsstrahlung intensity distribution in unrelativistic theory. The log­
arithmic divergence at Ek = 0 does not occur if screening of the Coulomb field 

is taken into account 



256 Radiation Theory 

This bremsstrahlung spectrum has been shown in Fig. 78. It shows a 
remarkable singularity for the production of photons of very small 
energy, the so-called infrared divergence. 

Literature. For relativistic treatment and for screening problems cf. Heitler, w.: 
Quantum Theory of Radiation, 3rd ed., Oxford 1954, pp. 242-256. 



Mathematical Appendix 

Coordinate systems 

We start with rectangular coordinates x, y, z and list the transformation 
formulae for some frequently occurring curvilinear coordinate systems. 
We add the formulae of transformation for the distance from the co­
ordinate centre, 

and of the Laplacian, 

02 02 02 
V2 =_+_+_. 

ox2 oy2 OZ2 

a) Spherical polar coordinates. Let the z axis be the polar axis and 
denote by 8 the angle between the vector r and this axis, and by q> the 
azimuth angle about this axis (cf. Fig. 33 on p. 145, vol. I). 

x=rsin8cosq>; y=rsin8sinq>; z=rcos8; 

V2u = 02U +..: ou + ~{_1_ ~(sin8 ou) + _1_ 02U} 
or2 r or r2 sin8 08 08 sin2 8 Oq>2 . 

b) Circular cylindrical coordinates. Let the z axis be the common 
axis of circular cylinders of radii p = constans. The angle q> again shall 
be the azimuth angle about the z axis, and p, q>, z be chosen as coordinates. 

x=pcosq>; y=psinq>; z=z; r=Vp2+z2; 

02U 1 OU 1 02U 02U 
V2u=-+- -+- -+-. 

Op2 P op p2 Oq>2 OZ2 

c) Parabolic coordinates. Let the z axis be the common axis of ro­
tation for two sets of paraboloids ~ = cons tans and '1 = constans, all 
having their foci in the coordinate centre (z = 0) and opened the one 
towards the positive, the other towards the negative z axis. Again q> 
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shall be the azimuth angle about the z axis. There are two customary 
choices then of the coordinates ~,11, cpo 

First system. X= v01 coscp; y= v01 sincp; Z=!(~-11); 
r=!(~+11); ~=r+z; 11=r-z; p= vz;/; 

2 4 {o (Ou) 0 (Ou) ~ + 11 02U} 
V U = ~+11 o~ ~ o~ + 011 11 011 + 4~11 Ocp2 . 

Second system. X=~11 coscp; y=~11 sincp; z=!(~2-112); 

r=He+112); e=r+z; 112=r-z; P=~11; 

V2u= e~112{~ :~(~~~)+~ :11(11~~)+(;2 + :2)::~}. 
d) Ellipsoidal coordinates. Two points lying on the z axis at z = ± c 

shall be chosen as common foci to a set of prolate ellipsoids of rotation 
described by ~ = constans. There exists a set of two-sheet hyperboloids 
of rotation orthogonally intersecting them and having the same foci, 
11 = constans. Again cp shall be the azimuth angle about the z axis. Let 
r1 and r2 be the distances from the two foci z= -c and z= +c, respect­
ively. 

y=cV(e-1)(1-112)sincp; Z=C~11; 

1 1 
~ = -(r1 +r2); 11 = -(r1 -r2); 

2c 2c 

Domains of values: 1::;;~<oo; -1::;;11::;; +1; O::;;cp<2n. 

r function 

The r function is a generalization of the factorial, the latter being 
defined only for positive integers by 

n!=1·2·3 ... n 

and having the special property 

(n+ I)! = (n+ l)n!. 

(1) 

(2) 
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It can equally well be defined by the Euler integral, 
00 

(3) 

which supplements the value O! = 1 which would otherwise be meaningless. 
The generalizations of (2) and (3) for any complex number z = x + i Y 

are 

and 
r(z+ l)=z r(z); r(n+ l)=n! 

00 

r(z)= Jdte- t t Z - 1 (if Rez>O). 
o 

(4) 

(5) 

This function is merom orphic and has poles along the negative real 
axis at z=-n(n=0,1,2, ... ) with residues (-lnn!. 

Special values. 

r(l)=O!=l; r(n)=(n-1)!; 

r(t)=Vn; r@=(w=tVn; 

3 1 (2n+1)!1;:: 
r(n+ 2 )=(n+2)! = 22n+1n! V n. 

Relations between functions of different arguments. 

n 
r(z)r(l-z) = -.-; 

SlOnz 

1 
r(2z) = _22z - 1 r(z)r(z+t). 

Vn 

(6) 

(7) 

(8) 

(9) 

(10) 

Infinite series or product expansions. To compute the complex 
number 

(11 a) 

we may use the expansions 

~ = r(x) fI {1 + ( y2 )2}-t 
n=O x+n 

(11 b) 

and 

1]= y {-C + I (!.- - !.-tan- 1 y)} (11 c) 
n=1 n Y x+n-1 
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00 

c = i dte-tlog+ = 0.577215 ... 

o 

the Euler constant. For X= 1 we get 

~2= Ir(l+iy)j2 =~. 
smhny 

(Ud) 

(12) 

Asymptotic behaviour. For Izl~1 and largzl<n (i.e. excluding the 
negative real axis with its poles) we may use Stirling's formula 

logr(z) = (z - ~)tOgZ-Z + ~IOg2n+o(~) (13) 

or 

l~ r(z) ~ V -;- e(logz-l). (14) 

The formula is often used for 

z!=r(z+ 1)=zr(z)~V2nzeZ(I09Z-1) {I + _1_ + _1_ + .. }. (15) 
12z 288z2 

The last series is semiconvergent. Putting it = 1, we get the following 
comparison: 

n n! V2nn e·(logn-l) 

0 1 0 
1 1 0.925 
2 2 1.920 
3 6 5.836 
4 24 23.506 
5 120 118.01 

Bessel functions 

The differential equation 

u" +-u' + 1-- u=O 1 ( V2) 
Z Z2 

is solved by 
u = A J.(z) + B N.(z) 

or by 

(1) 

(2) 

(3) 
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The function Jv is called Bessel function (in the proper sense), the 
function Nv Neumann function. If v is not an integer, the definition 

1 
Nv(z) = -.-(cosnvJv(z)-J_v(z)) 

sm nv 

may be used, otherwise (i. e. for v = n with n = 0, ± 1, ± 2, ... ), 

1-n(z) =( _1)n In(z) 

(4) 

(5) 

is no longer linearly independent of In. The function Nn(z) still may 
then be defined by its asymptotics (see below). 

The Bessel function Jv can be defined by its power series 

( z)V 00 (_1)n (z)2n 
J (z) = - L -

v 2 n=O n!r(v+n+1) 2 ' 
(6) 

converging in the whole z plane cut along the negative real axis, since 
z = ° is a branch point. 

The functions ml ) and H~2) are called Hankel functions of the first 
and second kind. They are defined by 

H~l)(z)=Jv(z)+iNv(z); m 2)(z)=Jv(z)-iNv(z). (7) 

The fundamental system (2) of solutions has real values for real z; its 
Wronskian is 2j(nz). The Wronskian of (3) is -4ij(nz). If v is not 
integer, J v and J -v form a third fundamental system of solutions with 
the Wronskian -2sinnvj(nz). 

Recurrence relations. For each one of the four types of functions 
defined by (2) and (3) there hold the relations, 

(8 a) 

or 
v 2v 

Uv + I = - Uv - u:; Uv + 1 = - U v - Uv - 1 . (8 b) 
Z z 

Asymptotic behaviour. With the abbreviation 

(9 a) 

for Izl ~ 1 + Iv I and largzl < n, i. e. for large values of Izl in the z plane 
cut along the negative real axis, there hold the asymptotic formulae 

Jv(z) --+ 1 {2 cos (; Nv(z) --+ 1 {2 sin (; } V;; V;; 
(9 b) 

ml)(z) --+ 1 (2ei '; H~2)(Z) --+ 1 {2e- i '. V;; V;; 



262 Mathematical Appendix 

Functions of the type z-t ml ,2)(z) for real z describe outgoing and 
incoming spherical waves, respectively. 

Modified Bessel functions. The functions 

and 

or, if v is not an integer, 

1t 
Kv(x) = -. - [Lv(x)-Iv(x)] 

2sm V1t 

(11 a) 

(11 b) 

have real values for real positive x. The last function is of special interest 
because of its asymptotic behaviour for large x: 

Kv(x) ~ 1 /ne- x . (12) V2x 
More formulae for Ko and KI are given in Problem 185. - In Problem 99 the 

differential equation 
(l3a) 

has been solved by 

U=VxKlJfX- l ) with A=n;2. (l3b) 

In some optical diffraction problems the function 

1W 3 Ai(x)=- _Kl.(tx2) 
1t 3 3 

(14a) 

plays a role. It is called the Airy function. Its analytic continuation to 
negative x values yields 

Ai( -x)=tVx{Jt(txf)+Lt(txfn. (14b) 

In this book, the Airy function has been used in Problem 40 where it is shown in 
Fig. 28. It might also be used with advantage in Problem 117 where, however, 
regress to the functions Jv and Iv with V= ±t has been preferred. 

Spherical Bessel functions. The index values v = I +! with integer 
1=0,1,2, ... play an important role, because they occur in factorizing 
the solutions of the wave equation in spherical polar coordinates. It is 
usual to introduce the four standard types l 

I In the literature the functions here denoted by jl etc are often denoted by], etc 
1 ' 1 ' with jl = - jl' This has the advantage that h!1.2)(Z) = - W,2)(Z) then become 
Z Z 

outgoing and incoming spherical waves. 
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_1;;; _ 1+11;;; . 
nl(z) - VT N I+t(z)-(-1) VTL(/+tl(Z), 

hj1l(z) = Nz)+inl(z); hj2l(z)=Nz)- inl(z). 

They are solutions of the differential equation 

u" + (1 _ (1::)2) u=o 

and have very simple asymptotics: 

. ( lre) NZ)--+Slll Z -"2 ; nl(z)--+ -cos (Z _ l;} 
hj2l(z)--+i l+ 1 e - i •• 

The most important Wronskians are 

jln;-nd;=l; hPlWlf -Wlhj1lf= -2i. 

For Izl~l+i- we have 

211 ! 
J·(z)'" ZI+l. 

I - (2/+1)! ' 
(21)! -I 

nl(z) = - -z . 
211 ! 
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(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

Recurrence relations. For each one of the four types of functions 
defined by (15)-(17) there hold the relations 

21+1 
ul+ 1 = --UI -UI - 1 ; 

z 

1+ 1 
UI+ 1 = --ul-u;. 

z 
(22) 

The first of these relations may also be used for constructing functions 
with negative I. 

The spherical Bessel functions are elementary functions. The simplest 
of them are assembled in the following survey. 

jo = sinz; 

sinz 
j1 = -- - cosz; 

z 

j 2 = (:2 - 1) sin z - ~ cos z; 

no= - cosz; 

cosz . 
n1 = - -- - SlllZ; 

z 

(3) 3 . n2 = - - - 1 cos z - - sm z 
Z2 z 
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and 

Legendre functions 

The differential equation 

(1_Z2)U" -2zu' +v(v+ 1)u=0 (1) 

is of the hypergeometric type with the singularities at Z= ± 1 and 00. 

The complete solution can be written 

Uv=A 2F1 ( -v,v+1,1; 1;Z) 

-v-1 (v v 1 3 1) + B Z 2F',1 - + 1 - + - v + _. -
2 '22' 2'Z2' 

(2) 

where the factor of A is called a Legendre function of the first kind, 
P,,(z), and the factor of B is (save of a normalization factor) a Legendre 
function of the second kind, Qv(z). 

If v is an integer, 1=0,1,2, ... , the function of the first kind becomes 
a polynomial. For Z=X with real x and Ixl~1 or x=cos.9, Legendre 
polynomials have a simple geometrical meaning being connected with 
spherical harmonics according to 

lf4n P'(cos.9) = V 2i+1 Yl,o· (3) 

Properties of Legendre polynomials. The polynomials form an 
orthogonal set: 

+1 

JdXP,(X)P,,(X) = ~c511'. 
1+2 

-1 

The first polynomials are 

Po (x) = 1; P1(x)=x; P2(X)=!X2 -t; 
P3(X)=1-X3 -!x; ~(x)= 385 x4-11 x 2+l 

(4) 

(5) 
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They are either even or odd functions of x, according to whether the 
index I is even or odd, so that 

Il( -x)={ _1)1 Il(x). (6) 

Polynomials of higher order than 1= 1 may be derived from the re­
currence relation 

{I + l)Il+ 1 (x) + IIl-1 (x) = (21 + l)xIl(x). 

The derivatives are connected with the polynomials by 

(1-x2)P;= I(Il-1 - xJD=(1 + l)(xIl- Il+ 1) 

whence there follows 

At X= ±1 we have 

Il(±l)=(-l)/; 

the n'th derivative at x = ± 1 becomes 

d" Il{± 1) _ -1 /+" (I+n)! 
dx" - (+) 2"n!(l-n)! 

(7) 

(8a) 

(8b) 

(9 a) 

(9b) 

The definition of the polynomials by (2) may be written, with 
x=cos9, 

( 9) 1 (l+n)! 9 
Il(cos9)=2F1 1+1, -1,1; sin2 "2 = "~o(-l)" n!2{I_n)!sin2""2 

1(1+1) . 2 9 (1-1)1(1+1)(1+2). 4 9 (10) 
=1 -1T2 sm "2 + 2!2 sm "2 ... 

If I ~ 1 and I sin ~ I of the order of 1/1, this series simplifies to the 

Bessel series so that we get 

Il{cos 9) ,:do (21+ 1) sin ~), (11) 

with an error of the order of 1/[2. The zeros of Il are still given rather 
accurately even up to large angles 9. For the example 1= 10 the ap­
proximation has been represented in Fig. 55 (p. 275 of vol. I). 

For geometrical relations, cf. spherical harmonics. 
Legendre functions of the first kind. Expansions. If v is not an integer, 

the expansion (10) is no longer finite so that P,,(x) becomes a transcen-
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dental with singularities at x = ± 1. It may then be expanded into a 
series of Legendre polynomials, 

sinnv ~ (-1t(2n+l) 
P,,(x) = -- L. P,.(x). 

n n=O (v-n)(v+n+ 1) 
(12) 

This is a special case of the general type of expansion 
00 

f(x) = L (2n+1)fnP,.(x) (l3a) 
n=O 

with coefficients 
+1 

fn=t J dxf(x)P,.(x) (13 b) 
-1 

which is always possible since the Legendre polynomials form a complete 
orthogonal set. 

The following examples of such expansions (with Ixl < 1) are often 
useful: 

. 1 00 

e'XY = - L (21+ 1)iljl(Y)~(x); 
y 1=0 

sin(YV2(1-x)) = f: (21+ 1)jf(y)~(x). 
yV2(I-x) 1=0 

(14) 

(15) 

The series (14) and (15) are generally used with y=kr and x=cos8 so 
. 8 

that yV2(I-x)=2krsm-. They hold for all real values of y. Another 
2 

important example may even be used to define the Legendre polynomials: 

1 00 • 

-:===:=::;- = L yn P,.(x) If Iyl < l. 
VI-2xy+ l n=O 

Legendre functions of the second kind. The expansion 

1 00 

- = L (2n+ 1) Qn(z)P"(x) 
z-x n=O 

(16) 

(16a) 

where z is any complex number, except real values between -1 and + 1, 
leads to 

+1 

- ~ J dxP,.(x) Qn(z) - . 
2 z-x 

(16b) 

-1 
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The functions Qn(z) are called Legendre functions of the second kind. 
From the symmetry of (16a) in z and x, it follows at once that they 
satisfy the differential equation (1) of the polynomials P,,(x). They have, 
however, branch points at Z= ± 1 with logarithmic singularities. The 
simplest of these functions are 

1 z+l 
Qo(z) = "2 log z-l; Ql(Z) = Pl(z)Qo(z)-l; 

3 
Q2(Z) = P2(z)Qo(z) - "2 z . 

(17) 

The higher Qn's may be determined from the recurrence relation (7) 
which holds for the Q's as well as for the P's. Their general form is 

(18) 

with Wn - 1 a polynomial of degree n -1, either even or odd, according 
to whether the index n is even or odd. 

Spherical harmonics 

In factorizing the solutions of the wave equation in spherical polar 
coordinates defined by 

x = r sin 8 cos cp; y = r sin 8 sin cp; z = r cos 8 (1) 

with z the polar axis, the angular part of the solution satisfies the differ­
ential equation 

1 a ( au) 1 a2 u - - sin8- + -2- --2 + l(l+l)u=O, 
sin8 a8 a8 sin 8 acp (2) 

where the separation parameter 1 is integer, 1 = 0,1,2, ... By further 
factorization, 

u=e(8)eimcp 

with m=O, ± 1, ±2, ... we get 

or, using 

1 d ( de) [ m2 
] - - sin8- + lO+l) - -- e=o 

sin 8 d8 d8 sin2 8 

z 
t = - = cos8 

r 

(3 a) 

(3b) 
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as variable, 

d2 e de [ m2 
] (1-t2)- - 2t- + 1(1+1) - -- e=o. 

dt2 dt 1-t2 
(3 c) 

This differential equation is a slight generalization of the one of the 
Legendre polynomial P,(t) into which it passes over for m=O, but it 
remains of hypergeometric type for m=l=O. Its only regular solution, 
in arbitrary normalization, may be written 

(3d) 

for m;;:::O, and e',-m turns out to be the same function. Since the poly­
nomial P, cannot be differentiated more than 1 times without vanishing, 
there exist 21+1 regular solutions with integer Iml::;; 1 for every value 
of 1. 

We still have a free hand concerning normalization. We adopt its 
most customary form, which best reflects the geometrical meaning of 
these solutions regular on the entire surface of the unit sphere, 

1 . 
Y"m(.9,<p) = 1;;;-:: &>i(.9)e,mCP 

V 2n 
with 

or 
1t 

f d.9 sin.9l&>i(.9)12= 1. 
o 

Eq. (3 d) then has to be normalized according to 

21+1 (I-m)! 2 ~ dmp,(t) 
-2- (I+m)! (l-t) ~ 

for m;;:::O. To include negative values of m, we define 

&>,-m(.9) = (-lr &>i(.9). 

In this standard form the spherical harmonics Y',m up to 1 = 3 
tabulated on p. 174 of vol. I. For m=O we have the useful relations 

o 0+1 ~1+1 &>, = I+ZP, and Y'O = --P" , 4n 

(4) 

(5) 

(6) 

(7) 

(8) 

are 

(9) 

Recurrence relations. There exist several important relations, con­
necting spherical harmonics with such of neighbouring values of 1 
and m, viz. 
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sin.9 eitp Y1,m = al,m Yl+ i,m+ 1 -al-i, -m-i Yl- i ,m+ 1; (10 a) 

sin.9 e- itp Y1,m = -ai, -m Y1+ i,m-l +a,-i,m-i Y l - i ,m-l; (1Ob) 

cos.9 Y1,m = bl,m Y1+ l,m + bl-l,m Y1-l,m (11) 

with the abbreviations 

(l+m+ 1)(I+m+2) 

(21 + 1)(21 + 3) 

(l+m+1)(l-m+1) 

(21 + 1)(21 + 3) 
(12) 

By repeated application of the relations (10) and (11) higher powers 
of sin.9 and cos.9 may be multiplied by Y1,m so that indices differing 
by more than ± 1 from 1 and m may appear on the right-hand side. 

Derivatives. If the operators 

( 0 0) +. { 0 0 i 0 } r - +i- = e-'tp sin.9r- + cos.9- + -- --
ox - oy or 08 - sin.9 ocp 

and 
o 0 0 

r- = cos.9 r- - sin.9-
OZ or 08 

(13) 

are applied to a spherical harmonic, the following results are obtained: 

r(:x ±i ooJYI,m= =F 1al,±mYI+l,m+i=F(l+1)al- i ,+m-l Y1- l ,m±1; 

(14) 

where al,m and bl,m are defined by (12). 
In the theory of angular momentum, the three hermitian operators 

Lx, Ly , Lz with 

(15) 

etc. cyclic, play a large role. In spherical polar coordinates we may 
write 

and 
o 

L z = -i-. 
ocp 

(16b) 
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Applied to a spherical harmonic, L+ and L_ turn out to be shift opera­
tors which raise or lower the index m by 1: 

L+ YI,m= -V1(l+I)-m(m+l) YI,m+1; 

L_ YI,m= -V1(l+I)-m(m-l)YI,m-l' 

On the other hand, YI,m is an eigenfunction of Lz: 

Lz YI,m = m YI,m' 

The same holds for the second-order operator 

L2= L;,+L;+L; = t(L+ L_ +L_ L+)+L;, 
VIZ. 

L2 YI,m = 1(1 + 1) YI,m' 

There further hold the relations 

L_ L+ YI,m = [1(1+ 1)-m(m+ 1)] YI,m; 

L+ L_ YI,m = [1(1+ 1)-m(m-l)] YI,m' 

(17 a) 

(17b) 

(18) 

(19) 

(20) 

(21 a) 

(21 b) 

The operators L; here defined are identical with the angular momentum com­
ponent operators used in the text of this book, except for a factor h. 

Orthogonality and expansion. The spherical harmonics satisfy the 
orthonormality relations 

(22) 

They form a complete set of functions in the sense that any regular 
function on the surface of the unit sphere may be expanded into a series 

00 +1 

f(8,qy) = L L fl,m YI ,m(8,qy) (23 a) 
1=0 m=-I 

with coefficients 
(23 b) 

A few important expansions are the following ones. 
1. Expansion of the Legendre polynomial PI(cosy) where y is the 

angle between the directions to the points (8, qy) and (8', qy') on the unit 
sphere: 

(24) 

This formula is equivalent to a transformation by rotating the polar 
axis through an angle y. It mixes only spherical harmonics of the same 
order I. It is also called the addition theorem .. 
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2. Plane wave. If the plane wave propagates along the polar axis, 
only Legendre polynomials occur: 

eikZ=eikrCOS8=~ I V4n(21+l)iZjz(kr)Yz,0(8). (25) 
kr 1=0 

This formula has been proved in extenso in Problem 81. Incidentally, 
it leads by inversion to an integral representation of the spherical 
Bessel functions: +1 

jz(z) = i-z ~ f dt eizt Pz(t) 2 . (26) 

-1 

If the plane wave runs in the direction of a vector k with polar angles 
8, tP, the expansion may be generalized to 

4n 00 

eik · r = - L iZjz(kr) Ytm(8,tP) Y1,m(8,cp). (27) 
kr 1=0 

3. Spherical wave, to be used as Green's function of the wave 
equation. If rand r' are vectors the directions of which are defined by 
polar angles 8, cp and 8', cp', and y is the angle between them, then 

eiklr-r'l 1 00 ~1+1 
4 I 'I = -; L -4-1/(r,r') Yz,o(cosy) 
nr-r rr z=o n 

with 

, {±jz(kr)hI1 )(kr') for r<r', 

1/(r,r) = . 
I k jz(k r') W)(k r) for r> r' . 

In the limit k-O this yields the well-known formula 

{~ I (~)lpZ(COSY) for r<r', 
1 r 1=0 r 

Ir-r'l = 1 00 (r')1 - L - P1(cosy) for r>r'. 
r 1=0 r 

The hypergeometric series 

The differential equation 

z(l-z)v" + {(c-22)-(a+b+ 1-22-2,u)z} v' 

{
2(2-C+1) ,u(,u-a-b-c) } 

+ + [(2+ ,u)(2+ ,u-a-b)+ab ] v= 0 
z 1-z 

(28 a) 

(28b) 

(29) 

(1) 
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has regular singularities only at z = 0,1,00. Putting 

v(z) = z)'(1- z)l'u(z) 

it can be brought into the standard form 

z(1-z)u" + [c-(a+b+ 1)z]u'-ab u=O 

(2) 

(3) 

which is called the hypergeometric or Gaussian differential equation. 
For all values of its three parameters a, b, c, except c = - n with 
n=O, 1,2, ... , it has a solution which is regular and does not vanish at 
z=O which, when normalized according to u(O) = 1, is called the hyper­
geometric series 2F1 (a, b, c; z). Solving the differential equation (3) by 
series expansion at the origin we find2 

ab z a(a+1)b(b+1) Z2 
2F1(a,b,c;z)=1+- -1'+ (1) -2' c. c c+ . 

a(a+ l)(a+2)b(b+ 1)(b+2) Z3 + - +... (4a) 
c(c+ l)(c+2) 3! 

or 

F(abc'z)= r(c) ~ r(a+n)r(b+n):z: 
21 '" r(a)r(b)n~o r(c+n)n! . 

(4 b) 

This function is invariant with respect to exchanging the parameters 
a and b. If a= -n or b= -n (n=O, 1,2, ... ) it becomes a polynomial 
of degree n, called a Jacobi polynomial according to the definition 

In(p,q; z) = 2F1( -n,p+n,q; z). 

These polynomials form an orthogonal set according to 
1 

J dzzQ- 1(1-z)p-QJm Jn=0 for m#n. 
o 

The hypergeometric series does not exist for c= -n; in that ("ase 
however the limiting process 

1. 2F1(a,b,c; z) 
1m (5) 

c~-n r(c) 

r(a+n+l)r(b+n+1) zn+1 
= 2F1(a+n+ 1, b+n+ 1, n+2; z) 

r(a)r(b) (n+ I)! 

leads to a solution of the differential equation (3). 

2 The notation2Fl was introduced by Pochhammer who generalized the 
hypergeometric series tonFm with n+m parameters of which products ofn appear in 
the numerator and of m in the denominator of the series in the same way as 2, 
resp. 1 in Eq. (4a). In our context we need onlY2Fl and the confluent series1F1. 
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If none of the three parameters a, b, c are either zero or negative 
integers, the series (4 a, b) converges absolutely for Izl < 1. Its analytic 
continuation beyond this circle can be made unique by a branch cut 
extending from z= 1 to Z= 00. 

The following formulae may serve for its continuation beyond 
Izl<1: 

r(c)r(c-a-b) 
2Fl(a,b,c;z) = 2Fl(a,b,a+b-c+1; 1-z) 

r(c-a)r(c-b) 
(6) 

r(c)r(a+b-c) c-a-b 
+ r(a)r(b) (1-z) 2Fl(c-a,c-b,c-a-b+l; 1-z) 

and 

r(c)r(b-a) _ ( 1) 
2Fl(a,b,c; z) = r(b)r(c-a) (-z) a 2Fl a,a-c+ 1,a-b+ 1;~ (7) 

r(c)r(a-b) -b ( 1) 
+ r(a)r(c-b) (-z) 2Fl b,b-c+ 1,b-a+ 1; ~ . 

The last formula determines the asymptotic behaviour of 2Fl for z--+ 00: 

r(c)r(b-a) _ r(c)r(a-b) -b 

2Fl(a,b,c; z) --+ r(b)r(c-a) (-z) a + r(a)r(c-b) (-z). (8) 

The general solution of the hypergeometric differential equation 
for Izl<1 is 

U=C12F1(a,b,c; z)+ C2 Z 1 -c 2Fl(a+ l-c,b+ 1-c,2-c; z). (9) 

Only for integer c=O, ± 1, ±2, ... the two special solutions used in 
(9) become identical, as is easily seen by applying Eq. (5). The second 
solution then has a logarithmic singularity at z = 0. 

In the following, the most important formulae for the practical use 
of the hypergeometric series have been collected. 

a(c-b) b(c-a) 
2Fl(a,b,c;z) = -(--2Fl(a+1,b,c+1 ;z) +-(--)2Fl(a,b+l,c+l;z) 

ca-~ cb-a 

c-a a 
= --2Fl(a,b,c+ 1; z) + - 2Fl(a+ 1,b,c+ 1; z), 

c c 
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c-l 
z 2Fi(a,b,c;z) = -- [2Fi(a-l,b,c-l; z)- 2Fi(a,b-l,c-l; z)] 

a-b 

c-l 
= -- [2Fi(a-l,b,c-l;z)-2Fi(a-l,b-l,c-l; z)] 

a-I 

c-a c-b 
= -- 2Fi(a-l,b,c; z) + -- 2Fi(a,b-l,c; z) + 2Fi(a,b,c; z), 

a-b b-a 

c-l a-c 
(l-z)2Fi(a,b,c;z) = --2Fi(a-l,b-l,c-l; z) + -- 2Fi(a-l,b,c; z). 

a-I a-I 

Derivatives: 

d ab 
- 2Fi(a,b,c; z) = - 2Fi (a+ l,b+ l,c+ 1; z), 
dz c 

d a(c-a) b(c-b) 
z(l-z)-2Fi(a,b,c;z) = --2Fi(a-l,b,c;z) +--2Fi(a,b-l,c; z) 

dz a-b b-a 

b(c-b)-a(c-a) 
+ 2Fi(a,b,c;z). 

a-b 

The confluent series 

If, in the hypergeometric differential equation, we perform the limiting 
process b ..... HX), z-:;'x/b, we get Kummer's differential equation, 

d2u du 
dx2 + (c-x) dx - au=O. (1) 

The singularity at z = 1 has been shifted to x = 00, so that in the complex 
x plane there is a regular singularity still at x = 0 but an irregular 
singularity at x = 00 caused by the confluence of the two singularities 
at z= 1 and Z= 00. Hence the name of the solution. 

The general solution of (1) is 

U=CiiFi (a, c; X)+C2Xi - C iFi(a-c+ 1, 2-c; x) (2) 

with the so-called confluent series iFi being defined by 

a z a(a+l) Z2 a(a+l)(a+2) Z3 
iFi(a,c;z)=l + ~ 1! + c(c+l) 2! + c(c+l)(c+2) 3! + ... (3 a) 

or 
. _ r(c) ;, r(a+n) zn 

iFi(a,c,z)-- L. ,. 
rca) n=O r(c +n) n. 

(3b) 
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This series converges absolutely in the whole z plane. To make it unique, 
a branch cut has to be made from z = ° to z = 00 which, in the standard 
notation used in this book, runs along the positive imaginary axis. 

Only for c=-n, n=0,1,2, ... is the series (3a,b) not defined, but 
in this case 

. IF1(a,c;z) r(a+n+1) zn+l 
11m = --lF1(a+n+ 1, n+2; z) (4) 
c--n r(c) r(a) (n+ 1)! 

is a solution of (1) (with z instead of x). 
The asymptotic behaviour of the confluent series for Izl~oo is 

given by 

. r(c) r(c) 
F:(aC"z)~e-,,,a z-a+_ez~-c. (5) 

1 1 , , r(c-a) r(a) 

This formula does not hold for a= -n, n=0,1,2, ... where, according 
to (3), the function 1 Fl ( - n, c; z) becomes a polynomial of degree n. Of 
special interest among these are the Laguerre polynomials 

(n+m)! 
L (m)(z) = F: (- n m + 1· z) n , , 1 1 , , 

n.m. 
(6) 

and the Hermite polynomials (cf. Problem 30) 

Finally, we again list some important formulae for the confluent 
series: 

d 
z- IF1(a, c; z) = a{lF1(a+ 1, c; z)-lF1(a, c; z)}; 

dz 

d a 
- IF1(a, c; z) = - IF1(a+ 1, c+ 1; z). 
dz c 
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Some functions defined by integrals 

Error integral and related functions. The error integral is defined by 
Cl) 

erfcz = J dte- t2 ; 

Z 

as an alternative also the definition 
Z 

erfz=Jdte- t2 =z l F1(i-,1; _Z2) 
o 

is often used. Both integrals are connected by the complete integral 
Cl) 

erfcz+erfz = J dte- t2 =!Vn· 
o 

There holds the power expansion 

Z3 Z5 
erfz=z - - + - _ .... 

1!32!5 ' 

the function erfc z can for real positive argument z ~ 1 be represented 
by the semiconvergent series 

e- z2 
Cl) (2n)! e- z2 

( 1 3) 
erfcz-+-- L (-1t--z- 2n = - 1 - - + _ .... 

2z n=O 22nn! 2z 2Z2 4Z4 

From the identity 
Cl) 

F(z,fJ) = J dte- pt2 =p-terfc(vpz) 
z 

there follows by differentiation, 
Cl) 

z 

so that, with fJ = 1, we get the reduction formula 
Cl) 

f 2 2 1 z 2 
dtt e- t = - erfcz + - e- z . 

2 2 
Z 

In this manner, by repeated differentiations, all integrals of the form 
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may be finally reduced to the error function. For z=O, this leads to 
the special formula for the complete integrals, 

OCJ 

fdtt2ne-t2=1!1i (2n-1)! . 
V IL 22n(n-1)! 

o 

With t 2 = x, this may be written as an Euler integral so that 
00 

S dtt2n e- t2 =!r(n+!). 
o 

Exponential integral. This function is defined by 
z . r dt 

EIZ= J tet 
-00 

and is of special interest for negative real values Z = - x where we write 

r dt 
E1(x)=-Ei(-x) = J te-t. 

x 

There holds the power series 

1 Xl x3 
El(X) = -C+log- + x - - + - - ... 

x 2!2 3!3 
where 

00 

C = J dte-tlog+ = 0.577215 ... 

o 

is the Euler constant. For x ~ 1, there holds the semiconvergent series 

El(X)= e- X (1_ ~ + 2! _ ... ). 
x x x2 

The exponential integral can be generalized to 

00 

These integrals may, by partial integration, be reduced to El (x) according 
to 



Index 
for both volumes 

Numbers refer to problems, not to pages. Volume I comprises the Problems 
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Airy function 40,41,117, A 
Alkali atom, dielectric susceptibility 

159 
- -, inelastic scattering 166 
Amaldi correction for Thomas-Fermi 

atoms 173 
Amplitude structure 26, 27 
Angular distribution of dipole 

radiation emitted 214 
- - of photoelectrons 186 
Angular momentum see also 

orbital momentum 4 
- -, commutation relations 50, 51 
- -, commutators with tensor 

53, 54 
- - components for a spinning top 

46 
- - expansion of plane waves 81, 

136,205 
- - - of scattering amplitude 82 
- - and Laplacian 49 
- - operator 42 
- - operator components in 

spherical polar coordinates 48 
- - operators determined by 

infinitesimal rotation 47 
- - originating magnetic moment 

127 
- - in relativistic theory 201 
- - replaced by complex variable 113 
- - for two particles on a circle 148 
Anharmonic oscillator 35,69,70 
Anomalous scattering 85, 112 
- - of protons by protons 165 
Anticommutation properties of Dirac 

matrices 189 
- - of Pauli matrices 131 

Antisymmetrized product 152 
Atomic radius 173 
Axial vector see Pseudovector 

Background integral 113 
Backward scattering amplitude 21,22 
Band structure of energy spectrum 

28,29 
Barrier 19,21,22,23 
Bessel functions, formulae A 
Bethe-Peierls formula 90 
Binding energy 90 
Bloch'stheorem 28 
Bohr magneton 127 
Born approximation 94,96,97,98, 

102,105,106,107,183,184,211 
Born integral, divergence 105,108 
Born-Oppenheimer approximation 

44, 161, 163 
Bose quantization 210, 213 
Bound state determined by low-

energy scattering 90, 147 
Breit-Wigner formula 114 
Bremsstrahlung 219 
Brillouin zones 29 

Calogero's equation 97,100 
- -, linearized approximation 

98, 99, 101, 102 
Canonical equations 10 
Capacity of a potential hole 25, 63, 

68, 106 
Central forces in momentum space 

76,77,91 
Central-force field, relativistic electron 

201 
- -, spin electron 133 
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Centre-of-mass motion, separation 
from internal motion 150 

- -, three-atomic molecule 149 
Charge conjugation 194 
Charge density 1 
Circle with two particles 148 
Circular cylindrical coordinates A 
- oscillator 42 
Classical dynamics for space averages 

3,4,5 
- interaction integral 44, 155, 156, 

163 
- turning point 40,117-124 
Clifford algebra 192, 194, 197 
- numbers 191,192 
Closed-shell configuration 61 
Collision parameter 185 
Collision parameter integral for 

scattering amplitude 104 
Commutation relations 7, 8 
- - of spin components 129 
- - of wave operators 210 
Commutator with hamiltonian 10 
Compound state 113,114 
Compton effect, unrelativistic cross 

section formula 218 
Conduction current in relativistic 

theory 199 
Conduction electrons in a metal 167, 

168 
Confluent series 30,42,65,67,69,70, 

110,111,202,203,204 
- -, formulae A 
Conservation of charge 1 
- of energy 5 
- of probability 1 
Continuity equation 1,21 
Continuous spectrum 26,219 
Convergence of spherical harmonics 

series 83, 103 
Coordinate formulae A 
Coulomb excitation 185 
- scattering, anomalous scattering 

112 
- -, extended charge 108, 112 
- -, partial-wave expansion 111 
- -, phases in WKB approximation 

123 
- -, point charge 110, 111 
Coupling parameter, power expansion 

102, 105 
Cross section see also scattering cross 

section 

Cross section for bremsstrahlung 219 
- - for Compton scattering 218 
- - and transition probability 183 
Crystal lattice see periodic potential 
Current see electric current 
Current density of probability 1, 16, 

17,80,126 
Curvilinear coordinates 13,46 

Degeneracy of eigenvalues 42, 66 
- of gases 167 
Delta function, Fourier integral 14 
Density of final states 183,186,211, 

213 
- of mass 1 
- of momentum 1 
- of probability 1,16,17,126 
- of states in a Fermi gas 167 
Depolarization of plane Dirac wave 

by a potential jump 208 
Derivatives of an operator 8, 10. 11 
Deuterium, spectroscopic discovery 150 
Deuteron, bound state and scattering 

length 147 
-, central-force models 72, 75 
-, hard-core potential 91, 92 
-, tensor interaction 144,145 
Diamagnetism 128,160 
Dielectric susceptibility 159 
Differential cross section of scattering 

80 
Diffusion equation 16 
Dipole-dipole interaction 161, 162 
Dipole, magnetic 127 
Dipole radiation 213, 214, 215 
- -, selection rules 216 
Dipole transitions 43, 79, 213-216 
Dirac equation, charge conjugation 
- -, iteration 189 
- -, Lorentz invariance 191 
- -, one-dimensional problems 

197,207 
- -, parity transformation 193 
- - split-up in two 200 
- -, standard form 189 
- hamiltonian 189,200 
- perturbation method 181, 182, 183 
Dispersion law of relativistic material 

waves 189 
Dispersion of light 187 
Dissociation energy 44,69, 70, 163 
Doublet, spin functions 146. 147. 194 
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Effective range 88, 89 
Eigenfunctions of harmonic oscillator 

(table) 30 
- of hydrogen atom (table) 67 
Eigenspinors of total angular 

momentum 133, 137, 142, 201 
Eigenvalue condition 18,25 
Eigenvalues of energy see energy levels 
- of Mathieu equation 148 
Eigenvectors of spin operators 130 
Eikonal 115 
Elastic scattering see scattering 
Electric current density 1,213 
- - - in Dirac theory 198, 199, 

207,209 
Electrical quadrupole see quadrupole 
Electron gas of atomic electrons see 

Thomas-Fermi atom 
- - of conduction electrons in a 

metal 167, 168 
- - in a white dwarf 171 
Electron spin resonance 138 
Ellipsoidal coordinates 44, A 
Elliptic integrals 170 
Emission of a photon 213, 214 
Energy bands 28, 29 
Energy conservation 5 
- flux vector 5 
Energy levels of anharmonic oscillator 

35 
- - of Coulomb potential 67, 203 
- - of gravitation field over earth's 

surface 40, 119 
- - of harmonic oscillator 30 
- - of Hulthen potential 68 
- - of hydrogen atom, relativistic 

theory 203 
- - of Posch I-Teller holes 38,39 
- - of rectangular hole 18 
- - of rectangular hole with 

division wall 19 
- - of spherical well 62 
- - of symmetrical top 46 
- - of two-atomic molecules 

69, 70, 71 
Energy, total, of an atom in Thomas-

Fermi approximation 174 
- of vacuum 212 
Equation of continuity 1, 21 
Equilibrium distance in neutral 

hydrogen molecule 163 
Error integral A 
Eulerian angles 46, 55 

Exchange integral 44 
Exchange integral in excited helium 

155,156 
- - in lithium ground state 158 
- - in neutral hydrogen molecule 

163 
- - in many-body problems 153 
Excitation degeneracy 162 
Expectation value 3,4, 7, 9, 12 
- - of spin in plane Dirac waves 

196 
- -, time derivative 9 
- - of angular momentum 4, 58 
Exponential integral (formulae) A 
- potential 75 
- -, scattering 107 

Fermi energy 167, 168 
- gas 167 
- quantization 210, 213 
Field emission 169,170 
Final state density 183, 186 
Fine structure of hydrogen atom, 

relativistic theory 203 
- -, unrelativistic theory 136 
Floquet's theorem 28 
Form factor 108 
Forward scattering amplitude 21,22 
Four-current see electric current 
Fourier integral 14, 15, 17 
- transform 14, 34, 76, 184 
- - of potential 77 
Free fall in quantum theory 40, 119 

... Fresnel's reflection formulae 45 

Gamma function, formulae A 
Gauge transformation 125, 126 
Generators of the rotational group 52 
g-factor of electron 136 
Golden Rule 182, 183, 211, 213 
Good quantum number 133 
Green's function in three dimensions, 

partial wave expansion 94 
- - for partial waves 94,96 
Group velocity 16, 17 

Hamiltonian depending upon time 11 
- of spin-orbit coupling 136 
Hankel functions 63,82,83,117,185 
- -, formulae A 
Hard-core potential for deuteron 

91,92 
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Hard sphere, scattering 84,109 
Harmonic oscillator in Hilbert-space 

31, 33 
- - in matrix notation 33 
- - in momentum space 34 
- -,Schrodingertheory 30 
- -, table of lowest eigenfunctions 

30 
- -, WKB approximation 118 
- vibrations of a linear molecule 

149 
Heisenberg representation 10 
Heisenberg's uncertainty rule 17,40 
Heitler-London approximation 163 
Helicity 137 
-, expectation value 196,208 
- of neutrino 200 
- operator in Dirac theory 190 
- in one-dimensional Dirac problems 

197 
- of a plane Dirac wave 190, 195 
- of a plane Dirac wave. states of 

mixed helicity 195, 196 
Helium, excited states 155, 156 
-, ground state 154 
Hermite polynomials 30, 32, A 
Hermitian conjugate 6,31 
- operator 6, 7, 59 
High-energy scattering 104 
Hilbert space 6, 10, 12, 31, 33, 50 
- -, its construction for angular 

momentum 56 
- -, its construction for an 

harmonic oscillator 31 
- - of spin operators 129, 139 
Homogeneous electrical field, motion 

of electrons 41 
Hulthen potential 68 
Hydrogen atom 67 
- -, lifetimes of excited states 215 
- -, relativistic theory 202, 203 
- -, spectral line intensities 217 
- - as a two-body problem 150 
Hydrogen eigenfunctions (table) 67 
- - in momentum space 78 
Hydrogen molecule, ionized 44 
- -, neutral, ground state 163 
- -, scattering of slow neutrons 

147 
Hydrogen star 171 
Hypergeometric series 37, 38, 39,46, 

64,68,207 
- -, formulae A 

Image force, effect upon field emission 
170 

Index of refraction for light waves 
187 

- - - for particle waves 45, 115 
Induced dipole moment 187 
Inelastic scattering 166 
Infinitesimal rotation 47 
Inhomogeneous differential equation 

94 
Integral equation for momentum-space 

wave function 14,77 
- - for radial part of wave function 

94 
Intensities of spectral lines 213, 217 
Intermolecular potentials 104 
Intrinsic magnetic moment of electron 

136,138 
Ionization energies of helium and 

two-electron ions 154, 155 
Ionization in stellar matter 171 
lrreducible representation of a matrix 

system l~Y 
Isotope shift in electron binding 73 

Kepler problem in momentum space 
78 

- -, relativistic radial solutions at 
positive energies 204 

- -, - theory for bound states 202 
- -, unrelativistic radial solutions at 

positive energies 111 
- -, - theory for bound states 67 
- -, WKB approximation 120 
Kernel, symmetrization 94 
Kinetic energy density 5 
- - operator 13, 46, 49 
Klein-Gordon equation 189 
Klein-Nishina formula 218 
Klein's paradox 202, 207 
Kratzer's molecular potential 69 
K shell binding energies 154 
- - screening constants 178 
Kummer's differential equation see 

confluent series 

Laguerre polynomials A 
Lande factor 135 
Larmor frequency 138 
Legendre functions and polynomials 

A 
Lennard-Jones potential 104 
Level density 26 



Lifetime of an excited state 215 
Line intensity 213, 217 
Line shape 182 
Lithium ground state 157,158 
Logarithmic derivative 20, 22, 23, 

82--86,89,92,101 
-- phase 69, 110, 111, 112 
Lorentz covariants 192 
-- invariance of Dirac equation 191 
-- transformation, infinitesimal 192 
low-energy scattering 83, 88, 89 
-- -- and bound state 90, 147 
-- -- by Poschl-Teller potential 93 
Lyman lines of hydrogen 217 

Magnetic dipole see also magnetic 
moment 127 
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Momentum density, Born scattering 
184 

Momentum, total, of Schrodinger field 
1,3,210 

Morse potential 70, 71 
Multiplication table of spin algehra 131 
Muonic atom 74 

Negative-power potential, scattering 
length 99, 100 

Neon, diamagnetic susceptibility 160 
Neumann functions, formulae A 
-- series 94, 105 
Neutrino theory 200 
Normal Zeeman effect 127,216 
Normalization 1, 14, 15 
-- volume 183 

-- field in SchrOdlinger equation 125 Nuclear radius, effect on electron 
binding energy 73 -- fields originating spin resonance 

138 
-- moment of deuteron 145 
-- -- of electron 136, 138 
-- -- originated by angular 

momentum 127 
-- -- of spin state, expectation value 

135 
-- properties of a Fermi gas 168 
-- -- of neon 160 
-- quantum number 127 
-- resonance, spin flip 188 
Magnetization 128 
Magneton of Bohr 127 
Mass density 1 
Mathieu equation 148 
Matrix of an operator 6, 33 
Measurement of an observable 12 
Metal, paramagnetic susceptibility 

168 
Metric used in four-space 189 
Mixture of Sand D state 143, 144, 

145 
Modified Bessel functions, formulae 

A 
Molecular potentials 44, 69, 70 
Molecule of hydrogen see hydrogen 

molecule 
-- as a symmetrical top 46 
--, three-atomic, modes of vibration 

149 
--, two-atomic 69, 70, 71 
Momentum density 1 
-- operator 3, 7, 8, 10 
-- space 14,15,34,76,77 

Observable, repeated measurement 12 
Opacity 19, 21, 22, 86 
Opaque wall 19,20,21,27,86 
Operator of magnetic moment 135 
Operators acting on particle numbers 

210 
Optical theorem 104 
Orbital momentum, expectation value 

in relativistic theory 203 
-- -- in spin states 133 
Orthogonal system 2 
Orthogonality of spherical harmonics 

57 
Ortho-helium 155, 156 
Ortho-hydrogen, spin functions 147 
Overlap integral 44, 156, 158, 163 
Oscillator see harmonic, anharmonic, 

circular, spherical oscillator 
Oscillator strength 187 

Parabolic coordinates 110, A 
Para-hydrogen, spin functions 147 
Paramagnetic resonance 180 
Paramagnetism 128,168 
Par-helium 155, 156 
Parity 18,19,20,22,25,26,143 
Parity mixing operators 200 
Parity transformation of Dirac 

equation 193 
Partial cross section 84, 87 
Partial wave 81,82,205 
-- -- expansion for Coulomb 

scattering 111 
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Partial wave expansion of plane wave 
81 

- - - of scattering amplitude 
82,83 

- - - of three-dimensional 
Green's function 94 

Particle resonance 113, 114 
Particle number operator 210 
Pauli algebra 131 
- matrices 52, 129, 130, 189 
- principle 152, 167 
Periodic perturbation, photoeffect 

186 
- - of a two-level system 180 
- potential 28, 29 
Periodicity cube 15, 210 
Permutation of particles 152,153 
Perturbation see also periodic 

perturbation 
- by a light wave 186 
- method of Dirac 181-183 
Perturbation theory for anharmonic 

oscillators 35 
- - of atom-atom interaction 161, 

162 
- - of dielectric susceptibility 159 
- - for isotope shift 73 
- - of magnetic susceptibilities 128 
- - for muonic atom 74 
- - for three-dimensional Stark 

effect 79 
- - for two-dimensional Stark effect 

43 
- - ofa two-level system 179,180 
Phase angle, behaviour at resonance 

27 
Phase average 58 
Phase function 104, 124 
Phase shift 82, 84, 85, 86, 87, 93 
- -, determination by successive 

steps 96,97 
- - determined from integral 

equation 94 
- - in exponential potential 

107 
- - in WKB approximation 

121,122 ' 
- - in Yuh.awa potential 106 
Phase velocity 16 
Photoeffect 186 
Photon emission probability 213 
Photon number in quantized radiation 

field 212 

Plane Dirac wave 190 
- - -, angular momentum 

expansion 205 
- - -, incident on potential jump 

208 
Plane wave, expansion into partial 

waves 81, 136, 205 
- -, oblique incidence 45 
- -, one-dimensional 16 
- - of spin particles, relativistic 

190 
- - of spin particles, unrelativistic 

137 
Poisson equation 156,172,173,174 
Polarizability of an atom 159 
Polarization current 199 
Polarization of dipole radiation emitted 

214,216 
- of plane Dirac wave by a potential 

jump 208 
Poly trope 171 
Poschl-Teller potentials 38,39,93 
Potential energy density 5 
- step 37 
- - in Dirac theory 207 
- wall see barrier 
- well 18, 25, 62 
Pressure of electron gas 167,171 
Principal quantum number 67 
Probability conservation 1 
- of photon emission 213 
Proton-proton scattering 165 
Pseudoscalar in Dirac theory 192, 193 
Pseudovector in Dirac theory 192, 

193 

Quadrupole moment 61 
- - of deuteron 145 
- - of a spin electron state in a 

central field 134 
- tensor 54,61 
Quantization of radiation field 212 
- of SchrOdinger field 210 
Quartet, spin functions 146, 147 

. Quasipotential 104, 124 
Quaternions 131 

Radial momentum operator 59 
- WKB functions 116 
Radiation condition of Sommerfeld 

80 
-, dipole emission 213, 214 
- field, quantization 212 
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Radiative transition, probability 215 
Real state 26 
Rectangular barrier 23 
- hole 25,63 
- -, scattering 89, 101 
Reduced mass 72, 75, 150 
Reflected intensity 21, 22, 23, 37, 39, 

45,207,209 
Reflection of Dirac particles at a 

potential step 207, 209 
- law 45,208 
Refraction index see index of refraction 
- law 45,208 
Regge pole and trajectory 113, 114 
Resonance absorption 182 
- denominator 182,186,187 
- field strength 138 
- level 27 
- in periodic perturbation 180,182 
- scattering 84, 86 
Riccati equation 115 
Rigid body in quantum mechanics 46 
- rotator 43, 79 
Ritz approximation for helium states 

154, 156 
- - for neutral hydrogen molecule 

163 
- - for solution of Thomas-Fermi 

differential equation 177 
- variational method 44, 72, 74, 75 
Rotational group 46, 52 
Rotations of two-atomic molecules 

69, 70, 71 
Rotator 43, 79 
Running wave 16 
Rutherford scattering 108, 110 
- - of equal particles 164 

Sabatier transform 124 
Scalar in Dirac theory 192 
Scattered wave, interference with 

incoming plane wave 80 
Scattering amplitude 80,82, 105 
- -, collision parameter integral 104 
- -, convergence of partial wave 

expansion 83, 103 
- -, partial wave expansion 82, 83 
Scattering, application of the Golden 

Rule 183, 211 
- cross section, definition 80 
- of Dirac electrons by a central-

force potential 206 
- of equal particles 164 

Scattering at a hard sphere 84, 109 
-, inelastic 166 
Scattering length 84,92,95 
- - , different signs 88, 147 
- -, negative-power potential 99, 

100 
- -, proton-neutron system 147 
- -, square-well potential 89,101 
- -, Yukawa potential 10::! 
Scattering at low and high energies see 

low- and high-energy scattering 
-, one-dimensional model 21,22,23 
- of neutrons by molecular hydrogen 

147 
- of protons by protons 165 
- in quantized-wave picture 211 
- at a spherical cavity 86, 88 
Schrodinger field, quantization 210 
- representation 10 
Schwinger's variational principle 95 
Screened hydrogen functions 154, 

155, 156, 157, 160 
- nucleus, effective potential 156 
Screening 73 
- constants 154, 157, 160 
- of K electrons in heavy atoms 178 
S-D-mixture 144, 145 
Selection rules for dipole radiation 

216 
Self-adjoint see hermitian 
Shadow effect 109 
Shape-independent approximation 88 
Short-range attraction between two 

protons 165 
Short-range force 112 
Singlet, spin function 139 
Slater determinant 152, 153, 158 
Sommerfeld's radiation condition 80 
Sommerfeld-Watson transformation 

113 
Space average 3, 4, 5 
Spectrum of bremsstrahlung 219 
- of wave numbers 17 
Spherical Bessel functions 62, 63, 81, 

83,87,94,108,109 
- - -, formulae A 
- - -, integral representation 81 
Spherical charge distribution, scattering 

108 
Spherical harmonics expansion of plane 

waves 81, 136, 205 
- -, formulae A 
- - of order 2, tensorial quality 54 
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Spherical harmonics, orthogonality 57 
- - of the second kind 106 
- -, table 67 
- -, transformation under rotation 

55 
Spherical oscillator 65 
- polar coordinates A 
Spin algebra see also Clifford algebra 

131,141 
Spin-dependent central force 140, 147 
- tensor force 143 
Spin electron in central field 133, 201 
- exchange operator 140 
- expectation value of plane Dirac 

wave 196 
- flip in magnetic fields 188 
- one particles 52 
- and orbital momentum, coupling 

for one electron 133 
- orbit coupling 136 
- resonance 138 
- of three-electron state 146 
- of two-electron state 139 
Spin vector under space rotation 132 
- - operator 129 
Spinor, Lorentz transformation 191 
- in one-dimensional Dirac problem, 

algebraic properties 197 
- in unrelativistic theory 132 
Square well see also potential well and 

rectangular hole 
- - of finite depth 25, 63, 89 
Square-well potential, scattering 89, 

101 
Standard representation of Dirac 

matrices 189 
Standing wave 18 
Stark effect of three-dimensional 

rotator 79 
- - of two-dimensional rotator 43 
Stationary state 16 
Statistical methods 167-178 
Step see potential step 
Stirling's formula A 
Successive approximations to solution 

of integral equation 94, 96, 105 
Susceptibilities, diamagnetic and 

paramagnetic 128, 160, 168 
Susceptibility, dielectric 159 
Symmetrical top 46 
Symmetrization for helium states 

155, 156 
- for many-body system 152 

Symmetrization of Rutherford scatter­
ing of equal particles 164,165 

- of three-particle spin functions 
146 

- of two-particle spin functions 139 

Tensor, commutators with angular 
momentum 53, 54 

- in Dirac theory 192 
- force 143 
Thomas factor 136 
Thomas-Fermi atom 172-178 
Thomson cross section 218 
Three-atomic linear molecule 149 
Three electrons see lithium 
Tietz approximation of Thomas-Fermi 

atom 176-178 
Time derivative of an expection value 9 
- - of an operator 10 
Time reversal 16 
Torque 4 
Total angular momentum 133, 142, 

201 
Total reflection 45 
Transition probability 182, 183, 186, 

211,213 
Transmitted intensity 21,22,23, 39, 

45,207,209 
Transmission of Dirac particles 

through a potential step 207 
Transverse wave 212 
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Uncertainty rule 17 
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Vertex 219 
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Wave group 17 
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