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Preface

Theoretical physics, as a science, began with Newton. His ideas were based on par-
ticles – corpuscles,1 and the first realistic model of interactions was the Newtonian
theory of gravity, in which the planets and the Sun were attracted to each other by
instantaneous forces at a distance.

Newton himself was very unhappy about this model. He wrote [61]

That Gravity should be innate, inherent and essential to Matter, so that one body may act upon
another at a distance thro’ a Vacuum, without the Mediation of any thing else, by and through
which their Action and Forcemay be conveyed from one to another, is tome so great an Absurdity
that I believe no Man who has in philosophical Matters a competent Faculty of thinking can ever
fall into it.

Indeed, over time, the idea of Newtonian corpuscles began to lose its appeal. The first
blow was caused by the wave theory of light by Young and Fresnel. The second blow
was Maxwell’s theory of electromagnetic phenomena. The culmination of these mis-
fortunes was Einstein’s theory of relativity. By 1905, a harmonious system of views
had developed, which denied the Newtonian action-at-a-distance. The theory of rel-
ativity forbade the superluminal transmission of any signals and interactions. The
Maxwell–Liénard–Wiechert theory explained that the carrier of the retarded interac-
tion between charges is the electromagnetic field propagating at the speed of light.
Energy and momentum flowing between charges are temporarily stored in the field,
so that conservation laws are not violated even in the case of such a retarded trans-
mission of forces.

For a short period of time this field picture was shaken by the arrival of quan-
tum mechanics. In particular, to explain the photoelectric effect, Einstein revived the
Newtonian corpuscles of light – photons [4]. It turned out that these corpuscles (their
wave functions) can also interfere, and to explain the structure of the atom itwas suffi-
cient to solve the Schrödinger equation for particles interacting via the instantaneous
Coulomb potential.

However, early quantum theory was soon criticized for its alleged incompati-
bility with the principle of relativity and replaced with quantum field theory (QFT).
The fantastic agreement of this theory with experiments, it would seem, has forever
discouraged the return to the corpuscular past. It is enough to go over titles of some
articles in respected journals,2 to understand that in today’s physics particles are in
deep disgrace.

1 Even light was understood by Newton as a stream of a huge number of microscopic particles.
2 “No place for particles in relativistic quantum theories?” [35], “There are no particles, there are only
fields” [37], “Why there cannot be a relativistic quantummechanics of (localizable) particles” [53].
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In its mature form, the idea of quantum field theory is that quantum fields are the basic ingre-
dients of the universe and particles are just bundles of energy and momentum of the fields –
S. Weinberg [96].

However, the “particles vs. fields” argument is still far from a happy resolution. Mod-
ern field theories face two difficult problems.

The first problem is ultraviolet divergences. All realistic quantum field theories
suffer fromdivergent loop integrals occurring in calculations of scattering amplitudes.
These divergent theories are “renormalized” by adding infinite counterterms to their
Hamiltonians. In fact, the renormalization sweeps the problem of ultraviolet diver-
gences “under the carpet,” because it results in a poorly defined formally infinite en-
ergy operator, which is not suitable for describing the time-dependent dynamics of
states. On closer examination, it turns out that the problem of divergences is related
to the self-interaction of particles in QFT. In this theory, the electron interacts with it-
self, which is often depicted by diagrams inwhich an electron absorbs its own emitted
virtual photons.

In the third volume of our book, we shall see that the problems of self-interaction
and renormalization can be solved by introducing the so-called dressed interaction
theory. This will bring us back to Newton’s corpuscles, interacting with each other
through instantaneous potentials. But how can one reconcile this action-at-a-distance
with the theory of relativity, which prohibits superluminal propagation of interac-
tions?

To answer this question, we turn to the second important problem of theoretical
physics. It is sometimes formulated as the problem of quantum gravity, although, in
fact, quantum mechanics is poorly compatible even with Einstein’s special relativity
theory. In special relativity, positions and time are treated on an equal basis as co-
ordinates in the four-dimensional Minkowski space–time. However, in quantum me-
chanics these two quantities play quite different roles. The spatial coordinate (like any
other physical observable) is described by anHermitian operator, whereas time is sim-
ply a numerical parameter that cannot be converted into an operator without contra-
dictions.

Our main goal is to understand the essence of contradictions between quantum
mechanics and the special theory of relativity. For this, we will have to return to the
very foundations of theoretical physics. We begin with indisputable postulates of
quantum mechanics and the principle of relativity. Strict adherence to these postu-
lates will lead us to the idea of unitary representations of the Poincaré group in a
Hilbert space of states as the basis of the entire mathematical apparatus of our theory.
Although applications of this approach to interacting systems are well known since
the fundamental work of Dirac [23], it was not recognized that Dirac’s interacting gen-
erators of boosts3 imply that Lorentz transformations cannot be exact and universal,

3 The generators of boosts are interaction-dependent in the instant form of Dirac dynamics. In Vol-
ume 3, we will argue that only this form should be used to describe nature.
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as required by special relativity. Boost transformations of observables must depend
on the particular physical system and forces acting therein. This important observa-
tion will enable us to lift the prohibition on superluminal propagation of interactions
and formulate a theory of particles acting on each other by means of instantaneous
potentials. At the same time, we will be able to avoid conflicts with the unshakable
principles of relativity and causality.

In the third volume,wewill analyze in detail the recent experiment [21] conducted
by the team of professor Pizzella at the Frascati Research Center.With this experiment
they discovered the superluminal propagation of Coulomb forces, which, in our opin-
ion, is the most convincing validation of the theory presented in this book. In some
sense, the ultimate goal of the entire book is to demonstrate that Pizzella’s unusual
results are naturally expected in a rigorous approach to quantum relativistic physics.

In this book, we will focus on systems of charged particles and photons as well as
on electromagnetic forces acting in such systems. Traditionally, these phenomena are
described by quantum electrodynamics (QED). Our approach will lead us to another
theory, which we call relativistic quantum dynamics, or RQD. This theory is exactly
equivalent to the renormalized QED as long as one is interested in properties related
to the S-matrix (scattering cross sections, lifetimes, energies of bound states, etc.).
However, unlike QED, our approach can also describe the time evolution and boost
transformations in interacting systems.

This book is divided into three volumes.4 This is Volume 1, where we will try to
avoid contradictory issues and will, basically, adhere to the generally accepted views
on relativistic quantum theory. We will define our basic assumptions, notation, and
terminology and also try to trace a logical path starting from the postulates of relativ-
ity and probability and leading to relativistic quantum theory of interacting systems.
In this volume, we confine ourselves to interactions that do not change the number
of particles in the system, which is an acceptable approximation for low-energy pro-
cesses within the framework of elementary quantum mechanics.

Volume 1 consists of seven chapters.
In Chapter 1,Quantum logic, we derive the basic laws of quantum theory from sim-

ple axioms of measurements and probability (= quantum logic). We turn to the old,
but not yet very popular idea that in order to understand quantum laws it is necessary
to replace some of the postulates of classical logic. Despite the apparent radicalism of
this approach, it leads to thewell-knownquantum formalismwithwave functions and
Hermitian operators in theHilbert space. For us it will be important to emphasize that,
being rooted in logic, the foundations of quantum mechanics are solid and unshak-

4 This work is based partially on our earlier publications [82, 83], which were rewritten, updated and
improved in significant ways.
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able. Therefore, we do not expect anymodification of the laws of quantummechanics5

in the foreseeable future.
In Chapter 2, Poincaré group, we introduce the Poincaré group as a set of trans-

formations connecting different (but equivalent) inertial reference frames. This chap-
ter is central to understanding the principle of relativity. In our approach, the group
properties of inertial transformations are at the core of the relativistic description of
nature.

Chapter 3, Quantum mechanics and relativity, will combine the two theories pre-
sented above and establish unitary representations of the Poincaré group as the most
general and complete mathematical description of any isolated physical system. This
is the most adequate language for a relativistic quantum description of nature. One
can even say that the rest of this book is simply an exercise in constructing and ana-
lyzing various unitary representations of the Poincaré group.

In Chapter 4,Observables, we examine the correspondence between known phys-
ical quantities (such as mass, energy, momentum, spin, position, etc.) and specific
Hermitian operators in the Hilbert space of states. The most important point is the
connection between physical observables and generators of the Poincaré group repre-
sentation. From this connection we derive the commutation relations of observables
and how these operators change with respect to inertial transformations of the ob-
servers.

Chapter 5, Elementary particles, is devoted to the Wigner theory of unitary irre-
ducible representations of the Poincaré group. This theory fully describes the basic
properties and dynamics of isolated stable elementary particles. For us, the special
importance of this chapter is that Wigner’s elementary particles are the most funda-
mental ingredients in our model of the world. As we explain in Volume 3, quantum
fields are just formal technical constructions, and real physical systems are composed
of elementary particles that interact directly with each other.

In Chapter 6, Interaction, we discuss relativistically invariant interactions in
many-particle systems. Here we emphasize the most important conclusion of Dirac
[23], that relativistically invariant interactions require modification not only of the
Hamiltonian (as in the familiar non-relativistic theory) but also of other generators of
the Poincaré group. We will base our theories on the Dirac instant form of dynamics,
where interaction is present in both the Hamiltonian and the boost generators. In
Volume 3 this will lead us to the conclusion that Lorentz transformations of special
relativity are, strictly speaking, inapplicable to interacting systems.

Chapter 7, Scattering, is devoted to the quantum-mechanical description of par-
ticle collisions. Scattering is important first because it is the most informative experi-
mentalmethod for studying subatomic phenomenaand secondbecause the scattering

5 Suchmodifications are sometimes contemplated in attempts to develop a quantum theory of gravity.
See, for example, [47] and references therein.
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matrix is the main target of QFT (see Volume 2). In this book, we will build our theory
(RQD) by modifying QFT, so for us the scattering matrix is of central importance. We
will pay special attention to the notion of scattering equivalence, when two different
Hamiltonians lead to the same S-operator. This property will play an important role in
the derivation of the “dressed” Hamiltonian in Volume 3.

Some useful mathematical facts and technical calculations are collected in Ap-
pendix.

In Volume 2 [84], we will formulate the foundations of the most successful quan-
tum field theory – QED, explain the causes of ultraviolet divergences and demonstrate
the renormalizationof the S-matrix by introducing counterterms into theHamiltonian.
There is no new physics introduced in Volumes 1 and 2. They present textbook quan-
tum mechanics and QFT, perhaps sometimes viewed from unusual angles, but still
rather orthodox. The main goal of the first two volumes is to prepare the ground for
the formulation of our unconventional approach, based on the notion of physical par-
ticles and “dynamical” relativity, in Volume 3 [85] of this book.

We use the Heaviside–Lorentz system of units,6 in which the potential energy of
the electron–proton interaction has the form V = −e2/(4πr), and the proton charge is
e = 2√π×4.803×10−10 statcoulomb. The speed of light is c = 2.998×1010 cm/s, and the
Planck constant is ℏ = 1.055 × 10−27 erg⋅s = 6.582 ⋅ 10−16 eV⋅s, so that the fine structure
constant is equal to α ≡ e2/(4πℏc) ≈ 1/137.

I would like to express my sincere gratitude to Peter Enders, Rainer Grobe, Theo
Ruijgrok,Alexander Shebeko andBoris Zapol,who read thedraft of this book andgave
me many priceless comments and much advice, which I tried to take into account in
the final manuscript. I also thank Harvey R. Brown, William Klink, Vladimir Korda,
Chris Oakley, Federico Piazza, Guido Pizzella, Wayne Polyzou, Mikhail Shirokov and
Charles Su for enlightening discussions at various stages of this work. I enjoyed on-
line communications with Juan Bernard Chaverondier, Wolfgang Engelhardt, Juan R.
González-Álvarez, Bill Hobba, Igor Khavkine, Mike Mowbray, Arnold Neumaier and
Dan Solomon. All these contacts and exchanges of ideas have formedmy understand-
ing of relativistic quantum physics and, ultimately, led to the writing of this book.
However, this does not at all mean that the mentioned researchers share or approve
my views. For all the misconceptions and errors contained in this book, the author
bears full responsibility.

6 See Appendix in [39].





Introduction
As a result, it was almost three o’clock in the morning before the final result of my computations lay
beforeme. The energy principle held for all the terms, and I could no longer doubt themathematical
consistency and coherence of the kind of quantum mechanics to which my calculations pointed. At
first, I was deeply alarmed. I had the feeling that, through the surface of atomic phenomena, I was
looking at a strangely beautiful interior, and felt almost giddy at the thought that I now had to probe
this wealth of mathematical structures nature had so generously spread out before me.
Werner Heisenberg

In this Introduction, wewill try to formulatemore precisely what is the goal of theoret-
ical physics, what are the fundamental concepts of this science and the relationship
between them. Some of our statements may look self-evident or even trivial. However,
it seems important to us to spell out these definitions and clarify our positions here
and now, in order to avoid misunderstandings in further parts of the book.

Figure 1: Schematic representation of the preparation/measurement act.

We get all information about the physical world through results ofmeasurements, and
the fundamental goal of theoretical physics is to describe and predict these results.
Any act of measurement requires the presence of at least three objects (see Figure 1):
the preparation device, the physical system and the measuring apparatus. The prepa-
ration device arranges the physical system in a specific state. This state has certain
attributes or properties. If the state’s attribute can be associated with a numerical
value, it will be called a physical quantity or observable F. Observables are measured
by bringing the system into contact with the measuring apparatus. The result of the
measurement is a numerical value of the observable, i. e., a real number f . We assume
that each measurement of the observable F always produces some result f , i. e., the
measuring apparatus never misfires.

This is just a short list of important concepts. Let us now dwell on each of them in
more detail.

https://doi.org/10.1515/9783110492132-206
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Physical systems
Wewill call a physical system any object that is capable of causing a response (=mea-
surement) in the measuring apparatus. Physical systems can be either elementary
(they are also called particles) or composite, i. e., consisting of two or more particles.

In this book, we confine ourselves to examining isolated systems, which do not
interact with the outside world or with any external potential. By insisting on this, we
exclude from consideration interesting physical systems, such as an atom in external
electric and magnetic fields. However, in fact, this does not limit the generality of our
approach. Indeed, one can always combine the atom and the field creating device into
a single unified system that now becomes isolated.

States
Each physical system can take different states. The book can be on the table or in the
library, open or closed, at rest or moving with great speed. It is not always easy to
understand whether we are dealing with different systems or with different states of
the same system. For example, a pair of separated particles (an electron and a proton)
does not at all look like a hydrogen atom. So, it is easy to make a mistake and decide
that e− + p+ and 1H are two different physical systems, although in reality these are
two different states of the same two-particle system.

Preparation and measuring devices
In general, devices used to prepare different states of physical systems and perform
measurements on them can be very complex. It would be hopeless to try to include
in our theory a detailed description of these devices and their interactions with phys-
ical systems. Instead, we will use an idealized representation of the acts of prepara-
tion and measurement. In particular, we will assume that the measuring device is a
black box that somehow “interacts” with the system and produces one real number
f – the value of the measured observable. We are not interested in what is the inner
working of this device and what is the mechanism of the device–system interaction.
Such an abstraction is necessary to avoid a logical vicious circle. After all, if we begin
to study components of the measuring apparatus, then we will have to operate with
their observables (positions, velocities, etc.). Should we then introduce in our theory
also outside instruments, which measure the measuring apparatus? No.

Time and clocks
In physics, there are numerical quantities which are not associated with any physi-
cal system and, therefore, they are not observables. These include, for example, the
number of spatial dimensions (3) and the Planck constant. Themost important physi-
cal quantity, not included in the class of observables, is time. We consider clock as an
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integral part of any laboratory and not as a physical system.7 The role of the clock is to
give a time stamp (= numerical parameter) to each measurement of true observables.
This label simply recordswhen themeasurement wasmade, and the value of the label
does not depend on the state of the observed system. Thus, we cannot say that time
is an attribute or property of a physical system, because the “measurement” of time
(= looking at the positions of the clock hands) does not involve interaction with any
physical system. Time can be “measured,” even if there is no physical system in our
laboratory. The special places occupied by the clock and time in the acts of measure-
ment are noted in Figure 1.

Observables
Theoretical physics seeks to study the simplest physical systems and their most fun-
damental observable properties: mass, velocity, spin, etc.

Without doubt, there are devices capable of measuring only one observable.8 The
result of such ameasurement is one real number (= the value of the observable). Clas-
sical physics makes a stronger assumption, that one can also measure several observ-
ables simultaneously. In quantum physics, we will be more cautious and let the the-
ory itself tell us which pairs of observables are simultaneously measurable and which
pairs are not. The observables that aremeasurable simultaneously will be called com-
patible. Examples of compatible observables are x-, y- and z-components of one par-
ticle’s position. Examples of incompatible observables are the x-components of the
position and momentum of the same particle.

We will also see that in the quantum world, one act of preparation/measurement
is insufficient to completely characterize the state of the studied system. For a com-
plete picture, it is necessary to prepare many copies of the same system under the
same conditions9 andmake independentmeasurements in each copy. An unexpected
and still mysterious property of nature is that for such repeated measurements there
is no guarantee of obtaining the same result, even if the preparation conditions are
controlled in the most rigorous way. We will conclude that this scatter of values is
purely random, and that a system’s description can be only probabilistic. This idea is
the starting point of quantum theory, which we discuss in Chapter 1.

7 Of course, the experimenter can decide that the laboratory clock is a physical system worthy of re-
search, andundertake its experimental study. In particular, he can explore the quantumuncertainty of
the positions of the clock’s hands. However, such a clock ceases to be an effective device for recording
time. Some other device should be used as the laboratory clock in this case.
8 We will assume that in each specific act of measurement the given observable can be measured
absolutely precisely. Of course, real measuring devices are not ideal, but we will assume that with
some effort it is always possible to achievemore andmore perfect measurements, so that the precision
is, in principle, unlimited.
9 This set of copies is called the ensemble of physical systems.
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Spectra of observables
Some observables can take any value on the entire real axis ℝ. The Cartesian com-
ponents of the position Rx, Ry and Rz are the simplest examples of such (unbounded
and continuous) observables. However, there are also examples of observables whose
values can occupy only a certain subset of the real axis. Such a subset is called the
spectrum of the observable. For example, it is known (see Chapter 5) that each compo-
nent of the velocity of a particle (Vx,Vy orVz) cannot exceed the speed of light c, so the
spectrum of these observables is within the interval [−c, c]. The position and velocity
have continuous spectra. There are also quantities with discrete spectra. For example,
the “number of particles” can take only integer values n = 0, 1, 2, . . .. Later we will also
meet observables whose spectrum is a combination of discrete and continuous parts,
such as the energy spectrum of the hydrogen atom; see Figure 2.

Figure 2: Examples of spectra of observables:
(a) x-component of position Rx ; (b) x-component of
velocity Vx ; (c) number of particles n; (d) energy E of a
particle in an attractive potential.

Observers
We will call the observer O a set of measuring devices that are adapted to measure all
possible observables. The minimum set of instruments includes a ruler for measuring
distances, a clock for recording time, a fixed origin and three mutually perpendicu-
lar axes erected at this point. Laboratory is the complete experimental setup, i. e., a
preparation device plus an observer O with all its measuring instruments.

In this book, we only consider inertial observers (= reference frames, = labora-
tories). These are observers/laboratories that are either at rest or moving uniformly
without acceleration and rotation; their velocities and the directions of their coordi-
nate axes do not change with time. The importance of choosing inertial observers will
become clear in Section 2.1, where we will see that measurements made by these ob-
servers satisfy an important relativity principle.

Inertial transformations
In addition to physical systems, an observer can also measure properties of her fellow
observers. With the set of devices listed above, each observer O can characterize an-
other observer O󸀠 by ten parameters {v,φ, r, t}. These parameters include (i) the time
shift t between O and O󸀠; (ii) the radius-vector r connecting the origins of O and O󸀠;
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(iii) the rotation angle10φ between orientations of the coordinate axes inO󸀠 andO and
(iv) the speed v of O󸀠 with respect to O.

It is convenient to introduce the notion of inertial transformation of the observer
or laboratory. Such transformations include:
– rotations,
– spatial translations,
– changes of the speed or boosts,
– time translations.

There are three independent rotations (about the axes x, y and z), three independent
shifts and three independent boosts. So, together with time translations, we have 10
basic types of inertial transformations. The general inertial transformation (g) can be
obtained by the successive application of two (ormore) basic transformations.Wepos-
tulate that for any pair of inertial observers O and O󸀠 there is always an inertial trans-
formation g that takes O to O󸀠. This fact will be denoted by O󸀠 = gO. Conversely, ap-
plying any inertial transformation g to a given observer O will transform it to another
valid inertial observer O󸀠 = gO. In Chapter 2 we will make an important observation
that transformations g form a Lie group.

One of the most important tasks of physics is to establish a connection between
results of measurements made by two different observers on the same physical sys-
tem. In particular, if the values of observables measured in the reference frame O are
known, then the theory should be able to calculate the values of the same observables
in the frame of reference O󸀠 = gO. The most important and demanded is the solution
of this problem in the case of dynamics or the time evolution, i. e., when g is a time
translation.

Tasks of physics
Let us summarize our reflections by pointing out the five basic tasks of theoretical
physics that we will discuss in this book:
– classify physical systems;
– for each physical system, list its observables and their spectra;
– for each physical system, list its possible states;
– for each state of the system, find results of measurements of all relevant observ-

ables;
– if a description of the system is given from the point of view of one observer, then

predict how the same system looks to other inertial observers.

10 Vector parametrization of rotation angles is explained in Appendix D.5.
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The nature of light is a subject of no material importance to the concerns of life or to the practice of
the arts, but it is in many other respects extremely interesting.
Thomas Young

In this chapter, we will continue our discussion of the connections between prepa-
ration devices, physical systems and measuring instruments, started in the Introduc-
tion. In particular, we will try to understand what is actually measured by the instru-
ments, and how these results depend on the state of the observed system.

Until the endof the 19th century suchquestions could only raise eyebrows. In clas-
sical mechanics and in all pre-quantum physics, it was tacitly assumed that in each
state the physical system possesses a set of quantities (position, momentum, mass,
etc.). These quantities simply show up in measurements. They can be measured si-
multaneously, accurately and reproducibly. Yes, of course, every measurement is lim-
ited by a certain imprecision, but this is only a technical difficulty that can and should
be neglected in a fundamental theory. All this was considered so obvious that it was
not even mentioned in textbooks.

However, since the end of the 19th century, these traditional ideas began to
disintegrate under the onset of new discoveries such as the radiation spectrum of
heated bodies, the discrete spectrum of atoms and the photoelectric effect. Solutions
of all these problems have been found within the framework of quantum mechan-
ics – a completely new approach to physics that emerged in the first third of the 20th
century as a result of joint efforts and passionate debates of such outstanding scien-
tists as Bohr, Born, de Broglie, Dirac, Einstein, Fermi, Fock, Heisenberg, Pauli, Planck,
Schrödinger, Wigner and many others. Out of all these studies, a completely unex-
pected andparadoxical picture of the physicalworld has emerged thatwas completely
unlike the orderly and transparent classical picture. In spite of their counterintuitive
strangeness, predictions of quantum mechanics are extraordinarily accurate: they
are checked daily in countless physical and chemical laboratories around the world,
and have never been refuted. This makes quantum mechanics the most successful
physical theory of all time.

There are dozens of good textbooks explaining the laws of quantum mechanics
and how to use them to analyze systems and predict observations in each particular
case. We assume that the reader is fairly familiar with these laws. We will be more in-
terested in the deeper meaning and interpretation of the quantum formalism, which
still generates bitter controversies. Why does nature behave in a random way? Or is
this randomness only apparent, but in fact there is a deeper level of reality, where
quantum uncertainty gives way to some new laws? How can different states (alive and
dead Schrödinger’s cats) exist in a superposition? Is it possible to change the rules of
quantum mechanics (for example, by adding some nonlinearity to the Hilbert space)
without being in contradictionwith experiments? People are increasingly asking such

https://doi.org/10.1515/9783110492132-001
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questions recently, when the search for the quantum theory of gravitation has inten-
sified, and one popular trend is to look for alternative formulations of quantum me-
chanics in order to “harmonize” it with the general theory of relativity [47].

In this chapter we will present a rather old, but not well-known point of view on
the origin of quantum laws. This approach seeks explanation of the quantumbehavior
in the fundamental logical structure of physics. In particular, this approach asserts
that the true logical relationships between results of measurements are different from
the classical laws of Aristotle and Boole. The usual classical logic needs to be replaced
by the so-called quantum logic.

Since ancient Greece, logic has been considered the queen of sciences, perhaps
not even a science as such, but something even more fundamental: a metascience,
a framework for our perception of the world and for the construction of all other sci-
ences. Therefore, it is difficult to imagine anythingmore revolutionary andprovocative
than an encroachment on the laws of logic. Nevertheless, there are enough convincing
reasons to make just this step.

In introductory quantum physics classes (especially in the United States), students are informed
ex cathedra that the state of a physical system is represented by a complex-valued wave func-
tion ψ, that observables correspond to self-adjoint operators, that the temporal evolution of the
system is governed by a Schrödinger equation and so on. Students are expected to accept all this
uncritically, as their professors probably did before them. Any question of why is dismissed with
an appeal to authority and an injunction to wait and see how well it all works. Those students
whose curiosity precludes blind compliancewith the gospel according toDirac andvonNeumann
are told that they have no feeling for physics and that they would be better off studying mathe-
matics or philosophy. A happy alternative to teaching by dogma is provided by basic quantum
logic, which furnishes a sound and intellectually satisfying background for the introduction of
the standard notions of elementary quantummechanics – D. J. Foulis [30].

The idea that the most fundamental difference between classical and quantum me-
chanics lies in their different logical structures belongs to Birkhoff and von Neumann.
In this chapter, we briefly outline their ideas of quantum logic [10] as well as later con-
tributions made especially by Mackey [50] and Piron [66, 67]; see also [19].

We will argue that the formalism of quantum mechanics (including the alge-
bras of state vectors and Hermitian operators in the Hilbert space) follows almost
inevitably from the simplest properties of measurements and logical relationships
between them. These properties and relationships are so simple and fundamental
that it seems impossible to modify them, and therefore it would be almost impossible
to change quantum laws without violating their internal consistency and agreement
with experiment. The practical conclusion is that the unification of quantummechan-
ics and relativity will not be achieved by changing or modifying quantum laws.1

1 In Volume 3 we will explain how one should change the formalism of special relativity to make it
compatible with quantummechanics.
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In Section 1.1 wewill examine limitations of classical approaches by analyzing the
two-holes (two-slits) interference experiment from the points of view of the wave and
corpuscular theories of light.

The logical structure of classical physics will be presented in Sections 1.2 and 1.3.
In particular, we will discuss the close relationship between the classical Boolean
logic and the phase space formalism. In Section 1.4 we will note the remarkable fact
that the only difference between classical and quantum logics (and, therefore, be-
tween classical and quantum physics in general) lies in two inconspicuous axioms
of distributivity. This postulate of classical logic should be replaced by the orthomod-
ular postulate of quantum logic. In Section 1.5 this will lead us (via Piron’s theorem)
to the standard formalism of quantum mechanics with its Hilbert spaces, Hermitian
operators, wave functions, etc. In Section 1.6 wewill add some thoughts to the endless
philosophical debate about interpretations of quantummechanics.

1.1 Why do we need quantum mechanics?

The inadequacy of the classical concepts becomes clear if we analyze the dispute be-
tween corpuscular andwave theories of light. Let us illustrate the essence of this,with-
out exaggeration, centuries-old debate by the example of a thought experiment with
the camera obscura.

1.1.1 Corpuscular theory of light

You may have seen or heard about a simple optical device called camera obscura or
pinhole camera. It is easy to make this device yourself. Take a lightproof box, make
a small hole in one of its walls and place a photographic plate at the opposite wall,
as shown in Figure 1.1. The light entering the inside of the box through the hole will
create a clear inverted image of the outside world on the photographic plate.

You can achieve even greater clarity by reducing the size of the hole. But this, of
course, will reduce the brightness of the image. This behavior of light has been known
for centuries. The first scientific explanation for this andmany other properties of light

Figure 1.1: The image in the pinhole cam-
era is created by rectilinear beams (rays)
of light.
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(reflection, refraction, etc.) was suggested by Newton. In a slightly modernized lan-
guage, his corpuscular theory explained the formation of the image as follows:

Corpuscular theory: Light is a stream of tiny particles (photons) flying along straight classical
trajectories (light rays). [For example, the ray that lands at the point A󸀠 in Figure 1.1 was emitted
from thepointA andpassed right through thehole.] Each suchparticle carries a certain amount of
energy.When the particle collides with the photographic plate, this energy is releasedwithin one
grain of the emulsion and creates a single image point. Bright light contains somanyphotons that
their individual spots flood the photographic plate. All these points merge into one continuous
image, and the density of the image is proportional to the number of particles hitting the plate
during the time of exposure.

Let us continue our experimentwith the pinhole camera,making the hole size smaller
and smaller. Corpuscular theory asserts that shrinking holes will produce a clearer,
but dimmer image. However, the experiment shows something completely different!
At some point, as the size of the hole is reduced, the image will begin to blur; and in
the limit of a very small hole all the details will disappear, and the picture will turn
into one circular diffuse spot, as in Figure 1.2 (a). The shape and size of this blur are
no longer dependent on the light source outside the camera. It would seem that the
light rays, passing through the small hole, are randomly scattered in all directions.
This effect was discovered by Grimaldi in the middle of the 17th century and was sub-
sequently dubbed diffraction.

Figure 1.2: (a) The image in the pinhole camera with a very small hole. (b) Image density along the
line AB.

Diffraction does not fit in the corpuscular theory. Why on earth do light corpuscles
deviate from straight-line trajectories? Maybe this is due to their interaction with the
material of the walls surrounding the hole? However, this explanation should be re-
jected, if only because the diffraction pattern does not depend on thematerial – paper
or steel – from which the walls of the box are made.
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The most striking evidence of the fallacy of the naïve corpuscular theory of light
is the interference effect, discovered by Young in 1802. To see the interference, we can
slightlymodify our pinhole camera: instead of one hole, make two holes that are close
to each other so that their diffraction blurs on the photographic plate overlap. We al-
ready know that if we leave open the left hole and close the right one, then we get a
diffuse blur L (the left dashed line in Figure 1.3 (a)). If, on the contrary, we close the left
hole and open the right one, we get another diffuse blur R. Let us now try to predict
what would happen if both holes are opened.

Figure 1.3: Image density in a two-
hole camera. (a) In the naïve cor-
puscular theory. (b) In reality.

Following the logic of the corpuscular theory, we could conclude that the photons
reaching the photographic plate are of two kinds: those that have passed through the
left and the right hole, respectively. If the two holes are open simultaneously, then
the density of “left” photons should add with the density of “right” photons, and the
resulting image L + R must be a superposition of the two images (solid line in Fig-
ure 1.3 (a)). Right? No, wrong! This seemingly logical reasoning is at odds with the
experiment. The actual image on the photographic plate has an additional structure
(brighter and darker areas shown by solid line in Figure 1.3 (b)), called the interference
pattern. There are regions where the image density is higher than L + R (constructive
interference) and regions with the density lower than L + R (destructive interference).

How can corpuscular theory explain this strange interference pattern? For exam-
ple, we could assume that there is some interaction between light corpuscles, so that
the passage of particles through the left and right holes are not independent events,
and the law of addition of probabilities is not applicable to them. However, this idea
should be rejected, because the interference pattern does not disappear even if we
release the photons one by one, so that their interaction is excluded.

For example, in a two-hole interference experiment performed by Taylor in
1909 [89], the light intensity was so low that no more than one photon was present
in the camera at any given time. This removed any possibility of interaction between
photons and any effect of this interaction on the interference pattern. Does this mean
that a single photon can interferewith itself?Maybe the photon somehow splits apart,
passes throughboth holes and then reconnects before collidingwith the photographic
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plate? This explanation also does not stand up to criticism, because one photon can
blacken only one grain of the emulsion. Nobody has ever seen a “half-photon”.

Perhaps, a particle passing through the right hole somehow knows whether the
left hole is open or closed, and adjusts its trajectory, accordingly? This just does not
make sense, and we have to admit that our simple corpuscular theory does not have a
logical explanation for all these observations.

1.1.2 Wave theory of light

The inability to explain such fundamental properties of light as diffraction and in-
terference was a heavy blow to the Newtonian corpuscular theory. These effects, like
other light properties known in the pre-quantum era (reflection, refraction, polariza-
tion, etc.) were brilliantly explained by thewave theory of light developed byHuygens,
Young, Fresnel and others. During the 19th century, the wave theory gradually sup-
planted the Newtonian corpuscles. The idea that light is a wave process received its
strongest support from the Maxwell theory, which combined optics with electromag-
netic phenomena. This theory explained that light ismade of oscillating electricE(t, r)
and magnetic B(t, r) fields – sinusoidal waves propagating with the speed of light c.
According to Maxwell, the energy of this wave and, accordingly, the intensity of light
I is proportional to the square of the amplitude of the field vectors: I ∝ E2. Then, from
the point of view of the wave theory, the formation of the photographic image can be
explained as follows.

Wave theory: Light is a continuous oscillating wave or field propagating through space. When a
light wave meets with molecules of the photographic emulsion, charged parts of the molecules
begin to oscillate under the action of the electric and magnetic vectors in the light field. In those
places where the amplitude of the electromagnetic oscillations is maximal, the charges of the
molecules are subjected to the strongest force, and the density of the photographic image is the
highest.

This model explains both diffraction and interference in a fairly natural way: diffrac-
tion simply means that light waves are capable of going around obstacles, just like
other types of waves (sea waves, sound waves, etc.) do.2 To explain the interference at
two holes, it is sufficient to note that when two parts of a monochromatic wave pass
through different apertures andmeet on a photographic plate, their electric (andmag-
netic) vectors add up. However, the wave intensities are proportional to the squares
of the vectors and, therefore, are not additive: I ∝ (E1 + E2)2 = E21 + 2E1 ⋅ E2 + E

2
2 ̸=

E21 +E
2
2 ∝ I1 + I2. From simple geometric considerations it follows that there are places

2 The wavelength of the visible light varies between 0.4 micron for violet light and 0.7 microns for red
light. So, for large obstacles or holes, the effect of diffraction is very small, and the corpuscular theory
of light works quite well.
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where these two waves always come with the same phase (E1 ↑↑ E2 and E1 ⋅ E2 > 0),
which means constructive interference, and there are other places where the waves
come out of phase (E1 ↑↓ E2 and E1 ⋅ E2 < 0), i. e., destructive interference.

1.1.3 Light of low intensity and other experiments

In the 19th century physics, the particle–wave dispute was resolved in favor of the
wave theory of light. However, further experiments showed that the victory was de-
clared prematurely. To understand the problems of the wave theory, let us continue
our thought experiment with the interference pattern. This time, we will gradually re-
duce the intensity of the light source. At firstwewill not notice anythingunusual: quite
predictably the image density on the photographic plate will decrease. However, from
a certain point we will notice that the image ceases to be uniform and continuous, as
before. We will see that it consists of separate dots, as if light were incident on some
grains of the emulsion and did not touch others. This observation is difficult to explain
from the point of view of the wave theory. How can a continuous wave create this dot-
ted image? But the corpuscular theory copes easily: obviously, these dots are created
by separate particles (photons), which bombard the surface of the photographic plate.

In the late 19th and early 20th centuries, other experiments appeared that chal-
lenged thewave theory of light. Themost famous of themwas the photoelectric effect:
it was found out that when light falls on a piece of metal, it can knock electrons out
of the metal into the vacuum. In itself, this discovery was not surprising. However, it
was surprising how the number of knocked-out electrons depended on the frequency
of light and its intensity. It was found out that only light with a frequency above a cer-
tain thresholdω0 could knock out electrons from themetal. Light of a lower frequency
was unable to do this, even if its intensity was very high. Why was this observation so
surprising? From the point of view of the wave theory, it could be assumed that the
electrons are emitted from the metal by the forces originated from the electric E and
magnetic B fields in the light wave. The higher intensity of light (= the larger magni-
tudes of the vectors E and B) naturally means a higher force acting on the electrons
and a greater probability of the electron emission. So why could not intensive low-
frequency light cope with this work?

In 1905, Einstein explained the photoelectric effect by returning to the long-
forgotten Newtonian corpuscles in the form of light quanta, later called photons.
Einstein described light as “. . . consisting of finite number of energy quanta which
are localized at points in space, which move without dividing and which can only be
produced and absorbed as complete units.” [4]. According to Einstein, each photon
carries the energy ℏω, where ω is the light frequency3 and ℏ is the Planck constant.

3 ω is the so-called cyclic frequency (measured in radians per second), which is related to the ordinary
frequency ν (measured in cycles per second) by formula ω = 2πν.
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Each photon has a chance to encounter only one electron in the metal and transfer its
energy to it. Only high-energy photons (i. e., photons present in high-frequency light)
can transmit enough energy to the electron to overcome the energy barrier Eb between
the volume of themetal and the vacuum. Low-frequency light has low-energy photons
ℏω < Eb ≈ ℏω0. Hence, regardless of the intensity (= the number of photons) of such
light, its photons are simply too weak and unable to kick the electrons strong enough
to overcome the barrier.4

In the Compton experiments (1923), the interaction of X-ray radiation with free
electrons was studied in much detail, and indeed, this interaction was more like a
collision of two particles than a shaking of the electron by a periodic electromagnetic
wave.

These observations should confirm our conclusion that light is a stream of cor-
puscles, as Newton said. But how about interference? We have already established
that corpuscular theory is unable to give a logical explanation for this effect!

So, the young quantum theory faced the seemingly impossible task of reconciling
two classes of experiments with light. Some experiments (diffraction, interference)
were easily explained within the framework of the wave theory of light, but did not
agree with the corpuscles – photons. Other experiments (photoelectric effect, Comp-
ton scattering) contradicted the wave properties and clearly indicated that light con-
sists of particles. To all this confusion, in 1924 de Broglie added the hypothesis that the
particle–wave dualism is characteristic not only of photons. He argued that all mate-
rial particles – for example, electrons – have wave properties. This “crazy” idea was
soon confirmed by Davisson and Germer, who observed the interference of electron
beams in 1927.

Without a doubt, in the first quarter of the 20th century, physics approached the
greatest crisis in its history. Heisenberg described this situation as follows.

I remember discussions with Bohr which went through many hours till very late at night and
ended almost in despair; and when at the end of the discussion I went alone for a walk in the
neighboring park I repeated to myself again and again the question: Can nature possibly be as
absurd as it seemed to us in those atomic experiments? – W. Heisenberg [36].

1.2 Classical logic

In order to advance in our understanding of the paradoxesmentioned above, we need
to go beyond the framework of classical physics. Therefore, to begin with, we are go-
ing to outline this framework, i. e., to look at classical mechanics. For simplicity, we
consider the classical description of a single particle in a one-dimensional space.

4 In fact, low-frequency light can lead to the electron emission when two low-energy photons collide
simultaneously with the same electron. But such events are unlikely and become noticeable only at
very high light intensities.
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1.2.1 Phase space of one classical particle

The state ϕ of a classical particle is completely anduniquely determinedby specifying
the particle’s position x and momentum p.5 Such states will be called pure classical.

Thus, all possible states of a one-particle system are labeled by a pair of numbers
(x, p) and canbe representedbypoints onaplane,whichwill be called thephase space
of the system and denoted 𝒮 (see Figure 1.4). Then particle dynamics is represented
by lines (= trajectories) in the phase space 𝒮.

Figure 1.4: Phase space of a particle in one spatial dimen-
sion.

1.2.2 Propositions in phase space

In order to make it easier to switch to the quantum description in the future, let us
introduce the concept of experimental (or logical) proposition, sometimes also called
yes–no question. Themost obvious are propositions about individual observables. For
example, the proposition 𝒜 = “the particle position is in the interval a” is meaning-
ful. In each pure state of the system, this proposition can be either true or false (the
question answered “yes” or “no”).

Experimentally, such a proposition can be realized using a one-dimensional
“Geiger counter”, which occupies the region a of space. The counter clicks (= the
proposition is true) if the particle passes through the counter’s discharge chamber
and does not click (= the proposition is false) if the particle is outside the region a.

Propositions can be represented in the phase space. For example, the above
proposition𝒜 is associated with the strip A in Figure 1.4. The proposition is true if the
point representing the stateϕ is inside the strip A. Otherwise, the proposition is false.

Similarly, propositions about the momentum are represented by strips parallel to
the x axis. For example, the strip B in Figure 1.4 corresponds to the logical proposition
ℬ = “the particle momentum belongs to the interval b.”

5 It might seemmore natural to workwith the particle’s velocity v instead of its momentum. However,
we will see later that our choice of primary observables has a special meaning, because x and p are
“canonically conjugated” variables.
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We will denote by ℒ the set of all propositions about the physical system.6 In the
rest of this section we will study the structure of this set and establish its connection
with the classical Boolean logic. The set of all possible states of the system will be de-
notedS. In this chapter, our goal is to study the mathematical relationships between
the elements 𝒳 ∈ ℒ and ϕ ∈ S in these two sets.

1.2.3 Operations with propositions

In classical theory, in addition to the above propositions𝒜 and ℬ about single observ-
ables, we can also associate a proposition with each region of the phase space. For
example, in Figure 1.4 we showed a rectangle C, which is an intersection of the two
strips C = A ∩ B. Apparently, this rectangle also corresponds to an admissible propo-
sition 𝒞 = 𝒜 ∧ ℬ = ‘the particle position is in the interval a and its momentum is in
the interval b.” In other words, this proposition is obtained by applying the logical
operation “AND” to the two elementary propositions 𝒜 and ℬ. We denote this logical
operation (meet) by the symbol 𝒜 ∧ ℬ.7

The four other logical operations listed in Table 1.1 are also naturally defined in
the language of propositions–regions. For example, the rectangle C = A ∩ B lies en-

Table 1.1: Five operations and two special elements in the theory of subsets of the phase space 𝒮, in
the classical logic and in the lattice theory.

Symbol for
subsets in 𝒮

Name in
logic

Meaning in
classical logic

Name in
lattice theory

Symbol in
lattice theory

Operations with subsets/propositions
X ⊆ Y implication 𝒳 IMPLIES𝒴 less or equal 𝒳 ≤ 𝒴
X ⊆ Y , X ̸= Y implication 𝒳 IMPLIES𝒴 less 𝒳 < 𝒴
X ∩ Y conjunction 𝒳 AND 𝒴 meet 𝒳 ∧ 𝒴
X ∪ Y disjunction 𝒳 OR 𝒴 join 𝒳 ∨ 𝒴
𝒮 \ X negation NOT𝒳 orthocomplement 𝒳⊥

Special subsets/propositions
𝒮 tautology always true maximal element ℐ
0𝒮 absurdity always false minimal element 0

6 ℒ is also called the propositional system or logic.
7 This symbol differs from the symbol A ∩ B for the intersection of two regions in the phase space,
thereby emphasizing that we are dealing with the logical operation “AND”, which relates specifically
to propositions. In classical logic, there is an equivalence between propositions and regions in the
phase space 𝒮, so having two different notations may seem superfluous. However, in the quantum
case, such an equivalence is lost, the idea of the phase space is not applicable and only the logical
notation𝒜 ∧ ℬ makes sense.
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tirely inside the strip A. From the point of view of logic, we can say that proposition 𝒞
“IMPLIES” proposition 𝒜. Indeed, in any state where 𝒞 is true, the proposition 𝒜 is
also true. This logical connection will be denoted by 𝒞 ≤ 𝒜.8

The proposition 𝒜 “OR” ℬ corresponds to the union (A ∪ B) of two regions in the
phase space. This proposition will be written as𝒜∨ℬ. If either𝒜 or ℬ is true, then the
join𝒜 ∨ ℬ is definitely true.

The last operation is the complement of a phase-space region A.9 Obviously
its logical equivalent is the negation of the proposition 𝒜, which we denote by 𝒜⊥

(= “NOT”𝒜, orthocomplement).
In addition to these four operations, we will need two special propositions, listed

in Table 1.1.
Maximal proposition (or tautology) ℐ ∈ ℒ corresponds to the whole phase space,

i. e., the maximal subset of 𝒮. This proposition can be expressed in different verbal
forms. For example: ℐ = “particle position is somewhere on the real axis” or ℐ = “par-
ticle momentum is somewhere on the real axis.” Both these propositions are always
true for any state.10

Propositions like “the value of the observable is not on the real axis” or “the value
of the observable lies in the empty subset of the real axis” are always false and equal
to the singleminimal (or absurd) proposition 0 in the set ℒ.

1.2.4 Axioms of logic

Five operations and two special propositions, presented above, define a rich mathe-
matical structure. To work with these objects, it is necessary to establish their mutual
relations, i. e., laws (or axioms) of logic.

The easiest way to establish these laws is to use the equivalence between logical
propositions and subsets of the phase space. This means that the properties of logi-
cal operations (“IMPLIES,” “AND,” “OR,” “NOT”) coincide with the properties of op-
erations on subsets (“inclusion,” “intersection,” “union,” “complement”). From this
analogy, it is not difficult to obtain the laws of classical logic listed in lines 1 through
19 of Table 1.2.11

8 If 𝒞 “IMPLIES”𝒜 and definitely𝒜 ̸= 𝒞, then we will use the symbol 𝒞 < 𝒜.
9 That is, the region consisting of phase-space points not belonging to A.
10 Measurements of observables always yield some result, becausewe agreed in the Introduction that
an ideal measuring device never misfires.
11 Actually, the choice of the axioms of logic is rather arbitrary. There are different approaches to the
axiomatization of logic, and our approach is not the most economical. We tried to select our axioms
so that they had the most transparent meaning.



12 | 1 Quantum logic

Table 1.2: Basic axioms of classical and quantum logics.

Name Formula

Axioms of orthocomplemented lattices
1 Reflectivity 𝒳 ≤ 𝒳
2 Symmetry (𝒳 ≤ 𝒴) & (𝒴 ≤ 𝒳 ) ⇒ 𝒳 = 𝒴
3 Transitivity (𝒳 ≤ 𝒴) & (𝒴 ≤ 𝒵) ⇒ 𝒳 ≤ 𝒵
4 Definition of ℐ 𝒳 ≤ ℐ
5 Definition of 0 0 ≤ 𝒳
6 Definition of ∧ 𝒳 ∧ 𝒴 ≤ 𝒳
7 Definition of ∧ (𝒵 ≤ 𝒳 ) & (𝒵 ≤ 𝒴) ⇒ 𝒵 ≤ (𝒳 ∧ 𝒴)
8 Definition of ∨ 𝒳 ≤ 𝒳 ∨ 𝒴
9 Definition of ∨ (𝒳 ≤ 𝒵) & (𝒴 ≤ 𝒵) ⇒ (𝒳 ∨ 𝒴) ≤ 𝒵

10 Commutativity 𝒳 ∨ 𝒴 = 𝒴 ∨𝒳
11 Commutativity 𝒳 ∧ 𝒴 = 𝒴 ∧𝒳
12 Associativity (𝒳 ∨ 𝒴) ∨𝒵 = 𝒳 ∨ (𝒴 ∨𝒵)
13 Associativity (𝒳 ∧ 𝒴) ∧𝒵 = 𝒳 ∧ (𝒴 ∧𝒵)
14 Noncontradiction 𝒳 ∧𝒳⊥ = 0
15 Noncontradiction 𝒳 ∨𝒳⊥ = ℐ
16 Double negation (𝒳⊥)⊥ = 𝒳
17 Contraposition 𝒳 ≤ 𝒴 ⇒ 𝒴⊥ ≤ 𝒳⊥

Additional assertions of classical logic
18 Distributivity 𝒳 ∨ (𝒴 ∧𝒵) = (𝒳 ∨ 𝒴) ∧ (𝒳 ∨𝒵)
19 Distributivity 𝒳 ∧ (𝒴 ∨𝒵) = (𝒳 ∧ 𝒴) ∨ (𝒳 ∧𝒵)
Additional postulate of quantum logic
20 Orthomodularity 𝒳 ≤ 𝒴 ⇒ 𝒳 ↔ 𝒴

For example, the transitivity property 3 from Table 1.2 allows us to build syllogisms,
such as the one analyzed by Aristotle:

If all humans are mortal,
and all Greeks are humans,
then all Greeks are mortal.

Indeed, we have three propositions:𝒳 = “this is a Greek,”𝒴 = “this is a human being”
and 𝒵 = “this is mortal.” We know that 𝒳 implies 𝒴 (i. e., 𝒳 ≤ 𝒴). We also know that
𝒴 implies 𝒵 (𝒴 ≤ 𝒵). Then the transitivity property tells us that 𝒳 implies 𝒵 (𝒳 ≤ 𝒵,
i. e., “every Greek is mortal”).

Property 14 says that a proposition 𝒳 and its negation 𝒳⊥ cannot be true at the
same time, i. e., their meet 𝒳 ∧ 𝒳⊥ is equal to the absurd proposition 0. Property 15 is
the famous tertium non datur law of logic: either the proposition 𝒳 or its negation 𝒳⊥

is true, and the third is not given.
A set of objects with operations and special elements from Table 1.1, subject to

properties 1–17 from Table 1.2, is referred to as the orthocomplemented lattice bymath-
ematicians.
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Many useful logical relationships can be derived from the axioms of orthocomple-
mented lattices. Some of them are formulated in the form of lemmas and theorems in
Appendix B.2. However, these axioms 1–17 are still not enough to describe the classi-
cal logic of propositions unequivocally. Subsets of the phase space and propositions
of classical logic are subject to additional distributive laws 18 and 19 in Table 1.2.

Like other properties in the upper portion of Table 1.2, the distributive laws are
easily derived from our analogy “proposition” ↔ “region of the phase space.” Nev-
ertheless, we put these laws in a separate category. As we shall see in Section 1.4, it
is these laws that determine the difference between classical and quantum logics. In
Table 1.2 we call them “assertions,” because we do not consider them to be true in
fundamental quantum theory.12

1.2.5 Phase space from axioms of classical logic

Thus, we have shown that in the phase space of classical mechanics the set of all
propositionsℒ is an orthocomplemented lattice with distributive laws 18 and 19. Such
lattices will be called Boolean algebras or classical logics.13

For us, it is very important that one can prove the converse statement, which is
the following.

Theorem 1.1 (representation of classical logic). For each classical logic ℒ defined by
properties 1–19 from Table 1.2, there exist a set 𝒮14 and an isomorphism h(𝒳 ) between
logical propositions 𝒳 ∈ ℒ and subsets of 𝒮, such that logical operations in ℒ match
with set-theoretical operations in 𝒮, as follows:

𝒳 ≤ 𝒴 ⇔ h(𝒳 ) ⊆ h(𝒴),
h(𝒳 ∧ 𝒴) = h(𝒳 ) ∩ h(𝒴),
h(𝒳 ∨ 𝒴) = h(𝒳 ) ∪ h(𝒴),

h(𝒳⊥) = 𝒮 \ h(𝒳 ),
h(ℐ) = 𝒮 ,
h(0) = 0𝒮 ;

see Table 1.1.

12 In our book we distinguish postulates, statements and assertions. Postulates form the basis of our
theory. In many cases, they undoubtedly follow from experiments, and we do not question their va-
lidity. Statements follow logically from the Postulates, and we consider them to be correct. Assertions
refer to claims that are made in other theories, but do not have place in our approach (RQD).
13 Strictly speaking, the definition of classical logic involves also a technical condition of the lattice
atomicity. In our case this means the existence of “minimal nonzero” propositions – atoms, which
correspond to points in the phase space.
14 In classical mechanics, the set 𝒮 is called the phase space.
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The importance of this theorem lies in the possibility to derive foundations of clas-
sical physics (e. g., the structure of the phase space) fromaxiomsof logic. Startingwith
theBoolean logic,we come to the idea of thephase space,where states are represented
by points. From here it is not far to other elements of classical mechanics, such as, for
example, the description of dynamics by trajectories.

1.2.6 Classical observables

In classical mechanics, an observable (= physical quantity) F is represented by a real
function f : 𝒮 → ℝ on the phase space. To each point (= state) of the phase space the
function f associates a single number – the value of the observable in this state. Three
examples of such observables/functions are shown in Figure 1.5. They are the position
x, the momentum p and the energy H of a one-dimensional oscillator (a pendulum)
with a quadratic Hamiltonian. The values taken by the corresponding functions f are
from the spectra of the observables. In the case of x and p, the spectrum is the entire
real axis ℝ = (−∞, +∞), and the spectrum of H is the set of nonnegative numbers
[0, +∞).

Figure 1.5: Observables in the lan-
guage of propositions in the phase
space: (a) position x, (b) momen-
tum p, (c) energy of the harmonic
oscillator H(x,p) = p2/(2m) + αx2.

Each such function-observable f defines a set of constant-value lines x, p,H = . . . , 1, 2,
3, 4, . . . in 𝒮 (shown in Figure 1.5), which in turn can be interpreted as subsets 𝒮f or
logical propositions in the phase space. The proposition 𝒮f ∈ ℒ is pronounced “the
observable F has the value f .” Thus, each observable can be equivalently described
as amapℱ from the spectrum of the observable into the set of all propositionsℒ. This
map15 has the following properties:
(1) The functionℱ associates to each point f of the spectrum of the observable F one

and only one logical proposition 𝒮f ∈ ℒ.
(2) Propositions corresponding to different points (f ̸= f 󸀠) of the spectrum are dis-

joint.16 On the phase plane, such disjoint propositions correspond to noninter-
secting regions, otherwise we would have absurd states possessing two different
values of the same observable simultaneously.

15 It is also called the proposition-valued measure.
16 Two propositions𝒳 and 𝒴 are called disjoint, if𝒳 ≤ 𝒴⊥ (or, equivalently, 𝒴 ≤ 𝒳⊥).
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Figure 1.6: Observable H as a mappingℱ from the
spectrum of H into the set of propositions in the phase
space S. The functionℱ maps the spectrum interval
a = [2,4] to the subset-proposition𝒜.

(3) The join (union) of the propositions 𝒮f over all spectrum points is equal to the
maximal (trivial) proposition (∨f𝒮f = ℐ), which is equivalent to the entire phase
space. This condition indicates that in each state it is possible to measure some
value of the observable. There are no states (= points in the phase space) where
the observable is not measurable.

So,with each observableF andwith each subseta of the real axisℝweassociate an ex-
perimental proposition𝒜 = “the value of the observable F is inside the subset a ⊆ ℝ.”
Obviously, 𝒜 is equal to the join of elementary propositions 𝒮f over all points of the
spectrum lying inside the interval a. The mapping subset→proposition is illustrated
in Figure 1.6.

1.3 Measurements and probabilities
In the previous section, we developed the classical logic of strictly deterministic states
in which the answer to any yes–no question could be either definite “yes” or definite
“no.” However, such states are rarely found in real experiments. As a rule, measure-
ments are associatedwith randomness, uncertainties, errors, etc. To describe suchun-
predictable outcomesweneed the concepts of an ensemble andaprobabilitymeasure.

1.3.1 Ensembles and measurements

We will call experiment a procedure for preparing an ensemble17 and measuring the
same observable in each member of the ensemble.18

17 Ensemble is a set of identical copies of the physical system, made in – as much as possible – the
same conditions.
18 It is important to note that in this book we do not consider repeated measurements performed on
the same copy of the physical system. We will assume that after the measurement has been made, the
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So, let us prepare many copies of the system, all in one state ϕ (= ensemble) and
perform measurements of the same proposition 𝒳 in all these copies. As we already
know, there is no guarantee that the outcomes of these measurements will be the
same. Hence, for somemembers of the ensemble the proposition𝒳 will be found true,
and for other members it will be false. Using these data, we can introduce a function
(ϕ|𝒳 ), which we call probability measure and which associates to each state ϕ and
each proposition 𝒳 the probability that 𝒳 is true in the state (ensemble) ϕ. The value
of this function (a real number in the interval between 0 and 1) is obtained as a result
of the following steps:
(i) prepare an instance of the system in the state ϕ;
(ii) make a measurement and determine whether the proposition 𝒳 is true or false;
(iii) repeat steps (i) and (ii) N times and calculate the probability by the formula

(ϕ|𝒳 ) = lim
N→∞

M
N
,

whereM is the number of times the proposition 𝒳 was found true.

In order to obtain themost complete description of the physical system, it is necessary
to perform such experiments with all possible propositions 𝒳 ∈ ℒ for all possible
ensembles (= states) ϕ ∈ S.

1.3.2 States as probability measures

If we are not too lazy to complete all suchmeasurements, we will notice that the prob-
ability measure (ϕ|𝒳 ) has the following properties:
– Theprobability corresponding to themaximal (trivial) proposition is 1 in all states,

so

(ϕ|ℐ) = 1. (1.1)

– The probability corresponding to the minimal (absurd) proposition is 0 in all
states, so

(ϕ|0) = 0. (1.2)

– The probability corresponding to the join of disjoint propositions is the sum of
individual probabilities, so

(ϕ|𝒳 ∨ 𝒴) = (ϕ|𝒳 ) + (ϕ|𝒴), if 𝒳 ≤ 𝒴⊥. (1.3)

used copy of the system is discarded. A fresh copy is required for eachnewmeasurement. In particular,
this means that we are not interested in the state of the system after themeasurement. The description
of successivemeasurements in one instance of a physical system is an interesting task, but it is beyond
the scope of our book.



1.3 Measurements and probabilities | 17

The first two statements follow directly from definitions of special logic elements ℐ
and 0. The third statement is known as the third Kolmogorov probability axiom: the
probability of observing either one of the two (or several) mutually exclusive events is
equal to the sum of event probabilities.

1.3.3 Probability distributions and statistical mechanics

In classical physics, thedescriptionof randomevents is handledby statisticalmechan-
ics. In this discipline, states that have an element of randomness are calledmixed clas-
sical states. Mathematically, they are represented by probability distributions, which
are functions ρ(x, p) on the phase space that
(1) are nonnegative: ρ(x, p) ≥ 0;
(2) normalized (their integral over the entire phase space is equal to 1),

+∞

∫
−∞

dx
+∞

∫
−∞

dpρ(x, p) = 1;

(3) express the probability of the answer yes to the question 𝒳 by the formula

(ϕ|𝒳 ) = ∫
X

dxdpρ(x, p), (1.4)

where X is the region of the phase space corresponding to the question (= propo-
sition) 𝒳 .

By combining the notion of probability distributionwith the laws of logic 1–19 fromTa-
ble 1.2, we can arrive at the classical theory of probability. But we will not dwell on it
here. In the next two sections, we will be more interested in quantum logic and quan-
tum probability theory. Here, we will finish our discussion of classical probabilities
with a few remarks about determinism.

The randomness present in mixed classical states is usually associated with our
inability to provide identical preparation conditions for all members in the ensemble.
For example, when we throw a die, it falls in an accidental, unpredictable manner.
However, we believe that this unpredictability is simply due to our inability to strictly
control the movement of our hand. Thus, classical randomness and probabilities are
technical in nature rather than fundamental.

Therefore, classical physics is based on one tacitly assumed axiom, which we for-
mulate here as an assertion.

Assertion 1.2 (full determinism). It is possible to prepare such ensembles (states) of the
physical system where measurements of all observables produce the same result every
time. In other words, we assume the existence of pure classical states representable by
points in the phase space.
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Pure states are also representable in the language of probability distributions.
They correspond to delta-like functions ρ(x, p) = δ(x−x0)δ(p−p0) on the phase space.
Then formula (1.4) confirms that in such states all experimental results are determin-
istic. A proposition 𝒳 is either true ((ϕ|𝒳 ) = 1), if the point (x0, p0) of the phase space
belongs to the subset X, or false ((ϕ|𝒳 ) = 0) otherwise, without any intermediate pos-
sibility.

1.4 Logic of quantum mechanics

To clarify the basic ideas of quantummechanics, let us return to the experiment with
photons passing through one hole (see Subection 1.1.3). We found out that in the low
intensity regime,when thephotons are emitted onebyone, the imageon the screen (or
photographic plate) consists of individual dots, which are randomly distributed sites
of particle (photon) hits. This means that results of measuring the photon position are
not reproducible, even if the state preparation conditions are controlled in the most
careful way!

From this we conclude that the behavior of photons involves some random ele-
ment. This is the most fundamental statement of quantummechanics.19

Statement 1.3 (fundamental randomness). Measurements in the microworld have an
element of randomness. This randomness is fundamental and cannot be explained or
reduced (aswedid in the classical case) to some inaccuracies in the preparation of initial
states or experimental errors.

By adopting this Statement, we conclude that classical Assertion 1.2 (complete de-
terminism) is incorrect. In the pinhole camera setup, it is impossible to prepare such
an ensemble of photons, in which all of them hit the same point on the screen. What
is the reason for this scatter? Honestly, no one knows. This is one of the greatest mys-
teries of nature. Quantum theory does not even attempt to explain the physical causes
of such a random behavior of microsystems. This theory takes randomness as a given
and simply tries to find its mathematical description. To proceed, we have to move
beyond the simple declaration of randomness and introduce more precise statements
and definitions.

1.4.1 Partial determinism of quantum mechanics

We begin our construction of the formalism from the following postulate.

19 In Subection 1.5.2, we will see that this statement is, in fact, a consequence of the even more fun-
damental Postulate 1.6.
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Postulate 1.4 (connection between states and propositions). For each yes–no ques-
tion there is an ensemble in which the answer “yes” is found with certainty (the
probability = 1).

Indeed, it makes no sense to talk about an experimental proposition, if there is
not a single ensemble in which this proposition can be unambiguously measured.

In Subsection 1.2.6, we identified observables with mappings from ℝ into the set
of yes–no questions. Thus, each value f of the observable F maps to a proposition Sf .
According to Postulate 1.4, we can always prepare an ensemble in which this proposi-
tion is 100% true.

Statement 1.5 (partial determinism). For each observable F and each value f from its
spectrum, an ensemble can be prepared in which measurements of this observable are
reproducible, i. e., repeatedly yield the same value f .

Postulate 1.4 and Statement 1.5 are weakened versions of the classical Asser-
tion 1.2. Instead of requiring the reproducibility of measurements for all observables
and propositions at once, we limit this property to single observables.20 Hence the
quantumpostulate is a softer requirement, and quantummechanics is amore general
theory than classical mechanics. Moreover, we expect the quantum theory to include
classical mechanics as a special case.

So, in quantummechanicswe do not question the existence of propositions about
one observable. This means that propositions represented by the stripsA and B in Fig-
ure 1.4 continue to havewell-definedmeanings.21 However, the quantumand classical
approaches diverge when it comes to propositions involving more than one observ-
able. For example, in quantum mechanics we cannot guarantee that the proposition
corresponding to the rectangle C = A ∩ B in Figure 1.422 exists and can be realized in
the form of an instrumental setup.

Heisenberg was the first to question the simultaneous measurability of certain
pairs of observables. He gave the following heuristic arguments. Imagine that wewant
to accurately measure both the position and the momentum of an electron. For this,
we have to look through the microscope. To see the electron, we have to illuminate
it. For a more accurate determination of the position we should use light with a short
wavelength. However, photons of this light have high energy (momentum). Colliding

20 Notice also that Statement 1.5 does not forbid the existence of certain groups of (compatible) ob-
servables,whosemeasurements canbe reproduciblewithin the sameensemble. For example, inChap-
ter 4, we will see that three components (px , py , pz) of the particle momentum are compatible observ-
ables. The same is true for three components (rx , ry , rz) of the particle position. However, the pairs
(px , x), (py , y) and (pz , z) are incompatible.
21 That is, there are ensemble states in which these propositions are true.
22 This is a proposition about simultaneousmeasurement of both the position and themomentum of
one particle.
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with the electron under study, such photons will inevitably give it a kick, making it
impossible to accurately determine the electron’s velocity or momentum.

So, we suspect that for sufficiently narrow strips A and B in Figure 1.4 their in-
tersection C = A ∩ B may be just “too small” to correspond to any real experimental
proposition. Thus, there are no experimental propositions about points in the phase
space. In other words, in nature there is no device that could realize the proposition
“the particle’s position is x0 and the particle’s momentum is p0.” This alsomeans that
the true lattice of propositions cannot coincide with the Boolean lattice of subsets in
the phase space. What can we do? What lattice should we take to build the logic of
questions in quantum physics?

Our plan for constructing quantum theory is as follows:
– First, we will establish the logic of propositions in our theory. We will call it quan-

tum logic. As we saw above, we expect it to differ from the classical Boolean logic
(= orthocomplemented distributive lattice).

– Next, we will formulate the representation theorem of Piron, which asserts that
propositions of quantum logic can be represented by subspaces in aHilbert space.

– From this result it will be easy to derive all basic properties of the quantum formal-
ism: the superposition principle, the probability interpretation of wave functions,
observables as Hermitian operators, etc.

1.4.2 Axioms of quantum logic from probability measures

Note that in our derivation of the axioms of classical logic we used the equivalence
between logical propositions and subsets of the phase space. In the quantum case,
this equivalence does not work, and we have to look for other ways. To implement the
first point of our plan, we will show that many axioms from Table 1.2 can be derived
even without reference to the phase space.23 For these derivations we will need only
the simplest properties of probability measures (ϕ|𝒳 ).

Suppose that we have prepared two state ensembles ϕ and ψ of our physical sys-
tem and measured values of the probability measures (ϕ|𝒳 ) and (ψ|𝒳 ) by going over
all possible experimental propositions 𝒳 . If, as a result of this gigantic work, we find
that (ϕ|𝒳 ) = (ψ|𝒳 ) for all𝒳 , then the statesϕ andψwill be regarded as equal (ϕ = ψ).
Indeed, there is no physical difference between these two states, wheremeasurements
give the same results (= probabilities).

For similar reasons, we will say that two propositions 𝒳 and 𝒴 are equal (𝒳 = 𝒴)
if for all states ϕ

(ϕ|𝒳 ) = (ϕ|𝒴). (1.5)

23 These axioms will be transferred without changes from the classical logic to the quantum one.



1.4 Logic of quantum mechanics | 21

It then follows that the probability measure (ϕ|𝒳 ), considered as a function on the set
of all statesS, is a unique representative of the proposition 𝒳 .24 Hence, we can study
properties of propositions by analyzing properties of probability measures (ϕ|𝒳 ). For
this, there is no need to deal with regions of the phase space, which is exactly what
we want.

For example,wewill say that𝒳 ≤ 𝒴 ifmeasurements for all statesϕ ∈ S show that
(ϕ|𝒳 ) ≤ (ϕ|𝒴). The relation 𝒳 ≤ 𝒴 defines the partial ordering on the propositional
system ℒ.

After the partial ordering ≤ is established on the entire set ℒ, it is not difficult to
define themeet operation 𝒳 ∧ 𝒴 for all pairs 𝒳 , 𝒴. For example, if 𝒳 and 𝒴 are given,
we should be able to find a set of all propositions 𝒵󸀠 that are “less than or equal to”
both 𝒳 and 𝒴 ,25 𝒵󸀠 ≤ 𝒳 and 𝒵󸀠 ≤ 𝒴. It is reasonable to assume that there is a single
maximal proposition 𝒵 in this set. We shall call it themeet of 𝒳 and 𝒴: 𝒵 = 𝒳 ∧ 𝒴.

The join 𝒳 ∨𝒴 for all pairs 𝒳 , 𝒴 is defined in a similar way: it is the unique small-
est proposition that is greater than or equal to both 𝒳 and 𝒴. These definitions are
formalized as properties 6–9 in Table 1.2. Properties 10–13 follow naturally from these
definitions.

Further, suppose that for some pair of propositions 𝒳 , 𝒴 we notice that for all
states (ϕ|𝒳 ) = 1 − (ϕ|𝒴). Then we will say that the two propositions are orthocomple-
mented: 𝒳 = 𝒴⊥ or, equivalently, 𝒴 = 𝒳⊥.

Reasoning in this way, it is not difficult to derive (see Appendix B) all axioms 1–17
of classical logic from Table 1.2, except for the axioms of distributivity 18 and 19. The
latter two axioms cannot be justified using our approach with probability measures
(ϕ|𝒳 ). For this reason, we regard distributive laws as less valid and call them simply
assertions.

So, in quantummechanics,we are not allowed to use the distributive laws of logic.
However, in order to obtain a nontrivial theory, it is necessary to find some kind of sub-
stitute for these two laws.On the onehand, this newpostulatemust be sufficiently spe-
cific, so that it can be used to develop a nontrivial logical and physical theory. On the
other hand, it must be general enough and include distributive laws as a special case,
because we want to have the classical theory as a limiting case of the quantum one.

So, how should we formulate this new quantum axiom?

1.4.3 Compatibility of propositions

To answer this question, let us turn to the important concept of compatibility. We will
say that two propositions 𝒳 and 𝒴 are compatible (denoted 𝒳 ↔ 𝒴) if

𝒳 = (𝒳 ∧ 𝒴) ∨ (𝒳 ∧ 𝒴⊥) (1.6)

24 That is, different propositions define different functions (ϕ|𝒳 ) on the set of statesS.
25 At least one such proposition 0 always exists.
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and

𝒴 = (𝒳 ∧ 𝒴) ∨ (𝒳⊥ ∧ 𝒴). (1.7)

In Subection 1.5.3 we will see that two experimental propositions can be measured si-
multaneously if and only if they are compatible. Therefore, we should not be surprised
by Theorem B.14, which states that the compatibility (= simultaneous measurability)
of all propositions is a characteristic property of classical Boolean lattices.

1.4.4 Logic of quantum mechanics

From the Heisenberg microscope example it should be clear that, unlike in the classi-
cal case, in quantum mechanics not all propositions are measurable simultaneously
(= compatible). Then, as the basic statement of quantum logic, we postulate that two
propositions are definitely compatible if one follows from the other, and we leave it to
mathematics to decide on the compatibility of other pairs.26

Postulate 1.6 (orthomodularity). Propositions about physical systems obey the ortho-
modular law: If ℬ follows from𝒜, then𝒜 and ℬ are compatible, i. e.,

𝒜 ≤ ℬ ⇒ 𝒜↔ ℬ. (1.8)

Orthocomplemented lattices27 with the additional orthomodular Postulate 1.6 (prop-
erty 20 in Table 1.2) are called orthomodular lattices. With the addition of technical
conditions of atomicity and irreducibility, these lattices become the so-called quan-
tum logics. The relationships between different types of lattices and logics are shown
in Figure 1.7.

Figure 1.7: Relationships between different types of lat-
tices and logics.

26 The author does not know any deeper justification for this postulate. The strongest argument is
that this postulate really works, i. e., it leads to the well-known mathematical structure of quantum
mechanics, which has been tested extensively in experiments.
27 That is, described by properties 1–17 in Table 1.2.
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1.4.5 Quantum logic and Hilbert space

We have seen that in classical mechanics we do not have to use the exotic lattice the-
ory. Instead, we can apply Theorem 1.1 and go over to the physically transparent lan-
guage of the phase space. Is there a similar equivalence theorem in the quantum case?
The answer is “yes.” It is not difficult to notice close analogies between the quantum
system of propositions described above and the algebra of projections on closed sub-
spaces in a complex Hilbert space H (see Appendices F and H). In particular, if op-
erations between projections (or subspaces) in the Hilbert space are translated into
the language of lattice operations in accordance with Table 1.3,28 then all axioms of
quantum logic are easily verified.

Table 1.3: Translations of symbols between equivalent languages: (i) subspaces in the Hilbert
space H , (ii) projections on these subspaces and (iii) propositions in quantum logicℒ.

Subspaces in H Projections in H Propositions inℒ

X ⊆ Y PX PY = PY PX = PX 𝒳 ≤ 𝒴
X ∩ Y PX ∩Y 𝒳 ∧ 𝒴
X ⊎ Y PX ⊎Y 𝒳 ∨ 𝒴
X 󸀠 1 − PX 𝒳⊥

X and Y compatible [PX , PY ] = 0 𝒳 ↔ 𝒴
X ⊥ Y PX PY = PY PX = 0 𝒳 ≤ 𝒴⊥

0 0 0
H 1 ℐ
ray x |x⟩⟨x| (1D projection) x is an atom

For example, the violation of distributive laws follows from the fact that inH there are
pairs of incompatible subspaces (see Appendix H). The validity of the orthomodular
law in H is proved in Theorem H.6.

1.4.6 Piron’s theorem

Thus, we have established that the set of subspaces in a complex Hilbert space H

is indeed a representative of some quantum logic. Can we claim also the opposite,
i. e., that for each quantum logic one can construct a representation by subspaces in
someHilbert space? The (positive) answer to this question is givenby the famousPiron

28 We have denoted by X ⊎ Y the linear span of two subspaces X and Y (see Appendix C.2). Here
X ∩ Y denotes the intersection of these subspaces and X 󸀠 is the orthogonal complement of X . In
the Hilbert space atoms are one-dimensional subspaces. They are also referred to as rays.
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theorem [66, 67], which forms the basis of the mathematical formalism of quantum
mechanics and is a quantum analog of the classical representation Theorem 1.1.

Theorem 1.7 (Piron’s theorem). Each quantum logic ℒ is isomorphic to the lattice of
closed subspaces in a Hilbert space H . The correspondences proposition↔ subspace
are defined by the rules shown in Table 1.3.

The proof of this theorem is beyond the scope of our book.29

1.4.7 Should we abandon classical logic?

So, we came to the paradoxical conclusion that classical logic and classical proba-
bility theory are not suitable for describing quantummicroscopic systems. How could
this be? After all, classical logic is the foundation of all mathematics and indeed of the
whole scientificmethod! All proofs of mathematical theorems use the laws of Boolean
logic, including the distributive laws that were discarded by us.30 Even theorems of
quantum mechanics are being proved in the framework of classical logic. Are we not
entering into a contradiction when we claim that the true logic of experimental state-
ments is not classical, but quantum [70]?

In everyday life, as in ordinary mathematics, we have the right to use inaccurate
classical logic, becausewe usually deal with fixed objects that are not subject to quan-
tum fluctuations. Theorems of Euclidean geometry speak of well-defined circles and
triangles, not of statistical ensembles of figures with randomly distributed parame-
ters. Therefore, in the proofs of such theorems, it is perfectly acceptable to use the
laws of classical logic. However, when we go to the microworld, where results of mea-
surements are subject to randomness and observablesmay be incompatible with each
other, then we have to admit that classical distributive laws are no longer valid and
that quantum logic should take over.

The theory of orthomodular lattices is well known to mathematicians. In princi-
ple, we could make all constructions and calculations in quantum theory, based on

29 Piron’s theorem does not specify the nature of scalars in the Hilbert space. It leaves the possibility
of choosing any division ring with involutive antiautomorphism as the collection of scalars in H . We
can substantially reduce this unwanted freedom if we recall the important role played by real numbers
in physics (for example, the values of observables always lie in ℝ). Therefore, it makes sense to con-
sider only those rings that include ℝ as a subring. In 1877 Frobenius proved that there are only three
such rings. These are real numbersℝ, complex numbersℂ and quaternionsℍ. Although there is fairly
extensive literature on the real and, especially, quaternionic quantummechanics [88, 40, 58, 57], the
significance of these exotic theories for physics remains unclear. Therefore, in our bookwewill adhere
to the standard quantummechanics in complex Hilbert spaces.
30 Note, however, attempts [22] to develop the so-called quantummathematics, which is based on the
laws of quantum logic.
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this formalism. Such an approachwould have certain advantages, since all its compo-
nents would have a clear physical meaning: the elements 𝒳 of the lattice are experi-
mental propositions implementable in the laboratory and the probabilities (ϕ|𝒳 ) can
be measured directly in experiments. However, such a theory would encounter insur-
mountable difficulties,mainly because lattices are rather exoticmathematical objects;
we lack experience and intuition to work with them. In addition, this approach would
require us to abandon the familiar distributive laws of logic and thus would greatly
complicate our reasoning.

Historically, the development of quantum theory took another route. Thanks to
Piron’s theorem,31 the physically transparent but mathematically cumbersome lat-
tices could be replaced by physically obscure but mathematically convenient Hilbert
spaces, wave functions and Hermitian operators. In the next section we will briefly
summarize this traditional formalism.

1.5 Physics in Hilbert space

In the previous section, we established a one-to-one correspondence between exper-
imental propositions and subspaces of the Hilbert space. In this section, we will use
this fact to construct the mathematical formalism of quantum mechanics. In particu-
lar, we will see that, in accordance with textbooks, observables are expressed by Her-
mitian operators in H , and pure quantum states are unit length vectors in the same
space.

1.5.1 Quantum observables

In Subsection 1.2.6, we saw that, in the language of logic, an observable F is amapping
ℱ associating a proposition in ℒ (= a subspace inH ) with each point of the spectrum
of F. The points f in the spectrum of the observable F are called eigenvalues of this
observable. The subspace Ff ⊆ H corresponding to the eigenvalue f is called the
eigensubspace, and the projection Pf on this subspace is called the spectral projection.
Each vector in the eigensubspace Ff will be called an eigenvector of the observable.

Let us consider two distinct eigenvalues f and g of one observable F. According
to the definition from Subsection 1.2.6, the corresponding propositions ℱf and ℱg are
disjoint, and their eigensubspaces are orthogonal. The linear span of the subspaces
Ff , where f runs through the entire spectrum of the observable F, coincides with the
entire Hilbert space H . Consequently, spectral projections Pf of any observable form

31 Of course, the fathers of quantummechanics did not know about this theorem, which was formu-
lated only in the 1960s.
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a resolution of the identity (see Appendix H.1). Thus, according to formula (H.2), we
can associate an Hermitian operator

F = ∑
f
fPf (1.9)

with each observable F. In the following, we often use the terms “observable” and
“Hermitian operator” as synonyms.

1.5.2 States

As we know from Subsection 1.3.2, each state ϕ defines a probability measure (ϕ|𝒳 )
on propositions in ℒ. In accordance with the quantum isomorphism “proposition”↔
“subspace,” the state ϕ also defines a probability measure (ϕ|X ) on subspaces X in
the Hilbert spaceH . This probability measure is a function that maps subspaces into
the interval [0, 1] ⊆ ℝ and has the following properties:
– The probability corresponding to the entire space H is equal to 1 in all states,

(ϕ|H ) = 1. (1.10)

– The probability corresponding to the zero (empty) subspace is 0 in all states,

(ϕ|0) = 0. (1.11)

– The probability corresponding to the direct sum of orthogonal subspaces is the
sum of probabilities for each subspace,32

(ϕ|X ⊕ Y ) = (ϕ|X ) + (ϕ|Y ), if X ⊥ Y . (1.12)

The following important theorem [33] provides a classification of all such probability
measures (= all possible states of a quantum system).

Theorem 1.8 (Gleason’s theorem). If (ϕ|X ) is a probability measure on subspaces in
the Hilbert space H with properties (1.10)–(1.12), then there is a nonnegative33 Hermi-
tian operator ρ̂ in H such that

Tr(ρ̂) = 1 (1.13)

and for any subspaceX and its projection PX , the value of the probability measure is34

(ϕ|X ) = Tr(PX ρ̂). (1.14)

32 This is equivalent to the third Kolmogorov probability axiom (1.3). By the symbol ⊕ (direct sum) we
denote the linear span (⊎) of two subspaces in the case where these subspaces are orthogonal.
33 A Hermitian operator is called nonnegative if all its eigenvalues are greater than or equal to zero.
34 Tr means the trace of the matrix of the operator ρ̂, i. e., the sum of its diagonal elements; see Ap-
pendix G.3.
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The operator ρ̂ is usually called the density operator or density matrix.
Proving Gleason’s theorem is not easy, and we refer the curious reader to the orig-

inal papers [33, 72]. Here we will only touch upon the physical interpretation of this
result. First, in accordance with the spectral Theorem G.6, one can find an orthonor-
mal basis |ei⟩ in H where the density operator ρ̂ reduces to the diagonal form

ρ̂ = ∑
i
ρi|ei⟩⟨ei|, (1.15)

where the eigenvalues ρi have the properties

0 ≤ ρi ≤ 1, (1.16)
∑
i
ρi = 1. (1.17)

Among all states with properties (1.16)–(1.17), one can select those in which only one
coefficient ρi is nonzero and ρj = 0 for all other indices j ̸= i. In this case the density
operator reduces to the projection onto a one-dimensional subspace

ρ̂ = |ei⟩⟨ei|. (1.18)

Such states will be referred to as pure quantum states. For pure states, the formula
(1.14) for calculating probabilities is simplified. Formally, using Lemma G.2 and Theo-
rem H.1, we find that the probability for the proposition 𝒳 to be true in the state (1.18)
is equal to the square of the modulus of the projection of |ei⟩ onto the subspace X ,
i. e.,

(ϕ|𝒳 ) = Tr(PX |ei⟩⟨ei|) = Tr(⟨ei|PX |ei⟩) = ⟨ei|PX PX |ei⟩ = ‖PX |ei⟩‖
2. (1.19)

Therefore, it is customary to describe a pure state by a vector |ei⟩ of unit length chosen
arbitrarily from the corresponding one-dimensional subspace (= ray).35

In Subsection 1.5.1 we introduced the notion of an eigenvector of the observable
F. Pure states corresponding to such eigenvectors will be called eigenstates of the ob-
servable F. Obviously, observables have definite values (= eigenvalues) in their eigen-
states. This means that the eigenstates are precisely those states (= ensembles) whose
existence was guaranteed by Statement 1.5.

Importantly, there are no quantum probability measures (= states) that give defi-
nite answers to all experimental questions. Thus, by assuming the orthomodularity of

35 Obviously, the vector |ei⟩ is definedonlyup to aphase factor eiα,whichhas aunitmodulus (|eiα| = 1,
where α ∈ ℝ). Indeed, being substituted in (1.19), the vector eiα|ei⟩ leads to the same probability value,

󵄩󵄩󵄩󵄩󵄩PX (e
iα|ei⟩)
󵄩󵄩󵄩󵄩󵄩
2
= |eiα|2‖PX |ei⟩‖

2 = ‖PX |ei⟩‖
2,

so that both vectors |ei⟩ and eiα|ei⟩ are legitimate representatives of the state ϕ.
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the propositional lattice (Postulate 1.6), we automatically explained the probabilistic
nature of quantum states (Statement 1.3).

Mixed quantum states are expressed as mixtures (1.15) of pure states. The coeffi-
cients ρi in this formula reflect the probabilities of the pure states in themixture. Thus,
in quantum mechanics there are two types of uncertainties. The first type is present
in mixed states. This is the same uncertainty familiar to us from classical (statistical)
physics. It appears in situations where the experimenter does not have complete con-
trol over the preparation of the system, for example, when he throws a die. The sec-
ond type of uncertainty is present even in pure quantum states (1.18). It has no analog
in classical physics, it cannot be gotten rid of by improved control of the initial con-
ditions. This uncertainty reflects the unavoidable presence of chance in microscopic
phenomena.

We will not discuss mixed quantum states in this book. Therefore, we will only
deal with uncertainties of the second fundamental type. Hence, speaking of a quan-
tum state ϕ, we always have in mind a certain state vector |ϕ⟩, determined up to a
phase factor eiα. In the following, we will use the terms “quantum state” and “state
vector” as synonyms.

1.5.3 Complete sets of commuting observables

In Subsection 1.4.3 we defined the idea of compatible propositions, and in Lemma H.5
we showed that the compatibility of propositions is equivalent to the commutativity
of the corresponding projections. For physics, these properties are important because
for a pair of compatible propositions (= projections, = subspaces), there are states in
which both these propositions have certain values, i. e., they are simultaneously mea-
surable without any statistical randomness. Similar claims can be made about two
compatible (= commuting) Hermitian operators (= observables). In accordance with
Theorem H.9, a pair of such operators has a common basis of eigenvectors (= eigen-
states). In these eigenstates both observables have definite (eigen)values.

We assume that for every physical system one can always find at least one mini-
mal and complete set of mutually commuting observables K, L,M, . . . .36 Then we can
construct an orthonormal basis |ei⟩ of common eigenvectors of these operators so that
each such eigenvector is uniquely marked by eigenvalues ki, li,mi, . . . of the operators
K, L,M, . . . . That is, if |ei⟩ and |ej⟩ are two different basis vectors, then their sets of
eigenvalues {ki, li,mi, . . .} and {kj, lj,mj, . . .} are not the same.

36 A setK, L,M, . . . is calledminimal if not one observable from this set can be expressed as a function
of other observables in the set. The set is complete if no new observable can be added to it without
destroying theminimality property. An example of a complete set ofmutually commuting observables
for one massive particle is {M,Px ,Py ,Pz , Sz}, whereM, P and S are the operators of mass, momentum
and spin, respectively (see Section 5.1).
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1.5.4 Wave functions

Each state vector |ϕ⟩ can be represented as a linear combination of the basis vectors
constructed in the previous subsection,

|ϕ⟩ = ∑
i
ϕi|ei⟩, (1.20)

where in the bra-ket notation (see Appendix F.3) the coefficients are expressed as

ϕi = ⟨ei|ϕ⟩. (1.21)

The set of complex numbers ϕi can be considered as a function ϕ(k, l,m, . . .) on
the common spectrum of the observables K, L,M, . . . . This is called the wave function
of the state |ϕ⟩ in the representation defined by the observables K, L,M, . . . . We will
discuss examples of one-particle wave functions in Sections 5.2–5.3.

1.5.5 Expectation values

Formula (1.9) defines a spectral resolution of the observable F, where index f runs
through all eigenvalues of F. The spectral projections Pf can be expanded through
basis eigenvectors, so we have

Pf ≡
m
∑
i=1

󵄨󵄨󵄨󵄨e
f
i ⟩⟨e

f
i
󵄨󵄨󵄨󵄨. (1.22)

Here |efi ⟩ are orthogonal eigenvectors of the operator F that are inside the eigensub-
spaceFf , andm is the dimension of this subspace.37 Then from (1.19) one can find the
probability for measuring f in each pure state ϕ,

(ϕ|Pf ) =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

m
∑
i=1

󵄨󵄨󵄨󵄨e
f
i ⟩⟨e

f
i
󵄨󵄨󵄨󵄨ϕ⟩
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=
m
∑
i=1

󵄨󵄨󵄨󵄨⟨e
f
i
󵄨󵄨󵄨󵄨ϕ⟩
󵄨󵄨󵄨󵄨
2. (1.23)

Sometimes we need to know the weighted average, or the expectation value, ⟨F⟩
of the observable F in the state |ϕ⟩,

⟨F⟩ ≡ ∑
f
(ϕ|Pf )f .

Substituting here equation (1.23), we obtain

⟨F⟩ =
n
∑
j=1
|⟨ej|ϕ⟩|

2fj ≡
n
∑
j=1
|ϕj|

2fj,

37 Ifm > 1, then the eigenvalue f is called degenerate.
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where the summation is carried out over the entire basis of eigenvectors |ej⟩. From
expansions (1.20), (1.9) and (1.22) it follows that the combination ⟨ϕ|F|ϕ⟩ is a more
compact notation for the expectation value ⟨F⟩. Indeed

⟨ϕ|F|ϕ⟩ = (∑
i
ϕ∗i ⟨ei|)(∑

j
|ej⟩fj⟨ej|)(∑

k
ϕk |ek⟩)

= ∑
ijk
ϕ∗i fjϕk⟨ei|ej⟩⟨ej|ek⟩ = ∑

ijk
ϕ∗i fjϕkδijδjk

= ∑
j
|ϕj|

2fj = ⟨F⟩. (1.24)

1.5.6 Basic rules of classical and quantum mechanics

The results obtained in this chapter can be summarized as follows. If the physical
system is prepared in a pure state ϕ and we want to calculate the probability ω to
measure the observable F within the interval E ⊆ ℝ, then we need to perform the
following steps.

In classical mechanics:
(1) Determine the phase space 𝒮 of the physical system.
(2) Find the real function f : 𝒮 → ℝ corresponding to our observable F.
(3) Find the subset U ⊆ 𝒮 corresponding to the spectral interval E, where U is the

collection of all points s ∈ 𝒮 such that f (s) ∈ E (see Figure 1.6).
(4) Find the point sϕ ∈ 𝒮 representing the pure classical state ϕ.
(5) The probability ω is 1 if sϕ ∈ U and ω = 0 otherwise.

In quantummechanics:
(1) Determine the Hilbert space H of the physical system.
(2) Find the Hermitian operator F corresponding to our observable in H .
(3) Find the eigenvalues and eigenvectors of F.
(4) Find the spectral projection PE corresponding to the spectral interval E.
(5) Find the unit vector |ϕ⟩ (defined up to a phase factor) representing the state ϕ in

the Hilbert space H .
(6) Substitute all these ingredients in the probaility formula ω = ⟨ϕ|PE |ϕ⟩.

At the moment, the classical and quantum recipes seem completely unrelated to each
other. Nevertheless, we are sure that such a connection must exist, because we know
that both these theories are variants of the probability formalism on orthomodular
lattices. In Section 6.6, we will see that in the macroscopic world with massive objects
and poor resolution ofmeasuring devices, the classical recipe appears as a reasonable
approximation to the quantum one.
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1.6 Interpretations of quantum mechanics

So far in this chapter, wewere occupied with themathematical formalism of quantum
mechanics. Many details of this formalism (wave functions, superpositions of states,
Hermitian operators, nonstandard logic, etc.) seem very abstract and detached from
reality. This situation has generated a lot of debates about the physical meaning and
interpretation of quantum laws. In this section, we will suggest our point of view on
these controversies.

1.6.1 Quantum nonpredictability

Experimentswith quantummicrosystems revealed one simple but nonethelessmyste-
rious fact: if we prepare N absolutely identical physical systems under the same con-
ditions andmeasure the value of the samephysical quantity, we can obtainN different
results.

Let us illustrate this statement with two examples. From experience we know that
each photon passing through the aperture of the pinhole camera will hit some point
on the photographic plate. However, the next photon, most likely, will hit another
point. And, in general, the locations of hits are randomly distributed over the sur-
face. Quantummechanics does not even try to predict the fate of each individual pho-
ton. It only knows how to calculate the probability density for the points of impact,
but the behavior of each individual photon remains completely random and unpre-
dictable.

Another example of this – obviously random–behavior is the decay of radioactive
nuclei. The 232Th nucleus has a half-life of 14 billion years. This means that in any
sample containing thorium, approximately half of all 232Th nuclei will decay during
this period. In principle, quantum physicists can calculate the decay probability of a
nucleus by solving the corresponding Schrödinger equation.38 However, they cannot
even approximately guess when the given nucleus decays. It can happen today or in
100 billion years.

It would be wrong to think that the probabilistic nature of microscopic systems
has little effect on our macroscopic world. Very often the effects of random quantum
processes can be amplified and lead to macroscopic phenomena, which are equally
random. One well-known example of such amplification is the thought experiment
with “Schrödinger’s cat” [77].

38 Although our current knowledge of the nature of nuclear forces is completely inadequate to per-
form this kind of calculation for thorium.
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1.6.2 Collapse of wave function

In the orthodox interpretation of quantummechanics, the behavior described above is
called the “collapse of the quantum probability distribution” and is often surrounded
with a certain aura of mystery.39 In this interpretation, the most controversial point of
quantummechanics is its different attitude to the physical system and the measuring
device. The system is regarded as a quantum object that can exist in strange superpo-
sitions,40while themeasuring device is a classical objectwhose state (readout) is fully
unambiguous. It is believed that at the time of measurement, an uncontrolled interac-
tion between the system and the measuring device occurs, so that the superposition
collapses into one of its components, which is recorded by the instrument. Inside the
theory, this difference of attitudes is expressed in the fact that the system is described
by a wave function, but the measuring device is described by an Hermitian operator.
This leads to a number of unpleasant questions.

Indeed, the measuring device consists of the same atoms as the physical system
and the rest of the universe. Therefore, it is rather strange when such devices are put
into a separate category of objects. But if we decided to combine the device and the
system into one wave function, when would it collapse? Maybe this collapse would
require the participation of a conscious observer? Does this mean that by making ob-
servations, we control the course of physical processes?

Sometimes a mystery is seen in the fact that the quantum-mechanical probability
distribution (=wave function) has twomutually exclusive laws of evolution.While we
are not looking at the system, this distribution develops smoothly and predictably (in
accordance with the Schrödinger equation), and at the time of measurement it expe-
riences a random unpredictable collapse.

1.6.3 Collapse of classical probability distribution

By itself, the collapse of the probability distribution is not something strange. A sim-
ilar collapse occurs in the classical world as well. For example, when shooting from
a rifle at a target, it is almost impossible to predict the hit location of each specific
bullet. Therefore, the state of the bullet before it hits the target (= before the measure-
ment) is conveniently described by the probability distribution. At the moment of the

39 To emphasize the analogy with the classical case, here we specifically talk about the collapse of
the “probability distribution,” and not about the collapse of the “wave function,” as in other works.
It is precisely the probability distribution that is subject to experimental observation, and the wave
function is a purely theoretical concept.
40 The electron in the previous example is allegedly in a superposition of states smeared over the
surface of the photographic plate, and the thorium nucleus is in a superposition of the decayed and
undecayed states.
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hit, the bullet punches the target at a specific place, and the probability is immedi-
ately replaced by certainty. The measurement leads to the “collapse of the probability
distribution,” exactly as in the formalism of quantummechanics.

The probability density for the bullet changes smoothly (spreads out) from the
moment of the shot and up to the time of impact. The unpredictable collapse of this
probability distribution occurs instantaneously in the entire space. These behaviors
are completely analogous to the two (allegedly contradictory) variants of quantum
evolution, but the classical collapse does not raise any controversy among theorists
and philosophers.

We rightly believe that the collapse of classical probability is the natural behavior
of any probability distribution. Then, why does the collapse of quantum probability
still trouble theoreticians?

The fact is that in the case of the bullet and the target, we are sure that the bullet
was somewhere at each time instant, even when we did not see it. In all these mo-
ments the bullet had a definite position, momentum, rotation speed about its axis
(spin) and other properties. Our description of the bullet had some element of ran-
domness only because of our laziness, unwillingness or inability to completely control
the act of shooting. By describing the state of the bullet by a probability distribution,
we simply admitted the level of our ignorance. When we looked at the pierced target
and thus “collapsed” the probability distribution, we had absolutely no influence on
the state of the bullet, but simply improved (updated) our knowledge about it. The
probability distribution and its collapse are things that occur exclusively in our heads
and do not have actual physical existence.

1.6.4 Hidden variables

Einstein believed that the same logic should be applied to measurements in the mi-
croworld. He wrote:

I think that a particle must have a separate reality independent of the measurements. That is an
electron has spin, location and so forth even when it is not being measured. I like to think that
the moon is there even if I am not looking at it.

If we follow this logic blindly, we must admit that even at the microscopic level, na-
ture must be regular and deterministic. Then the observed randomness of quantum
processes should be explained by some yet unknown “hidden” variables that cannot
be observed and controlled yet. If we exaggerate somewhat, the theory of hidden vari-
ables reduces to the idea that each electron has a navigation system that directs it
to the designated point on the photographic plate. Each nucleus has an alarm clock
inside it, and the nucleus decays at the call of this alarm clock. The behavior of quan-
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tum systems only seems random to us, since we have not yet penetrated the designs
of these “navigation systems” and “alarm clocks”.

According to the theory of “hidden variables,” the randomness in the microworld
has no special quantum-mechanical nature. This is the same classic pseudo-ran-
domness that we see when shooting at a target or throwing dice. Then we have to
admit that modern quantum mechanics is not the last word. Future theory will teach
us how to fully describe the properties of individual systems and to predict events
without reference to the quantum chance. Of course, such faith cannot be refuted, but
so far no one has succeeded in constructing a convincing theory of hidden variables
predicting (at least approximately, but beyond the limits of quantum probabilities)
the results of microscopic measurements.

1.6.5 Quantum-logical interpretation

The most famous thought experiment in quantum mechanics is the two-hole inter-
ference, which demonstrates the limits of classical probability theory. Recall that in
this experiment (see Section 1.1 and Subsection 6.6.7) we did not have the right to add
the probabilities for passing through alternative holes. Instead, quantum mechanics
recommended adding the so-called probability amplitudes and then squaring the re-
sulting sum [28].

This observation leads to the suspicion that the usual postulates of probability
(and logic) do not operate in microsystems. Thus, we naturally approach the idea of
quantum logic as the basis of quantummechanics. It turns out that both fundamental
features of quantum measurements – the randomness of outcomes and the addition
of probability amplitudes for alternative events – find a simple and concise explana-
tion in quantum logic (see Section 1.4). Both these laws of quantummechanics follow
directly from the orthomodular logic of experimental propositions. As we know from
Piron’s theorem, such logic is realized by a system of projections in the Hilbert space,
and by Gleason’s theorem any state (= probability measure) on such a systemmust be
stochastic, random.

As we saw in Section 1.4 (see Figure 1.7), the Boolean deterministic logic of clas-
sical mechanics is only a particular case of the orthomodular quantum logic with its
probabilities. Thus, even in formal reasoning, it is the particular classical theory that
needs a special explanation and interpretation, andnot the general quantummechan-
ics.

. . . classical mechanics is loaded with metaphysical hypotheses which clearly exceed our every-
day experience. Since quantum mechanics is based on strongly relaxed hypotheses of this kind,
classical mechanics is less intuitive and less plausible than quantum mechanics. Hence classi-
cal mechanics, its language and its logic cannot be the basis of an adequate interpretation of
quantummechanics – P. Mittelstaedt [55].
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1.6.6 Quantum randomness and limits of knowledge

So,we came to the conclusion that quantumprobability, its collapse and the existence
of superpositions of states are inevitable consequences of the special orthomodular
nature of the logic of experimental propositions. The laws of probability, built on this
logic, differ from the classical laws of probability that are familiar to us. In particular,
any state (= a probability measure on logical propositions) must be stochastic, i. e., it
is impossible to get rid of the element of chance in measurements. This also means
that there is no mystery in the collapse of the wave function, and there is no need
to introduce an artificial boundary between the physical system and the measuring
apparatus.

The imaginary paradox of the quantum formalism is connected, on the one hand,
with the weirdness of quantum logic, and on the other hand with unrealistic expecta-
tions about the power of science. Theoretical physicists experience an internal protest
when facedwith real physicallymeasurable effects,41which they are powerless to con-
trol and/or predict. These are facts without explanations, effects without causes. It
seems that microparticles are subject to some annoyingmysterious random force. But
in our view, instead of grieving, physicists should have celebrated their success.

To us, the idea of the fundamental, irreducible and fundamentally inexplicable
nature of quantum probabilities seems very attractive, because it may signal the ful-
fillment of the centuries-old dream of scientists searching for deep laws of nature. Per-
haps, in such an elegant way, nature has evaded the need to answer our endless ques-
tions “why?” Indeed, if at the fundamental level nature were deterministic, then we
would face a terrifying prospect of unraveling the endless sequences of cause–effect
relationships. Each phenomenon would have its own cause, which, in turn, would
have a deeper reason, and so on, ad infinitum. Quantummechanics breaks this chain
and at some point gives us the full right to answer: “I don’t know. It’s just an accident.”
And if some phenomenon is truly random, then there is no need to seek an explana-
tion for it. The chain of questions “why?” breaks. The quest for understanding ends in
a logical, natural and satisfying way.

So, perhaps, the apparent “incompleteness” of quantum theory is not a problem
to be solved, but an accurate reflection of the fundamental essence of nature, in par-
ticular, its inherent unpredictability? In this connection, the following quote fromEin-
stein seems suitable:

I now imagine a quantum theoretician who may even admit that the quantum-theoretical de-
scription refers to ensembles of systems and not to individual systems, but who, nevertheless,
clings to the idea that the type of description of the statistical quantum theory will, in its essen-
tial features, be retained in the future. He may argue as follows: True, I admit that the quantum-
theoretical description is an incomplete description of the individual system. I even admit that

41 Such as random hits of electrons on the screen or decay of nuclei.
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a complete theoretical description is, in principle, thinkable. But I consider it proven that the
search for such a complete description would be aimless. For the lawfulness of nature is thus
constructed that the laws can be completely and suitably formulated within the framework of
our incomplete description. To this I can only reply as follows: Your point of view – taken as
theoretical possibility – is incontestable – A. Einstein [26].

Themost important philosophical lessonof quantummechanics is the call to abandon
speculations about unobservable things and their use in the foundations of the the-
ory. Quantum mechanics does not know whether the moon is there or not. Quantum
mechanics says that the moon will be there when we look.



2 Poincaré group
This subject has been thoroughly worked out and is now understood. A thesis on this topic, even
a correct one, will not get you a job.
Ray F. Streater

In the previous chapter, we learned that each physical system canbe describedmathe-
matically in a Hilbert space. Rays in this space are in one-to-one correspondence with
(pure) states of the system. The observables are expressed by Hermitian operators.
These formal statements are still insufficient to create a working theory. We still lack a
classification of possible physical systems; we do not yet knowwhich operators corre-
spond to basic physical quantities, such as position, momentum, mass, energy, spin,
etc., and how these operators are related to each other; we cannot yet say how the
states and observables develop in time. Our theory is incomplete.

It turns out that many of the mentioned gaps become filled if we combine quan-
tum mechanics with the principle of relativity – one of the most profound ideas in
physics. This principle has universal applicability. It works regardless of what physi-
cal system, observable or state we are considering. In its essence, this principle says
that there is no distinguished inertial frame of reference. All frames are equivalent if
they are at rest or move uniformly without acceleration and rotation. In addition, this
principle establishes the group properties of inertial transformations between frames
of reference. Our main goal in this chapter is to explain that the group of transforma-
tions between inertial observers is the famous Poincaré group. Throughout the book,
we will have many opportunities to appreciate the fundamental importance of this
idea for physics.

2.1 Inertial observers

2.1.1 Principle of relativity

As we said in the Introduction, in our book we consider only inertial laboratories.
What is so special about them? The answer is that they are subject to the so-called
relativity principle. The essence of this principle was best explained by Galilei more
than 370 years ago, when he poetically described the movement of insects and drops
of water in the cabin of a moving ship [32]. Galilei realized that inertial laboratories
cannot be distinguished from each other by performing experiments inside these lab-
oratories. Each experiment performed in one laboratory will produce the same result
as an identical experiment in any other inertial laboratory. The results will remain the
samenomatter how far away these labs are from each other andwhat are their relative
orientations and speeds. Moreover, we can repeat the experiment tomorrow or many

https://doi.org/10.1515/9783110492132-002
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years later – the results will not change. These observations allow us to formulate one
of the most important postulates of physics.

Postulate 2.1 (principle of relativity). In all inertial laboratories, the laws of physics
are the same: they do not change with time and they do not depend on the position,
the orientation of the laboratory in space and its speed. In other words, the laws of
nature are invariant with respect to inertial transformations.

2.1.2 Inertial transformations

Our next task is to study inertial transformations between laboratories in more detail.
Imagine a world populated by observers/laboratories. In such a world, observers can
measure parameters {v;φ; r; t} (speed, angle,1 distance and time shift) of their fellow
observers.

Figure 2.1: Inertial transformations between three refer-
ence frames, O, O󸀠, O󸀠󸀠.

Suppose now that there are three different inertial observers, O, O󸀠 and O󸀠󸀠, as shown
in Figure 2.1. There is an inertial transformation {v1;φ1; r1; t1} connecting O and O󸀠,
written

O󸀠 = {v1;φ1; r1; t1}O, (2.1)

where parameters v1, φ1, r1 and t1 are measured by clocks and rulers belonging to
the reference frame O with respect to its basis vectors i, j, k. Similarly, there exists an
inertial transformation connecting O󸀠 and O󸀠󸀠, written

O󸀠󸀠 = {v2;φ2; r2; t2}O
󸀠, (2.2)

where parameters v2,φ2, r2 and t2 are definedwith respect to basis vectors, rulers and
clocks of the observer O󸀠. Finally, there is also a transformation between O and O󸀠󸀠,
written

O󸀠󸀠 = {v3;φ3; r3; t3}O, (2.3)

1 In Appendix D.5 we explain how to parameterize rotations by 3-vectorsφ.
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whose parameters refer to O. We can regard transformation (2.3) as a composition or a
product of transformations (2.1) and (2.2),

{v3;φ3; r3; t3} = {v2;φ2; r2; t2}{v1;φ1; r1; t1}. (2.4)

Obviously, this product has the associativity property (C.1). Also, there is a trivial trans-
formation {0;0;0;0}, which leaves all observers unchanged; and for each transforma-
tion {v;φ; r; t} there is an inverse transformation {v;φ; r; t}−1 such that their product
is equal to the trivial one,

{v;φ; r; t}{v;φ; r; t}−1 = {v;φ; r; t}−1{v;φ; r; t} = {0;0;0;0}. (2.5)

In other words, we have just shown that the set of all inertial transformations forms a
mathematical group (see Appendix C.1). Moreover, since the inertial transformations
depend smoothly on their parameters, this group is a Lie group (seeAppendix E.1). The
main purpose of this chapter is to study in more detail the properties of this group. In
particular, we need explicit formulas for Lie bracket relationships in the group’s Lie
algebra.

To begin the solution of this problem, let us fix an arbitrary frame of reference O
as our basic observer, and consider other examples of observers:
(i) observer {0;0;0; t1}O, displaced in time with respect to O by the amount t1;
(ii) observer {0;0; r1;0}O, shifted in space by vector r1;
(iii) observer {0;φ1;0;0}O, rotated by vectorφ1;
(iv) observer {v1;0;0;0}O, moving with velocity v1.

We assume that the general inertial transformation {v;φ; r; t} can be always expressed
as a product of elementary transformations (i)–(iv). Since these elementary transfor-
mations usually do not commute,we need to agree on the canonical order in this prod-
uct. For our purposes, we found convenient the following choice:

{v;φ; r; t}O = {v;0;0;0}{0;φ;0;0}{0;0; r;0}{0;0;0; t}O, (2.6)

meaning that in order to obtain the observer O󸀠 = {v;φ; r; t}O, we first move O in time
by the amount t, then shift the resulting observer in space by vector r, then rotate it
by angleφ and, finally, give it velocity v.

2.2 Galilei group

In this section, we begin our study of the group of inertial transformations in the non-
relativistic world, where observers move with low velocities v ≪ c. This is a relatively
simple task, because we can use our daily experience and common sense for its com-
pletion. We will get to the relativistic group of transformations in Section 2.3 by gen-
eralizing results obtained here.
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2.2.1 Composition law in Galilei group

Let us first consider four examples of products (2.4), in which {v1;φ1; r1; t1} is an iner-
tial transformation of general form and {v2;φ2; r2; t2} is one of the elementary transfor-
mations from the list (i)–(iv). Applying a time translation to the general frame of ref-
erence {v1;φ1; r1; t1}O, we simply shift its timestamp and change its position in space
according to the equality

{0;0;0; t2}{v1;φ1; r1; t1}O = {v1;φ1; r1 + v1t2; t1 + t2}O. (2.7)

Space translation changes the frame’s position, as in

{0;0; r2;0}{v1;φ1; r1; t1}O = {φ1; v1; r1 + r2; t1}O. (2.8)

Rotations affect all vector parameters, so we have2

{0;φ2;0;0}{v1;φ1; r1; t1}O = {φ2v1;φ2 ∘φ1;φ2r1; t1}O. (2.9)

Boosts change the velocity, so

{v2;0;0;0}{v1;φ1; r1; t1}O = {v1 + v2;φ1; r1; t1}O. (2.10)

Now, using (2.6)–(2.10), we are ready to calculate the product of two arbitrary inertial
transformations in (2.4). We obtain3

{v2;φ2; r2; t2}{v1;φ1; r1; t1}
= {v2;0;0;0}{0;φ2;0;0}{0;0; r2;0}{0;0;0; t2}{v1;φ1; r1; t1}
= {v2;0;0;0}{0;φ2;0;0}{0;0; r2;0}{v1;φ1; r1 + v1t2; t1 + t2}
= {v2;0;0;0}{0;φ2;0;0}{v1;φ1; r1 + v1t2 + r2; t1 + t2}
= {v2;0;0;0}{φ2v1;φ2 ∘φ1;φ2r1 +φ2v1t2 +φ2r2; t1 + t2}
= {φ2v1 + v2;φ2 ∘φ1;φ2r1 +φ2v1t2 +φ2r2; t1 + t2}. (2.11)

By direct substitution in equation (2.5), it is easy to verify that the inverse element is
given by the formula

{v;φ; r; t}−1 = {−φ−1v;φ−1; −r + vt; −t}. (2.12)

Indeed, according to (2.11),

2 Products likeφ2v1 andφ2 ∘φ1 are defined in Appendices D.5–D.6.
3 Sometimes the product of transformations in the Galilei group is written in other forms; see, for
example, Section 3.2 in [7], where the choice of the canonical order of factors is different from our
(2.6).
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{−φ−1v;φ−1; −r + vt; −t}{v;φ; r; t}
= {φ−1v −φ−1v;φ−1 ∘φ;φ−1r −φ−1vt −φ−1r +φ−1vt; t − t}
= {0;0;0;0}.

Equations (2.11) and (2.12) define the composition and inversion laws that com-
pletely determine the structure of the Lie group of inertial transformations in nonrel-
ativistic physics. It is called the Galilei group.

2.2.2 Lie algebra of Galilei group

In physical applications, the Lie algebra of the group of inertial transformations plays
an even larger role than the group itself. According to Appendix E, we can get the
basis {ℋ,𝒫 ,𝒦,𝒥 } of the Galilei Lie algebra by taking derivatives with respect to the
parameters of one-parameter subgroups. For example, the time translation generator
is formally represented as

ℋ = lim
t→0 d

dt
{0;0;0; t}.

For generators of space translations and boosts along the x-axis we obtain

𝒫x = limx→0 d
dx
{0;0; x,0,0;0},

𝒦x = limv→0 d
dv
{v,0,0;0;0;0}.

The generator of rotations about the x-axis is defined as

𝒥x = limφ→0 d
dφ
{0;φ,0,0;0;0}.

Similar formulas are valid for the y- and z-components. According to (E.2), finite trans-
formations are expressed as exponents of the generators

{0;0;0; t} = eℋt ≈ 1 +ℋt, (2.13)

{0;0; r;0} = e𝒫 ⋅r ≈ 1 +𝒫 ⋅ r, (2.14)

{0;φ;0;0} = e𝒥 ⋅φ ≈ 1 +𝒥 ⋅φ,
{v;0;0;0} = e𝒦⋅v ≈ 1 +𝒦 ⋅ v. (2.15)

Hence, any element of the group is a product of exponentials in the canonical order
(2.6), so we have

{v;φ; r; t} ≡ {v;0;0;0}{0;φ;0;0}{0;0; r;0}{0;0;0; t} = e𝒦⋅ve𝒥 ⋅φe𝒫 ⋅reℋt . (2.16)
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Let us now find commutators between the generators, i. e., structure constants of
the Galilei Lie algebra. Consider, for example, translations in time and space. Using
(2.11), we obtain

{0;0;0; t}{0;0; x,0,0;0} = {0;0; x,0,0;0}{0;0;0; t}.

This implies
eℋte𝒫xx = e𝒫xxeℋt ,

1 = e𝒫xxeℋte−𝒫xxe−ℋt .

From equations (2.13) and (2.14) we obtain in the first order in x and t

1 ≈ (1 + 𝒫xx)(1 +ℋt)(1 − 𝒫xx)(1 −ℋt)
= 1 + 𝒫xℋxt − 𝒫xℋxt −ℋ𝒫xxt + 𝒫xℋxt + ⋅ ⋅ ⋅
= 1 −ℋ𝒫xxt + 𝒫xℋxt + ⋅ ⋅ ⋅ .

Hence the Lie bracket of the generators of 𝒫x andℋ vanishes:

[𝒫x ,ℋ]L ≡ 𝒫xℋ −ℋ𝒫x = 0.

Similarly, one can find zero Lie brackets,

[ℋ,𝒫i]L = [𝒫i,𝒫j]L = [𝒦i,𝒦j]L = [𝒦i,𝒫j]L = 0,

for all components i, j = x, y, z (or i, j = 1, 2, 3). The noncommuting pair of time transla-
tion and boost is more interesting. From the general formula (2.11) we obtain

e𝒦xveℋte−𝒦xv = {v,0,0;0;0,0}{0;0;0; t}{−v,0,0;0;0;0}
= {v,0,0;0;0;0}{−v,0,0;0; −vt,0,0; t}

= {0;0; −vt,0,0; t} = eℋte−𝒫xvt = eℋt−𝒫xvt .

On the other hand, applying (E.14) to the left-hand side of this equality, we get

e𝒦xveℋte−𝒦xv = e(ℋ+v[𝒦x ,ℋ]L+⋅⋅⋅)t .
Therefore

ℋt + [𝒦x ,ℋ]Lvt = ℋt − 𝒫xvt,
[𝒦x ,ℋ]L = −𝒫x .

Proceeding in a similar way with other pairs of transformations, we obtain the com-
plete set of Lie brackets of the Galilei Lie algebra,

[𝒥i,𝒫j]L =
3
∑
k=1 ϵijk𝒫k , (2.17)

[𝒥i,𝒥j]L =
3
∑
k=1 ϵijk𝒥k , (2.18)
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[𝒥i,𝒦j]L =
3
∑
k=1 ϵijk𝒦k , (2.19)

[𝒥i,ℋ]L = 0, (2.20)
[𝒫i,𝒫j]L = [𝒫i,ℋ]L = 0, (2.21)
[𝒦i,𝒦j]L = 0, (2.22)
[𝒦i,𝒫j]L = 0, (2.23)
[𝒦i,ℋ]L = −𝒫i. (2.24)

Analyzing these relations,we candistinguish several important subalgebras and, con-
sequently, subgroups of the Galilei group. In particular, there is the Abelian subgroup
of spatial and time translations (with generators𝒫 andℋ, respectively), the subgroup
of rotations (with generators 𝒥 ) and the Abelian subgroup of boosts (with genera-
tors𝒦).

2.2.3 Rotations applied to generators

Let us consider two reference frames O and O󸀠 related to each other by an element g
of the Galilei group,

O󸀠 = gO.
Suppose that observer O applies an (active4) inertial transformation h to a physical
object S. Let, for example, h be a translation along the x-axis, as in Figure 2.2. We
want to find the transformation h󸀠 that refers to the observer O󸀠 in the same way as h
refers to O (that is, h󸀠 is a translation along the x󸀠-axis belonging to the observer O󸀠).
As can be seen from the example in Figure 2.2, the transformation h󸀠 of the object S
can be performed in three steps: first go from the frame O󸀠 to the frame O, perform the
translation h there, and then go back to the frame O󸀠, so

h󸀠 = ghg−1.
Similarly, if𝒢 is a generator of a one-dimensional subgroup of inertial transformations
in the frame O, then

𝒢󸀠 = g𝒢g−1 (2.25)

is “the same” generator in the reference frame O󸀠 = gO.
4 So far we have discussed how inertial transformations are applied to observers; such transforma-
tions are called “passive.” But inertial transformations can be also applied to the physical system (or
the state preparation device). They are called “active.” We will discuss this difference in more detail
in Subsection 5.3.3.
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Figure 2.2: Connection between similar transformations
h and h󸀠 in different reference frames. The transforma-
tion g = exp(Jzφ) is a rotation about the z-axis, which is
perpendicular to the book’s page.

As an example, let us consider the effect of a rotation about the z-axis on genera-
tors of the Galilei group. We can write

𝒢󸀠x ≡ 𝒢x(φ) = e𝒥zφ𝒢xe
−𝒥zφ,

𝒢󸀠y ≡ 𝒢y(φ) = e𝒥zφ𝒢ye
−𝒥zφ,

𝒢󸀠z ≡ 𝒢z(φ) = e𝒥zφ𝒢ze
−𝒥zφ,

where 𝒢 is one of the vector generators (𝒫, 𝒥 or 𝒦) in the frame O. From formulas
(2.17)–(2.19) we obtain

d
dφ

𝒢x(φ) = e
𝒥zφ(𝒥z𝒢x − 𝒢x𝒥z)e

−𝒥zφ = e𝒥zφ𝒢ye
−𝒥zφ = 𝒢y(φ), (2.26)

d
dφ

𝒢y(φ) = e
𝒥zφ(𝒥z𝒢y − 𝒢y𝒥z)e

−𝒥zφ = −e𝒥zφ𝒢xe
−𝒥zφ = −𝒢x(φ),

d
dφ

𝒢z(φ) = e
𝒥zφ(𝒥z𝒢z − 𝒢z𝒥z)e

−𝒥zφ = 0. (2.27)

Taking derivativeswith respect toφ fromboth sides of (2.26), we obtain a second-order
differential equation,

d2

dφ2 𝒢x(φ) =
d
dφ

𝒢y(φ) = −𝒢x(φ),

with the general solution

𝒢x(φ) = ℬ cosφ +𝒟 sinφ,

where ℬ and 𝒟 are arbitrary functions of generators. From the initial conditions it
follows that

ℬ = 𝒢x(0) = 𝒢x ,

𝒟 =
d
dφ

𝒢x(φ)
󵄨󵄨󵄨󵄨󵄨󵄨φ=0 = 𝒢y
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and the full solution is

𝒢x(φ) = 𝒢x cosφ + 𝒢y sinφ. (2.28)

Similar calculations yield

𝒢y(φ) = −𝒢x sinφ + 𝒢y cosφ, (2.29)
𝒢z(φ) = 𝒢z . (2.30)

Comparing (2.28)–(2.30) with equation (D.11), we see that

𝒢󸀠i ≡ e𝒥zφ𝒢ie
−𝒥zφ =

3
∑
j=1(Rz)ij𝒢j, (2.31)

where Rz is the matrix of rotation about the z-axis. Using equation (D.22), we can gen-
eralize our result to the case of an arbitrary rotation {0;φ;0;0},

𝒢󸀠 = e𝒥 ⋅φ𝒢e−𝒥 ⋅φ
= 𝒢 cosφ + φ

φ
(𝒢 ⋅ φ

φ
)(1 − cosφ) + [𝒢 × φ

φ
] sinφ

≡ Rφ𝒢 ≡ φ𝒢. (2.32)

This simply means that generators 𝒢 = 𝒫 ,𝒥 ,𝒦 are 3-vectors. From the Lie bracket
(2.20) it follows thatℋ is not affected by rotations, i. e., this is a 3-scalar.

2.2.4 Space inversion

In this book, we will not discuss physical consequences of discrete transformations,
such as spatial inversion or time reversal. It is physically impossible to prepare an ex-
act mirror image or a time-reversed image of a laboratory, so the postulate of relativ-
ity does not tell us anything about such transformations. Indeed, it has been proven
experimentally that such discrete symmetries are not exact. Nevertheless, it will be
useful to find out how the Galilei generators behave with respect to space inversion.

Suppose that we have a classical physical system S and its image S󸀠 inverted with
respect to the origin of coordinates 0 (see Figure 2.3). How will the image S󸀠 change if
we apply an inertial transformation to S?

Obviously, if we shift S by the vector x, then S󸀠 shifts by−x. This can be interpreted
as a change of the sign of the spatial translation generator 𝒫 under inversion. The
same is true for boosts: the inverted image of S󸀠 gets the additional speed of −v if the
original was boosted by v. Hence, the inversion also changes the sign of the boost
generator, so

𝒦→ −𝒦. (2.33)
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Figure 2.3: Transformations of generators under space
inversion.

Such vectors as𝒫 and𝒦, changing their signs under inversion, are called true vectors.
However, the rotation generator𝒥 is not a true vector. Indeed, if we rotate S by the an-
gleφ, then the image S󸀠 rotates by the same angle (see Figure 2.3). Hence,𝒥 does not
change its sign after inversion. Such vectors are called pseudo-vectors. Similarly, we
can introduce the concepts of true scalars/pseudo-scalars and true tensors/pseudo-
tensors. It is customary to define their properties as opposite to the properties of true
vectors/pseudo-vectors. In particular, true scalars and true tensors (of rank 2) do not
change their signs under inversion. For example, ℋ is a true scalar. Pseudo-scalars
and pseudo-tensors of the second rank change their sign under inversion.

2.3 Poincaré group

It turns out that the Galilei group described in the previous section is suitable only for
observers moving at low speeds. In amore general case, we have to use a different law
of composition of inertial transformations. The resulting group is called the Poincaré
group. This is a very important result that follows from the theory of relativity devel-
oped in the early 20th century by Einstein, Poincaré, Minkowski and others.

The derivation of the relativistic group of inertial transformations is not an easy
task, because in everyday practice we do not have enough experience of observations
from fast moving frames of reference. Therefore, we will use more formal mathemati-
cal arguments [15]. We will attempt to generalize commutation relations of the Galilei
algebra (2.17)–(2.24) while requiring some simple physical conditions. As a result, we
will see that the Lie algebra satisfying all our demands is practically unique. This is
the Lie algebra of the Poincaré group.

2.3.1 Conditions on Poincaré generators

We cannot doubt the validity of the Galilean Lie brackets between the generators of
space–time translations and rotations, because properties of these transformations
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were verified both in daily life and in physical experiments in a wide range of param-
eters (distances, times and angles). The situation with boosts is completely different.
In everyday practice, we do not experience high speeds (comparable to the speed of
light), and we lack the intuition that was so useful in deriving the commutators of the
Galilei algebra. Therefore, we cannot be sure of the reasoning that led us to the Lie
brackets (2.22)–(2.24) that involve boost generators; we should be open to the possi-
bility that these brackets are just approximations valid only for slow observers. So, in
our derivation of the exact relativistic group of inertial transformations, we apply the
following ideas:
(I) Just as in the nonrelativistic case, we assume that the set of inertial transforma-

tions remains a 10-parameter Lie group.
(II) We also assume that it is necessary to revise only the brackets involving the boost

generators.
(III) In addition, we assume that relativistic generators of boosts 𝒦 continue to be

components of a true vector, so that equations (2.19) and (2.33) remain valid.
(IV) The Galilei group perfectly describes slow boosts, and the speed of light c is the

only fundamental constant with the dimension of speed. Therefore, we assume
that the exact Lie brackets include c as a parameter and tend to their Galilean
values in the limit c →∞.5

Summarizing requirements (I)–(IV), we canwrite the following relativistic generaliza-
tions for the Lie brackets (2.22)–(2.24):

[𝒦i,𝒦j]L = 𝒯ij,

[𝒦i,𝒫j]L = 𝒰ij, (2.34)
[𝒦i,ℋ]L = −𝒫i + 𝒱i, (2.35)

where 𝒯ij, 𝒰ij and 𝒱ij are some (as yet unknown) linear combinations of generators.
The coefficients of these linear combinations must be chosen in such a way as to pre-
serve all the characteristic properties of the Lie algebra, in particular the Jacobi iden-
tity (E.11). Let us now try to fulfill all these requirements step by step.

2.3.2 Lie algebra of Poincaré group

First, we note that the Lie bracket [𝒦i,𝒫j]L is a 3-tensor. Indeed, using equation (2.32),
we get the tensor law (D.14) for transformations with respect to rotations. We have

5 Note that here we do not assume that c is an invariant or some kind of a limiting speed. These facts
will appear in Chapter 5 as a result of applying our theory.
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e𝒥 ⋅φ[𝒦i,𝒫j]Le
−𝒥 ⋅φ = [ 3

∑
k=1Rik(φ)𝒦k ,

3
∑
l=1 Rjl(φ)𝒫l]

L

=
3
∑
kl=1Rik(φ)Rjl(φ)[𝒦k ,𝒫l]L.

Since both𝒦 and𝒫 change their sign under inversion, their Lie bracket is a true ten-
sor. Therefore, 𝒰ij must also be a true tensor, expressed as a linear combination of
generators, among which we have a true scalar ℋ, a pseudo-vector 𝒥 and two true
vectors 𝒫 and𝒦. In accordance with Appendix D.4, the most general way to make a
true tensor from all these ingredients is to apply formulas from the first and third rows
of Table D.1. Hence we arrive at the following expression for the Lie bracket (2.34):

[𝒦i,𝒫j]L = −βℋδij + γ
3
∑
k=1 ϵijk𝒥k ,

where β and γ are as yet undefined real constants.
It follows from similar arguments that 𝒯ij is also a true tensor. Because of the rela-

tion

[𝒦i,𝒦j]L = −[𝒦j,𝒦i]L,

this tensor is antisymmetric, which excludes the presence of the term proportional
to δij. So

[𝒦i,𝒦j]L = α
3
∑
k=1 ϵijk𝒥k ,

where α is yet another undefined constant.
The quantity𝒱i in equation (2.35) should be a true vector, so themost general form

of this Lie bracket is

[𝒦i,ℋ]L = −(1 + σ)𝒫i + κ𝒦i.

Thus, we simplified the problem of generalizing the Galilei Lie algebra to the
search for five real (presumably small) parameters α, β, γ, κ and σ. To proceed, we
note that the modified Lie algebra must satisfy the Jacobi identity. Therefore, we can
write

0 = [𝒫x , [𝒦x ,ℋ]L]L + [𝒦x , [ℋ,𝒫x]L]L + [ℋ, [𝒫x ,𝒦x]L]L
= κ[𝒫x ,𝒦x]L = βκℋ,

which implies

βκ = 0. (2.36)
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Similarly,

0 = [𝒦x , [𝒦y ,𝒫y]L]L + [𝒦y , [𝒫y ,𝒦x]L]L + [𝒫y , [𝒦x ,𝒦y]L]L
= −β[𝒦x ,ℋ]L − γ[𝒦y ,𝒥z]L + α[𝒫y ,𝒥z]L = β(1 + σ)𝒫x − βκ𝒦x − γ𝒦x + α𝒫x

= (α + β + βσ)𝒫x − (βκ + γ)𝒦x = (α + β + βσ)𝒫x − γ𝒦x

implies

α = −β(1 + σ), (2.37)
γ = 0. (2.38)

The system of equations (2.36)–(2.37) has two possible solutions (in both cases the
parameter σ remains undefined):
(i) If β ̸= 0, then α = −β(1 + σ) and κ = 0.
(ii) If β = 0, then α = 0 and the parameter κ is arbitrary.

From condition (IV) in Subsection 2.3.1 we know that parameters α, β, σ, κ should
depend on c and tend to zero in the limit c →∞, written

lim
c→∞ α = limc→∞ β = limc→∞ κ = limc→∞ σ = 0. (2.39)

In order to use this condition, let us analyze the physical dimensionalities of these
parameters. For the argument of exponents in (2.16) to be dimensionless, we must
assume the following dimensionalities (denoted by angle brackets) of the generators:

<ℋ> = <time>−1,
<𝒫> = <distance>−1,
<𝒦> = <speed>−1,
<𝒥> = <angle>−1 = dimensionless.

Then from the definitions of α, β, κ, σ it follows that

<α> = <𝒦>
2

<𝒥>
= <speed>−2,

<β> = <𝒦><𝒫>
<ℋ>

= <speed>−2,
<κ> = <ℋ> = <time>−1,
<σ> = dimensionless

and we can satisfy condition (2.39) only by setting κ = σ = 0 (i. e., by realizing the
choice (i) above) and β = −α ∝ c−2. This approach does not allow us to establish the
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proportionality coefficient between β (and −α) and c−2. The agreement with experi-
mental data requires that we choose this coefficient to be unity, so

β = −α = 1
c2
.

Thus, we obtain the following final expressions for the Lie brackets:

[𝒥i,𝒫j]L =
3
∑
k=1 ϵijk𝒫k , (2.40)

[𝒥i,𝒥j]L =
3
∑
k=1 ϵijk𝒥k , (2.41)

[𝒥i,𝒦j]L =
3
∑
k=1 ϵijk𝒦k , (2.42)

[𝒥i,ℋ]L = 0, (2.43)
[𝒫i,𝒫j]L = [𝒫i,ℋ]L = 0, (2.44)

[𝒦i,𝒦j]L = −
1
c2

3
∑
k=1 ϵijk𝒥k , (2.45)

[𝒦i,𝒫j]L = −
1
c2

ℋδij, (2.46)

[𝒦i,ℋ]L = −𝒫i. (2.47)

These formulas express structure constants of the Lie algebra of the Poincaré group.
They differ from structure constants of the Galilei Lie algebra (2.17)–(2.24) only by
small terms on the right-hand sides of equations (2.45) and (2.46). The general element
of the corresponding Poincaré group has the form

{v(θ);φ; x; t} = ec𝒦⋅θe𝒥 ⋅φe𝒫 ⋅xeℋt . (2.48)

In contrast to elements of the Galilei group (2.16), where the boost parameter v co-
incides with the speed of the inertial system, in equation (2.48) we introduced a new
boost parameter, denoted byθ and called rapidity. The rapidity is related to the boost’s
speed by the following formulas:

v(θ) = θ
θ
c tanh θ,

cosh θ = (1 − v2/c2)−1/2.
The reason for introducing this new quantity is that rapidities of consecutive boosts
in one direction add up, while velocities do not have this property.6 Therefore, only

6 See the relativistic law of addition of velocities (4.7)–(4.9).
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the rapidity can serve as a parameter of one-parameter subgroups of boosts and par-
ticipate in the exponential notation (2.48).

Despite their simplicity, equations (2.40)–(2.47) are exceptionally important in
physics, and they are confirmed by so many experimental data that one cannot doubt
their validity. Therefore, we accept that the Poincaré group is the exact mathematical
expression of relationships between different inertial laboratories.

Postulate 2.2 (Poincaré group). Transformations between inertial laboratories form
the Poincaré group.

Even a superficial comparison of Lie brackets of the Poincaré (2.40)–(2.47) and
Galilei (2.17)–(2.24) algebras reveals several important features of the relativistic the-
ory. For example, a nonzero Lie bracket (2.45) shows that boosts, by themselves, no
longer form a subgroup. However, together with rotations, the boosts form a six-
dimensional subgroup of the Poincaré group, which is called the Lorentz group.

2.3.3 Boosts of translation generators

As an exercise, here we will apply the above Poincaré Lie brackets to derive transfor-
mations of the generators 𝒫 and ℋ under the action of boosts. Using equation (2.25)
and Lie brackets (2.46)–(2.47), we find that if 𝒫x andℋ are generators in the reference
frameO, then in the frameO󸀠moving along the x-axis they correspond to the following
generators

ℋ(θ) = ec𝒦xθℋe−c𝒦xθ ,

𝒫x(θ) = e
c𝒦xθ𝒫xe

−c𝒦xθ .

Taking the derivatives of these equalities with respect to θ, we obtain

d
dθ

ℋ(θ) = cec𝒦xθ(𝒦xℋ −ℋ𝒦x)e
−c𝒦xθ = −cec𝒦xθ𝒫xe

−c𝒦xθ = −c𝒫x(θ),

d
dθ

𝒫x(θ) = ce
c𝒦xθ(𝒦x𝒫x − 𝒫x𝒦x)e

−c𝒦xθ = −
1
c
ec𝒦xθℋe−c𝒦xθ = −

1
c
ℋ(θ). (2.49)

Taking the derivatives of both sides of equation (2.49) again, we arrive at the differen-
tial equation

d2

dθ2
𝒫x(θ) = −

1
c
d
dθ

ℋ(θ) = 𝒫x(θ)

with the general solution

𝒫x(θ) = ℬ cosh θ +𝒟 sinh θ.
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From the initial conditions we obtain

ℬ = 𝒫x(0) = 𝒫x ,

𝒟 =
d
dθ

𝒫x(θ)
󵄨󵄨󵄨󵄨󵄨󵄨θ=0 = − 1cℋ

and finally

𝒫x(θ) = 𝒫x cosh θ −
ℋ
c
sinh θ. (2.50)

Similar calculations lead to

ℋ(θ) = ℋ cosh θ − c𝒫x sinh θ, (2.51)
𝒫y(θ) = 𝒫y ,

𝒫z(θ) = 𝒫z .

Similar to our discussion of rotations in Appendix D.5, we can find transforma-
tions of𝒫 andℋ with respect to a general boost θ in a coordinate-independent form.
First, we expand 𝒫 into the sum of two vectors 𝒫 = 𝒫‖ + 𝒫⊥, where the vector
𝒫‖ = (𝒫 ⋅ θθ ) θθ is parallel to the direction of the boost, and𝒫⊥ = 𝒫 −𝒫‖ is perpendic-
ular to it (see Figure 2.4). The perpendicular part 𝒫⊥ remains unchanged under the
boost’s action, and𝒫‖ is transformed according to (2.50), so we have

𝒫 󸀠‖ = exp(c𝒦 ⋅ θ)𝒫‖ exp(−c𝒦 ⋅ θ) = 𝒫‖ cosh θ − ℋθ
cθ

sinh θ.

Therefore

𝒫 󸀠 = ec𝒦⋅θ𝒫e−c𝒦⋅θ = 𝒫 󸀠‖ +𝒫⊥ = 𝒫 + θθ [(𝒫 ⋅ θθ)(cosh θ − 1) − ℋc sinh θ], (2.52)

ℋ󸀠 = ec𝒦⋅θℋe−c𝒦⋅θ = ℋ cosh θ − c(𝒫 ⋅ θ
θ
) sinh θ. (2.53)

It is clear from (2.52) and (2.53) that boosts induce linear transformations of the com-
ponents c𝒫 and ℋ. These transformations can be represented in a matrix form if we

Figure 2.4: Transformation of the vector𝒫 = 𝒫‖ +𝒫⊥ to
the vector𝒫 󸀠 = 𝒫 󸀠‖ + 𝒫⊥ under the action of a passive
boost θ.
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collect four generators (ℋ, c𝒫) into one 4-dimensional column vector,

[[[[

[

ℋ󸀠
c𝒫󸀠x
c𝒫󸀠y
c𝒫󸀠z
]]]]

]

= θ̃−1 [[[[
[

ℋ
c𝒫x
c𝒫y
c𝒫z

]]]]

]

. (2.54)

The explicit form of the 4 × 4 matrix θ̃ is shown in equation (J.10).





3 Quantum mechanics and relativity
I amashamed to tell you to howmany figures I carried these computations, having no other business
at the time.
Isaac Newton

The two previous chapters discussed the ideas of quantum mechanics and relativity
in isolation from each other. Now it is time to combine them into one theory. Themain
contribution to such a unification was made by Wigner, who formulated and proved
the famous theorem bearing his name and also developed the theory of unitary rep-
resentations of the Poincaré group in Hilbert spaces. This theory is the mathematical
basis of the relativistic quantum approach, which we develop in our book.

3.1 Inertial transformations in quantum mechanics

The postulate of relativity 2.1 tells us that each inertial laboratory L is physically equiv-
alent to any other laboratory L󸀠 = gL obtained from L by application of an inertial
transformation g. This means that for equally organized experiments in these two
laboratories, the corresponding quantum probability measures on subspaces in the
Hilbert space H are the same. As shown in Figure 1, labs consist of two main parts:
the preparation device P and the observer O. When applied to the whole laboratory,
the inertial transformation g changes both these parts. The change of the preparation
device can be interpreted as a change of the state of the system. Let us formally denote
this transformationϕ→ gϕ. The change of the observer (or themeasuring apparatus)
can be considered as a change of experimental propositions𝒳 → g𝒳 . Then, the prin-
ciple of relativity in quantummechanics can be expressed by a single formula,

(gϕ|g𝒳 ) = (ϕ|𝒳 ), (3.1)

which is valid for any g, ϕ and 𝒳 . In the remainder of this volume, we will develop
a mathematical formalism for describing transformations gϕ and g𝒳 in the Hilbert
space. This is the formalism of unitary representations of the Poincaré group, which
is the cornerstone of relativistic quantum physics.

3.1.1 Wigner’s theorem

Let usfirst consider inertial transformations of experimental propositions𝒳 → g𝒳 . As
we know, propositions related to the observer O form an orthomodular lattice ℒ(H ),
realized as a set of closed subspaces in the Hilbert spaceH of the given physical sys-
tem. The observerO󸀠 = gO can also represent her propositions in the formof subspaces
of the sameHilbert spaceH . Since these two observers are equivalent, we expect that

https://doi.org/10.1515/9783110492132-003
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their propositional systems have the same mathematical structures, i. e., they are iso-
morphic. This means that there is a one-to-one mapping (= isomorphism) that trans-
lates propositions of O into propositions of O󸀠, and all the lattice relations remain un-
changed by thismapping. In particular, we require that thismapping translates atoms
into atoms and maps the minimum and maximum propositions of the observer O in
the minimum and maximum propositions of the observer O󸀠, respectively. Thus, we
postulate that to each inertial transformation g there corresponds a mapping 𝕂g be-
tween subspaces in H that has the following properties:

𝕂g(H ) = H , (3.2)
𝕂g(0) = 0, (3.3)

𝕂g(X ∩ Y ) = 𝕂g(X ) ∩ 𝕂g(Y ), (3.4)
𝕂g(X ⊎ Y ) = 𝕂g(X ) ⊎ 𝕂g(Y ), (3.5)
𝕂g(X

󸀠) = 𝕂󸀠g(X ), (3.6)

for all X , Y ⊆ H .
We have already discussed in Section 1.4 that it is rather inconvenient to work

with propositions/subspaces. It would be better to translate conditions (3.2)–(3.6) into
the language of vectors in the Hilbert space. In other words, we would like to find
a vector-to-vector transformation kg : H → H , which generates the subspace-to-
subspace transformation 𝕂g . More precisely, we require that if the subspaces X and
Y are connected by our isomorphism (that is, 𝕂g(X ) = Y ), then the generator kg
should map all vectors from X to vectors from Y , so that⨄kg(x) = Y , where x runs
over all vectors in X .

The problem with generators kg is that there are just too many choices of them.
For example, if the ray Z transforms into the ray𝕂g(Z ), then the generator kg must
map each vector |z⟩ ∈ Z somewhere inside the ray𝕂g(Z ), but the exact imagekg |z⟩ is
completely irrelevant. Indeed,we canmultiply each vector imagekg |z⟩ by an arbitrary
nonzero factor η(|z⟩) and still have a valid generator. The multipliers η(|z⟩) can be
chosen independently for each |z⟩ ∈ H . All this freedom is very inconvenient from
the mathematical point of view.

The problem of the ambiguity of generators was solved by the famousWigner the-
orem [99], which states that one can always choose the factors η(|z⟩) so that the vector-
to-vector mapping η(|z⟩)kg is either unitary (linear) or antiunitary (antilinear).1

Theorem 3.1 (Wigner). For each isomorphic mapping 𝕂g of the lattice of subspaces of
the Hilbert space H onto itself one can find either a unitary or an antiunitary transfor-
mation kg of vectors in H , which generates𝕂g . This transformation is defined up to an
arbitrary unimodular factor.

1 For definitions of antilinear and antiunitary operators, see Appendix G.3.
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In this formulation Wigner’s theorem was proved in [91].2 The importance of the
theorem is due to the fact that mathematicians have a powerful mathematical appa-
ratus for working with unitary and antiunitary operators kg , so that their properties
(and, therefore, the properties of transformations 𝕂g) can be studied in detail by the
familiar methods of linear algebra in Hilbert spaces.

From our analysis of inertial transformations in Chapter 2, we know that there is
always a continuous path connecting the identity transformation e = {0;0;0;0} with
all other elements g = {v;φ; r; t} of the Poincaré group. The identity transformation
e is naturally generated by the identity operator ke = 1 in H , which, of course, is
unitary. It also seems reasonable to require the maps g → 𝕂g and g → kg to be con-
tinuous. This means that a representative kg cannot suddenly switch from unitary to
antiunitary along the path connecting group elements e and g. Thus, we exclude an-
tiunitary operators from representatives kg .3 From now on, instead of kg we will use
the notation Ug to emphasize the unitary nature of vector transformations.

Although Wigner’s theorem reduces the freedom of choice of generators, it does
not remove this freedom altogether. If β(g) is any unimodular complex number
(|β(g)| = 1), then two unitary operators Ug and β(g)Ug generate the same transfor-
mation of subspaces𝕂g . Hence, for each g and𝕂g there is a set of generating unitary
transformations Ug that differ from each other only by unimodular factors. Such a set
is referred to as the ray of transformations [Ug].

Results of this subsection can be summarized as follows. Each inertial transfor-
mation of observers can be represented by a unitary operator Ug in H , defined up to
an arbitrary unimodular factor: ket vectors are transformed as |x⟩ → Ug |x⟩ and bra
vectors are transformed as ⟨x| → ⟨x|U−1g . If PX = ∑i |ei⟩⟨ei|

4 is a projection (propo-
sition) associated with the observer O, then the observer O󸀠 = gO will represent the
same proposition by the projection

P󸀠X = ∑
i
Ug |ei⟩⟨ei|U

−1
g = UgPX U−1g .

Similarly, if F = ∑i fi|ei⟩⟨ei| is the operator of an observable in the reference frame O,
then

F󸀠 = ∑
i
fiUg |ei⟩⟨ei|U

−1
g = UgFU

−1
g (3.7)

is the same observable in the frame O󸀠 = gO.
2 See also [1].
3 Antiunitary operators can represent discrete transformations, such as time reversal, but we agreed
not to touch these transformations in our book, because they are not exact symmetries.
4 Here |ei⟩ is an orthonormal basis in the subspace X .
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3.1.2 Inertial transformations of states

In the previous subsection we found out how the inertial transformation g changes
observers, measuring devices, experimental propositions and observables. Now we
turn to the action of g on preparation devices and states. We will try to answer the
followingquestion: if |Ψ⟩ is a vector describing the state preparedby thedeviceP, then
which vector |Ψ󸀠⟩ describes the state prepared by the transformed device P󸀠 = gP?

To find the connection between |Ψ⟩ and |Ψ󸀠⟩, we use the principle of relativity.
According to equation (3.1), for each observable F its expectation value (1.24) should
not change after inertial transformation of the entire laboratory (= preparation de-
vice + observer). In the bra-ket formalism this condition can be written as

⟨Ψ|F|Ψ⟩ = ⟨Ψ󸀠󵄨󵄨󵄨󵄨F󸀠󵄨󵄨󵄨󵄨Ψ󸀠⟩ = ⟨Ψ󸀠󵄨󵄨󵄨󵄨(UgFU
−1
g )
󵄨󵄨󵄨󵄨Ψ
󸀠⟩. (3.8)

This equality must be satisfied for any observable F. Let us choose F = |Ψ⟩⟨Ψ|, i. e.,
the projection on the ray of the vector |Ψ⟩. Then equation (3.8) takes the form

⟨Ψ|Ψ⟩⟨Ψ|Ψ⟩ = ⟨Ψ󸀠󵄨󵄨󵄨󵄨Ug |Ψ⟩⟨Ψ|U
−1
g
󵄨󵄨󵄨󵄨Ψ
󸀠⟩ = ⟨Ψ󸀠󵄨󵄨󵄨󵄨Ug |Ψ⟩⟨Ψ

󸀠󵄨󵄨󵄨󵄨Ug |Ψ⟩
∗ = 󵄨󵄨󵄨󵄨⟨Ψ󸀠󵄨󵄨󵄨󵄨Ug |Ψ⟩

󵄨󵄨󵄨󵄨
2
.

The left-hand side of this equation is 1. Hence, for each |Ψ⟩ the transformed vector |Ψ󸀠⟩
is such that

󵄨󵄨󵄨󵄨⟨Ψ
󸀠󵄨󵄨󵄨󵄨Ug |Ψ⟩
󵄨󵄨󵄨󵄨
2
= 1.

Since both Ug |Ψ⟩ and |Ψ󸀠⟩ are unit vectors, we can write
|Ψ󸀠⟩ = β(g)Ug |Ψ⟩,

where β(g) is some complex unimodular factor. The operator Ug is, anyway, defined
only up to a unimodular factor; the state vector itself is defined only up to a factor.
Hence, we are free to remove the β(g) multiplier and finally write down the action of
the inertial transformation g on state vectors,

|Ψ⟩ → |Ψ󸀠⟩ = Ug |Ψ⟩. (3.9)

Substituting this expression in (3.8), it is easy to verify the required invariance of the
expectation value. We have

⟨F󸀠⟩ = ⟨Ψ󸀠󵄨󵄨󵄨󵄨F󸀠󵄨󵄨󵄨󵄨Ψ󸀠⟩ = (⟨Ψ|U−1g )(UgFU
−1
g )(Ug |Ψ⟩) = ⟨Ψ|F|Ψ⟩ = ⟨F⟩. (3.10)

Figure 3.1 illustrates results obtained so far in this section.
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Figure 3.1: Action of the inertial
transformation g on the physical
system (state |Ψ⟩) and the mea-
suring apparatus (observable F ).

3.1.3 Heisenberg and Schrödinger pictures

Let us return to inertial transformations of observers (= measuring devices). If we
change the observer O → O󸀠 = gO and do not touch the preparation device, then
operators of observables change according to (3.7), although the state vector remains
the same |Ψ⟩. As expected, this transformation changes the results of experiments.
For example, the expectation value of the observable F is generally different for two
observers O and O󸀠 = gO. We have

⟨F󸀠⟩ = ⟨Ψ|(UgFU
−1
g )|Ψ⟩ ̸= ⟨Ψ|F|Ψ⟩ = ⟨F⟩. (3.11)

On the other hand, if the inertial transformation is applied only to the preparation
device, then the state of the system changes in accordance with (3.9), and the mea-
surement results also change, so we have

⟨F󸀠󸀠⟩ = (⟨Ψ|U−1g )F(Ug |Ψ⟩) ̸= ⟨Ψ|F|Ψ⟩ = ⟨F⟩. (3.12)

Equations (3.11) and (3.12) play an important role, because many problems in physics
can be formulated as questions about descriptions of systems subjected to inertial
transformations. An important example is dynamics, i. e., the time evolution of the
physical system. In this case, one considers time translation elements of the Poincaré
group g = {0;0;0; t}. Then equations (3.11) and (3.12) provide two equivalent ap-
proaches to the description of dynamics. Equation (3.11) describes dynamics in the
so-calledHeisenberg picture, where the state vector of the system remains fixed, while
operators of observables change with time.

Equation (3.12) offers an alternative description of dynamics in the Schrödinger
picture, where operators of observables are time-independent and state vectors
change. These two pictures are equivalent, because, according to the relativity prin-
ciple (3.1), the shift of the observer by g is equivalent to the shift of the preparation
device by g−1, written

(ϕ|g𝒳 ) = (g−1ϕ|g−1g𝒳 ) = (g−1ϕ|𝒳 ).
As follows from our derivation, the ideas of the Schrödinger and Heisenberg pic-

tures can be generalized to nine other types of inertial transformations: space trans-
lations, rotations, boosts and any combinations thereof.
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3.2 Unitary representations of Poincaré group

In the previous section, we discussed a representation of a particular inertial transfor-
mation g by the isomorphism 𝕂g of the propositional lattice or by the ray of unitary
operators [Ug] acting on states (or observables) in the Hilbert space H . From Chap-
ter 2 we know that inertial transformations form the Poincaré group. Hence, the maps
𝕂g1 , 𝕂g2 , 𝕂g3 , . . . corresponding to different group elements g1, g2, g3, . . . cannot be cho-
sen arbitrarily. They must satisfy the conditions

𝕂g2𝕂g1 = 𝕂g2g1 , (3.13)

𝕂g−1 = 𝕂
−1
g , (3.14)

𝕂g3 (𝕂g2𝕂g1 ) = 𝕂g3𝕂g2g1 = 𝕂g3(g2g1) = 𝕂(g3g2)g1 = (𝕂g3𝕂g2 )𝕂g1 , (3.15)

which reflect the group properties of inertial transformations g. In this section, our
goal is to clarify the restrictions imposed by these conditions on the set of unitary
representatives Ug .

3.2.1 Projective representations of groups

Suppose that for each element g of the Poincaré groupwemanage to construct a trans-
formation 𝕂g of subspaces in H , so that conditions (3.13)–(3.15) are satisfied. As we
know from Wigner’s theorem, each 𝕂g corresponds to a ray [Ug] of unitary transfor-
mations. Let us now choose an arbitrary unitary representative Ug in each ray [Ug].
Then, for any two elements of the group g1 and g2, we have representativesUg1 ∈ [Ug1 ],
Ug2 ∈ [Ug2 ] and Ug2g1 ∈ [Ug2g1 ]. Obviously, the product Ug2Ug1 must generate the trans-
formation 𝕂g2g1 , so it may differ from our chosen representative Ug2g1 , at most, by a
unimodular factor α(g2, g1). Therefore, for any two transformations g1 and g2 we write

Ug2Ug1 = α(g2, g1)Ug2g1 . (3.16)

The factors α have three important properties. First, as we mentioned, they are uni-
modular, so

|α(g2, g1)| = 1. (3.17)

Second, from the property (C.2) of the identity element, we get

UgUe = α(g, e)Ug = Ug ,

UeUg = α(e, g)Ug = Ug ,

which implies

α(g, e) = α(e, g) = 1 (3.18)
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for any g. Third, from the associative law (3.15), the following chain of equations fol-
lows:

Ug3 (Ug2Ug1 ) = (Ug3Ug2 )Ug1 ,

Ug3(α(g2, g1)Ug2g1) = (α(g3, g2)Ug3g2)Ug1 ,

α(g2, g1)α(g3, g2g1)Ug3g2g1 = α(g3g2, g1)α(g3, g2)Ug3g2g1 ,

α(g2, g1)α(g3, g2g1) = α(g3, g2)α(g3g2, g1). (3.19)

The mapping Ug from group elements to unitary operators acting in the Hilbert
space H is called the projective representation of the group if it satisfies conditions
(3.16)–(3.19).

3.2.2 Generators of projective representation

In principle, we could fix our previously selected unitary representatives Ug1 ∈ [Ug1 ],
Ug2 ∈ [Ug2 ], . . . for all inertial transformations and work with such a projective repre-
sentation of the Poincaré group. But this would lead to a rather cumbersome math-
ematical formalism. We could simplify our theory considerably if it were possible to
use the freedom of choice of the representatives Ug and to select them in such a way
that themultipliers α(g2, g1) in the product law (3.16) are completely eliminated. Then,
instead of the projective representation, we would deal with a simpler linear unitary
representation of the group (see Appendix I). In Subsection 3.2.3, we will show that in
any projective representation of the Poincaré group such an elimination of the factors
α(g2, g1) is, indeed, possible [20, 87].

This proof is significantly simplified if the conditions (3.17)–(3.19) are rewritten in
terms of the Lie algebra. Near the group identity element, we can use vectors ζ from
the Poincaré Lie algebra to identify all group elements by formula (E.2), so

g = eζ = exp(
10
∑
a=1 ζ ata),

where ta is the basis {ℋ,𝒫 ,𝒥 ,𝒦} of the Poincaré Lie algebra, defined in Subsection
2.3.2. Then unitary representatives Ug of inertial transformations can be also written
in the exponential form5

Uζ = exp(−
i
ℏ

10
∑
a=1 ζ aTa), (3.20)

5 Here we used Stone’s Theorem I.1.
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where ℏ is a real constant, which we leave undefined here,6 and Ta are ten Hermitian
operators,

{−H,P,J,K}, (3.21)

in theHilbert spaceH . They are called generators of the unitary projective representa-
tion Ug . These operators generate time translations, space translations, rotations and
boosts, respectively.

Then we can rewrite formula (3.16) in the form

UζUξ = α(ζ , ξ )Uζ ξ . (3.22)

Since α is a unimodular factor, it is appropriate to set α(ζ , ξ ) ≡ exp[iκ(ζ , ξ )], where
κ(ζ , ξ ) is a real function. Conditions (3.18) and (3.19) can then be rewritten in terms of
the function κ, so we have

κ(ζ ,0) = κ(0, ξ ) = 0, (3.23)
κ(ξ , ζ ) + κ(χ, ξζ ) = κ(χ, ξ ) + κ(χξ , ζ ). (3.24)

Note that the Taylor expansion of this function has the form

κ(ζ , ξ ) =
10
∑
ab=1 habζ aξ b + ⋅ ⋅ ⋅ . (3.25)

The constant term, the terms linear in ζ a and ξ b and the terms proportional to the
products ζ aζ b and ξ aξ b are missing on the right-hand side of (3.25) as a consequence
of the condition (3.23).

Applying the same arguments as in our derivation of equation (E.7), we can ex-
pand all factors in (3.22) into Taylor series near ζ = ξ = 0, so we have

(1 − i
ℏ

10
∑
a=1 ξ aTa −

1
2ℏ2

10
∑
bc=1 ξ bξ cTbc + ⋅ ⋅ ⋅)

× (1 − i
ℏ

10
∑
a=1 ζ aTa −

1
2ℏ2

10
∑
bc=1 ζ bζ cTbc + ⋅ ⋅ ⋅)

= (1 + i
10
∑
ab=1 habζ aξ b + ⋅ ⋅ ⋅)

× [1 − i
ℏ

10
∑
a=1(ζ a + ξ a + 10

∑
bc=1 f abcξ bζ c + ⋅ ⋅ ⋅)Ta

6 We will identify ℏ with the Planck constant in Subsection 4.1.1.
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−
1
2ℏ2

10
∑
ab=1(ζ a + ξ a + ⋅ ⋅ ⋅)(ζ b + ξ b + ⋅ ⋅ ⋅)Tab + ⋅ ⋅ ⋅].

Equating coefficients of the products ξ aζ b on both sides, we obtain

−
1
2ℏ2
(Tab + Tba) = −

1
ℏ2

TaTb − ihba +
i
ℏ

10
∑
c=1 f cabTc.

The left-hand side of this equality is symmetric with respect to the permutation of
indices a ↔ b. The same must be true for the right-hand side. Hence we obtain com-
mutators of the generators T,

TaTb − TbTa = iℏ
10
∑
c=1CcabTc + iQab, (3.26)

where Ccab ≡ f
c
ab − f

c
ba are the familiar structure constants of the Poincaré Lie algebra

(2.40)–(2.47) and Qab = ℏ
2(hab − hba) are real constants that depend on our origi-

nal choice of representatives Ug in the rays [Ug]. These constants are called central
charges. Our main task in the next two subsections is to prove that a new set of repre-
sentatives

Ug = β(g)Ug (3.27)

can be chosen in such a way that Qab = 0 for all a, b, i. e., that central charges are
eliminated.

3.2.3 Commutators of projective generators

Here we start with writing the commutators (3.26) explicitly, using formulas (2.40)–
(2.47). We have

[Ji,Pj] = iℏ
3
∑
k=1 ϵijkPk + iQ

(1)
ij , (3.28)

[Ji, Jj] = iℏ
3
∑
k=1 ϵijk(Jk −Q(2)k ), (3.29)

[Ji,Kj] = iℏ
3
∑
k=1 ϵijkKk + iQ

(3)
ij , (3.30)

[Pi,Pj] = iQ
(4)
ij , (3.31)

[Ji,H] = iQ
(5)
i , (3.32)

[Pi,H] = iQ
(6)
i , (3.33)
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[Ki,Kj] = −i
ℏ
c2

3
∑
k=1 ϵijk(Jk −Q(7)k ), (3.34)

[Ki,Pj] = −i
ℏ
c2
Hδij + iQ

(8)
ij , (3.35)

[Ki,H] = −iℏPi + iQ
(9)
i , (3.36)

where we combined Qab into nine sets of central charges Q(1) . . .Q(9). In equations
(3.29) and (3.34), we also took into account the fact that their left-hand sides are anti-
symmetric tensors. This means that central charges also form antisymmetric tensors,
i. e.,Q(2)k andQ(7)k are 3-vectors.

Next, we use the requirement that commutators (3.28)–(3.36) must satisfy the Ja-
cobi identity (E.11). This allows us to make many simplifications. For example, from
(3.28) it follows thatP3 = −

iℏ [J1,P2] −
1ℏQ(1)12 . From the fact that all constantsQ com-

mute with group generators we then derive

[P3,P1] = −
i
ℏ
[([J1,P2] − iQ

(1)
12 ),P1] = −

i
ℏ
[[J1,P2],P1]

= −
i
ℏ
[[P1,P2], J1] −

i
ℏ
[[J1,P1],P2]

=
1
ℏ
[Q(4)12 , J1] + 1ℏ[Q(1)11 ,P2] = 0.

Substituting this equality into (3.31), we obtainQ(4)31 = 0. Similarly, we can show that
Q(4)ij = Q(5)i = Q(6)i = 0 for all values of the indices i, j = 1, 2, 3.

We use the Jacobi identity, again, to write

iℏ[J3,P3] = [[J1, J2],P3] = [[P3, J2], J1] + [[J1,P3], J2]

= iℏ[J1,P1] + iℏ[J2,P2]

and similarly

iℏ[J1,P1] = iℏ[J2,P2] + iℏ[J3,P3].

Adding these two equalities, we see that

[J2,P2] = 0. (3.37)

In the same way we get [J1,P1] = [J3,P3] = 0, which means

Q(1)ii = 0. (3.38)

Applying the Jacobi identity once again, we have

iℏ[J2,P3] = [[J3, J1],P3] = [[P3, J1], J3] + [[J3,P3], J1] = −iℏ[J3,P2].
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This property of antisymmetry is valid for any pair of indices i, j = 1, 2, 3; i ̸= j, so

[Ji,Pj] = −[Jj,Pi]. (3.39)

Combining (3.37) and (3.39), we see that the tensor [Ji,Pj] is antisymmetric. Hence we
can define a 3-vectorQ(1)k such that (see Table D.1)

Q(1)ij = −ℏ 3
∑
i=1 ϵijkQ(1)k

and

[Ji,Pj] = iℏ
3
∑
i=1 ϵijk(Pk −Q

(1)
k ). (3.40)

Similarly, we prove thatQ(3)ii = 0 and
[Ji,Kj] = iℏ

3
∑
i=1 ϵijk(Kk −Q

(3)
k ).

Taking into account the above results, the commutation relations (3.28)–(3.36) as-
sume a simplified form. We have

[Ji,Pj] = iℏ
3
∑
k=1 ϵijk(Pk −Q

(1)
k ), (3.41)

[Ji, Jj] = iℏ
3
∑
k=1 ϵijk(Jk −Q(2)k ), (3.42)

[Ji,Kj] = iℏ
3
∑
k=1 ϵijk(Kk −Q

(3)
k ), (3.43)

[Pi,Pj] = [Ji,H] = [Pi,H] = 0, (3.44)

[Ki,Kj] = −i
ℏ
c2

3
∑
k=1 ϵijk(Jk −Q(7)k ), (3.45)

[Ki,Pj] = −i
ℏ
c2
Hδij + iQ

(8)
ij , (3.46)

[Ki,H] = −iℏPi + iQ
(9)
i , (3.47)

whereQ on the right-hand sides are certain real constants.

3.2.4 Cancellation of central charges

As the next step we would like to cancel the central chargesQ on the right-hand sides
of (3.41)–(3.47) by using the freedom to choose unimodular factors β(ζ ) in front of the
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representation operators Uζ (3.27). Accordingly, the choice of generators Ta also has
a certain degree of arbitrariness. Taking into account that |β(ζ )| = 1 and assuming the
smoothness of the function β(ζ ), we write its Taylor expansion

β(ζ ) = exp(iγ(ζ )) ≈ 1 + i
10
∑
a=1Gaζ

a,

where γ(ζ ) is a real function, which we are free to choose for our purposes. Hence,
in the first order, the presence of the factors β(ζ ) is equivalent to adding some real
constants Ga to the generators Ta. Our goal is to show that by a suitable choice of
these constants we can make all central charges to vanish.

Using the mentioned freedom, we now add (as yet undefined) real constants Gj to
the generatorsPj, Jj and Kj and denote the redefined generators as

Pj ≡ Pj + G
(1)
j ,

Jj ≡ Jj + G
(2)
j ,

Kj ≡ Kj + G
(3)
j .

Then the commutator (3.42) takes the form

[Ji, Jj] = [Ji + G
(2)
i , Jj + G

(2)
j ] = [Ji, Jj] = iℏ

3
∑
k=1 ϵijk(Jk −Q(2)k ).

Hence, if we choose G(2)k = −Q(2)k , then

[Ji, Jj] = iℏ
3
∑
k=1 ϵijkJk

and the central charges have disappeared from this commutator.
Similarly, the central charges are removed from the two other commutators by

choosing G(1)k = −Q(1)k and G(3)k = −Q(3)k , so

[Ji,Pj] = iℏ
3
∑
k=1 ϵijkPk ,

[Ji,Kj] = iℏ
3
∑
k=1 ϵijkKk . (3.48)

From equation (3.48) we then obtain

[K1,K2] = −
i
ℏ
[[J2,K3],K2] = −

i
ℏ
[[J2,K2],K3] −

i
ℏ
[[K2,K3], J2]

= −
i
ℏ
[−

iℏ
c2
(J1 −Q

(7)
1 ), J2] = −

iℏ
c2
J3.
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This means that our choice of the constants G(1)k , G(2)k and G(3)k also cancels the central
chargeQ(7)i .

Further, from equation (3.48) we have

[K3,H] = −
i
ℏ
[[J1,K2],H] = −

i
ℏ
[[H,K2], J1] −

i
ℏ
[[J1,H],K2]

= −[J1,P2] = −iℏP3,

which implies that the central chargeQ(9) also cancels out. Finally
[K1,P2] = −

i
ℏ
[[J2,K3],P2] = −

i
ℏ
[[J2,P2],K3] +

i
ℏ
[[K3,P2], J3] = 0,

[K1,P1] = −
i
ℏ
[[J2,K3],P1] = −

i
ℏ
[[J2,P1],K3] +

i
ℏ
[[K3,P1], J3] = [K3,P3].

This means thatQ(8)ij = 0 if i ̸= j, and we can introduce a real scalarQ(8) such that
Q(8)11 = Q(8)22 = Q(8)33 ≡ − ℏc2Q(8)

and equation (3.46) can be rewritten as

[Ki,Pi] = −
iℏ
c2
δij(H +Q

(8)).
At the conclusion of this procedure, we redefine the time translation generator H ≡
H + Q(8) and, thus, finally remove all central charges from commutation relations of
the Lie algebra of the Poincaré group. These commutators now take the form

[Ji,Pj] = iℏ
3
∑
k=1 ϵijkPk , (3.49)

[Ji, Jj] = iℏ
3
∑
k=1 ϵijkJk , (3.50)

[Ji,Kj] = iℏ
3
∑
k=1 ϵijkKk , (3.51)

[Pi,Pj] = [Ji,H] = [Pi,H] = 0, (3.52)

[Ki,Kj] = −
iℏ
c2

3
∑
k=1 ϵijkJk , (3.53)

[Ki,Pj] = −
iℏ
c2
Hδij, (3.54)

[Ki,H] = −iℏPi. (3.55)

Thus, the Hermitian operators H, P, J and K provide a linear representation of the
Poincaré Lie algebra, and the redefined unitary operators Ug ≡ β(g)Ug form the de-
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sired unique7 unitary representation of the Poincaré group, which is equivalent to the
projective representation Ug that was initially given to us near the group’s identity el-
ement. Working with the unitary representation Ug is much easier than with the pro-
jective representation Ug .

The commutators (3.49)–(3.55) are, perhaps, the most important equalities of the
relativistic quantum theory. Throughout this book, we will have many opportunities
to appreciate the deep physical meaning of these formulas.

3.2.5 Single-valued and double-valued representations

In the previous subsection we removed phase factors α(g2, g1) from equation (3.16) by
resorting to arguments related to the group’s Lie algebra. However, strictly speaking,
these arguments are valid onlynear the identity element of the group,where theTaylor
series are applicable. It cannot be excluded that nontrivial phase factors can reappear
in the product law (3.16), when the group manifold has a nontrivial topology, and the
multiplied elements are “far” from the group’s identity e.

In Appendix I.4, we find out that this possibility is realized in the case of the
group of rotations whose manifold is doubly connected. This means that in quantum-
mechanical applications one must consider both single-valued and double-valued8

representations of this group. Since the group of rotations is a subgroup of the
Poincaré group, the same conclusion applies to the latter: one must consider both
single-valued and two-valued representations of the Poincaré group.9 In Chapter 5 we
will see that these two cases correspond to systems with integer and half-integer spin,
respectively.

3.2.6 Fundamental statement of relativistic quantum theory

Themost important result of this chapter is the establishment of a connection between
the principle of relativity and quantum mechanics, which is expressed by the follow-
ing statement (see, for example, [95]).

Statement 3.2 (Unitary representations of the Poincaré group). In the relativistic
quantum description, inertial transformations are expressed by operators Ug forming
a unitary (single-valued or double-valued) representation of the Poincaré group in the
Hilbert space of the physical system.

7 The set of operators eiγUg , where γ is an arbitrary real constant, also forms a unitary representation
of the Poincaré group. Physically, it is absolutely equivalent to the representation Ug .
8 Where α(g2, g1) = ±1.
9 Equivalently, one can consider only single-valued representations of the so-calleduniversal covering
group.
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It is important to emphasize that this statement is absolutely general. The Hilbert
space of any isolated physical system (no matter how complex) must carry a unitary
representation of the Poincaré group. As we shall see later, the knowledge of this rep-
resentation almost completely determines the entire physics of the isolated system.
Construction of Hilbert spaces and unitary representations of the Poincaré group in
them should be themain concern of theoretical physicists. The remainder of this book
will be devoted to solving these difficult problems for specific systems.

Elementary inertial transformations from the Poincaré group are represented in
the Hilbert space by unitary operators: e− iℏP⋅r for spatial translations, e− iℏ J ⋅φ for rota-
tions, e− icℏ K ⋅θ for boosts and e i

ℏHt for time translations. A general inertial transforma-
tion g = {v(θ);φ; r; t} can be written as the following product10

Ug = e
− icℏ K ⋅θe− iℏ J ⋅φe− iℏP⋅re i

ℏHt . (3.56)

We will also write this operator in alternative forms, e. g.,

Ug ≡ U(θ;φ; r; t) ≡ U(Λ; r; t) ≡ U(Λ; ã), (3.57)

where Λ ≡ θ ∘φ is an inertial transformation from the Lorentz subgroup, which com-
bines a boost θ and a rotation φ, and ã ≡ (ct, r) is a 4-vector of space–time transla-
tion. Then, in the Schrödinger picture the state vector is transformedbetweendifferent
frames of reference as

|Ψ󸀠⟩ = Ug |Ψ⟩. (3.58)

In the Heisenberg picture, inertial transformations of observables have the form

F󸀠 = UgFU
−1
g . (3.59)

For example, the equation describing the time evolution of the observable F (see equa-
tion (E.14)),

F(t) = e
i
ℏHtFe− iℏHt (3.60)

= F + i
ℏ
[H , F]t − 1

2ℏ2
[H , [H , F]]t2 + O(t3), (3.61)

can be also written in the differential form

dF(t)
dt
=

i
ℏ
[H , F], (3.62)

which is known as the Heisenberg equation.

10 We write the factors in the “canonical” order (boost) × (rotation) × (spatial translation) × (time
shift). Compare with formula (2.48).
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Note that similar “Heisenberg equations” can be written also for transformations
of observables with respect to space translations, rotations and boosts:

dF(r)
dr
= −

i
ℏ
[P, F],

dF(φ)
dφ
= −

i
ℏ
[J , F],

dF(θ)
dθ
= −

ic
ℏ
[K , F]. (3.63)

3.2.7 Time evolution in moving frame

Quite oftenwe are interested in the time dependence of an observable F in themoving
frame of reference. If in the rest frameO the time evolution (3.60) is determined by the
Hamiltonian H, then in the moving frame O󸀠 we should (i) consider the transformed
observable

F(θ) = e− icℏ K ⋅θFe ic
ℏ K ⋅θ

and (ii) use the transformed Hamiltonian

H(θ) = e− icℏ K ⋅θHe ic
ℏ K ⋅θ (3.64)

as our generator of time translations. Therefore,11

F(θ, t󸀠) = e i
ℏH(θ)t󸀠F(θ)e− iℏH(θ)t󸀠
= e

i
ℏH(θ)t󸀠e− icℏ K ⋅θFe ic

ℏ K ⋅θe− iℏH(θ)t󸀠
= (e− icℏ K ⋅θe i

ℏHt
󸀠
e

ic
ℏ K ⋅θ)e− icℏ K ⋅θFe ic

ℏ K ⋅θ(e− icℏ K ⋅θe− iℏHt󸀠e ic
ℏ K ⋅θ)

= e− icℏ K ⋅θe i
ℏHt
󸀠
Fe− iℏHt󸀠e ic

ℏ K ⋅θ. (3.65)

11 t󸀠 is time measured by the clock of the observer O󸀠.



4 Observables
Throwing pebbles into the water, look at the ripples they form on the surface, otherwise, such occu-
pation becomes an idle pastime.
Kozma Prutkov

So far, we have seen that in quantum theory, states of a physical system are described
by vectors in the complex Hilbert space H , and observables are represented by Her-
mitian operators in H . We also learned that there exists a unitary representation Ug
of the Poincaré group in H , which determines how the state vectors and observables
change under inertial transformations of the preparation device and/or measuring
apparatus. Our next goal is to clarify the structure of the set of all observables. In par-
ticular, we want to know which operators correspond to known observables, such as
velocity, momentum, mass, position, etc., what are their spectra and what are the re-
lationships between these quantities.

It should be emphasized that physical systems considered in this chapter are ab-
solutely arbitrary: they can be elementary particles, or composite systems of many
particles, or even unstable systems in which the number of particles is not fixed. The
only important requirement is that the system should be isolated, i. e., its interaction
with the rest of the universe can be neglected.

4.1 Basic observables

4.1.1 Energy, momentum and angular momentum

Generators of any unitary representation of the Poincaré group in the Hilbert space of
any system are Hermitian operators H, P, J and K, so it is reasonable to assume that
they are related to someobservables.What are these observables? Let us first postulate
that the parameter ℏ, introduced in equation (3.20), is the famous Planck constant

ℏ = 1.055 × 10−34 kg⋅m
2

s
= 6.582 × 10−16 eV⋅s, (4.1)

whose physical dimensionality is<ℏ> = <mass><speed><distance>. Then the dimen-
sionalities of the generators can be found from the condition that the arguments of
exponents in (3.56) must be dimensionless, so

<H> = <ℏ>
<time>

= <mass><speed>2,

<P> = <ℏ>
<distance>

= <mass><speed>,

<J> = <ℏ> = <mass><speed><distance>,

<K> = <ℏ>
<speed>

= <mass><distance>.

https://doi.org/10.1515/9783110492132-004
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From these dimensionalities, one can guess that we are dealingwith energy (orHamil-
tonian)H,momentumP and angular momentum J of the system.1Wewill call them ba-
sic observables. The operators H, P and J generate transformations of the system as a
whole, so we can assume that these quantities refer to the entire physical system, i. e.,
these are the total energy, the total momentum and the total angular momentum. Of
course, these considerations are not a proof. Our assignment of the physical meaning
to {H ,P, J ,K}will be confirmed later, when we study inmore detail properties of these
operators and relationships between them.

From the Poincaré commutators (3.49)–(3.55), we immediately conclude which
observables are compatible and can be measured simultaneously. For example, we
see from (3.52) that energy is simultaneouslymeasurable with themomentum and the
angular momentum. From (3.50) it is also clear that different components of the an-
gular momentum cannot be measured simultaneously. These facts are well known in
nonrelativistic quantum mechanics. Now we have obtained them as a direct conse-
quence of the principle of relativity and the structure of the Poincaré group.

From the commutators (3.49)–(3.55) we can also find transformations of H, P, J
and K from one frame to another. For example, every 3-vector observable F = P, J or
K is transformed under rotations as (D.22). We have

F(φ) = e−
i
ℏ J ⋅φFe

i
ℏ J ⋅φ

= F cosφ + φ
φ
(F ⋅ φ

φ
)(1 − cosφ) + [F × φ

φ
] sinφ. (4.2)

Boost transformations of the energy and momentum operators are (see equations
(2.52) and (2.53))

P(θ) = e−
ic
ℏ K ⋅θPe

ic
ℏ K ⋅θ = P + θ

θ
(P ⋅ θ

θ
)(cosh θ − 1) − θ

cθ
H sinh θ, (4.3)

H(θ) = e−
ic
ℏ K ⋅θHe

ic
ℏ K ⋅θ = H cosh θ − c(P ⋅ θ

θ
) sinh θ. (4.4)

We will also need boost transformations of the boost generators. For example, the
transformation of the component Ky due to a boost along the x-axis is obtained using
equations (E.14), (3.51) and (3.53). Then we have

Ky(θ) = e
− icℏ KxθKye

ic
ℏ Kxθ

= Ky −
icθ
ℏ
[Kx ,Ky] −

c2θ2

2!ℏ2
[Kx , [Kx ,Ky]] +

ic3θ3

3!ℏ3
[Kx , [Kx , [Kx ,Ky]]] + O(θ

4)

= Ky −
θ
c
Jz +

θ2

2!
Ky −

θ3

3!c
Jz + O(θ

4) = Ky cosh θ −
Jz
c
sinh θ. (4.5)

1 The observable corresponding to the boost generator K has no special name, but we will see later
that K is closely related to the position and spin of the system.
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Also, from (3.52) it follows that the total energy H, the total momentum P and the
total angular momentum J are independent of time, i. e., these are conserved observ-
ables.

4.1.2 Operator of velocity

The operator of velocity is defined as [3, 41]2

V ≡ Pc
2

H
. (4.6)

DenotingbyV(θ) the velocitymeasured in the reference framemovingalong the x-axis
with the speed v = c tanh θ, we obtain

Vx(θ) = e
− icℏ Kxθ Pxc

2

H
e

ic
ℏ Kxθ =

c2Px cosh θ − cH sinh θ
H cosh θ − cPx sinh θ

=
c2PxH−1 − c tanh θ
1 − cPxH−1 tanh θ

=
Vx − v

1 − Vxv/c2
, (4.7)

Vy(θ) =
Vy

(1 − Vx
c tanh θ) cosh θ

=
Vy√1 − v2/c2

1 − Vxv/c2
, (4.8)

Vz(θ) =
Vz

(1 − Vx
c tanh θ) cosh θ

=
Vz√1 − v2/c2

1 − Vxv/c2
. (4.9)

This is the usual relativistic law of addition of velocities. In the limit c →∞ it reduces
to the familiar nonrelativistic form

Vx(v) = Vx − v,
Vy(v) = Vy ,
Vz(v) = Vz .

Obviously, [V ,H] = 0, so velocity is a conserved quantity.

4.2 Casimir operators

Observables H, P, J and V depend on the observer, and therefore they do not express
intrinsic fundamental properties of the physical system that are independent of the
observer and the state. But do such truly invariant properties of the system really exist?
If they do exist, then their operators (called Casimir operators) must commute with all

2 The ratio P/H is well defined, because these two operators commute.
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generators of the Poincaré group. It can be shown that the Poincaré group has only
two independent Casimir operators [31], which are referred to as the mass and spin.
Roughly speaking, these properties are related to the system’s amount of matter and
the speed of rotation about its own axis, respectively.

4.2.1 4-Vectors

Before we deal with Casimir operators, let us introduce several useful definitions. We
will call the four operators ̃𝒜 ≡ (𝒜0,𝒜x ,𝒜y ,𝒜z) a 4-vector3 if (𝒜x ,𝒜y ,𝒜z) is a 3-vector,
𝒜0 is a 3-scalar and their commutators with boost generators are the following:

[Ki,𝒜j] = −
iℏ
c
𝒜0δij (i, j = x, y, z), (4.10)

[K ,𝒜0] = −
iℏ
c
𝒜 . (4.11)

It is not difficult to show that the 4-square ̃𝒜2 ≡ 𝒜2
0−𝒜

2
x−𝒜

2
y−𝒜

2
z ≡ 𝒜

2
0−𝒜

2 of a 4-vector
is a 4-scalar, i. e., it commutes with both rotations and boosts, and therefore it does
not change under inertial transformations from the Lorentz subgroup. For example,

[Kx , ̃𝒜
2] = [Kx ,𝒜

2
0 −𝒜

2
x −𝒜

2
y −𝒜

2
z]

= −
iℏ
c
(𝒜x𝒜0 +𝒜0𝒜x −𝒜0𝒜x −𝒜x𝒜0) = 0.

Hence, in order to find the Casimir operators of the Poincaré algebra, it is sufficient to
find two 4-vector functions of Poincaré generators that commute with H and P. Then
the 4-squares of these 4-vectors will be invariant with respect to all inertial transfor-
mations.

4.2.2 Mass operator

It follows immediately from (3.49), (3.52), (3.54), (3.55) that four operators (H , cP)
satisfy the conditions formulated for 4-vectors in Subsection 4.2.1. This quadruple is
called the 4-vector of energy-momentum. Then, from its 4-square we can construct the
first Casimir invariant, called themass operator, as follows4:

M ≡ + 1
c2
√H2 − P2c2.

3 We will mark 4-vectors by the tilde; see also Appendix J.
4 We choose the positive value of the square root, because masses of all known physical systems are
nonnegative.
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This formula can be also rewritten as an expression for the energy (the Hamiltonian)
of the system. Then we have

H = +√P2c2 +M2c4. (4.12)

In the nonrelativistic limit c →∞ we obtain (up to small terms of the order (v/c)2)

H = Mc2 + P2

2M
+ ⋅ ⋅ ⋅ ,

which is the sum of the famous Einstein rest energy E = Mc2 and the usual classical
kinetic energy P2/(2M).

4.2.3 Pauli–Lubanski 4-vector

The second 4-vector W̃ commuting with H and P is the Pauli–Lubanski operator,
whose components are defined as5

W0 = (P ⋅ J), (4.13)

W = HJ
c
− c[P × K]. (4.14)

Let us now verify that all 4-vector properties are really satisfied for the four operators
(W0,W). It is immediately evident thatW0 is a 3-scalar, i. e.,

[J ,W0] = 0.

Moreover,W0 changes its sign when the sign of P changes, soW0 is a pseudo-scalar.
The operatorW is a pseudo-vector because its sign does not change under inversion
(= simultaneous change of signs of of K and P) and

[Ji,Wj] = iℏ
3
∑
k=1

ϵijkWk .

Now we verify the commutators with boost generators,

[Kx ,W0] = [Kx ,PxJx + PyJy + PzJz]

= −iℏ(HJx
c2
− PyKz + PzKy) = −

iℏ
c
Wx , (4.15)

5 The products of operators in these definitions are well defined, because the factors commute. This
implies that operatorsW0 andW are guaranteed to be Hermitian.
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[Kx ,Wx] = [Kx ,
HJx
c
− cPyKz + cPzKy]

=
iℏ
c
(−PxJx − PyJy − PzJz) = −

iℏ
c
W0, (4.16)

[Kx ,Wy] = [Kx ,
HJy
c
− cPzKx + cPxKz]

=
iℏ
c
(HKz − PxJy − HKz + PxJy) = 0, (4.17)

[Kx ,Wz] = 0. (4.18)

Taken together, equations (4.15)–(4.18) form the characteristic 4-vector relations
(4.10)–(4.11). We have

[K ,W0] = −
iℏ
c
W , (4.19)

[Ki,Wj] = −
iℏ
c
δijW0. (4.20)

Next, we have to check the vanishing commutators with generators of transla-
tions,

[W0,H] = [P ⋅ J ,H] = 0,
[W0,Px] = [JxPx + JyPy + JzPz ,Px] = Py[Jy ,Px] + Pz[Jz ,Px]

= −iℏPyPz + iℏPzPy = 0,
[W ,H] = −c[[P × K],H] = −c[[P,H] × K] − c[P × [K ,H]] = 0,

[Wx ,Px] =
1
c
[HJx ,Px] − c[[P × K]x ,Px] = −c[PyKz − PzKy ,Px] = 0,

[Wx ,Py] =
1
c
[HJx ,Py] − c[[P × K]x ,Py] =

iℏ
c
HPz − c[PyKz − PzKy ,Py]

=
iℏ
c
HPz −

iℏ
c
HPz = 0.

This completes the proof that the 4-square of the Pauli–Lubanski 4-vector

W̃2 = W2
0 −W

2

is a Casimir operator. Although operators (W0,W) do not have a direct physical inter-
pretation, in Section 4.3 wewill see that they are very useful for deriving the operators
of position R and spin S. For these calculations, we will need commutators between
components of W̃ . For example,

[Wx ,Wy] = [Wx ,
HJy
c
+ cPxKz − cPzKx] = iℏ(

HWz
c
−W0Pz),

[W0,Wx] = [W0,
HJx
c
− cPyKz + cPzKy] = −iℏPyWz + iℏPzWy = −iℏ[P ×W]x .
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These equalities can be easily generalized, so we have

[Wi,Wj] =
iℏ
c

3
∑
k=1

ϵijk(HWk − cW0Pk), (4.21)

[W0,Wj] = −iℏ[P ×W]j. (4.22)

4.3 Operators of spin and position

Now we are ready to look for expressions for the operators of spin and position as
functions of Poincaré generators [69, 62, 9, 16, 43].

4.3.1 Physical requirements

Wewill demand that operators of the total spin S and the center-of-energy6 position R
have the following natural properties:
(I) Because of the similarity between spin and angular momentum, we require that

S is a pseudo-vector (like J), so

[Jj, Si] = iℏ
3
∑
k=1

ϵijkSk .

(II) We also require that spin’s components satisfy the same commutation relations
(3.50) as the components of J, so

[Si, Sj] = iℏ
3
∑
k=1

ϵijkSk . (4.23)

(III) We want spin to be measurable simultaneously with momentum, so

[P, S] = 0.

(IV) We also want spin to be measurable simultaneously with position, so

[R, S] = 0. (4.24)

(V) From the physical meaning of R, it follows that spatial translations simply shift
its components, as follows:

e−
i
ℏ PxaRxe

i
ℏ Pxa = Rx − a,

6 The name “center-of-energy” is appropriate, as explained in Subsection 6.3.3.
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e−
i
ℏ PxaRye

i
ℏ Pxa = Ry ,

e−
i
ℏ PxaRze

i
ℏ Pxa = Rz .

The “canonical” commutation relations follow immediately from this require-
ment. We have

[Ri,Pj] = iℏδij. (4.25)

(VI) Finally, components of R obviously change their signs under space inversion, so
we assume that they form a true 3-vector, i. e.,

[Ji,Rj] = iℏ
3
∑
k=1

ϵijkRk . (4.26)

Next, we are going to write explicit expressions for the operators S and R with the
above properties. We will also prove that these expressions are unique.

4.3.2 Spin operator

To begin with, suppose that the spin operator has the form7

S = W
Mc
−

W0P
M(Mc2 + H)

, (4.27)

which is a pseudo-vector commuting with P, as required by conditions (I) and (III).
The next step is to verify condition (II). To calculate the commutator (4.23), we

introduce the notation

Y ≡ − 1
M(Mc2 + H)

. (4.28)

We also use commutators (4.21) and (4.22), the equality

(P ⋅W) = 1
c
H(P ⋅ J) = 1

c
HW0 (4.29)

and formula (D.16). Then

[Sx , Sy] = [(YW0Px +
Wx
Mc
), (YW0Py +

Wy

Mc
)]

7 Note that the operator S contains the mass operator M in the denominator, so equation (4.27) has
mathematical meaning only for systems with strictly positive mass spectrum. Thus, the concept of
spin is not applicable to massless photons.
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= iℏ(−
YPx[P ×W]y

Mc
+
YPy[P ×W]x

Mc
+
HWz − cW0Pz

M2c3
)

= iℏ(−Y[P × [P ×W]]z
Mc

+
HWz − cW0Pz

M2c3
)

= iℏ(−Y(Pz(P ⋅W) −WzP2)
Mc

+
HWz − cW0Pz

M2c3
)

= iℏ(−Y(PzHW0c−1 −WzP2)
Mc

+
HWz − cW0Pz

M2c3
)

= iℏWz(
P2Y
Mc
+

H
M2c3
) + iℏPzW0(−

HY
Mc2
−

1
M2c2
).

For the expressions in parentheses we have

P2Y
Mc
+

H
M2c3
= −

P2

M2c(Mc2 + H)
+

H
M2c3
=
H(Mc2 + H) − P2c2

M2c3(Mc2 + H)

=
H(Mc2 + H) − (Mc2 + H)(H −Mc2)

M2c3(Mc2 + H)
=

1
Mc
,

−
HY
Mc2
−

1
M2c2
=

H
M2c2(Mc2 + H)

−
1

M2c2

=
H − (Mc2 + H)
M2c2(Mc2 + H)

= −
1

M(Mc2 + H)
= Y ,

whence follows the commutator

[Sx , Sy] = iℏ(
Wz
Mc
+ YW0Pz) = iℏSz ,

which is (4.23). So, we have confirmed that the operator (4.27) satisfies our require-
ments (I)–(III). In Subsection 4.3.8 we will demonstrate the uniqueness of this spin
operator.

4.3.3 Position operator

Now we turn our attention to the position operator R. We follow a path similar to the
derivation of spin: first we “guess” the form ofR, which satisfies all requirements from
Subsection 4.3.1, and then in Subsection 4.3.9 we will prove that this expression is
unique. As the initial guess for R, we choose the well-known Newton–Wigner opera-
tor8 [69, 62, 9, 16, 43], which we write in three equivalent forms:

R = −c
2

2
(H−1K + KH−1) − c2[P × S]

H(Mc2 + H)
(4.30)

8 Similar to the spin operator,R is defined only for systemswith strictly positive spectrum of themass
operator. We had to use the symmetrized product H−1K + KH−1 of noncommuting operators to keep
our R Hermitian. We also used [K ,H−1] = −H−2[K ,H] = iℏP/H2.
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= −
c2

2
(H−1K + KH−1) − c[P ×W]

MH(Mc2 + H)
(4.31)

= −c2H−1K − iℏc
2P

2H2 +
cY[P ×W]

H
. (4.32)

Here R is a true vector with properties (V) and (VI). For example,

[Rx ,Px] = −
c2

2
[(H−1Kx + KxH

−1),Px] =
iℏ
2
(H−1H + HH−1) = iℏ,

[Rx ,Py] = −
c2

2
[(H−1Kx + KxH

−1),Py] = 0.

Next, we calculate9

J − [R × P] = J + c
2

H
[K × P] + c

2[[P × S] × P]
H(Mc2 + H)

= J + c
2

H
[K × P] − c

2(P(P ⋅ S) − SP2)
H(Mc2 + H)

= J + c
2

H
[K × P] − c

2P(P ⋅ S) − S(H −Mc2)(H +Mc2)
H(Mc2 + H)

= J + c
2

H
[K × P] + S − c2P(P ⋅ S)

H(Mc2 + H)
−
Mc2

H
S

= J + c
2

H
[K × P] + S − c2P(P ⋅ S)

H(Mc2 + H)
− J + c2P(P ⋅ J)

H(Mc2 + H)
+
c2

H
[P × K]

= S.

From this result it follows that, like in classical nonrelativistic physics, the total angu-
lar momentum is the sum of two parts

J = [R × P] + S :

the orbital angular momentum [R×P] and the internal angular momentum or spin S.10

It is easy to verify that condition (IV) is also satisfied. For example,

[Sx ,Ry] = [Jx − [R × P]x ,Ry] = iℏRz − [PyRz − PzRy ,Ry] = iℏRz − iℏRz = 0.

9 Note that the expression [R×P] contains only products of commuting components Ri and Pj. There-
fore [R × P] is an Hermitian operator.
10 It is often said that spin is a purely quantum-mechanical observable, which does not have a clas-
sical analog. We do not share this view. The most significant difference between the classical and
quantum internal angular momentum (spin) is that the latter has a discrete spectrum, whereas the
former is continuous.
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4.3.4 Commutators of position

From the commutator (4.25) it follows that

[Rx ,P
n
x ] = iℏnP

n−1
x = iℏ

𝜕Pnx
𝜕Px
. (4.33)

Then for any momentum function f (Px ,Py ,Pz) we have

[R, f (Px ,Py ,Pz)] = iℏ
𝜕f (Px ,Py ,Pz)
𝜕P

. (4.34)

For example,

[R,H] = [R, √P2c2 +M2c4] = iℏ𝜕
√P2c2 +M2c4
𝜕P

=
iℏPc2

√P2c2 +M2c4
= iℏPc

2

H
= iℏV , (4.35)

where V is the relativistic operator of velocity (4.6). Therefore, an observer shifted in
time by t sees the position of the physical system as shifted by V t:

R(t) = e
i
ℏHtRe−

i
ℏHt = R + i

ℏ
[H ,R]t = R + V t. (4.36)

In other words, the center-of-energy R of any isolated system moves with a constant
velocity, as expected. This result does not depend on the internal structure of the sys-
tem or on interactions between its parts.

Theorem 4.1. Components of the Newton–Wigner position operator commutewith each
other: [Ri,Rj] = 0.

Proof. To begin with, we calculate the commutator [HRx ,HRy], which is related to the
desired expression [Rx ,Ry] by the formula (here we used (E.12) and (4.35))

[HRx ,HRy] = [HRx ,H]Ry + H[HRx ,Ry]

= H[Rx ,H]Ry + H[H ,Ry]Rx + H
2[Rx ,Ry]

= iℏc2(PxRy − RyPx) + H
2[Rx ,Ry] = iℏc

2[P × R]z + H
2[Rx ,Ry]

= −iℏc2Jz + iℏc
2Sz + H

2[Rx ,Ry]. (4.37)

From equation (4.32) we get

[HRx ,HRy] = [(−c
2Kx −

iℏc2Px
2H
+ cY[P ×W]x), (−c

2Ky −
iℏc2Py
2H
+ cY[P ×W]y)].

Nonzero contributions to this commutator are

[−c2Kx , −c
2Ky] = −iℏc

2Jz , (4.38)
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[−
iℏc2Px
2H
, −c2Ky] = −

iℏc4

2
[Ky ,

Px
H
] =
ℏ2c4PyPx
2H2 , (4.39)

[−c2Kx , −
iℏc2Py
2H
] = −
ℏ2c4PyPx
2H2 , (4.40)

[−c2Kx , cY[P ×W]y] =
c3

M
[Kx ,

PzWx − PxWz
H +Mc2

]

=
c3

M
(−

PzWx − PxWz
(H +Mc2)2

[Kx ,H] +
Pz[Kx ,Wx]
H +Mc2

−
[Kx ,Px]Wz
H +Mc2

)

= iℏc3(MY2(PzWx − PxWz)Px + YPzW0c
−1 − YHWzc

−2),

[cY[P ×W]x , −c
2Ky] = iℏc

3(MY2(PyWz − PzWy)Py + YPzW0c
−1 − YHWzc

−2).

Combining the last two results and using (4.29), we obtain

[−c2Kx , cY[P ×W]y] + [cY[P ×W]x , −c
2Ky]

= iℏc3(MY2[P × [P ×W]]z + 2YPzW0c
−1 − 2YHWzc

−2)

= iℏc3(MY2(Pz(P ⋅W) −WzP
2) + 2YPzW0c

−1 − 2YHWzc
−2)

= iℏc3(MY2(PzHW0c
−1 −WzP

2) + 2YPzW0c
−1 − 2YHWzc

−2)

= iℏc2MY2PzW0(H − 2(H +Mc2))

+ iℏcMY2Wz(−(H −Mc2)(H +Mc2) + 2H(H +Mc2))

= iℏc3PzW0(Yc
−1 −M2Y2c) + iℏcWz

M
= iℏc2Sz − iℏc

4PzW0M
2Y2. (4.41)

Using the formula

(P ⋅ S) = (P ⋅ J)H
Mc2
−
P2(P ⋅ J)(H −Mc2)

P2Mc2
= (P ⋅ J) = W0,

we obtain one more commutator,

[cY[P ×W]x , cY[P ×W]y]

= M2Y2c4[[P × S]x , [P × S]y] = M
2Y2c4[PySz − PzSy ,PzSx − PxSz]

= M2Y2c4(PzPy[Sz , Sx] − P
2
z[Sy , Sx] + PxPz[Sy , Sz])

= iℏM2Y2c4Pz(P ⋅ S) = iℏc
4PzW0M

2Y2. (4.42)

Now we can collect all contributions (4.38)–(4.42) and obtain

[HRx ,HRy] = −iℏc
2Jz + iℏc

2Sz .
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Comparison with equation (4.37) gives

H2[Rx ,Ry] = 0.

Sincewe assumed thatM is strictly positive, the operatorH2 = M2c4+P2c2 has no zero
eigenvalues. This leads us to the desired result,

[Rx ,Ry] = 0.

4.3.5 Alternative set of basic operators

Until now, our plan was to construct operators of observables as functions of 10 Poin-
caré generators. However, calculations with these generators sometimes become un-
necessarily complicated because of the complex commutation relations in the Lie al-
gebra {P, J ,K ,H}. For systems with strictly positive spectrum of themass operator, an-
other set of basic operators {P,R, S,M} with simpler commutators,

[P,M] = [R,M] = [S,M] = [Ri,Rj] = [Pi,Pj] = 0,
[Ri,Pj] = iℏδij,
[P, S] = [R, S] = 0,

[Si, Sj] = iℏ
3
∑
k=1

ϵijkSk

may appear more convenient. Using our previous results, we can express operators in
this set through original Poincaré generators, in particular11

R = −c
2

2
(H−1K + KH−1) − c[P ×W]

MH(Mc2 + H)
, (4.43)

S = J − [R × P], (4.44)

M = + 1
c2
√H2 − P2c2. (4.45)

Conversely, generators {P,K , J ,H} can be expressed in terms of alternative operators
{P,R, S,M}. For the energy and angular momentum we obtain

H = +√M2c4 + P2c2, (4.46)
J = [R × P] + S (4.47)

and the boost operator is

−
1
2c2
(RH + HR) − [P × S]

Mc2 + H

11 The operator P is the same in both sets.
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= −
1
2
(−

1
2
(H−1KH + K) − [P × S]

Mc2 + H
)

−
1
2
(−

1
2
(K + HKH−1) − [P × S]

Mc2 + H
) −
[P × S]
Mc2 + H

=
1
4
(H−1KH + K + K + HKH−1) = K − iℏ

4
(H−1P − PH−1)

= K . (4.48)

Each function of operators from the set {P, J ,K ,H} can be rewritten as a function of
operators from the alternative set {P,R, S,M}, and vice versa. Consequently, these two
groups of operators provide equivalent descriptions of Poincaré invariant theories.
These observations will be useful to us not only in this chapter, but also in Chapters 6
and 7.

4.3.6 Canonical order of operators

When we perform calculations with functions of Poincaré generators, we encounter a
certain difficulty when the same operator can be written in several equivalent forms.
For example, according to (3.55), KxH and HKx − iℏPx are two forms of the same oper-
ator. To solve this nonuniqueness problem, we will always agree to write products of
generators in the canonical order, such that their factors are positioned in the follow-
ing order from left to right12:

C(Px ,Py ,Pz ,H), Jx , Jy , Jz ,Kx ,Ky ,Kz . (4.49)

Consider, for example, the noncanonical product KyPyJx. To bring it to the canon-
ical form, we first move the factor Py to the extreme left position, using commutator
(3.54), so we have

KyPyJx = PyKyJx + [Ky ,Py]Jx = PyKyJx −
iℏ
c2
HJx .

The second term on the right-hand side is already in the canonical order, but the first
term is not. There we need to swap the factors Jx and Ky, so we have

KyPyJx = PyJxKy + Py[Ky , Jx] −
iℏ
c2
HJx = PyJxKy − iℏPyKz −

iℏ
c2
HJx . (4.50)

Now all the terms in (4.50) are written canonically.

12 Since H, Px, Py and Pz commute with each other, the part of the operator that depends on these
factors can be written as an ordinary function of commuting arguments C(Px ,Py ,Pz ,H), whose order
is not important.
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Theprocedure for converting anyoperator to the canonical order is notmuchmore
complicated than the example described above. If we call the original operator pri-
mary term, then this procedure can be formalized as the following sequence of steps.
First, we transform the primary term itself to the canonical order.We do this by chang-
ing the order of neighboring factors, if they happen to be in the “wrong order”. Let us
call these neighbors the “left factor” L and the “right factor” R. Now, if R commutes
with L, then such a permutation has no side effects. If R does not commute with L,
then the permutation results in LR → RL + [L,R]. This means that, in addition to
swapping L ↔ R, we have to add a secondary term to the original expression. This
secondary term is obtained from the primary one by replacing the product LR with
the commutator [L,R].13 So, we will proceed with all permutations L ↔ R described
above in the primary term until all its factors are aligned in the canonical order. If in
the course of this process all the commutators of [L,R] are zero, then our work is done.
If nonzero commutators are encountered, then, along with the ordered primary term,
we get a certain number of (still unordered) secondary terms. Now the procedure de-
scribed above should be applied to all these secondary terms, which will lead to the
appearance of tertiary terms, etc., until we have all terms in the canonical order.

As a result of this procedure, for each operator F we get a unique representation
as a sum of canonically ordered terms,

F = C00(P,H) +
3
∑
i=1

C10i (P,H)Ji +
3
∑
i=1

C01i (P,H)Ki

+
3
∑
i,j=1

C11ij (P,H)JiKj +
3
∑

i,j=1;i≤j
C02ij (P,H)KiKj + ⋅ ⋅ ⋅ , (4.51)

where Cαβijk... are functions of mutually commuting translation generators.

4.3.7 Power of operator

For our work in the rest of this chapter we will also need the notion of the power of op-
erators. For monomial operators we denote by pow(A) the number of factors J and/or
K in the termA. For example, the first termon the right-hand side of (4.51) has power 0.
The second and third terms have power 1, and so on. The power of the general polyno-
mial (4.51) is defined as themaximumpower of its terms (=monomials). For operators
considered earlier in this chapter, we have the following powers:

pow(H) = pow(M) = pow(P) = pow(V) = 0,

pow(W0) = pow(W) = pow(S) = pow(R) = 1.

13 The second and third terms on the right-hand side of (4.50) are secondary.
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Lemma 4.2. If L and R are operators from the list (4.49) and [L,R] ̸= 0, then

pow([L,R]) = pow(L) + pow(R) − 1. (4.52)

Proof. This result follows from the fact that equation (4.52) is valid for all nonzero
commutators in the Poincaré Lie algebra (3.49)–(3.55).

It is easy to see that (4.52) is satisfied in more complex cases as well. For example,
if C andD are two functions of Px, Py, Pz, H, then, using (E.12) and [C,D] = 0, we get

[CJx ,DJy] = [CJx ,D]Jy +D[CJx , Jy]
= C[Jx ,D]Jy +DC[Jx , Jy] +DJx[C, Jy].

The power of the right-hand side is 1, according to Lemma4.2. Generalizing this result,
one can show that either [CL,DR] = 0 or pow([CL,DR]) = 1, where L and R are any
components of J orK . This proves formula (4.52) for all operatorsL andRhavingpower
0 or 1. Now we try to extend this result to general operators.14

Theorem 4.3. For any two noncommuting monomials A and B,

pow([A,B]) = pow(A) + pow(B) − 1.

Proof. It is obvious that the primary term in the ordered product of two operators AB
has the same number of Lorentz generators as the original product, i. e., pow(A) +
pow(B). Each secondary term is obtained by replacing products of two generators
LR in the primary term by their commutator [L,R]. In accordance with Lemma 4.2,
if [L,R] ̸= 0, then such a replacement reduces the power of the term by one. Conse-
quently, the power of the secondary term is pow(A)+pow(B)−1. Powers of tertiary and
higher terms are lower than the power of the secondary term. Therefore, the power of
any product AB is determined only by its primary term, so

pow(AB) = pow(BA) = pow(A) + pow(B).

In the commutator AB−BA, the primary term of AB cancels with the primary term
of BA. If [A,B] ̸= 0, then the secondary terms do not cancel out. Hence, there exists
at least one nonzero secondary term whose power is pow(A) + pow(B) − 1. This is also
the power of the whole commutator.

Havingat ourdisposal the alternativebasic operators {P,R, S,M},we can formsev-
eralHermitian 3-scalars, 3-vectors and 3-tensors,which are classified in Table 4.1 in ac-
cordancewith their true/pseudocharacter andpowers.Note that pow(R) = pow(S) = 1
and pow(P) = pow(M) = 0. Therefore, the power of operators in the alternative nota-
tion can be determined by the number of factors Ri and/or Si.

14 This result was first used by Berg in [9].
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Table 4.1: Scalar, vector and tensor functions of operators from the alternative set {P,R, S,M}.

power 0 power 1 power 2

True scalar P2;M P ⋅ R + R ⋅ P R2; S2

Pseudo-scalar P ⋅ S R ⋅ S
True vector P R; [P × S] [R × S]
Pseudo-vector S; [P × R]
True tensor PiPj ∑3k=1 ϵijkSk ; PiRj + RjPi SiSj + SjSi; RiRj
Pseudo-tensor ∑3k=1 ϵijkPk ∑

3
k=1 ϵijkRk ; PiSj RiSj

4.3.8 Uniqueness of spin operator

Let us now prove that (4.27) is the unique spin operator satisfying requirements (I)–
(IV) from Subsection 4.3.1. Suppose that there is another operator S󸀠 satisfying the
same conditions. Denoting the power of the spin components by p ≡ pow(S󸀠x) =
pow(S󸀠y) = pow(S

󸀠
z), we get from (4.23) and Theorem 4.3 the equation

pow([S󸀠x , S
󸀠
y]) = pow(S

󸀠
z),

2p − 1 = p,

with only solution p = 1. The most general form of a pseudo-vector operator with
power 1 can be extracted from Table 4.1 and reads

S󸀠 = b(M,P2)S + f (M,P2)[P × R] + e(M,P2)(S ⋅ P)P,

where b, f and e are arbitrary real functions.15 From condition (III) we obtain
f (M,P2) = 0. Comparing commutator (here we used (D.16))

[S󸀠x , S
󸀠
y] = [(bSx + e(S ⋅ P)Px), (bSy + e(S ⋅ P)Py)]

= b2[Sx , Sy] + iℏebPx[S × P]y − iℏebPy[S × P]x
= iℏb2Sz + iℏeb(P × [S × P])z
= iℏ(b2Sz + ebP

2Sz − eb(S ⋅ P)Pz)

with condition (II),

[S󸀠x , S
󸀠
y] = iℏS

󸀠
z = iℏ(bSz + e(S ⋅ P)Pz),

we get the system of equations

b2 + ebP2 = b,
−eb = e,

15 To satisfy condition (I), these functions must depend only on the scalars P2 andM.
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with a single nontrivial solution b = 1 and e = 0. Therefore, our postulated spin oper-
ator is unique: S󸀠 = S. Its square is an invariant Casimir operator. Indeed

S2 = (W
Mc
+W0PY)

2
=

W2

M2c2
+
2W0Y(P ⋅W)

Mc
+W2

0P
2Y2

=
W2

M2c2
+W2

0Y(
2H
Mc2
+ P2Y) = W2

M2c2
+W2

0Y
2H(Mc2 + H) − P2c2

Mc2(Mc2 + H)

=
W2

M2c2
−W2

0
H2 + 2HMc2 +M2c4

M2c2(Mc2 + H)2
=
W2 −W2

0
M2c2

= −
W̃2

M2c2
.

4.3.9 Uniqueness of position operator

Suppose that in addition to the Newton–Wigner position R (4.30) there exists another
operator R󸀠 satisfying the requirements (IV)–(VI). Then, from (4.25) and Theorem 4.3
it follows that R󸀠 has power 1. The most general true vector with this property is

R󸀠 = a(P2,M)R + d(P2,M)[S × P] + g(P2,M)(ZP + PZ),

where a, d and g are arbitrary real functions and the operator

Z ≡
1
2ℏ
(P ⋅ R + R ⋅ P) (4.53)

has the following commutators:

[Z, S] = 0,
[Z,P] = iP.

Condition (IV) then implies

0 = [R󸀠x , Sy] = d(P
2,M)[(SyPz − SzPy), Sy] = iℏd(P

2,M)PySx ,

which means that d(P2,M) = 0. From condition (V) we obtain

iℏ = [R󸀠x ,Px] = a(P
2,M)[Rx ,Px] + g(P

2,M)[(ZPx + PxZ),Px]

= iℏa(P2,M) + 2ig(P2,M)P2x ,

which implies a(P2,M) = 1, g(P2,M) = 0 and proves the desired uniqueness of the
position operator R.

So, from now on we will always use the Newton–Wigner operator (4.30)–(4.32) as
the representative of the position observable.
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4.3.10 Boost of position

Let us now find out how the position transforms with respect to boosts. For simplicity,
we consider amassive systemwithout spin, for which the Newton–Wigner operator in
the rest frame O is

R = −c
2

2
(KH−1 + H−1K). (4.54)

Using formulas (4.5) and (4.4) we find that, in the frame O󸀠 moving along the x-axis,
the components of R are [56]

Rx(θ) = −
c2

2
Kx(H cosh θ − cPx sinh θ)

−1 −
c2

2
(H cosh θ − cPx sinh θ)

−1Kx , (4.55)

Ry(θ) = e
− icℏ KxθRye

ic
ℏ Kxθ

= −
c2

2
e−

ic
ℏ Kxθ(KyH

−1 + H−1Ky)e
ic
ℏ Kxθ

= −
c2

2
(Ky cosh θ −

Jz
c
sinh θ)(H cosh θ − cPx sinh θ)

−1

−
c2

2
(H cosh θ − cPx sinh θ)

−1(Ky cosh θ −
Jz
c
sinh θ), (4.56)

Rz(θ) = −
c2

2
(Kz cosh θ +

Jy
c
sinh θ)(H cosh θ − cPx sinh θ)

−1

−
c2

2
(H cosh θ − cPx sinh θ)

−1(Kz cosh θ +
Jy
c
sinh θ). (4.57)

These formulas are very different from the usual Lorentz transformations in special
relativity.16 This is not surprising, since the Newton–Wigner position does not form
the 3-vector part of any 4-vector quantity.17

In addition, we can find the time dependence of the position operator in the mov-
ing frame of reference. Applying formula (3.65), we obtain

R(θ, t󸀠) = e−
ic
ℏ Kxθe

i
ℏHt
󸀠
Re−

i
ℏHt
󸀠
e

ic
ℏ Kxθ = e−

ic
ℏ Kxθ(R + V t󸀠)e

ic
ℏ Kxθ

= R(θ) + V(θ)t󸀠, (4.58)

where the velocity V(θ) in the frame O󸀠 is given by equations (4.7)–(4.9), as expected.

16 See Appendix A.1 in Volume 3.
17 In our formalism there is no “time operator” that could serve as the fourth component of such a
4-vector. In the third volume of this book, we will discuss in more detail the difference between the
4-tensor formalism of special relativity and our approach.





5 Elementary particles
The electron is as inexhaustible as the atom...
Vladimir I. Lenin

Our results from the previous chapter were universal and applicable to any isolated
physical system, whether it is an electron or the solar system. We have not specified
how this system was put together, and we considered only observables relating to the
system as a whole. Our findings turned out to be unsurprising. In accordance with
observations, we concluded that the total energy, the total momentum and the total
angular momentum of any system are conserved, while the center of energy moves
along a straight line at a constant speed.

We know that the internal structure of composite systems can undergo very dra-
matic changes due to collisions, reactions, decay, etc. The description of such events
and processes is the most interesting and difficult part of theoretical physics. In order
to understand this behavior, we must first understand how such compound physical
systems are put together. The central idea of this book is that material objects consist
of elementary particles, i. e., localizable, countable, indivisible, simplest systems that
lack any internal structure.1 In this chapter we will tackle these fundamental ingredi-
ents of nature.

In Section 3.2 we have established that the Hilbert space of any physical system
carries a unitary representation of the Poincaré group. Each such representation can
bedecomposed into adirect sumof the simplest, so-called irreducible, representations
(see Appendix I.1). Elementary particles are defined as systems for which this sum
consists of only one term, i. e., the Hilbert space of a stable elementary particle carries
an irreducible unitary representation of the Poincaré group. Hence, in a certain sense,
elementary particles have simplest, indecomposable state spaces.

This simple consideration elegantly reduces the physical problem of classifying
particles to the purely mathematical task of listing all irreducible unitary representa-
tions Ug of the Poincaré group and their Hilbert spaces H . This task was fulfilled by
Wigner [98] in 1939.2

From Schur’s first lemma (see Appendix I.1) we can conclude that in any irre-
ducible unitary representation of the Poincaré group, the actions of two Casimir oper-
atorsM and S2 reduce to multiplication by constants. Hence, all different irreducible
representations and, consequently, all allowed types of elementary particles are clas-
sified in accordance with the values of these two constants – the mass and the spin
squared. Of course, there are many other parameters that describe elementary par-

1 In Volume 3 we will discuss how this idea corresponds with the widely held view that the funda-
mental components of nature are continuous fields.
2 A more modern exposition can be found in Section 2.5 of [95].

https://doi.org/10.1515/9783110492132-005
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Table 5.1: Properties of stable elementary particles.

Particle Symbol Mass Spin or helicity

Electron e− me = 0.511MeV/c2 ℏ/2
Proton p+ mp = 938.3MeV/c2 ℏ/2
Electron neutrino νe < 1 eV/c2 ℏ/2
Muon neutrino νμ < 1 eV/c2 ℏ/2
Tau neutrino ντ < 1 eV/c2 ℏ/2
Photon γ 0 ±ℏ

ticles, such as charge, magnetic moment and strangeness, but they all relate to the
manner in which the particle participates in interactions. In a world without interac-
tions, particles have only two intrinsic parameters: the mass and the spin.

Only six stable elementary particles are known, to which the above classifica-
tion by mass and spin is applicable (see Table 5.1). However, this statement is not
entirely accurate, and few explanations are required. First, for each particle in Ta-
ble 5.1 (except the photon) there is a corresponding antiparticle having the samemass
and spin, but opposite values of electrical, baryon and lepton charges.3 Second, there
are many particles, such asmuons, pions, neutrons, etc., which are usually called ele-
mentary, butwhich are unstable and eventually break down into constituents listed in
Table 5.1. This does not mean that unstable particles are “made of” the stable ones or
that they are less elementary. Just the stable particles listed in the table have the lowest
masses in their classes, and there are no lighter particles to which they could disinte-
grate without violating some conservation laws. Third, in Table 5.1 we did not include
quarks, gluons, gravitons and other particles predicted theoretically, but never seen
in experiments. Fourth, strictly speaking, the photon is not a truly elementary parti-
cle, because it is not described by an irreducible representation. In Subsection 5.4.4,
we will see that the photon is described by a reducible representation of the Poincaré
group, which is the direct sum of twomassless irreducible representations with helic-
ities ±ℏ. Fifth, neutrinos are not purely elementary particles either. It has been exper-
imentally established that the three neutrino flavors periodically transform into each
other (oscillate) with time. Finally, it is entirely possible that protons are also not el-
ementary. It is assumed that they consist of quarks and gluons.4 This leaves us with
only two truly stable, elementary and directly observable particles – the electron and
the positron.

3 Definitions of charges will be given in Subsection 1.2.1 of Volume 2.
4 In the author’s works [80, 81], it was proposed to revive Sakata’s idea [76] that hadrons consist not
of quarks and gluons, but of elementary hadrons, such as the proton, neutron and Λ-hyperon.
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Inwhat follows,we shall denote bym eigenvalues of themass operatorM and con-
sider separately two cases: massive particles (m > 0) and massless particles (m = 0).5

5.1 Massive particles

In this section, we are going to construct unitary irreducible representations of the
Poincaré group for massive particles. To do this, we first define a convenient basis in
the Hilbert space H of states of the particle and then write explicitly representation
operators Ug in this basis.

5.1.1 One-particle Hilbert space

Suppose that the Hilbert space H carries a unitary irreducible representation Ug of
the Poincaré group, characterized by a positive eigenvaluem of the mass operatorM.
In this space, Hermitian generators {P, J ,K ,H} of the representation are defined in a
natural way. As we saw in Section 4.3, the position operatorR is also well defined. The
components of position and momentum satisfy commutation relations of the Heisen-
berg algebra6 h3. We have

[Pi,Pj] = [Ri,Rj] = 0,
[Ri,Pj] = iℏδij,

where i, j = 1, 2, 3. Obviously, H must be a representation space of the algebra h3.
According to Corollary I.3, H is a direct sum, H = ⨁k Hk, where every irreducible
component Hk is isomorphic to the space of the Schrödinger representation, i. e., the
one in which vectors in Hk are expressed by normalizable functions ψ(p, k) on ℝ3. In
this representation, themomentumoperatorPmultiplies wave functions byp and the
position operator R differentiates them with respect to p as follows:7

P̂ψ(p, k) = pψ(p, k),

R̂ψ(p, k) = iℏ 𝜕
𝜕p

ψ(p, k).

Therefore, in order to construct the full representation space H , we can define
n ≥ 1 copies of themomentum spaceℝ3, as shown in Figure 5.1. Then vectors inH are

5 The Wigner classification also covers irreducible representations with negative energies and imag-
inary masses. But there is no indication that such particles exist in nature. Therefore, we will not
discuss them in this book.
6 See equations (3.52) and (4.25) and Theorem 4.1.
7 We will put a cap over the operator symbol to distinguish operators that act on wave functions
(rather than on state vectors).
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Figure 5.1: n copies of the momentum spaceℝ3, where
wave functions ψ(p, k) (k = 1, 2, . . . , n) are defined.
These functions are representatives of vectors in H .

represented by normalizable functions ψ(p, k) on these copies, where k = 1, 2, . . . , n.
The normalization condition has the form

n
∑
k=1
∫ dp|ψ(p, k)|2 = 1.

The thick dots in Figure 5.1 denote nmutually orthogonal eigenvectors of the momen-
tum with zero eigenvalue p = 0.8 The linear span of these vectors is the subspace H0
of zero momentum. Similarly, n-dimensional eigensubspaces of the operator P with
eigenvalues p will be denoted Hp. The complete one-particle Hilbert space H is a
direct sum of such subspaces,

H = ⨁
p∈ℝ3

Hp. (5.1)

5.1.2 Action of rotation subgroup in H0

First, we focus on the n-dimensional zero-momentum subspace H0. This subspace is
invariant with respect to rotations, because for any vector |0⟩ ∈ H0 the result of arbi-
trary rotation e−

i
ℏ J ⋅φ|0⟩ lies in the same subspace H0. Indeed, using equation (4.2)),

we have

Pe−
i
ℏ J ⋅φ|0⟩ = e−

i
ℏ J ⋅φe

i
ℏ J ⋅φPe−

i
ℏ J ⋅φ|0⟩

= e−
i
ℏ J ⋅φ(P cosφ + (P ⋅ φ

φ
)
φ
φ
(1 − cosφ) − [P × φ

φ
] sinφ)|0⟩

= 0. (5.2)

This means that representation Ug of the Poincaré group in H induces a unitary rep-
resentation Vg of the rotation subgroup in H0.

8 The corresponding wave functions ψ(p, k) = δ(p)δik are momentum eigenfunctions.
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In the entire Hilbert spaceH , rotations are generated by the angular momentum
operator J. However, in the subspace H0, the generator J can be replaced by the spin
operator S, because

Sz |0⟩ = Jz |0⟩ − [R × P]z |0⟩ = Jz |0⟩ − (RxPy − RyPx)|0 = Jz |0⟩.

Wewill show later that representationUg of the full Poincaré group is irreducible if
and only if the representationVg of the rotation group inH0 is irreducible. So, nowwe
will be interested in exactly such irreducible unitary (both single-valued and double-
valued) representations Vg of the group of rotations. Their classification is described
in Appendix I.5. They are labeled by one integer or half-integer parameter s, which
is called the spin of the particle. The one-dimensional representation is character-
ized by zero spin (s = 0) and corresponds to spinless particles. The two-dimensional
(double-valued) representation corresponds to particles with spin (s = 1/2). The three-
dimensional representation corresponds to particles with unit spin (s = 1), etc. In the
general case, n = dim(H0) = 2s + 1.

It is convenient to choose inH0 a basis consisting of 2s+1 eigenvectors of the spin
component Sz and denote these vectors |0, sz⟩, i. e.,

P|0, sz⟩ = 0,

H|0, sz⟩ = mc
2|0, sz⟩,

Sz |0, sz⟩ = ℏsz |0, sz⟩,

where sz = −s, −s + 1, . . . , s − 1, s.9 As we already established, any rotation keeps these
vectors inside H0. We have

e−
i
ℏ J ⋅φ|0, sz⟩ = e

− iℏ S⋅φ|0, sz⟩ =
s
∑

s󸀠z=−s
Ds
s󸀠zsz
(φ)|0, s󸀠z⟩, (5.3)

whereDs are (2s + 1) × (2s + 1)matrices of the irreducible representation Vg described
in Appendix I.5.

Note that in (5.3) the summation indices stand in an unusual order, s󸀠zsz . . . s
󸀠
z .
10

Such a notation is necessary for the matrices Ds to fulfill a representation of the rota-
tion group, i. e., Ds(φ1 ∘φ2) = Ds(φ1)D

s(φ2). Indeed, it is not difficult to verify11

Ds
σ󸀠σ(φ1 ∘φ2)|0, σ

󸀠⟩ = e−
i
ℏ J ⋅(φ1∘φ2)|0, σ⟩ = e−

i
ℏ J ⋅φ1e−

i
ℏ J ⋅φ2 |0, σ⟩

= e−
i
ℏ J ⋅φ1Ds

σ󸀠󸀠σ(φ2)|0, σ
󸀠󸀠⟩ = Ds

σ󸀠󸀠σ(φ2)e
− iℏ J ⋅φ1 |0, σ󸀠󸀠⟩

= Ds
σ󸀠󸀠σ(φ2)D

s
σ󸀠σ󸀠󸀠 (φ1)|0, σ

󸀠⟩ = Ds
σ󸀠σ󸀠󸀠 (φ1)D

s
σ󸀠󸀠σ(φ2)|0, σ

󸀠⟩.

9 Obviously, parameters sz and 2s + 1 replace the previously introduced parameters k and n.
10 This indicates that we use transposedmatrices (Ds)T .
11 For brevity, we omit summation signs and assume summation over repeated indices; see also the
derivation of formula (2.5.9) in [95].
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Figure 5.2: Construction of a momentum–
spin basis for a particle with spin 1/2.
Spin eigenvectors (with eigenvalues
sz = −1/2, 1/2) at zero momentum are
translated to subspaces with nonzero
momenta Hp andHp󸀠 by pure boosts θp
and θp󸀠 , respectively.

5.1.3 Momentum–spin basis

In the previous subsection we constructed a basis |0, sz⟩ in the subspace H0. But we
also need basis vectors |p, sz⟩ in subspaces with nonzero momentum Hp (p ̸= 0).
We will construct them by transferring the vectors |0, sz⟩ to other points in the three-
dimensionalmomentum space using pure boost transformations. The only pure boost
that takes the momentum 0 to p will be denoted by {v(θp);0;0;0}, where v(θp) is the
boost’s velocity (see Figure 5.2) and

sinh θp =
p
mc
,

θp =
p
p
θp,

v(θp) =
pc
p
tanh θ.

In the notation (3.56)–(3.57), the corresponding unitary operator in the Hilbert space
can be written as

U(θp;0;0;0) ≡ e
− icℏ K ⋅θp . (5.4)

Therefore

|p, sz⟩ = N(p)U(θp;0;0;0)|0, sz⟩ = N(p)e
− icℏ K ⋅θp |0, sz⟩, (5.5)

where N(p) is a normalization factor. The explicit expression for N(p) will be derived
in (5.29).

One can verify that vector (5.5) is, indeed, an eigenvector of the momentum and
energy operators with eigenvalues p and

ωp ≡ √m2c4 + p2c2, (5.6)
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respectively. For this proof we use equation (4.3) and obtain

P|p, sz⟩ = N(p)Pe
− icℏ K ⋅θp |0, sz⟩ = N(p)e

− icℏ K ⋅θpe
ic
ℏ K ⋅θpPe−

ic
ℏ K ⋅θp |0, sz⟩

= N(p)
θp sinh θp

cθp
e−

ic
ℏ K ⋅θpH|0, sz⟩ = N(p)

mcθp sinh θp
θp

e−
ic
ℏ K ⋅θp |0, sz⟩

= N(p)pe−
ic
ℏ K ⋅θp |0, sz⟩ = p|p, sz⟩, (5.7)

H|p, sz⟩ = √M2c4 + P2c2|p, sz⟩ = √m2c4 + p2c2|p, sz⟩.

Let us now find out how the z-component of spin acts on our basis vectors |p, sz⟩.
We have12

Sz |p, sz⟩ = N(p)Sze
− icℏ Kθp |0, sz⟩

= N(p)e−
ic
ℏ K ⋅θpe

ic
ℏ K ⋅θp(

Wz
Mc
−

W0Pz
M(Mc2 + H)

)e−
ic
ℏ K ⋅θp |0, sz⟩

= N(p)e−
ic
ℏ K ⋅θp(

Wz +
θz
θ [(W ⋅

θ
θ )(cosh θ − 1) +W0 sinh θ]

Mc

− [W0 cosh θ + (W ⋅
θ
θ
) sinh θ]

×
Pz +

θz
θ [(P ⋅

θ
θ )(cosh θ − 1) +

1
cH sinh θ]

M(Mc2 + H cosh θ + c(P ⋅ θθ ) sinh θ)
)|0, sz⟩

= N(p)e−
ic
ℏ K ⋅θp

× (
Wz +

θz
θ (W ⋅

θ
θ )(cosh θ − 1)
Mc

−
(W ⋅ θθ ) sinh θ(

θz
θ Mc sinh θ)

M(Mc2 +Mc2 cosh θ)
)|0, sz⟩

= N(p)e−
ic
ℏ K ⋅θp

× (
Wz
Mc
+
θz
θ
(W ⋅ θ

θ
)(cosh θ − 1

Mc
− sinh2 θ
Mc(1 + cosh θ)

))|0, sz⟩

= N(p)e−
ic
ℏ K ⋅θp Wz

Mc
|0, sz⟩ = N(p)e

− icℏ K ⋅θpSz |0, sz⟩

= N(p)e−
ic
ℏ K ⋅θpℏsz |0, sz⟩ = ℏsz |p, sz⟩.

Hence, as expected, |p, sz⟩ are common eigenvectors of the complete set of mutually
commuting operators {P,H , Sz}.

The common spectrum of energy momentum eigenvalues (ωp,pc) can be repre-
sented by points on themass hyperboloid in a four-dimensional space (see Figure 5.3).

12 Hereweused (4.27) and took into account thatW0|0, sz⟩ = 0,P|0, sz⟩ = 0 andH|0, sz⟩ = Mc2|0, sz⟩.
We also used formulas (4.3)–(4.4) for boost transformations of the energy momentum 4-vector (H , cP)
and similar formulas for the Pauli–Lubanski 4-vector (W0,W). For brevity, we denoted by θz the
z-component of the vector θp and by θ ≡ |θp| its length.
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Figure 5.3:Mass hyperboloid in the en-
ergy momentum space for massive parti-
cles and the zero-mass cone form = 0.

For massive particles, the spectrum of the velocity operator V = Pc2/H is the inte-
rior of a sphere |v| < c in the three-dimensional velocity space. This spectrum does
not include the surface of the sphere, so massive particles cannot reach the speed of
light.13

5.1.4 Nonuniqueness of momentum–spin basis

Note that in the preceding subsection, the eigenvectors of spin S were obtained by
applying pure boosts to basis vectors at the point p = 0. Of course, this choice was
purely arbitrary. We could also choose to construct another, but equivalent, basis, for
example, by moving vectors from 0 to p by means of boosts coupled with rotations.
However, once the basis is fixed, all formulas must be written with respect to it.

Obviously, different choices of the basis |p, sz⟩ translate into different choices for
the spin operator S [46]. Does this contradict our statement from Subsection 4.3.8
about the uniqueness of the spin operator? No. The bottom line is that the alterna-
tive spin operator S󸀠 (and the corresponding alternative position operator R󸀠) will not
be expressed as a function of the basic generators {H ,P, J ,K} of the Poincaré group.
Being functions of the basic generators was an important condition in our proof of the
uniqueness of the operators S and R in Section 4.3.

5.1.5 Action of translations and rotations on basis vectors

Now we can determine the action of Poincaré group elements on the basis vectors
|p, sz⟩ constructed above.14 Obviously, translations are represented simply by multi-

13 Note that our description of a particle’s velocity is more natural than the “zitterbewegung” in
Dirac’s theory of the electron [11].
14 We are working in the Schrödinger picture.
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plications, so we have

e−
i
ℏP⋅a|p, sz⟩ = e

− iℏp⋅a|p, sz⟩, (5.8)

e
i
ℏHt |p, sz⟩ = e

i
ℏωpt |p, sz⟩. (5.9)

Let us nowapply a rotation e−
i
ℏ J ⋅φ to the vector |p, sz⟩.We use equations (5.3), (D.7) and

assume that the normalization factor is rotationally invariant, i. e., N(φp) = N(p),15

to obtain

e−
i
ℏ J ⋅φ|p, sz⟩ = N(p)e

− iℏ J ⋅φe−
ic
ℏ K ⋅θp |0, sz⟩

= N(p)e−
i
ℏ J ⋅φe−

ic
ℏ K ⋅θpe

i
ℏ J ⋅φe−

i
ℏ J ⋅φ|0, sz⟩

= N(p)e−
ic
ℏ (φ
−1K)⋅θp

s
∑

s󸀠z=−s
Ds
s󸀠zsz
(φ)|0, s󸀠z⟩

= N(p)e−
ic
ℏ K ⋅φθp

s
∑

s󸀠z=−s
Ds
s󸀠zsz
(φ)|0, s󸀠z⟩

= N(p)
s
∑

s󸀠z=−s
Ds
s󸀠zsz
(φ)[e−

ic
ℏ K ⋅θφp |0, s󸀠z⟩]

= N(p)N−1(φp)
s
∑

s󸀠z=−s
Ds
s󸀠zsz
(φ)|φp, s󸀠z⟩

=
s
∑

s󸀠z=−s
Ds
s󸀠zsz
(φ)|φp, s󸀠z⟩. (5.10)

This means that both momentum and spin of the particle rotate through the angleφ,
as expected.

5.1.6 Action of boosts on momentum eigenvectors

The action of boosts on the basis vectors |p, sz⟩ is slightly more complicated. Boosts
of the spin components sz will be considered in Subsection 5.1.7, and here we will be
interested in the effect of boost on the momentum eigenvalue p. So, for brevity, we
omit spin indices.

It is easy to see that boost transforms momentum eigenvectors into each other.
Indeed, using formula (4.3), one can verify that for any |p⟩ the boosted state vector
|p󸀠⟩ = e−

ic
ℏ K ⋅θ|p⟩ is also an eigenvector of the momentum operator P:

P|p󸀠⟩ = Pe−
ic
ℏ K ⋅θ|p⟩ = e−

ic
ℏ K ⋅θe

ic
ℏ K ⋅θPe−

ic
ℏ K ⋅θ|p⟩

15 The action of a rotation on the momentum vector (φp) should be taken from (D.22).



100 | 5 Elementary particles

= e−
ic
ℏ K ⋅θ(P + θ

θ
[(P ⋅ θ

θ
)(cosh θ − 1) + H

c
sinh θ])|p⟩

= (θp)|p󸀠⟩,

where we denote by

θp ≡ p + θ
θ
[(p ⋅ θ

θ
)(cosh θ − 1) +

ωp

c
sinh θ] (5.11)

the active boost transformation in the momentum space.

5.1.7 Action of boosts on spin components

We have just established that a boost θ transforms an eigenvector of momentum |p⟩
into another eigenvector |θp⟩. In the case of nonzero spin, this means that basis vec-
tors |p, sz⟩ in the subspaceHp will be transformed by e−

ic
ℏ K ⋅θ into a linear combination

of basis vectors in the subspace Hθp. In other words,

e−
ic
ℏ K ⋅θ|p, sz⟩ =

s
∑

s󸀠z=−s
Gs󸀠zsz (p, θ)|θp, s

󸀠
z⟩, (5.12)

where the unitary (2s+ 1) × (2s+ 1)matrix Gs󸀠zsz (p, θ) depends on themomentum p and
on the applied boostθ. Herewewould like to determine the nature of this dependence.

Using equation (5.5), we obtain

e−
ic
ℏ K ⋅θ|p, sz⟩ = N(p)e

− icℏ K ⋅θe−
ic
ℏ K ⋅θp |0, sz⟩. (5.13)

On the right-hand side we see the product of two boosts. In general, these boosts are
not collinear, and their product is a transformation from the Lorentz subgroup, which
is representable in the canonical form (2.6) (boost) × (rotation),

θ ∘ θp = θ? ∘φ?. (5.14)

Here θ? andφ? are as yet undefined boost and rotation vectors, and nowwe will try to
learn more about them. Multiplying both sides of equation (5.14) from the left by θ−1? ,
we get

θ−1? ∘ θ ∘ θp = φ? (5.15)

or in terms of unitary representatives

U(θ?;0;0;0)
−1U(θ;0;0;0)U(θp;0;0;0) = U(0;φ?;0;0). (5.16)

This means that the sequence of boosts on the left-hand side of (5.16) is a pure ro-
tation. Acting on a state vector with zero momentum |0, sz⟩, this product will return
this vector back to the zero-momentum subspace H0, as shown in Figure 5.4: the
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Figure 5.4: To the derivation of formula (5.18) for
the Wigner angle.

zero-momentum vector |0, sz⟩ is first mapped into a vector with momentum p by the
boost θp; the subsequent application of θ transforms this vector into another momen-
tum eigenstate with an eigenvalue p󸀠 = θp. Then from Figure 5.4 it follows that the
final boost θ−1? should bring this vector back to the zero-momentum subspaceH0 and
the inverse θ? translates 0→ θp. In other words, θ? = θθp and

U(θ?;0;0;0) = U(θθp;0;0;0). (5.17)

5.1.8 Wigner angle

For the rotation angle on the right-hand side of equation (5.15) we will use the special
symbolφW (p, θ) and call it theWigner angle. We have16

φ? ≡ φW (p, θ) = θ
−1
θp ∘ θ ∘ θp. (5.18)

Substituting these results in (5.14) and (5.13), we get17

e−
ic
ℏ K ⋅θ|p, sz⟩ = N(p)e

− icℏ K ⋅θe−
ic
ℏ K ⋅θp |0, sz⟩

= N(p)e−
ic
ℏ K ⋅θθpe−

i
ℏ J ⋅φW (p,θ)|0, sz⟩

= N(p)e−
ic
ℏ K ⋅θθp

s
∑

s󸀠z=−s
Ds
s󸀠zsz
(φW (p, θ))|0, s

󸀠
z⟩

= N(p)
N(θp)

s
∑

s󸀠z=−s
Ds
s󸀠zsz
(φW (p, θ))|θp, s

󸀠
z⟩. (5.19)

16 Explicit formulas forφW (p, θ) can be found, for example, in [73].
17 This means that the matrix introduced in (5.12) has the form Gs󸀠zsz (p, θ) = N(p)N−1(θp) ×
Ds
s󸀠zsz
(φW (p, θ)). It is also clear that Wigner’s rotation is a purely relativistic effect. In the nonrela-

tivistic case, where boosts are commuting, any composition of boosts is always equal to a pure boost,
and Wigner’s angle on the left-hand side of (5.18) is zero.
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5.1.9 Irreducibility of representation Ug

Equations (5.10) and (5.19) show that rotations and boosts are accompanied by rota-
tions of basis vectors in each subspaceHp by matricesDs. If the representationDs of
the rotation group were reducible, then each subspace Hp would be represented as a
direct sum of irreducible components H k

p ,

Hp =⨁
k

H k
p ,

and each subspace

H k = ⨁
p∈R3

H k
p

would be reducible with respect to the entire Poincaré group. Therefore, in order to
construct an irreducible representation of this group inH , the representationDsmust
be an irreducible unitary representation of the rotation group, as we announced in
Subsection 5.1.2.

In this book, we will mostly deal with electrons and protons, which are mas-
sive particles with spin s = 1/2. Therefore, we are especially interested in the two-
dimensional irreducible representation D1/2 of the rotation group from Appendix I.5.

5.1.10 Method of induced representations

Let us repeat the basic steps in our construction of the unitary irreducible representa-
tionUg of thePoincaré group for amassiveparticle. These steps are knownasMackey’s
method of induced representation [51, 87]. This constructionwas based on the basis |p⟩
of eigenvectors of themomentumoperatorP.We chose a 3-vector of the so-called stan-
dardmomentum κ = 0 and found the corresponding small group, i. e., the subgroup of
those transformations in the Lorentz subgroup which leave this vector invariant.18 In
our case the small group turned out to be the group of rotations. Thenwe found that if
the subspace of the standard vectorHκ carries an irreducible representation Vg of the
small group, then the entire Hilbert space H will carry an irreducible representation
Ug of the full Poincaré group.

The desired representation Ug of the Poincaré group was induced from the irre-
ducible representation Ds of the rotation group. Translations multiply state vectors
by phase factors (5.8) and (5.9), while rotations and boosts are represented by formu-
las (5.10) and (5.19), respectively.

18 One can show [51] that any other selection of the standard momentum (κ ̸= 0) would lead us to an
equivalent representation of the Poincaré group.
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5.2 Momentum representation

So far we have discussed the action of inertial transformations on the basis of com-
mon eigenvectors |p, sz⟩ of operators P and Sz . All other state vectors |Ψ⟩ in the Hilbert
space H can be represented as linear combinations of these basis vectors, i. e., state
vectors |Ψ⟩ can be written in terms of wave functions ψ(p, sz) in the momentum–spin
representation. In this sectionwewill consider inmore detail how states are described
by wave functions and how these functions change under the action of inertial trans-
formations. For simplicity, we restrict our treatment to spinless particles only.

5.2.1 Resolution of identity

Two basis vectors with different momenta |p⟩ and |p󸀠⟩ are eigenvectors of the Hermi-
tian operator P with different eigenvalues, and hence they are orthogonal, so

⟨p|p󸀠⟩ = 0 if p ̸= p󸀠.

If the spectrum of eigenvalues p were discrete, we could simply normalize the basis
vectors to unity: ⟨p|p⟩ = 1. However, such a normalization becomes problematic in
the continuous momentum space. It turns out to be more convenient to work with
nonnormalizable (= improper) eigenvectors ofmomentum |p⟩ anduse them forwriting
normalized state vectors |Ψ⟩ in the form of integrals,

|Ψ⟩ = ∫ dpψ(p)|p⟩, (5.20)

where the set of coefficients ψ(p) is called the wave function in the momentum rep-
resentation. By analogy with (1.21), it is usually required that the normalized wave
functions ψ(p) are expressed through the inner product, so

ψ(p) = ⟨p|Ψ⟩ = ∫ dp󸀠ψ(p󸀠)⟨p|p󸀠⟩.

It then follows that the inner product of two improper basis vectors is equal to the
Dirac delta function (see Appendix A)

⟨p|p󸀠⟩ = δ(p − p󸀠). (5.21)

Then, by analogy with equation (G.3), we can define the following spectral resolution
of the identity operator:

I = ∫ dp|p⟩⟨p|. (5.22)



104 | 5 Elementary particles

As expected, the action of this operator on any normalized state vector |Ψ⟩ is trivial.
We have

I|Ψ⟩ = ∫ dp|p⟩⟨p|Ψ⟩ = ∫ dp|p⟩ψ(p) = |Ψ⟩.

Of course, the identity operator must be invariant with respect to Poincaré trans-
formations, that is, we expect that

I = UgIU
−1
g

for all g. The invariance of I with respect to translations follows directly from equa-
tions (5.8) and (5.9). Invariance with respect to rotations can be proved as follows:

I󸀠 = e−
i
ℏ J ⋅φIe

i
ℏ J ⋅φ = e−

i
ℏ J ⋅φ(∫ dp|p⟩⟨p|)e

i
ℏ J ⋅φ

= ∫ dp|φp⟩⟨φp| = ∫ d(φp)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
det[d(φp)

dp
]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−1
|φp⟩⟨φp|

= ∫ dq|q⟩⟨q| = I ,

where we used (5.10) and the fact that the Jacobian for the change of variables p →
q = φp is equal to |det[d(φp)/dp]|−1 = |det[Rφ]|−1 = 1.

5.2.2 Boost transformation

We now consider in more detail the invariance of I with respect to boosts. From equa-
tion (5.19) we get

I󸀠 = e−
ic
ℏ K ⋅θIe

ic
ℏ K ⋅θ = e−

ic
ℏ K ⋅θ(∫ dq|q⟩⟨q|)e

ic
ℏ K ⋅θ

= ∫ dq N2(q)
N2(θq)
|θq⟩⟨θq| = ∫ dp

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
det[d(θ

−1p)
dp
]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
N2(θ−1p)
N(p)
|p⟩⟨p|, (5.23)

where N(p) is the normalization factor introduced in (5.5) and |det[d(θ−1q)/dq]| is the
Jacobian for the change of variables q → p = θq. This Jacobian cannot depend on
the direction of θ, so without loss of generality and to simplify our calculations, we
choose this direction along the z-axis. Then, replacing θ → −θ in (5.11), we obtain

θ−1px = px , (5.24)

θ−1py = py , (5.25)

θ−1pz = pz cosh θ −
1
c
√m2c4 + p2c2 sinh θ, (5.26)

ωθ−1p = √m2c4 + p2c2 cosh θ − cpz sinh θ,
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det[d(θ
−1p)
dp
] = det

[[[

[

1 0 0
0 1 0

−cpx sinh θ
√m2c4+p2c2

−cpy sinh θ

√m2c4+p2c2
cosh θ − cpz sinh θ

√m2c4+p2c2

]]]

]

= cosh θ − cpz sinh θ

√m2c4 + p2c2
=
ωθ−1p

ωp
. (5.27)

Substituting (5.27) in (5.23), we get

I󸀠 = ∫ dp
ωθ−1p

ωp

N2(θ−1p)
N2(p)

|p⟩⟨p|. (5.28)

Therefore, in order to ensure the invariance of I, we must define our normalization
factor as

N(p) = √mc
2

ωp
. (5.29)

Indeed, in this case the product of numerical factors under the integral sign in (5.28)
is equal to unity. In particular,

ωθ−1p

ωp
⋅ N

2(θ−1p)
N2(p)

=
ωθ−1p

ωp
⋅ mc

2

ωθ−1p
⋅
ωp

mc2
= 1,

and we obtain the desired relation I󸀠 = I.
Taking into account (5.29), formula (5.19) for boost transformations can bewritten

in its final form

e−
ic
ℏ K ⋅θ|p, sz⟩ = √

ωθp

ωp

s
∑

s󸀠z=−s
Ds
s󸀠zsz
(φW (p, θ))|θp, s

󸀠
z⟩. (5.30)

Note that the result (5.27) means, in particular, that inside three-dimensional mo-
mentum integrals we are allowed to make the following change of variables:

p→ θp,

dp→ d(θp)
ωp

ωθp
.

In other words, dp/ωp is the “Lorentz-invariant measure”

dp
ωp
= d(θp)

ωθp
. (5.31)

We will use this property quite often in our calculations.
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5.2.3 Wave function in momentum representation

The inner product of two normalized vectors |Ψ⟩ = ∫ dpψ(p)|p⟩ and |Φ⟩ = ∫ dpϕ(p)|p⟩
can be written in terms of their wave functions

⟨Ψ|Φ⟩ = ∫ dpdp󸀠ψ∗(p)ϕ(p󸀠)⟨p|p󸀠⟩ = ∫ dpdp󸀠ψ∗(p)ϕ(p󸀠)δ(p − p󸀠)

= ∫ dpψ∗(p)ϕ(p). (5.32)

Therefore, if the state vector |Ψ⟩ is normalized to unity, its wave function ψ(p) must
satisfy the normalization condition

1 = ⟨Ψ|Ψ⟩ = ∫ dp|ψ(p)|2.

This wave function has a direct probabilistic interpretation: if Ω is a region of the mo-
mentum space, then the integral ∫Ω dp|ψ(p)|

2 expresses the probability of finding the
particle inside this region.

Inertial transformations of the state vector |Ψ⟩ can be regarded as transformations
of the corresponding wave function. For example, by Hermitian conjugation of equa-
tion (5.30), we get

⟨p|e−
ic
ℏ K ⋅θ = [e

ic
ℏ K ⋅θ|p⟩]† = ⟨θ−1p|√

ωθ−1p

ωp

and the transformed wave function is

ψ󸀠(p) ≡ e−
ic
ℏ K̂ ⋅θψ(p) ≡ ⟨p|e−

ic
ℏ K ⋅θ|Ψ⟩

= √
ωθ−1p

ωp
⟨θ−1p|Ψ⟩ = √

ωθ−1p

ωp
ψ(θ−1p). (5.33)

Then the invariance of the inner product (5.32) with respect to boosts can be easily
deduced from the property (5.31). We have

⟨Φ󸀠|Ψ󸀠⟩ = ∫ dp(ϕ󸀠)∗(p)ψ󸀠(p) = ∫ dp√
ωθ−1p

ωp
ϕ∗(θ−1p)√

ωθ−1p

ωp
ψ(θ−1p)

= ∫ dp
ωp

ωθ−1pϕ
∗(θ−1p)ψ(θ−1p) = ∫ d(θ

−1p)
ωθ−1p

ωθ−1pϕ
∗(θ−1p)ψ(θ−1p)

= ∫ dpϕ∗(p)ψ(p) = ⟨Φ|Ψ⟩. (5.34)

The actions of Poincaré group generators on momentum–space wave functions
are derived from formulas (5.8)–(5.10) and (5.30). We have

P̂xψ(p) = iℏ lima→0

d
da

e−
i
ℏ P̂xaψ(p) = pxψ(p), (5.35)



5.3 Position representation | 107

Ĥψ(p) = −iℏ lim
t→0

d
dt
e

i
ℏ Ĥtψ(p) = ωpψ(p), (5.36)

K̂xψ(p) =
iℏ
c
lim
θ→0

d
dθ

e−
ic
ℏ K̂xθψ(p)

= iℏ
c
lim
θ→0

d
dθ
√
√m2c4 + p2c2 cosh θ − cpx sinh θ

√m2c4 + p2c2

× ψ(px cosh θ −
1
c
√m2c4 + p2c2 sinh θ, py , pz)

= iℏ(−
ωp

c2
d
dpx
−

px
2ωp
)ψ(p). (5.37)

We can also obtain expressions for the position and angular momentum operators,

R̂xψ(p) = −
c2

2
(Ĥ−1K̂x + K̂xĤ

−1)ψ(p)

= − iℏ
2
(−ω−1p ωp

d
dpx
− ωp

d
dpx

ω−1p −
pxc2

ω2
p
)ψ(p) = iℏ d

dpx
ψ(p), (5.38)

̂Jxψ(p) = (R̂yP̂z − R̂z P̂y)ψ(p) = iℏ(pz
d
dpy
− py

d
dpz
)ψ(p). (5.39)

5.3 Position representation

In the previous section, we discussed wave functions in the momentum representa-
tion, i. e., with respect to common eigenvectors of the three commuting components
(Px ,Py ,Pz) of the momentum operator. According to Theorem 4.1, the three compo-
nents of position (Rx ,Ry ,Rz) also commute with each other. So, their common eigen-
vectors |r⟩ also form a basis in the Hilbert space H of a single massive particle. In
this section we will consider particle wave functions with respect to this basis, i. e.,
in the position representation. It is remarkable that our formulas for relativistic wave
functions will be very similar to their analogs in nonrelativistic quantummechanics.

5.3.1 Basis of localized functions

First, we expand the eigenvector |r⟩ in the momentum basis

|r⟩ = ∫ dpψr(p)|p⟩ (5.40)

and obtain eigenfunctions of the position operator in the momentum representation,

ψr(p) = ⟨p|r⟩ =
e−

i
ℏp⋅r

(2πℏ)3/2
. (5.41)
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This can be verified by substituting (5.38) and (5.41) in the eigenvalue equation to ob-
tain

R̂ψr(p) =
1
(2πℏ)3/2

R̂e−
i
ℏp⋅r = iℏ
(2πℏ)3/2

d
dp

e−
i
ℏp⋅r = r( e−

i
ℏp⋅r

(2πℏ)3/2
)

= rψr(p).

Since the operator R is Hermitian, its eigenvectors with different eigenvalues r and r󸀠

must be orthogonal. Indeed, using equation (A.1), we get the inner product in the form
of a delta function,

⟨r󸀠|r⟩ = 1
(2πℏ)3
∫ dpdp󸀠e−

i
ℏp⋅r+

i
ℏp
󸀠 ⋅r󸀠⟨p󸀠|p⟩

= 1
(2πℏ)3
∫ dpdp󸀠e−

i
ℏp⋅r+

i
ℏp
󸀠 ⋅r󸀠δ(p − p󸀠)

= 1
(2πℏ)3
∫ dpe−

i
ℏp⋅(r−r

󸀠) = δ(r − r󸀠). (5.42)

This means that |r⟩ are nonnormalizable states, just like |p⟩.19

By analogy with (5.20), any normalized state vector |Ψ⟩ can be represented as an
integral over the position space, so

|Ψ⟩ = ∫ drψ(r)|r⟩,

where ψ(r) = ⟨r|Ψ⟩ is the position–space wave function of the state |Ψ⟩. The square
of the absolute value |ψ(r)|2 of the wave function expresses the probability density of
finding the particle at a given space point r. The inner product of two state vectors |Ψ⟩
and |Φ⟩ can be written in terms of their position–space wave functions as follows:

⟨Φ|Ψ⟩ = ∫ drdr󸀠ϕ∗(r)ψ(r󸀠)⟨r|r󸀠⟩ = ∫ drdr󸀠ϕ∗(r)ψ(r󸀠)δ(r − r󸀠)

= ∫ drϕ∗(r)ψ(r). (5.43)

Using equations (5.40) and (5.41), we find that the position–space wave function
of the momentum eigenstate |p⟩ is an ordinary plane wave,

ψp(r) = ⟨r|p⟩ =
e

i
ℏp⋅r

(2πℏ)3/2
, (5.44)

P̂ψp(r) = pψp(r).

19 As in nonrelativistic quantummechanics, eigenvectors of the position operator in the position rep-
resentation are expressed by delta functions (5.42). Note that eigenfunctions introduced in [62] did not
satisfy this important requirement.
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This is also an eigenstate of the energy H = √P2c2 +m2c4 and velocity V = Pc2/H
operators. So, in this state measurements of the velocity

v = pc
2

ωp
(5.45)

are unambiguous and predictable, while according to the Heisenberg inequality
(6.95), the uncertainty of the position is infinitely high.

From (5.22) we can also obtain a position representation of the identity operator

∫ dr|r⟩⟨r| = 1
(2πℏ)3
∫ drdpdp󸀠e−

i
ℏp
󸀠 ⋅r |p⟩⟨p󸀠|e

i
ℏp⋅r

= ∫ dpdp󸀠|p⟩⟨p󸀠|δ(p − p󸀠) = ∫ dp|p⟩⟨p| = I .

5.3.2 Operators of observables in position representation

Similarly to the momentum–space formulas (5.35)–(5.39), we can write actions of
Poincaré generators on position–spacewave functions. For example, from (5.8), (5.40)
and (5.41) it follows that

e−
i
ℏP⋅a ∫ drψ(r)|r⟩ = e−

i
ℏP⋅a ∫ drψ(r) ∫ dp e−

i
ℏp⋅r

(2πℏ)3/2
|p⟩

= ∫ drψ(r) ∫ dpe
− iℏp⋅(r+a)

(2πℏ)3/2
|p⟩ = ∫ drψ(r)|r + a⟩ = ∫ drψ(r − a)|r⟩.

Hence translations and their generators act on position–space wave functions as fol-
lows:

e−
i
ℏ P̂⋅aψ(r) = ψ(r − a),

P̂ψ(r) = iℏ lim
a→0

d
da

e−
i
ℏ P̂⋅aψ(r) = iℏ lim

a→0

d
da

ψ(r − a) = −iℏ d
dr

ψ(r). (5.46)

Other important operators have the following position–space representations:

Ĥψ(r) = √m2c4 − ℏ2c2 d
2

dr2
ψ(r),

Kψ(r) = 1
2
(√m2c4 − ℏ2c2 d

2

dr2
r + r√m2c4 − ℏ2c2 d

2

dr2
)ψ(r),

R̂ψ(r) = rψ(r), (5.47)

̂Jxψ(r) = −iℏ(y
d
dz
− z d

dy
)ψ(r).
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The actions of operators (5.46) and (5.47) are characteristic of the so-called Schrödinger
representation of the Heisenberg algebra h3 (see Appendix I.3).

If necessary, one can switch between momentum and position wave functions of
the same state bymeans of the Fourier transform. For example, suppose that the state
|Ψ⟩ has the position wave function ψ(r). Then from (5.40) and (5.41) we get

|Ψ⟩ = ∫ drψ(r)|r⟩ = 1
(2πℏ)3/2

∫ drψ(r) ∫ dpe−
i
ℏp⋅r |p⟩

= ∫ dp( 1
(2πℏ)3/2

∫ drψ(r)e−
i
ℏp⋅r)|p⟩.

Comparing with (5.20), we see that the corresponding momentum–space wave func-
tion is

ψ(p) = 1
(2πℏ)3/2

∫ drψ(r)e−
i
ℏp⋅r . (5.48)

Conversely, for the momentum wave function ψ(p), its position–space counterpart is

ψ(r) = 1
(2πℏ)3/2

∫ dpψ(p)e
i
ℏp⋅r . (5.49)

5.3.3 Inertial transformations of observables and states

In this subsection we would like to discuss in more detail how observables and states
change under inertial transformations. We have already touched on this issue in sev-
eral places in the book, but it will be useful to put these pieces together and clarify
the physical meaning of Poincaré transformations with a simple example. What do
we mean when we express observables and states in the (primed) frame O󸀠 through
observables and states in the (non-primed) frame O by the standard formulas

F󸀠 = UgFU
−1
g , (5.50)

|Ψ󸀠⟩ = Ug |Ψ⟩? (5.51)

Here

Ug = e
− icℏ K ⋅θe−

i
ℏ J ⋅φe−

i
ℏP⋅ae

i
ℏHt

is a unitary representative of a general inertial transformation g in the Hilbert space
of the system.

Let us start with transformations of observables (5.50) in the Heisenberg pic-
ture. For definiteness, suppose that the observable F is the x-component of position
(F = Rx). This means that the operator F is a mathematical representative of the usual
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Figure 5.5: Rulers for measuring the x-component of position in the reference frames O and O󸀠

shifted by the distance a.

ruler X oriented along the x-axis at rest in the reference frame O, as shown in Fig-
ure 5.5. The zero mark on the ruler coincides with the origin of the frame O. For the
element g of the Poincaré group we take the shift by the distance a along the x-axis

Ug = e
− iℏ Pxa.

Then the transformed observable

R󸀠x = e
− iℏ PxaRxe

i
ℏ Pxa (5.52)

is the operator describing measurements of positions in the shifted frame of refer-
enceO󸀠. Thesemeasurements aremadewith the rulerX󸀠 shifted by the distance awith
respect to the ruler X. The zeromark on X󸀠 coincides with the origin in the frameO󸀠. Of
course, positionmeasurements performed by the rulers X and X󸀠 on the same particle
will give different results. For example, if the particle is at the origin of the frame O,
then measurements by the rulers X and X󸀠 yield Rx = 0 and Rx󸀠 = −a, respectively. For
this reason, we say that observables Rx and R󸀠x are related to each other by

R󸀠x = Rx − a.

Of course, the same result can be obtained by formal application of equations (5.52)
and (E.14), which gives

R󸀠x = Rx −
i
ℏ
[Px ,Rx]a = Rx − a.

The operator of position can also be represented by its spectral resolution

Rx =
∞

∫
−∞

dxx|x⟩⟨x|,
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where |x⟩ are eigenvectors (eigenstates) with positions x. Then equation (5.52) can be
rewritten as

R󸀠x = e
− iℏ Pxa(

∞

∫
−∞

dxx|x⟩⟨x|)e
i
ℏ Pxa

=
∞

∫
−∞

dxx|x + a⟩⟨x + a| =
∞

∫
−∞

dx(x − a)|x⟩⟨x| = Rx − a.

Hence we see that the action of Ug on state vectors

e−
i
ℏ Pxa|x⟩ = |x + a⟩

should be interpreted as an active shift of states, i. e., a translation by the distance a
in our case.

However, in practice we are more often interested in how the state of the system
looks from the point of view of an inertially transformed observer, i. e., we are inter-
ested in passive transformations of states.20 Obviously, such passive transformations
should be expressed by inverse operators U−1g , so

|Ψ󸀠⟩ = U−1g |Ψ⟩. (5.53)

In particular, this means that if the vector |Ψ⟩ = |x⟩ describes a state localized at the
point x from the point of view ofO (the value of x is measured by the ruler X), then the
same state is described by the vector

|Ψ󸀠⟩ = U−1g |Ψ⟩ = e
i
ℏ Pxa|x⟩ = |x − a⟩ (5.54)

from the point of view of the observer O󸀠 (position measured by the ruler X󸀠).
Instead of state vectors, we can also apply inertial transformations to their wave

functions. For example, the state vector

|Ψ⟩ = ∫ drψ(r)|r⟩

has the wave function ψ(x, y, z) in the position representation. When we shift the ob-
server by the distance a in the positive x-direction, we must apply a passive transfor-
mation (5.54) to the state vector,

|Ψ󸀠⟩ = e
i
ℏ Pxa|Ψ⟩ = ∫ drψ(x, y, z)|x − a, y, z⟩ = ∫ drψ(x + a, y, z)|x, y, z⟩,

which means that the passive transformation of the wave function has the form

e
i
ℏ P̂xaψ(x, y, z) = ψ(x + a, y, z).

20 Here we switch to the Schrödinger picture.
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5.3.4 Time translations of observables and states

The above reasoning is especially useful in the case when the inertial transformation
Ug is a time translation. As we saw in (4.36), the position operator in the time-shifted
reference frame O󸀠󸀠 has the form

R󸀠󸀠x = e
i
ℏHtRxe

− iℏHt = Rx + Vxt.

If we are interested in how the state vector |Ψ⟩ looks in the frameO󸀠󸀠, we have to apply
a passive transformation (5.53). We have

|Ψ󸀠󸀠⟩ = e−
i
ℏHt |Ψ⟩. (5.55)

It is customary to consider a continuous sequence of such shifts parameterizedby time
t and talk about the time evolution of the state vector |Ψ(t)⟩. Then equation (5.55) can
be regarded as a solution of the time-dependent Schrödinger equation

iℏ d
dt
|Ψ(t)⟩ = H|Ψ(t)⟩. (5.56)

In actual calculations it is more convenient to deal with numerical functions (wave
functions in a certain basis/representation) thanwith abstract state vectors. To obtain
the Schrödinger equation for wave functions, equation (5.56) should be multiplied on
the left by basis bra-vectors ⟨r|, so

iℏ d
dt
⟨r󵄨󵄨󵄨󵄨Ψ(t)⟩ = ⟨r|H

󵄨󵄨󵄨󵄨Ψ(t)⟩,

iℏ d
dt
Ψ(r, t) = ĤΨ(r, t), (5.57)

where Ψ(r, t) ≡ ⟨r|Ψ(t)⟩ is the position–space wave function.

5.4 Massless particles

5.4.1 Spectra of momentum, energy and velocity

For massless (m = 0) particles, such as photons, the method for constructing ir-
reducible unitary representations of the Poincaré group, described in Section 5.1,
needs to be slightly modified. Indeed, the arguments given at the beginning of Sub-
section5.1.1 are no longer valid, because for massless particles the Newton–Wigner
operator is not defined; and we cannot apply Corollary I.5 to find the spectrum of the
momentum operator P. To determine this spectrum, we will use other arguments.
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Let us choose a state of the massless particle with some nonzero momentum
p ̸= 0.21 There are two types of inertial transformations, which can change this value:
rotations and boosts. Every vector p󸀠 obtained from p by means of rotations or boosts
is also an eigenvector of P.22 So, we can use these transformations to study the spec-
trum P. Rotations, in general, change the direction of the momentum vector, but
retain its length p, so that rotational images of p form a sphere of radius p with its
center at zero momentum 0. Boosts along the vector p do not change its direction,
but change its length. To reduce the length of the momentum vector, we can use the
boost θ, which is directed opposite to p, i. e., θ/θ = −p/p. Then, from (5.11) and the
equality23

ωp = cp (5.58)

we obtain

p󸀠 = θp = p − p
p
[−p(cosh θ − 1) + p sinh θ] = p[cosh θ − sinh θ] = pe−θ , (5.59)

so that the transformedmomentum reaches zero only in the limit θ →∞. This means
that it is impossible to reach the point 0 from p using rotations and finite boosts. So,
this point does not belong to the momentum spectrum of massless particles.24

On the other hand, the length of the vectorp can be increasedwithout limit, using
boosts in the collinear direction. Thus, for massless particles, the hyperboloid (5.6)
degenerates into a cone (5.58)with its apex (ω = 0,p = 0) removed (see Figure 5.3). So,
in the massless case, H = cP and the spectrum of the velocity operator V ≡ Pc2/H is a
3-sphere |v| = c. It then follows that massless particles can move only at the speed of
light in all reference systems. This is the famous second postulate of Einstein’s special
theory of relativity.

Statement 5.1 (invariance of the speed of light). The speed of massless particles (e. g.,
photons) is equal to the speed of light (c) regardless of the speed of the source and the
observer.

5.4.2 Representations of small groups

Our next goal is to characterize massless elementary particles by constructing corre-
sponding unitary irreducible representations of the Poincaré group. For this we will
apply the induced representation method from Subsection 5.1.10.

21 We assume that at least one such value exists in the spectrum of P.
22 The proof of this statement is the same as in (5.2) and (5.7).
23 It follows from the general formula (5.6) form = 0.
24 The physical meaning of this result is that there can be no photons with zero momentum and
energy.
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We already know that the vector p = (0,0,0) does not belong to the momentum
spectrum of a massless particle. Therefore, by analogy with (5.1), the Hilbert space of
our representation should have the form of a direct sum,

H = ⨁
p∈ℝ3\{0}

Hp, (5.60)

in which the summand H0 is absent. Hence, unlike in the massive case, we cannot
choose the vector p = 0 as the standard momentum for constructing the induced
representation. However, this is not a problem, since we know that the choice of the
standard momentum is, in fact, arbitrary, and representations constructed on differ-
ent standard momenta are unitarily equivalent. Therefore, without loss of generality,
we choose another standard momentum,

κ = (0,0, 1). (5.61)

The next step is to find the small group corresponding to the vector κ, i. e., the sub-
groupof theLorentz group,which leaves this vector invariant. The energy–momentum
4-vector associated with our standard vector (5.61) is (cκ, cκ) = (c,0,0, c). Therefore,
in the four-dimensional notation from Appendix J the matrices Σ̃ of the small group
must satisfy the equation

Σ̃
[[[[

[

c
0
0
c

]]]]

]

=
[[[[

[

c
0
0
c

]]]]

]

.

Σ̃ is also an element of the Lorentz group. Therefore, the condition (J.5)

Σ̃TηΣ̃ = η

must be satisfied as well. One can verify that the most general 4 × 4 matrix with these
properties has the form [94]

Σ̃(X1,X2, θ) =
[[[[

[

1 + (X2
1 + X

2
2 )/2 X1 X2 −(X2

1 + X
2
2 )/2

X1 cos θ + X2 sin θ cos θ sin θ −X1 cos θ − X2 sin θ
−X1 sin θ + X2 cos θ − sin θ cos θ X1 sin θ − X2 cos θ
(X2

1 + X
2
2 )/2 X1 X2 1 − (X2

1 + X
2
2 )/2

]]]]

]

. (5.62)

It depends on three real parameters X1, X2 and θ. The three corresponding generators
can be obtained by differentiation.25 We have

T1 = lim
X1 ,X2 ,θ→0

𝜕
𝜕X1

Σ̃(X1,X2, θ) =
[[[[

[

0 1 0 0
1 0 0 −1
0 0 0 0
0 1 0 0

]]]]

]

= 𝒥y + c𝒦x ,

25 Here𝒥 and𝒦 are the familiar generators of the Lorentz group (J.16) and (J.17)–(J.19).
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T2 = lim
X1 ,X2 ,θ→0

𝜕
𝜕X2

Σ̃(X1,X2, θ) =
[[[[

[

0 0 1 0
0 0 0 0
1 0 0 −1
0 0 1 0

]]]]

]

= −𝒥x + c𝒦y ,

R = lim
X1 ,X2 ,θ→0

𝜕
𝜕θ

Σ̃(X1,X2, θ) =
[[[[

[

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

]]]]

]

= 𝒥z .

Their commutators

[T1,T2] = 0,
[R,T2] = T1,
[R,T1] = −T2

are characteristic of the Lie algebra of the group of “translations” (T1 and T2) and ro-
tations (R) in the usual two-dimensional plane, which we will call the κ-space.

The next step is to find the complete set of unitary irreducible representations of
the small group constructed above. We will do this by the same prescription of the
“induced representation,” this time applying it to the two-dimensional κ-space. First,
we introduce three Hermitian operators, Π = (Π1,Π2) and Θ ≡ Jz, which represent
Lie algebra generators T = (T1,T2) and R, respectively.26 Hence, the small group of
κ-translations and κ-rotations is represented in the subspace of the standard momen-
tum Hκ by unitary operators e−

i
ℏΠ1x, e−

i
ℏΠ2y and e−

i
ℏΘϕ.

Next, let us clarify the structure of the subspaceHκ, bearing inmind that this sub-
space must contain an irreducible representation of the small group. First we assume
that the subspaceHκ contains the state vector |π⟩with nonzero κ-momentum, π ̸= 0,
so

Π|π⟩ = (π1,π2)|π⟩.

Then the rotated vector

e−
i
ℏΘφ|π1,π2⟩ = |π1 cosφ + π2 sinφ,π1 sinφ − π2 cosφ⟩ (5.63)

also belongs to the subspace Hκ. Vectors (5.63) form a circle π21 + π
2
2 = const in the

plane of κ-momenta (see Figure 5.6). The linear span Hκ of all these vectors forms an
infinite-dimensionalHilbert space. If we used this representation of the small group to
build a unitary irreducible representation of the full Poincaré group, we would obtain
massless particles with an infinite number of internal (spin) degrees of freedom or, in
other words, with “continuous” spin. Such particles do not exist in nature, so we will
not discuss this option further.

26 One can notice a formal analogy of the operatorsΠ andΘwith two-dimensional “momentum” and
“angular momentum”, respectively.
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Figure 5.6: Orbits (5.63) of the small group representation in
the subspace Hκ of the standard vector κ.

The only possibility relevant to physics is the circle of “zero radius,” π = (0,0). It
corresponds to a one-dimensional irreducible subspace Hκ, where κ-translations are
represented trivially,

e−
i
ℏΠ⋅r |π = 0⟩ = |π = 0⟩ (5.64)

and rotations about the z-axis are represented by unimodular factors, so

e−
i
ℏΘφ|π = 0⟩ ≡ e−

i
ℏ Jzφ|π = 0⟩ = eiτφ|π = 0⟩. (5.65)

The allowed values of the parameter τ can be obtained from the fact that our repre-
sentation must be either single-valued or double-valued (see Statement 3.2). Hence,
a rotation over the angle φ = 2π should be represented by either 1 or −1. Therefore, τ
is either an integer or a half-integer

τ = . . . , −1, −1/2,0, 1/2, 1, . . . . (5.66)

The parameter τ is called helicity. It marks different unitary irreducible massless
representations of the Poincaré group, i. e., different possible types of massless ele-
mentary particles.

5.4.3 Basis in Hilbert space of massless particle

In the previous subsection we constructed unitary irreducible representations of the
small group in the one-dimensional subspace Hκ of the standard momentum κ =
(0,0, 1). In this subsection we will make the next step and construct a basis in the
entire Hilbert space (5.60) of a massless particle with a given helicity τ.

Let us choose an arbitrary normalized vector |κ⟩τ in the one-dimensional sub-
space Hκ. In the same way as we did in the massive case, we are going to propagate
this basis vector to other momentum values p ̸= κ, using transformations from the
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Lorentz subgroup. To do this, we need to define canonical elements λp of the Lorentz
subgroup that connect the standard vector κ with other momenta p, written

λpκ = p.

As in themassive case, the choice of such canonical transformations λp is not unique.
However, it can be shown that representations constructed using different λp are uni-
tarily equivalent. Hence, we are free to choose a set of λp transformations that is more
convenient for computations. Our solution is to define λp as a rotation φp, which
brings the vector κ = (0,0, 1) to the direction of p/p, followed by a Lorentz boost θp,
which takes the momentum p/p to p.27 We have

λp = θp ∘φp; (5.67)

see Figure 5.7.

Figure 5.7: Any point p (except p = 0) in the momentum space
of a massless particle can be reached from the standard mo-
mentum κ = (0,0, 1) by combined application of a rotationφp
followed by a boost θp.

The complete basis |p⟩τ in H is now obtained by translating the initial basis vector
|κ⟩τ to all other fixed momentum subspaces Hp, so28

|p⟩τ ≡ 1
√p

e−
ic
ℏ K ⋅θpe−

i
ℏ J ⋅φp |κ⟩τ ≡ 1

√p
U(λp;0;0)|κ⟩

τ. (5.68)

5.4.4 Massless representations of Poincaré group

The next step is to see how transformations from the Poincaré group act on the basis
vectors (5.68). First, we apply a transformation U(Λ;0;0) from the Lorentz subgroup
to an arbitrary basis vector |p⟩τ and obtain

U(Λ;0;0)|p⟩τ = 1
√p

U(Λ;0;0)U(λp;0;0)|κ⟩
τ

27 Note that the definitions of the boost θp for massive and massless particles are different.
28 Compare with equalities (5.5) and (5.29). Here we used the notationU(λp;0;0) introduced in (3.57)
for unitary representatives of Lorentz group elements λp.
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= 1
√p

U(λΛp;0;0)U(λ
−1
Λp;0;0)U(Λ;0;0)U(λp;0;0)|κ⟩

τ

= 1
√p

U(λΛp;0;0)U(λ
−1
ΛpΛλp;0;0)|κ⟩

τ

= 1
√p

U(λΛp;0;0)U((φ
−1
Λp ∘ θ

−1
Λp)Λ(θp ∘φp);0;0)|κ⟩

τ.

The product of (unitary representatives of) Lorentz elements

λ−1ΛpΛλp = (φ
−1
Λp ∘ θ

−1
Λp)Λ(θp ∘φp)

on the right-hand side transforms the standard vector κ back to the subspaceHκ (see
Figure 5.7), whichmeans that this product is an element of the small group, composed
of κ-translation and κ-rotation factors. The κ-translation part of this element is not im-
portant to us, because of equation (5.64). The important part is the angle of κ-rotation
about the z-axis. It is called the Wigner angle φW (p,Λ).29 According to (5.65), in the
Hilbert space this rotation is represented by a unimodular factor,

U(λ−1ΛpΛλp;0;0)|κ⟩
τ = eiτφW (p,Λ)|κ⟩τ.

Therefore, taking into account (5.68), we obtain the following unitary representation
of the Lorentz subgroup:

U(Λ;0;0)|p⟩τ = 1
√p

U(λΛp;0;0)e
iτφW (p,Λ)|κ⟩τ = √|Λp|

p
eiτφW (p,Λ)|Λp⟩τ.

As usual, in the momentum representation, translations are represented by exponen-
tial phase factors. Therefore, for the general element of the Poincaré group, we obtain
our final formula,

U(Λ; r; t)|p⟩τ = √|Λp|
p

e−
i
ℏp⋅r+

ic
ℏ pteiτφW (p,Λ)|Λp⟩τ, (5.69)

which can be compared with its massive counterparts (5.8), (5.9), (5.10) and (5.30).
As we noted in the beginning of this chapter, massless photons, in fact, are not

elementary particles. They are described by a reducible representation of the Poincaré
group, which is the direct sum of two irreducible representations with helicities τ = 1
and τ = −1. In the language of classical physics, these two irreducible components
correspond to the left and right circularly polarized light.

It is well known [42] that in the photon state space it is impossible to define a
position operator with commuting components. In our opinion, this does not in the
least complicate our interpretation of the photon as a particle, but simply says that

29 Explicit expressions for the Wigner angle can be found in [73, 14].
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a photon cannot be prepared in a strictly localized state. Note that even for massive
particles the statement of their localizability requires anontrivial proof in Theorem4.1.
Therefore, we do not consider pointlike localizability to be an indispensable attribute
of a particle.

5.4.5 Doppler effect and aberration

To illustrate results obtained in this chapter, let us derive known formulas for the
Doppler effect and the aberration of light. These formulas connect the energies and
directions of motion of photons in frames of reference moving relative to each other.

LetH(0) be the energy of the photon and P(0) its momentum in the frame of refer-
ence O at rest. Then H(θ) and P(θ) are the energy and momentum of the same photon
in the frame O󸀠 moving with velocity v = c(θ/θ) tanh θ. Using (4.4) and (5.58), we im-
mediately obtain the usual formula for the Doppler effect,

H(θ) = H(0) cosh θ − cP(0) ⋅ θ
θ
sinh θ = H(0) cosh θ(1 − cP(0)P(0)

H(0)P(0)
⋅ θ
θ
tanh θ)

= H(0) cosh θ(1 − v
c
cosφ), (5.70)

where we denote by φ the angle between the photon’s direction (as it is perceived by
the observer O) and the direction of O󸀠 motion with respect to O, so that

cosφ ≡ P(0)
P(0)
⋅ θ
θ
. (5.71)

Sometimes the formula for the photon energy shift is written in another form,
where the angle φ󸀠 between the photon momentum and the direction of motion of
the reference frame is measured from the point of view of O󸀠. Then we have

cosφ󸀠 ≡ P(θ)
P(θ)
⋅ θ
θ
. (5.72)

From (4.4) we can write

H(0) = H(θ) cosh θ + cP(θ) ⋅ θ
θ
sinh θ = H(θ) cosh θ(1 + cP(θ)P(θ)

H(θ)P(θ)
⋅ θ
θ
tanh θ)

= H(θ) cosh θ(1 + v
c
cosφ󸀠).

Therefore

H(θ) = H(0)
cosh θ(1 + v

c cosφ
󸀠)
. (5.73)
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In these formulas, v is the speed of the observer relative to the light source. More com-
mon are situations, in which the observer considers himself stationary and the source
ismoving. Then simply replace the sign of v in equation (5.73). In addition, when deal-
ing with light, physicists prefer to talk not about the energies of quanta, but about the
light frequency that is proportional to the energy (H = ℏω). So the frequency of light
emitted by a moving source is

ω(θ) = ω(0)
cosh θ(1 − v

c cosφ
󸀠)
. (5.74)

The difference between the angles φ and φ󸀠, i. e., the observer dependence of the
light propagation direction, is known as aberration. To see the same star in the sky,
two astronomers O and O󸀠 must point their telescopes in different directions. These
directions form the anglesφ andφ󸀠, respectively, with the direction θ/θ of the relative
velocity of the two observers. The relationship between these angles can be found
by taking the scalar product of both sides of (4.3) with θ/θ and taking into account
equations (5.70)–(5.72) and cP(θ) = H(θ). Then we have

cosφ󸀠 = P(0)
P(θ)
(cosh θ cosφ − sinh θ) = cosh θ cosφ − sinh θ

cosh θ(1 − v
c cosφ)

=
cosφ − v/c
1 − v

c cosφ
.

The Doppler effect will be discussed from a different point of view in Subsec-
tion 6.5.3.





6 Interaction
I myself, a professionalmathematician, on re-readingmy ownwork find it strainsmymental powers
to recall to mind from the figures the meanings of the demonstrations, meanings which I myself
originally put into the figures and the text frommymind. But when I attempt to remedy the obscurity
of the material by putting in extra words, I see myself falling into the opposite fault of becoming
chatty in something mathematical.
Johannes Kepler

In the previous chapter, we were interested in isolated elementary particles moving
freely in space. Starting with the present chapter, we turn our attention to composite
systems consisting of two or more particles. In addition, we allow energy and mo-
mentum to be redistributed between different parts of the system. In other words, we
assume the presence of interaction. In this chapter, our analysis will be limited to sys-
tems of several massive spinless particles, whose numbers cannot change. Starting
with the second volume, we will remove this restriction and consider interacting sys-
tems in complete generality.

6.1 Hilbert space of multiparticle system

In this section we will construct the Hilbert space of a composite system with a fixed
number of particles. In textbooks on quantum mechanics it is assumed without ex-
planation that this space has to be constructed as a tensor product of Hilbert spaces
of the components. Here we will follow the example of works [54, 2] and show how
to derive this statement from postulates of quantum logic. For simplicity, let us start
with a two-particle system.

6.1.1 Tensor product theorem

Let ℒ1, ℒ2 and ℒ1+2 be quantum-propositional systems (logics) related to the particles
1, 2 and the composite system 1 + 2, respectively. It seems reasonable to assume that
every proposition about subsystem 1 (or 2) also has meaning in the composite system.
Hence, propositions in ℒ1 and ℒ2 should be also represented by propositions in ℒ1+2.
Let us formulate this idea as a new postulate.

Postulate 6.1 (properties of compound systems). If ℒ1 and ℒ2 are quantum logics de-
scribing two physical systems and ℒ1+2 is the quantum logic of the composite system
1 + 2, then there exist two mappings,

𝕂1 : ℒ1 → ℒ1+2,

𝕂2 : ℒ2 → ℒ1+2,

https://doi.org/10.1515/9783110492132-006
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satisfying the following conditions:
(I) The mappings𝕂1,𝕂2 preserve all logical relations between propositions, so that

for j = 1, 2

𝕂j(0ℒj
) = 0ℒ1+2

,

𝕂j(ℐℒj
) = ℐℒ1+2

and for any two 𝒳 ,𝒴 ∈ ℒj

𝒳 ≤ 𝒴 ⇔ 𝕂j(𝒳 ) ≤ 𝕂j(𝒴),

𝕂j(𝒳 ∧ 𝒴) = 𝕂j(𝒳 ) ∧ 𝕂j(𝒴),

𝕂j(𝒳 ∨ 𝒴) = 𝕂j(𝒳 ) ∨ 𝕂j(𝒴),

𝕂j(𝒳
⊥) = (𝕂j(𝒳 ))

⊥
.

(II) Measurements on the two subsystems can be performed simultaneously and in-
dependently. This means that in the composite system all statements about sub-
system 1 are compatible with statements about subsystem 2, so

𝕂1(𝒳1) ↔ 𝕂2(𝒳2),

where 𝒳1 ∈ ℒ1, 𝒳2 ∈ ℒ1.
(III) Whenwehave complete informationabout subsystems 1 and 2,wealsohave com-

plete information about the combined system 1+2. Thismeans that if𝒳1 ∈ ℒ1 and
𝒳2 ∈ ℒ2 are atoms, then themeet of their images𝕂1(𝒳1)∧𝕂2(𝒳2) is also an atomic
proposition in ℒ1+2.

The next theorem [54, 2] allows us to translate the above properties from the lan-
guage of quantum logic to the more familiar language of Hilbert spaces.

Theorem 6.2 (Matolcsi). Suppose that H1, H2 and H1+2 are three complex Hilbert
spaces corresponding to the propositional lattices ℒ1, ℒ2 and ℒ1+2 from Postulate 6.1.
Suppose, also, that 𝕂1 and 𝕂2 are two mappings whose existence is required by the
Postulate. Then the Hilbert space H1+2 of the composite system 1 + 2 is equal to one of
the following four possible tensor products1: H1+2 = H1 ⊗ H2, H1+2 = H ∗1 ⊗ H2, or
H1+2 = H1 ⊗H ∗2 or H1+2 = H ∗1 ⊗H ∗2 .

The proof of this theorem is beyond the scope of our book.
So, we have four ways to connect two one-particle Hilbert spaces into one two-

particle space. In quantum mechanics, only the first possibility is used: H1+2 = H1 ⊗

1 A definition of the tensor product of two Hilbert spaces can be found in Appendix F.4. The asterisk
marks dual Hilbert spaces, introduced in Appendix F.3.
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H2.2 In particular, this means that if particle 1 is in the state |1⟩ ∈ H1 and particle 2 is
in the state |2⟩ ∈ H2, then the state of the composite system is described by the vector
|1⟩ ⊗ |2⟩ ∈ H1 ⊗H2.

6.1.2 Particle observables in multiparticle systems

The functions 𝕂1 and 𝕂2 from Postulate 6.1 map propositions (projections) from
Hilbert spacesH1 andH2 of individual particles into the Hilbert spaceH1+2 = H1⊗H2
of the composite system. Therefore, they also map observables of particles from H1
and H2 to H1+2. For example, consider an observable of particle 1, which is repre-
sented in the Hilbert space H1 by a Hermitian operator with spectral resolution (1.9),

F1 = ∑
f
fP1f .

According to the proof of the Matolcsi theorem, the mapping 𝕂1 : ℒ1 → ℒ1+2 has a
unitary representative k1 : H1 → H1+2.3 Then the unitary mapping k1 transforms F1
into the Hermitian operator k1(F1) in the compound Hilbert space H1+2, so

k1(F1) = ∑
f
fk1(P1f ).

This operator has the same spectrum f as F1, and k1(P1f ) are its spectral projections.
Thus, all observables of individual particles have a well-defined meaning also in

theHilbert spaceH1+2 of the composite system. In the following,wewill use lowercase
letters to indicate such one-particle observables in H1+2.4 For example, the images of
position and momentum operators of particle 1 in H1+2 will be denoted by r1 and p1,
respectively. We will write the energy operator of particle 1 as h1 = √m2

1c4 + p21c2, etc.
Similarly, observables of particle 2 inH1+2 are denoted by r2, p2 and h2. In accordance
with Postulate 6.1 (II), spectral projections of observables of different particles com-
mutewith each other inH1+2. Hence, observables of different particles also commute.

As in the one-particle case considered in Chapter 5, two-particle states can also
be described in terms of wave functions. From the properties of the tensor product of
Hilbert spaces it follows that ifψ1(r1s1z) is awave function of particle 1 in the position–
spin representation and ψ2(r2s2z) is a wave function of particle 2, then the wave func-
tion of the unified system is expressed by the product

ψ(r1s1z , r2s2z) = ψ1(r1s1z)ψ2(r2s2z). (6.1)

2 It is not yet clear what is the physical meaning of the other three options.
3 The relationship between 𝕂1 and k1 is the same as that between mappings 𝕂g and kg in Wigner’s
Theorem 3.1.
4 We continue to use uppercase letters for total observables H ,P, J ,R, . . . of the composite system.
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In this case, both particles 1 and 2 and the composite system are in pure quantum
states. However, the most general pure two-particle state in H1 ⊗ H2 is described
by a general function of two variables, ψ(r1s1z , r2s2z), which is not necessarily repre-
sentable as the product (6.1). In this case, the individual particles are in mixed states:
the results of measurements made over particle 1 correlate with the results of particle
2 measurements, even if the particles do not interact with each other. The existence of
such entangled states is a special feature of quantummechanics, which has no analog
in the classical world.

6.1.3 Statistics

The above construction of the two-particleHilbert spaceH1+2 = H1⊗H2 is appropriate
when the two particles are of different types. If particles 1 and 2 are identical, then in
H1⊗H2 there are vectors that do not correspond to any physically realizable state and
the Hilbert space of two particles is actually “smaller” thanH1⊗H2. Indeed, if the two
particles are identical, then no measurable quantity can change when these particles
change places. Therefore, after such a permutation, the wave function can, at most,
acquire an innocuous unimodular phase factor β:

ψ(r2s2z , r1s1z) = βψ(r1s1z , r2s2z). (6.2)

If, however, we swap the particles again, wemust return to the original wave function

ψ(r1s1z , r2s2z) = βψ(r2s2z , r1s1z) = β
2ψ(r1s1z , r2s2z).

Thus β2 = 1, which implies that the factor β for any physical stateψ(r1s1z , r2s2z) inH1+2
can be either 1 or −1.

Is it possible that one state ϕ1(r1s1z , r2s2z) has the permutation factor β equal to 1,
so that

ϕ1(r1s1z , r2s2z) = ϕ1(r2s2z , r1s1z), (6.3)

while another state ϕ2(r1s1z , r2s2z) have this factor equal to −1, so that

ϕ2(r1s1z , r2s2z) = −ϕ2(r2s2z , r1s1z) ? (6.4)

If equations (6.3) and (6.4) were satisfied, then the nontrivial linear combination of
states ϕ1 and ϕ2

ψ(r1s1z , r2s2z) = aϕ1(r1s1z , r2s2z) + bϕ2(r1s1z , r2s2z)

would not have the simple transformation (6.2) with respect to the permutations

ψ(r2s2z , r1s1z) = aϕ1(r2s2z , r1s1z) + bϕ2(r2s2z , r1s1z)
= aϕ1(r1s1z , r2s2z) − bϕ2(r1s1z , r2s2z) ̸= ±ψ(r1s1z , r2s2z).
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Such states are unphysical. Hence, the factor β must be the same for all states in the
Hilbert spaceH1+2 of two identical particles. It then follows that all particles in nature
fall into two categories: bosons and fermions.

For bosons β = 1, and two-particle wave functions are symmetric with respect to
permutations. Wave functions of the bosons form a “symmetrized” linear subspace
H1 ⊗sym H2 ⊆ H1 ⊗H2. In particular, this means that two identical bosons can occupy
the same quantum state, i. e., wave functions likeψ(r1s1z)ψ(r2s2z) are permissible and
belong to the bosonic subspace H1 ⊗sym H2.

For fermions β = −1 and two-particle wave functions are antisymmetric with re-
spect to permutations of arguments. The Hilbert space of two identical fermions is
the subspace of antisymmetric functions H1 ⊗asym H2 ⊆ H1 ⊗H2. This, in particular,
means that two identical fermions cannot occupy the samequantumstate.5 In particu-
lar, thewave functionψ(r1s1z)ψ(r2s2z) does not belong to the antisymmetric fermionic
subspace H1 ⊗asym H2.

All results obtained in this section for two particles can be immediately gener-
alized to n-particle systems where n > 2. For example, the Hilbert space of n iden-
tical bosons is a symmetrized tensor product Hsym = H1 ⊗sym H2 ⊗sym ⋅ ⋅ ⋅ ⊗sym Hn,
and the Hilbert space of n identical fermions is an antisymmetrized tensor product
Hasym = H1 ⊗asym H2 ⊗asym ⋅ ⋅ ⋅ ⊗asym Hn.

A remarkable theorem on the connection between spin and statistics was proved
in the framework of QFT. It states (in full agreement with the experiment) that all par-
ticles with integer spin (for example, photons) are bosons and that all particles with
half-integer spin (neutrinos, electrons, protons, etc.) are fermions.

6.2 Relativistic Hamiltonian dynamics

To complete our description of two-particle systems initiated in the previous section,
we need to specify a unitary representation Ug of the Poincaré group in the Hilbert
space H1+2 = H1 ⊗ H2.6 From Chapter 4 we already know that such a construction
is equivalent to finding 10 generators {H ,P, J ,K}, which also play the role of total ob-
servables in our system. From Subsection 6.1.2 we also know how to find observables
{p1, r1,p2, r2} of individual particles in H1+2. It is reasonable to assume that the total
observables can be expressed as functions of these one-particle observables. Then the
construction of Ug is reduced to finding 10 Hermitian operator functions,

H(p1, r1;p2, r2), (6.5)
P(p1, r1;p2, r2), (6.6)

5 This property is called the Pauli exclusion principle.
6 For simplicity, we assume that particles 1 and 2 are massive, spinless and distinguishable.
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J(p1, r1;p2, r2), (6.7)
K(p1, r1;p2, r2), (6.8)

which satisfy commutation relations (3.49)–(3.55) of the Poincaré Lie algebra.
Even in the simplest two-particle case, this problem has an infinite number of so-

lutions. So, additional physical considerations need to be invoked to find the unique
representation (6.5)–(6.8) of the Poincaré Lie algebra that agrees with observations.
For multiparticle systems, the construction of the representation Ug , consistent with
experiments, is the most difficult part of relativistic quantum theory. It is important to
understand that once this task is fulfilled, we get everythingwe need for a full theoret-
ical description of the physical system. Further calculations of measurable properties
become only a technical matter.

6.2.1 Noninteracting representation of Poincaré group

Aswe alreadymentioned, there are infinitely manyways to define a representationUg
of the Poincaré group in the Hilbert space of two particles H1+2 = H1 ⊗H2. Let us be-
gin our analysiswith one completely legitimate choice,whichhas a very clear physical
meaning. We know from Chapter 5 that one-particle Hilbert spaces H1 and H2 carry
irreducible unitary representationsU1

g andU
2
g of the Poincaré group. The unitarymap-

pings k1 and k2, defined in Subsection 6.1.2, allow us to map these representations to
the Hilbert space H1+2 of the combined system, i. e., they define two representations
k1(U1

g) and k2(U
2
g) of the Poincaré group in H1+2. We can also construct a third rep-

resentation U0
g in H1+2 by combining representations k1(U1

g) and k2(U
2
g) in a tensor

product. In more detail, for any vector of the form |1⟩ ⊗ |2⟩ ∈ H1+2 we define the action
of U0

g as

U0
g (|1⟩ ⊗ |2⟩) = k1(U

1
g)|1⟩ ⊗ k2(U

2
g)|2⟩ (6.9)

and its action on other vectors inH1+2 extends by the principle of linearity. The newly
constructed representation (6.9) is called the tensor product of unitary representations
of U1

g and U
2
g and is written as U0

g = U
1
g ⊗ U

2
g . Its generators are expressed as sums of

single-particle generators:
H0 = h1 + h2, (6.10)
P0 = p1 + p2, (6.11)
J0 = j1 + j2, (6.12)
K0 = k1 + k2. (6.13)

Poincaré commutators for these generators follow directly from the facts that genera-
tors of the same particle have usual Poincaré commutators (3.49)–(3.55) and that gen-
erators of different particles commute with each other. For example,

[H0,K0] = [(h1 + h2), (k1 + k2)] = [h1, k1] + [h2, k2] = iℏp1 + iℏp2 = iℏP0.
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From formulas (6.10)–(6.13) it is not difficult to find transformations of single-
particle observables under the action of the group representation U0

g . For example,
positions of particles 1 and 2 changewith time independently of each other, as if these
particles were alone:

r1(t) = e
i
ℏH0tr1e

− iℏH0t = e
i
ℏ h1tr1e

− iℏ h1t = r1 + v1t,
r2(t) = r2 + v2t.

Therefore, representation (6.9)–(6.13) corresponds to the absence of interaction. It
is called the noninteracting representation of the Poincaré group. Generators (6.10)–
(6.13) of the noninteracting representationwill play a special role in our constructions,
and we will always label them with the subscript “0.”

6.2.2 Dirac’s forms of dynamics

Obviously, the simple choice of generators (6.10)–(6.13) is unrealistic, because parti-
cles in nature do interact with each other. Therefore, we have to use a certain inter-
acting representation Ug of the Poincaré group in H1+2, which differs from U0

g . First,
we write generators {H ,P, J ,K} of this desired representation Ug in the most general
form, where all of the generators are different from their noninteracting counterparts
by the presence of interaction terms, which we denote V , U, Y , Z. We have7

H = H0 + V(p1, r1;p2, r2), (6.14)
P = P0 + U(p1, r1;p2, r2), (6.15)
J = J0 + Y(p1, r1;p2, r2), (6.16)
K = K0 + Z(p1, r1;p2, r2). (6.17)

It may happen that some of the interaction operators on the right-hand sides of equa-
tions (6.14)–(6.17) are zero. Then these generators and the corresponding finite trans-
formations coincide with those in the noninteracting representation U0

g . Such gener-
ators and transformations will be called kinematical. Generators and transformations
containing interaction terms will be called dynamical.

Our description of the interaction by formulas (6.14)–(6.17) generalizes traditional
classical nonrelativistic Hamiltonian dynamics, inwhich the only dynamical generator
is the Hamiltonian H. We want our relativistic theory to reduce to the familiar nonrel-
ativistic approach in the c → ∞ limit. Therefore, we postulate that time translations

7 Our approach to describing interactions in this book is based on equalities (6.14)–(6.17) and their
generalizations for many-particle systems and systems with a variable number of particles. This ap-
proach is called relativistic Hamiltonian dynamics [46]. There exist many other (non-Hamiltonian) ap-
proaches for describing interactions. Their surveys and further references can be found in [45, 92, 68].
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are generated by a dynamical Hamiltonian, H = H0 + V , with a nontrivial interaction
(= potential energy) V . At this point we do not apply any restrictions on the choice of
other generators, except Poincaré commutation relations (3.49)–(3.55). This restriction
implies that kinematical generators form a subalgebra of the full Lie algebra.8 Unlike
in the Galilei Lie algebra, in the Poincaré algebra the set of generators {P, J ,K} does
not form a subalgebra.9 This explains why in the relativistic case we have no right to
add interaction only to the Hamiltonian.

Table 6.1: Comparison of three Dirac forms of relativistic dynamics.

Instant form Point form Front form

Kinematical generators
P0x K0x P0x
P0y K0y P0y
P0z K0z

1
√2 (H0 + P0z)

J0x J0x
1
√2 (K0x + J0y )

J0y J0y
1
√2 (K0y − J0x )

J0z J0z J0z
K0z

Dynamical generators
H H 1

√2 (H − Pz)
Kx Px

1
√2 (Kx − Jy )

Ky Py
1
√2 (Ky + Jx )

Kz Pz

So, in order to remain in harmonywith the principle of relativity, wemust add interac-
tion operators to at least some of the generators P, J orK . We shall say that interacting
representations having different kinematical subgroups belong to different forms of
dynamics. In his famous article [23], Dirac developed a classification of interactions
based on this principle. In Table 6.1, we present the three Dirac forms of dynamics
that are most commonly used in the literature. In the instant form, the kinematical
subgroup is the subgroup of spatial translations and rotations. In the point form [90],
the Lorentz subgroup is kinematical. In both these cases, the dimension of the kine-
matical subgroup is six. The front form dynamics has the largest number (seven) of
kinematical generators.

8 Indeed, if two generators A and B do not contain interaction terms, then their commutator [A,B]
must be also kinematical.
9 For example, the commutator (3.54) is outside the subset {P, J ,K}.
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6.2.3 Total observables in multiparticle systems

As soon as the interacting representation of the Poincaré group is defined and its gen-
erators {H ,P, J ,K} arewritten out,we immediately get expressions for the total observ-
ables of the physical system. These are the operators of total energy H, totalmomentum
P and total angular momentum J. Other total observables (massM, spin S, center-of-
energy position R, etc.) are obtained as functions of the basic generators by formulas
from Chapter 4.

Our insistence on preserving Poincaré commutators between interacting gen-
erators {H ,P, J ,K} guarantees that inertial transformations of the total observables
{H ,P, J ,K} coincide with those in Chapter 4, regardless of the form and strength of
the interaction. For example, the total energy H and the total momentum P form a
4-vector whose boost transformations always have the form (4.3)–(4.4). In any physi-
cal system, time translations lead to a uniformmotion of the center-of-energy position
R with constant velocity along a straight line (4.36). Universal formulas for boosts of
the position operator were derived in Subsection 4.3.10.

However, it should also be clear that the presence of interactionmay affect inertial
transformations of observables of individual particles in the compound system. This
important point will be analyzed in Section 8.3 of Volume 3.

6.3 Instant form of dynamics

So, which form of dynamics should be chosen to describe the physics of interacting
systems? On this issue, there are different opinions, up to the claim that this choice is
absolutely unimportant. We do not agree with this point of view. In the third volume
of our book, we will see that the instant form of dynamics agrees with observations
better than other forms. This is one of our postulates.

Postulate 6.3 (instant form of dynamics). The unitary representation of the Poincaré
group acting in the Hilbert space of any interacting physical system belongs to the
instant form of dynamics.

6.3.1 General instant-form interaction

In the instant form, equations (6.14)–(6.17) simplify to

H = H0 + V , (6.18)
P = P0, (6.19)
J = J0, (6.20)
K = K0 + Z. (6.21)
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In particular, in the two-particle system we have

H = h1 + h2 + V , (6.22)
P = p1 + p2, (6.23)
J = j1 + j2, (6.24)
K = k1 + k2 + Z. (6.25)

The interaction operatorV in the HamiltonianH is usually called the potential energy.
By analogy, the operator Z will be referred to as the potential boost.

In accordancewith theprinciple of relativity, ten operators (6.18)–(6.21)must have
commutation relations (3.49)–(3.55). They are equivalent to the following set of com-
mutators for V and Z:

[J0,V] = [P0,V] = 0, (6.26)

[Zi,P0j] = −
iℏδij
c2

V , (6.27)

[J0i, Zj] = iℏ
3
∑
k=1

ϵijkZk , (6.28)

[K0i, Zj] + [Zi,K0j] + [Zi, Zj] = 0, (6.29)
[Z,H0] + [K0,V] + [Z,V] = 0. (6.30)

Thus, we reduced the problem of constructing a Poincaré-invariant theory of inter-
acting particles to finding a nontrivial solution (or solutions) for the system of equa-
tions (6.26)–(6.30) with respect to the yet unknown operators V and Z. These equa-
tions are necessary and sufficient conditions for the relativistic invariance of our the-
ory.

6.3.2 Bakamjian–Thomas construction

The system of equations (6.26)–(6.30) is rather complex. We will see later that it has
an infinite number of solutions. The first nontrivial group of solutions was obtained
by Bakamjian and Thomas [6]. Their idea was as follows. Instead of struggling with
ten generators {H ,P, J ,K} and their complex commutators, it is more convenient to
use the alternative set of operators {M,P,R, S} introduced in Subsection 4.3.5. Let us
denote by {M0,P0,R0, S0} and {M,P0,R, S} such alternative sets obtained by formulas
(4.43)–(4.45) from the noninteracting {H0,P0, J0,K0} and interacting {H ,P0, J0,K} sets
of generators, respectively. In a general instant form dynamics, all three operators R,
S andM can contain interaction terms. However, Bakamjian and Thomas tried to find
a simpler solution in which the center-of-energy position remained kinematical,

R ≡ −c
2

2
(KH−1 + H−1K) − c[P ×W]

MH(Mc2 + H)
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= R0 ≡ −
c2

2
(K0H

−1
0 + H

−1
0 K0) −

c[P0 ×W0]
M0H0(M0c2 + H0)

. (6.31)

This immediately implied that

S = J − [R × P] = J0 − [R0 × P0] = S0

(i. e., spin is kinematical aswell), and that interactionwas present only in the operator
of mass,

M = M0 + N . (6.32)

The desired operator of “potential mass” N is related to the total Hamiltonian by the
following formulas:

H = +√(M0 + N)2c4 + P20c2, (6.33)

N = 1
c2
√H2 − P20c2 −M0.

From commutators of the Poincaré algebra, we conclude that this operator must meet
the following requirements:

[P0,N] = [P0, c
−2√H2 − P20c2] = 0, (6.34)

[J0,N] = [J0, c
−2√H2 − P20c2] = 0, (6.35)

[R0,N] = [R0, c
−2√H2 − P20c2] =

H[R0,H] − c2P0

c2√H2 − P20c2
= 0. (6.36)

Thus, we succeeded in reducing the system of equations (6.26)–(6.30) to the simpler
problem of finding a single operator N with properties (6.34)–(6.36). Indeed, know-
ing this operator and the noninteracting operators {M0,P0,R0, S0}, we can recover not
only theHamiltonian (6.33), but also other generators by using formulas (4.47)–(4.48).
In particular,

K = − 1
2c2
(R0H + HR0) −

[P0 × S0]
Mc2 + H

, (6.37)

J = J0 = [R0 × P0] + S0. (6.38)

6.3.3 Example: two-particle system

Nowwe are going to construct the operator N in the case of a system consisting of two
massive spinless particles. In this case, the Newton–Wigner operator simplifies to10

R0 = −
c2K0
H0
=
h1r1 + h2r2
h1 + h2

,

10 Here, for brevity, we ignore the noncommutativity of operators and write, for example, K0/H0 in-
stead of the more correct (1/2)(K0H−10 + H

−1
0 K0).
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which justifies our interpretation of this quantity as the center-of -energy position.
Suppose that we were able to find two vector operators {ρ,π} such that they form the
Heisenberg algebra h3,

[ρi,πj] = iℏδij, (6.39)
[πi,πj] = [ρi, ρj] = 0, (6.40)

commuting with total observables {R0,P0}, so that

[π,P0] = [π,R0] = [ρ,P0] = [ρ,R0] = 0. (6.41)

The existence of the operators {ρ,π} can be guessed from the following heuristic
considerations [63]. In the two-particle Hilbert space we already have representations
of two mutually commuting Heisenberg algebras with generators {r1,p1} and {r2,p2},
respectively. The total observables {R0,P0} also form the Heisenberg algebra. Then,
according to Corollary I.4, there exists a unitary operator W that connects the two
algebras, so W{r1,p1}W−1 = {R0,P0}. Acting by the same transformation on {r2,p2},
we can obtain the desired algebra {ρ,π} =W{r2,p2}W−1, which satisfies all necessary
commutators (6.39)–(6.41).

Note that in the nonrelativistic (c → ∞) limit our total operators reduce to the
well-known expressions

PNR
0 = p1 + p2,

RNR
0 =

m1r1 +m2r2
m1 +m2

.

We would like to interpret the new observables as the relative momentum π and the
relative position ρ of the two-particle system, so that in the nonrelativistic limit

πNR =
m2p1 −m1p2
m1 +m2

, (6.42)

ρNR = r1 − r2 (6.43)

and the required commutators (6.39)–(6.41) are easily verified. For example,

[ρNRi ,π
NR
j ] =

m2[r1i, p1j] +m1[r2i, p2j]
m1 +m2

= iℏδij.

We already said that observables in the Hilbert space H1+2 depend on particle
observables {p1, r1;p2, r2}. Since this set is unitarily connected with {P0,R0,π,ρ}, any
observable can be also expressed as a function of {P0,R0,π,ρ}. In particular, the in-
teraction operator N, satisfying conditions [N ,P0] = [N ,R0] = 0, can depend only on
the relative operatorsπ andρ. To satisfy the last condition (6.34), [N , J0] = 0, it is suffi-
cient to require that N is an arbitrary function of rotationally invariant combinations,
so

N = N(π2, ρ2, (π ⋅ ρ)). (6.44)
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Thus, in our formulation the problem of constructing a relativistically invariant
interaction has been reduced to the search for operators of the relative position ρ and
momentum π satisfying equations (6.39)–(6.41) and approaching the limits (6.42)–
(6.43) as c →∞. This (rather difficult) mathematical problem was solved in a number
of works [6, 8, 63, 29, 17]. For our purposes, explicit expressions for the relative oper-
ators are not required, so we will not reproduce them here.

For systems of n massive spinless particles (n > 2), similar arguments are appli-
cable, but instead of one pair of relative observables π and ρ, one has to define n − 1
such pairs,

πr ,ρr , r = 1, 2, . . . , n − 1. (6.45)

These operators must form the Heisenberg algebra h3(n−1) commuting with total ob-
servables P0 and R0. Once these formulas are found, one can construct relativistic
interactions in the n-particle system by the Bakamjian–Thomas method, defining N
as a function of the rotationally invariant combinations of relative operators (6.45).
Then we have

N = N(π21 , ρ
2
1 , (π1 ⋅ ρ1),π

2
2 , ρ

2
2, (π2 ⋅ ρ2), (π1 ⋅ ρ2), (π2 ⋅ ρ1), . . .). (6.46)

An extension of this formalism to particles with spin is also possible.

6.3.4 Other variants of instant-form dynamics

In themethod of Bakamjian and Thomas, it was assumed thatR = R0, but this restric-
tion was rather artificial; pretty soon we will see that it is violated in real interactions.
So, we need to consider interactions in non-Bakamjian–Thomas forms as well, where
R ̸= R0. We are going to show that any such representation can be connected by a
unitary transformation with a Bakamjian–Thomas one.

Theorem 6.4 (Coester–Polyzou, Theorem 3.4 in [18]). A representation Ug of the Poin-
caré groupwith a strictly positivemass operatorM belongs to the instant form of dynam-
ics if and only if there is a unitary operatorW commuting with P0 and J0 and transform-
ing Ug into some Bakamjian–Thomas representation Vg of the Poincaré group. Then we
have

Ug =WVgW
−1. (6.47)

Proof. The direct statement of the theorem is easy to prove. Condition (6.47) implies
that Ug is a unitary representation of the Poincaré group, and the property [W,P0] =
[W, J0] = 0 guarantees the instant form of this representation.
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To prove the reverse claim, note that the positivity of the mass operator M guar-
antees the existence of the Newton–Wigner position operator11

R = −c
2

2
(KH−1 + H−1K) − c[P0 ×W0]

MH(Mc2 + H)

in the representation Ug . Consequently, Ug generates a reducible representation of
the Heisenberg algebra {R,P0}. Then, according to Corollary I.4, there is a unitary
transformationW−1 that takes operators {R,P0} to the noninteracting pair {R0,P0} =
W−1{R,P0}W. Obviously, this transformation takes Ug to some kind of Bakamjian–
Thomas representation Vg .

6.4 Cluster separability

Aswe sawabove, relativistic invariance imposes ratherweak restrictions on the choice
of interactions. For example, in the Bakamjian–Thomas method, the interaction op-
erator (6.46) could be chosen as any function of its arguments. However, not all such
functions are acceptable from the physical point of view. In particular, the interaction
operator must satisfy additional requirements of cluster separability, which will play
an important role in our studies.

6.4.1 Definition of cluster separability

From experience, we know that all interactions between particles vanish when the
particles are separated by large distances.12 So, if we remove particle 2 to infinity,13

then interaction (6.44) should turn to zero, so

lim
a→∞

e−
i
ℏp2 ⋅aN(π2, ρ2, (π ⋅ ρ))e

i
ℏp2 ⋅a = 0, (6.48)

or, using (6.33),

lim
a→∞

e−
i
ℏp2 ⋅aVe

i
ℏp2 ⋅a

= lim
a→∞

e−
i
ℏp2 ⋅a(√(M0 + N)2c4 + P20c2 − √M

2
0c4 + P

2
0c2)e

i
ℏp2 ⋅a = 0. (6.49)

This condition is not difficult to satisfy in the two-particle case.

11 Herewe take into account that in the instant form, operatorsP = P0 andW ≡ (P ⋅J) = (P0 ⋅J0) = W0
are interaction-free.
12 Here we do not consider hypothetical potentials between quarks, which supposedly grow as linear
functions of distance and lead to the “confinement” of quarks inside hadrons.
13 This can be achieved by applying the operator exp( iℏp2 ⋅ a), which performs the following space
translation of particle 2: exp( iℏp2 ⋅ a)r2 exp(−

i
ℏp2 ⋅ a) = r2 + a.
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A cluster-separable n-particle interaction (6.46) should be constructed in such a
way that every spatially isolatedm-particle group (m < n) behaves as if it were alone.
This, in particular, means that we cannot independently choose interactions in sys-
tems with different numbers of particles. Interaction in the n-particle sector of the
theory must be consistent with interactions in allm-particle sectors, wherem < n.

We will postulate that only cluster-separable interactions can exist in nature.

Postulate 6.5 (cluster separability of interactions). Physical interactions are cluster-
separable. This means that for any partitioning of an n-particle system (n ≥ 2) into
two spatially remote groups (or clusters), composed of l andm particles (l +m = n),
(1) the interaction also separates, i. e., the clustersmove independently of eachother;
(2) the interaction in each cluster is the same as in separate l-particle andm-particle

systems, respectively.

We require the property of cluster separability to be fulfilled for both potential
energy and potential boosts. For example, in the relativistic system of three massive
particles with interacting generators

H = H0 + V123(p1, r1;p2, r2;p3, r3),
K = K0 + Z123(p1, r1;p2, r2;p3, r3),

the cluster separability implies, in particular, that

lim
a→∞

e
i
ℏp3 ⋅aV123(p1, r1;p2, r2;p3, r3)e

− iℏp3 ⋅a = V12(p1, r1;p2, r2), (6.50)

lim
a→∞

e
i
ℏp3 ⋅aZ123(p1, r1;p2, r2;p3, r3)e

− iℏp3 ⋅a = Z12(p1, r1;p2, r2), (6.51)

where V12 and Z12 are interaction operators in the two-particle (1 + 2) system.

6.4.2 Examples of interaction potentials

Familiar nonrelativistic interactions from classical physics (Coulomb, gravitational,
etc.) certainly satisfy the postulate of cluster separability. For example, the nonrela-
tivistic Hamiltonian of the system of two charges is equal to

H = h1 + h2 + V12,

where the Coulomb interaction potential

V12 =
q1q2

4π|r1 − r2|
≡
q1q2
4πρ

(6.52)

satisfies condition (6.49):

lim
a→∞

e
i
ℏp2 ⋅aV12e

− iℏp2 ⋅a = lim
a→∞

q1q2
4π|r1 − r2 − a|

= 0.
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In the system of three charged particles shown in Figure 6.1 (a), the potential en-
ergy is obtained by simply adding together two-particle terms. We have

V123 = V12 + V13 + V23 =
q1q2

4π|r1 − r2|
+

q2q3
4π|r2 − r3|

+
q1q3

4π|r1 − r3|
. (6.53)

The distance between particle 3 and the cluster 1 + 2 can be increased by applying
spatial translation to particle 3, as shown in Figure 6.1 (b). In accordance with Pos-
tulate 6.5, this translation effectively destroys the interaction between clusters 3 and
1 + 2, i. e.,

lim
a→∞

e
i
ℏp3 ⋅a(V12 + V13 + V23)e

− iℏp3 ⋅a

= lim
a→∞
(

q1q2
4π|r1 − r2|

+
q2q3

4π|r2 − r3 − a|
+

q1q3
4π|r1 − r3 − a|

)

=
q1q2

4π|r1 − r2|
= V12.

As expected, this is the same potential (6.52) as in the isolated two-particle system.

Figure 6.1: Cluster-separable interaction in a system of three particles. (a) Three particles interact at
close distances. (b) When particle 3 is removed to infinity, its interaction with 1 + 2 vanishes, and the
dynamics in 1 + 2 acquires a form characteristic of a two-particle system.

In the nonrelativistic theory, the potential boost vanishes, Z = 0, so the separabil-
ity condition for boosts is trivial. Thus, both conditions (1) and (2) of Postulate 6.5
are satisfied, and interaction (6.53) is cluster-separable. As we will see in Subsec-
tions 6.4.4–6.4.6, the construction of a relativistic cluster-separable interaction is a
much more difficult task.

A simple counterexample of a nonseparable interaction can be constructed in the
case of four particles. The interaction Hamiltonian

V ∝ 1
|r1 − r2||r3 − r4|

(6.54)

is such that no matter how far apart the pairs of particles (1 + 2 and 3 + 4) are, the
distance in the pair 3 + 4 affects the force acting between particles 1 and 2 and vice
versa. Such interactions with an unlimited range of action are unknown in nature.
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6.4.3 Smooth potentials

Let us now introduce several definitions that will be useful in our discussions of clus-
ter separability. A smooth m-particle potential V (m) is an operator that depends on
dynamical variables14 of m particles and tends to zero when any subgroup of these
particles is removed to infinity.15 For example, potential (6.52) is smooth, while (6.54)
is not.

In the general case, a cluster-separable interaction in an n-particle system can be
written as the sum

V = ∑
{2}
V (2) +∑

{3}
V (3) + ⋅ ⋅ ⋅ + V (n), (6.55)

where ∑{2} V
(2) is the sum of smooth two-particle potentials over all pairs of particles;

∑{3} V
(3) is the sum of smooth three-particle potentials over all triplets of particles, etc.

The example in equation (6.53) is the sum of smooth two-particle potentials V (2). So,
in this case, we just set the smooth three-particle part of the potential equal to zero,
so V (3) = 0.

6.4.4 Nonseparability of Bakamjian–Thomas dynamics

Is it possible to observe theprinciples of cluster separability in theBakamjian–Thomas
relativistic theory? As we know, in this case the interaction is added only to the mass
operator (6.32), and the potential energy of a three-particle system takes the form

V123 = H − H0 = √(p1 + p2 + p3)2c2 + (M0 + N(p1, r1;p2, r2;p3, r3))
2c4

− √(p1 + p2 + p3)2c2 +M2
0c4.

Removing particle 3 to infinity, we obtain

lim
a→∞

e
i
ℏp3 ⋅aV123(p1, r1;p2, r2;p3, r3)e

− iℏp3 ⋅a

= √(p1 + p2 + p3)2c2 + (M0 + N(p1, r1;p2, r2;p3,∞))
2c4

− √(p1 + p2 + p3)2c2 +M2
0c4.

In accordance with the condition (6.50), the right-hand side should depend only on
observables of particles 1 and 2. However, this is only possible in the case when

N(p1, r1;p2, r2;p3,∞) = 0,

14 Positions, momenta and spins.
15 In Section 2.4 of Volume 2, it will become clear why we call such potentials smooth.
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i. e., when

lim
a→∞

e
i
ℏp3 ⋅aV123(p1, r1;p2, r2;p3, r3)e

− iℏp3 ⋅a = V12(p1, r1;p2, r2) = 0,

and the interaction in the two-particle sector 1+ 2 vanishes. Similarly, it can be shown
that interaction V123 should tend to zero, when either particle 1 or particle 2 is re-
moved to infinity. Hence, we conclude that V123 is a smooth three-particle potential.
This means that V123 is different from zero only when three or more particles are close
together, i. e., any interaction in two-particle subsystems is excluded, which is clearly
unphysical. Therefore, the Bakamjian–Thomas method cannot be used to construct a
nontrivial cluster-separable theory. The rigorous proof of this statement can be found
in [59].

6.4.5 Cluster-separable three-particle interaction

So, to build a relativistic cluster-separated theory, it is necessary to use non-Bakam-
jian–Thomas interactions in the instant form of dynamics. Our goal in this and the
following subsection is to present a nontrivial example of such a theory. In particular,
we are going to specify the energy and boost operators

H = H0 + V123,
K = K0 + Z123

in the Hilbert spaceH = H1⊗H2⊗H3 of a three-particle system.16 Here, V123 and Z123
are interaction operators, which we have to define in accordance with the postulate
of separability, Postulate 6.5. In this construction, we will follow the work of [18]; see
also [60].

Let us assume that we know two-particle potentials Vij and Z ij (i, j = 1, 2, 3, i ̸= j),
which are obtained by removing the third particle k ̸= i, j to infinity. For example, if
particle 3 is removed to infinity, the 3-particle operators take the form17

lim
a→∞

e
i
ℏp3 ⋅aHe−

i
ℏp3 ⋅a = H0 + V12 ≡ H12, (6.56)

lim
a→∞

e
i
ℏp3 ⋅aKe−

i
ℏp3 ⋅a = K0 + Z12 ≡ K12, (6.57)

lim
a→∞

e
i
ℏp3 ⋅aMe−

i
ℏp3 ⋅a =

1
c2
√H2

12 − P
2
0c2 ≡ M12, (6.58)

16 For simplicity we choose these particles to be massive and distinguishable.
17 Similar equalities are valid when particles 1 or 2 are removed to infinity. They are obtained from
(6.56)–(6.59) by cyclic permutation of the indices (1, 2, 3).
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lim
a→∞

e
i
ℏp3 ⋅aRe−

i
ℏp3 ⋅a = −

c2

2
(K12H

−1
12 + H

−1
12 K12) −

c[P0 ×W 12]
M12H12(M12c2 + H12)

≡ R12, (6.59)

where the interacting operators of energy H12, boost K12, massM12 and the center-of-
energy position R12 are assumed to be given in our construction.18

According to the cluster separability, when particles 1 and 2 are moved away from
each other, the operators V12 and Z12 should tend to zero. Therefore

lim
a→∞

e
i
ℏp1 ⋅aM12e

− iℏp1 ⋅a = M0, (6.60)

lim
a→∞

e
i
ℏp2 ⋅aM12e

− iℏp2 ⋅a = M0, (6.61)

lim
a→∞

e
i
ℏp3 ⋅aM12e

− iℏp3 ⋅a = M12. (6.62)

Nowwewould like to combine the given two-particle potentialsVij andZ ij in order
to obtain a cluster-separable three-particle interaction (V123,Z123). By a naïve analogy
with the nonrelativistic formula (6.53), we could have tried to define these interactions
as simple sums of two-particle potentials. However, as we shall see below, in the rel-
ativistic case this would not work: such simple sums violate Poincaré commutators.
Therefore, we come to the conclusion that

V123 ̸= V12 + V23 + V13,
Z123 ̸= Z12 + Z23 + Z13

and the relativistic addition of interactions should be done in a more complex way.

6.4.6 Relativistic addition of interactions

Operators {H12,K12,M12,R12}, see (6.56)–(6.59), define an instant-form representation
U12
g of the Poincaré group in the three-particle Hilbert space H . The corresponding

position operator R12 is generally different from the noninteracting Newton–Wigner
operator R0 (6.31) characteristic of the Bakamjian–Thomas dynamics. However, ac-
cording to Theorem 6.4, we can unitarily transform the representation U12

g in such a
way that it takes the Bakamjian–Thomas form with operators {H12,K12,M12,R0}. We
denote the unitary operator of this transformation by W12. The same considerations
can be repeated for the other two pairs of particles (1 + 3) and (2 + 3), so we can write
for i, j = 1, 2, 3, i ̸= j,

WijHijW
−1
ij = H ij,

18 Of course, these operators must depend only on interaction between the 1st and 2nd particle. The
Pauli–Lubanski operatorW 12 is a function (4.14) ofH12,K12 andnoninteracting operatorsP12 = p1+p2,
J12 = j1 + j2.
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WijK ijW
−1
ij = K ij,

WijMijW
−1
ij = Mij,

WijRijW
−1
ij = R0,

where operators Wij = {W12,W13,W23} commute with P0 и J0. Representations U ij
g

must become noninteracting when the distance between particles i and j tends to in-
finity. Therefore, for example,

lim
a→∞

e
i
ℏp3 ⋅aW13e

− iℏp3 ⋅a = 1, (6.63)

lim
a→∞

e
i
ℏp3 ⋅aW23e

− iℏp3 ⋅a = 1, (6.64)

lim
a→∞

e
i
ℏp3 ⋅aW12e

− iℏp3 ⋅a =W12. (6.65)

According to Bakamjian and Thomas, the mass operators Mij commute with R0. By
addingMij it is not difficult to construct a new mass operator, where interactions are
present symmetrically for all pairs, so

M ≡ M12 +M13 +M23 − 2M0

=W12M12W
−1
12 +W13M13W

−1
13 +W23M23W

−1
23 − 2M0.

By construction, this operator also commutes with R0. Hence it can be used to formu-
late a newBakamjian–Thomas representation, {H ,K ,M,R0}, where by formulas (4.46)
and (4.48)

H = √P20c2 +M
2c4, (6.66)

K = − 1
2c2
(R0H + HR0) −

[P0 × S0]
Mc2 + H

(6.67)

and all three particles interact with each other. As we already know from Subsec-
tion 6.4.4, in this representation the property of cluster separability does not hold. For
example, by removing particle 3 to infinity, we do not obtain the mass operator M12,
which is characteristic of the two-particle subsystem 1+ 2. Instead, we get an operator
that differs fromM12 by a unitary transformation,19

lim
a→∞

e
i
ℏp3 ⋅aMe−

i
ℏp3 ⋅a

= lim
a→∞

e
i
ℏp3 ⋅a(W12M12W

−1
12 +W13M13W

−1
13 +W23M23W

−1
23 − 2M0)e

− iℏp3 ⋅a

=W12M12W
−1
12 − 2M0 + lima→∞

(e
i
ℏp3 ⋅aM13e

− iℏp3 ⋅a + e
i
ℏp3 ⋅aM23e

− iℏp3 ⋅a)

=W12M12W
−1
12 − 2M0 + 2M0 =W12M12W

−1
12 . (6.68)

19 Here we apply formulas like (6.60)–(6.62) and (6.63)–(6.65).
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In order to achieve cluster separability, let us unitarily transform the representation
{H ,K ,M,R0, } into a new representation {H ,K ,M,R}, i. e.,

H =W−1HW, (6.69)

K =W−1KW, (6.70)

M =W−1MW, (6.71)

R =W−1R0W (6.72)

by choosing a unitary operator W, which removes the factors Wij and W−1ij on the
right-hand sides of equalities like (6.68). For the transformation W, we can take any
unitary operator with the following limits20:

lim
a→∞

e
i
ℏp3 ⋅aWe−

i
ℏp3 ⋅a =W12, (6.73)

lim
a→∞

e
i
ℏp2 ⋅aWe−

i
ℏp2 ⋅a =W13, (6.74)

lim
a→∞

e
i
ℏp1 ⋅aWe−

i
ℏp1 ⋅a =W23. (6.75)

It is easy to verify that one valid choice is

W = exp(lnW12 + lnW13 + lnW23).

Indeed, using equations (6.63)–(6.65), with this choice we get

lim
a→∞

e
i
ℏp3 ⋅aWe−

i
ℏp3 ⋅a

= lim
a→∞

e
i
ℏp3 ⋅a exp(lnW12 + lnW13 + lnW23)e

− iℏp3 ⋅a = exp(lnW12)

=W12.

Then one can show that the interacting representation of the Poincaré group, defined
by the operators {H ,K ,M,R}, satisfies all conditions of cluster separability (6.56)–
(6.59). For example,

lim
a→∞

e
i
ℏp3 ⋅aHe−

i
ℏp3 ⋅a

= lim
a→∞

e
i
ℏp3 ⋅aW−1HWe−

i
ℏp3 ⋅a = lim

a→∞
W−112 e

i
ℏp3 ⋅a√P20c2 +M

2c4e−
i
ℏp3 ⋅aW12

=W−112√P20c2 + (W12M12W
−1
12 )

2c4W12 = √P20c2 +M
2
12c4 = H12.

20 In addition, this operator must commute with P0 and J0 in order to preserve our chosen instant
form of dynamics.
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Thus, the interaction (6.69)–(6.72) solves the problem of the relativistic addition of
two-particle potentials Vij and Z ij, formulated in Subsection 6.4.5. The corresponding
representation does not belong to the Bakamjian–Thomas form.

Obviously, the above method is extremely cumbersome. Moreover, it is not at all
obvious how to apply this construction to realistic systems, where the number of par-
ticles can change. In the second volume, we will consider another approach for con-
structing separable relativistic interactions, which turns out to be more practical. It
will be based on the idea of quantum fields.

6.5 Bound states and time evolution

We have already mentioned that the knowledge of the representation Ug of the
Poincaré group in the Hilbert spaceH of a multiparticle system is sufficient to obtain
any desired physical information about this system. Here we are going to illustrate
this statement by considering two types of data comparable to experiments: the
mass/energy spectrum and the time evolution of observables. In Chapter 7, we will
discuss scattering experiments, which are currently the most informative approach to
studying microscopic systems.

6.5.1 Spectra of mass and energy operators

The mass operator in a noninteracting two-particle system can be expressed through
particle observables as follows:

M0 = +
1
c2
√H2

0 − P
2
0c2 = +

1
c2
√(h1 + h2)2 − (p1 + p2)2c2

= +
1
c2
√(√m2

1c4 + p21c2 + √m2
2c4 + p

2
2c2)

2
− (p1 + p2)2c2. (6.76)

The particle momenta p1 and p2 are allowed to take any values in the 3D momentum
space, thus eigenvalues μn of the mass operator form a continuous spectrum in the
interval

m1 +m2 ≤ μn < ∞, (6.77)

where the lower limitm1 +m2 is obtained from (6.76), when both particles are at rest,
so p1 = p2 = 0. It then follows that the common spectrum of the mutually com-
muting operators P0 and H0 = +√M2

0c4 + P
2
0c2 is a union of mass hyperboloids21 in

the 4D energy–momentum space. This spectrum is shown by the hatched area in Fig-
ure 6.2 (a).

21 With masses μn from the interval (6.77).
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Figure 6.2: Typical energy–momentum spectrum in a two-particle system. (a) Noninteracting.
(b) Interacting.

In the presence of interaction, the eigenvalues μn of the mass operator M = M0 + N
can be found by solving the stationary Schrödinger equation

(M0 + N)|Ψn⟩ = μn|Ψn⟩. (6.78)

If the interactionN is sufficientlyweak, then the spectrumofM remains close to (6.77).
For example, ifN is an attractive potential (i. e., the characteristic interaction energies
are negative), then several discrete levels with masses μβ < m1 + m2 and energy hy-
perboloids hβ = √μ2βc

4 + p2c2 can split off from the continuous noninteracting mass
spectrum, as shown in Figure 6.2 (b). The corresponding eigenvectors are called bound
states, since their wave functions, as a rule, describe two particles that are in close
proximity to eachother. The simplest realistic examplewhosemass spectrumcontains
both continuous and discrete parts is the hydrogen atom, which will be discussed in
Section 3.2 of the third volume.

Themass eigenvalues μn are strongly degenerate. For example, if |Ψn⟩ is an eigen-
vector corresponding to the mass eigenvalue μn, then for any element of the Poincaré
group g, the vector Ug |Ψn⟩ is also an eigenvector with the same mass. Indeed,22

M(Ug |Ψn⟩) = UgM|Ψn⟩ = Ugμn|Ψn⟩ = μn(Ug |Ψn⟩).

The operators {P0,H ,M} form a commuting set. Hence, there exists a basis of common
eigenvectors |Ψp,n⟩ such that

M|Ψp,n⟩ = μn|Ψp,n⟩,

P0|Ψp,n⟩ = p|Ψp,n⟩,

H|Ψp,n⟩ = √M2c4 + P2c2|Ψp,n⟩ = √μ2nc4 + p2c2|Ψp,n⟩.

22 We used the fact thatM is a Casimir operator that commutes with all representatives Ug . This also
means that eigensubspaces with fixed masses μn are invariant under Poincaré group actions.
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In applications, we are more often interested in systems at rest (p = 0). For them,
there is a simple relationship betweenmass and energy,H = Mc2, and the Schrödinger
equation (6.78) is commonly written for eigenvectors and eigenvalues of the Hamilto-
nian

H|Ψ0,n⟩ = En|Ψ0,n⟩. (6.79)

6.5.2 Perturbation theory

Quite often we have to deal with the following problem. Suppose that we know the
complete solution for the spectrum of the Hamiltonian H, that is, we know the eigen-
valuesEn and the eigenvectors |Ψn⟩ that are solutions of the eigenvalue problem (6.79).
How would this spectrum change if a small perturbationW is added to the Hamilto-
nian H? This problem is solved practically in all textbooks on quantum mechanics.
Here we simply reproduce the final result, which will be useful in future calculations.

We choose one nondegenerate state |Ψ⟩ = |Ψm⟩ in the discrete spectrum with
energy E = Em. The new energy E󸀠 can be represented as a perturbation theory series,

E󸀠 = E + ΔE(1) + ΔE(2) + ⋅ ⋅ ⋅ ,

where the first-order correction is simply the matrix element of the perturbation oper-
ator

ΔE(1) = ⟨Ψ|W |Ψ⟩ (6.80)

and the second-order correction

ΔE(2) = ∑
n ̸=m

⟨Ψ|W |Ψn⟩⟨Ψn|W |Ψ⟩
E − En

(6.81)

requires summation over the complete basis of eigenstates of the unperturbed Hamil-
tonian H.

6.5.3 Once again about the Doppler effect

In Subsection 5.4.5 we discussed the Doppler effect by calculating photon energies ei-
ther measured by a moving observer or emitted by a moving source. To do this, we
applied a boost transformation (5.70) to the energy E of a free massless photon. How-
ever, it is instructive to look at this problemalso froma different point of view. Photons
are usually radiated by compoundmassive systems (atoms, molecules, nuclei, etc.) in
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Figure 6.3: Diagram of energy levels in a bound system. The excited state of the system at rest is
represented by the point A. Radiative transitions to the ground state are indicated by arrows.

transitions between two stationary energy levels E2 and E1, so that the photon energy
can be found from the energy conservation law.23

When the source moves relative to the observer (or the observer moves relative to
the source), the energy levels E1 and E2 undergo an inertial transformation according
to equation (4.4). Let us check that the Doppler shift calculated by this formula coin-
cides with the result obtained in Subsection 5.4.5. This will give us additional confi-
dence in the consistency of our theory.

Suppose that the composite system emitter has two bound states characterized by
mass eigenvalues μ1 and μ2 > μ1 (see Figure 6.3). Suppose also that initially the system
was in the excited state (point B in Figure 6.3) with mass μ2, total momentum p2 and
energy E2 = √μ22c4 + p

2
2c2. In the final state, we have the same system with a smaller

mass μ1. Due to recoil, the final state of the emitter has a different momentum p1 and
energy E1 = √μ21c4 + p21c2. In addition, a photon with momentum k and energy ck is
created. From the conservation laws, we can write

p2 = p1 + k,
E2 = E1 + ck,

√μ22c4 + p
2
2c2 = √μ

2
1c4 + p21c2 + ck = √μ21c4 + (p2 − k)2c2 + ck.

Squaring both sides of the last equality, we obtain

k√μ21c2 + (p2 − k)2 =
1
2
(Δμ)2c2 + p2k cosφ

󸀠 − k2,

23 Actually, the transition energy E = E2 − E1 does not have a sharp definition, because the excited
state, strictly speaking, is not stationary, i. e., it is not an eigenstate of the energy operator (see Sec-
tion 4.1 in Volume 3). Therefore, our discussion in this subsection is only valid approximately for long-
living levels whose width can be neglected.



148 | 6 Interaction

where (Δμ)2 ≡ μ22 − μ
2
1 and φ󸀠 is the angle between vectors p2 and k.24 Again raising

both sides into a square, we obtain the following quadratic equation:

k2(μ22c
2 + p22 − p

2
2 cos

2 φ󸀠) − k(Δμ)2c2p2 cosφ
󸀠 −

1
4
(Δμ)4c4 = 0,

with the solution25

k = (Δμ)2c2

2μ22c2 + 2p
2
2 sin

2 φ󸀠
(p2 cosφ

󸀠 + √μ22c2 + p
2
2).

Denoting by θ the rapidity of the initial state, we get p2 = μ2c sinh θ, √μ22c2 + p
2
2 =

μ2c cosh θ and

k = (Δμ)
2c(sinh θ cosφ󸀠 + cosh θ)

2μ2(cosh
2 θ − sinh2 θ cos2 φ󸀠)

=
(Δμ)2c

2μ2 cosh θ(1 −
v
c cosφ

󸀠)
.

Multiplying both parts by c, we get the energy of the emitted photon,

E(θ,φ󸀠) ≡ ck = E(0)
cosh θ(1 − v

c cosφ
󸀠)
, (6.82)

where E(0) = (Δμ)2c2/(2μ2) is the energy of the photon emitted by the source at rest
(θ = 0). Formula (6.82) coincides with our previous result (5.74).

6.5.4 Time evolution

In addition to the stationary energy spectra described above, we are often interested
in the time evolution of many-particle systems. In quantum theory, the progression
from time t0 (earlier) to time t (later) is described by the time evolution operator

U(t ← t0) = e
− iℏH(t−t0). (6.83)

This operator has the following useful properties:

U(t ← t0) = e
− iℏH(t−t

󸀠)e−
i
ℏH(t
󸀠−t0) = U(t ← t󸀠)U(t󸀠 ← t0), (6.84)

U(t ← t0) = U
−1(t0 ← t) (6.85)

for all t ≥ t󸀠 ≥ t0.

24 Note also that vector k is directed from the light source to the observer, so angle φ󸀠 has the same
interpretation as in Subsection 5.4.5.
25 Only the positive sign of the square root leads to the physical solution with a positive k.
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In the Schrödinger picture the time evolution of the state vector from time t0 to
time t is (5.55)

|Ψ(t)⟩ = U(t ← t0)|Ψ(t0)⟩ = e
− iℏH(t−t0)|Ψ(t0)⟩. (6.86)

The time-dependent state vector |Ψ(t)⟩ is also a solution of the time-dependent
Schrödinger equation

iℏ d
dt
|Ψ(t)⟩ = iℏ d

dt
e−

i
ℏH(t−t0)|Ψ(t0)⟩ = He

− iℏH(t−t0)|Ψ(t0)⟩ = H|Ψ(t)⟩. (6.87)

Despite a deceptively simple appearance of formula (6.86), the calculation of the ex-
ponent exp(− iℏHt) is an extremely difficult task. In rare cases when all eigenvalues En
and eigenvectors |Ψ⟩n of H are known,

H|ψn⟩ = En|ψn⟩

and the initial state can be represented as the sum (and/or integral) of the basis eigen-
vectors

|Ψ(t0)⟩ = ∑
n
Cn|ψn⟩,

the time evolution can be obtained in a closed form

|Ψ(t)⟩ = e−
i
ℏH(t−t0)|Ψ(t0)⟩ = e

− iℏH(t−t0)∑
n
Cn|ψn⟩ = ∑

n
Cne
− iℏ En(t−t0)|ψn⟩. (6.88)

There is another useful formula for the time evolution in a theory with the Hamil-
tonian H = H0 + V . Introducing the notation

V(t) = e
i
ℏH0(t−t0)Ve−

i
ℏH0(t−t0),

it is not difficult to verify that the following time-dependent state vector26

|Ψ(t)⟩ = e−
i
ℏH0(t−t0)(1− i

ℏ

t

∫
t0

V(t󸀠)dt󸀠 − 1
ℏ2

t

∫
t0

V(t󸀠)dt󸀠
t󸀠

∫
t0

V(t󸀠󸀠)dt󸀠󸀠 + ⋅ ⋅ ⋅)|Ψ(t0)⟩ (6.89)

satisfies the Schrödinger equation (6.87) with the additional condition that for t = t0
this solution coincides with the given initial state |Ψ(t0)⟩. Indeed,

iℏ d
dt
|Ψ(t)⟩ = iℏ d

dt
e−

i
ℏH0(t−t0)

× (1 − i
ℏ

t

∫
t0

V(t󸀠)dt󸀠 − 1
ℏ2

t

∫
t0

V(t󸀠)dt󸀠
t󸀠

∫
t0

V(t󸀠󸀠)dt󸀠󸀠 + ⋅ ⋅ ⋅)|Ψ(t0)⟩

26 Note that integration variables are related by the inequalities t ≥ t󸀠 ≥ t󸀠󸀠 ≥ ⋅ ⋅ ⋅ ≥ t0.
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= H0e
− iℏH0(t−t0)

× (1 − i
ℏ

t

∫
t0

V(t󸀠)dt󸀠 − 1
ℏ2

t

∫
t0

V(t󸀠)dt󸀠
t󸀠

∫
t0

V(t󸀠󸀠)dt󸀠󸀠 + ⋅ ⋅ ⋅)|Ψ(t0)⟩

+ e−
i
ℏH0(t−t0)V(t)(1 − i

ℏ

t

∫
t0

V(t󸀠󸀠)dt󸀠󸀠 + ⋅ ⋅ ⋅)|Ψ(t0)⟩

= (H0 + V)|Ψ(t)⟩.

We will find formula (6.89) useful in our discussion of scattering in Subsection 7.1.4.
Unfortunately, the above methods for calculating the time evolution of quantum

systems have very limited practical applications. Complete spectra of eigenvalues and
eigenvectors of the interacting Hamiltonian H are known only for the simplest mod-
els. The convergence of the perturbation series (6.89) is usually very slow. Therefore,
time evolution calculations in quantum mechanics are not an easy task. Fortunately,
there are two areas where we can make significant progress in solving this problem.
First, there is an important class of scattering experiments, which do not require a de-
tailed description of the time evolution of quantum states. The formalism of scattering
theory will be discussed in Chapter 7. Second, in many cases, quantum effects are too
small to influence observations. Then, it is useful to turn to the limit ℏ → 0 and con-
sider classical trajectories of particles.Wewill deal with the classical limit of quantum
mechanics in the next section.

6.6 Classical Hamiltonian dynamics

There are many studies devoted to the so-called problem of quantization. This means
that given a classical theory one tries to build a corresponding quantum analog. How-
ever, ourworld is fundamentally quantum, and its classical description is a very rough
approximation. The construction of an exact theory, based on its approximate special
case, is not a well-posed mathematical problem. It is easier to justify the opposite di-
rection of research, i. e., the construction of an (approximate) classical theory, based
on its (exact) quantum analog.

In Section 1.4 we found that distributive (classical) systems of propositions are
special cases of orthomodular (quantum) logics. Therefore, we can expect that quan-
tum mechanics includes classical mechanics as a particular case in the limit ℏ → 0.
However, it remains unclear how the phase space of classical mechanics is related
to the quantum Hilbert space. We are going to analyze this relationship in this sec-
tion. For simplicity, as an example,we choose one spinless particlewith nonzeromass
m > 0.
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6.6.1 Quasiclassical states

In themacroscopicworld of classicalmechanics, we do not encounter localized eigen-
states |r⟩ of the position operator. In accordancewith equation (5.41), such statesmust
have infinitely large uncertainty of themomentum,which is rather unusual. Similarly,
we do not encounter states |p⟩ with well-defined momentum. Such states must be
spread across the entire position space (5.44). The reason why the states like |r⟩ or |p⟩
rarely show up in experiments27 is not very clear yet. Possibly, the eigenstates of the
position ormomentum are unstable with respect to small perturbations28 and quickly
transform into more stable wave packets or quasiclassical states where both position
and momentum have good, but not perfect, localization.

Thus, in discussing the classical limit of quantummechanics,wewill not consider
general quantum states, but confine ourselves to the class of quasiclassical states of
particles |Ψr0 ,p0⟩ whose wave functions are well localized both in the position and
momentum spaces near the points r0 and p0, respectively. Without loss of generality,
any such wave function can be written in the position representation as follows:

ψr0 ,p0 (r) ≡ ⟨r|Ψr0 ,p0⟩ = η(r − r0)e
i
ℏϕe

i
ℏp0 ⋅(r−r0), (6.90)

where η(r − r0) is a real smooth (nonoscillating) function with a peak near the expec-
tation value of the position r0, and ϕ is a real phase;29 see Figure 6.4. The last factor
in (6.90) ensures that the expectation value of the momentum is equal to p0 (compare
with (5.44)).

Figure 6.4: A typical quasiclassical wave packet. Only
the real part of the complex wave function is shown.

27 Spatially delocalized states of particles play a role in low-temperature effects such as supercon-
ductivity and superfluidity and also in lasers.
28 For example, due to thermal fluctuations or external radiation.
29 The introduction of the unimodular phase factor (|exp( iℏϕ)| = 1) may seem superfluous, because
any wave function is defined only up to a factor anyway. However, we will see that the factor exp( iℏϕ)
is useful for discussing the interference experiment in Subsection 6.6.6 and also in analyzing the
Aharonov–Bohm effect in Volume 3.
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As we shall see later, for a qualitative discussion of the classical limit, the choice of
the function η(r − r0) is not so important. For example, it is often convenient to select
it in the Gaussian form

ψr0 ,p0 (r) = Ne
−(r−r0)2/d2e

i
ℏp0 ⋅(r−r0), (6.91)

whereparameterd controls thedegreeof localization in space and the factorN ensures
the normalization

∫ dr|ψr0 ,p0 (r)|
2 = 1.

The exact value of this factor does not play any role in our discussion, so we will not
calculate it here.

6.6.2 Heisenberg uncertainty relation

Wave functions of the type (6.91) cannot have sharp values of both position and mo-
mentum simultaneously. They are characterized by uncertainties of both the position
Δr > 0 and the momentum Δp > 0. These uncertainties are inversely proportional to
each other. To understand the nature of this inverse proportionality, let us assume for
simplicity that the particle is at rest in the origin; r0 = p0 = 0. Then the position–space
wave function is

ψ0,0(r) = Ne
−r2/d2 (6.92)

and its momentum counterpart is30

ψ0,0(p) =
N
(2πℏ)3/2

∫ dre−r
2/d2e−

i
ℏp⋅r =

Nd3

(2ℏ)3/2
e−p

2d2/(4ℏ2). (6.93)

The product of the two uncertainties

Δp ≈ 2ℏ
d

(6.94)

and Δr ≈ d does not depend on the localization parameter d, as

ΔrΔp ≈ 2ℏ.

This is an example of the Heisenberg uncertainty relation, which in its exact form
claims that for all quantum states the above deltas obey the famous inequality

ΔrΔp ≥ ℏ/2. (6.95)

30 Here we used equation (5.48) and the integral

∫ dre−ar
2+b⋅r = (π/a)3/2 exp(−b2/(4a)).
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6.6.3 Spreading of quasiclassical wave packets

Suppose that at the time t = 0 the particle was prepared in a statewith awell-localized
wave function (6.92), and the uncertainty of the position Δr ≈ d was rather small. The
time dependence of the correspondingmomentumwave function (6.93) is found fairly
easy, as we have

ψ(p, t) = e−
i
ℏ Ĥtψ0,0(p,0) =

Nd3

(2ℏ)3/2
e−p

2d2/(4ℏ2)e−
it
ℏ
√m2c4+p2c2 . (6.96)

Returning to the position representation,we obtain the time-dependentwave packet31

ψ(r, t) = Nd3

(4πℏ2)3/2
∫ dpe−p

2d2/(4ℏ2)e
i
ℏp⋅re−

it
ℏ
√m2c4+p2c2

≈
Nd3

(4πℏ2)3/2
e−

i
ℏmc

2t ∫ dp exp(−p2( d
2

4ℏ2
+

it
2ℏm
) +

i
ℏ
p ⋅ r)

= N( d2m
d2m + 2iℏt

)
3/2
e−

i
ℏmc

2t exp(− mr2

d2m + 2iℏt
).

The corresponding probability density is

ρ(r, t) = |ψ(r, t)|2 = |N |2( d4m2

d4m2 + 4ℏ2t2
)
3
exp(− 2r2d2m2

d4m2 + 4ℏ2t2
).

The size of the wave packet at large times t →∞ can be estimated as

Δr(t) ≈ √d
4m2 + 4ℏ2t2
d2m2 ≈

2ℏt
dm
.

So, over time the position wave function spreads out in space, and the velocity vs of
this spreading is directly proportional to the uncertainty of the velocity in the initial
state. Using equation (6.94)), we have

vs ≈
2ℏ
dm
≈
Δp
m
. (6.97)

At large times this velocity does not depend on the shape of the initial wave packet.
The only essential parameters are the initial size d of the packet and themassm of the
particle.

A simple estimate shows that for macroscopic objects this “spreading” phe-
nomenon does not matter. For example, for a particle with the mass of m = 1mg

31 Due to the factor exp(−p2d2/(4ℏ2)), only small momentum values contribute to the integral, so we
have used the nonrelativistic approximation√m2c4 + p2c2 ≈ mc2 + p2/(2m).
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and the initial position uncertainty of d = 1micron, the wave function spreads to a
size of 1 cm in 2 × 1011 years. Therefore, in quasiclassical states of macroscopic par-
ticles, their positions and momenta are always determined with high precision, and
their time evolution is satisfactorily described in the language of classical trajecto-
ries. In these cases, quantummechanics can be replaced by the classical one without
much error.

6.6.4 Phase space

Let us now clarify how the laws of classical dynamics follow from the quantum
Schrödinger equation.

In classical physics,where the resolutionofmeasuringdevices is poor,32 the shape
of quasiclassical wave packets η(r − r0) cannot be discerned. In such situations, all
quantum states (6.90) with different localized shapes η(r − r0) look indistinguishable,
and they are perceived as one and the same classical state. Hence, each (quasi)classi-
cal state |Ψr0 ,p0⟩ is completely characterized by only two numbers: the average posi-
tion of the packet r0 and its averagemomentum p0. These states are also approximate
eigenstates of both position and momentum operators,

R|Ψr0 ,p0⟩ ≈ r0|Ψr0 ,p0⟩, (6.98)

P|Ψr0 ,p0⟩ ≈ p0|Ψr0 ,p0⟩, (6.99)

and they can be represented by a single point (r0,p0) in the six-dimensional spaceℝ6

with coordinates {rx , ry , rz , px , py , pz}. This is the classical single-particle phase space,
which we discussed from the logico-probabilistic point of view in Section 1.2.

Weknow that each one-particle quantumobservableF canbe expressed as a func-
tion of the particle’s position r and momentum p.33 Hence, in the classical world, all
observables are represented by real functions f (r,p) on the phase space, as expected.

6.6.5 Poisson bracket

We can continue the above line of reasoning and translate all quantum concepts into
the classical phase space language. It is especially instructive to see what is the clas-
sical analog of the quantum commutator.

In quantummechanics, commutators play two important roles. First, the commu-
tator of two observables determines whether they can be measured simultaneously,

32 Namely, in some sense poorer than the quantum of the action ℏ [48].
33 For example, energy h = √m2c4 + p2c2, angular momentum j = [r × p], velocity v = pc2/h, etc.
Recall that massm is just a numerical factor in the particle’s Hilbert space.
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i. e., whether there are states in which both observables have well-defined values. In
accordancewith (3.49)–(3.55), commutators of basic quantumobservables are propor-
tional to ℏ, so that in the classical limit ℏ → 0 all operators of observables commute
with each other. Therefore, all classical observables are compatible, i. e., simultane-
ously measurable. This agrees with our Theorem B.14, which establishes the compat-
ibility of all propositions in classical logic. Second, quantum commutators between
observables and generators of the Poincaré group determine how these observables
are transformed from one reference frame to another. One example of such a trans-
formation is the time translation (3.61). In the classical limit ℏ → 0, all multiple com-
mutators on the right-hand side of (3.61) tend to zero as ℏn, but they are multiplied
by large factors (−i/ℏ)n. So, in the limit ℏ → 0 the right-hand side’s dependence on ℏ
disappears and we get

F(t) = F − [H , F]Pt +
1
2
[H , [H , F]P]Pt

2 + O(t3), (6.100)

where the limit

[f , g]P ≡ lim
ℏ→0

−i
ℏ
[f (r,p), g(r,p)] (6.101)

is called the Poisson bracket.
Our next task is to derive a convenient explicit formula for calculating Poisson

brackets (6.101). The exact commutator of two quantum-mechanical operators f (r,p)
and g(r,p) can be written as an expansion in powers of ℏ,

[f , g] = iℏk1 + iℏ
2k2 + iℏ

3k3 + O(ℏ
4),

where ki are some Hermitian operators. From equation (6.101) it should be clear that
the Poisson bracket is equal to the coefficient of the dominant first-order term:

[f , g]P = k1.

As a consequence, the classical Poisson bracket [f , g]P is much easier to compute than
the complete quantum commutator [f , g]. The following theorem shows that such a
calculation can be reduced to simple differentiation.

Theorem 6.6 (Poisson bracket). If f (r,p) and g(r,p) are two observables of a massive
spinless particle, then

[f (r,p), g(r,p)]P =
𝜕f
𝜕r
⋅
𝜕g
𝜕p
−
𝜕f
𝜕p
⋅
𝜕g
𝜕r
. (6.102)

Proof. For simplicity, we consider the one-dimensional case (the 3D proof is very sim-
ilar), in which the desired result (6.102) becomes

[f (r, p), g(r, p)]P ≡ limℏ→0
−i
ℏ
[f (r, p), g(r, p)] = 𝜕f

𝜕r
⋅
𝜕g
𝜕p
−
𝜕f
𝜕p
⋅
𝜕g
𝜕r
. (6.103)
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Suppose that functions f (r, p) and g(r, p) can be represented by their Taylor ex-
pansions near the center of the phase space (r = 0, p = 0), i. e.,

f (r, p) = C00 + C10r + C01p + C11rp + C20r
2 + C02p

2 + C21r
2p + ⋅ ⋅ ⋅ ,

g(r, p) = D00 + D10r + D01p + D11rp + D20r
2 + D02p

2 + D21r
2p + ⋅ ⋅ ⋅ ,

where Cij and Dij are numerical multipliers and we agree to write factors rn to the left
from factors pm. Then it suffices to prove formula (6.103) in the case where f and g are
monomials of the form rnpm. In particular, we would like to prove that

[rnpm, rqps]P =
𝜕(rnpm)
𝜕r
𝜕(rqps)
𝜕p
−
𝜕(rnpm)
𝜕p
𝜕(rqps)
𝜕r

= nsrn+q−1pm+s−1 −mqrn+q−1pm+s−1

= (ns −mq)rn+q−1pm+s−1 (6.104)

for all integer powers n,m, q, s ≥ 0. This result is definitely true if f and g are linear
functions of r and p. For example, in the case where n = s = 1, m = q = 0, formula
(6.104) yields

[r, p]P = 1,

which agrees with our definition (6.101) and with the quantum result (4.25).
To prove (6.104) for higher powers, we use mathematical induction. Suppose that

we succeed in proving the validity of (6.104) for the set of powers n,m, q, s and for all
lower powers n󸀠,m󸀠, q󸀠, s󸀠, where n󸀠 ≤ n, m󸀠 ≤ m, q󸀠 ≤ q and s󸀠 ≤ s. Then we have to
establish the following relations:

[rnpm, rq+1ps]P = (ns −mq −m)r
n+qpm+s−1,

[rnpm, rqps+1]P = (ns −mq + n)r
n+q−1pm+s,

[rn+1pm, rqps]P = (ns −mq + s)r
n+qpm+s−1,

[rnpm+1, rqps]P = (ns −mq − q)r
n+q−1pm+s.

We consider only the first equality (the other three are proved similarly). Using (4.33),
(6.104) and (E.12) we, indeed, obtain

[rnpm, rq+1ps]P = − limℏ→0
i
ℏ
[rnpm, rq+1ps] = − lim

ℏ→0

i
ℏ
[rnpm, r]rqps − lim

ℏ→0

i
ℏ
r[rnpm, rqps]

= [rnpm, r]Pr
qps + r[rnpm, rqps]P = −mr

n+qpm+s−1 + (ns −mq)rn+qpm+s−1

= (ns −mq −m)rn+qpm+s−1.

Therefore, by induction, equation (6.103) holds for all powers n,m, q, s ≥ 0 and for all
smooth functions f (r, p) and g(r, p).
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As a concrete example, let us apply the Poisson bracket formalism to the time
evolution. From (6.100) we obtain the classical Liouville equation

dF(t)
dt
= [F,H]P , (6.105)

which is an analog of the quantum Heisenberg equation (3.62). Applying (6.105) to a
particle’s momentum and position, we obtain the familiar classical Hamilton equa-
tions of motion

dp(t)
dt
= [p,H(r,p)]P = −

𝜕H(r,p)
𝜕r
, (6.106)

dr(t)
dt
= [r,H(r,p)]P =

𝜕H(r,p)
𝜕p
. (6.107)

6.6.6 Time evolution of wave packets

Our results (6.106)–(6.107) imply, in particular, that trajectories of centers of quasi-
classical wave packets coincide with predictions of classical Hamiltonian mechanics.
In this subsection we would like to demonstrate in more detail how this conclusion
follows from solutions of the Schrödinger equation (5.57).

Earlier in this section, we found out that in many cases the spreading of quasi-
classical wave packets can be neglected and that the center of the packet moves along
a well-defined trajectory (r0(t),p0(t)). Substituting this (as yet undefined) trajectory
in (6.90) and assuming that the phase ϕ(t) also depends on time, we arrive at the fol-
lowing ansatz:

Ψ(r, t) = η(r − r0(t)) exp(
i
ℏ
Ω(t)), (6.108)

where we denote

Ω(t) ≡ p0(t) ⋅ (r − r0(t)) + ϕ(t) (6.109)

and r0(t),p0(t),ϕ(t) are numerical functions thatwehave to determine. Nowwe insert
(6.108)–(6.109) into the Schrödinger equation (5.57)

iℏ𝜕Ψ(r, t)
𝜕t
+
ℏ2

2m
𝜕2Ψ(r, t)
𝜕r2
− V(r)Ψ(r, t) = 0, (6.110)

which is valid for the position–space wave function Ψ(r, t) of one particle moving in
an external potential V(r).34 For brevity, we omit time arguments, use dots to denote

34 Herewemade several assumptions and approximations to simplify our calculations. First, we con-
sider a particlemoving in afixedpotential. This systemdoesnot belong to the class of isolated systems,
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time derivatives and rewrite the three terms on the left-hand side of (6.110) separately.
Then we have

iℏ𝜕Ψ(r)
𝜕t
= (−iℏ(𝜕η

𝜕r
⋅ ̇r0) − (ṗ0 ⋅ r)η + (ṗ0 ⋅ r0)η + (p0 ⋅ ̇r0)η − ϕ̇η) exp(

i
ℏ
Ω),

ℏ2

2m
𝜕2Ψ(r)
𝜕r2
=
ℏ2

2m
(
𝜕2η
𝜕r2
+
2i
ℏ
(
𝜕η
𝜕r
⋅ p0) −

p20η
ℏ2
) exp( i
ℏ
Ω),

−V(r)Ψ(r) ≈ (−V(r0)η −
𝜕V(r)
𝜕r
|r=r0 (r − r0)η) exp(

i
ℏ
Ω).

Here we find three types of terms: those proportional to ℏ0, ℏ1 and ℏ2. They should
vanish independently. The terms proportional to ℏ2 are too small; they are beyond the
accuracy of the quasiclassical approximation and they can be neglected. The terms
proportional to ℏ lead to the equation ̇r0 =

p0
m , which is the usual velocity–momentum

relationship in momentum-independent potentials.35 The terms ℏ0 lead to the equa-
tion

0 = −(ṗ0 ⋅ r) + (ṗ0 ⋅ r0) + (p0 ⋅ ̇r0) − ϕ̇ −
p20
2m
− V(r0) −

𝜕V(r)
𝜕r

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨r=r0
(r − r0) + ⋅ ⋅ ⋅

=
p20
2m
− ϕ̇ − V(r0) + (−ṗ0 −

𝜕V(r)
𝜕r

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨r=r0
)(r − r0) + ⋅ ⋅ ⋅ .

The right-hand side can be regarded as the beginning of a Taylor series for some func-
tion of r near the initial value r = r0. Hence, both the constant term and the term
proportional to (r − r0)must go to zero independently. The vanishing parenthesis im-
plies

ṗ0 = −
𝜕V(r)
𝜕r

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨r=r0
,

which is the first Hamilton equation (6.106). Setting the first (r-independent) term to
zero results in the following equation for the phase function ϕ(t):

𝜕ϕ
𝜕t
=
p20(t)
2m
− V(r0(t)).

which is the main subject of our book. Nevertheless, our approximation is completely justified in the
case when the object creating the potential V(r) is so heavy that it can be regarded as fixed. Second,
the potential V(r) is assumed to be independent of the particle momentum p. Thus, we work in the
nonrelativistic approximation with the Hamiltonian H = p2/(2m) + V(r) = −ℏ2/(2m)𝜕2/𝜕r2 + V(r).
35 This is also the second Hamilton equation (6.107).
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The solution of this equation within the time interval [t0, t] is given by the so-called
action integral,36

ϕ(t) = ϕ(t0) +
t

∫
t0

dt󸀠[
p20(t
󸀠)

2m
− V(r0(t

󸀠))]. (6.111)

So, we conclude that in our approximation the center of the quasiclassical wave
packet reallymoves along a trajectory determined by the classical Hamilton equations
of motion (6.106)–(6.107). In addition, we have a purely quantum effect: a change of
the overall phase factor in accordance with equation (6.111).

6.6.7 Once again about experiments with two holes

In this subsection we would like to illustrate the importance of the phase ϕ for de-
scribing quantum effects. Consider, for example, particle interference in the two-hole
experiment from Section 1.1.

Figure 6.5: Quantum interference in
the experiment with two holes.

Suppose that the source emits electrons, which pass through two holes and form an
image on the screen, as shown in Figure 6.5.Wave packets can reach the point C on the
screen in two mutually exclusive ways: either through the hole A, or through the hole
B. Both types of wave packets contribute to the total wave function at the point C.37

Their complex phase factors exp( iℏϕ) should add up when calculating the probability
amplitude for detecting an electron at the point C, so

ψ ∝ 1
√2
(e

i
ℏϕAC + e

i
ℏϕBC ).

36 Notice that the integrand has the form (“kinetic energy” – “potential energy”), which is known in
classical mechanics as the Lagrangian.
37 For simplicity, we assume that both packets have equal amplitudes.
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The observed probability is then obtained by taking the square of the module of
the amplitude,

|ψ|2 ∝ 1
2
󵄨󵄨󵄨󵄨e

i
ℏϕAC + e

i
ℏϕBC 󵄨󵄨󵄨󵄨

2
= 1 + cos(ϕAC − ϕBC

ℏ
).

In our case, this calculation is especially simple, since there is no external poten-
tial (V(r) = 0). The momentum (and velocity) of each wave packet remains constant
(p20(t) = const) along its trajectory, so the action integral (6.111) is proportional to the
travel time of the wave packet from the hole to the screen. The phase δϕ accumulated
by the wave packet during the travel time Δt equals

δϕ = Δt ⋅
p20
2m
.

Hence the phase difference between the two paths is

ϕAC − ϕBC =
rAC − rBC

v0
⋅
p20
2m
= (rAC − rBC) ⋅

p0
2
.

In other words, the nature of the interference (constructive or destructive) at the point
C depends on the difference between distances AC and BC. Two paths interfere con-
structively (the probability is maximal), if

ϕAC − ϕBC = 2πnℏ, n = . . . , −1,0, 1, 2, . . . ,

i. e., for those points on the screen where

rAC − rBC =
4πℏn
p0
.

At points where the distance difference is 4πℏ(n + 1/2)/p0, the interference is destruc-
tive (the probability is minimal).



7 Scattering
Physics is becoming so unbelievably complex that it is taking longer and longer to train a physicist.
It is taking so long, in fact, to train a physicist to the place where he understands the nature of
physical problems that he is already too old to solve them.
Eugene P. Wigner

Finding solutions of the time-dependent Schrödinger equation (6.87) is incredibly
difficult, even for the simplest models. However, nature had mercy on us and created
a very important class of experiments, where a description of dynamics by equa-
tion (6.87) is completely unnecessary, because it is too detailed. Here we are talking
about scattering experiments, which are the topic of this chapter.

A typical scattering experiment is designed in such a way that free particles (or
their bound states, such as atoms or nuclei) are prepared at a great distance from each
other and directed into collision. Then experimentalists study the properties of free
particles or stable bound states leaving the collision region. In these experiments, as a
rule, it is impossible to see evolution during the interaction process: particle reactions
occur almost instantaneously, and we can observe only reactants and products mov-
ing freely before and after the collision. In such situations, the theory is not required
to describe the true dynamics of the particles during the short interval of interaction.
It is sufficient to understand only themapping of free states before the collision to free
states after the collision. Thismapping is described by the so-called S-operator, which
we are going to discuss in the next section.

In Section 7.2 we will consider the situation of scattering equivalence when two
different Hamiltonians have exactly the same scattering properties.

7.1 Scattering operators

7.1.1 Physical meaning of S-operator

Let us consider a scattering experiment in which the free states of the reactants were
prepared in the distant past at t = −∞. The collision itself occurred within a short
interval [η󸀠, η] near time zero.1 Free states of the collision products are registered in
the distant future, t = ∞, so that the inequalities∞≫ η > 0 > η󸀠 ≫ −∞ are satisfied.
For simplicity, we assume that the two colliding particles do not form bound states

1 The short interaction time interval (and the applicability of the scattering theory) is guaranteed if
three conditions are satisfied. First, the interaction between particles is short-range or, in a more gen-
eral setting, cluster-separable. Second, the states of particles are describable by localized wave pack-
ets, for example, as in Subsection 6.6.1. Third, the velocities (or momenta) of the particles are high
enough.
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either before or after the collision. Therefore, at asymptotically distant times, the exact
time evolution of the system is well approximated by the noninteracting operators
U0(η󸀠 ← −∞) and U0(∞ ← η).2 Then the full evolution operator from the remote past
to the distant future is (here we use properties (6.84) and (6.85))

U(∞ ← −∞) ≈ U0(∞ ← η)U(η← η󸀠)U0(η
󸀠 ← −∞)

= U0(∞ ← η)U0(η← 0)[U0(0← η)U(η← η󸀠)U0(η
󸀠 ← 0)]

× U0(0← η󸀠)U0(η
󸀠 ← −∞)

= U0(∞ ← 0)Sη,η󸀠U0(0← −∞), (7.1)

where we denote

Sη,η󸀠 ≡ U0(0← η)U(η← η󸀠)U0(η
󸀠 ← 0). (7.2)

Equation (7.1) means that it is possible to formulate a simplified description for the
time evolution in collision processes. In this description, the evolution is always free,
except for a sudden change of state at the time t = 0. This change is described by the
unitary operator Sη,η󸀠 . Approximation (7.1) becomes more accurate if we increase the
time interval [η󸀠, η], during which the exact time evolution is taken into account, i. e.,
in the limits η󸀠 → −∞ and η→∞.3 Therefore, the exact formula for the time evolution
from −∞ to∞ has the form

U(∞ ← −∞) = U0(∞ ← 0)SU0(0← −∞), (7.3)

where the S-operator (or scattering operator) is defined by

S = lim
η󸀠→−∞,η→∞

Sη,η󸀠 = lim
η󸀠→−∞,η→∞

U0(0← η)U(η← η󸀠)U0(η
󸀠 ← 0)

= lim
η󸀠→−∞,η→∞

e
i
ℏH0ηe−

i
ℏH(η−η

󸀠)e−
i
ℏH0η󸀠 (7.4)

= lim
η→∞

S(η),

where

S(η) ≡ lim
η󸀠→−∞

e
i
ℏH0ηe−

i
ℏH(η−η

󸀠)e−
i
ℏH0η󸀠 . (7.5)

To better understand how scattering theory describes the time evolution, we turn
toFigure 7.1. In this figure,wehaveplotted the state of thephysical system (represented

2 Here we denote by U0(t ← t0) ≡ exp(−
i
ℏH0(t − t0)) the time evolution operator associated with the

noninteracting Hamiltonian H0. The interaction evolution operator will be denoted by U(t ← t0) ≡
exp(− iℏH(t − t0)). In the Schrödinger representation, this operator acts on state vectors, as in (6.86).
3 Of course, we assume that the right-hand side of (7.2) converges in these limits. The question of
convergence will be discussed briefly in Subsection 7.1.4.
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Figure 7.1: Schematic representation of
the scattering process.

abstractly as a point on the vertical axis) as a function of time. The exact development
of the system, governed by the complete evolution operator U, is shown by the thick
line A → D. In asymptotic regions (when the time t is either very negative or very
positive), the interaction between the colliding parts of the system is weak. In these
regions, the exact time evolution can be rather well approximated by the free opera-
tor U0. These free “trajectories” are shown in the figure by two thin straight lines with
arrows: one for very positive times C → D and the other for very negative timesA→ B.
The thick line (the exact interacting time evolution) asymptotically approaches these
thin lines (free evolution) in the remote past (nearA) and in the distant future (nearD).

If we extrapolate the future and past free evolutions to the time t = 0, wewill real-
ize that there is a gapB−C between these extrapolated states. The S-operator is defined
precisely in such away as to close this gap, i. e., to connect the free extrapolated states
B and C, as shown by the dashed arrow in the figure.

So, in the theory of scattering, the exact time evolution A → D is approximated
in three stages: first the system develops freely up to the time instant t = 0, i. e., from
A to B. Then there is a sharp jump B → C, represented by the S-operator. Finally,
the system again goes into the free evolution mode C → D. As can be seen from the
figure, this description of the scattering process is absolutely accurate, as long as we
are interested only in the mapping of asymptotically free states from the remote past
(A) into asymptotically free states in the distant future (D).

It should also be clear that the scattering operator S contains information about
particle interactions in an averaged form integrated over the infinite time interval
t ∈ (−∞,∞). This operator is not designed to describe the interacting time evolution
during the short interval of collision (t ≈ 0). For these purposes, we would need the
complete interacting time evolution operator U .

In applications, we are mainly interested in matrix elements of the S-operator

Si→f = ⟨f |S|i⟩, (7.6)

where |i⟩ is the initial state of the colliding particles and |f ⟩ is their final state. Such
matrix elements are called the S-matrix. Formulas relating the S-matrix to observable
quantities, such as scattering cross sections, can be found in any textbook on scatter-
ing theory [34, 89].
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An important property of the S-operator is its “Poincaré invariance,” i. e., zero
commutators with generators of the noninteracting representation of the Poincaré
group [95, 44],

[S,H0] = [S,P0] = [S, J0] = [S,K0] = 0. (7.7)

In particular, the commutator [S,H0] = 0 implies that in (7.3) we can interchange U0
and S, so that the full interacting time evolution can be represented as the product of
the free evolution operator and the S-operator in any order:

U(∞ ← −∞) = SU0(∞ ← −∞) = U0(∞ ← −∞)S. (7.8)

7.1.2 S-operator in perturbation theory

There are many methods for calculating the S-operator. In this book, we will mainly
use perturbation theory. To derive the perturbation theory series for the S-operator,
we first note that the operator S(t) in (7.5) satisfies the equation

d
dt
S(t) = d

dt
lim

t󸀠→−∞
e

i
ℏH0te−

i
ℏH(t−t

󸀠)e−
i
ℏH0t󸀠

= lim
t󸀠→−∞
(e

i
ℏH0t( i
ℏ
H0)e
− iℏH(t−t

󸀠)e−
i
ℏH0t󸀠 + e

i
ℏH0t(− i
ℏ
H)e−

i
ℏH(t−t

󸀠)e−
i
ℏH0t󸀠)

= − i
ℏ

lim
t󸀠→−∞

e
i
ℏH0t(H − H0)e

− iℏH(t−t
󸀠)e−

i
ℏH0t󸀠

= − i
ℏ

lim
t󸀠→−∞

e
i
ℏH0tVe−

i
ℏH(t−t

󸀠)e−
i
ℏH0t󸀠

= − i
ℏ

lim
t󸀠→−∞

e
i
ℏH0tVe−

i
ℏH0te

i
ℏH0te−

i
ℏH(t−t

󸀠)e−
i
ℏH0t󸀠

= − i
ℏ

lim
t󸀠→−∞

V(t)e
i
ℏH0te−

i
ℏH(t−t

󸀠)e−
i
ℏH0t󸀠

= − i
ℏ
V(t)S(t), (7.9)

where we denote4

V(t) = e
i
ℏH0tVe−

i
ℏH0t . (7.10)

4 Note that the t-dependence in V(t) does not mean that we are considering time-dependent interac-
tions. The argument t has no relation with the true time dependence of operators in the Heisenberg
representation. The latter must be generated by the full interacting Hamiltonian H, not by the free
Hamiltonian H0, as in equation (7.10). To emphasize this difference, in cases like (7.10) we will talk
about “t-dependence” instead of “time-dependence”.
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By a direct substitution, one can verify that a solution of equation (7.9) with the
natural initial condition S(−∞) = 1 is given by the Dyson perturbation series

S(t) = 1 − i
ℏ

t

∫
−∞

V(t󸀠)dt󸀠 − 1
ℏ2

t

∫
−∞

V(t󸀠)dt󸀠
t󸀠

∫
−∞

V(t󸀠󸀠)dt󸀠󸀠 + ⋅ ⋅ ⋅ .

Therefore, the S-operator can be calculated by substituting t = +∞ as the upper limit
of t-integrals, so we have

S = 1 − i
ℏ

+∞

∫
−∞

V(t󸀠)dt󸀠 − 1
ℏ2

+∞

∫
−∞

V(t󸀠)dt󸀠
t󸀠

∫
−∞

V(t󸀠󸀠)dt󸀠󸀠 + ⋅ ⋅ ⋅ . (7.11)

As a rule, only the first few terms of this series are used in calculations, assuming,
therefore, that the interaction V is so weak that it can be regarded as a small pertur-
bation; and the scattering itself is just a small correction to the free propagation of
particles. We shall say that a term in the perturbation theory series has order n if it
contains a product of n factorsV . Thus, in (7.11) we have explicit terms in the zero, first
and second perturbation orders. We do not want to dwell on mathematical details re-
lated to (nontrivial) convergence properties of the expansion (7.11). Throughout this
book, we will tacitly assume that all relevant perturbation series do converge.

7.1.3 Convenient notation for t-integrals

We shall often use the following symbols for t-integrals:

Y(t) ≡ − i
ℏ

t

∫
−∞

Y(t󸀠)dt󸀠. (7.12)

Y⏟⏟⏟⏟⏟⏟⏟ ≡ − i
ℏ

+∞

∫
−∞

Y(t󸀠)dt󸀠 = Y(∞). (7.13)

In this notation, the perturbation theory series for the S-operator (7.11) has a compact
form. We have

S = 1 + Σ⏟⏟⏟⏟⏟⏟⏟, (7.14)
Σ(t) = V(t) + V(t)V(t󸀠) + V(t)V(t󸀠)V(t󸀠󸀠) + V(t)V(t󸀠)V(t󸀠󸀠)V(t󸀠󸀠󸀠) + ⋅ ⋅ ⋅ . (7.15)

There exist S-operator perturbation expansions other than (7.14)–(7.15). In many
cases they are even more convenient. For example, in quantum field theory, the pref-
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erence is given to the time-ordered perturbation series [95, 65], which uses time order-
ing5 of interaction operators in the integrand:

S = 1 − i
ℏ

+∞

∫
−∞

dt1V(t1) −
1

2!ℏ2

+∞

∫
−∞

dt1dt2T[V(t1)V(t2)]

+ i
3!ℏ3

+∞

∫
−∞

dt1dt2dt3T[V(t1)V(t2)V(t3)]

+ 1
4!ℏ4

+∞

∫
−∞

dt1dt2dt3dt4T[V(t1)V(t2)V(t3)V(t4)] + ⋅ ⋅ ⋅ . (7.17)

In the second and third volumes of our book, we will appreciate another perturbative
expression,

S = exp( Φ⏟⏟⏟⏟⏟⏟⏟). (7.18)

proposed by Magnus [52, 64, 12]. In this formula, the Hermitian operator Φ(t) is
called the scattering phase. It is represented by a series of multiple commutators with
t-integrals,

Φ(t) = V(t) − 1
2
[V(t󸀠),V(t)] + 1

6
[V(t󸀠󸀠), [V(t󸀠),V(t)]]

+ 1
6
[[V(t󸀠󸀠),V(t󸀠)],V(t)] − 1

12
[V(t󸀠󸀠󸀠), [[V(t󸀠󸀠),V(t󸀠)],V(t)]]

− 1
12
[[V(t󸀠󸀠󸀠), [V(t󸀠󸀠),V(t󸀠)]],V(t)]

− 1
12
[[V(t󸀠󸀠󸀠),V(t󸀠󸀠)], [V(t󸀠),V(t)]] + ⋅ ⋅ ⋅ . (7.19)

An important advantage of equation (7.18) is that it explicitly preserves the unitarity of
the S-operator in each perturbation order.6 The three listed perturbation theory series
(Dyson, time-ordered andMagnus) are equivalent in the sense that in the limit n→∞
they converge to the same S-operator. However, in each finite order n their terms can
differ.

5 When applied to a product of several t-dependent boson operators, the time ordering symbol T
changes the order of the operators so that their t arguments increase from right to left, e. g.,

T[A(t1)B(t2)] = {
A(t1)B(t2), if t1 > t2,
B(t2)A(t1), if t1 < t2.

(7.16)

6 The argument of the exponent is an anti-Hermitian operator Φ⏟⏟⏟⏟⏟⏟⏟; therefore the exponent itself is
unitary.
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For brevity, we will often omit t-arguments in operator expressions. Then equa-
tions (7.15) and (7.19) simplify, even more, to

Σ = V + VV + VVV + ⋅ ⋅ ⋅ , (7.20)

Φ = V − 1
2
[V ,V] + 1

6
[V , [V ,V]] + ⋅ ⋅ ⋅ . (7.21)

7.1.4 Adiabatic switching of interaction

In formulas for scattering operators (7.15) and (7.19), we encounter t-integrals , likeV(t).
Straightforward calculation of such integrals leads to a rather depressing result. To
understand, let us introduce the complete basis |n⟩ of eigenvectors of the free Hamil-
tonian,

H0|n⟩ = En|n⟩, (7.22)
∑
n
|n⟩⟨n| = 1, (7.23)

and calculate matrix elements of V(t) in this basis. Then we have

⟨n|V(t)|m⟩ ≡ − i
ℏ

t

∫
−∞

⟨n|e
i
ℏH0t󸀠Ve−

i
ℏH0t󸀠 |m⟩dt󸀠 = − i

ℏ
Vnm

t

∫
−∞

e
i
ℏ (En−Em)t

󸀠
dt󸀠

= −Vnm(
e

i
ℏ (En−Em)t

En − Em
− e

i
ℏ (En−Em)(−∞)

En − Em
). (7.24)

What canwe dowith themeaningless term on the right-hand side that contains (−∞)?
This term can bemade harmless if we take into account the important fact that the

S-operator cannot be applied to all states in theHilbert space. According to our discus-
sion in Subsection 7.1.1, scattering theory is applicable in its entirety only to scattering
states |Ψ⟩, inwhich free particles are far apart in the asymptotic limits t → ±∞, so that
the time evolution of these states coincides with free evolution in the remote past and
in the distant future. Naturally, these assumptions are inapplicable to all states in the
Hilbert space. For example, the time evolution of bound states of the full Hamiltonian
H does not resemble the free evolution in any time interval. It turns out that if we re-
strict our theory only to scattering states, then there are no problems with t-integrals.

Indeed, for scattering states |Ψ⟩, the interaction operator effectively vanishes in
asymptotic regions, so we can write

lim
t→±∞

Ve−
i
ℏH0t |Ψ⟩ = 0,

lim
t→±∞

V(t)|Ψ⟩ = lim
t→±∞

e
i
ℏH0t(Ve−

i
ℏH0t |Ψ⟩) = 0. (7.25)

How can we apply this condition to calculations of integrals like (7.24)?
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One approach to a rigorous formulation of scattering theory is the explicit consid-
eration of localized wave packets [34]. Then, the cluster separability (= short range)
of the interaction V ensures the correct asymptotic behavior of colliding particles and
the validity of equation (7.25). However, this approach is rather complicated, and we
prefer to keep away from wave packets.

There is another, less rigorous, but shorter way to achieve the same goal – to use
a trick known as the adiabatic switching. The idea is to add the property (7.25) “by
hands.” To do this, we multiply V(t) by a real nonnegative function of t that grows
slowly from zero (= interaction is “off”) at t = −∞ to 1 in the vicinity of t ≈ 0 (interac-
tion is “on”) and then slowly decreases back to zero at t = +∞ (interaction “switches
off” again). For example, one convenient choice for such a function is the exponent

V(t) = e
i
ℏH0tVe−

i
ℏH0te−ϵ|t|. (7.26)

If the parameter ϵ is small and positive, then such a modification of the interaction
operator will have no effect on the movement of wave packets and on the S-matrix.7

For the integral (7.24), we then get

⟨n|V(t)|m⟩ ≈ −Vnm(
e

i
ℏ (En−Em)t−ϵ|t|

En − Em
− e

i
ℏ (En−Em)(−∞)−ϵ(∞)

En − Em
)

= −Vnm
e

i
ℏ (En−Em)t−ϵ|t|

En − Em
.

At the end of the calculations, we have to go to the limit ϵ → +0. Then the t-integral
becomes

⟨n|V(t)|m⟩ 󳨀→ −Vnm
e

i
ℏ (En−Em)t

En − Em
(7.27)

and the unpleasant expression ei∞ vanishes.
The “adiabatic switching” trick makes possible an alternative derivation of equa-

tion (7.11). Let us take equation (6.89) with the initial time in the remote past t0 = −∞
and the final time in the distant future t = +∞. Then we have

|Ψ(+∞)⟩ = lim
t→+∞

e−
i
ℏH0(t−t0)(1 − i

ℏ

∞

∫
−∞

e
i
ℏH0(t󸀠−t0)Ve−

i
ℏH0(t󸀠−t0)dt󸀠

− 1
ℏ2

∞

∫
−∞

e
i
ℏH0(t󸀠−t0)Ve−

i
ℏH0(t󸀠−t0)dt󸀠

t󸀠

∫
−∞

e
i
ℏH0(t󸀠󸀠−t0)Ve−

i
ℏH0(t󸀠󸀠−t0)dt󸀠󸀠 + ⋅ ⋅ ⋅)

× |Ψ(−∞)⟩.

7 Indeed, when the interaction is “off,” the wave packets are far from each other, anyway.
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Next change the integration variables t󸀠 − t0 = τ󸀠 and t󸀠󸀠 − t0 = τ󸀠󸀠 so that8

|Ψ(+∞)⟩ = U0(∞ ← −∞) limt→+∞
(1 − i
ℏ

∞

∫
−∞

e
i
ℏH0τ󸀠Ve−

i
ℏH0τ󸀠dτ󸀠

− 1
ℏ2

∞

∫
−∞

e
i
ℏH0τ󸀠Ve−

i
ℏH0τ󸀠dτ󸀠

τ󸀠

∫
−∞

e
i
ℏH0τ󸀠󸀠Ve−

i
ℏH0τ󸀠󸀠dτ󸀠󸀠 + ⋅ ⋅ ⋅)|Ψ(−∞)⟩

= U0(∞ ← −∞)S|Ψ(−∞)⟩.

Comparing this formula with equation (7.8), we conclude that the S-factor is exactly
as in (7.11).

7.1.5 T -matrix

In this subsection we will get acquainted with a useful concept of the T matrix.9 Let
us calculate matrix elements of the S-operator (7.11) in the basis of eigenvectors of the
free Hamiltonian (7.22)–(7.23). We have10

⟨n|S|m⟩ = δnm −
i
ℏ

∞

∫
−∞

⟨n|e
i
ℏH0t󸀠Ve−

i
ℏH0t󸀠 |m⟩dt󸀠

− 1
ℏ2

∞

∫
−∞

⟨n|e
i
ℏH0t󸀠Ve−

i
ℏH0t󸀠 |k⟩dt󸀠

t󸀠

∫
−∞

⟨k|e
i
ℏH0t󸀠󸀠Ve−

i
ℏH0t󸀠󸀠 |m⟩dt󸀠󸀠 + ⋅ ⋅ ⋅

= δnm −
i
ℏ

∞

∫
−∞

e
i
ℏ (En−Em)t

󸀠
Vnmdt

󸀠

− 1
ℏ2

∞

∫
−∞

e
i
ℏ (En−Ek)t

󸀠
Vnkdt

󸀠
t󸀠

∫
−∞

e
i
ℏ (Ek−Em)t

󸀠󸀠
Vkmdt

󸀠󸀠 + ⋅ ⋅ ⋅

= δnm − 2πiδ(En − Em)Vnm +
i
ℏ

∞

∫
−∞

e
i
ℏ (En−Ek)t

󸀠
dt󸀠 e

i
ℏ (Ek−Em)t

󸀠

Em − Ek
VnkVkm + ⋅ ⋅ ⋅

= δnm − 2πiδ(En − Em)Vnm + 2πiδ(En − Em)
1

Em − Ek
VnkVkm + ⋅ ⋅ ⋅

= δnm − 2πiδ(En − Em)Vnk

8 For brevity, we do not show the “adiabatic switching” factors explicitly. They force the integrands
to vanish at ±∞ asymptotics. So, they allow us to leave the infinite integration limits (−∞ and∞)
unchanged.
9 I am grateful to Cao Bin for online communications that led to the writing of this subsection.
10 Summation over repeated indices k and l is implied. Equation (7.27) is used for t-integrals.
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× (δkm +
1

Em − Ek
Vkm +

1
Em − Ek

Vkl
1

Em − El
Vlm + ⋅ ⋅ ⋅)

= δnm − 2πiδ(En − Em)Tnm. (7.28)

The first term is the unit matrix expressing the free propagation of particles. The
matrix in the second term is called the transition matrix (or T-matrix).11 For further
simplifications we can write

Tnm ≡ Vnk(δkm +
1

Em − Ek
Vkm +

1
Em − Ek

Vkl
1

Em − El
Vlm + ⋅ ⋅ ⋅)

= ⟨n|V |k⟩⟨k|m⟩ + ⟨n|V(Em − Ek)
−1|k⟩⟨k|V |m⟩

+ ⟨n|V(Em − Ek)
−1|k⟩⟨k|V(Em − El)

−1|l⟩⟨l|V |m⟩ + ⋅ ⋅ ⋅

= ⟨n|V |k⟩⟨k|m⟩ + ⟨n|V(E − H0)
−1|k⟩⟨k|V |m⟩

+ ⟨n|V(E − H0)
−1|k⟩⟨k|V(E − H0)

−1|l⟩⟨l|V |m⟩ + ⋅ ⋅ ⋅

= ⟨n|V |m⟩ + ⟨n|V(E − H0)
−1V |m⟩

+ ⟨n|V(E − H0)
−1V(E − H0)

−1V |m⟩ + ⋅ ⋅ ⋅

= ⟨n|V(1 + 1
E − H0

V + 1
E − H0

V 1
E − H0

V + ⋅ ⋅ ⋅)|m⟩.

The infinite series in theparenthesis canbe summedby the standard formula (1−x)−1 =
1 + x + x2 + ⋅ ⋅ ⋅, so we have

Tnm = ⟨n|V
1

1 − (E − H0)−1V
|m⟩ = ⟨n|V(E − H0)(E − H0 − V)

−1|m⟩

= ⟨n|V(E − H0)(E − H)
−1|m⟩ = ⟨n|T(E)|m⟩.

Thus, the T-matrix is represented by matrix elements of the energy-dependent T(E)-
operator given by formula

T(E) ≡ V(E − H0)(E − H)
−1. (7.29)

The beauty of this result is that it provides a closed expression for the S-operator that
goes beyond perturbation theory. This result is widely used in numerical calculations
[71, 13, 49, 25].

7.1.6 S-matrix and bound states

The formal expression (7.29) can be used to derive an important connection between
poles of the S-matrix and energies of bound states. Our derivation will be formal and

11 Taking into account the fact that the T-matrix enters the S-matrix multiplied by the delta-function
of energy δ(En − Em), we have denoted E = Em = En.
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heuristic. More rigorous reasoning can be found in textbooks on scattering theory
[34, 89].

Wealreadymentioned that scattering theory canbe formulated only for states that
behave asymptotically as free ones. The energies E of such states exceed the energy
E0 of separated reactants at rest, for which we have

E0 =
N
∑
a=1

mac
2.

Therefore, the operator T(E) introduced in (7.29) has a well-defined meaning only in
the energy interval

E ∈ [E0,∞). (7.30)

There are reasons to believe that this operator is an analytic function of energy E.
Therefore, it would be interesting to find out where the poles of this function are lo-
cated. We can expect the appearance of poles at those values of E, where the denom-
inator of the expression (E − H0)(E − H)−1 in (7.29) vanishes. Hence (at least some of)
the poles Eβ can be found as solutions of the eigenvalue equation

(H − Eβ)|Ψβ⟩ = 0.

Obviously, this is the familiar stationary Schrödinger equation (6.79) for bound states.
This means that there is a connection between poles of the T-operator and energies of
bound states Eβ of the full Hamiltonian H.12 These energies are always lower than E0,
i. e., formally they are outside the domain of the operator T(E). Therefore, the above-
mentioned connection (poles of the T-operator)↔ (energies of bound states) can be
established only in the sense of analytic continuation of the operator T(E) from its
natural domain (7.30) to values below E0.

It is important to emphasize that the possibility of finding the energies of the
bound states Eβ from the T-operator does not mean that the eigenvectors of these
states |Ψβ⟩ can be found in the same way. All bound states are eigenstates of the
T-operator, corresponding only to one (infinite) eigenvalue. Therefore, even knowing
the exact T-operator, the most we can do is to find a subspace in H that is the linear
span of all bound states. This ambiguity is closely related to the scattering equivalence
of Hamiltonians, which we shall consider in the next section.

7.2 Scattering equivalence

The results of the previous section indicate that even exact knowledge of the S-opera-
tor does not allow us to completely reconstruct the corresponding Hamiltonian H. In

12 Similarly, the S-operator can be also regarded as an analytic function S(E) on the complex energy
plane with poles at positions E = Eβ.
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other words, many different Hamiltonians can have identical scattering properties.
Here we will discuss these issues in more detail, because they will play an important
role in Volume 3.

7.2.1 Equivalent Hamiltonians

The S-operator and the Hamiltonian are two fundamentally different ways of describ-
ing dynamics. From the Hamiltonian H one can obtain the evolution operator U(t ←
t0) ≡ e−

i
ℏH(t−t0), which describes in detail the development of states in all time in-

tervals, both large and small. On the other hand, the S-operator represents only the
“integrated” time evolution in the infinite interval. In otherwords, if we know the state
of the system in the remote past |Ψ(−∞)⟩, the free Hamiltonian H0 and the scattering
operator S, then we can find the final state of the system in the far future (7.8), i. e.,

|Ψ(∞)⟩ = U(∞ ← −∞)|Ψ(−∞)⟩ = U0(∞ ← −∞)S|Ψ(−∞)⟩.

However, we cannot say anything about the system’s evolution in the interacting
regime.

Despite its incomplete nature, the information contained in the S-operator is fully
sufficient for the analysis of most experiments in high-energy physics. In particular,
from the S-operator one can obtain accurate scattering cross sections as well as en-
ergies and lifetimes of stable and metastable bound states. This situation gave the
impression that an exhaustive theory of elementary particles could be constructed on
the basis of the S-operator alone without resorting to the Hamiltonian and wave func-
tions. However, this impression is deceptive, because the description of physics by
means of scattering theory is incomplete, and such a theory is applicable only to a
limited class of experiments.

Knowing the full interacting Hamiltonian H, we can calculate the corresponding
S-operator by formulas (7.14), (7.17) or (7.18). However, the converse is not true: even if
the S-operator is fully known, it is impossible to recover the unique underlying Hamil-
tonian. The same S-operator can be obtained from many different Hamiltonians.

Suppose that two Hamiltonians H and H󸀠 are related to each other by a unitary
transformation eiΞ, i. e.,

H󸀠 = eiΞHe−iΞ. (7.31)

Then they have exactly the same scattering properties13 if the following condition is
satisfied:

13 We say that such Hamiltonians are scattering-equivalent.
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lim
t→±∞

e
i
ℏH0tΞe−

i
ℏH0t = 0. (7.32)

Indeed, in the limits η → +∞, η󸀠 → −∞, we obtain from (7.5) that the two scattering
operators are equal [27], i. e.,14

S󸀠 = lim
η󸀠→−∞,η→∞

e
i
ℏH0ηe−

i
ℏH
󸀠(η−η󸀠)e−

i
ℏH0η󸀠

= lim
η󸀠→−∞,η→∞

e
i
ℏH0η(eiΞe−

i
ℏH(η−η

󸀠)e−iΞ)e−
i
ℏH0η󸀠

= lim
η󸀠→−∞,η→∞

(e
i
ℏH0ηeiΞe−

i
ℏH0η)e

i
ℏH0ηe−

i
ℏH(η−η

󸀠)e−
i
ℏH0η󸀠

× (e
i
ℏH0η󸀠e−iΞe−

i
ℏH0η󸀠) (7.33)

= lim
η󸀠→−∞,η→∞

e
i
ℏH0ηe−

i
ℏH(η−η

󸀠)e−
i
ℏH0η󸀠 = S. (7.34)

Note that, due to Lemma G.9, the energy spectra of the two equivalent Hamil-
tonians H and H󸀠 also coincide. However, their eigenvectors could be different, and
the corresponding description of dynamics (e. g., by equation (6.88)) could also differ.
Therefore, two theories predicting the same scattering are not necessarily equivalent
in the full physical sense.

7.2.2 Bakamjian construction of point-form dynamics

It turns out that the above statement about scattering equivalent Hamiltonians can
be generalized in the sense that even two different forms of dynamics (for example,
the instant and point forms) can have the same S-operators. This nontrivial fact will
be discussed in Subsection 7.2.4. To prepare for this discussion, here we will build a
specific versionof thepoint formof dynamics, usinga recipedue toBakamjian [5]. This
method is very similar to the method of Bakamjian–Thomas from Subsection 6.3.2.

We consider a systemof n ≥ 2massive free particleswith noninteracting operators
of mass M0, linear momentum P0, angular momentum J0, center-of-energy position
R0 and spin S0 = J0 − [R0 × P0]. Then we introduce two new operators,

Q0 ≡
P0
M0c2
,

14 In (7.33) we use condition (7.32) to make replacements

lim
η→∞
[exp( i
ℏ
H0η) exp(iΞ) exp(−

i
ℏ
H0η)]

= lim
η󸀠→−∞
[exp( i
ℏ
H0η
󸀠) exp(−iΞ) exp(− i

ℏ
H0η
󸀠)] = 1.

.
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X0 ≡ M0c
2R0,

which satisfy the canonical commutation relations

[X0i,Q0i] = [X0i,X0j] = [Q0i,Q0j] = 0,
[X0i,Q0j] = iℏδij.

Next,we express the generators {H0,P0, J0,K0}of thenoninteracting representationof
the Poincaré group through the alternative set of operators {M0,Q0,X0, S0} as follows
(compare with (6.37)–(6.38)):

P0 = M0c
2Q0,

K0 = −
1
2
(√1 + Q2

0c2X0 + X0√1 + Q2
0c2) −

[Q0 × S0]

1 + √1 + Q2
0c2
,

J0 = [X0 × Q0] + S0,

H0 = M0c
2√1 + Q2

0c2.

Now, a point-form interaction can be introduced by modifying the mass operator

M0 → M (7.35)

so as to satisfy the following conditions15:

[M,Q0] = [M,X0] = [M, S0] = 0.

These conditions guarantee, in particular, that themass operatorM is invariant under
transformations from the Lorentz subgroup, i. e.,

[M,K0] = [M, J0] = 0.

The mass modification (7.35) introduces interaction in generators of the translation
subgroup,

P = Mc2Q0,

H = Mc2√1 + Q2
0c2, (7.36)

while Lorentz subgroup generators K0 and J0 remain interaction-free. So, we suc-
ceeded in defining a nontrivial interaction {H ,P, J0,K0} in the point form of dynamics.

15 As in Subsection 6.3.2, these conditions can be fulfilled by defining M = M0 + N, where N is a
rotationally invariant function of operators of the relative position andmomentum that commutewith
both Q0 and X0.
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7.2.3 Unitary link between point and instant forms of dynamics

The S-matrix equivalence of Hamiltonians established in Subsection 7.2.1 remains
valid even if the transformation eiΞ (7.31) changes the relativistic form of dynamics
[78, 79]. Here we are going to demonstrate this equivalence using the example of the
Dirac instant and point forms [78].

To beginwith, suppose thatwe are given aBakamjianpoint formof dynamicswith
operators

M ̸= M0,

P = Q0Mc2,
J = J0,

R = X0M
−1c−2,

specified in Subsection 7.2.2. Then we define a unitary operator

Θ = ζ0ζ
−1,

where

ζ0 ≡ exp(−i ln(M0c
2)Z),

ζ ≡ exp(−i ln(Mc2)Z)

and operator

Z ≡ 1
2ℏ
(R ⋅ P + P ⋅ R) = 1

2ℏ
(Q0 ⋅ X0 + X0 ⋅ Q0)

was defined in (4.53). Our goal is to show that the set of operators ΘMΘ−1, ΘPΘ−1,
ΘJ0Θ−1 and ΘRΘ−1 generates a Poincaré group representation in the Bakamjian–
Thomas instant form.

Let us define

Q0(b) ≡ e
ibZQ0e

−ibZ, b ∈ ℝ.

From the commutator

[Z,Q0] = iQ0,

it follows that
d
db

Q0(b) = i[Z,Q0] = −Q0,

Q0(b) = e
−bQ0.

This formula remains valid even if b is not a number but any Hermitian operator com-
muting with both Q0 and X0. For example, if b = ln(M0c2), then
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ζ −10 Q0ζ0 = e
i ln(M0c2)ZQ0e

−i ln(M0c2)Z = e− ln(M0c2)Q0 = Q0/(M0c
2).

Similarly, one can show

ζ −1Q0ζ = e
i ln(Mc2)ZQ0e

−i ln(Mc2)Z = Q0/(Mc2),

ζ −10 X0ζ0 = e
i ln(M0c2)ZX0e

−i ln(M0c2)Z = X0M0c
2,

ζ −1X0ζ = e
i ln(Mc2)ZX0e

−i ln(Mc2)Z = X0Mc2,

which implies

ΘPΘ−1 = ζ0ζ
−1(Q0Mc2)ζζ −10 = ζ0Q0ζ

−1
0 = Q0M0c

2 = P0,

ΘJ0Θ
−1 = J0,

ΘRΘ−1 = ζ0ζ
−1(X0/(Mc2))ζζ −10 = ζ0X0ζ

−1
0 = X0/(M0c

2) = R0.

From these formulas, it is clear that the transformation Θ really changes dynamics
from the Bakamjian point form to the Bakamjian–Thomas instant form.

7.2.4 Scattering equivalence of forms of dynamics

Let us now verify that the scattering operator S, calculated with the point-formHamil-
tonian H = Mc2√1 + c2Q2

0, is the same as the operator S󸀠 calculated with the instant-
form Hamiltonian H󸀠 = ΘHΘ−1. Notice that we can rewrite equation (7.4) as

S = Ω+(H ,H0)Ω
−(H ,H0),

where operators

Ω±(H ,H0) ≡ lim
t→±∞

e
i
ℏH0te−

i
ℏHt

are called Møller wave operators. Next we use the so-called Birman–Kato invariance
principle [24], which states that Ω±(H ,H0) = Ω±(f (H), f (H0)), where f can be any
smooth function with positive derivative. Using the relationship between mass op-
erators in the point (M) and instant (M󸀠) forms

M = ζ −1Mζ = ζ −1Θ−1M󸀠Θζ = ζ −1ζζ −10 M󸀠ζ0ζ
−1ζ = ζ −10 M󸀠ζ0,

we obtain

Ω±(H ,H0) ≡ Ω
±(Mc2√1 + Q2

0c2,M0c
2√1 + Q2

0c2) = Ω
±(Mc2,M0c

2)

= Ω±(ζ −10 M󸀠ζ0c
2,M0c

2) = ζ −10 Ω±(M󸀠c2,M0c
2)ζ0
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= ζ −10 Ω±(√(M󸀠)2c4 + P20c2, √M
2
0c4 + P

2
0c2)ζ0

= ζ −10 Ω±(H󸀠,H0)ζ0,

S󸀠 = Ω+(H󸀠,H0)Ω
−(H󸀠,H0) = ζ0Ω

+(H ,H0)ζ
−1
0 ζ0Ω

−(H ,H0)ζ
−1
0

= ζ0Ω
+(H ,H0)Ω

−(H ,H0)ζ
−1
0 = ζ0Sζ

−1
0 .

Then we notice that S commutes with free generators (7.7) and therefore with ζ0 as
well. Hence, S󸀠 = S and the transformation Θ conserves the S-matrix. This completes
the proof.

In addition to the above results, Sokolov and Shatnii [79] established the mutual
scattering equivalence of all three basic forms of dynamics – instant, point and front
ones. Then it seems reasonable to assume that the S-operator is not sensitive to the
form of dynamics at all.

The scattering equivalence of Hamiltonians and forms of dynamics gives us great
advantages in calculations. If we are only interested in scattering amplitudes, energies
and lifetimes of bound states,16 then we can choose the Hamiltonian and the form of
dynamics from awide selection, as convenient. However, as we have already said, the
scattering equivalence does not mean full physical equivalence of different theories.
In the third volume of our book, we will see that an adequate description of the time
evolution and other inertial transformations is possible only within the instant-form
framework.

16 That is, the properties directly related to the scattering matrix.





A Delta function
Dirac’s delta function δ(x) is defined by the following properties:
(1) δ(x) = 0 for all x, except x = 0;
(2) δ(0) is infinite;
(3) the integral ∫Δ δ(x)dx is equal to 1 for any interval Δ that includes the point x = 0.

Often the delta function is defined by the following integral:

∫
Δ

f (x)δ(x)dx = f (0),

where f (x) is any smooth function. Quite useful is the following integral representa-
tion:

1
2πℏ

∞

∫
−∞

e
iℏ kxdk = δ(x).

The other important property is

δ(bx) = 1
|b|

δ(x)

for any b ̸= 0.
The delta function of a vector argument r = (x, y, z) is defined as the product of

“scalar” delta functions

δ(r) = δ(x)δ(y)δ(z).

It has the integral representation

1
(2πℏ)3
∫ e

iℏ k⋅rdk = δ(r) (A.1)

and the useful property

𝜕2

𝜕r2
( 1
r
) = −4πδ(r), (A.2)

where we have introduced a formal notation for the Laplacian

d2

dr2
≡ 𝜕

2

𝜕x2
+ 𝜕

2

𝜕y2
+ 𝜕

2

𝜕z2
.
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B Orthocomplemented lattices

B.1 Derivation of quantum axioms

Here we continue our derivation of the axioms of orthocomplemented lattices1 from
elementary properties of probability measures (ϕ|𝒳 ) (see Subsection 1.4.2).

The implication relation ≤ has three obvious properties.

Lemma B.1 (property 1 from Table 1.2). Each proposition implies itself: 𝒳 ≤ 𝒳 .

Proof. This follows from the simple fact that for each state ϕ we have (ϕ|𝒳 ) ≤ (ϕ|𝒳 ).

Lemma B.2 (property 2). If two propositions imply each other, then they are equal. If
𝒳 ≤ 𝒴 and 𝒴 ≤ 𝒳 , then 𝒳 = 𝒴 .

Proof. If the conditions of the lemma are satisfied, then (ϕ|𝒳 ) ≤ (ϕ|𝒴) and (ϕ|𝒴) ≤
(ϕ|𝒳 ) for any stateϕ. It then follows that (ϕ|𝒳 ) = (ϕ|𝒴) and, according to (1.5),𝒳 = 𝒴.

Lemma B.3 (property 3). If 𝒳 ≤ 𝒴 and 𝒴 ≤ 𝒵, then 𝒳 ≤ 𝒵.

Proof. From the conditions of the lemma it follows that (ϕ|𝒳 ) ≤ (ϕ|𝒴) ≤ (ϕ|𝒵) for any
state ϕ. Therefore, (ϕ|𝒳 ) ≤ (ϕ|𝒵) for any ϕ, and 𝒳 ≤ 𝒵.

From equalities (1.1) and (1.2) we also conclude the following.

Corollary B.4 (property 4). 𝒳 ≤ ℐ for any 𝒳 ∈ ℒ.

Corollary B.5 (property 5). 0 ≤ 𝒳 for any 𝒳 ∈ ℒ.

The next postulate defines the operation of logical negation.

Postulate B.6 (definition of orthocomplement). For each proposition 𝒳 there exists
an orthocomplemented proposition 𝒳⊥ such that for all states ϕ

(ϕ|𝒳⊥) = 1 − (ϕ|𝒳 ). (B.1)

Lemma B.7 (property 16). (𝒳⊥)⊥ = 𝒳 .

Proof. From Definition (B.1) we have for any state ϕ

(ϕ|(𝒳⊥)⊥) = 1 − (ϕ|𝒳⊥) = 1 − (1 − (ϕ|𝒳 )) = (ϕ|𝒳 ).

Lemma B.8 (property 14). 𝒳 ∧ 𝒳⊥ = 0.

1 Properties 1–17 from Table 1.2.

https://doi.org/10.1515/9783110492132-009
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Proof. Suppose that 𝒳 ∧ 𝒳⊥ = 𝒴 ̸= 0. Then, according to Postulate 1.4, there exists a
stateϕ such that (ϕ|𝒴) = 1. From the definition of ∧ (property 6 in Table 1.2) we obtain

𝒴 ≤ 𝒳 ,

𝒴 ≤ 𝒳⊥,

1 = (ϕ|𝒴) ≤ (ϕ|𝒳 ),
1 = (ϕ|𝒴) ≤ (ϕ|𝒳⊥).

This implies (ϕ|𝒳 ) = 1 and (ϕ|𝒳⊥) = 1. Since𝒳⊥ ≤ 𝒳⊥, we conclude that propositions
𝒳 and 𝒳⊥ are disjoint. Hence, we can apply Kolmogorov’s axiom (1.3), which yields
the absurd result

(ϕ|𝒳 ∨ 𝒳⊥) = (ϕ|𝒳 ) + (ϕ|𝒳⊥) = 1 + 1 = 2.

Thus, our supposition was wrong, and 𝒳 ∧ 𝒳⊥ = 0.

Lemma B.9 (property 17). If 𝒳 ≤ 𝒴, then 𝒴⊥ ≤ 𝒳⊥.

Proof. If𝒳 ≤ 𝒴 then (ϕ|𝒳 ) ≤ (ϕ|𝒴) and (1− (ϕ|𝒳 )) ≥ (1− (ϕ|𝒴)) for all statesϕ. But by
our definition (B.1) the two parts of the last inequality express probability measures
for the propositions 𝒳⊥ and 𝒴⊥, respectively.

Lemma B.10 (property 15). 𝒳 ∨ 𝒳⊥ = ℐ.

Proof. Propositions 𝒳 and 𝒳⊥ are disjoint. Therefore, by equation (1.3), for any state
ϕ we have

(ϕ|𝒳 ∨ 𝒳⊥) = (ϕ|𝒳 ) + (ϕ|𝒳⊥) = (ϕ|𝒳 ) + (1 − (ϕ|𝒳 )) = 1,

which proves the lemma.

B.2 Some lemmas and theorems

From the axioms of orthocomplemented lattices2 one can prove a number of useful
results.

Lemma B.11. We have

𝒵 ≤ 𝒳 ∧ 𝒴 ⇒ 𝒵 ≤ 𝒳 . (B.2)

Proof. Fromproperty 6we have𝒳 ∧𝒴 ≤ 𝒳 , thus𝒵 ≤ 𝒳 ∧𝒴 ≤ 𝒳 , and by the transitivity
property 3, 𝒵 ≤ 𝒳 .

2 Properties 1–17 from Table 1.2.
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Lemma B.12. We have

𝒳 ≤ 𝒴 ⇔ 𝒳 ∧ 𝒴 = 𝒳 . (B.3)

Proof. From 𝒳 ≤ 𝒴 and 𝒳 ≤ 𝒳 by property 7 it follows that 𝒳 ≤ 𝒳 ∧ 𝒴. On the other
hand,𝒳 ∧𝒴 ≤ 𝒳 (property 6). Fromproperty 2we then obtain𝒳 ∧𝒴 = 𝒳 . The converse
statement follows from property 6, written in the form

𝒳 ∧ 𝒴 ≤ 𝒴 .

Since 𝒳 ∧ 𝒴 = 𝒳 , replacing the left-hand side with 𝒳 , we obtain the left-hand side
of (B.3).

Lemma B.13. For each proposition 𝒵

𝒳 ≤ 𝒴 ⇒ 𝒳 ∧ 𝒵 ≤ 𝒴 ∧ 𝒵 . (B.4)

Proof. This follows from 𝒳 ∧ 𝒵 ≤ 𝒳 ≤ 𝒴 and 𝒳 ∧ 𝒵 ≤ 𝒵 by property 7.

Proofs of equalities

𝒳 ∧ 𝒳 = 𝒳 , (B.5)
0 ∧ 𝒳 = 0, (B.6)
ℐ ∧ 𝒳 = 𝒳 , (B.7)
0⊥ = ℐ (B.8)

are left as exercises for the reader.
The following observation simplifies substantially proofs of various results in or-

thocomplemented lattices. If you have a correct expression composed of lattice ele-
ments, then you can form a dual expression by simultaneous application of the fol-
lowing operations:
(1) swap symbols “∧” 󴀕󴀬 “∨”;
(2) change directions of the implication signs “≤” 󴀕󴀬 “≥” and “<” 󴀕󴀬 “>”;
(3) swap special lattice elements 0 󴀕󴀬 ℐ.

Then it is easy to realize that all axioms in Table 1.2 have the property of duality. Each
axiom is either self-dual or its dual statement is also a valid axiom. Therefore, for each
logical (in)equality, its dual is also a true (in)equality. For example, using the duality
property, we get from (B.2)–(B.8)

𝒳 ∨ 𝒴 ≤ 𝒵 ⇒ 𝒳 ≤ 𝒵 ,

𝒳 ≤ 𝒴 ⇔ 𝒳 ∨ 𝒴 = 𝒴 ,

𝒴 ≤ 𝒳 ⇒ 𝒴 ∨ 𝒵 ≤ 𝒳 ∨ 𝒵 ,
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𝒳 ∨ 𝒳 = 𝒳 , (B.9)
ℐ ∨ 𝒳 = ℐ,

0 ∨ 𝒳 = 𝒳 ,

ℐ⊥ = 0.

Theorem B.14. In an orthocomplemented lattice, all propositions are compatible with
each other if and only if the lattice is distributive, i. e., properties 18 and 19 fromTable 1.2
are fulfilled.

Proof. If the lattice is distributive, then for each pair of propositions𝒳 and𝒴 one has3

(𝒳 ∧ 𝒴) ∨ (𝒳 ∧ 𝒴⊥) = 𝒳 ∧ (𝒴 ∨ 𝒴⊥) = 𝒳 ∧ ℐ = 𝒳 .

Changing the places of 𝒳 and 𝒴, we get

(𝒳 ∧ 𝒴) ∨ (𝒳⊥ ∧ 𝒴) = 𝒴 .

These formulas coincide with our definition of compatibility (1.6)–(1.7), which proves
the direct statement of the theorem.

The proof of the converse statement (compatibility→ distributivity) is more com-
plicated. Suppose that in our lattice all pairs of propositions are compatible and
choose three arbitrary propositions 𝒳 , 𝒴 and 𝒵. Our task is to prove the validity of
the distributive laws

(𝒳 ∧ 𝒵) ∨ (𝒴 ∧ 𝒵) = (𝒳 ∨ 𝒴) ∧ 𝒳 , (B.10)
(𝒳 ∨ 𝒵) ∧ (𝒴 ∨ 𝒵) = (𝒳 ∧ 𝒴) ∨ 𝒵 . (B.11)

Let us first prove that the seven propositions4 (see Figure B.1)

𝒬1 = 𝒳 ∧ 𝒴 ∧ 𝒵 ,

𝒬2 = 𝒳
⊥ ∧ 𝒴 ∧ 𝒵 ,

𝒬3 = 𝒳 ∧ 𝒴
⊥ ∧ 𝒵 ,

𝒬4 = 𝒳 ∧ 𝒴 ∧ 𝒵
⊥,

𝒬5 = 𝒳 ∧ 𝒴
⊥ ∧ 𝒵⊥,

𝒬6 = 𝒳
⊥ ∧ 𝒴 ∧ 𝒵⊥,

𝒬7 = 𝒳
⊥ ∧ 𝒴⊥ ∧ 𝒵

are mutually disjoint, i. e.,𝒬i ≤ 𝒬
⊥
j if i ̸= j.

3 Here we applied property 15 from Table 1.2 and formula (B.7).
4 Depending on the choice of𝒳 , 𝒴 and𝒵 some of them can be empty.
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Figure B.1: To the proof of Theorem B.14. Representation of
propositions by regions on a plane is for illustration purposes
only. In the proof, we do not assume that the lattice of proposi-
tions is distributive (= Boolean).

For example, to prove the disjointness of 𝒬3 and 𝒬5, we notice that 𝒬3 ≤ 𝒵 and
𝒬5 ≤ 𝒵

⊥.5 Then by property 17,𝒵 ≤ 𝒬⊥5 and𝒬3 ≤ 𝒵 ≤ 𝒬
⊥
5 , and by property 3,𝒬3 ≤ 𝒬

⊥
5 .

Since by our assumption both𝒳 ∧𝒵 and𝒳 ∧𝒵⊥ are compatible with𝒴, we obtain

𝒳 ∧ 𝒵 = (𝒳 ∧ 𝒵 ∧ 𝒴) ∨ (𝒳 ∧ 𝒵 ∧ 𝒴⊥) = 𝒬1 ∨𝒬3,

𝒳 ∧ 𝒵⊥ = (𝒳 ∧ 𝒵⊥ ∧ 𝒴) ∨ (𝒳 ∧ 𝒵⊥ ∧ 𝒴⊥) = 𝒬4 ∨𝒬5,

𝒳 = (𝒳 ∧ 𝒵) ∨ (𝒳 ∧ 𝒵⊥) = 𝒬1 ∨𝒬3 ∨𝒬4 ∨𝒬5.

Similarly

𝒴 ∧ 𝒵 = 𝒬1 ∨𝒬2,

𝒴 ∧ 𝒵⊥ = 𝒬4 ∨𝒬6,

𝒴 = 𝒬1 ∨𝒬2 ∨𝒬4 ∨𝒬6,

𝒵 = 𝒬1 ∨𝒬2 ∨𝒬3 ∨𝒬7.

Then, denoting 𝒯 ≡ 𝒬1 ∨𝒬2 ∨𝒬3 and using properties 10, 12 and (B.9), we obtain

(𝒳 ∧ 𝒵) ∨ (𝒴 ∧ 𝒵) = (𝒬1 ∨𝒬3) ∨ (𝒬1 ∨𝒬2) = 𝒬1 ∨𝒬2 ∨𝒬3 = 𝒯 . (B.12)

From properties 7, 8 and the equality 𝒴 ∨ 𝒳 = 𝒯 ∨𝒬4 ∨𝒬5 ∨𝒬6 it follows that

𝒯 ≤ (𝒯 ∨𝒬7) ∧ (𝒯 ∨𝒬4 ∨𝒬5 ∨𝒬6) = (𝒳 ∨ 𝒴) ∧ 𝒵 . (B.13)

On the other hand, 𝒬4 ≤ 𝒵
⊥, 𝒬5 ≤ 𝒵

⊥ and 𝒬6 ≤ 𝒵
⊥. Therefore, 𝒬4 ∨ 𝒬5 ∨ 𝒬6 ≤

𝒵⊥ ≤ 𝒬⊥7 . Adding here Lemma B.13 and the definition of compatibility, we get

(𝒳 ∨ 𝒴) ∧ 𝒵 = (𝒯 ∨𝒬4 ∨𝒬5 ∨𝒬6) ∧ (𝒯 ∨𝒬7) ≤ (𝒯 ∨𝒬
⊥
7 ) ∧ (𝒯 ∨𝒬7) = 𝒯 . (B.14)

Then, application of the symmetry property 2 to formulas (B.13) and (B.14) yields

(𝒳 ∨ 𝒴) ∧ 𝒵 = 𝒯 . (B.15)

Comparing equations (B.12) and (B.15), we see that the distributive law (B.10) is in-
deed satisfied. The other distributive law (B.11) follows from (B.10) by the principle of
duality.

5 Both inequalities follow from property 6 in Table 1.2.





C Groups and vector spaces

C.1 Groups

A group is a set where the composition (or product) ab of any two elements a and b
is defined. This product is also an element of the group, and the following conditions
are fulfilled:
(1) associativity,

(ab)c = a(bc); (C.1)

(2) there exists a unique identity element e, such that for each group element a

ea = ae = a; (C.2)

(3) for each group element a there exists a unique inverse element a−1, such that

aa−1 = a−1a = e. (C.3)

In commutative (or Abelian) groups ab = ba for any two elements a and b.
For physics, the most interesting are the groups of transformations (rotations,

translations, etc.) between inertial frames of reference. These are the Galilei and
Poincaré groups considered in Chapter 2.

C.2 Vector spaces

Vector (or linear) space H is a set of objects (called vectors)1 with two operations:
addition of two vectors andmultiplication of a vector by a scalar (that is, a number). In
this book, wewill be interested only in vector spaces whose scalars are either complex
(ℂ) or real (ℝ) numbers. If x and y are two vectors and a and b are two scalars, then

ax + by

is also a vector. Bydefinition, the vector space formsanAbelian (= commutative) group
with respect to the addition of vectors. In particular, this means:
(1) commutativity: x + y = y + x;
(2) associativity: (x + y) + z = x + (y + z);
(3) existence of the group identity (which is denoted by 0 and called the zero vector):

x + 0 = 0 + x = x;

1 In our book vectors are indicated in bold (x).

https://doi.org/10.1515/9783110492132-010
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(4) existence of the opposite (= additive inverse) element, which is denoted by −x:

x + (−x) = 0.

Moreover, the following properties of the (scalar)×(vector) product are fulfilled:
(5) associativity of the multiplication by scalars: a(bx) = (ab)x;
(6) distributivity of the sum of scalars: (a + b)x = ax + bx;
(7) distributivity of the sum of vectors: a(x + y) = ax + ay;
(8) multiplication by the scalar unity: 1x = x.

We encourage the reader to verify that these eight axioms allow us to derive the fol-
lowing useful results for arbitrary scalar a and vector x:

0x = a0 = 0,
(−a)x = a(−x) = −(ax),

ax = 0 ⇒ a = 0 or x = 0.

An example of a vector space is the set of all columns of n numbers2

[[[[[

[

x1
x2
...
xn

]]]]]

]

.

The sum of two columns is

[[[[[

[

x1
x2
...
xn

]]]]]

]

+
[[[[[

[

y1
y2
...
yn

]]]]]

]

=
[[[[[

[

x1 + y1
x2 + y2

...
xn + yn

]]]]]

]

.

The multiplication of a column by the scalar λ is defined as

λ
[[[[[

[

x1
x2
...
xn

]]]]]

]

=
[[[[[

[

λx1
λx2
...

λxn

]]]]]

]

.

The inverse vector is obtainedby changing the signs of all components. The zero vector
is the column with all zeros.

2 If xi are real (complex) numbers, then the vector space of the columns is denoted byℝn (ℂn).
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A set of nonzero vectors {xi} is called linearly independent if the equality

∑
i
aixi = 0

is fulfilled only when ai = 0 for all i. A set of linearly independent vectors xi is called
a basis, if, with the addition of any nonzero vector y to this set, it ceases to be linearly
independent. In this case the equation

a0y +∑
i
aixi = 0

has a solution in which a0 ̸= 0.3 This means that we can express any vector y as a
linear combination of basis vectors, i. e.,

y = −∑
i

ai
a0

xi = ∑
i
yixi. (C.4)

Notice that each vector y hasunique components yiwith respect to the basis xi. Indeed,
suppose that we have found another set of components y󸀠i such that

y = ∑
i
y󸀠ixi. (C.5)

Then, subtracting (C.5) from (C.4), we get

0 = ∑
i
(y󸀠i − yi)xi

and y󸀠i = yi, because xi are linearly independent.
One can choose many different bases in a given vector space H . However, the

number of vectors in each such basis is the same. This number is called the dimen-
sion of the vector space (denoted by dimH ). The dimension of the space of n-number
columns is n. An example of a basis in this space is given by the set of n vectors

[[[[[

[

1
0
...
0

]]]]]

]

,
[[[[[

[

0
1
...
0

]]]]]

]

, . . . ,
[[[[[

[

0
0
...
1

]]]]]

]

.

A linear subspaceA is a subset of vectors inH (denotedA ⊆ H ), which is closed
with respect to the operations of vector addition and scalar multiplication. For each
set of vectors x1, x2, . . . there exists a subspace called linear span x1 ⊎ x2 ⊎ ⋅ ⋅ ⋅, i. e., the
set of linear combinations∑i aixi with all possible coefficients ai. The linear span of a
single nonzero vector⨄ x is a one-dimensional subspace, which is also called the ray.

3 Otherwise we would have ai = 0 for all i, which would mean that the set {xi, y} is linearly indepen-
dent, in contradiction to our assumption.





D Group of rotations

D.1 Basics of 3D space

Let us now turn to our usual three-dimensional position space. It consists of points.
We choose arbitrarily one such point 0 and call it the origin. Now we can connect all
other points in space to the origin by arrows (=vectors) a. These are, indeed, vectors
in our definition from Appendix C.2, because we can define their sums and products
with real scalars. We will define the sum of two vectors by the parallelogram rule, as
shown in Figure D.1. The length of the vector |a| (it is also denoted by a) and the angle
α between two vectors a and b are determined in a natural way. Then the vector λa
has the same direction as a,1 but its length is equal to |λ|a. The scalar product of two
vectors is defined by the formula

a ⋅ b = b ⋅ a = ab cos α. (D.1)

Two nonzero vectors are called perpendicular or orthogonal, if the angle between
them is 90°, so that a ⋅ b = 0.

Figure D.1: Some objects in the vector spaceℝ3: the origin
0; the basis vectors i, j, k; the sum of two vectors a + b is
obtained by the parallelogram rule.

We can construct an orthonormal basis of threemutually perpendicular vectors of unit
length: i, j and k.2 Then each vector a is representable as a linear combination

a = axi + ayj + azk

1 The direction is reversed if λ < 0.
2 Wewill choose the triplet of vectors i, j, kwhich form a right-oriented basis, as shown in Figure D.1.
Such a basis has the following property: if all three arrows point at you, then you see their ends in the
counterclockwise order i→ j→ k. The directions i, j, k will be also denoted x, y and z, respectively.

https://doi.org/10.1515/9783110492132-011
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or as a column of its components, also called coordinates of the vector,3

a = [[
[

ax
ay
az

]]

]

.

A transposed vector is represented as a row

aT = [ax , ay , az].

The scalar product (D.1) can be written in several equivalent forms, i. e.,

b ⋅ a =
3
∑
i=1

biai = bxax + byay + bzaz = [bx , by , bz]
[[

[

ax
ay
az

]]

]

= bTa, (D.2)

where bTa denotes the usual (row by column) matrix product of the row bT and the
column a.

D.2 Scalars and vectors

There are two approaches to inertial transformations, in particular, to rotations: active
and passive. An active rotationmoves physical objects, without changing orientations
of the basic vectors i, j,k. A passive rotation simply changes directions of the basic vec-
tors without touching material things. Therefore, the passive rotation changes vector
components, but not the physical vectors themselves. Unless stated otherwise, wewill
normally use the passive approach to rotations and other inertial transformations.

We will call a quantity a 3-scalar, if it does not change under rotations. Distances
and angles are examples of scalars.

Let us now find out how rotations change coordinates of vectors in ℝ3. By defini-
tion, rotation keeps the origin and linear combinations of vectors unchanged, so the
(linear) action of the rotation on a column-vector should be representable as multipli-
cation by a 3 × 3 matrix R,

a󸀠i =
3
∑
j=1

Rijaj, (D.3)

or in the matrix form

a󸀠 = Ra, (D.4)

b󸀠T = (Rb)T = bTRT ,

where RT denotes the transposed matrix.

3 Thus, the physical space is identifiedwith the vector spaceℝ3 of all triplets of real numbers.Wewill
denote vector indices either by letters x, y, z, or by numbers 1, 2, 3, as convenient.
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D.3 Orthogonal matrices

Rotations preserve lengths, distances and angles, so they should preserve the scalar
product

b ⋅ a = bTa = (Rb)T (Ra) = bTRTRa.

The validity of this equality for all a and b implies that rotation matrices satisfy the
following condition:

RTR = I , (D.5)

where I is the identity matrix

I = [[
[

1 0 0
0 1 0
0 0 1

]]

]

.

Multiplying by the inverse matrix R−1 on the right, equation (D.5) can be rewritten as

RT = R−1. (D.6)

This implies a useful property,

Rb ⋅ a = bTRTa = bTR−1a = b ⋅ R−1a. (D.7)

In the coordinate notation, condition (D.5) takes the form

3
∑
j=1

RTijRjk =
3
∑
j=1

RjiRjk = δik (D.8)

where δij is the Kronecker delta

δij = {
1, if i = j,
0, if i ̸= j.

(D.9)

Matrices satisfying condition (D.6) are called orthogonal. Therefore, any rotation has
a unique representative in the set of 3 × 3 orthogonal matrices.

However, not every orthogonal matrix R corresponds to a rotation. To see this, we
write

1 = det[I] = det[RTR] = det[RT]det[R] = (det[R])2,

which implies that the determinant of orthogonal matrices is det[R] = ±1. Each rota-
tion can be connected in a continuous way to the trivial (0° angle) rotation, which is,
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of course, represented by the identity matrix with the unit determinant. A continuous
transformation cannot abruptly change the determinant from +1 to −1. Therefore, only
matrices with unit determinant

det[R] = 1 (D.10)

can represent rotations.4 So, we conclude that rotations are in one-to-one correspon-
dence with orthogonal matrices having the unit determinant.

The concept of a vector is more general than just an arrow sticking out of the ori-
gin. We call a 3-vector any triplet of numbers𝒜 = (𝒜x ,𝒜y ,𝒜z), whose transformation
under the action of rotations is the same as for vectors–arrows (D.3).

Let us now find out the explicit form of rotation matrices. Each rotation about the
z-axis does not change the z-component of 3-vectors. The most general 3 × 3 matrix
satisfying this requirement can be written as

Rz =
[[

[

a b 0
c d 0
0 0 1

]]

]

and condition (D.10) translates into ad − bc = 1. By direct substitution we can check
that the inverse matrix is

R−1z =
[[

[

d −b 0
−c a 0
0 0 1

]]

]

.

According to property (D.6) we should have

a = d,
−b = c.

Therefore

Rz =
[[

[

a −b 0
b a 0
0 0 1

]]

]

.

The condition det[Rz] = a2 + b2 = 1 implies that we can leave just one parameter φ,
such that a = cosφ and b = sinφ. Then we have

Rz =
[[

[

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

]]

]

. (D.11)

4 Matrices with det[R] = −1 represent rotations coupled with space inversion (see Subsection 2.2.4).
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Obviously, the parameter φ is just the rotation angle. The matrices of rotations about
the axes x and y are

Rx =
[[

[

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

]]

]

(D.12)

and

Ry =
[[

[

cosφ 0 sinφ
0 1 0
− sinφ 0 cosφ

]]

]

, (D.13)

respectively.

D.4 Invariant tensors

A tensor of the second rank5 𝒯ij is defined as a set of nine numbers depending on two
indices (i, j = 1, 2, 3) and transforming in a linear way (as a vector) with respect to each
index,

𝒯 󸀠ij =
3
∑
kl=1

RikRjl𝒯kl, (D.14)

Similarly, one can define tensors of higher ranks, for example 𝒯ijk .
There are two invariant tensors, playing special roles, because their components

do not change under rotations. The first invariant tensor is the Kronecker delta (D.9).6

Its invariance follows from the orthogonality of R-matrices (D.8),

δ󸀠ij =
3
∑
kl=1

RikRjlδkl =
3
∑
k=1

RikRjk = δij.

The second invariant tensor is the third-rank Levi-Civita symbol ϵijk, whose only
nonzero components are ϵxyz = ϵzxy = ϵyzx = −ϵxzy = −ϵyxz = −ϵzyx = 1. We show
its invariance by applying an arbitrary rotation R to ϵijk . Then

ϵ󸀠ijk =
3
∑

lmn=1
RilRjmRknϵlmn

= Ri1Rj2Rk3 + Ri3Rj1Rk2 + Ri2Rj3Rk1 − Ri2Rj1Rk3 − Ri3Rj2Rk1 − Ri1Rj3Rk2. (D.15)

5 Scalars and vectors are sometimes called tensors of the zero and 1st rank, respectively.
6 Which can be regarded as a unit 3 × 3 matrix.
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The right-hand side has the following properties:
(1) It vanishes if any two indices coincide: i = j or i = k or j = k; for example,

ϵ󸀠112 = R11R12R23 + R13R11R22 + R12R13R21
− R12R11R23 − R13R12R21 − R11R13R22 = 0.

(2) It does not change under cyclic permutation of the indices ijk.
(3) We have ϵ󸀠123 = det[R] = 1.

These are the same properties that were used in the definition of the Levi-Civita sym-
bol. Hence, the right-hand side (D.15) must have the same components as ϵijk, so

ϵ󸀠ijk = ϵijk .

Using the invariant tensors δij and ϵijk, we can perform transformations between
scalar, vector and tensor quantities, as shown in Table D.1. For example, any antisym-
metric tensor𝒜ij has three independent components, and it can be represented as

𝒜ij =
3
∑
k=1

ϵijkVk ,

where Vk are components of some 3-vector.

Table D.1: Transitions between quantities of different ranks, using invariant tensors.

Scalar S → Sδij (symmetric tensor of 2nd rank)
Scalar S → Sϵijk (antisymmetric tensor of 3rd rank)
Vector Vi → ∑

3
k=1 ϵijkVk (antisymmetric tensor of 2nd rank)

Tensor 𝒯ij → ∑
3
ij=1 δij𝒯ji (scalar)

Tensor 𝒯ij → ∑
3
jk=1 ϵijk𝒯kj (vector)

2 vectors Ai , Bi → ∑
3
ij=1 δijAiBj (scalar)

2 vectors Ai , Bi → ∑
3
jk=1 ϵijkAjBk (vector)

3 vectors Ai , Bi , Ci → ∑
3
ijk=1 ϵijkAiBjCk (scalar)

Using invariant tensors, one can build scalars and vectors from any two given vectors
A and B. The scalar is built with the help of the Kronecker delta

A ⋅ B =
3
∑
ij=1

δijAiBj ≡ A1B1 + A2B2 + A3B3.

This is just the familiar scalar product (D.2). The vector is constructed using the Levi-
Civita tensor

[A × B]i ≡
3
∑
jk=1

ϵijkAjBk .
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It is called the vector product of A and B, and it has the following components:

[A × B]x = AyBz − AzBy ,
[A × B]y = AzBx − AxBz ,
[A × B]z = AxBy − AyBx

and properties:

[A × B] = −[B × A],
[A × [B × C]] = B(A ⋅ C) − C(A ⋅ B). (D.16)

Themixed product is a scalar obtained from three vectors by means of the Levi-Civita
invariant tensor

[A × B] ⋅ C =
3
∑
ijk=1

ϵijkAiBjCk .

It has the properties

[A × B] ⋅ C = [B × C] ⋅ A = [C × A] ⋅ B, (D.17)
[A × B] ⋅ B = 0.

D.5 Vector parametrization of rotations

Thematrix notation for rotations (D.3) is convenient for describing transformations of
vector and tensor components. However, it is oftennecessary to characterize a rotation
in a more physical way, namely, in terms of its axis and angle. In other words, any
rotation can be uniquely represented by one vector φ = φxi + φyj + φzk,7 such that
its direction coincides with the direction of the rotation axis and the vector’s length
φ ≡ |φ| is equal to the rotation angle.

The effect of the rotation φ on a 3-vector x will be denoted simply as φx. Let us
now establish the connection betweenmatrix and vector representations of rotations.
Our goal is to find the matrix Rφ corresponding to the rotationφ.

As shown in Figure D.2, each vector P inℝ3 can be uniquely decomposed into two
parts: P = P‖ + P⊥. The first part

P‖ ≡ (P ⋅
φ
φ
)
φ
φ

(D.18)

7 Or simply by a triplet of real numbers {φx ,φy ,φz}.
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Figure D.2: Transformation of vector components P = P‖ + P⊥
under active rotation by the angleφ.

is parallel to the rotation axis, and the second part

P⊥ = P − P‖ (D.19)

is perpendicular to it. The rotation does not affect the parallel part of the vector, so
after the active rotation our vector becomes

P󸀠 ≡ P‖ + P
󸀠
⊥. (D.20)

If P⊥ = 0, then the rotation leaves P untouched. Let us now find the active rotation of
a nonzero perpendicular component P⊥ ̸= 0.

Denote by

n = −[P⊥ ×φ]
φ
= −
[P ×φ]

φ

the vector, which is orthogonal to both φ and P⊥ and equal to the latter in length.
Notice that the triplet of vectors (P⊥,n,φ) forms a right-oriented system, just like the
basis triplet (i, j,k). Therefore, the result of rotation through the angle φ in the plane
formed by vectors P⊥ and n should be the same as the rotation about the axis k in the
plane of vectors i and j, so we have

P󸀠⊥ = P⊥ cosφ + n sinφ = P⊥ cosφ −
[P ×φ]

φ
sinφ. (D.21)

Joining equations (D.18)–(D.21), we obtain

P󸀠 = (P ⋅ φ
φ
)
φ
φ
+ P⊥ cosφ −

[P ×φ]
φ

sinφ.

The formula for the passive rotation is obtained by changing the sign ofφ. We have

φP = P cosφ + (P ⋅ φ
φ
)
φ
φ
(1 − cosφ) + [P × φ

φ
] sinφ (D.22)
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or in the component notation

(φP)x = (Pxφx + Pyφy + Pzφz)
φx
φ2 (1 − cosφ) + Px cosφ + (Pyφz − Pzφy)

sinφ
φ
,

(φP)y = (Pxφx + Pyφy + Pzφz)
φy

φ2 (1 − cosφ) + Py cosφ + (Pzφx − Pxφz)
sinφ
φ
,

(φP)z = (Pxφx + Pyφy + Pzφz)
φz
φ2 (1 − cosφ) + Pz cosφ + (Pxφy − Pyφx)

sinφ
φ
.

This means that a general orthogonal rotation matrix has the following entries:

(Rφ)ij = cosφδij −
3
∑
k=1

φkϵijk
sinφ
φ
+ φiφj

1 − cosφ
φ2

or explicitly8

Rφ =
[[

[

c + l2x(1 − c) lxly(1 − c) − lzs lxlz(1 − c) + lys
lxly(1 − c) + lzs c + l2y(1 − c) lylz(1 − c) − lxs
lxlz(1 − c) − lys lylz(1 − c) + lxs c + l2z(1 − c)

]]

]

, (D.23)

where we denoted c ≡ cosφ, s ≡ sinφ and l ≡ φ/φ.
To find the reverse link frommatrices to rotation vectors,we start with an arbitrary

orthogonalmatrixRhavingunit determinant det[R] = 1 and try to find the correspond-
ing vectorφ. Obviously, this vector does not change under the transformation R, so it
is an eigenvector of the matrix R with the eigenvalue of 1, thus

Rφ = φ.

Each orthogonal 3 × 3 matrix with unit determinant has eigenvalues (1, eiφ, e−iφ).9

Hence, the eigenvalue 1 is nondegenerate, and the direction of the vectorφ is defined
up to a sign. Next we have to find the length of this vector, i. e., the rotation angle φ.
The trace of the matrix R is given by the sum of its eigenvalues,

Tr(R) = 1 + eiφ + e−iφ = 1 + 2 cosφ.

Therefore, we can define a mapping from the set of rotation matrices R to the corre-
sponding rotation vectorsφ by the following rules:
– The direction of the rotation vector φ coincides with the direction of the unique

eigenvector of R with eigenvalue 1.

8 Matrices (D.11)–(D.13) are obtained as particular cases of (D.23) for l = (0,0, 1), l = (1,0,0) and
l = (0, 1,0), respectively.
9 This result can be verified using explicit representations (D.11)–(D.13) and (D.23).
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– The length of the vector (= rotation angle) φ is equal to10

φ = arccos Tr(R) − 1
2
. (D.24)

Finding the additional steps for determining the sign of the vectorφ is left as an exer-
cise for the reader.

D.6 Group properties of rotations

Rotations form a mathematical Lie group. The identity element of this group is the
rotation by the zero angle 0. This rotation leaves all vectors unchanged and is rep-
resented by the identity matrix R0 = I. The symbol ϕ ∘ φ will denote the product
(composition) of two rotations: first φ and then ϕ. This composition corresponds to
the product of the corresponding orthogonal matrices Rϕ and Rφ, which is also an
orthogonal matrix, because

(RϕRφ)
T = RTφR

T
ϕ = R

−1
φ R−1ϕ = (RϕRφ)

−1.

For each rotationφ there exists an inverse rotation −φ such that

(−φ) ∘φ = φ ∘ (−φ) = 0.

Obviously, the inverse rotation is represented by the inverse matrix R−φ = R−1φ = R
T
φ.

This matrix is also orthogonal:

(R−1φ )
T = (RTφ)

T = Rφ = (R
−1
φ )
−1.

The associativity law

φ1 ∘ (φ2 ∘φ3) = (φ1 ∘φ2) ∘φ3

follows from the associativity of matrix multiplication.
Rotations about different axes, as a rule, do not commute with each other. How-

ever, two rotationsφn andψn about the sameaxis11 do commute.Moreover, our choice
of the vector parametrization of rotations leads to the following important relation:

(φn) ∘ (ψn) = (φ + ψ)n. (D.25)

10 As expected, this formula does not depend on the basis because the trace of a matrix is basis-
independent (see Lemma G.5).
11 Here n is an arbitrary unit vector.
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For example, for two rotations about the z-axis we can write

R(0,0,φ)R(0,0,ψ) =
[[

[

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

]]

]

[[

[

cosψ − sinψ 0
sinψ cosψ 0
0 0 1

]]

]

= [[

[

cos(φ + ψ) − sin(φ + ψ) 0
sin(φ + ψ) cos(φ + ψ) 0

0 0 1

]]

]
= R(0,0,φ+ψ).

We will say that rotations about one axis n form a one-parameter subgroup of the ro-
tation group.

D.7 Generators of rotations

Rotations by small angles (near the identity element 1 ≡ 0 of the group) can be for-
mally represented by Taylor expansions as follows:

φ = 1 +
3
∑
i=1

φiti +
1
2

3
∑
ij=1

φiφjtij + ⋅ ⋅ ⋅ .

At small values of φ we have

φ ≈ 1 +
3
∑
i=1

φiti. (D.26)

The objects ti are called generators or infinitesimal rotations. Generators can be for-
mally represented as derivatives of elements of one-parameter subgroupswith respect
to their parameters φi, i. e.,

ti = lim
φi→0

d
dφiφ. (D.27)

For example, in thematrix notation, the generator of rotations about the z-axis is given
by the matrix

𝒥z = limφ→0

d
dφ

Rz(φ) = limφ→0

d
dφ
[[

[

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

]]

]

= [[

[

0 −1 0
1 0 0
0 0 0

]]

]

. (D.28)

Similarly, for generators of rotations about the axes x and y, we obtain from (D.12) and
(D.13)

𝒥x =
[[

[

0 0 0
0 0 −1
0 1 0

]]

]

, 𝒥y =
[[

[

0 0 1
0 0 0
−1 0 0

]]

]

. (D.29)
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Using the additivity property (D.25) and the expansion (D.26), we can express an
arbitrary rotationφ as an exponential function of the generator

φ = lim
N→∞
{Nφ

N
} = lim

N→∞
{
φ
N
}
N
= lim

N→∞
(1 +

3
∑
i=1

φi

N
ti)

N

= exp(
3
∑
i=1

φiti). (D.30)

For example, the exponent of the matrix 𝒥z

e𝒥zφ = 1 + φ𝒥z +
1
2!
φ2𝒥 2

z + O(φ
3)

= [[

[

1 0 0
0 1 0
0 0 1

]]

]

+ [[

[

0 −φ 0
φ 0 0
0 0 0

]]

]

+
[[[

[

−φ
2

2 0 0
0 −φ

2

2 0
0 0 0

]]]

]

+ O(φ3)

=
[[[

[

1 − φ2

2 + ⋅ ⋅ ⋅ −φ + ⋅ ⋅ ⋅ 0
φ + ⋅ ⋅ ⋅ 1 − φ2

2 + ⋅ ⋅ ⋅ 0
0 0 1

]]]

]

= [[

[

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

]]

]

= Rz = (0,0,φ) (D.31)

is the matrix of rotation about the z-axis, as expected.
One can notice that three generators (D.28)–(D.29) form a basis in the linear space

of antisymmetric 3 × 3 matrices. A generator of a rotation about an arbitrary axis is
also an antisymmetric matrix, which is a linear combination of the generators. It is
not difficult to verify that the exponent of any such linear combination of the matrices
𝒥x, 𝒥y and 𝒥z is an orthogonal 3 × 3 matrix with unit determinant, i. e., it represents a
certain rotation.

Therefore, the three abstract objects ti12 form a basis in the vector space of gener-
ators of the rotation group. This vector space is called the Lie algebra of the rotation
group. General properties of Lie algebras will be discussed in Appendix E.2.

12 In the matrix representation they correspond to the matrices 𝒥x, 𝒥y and 𝒥z .
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E.1 Lie groups

Generally speaking, the sets of elements of a group can be either discrete or continu-
ous. Here we are going to discuss a special class of groups, called Lie groups, whose
group manifold is continuous. Moreover, the group composition and the inverse are
given by smooth functions on this manifold.

In Appendix D.5 (see also Appendix I.4), we saw that all these properties are satis-
fied in the group of rotations, which is the prime example of a three-dimensional Lie
group.

Analogously to the rotation angles φ, elements of a general n-dimensional Lie
group can be labeled by n continuous parameters (coordinates) ηi. A general element
of the group will be denoted by {η} = {η1, η2, . . . ηn}, so that the operations of prod-
uct and inverse are smooth functions of these coordinates. We assume that the group
coordinates can always be chosen such that the following properties are satisfied:
(1) the identity element has coordinates {0,0, . . . ,0};
(2) {η}−1 = {−η};
(3) if elements {ψ} and {φ} belong to the same one-parameter subgroup, then coor-

dinates of their products are simply sums of coordinates of the factors

{ψ}{φ} = {ψ +φ}. (E.1)

Then one can introduce infinitesimal transformations or generators ta (a = 1, 2, . . . , n)
and express group elements near the identity as exponential functions of the genera-
tors (compare with Appendix D.7)

{η} = exp(
n
∑
a=1

ηata) = 1 +
n
∑
a=1

ηata +
1
2!

n
∑
bc=1

ηbηctbc + ⋅ ⋅ ⋅ . (E.2)

Let us introduce the function g(ξ , ζ ), which maps a pair of points {ξ } and {ζ } in the
groupmanifold to a third point g(ξ , ζ ) according to the groupmultiplication law, i. e.,

{ξ }{ζ } = {g(ξ , ζ )}. (E.3)

This function should satisfy the following conditions:

g(0,η) = g(η,0) = η, (E.4)
g(η, −η) = 0,

which follow from group properties (C.2) and (C.3), respectively. In order to ensure
condition (E.4), the Taylor expansion of g up to second-order terms should look like

ga(ξ , ζ ) = ξ a + ζ a +
n
∑
bc=1

f abcξ
bζ c + ⋅ ⋅ ⋅ , (E.5)

https://doi.org/10.1515/9783110492132-012
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where f abc are real coefficients. Now, substitute expansions (E.2) and (E.5) into (E.3) to
obtain

(1 +
n
∑
a=1

ξ ata +
1
2

n
∑
bc=1

ξ bξ ctbc + ⋅ ⋅ ⋅)(1 +
n
∑
a=1

ζ ata +
1
2

n
∑
bc=1

ζ bζ ctbc + ⋅ ⋅ ⋅)

= 1 +
n
∑
a=1
(ξ a + ζ a +

n
∑
bc=1

f abcξ
bζ c + ⋅ ⋅ ⋅)ta

+ 1
2

n
∑
ab=1
(ξ a + ζ a + ⋅ ⋅ ⋅)(ξ b + ζ b + ⋅ ⋅ ⋅)tab + ⋅ ⋅ ⋅ .

Numerical factors in front of the terms 1, ξ , ζ , ξ 2, ζ 2 match exactly on both sides of
this equation. However, matching the factors in front of ξζ is possible only under the
nontrivial condition

1
2
(tbc + tcb) = tbtc −

n
∑
a=1

f abcta.

The left-hand side is symmetric with respect to swapping indices b 󴀕󴀬 c. Therefore,
the right-hand side must be symmetric as well, so we have

tbtc −
n
∑
a=1

f abcta − tctb +
n
∑
a=1

f acbta = 0. (E.6)

According to (E.6), the commutator of two generators defined by the formula

[tb, tc] ≡ tbtc − tctb

is a linear combination of other generators, i. e.,

[tb, tc] =
n
∑
a=1

Cabcta, (E.7)

where the real parameters Cabc = f
a
bc−f

a
cb are called structure constants of the Lie group.

Theorem E.1. Lie group generators satisfy the Jacobi identity

[ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = 0. (E.8)

Proof. First we write the associative law (C.1) in the form1

0 = ga(ζ , g(ξ ,η)) − ga(g(ζ , ξ ),η)

1 The burden of writing summation signs is becoming unbearable, so we accept Einstein’s rule, ac-
cording towhich these signs can be omitted and sums are performed over all pairs of repeated indices.
Moreover, we leave only terms of the second and lower orders in expansions (E.5).
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≈ ζ a + ga(ξ ,η) + f abcζ
bgc(ξ ,η) − ga(ζ , ξ ) − ηa − f abcg

b(ζ , ξ )ηc

≈ ζ a + ξ a + ηa + f abcξ
bηc + f abcζ

b(ξ c + ηc + f cxyξ
xηy)

− ζ a − ξ a − f axyζ
xξ y − ηa − f abc(ζ

b + ξ b + f bxyζ
xξ y)ηc

= f abcξ
bηc + f abcζ

bξ c + f abcζ
bηc + f abcf

c
xyζ

bξ xηy

− f axyζ
xξ y − f abcη

cζ b − f abcη
cξ b − f abcf

b
xyη

cζ xξ y

= f abcf
c
xyζ

bξ xηy − f acyf
c
bxζ

bξ xηy

= (f cxyf
a
bc − f

c
bxf

a
cy)ζ

bξ xηy .

The group elements {ζ }, {ξ } and {η} were chosen arbitrarily, which means that

f xabf
y
cx − f

x
caf

y
xb = 0 (E.9)

for all combinations of indices a, b, c, y. Next we turn to the left-hand side of the Jacobi
identity (E.8),

[ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = [ta,C
x
bctx] + [tb,C

x
catx] + [tc,C

x
abtx]

= (CxbcC
y
ax + C

x
caC

y
bx + C

x
abC

y
cx)ty .

The expression inside the parentheses is

(f xbc − f
x
cb)(f

y
ax − f

y
xa) + (f

x
ca − f

x
ac)(f

y
bx − f

y
xb) + (f

x
ab − f

x
ba)(f

y
cx − f

y
xc)

= f xbcf
y
ax − f

x
bcf

y
xa − f

x
cbf

y
ax + f

x
cbf

y
xa + f

x
caf

y
bx − f

x
caf

y
xb

− f xacf
y
bx + f

x
acf

y
xb + f

x
abf

y
cx − f

x
abf

y
xc − f

x
baf

y
cx + f

x
baf

y
xc

= (f xbcf
y
ax − f

x
abf

y
xc) + (f

x
caf

y
bx − f

x
bcf

y
xa) − (f

x
cbf

y
ax − f

x
acf

y
xb)

− (f xbaf
y
cx − f

x
cbf

y
xa) + (f

x
abf

y
cx − f

x
caf

y
xb) − (f

x
acf

y
bx − f

x
baf

y
xc). (E.10)

According to (E.9), all parentheses on the right-hand side of (E.10) vanish, which
proves the theorem.

E.2 Lie algebras

A Lie algebra is a vector spacewith real scalars λ ∈ ℝ andwith an additional operation
called the Lie bracket and denoted by [A,B]L. This operation maps a pair of vectors A
and B to a third vector. By definition, the Lie bracket satisfies the following require-
ments:

[A,B]L = −[B,A]L,

[A,B + C]L = [A,B]L + [A,C]L,
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[A, λB]L = [λA,B]L = λ[A,B]L, for any λ ∈ ℝ,

0 = [A, [B,C]L]L + [B, [C,A]L]L + [C, [A,B]L]L. (E.11)

The last equality is referred to as the Jacobi identity.
Fromour discussions in Appendix E.1 it is clear that generators of a Lie group form

a Lie algebra if the commutator is used for the Lie bracket.2 Consider, for example,
the group of rotations. In the matrix representation, the generators are linear com-
binations of matrices (D.28)–(D.29), i. e., arbitrary antisymmetric matrices satisfying
AT = −A. The commutator of two such matrices,

[A,B] = AB − BA,

is also an antisymmetric matrix, because

(AB − BA)T = BTAT − ATBT = BA − AB = −(AB − BA).

Therefore, the linear space of 3 × 3 antisymmetric matrices is a Lie algebra.
The structure constants of this Lie algebra can be obtained by a direct calculation

from explicit formulas (D.28)–(D.29),

[𝒥x ,𝒥y]L = 𝒥z ,

[𝒥x ,𝒥z]L = −𝒥y ,

[𝒥y ,𝒥z]L = 𝒥x .

In a more compact notation

[𝒥i,𝒥j]L =
3
∑
k=1

ϵijk𝒥k ,

which coincides with formulas (2.18) and (2.41).
We will find useful the following property of commutators in the matrix represen-

tation:

[A,BC] = ABC − BCA

= ABC − BAC + BAC − BCA

= (AB − BA)C + B(AC − CA)

= [A,B]C + B[A,C]. (E.12)

2 Note that the Lie bracket in an abstract Lie algebra cannot be written as the commutator, because
the product AB of two Lie algebra elements is not defined. However, we can represent Lie brackets by
commutators in a matrix representation of the Lie algebra.
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E.3 One-parameter subgroups of Lie groups

Consider an arbitrary Lie group G and a vector t from its Lie algebra AG. Consider also
the set of group elements having the form

{z} = ezt , (E.13)

where parameter z runs through all real numbers z ∈ ℝ. Using properties 1–3 from
Appendix E.1, it is easy to see that the set (E.13) forms a one-parameter subgroup in G.
Indeed, this set contains the identity element (when z = 0), the group product is de-
fined as

{z1}{z2} = e
z1tez2t = e(z1+z2)t = {z1 + z2}

and the inverse element is

{z}−1 = e−zt = {−z}.

In the vicinity of the identity element, every point of the group manifold belongs to
some one-parameter subgroup. Therefore, each element can be represented in the
form (E.13) with some z and t.

Figure E.1: The connection between a Lie group G and
its Lie algebra A.

The connection between a Lie group and its Lie algebra is illustrated in Figure E.1. As
we have said already, a Lie group is an n-dimensional surface G with two additional
structures (the product and the inverse functions) defined on it. The n-dimensional
linear space A corresponding to the Lie algebra of G can be represented as the tangent
space at the identity element e ≡ {0}. Elements of the Lie algebra (vectors x, y ∈ A) are
formal derivatives (D.27) of one-parameter subgroups (shown by broken lines in the
figure) in G.

Near the identity, each element of the Lie group can be represented as an expo-
nential exp(x) (E.13) of a (tangent) vector x from the Lie algebra. Our notation (the
exponent of a vector) may seem strange, but it accurately reflects the relationship be-
tween Lie groups and algebras. In the case of the group of rotations, this relationship
is established in Appendix D.7.
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There is a unique Lie algebra AG for each Lie group G. However, there are many
Lie groups having the same Lie algebra. These groups have identical properties near
the identity element, but their global topologies may be different.

A Lie subalgebra is a subspace B ⊆ AG which is closed with respect to the Lie
bracket, i. e., if x, y ∈ B, then [x, y]L ∈ B.

E.4 Baker–Campbell–Hausdorff formula

We already know that the product of two elements exp(x) and exp(y) of the Lie group
is another element of the group. This element should also have an exponential repre-
sentation. Hence, for any two vectors x and y from the Lie algebra, we can write

exp(x) exp(y) = exp(z),

where z is also a vector in the Lie algebra. The Baker–Campbell–Hausdorff theorem
[97] gives the connection between these three vectors in the form of an infinite series,

z = x + y + 1
2
[x, y]L +

1
12
[[x, y]L, y]L +

1
12
[[y, x]L, x]L

+ 1
24
[[[y, x]L, x]L, y]L −

1
720
[[[[x, y]L, y]L, y]L, y]L

+ 1
360
[[[[x, y]L, y]L, y]L, x]L +

1
360
[[[[y, x]L, x]L, x]L, y]L

− 1
120
[[[[x, y]L, y]L, x]L, y]L −

1
120
[[[[y, x]L, x]L, y]L, x]L ⋅ ⋅ ⋅ .

This means that Lie brackets contain all information about the multiplication law in
the vicinity of the group identity. In many cases it is much more convenient to deal
with generators and their Lie brackets than directly with group elements and their
products.

In applications we will often meet the following useful identity:

exp(ax)y exp(−ax) = y + a[x, y]L +
a2

2!
[x, [x, y]L]L +

a3

3!
[x, [x, [x, y]L]L]L + O(a

4),

(E.14)

where a ∈ ℝ. This formula can be proved by noticing that both sides are solutions of
the same differential equation,

dy(a)
da
= [x, y(a)]L,

with the same initial condition y(0) = y.
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F.1 Internal product

The inner product spaceH is defined as a vector space over complex scalars,1 where a
mapping from ordered pairs of vectors to complex numbers is defined. This mapping
(|y⟩, |x⟩) ∈ ℂ is called the inner product, and it has the following properties:

(|x⟩, |y⟩) = (|y⟩, |x⟩)∗, (F.1)
(|z⟩, α|x⟩ + β|y⟩) = α(|z⟩, |x⟩) + β(|z⟩, |y⟩), (F.2)

(|x⟩, |x⟩) ∈ ℝ, (F.3)
(|x⟩, |x⟩) ≥ 0, (F.4)
(|x⟩, |x⟩) = 0 ⇔ |x⟩ = 0, (F.5)

where α and β are complex numbers.
The Hilbert space H is an inner product space, where several additional proper-

ties are defined: the convergence of sequences of vectors, the closedness of subspaces
and the completeness. We will not discuss these technical details in our book.

F.2 Orthonormal bases

Two vectors |x⟩ and |y⟩ in the Hilbert space H are called orthogonal, if their inner
product vanishes, i. e., (|x⟩, |y⟩) = 0. The vector |x⟩ is called unimodular, if (|x⟩, |x⟩) = 1.
In a Hilbert space, we can construct an orthonormal basis that consists of mutually
orthogonal unimodular vectors |ei⟩ satisfying the equality2

(|ei⟩, |ej⟩) = δij. (F.6)

Suppose that in this basis two vectors |x⟩ and |y⟩ have components xi and yi, re-
spectively:

|x⟩ = x1|e1⟩ + x2|e2⟩ + ⋅ ⋅ ⋅ + xn|en⟩,
|y⟩ = y1|e1⟩ + y2|e2⟩ + ⋅ ⋅ ⋅ + yn|en⟩.

1 Vectors in H will be denoted |x⟩.
2 All formulas in this appendix are written for finite-dimensional Hilbert spaces. As a rule, Hilbert
spaces of physical systems are infinite-dimensional. Moreover, they are inseparable (i. e., with an un-
countable basis). However, in our book we ignore all these difficulties, assuming that the properties
proved in the finite-dimensional case are extrapolatable to more realistic Hilbert spaces.

https://doi.org/10.1515/9783110492132-013
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Then, using (F.1), (F.2) and (F.6), we can express the inner product through the vector
components

(|x⟩, |y⟩) = (x1|e1⟩ + x2|e2⟩ + ⋅ ⋅ ⋅ + xn|en⟩, y1|e1⟩ + y2|e2⟩ + ⋅ ⋅ ⋅ + yn|en⟩)
= x∗1 y1 + x

∗
2 y2 + ⋅ ⋅ ⋅ + x

∗
nyn = ∑

i
x∗i yi. (F.7)

F.3 Bra and ket vectors

The notation (|x⟩, |y⟩) for the internal product is rather cumbersome. Instead, it is
convenient to use the so-called bra-ket formalism, which was invented by Dirac and
greatly simplifies manipulations with objects in the Hilbert space. Let us call vectors
in the Hilbert space ket vectors. Then we define a linear functional ⟨f | : H → ℂ as a
linear mapping from ket vectors |x⟩ ∈ H to complex numbers,

⟨f |(α|x⟩ + β|y⟩) = α⟨f |x⟩ + β⟨f |y⟩.

Since any linear combination α⟨f | + β⟨g| of two functionals ⟨f | and ⟨g| is also a linear
functional, all such functionals form a vector space (denoted H ∗). Vectors in H ∗

will be called bra vectors. We can define an inner product in H ∗ so that it becomes
a Hilbert space. For this, let us choose an orthonormal basis |ei⟩ in H . Then, each
functional ⟨f | defines a set of complex numbers fi – the values of this functional on
the basis vectors

fi = ⟨f |ei⟩.

These numbers define the functional uniquely, i. e., if two functionals ⟨f | and ⟨g| are
different, then their values are different at least on one basic vector |ek⟩: fk ̸= gk .3 Now
we can define the inner product of two bra vectors ⟨f | and ⟨g| by the formula

(⟨f |, ⟨g|) = ∑
i
fig
∗
i

and verify that it satisfies all properties (F.1)–(F.5) of the inner product.
The bra Hilbert space H ∗ is called dual to the ket space H . Note that each ket

vector |y⟩ ∈ H defines a unique linear functional ⟨y|, which acts on all |x⟩ ∈ H by
the formula

⟨y|x⟩ ≡ (|y⟩, |x⟩).

3 Otherwise, using the property of linearity, one could prove that these two functionals have the same
values on all vectors in H , that is, ⟨f | = ⟨g|.
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This bra vector ⟨y| is called dual to the ket vector |y⟩. In other words, in order to cal-
culate the inner product of |y⟩ and |x⟩, we should find a bra vector (functional) dual
to |y⟩ and then find its value on |x⟩. This means that the inner product is obtained by
combining the bra and ket vectors ⟨y|x⟩, thus forming a closed bra-c-ket.

While bra vectors in H ∗ define linear functionals on H , ket vectors |x⟩ ∈ H

define antilinear functionals on bras by the formula ⟨y|x⟩, i. e.,

(α⟨y| + β⟨z|)|x⟩ = α∗⟨y|x⟩ + β∗⟨z|x⟩.

Applying the same arguments as before, we see that if ⟨y| is a bra vector, then there
exists a unique ket |y⟩ such that for any ⟨x| ∈ H ∗ we have

⟨x|y⟩ = (⟨x|, ⟨y|). (F.8)

Thus, we have established an isomorphism of the twoHilbert spacesH andH ∗. This
statement is known as the Riesz theorem.

Lemma F.1. If the kets |ei⟩ form an orthonormal basis inH , then the dual bras ⟨ei| also
form an orthonormal basis in H ∗.

Proof. Suppose that ⟨ei| does not form a basis. Then there is a nonzero bra vector ⟨z| ∈
H ∗ orthogonal to all ⟨ei|. However, the values of the functional ⟨z| on all basis ket
vectors |ei⟩ are equal to zero. Therefore ⟨z| = 0, in contradiction to our assumption.
The orthonormality of ⟨ei| follows from equations (F.8) and (F.6). We have

(⟨ei|, ⟨ej|) = ⟨ei|ej⟩ = (|ei⟩, |ej⟩) = δij.

It is convenient to use the following notation for the components xi of the vector
|x⟩ in the basis |ei⟩:

⟨ei|x⟩ = ⟨ei|(x1|e1⟩ + x2|e2⟩ + ⋅ ⋅ ⋅ + xn|en⟩) = xi.

Now we can write

|x⟩ = ∑
i
|ei⟩xi = ∑

i
|ei⟩⟨ei|x⟩. (F.9)

The bra vector ⟨y| dual to the ket |y⟩ has complex conjugate components in the dual
basis

⟨y| = ∑
i
y∗i ⟨ei|. (F.10)

You can verify this by checking that the functional on the right-hand side, when ap-
plied to the vector |x⟩ ∈ H , gives

∑
i
y∗i ⟨ei|x⟩ = ∑

i
y∗i xi = (|y⟩, |x⟩) = ⟨y|x⟩.
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F.4 Tensor product of Hilbert spaces

If two Hilbert spaces H1 and H2 are given, then we can construct the third Hilbert
space H , which is called the tensor product of H1 and H2 and is denoted by H =
H1 ⊗H2. For each pair of basis ket vectors |i⟩ ∈ H1 and |j⟩ ∈ H2 there exists one basic
ket inH denoted |i⟩⊗ |j⟩. Other vectors inH are linear combinations of the basis kets
|i⟩ ⊗ |j⟩ with complex coefficients.

The inner product of two basis vectors |i1⟩ ⊗ |j1⟩ ∈ H and |i2⟩ ⊗ |j2⟩ ∈ H is defined
as ⟨i1|i2⟩⟨j1|j2⟩. This inner product extends to all linear combinations of basis vectors
by linearity.
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G.1 Linear operators

Linear transformations (also known as linear operators) of vectors in theHilbert space

T|x⟩ = |x󸀠⟩

play an important role in quantum formalism. The linearity of such transformations
is expressed by the equality

T(α|x⟩ + β|y⟩) = αT|x⟩ + βT|y⟩

for any two complex numbers α, β and any two vectors |x⟩, |y⟩. If we have an operator
T and a basis |ei⟩, then we can find images of the basis vectors

T|ei⟩ = |e
󸀠
i ⟩

and the expansion of these images in the basis |ei⟩

|e󸀠i ⟩ = ∑
j
tij|ej⟩.

The coefficients tij of this expansion are calledmatrix elements of the operator T in the
basis |ei⟩. In the bra-ket formalism, we obtain a convenient expression for the matrix
elements

⟨ej|(T|ei⟩) = ⟨ej|e
󸀠
i ⟩ = ⟨ej|∑

k
tik |ek⟩ = ∑

k
tik⟨ej|ek⟩ = ∑

k
tikδjk = tij.

Knowing matrix elements of the operator T and components of the vector |x⟩ in the
basis |ei⟩, we can always find components of the transformed vector |x󸀠⟩ = T|x⟩,

x󸀠i = ⟨ei|x
󸀠⟩ = ⟨ei|(T|x⟩) = ⟨ei|∑

j
(T|ej⟩)xj = ∑

jk
⟨ei|ek⟩tkjxj

= ∑
jk
δiktkjxj = ∑

j
tijxj. (G.1)

In the bra-ket notation, the operator T has the form

T = ∑
ij
|ei⟩tij⟨ej|. (G.2)

Indeed, applying the right-hand side of (G.2) to an arbitrary vector |x⟩, we get

∑
ij
|ei⟩tij⟨ej|x⟩ = ∑

ij
|ei⟩tijxj = ∑

i
x󸀠i |ei⟩ = |x

󸀠⟩ = T|x⟩.

In particular, it follows from (F.9) that the identity operator in H has the repre-
sentation

I = ∑
i
|ei⟩⟨ei| = ∑

ij
|ei⟩δij⟨ej|. (G.3)

https://doi.org/10.1515/9783110492132-014
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G.2 Matrices and operators

It is often convenient to represent Hilbert space vectors and operatorsH in thematrix
notation. Let us fix the orthonormal basis |ei⟩ ∈ H and describe each ket vector |y⟩ by
the column of its components,

|y⟩ =
[[[[[

[

y1
y2
...
yn

]]]]]

]

.

A bra vector ⟨x| is represented by a row

⟨x| = [x∗1 , x
∗
2 , . . . , x

∗
n ]

of complex conjugated components in the dual basis ⟨ei|. Then the inner product (F.7)
is obtained by the usual “row-by-column” product rule,

⟨x|y⟩ = [x∗1 , x
∗
2 , . . . , x

∗
n ]
[[[[[

[

y1
y2
...
yn

]]]]]

]

= ∑
i
x∗i yi.

Matrix elements of anyoperatorT in (G.2) are conveniently arranged in a squarematrix

T =
[[[[[

[

t11 t12 . . . t1n
t21 t22 . . . t2n
...

...
. . .

...
tn1 tn2 . . . tnn

]]]]]

]

.

Then the action of the operator T on a vector |x󸀠⟩ = T|x⟩ can be represented as a prod-
uct of the matrix and the vector-column,

[[[[[

[

x󸀠1
x󸀠2
...
x󸀠n

]]]]]

]

=
[[[[[

[

t11 t12 . . . t1n
t21 t22 . . . t2n
...

...
. . .

...
tn1 tn2 . . . tnn

]]]]]

]

[[[[[

[

x1
x2
...
xn

]]]]]

]

=
[[[[[

[

∑j t1jxj
∑j t2jxj

...
∑j tnjxj

]]]]]

]

.

So, each operator has a unique matrix, and each n × n matrix defines a single linear
operator. This establishes an isomorphism between matrices and operators. We will
use these two terms interchangeably.
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The identity operator (G.3) has the unit matrix δij, so

I =
[[[[[

[

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

]]]]]

]

.

A diagonal operator has a diagonal matrix diδij, so

D =
[[[[[

[

d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

]]]]]

]

.

The action of an operator in the dual space H ∗ will be indicated by multiplying bra
vector-rows by the operator matrix from the right,

[y󸀠1, y
󸀠
2, . . . , y

󸀠
n] = [y1, y2, . . . , yn]

[[[[[

[

s11 s12 . . . s1n
s21 s22 . . . s2n
...

...
. . .

...
sn1 sn2 . . . snn

]]]]]

]

,

or in a symbolic notation,

y󸀠i = ∑
j
yjsji,

⟨y󸀠| = ⟨y|S.

Suppose that the operator T with the matrix tij transforms the ket vector |x⟩ into
the ket vector |y⟩, i. e.,

yi = ∑
j
tijxj. (G.4)

What is the matrix of the operator S that connects vectors ⟨x| and ⟨y| in the dual space
H ∗? Since ⟨x| and ⟨y|have components that are complex conjugate to the components
of |x⟩ and |y⟩ and S acts on the bra vectors from the right, we can write

y∗i = ∑
j
x∗j sji.

On the other hand, taking the complex conjugation of (G.4), we obtain

y∗i = ∑
j
t∗ij x
∗
j .
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Comparing these two expressions, we obtain

sij = t
∗
ji .

This means that the matrix representing the action of T in the bra space H ∗ differs
from tij in that rows and columns are interchanged,1 andmatrix elements are replaced
by their complex conjugates. This joint “transposition + complex conjugation” opera-
tion is called the Hermitian conjugation: T → T†. In particular, we can write

⟨x|(T|y⟩) = (⟨x|T†)|y⟩, (G.5)

det[T†] = (det[T])∗. (G.6)

G.3 Functions of operators

The sum of two operators A and B and the product of the operator A by a complex
number λ are easily expressed in terms of matrix elements as follows:

(A + B)ij = aij + bij,
(λA)ij = λaij.

We define the product AB as a transformation in H obtained as a result of sequential
application of the two operators: first B and then A. Obviously, this product is also
a linear transformation of vectors, i. e., an operator. The matrix of the operator AB is
obtained from the matrices aij and bij using the standard “row-by-column” rule

(AB)ij = ∑
k
aikbkj.

Lemma G.1. The Hermitian conjugate of the product of two operators is equal to the
product of conjugate operators in the reverse order:

(AB)† = B†A†.

Proof. We have

(AB)†ij = (AB)
∗
ji = ∑

k
a∗jkb
∗
ki = ∑

k
b∗kia
∗
jk = ∑

k
(B†)ik(A

†)kj = (B
†A†)ij.

The inverse operator A−1 is defined by its properties

A−1A = AA−1 = I .

The corresponding matrix is inverse with respect to the matrix of A.

1 This matrix operation is called the transposition. It reflects the matrix with respect to the main diag-
onal.
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Using the basic operations of addition, multiplication and inversion, we can de-
fine various functions f (A) of operator A. For example, the exponent is determined by
its Taylor series

eA = 1 + A + 1
2!
A2 + O(A3). (G.7)

For any two operators A and B the expression

[A,B] ≡ AB − BA (G.8)

is called the commutator.2 We shall say that two operators A and B commute with
each other if [A,B] = 0. It is clear that all powers of A commute; [An,Am] = 0 and
also [A,A−1] = 0. Consequently, any two functions of the operator A also commute:
[f (A), g(A)] = 0.

The trace of a matrix is the sum of its diagonal elements

Tr(A) = ∑
i
Aii.

Lemma G.2. The trace of the product of operators is invariant with respect to the cyclic
permutation of factors.

Proof. Take for example the trace of the product of three operators,

Tr(ABC) = ∑
ijk
AijBjkCki.

Table G.1: Properties of operators in the Hilbert space.

Symbol Conditions on matrix
elements or eigenvalues

Transformations/functions of operators
Complex conjugation A→ A∗ (A∗)ij = A∗ij
Transposition A→ AT (AT )ij = Aji
Hermitian conjugation A→ A† = (A∗)T (A†)ij = A∗ji
Inversion A→ A−1 inverse eigenvalues
Determinant det[A] product of eigenvalues
Trace Tr(A) ∑i Aii
Types of operators
Identity I Iij = δij
Diagonal D Dij = diδij
Hermitian A = A† Aij = A∗ji
Anti-Hermitian A = −A† Aij = −A∗ji
Unitary A−1 = A† unimodular eigenvalues
Projection A = A†, A2 = A eigenvalues only 0 or 1

2 {A,B} ≡ AB + BA is called the anticommutator.
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By changing the dummy summation indices i → k, j → i and k → j we obtain

Tr(ABC) = ∑
ijk
AkiBijCjk = ∑

ijk
BijCjkAki = Tr(BCA).

Table G.1 summarizes some operator properties discussed above.

G.4 Hermitian and unitary operators

In quantummechanics an important role is playedbyHermitian andunitary operators
(and their matrices). We call the operator T Hermitian, if

T = T†. (G.9)

For the Hermitian T we can write

tii = t
∗
ii , (G.10)

tij = t
∗
ji ,

i. e., diagonal matrix elements are real, and off-diagonal matrix elements symmetric
with respect to the main diagonal are complex conjugates of each other. Moreover,
from equations (G.5) and (G.9), we can calculate the inner product of the vectors ⟨x|
and T|y⟩ as follows:

⟨x|(T|y⟩) = (⟨x|T†)|y⟩ = (⟨x|T)|y⟩ ≡ ⟨x|T|y⟩.

From this symmetric notation it is clear that the Hermitian T can act both to the right
(on the ket |y⟩) and to the left (on the bra ⟨x|)

The operator U is called unitary, if

U−1 = U†

or, equivalently,

U†U = UU† = I .

Unitary operators preserve the inner product of vectors, i. e.,

⟨Ua|Ub⟩ ≡ (⟨a|U†)(U |b⟩) = ⟨a|U−1U |b⟩ = ⟨a|I|b⟩ = ⟨a|b⟩. (G.11)

Lemma G.3. If F is an Hermitian operator, then U = eiF is a unitary one.

Proof. We have

U†U = (eiF)†(eiF) = e−iF
†
eiF = e−iFeiF = e−iF+iF = e0 = I .

The operator A is called antilinear, if A(α|x⟩ + β|y⟩) = α∗A|x⟩ + β∗A|y⟩ for any
complex α β and any |x⟩, |y⟩ ∈ H . An antilinear operator with the additional property
⟨Ay|Ax⟩ = ⟨y|x⟩∗ is called antiunitary.
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G.5 Linear operators in different orthonormal bases

So far we worked with matrix elements of operators in a fixed orthonormal basis |ei⟩.
However, in another basis, the same operatorwill be represented by a differentmatrix.
Nevertheless, we are going to show that many of the above properties remain valid in
all orthonormal bases (that is, they are basis-independent).

Theorem G.4. If |ei⟩ and |e󸀠i ⟩ are two orthonormal bases, then there exists a unitary op-
erator U such that

U |ei⟩ = |e
󸀠
i ⟩ (G.12)

and conversely, if |ei⟩ is an orthonormal basis and U is a unitary operator, then (G.12) is
also an orthonormal basis.

Proof. The basis |e󸀠i ⟩, obtained by applying the unitary operator U to the orthonormal
basis |ei⟩, is orthonormal, because U preserves inner products of vectors (G.11). To
prove the direct statement of the theorem, let us form the matrix

[[[[[

[

⟨e1|e󸀠1⟩ ⟨e1|e
󸀠
2⟩ . . . ⟨e1|e

󸀠
n⟩

⟨e2|e󸀠1⟩ ⟨e2|e
󸀠
2⟩ . . . ⟨e2|e

󸀠
n⟩

...
...

. . .
...

⟨en|e󸀠1⟩ ⟨en|e
󸀠
2⟩ . . . ⟨en|e

󸀠
n⟩

]]]]]

]

with matrix elements

uji = ⟨ej|e
󸀠
i ⟩.

The operator U, corresponding to this matrix, can be written as

U = ∑
jk
|ej⟩ujk⟨ek | = ∑

jk
|ej⟩⟨ej|e

󸀠
k⟩⟨ek |.

Therefore, its action on the vector |ei⟩,

U |ei⟩ = ∑
jk
|ej⟩⟨ej|e

󸀠
k⟩⟨ek |ei⟩ = ∑

jk
|ej⟩⟨ej|e

󸀠
k⟩δki

= ∑
j
|ej⟩⟨ej|e

󸀠
i ⟩ = I|e

󸀠
i ⟩ = |e

󸀠
i ⟩,

transforms it into the vector |e󸀠i ⟩, as required. This operator is unitary, because

(UU†)ij = ∑
k
uiku
∗
jk = ∑

k
⟨ei|e
󸀠
k⟩⟨ej|e

󸀠
k⟩
∗ = ∑

k
⟨ei|e
󸀠
k⟩⟨e
󸀠
k |ej⟩

= ⟨ei|I|ej⟩ = ⟨ei|ej⟩ = δij = Iij.
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If F is an operator with matrix elements fij in the basis |ek⟩, then its matrix ele-
ments f 󸀠ij in the basis |e

󸀠
k⟩ = U |ek⟩ can be obtained by the formula

f 󸀠ij = ⟨e
󸀠
i |F|e
󸀠
j ⟩ = (⟨ei|U

†)F(U |ej⟩) = ⟨ei|U
†FU |ej⟩ = ⟨ei|U

−1FU |ej⟩. (G.13)

We can look at this equality from two different, but equivalent points of view. On the
one hand (the passive point of view), we can consider (G.13) asmatrix elements of F in
the newbasisU |ei⟩. On the other hand (the active point of view), they can be perceived
as matrix elements of the transformed operator U−1FU in the initial basis |ei⟩.

Unitary transformation changes thematrix of the operator, but the operator’s type
remains the same. If the operator F is Hermitian, then after the transformation it re-
mains Hermitian:

(F󸀠)† = (U−1FU)† = U†F†(U−1)† = U−1FU = F󸀠.

If the operator V is unitary, then for the transformed operator V 󸀠 we have

(V 󸀠)†V 󸀠 = (U−1VU)†U−1VU = U†V†(U−1)†U−1VU

= U−1V†UU−1VU = U−1V†VU = U−1U = I ,

thus V 󸀠 is unitary as well.

Lemma G.5. The trace of an operator is basis-independent.

Proof. From Lemma G.2 it follows that

Tr(U−1AU) = Tr(AUU−1) = Tr(A).

G.6 Diagonalization of Hermitian and unitary matrices

We know that the choice of a basis in the Hilbert space is a matter of convenience.
Therefore, when performing calculations it is desirable to choose a basis in which
important operators have the simplest form, e. g., the diagonal one. It turns out that
Hermitian and unitary operators can always be brought to the diagonal form by an
appropriate choice of basis.

Theorem G.6 (spectral theorem). For any Hermitian or unitary operator F one can find
an orthonormal basis |ei⟩ where

F|ei⟩ = fi|ei⟩, (G.14)

where fi are, generally speaking, complex numbers.
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The proof of this theorem can be found in [75].
If the vector |x⟩ satisfies the equation

F|x⟩ = f |x⟩,

where f is a complex number, then |x⟩ is called the eigenvector of the operator F, and
f is its eigenvalue. Thus the spectral theorem tells us that one can always build an
orthonormal basis from eigenvectors of any Hermitian or unitary operator.

From equation (G.14) it follows that the matrix of the operator F is diagonal in the
basis |ei⟩, so

F =
[[[[[

[

f1 0 . . . 0
0 f2 . . . 0
...

...
. . .

...
0 0 . . . fn

]]]]]

]

(G.15)

and, according to (G.2), any Hermitian or unitary operator can be expressed through
its eigenvectors and eigenvalues by the following formula:

F = ∑
i
|ei⟩fi⟨ei|. (G.16)

Lemma G.7. Hermitian operators have real eigenvalues.

Proof. In its diagonal form, the eigenvalues of an Hermitian operator (G.15) are on the
diagonal. From (G.10) it follows that these matrix elements are real.

Lemma G.8. Unitary operators have unimodular eigenvalues.

Proof. Using the representation (G.16), we obtain

∑
i
|ei⟩⟨ei| = I = UU

†

= (∑
i
|ei⟩fi⟨ei|)(∑

j
|ej⟩f
∗
j ⟨ej|)

= ∑
ij
fif
∗
j |ei⟩⟨ei|ej⟩⟨ej|

= ∑
ij
fif
∗
j |ei⟩δij⟨ej|

= ∑
i
|fi|

2|ei⟩⟨ei|.

Therefore, |fi|2 = 1.

One benefit of diagonalization is that functions of operators are easily computed
in the diagonal form. If the operator A is diagonal i. e.,
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A =
[[[[[

[

a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an

]]]]]

]

,

then the arbitrary function f (A) has the matrix form

f (A) =
[[[[[

[

f (a1) 0 . . . 0
0 f (a2) . . . 0
...

...
. . .

...
0 0 . . . f (an)

]]]]]

]

.

For example, the matrix of the inverse operator is3

A−1 =
[[[[[

[

a−11 0 . . . 0
0 a−12 . . . 0
...

...
. . .

...
0 0 . . . a−1n

]]]]]

]

.

From Lemma G.8 it follows that there is a basis where the unitary operator U has the
form

U =
[[[[[

[

eif1 0 . . . 0
0 eif2 . . . 0
...

...
. . .

...
0 0 . . . eifn

]]]]]

]

,

with real fi. This implies that each unitary operator is representable as an exponent

U = eiF ,

of an Hermitian operator F:

F =
[[[[[

[

f1 0 . . . 0
0 f2 . . . 0
...

...
. . .

...
0 0 . . . fn

]]]]]

]

;

see also Lemma G.3.

3 Notice that the inverse operator A−1 can be defined only when all eigenvalues of A are nonzero.
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Lemma G.9. Eigenvalues of a unitary or Hermitian operator F are invariant with respect
to unitary changes of the basis.

Proof. If |ψk⟩ is an eigenvector of F with the eigenvalue fk, i. e.,

F|ψk⟩ = fk |ψk⟩,

then vector U |ψk⟩ is an eigenvector of the unitarily transformed operator F󸀠 = UFU−1

with the same eigenvalue, because

F󸀠(U |ψk⟩) = UFU
−1(U |ψk⟩) = UF|ψk⟩ = Ufk |ψk⟩ = fk(U |ψk⟩).





H Subspaces and projections

H.1 Projections

Two subspaces A and B in the Hilbert space H are called orthogonal (denoted by
A ⊥ B), if every vector from A is orthogonal to every vector from B. The linear span
of all vectors orthogonal to A is called the orthogonal complement to the subspace A

and is denoted A 󸀠.
If a subspace A (with dimension dim(A ) = m) is given in the Hilbert space H

(with dimension dim(H ) = n > m), then we can choose an orthonormal basis |ei⟩
such thatm vectors with indices i = 1, 2, . . . ,m lie in A and n −m vectors with indices
i = m + 1,m + 2, . . . , n lie in the orthogonal complement A 󸀠.1 Then for each vector
|y⟩ ∈ H we can write

|y⟩ =
n
∑
i
|ei⟩⟨ei|y⟩ =

m
∑
i=1
|ei⟩⟨ei|y⟩ +

n
∑

i=m+1
|ei⟩⟨ei|y⟩.

The first sum lies entirely in A and is denoted by |y‖⟩. The second sum lies in A 󸀠 and
is denoted by |y⊥⟩. This means that we can always decompose |y⟩ into two uniquely
defined orthogonal components |y‖⟩ and |y⊥⟩, i. e.,

|y⟩ = |y‖⟩ + |y⊥⟩,
|y‖⟩ ∈ A ,

|y⊥⟩ ∈ A 󸀠.

We can also define a linear operator PA , called the projection onto the subspace A ,
which takes each vector |y⟩ into its parallel component, i. e.,

PA |y⟩ = |y‖⟩.

The subspace A is called the range of the projection PA . In the bra-ket notation we
can also write

PA =
m
∑
i=1
|ei⟩⟨ei|,

so that in our basis |ei⟩ (i = 1, 2, . . . , n) the operator PA has a diagonal matrix whose
firstmdiagonalmatrix elements are 1 and all the other (i = m+1, . . . , n) diagonalmatrix
elements are zero. Hence it follows that

PA 󸀠 = 1 − PA .

1 In this case we say that the Hilbert space H is represented as a direct sum (H = A ⊕ A 󸀠) of the
orthogonal subspaces A and A 󸀠.

https://doi.org/10.1515/9783110492132-015
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A set of projections Pα onto mutually orthogonal subspaces Hα is called a resolu-
tion of the identity if

1 = ∑
α
Pα

or, equivalently,

H =⨁
α

Hα.

The pair of operators {PA ,PA 󸀠 } considered above is an example of such a resolution
of the identity: 1 = PA + P󸀠A .

Theorem H.1. An operator P is a projection if and only if it is Hermitian and P2 = P.

Proof. For the Hermitian P there exists a basis |ei⟩, in which this operator is diagonal,
i. e.,

P = ∑
i
|ei⟩pi⟨ei|.

Then the condition P2 = P implies

0 = P2 − P = (∑
i
|ei⟩pi⟨ei|)(∑

j
|ej⟩pj⟨ej|) −∑

i
|ei⟩pi⟨ei|

= ∑
ij
|ei⟩pipjδij⟨ej| − ∑

i
|ei⟩pi⟨ei| = ∑

i
|ei⟩(p

2
i − pi)⟨ei|.

Therefore p2i − pi = 0 and either pi = 0 or pi = 1. From this we conclude that P is
a projection on the subspace, which is a linear span of all its eigenvectors with the
eigenvalue 1.

To prove the converse statement, we note that each projection is an Hermitian
operator, because its eigenvalues are real (0 or 1). Moreover, for each vector |y⟩

P2|y⟩ = P(P|y⟩) = P|y‖⟩ = |y‖⟩ = P|y⟩,

which proves that P2 = P.

H.2 Commuting operators

Lemma H.2. Two subspacesA andB are orthogonal if and only if PA PB = PBPA = 0.

Proof. Assume that

PA PB = PBPA = 0 (H.1)
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and that there is a vector |y⟩ ∈ B, which is not orthogonal toA . ThenPA |y⟩ = |y‖⟩ ̸= 0.
From these properties we obtain

PA PB|y⟩ = PA |y⟩ = |y‖⟩ = PA |y‖⟩,
PBPA |y⟩ = PB|y‖⟩.

From the commutativity of PA and PB we further have

PA |y‖⟩ = PA PB|y⟩ = PBPA |y⟩ = PB|y‖⟩,
PA PB|y‖⟩ = PA PA |y‖⟩ = PA |y‖⟩ ̸= 0.

This means that we have found a vector |y‖⟩ for which PA PB|y‖⟩ ̸= 0, in contradiction
to our original assumption (H.1). Consequently, the assumption |y⟩ ̸= 0 was incorrect,
which means that A ⊥ B.

The converse statement is proved as follows. For each vector |x⟩ the projection
PA |x⟩ is in the subspace A . If A and B are orthogonal, then the next projection
PBPA |x⟩ must result in a zero vector. The same arguments show that PA PB|x⟩ = 0
and PA PB = PBPA .

Lemma H.3. If A ⊥ B, then PA + PB is a projection on the direct sum of subspaces
A ⊕B.

Proof. Let us build an orthonormal basis |ei⟩ inA ⊕B such that the first dim(A ) vec-
tors are in A and the next dim(B) vectors are in B. Then

PA + PB =
dim(A )
∑
i=1
|ei⟩⟨ei| +

dim(B)
∑
j=1
|ej⟩⟨ej| = PA ⊕B.

Lemma H.4. If A is a subspace in B (A ⊆ B), then

PA PB = PBPA = PA .

Proof. IfA ⊆ B, then there exists a subspaceC ⊆ B such thatC ⊥ A andB = A ⊕C .2

In accordance with Lemmas H.2 and H.3,

PA PC = PCPA = 0,
PB = PA + PC ,

PA PB = PA (PA + PC ) = P
2
A = PA ,

PBPA = (PA + PC )PA = PA .

2 This subspace is C = A 󸀠 ∩B – the linear span of all vectors in B that are orthogonal to A .
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If there are three mutually orthogonal subspaces X , Y and Z such that A =
X ⊕ Y and B = X ⊕ Z , then the subspaces A and B (and also the projections
PA and PB) are called compatible. By noting that X = A ∩ B, Y = A ∩ B󸀠 and
Z = B ∩A 󸀠, it is easy to see that this definition of compatibility is consistent with the
quantum-logical definition (1.6)–(1.7), so we have

A = (A ∩B) ⊕ (A ∩B󸀠),

B = (B ∩A ) ⊕ (B ∩A 󸀠).

Lemma H.5. Two subspaces A and B are compatible if and only if their projections
commute, i. e.,

[PA ,PB] = 0.

Proof. First we prove that if [PA ,PB] = 0, then PA PB = PBPA = PA ∩B is a projec-
tion on the intersection of the two subspaces.

We have

(PA PB)
2 = PA PBPA PB = P

2
A P2B = PA PB.

The operator PA PB is Hermitian, because

(PA PB)
† = P†BP†A = PBPA = PA PB.

Then, by Theorem H.1, PA PB is a projection.
Then two options are possible: either A and B are orthogonal (A ⊥ B), or they

are not orthogonal. In the former case, Lemma H.2 implies PA PB = PBPA = 0, i. e.,
the direct statement of our lemma.

In the latter case, we denoteC = A ∩B (the subspaceC can, of course, be empty).
We can always writeA = C ⊕X andB = C ⊕Y , whereX ⊆ A and Y ⊆ B are some
subspaces (possibly zero ones).3 Then

PA = PC + PX ,

PB = PC + PY ,

[PC ,PX ] = 0,
[PC ,PY ] = 0.

To prove the compatibility of A and B we are left to show that X and Y orthogonal.
This follows from the commutator

0 = [PA ,PB] = [PC + PX ,PC + PY ]

= [PC ,PC ] + [PC ,PY ] + [PX ,PC ] + [PX ,PY ] = [PX ,PY ]

and Lemma H.2.

3 See the proof of Lemma H.4.
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Let us now prove the converse statement. From the assumed compatibility of A

and B it follows that

PA = PX + PY ,

PB = PX + PZ ,

PX PY = PX PZ = PY PZ = 0,
[PA ,PB] = [PX + PY ,PX + PZ ] = 0.

Theorem H.6. Subspaces in the Hilbert space have the property of orthomodularity
(1.8), i. e., if A ⊆ B, then the two subspaces A and B are compatible.

Proof. By Lemma H.4, if A ⊆ B, then [PA ,PB] = 0. Therefore, by Lemma H.5 the
subspaces A and B are compatible.

If two ormore (noncollinear) eigenvectors of the Hermitian operator F correspond
to the same eigenvalue f , then such eigenvalue is called degenerate. Any linear com-
bination of eigenvectors with eigenvalue f is also an eigenvector of F with the same
eigenvalue. The linear span of all such eigenvectors is called the eigensubspace of the
operator F. As usual, with this subspace we can associate a projection Pf . Then the
operator F takes the form4

F = ∑
f
fPf , (H.2)

where the index f runs through all distinct eigenvalues of F and Pf are called spectral
projections of the operator F. This means that each Hermitian operator defines a cer-
tain resolution of the identity I = ∑f Pf . Conversely, if a set of projections Pf specifies a
resolution of the identity and f are real numbers, then equation (H.2) defines a unique
Hermitian operator.

Lemma H.7. If two Hermitian operators F and G commute, then all spectral projections
of F commute with G.

Proof. Let Pf be one of the spectral projections of the operator F. Take an arbitrary
nonzero vector |x⟩ in the range of Pf , that is,

Pf |x⟩ = |x⟩,
F|x⟩ = f |x⟩,

for some real f . First, we prove that the vector G|x⟩ also lies in the range of Pf . Indeed,
using the commutativity of F and G, we obtain

F(G|x⟩) = GF|x⟩ = Gf |x⟩ = f (G|x⟩).

4 This formula is a generalization of (G.16).
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This means that the operator G leaves eigenspaces F invariant. Then, for any vector
|x⟩, its images Pf |x⟩ and GPf |x⟩ lie in the range of Pf . Hence

PfGPf = GPf .

Applying the Hermitian conjugation to both sides of this equation, we have

PfGPf = PfG.

Subtracting these equalities, we obtain

[G,Pf ] = GPf − PfG = 0.

Theorem H.8. TwoHermitian operators F andG commute if and only if all their spectral
projections commute.

Proof. Let us write spectral decompositions of the two operators

F = ∑
f
fPf , (H.3)

G = ∑
g
gQg . (H.4)

If [Pf ,Qg] = 0 for all eigenvalues f , g, then obviously [F,G] = 0. To prove the converse
statement, notice that by Lemma H.7 each spectral projection Pf commutes with G.
Since Pf is Hermitian, from the same lemma it follows that each spectral projection of
G commutes with Pf .

Theorem H.9. If two Hermitian operators F and G commute, then there is a basis |ei⟩,
where both F and G are diagonal, i. e., |ei⟩ are common eigenvectors of both F and G.

Proof. The identity operator can be written in three different ways:

I = ∑
f
Pf ,

I = ∑
g
Qg ,

I = I ⋅ I = (∑
f
Pf)(∑

g
Qg) = ∑

fg
PfQg ,

where Pf and Qg are spectral projections of F and G, respectively. Since F and G com-
mute, according to Theorem H.8, the operators PfQg are projections. Moreover, PfQg
andPkQm project onmutually orthogonal subspaces if either f ̸= k or g ̸= m. Therefore,
the set of projections PfQg forms a resolution of the identity, and the desired basis |ei⟩
can be obtained by joining bases in the subspaces that are ranges of the projections
PfQg .



I Representations of groups and algebras
A representation of a group G is a mapping that associates with each element g ∈ G
a square matrix Ug with nonzero determinant1 and fixed dimension. Obviously, the
matrices Ug can be identified with linear transformations (operators) in some vector
space, which is called the representation space of the group. The composition of ele-
ments in the group is represented by the matrix product, and the inverse matrix cor-
responds to the inverse group element. In other words, this mapping must satisfy the
following conditions:

Ug1Ug2 = Ug1g2 ,

Ug−1 = U−1g ,
Ue = I .

Each group in any vector space has a trivial representation in which the same unit
matrix (identity operator) corresponds to all elements of the group. Finding nontrivial
representations of groups is often a difficult task.

I.1 Unitary representations of groups

In Hilbert spaces, one can define a class of unitary representations that is especially
useful for quantum mechanics. These representations are realized by unitary opera-
tors.

Two representations Ug and U 󸀠g of the group G in the Hilbert space H are called
unitarily equivalent, if there exists a unitary operator V such that for each g ∈ G

U 󸀠g = VUgV
−1. (I.1)

Having two representations Ug and Vg of the group G in H1 and H2, respectively, we
can always construct a third representationWg of the same group in the Hilbert space
H = H1 ⊕H2 by combining two submatrices into a block-diagonal matrix

Wg = [
Ug 0
0 Vg
] . (I.2)

The representationWg is called the direct sum of the representationsUg and Vg and is
denoted byWg = Ug ⊕ Vg .

A representation Ug is called reducible, if there exists a unitary transformation
(I.1), bringing representationmatrices to the block-diagonal form (I.2) for all g at once.

1 Matriceswith zero determinant cannot be reversed; therefore they cannot represent group elements.

https://doi.org/10.1515/9783110492132-016
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Otherwise, the representation is called irreducible. Each unitary representation of a
group is either irreducible or decomposable into a direct sum of irreducible represen-
tations. If we find all irreducible representations of a group, then we can construct all
(reducible) representations by direct summation.

According to Schur’s first lemma [38], in irreducible unitary representations,
Casimir operators are represented by identity operators multiplied by constants.

I.2 Stone theorem

Stone’s theoremprovides important informationaboutunitary representationsof one-
dimensional Lie groups with group parameter z.

Theorem I.1 (Stone [86]). If Ug(z) is a unitary representation of a one-dimensional Lie
group in the Hilbert spaceH , then there exists a Hermitian operator T inH such that2

Ug(z) = e
− iℏ Tz . (I.3)

This theorem is useful not only for one-dimensional groups, but also for Lie
groups of arbitrary dimension. The reason is that in any Lie group one can find many
one-parameter subgroups (see Appendix E.3), for which the Stone theorem can be
applied. In the Poincaré group, examples of such one-parameter subgroups are trans-
lations along a fixed axis, rotations about a fixed axis and time translations.

A one-parameter subgroup passes through each element of the group near the
group’s identity element (see Figure E.1). Therefore, Stone’s theorem implies that ma-
trices of a unitary representation of any Lie group inH can bewritten in the form (I.3),
where Hermitian operators T form a representation of the Lie algebra in the Hilbert
space H . In this case, Lie brackets are represented by commutators.

I.3 Heisenberg algebra

The Heisenberg algebra hn has basis elements traditionally denoted as 𝒫i, ℛi (i =
1, 2, . . . , n) and I with the following commutators3:

[𝒫i,𝒫j] = [ℛi,ℛj] = 0,
[ℛi,𝒫j] = δijI ,
[ℛi, I] = [𝒫i, I] = 0.

2 In the exponent we use the Planck constant ℏ, but any other real constant is also acceptable.
3 Also known as the canonical commutation relations.
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In quantum physics, an important role is played by Hermitian representations of
the Heisenberg algebra in Hilbert spaces, i. e., the sets of Hermitian operators {Ri,Pi}
(i = 1, 2, . . . , n) satisfying the commutation relations

[Pi,Pj] = [Ri,Rj] = 0,
[Ri,Pj] = iℏδijI .

For such representations, the following theorem is applicable.

Theorem I.2 (Stone–von Neumann [93]). The Heisenberg algebra hn has a unique (up
to unitary equivalence) Hermitian irreducible representation. This is the so-called
Schrödinger representation. In the physically important case n = 3, the Schrödinger
representation is realized by the operators of momentum P and positionR, as described
in Subsection 5.3.2. The vectors in the representation space H are complex functions
ψ(r) on ℝ3, the operator Rmultiplies these functions by r, i. e.,

R̂ψ(r) = rψ(r),

and the operator P differentiates them as follows:

P̂ψ(r) = −iℏdψ(r)
dr
.

Corollary I.3. Any Hermitian representation of the Heisenberg algebra is a direct sum
of identical irreducible Schrödinger representations.

Corollary I.4. Two Hermitian representations of the Heisenberg algebra in the same
Hilbert space are unitarily equivalent.

Corollary I.5. In any Hermitian representation of the Heisenberg algebra, the operators
Pi and Ri have continuous spectra from −∞ to∞.

I.4 Double-valued representations of rotation group

The group of rotations (see Appendix D) has a nontrivial topology. Results of rotations
about one axis at angles φ + 2πn, where n = . . . , −1,0, 1, 2, . . ., are physically indistin-
guishable. Hence, the region of independent rotation vectorsφ ∈ ℝ3 can be described
as the interior of a sphere with radius π, with opposite points on the sphere’s surface
being considered equivalent. This set of rotation vectors will be called the ball Π (see
Figure I.1). The identity element φ = 0 is in the center of the ball. We will be inter-
ested in one-parameter families of group elements,4 that form continuous paths in

4 They are not necessarily one-parameter subgroups.
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Figure I.1: The manifold of parameters of the rotation group is not simply connected. (a) A closed
loop that cannot be shrunk to a single point by a continuous deformation. (b) An example of a loop
that can be shrunk to a point.

the group’s manifold Π. Since in our topology the opposite points on the sphere are
identical, each continuous path crossing this surface re-enters the sphere from the
other side. For example, in Figure I.1 (a) we have depicted a closed loop in Π. It starts
from the center of the ballφ = 0, reaches its surface at A and then continues from the
opposite point A󸀠 back to the center 0.

A topological manifold is said to be simply connected, if each loop can be continu-
ously deformed to a point. An example of a simply connected manifold is the surface
of a sphere. However, the manifold Π of group parameters is not simply connected.
The loop shown in Figure I.1 (a) cannot be collapsed to 0 by any continuous deforma-
tion. It is easy to understand that loops having this property intersect the surface of
the ball Π an odd (in our case – one) number of times.

The opposite example is given by the loop 0 → A → A󸀠 → B → B󸀠 → 0 in Fig-
ure I.1 (b). It intersects the surface of the ball Π twice and can be continuously shrunk
to the point 0. This can be achieved by bringing together the points A󸀠 and B (hence
also the opposite points A and B󸀠 come together), so that the portion A󸀠 → B of the
path disappears during the deformation.

Thus, for any rotationφ (= for any point inside the ball Π), there are two classes of
paths originating from the identity element 0 of the group and ending inφ. These two
classes5 consist of paths that intersect the surface of the ball Π even and odd number
of times, respectively. Paths from different classes cannot be continuously deformed
into each other.

Whenwe construct a projective representation of the rotation group, then the cen-
tral charges can be removed by an appropriate choice of numerical constants added
to the representatives of generators.6 Then we can construct a unitary representation

5 They are also called homotopy classes.
6 Like in the Poincaré group considered in Subsection 3.2.4.
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of the group in which the representatives depend smoothly on the parameters of the
group; the identity element 0 is represented by the identity matrix, and by traveling
along a small loop in the group manifold from 0 back to 0, we can be sure that the
representative will return to the identity matrix (operator) again. But if we go on a
journey along the long path 0 → A → A󸀠 → 0 in Figure I.1 (a), then there is no way
to continuously collapse this path to the point 0, so there is no guarantee that after
traveling along this path and returning back to the identity element, we will find its
representative equal to I. Instead of I, we can obtain another equivalent operator from
the ray of operators containing I. In other words, the representative of the element 0
can differ from I by the phase factor eiφ after traveling along a long loop.

On the other hand, after making two passes along this loop 0 → A → A󸀠 → 0 →
A → A󸀠 → 0, we obtain a path that crosses the surface of the ball Π twice and now
it can be deformed into a point. At the end of such a path we should get the identity
matrix representative of 0. Hence, e2iφ = 1 or eiφ = ±1. Therefore, two types of unitary
representations of the rotation group are possible: single-valued and double-valued.
For single-valued representations, the representative of the trivial rotation is always I.
For double-valued representations, the trivial rotation has two representatives, I and
−I, and the product of two operators in (3.16) can acquire a nontrivial sign, so

Ug1Ug2 = ±Ug1g2 .

I.5 Unitary irreducible representations of rotation group

There exist an infinite number of unitary irreducible representationsDs of the rotation
group. These representations are characterized by the values of spin s = 0, 1/2, 1, . . ..
They are described in detail in textbooks [74], so we will not dwell on them here. In
Table I.1 the basic properties of several simple representations are listed: the dimen-
sion of the representation space, explicit forms of the three generators Sx, Sy, Sz, their
eigenvalues and the value of the Casimir operator S2.

Representations characterized by an integer spin s are single-valued.
Representations with a half-integer spin are double-valued. For example, in the

two-dimensional representation (s = 1/2), a rotation by the angle 2π about the z-axis
is represented by the minus-identity matrix

e−
iℏ Sz2π = exp(−2πi

ℏ
[
ℏ/2 0
0 −ℏ/2

]) = [
e−iπ 0
0 eiπ

] = [
−1 0
0 −1
] = −I .

On the other hand, a rotation by 4π = 720° is represented, as expected, by the identity
matrix

e−
iℏ Sz4π = [1 0

0 1
] = I .
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Table I.1: Unitary irreducible representationsDs of the rotation group.

Spin s = 0 s = 1/2 s = 1 s = 3/2, 2, . . .

Dimension ofH 1 2 3 2s + 1

Sx 0 [ 0 ℏ/2
ℏ/2 0

] [[

[

0 0 0
0 0 −iℏ
0 iℏ 0

]]

]

see [74]

Sy 0 [ 0 −iℏ/2
iℏ/2 0

] [[

[

0 0 iℏ
0 0 0
−iℏ 0 0

]]

]

see [74]

Sz 0 [ℏ/2 0
0 −ℏ/2

] [[

[

0 −iℏ 0
iℏ 0 0
0 0 0

]]

]

see [74]

Spectrum of Si 0 {−ℏ/2, ℏ/2} {−ℏ,0, ℏ} {−ℏs, . . . , ℏs}
⟨S2⟩ 0 3

4ℏ
2 2ℏ2 ℏ2s(s + 1)



J Pseudo-orthogonal representation of Lorentz group
The Lorentz group is a six-dimensional subgroup of the Poincaré group formed by
rotations and boosts. Linear representations of the Lorentz group play an important
role in many physical problems. In particular, the 4-vector (pseudo-orthogonal) rep-
resentation is the mathematical basis of the special theory of relativity, which will be
summarized in Appendix A of Volume 3.

J.1 Minkowski space–time

Let us first define the vector space on which the 4-vector representation of the Lorentz
group acts. This is a four-dimensional real Minkowski vector spaceℳ, whose vectors
will be marked with the tilde1

τ̃ =
[[[[

[

ct
x
y
z

]]]]

]

.

We assume that for any two 4-vectors τ̃1 and τ̃2 inℳ the so-called pseudo-scalar prod-
uct is defined, which can be written in several equivalent ways2:

τ̃1 ⋅ τ̃2 ≡ c
2t1t2 − x1x2 − y1y2 − z1z2 =

3
∑
μν=0
(τ1)μη

μν(τ2)ν

= [ct1, x1, y1, z1]
[[[[

[

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

]]]]

]

[[[[

[

ct2
x2
y2
z2

]]]]

]
= τ̃T1 ητ̃2, (J.1)

where ημν are elements of the so-calledmetric tensor

η =
[[[[

[

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

]]]]

]

. (J.2)

1 Here c is the speed of light. Unlike most textbooks, we are not going to assign any physical meaning
to theMinkowski space–timeℳ. For usℳ is just an abstract vector space that has nothing to dowith
physical space and time. For more discussion on this theme, see Chapter 8 of Volume 3.
2 Here the indices μ and ν range from 0 to 3; τ0 = ct, τ1 = x, τ2 = y, τ3 = z.

https://doi.org/10.1515/9783110492132-017
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For a more compact notation, it is convenient to define 4-vectors with a “raised
index” and adopt Einstein’s rule for automatic summation over repeated indices,

τμ ≡
3
∑
ν=0

ημντν ≡ η
μντν = (ct, −x, −y, −z).

Then the pseudo-scalar product can be written

τ̃1 ⋅ τ̃2 ≡ (τ1)μ(τ2)
μ = (τ1)

μ(τ2)μ. (J.3)

Next we define the pseudo-scalar square (or 4-square) of a 4-vector τ̃ as

τ̃2 ≡ τ̃ ⋅ τ̃ = τμτ
μ = τ20 − τ

2
1 − τ

2
2 − τ

2
3 = τ

2
0 − τ

2,

where

τ2 ≡ (τ ⋅ τ) = τ21 + τ
2
2 + τ

2
3

is the square of the 3-vector part. A 4-vector (τ0, τ) is called spacelike, if τ2 > τ20. Time-
like 4-vectors have τ2 < τ20, and the condition for lightlike 4-vectors is τ

2 = τ20.

J.2 General properties of representation

In the pseudo-orthogonal representation, each element g = (boost) × (rotation) of the
Lorentz group is associated with a 4 × 4 invertible matrix Λ acting on 4-vectors inℳ
as follows:

τ󸀠μ =
3
∑
ν=0

Λ ν
μ τν ≡ (Λτ̃)μ.

The representation matrices Λ are required to conserve the pseudo-scalar product3

τ̃󸀠1 ⋅ τ̃
󸀠
2 ≡ Λτ̃1 ⋅ Λτ̃2 = τ̃

T
1 Λ

TηΛτ̃2 = τ̃
T
1 ητ̃2 = τ̃1 ⋅ τ̃2. (J.4)

This implies

η = ΛTηΛ (J.5)

and

Λτ̃1 ⋅ τ̃2 = τ̃
T
1 Λ

Tητ̃2 = τ̃
T
1 ηΛ
−1τ̃2 = τ̃1 ⋅ Λ

−1τ̃2. (J.6)

3 Note that this representation is not unitary and the representation spaceℳ is not a Hilbert space.
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Another property of the matrices Λ can be obtained by taking the determinant of
both sides of equation (J.5),

−1 = det[η] = det[ΛTηΛ] = det[ΛT]det[η]det[Λ] = −det[Λ]2.

Therefore det[Λ] = ±1. Writing equation (J.5) for the component η00, we also obtain

1 = η00 =
3
∑
μν=0
(ΛT) μ0 ημνΛ

ν
0 = (Λ

0
0)

2 − (Λ1
0)

2 − (Λ2
0)

2 − (Λ3
0)

2.

It then follows that (Λ0
0)

2 ≥ 1 and that either Λ0
0 ≥ 1 or Λ

0
0 ≤ −1.

The identity element of the group is represented by the unit matrix I, for which,
naturally, det[I] = 1 and I00 = 1. Since we are only interested in rotations and boosts,
which can be connected in a continuous way to the identity element, it is necessary to
choose

det[Λ] = 1, (J.7)

Λ0
0 ≥ 1 (J.8)

for representatives of all elements g of the Lorentz group. Matrices satisfying equa-
tion (J.5) with the additional conditions (J.7)–(J.8) will be called pseudo-orthogonal,
and our constructed representation of the Lorentz group is also called pseudo-ortho-
gonal.

J.3 Matrices of pseudo-orthogonal representation

It is not difficult to establish the explicit formof 4×4matrices of thepseudo-orthogonal
representation in cases of pure boosts and rotations.

The action of boosts on 4-vectors is linear.4 We have

[[[[

[

ct󸀠

x󸀠

y󸀠

z󸀠

]]]]

]

= θ̃−1
[[[[

[

ct
x
y
z

]]]]

]

, (J.9)

where the representative of an arbitrary 3-vector of boost has the form

θ̃ =
[[[[[[

[

cosh θ θx
θ sinh θ θy

θ sinh θ θz
θ sinh θ

θx
θ sinh θ 1 + χθ2x χθxθy χθxθz
θy
θ sinh θ χθxθy 1 + χθ2y χθyθz
θz
θ sinh θ χθxθz χθyθz 1 + χθ2z

]]]]]]

]

. (J.10)

4 In our notation 4 × 4 matrices of the pseudo-orthogonal representation will be marked with the
tilde.
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Herewe have denoted χ = (cosh θ−1)θ−2. In particular, the boosts along the directions
x, y, and z are represented by the following matrices:

θ̃x =
[[[[

[

cosh θ sinh θ 0 0
sinh θ cosh θ 0 0
0 0 1 0
0 0 0 1

]]]]

]

, (J.11)

θ̃y =
[[[[

[

cosh θ 0 sinh θ 0
0 1 0 0

sinh θ 0 cosh θ 0
0 0 0 1

]]]]

]

, (J.12)

θ̃z =
[[[[

[

cosh θ 0 0 sinh θ
0 1 0 0
0 0 1 0

sinh θ 0 0 cosh θ

]]]]

]

. (J.13)

Rotations are represented by 4 × 4 matrices

φ̃ = [1 0
0 Rφ
] , (J.14)

where Rφ is the 3 × 3 rotation matrix (D.23). The general element of the Lorentz group
is represented in the form (boost) × (rotation),5

Λ = θ̃ ∘ φ̃. (J.15)

Verification of the properties (J.5), (J.7) and (J.8) is left as an exercise for the reader.

J.4 Representation of Lorentz Lie algebra

So far we have discussed the matrix representation of finite transformations from the
Lorentz group. Let us now find representatives of infinitesimal transformations of the
Lie algebra elements. In accordancewithAppendix I.1,matrix representatives of group
elements have the exponential form

Λ = eaF ,

where F is a representative of a Lie algebra element and a is a real constant. Then we
can rewrite condition (J.5) as

5 This order of factors is consistent with our convention (2.48).
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0 = ΛTηΛ − η = eaF
T
ηeaF − η = (1 + aFT + ⋅ ⋅ ⋅)η(1 + aF + ⋅ ⋅ ⋅) − η

= a(FTη + ηF) + O(a2).

This establishes the following restriction on the matrices F:

FTη + ηF = 0.

It is not difficult to find six linearly independent 4 × 4 matrices that satisfy this condi-
tion. The three rotation generators are6

𝒥x =
[[[[

[

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

]]]]

]

, 𝒥y =
[[[[

[

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

]]]]

]

, 𝒥z =
[[[[

[

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]]]]

]

. (J.16)

The three generators of boosts are obtained by differentiating the corresponding ma-
trices of finite transformations (J.11)–(J.13). We have

𝒦x =
1
c
lim
θ→0

d
dθ

θ̃x =
1
c

[[[[

[

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]]]]

]

, (J.17)

𝒦y =
1
c
lim
θ→0

d
dθ

θ̃y =
1
c

[[[[

[

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

]]]]

]

, (J.18)

𝒦z =
1
c
lim
θ→0

d
dθ

θ̃z =
1
c

[[[[

[

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

]]]]

]

. (J.19)

Six matrices (J.16)–(J.19) form a basis for a representation of the Lie algebra of the
Lorentz group. The commutation relations (2.41) and (2.45) are easily verified. For
example,

[𝒥x ,𝒥y] =
[[[[

[

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

]]]]

]

[[[[

[

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

]]]]

]

−
[[[[

[

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

]]]]

]

[[[[

[

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

]]]]

]

6 Note that (D.28)–(D.29) are 3 × 3 submatrices in (J.16).
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=
[[[[

[

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]]]]

]

= 𝒥z ,

c2[𝒦x ,𝒦y] =
[[[[

[

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]]]]

]

[[[[

[

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

]]]]

]

−
[[[[

[

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

]]]]

]

[[[[

[

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]]]]

]

=
[[[[

[

0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

]]]]

]

= −𝒥z .

Representatives of finite rotations (J.14) and boosts (J.10) can be written in the ex-
ponential notation

φ̃ = e𝒥 ⋅φ,

θ̃ = ec𝒦⋅θ.
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