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Introduction

Quantum mechanics started at the beginning of the last century as a revolu-

tionary theory to explain certain experimental facts which were in contradiction

with the classical physics theory. One of the very basic aspects of this new theory

was to recognize the wave-like behavior of particles. As a consequence, the study

of characteristic frequencies of a given system plays a key role in the theory. In

mathematical terms, the spectral theory of Schrödinger operators turned out to be

part of the base of Quantum Mechanics.

This volume is about three topics strongly related to the development of spec-

tral theory. It consists of three expository articles written by outstanding re-

searchers in mathematical physics and spectral theory: Rafael D. Benguria, Peter

D. Hislop, Elliott H. Lieb and Helmut Linde. The articles are based on the lectures

delivered by Benguria, Hislop and Lieb in the IV Summer School in analysis and

mathematical physics that took place at the Institute of Mathematics, Universidad

Nacional Autónoma de México, Cuernavaca, May 2005. The main goal of both the

lectures and the articles is to link the basic knowledge of a graduate student in

mathematics with three current research topics in mathematical physics: Isoperi-

metric inequalities for eigenvalues of the Laplace Operator, Random Schrödinger

Operators and Stability of Matter. The above-mentioned authors have made de-

cisive contributions to their corresponding research fields. Thus graduate students

will find very well written articles guiding and introducing them into current re-

search topics and specialist researchers will find information on recent progress in

some areas of mathematical physics written by some of the people who have made

it.

Finally let me mention that the article written by Elliott H. Lieb has already

appeared in a previous publication: The Stability of Matter and Quantum Elec-
trodynamics, the Jahresbericht of the German Math. Soc. JB 106, 93-110 (2004)

(Teubner). Professor Lieb based his lectures on this article and has been so kind

to let us reproduce it in this volume in order to make it more complete as the

proceedings of the above-mentioned summer school.

Carlos Villegas Blas, editor.

Universidad Nacional Autónoma de ,

Instituto de Matemáticas, Unidad Cuernavaca.
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email: villegas@matcuer.unam.mx
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6. The Payne–Pólya–Weinberger inequality 26

7. Appendix 36

References 38

2000 Mathematics Subject Classification. 35P15, 81Q10, 15A42.
Key words and phrases. Isoperimetric Inequalities, Laplace Operator.
The work of RB was partially supported by Fondecyt (CHILE) project 106–0651, and CON-

ICYT/PBCT Proyecto Anillo de Investigación en Ciencia y Tecnoloǵıa ACT30/2006.
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2 RAFAEL D. BENGURIA AND HELMUT LINDE

1. Introduction

The contents of this manuscript are based on a series of lectures that one of

us (RB) gave in the IV Escuela de Verano en Análisis y F́ısica Matemática. The

Summer School took place at the Unidad Cuernavaca del Instituto de Matemáticas

de la Universidad Nacional Autónoma de México. It is a pleasure to thank the

organizers of the Summer School for their kind invitation and hospitality. Prelimi-

nary versions of these lectures were also given in the Short Course in Isoperimetric
Inequalities for Eigenvalues of the Laplacian, given by one of us (RB) in February of

2004, as part of the Thematic Program on Partial Differential Equations held at the

Fields Institute, in Toronto, and also as part of the course Autovalores del Lapla-
ciano y Geometŕıa given at the Department of Mathematics of the Universidad de

Pernambuco, in Recife, Brazil, in August 2003.

Isoperimetric Inequalities have played an important role in mathematics since

the times of the Ancient Greece. The first and best known isoperimetric inequality

is the classical isoperimetric inequality

A ≤ L2

4π
,

relating the area A enclosed by a planar closed curve of perimeter L (i.e., Queen
Dido’s problem described in Virgilio’s epic poem “The Aeneid”). After the in-

troduction of Calculus in the XVII century, many new isoperimetric inequalities

have been discovered in mathematics and physics (see, e.g., the review articles

[B80, O80, P67, PSz51]). The eigenvalues of the Laplacian are “geometric ob-

jects” in the sense they do depend on the geometry of the underlying domain,

and to some extent (see section 3) the knowledge of the domain characterizes the

geometry of the domain. Therefore it is natural to pose the problem of finding

isoperimetric inequalities for the eigenvalues of the Laplacian. The first one to

consider this possibility was Lord Rayleigh in his monograph The Theory of Sound
[R45]. In these lectures we will present some of the problems arising in the study

of isoperimetric inequalities for the Laplacian, some of the tools needed in their

proof and many bibliographic discussions about the subject. We start our review

with the classical problem of Mark Kac, Can one hear the shape of a drum. In

section three we review the definitions and basic facts about rearrangements of

functions. Section 4 is devoted to the Rayleigh–Faber–Krahn inequality. In section

5 we review the Szegö–Weinberger inequality, which is an isoperimetric inequality

for the first nontrivial Neumann eigenvalue of the Laplacian. In section 6 we re-

view the Payne–Pólya–Weinberger isoperimetric inequality for the quotient of the

first two Dirichlet eigenvalues of the Laplacian, as well as several recent extensions.

There are many recent interesting isoperimetric results for the eigenvalues of the

bi–harmonic operator, as well as many open problems in that area, which we have

left out of this review.

We would like to thank the anonymous referee for many useful corrections and

remarks.

2

                                                                                                                    

                                                                                                               



ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES OF THE LAPLACE OPERATOR 3

2. Can one hear the shape of a drum?

...but it would baffle the most skillful
mathematician to solve the Inverse Problem,
and to find out the shape of a bell by means

of the sounds which is capable of sending out.
Sir Arthur Schuster (1882).

2.1. Introduction. In 1965, the Committee on Educational Media of the

Mathematical Association of America produced a film on a mathematical lecture

by Mark Kac (1914–1984) with the title: Can one hear the shape of a drum?
One of the purposes of the film was to inspire undergraduates to follow a career

in mathematics. An expanded version of that lecture was later published [K66].

Consider two different smooth, bounded domains, say Ω1 and Ω2 in the plane. Let

0 < λ1 < λ2 ≤ λ3 ≤ . . . be the sequence of eigenvalues of the Laplacian on Ω1,

with Dirichlet boundary conditions and, correspondingly, 0 < λ′
1 < λ′

2 ≤ λ′
3 ≤ . . .

be the sequence of Dirichlet eigenvalues for Ω2. Assume that for each n, λn = λ′
n

(i.e., both domains are isospectral). Then, Mark Kac posed the following question:

Are the domains Ω1 and Ω2 congruent in the sense of Euclidean geometry?.

In 1910, H. A. Lorentz, at the Wolfskehl lecture at the University of Göttingen,

reported on his work with Jeans on the characteristic frequencies of the electro-

magnetic field inside a resonant cavity of volume Ω in three dimensions. According

to the work of Jeans and Lorentz, the number of eigenvalues of the electromagnetic

cavity whose numerical values is below λ (this is a function usually denoted by

N(λ)) is given asymptotically by

(2.1) N(λ) ≈ |Ω|
6π2

λ3/2,

for large values of λ, for many different cavities with simple geometry (e.g., cubes,

spheres, cylinders, etc.) Thus, according to the calculations of Jeans and Lorentz,

to leading order in λ, the counting function N(λ) seemed to depend only on the

volume of the electromagnetic cavity |Ω|. Apparently David Hilbert (1862–1943),

who was attending the lecture, predicted that this conjecture of Lorentz would not

be proved during his lifetime. This time, Hilbert was wrong, since his own student,

Hermann Weyl (1885–1955) proved the conjecture less than two years after the

Lorentz’ lecture.

Remark: There is a nice account of the work of Hermann Weyl on the eigenvalues of

a membrane in his 1948 J. W. Gibbs Lecture to the American Mathematical Society

[We50].

In N dimensions, (2.1) reads,

(2.2) N(λ) ≈ |Ω|
(2π)N

CNλN/2,

where CN = π(N/2)/Γ((N/2)+1)) denotes the volume of the unit ball in N dimen-

sions.

ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES 3

                                                                                                                    

                                                                                                               



4 RAFAEL D. BENGURIA AND HELMUT LINDE

Using Tauberian theorems, one can relate the behavior of the counting function

N(λ) for large values of λ with the behavior of the function

(2.3) ZΩ(t) ≡
∞∑

n=1

exp{−λnt},

for small values of t. The function ZΩ(t) is the trace of the heat kernel for the

domain Ω, i.e., ZΩ(t) = tr exp(∆t). As we mention above, λn(Ω) denotes the n
Dirichlet eigenvalue of the domain Ω.

An example: the behavior of ZΩ(t) for rectangles

With the help of the Riemann Theta function Θ(x), it is simple to compute the trace

of the heat kernel when the domain is a rectangle of sides a and b, and therefore to

obtain the leading asymptotic behavior for small values of t. The Riemann Theta

function is defined by

(2.4) Θ(x) =

∞∑
n=−∞

e−πn2x,

for x > 0. The function Θ(x) satisfies the following modular relation,

(2.5) Θ(x) =
1√
x

Θ(
1

x
).

Remark: This modular form for the Theta Function already appears in the classical

paper of Riemann [Ri859] (manuscript where Riemann puts forward his famous

Riemann Hypothesis). In that manuscript, the modular form is attributed to Jacobi.

The modular form (2.5) may be obtained from a very elegant application of

Fourier Analysis (see, e.g., [CH53], pp. 75–76) which we reproduce here for com-

pleteness. Define

(2.6) ϕx(y) =

∞∑
n=−∞

e−π(n+y)2x.

Clearly, Θ(x) = ϕx(0). Moreover, the function ϕx(y) is periodic in y of period 1.

Thus, we can express it as follows,

(2.7) ϕx(y) =

∞∑
k=−∞

ake2πki y,

where, the Fourier coefficients are

(2.8) ak =

∫ 1

0

ϕk(y)e−2πki y dy.

Replacing the expression (2.6) for ϕx(y) in (2.9), using the fact that e2πki n = 1,

we can write,

(2.9) ak =

∫ 1

0

∞∑
n=−∞

e−π(n+y)2xe−2πik(y+n) dy.

Interchanging the order between the integral and the sum, we get,

(2.10) ak =

∞∑
n=−∞

∫ 1

0

(
e−π(n+y)2xe−2πik(y+n)

)
dy.

4

                                                                                                                    

                                                                                                               



ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES OF THE LAPLACE OPERATOR 5

In the nth summand we make the change of variables y → u = n + y. Clearly, u
runs from n to n + 1, in the nth summand. Thus, we get,

(2.11) ak =

∫ ∞

−∞
e−πu2xe−2πik u du.

i.e., ak is the Fourier transform of a Gaussian. Thus, we finally obtain,

(2.12) ak =
1√
x

e−πk2/x.

Since, Θ(x) = ϕx(0), from (2.7) and (2.12) we finally get,

(2.13) Θ(x) =

∞∑
k=−∞

ak =
1√
x

∞∑
k=−∞

e−πk2/x =
1√
x

Θ(
1

x
).

Remarks: i) The method exhibited above is a particular case of the Poisson Sum-
mation Formula. See [CH53], pp. 76–77; ii) It should be clear from (2.4) that

limx→∞ Θ(x) = 1. Hence, from the modular form for Θ(x) we immediately see

that

(2.14) lim
x→0

√
xΘ(x) = 1.

Once we have the modular form for the Riemann Theta function, it is simple

to get the leading asymptotic behavior of the trace of the heat kernel ZΩ(t), for

small values of t, when the domain Ω is a rectangle. Take Ω to be the rectangle of

sides a and b. Its Dirichlet eigenvalues are given by

(2.15) λn,m = π2

[
n2

a2
+

m2

b2

]
,

with n, m = 1, 2, . . . . In terms of the Dirichlet eigenvalues, the trace of the heat

kernel, ZΩ(t) is given by

(2.16) ZΩ(t) =

∞∑
n,m=1

e−λn,mt.

and using (2.15), and the definition of Θ(x), we get,

(2.17) ZΩ(t) =
1

4

[
θ(

π t

a2
)− 1

] [
θ(

π t

b2
)− 1

]
.

Using the asymptotic behavior of the Theta function for small arguments, i.e.,

(2.14) above, we have

(2.18) ZΩ(t) ≈ 1

4
(

a√
π t

− 1)(
b√
π t

− 1) ≈ 1

4πt
ab− 1

4
√

πt
(a + b) +

1

4
+ O(t).

In terms of the area of the rectangle A = ab and its perimeter L = 2(a + b), the

expression ZΩ(t) for the rectangle may be written simply as,

(2.19) ZΩ(t) ≈ 1

4πt
A− 1

8
√

πt
L +

1

4
+ O(t).

ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES 5

                                                                                                                    

                                                                                                               



6 RAFAEL D. BENGURIA AND HELMUT LINDE

Remark: Using similar techniques, one can compute the small t behavior of ZΩ(t)
for various simple regions of the plane (see, e.g., [McH94]).

The fact that the leading behavior of ZΩ(t) for t small, for any bounded, smooth

domain Ω in the plane is given by

(2.20) ZΩ(t) ≈ 1

4πt
A

was proven by Hermann Weyl [We11]. Here, A = |Ω| denotes the area of Ω. In fact,

what Weyl proved in [We11] is the Weyl Asymptotics of the Dirichlet eigenvalues,

i.e., for large n, λn ≈ (4π n)/A. Weyl’s result (2.20) implies that one can hear the
area of the drum.

In 1954, the Swedish mathematician, Åke Pleijel [Pj54] obtained the improved

asymptotic formula,

Z(t) ≈ A

4πt
− L

8
√

πt
,

where L is the perimeter of Ω. In other words, one can hear the area and the

perimeter of Ω. It follows from Pleijel’s asymptotic result that if all the frequencies

of a drum are equal to those of a circular drum then the drum must itself be

circular. This follows from the classical isoperimetric inequality (i.e., L2 ≥ 4πA,

with equality if and only if Ω is a circle). In other words, one can hear whether a

drum is circular. It turns out that it is enough to hear the first two eigenfrequencies

to determine whether the drum has the circular shape [AB91]

In 1966, Mark Kac obtained the next term in the asymptotic behavior of Z(t)
[K66]. For a smooth, bounded, multiply connected domain on the plane (with r
holes)

(2.21) Z(t) ≈ A

4πt
− L

8
√

πt
+

1

6
(1− r).

Thus, one can hear the connectivity of a drum. The last term in the above asymp-

totic expansion changes for domains with corners (e.g., for a rectangular membrane,

using the modular formula for the Theta Function, we obtained 1/4 instead of 1/6).

Kac’s formula (2.21) was rigorously justified by McKean and Singer [McKS67].

Moreover, for domains having corners they showed that each corner with inte-

rior angle γ makes an additional contribution to the constant term in (2.21) of

(π2 − γ2)/(24πγ).

An sketch of Kac’s analysis for the first term of the asymptotic expansion is as

follows (here we follow [K66, McH94]). If we imagine some substance concentrated

at �ρ = (x0, y0) diffusing through the domain Ω bounded by ∂Ω, where the substance

is absorbed at the boundary, then the concentration PΩ(�p
∣∣ �r; t) of matter at �r =

(x, y) at time t obeys the diffusion equation

∂PΩ

∂t
= ∆PΩ

with boundary condition PΩ(�p
∣∣ �r; t) → 0 as �r → �a, �a ∈ ∂Ω, and initial condition

PΩ(�p
∣∣ �r; t) → δ(�r − �p) as t → 0, where δ(�r − �p) is the Dirac delta function. The

6

                                                                                                                    

                                                                                                               



ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES OF THE LAPLACE OPERATOR 7

concentration PΩ(�p
∣∣ �r; t) may be expressed in terms of the Dirichlet eigenvalues of

Ω, λn and the corresponding (normalized) eigenfunctions φn as follows,

PΩ(�p
∣∣ �r; t) =

∞∑
n=1

e−λntφn(�p)φn(�r).

For small t, the diffusion is slow, that is, it will not feel the influence of the boundary

in such a short time. We may expect that

PΩ(�p
∣∣ �r; t) ≈ P0(�p

∣∣ �r; t),
ar t → 0, where ∂P0/∂t = ∆P0, and P0(�p

∣∣ �r; t) → δ(�r − �p) as t → 0. P0 in fact

represents the heat kernel for the whole R, i.e., no boundaries present. This kernel

is explicitly known. In fact,

P0(�p
∣∣ �r; t) =

1

4πt
exp(−|�r − �p|2/4t),

where |�r − �p|2 is just the Euclidean distance between �p and �r. Then, as t → 0+,

PΩ(�p
∣∣ �r; t) =

∞∑
n=1

e−λntφn(�p)φn(�r) ≈ 1

4πt
exp(−|�r − �p|2/4t).

Thus, when set �p = �r we get
∞∑

n=1

e−λntφ2
n(�r) ≈ 1

4πt
.

Integrating both sides with respect to �r, using the fact that φn is normalized, we

finally get,
∞∑

n=1

e−λn t ≈ |Ω|
4πt

,

which is the first term in the expansion (2.21). Further analysis gives the remaining

terms (see [K66]).

2.2. One cannot hear the shape of a drum. In the quoted paper of Mark

Kac [K66] he says that he personally believed that one cannot hear the shape of a

drum. A couple of years before Mark Kac’ article, John Milnor [Mi64], had con-

structed two non-congruent sixteen dimensional tori whose Laplace–Beltrami op-

erators have exactly the same eigenvalues. In 1985 Toshikazu Sunada [Su85], then

at Nagoya University in Japan, developed an algebraic framework that provided

a new, systematic approach of considering Mark Kac’s question. Using Sunada’s

technique several mathematicians constructed isospectral manifolds (e.g., Gordon

and Wilson; Brooks; Buser, etc.). See, e.g., the review article of Robert Brooks

(1988) with the situation on isospectrality up to that date in [Br88]. Finally, in

1992, Carolyn Gordon, David Webb and Scott Wolpert [GWW92] gave the def-

inite negative answer to Mark Kac’s question and constructed two plane domains

(henceforth called the GWW domains) with the same Dirichlet eigenvalues.

ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES 7

                                                                                                                    

                                                                                                               



8 RAFAEL D. BENGURIA AND HELMUT LINDE

Figure 1. GWW Isospectral Domains D1 and D2

Figure 2. Sunada Graphs corresponding to Domains D1 and D2

Proof of Isospectrality Using Transplantation:

The most elementary proof of isospectrality of the GWW domains is done using

the method of transplantation. For the method of transplantation see, e.g., [Be92,
Be93]. See also the expository article [Be93b] by the same author. The method

also appears briefly described in the article of Sridhar and Kudrolli cited in the

Bibliographical Remarks, iii) at the end of this section.

To conclude this section we will give the details of the proof of isospectrality

of the GWW domains using transplantation. For that purpose label from 1 to 7

the congruent triangles that make the two GWW domains (see Figure 1). Each of

this isosceles right triangles has two cathets, labeled A and B and the hypothenuse,

labeled T . Each of the pieces (triangles) that make each one of the two domains is

connected to one or more neighboring triangles through a side A, a side B or a side

T . Each of the two isospectral domains has an associated graph, which are given

in Figure 2.

These graphs have their origin in the algebraic formulation of Sunada [Su85].

The vertices in each graph are labeled according to the number that each of the

pieces (triangles) has in each of the given domains. As for the edges joining two

vertices in these graphs, they are labeled by either an A, a B or a T depending on

the type of the common side of two neighboring triangles in Figure 1. In order to

show that both domains are isospectral it is convenient to consider any function

defined on each domain as consisting of seven parts, each part being the restriction

of the original function to each one of the individual triangles that make the domain.

8

                                                                                                                    

                                                                                                               



ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES OF THE LAPLACE OPERATOR 9

In this way, if ψ is a function defined on the domain 1, we will write as a vector with

seven components, i.e., ψ = [ψi]
7
i=1, where ψi is a scalar function whose support

is triangle i on the domain 1. Similarly, a function ϕ defined over the domain 2

may be represented as a seven component vector ϕ = [ϕi]
7
i=1, with the equivalent

meaning but referred to the second domain.

In order to show the isospectrality of the two domains we have to exhibit a map-

ping transforming the functions defined on the first domain into functions defined

in the second domain. Given the decomposition we have made of the eigenfunctions

as vectors of seven components, this transformation will be represented by a 7× 7

matrix. In order to show that the two domains have the same spectra we need this

matrix to be orthogonal. This matrix is given explicitly by

(2.22) TD =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a a a −a b −b b
a −b −a b −a a −b
a −a −b b −b a −a
−a b b −a a −b a
−b a b −a a −a b
b −a −a b −a b −a
−b b a −a b −a a

.

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
For the matrix TD to be orthogonal, we need that the parameters a and b satisfy

the following relations: 4a2+3b2 = 1, 2a2+4ab+b2 = 0, and 4a+3b = 1. Although

we do not need the numerical values of a and b in the sequel, it is good to know

that there is a solution to this system of equations, namely a = (1− 3
√

8/4)/7 and

b = (1 +
√

8)/7. The matrix TD is orthogonal, i.e., TDT t
D = 1. The label D used

here refers to the fact that this matrix TD is used to show isospectrality for the

Dirichlet problem. A similar matrix can be constructed to show isospectrality for

the Neumann problem. In order to show isospectrality it is not sufficient to show

that the matrix TD is orthogonal. It must fulfill two additional properties. On the

one hand it should transform a function ψ that satisfies the Dirichlet conditions

in the first domain in a function ϕ that satisfies Dirichlet boundary conditions

on the second domain. Moreover, by elliptic regularity, since the functions ψ and

its image ϕ satisfy the eigenvalue equation −∆u = λu, they must be smooth (in

fact they should be real analytic in the interior of the corresponding domains), and

therefore they must be continuous at the adjacent edges connecting two neighboring

triangles. Thus, while the function ψ is continuous when crossing the common edges

of neighboring triangles in the domain 1, the function ϕ should be continuous when

crossing the common edges of neighboring triangles in the domain 2. These two

properties are responsible for the peculiar structure of a’s and b’s in the components

of the matrix TD.

To illustrate these facts, if the function ϕ is an eigenfunction of the Dirichlet

problem for the domain 2, it must satisfy, among others, the following properties,

(2.23) ϕA
2 = ϕA

7 ,

and

(2.24) ϕT
5 = 0.

Here ϕ2 denotes the second component of ϕ, i.e., the restriction of the function ϕ to

the second triangle in Domain 2 (see figure 2). On the other hand, ϕA
2 denotes the

restriction of ϕ2 on the edge A of triangle 2. Since on the domain 2, the triangles
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10 RAFAEL D. BENGURIA AND HELMUT LINDE

2 and 7 are glued through a cathet of type A, (2.23) is precisely the condition that

ϕ has to be smooth in the interior of 2. On the other hand, ϕ must be a solution of

the Dirichlet problem for the domain 2 and as such it must satisfy zero boundary

conditions. Since the hypothenuse T of triangle 5 is part of the boundary of the

domain 2, ϕ must vanish there. This is precisely the condition (2.24). Let us check,

as an exercise that if ψ is smooth and satisfies Dirichlet boundary conditions in

the domain 1, its image ϕ = TDψ satisfies (2.24) over the domain 2. We let as an

exercise to the reader to check (2.23), and all the other conditions on “smoothness”

and boundary condition of ϕ (this is a long but straightforward task). From (2.22)

we have that

(2.25) ϕT
5 = −bψT

1 + aψT
2 + bψT

3 − aψT
4 + aψT

5 − aψT
6 + bψT

7 .

Since all the sides of type T of the pieces 1, 3 and 7 in the domain 1 are part of the

boundary of the domain (see figure 1), ψT
1 = ψT

3 = ψT
7 = 0. On the other hand,

since 2 and 7 are neighboring triangles in the domain 1, glued through a side of

type T , we have ψT
2 = ψT

4 . By the same reasoning we have ψT
5 = ψT

6 . Using these

three conditions on (2.25) we obtain (2.24). All the other conditions can be verified

in a similar way. Collecting all these facts, we conclude with

Theorem 2.1 (P. Bérard). The transformation TD given by (2.22) is an isom-
etry from L2(D1) into L2(D2) (here D1 and D2 are the two domains of Figures 1
and 2), which induces an isometry from H1

0 (D1) into H1
0 (D2).

and therefore we have

Theorem 2.2 (C. Gordon, D. Webb, S. Wolpert). The domains D1 and D2 of
figures 1 and 2 are isospectral.

Although the proof by transplantation is straightforward to follow, it does not

shed light on the rich geometric, analytic and algebraic structure of the problem

initiated by Mark Kac. For the interested reader it is recommendable to read the

papers of Sunada [Su85] and of Gordon, Webb and Wolpert [GWW92].

2.3. Bibliographical Remarks. i) The sentence of Arthur Schuster (1851–1934)
quoted at the beginning of this section is cited in Reed and Simon’s book, volume IV
[RSIV]. It is taken from the article A. Schuster, The Genesis of Spectra, in Report of the
fifty–second meeting of the British Association for the Advancement of Science (held at
Southampton in August 1882). Brit. Assoc. Rept., pp. 120–121, 1883. Arthur Schuster
was a British physicist (he was a leader spectroscopist at the turn of the XIX century).
It is interesting to point out that Arthur Schuster found the solution to the Lane–Emden
equation with exponent 5, i.e., to the equation,

−∆u = u5,

in R
3, with u > 0 going to zero at infinity. The solution is given by

u =
31/4

(1 + |x|2)1/2
.

10
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(A. Schuster, On the internal constitution of the Sun, Brit. Assoc. Rept. pp. 427–429,
1883). Since the Lane–Emden equation for exponent 5 is the Euler–Lagrange equation
for the minimizer of the Sobolev quotient, this is precisely the function that, modulo
translations and dilations, gives the best Sobolev constant. For a nice autobiography
of Arthur Schuster see A. Schuster, Biographical fragments, Mc Millan & Co., London,
(1932).

ii) A very nice short biography of Marc Kac was written by H. P. McKean [Mark Kac in
Bibliographical Memoirs, National Academy of Science, 59, 214–235 (1990); available on
the web (page by page) at http://www.nap.edu/books/0309041988/html/214.html]. The
reader may want to read his own autobiography: Mark Kac, Enigmas of Chance, Harper
and Row, NY, 1985 [reprinted in 1987 in paperback by The University of California Press].
For his article in the American Mathematical Monthly, op. cit., Mark Kac obtained the
1968 Chauvenet Prize of the Mathematical Association of America.

iii) It is interesting to remark that the values of the first Dirichlet eigenvalues of the
GWW domains were obtained experimentally by S. Sridhar and A. Kudrolli, Experiments
on Not “Hearing the Shape” of Drums, Physical Review Letters, 72, 2175–2178 (1994).
In this article one can find the details of the physics experiments performed by these
authors using very thin electromagnetic resonant cavities with the shape of the Gordon–
Webb–Wolpert (GWW) domains. This is the first time that the approximate numerical
values of the first 25 eigenvalues of the two GWW were obtained. The corresponding
eigenfunctions are also displayed. A quick reference to the transplantation method of
Pierre Berard is also given in this article, including the transplantation matrix connecting
the two isospectral domains. The reader may want to check the web page of S. Sridhar’s
Lab (http://sagar.physics.neu.edu/) for further experiments on resonating cavities, their
eigenvalues and eigenfunctions, as well as on experiments on quantum chaos.

iv) The numerical computation of the eigenvalues and eigenfunctions of the pair of GWW
isospectral domains was obtained by Tobin A. Driscoll, Eigenmodes of isospectral domains,
SIAM Review 39, 1–17 (1997).

v) In its simplified form, the Gordon–Webb–Wolpert domains (GWW domains) are made
of seven congruent rectangle isosceles triangles. Certainly the GWW domains have the
same area, perimeter and connectivity. The GWW domains are not convex. Hence, one
may still ask the question whether one can hear the shape of a convex drum. There are
examples of convex isospectral domains in higher dimension (see e.g. C. Gordon and D.
Webb, Isospectral convex domains in Euclidean Spaces, Math. Res. Letts. 1, 539–545
(1994), where they construct convex isospectral domains in R

n, n ≥ 4). Remark: For
an update of the Sunada Method, and its applications see the article of Robert Brooks
[The Sunada Method, in Tel Aviv Topology Conference “Rothenberg Festschrift” 1998,
Contemprary Mathematics 231, 25–35 (1999); electronically available at:

http://www.math.technion.ac.il/ rbrooks]
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12 RAFAEL D. BENGURIA AND HELMUT LINDE

3. Rearrangements

3.1. Definition and basic properties. For many problems of functional

analysis it is useful to replace some function by an equimeasurable but more sym-

metric one. This method, which was first introduced by Hardy and Littlewood, is

called rearrangement or Schwarz symmetrization [HLP64]. Among several other

applications, it plays an important role in the proofs of isoperimetric inequalities

like the Rayleigh–Faber–Krahn inequality or the Payne–Pólya–Weinberger inequal-

ity (see section 4 and section 6 below). In the following we present some basic

definitions and theorems concerning spherically symmetric rearrangements.

We let Ω be a measurable subset of Rn and write |Ω| for its Lebesgue measure,

which may be finite or infinite. If it is finite we write Ω� for an open ball with the

same measure as Ω, otherwise we set Ω� = R
n. We consider a measurable function

u : Ω → R and assume either that |Ω| is finite or that u decays at infinity, i.e.,

|{x ∈ Ω : |u(x)| > t}| is finite for every t > 0.

Definition 3.1. The function

µ(t) = |{x ∈ Ω : |u(x)| > t}|, t ≥ 0

is called distribution function of u.

From this definition it is straightforward to check that µ(t) is a decreasing (non–

increasing), right-continuous function on R+ with µ(0) = |sprt u| and sprt µ =

[0, ess sup |u|).
Definition 3.2.

• The decreasing rearrangement u� : R
+ → R

+ of u is the distribution

function of µ.

• The symmetric decreasing rearrangement u� : Ω� → R
+ of u is defined by

u�(x) = u�(Cn|x|n), where Cn = πn/2[Γ(n/2+1)]−1 is the measure of the

n-dimensional unit ball.

Because µ is a decreasing function, Definition 3.2 implies that u� is an essentially

inverse function of µ. The names for u� and u� are justified by the following two

lemmas:

Lemma 3.3.

(a) The function u� is decreasing, u�(0) = esssup |u| and sprt u� = [0, |sprt u|)
(b) u�(s) = min {t ≥ 0 : µ(t) ≤ s}
(c) u�(s) =

∫∞
0

χ[0,µ(t))(s) dt

(d) |{s ≥ 0 : u�(s) > t}| = |{x ∈ Ω : |u(x)| > t}| for all t ≥ 0.
(e) {s ≥ 0 : u�(s) > t} = [0, µ(t)) for all t ≥ 0.

Proof. Part (a) is a direct consequence of the definition of u�, keeping in mind

the general properties of distribution functions stated above. The representation

formula in part (b) follows from

u�(s) = |{w ≥ 0 : µ(w) > s}| = sup{w ≥ 0 : µ(w) > s} = min{w ≥ 0 : µ(w) ≤ s},
where we have used the definition of u� in the first step and then the monotonicity

and right-continuity of µ. Part (c) is a consequence of the ‘layer-cake formula’, see

Theorem 7.1 in the appendix. To prove part (d) we need to show that

(3.1) {s ≥ 0 : u�(s) > t} = [0, µ(t)).

12
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Indeed, if s is an element of the left hand side of (3.1), then by Lemma 3.3, part

(b), we have

min{w ≥ 0 : µ(w) ≤ s} > t.

But this means that µ(t) > s, i.e., s ∈ [0, µ(t)). On the other hand, if s is an

element of the right hand side of (3.1), then s < µ(t) which implies again by part

(b) that

u�(s) = min{w ≥ 0 : µ(w) ≤ s} ≥ min{w ≥ 0 : µ(w) < µ(t)} > t,

i.e., s is also an element of the left hand side. Finally, part (e) is a direct consequence

from part (d). �
It is straightforward to transfer the statements of Lemma 3.3 to the symmetric

decreasing rearrangement:

Lemma 3.4.

(a) The function u� is spherically symmetric and radially decreasing.
(b) The measure of the level set {x ∈ Ω� : u�(x) > t} is the same as the

measure of {x ∈ Ω : |u(x)| > t} for any t ≥ 0.

From Lemma 3.3 (c) and Lemma 3.4 (b) we see that the three functions u,

u� and u� have the same distribution function and therefore they are said to be

equimeasurable. Quite analogous to the decreasing rearrangements one can also

define increasing ones:

Definition 3.5.

• If the measure of Ω is finite, we call u�(s) = u�(|Ω| − s) the increasing
rearrangement of u.

• The symmetric increasing rearrangement u� : Ω� → R+ of u is defined by

u�(x) = u�(Cn|x|n)

3.2. Main theorems. Rearrangements are a useful tool of functional analysis

because they considerably simplify a function without changing certain properties

or at least changing them in a controllable way. The simplest example is the fact

that the integral of a function’s absolute value is invariant under rearrangement. A

bit more generally, we have:

Theorem 3.6. Let Φ be a continuous increasing map from R+ to R
+ with

Φ(0) = 0. Then∫
Ω�

Φ(u�(x)) dx =

∫
Ω

Φ(|u(x)|) dx =

∫
Ω�

Φ(u�(x)) dx.

Proof. The theorem follows directly from Theorem 7.1 in the appendix: If we

choose m( dx) = dx, the right hand side of (7.1) takes the same value for v = |u|,
v = u� and v = u�. The conditions on Φ are necessary since Φ(t) = ν([0, t)) must

hold for some measure ν on R+. �
For later reference we state a rather specialized theorem, which is an estimate

on the rearrangement of a spherically symmetric function that is defined on an

asymmetric domain:

Theorem 3.7. Assume that uΩ : Ω → R
+ is given by uΩ(x) = u(|x|), where

u : R
+ → R

+ is a non-negative decreasing (resp. increasing) function. Then
u�

Ω(x) ≤ u(|x|) (resp. uΩ�(x) ≥ u(|x|)) for every x ∈ Ω�.

ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES 13

                                                                                                                    

                                                                                                               



14 RAFAEL D. BENGURIA AND HELMUT LINDE

Proof. Assume first that u is a decreasing function. The layer–cake represen-

tation for u�
Ω is

u�
Ω(x) = u�(Cn|x|n) =

∫ ∞

0

χ[0,|{x∈Ω:uΩ(x)>t}|)(Cn|x|n) dt

≤
∫ ∞

0

χ[0,|{x∈Rn:u(|x|)>t}|)(Cn|x|n) dt

=

∫ ∞

0

χ{x∈Rn:u(|x|)>t}(x) dt

= u(|x|)
�

The product of two functions changes in a controllable way under rearrange-

ment:

Theorem 3.8. Suppose that u and v are measurable and non-negative functions
defined on some Ω ⊂ R

n with finite measure. Then

(3.2)

∫
R+

u�(s) v�(s) ds ≥
∫

Ω

u(x) v(x) dx ≥
∫

R+
u�(s) v�(s) ds

and

(3.3)

∫
Ω�

u�(x) v�(x) dx ≥
∫

Ω

u(x) v(x) dx ≥
∫

Ω�

u�(x) v�(x) dx.

Proof. We first show that for every measurable Ω′ ⊂ Ω and every measurable

v : Ω → R+ the relation

(3.4)

∫ |Ω′|

0

v�(s) ds ≥
∫

Ω′
v dx ≥

∫ |Ω′|

0

v�(s) ds

holds: We can assume without loss of generality that v is integrable. Then the

layer-cake formula (see Theorem 7.1 in the appendix) gives

(3.5) v =

∫ ∞

0

χ{x∈Ω:v(x)>t} dt and v� =

∫ ∞

0

χ[0,µ(t)) dt.

Hence, ∫
Ω′

v dx =

∫ ∞

0

|Ω′ ∩ {x ∈ Ω : v(x) > t}| dt,∫ |Ω′|

0

v�(s) ds =

∫ ∞

0

min
(|Ω′|, |{x ∈ Ω : v(x) > t}|) dt.

The first inequality in (3.4) follows. The second inequality in (3.4) can be estab-

lished with the help of the first:∫ |Ω′|

0

v� ds =

∫ |Ω|

0

v� ds−
∫ |Ω|

|Ω′|
v� ds

=

∫
Ω

v dx−
∫ |Ω|−|Ω′|

0

v� ds

≤
∫

Ω

v dx−
∫

Ω\Ω′
v dx =

∫
Ω′

v dx.
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Now assume that u and v are measurable, non-negative and - without loosing

generality - integrable. Since we can replace v by u in the equations (3.5), we have∫
Ω

u(x)v(x) dx =

∫ ∞

0

dt

∫
{x∈Ω:u(x)>t}

v(x) dx,

∫ ∞

0

u�(s)v�(s) ds =

∫ ∞

0

dt

∫ µ(t)

0

v�(s) ds,

where µ is the distribution function of u. On the other hand, the first inequality in

(3.4) tells us that ∫
{x∈Ω:u(x)>t}

v(x) dx ≤
∫ µ(t)

0

v�(s) ds

for every non-negative t, such that the first inequality in (3.2) follows. The second

part of (3.2) can be proven completely analogously, and the inequalities (3.3) are a

direct consequence of (3.2). �

3.3. Gradient estimates. The integral of a function’s gradient over the bound-

ary of a level set can be estimated in terms of the distribution function:

Theorem 3.9. Assume that u : Rn → R is Lipschitz continuous and decays at
infinity, i.e., the measure of Ωt := {x ∈ R

n : |u(x)| > t} is finite for every positive
t. If µ is the distribution function of u then

(3.6)

∫
∂Ωt

|∇u|Hn−1( dx) ≥ −n2C2/n
n

µ(t)2−2/n

µ′(t)
.

Remark: Here Hn(A) denotes the n–dimensional Hausdorff measure of the set A
(see, e.g., [Fe69]).

Proof. On the one hand, by the classical isoperimetric inequality we have

(3.7)

∫
∂Ωt

Hn−1( dx) ≥ nC1/n
n |Ωt|1−1/n = nC1/n

n µ(t)1−1/n.

On the other hand, we can use the Cauchy-Schwarz inequality to get∫
∂Ωt

Hn−1( dx) =

∫
∂Ωt

√|∇u|√|∇u|Hn−1( dx)

≤
(∫

∂Ωt

|∇u|Hn−1( dx)

)1/2 (∫
∂Ωt

1

|∇u|Hn−1( dx)

)1/2

.

The last integral in the above formula can be replaced by −µ′(t) according to

Federer’s coarea formula (see, [Fe69]). The result is

(3.8)

∫
∂Ωt

Hn−1( dx) ≤
(∫

∂Ωt

|∇u|Hn−1( dx)

)1/2

(−µ′(t))1/2
.

Comparing the equations (3.7) and (3.8) yields Theorem 3.9. �

Integrals that involve the norm of the gradient can be estimated using the

following important theorem:
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16 RAFAEL D. BENGURIA AND HELMUT LINDE

Theorem 3.10. Let Φ : R+ → R+ be a Young function, i.e., Φ is increasing
and convex with Φ(0) = 0. Suppose that u : Rn → R is Lipschitz continuous and
decays at infinity. Then∫

Rn

Φ(|∇u�(x)|) dx ≤
∫

Rn

Φ(|∇u(x)|) dx.

For the special case Φ(t) = t2 Theorem 3.10 states that the ‘energy expectation

value’ of a function decreases under symmetric rearrangement, a fact that is key to

the proof of the Rayleigh–Faber–Krahn inequality (see section 4.1).

Proof. Theorem 3.10 is a consequence of the following chain of (in)equalities,

the second step of which follows from Lemma 3.11 below.∫
Rn

Φ(|∇u|) dx =

∫ ∞

0

ds
d

ds

∫
{x∈Rn:|u(x)|>u∗(s)}

Φ(|∇u|) dx

≥
∫ ∞

0

ds Φ

(
−nC1/n

n s1−1/n du∗

ds
(s)

)
=

∫
Rn

Φ(|∇u�|) dx.

�
Lemma 3.11. Let u and Φ be as in Theorem 3.10. Then for almost every

positive s holds

(3.9)
d

ds

∫
{x∈Rn:|u(x)|>u∗(s)}

Φ(|∇u|) dx ≥ Φ

(
−nC1/n

n s1−1/n du∗

ds
(s)

)
.

Proof. First we prove Lemma 3.11 for the special case of Φ being the identity.

If s > |sprt u| then (3.9) is clearly true since both sides vanish. Thus we can assume

that 0 < s < |sprt u|. For all 0 ≤ a < b < |sprt u| we show that

(3.10)

∫
{x∈Rn:u∗(a)>|u(x)|>u∗(b)}

|∇u(x)| dx ≥ nC1/n
n a1−1/n(u∗(a)− u∗(b)).

The statement (3.10) is proven by the following chain of inequalities, in which we

first use Federer’s coarea formula, then the classical isoperimetric inequality in Rn

and finally the monotonicity of the integrand:

l.h.s. of (3.10) =

∫ u∗(a)

u∗(b)

Hn−1{x ∈ R
n : |u(x)| = t} dt

≥
∫ u∗(a)

u∗(b)

nC1/n
n |{x ∈ R

n : |u(x)| ≥ t}|1−1/n dt

≥ nC1/n
n |{x ∈ R

n : |u(x)| ≥ u∗(a)}|1−1/n · (u∗(a)− u∗(b))
≥ r.h.s. of (3.10).

In the case of Φ being the identity, Lemma 3.11 follows from (3.10): Replace b by

a + ε with some ε > 0, multiply both sides by ε−1 and then let ε go to zero.

It remains to show that equation (3.9) holds for almost every s > 0 if Φ is not

the identity but some general Young function. From the monotonicity of u∗ follows

that for almost every s > 0 either du∗
ds is zero or there is a neighborhood of s where

16
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u∗ is continuous and decreases strictly. In the first case there is nothing to prove,

thus we can assume the second one. Then we have

(3.11) |{x ∈ R
n : u∗(s) ≥ |u(x)| > u∗(s + ε)}| = ε

for small enough ε > 0. Consequently, we can apply Jensen’s inequality to get

1

ε

∫
{x∈Rn:u∗(s)≥|u(x)|>u∗(s+h)}

Φ(|∇u(x)|) dx

≥ Φ

⎛⎜⎝1

ε

∫
{x∈Rn:u∗(s)≥|u(x)|>u∗(s+h)}

|∇u(x)| dx

⎞⎟⎠ .

Taking the limit ε ↓ 0, this yields

d

ds

∫
{x∈Rn:|u(x)|>u∗(s)}

Φ(|∇u(x)|) dx ≥ Φ

⎛⎜⎝ d

ds

∫
{x∈Rn:|u(x)|>u∗(s)}

|∇u(x)| dx

⎞⎟⎠ .

Since we have already proven Lemma 3.11 for the case of Φ being the identity, we

can apply it to the argument of Φ on the right hand side of the above inequality.

The statement of Lemma 3.11 for general Φ follows. �

3.4. Bibliographical Remarks. i) Rearrangements of functions were introduced
by G. Hardy and J. E. Littlewood. Their results are contained in the classical book, G.H.
Hardy, J. E. Littlewood, J.E., and G. Pólya, Inequalities, 2d ed., Cambridge University
Press, 1952. The fact that the L2 norm of the gradient of a function decreases under rear-
rangements was proven by Faber and Krahn (see references below). A more modern proof
as well as many results on rearrangements and their applications to PDE’s can be found in
G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(4) 3, 697–718 (1976). (The reader may want to see also the article by E.H. Lieb, Existence
and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in
Appl. Math. 57, 93–105 (1976/77), for an alternative proof of the fact that the L2 norm
of the gradient decreases under rearrangements using heat kernel techniques). An excel-
lent expository review on rearrangements of functions (with a good bibliography) can be
found in Talenti, G., Inequalities in rearrangement invariant function spaces, in Nonlinear
analysis, function spaces and applications, Vol. 5 (Prague, 1994), 177–230, Prometheus,
Prague, 1994. (available at the website: http://www.emis.de/proceedings/Praha94/).
The Riesz rearrangement inequality is the assertion that for nonnegative measurable func-
tions f, g, h in R

n, we haveZ
Rn×Rn

f(y)g(x − y)h(x)dx dy ≤
Z

Rn×Rn

f�(y)g�(x − y)h�(x)dx dy

. For n = 1 the inequality is due to F. Riesz, Sur une inégalité intégrale, Journal of the
London Mathematical Society 5, 162–168 (1930). For general n is due to S.L. Sobolev, On
a theorem of functional analysis, Mat. Sb. (NS) 4, 471–497 (1938) [the English translation
appears in AMS Translations (2) 34, 39–68 (1963)]. The cases of equality in the Riesz
inequality were studied by A. Burchard, Cases of equality in the Riesz rearrangement
inequality, Annals of Mathematics 143 499–627 (1996) (this paper also has an interesting
history of the problem).
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18 RAFAEL D. BENGURIA AND HELMUT LINDE

ii) Rearrangements of functions have been extensively used to prove symmetry properties
of positive solutions of nonlinear PDE’s. See, e.g., Kawohl, Bernhard, Rearrangements
and convexity of level sets in PDE. Lecture Notes in Mathematics, 1150. Springer-Verlag,
Berlin (1985), and references therein.

iii) There are different types of rearrangements of functions. For an interesting approach
to rearrangements see, Brock, Friedemann and Solynin, Alexander Yu. An approach to
symmetrization via polarization. Trans. Amer. Math. Soc. 352 1759–1796 (2000). This
approach goes back through Baernstein–Taylor (Duke Math. J. 1976), who cite Ahlafors
(book on “Conformal invariants”, 1973), who in turn credits Hardy and Littlewood.

4. The Rayleigh–Faber–Krahn inequality

4.1. The Euclidean case. Many isoperimetric inequalities have been in-

spired by the question which geometrical layout of some physical system maximizes

or minimizes a certain quantity. One may ask, for example, how matter of a given

mass density must be distributed to minimize its gravitational energy, or which

shape a conducting object must have to maximize its electrostatic capacity. The

most famous question of this kind was put forward at the end of the 19th century

by Lord Rayleigh in his work on the theory of sound [R45]: He conjectured that

among all drums of the same area and the same tension the circular drum produces

the lowest fundamental frequency. This statement was proven independently in the

1920s by Faber [F23] and Krahn [K25, K26].

To treat the problem mathematically, we consider an open bounded domain

Ω ⊂ R
2 which matches the shape of the drum. Then the oscillation frequencies

of the drum are given by the eigenvalues of the Laplace operator −∆Ω
D on Ω with

Dirichlet boundary conditions, up to a constant that depends on the drum’s tension

and mass density. In the following we will allow the more general case Ω ⊂ Rn for

n ≥ 2, although the physical interpretation as a drum only makes sense if n = 2.

We define the Laplacian −∆Ω
D via the quadratic–form approach, i.e., it is the unique

self–adjoint operator in L2(Ω) which is associated with the closed quadratic form

h[Ψ] =

∫
Ω

|∇Ψ|2 dx, Ψ ∈ H1
0 (Ω).

Here H1
0 (Ω), which is a subset of the Sobolev space W 1,2(Ω), is the closure of

C∞
0 (Ω) with respect to the form norm

(4.1) | · |2h = h[·] + || · ||L2(Ω).

For more details about the important question of how to define the Laplace operator

on arbitrary domains and subject to different boundary conditions we refer the

reader to [D96, BS87].

The spectrum of −∆Ω
D is purely discrete since H1

0 (Ω) is, by Rellich’s theorem,

compactly imbedded in L2(Ω) (see, e.g., [BS87]). We write λ1(Ω) for the lowest

eigenvalue of −∆Ω
D.

Theorem 4.1 (Rayleigh–Faber–Krahn inequality). Let Ω ⊂ R
n be an open

bounded domain with smooth boundary and Ω� ⊂ R
n a ball with the same measure

as Ω. Then
λ1(Ω

∗) ≤ λ1(Ω)

with equality if and only if Ω itself is a ball.

18
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Proof. With the powerful mathematical tool of rearrangements (see section 3)

at hand, the proof of the Rayleigh–Faber–Krahn inequality is actually not difficult.

Let Ψ be the positive normalized first eigenfunction of −∆Ω
D. Since the domain of

a positive self-adjoint operator is a subset of its form domain, we have Ψ ∈ H1
0 (Ω).

Then we have Ψ� ∈ H1
0 (Ω�). Thus we can apply first the min–max principle and

then the Theorems 3.6 and 3.10 to obtain

λ1(Ω
�) ≤

∫
Ω� |∇Ψ�|2 dnx∫
Ω� |Ψ∗|2 dnx

≤
∫
Ω
|∇Ψ|2 dnx∫
Ω

Ψ2 dnx
= λ1(Ω).

�

The Rayleigh–Faber–Krahn inequality has been extended to a number of differ-

ent settings, for example to Laplace operators on curved manifolds or with respect

to different measures. In the following we shall give an overview of these general-

izations.

4.2. Schrödinger operators. It is not difficult to extend the Rayleigh-Faber-

Krahn inequality to Schrödinger operators, i.e., to operators of the form −∆+V (x).

Let Ω ⊂ R
n be an open bounded domain and V : R

n → R
+ a non-negative potential

in L1(Ω). Then the quadratic form

hV [u] =

∫
Ω

(|∇u|2 + V (x)|u|2) dnx,

defined on

Dom hV = H1
0 (Ω) ∩

{
u ∈ L2(Ω) :

∫
Ω

(1 + V (x))|u(x)|2 dnx < ∞
}

is closed (see, e.g., [D90, D96]). It is associated with the positive self-adjoint

Schrödinger operator HV = −∆ + V (x). The spectrum of HV is purely discrete

and we write λ1(Ω, V ) for its lowest eigenvalue.

Theorem 4.2. Under the assumptions stated above,

λ1(Ω
∗, V�) ≤ λ1(Ω, V ).

Proof. Let u1 ∈ Dom hV be the positive normalized first eigenfunction of

HV . Then we have u�
1 ∈ H1

0 (Ω�) and by Theorem 3.8∫
Ω�

(1 + V�)u
�
1
2
dnx ≤

∫
Ω

(1 + V )u2
1 dnx < ∞.

Thus u�
1 ∈ Dom hV�

and we can apply first the min–max principle and then Theo-

rems 3.6, 3.8 and 3.10 to obtain

λ1(Ω
�, V�) ≤

∫
Ω�

(|∇u�
1|2 + V�u

�
1
2
)

dnx∫
Ω� |u�

1|2 dnx

≤
∫
Ω

(|∇u1|2 + V u2
1

)
dnx∫

Ω
u2

1 dnx
= λ1(Ω, V ).

�
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20 RAFAEL D. BENGURIA AND HELMUT LINDE

4.3. Gaussian Space. Consider the space Rn (n ≥ 2) endowed with the

measure dµ = γ(x) dnx, where

(4.2) γ(x) = (2π)−n/2e−
|x|2
2 ,

is the standard Gaussian density. Since γ(x) is a Gauss function we will call

(Rn, dµ) the Gaussian space. For any Lebesgue–measurable Ω ⊂ R
n we define

the Gaussian perimeter of Ω by

Pµ(Ω) = sup

{∫
Ω

((∇− x) · v(x))γ(x) dx : v ∈ C1
0 (Ω, Rn), ||v||∞ ≤ 1

}
.

If ∂Ω is sufficiently well-behaved then

Pµ(Ω) =

∫
∂Ω

γ(x) dHn−1,

where Hn−1 is the (n−1)–dimensional Hausdorff measure [Fe69]. It has been shown

by Borell that in Gaussian space there is an analog to the classical isoperimetric

inequality. Yet the sets that minimize the surface (i.e., the Gaussian perimeter) for

a given volume (i.e., Gaussian measure) are not balls, as in Euclidean space, but

half–spaces [B75]. More precisely:

Theorem 4.3. Let Ω ⊂ Rn be open and measurable. Let further Ω� be the
half-space {�x ∈ Rn : x1 > a}, where a ∈ R is chosen such that µ(Ω) = µ(Ω�). Then

Pµ(Ω) ≥ Pµ(Ω�)

with equality only if Ω = Ω� up to a rotation.

Next we define the Laplace operator for domains in Gaussian space. We choose

an open domain Ω ⊂ Rn with µ(Ω) < µ(Rn) = 1 and consider the function space

H1(Ω, dµ) =
{

u ∈ W 1,1
loc (Ω) such that (u, |∇u|) ∈ L2(Ω, dµ)× L2(Ω, dµ)

}
,

endowed with the norm

||u||H1(Ω, dµ) = ||u||L2(Ω, dµ) + ||∇u||L2(Ω, dµ).

We define the quadratic form

h[u] =

∫
Ω

|∇u|2 dµ

on the closure of C∞
0 (Ω) in H1(Ω, dµ). Since H1 is complete, Dom h is also com-

plete under its form norm, which is equal to || · ||H1(Ω, dµ). The quadratic form h is

therefore closed and associated with a unique positive self-adjoint operator −∆G.

Dom h is embedded compactly in L2(Ω, dµ) and therefore the spectrum of −∆G

is discrete. Its eigenfunctions and eigenvalues are solutions of the boundary value

problem

(4.3)
−

n∑
j=1

∂
∂xj

(
γ(x) ∂

∂xj
u
)

= λγ(x)u in Ω,

u = 0 on ∂Ω.

The analog of the Rayleigh–Faber–Krahn inequality for Gaussian Spaces is the

following theorem.
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Theorem 4.4. Let λ1(Ω) be the lowest eigenvalue of −∆G on Ω and let Ω′ be
a half-space of the same Gaussian measure as Ω. Then

λ1(Ω
′) ≤ λ1(Ω).

Equality holds if and only if Ω itself is a half-space.

4.4. Spaces of constant curvature. Differential operators can not only be

defined for functions in Euclidean space, but also for the more general case of

functions on Riemannian manifolds. It is therefore natural to ask whether the

isoperimetric inequalities for the eigenvalues of the Laplacian can be generalized

to such settings as well. In this section we will state Rayleigh–Faber–Krahn type

theorems for the spaces of constant non-zero curvature, i.e., for the sphere and the

hyperbolic space. Isoperimetric inequalities for the second Laplace eigenvalue in

these curved spaces will be discussed in section 6.7.

To start with, we define the Laplacian in hyperbolic space as a self-adjoint

operator by means of the quadratic form approach. We realize Hn as the open unit

ball B = {(x1, . . . , xn) :
∑n

j=1 x2
j < 1} endowed with the metric

(4.4) ds2 =
4|dx|2

(1− |x|2)2
and the volume element

(4.5) dV =
2n dnx

(1− |x|2)n
,

where | · | denotes the Euclidean norm. Let Ω ⊂ Hn be an open domain and assume

that it is bounded in the sense that Ω does not touch the boundary of B. The

quadratic form of the Laplace operator in hyperbolic space is the closure of

(4.6) h[u] =

∫
Ω

gij(∂iu)(∂ju) dV, u ∈ C∞
0 (Ω).

It is easy to see that the form (4.6) is indeed closeable: Since Ω does not touch

the boundary of B, the metric coefficients gij are bounded from above on Ω. They

are also bounded from below by gij ≥ 4. Consequently, the form norms of h and

its Euclidean counterpart, which is the right hand side of (4.6) with gij replaced

by δij , are equivalent. Since the ‘Euclidean’ form is well known to be closeable, h
must also be closeable.

By standard spectral theory, the closure of h induces an unique positive self-

adjoint operator −∆H which we call the Laplace operator in hyperbolic space.

Equivalence between corresponding norms in Euclidean and hyperbolic space im-

plies that the imbedding Dom h → L2(Ω, dV ) is compact and thus the spectrum

of −∆H is discrete. For its lowest eigenvalue the following Rayleigh–Faber–Krahn

inequality holds.

Theorem 4.5. Let Ω ⊂ H
n be an open bounded domain with smooth boundary

and Ω� ⊂ Hn an open geodesic ball of the same measure. Denote by λ1(Ω) and
λ1(Ω

�) the lowest eigenvalue of the Dirichlet-Laplace operator on the respective
domain. Then

λ1(Ω
�) ≤ λ1(Ω)

with equality only if Ω itself is a geodesic ball.
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The Laplace operator −∆S on a domain which is contained in the unit sphere

Sn can be defined in a completely analogous fashion to −∆H by just replacing the

metric gij in (4.6) by the metric of S
n.

Theorem 4.6. Let Ω ⊂ S
n be an open bounded domain with smooth boundary

and Ω� ⊂ S
n an open geodesic ball of the same measure. Denote by λ1(Ω) and

λ1(Ω
�) the lowest eigenvalue of the Dirichlet-Laplace operator on the respective

domain. Then
λ1(Ω

�) ≤ λ1(Ω)

with equality only if Ω itself is a geodesic ball.

The proofs of the above theorems are similar to the proof for the Euclidean

case and will be omitted here. A more general Rayleigh–Faber–Krahn theorem for

the Laplace operator on Riemannian manifolds and its proof can be found in the

book of Chavel [C84].

4.5. Robin Boundary Conditions. Another generalization of the Rayleigh–

Faber–Krahn inequality holds for the boundary value problem

(4.7)
−

n∑
j=1

∂2

∂x2
j
u = λu in Ω,

∂u
∂ν + βu = 0 on ∂Ω,

on a bounded Lipschitz domain Ω ⊂ Rn with the outer unit normal ν and some

constant β > 0. This so–called Robin boundary value problem can be interpreted as

a mathematical model for a vibrating membrane whose edge is coupled elastically

to some fixed frame. The parameter β indicates how tight this binding is and

the eigenvalues of (4.7) correspond the the resonant vibration frequencies of the

membrane. They form a sequence 0 < λ1 < λ2 ≤ λ3 ≤ . . . (see, e.g., [M85]).

The Robin problem (4.7) is more complicated than the corresponding Dirichlet

problem for several reasons. For example, the very useful property of domain

monotonicity does not hold for the eigenvalues of the Robin–Laplacian. That is,

if one enlarges the domain Ω in a certain way, the eigenvalues may go up. It is

known though, that a very weak form of domain monotonicity holds, namely that

λ1(B) ≤ λ1(Ω) if B is ball that contains Ω. Another difficulty of the Robin problem,

compared to the Dirichlet case, is that the level sets of the eigenfunctions may touch

the boundary. This makes it impossible, for example, to generalize the proof of the

Rayleigh–Faber–Krahn inequality in a straightforward way. Nevertheless, such an

isoperimetric inequality holds, as proven by Daners:

Theorem 4.7. Let Ω ⊂ R
n (n ≥ 2) be a bounded Lipschitz domain, β > 0 a

constant and λ1(Ω) the lowest eigenvalue of (4.7). Then λ1(Ω
�) ≤ λ1(Ω).

For the proof of Theorem 4.7, which is not short, we refer the reader to [D06].

4.6. Bibliographical Remarks. i) The Rayleigh–Faber–Krahn inequality is an
isoperimetric inequality concerning the lowest eigenvalue of the Laplacian, with Dirichlet
boundary condition, on a bounded domain in R

n (n ≥ 2). Let 0 < λ1(Ω) < λ2(Ω) ≤
λ3(Ω) ≤ . . . be the Dirichlet eigenvalues of the Laplacian in Ω ⊂ R

n, i.e.,

−∆u = λu in Ω,

u = 0 on the boundary of Ω.
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If n = 2, the Dirichlet eigenvalues are proportional to the square of the eigenfrequencies of
an elastic, homogeneous, vibrating membrane with fixed boundary. The Rayleigh–Faber–
Krahn inequality for the membrane (i.e., n = 2) states that

λ1 ≥ πj2
0,1

A
,

where j0,1 = 2.4048 . . . is the first zero of the Bessel function of order zero, and A is the
area of the membrane. Equality is obtained if and only if the membrane is circular. In
other words, among all membranes of given area, the circle has the lowest fundamental
frequency. This inequality was conjectured by Lord Rayleigh (see, Rayleigh, J.W.S., The
Theory of Sound, second edition, London, 1894/1896, pp. 339–340). In 1918, Courant
(see R. Courant, Math. Z. 1, 321–328 (1918)) proved the weaker result that among all
membranes of the same perimeter L the circular one yields the least lowest eigenvalue,
i.e.,

λ1 ≥ 4π2j2
0,1

L2
,

with equality if and only if the membrane is circular. Rayleigh’s conjecture was proven in-
dependently by Faber [F23] and Krahn [K25]. The corresponding isoperimetric inequality
in dimension n,

λ1(Ω) ≥
„

1

|Ω|
«2/n

C2/n
n jn/2−1,1,

was proven by Krahn [K26]. Here jm,1 is the first positive zero of the Bessel function

Jm, |Ω| is the volume of the domain, and Cn = πn/2/Γ(n/2 + 1) is the volume of the
n–dimensional unit ball. Equality is attained if and only if Ω is a ball. For more details
see, R.D. Benguria, Rayleigh–Faber–Krahn Inequality, in Encyclopaedia of Mathematics,
Supplement III, Managing Editor: M. Hazewinkel, Kluwer Academic Publishers, pp. 325–
327, (2001).

ii) A natural question to ask concerning the Rayleigh–Faber–Krahn inequality is the ques-
tion of stability. If the lowest eigenvalue of a domain Ω is within ε (positive and sufficiently
small) of the isoperimetric value λ1(Ω

∗), how close is the domain Ω to being a ball? The
problem of stability for (convex domains) concerning the Rayleigh–Faber–Krahn inequality
was solved by Antonios Melas (Melas, A.D., The stability of some eigenvalue estimates, J.
Differential Geom. 36, 19–33 (1992)). In the same reference, Melas also solved the analo-
gous stability problem for convex domains with respect to the PPW inequality (see section
6 below). The work of Melas has been extended to the case of the Szegö–Weinberger in-
equality (for the first nontrivial Neumann eigenvalue) by Xu, Youyu, The first nonzero
eigenvalue of Neumann problem on Riemannian manifolds, J. Geom. Anal. 5 151–165
(1995), and to the case of the PPW inequality on speces of constant curvature by Andrés
Avila, Stability results for the first eigenvalue of the Laplacian on domains in space forms,
J. Math. Anal. Appl. 267, 760–774 (2002). In this connection it is worth mentioning
related results on the isoperimetric inequality of R. Hall, A quantitative isoperimetric in-
equality in n–dimensional space, J. Reine Angew Math. 428 (1992), 161–176, as well as
recent results of Maggi, Pratelli and Fusco (recently reviewed by F. Maggi in Bull. Amer.
Math. Soc. 45 (2008), 367–408.

iii) The analog of the Faber–Krahn inequality for domains in the sphere S
n was proven by

Sperner, Emanuel, Jr. Zur Symmetrisierung von Funktionen auf Sphären, Math. Z. 134
(1973), 317–327

iv) For isoperimetric inequalities for the lowest eigenvalue of the Laplace–Beltrami oper-
ator on manifolds, see, e.g., the book by Chavel, Isaac, Eigenvalues in Riemannian
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geometry. Pure and Applied Mathematics, 115. Academic Press, Inc., Orlando, FL,
1984, (in particular sections IV and V), and also the articles, Chavel, I. and Feldman,
E. A. Isoperimetric inequalities on curved surfaces. Adv. in Math. 37, 83–98 (1980),
and Bandle, Catherine, Konstruktion isoperimetrischer Ungleichungen der mathematis-
chen Physik aus solchen der Geometrie, Comment. Math. Helv. 46, 182–213 (1971).

5. The Szegö–Weinberger inequality

In analogy to the Rayleigh–Faber–Krahn inequality for the Dirichlet–Laplacian

one may ask which shape of a domain maximizes certain eigenvalues of the Laplace

operator with Neumann boundary conditions. Of course, this question is trivial

for the lowest Neumann eigenvalue, which is always zero. In 1952 Kornhauser and

Stakgold [KS52] conjectured that the ball maximizes the first non-zero Neumann

eigenvalue among all domains of the same volume. This was first proven in 1954 by

Szegö [S54] for two-dimensional simply connected domains, using conformal map-

pings. Two years later his result was generalized general domains in any dimension

by Weinberger [W56], who came up with a new strategy for the proof.

Although the Szegö–Weinberger inequality appears to be the analog for Neu-

mann eigenvalues of the Rayleigh–Faber–Krahn inequality, its proof is completely

different. The reason is that the first non-trivial Neumann eigenfunction must be

orthogonal to the constant function, and thus it must have a change of sign. The

simple symmetrization procedure that is used to establish the Rayleigh–Faber–

Krahn inequality can therefore not work.

In general, when dealing with Neumann problems, one has to take into account

that the spectrum of the respective Laplace operator on a bounded domain is

very unstable under perturbations. One can change the spectrum arbitrarily much

by only a slight modification of the domain, and if the boundary is not smooth

enough, the Laplacian may even have essential spectrum. A sufficient condition for

the spectrum of −∆Ω
N to be purely discrete is that Ω is bounded and has a Lipschitz

boundary [D96]. We write 0 = µ0(Ω) < µ1(Ω) ≤ µ2(Ω) ≤ . . . for the sequence of

Neumann eigenvalues on such a domain Ω.

Theorem 5.1 (Szegö–Weinberger inequality). Let Ω ⊂ Rn be an open bounded
domain with smooth boundary such that the Laplace operator on Ω with Neumann
boundary conditions has purely discrete spectrum. Then

(5.1) µ1(Ω) ≤ µ1(Ω
�),

where Ω� ⊂ Rn is a ball with the same n-volume as Ω. Equality holds if and only
if Ω itself is a ball.

Proof. By a standard separation of variables one shows that µ1(Ω
�) is n-fold

degenerate and that a basis of the corresponding eigenspace can be written in the

form {g(r)rjr
−1}j=1,...,n. The function g can be chosen to be positive and satisfies

the differential equation

(5.2) g′′ +
n− 1

r
g′ +

(
µ1(Ω

�)− n− 1

r2

)
g = 0, 0 < r < r1,

where r1 is the radius of Ω�. Further, g(r) vanishes at r = 0 and its derivative has

its first zero at r = r1. We extend g by defining g(r) = limr′↑r1 g(r′) for r ≥ r1.

Then g is differentiable on R and if we set fj(�r) := g(r)rjr
−1 then fj ∈ W 1,2(Ω) for

j = 1 . . . , n. To apply the min-max principle with fj as a test function for µ1(Ω)
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we have to make sure that fj is orthogonal to the first (trivial) eigenfunction, i.e.,

that

(5.3)

∫
Ω

fj dnr = 0, j = 1, . . . , n.

We argue that this can be achieved by some shift of the domain Ω: Since Ω is

bounded we can find a ball B that contains Ω. Now define the vector field �b : R
n →

Rn by its components

bj(�v) =

∫
Ω+�v

fj(�r) dnr, �v ∈ R
n.

For �v ∈ ∂B we have

�v ·�b(�v) =

∫
Ω+�v

�v · �r
r

g(r) dnr

=

∫
Ω

�v · (�r + �v)

|�r + �v| g(|�r + �v|) dnr

≥
∫

Ω

|�v|2 − |v| · |r|
|�r + �v| g(|�r + �v|) dnr > 0.

Thus�b is a vector field that points outwards on every point of ∂B. By an application

of the Brouwer’s fixed–point theorem (see Theorem 7.3 in the Appendix) this means

that �b(�v0) = 0 for some �v0 ∈ B. Thus, if we shift Ω by this vector, condition (5.3)

is satisfied and we can apply the min-max principle with the fj as test functions

for the first non-zero eigenvalue:

µ1(Ω) ≤
∫
Ω
|∇fj | dnr∫
Ω

f2
j dnr

=

∫
Ω

(
g′2(r)r2

j r
−2 + g2(r)(1− r2

j r−2)r−2
)

dnr∫
Ω

g2r2
j r−2 dnr

.

We multiply each of these inequalities by the denominator and sum up over j to

obtain

(5.4) µ1(Ω) ≤
∫
Ω

B(r) dnr∫
Ω

g2(r) dnr

with B(r) = g′2(r) + (n− 1)g2(r)r−2. Since r1 is the first zero of g′, the function

g is non-decreasing. The derivative of B is

B′ = 2g′g′′ + 2(n− 1)(rgg′ − g2)r−3.

For r ≥ r1 this is clearly negative since g is constant there. For r < r1 we can use

equation (5.2) to show that

B′ = −2µ1(Ω
�)gg′ − (n− 1)(rg′ − g)2r−3 < 0.

If the following we will use the method of rearrangements, which was described in

section 3. To avoid confusions, we use a more precise notation at this point: We

introduce BΩ : Ω → R , BΩ(�r) = B(r) and analogously gΩ : Ω → R, gΩ(�r) = g(r).
Then equation (5.4) yields, using Theorem 3.7 in the third step:

(5.5) µ1(Ω) ≤
∫
Ω

BΩ(�r) dnr∫
Ω

g2
Ω(�r) dnr

=

∫
Ω� B�

Ω(�r) dnr∫
Ω� g2

�Ω(�r) dnr
≤
∫
Ω� B(r) dnr∫
Ω� g2(r) dnr

= µ1(Ω
�)
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Equality holds obviously if Ω is a ball. In any other case the third step in (5.5) is

a strict inequality. �

It is rather straightforward to generalize the Szegö–Weinberger inequality to

domains in hyperbolic space. For domains on spheres, on the other hand, the

corresponding inequality has not been established yet in full generality. At present,

the most general result is due to Ashbaugh and Benguria: In [AB95] they show that

an analog of the Szegö–Weinberger inequality holds for domains that are contained

in a hemisphere.

5.1. Bibliographical Remarks. i) In 1952, Kornhauser and Stakgold [Journal of
Mathematics and Physics 31, 45–54 (1952)] conjectured that the lowest nontrivial Neu-
mann eigenvalue for a smooth bounded domain Ω in R

2 satisfies the isoperimetric inequal-
ity

µ1(Ω) ≤ µ1(Ω
∗) =

πp2

A
,

where Ω∗ is a disk with the same area as Ω, and p = 1.8412 . . . is the first positive zero of
the derivative of the Bessel function J1. This conjecture was proven by G. Szegö in 1954,
using conformal maps [see, G. Szegö, Inequalities for certain eigenvalues of a membrane
of given area, J. Rational Mech. Anal. 3, 343–356 (1954)]. The extension to n dimensions
was proven by H. Weinberger [H. F. Weinberger, J. Rational Mech. Anal. 5, 633–636
(1956)].

ii) For the case of mixed boundary conditions, Marie-Helene Bossel [ see Membranes
élastiquement liées inhomogénes ou sur une surface: une nouvelle extension du théoreme
isopérimétrique de Rayleigh–Faber–Krahn, Z. Angew. Math. Phys. 39, 733–742 (1988)]
proved the analog of the Rayleigh–Faber–Krahn inequality.

iii) Very recently, A. Girouard, N. Nadirashvili and I. Polterovich proved that the second
positive eigenvalue of a bounded simply connected planar domain of a given area does
not exceed the first positive Neumann eigenvalue on a disk of a twice smaller area (see,
Maximization of the second positive Neumann eigenvalue for planar domains, preprint
(2008)). For a review of optimization of eigenvalues with respect to the geometry of the
domain, see the recent monograph of A. Henrot [H06].

6. The Payne–Pólya–Weinberger inequality

6.1. Introduction. A further isoperimetric inequality is concerned with the

second eigenvalue of the Dirichlet–Laplacian on bounded domains. In 1955 Payne,

Pólya and Weinberger (PPW) showed that for any open bounded domain Ω ⊂ R2

the bound λ2(Ω)/λ1(Ω) ≤ 3 holds [PPW55, PPW56]. Based on exact calcu-

lations for simple domains they also conjectured that the ratio λ2(Ω)/λ1(Ω) is

maximized when Ω is a circular disk, i.e., that

(6.1)
λ2(Ω)

λ1(Ω)
≤ λ2(Ω

�)

λ1(Ω�)
=

j2
1,1

j2
0,1

≈ 2.539 for Ω ⊂ R
2.

Here, jn,m denotes the mth positive zero of the Bessel function Jn(x). This con-

jecture and the corresponding inequalities in n dimensions were proven in 1991 by
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Ashbaugh and Benguria [AB91, AB92a, AB92b]. Since the Dirichlet eigenval-

ues on a ball are inversely proportional to the square of the ball’s radius, the ratio

λ2(Ω
�)/λ1(Ω

�) does not depend on the size of Ω�. Thus we can state the PPW

inequality in the following form:

Theorem 6.1 (Payne–Pólya–Weinberger inequality). Let Ω ⊂ R
n be an open

bounded domain and S1 ⊂ R
n a ball such that λ1(Ω) = λ1(S1). Then

(6.2) λ2(Ω) ≤ λ2(S1)

with equality if and only if Ω is a ball.

Here the subscript 1 on S1 reflects the fact that the ball S1 has the same first

Dirichlet eigenvalue as the original domain Ω The inequalities (6.1) and (6.2) are

equivalent in Euclidean space in view of the mentioned scaling properties of the

eigenvalues. Yet when one considers possible extensions of the PPW inequality to

other settings, where λ2/λ1 varies with the radius of the ball, it turns out that an

estimate in the form of Theorem 6.1 is the more natural result. In the case of a

domain on a hemisphere, for example, λ2/λ1 on balls is an increasing function of

the radius. But by the Rayleigh–Faber–Krahn inequality for spheres the radius of

S1 is smaller than the one of the spherical rearrangement Ω�. This means that an

estimate in the form of Theorem 6.1, interpreted as

λ2(Ω)

λ1(Ω)
≤ λ2(S1)

λ1(S1)
, Ω, S1 ⊂ S

n,

is stronger than an inequality of the type (6.1).

On the other hand, we will see that in the hyperbolic space λ2/λ1 on balls is

a strictly decreasing function of the radius. In this case we can apply the follow-

ing argument to see that an estimate of the type (6.1) cannot possibly hold true:

Consider a domain Ω that is constructed by attaching very long and thin tentacles

to the ball B. Then the first and second eigenvalues of the Laplacian on Ω are

arbitrarily close to the ones on B. The spherical rearrangement of Ω though can

be considerably larger than B. This means that

λ2(Ω)

λ1(Ω)
≈ λ2(B)

λ1(B)
>

λ2(Ω
�)

λ1(Ω�)
, B, Ω ⊂ H

n,

clearly ruling out any inequality in the form of (6.1).

The proof of the PPW inequality (6.2) is somewhat similar to that of the

Szegö–Weinberger inequality (see section 5), but considerably more difficult. The

additional complications mainly stem from the fact that in the Dirichlet case the

first eigenfunction of the Laplacian is not known explicitly, while in the Neumann

case it is just constant. We will give the full proof of the PPW inequality in the

following three sections. Since it is quite long, a brief outline is in order:

The proof is organized in six steps. In the first one we use the min–max principle

to derive an estimate for the eigenvalue gap λ2(Ω) − λ1(Ω), depending on a test

function for the second eigenvalue. In the second step we define such a function and

then show in the third step that it actually satisfies all requirements to be used in

the gap formula. In the fourth step we put the test function into the gap inequality

and then estimate the result with the help of rearrangement techniques. These

depend on the monotonicity properties of two functions g and B, which are to be

defined in the proof, and on a Chiti comparison argument. The later is a special

comparison result which establishes a crossing property between the symmetric
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decreasing rearrangement of the first eigenfunction on Ω and the first eigenfunction

on S1. We end up with the inequality λ2(Ω)−λ1(Ω) ≤ λ2(S1)−λ1(S1), which yields

(6.2). In the remaining two steps we prove the mentioned monotonicity properties

and the Chiti comparison result. We remark that from the Rayleigh–Faber–Krahn

inequality follows S1 ⊂ Ω�, a fact that is used in the proof of the Chiti comparison

result. Although it enters in a rather subtle manner, the Rayleigh–Faber–Krahn

inequality is an important ingredient of the proof of the PPW inequality.

6.2. Proof of the Payne–Pólya–Weinberger inequality. First step: We

derive the ‘gap formula’ for the first two eigenvalues of the Dirichlet–Laplacian on

Ω. We call u1 : Ω → R+ the positive normalized first eigenfunction of −∆D
Ω . To

estimate the second eigenvalue we will use the test function Pu1, where P : Ω → R

is is chosen such that Pu1 is in the form domain of −∆D
Ω and

(6.3)

∫
Ω

Pu2
1 drn = 0.

Then we conclude from the min–max principle that

λ2(Ω)− λ1(Ω) ≤
∫
Ω

(|∇(Pu1)|2 − λ1P
2u2

1

)
drn∫

Ω
P 2u2

1 drn

=

∫
Ω

(|∇P |2u2
1 + (∇P 2)u1∇u1 + P 2|∇u1|2 − λ1P

2u2
1

)
drn∫

Ω
P 2u2

1 drn
(6.4)

If we perform an integration by parts on the second summand in the numerator

of (6.4), we see that all summands except the first cancel. We obtain the gap

inequality

(6.5) λ2(Ω)− λ1(Ω) ≤
∫
Ω
|∇P |2u2

1 drn∫
Ω

P 2u2
1 drn

.

Second step: We need to fix the test function P . Our choice will be dictated

by the requirement that equality should hold in (6.5) if Ω is a ball, i.e., if Ω = S1

up to translations. We assume that S1 is centered at the origin of our coordinate

system and call R1 its radius. We write z1(r) for the first eigenfunction of the

Dirichlet Laplacian on S1. This function is spherically symmetric with respect

to the origin and we can take it to be positive and normalized in L2(S1). The

second eigenvalue of −∆D
S1

in n dimensions is n–fold degenerate and a basis of the

corresponding eigenspace can be written in the form z2(r)rjr
−1 with z2 ≥ 0 and

j = 1, . . . , n. This is the motivation to choose not only one test function P , but

rather n functions Pj with j = 1, . . . , n. We set

Pj = rjr
−1g(r)

with

g(r) =

{
z2(r)
z1(r) for r < R1,

limr′↑R1
z2(r′)
z1(r′) for r ≥ R1.

We note that Pju1 is a second eigenfunction of −∆D
Ω if Ω is a ball which is centered

at the origin.

Third step: It is necessary to verify that the Pju1 are admissible test functions.

First, we have to make sure that condition (6.3) is satisfied. We note that Pj

changes when Ω (and u1 with it) is shifted in Rn. Since these shifts do not change
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λ1(Ω) and λ2(Ω), it is sufficient to show that Ω can be moved in Rn such that (6.3)

is satisfied for all j ∈ {1, . . . , n}. To this end we define the function

�b(�v) =

∫
Ω+�v

u2
1(|�r − �v|)�r

r
g(r) drn for �v ∈ R

n.

Since Ω is a bounded domain, we can choose some closed ball D, centered at the

origin, such that Ω ⊂ D. Then for every �v ∈ ∂D we have

�v ·�b(�v) =

∫
Ω

�v · u2
1(r)

�r + �v

|�r + �v|g(|�r + �v|) drn

>

∫
Ω

u2
1(r)

|�v|2 − |�v| · |�r|
|�r + �v| g(|�r + �v|) drn > 0

Thus the continuous vector-valued function �b(�v) points strictly outwards every-

where on ∂D. By Theorem 7.3, which is a consequence of the Brouwer fixed–point

theorem, there is some �v0 ∈ D such that �b(�v0) = 0. Now we shift Ω by this vector,

i.e., we replace Ω by Ω−�v0 and u1 by the first eigenfunction of the shifted domain.

Then the test functions Pju1 satisfy the condition (6.3).

The second requirement on Pju1 is that it must be in the form domain of

−∆D
Ω , i.e., in H1

0 (Ω): Since u1 ∈ H1
0 (Ω) there is a sequence {vn ∈ C1(Ω)}n∈N

of functions with compact support such that | · |h − limn→∞ vn = u1, using the

definition (4.1) of | · |h. The functions Pjvn also have compact support and one can

check that Pjvn ∈ C1(Ω) (Pj is continuously differentiable since g′(R1) = 0). We

have | · |h − limn→∞ Pjvn = Pju1 and thus Pju1 ∈ H1
0 (Ω).

Fourth step: We multiply the gap inequality (6.5) by
∫

P 2u2
1 dx and put in our

special choice of Pj to obtain

(λ2 − λ1)

∫
Ω

r2
j

r2
g2(r)u2

1(r) drn ≤
∫

Ω

∣∣∣∇(rj

r
g(r)

)∣∣∣2 u2
1(r) drn

=

∫
Ω

(∣∣∣∇rj

r

∣∣∣2 g2(r) +
r2
j

r2
g′(r)2

)
u2

1(r) drn.

Now we sum these inequalities up over j = 1, . . . , n and then divide again by the

integral on the left hand side to get

(6.6) λ2(Ω)− λ1(Ω) ≤
∫
Ω

B(r)u2
1(r) drn∫

Ω
g2(r)u2

1(r) drn

with

(6.7) B(r) = g′(r)2 + (n− 1)r−2g(r)2.

If the following we will use the method of rearrangements, which was described in

section 3. To avoid confusions, we use a more precise notation at this point: We

introduce BΩ : Ω → R , BΩ(�r) = B(r) and analogously gΩ : Ω → R, gΩ(�r) = g(r).
Then equation (6.6) can be written as

(6.8) λ2(Ω)− λ1(Ω) ≤
∫
Ω

BΩ(�r)u2
1(�r) drn∫

Ω
g2
Ω(�r)u2

1(�r) drn
.

Then by Theorem 3.8 the following inequality is also true:

(6.9) λ2(Ω)− λ1(Ω) ≤
∫
Ω� B�

Ω(�r)u�
1(�r)

2 drn∫
Ω� g2

Ω�(�r)u
�
1(�r)

2 drn
.

ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES 29

                                                                                                                    

                                                                                                               



30 RAFAEL D. BENGURIA AND HELMUT LINDE

Next we use the very important fact that g(r) is an increasing function and B(r) is

a decreasing function, which we will prove in step five below. These monotonicity

properties imply by Theorem 3.7 that B�
Ω(�r) ≤ B(r) and gΩ�(�r) ≥ g(r). Therefore

(6.10) λ2(Ω)− λ1(Ω) ≤
∫
Ω� B(r)u�

1(r)
2 drn∫

Ω� g2(r)u�
1(r)

2 drn
.

Finally we use the following version of Chiti’s comparison theorem to estimate the

right hand side of (6.10):

Lemma 6.2 (Chiti comparison result). There is some r0 ∈ (0, R1) such that

z1(r) ≥ u�
1(r) for r ∈ (0, r0) and

z1(r) ≤ u�
1(r) for r ∈ (r0, R1).

We remind the reader that the function z1 denotes the first Dirichlet eigenfunc-

tion for the Laplacian defined on S1. Applying Lemma 6.2, which will be proven

below in step six, to (6.10) yields

(6.11) λ2(Ω)− λ1(Ω) ≤
∫
Ω� B(r)z1(r)

2 drn∫
Ω� g2(r)z1(r)2 drn

= λ2(S1)− λ1(S1).

Since S1 was chosen such that λ1(Ω) = λ1(S1) the above relation proves that

λ2(Ω) ≤ λ2(S1). It remains the question: When does equality hold in (6.2)? It is

obvious that equality does hold if Ω is a ball, since then Ω = S1 up to translations.

On the other hand, if Ω is not a ball, then (for example) the step from (6.10) to

(6.11) is not sharp. Thus (6.2) is a strict inequality if Ω is not a ball.

6.3. Monotonicity of B and g. Fifth step: We prove that g(r) is an in-

creasing function and B(r) is a decreasing function. In this step we abbreviate

λi = λi(S1). The functions z1 and z2 are solutions of the differential equations

−z′′1 −
n− 1

r
z′1 − λ1z1 = 0,(6.12)

−z′′2 −
n− 1

r
z′2 +

(
n− 1

r2
− λ2

)
z2 = 0

with the boundary conditions

(6.13) z′1(0) = 0, z1(R1) = 0, z2(0) = 0, z2(R1) = 0.

We define the function

(6.14) q(r) :=

⎧⎨⎩
rg′(r)
g(r) for r ∈ (0, R1),

limr′↓0 q(r′) for r = 0,
limr′↑R1 q(r′) for r = R1.

Proving the monotonicity of B and g is thus reduced to showing that 0 ≤ q(r) ≤ 1

and q′(r) ≤ 0 for r ∈ [0, R1]. Using the definition of g and the equations (6.12),

one can show that q(r) is a solution of the Riccati differential equation

(6.15) q′ = (λ1 − λ2)r +
(1− q)(q + n− 1)

r
− 2q

z′1
z1

.

It is straightforward to establish the boundary behavior

q(0) = 1, q′(0) = 0, q′′(0) =
2

n

((
1 +

2

n

)
λ1 − λ2

)
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and

q(R1) = 0.

Lemma 6.3. For 0 ≤ r ≤ R1 we have q(r) ≥ 0.

Proof. Assume the contrary. Then there exist two points 0 < s1 < s2 ≤ R1

such that q(s1) = q(s2) = 0 but q′(s1) ≤ 0 and q′(s2) ≥ 0. If s2 < R1 then the

Riccati equation (6.15) yields

0 ≥ q′(s1) = (λ1 − λ2)s1 +
n− 1

s1
> (λ1 − λ2)s2 +

n− 1

s2
= q′(s2) ≥ 0,

which is a contradiction. If s2 = R1 then we get a contradiction in a similar way

by

0 ≥ q′(s1) = (λ1 − λ2)s1 +
n− 1

s1
> (λ1 − λ2)R1 +

n− 1

R1
= 3q′(R1) ≥ 0.

�
In the following we will analyze the behavior of q′ according to (6.15), consid-

ering r and q as two independent variables. For the sake of a compact notation we

will make use of the following abbreviations:

p(r) = z′1(r)/z1(r)

Ny = y2 − n + 1

Qy = 2yλ1 + (λ2 − λ1)Nyy−1 − 2(λ2 − λ1)

My = N2
y /(2y)− (n− 2)2y/2

We further define the function

(6.16) T (r, y) := −2p(r)y − (n− 2)y + Ny

r
− (λ2 − λ1)r.

Then we can write (6.15) as

q′(r) = T (r, q(r)).

The definition of T (r, y) allows us to analyze the Riccati equation for q′ considering

r and q(r) as independent variables. For r going to zero, p is O(r) and thus

T (r, y) =
1

r
((n− 1 + y)(1− y)) +O(r) for y fixed.

Consequently,

limr→0 T (r, y) = +∞ for 0 ≤ y < 1 fixed,

limr→0 T (r, y) = 0 for y = 1 and

limr→0 T (r, y) = −∞ for y > 1 fixed.

The partial derivative of T (r, y) with respect to r is given by

(6.17) T ′ =
∂

∂r
T (r, y) = −2yp′ +

(n− 2)y

r2
+

Ny

r2
− (λ2 − λ1).

In the points (r, y) where T (r, y) = 0 we have, by (6.16),

(6.18) p|T=0 = −n− 2

2r
− Ny

2yr
− (λ2 − λ1)r

2y
.

From (6.12) we get the Riccati equation

(6.19) p′ + p2 +
n− 1

r
p + λ1 = 0.
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Putting (6.18) into (6.19) and the result into (6.17) yields

(6.20) T ′|T=0 =
My

r2
+

(λ2 − λ1)
2

2y
r2 + Qy.

Lemma 6.4. There is some r0 > 0 such that q(r) ≤ 1 for all r ∈ (0, r0) and
q(r0) < 1.

Proof. Suppose the contrary, i.e., q(r) first increases away from r = 0. Then,

because q(0) = 1 and q(R1) = 0 and because q is continuous and differentiable, we

can find two points s1 < s2 such that q̂ := q(s1) = q(s2) > 1 and q′(s1) > 0 > q′(s2).

Even more, we can chose s1 and s2 such that q̂ is arbitrarily close to one. Writing

q̂ = 1 + ε with ε > 0, we can calculate from the definition of Qy that

Q1+ε = Q1 + εn (λ2 − (1− 2/n)λ1) +O(ε2).

The term in brackets can be estimated by

λ2 − (1− 2/n)λ1 > λ2 − λ1 > 0.

We can also assume that Q1 ≥ 0, because otherwise q′′(0) = 2
n2 Q1 < 0 and Lemma

6.4 is immediately true. Thus, choosing R1 and r2 such that ε is sufficiently small,

we can make sure that Qq̂ > 0.
Now consider T (r, q̂) as a function of r for our fixed q̂. We have T (s1, q̂) > 0 >

T (s2, q̂) and the boundary behavior T (0, q̂) = −∞. Consequently, T (r, q̂) changes

its sign at least twice on [0, R1] and thus we can find two zeros 0 < ŝ1 < ŝ2 < R1

of T (r, q̂) such that

(6.21) T ′(ŝ1, q̂) ≥ 0 and T ′(ŝ2, q̂) ≤ 0.

But from (6.20), together with Qq̂ > 0, one can see easily that this is impossible,

because the right hand side of (6.20) is either positive or increasing (depending on

Mq̂). This is a contradiction to our assumption that q first increases away from

r = 0, proving Lemma 6.4. �

Lemma 6.5. For all 0 ≤ r ≤ R1 the inequality q′(r) ≤ 0 holds.

Proof. Assume the contrary. Then, because of q(0) = 1 and q(R1) = 0, there

are three points s1 < s2 < s3 in (0, R1) with 0 < q̂ := q(s1) = q(s2) = q(s3) < 1 and

q′(s1) < 0, q′(s2) > 0, q′(s3) < 0. Consider the function T (r, q̂), which coincides

with q′(r) at s1, s2, s3. Taking into account its boundary behavior at r = 0, it is

clear that T (r, q̂) must have at least the sign changes positive-negative-positive-

negative. Thus T (r, q̂) has at least three zeros ŝ1 < ŝ2 < ŝ3 with the properties

T ′(ŝ1, q̂) ≤ 0, T ′(ŝ2, q̂) ≥ 0, T ′(ŝ3, q̂) ≤ 0.

Again one can see from (6.20) that this is impossible, because the term on the

right hand side is either a strictly convex or a strictly increasing function of r. We

conclude that Lemma 6.5 is true. �

Altogether we have shown that 0 ≤ q(r) ≤ 1 and q′(r) ≤ 0 for all r ∈ (0, R1),

which proves that g is increasing and B is decreasing.
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6.4. The Chiti comparison result. Sixth step: We prove Lemma 6.2: Here

and in the sequel we write short-hand λ1 = λ1(Ω) = λ1(S1). We introduce a change

of variables via s = Cnrn, where Cn is the volume of the n–dimensional unit ball.

Then by Definition 3.2 we have u�
1(s) = u�

1(r) and z�
1(s) = z1(r).

Lemma 6.6. For the functions u�
1(s) and z�

1(s) we have

− du�
1

ds
≤ λ1n

−2C−2/n
n sn/2−2

∫ s

0

u�
1(w) dw,(6.22)

− dz�
1

ds
= λ1n

−2C−2/n
n sn/2−2

∫ s

0

z�
1(w) dw.(6.23)

Proof. We integrate both sides of −∆u1 = λ1u1 over the level set Ωt := {�r ∈
Ω : u1(�r) > t} and use Gauss’ Divergence Theorem to obtain

(6.24)

∫
∂Ωt

|∇u1|Hn−1( dr) =

∫
Ωt

λ1 u1(�r) dnr,

where ∂Ωt = {�r ∈ Ω : u1(�r) = t}. Now we define the distribution function µ(t) =

|Ωt|. Then by Theorem 3.9 we have

(6.25)

∫
∂Ωt

|∇u1|Hn−1( dr) ≥ −n2C2/n
n

µ(t)2−2/n

µ′(t)
.

The left sides of (6.24) and (6.25) are the same, thus

−n2C2/n
n

µ(t)2−2/n

µ′(t)
≤

∫
Ωt

λ1 u1(�r) dnr

=

∫ (µ(t)/Cn)1/n

0

nCnrn−1λ1u
�
1(r) dr.

Now we perform the change of variables r → s on the right hand side of the above

chain of inequalities. We also chose t to be u�
1(s). Using the fact that u�

1 and

µ are essentially inverse functions to one another, this means that µ(t) = s and

µ′(t)−1 = (u�
1)

′(s). The result is (6.22). Equation (6.23) is proven analogously,

with equality in each step. �

Lemma 6.6 enables us to prove Lemma 6.2. The function z�
1 is continuous on

(0, |S1|) and u�
1 is continuous on (0, |Ω�|). By the normalization of u�

1 and z�
1 and

because S1 ⊂ Ω� it is clear that either z�
1 ≥ u�

1 on (0, |S1|) or u�
1 and z�

1 have at

least one intersection on this interval. In the first case there is nothing to prove,

simply setting r0 = R1 in Lemma 6.2. In the second case we have to show that

there is no intersection of u�
1 and z�

1 such that u�
1 is greater than z�

1 on the left and

smaller on the right. So we assume the contrary, i.e., that there are two points

0 ≤ s1 < s2 < |S1| such that u�
1(s) > z�

1(s) for s ∈ (s1, s2), u�
1(s2) = z�

1(s2) and

either u�
1(s1) = z�

1(s1) or s1 = 0. We set

(6.26) v�(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u�

1(s) on [0, s1] if
∫ s1

0
u�

1(s) ds >
∫ s1

0
z�
1(s) ds,

z�
1(s) on [0, s1] if

∫ s1

0
u�

1(s) ds ≤ ∫ s1

0
z�
1(s) ds,

u�
1(s) on [s1, s2],

z�
1(s) on [s2, |S1|].
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Then one can convince oneself that because of (6.22) and (6.23)

(6.27) − dv�

ds
≤ λ1n

−2C−2/n
n sn/2−2

∫ s

0

v�(s′) ds′

for all s ∈ [0, |S1|]. Now define the test function v(r) = v�(Cnrn). Using the

Rayleigh-Ritz characterization of λ1, then (6.27) and finally an integration by parts,

we get (if z1 and u1 are not identical)

λ1

∫
S1

v2(r) dx <

∫
S1

|∇v|2 dx =

∫ |S1|

0

(
nCnrn−1 v�′(s)

)2
ds

≤ −
∫ |S1|

0

v�′(s)λ1

∫ s

0

v�(s′) ds′ ds

= λ1

∫ |S1|

0

v�(s)2 ds− λ1

[
v�(s)

∫ s

0

v�(s′) ds′
]S1

0

≤ λ1

∫
S1

v2(r) dx

Comparing the first and the last term in the above chain of (in)equalities reveals a

contradiction to our assumption that the intersection point s2 exists, thus proving

Lemma 6.2.

6.5. Schrödinger operators. Theorem 6.1 can be extended in several direc-

tions. One generalization, which has been considered by Benguria and Linde in

[BL06], is to replace the Laplace operator on the domain Ω ⊂ Rn by a Schrödinger

operator H = −∆ + V . In this case the question arises which is the most suitable

comparison operator for H. In analogy to the PPW inequality for the Laplacian, it

seems natural to compare the eigenvalues of H to those of another Schrödinger op-

erator H̃ = −∆ + Ṽ , which is defined on a ball and has the same lowest eigenvalue

as H. The potential Ṽ should be spherically symmetric and it should reflect some

properties of V , but it will also have to satisfy certain requirements in order for

the PPW type estimate to hold. The precise result is stated in Theorem 6.7 below,

which can be considered as a natural generalization of Theorem 6.1 to Schrödinger

operators.

We assume that Ω is open and bounded and that V : Ω → R
+ is a non-negative

potential from L1(Ω). Then we can define the Schrödinger operator HV = −∆+V
on Ω in the same way as we did in section 4.2, i.e., HV is positive and self-adjoint in

L2(Ω) and has purely discrete spectrum. We call λi(Ω, V ) its i-th eigenvalue and,

as usual, we write V� for the symmetric increasing rearrangement of V .

Theorem 6.7. Let S1 ⊂ Rn be a ball centered at the origin and of radius R1

and let Ṽ : S1 → R
+ be a radially symmetric non-negative potential such that

Ṽ (r) ≤ V�(r) for all 0 ≤ r ≤ R1 and λ1(Ω, V ) = λ1(S1, Ṽ ). If Ṽ (r) satisfies the
conditions

a) Ṽ (0) = Ṽ ′(0) = 0 and
b) Ṽ ′(r) exists and is increasing and convex,

then

(6.28) λ2(Ω, V ) ≤ λ2(S1, Ṽ ).
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If V is such that V� itself satisfies the conditions a) and b) of the theorem, the

best bound is obtained by choosing Ṽ = V� and then adjusting the size of S1 such

that λ1(Ω, V ) = λ1(S1, V�) holds. (Note that S1 ⊂ Ω� by Theorem 4.2). In this

case Theorem 6.7 is a typical PPW result and optimal in the sense that equality

holds in (6.28) if Ω is a ball and V = V�. For a general potential V we still get a

non-trivial bound on λ2(Ω, V ) though it is not sharp anymore.

For further reference we state the following theorem, which is a direct conse-

quence of Theorem 6.7 and Theorem 3.7:

Theorem 6.8. Let Ṽ : R
n → R

+ be a radially symmetric positive potential that
satisfies the conditions a) and b) of Theorem 6.1. Further, assume that Ω ⊂ Rn is
an open bounded domain and that S1 ⊂ Rn be the open ball (centered at the origin)
such that λ1(Ω, Ṽ ) = λ1(S1, Ṽ ). Then

λ2(Ω, Ṽ ) ≤ λ2(S1, Ṽ ).

The proof of Theorem 6.7 is similar to the one of Theorem 6.1 and can be found

in [BL06]. One of the main differences occurs in step five (see section 6.3), since

the potential Ṽ (r) now appears in the Riccati equation for p. It turns out that

the conditions a) and b) in Theorem 6.7 are required to establish the monotonicity

properties of q. A second important difference is that a second eigenfunction of

a Schrödinger operator with a spherically symmetric potential can not necessarily

be written in the form u2(r)rjr
−1. It has been shown by Ashbaugh and Benguria

[AB88] that it can be written in this form if rV (r) is convex. On the other hand,

the second eigenfunction is radially symmetric (with a spherical nodal surface) if

rV (r) is concave. This fact, which is also known as the Baumgartner–Grosse–

Martin Inequality [BGM84], is another reason why the conditions a) and b) of

Theorem 6.7 are needed.

6.6. Gaussian space. Theorem 6.8 has direct consequences for the eigenval-

ues of the Laplace operator −∆G in Gaussian space, which had been defined in

section 4.3. In this section we write λ−
i (Ω) for the i-th eigenvalue of −∆G on some

domain Ω.

Theorem 6.9. Let Ω ⊂ Rn be an open bounded domain and assume that S1 ⊂
R

n is a ball, centered at the origin, such that λ−
1 (Ω) = λ−

1 (S1). Then

λ−
2 (Ω) ≤ λ−

2 (S1).

Proof. If Ψ is an eigenfunction of −∆G on Ω then Ψe−r2/2 is an eigenfunction

of the Dirichlet-Schrödinger operator −∆+r2 on Ω, and vice versa. The eigenvalues

are related by

λ−
i (Ω) = λ(Ω, r2 − n),

where we keep using the notation from section 6.5. Theorem 6.9 now follows directly

from Theorem 6.8, setting Ṽ (r) = r2. �
6.7. Spaces of constant curvature. There are generalizations of the Payne-

Pólya-Weinberger inequality to spaces of constant curvature. Ashbaugh and Ben-

guria showed in [AB01] that Theorem 6.1 remains valid if one replaces the Eu-

clidean space Rn by a hemisphere of Sn and ‘ball’ by ‘geodesic ball’. Similar to the

Szegö–Weinberger inequality, it is still an open problem to prove a Payne–Pólya–

Weinberger result for the whole sphere. Although there seem to be no counterex-

amples known that rule out such a generalization, the original scheme of proving
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the PPW inequality is not likely to work. One reason is that numerical studies

show the function g to be not monotone on the whole sphere.

For the hyperbolic space, on the other hand, things are settled. Following the

general lines of the original proof, Benguria and Linde established in [BL07] a

PPW type inequality that holds in any space of constant negative curvature.

7. Appendix

7.1. The layer-cake formula.

Theorem 7.1. Let ν be a measure on the Borel sets of R+ such that Φ(t) :=

ν([0, t)) is finite for every t > 0. Let further (Ω, Σ, m) be a measure space and v a
non-negative measurable function on Ω. Then

(7.1)

∫
Ω

Φ(v(x))m( dx) =

∫ ∞

0

m({x ∈ Ω : v(x) > t})ν( dt).

In particular, if m is the Dirac measure at some point x ∈ R
n and ν( dt) = dt then

(7.1) takes the form

(7.2) v(x) =

∫ ∞

0

χ{y∈Ω:v(y)>t}(x) dt.

Proof. Since m({x ∈ Ω : v(x) > t}) =
∫
Ω

χ{v>t}(x)m( dx) we have, using

Fubini’s theorem,∫ ∞

0

m({x ∈ Ω : v(x) > t})ν( dt) =

∫
Ω

(∫ ∞

0

χ{v>t}(x)ν( dt)

)
m( dx).

Theorem 7.1 follows from observing that∫ ∞

0

χ{v>t}(x)ν( dt) =

∫ v(x)

0

ν( dt) = Φ(v(x)).

�

7.2. A consequence of the Brouwer fixed-point theorem.

Theorem 7.2 (Brouwer’s fixed-point theorem). Let B ⊂ Rn be the unit ball
for n ≥ 0. If f : B → B is continuous then f has a fixed point, i.e., there is some
x ∈ B such that f(x) = x.

The proof appears in many books on topology, e.g., in [M75]. Brouwer’s

theorem can be applied to establish the following result:

Theorem 7.3. Let B ⊂ Rn (n ≥ 2) be a closed ball and �b(�r) a continuous map
from B to Rn. If �b points strictly outwards at every point of ∂B, i.e., if �b(�r) ·�r > 0

for every �r ∈ ∂B, then �b has a zero in B.

Proof. Without losing generality we can assume that B is the unit ball cen-

tered at the origin. Since �b is continuous and �b(�r) · �r > 0 on ∂B, there are two

constants 0 < r0 < 1 and p > 0 such that �b(�r) · �r > p for every �r with r0 < |�r| ≤ 1.

We show that there is a constant c > 0 such that

| − c�b(�r) + �r| < 1
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for all �r ∈ B: In fact, for all �r with |�r| ≤ r0 the constant c can be any positive

number below (sup�r∈B |�b(�r)|)−1(1 − r0). The supremum exists because |�b| is con-

tinuously defined on a compact set and therefore bounded. On the other hand, for

all �r ∈ B with |�r| > r0 we have

| − c�b(�r) + �r|2 = c2|�b(�r)|2 − 2c�b(�r) · �r + |�r|2
≤ c2 sup

�r∈B
|�b|2 − 2cp + 1,

which is also smaller than one if one chooses c > 0 sufficiently small. Now set

�g(�r) = −c�b(�r) + �r for �r ∈ B.

Then �g is a continuous mapping from B to B and by Theorem 7.2 it has some fixed

point �r1 ∈ B, i.e., �g(�r1) = �r1 and �b(�r1) = 0. �
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[HLP64] G.H. Hardy, J.E. Littlewood and G. Pólya: Inequalities, Cambridge Univ. Press, Cam-

bridge, UK (1964).

38

                                                                                                                    

                                                                                                               



ISOPERIMETRIC INEQUALITIES FOR EIGENVALUES OF THE LAPLACE OPERATOR 39

[K66] Mark Kac, Can one hear the shape of a drum?, American Mathematical Monthly 73, 1–23
(1966).

[KS52] E. T. Kornhauser, I. Stakgold: A variational theorem for ∇2u + λu = 0 and its applica-
tions, J. Math. and Physics 31, 45–54 (1952).
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LECTURES ON RANDOM SCHRÖDINGER OPERATORS 1

1. Models of Random Media

1.1. Introduction. In this chapter, we present an overview of the spectral

theory of random media discussed in these notes. We are primarily concerned with

the phenomena of localization for electrons and for classical waves propagating in

randomly perturbed media. By localization, we mean that the permissible states

of the system, with energies in a specified range, do not propagate in time and are

localized in space. These states correspond to the existence of point spectrum for

the corresponding self-adjoint operators describing the system. The fundamental

idea is that the random perturbations cause states, which would otherwise be ex-

tended throughout all space, to effectively localize in a finite region due to multiple

backscattering off of the random potential. Spectrally, these models are interest-

ing because the spectrum in an interval does not consist of discrete eigenvalues but

rather the eigenvalues are dense in the spectrum in the interval with probability one.

Dynamically, states with energies localized in such intervals are characterized by

the fact that the corresponding moments of the time-dependent position operator

are bounded for all time. This effect is referred to as dynamical localization.

1.2. Physical Considerations from Condensed Matter Physics. The

one-electron model of condensed matter physics is a simplification which has had

some remarkable success in describing certain properties of crystals. The basic no-

tions of insulating, conducting, and semiconducting materials can be explained by

the energy spectrum of a single electron moving under the influence of a periodic

array of atoms, and the Pauli exclusion principle. The latter determines the occupa-

tion of states by noninteracting electrons. In the one-electron model, the interaction

between the electrons is neglected and the spectral and transport properties of the

material is described by a one-particle Schrödinger operator H0. We emphasize

that another approximation implicit in the one-electron model is that the media is

infinitely-extended in space. Under this assumption, we can neglect any boundary

effects and use techniques common in statistical mechanics. In particular, we will

often approximate the infinitely-extended system by a finitely-extended one. We

will study the dependence of relevant properties of the system on the volume of

the region, and then take the volume to infinity to recover the properties of the

extended system. We refer to this as the thermodynamic limit.
The actual one-electron model is determined by the choice of the potential V0,

and the presence of external fields. For example, a perfect crystal is described by a

periodic potential function V0. The one-electron model is given by the Schrödinger

operator H0 ≡ K + V0, where K describes the kinetic energy of the particle. For

example, the choice K ≡ −∆ describes the kinetic energy of a free particle. We

can make other choices for the operator K. A particle moving in the presence of

an external electric field is described by K ≡ −∆ + F · x, where F is a constant

vector representing the electric field. A particle in a magnetic field is described by

the Schrödinger operator K ≡ (−i∇ − A)2, for a vector potential A, so that the

magnetic field is B = dA (that is, B = ∇×A in two- and three-dimensions).

We will always assume that the spectral properties of the background Schrödinger

operator H0 = K +V0, for operators K given above, are, in some sense, completely

known. We are interested in studying perturbations of H0. As we consider systems

that are infinitely-extended in space, we will be primarily concerned with pertur-

bations which do not decay at infinity. Such perturbations have the possibility of
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radically changing the spectrum of H0, as we shall see. There are other, interesting

phenomena associated with compactly-supported perturbations of H0, such as the

occurrence of impurity levels in band gaps (see, for example [37, 49]). Our most

important example is the description of impurities in an infinitely-extended crystal.

The impurities are described by a perturbation V1. Thus, one is lead to the study

of Schrödinger operators of the form H = K + V0 + V1 = H0 + V1.

Let us consider the simple case H0 = −∆ + V0 further. It is well-known [113]

that in the absence of any perturbation, a Schrödinger operator H0, with K = −∆

and a continuous, periodic potential V0, has purely absolutely continuous spectrum.

As a set, the spectrum of H0, which we denote by σ(H0), is a union of closed inter-

vals Bn, called bands. An energy E ∈ Bn represents an energy at which an electron

can propagate through the crystal. If two bands are separated, the intervening open

interval is called a spectral gap. The occurrence of a gap in the spectrum, which

represents forbidden energies at which an electron cannot propagate, provides one

of the bases of our understanding of the electronic properties of crystals.

We point out that our terminology of energy bands and gaps includes the fol-

lowing cases. Many Schrödinger operators of the form H0 = −∆+V0 have spectrum

filling the half-line [M0,∞), for some constant M0 ∈ IR. This is the case, for exam-

ple, if V0 is positive, bounded, and has compact support. In this case, we say that

H0 has one band [M0,∞) and one gap G ≡ (−∞, M0). The free Stark Hamiltonian

H0 = −∆ + F · x has spectrum equal to IR. This operator has one band B1 = IR
and no gap. As another extreme case, the Landau Hamiltonian HA = (−i∇−A)2,

in two-dimensions, with vector potential A(x1, x2) = (B/2)(−x2, x1), has only pure

point spectrum with infinitely-degenerate eigenvalues given by En(B) = (2n+1)B.

We call the infinitely-degenerate energy levels En(B) the bands and the open in-

tervals G0 ≡ (−∞, E1(B)), and Gn ≡ (En(B), En+1(B)), for n ≥ 1, the gaps.

Returning to our description of the one-electron model for a perfect crystal,

let us consider why we are interested in perturbations of H0 that do not decay

at infinity. The goal in the study of electrons in crystals is a description of finite

conductivity. Classically, conductivity σ is the constant of proportionality between

an applied electric field E and the induced current J so that we have Ohm’s law

J = σE. The current J corresponding to an electron state ψ in a one-electron model

is the electric charge e times the matrix element of the velocity operator v =
dX(t)

dt ,

so we have J = e〈ψ, vψ〉. The operator X(t) is the Heisenberg position operator

(see (1.2) below). In a perfect crystal, the static conductivity is defined to be σ ≡
lim|E|→0 |J(E)|/|E|. It is known that the static conductivity for a perfect crystal is

infinite [74]. Anderson [6] proposed that impurities and defects might explain the

observed finiteness of electric conductivity of crystals at zero temperatures (at finite

temperatures electron-electron and electron-phonon collisions become important

mechanisms in resistivity). In the one-electron picture, impurities are described by

a nonperiodic perturbation V1 of the periodic atomic potential. Thus, one is lead

to the study of Schrödinger operators of the form H = −∆ + V0 + V1, where V0 is

periodic and V1 represents the impurities.

How shall we choose the perturbation V1? It follows from the basic stability

of the absolutely continuous spectrum [75] that the impurity potential V1 must

be extended in space and nondecaying if it is to change the qualitative nature of

the absolutely continuous spectrum or the spectral type. If the impurity potential

V1 has compact support or is rapidly decaying as |x| → ∞, then the absolutely
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continuous spectrum of H0 is unchanged [112], and at most some eigenvalues are

added in the spectral gaps (as mentioned above, this is an interesting problem

in itself). For example, if the potential V1 is such that the pair of Hamiltonians

(H0, H) has a conjugate operator A in the sense of Mourre theory, then H is also

ballistic [24] meaning that X2(t) ∼ t2, and the electron motion resembles free

motion. Clearly, such motion corresponds to infinite conductivity which is what we

are trying to eliminate through the perturbation V1. It follows that our impurity

potential V1 cannot be concentrated in space or decaying at infinity, but must be

present throughout the infinite crystal. The investigation of such perturbations is

difficult and requires new tools.

In these notes, we will concentrate on the study of the spectral properties of

Schrödinger operators HV1 = H0+V1, where H0 = K+V0 is assumed to have known

spectral properties, and the perturbation V1 belongs to a class of infinitely-extended

perturbations. We will consider the following questions.

1. Spectral Properties of HV1 .

(1) What is the spectrum of HV1 as a set?

(2) What is the spectral type of HV1?

(3) What is the nature of the eigenfunctions, if there are any?

The study of transport properties of the one-electron model involves the determi-

nation of the long-time asymptotic behavior of the matrix elements of the moments

of the position operator X(t). Basic questions which are of interest here include

2. Transport Properties of HV1 .

(1) Is the motion generated by HV1 ballistic, diffusive, or localized?

(2) What is the conductivity of the material characterized by HV1?

(3) How stable are the transport exponents under perturbations?

As can be imagined, we need to restrict the class of allowable perturbations

in order to address these questions. It turns out that if V1 belongs to a family

of perturbations which form a stochastic process Vω, and we consider the family
of operators Hω = H0 + Vω, then we can provide detailed answers to the above

questions. The introduction of a family of perturbations, rather than just one

perturbation, allows us to make a general spectral analysis which holds for almost
every perturbation in the family. The ability to average over potentials in the family

provides us with a powerful tool for spectral analysis. The general framework for

our investigations, then, will be a family of self-adjoint operators Hω, where ω ∈ Ω

describes a possible realization of the random media. These realizations occur with

a probability given by a measure IP on the space of all possible configurations Ω.

We will make this picture more precise in chapter 2.

1.3. Geometric Considerations from Deterministic Models. As an in-

troduction to the manner in which an infinitely-extended perturbation (that is, a

potential V which does not vanish at infinity) influences the spectral properties of

the Laplacian, we review some results of a geometric character. Many spectral and

transport properties of a Schrödinger operator HV = −∆+V depend on geometric

characteristics of the potential V . There now exist 1) geometric conditions on V
which imply the absence of absolutely continuous spectrum, 2) geometric conditions

on V which imply the absence of diffusion, and 3) lower bounds on the moments

of the position operator in terms of the fractal dimension of the spectrum for a

general self-adjoint operator A.
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The absence of absolutely continuous spectrum and the absence of diffusion

require geometric conditions on the potential V which insure that the particle does

not freely propagate to infinity. In particular, its motion does not resemble that of

a free particle. Such potentials are characterized by regions where they are large in

the sense of the Agmon metric for a given interval of energy. The general results

indicate that these effective barrier regions can be sparsely distributed provided

they dominate the potential in the complementary region. The conditions on the

potential depend on the dimension. Examples of such geometric conditions can be

found in the papers [103, 124].

This type of result on the absence of absolutely continuous spectra, and the

absence of diffusion discussed next, require careful estimates on the boundary-value

of the resolvent R(E + iε) as ε → 0. Absence of absolutely continuous spectrum

follows from the estimate

(1.1) sup
ε→0

‖R(E + iε)φ‖ < C0,

for a finite constant C0 and any function of compact support φ. The main techniques

used to establish this type of estimate include the geometric resolvent formula, the

spectral stability results of Briet, Combes, and Duclos [18], Agmon exponential

decay results [1], and deBrange’s theorem on the boundary-values of operator-

valued Herglotz functions.

There are far fewer results on sufficient conditions for the absence of diffusion for

Schrödinger operators. Montcho [104] has discovered particularly nice, dimension-

independent conditions on the potential V which guarantee the absence of diffusion.

For a Schrödinger operator H, the dynamics is generated by the unitary group

U(t) = e−iHt. For a state ψ, the mean-square displacement is defined by

(1.2) 〈ψ, U(t)∗X2U(t)ψ〉 ≡ 〈X2(t)〉ψ.

Roughly speaking, the dynamics is called diffusive if there exists a nonzero constant

D so that

(1.3) 〈X2(t)〉ψ ∼ Dt.

The absence of diffusion means that D = 0, that is, the left side of (3) grows more

slowly than t. Let the time-averaged mean-square displacement be denoted by

(1.4) 〈〈X2〉〉T ≡ T−1

∫ T

0

〈X2(t)〉ψ dt.

There are sufficient geometric conditions on the potential V so that

(1.5) lim sup
T→∞

T−1 〈〈X2〉〉T = 0

which implies the absence of diffusion.

Another topic concerns the relation between the fractal properties of the spec-

trum of a self-adjoint operator A and the long-time asymptotic behavior of the time

evolution U(t) = e−itA generated by A. Given any state ψ, a spectral measure µA,ψ

for A and ψ is defined by the spectral theory through the representation

(1.6) 〈ψ, U(t)ψ〉 =

∫
R

e−itλ dµA,ψ(λ),

Barbaroux, Combes, and Montcho [10], and Last [98] proved that the Hausdorff

dimension of the measure µA,ψ determines a lower bound on the α moment of the
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position operator X defined as in (4) with α replacing 2. They prove that for

sufficiently regular states ψ and for any ε > 0, there is a constant Cψ,ε, so that

(1.7) 〈〈Xα〉〉T ≥ Cψ,εT
α
d (Aψ−ε),

where Aψ is the Hausdorff dimension of the spectral measure µA,ψ. This work

requires a firm understanding of spectral theory and the classical analysis of mea-

sures. Many recent works are devoted to estimating the diffusion exponent from

below, and we mention [23, 12].

1.4. Anderson Tight-Binding Model. The simplest model that describes

the propagation of a single electron in a randomly perturbed crystal is called the

Anderson tight-binding model. Atoms are considered to act on the electron at a

single site only and short distances are eliminated by restricting the electron motion

to the points of the lattice ZZd. This eliminates short distances and provides a high-

energy cut-off for the free kinetic energy.

We consider an operator of the form

(1.8) H = ∆ + λV A
ω , on l2(ZZd) for d ≥ 1.

The finite-difference Laplacian ∆ is defined by

(1.9) (∆f)(n) =
∑

|n−m|=1

f(m).

This operator describes the kinetic energy of an electron moving on the lattice. By

the Fourier transform, one finds that the spectrum is purely absolutely continuous

and equal to

(1.10) σ(∆) = [−2d, 2d].

The Anderson-type potential V A
ω is constructed as follows. Let the family

(1.11) {ωi}, i ∈ ZZd,

be a stochastic process indexed by ZZd. Each random variable is distributed iden-

tically with a distribution function

(1.12) g(ω) ≥ 0,

which we assume has bounded support. We consider the random variables to be

independent. For simplicity, we take

(1.13) supp g = [−1, 1],

The potential V A
ω is defined by

(1.14) (V A
ω f)(m) = ωmf(m), for m ∈ ZZd.

It is often convenient to add a coupling constant λ in front of the potential which

measures the strength of the interaction and as such is a measure of the disorder of

the system. More generally, the disorder of a random system is usually taken to be

‖g‖−1, where g is the normalized density. The range of the scaled potential λV A
ω is

[−λ, λ]. The totality of the independent random variables allows us to construct a

probability space [−1, 1]ZZ
d

, with the measure IP induced by the product measure.

The Anderson tight-binding model is

(1.15) Hω(λ) = ∆ + λV A
ω .
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This Hamiltonian ZZd-ergodic with respect to the translation group on the lattice.

By Pastur’s theorem, the family of operators has a deterministic spectrum Σ. This

means that there exists a fixed subset Σ ⊂ IR such that

(1.16) IP − a.s. σ(Hω) = Σ.

Theorem 1.1. For IP -almost every ω ∈ Ω, the spectrum σ(Hω) = Σ, and
Σ = [−2d, 2d] + λ supp g = [−2d− λ, 2d + λ].

Our object of study is the spectral type of the random family Hω for almost

every ω ∈ Ω. We can already make some preliminary observations with respect to

the spectral type.

(i) The spectrum σ(∆) = [−2d, 2d] is absolutely continuous since the operator

∆ is unitarily equivalent to multiplication by 2
∑d

j=1 cos(2πkj), kj ∈ [0, 1],

by the Fourier transform.

(ii) σ(Vω) is pure point. The vector δn(m) ≡
{

1 n = m,
0 other,

satisfies

(V (δn))(k) =

{
ωn n = k,
0 other,

that is

Vωδn = ωnδn,

so each vector δn is an eigenfunction for Vω. Hence, the almost sure

spectrum of Vω is [−1, 1] and dense pure point.

Although this model seems extremely simple, there are some major outstanding

open questions.

Conjectures on Σλ ≡ σ(Hω(λ)) almost surely.
(1) Fix λ > 0. ∃E0 > 2d such that Σλ∩{(−∞,−E0]∪ [E0,∞)} is dense pure

point with 2d < E0 < 2d + λ.

(2) ∃ λ0 such that λ > λ0, Σ is dense pure point.

(3) i. dimension d = 1, Σλ is always dense pure point.

ii. dimension d = 2, Σλ is always dense pure point.

iii. dimension d ≥ 3, for small λ ≥ 0, ∃ Em = Em(λ) < E0 of (1) such

that Σλ ∩ [−Em, Em] is absolutely continuous.

We refer to Case 1 as spectral localization near the band edges, Case 2 as

localization at large disorder. These are expected to hold independently of the

dimension. Case 3 summarizes the dimension-dependent conjectures.

Statements (1), (2) and (3i) are known. This work on the lattice Anderson

model is presented in the books of Carmona and Lacroix [21], and Pastur and

Figotin [107]. In the multidimensional lattice case, the key original articles are

those of Fröhlich and Spencer [56], Martinelli and Scoppola [102], Simon and Wolff

[119], Kotani and Simon [94], Delyon, Soulliard, and [38], von Dreifus and Klein

[132], and Aizenman and Molchanov [4].

Problems (3ii)-(3iii) remain open. Klein [88] proved the existence of extended

states (a band of absolutely continuous spectrum near zero energy) for the Anderson

model on the Bethe lattice. Another proof of this result was recently given by

Froese, Hasler, and Spitzer [57], and a related stability result for the absolutely

continuous spectrum was given by Aizenman, Sims, and Warzel [5]. The existence

of extended states and a mobility edge Em for small λ ≥ 0 for the lattice Anderson
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model, with decaying randomness, was also recently established by Kirsch, Krishna,

and Obermeit [84]

1.5. Single Electron Models. There are several models of physical relevance

which describe the behavior of a single electron in randomly perturbed media. We

have the choice of the background operator H0 and of the random potential Vω. The

most well known situation is when the background operator H0 = −∆+Vper, where

Vper is a periodic function on Rd. This unperturbed operator describes a single

electron moving in an infinite, periodic lattice. The basic random perturbation

is the Anderson-type potential. It is described by a family of functions ui, with

i ∈ ZZd, called the single–site potentials, and coupling constants {ωi | i ∈ ZZd}.
The potential is defined by

(1.17) Vω(x) ≡
∑

i∈ZZd

ωiui(x).

The family of coupling constants {ωi | i ∈ ZZd} forms a stochastic process on ZZd.

In the simplest model, the coupling constants are a collection of independent, iden-

tically distributed (iid) random variables. In the iid case, the random operators

are ergodic (see chapter 2) if ui(x) = u(x − i), for all i ∈ ZZd. More complicated

models treat the case of correlations between the random variables (see, for ex-

ample [31, 132]. We can also introduce another family of vector-valued random

variables {ξi| i ∈ ZZd} with ξi ∈ BR(0), 0 < R < 1
2 . We assume that the random

variable ξi has an absolutely continuous distribution, for example, a uniform distri-

bution. These random variables will model thermal fluctuations of the scatterers

with random strengths about the lattice points ZZd. The random potential has the

form

(1.18) Vω,ω′(x) ≡
∑

i∈ZZd

ωiui(x− ξi).

The Anderson model on the lattice has been extensively studied. We refer

to the books by Carmona and Lacroix [21] and by Pastur and Figotin [107] for

the references. The basic papers, of relevance to the approaches described here

for the continuous cases, include [56, 76, 119, 120, 131]. There are now many

results on localization at the bottom of the spectrum and at the band edges for

the continuous Anderson model. These include [8, 25, 90, 83, 86, 87]. These

papers use the method of multiscale analysis explained in these lectures. Recently,

the method of fractional moments was extended to continuum models and we refer

the reader to [3, 20]. The case of correlated random variables for lattice models is

described in [132] and for the continuous models in [31].

In general, the background operator for electrons may have the form

(1.19) H0 = (p−A0)
2 + V0,

where p ≡ −i∇, the vector-valued function A0 is a reasonable vector potential

and V0 is a background potential, cf. [8]. The Landau Hamiltonian HA in two

dimensions is a special case with a constant magnetic field B generated by the

vector potential A = (B/2)(−x2, x1), and V0 = 0. Localization and the integrated

density of states for this model have been extensively studied, see [9, 26, 40, 41,
63, 133, 134], because of the role it plays in the theory of the integer quantum

Hall effect (cf. [95]).
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There are other models of randomness of physical interest. We give a brief

description of them here. In sections 3–5, we will concentrate on results for the

Anderson-type potential, although they also hold for some of the other models.

1.5.1. Breather Model. Let u > 0 be a single-site potential of compact support.

We require a repulsive condition on u: −x · ∇u(x) ≥ 0, and a relative boundedness

condition on the Hessian of u. We assume that the random variables ωi are iid
with a common density supported some positive interval. The breather potential

has the form

(1.20) Vω(x) ≡
∑

i∈ZZd

u(ωi(x− i)).

One can show that the random family Hω = −∆ + Vω has an interval of localized

states [0, E1], almost surely, for some E1 > 0 [30].

1.5.2. Random Displacement Model. The random potential for this model has

the form

(1.21) Vω(x) ≡
∑

i∈ZZd

u(x− i− ξi),

where the vector-valued random variables {ξi(ω)} are distributed in a ball of radius

R < 1/2, as above. This model was studied in the case of u ≤ 0 so that the

single-site potential represents a potential well. Klopp [91] showed that in this

case the model exhibits localization at negative energies provided the semiclassical

parameter h, appearing in the Hamiltonian as H(h) = −h2∆ + Vω, is sufficiently

small. Quantum tunneling plays a major role in the localization of states for this

model. Localization in the general case is an open problem.

1.5.3. Poisson Model. One of the most realistic models of impurities randomly

distributed in a perfect crystal is given by a Poisson potential. Let Xi(ω), i ∈ ZZ,

represent the points of a Poisson process in Rd. Suppose that u ≥ 0 is a single-site

potential of compact support. The Poisson potential is given by

(1.22) Vω(x) ≡
∑
i∈ZZ

u(x−Xi(ω)).

Surprisingly, until recently, very little was known about these potentials except in

one dimension. Stolz [125] recently proved that all states are localized for the one-

dimensional model. In arbitrary dimensions, Tip [127] has proved that for a class

of repulsive potentials u, the integrated density of states is absolutely continuous at

high energies. Most recently, Germinet, Klein and the author [59, 60, 61] proved

Anderson and dynamical localization for this model. The work is related to recent

work of Bourgain and Kenig [19] on the Anderson model with Bernoulli distributed

random variables.

1.5.4. Gaussian Models. This random family of Schrödinger operators has the

form (1.1), with H0 = −∆ and the random potential Vω(x) a Gaussian process

indexed by IRd. This model has been recently studied [52, 53, 54]. These authors

prove a Wegner estimate, show the absence of absolutely continuous spectrum, and

prove localization at negative energies.

1.6. Classical Wave Propagation. The localization of acoustic waves and

of light is of theoretical and practical importance. Because of the absence of the

electron-electron interaction, which might tend to obscure localization effects for

electrons, it may be easier to detect the localization of light experimentally. For a
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review of these questions, we refer to [13, 80]. The techniques used to prove band-

edge localization for electrons can also be used for various models of classical waves

propagating in inhomogeneous media. Some of the early work on localization for

lattice models describing waves was done by Faris [43, 44] and Figotin and Klein

[46]. We describe here the models studied in [33].

(1) Acoustic waves. The wave equation for acoustic waves propagating in a medium

with sound speed C and density ρ is

(1.23) ∂2
t ψ + Ĥψ = 0,

where the propagation operator Ĥ is given by

(1.24) Ĥ ≡ −C2ρ∇ρ−1∇.

By a standard unitary transformation, it suffices to consider the operator H, uni-

tarily equivalent to Ĥ, given by

H ≡ −C∆C − 1

2

{
C2∆ρ

ρ
− 3

2

C2|∇ρ|2
ρ2

}
= −(C2ρ)

1
2∇ · ρ−1∇(C2ρ)

1
2 ,(1.25)

acting on the Hilbert space H = L2(IRd), d ≥ 1. We consider perturbed sound

speeds of the form

(1.26) Cω(g) ≡ (1 + gC̃ω)−1/2C0,

for g ≥ 0. To relate this to (1.2), we factor out the unperturbed sound speed C0

and define the unperturbed acoustic wave propagation operator H0 by

(1.27) H0 ≡ −C0ρ
1
2∇ · ρ−1∇ρ

1
2 C0.

The coefficient Aω appearing in (1.2) is given by

(1.28) Aω ≡ (1 + gC̃ω).

(2) Electromagnetic waves. The wave equation for electromagnetic waves can be

written in the form of equation (1.2) for vector-valued functions ψ. In this case,

the operator H describing the propagation of electromagnetic waves in a medium

characterized by a dielectric function ε and a magnetic permeability µ = 1 is given

by

(1.29) H ≡ −ε−1/2∆Πε−1/2,

acting on the Hilbert space H = L2(IR3, IC3). The matrix-valued operator Π is the

orthogonal projection onto the subspace of transverse modes. We consider random

perturbations of a background medium described by a dielectric function ε0 and

given by

(1.30) εω(g) ≡ 1 + ε0 + gε̃ω,

where ε̃ω is a stochastic process. The unperturbed operator describing the back-

ground medium is defined by

(1.31) H0 ≡ −(1 + ε0)
−1/2∆Π(1 + ε0)

−1/2,

and the coefficient Aω in (1.2) is given by by a dielectric function ε0 and given by

(1.32) εω(g) ≡ 1 + ε0 + gε̃ω,
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where ε̃ω is a stochastic process. The unperturbed operator describing the back-

ground medium is defined by

(1.33) H0 ≡ −(1 + ε0)
−1/2∆Π(1 + ε0)

−1/2,

and the coefficient Aω in (1.2) is given by

(1.34) Aω ≡ (1 + g(1 + ε0)
−1ε̃ω).

We note that Aω is the velocity of light for the realization ω.

There have been several recent papers proving band-edge localization for these

and related models. Figotin and Klein [47, 48] have results on band edge localiza-

tion quite similar to ours. Stollmann [121] recently studied random perturbations

of metrics. The random processes C̃ω and ε̃ω can be of any of the type described

in section 2.

1.7. The Main Results on Band-Edge Localization. We now list our

hypotheses necessary to prove localization at energies near the unperturbed band-

edges B±. We will begin with conditions of the deterministic operator H0. this op-

erator, which describes the unperturbed media, is given in (1.19) in the Schrödinger

case, (1.27) in the acoustic case, and in (1.31) in the Maxwell case. When it is nec-

essary to distinguish these three cases, we will write HX
0 , with X = S, A, or M for

the Schrödinger acoustic, or Maxwell case, respectively.

(H1) The self-adjoint operator HX
0 is essentially self-adjoint on C∞

0 (IRd), for

X = S and X = A, and on C∞
0 (IR3, IC3) for X = M . The operator HX

0 is

semi-bounded and has an open spectral gap. That is, there exist constants

−∞ < −C0 ≤ B− < B+ ≤ ∞ so that

σ(H0) ⊂ (−C0, B−] ∪ [B+,∞).

(H2) The operator HX
0 is strongly locally compact in the sense that for any

f ∈ L∞(IRd), for X = S and A, or for any f ∈ L∞(IR3, IC3) for X = M ,

with compact support, the operator f(H0)(H0 +C0 +1)−1 ∈ Iq, for some

even integer q, with 1 ≤ q < ∞. Here, Iq denotes the qth-Schatten class,

cf. [114].

(H3) Let ρ(x) ≡ (1 + ‖x‖2)1/2. The operator

H0(α) ≡ eiαρH0e
−iαρ ,

defined for α ∈ IR, admits an analytic continuation as a type-A analytic

family to a strip

S(α0) ≡ {x + iy ∈ IC | |y| < α0} ,

for some α0 > 0.

Hypothesis (H1) is a condition on the unperturbed potential V0 and the vector

potential A in the Schrödinger case, and on the unperturbed medium, as described

by C0 and ε0, for the classical wave case. Schrödinger operators with periodic

potentials provide examples of operators H0 with open spectral gaps, cf. [113]. As

for classical waves, certain models of photonic crystals are known to have open

gaps, cf. [50, 51, 128]. Hypothesis (H3) is satisfied for a large class of operators

H0, see [8, 33].

We now give hypotheses on the random potential given in (1.17)–(1.18) and

in (1.28) and (1.34). The random potentials of Anderson-type are specified by

giving conditions on the single-site potentials uj , the coupling constants ωj , and
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the random variables ξj . We will use the following notation. We denote by Br(x)

the ball of radius r centered at x ∈ IRd. A cube of side length � centered at x ∈ IRd

is denoted by Λ(x). The characteristic function of a subset A ⊂ IRd is denoted by

χA.

(H4) The single-site potentials ui ≥ CiχBri
(0) for some constant Ci > 0 and

some radius ri > 0. Furthermore, we assume that

(1.35)
∑

j∈ZZd

{∫
Λ1(0)

|uj(x)|p
}1/p

< ∞,

for p ≥ d when d ≥ 2 and p = 2 when d = 1.

We will assume that the random variables ωj , appearing in the Anderson-

type potential (1.17), form a stationary stochastic process indexed by ZZd. The

probability space for this process is Ω = [−m, M ]ZZ
d

, for some constants m �= M and

0 ≤ m, M ≤ ∞. In the case that the range of the random variables is unbounded,

we will need to control some of the moments of ωj .

(H5) The random variables ωj have p finite moments:

(1.36) IE{ωk
j } < ∞, k = 1, 2, . . . , p,

where p is the dimension-dependent constant given in (H4).

We refer to the review article of Kirsch [82] for a proof of the fact that hy-

potheses (H4)–(H5) imply the essential self-adjointness of Hω on C∞
0 (IRd).

(H6) The conditional probability distribution of ω0, conditioned on ω0
⊥ ≡

{ωi | i �= 0}, is absolutely continuous with respect to Lebesgue measure.

It has a density h0 satisfying ‖h0‖∞ < ∞.

Hypothesis (H5) implies that the correlation function C(i, j) ≡ IE{ωiωj} −
IE{ωi}IE{ωj} exists and is finite. An example of a process satisfying (H5) is a

Gaussian process on ZZd with each local covariance function C(i, j), i, j ∈ Λ being

a bounded, invertible matrix. In the case that the random coupling constants

are iid random variables, hypothesis (H6) reduces to the usual assumption that

a density exits as a bounded, compactly-supported function. For simplicity, in
the remainder of these notes, we will usually assume that h0 of (H6) is
compactly-supported. This automatically implies that (H5) is satisfied.

(H7) The density h0 decays sufficiently rapidly near −m and near M in the

following sense:

0 < IP{|ω + m| < ε} ≤ ε3d/2+β ,

0 < IP{|ω −M | < ε} ≤ ε3d/2+β ,

for some β > 0.

Recent work of Klopp [92] on the existence of internal Lifshitz tails may allow

us to remove hypothesis (H7).

We need to assume the existence of deterministic spectrum Σ for families of

randomly perturbed operators as in (1.1)–(1.2) with H0 satisfying (H1)-(H7). If

H0 is periodic with respect to the translation group ZZd, and for Anderson-type

perturbations described above, the random families of operators Hω are measurable,
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self-adjoint, and ZZd-ergodic. In this case, it is known (cf. [21, 107]) that the

spectrum of the family is deterministic.

(H8) There exists constants B′
± satisfying B− < B′

− < B′
+ < B+ such that

Σ ∩ {(B−, B′
−) ∪ (B′

+, B+)} �= ∅ , and Σ ∩ (B′
−, B′

+) = ∅.
In light of hypothesis (H8), we define the band edges of the almost sure spec-

trum Σ near the gap G, as follows:

B̃− ≡ sup{E ≤ B′
− | E ∈ Σ},

and

B̃+ ≡ inf {E ≥ B′
+ | E ∈ Σ},

Examples of operators satisfying these conditions may be found in [8, 33, 47,
48]. The main results are the following two theorems. We refer to the first theorem

as Band-Gap Localization.

Theorem 1.2. Assume (H1) - (H8). There exist constants E± satisfying
B− ≤ E− < B̃− and B̃+ < E+ ≤ B+ such that Σ ∩ (E−, E+) is pure point
with exponentially decaying eigenfunctions. The eigenvalues have finite multiplicity
almost surely.

For lattice models, the eigenvalues in the localization regime are known to be

simple (multiplicity one), cf. [89, 116]. The finite multiplicity of the eigenvalues for

the continuum models is an open question, although the finiteness of the multiplicity

is proved in [25], as discussed in section 3.4, and another proof is given in [65].

One can also establish dynamical localization for the regions of Σ where Theorem

1.2 holds. We refer the reader to [58, 62].

We are able to prove a strong result on the IDS using hypotheses that are

weaker than (H1)–(H8). In chapter 4, we list a weaker set of hypotheses (A1)–(A4)

that are necessary to prove the following theorem. The full strength of the result

on the IDS is given in [28].

Theorem 1.3. Assume (A1) – (A4) of chapter 4. The integrated density of
states is locally uniformly Lipschitz continuous on IR.

1.8. Description of the Contents: A Road Map to Localization. In

order to give the reader a global picture of the theory of localization for continuous,

random systems, we give an outline of the proof of localization for additively and

for multiplicatively perturbed operators. This will serve as a guide to the contents

of the chapters of these notes.

We use the fixed-energy approach (see Figotin and Klein [45], von Dreifus and

Klein [131], and Germinet and Klein [62], for the energy-interval approach) which

uses spectral averaging and Kotani’s trick. The arguments apply to both additive

and multiplicative perturbations.

a. The first goal is to prove almost sure exponential decay of the resolvent

of the Hamiltonian Hω for Lebesgue almost energies in an interval Iδ ≡
[B̃− − δ/2, B̃−] ∪ [B̃+, B̃+ + δ/2], for a fixed δ > 0, near the edges of the

spectral gap of Σ. This estimate has the form

(1.37) IP{supε>0 ‖χxRω(E + iε)χy‖ ≤ e−m0|x−y|} = 1,
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for a constant m0 > 0, depending on the interval Iδ, and for all x, y ∈
IRd such that ‖x − y‖ is sufficiently large. The functions χx and χy are

compactly supported in a small neighborhood of x and y, respectively.

To prove this estimate, we need to establish two estimates on finite-volume

Hamiltonians. These Hamiltonians, HΛ, for bounded regular regions Λ ⊂ IRd,

are local perturbations of the background operator H0. As such, they have only

discrete spectra in the unperturbed spectral gap G. We must control, with a good

probability depending on |Λ|, the location of these eigenvalues. This is done in

chapters 4 and 5. First, in chapter 4, we prove a Wegner estimate which states that

for any energy E ∈ G, and for any η > 0 such that [E − η, E + η] ⊂ G,

(1.38) IP{dist (σ(HΛ), E) ≤ η} ≤ CW η|Λ|.
Second, we show in chapter 5 that there exists δΛ > 0 such that

(1.39) σ(HΛ) ∩ [B̃− − δΛ, B̃−] ∪ [B̃+, B̃+ + δΛ] = ∅,
with a probability which tends to 1 as |Λ| → ∞. Using a refined Combes-Thomas

estimate, which is proven in [8], we prove that this result implies that the resolvent

of the local Hamiltonian HΛ decays exponentially at all energies in the interval

Iδ ≡ [B̃− − δΛ/2, B̃−]∪ [B̃+, B̃+ + δΛ/2], with the same probability, provided |Λ| is

large enough.

These two estimates for the finite-volume Hamiltonians HΛ are the start-

ing point of a multiscale analysis as developed in [25]. We present this anal-

ysis in chapters 5 and 9, with the modifications of this analysis necessary for

multiplicatively-perturbed operators given in chapter 8. This leads directly to the

fixed-energy exponential decay result stated in (1.19) for Lebesgue almost-every

energy in Iδ = [B̃− − δ/2, B̃−] ∪ [B̃+, B̃+ + δ/2], for an appropriate δ = δΛ0 , where

Λ0 is sufficiently large.

b. The second main step is to extend this fixed-energy result to prove local-

ization in the interval Iδ. To do this, we need a result which is referred to

as spectral averaging (this result is also used in the proof of the Wegner

estimate presented in chapter 4). The main consequence of this technical

result states, roughly speaking, that the expectation of a spectral mea-

sure associated with the random family Hω is absolutely continuous with

respect to Lebesgue measure. This is often referred to as Kotani’s trick

in the literature. This trick allows us to transfer information about the

exponential decay of the resolvent at Lebesgue almost every energy in

Iδ to almost every energy with respect to the spectral measure for Hω

for almost every ω. We prove these results for additive perturbations in

chapter 3 and present the modifications necessary for multiplicative per-

turbations. This result, together with the fixed energy resolvent estimates

discussed above, are then combined with some probabilistic arguments of

[25] to prove that Σ ∩ {[B̃− − δ/2, B̃−] ∪ [B̃+, B̃+ + δ/2] is pure point.

This established localization. A separate argument as in [25] proves that

the eigenfunctions decay exponentially.

c. One can also prove the absence of diffusion, in the sense that

(1.40) lim sup
t→∞

t−1〈x2(t)〉ψ = 0,
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using an argument of Barbaroux [11]. In fact, recent work of DeBièvre

and Germinet [58] (see also [62]) establish dynamical localization for the

models discussed in these notes.
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2. Basic Results in the Theory of Random Operators

2.1. Introduction. We give a review of certain aspects of the theory of ran-

dom operators that will be used in this book. Extensive discussions of these topics

can be found in the books of Carmona and Lacroix [21], Pastur and Figotin [107],

Stollmann [123], and the review article of Kirsch [82]. In the first part, we review

the questions of self-adjointness and the deterministic spectrum. We are mostly

interested in techniques of computing the deterministic spectrum. The second part

of this chapter is devoted to the integrated density of states (IDS). We introduce the

notion of finite-volume operators that will figure significantly in the other chapters.

2.2. A Summary of Basic Results on Self-Adjoint Operators. The top-

ics of self-adjointness, deterministic spectrum, and computation of the deterministic

spectrum are discussed in this section.

The random families of Schrödinger operators {Hω |ω ∈ Ω} that we deal with

are all symmetric operators on the dense domain C∞
0 (IRd) ⊂ L2(IRd), for almost

every realization ω ∈ Ω. We will not treat the most general situations of self-

adjointness for Hω, but will concentrate on certain models. An extensive discussion

of self-adjointness for Schrödinger operators can be found in [111, 113].

We are interested in the stability of self-adjointness under perturbations. The

unperturbed operator for Schrödinger operators is the Laplacian −∆ on L2(IRd),

which is self-adjoint on the domain H2(IRd). Let us recall four basic topics con-

cerning self-adjointness for linear operators, and its stability under perturbations:

1) relative-boundedness results, and 2) results for positive potentials, 3) results ap-

plicable to Schrödinger operators with magnetic and electric fields, and 4) stability

of self-adjointness under multiplicative perturbations. This latter part is applicable

to the study of classical waves.

Relatively-Bounded Perturbations
We will first review relatively-bounded operators. Let A be a closed operator

on a Hilbert space H. We consider perturbations of A by a class of linear operators

B on the Hilbert space H.

Definition 2.1. An operator B is called A-bounded if D(B) ⊃ D(A).

It is obvious, but important to note, that any bounded operator B ∈ L(H)

is A-bounded for any closed linear operator A. Relative-boundedness implies an

important boundedness relation between the operators.
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Proposition 2.1. If ρ(A) �= φ and B is A-bounded, then there exist nonneg-

ative constants a and b such that

(2.1) ‖ Bu ‖≤ a ‖ Au ‖ + b ‖ u ‖,
for all u ∈ D(A).

Let us recall that the smallest nonnegative constant a for which (2.1) holds

for all u ∈ D(A) is called the relative A-bound of B. The fundamental result on

the stability of self-adjointness under relatively-bounded perturbations is the Kato-

Rellich Theorem.

Theorem 2.2. (Kato-Rellich Theorem). Let A be self-adjoint and let B be
a symmetric and A-bounded operator with relative A-bound less than one. Then
A + B is self-adjoint on D(A).

The basic application of this result to Schrödinger operators is the following

theorem.

Theorem 2.3. Let the real-valued function V ∈ Lp(IRd) + L∞(IRd). Then the
operator HV ≡ −∆ + V , defined on D(∆) = H2(IRd), is self-adjoint if p ≥ d/2 for
d ≥ 5, if p > 2, for d = 4, and if p ≥ 2 for d ≤ 3. Furthermore, HV is essentially
self-adjoint on C0(IR

d) under these conditions.

Note that the conditions on V in Theorem 2.3 allow two types of behavior at

infinity. If V decays at infinity like ‖x‖α, for α > d/p, then HV is self-adjoint

on the domain H2(IRd). At the other extreme, if V is everywhere bounded, then

HV is self-adjoint on the domain H2(IRd). This will be the case for most random

potentials of Anderson-type.

Positive Potentials
When the potential V is nonnegative and not-necessarily bounded, self-adjointness

can be established using the Kato inequality. We will first state this inequality for

the Laplacian on IRd.

Theorem 2.4. Let u ∈ L1
loc(IR

n) and suppose that the distributional Laplacian
∆u ∈ L1

loc(IR
n). Then

(2.2) ∆|u| ≥ Re [(sgn u)∆u],

in the distributional sense.

We now consider a real potential V ∈ L2
loc(IR

d). We define HV = −∆ + V on

D(HV ) ≡ D(∆) ∩D(V ), where D(∆) = H2(IRn) and

D(V ) = {f ∈ L2(IRn) |
∫
|V f |2 < ∞}.

Note that C∞
0 (IRn) ⊂ D(HV ), so HV is densely defined.

Theorem 2.5. Let V ∈ L2
loc(IR

d) and V ≥ 0. Then, the Schrödinger operator
HV = −∆ + V is essentially self-adjoint on C∞

0 (IRd).

Electric and Magnetic Fields
We will consider as our background operators H0 Schrödinger operators with

electric and magnetic potentials. Let A be a C1-vector potential on IRd. The pure

magnetic Schrödinger operator is defined by HA ≡ (−i∇− A)2. We will treat the

special two-dimensional case of a constant magnetic field in detail in chapter 7. A
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vector potential in two dimensions (x1, x2) which describes a constant magnetic

field of strength B > 0 in the perpendicular x3-direction is given by

(2.3) A =
B

2
(x2,−x1).

The choice of a vector potential A for a given magnetic field is not unique since

the transformation A → A+∇φ results in the same magnetic field. A consequence

of this is the gauge invariance of the magnetic Schrödinger operator HA. For a

real-valued differentiable function φ, we have the identity:

(2.4) e−iφHA+∇φeiφ = HA.

In the presence of an external potential V , the Hamiltonian HV,A has the form

(2.5) HV,A = (p−A)2 + V,

where p ≡ −i∇. The basic self-adjointness theorem is due to Leinfelder and Simader

[99]. In order to state this theorem, we need to define the Kato class of potentials

Kd(IR
d).

Definition 2.6. A real-valued potential V ∈ Kd(IR
d), for d ≥ 3 if

(2.6) lim
α→0

{sup
x

∫
‖x−y‖≤α

‖x− y‖2−d |V (y)|ddy} = 0,

and for d = 2 if the same identity holds with the kernel ‖x − y‖2−d replaced by

log ‖x− y‖.
Theorem 2.7. Let V ∈ L2

loc(IR
d), V− ∈ Kd(IR

d), and the vector potential
A ∈ L4

loc(IR
d)d. The Hamiltonian HV,A = (p − A)2 + V is essentially self-adjoint

on C∞
0 (IRd).

The Schrödinger operator describing a particle in a constant external electric

field E and potential V is given by

(2.7) HV,E ≡ −∆ + x · E + V.

Because the potential x ·E is unbounded, self-adjointness of the Hamiltonian H0,E

requires a separate treatment. The fundamental theorem is due to Faris and Lavine.

Rather than cite the theorem in complete generality (cf. [111]), we give a version

which covers (2.7).

Theorem 2.8. Let V be a real-valued potential in Lp(IRd), where p ≥ 2 if
d ≤ 3, p > 2 if d = 4, or p ≥ d/2 if d ≥ 5. Then the Stark Hamiltonian HV,E ≡
−∆ + x · E + V is essentially self-adjoint on C∞

0 (IRd).

2.3. Basic Results on Families of Random Operators. The basic tech-

niques for proving essential self-adjointness of a random family on C∞
0 (IRd), for

almost every ω, is to prove that the random potential Vω satisfies the conditions of

one of the above theorems with probability one. The Borel-Cantelli Lemmas are

quite useful for establishing this.

Since a random family {Hω |ω ∈ Ω} of self-adjoint operators consists, in gen-

eral, of uncountably-many self-adjoint operators, the study of the spectrum of any

individual operator Hω may not shed light on the properties of the family. An

illuminating example is given in Chapter 1, section 1.4, for which the Hamilton-

ian is a pure random potential Hω = Vω on �(ZZd). Let us suppose that the iid
(independent, identically distributed) random variables take values in [0, 1] with a
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uniform distribution. For any fixed valued of ω, the operator Vω has pure point

spectrum consisting of the closure of the set {ωn | n ∈ ZZd}. Note that this set

changes enormously as ω varies. For example, if ωn = λ ∈ [0, 1], for every n ∈ ZZd,

then the operator has a single, infinitely degenerate eigenvalue λ with each local-

ized delta function δn,m, for n fixed, an �2-eigenvector. On the other hand, suppose

that φ : ZZd → [0, 1] ∩ Q is a bijection. If we take a representation Hω for which

ωn = φ(n), then the spectrum of Hω is the closed interval [0, 1], the range of the

potential Vω. In this case, the spectrum consists of only eigenvalues, and is an

example of dense pure point spectrum. Clearly, the spectrum of an individual Hω

varies greatly as the realization ω changes. We would like to find a set, which

we call the deterministic spectrum which is the spectrum of the operators Hω, for

almost every ω.

Pastur [106] seems to have been the first to realize that the family {Hω} has

a notion of spectrum associated with it provided it is ergodic in a certain sense.

We will not go into the general theory here. The probability spaces Ω of interest

to us are product spaces of the form Πn∈ZZdJ , where J ⊂ IR is the support of the

probability distribution.

Definition 2.9. Let (Ω, IP ) be a complete probability space. We suppose that

the family of maps {αx : Ω → Ω | x ∈ I} is a subgroup of the automorphism of

(Ω, IP ). We say that it acts ergodically on (Ω, IP ) if 1) it is measure-preserving,

that is, IP (α−1
x (A)) = IP (A), for all measurable subsets A ⊂ Ω and x ∈ I, and, 2)

if for any measurable subset A ⊂ Ω, the condition αx(A) = A, for all x ∈ I, implies

either IP (A) = 1 or IP (A) = 0.

In all cases of interest, the index set I will be the additive group ZZd or IRd. We

note that the family {αx : Ω → Ω | x ∈ I} need only form a semigroup. Given that

our measure spaces are products, the maps αx are translations. In fact, by using

the canonical representation of a stochastic process, we can always represent these

maps αx by translations. These translations induce a natural action on L2(IRd) or

�2(ZZd) by unitary operators,

(2.8) Uxf(y) = f(y − x).

We are interested in the quantity UxHωU−1
x . Before we give the main definition,

we clarify the notion of measurability for self-adjoint operators.

Definition 2.10. A family of self-adjoint operators {Hω | ω ∈ Ω} is called

measurable if the functions 〈φ, (Hω − z)−1ψ〉, for any φ, ψ ∈ H, are measurable for

some z, with Im(z) �= 0.

Definition 2.11. A measurable family of self-adjoint operators {Hω} is ergodic

with respect to an ergodic action of the translations {αx : Ω → Ω | x ∈ I} if it

satisfies the covariance identity

(2.9) Hα−1
x (ω) = UxHωU−1

x

for all x ∈ I.

To simplify terminology, we will call a measurable, ergodic family of self-adjoint

operators simply an ergodic family of self-adjoint operators. The fundamental result

is the following theorem.
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Theorem 2.12. (Pastur’s Theorem [106].) Let {Hω | ω ∈ Ω} be an ergodic
family of self-adjoint operators. Then, there exists a set Σ ⊂ IR such that Σ =

σ(Hω) IP -almost surely.

Another way to phrase this result is the following. There exists a set Ω1 ⊂ Ω,

with IP (Ω1) = 1, so that σ(Hω) = Σ, for all ω ∈ Ω1. We will call the set Σ the

deterministic spectrum of the family of self-adjoint operators.

The spectrum of any self-adjoint operator has a natural decomposition into

three components consisting of the pure point, absolutely continuous, and singular

continuous spectra. It is natural to ask if the deterministic spectrum has a similar,

deterministic decomposition. This result was proved by Kunz and Soulliard [97],

and by Kirsch and Martinelli [85].

Theorem 2.13. Let {Hω | ω ∈ Ω} be an ergodic family of self-adjoint operators.
Then, there exist sets Σpp, Σac, and Σsc, and a set Ω1 ⊂ Ω, with IP (Ω1) = 1, such
that

σpp(Hω) = Σpp ∀ ω ∈ Ω1,

σpp(Hω) = Σpp ∀ ω ∈ Ω1,

σpp(Hω) = Σpp ∀ ω ∈ Ω1.

2.3.1. Techniques for Computing the Deterministic Spectrum. We mention two

methods commonly used for computing the deterministic spectrum of ergodic fam-

ilies of self-adjoint operators. We will use these in the later chapters.

Sets of Positive Probability Measure. The most immediate consequence of

Theorem 2.13 is the following approach to computing the deterministic spectrum

Σ for an ergodic family of self-adjoint operators {Hω | ω ∈ Ω} . Suppose that a set

I ⊂ σ(Hω), for ω ∈ Ω0 ⊂ Ω, and that IP (Ω0) > 0. Then, it follows that I ⊂ Σ. It

is often easy to construct such a set of configurations Ω0.

Determining Configurations and Periodic Approximations. A second ap-

proach to the computation of Σ consists of approximating the random potential Vω

by periodic operators. This result follows from a more general one on the deter-

ministic spectrum. A base for the probability space (Ω, IP ) is a measurable subset

Ω0 ⊂ Ω such that i) IP (Ω0) = 1, 2) the operator Hω is self-adjoint for any ω ∈ Ω0,

and 3) the map ω ∈ Ω0 → Hω is strong resolvent continuous. This means that for

any sequence ωn → ω in Ω0, we have ‖{(Hωn
− z)−1 − (Hω − z)−1}φ‖ = 0, for any

φ ∈ H.

Theorem 2.14. Let {Hω | ω ∈ Ω} be an ergodic family of self-adjoint operators
with base Ω0. If Ω1 ⊂ Ω0 is dense in the support of the probability measure IP , then

(2.10) Σ = ∪ω∈Ω1σ(Hω).

The interesting aspect of this theorem is that it might very well be that

IP (Ω1) = 0. For the Anderson model with a continuous density g, it can be shown

that Ω1 ≡ {ω | Vω is periodic} is dense in the support of the probability measure.

Hence, the deterministic spectrum can be computed from the closure of the union

of the spectrum of all periodic realizations of the potential.

2.4. The Integrated Density of States. For a quantum mechanical system

described by a Hamiltonian H, the density of states (DOS) is a measure of the

average number of states of the system per unit volume. It is defined through a
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limiting process as the volume of the system becomes infinite. This limiting process

is called the thermodynamic limit. To describe it, we denote by Λ(x) the cube of

side length � centered at the point x ∈ IRd,

(2.11) Λ(x) ≡ {y ∈ IRd | |xi − yi| < �/2, i = 1, . . . , d}.
We will denote an arbitrary, bounded, open, simply connected subset of IRd by Λ.

The DOS is well-defined for a system in a finite volume region Λ. Let HX
Λ

be defined as the self-adjoint extension of H | C∞
0 (Λ), with boundary conditions

X imposed on ∂Λ, the boundary of Λ. We will work with Dirichlet boundary

conditions (X = D), and Neumann boundary conditions (X = N). We assume

that the spectrum is semi-bounded below, although more general situations can

be treated. For regular regions Λ, the operators HX
Λ have only discrete spec-

trum, which we denote by {Ej(Λ)}. The set of eigenvalues is ordered so that

−∞ < E1(Λ) < E2(Λ) ≤ E3(Λ), . . ., where we repeat an eigenvalue according to its

multiplicity. We define the finite-volume integrated density of states for the system

in the region Λ by

(2.12) NX
Λ (E) ≡ 1

|Λ|#{j | Ej(Λ) ≤ E, which includes multiplicities}.

It is useful, for later purposes, to write these expressions using the spectral

projectors of HX
Λ . For any I ⊂ IR, let EX

Λ (I) denote the spectral projector for HX
Λ

and the interval I. We denote by TrΛ the trace on the Hilbert space L2(Λ). Then,

we have

(2.13) NX
Λ (I) = |Λ|−1TrΛ(EX

Λ (I)).

Because the spectrum of HX
Λ is discrete, the corresponding density of states

defines a pure point measure, called the finite-volume density of states measure. It

is given by

(2.14) dNX
Λ (E) ≡ 1

|Λ|
∑

j

δ(E − Ej(Λ))dE.

The finite-volume integrated density of states NX
Λ (E) is the distribution function

corresponding to this measure,

(2.15) NX
Λ (E) =

∫ E

−∞
dNX

Λ (λ).

We now pass to the thermodynamic limit of NX
Λ (E). Formally, the integrated

density of states (IDS) NX(E), is defined by

(2.16) NX(E) = lim
Λ→IRd

NX
Λ (E),

whenever the limit exits. If the IDS exists, as defined in (2.16), then the DOS mea-

sure is defined in the usual way starting with the measure of an interval I = [I−, I+],

for which NX(I) ≡ NX(I+)−NX(I−), provided these are points of continuity for

NX(E). Alternatively, the DOS measure is the vague limit of the finite-volume

DOS measures defined in (2.14). That is, for any f ∈ C∞
0 (IRd), we have,

(2.17)

∫
f(E)dNX(E) = lim

Λ→IRd

∫
f(E)dNX

Λ (E).
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It is easy to compute the high energy asymptotics of IDS for the Laplacian on

IRd. For either boundary condition, one finds that

(2.18) NX
Λ (E) ∼ Ed/2.

For an elliptic operator of second order, like a Schrödinger operator with a locally

bounded potential, the Weyl estimate of the asymptotic distribution of eigenvalues

guarantees that

(2.19) NX
Λ (E) ≤ ωdE

d/2

(2π)d/2
,

where ωd is the volume of the unit ball in d-dimensions so that

(2.20) lim sup
Λ→IRd

NX
Λ (E)

always exists.

2.4.1. Sketch of the Existence of the IDS for Ergodic Operators. Let us now

consider an ergodic family of self-adjoint operators {Hω | ω ∈ Ω}. With each

operator we associate a finite-volume IDS NX
Λ,ω(E). This is a random variable

for each fixed E and volume Λ. The ergodicity is essential as it introduces self-

averaging which implies the existence of a deterministic IDS for the family. We will

show that the IDS exists using the superadditive ergodic theorem.

Let us consider the Dirichlet case X = D. First, we note that for fixed E, the

family ND
Λ,ω(E) is ergodic in the sense that

(2.21) ND
Λ,Txω(E) = ND

TxΛ,ω(E),

where Tx is the translation by x ∈ ZZd or x ∈ IRd. Second, suppose Λ1 and Λ2 are

two regions with nonintersecting interiors and let Λ ≡ Λ1 ∪Λ2. It follows from the

Dirichlet boundary conditions that

(2.22) ND
Λ,ω(E) ≥ ND

Λ1,ω(E) + ND
Λ2,ω(E).

This shows that the family of random variables ND
Λω(E), indexed by Λ, is a superad-

ditive ergodic process. Let Λn denote the cubes Λn(0). The Superadditive Ergodic

Theorem states that if

(2.23) sup
n

IE(ND
Λn,ω(E)) < ∞,

then

(2.24) lim
n→∞ ND

Λn,ω(E) = lim
n→∞ IE(ND

Λn,ω(E)) ≡ ND(E)

exist IP -almost surely. For locally bounded potentials, the hypothesis (2.23) is

easily verified. For more general potentials, the verification is given, for example,

in [82]. As a consequence, the limit ND(E) is independent of the configuration.

For each energy E, there is a set ΩE of IP -measure one for which the limit in

(2.24) exists. The function ND(E) is a monotone increasing function. Let S ⊂ IR
be a countable set of points of continuity of ND(E). The set Ω0 ≡ ∩E∈SΩE is a

set of IP -measure one. The monotonicity of ND(E) implies that for any point of

continuity of ND(E), the limit on the left side of (2.24) exists for ω ∈ Ω0. Hence,

with probability one, the limit of the left side of (2.24) exists except for at most a

countable number of points of discontinuity.

Since the limit function ND(E) is monotone increasing and continuous from

the left, it is the distribution function of a measure dND which is the DOS measure.
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We are often interested in proving more about the smoothness of the IDS which

implies the absolutely continuity of the measure dND with respect to Lebesgue

measure. For example, if ND(E) is locally Lipschitz continuous, i. e. if the function

ND(E) satisfies a condition such as

(2.25) |ND(E)−ND(E′)| ≤ CE |E − E′|,
for some constant CE > 0, then the measure dND is absolutely continuous with

respect to Lebesgue measure. The Radon-Nikodym derivative of this measure is

the actual density of states.

2.4.2. Pastur-Shubin Formula for the IDS. There is another expression for the

DOS measure which is often convenient for calculations. Let χΛ be the character-

istic function on the region Λ. We consider the mapping

(2.26) f ∈ C0(IR) → Tr (χΛf(H)χΛ),

where C0(IR) is the set of continuous functions of compact support on IR, and Tr

denotes the trace on L2(IRd). For a bounded region Λ, the operator χΛf(H)χΛ is

trace class provided the potential V is reasonable. To see this, let g ∈ C∞
0 (IR) be

another function such that g · f = f . We can then write

χΛf(H)χΛ = χΛg(H)f(H)χΛ

= [χΛ(1 + H)−k][(1 + H)kg(H)f(H)χΛ,(2.27)

for some k > 0. Standard estimates show that for k > d, the operator χΛ(1+H)−k

is in the trace class. Consequently, we have the bound,

(2.28) |Tr (χΛf(H)χΛ)| ≤ ‖χΛ(1 + H)−k‖1 ‖(1 + H)kg(H)‖ ‖f‖∞.

It follows from (2.28) that the mapping defined in (2.26) is continuous. The

Riesz-Markov Theorem [110] states that there exists a positive Baire measure µΛ

such that

(2.29) Tr (χΛf(H)χΛ) =

∫
f(E)dµΛ(E).

This measure is the analog of the finite-volume density of states measure (2.14).

However, it is defined with respect to the Hamiltonian H, rather than the finite-

volume operator HΛ. We can show, however, that the difference, being localized

near the boundary of Λ vanishes in the infinite-volume limit.

Lemma 2.15. Suppose that for f ∈ C∞
0 (IR), we have

(2.30) lim
Λ→IRd

|Λ|−1Tr (χΛf(H)χΛ) ≡ N(f)

exists. Then, we have

(2.31) N(f) = lim
Λ→IRd

|Λ|−1Tr (f(HΛ)).

Proof. It suffices to show that

(2.32) lim
Λ→IRd

|Λ|−1| Tr {χΛ(f(H)− f(HΛ))χΛ}| = 0.

We use the Helffer-Sjöstrand formula (cf. [36]) to express f(H) as an integral over

the complex plane. Let f̃ be an almost analytic extension of f vanishing to order N
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as y → 0. An almost analytic extension of f , that vanishing to order N as y → 0,

can be constructed from the Taylor coefficients of f by

(2.33) f̃(x + iy) =

N∑
k=0

(iy)kχ(y)
f (k)(x)

k!
,

where χ is a smooth, nonnegative function of compact support equal to one in a

neighborhood of zero. The formula for f(H) is

(2.34) f(H) =
1

iπ

∫
IC

dxdy∂z f̃(z)(H − z)−1.

Let us assume that χΛ(H +1)−k is in the trace class for k suitably large. Replacing

f by g(z) = (z + 1)kf(z), we can write

χΛ(f(H)− f(HΛ))χΛ =

(2.35)
1

iπ

∫
IC

dxdy∂z g̃(z){χΛ[(H + 1)−k(H − z)−1 − (HΛ + 1)−k(HΛ − z)−1]χΛ}.

We write the operator appearing in this expression as

χΛ(H + 1)−k(H − z)−1{χΛ(HΛ + 1)k(HΛ − z)

−(H + 1)k(H − z)1χΛ}(HΛ + 1)−k(HΛ − z)−1χΛ.(2.36)

Since HΛχΛ = HχΛ, we see that the quantity in the parentheses involves commu-

tators of H with χΛ. Let us now choose χΛ to be of the form χ(x/R) where χ is

smooth, has support in the ball of radius 2, and is equal to one on the unit ball.

The commutator of χR with H is O(R−1). Hence, since the trace norms are O(Rd),

the extra decay from the commutator proves that the limit vanishes as R →∞. �
2.4.3. Finite-Volume Operators. In the discussion of the DOS above, the finite-

volume operators HX
Λ are defined with boundary conditions X on ∂Λ. Finite-

volume operators also play an important role in the multiscale analysis discussed

in chapters 5 and 9. If we are concerned only with energies near the bottom of

the the deterministic spectrum Σ, then the Dirichlet operators HX
Λ are suitable for

the DOS and the multi-scale analysis. However, for energies near the band-edges

of the deterministic spectrum Σ, another choice of the finite-volume operators is

more appropriate. For example, we will study Schrödinger operators of the form

Hω = H0 + Vω, where H0 is a periodic Schrödinger operator with band spectrum.

Under certain conditions, the deterministic spectrum of the random family will also

have open spectral gaps near the gaps G in the spectrum of H0. In this case, we

want to exploit the fact that the energies we are interested in lie in the unperturbed

gap G in the spectrum of H0.

Let VΛ ≡ Vω | Λ be the local potential associated with Λ and denote by HΛ the

local Hamiltonian H0 + VΛ. Note that since the local potential VΛ is a relatively-

compact perturbation of H0, the essential spectrum is unchanged. The effect of the

local potential is to create at most finitely-many eigenvalues in the unperturbed

gap G. We will also make use of the exponential decay of the resolvent of H0 at

energies in G. The same type of argument as in the proof of Lemma 2.15 shows that

the DOS measure, and therefore the IDS, calculated from the local Hamiltonians

HΛ = H0 + VΛ agrees with the usual definition.
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3. One-Parameter Families of Operators: Spectral Averaging and
Perturbation of Singular Spectra

3.1. Introduction. We begin with a discussion of a part of the theory which is

of interest in its own right: one-parameter families of perturbations of a self-adjoint

operator. Let A be a self-adjoint operator and consider a self-adjoint perturbation

V that is relatively A-bounded with relative bound less than one. We will study

one-parameter family of perturbations of A by V of the form A(λ) = A + λV . The

operators A(λ) are self-adjoint on the domain D(A) provided |λ| < 1. As we will

see, even the case when V is a rank-one operator is of interest. The introduction of

the parameter λ allows us to work with averaged quantities. For example, if µλ is

the spectral measure for A(λ), we can study the average spectral measure
∫

µλ dλ.

Notice that this is a form of an expectation if we consider λ as a random variable

with a uniform, constant density. In certain cases, we will derive properties of the

averaged measure. This will allow us to conclude that µλ has similar properties for

almost every λ.

The random families of operators that we have considered are multiparame-

ter perturbations of the background operator H0. We reduce the problem to a

one-parameter family in the following manner using the fact that the process is

translation invariant. Let us consider a random family of Schrödinger operators

Hω = H0 + Vω, where Vω is an Anderson-type potential. We consider the set of

configurations Ω0 for which all the coupling constants ωi, i �= 0, are kept constant,

but the coupling constant ω0 varies within the support of the density g. We can

write the Hamiltonian for these configurations ω as

(3.1) Hω = H0 + Vω⊥ + ω0u,

where Vω⊥(x) ≡ ∑i=0 ωiu(x − i) denotes the potential with the term at the zero

site omitted. We now vary ω → ω̃ within the class of configurations Ω0 for which

ωi = ω̃i, for i �= 0. We then have

H
eω = H0 + Vω + (ω̃0 − ω0)u

= Hω + λu,(3.2)

where we defined a new parameter

(3.3) λ ≡ ω̃0 − ω0.

Note that as operators, the Hamiltonian H
eω and Hω have exactly the same form

and differ only in the coupling constant for the zero site. Hence, we can write

equation (3.2) as

(3.4) Hλ = H + λu,

and study the effect of varying only one coupling constant. Of course, in the ergodic

case, the choice of one site is equivalent to any other, so we can choose to study the

effects of the variation of the coupling constant at the zero site without any loss of

generality.

It was Simon and Wolff [119] who realized the importance of considering the

variation of the coupling constant at one site in the proof of localization for random

families of multidimensional Schrödinger operators on the lattice ZZd, d > 1. This

allowed them to prove localization given the exponential decay estimates of Fröhlich

and Spencer [56] on the resolvent. For the one dimensional case, Kotani [93] had

also used the variation of a single boundary condition to obtain information about
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the spectral type of the deterministic spectrum. The classic studies of the effects

on the spectrum of one-parameter families of (rank one) perturbations are due

to Aronszajn [7] and Donoghue [39]. A nice review of the rank one theory and

its application to random Schrödinger operators on the lattice is given in Simon’s

Vancouver lectures [114, 115].

In this chapter, we discuss extension of the results necessary for the proof of

localization for multidimensional random operators on IRd for which the rank one

theory is insufficient. We begin with spectral averaging results. Spectral averaging

techniques play an important role in controlling the singular continuous spectrum

of families of self-adjoint operators. Such methods have been used in the theory

of random Schrödinger operators (cf. [21]), and in some approaches to quantum

stability of time-dependent models [77]. We first present the simple spectral aver-

aging method of Kotani and Simon [94], that they applied to the IDS, and used by

Combes and the author [25] in the proof of localization. We will use this technique

when we discuss the Wegner estimate and the Lipschitz continuity of the IDS in

section 4. The method of Kotani and Simon [94] requires some analyticity of the

potential in the random variables. We next present a technique applicable to more

general families of potentials depending only differentiably on some parameter. The

main tool is the method of differential inequalities. Finally, we present a refined

spectral averaging result of [28] that is used to prove a Wegner estimate for general

probability measures.

We then present a summary of the classical Aronszajn-Donoghue theory on

rank-one perturbations. This is a beautiful theory and provides motivation for the

second main result of this chapter on the perturbation of the singular spectrum.

Our result presents an extension of this rank-one theory to a family of relatively

compact perturbations arising in the theory. This allows us to eliminate the singular

continuous spectrum for families of random operators.

A nice presentation of the classical Aronszajn-Donoghue theory and its appli-

cations to localization for random Schrödinger operators on the lattice is given by

Simon in his Vancouver lectures, recently reprinted at the end of the reprinting of

his trace ideals text [114].

3.2. Spectral Averaging. The basic idea behind spectral averaging is the

following. Let µλ, λ ∈ Γ, be a one-parameter family of real-valued measures on

IR with a common σ-algebra of measurable sets B. Suppose that g is a bounded,

real-valued function on Γ. We can construct an averaged measure from the family

in the following manner. For any subset A ∈ B, define

(3.5) ν(A) ≡
∫

Γ

µλ(A)g(λ)dλ.

The measure ν is obtained by averaging the measures µλ with respect to the weight

function g. The main result of this section is that if the measures µλ are spec-

tral measures of certain families of one-parameter self-adjoint operators, then the

averaged measure ν is absolutely continuous with respect to Lebesgue measure.

This result is often referred to as Kotani’s trick in the literature about random

Schrödinger operators.

3.2.1. The Kotani-Simon Spectral Averaging Method. The simplest spectral av-

eraging result in the context of Schrödinger operators goes back to Kotani [93] who

studied one-dimensional models. The result we present here appears in [94] and
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[25]. We consider the one-parameter family of operators Hλ = H0 + λV , on a

Hilbert space H, where H0 is self-adjoint and V is a bounded operator satisfying

(3.6) 0 < c0B
2 ≤ V,

for some bounded self-adjoint operator B and a finite, positive constant c0 > 0.

Theorem 3.1. Let Hλ be as above and suppose that V satisfies (3.6). For
�z < 0 and �λ ≥ 0, we define the operator

(3.7) K(λ, z) ≡ B(Hλ − z)−1B,

and for t > 0 and ε ≥ 0, we define

(3.8) Ft(ε, z) ≡
∫

IR

1

1 + tλ2
K(λ + iε, z) dλ.

Then, for c0 > 0 as in (3.6), we have

(3.9) sup
ε>0

‖Ft(ε, z)‖ ≤ πc−1
0 .

Proof. Note that for �z < 0 and �λ = 0, the operator K(λ, z) is bounded. We

now establish an a priori bound on K(λ, z). For �z < 0 and �λ ≥ 0, we easily

verify that

(3.10) −�K(λ, z) ≥ c0(�λ)K(λ, z)∗K(λ, z),

that implies

(3.11) ‖K(λ, z)‖ ≤ min ((c0�λ)−1, |�z|−1‖B‖2).
We next note that the operator K(λ, z) is analytic in λ for �λ > 0, and for fixed

z, with �z < 0. Furthermore, this operator is bounded in the upper-half complex

λ-plane as in (3.11). Consequently, we can apply the Residue Theorem to evaluate

the integral in the definition (3.8) and obtain

(3.12) Ft(ε, z) = πt−1/2K(i(t−1/2 + ε), z).

The result (3.9) now follows from (3.12) and (3.11). �
An immediate consequence of the bound (3.9) is the following estimate that we

will use in chapter 4. Suppose that g ∈ L∞
0 (IR) is a nonnegative function. Then

for any φ ∈ H, we have

(3.13)

∣∣∣∣∫
IR

g(λ) 〈φ, (Hλ − z)−1φ〉
∣∣∣∣ ≤ πc−1

0 ‖g‖∞‖φ‖2.

We obtain this from (3.9) by replacing the g by (1 + tλ2)−1 on the left in (3.13)

at the cost of a factor supλ(g(λ)(1 + tλ2)), for any t ≥ 0. Since the bound is

independent of t, we can take t = 0.

3.2.2. A Differential Inequality and Spectral Averaging. We now present a more

local version of spectral averaging that does not require that the operator Hλ de-

pend linearly on λ (or, more generally, analytically on λ). This is the case for the

breather model (1.5.1). As in the proof in section 3.2.1, the proof of the spectral

averaging theorem requires an a priori bound on the resolvent of the operators Hλ.

We obtain this using a differential inequality method reminiscent of the method

of Mourre [105] used to prove the limiting absorption principle for Schrödinger

operators.
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Theorem 3.2. Let Hλ, λ ∈ Γ ≡ (λ0, λ1), be a C2-family of self-adjoint opera-
tors on a separable Hilbert space H such that D(Hλ) = D0 ⊂ H, ∀ λ ∈ Γ, and such
that Rλ(z) ≡ (Hλ − z)−1 is twice strongly differentiable in λ for all z, Im z �= 0.
Assume that there exist finite positive constants Cj , j = 0, 1, and bounded operator
B, such that on D0,

(D1) Ḣλ ≡ dHλ

dλ
≥ C0BB∗ > 0; (D2) |Ḧλ| ≡

∣∣∣∣d2Hλ

dλ2

∣∣∣∣ ≤ C1Ḣλ.

Then ∀E ∈ IR and ∀ real, positive g ∈ C2
0 (Γ), there exists a finite positive constant

C, depending only on ||g(j)||1, j = 0, 1, 2, and the constants Cj , j = 0, 1 of (D1)
and (D2), such that ∀ φ ∈ H,

(3.14) sup
δ>0

∣∣∣∣∫
Γ

g(λ)〈φ, B(Hλ − E − iδ)−1Bφ〉
∣∣∣∣ ≤ C||φ||2.

Remarks:
(1) Although the proof of this abstract theorem requires some derivatives on

the density g, there is a version in [25] that requires no derivatives on g.

(2) We will prove this theorem only for the linear case when Hλ = H0 + λu.

For this case, Ḣλ = u ≥ 0, and we can take C0 = 1 and B = u1/2 in (D1).

Note that Ḧλ = 0 so (D2) is automatically satisfied in this case. The

proof is simpler if this holds because there is no error term to estimate.

Proof of Theorem 3.2 in the Linear Case.
The basic idea of the proof is to use differential inequality techniques (cf. [35,

105]).

1. a priori estimates. For ε > 0 and 0 < δ < 1, we define a modified resolvent by

(3.15) R(λ, ε, δ) ≡ (Hλ − E + iδ + iεḢλ)−1.

Since the operator Ḣλ is positive in the sense of (D1), we will use this to control

the δ → 0 limit. We study the limiting behavior of the B-weighted resolvent

(3.16) K(λ, ε, δ) = B∗R(λ, ε, δ)B.

To see that the operator K is well-defined, we compute a bound depending on ε
only. For φ ∈ H, ||φ|| = 1, the Cauchy-Schwartz inequality gives

(3.17)

||K(λ, ε, δ)φ|| ≥ −Im〈φ, K(λ, ε, δ)φ〉

≥ 〈φ, B∗R∗(λ, ε, δ)(δ + εḢλ)R(λ, ε, δ)Bφ〉

≥ C0ε ‖K(λ, ε, δ)φ‖2,
where we used (D1) to replace Ḣλ by its lower bound C0BB∗. Hence, we obtain

(3.18) ‖K(λ, ε, δ)‖ ≤ (C0ε)
−1.

We also need a related result for K(λ, ε, δ)∗. Note that

K(λ, ε, δ)∗ = K(λ,−ε,−δ),

so that in place of (3.12), we have

(3.19)

||K(λ, ε, δ)∗φ|| ≥ Im 〈φ, K(λ,−ε,−δ)φ〉

≥ ε C0||K(λ, ε, δ)∗φ||2.
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2. First differential inequality. Let g ∈ C2
0 (Γ), and define

(3.20) F (ε, δ) ≡
∫

Γ

g(λ)〈φ, K(λ, ε, δ)φ〉 dλ.

By (3.13), we obtain the bound

(3.21) |F (ε, δ)| ≤ (Cε)−1||g||1.
We first compute the ε-derivative of F ,

(3.22) i
dF

dε
(ε, δ) =

∫
Γ

g(λ)〈φ, BR(λ, ε, δ)ḢλR(λ, ε, δ)Bφ〉dλ.

On the other hand, we note that

(3.23)
d

dλ
〈φ, K(λ, ε, δ)φ〉 = −〈Bφ, RḢλRBφ〉,

using the fact that Ḧλ = 0 in this case. We substitute this into the right side of

(3.17) to obtain

(3.24) i
dF

dε
(ε, δ) = −

∫
Γ

g(λ)
d

dλ
〈φ, K(λ, ε, δ)φ〉.

We integrate by parts with respect to λ in the first term on the right to obtain

(3.25) i
dF

dε
(ε, δ) =

∫
Γ

g′(λ)〈φ, K(λ, ε, δ)φ).

Using the a priori estimates, we obtain

(3.26)

∣∣∣∣dF

dε
(ε, δ)

∣∣∣∣ ≤
∫

Γ

g′(λ)〈φ, K(λ, ε, δ)φ〉 |
≤ (εC0)

−1‖g′‖1.
Integrating this differential inequality yields an improved estimate for F ,

(3.27) |F (ε, δ)| ≤ C3|log ε|+ |F (1, δ)|,
where C3 is independent of δ and |F (1, δ)| is uniformly bounded as δ ↓ 0.

3. Iteration. With the new bound (3.27) for F (ε, δ), we repeat the above procedure

in order to obtain an improved upper bound for F (ε, δ) which remains finite as

ε → 0. To do this, we need a better estimate on

(3.28)

∫
Γ

g′(λ)〈φ, Kφ〉dλ.

We define another function F̃ (ε, δ) by

(3.29) F̃ (ε, δ) =

∫
g′(λ)〈φ, K(λ, ε, δ)φ〉dλ.

As in (3.16), F̃ satisfies

(3.30) |F̃ (ε, δ)| ≤ (C0ε)
−1||g′||1.

We now repeat the arguments of part 2 of the proof for this function F̃ . We obtain

an estimate similar to (3.26),

(3.31)

∣∣∣∣∣dF̃

dε
(ε, δ)

∣∣∣∣∣ ≤ (εC0)
−1C1‖g′‖1.
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Integration of this inequality leads to,

(3.32) |F̃ (ε, δ)| ≤ C4| log ε|+ |F̃ (1, δ)|.
4. Conclusion. With this new estimate (3.32), we return to (3.27) and obtain

(3.33)

∣∣∣∣dF

dε
(ε, δ)

∣∣∣∣ ≤ C5| log ε|+ C6,

where C5 is independent of δ and depends on ||g(p)||1, p = 0, 1 and C6 depends on

|F (1, δ)| and |F̃ (1, δ)|, which are bounded, independent of δ. We now integrate the

inequality (3.33) and obtain,

(3.34) |F (ε, δ)| ≤ C,

where C depends on ||g(p)||1, p = 0, 1 and is independent of δ and uniform in ε, 0 <
ε < 1. The proof of the theorem now follows from the fact that R(λ, ε, δ) converges

weakly to R(λ, δ), as ε → 0, provided δ > 0, and the dominated convergence

theorem since ∣∣∣∣∫
Γ

g(λ)〈φ, BR(λ, ε, δ)Bφ〉dλ

∣∣∣∣ ≤ C,

by (3.34). �
3.2.3. A General Spectral Averaging Method. If we want to treat more general

probability measures, like Hölder continuous measures, we need a more refined

and local version of spectral averaging in order to prove a Wegner estimate, as

discussed in chapter 4. Let us consider a probability measure µ and define the

Levy concentration of the measure, for any ε > 0, by

(3.35) s(ε) ≡ sup
E∈IR

µ([E, E + ε]).

If µ is Hölder continuous with exponent 0 < α ≤ 1, then s(ε) ∼ εα. Spectral

averaging with respect to such general probability measures relies on the following

basic result of [28] that is a discrete version of spectral averaging.

Proposition 3.1. Let A and B be two self-adjoint operators on a separable

Hilbert space H, and suppose that B ≥ 0 is bounded. Then, for any φ ∈ H, we

have the bound

(3.36)
∑
n∈ZZ

sup
y∈[0,1]

〈Bφ,
1

(A + (n + y)B)2 + 1
Bφ〉 ≤ π(‖B‖+ ‖B‖2)‖φ‖2.

We do not prove this abstract result here but refer to [28], mentioning that the proof

uses results from the theory of maximally dissipative operators. The application of

this result to random Schrödinger operators is given in the following proposition.

Theorem 3.3. Let Hλ = H0 + λV be self-adjoint on a separable Hilbert space
H with V ≥ 0 bounded and suppose that λ is distributed according to a probability
measure µ with Levy concentration s(ε), defined in (3.35). For any ε > 0, let
∆ε ⊂ IR be an interval with |∆ε| = ε. We have the following bound on the average
of the matrix element of the imaginary part of the resolvent:

(3.37)

∫
∆ε

dE

∫
IR

dµ(λ) �〈φ, V

(
1

Hλ − E − iε

)
V φ〉 ≤ π‖V ‖(1+‖V ‖)s(ε)‖φ‖2.
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Proof: The imaginary part of the matrix element in (3.37) is

(3.38) 〈V φ,
ε

(H0 − E + λV )2 + ε2
V φ〉 =

1

ε
〈V φ,

1

ε−2(H0 − E + λV )2 + 1
V φ〉.

To apply Proposition 3.1, we choose B = V and define a self-adjoint operator

A ≡ ε−1(H0 − E) so the matrix element in (3.38) may be written as

(3.39) 〈V φ,
1

(A + ε−1λV )2 + 1
V φ〉.

We divide the integration over λ into a sum over intervals [nε, (n+1)ε], and change

variables letting λ/ε = n + y, so that y ∈ [0, 1]. We then obtain∫
IR

dµ(λ) 〈V φ,
1

(A + ε−1λV )2 + 1
V φ〉

=
∑

n

∫ (n+1)ε

nε

dµ(λ) 〈V φ,
1

(A + (n + y)V )2 + 1
V φ〉

≤
(

sup
m∈ZZ

µ([mε, (m + 1)ε])

) {∑
n

sup
y∈[0,1]

〈V φ,
1

(A + (n + y)V )2 + 1
V φ〉

}
.

(3.40)

We apply Proposition 3.1 to the last line in (3.40) and obtain

(3.41)

∫
IR

dµ(λ) 〈V φ,
1

(A + ε−1λV )2 + 1
V φ〉 ≤ π‖V ‖(1 + ‖V ‖)s(ε)‖φ‖2

This provides a bound for the average over λ of (3.38). Integrating in energy over

∆ε, and recalling the factor of ε−1 in (3.38), we obtain the estimate (3.37). �
We note that when µ has a density g ∈ L∞

0 (IR), we recover the estimate in

Theorem 3.1.

3.2.4. A Result on Averaged Spectral Projections. An immediate application of

all three spectral averaging theorems, Theorem 3.1, Theorem 3.2, or Theorem 3.3,

is the following result on the averaged spectral projectors of the Hamiltonian Hλ.

Let Eλ(A) be the spectral projection for the self-adjoint operator Hλ and the subset

A ⊂ IR.

Corollary 3.1. Let Hλ be a one-parameter family of self-adjoint operators as

in Theorem 3.1, Theorem 3.2, or Theorem 3.3. Let λ be distributed with a density

0 ≤ g ∈ L∞
0 (IR), or g ∈ C2

0 (Γ), or a general probability measure µ, respectively.

Then, for the cases of Theorems 3.1 and 3.2, we have that for any Borel set J ⊂ IR,

there exists a finite positive constant Cg > 0, depending only on ‖g‖∞ for Theorem

3.1, or on ‖g(j)‖1, j = 0, 1, 2 for Theorem 3.2, such that

(3.42)

∥∥∥∥∫
Γ

g(λ)B∗Eλ(J)B

∥∥∥∥ ≤ Cg|J |.

As a consequence, for any φ ∈ H, with ‖φ‖ = 1, we have

(3.43)

∫
Γ

g(λ) 〈Bφ, Eλ(J)Bφ〉 ≤ Cg|J |.

For the general case of Theorem 3.3, the analogues of (3.42) and (3.43) hold with

|J | replaced by s(|J |), for |J | sufficiently small.
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Proof. One uses Stone’s formula for spectral projections to write

(3.44) 〈φ, BEλ(J)Bφ〉 ≤ 1

π
lim
δ↓0

Im

∫
J

dE〈φ, B∗(Hλ − E − iδ)−1Bφ〉.

It is easy to show that

(3.45) B∗(Hλ − E − iδ)−1B = n− lim
ε ↓ 0

K(λ, ε, δ).

Substituting K into the right side of (3.2.4), the result follows from any of the

spectral averaging Theorems 3.1, 3.2, or 3.3. �
3.2.5. Kotani’s Trick. This technique is based on the theorem that the averaged

spectral measure is absolutely continuous with respect to Lebesgue measure. Let

Eλ(·) be the spectral family for Hλ.

Corollary 3.2. In addition to the hypotheses of Theorem 3.2, assume that

Ran B is cyclic ∀Hλ, λ ∈ Γ, in the sense that { f(Hλ)Bφ | f ∈ L∞(IR), φ ∈ H} is

dense in H. Then for any Borel set J ⊂ IR with |J | = 0, one has Eλ(J) = 0 almost

every λ ∈ Γ.

Proof. Corollary 3.1 shows that

(3.46)

∫
Γ

h(λ)〈φ, B∗Eλ(J)Bφ〉 dλ = 0,

implies that

(3.47) 〈φ, B∗Eλ(J)Bφ〉 = 0,

for almost every λ ∈ Γ. This set of λ, however, depends on φ, and we denote it

by Γφ. The H-cyclicity assumption on B implies that for each ψ in a dense set

there exists a set Γψ such that 〈ψ, Eλ(J)ψ〉 = 0, for all λ ∈ Γψ, and |Γψ| = |Γ|.
Now let {ψn} be a complete orthonormal basis for H and set Γ∞ ≡ ⋂n Γψn

. Then

|Γ∞| = |Γ| and 〈ψ, Eλ(J)ψ〉 = 0, ∀ λ ∈ Γ∞ and ∀ ψ in a dense set in H. By

standard arguments, this can be extended to all ψ ∈ H. Since Eλ is a projection,

this shows Eλ(J) = 0 a.e. λ ∈ Γ. �

3.3. Review of Aronszajn-Donoghue Theory. The theory of one-parameter

families presented section 3.2 is inspired by the theory of rank one perturbations

developed by Aronszajn [7] and Donoghue [39]. We review this theory here because

of its interest and transparency. A comprehensive discussion of recent developments

in the theory of rank-one perturbations is given by Simon in [115]. Let µ be a real,

nonnegative measure on IR satisfying

(3.48)

∫
dµ(λ)

1 + |λ| .

Definition 3.4. The Borel transform Fµ(z) of a real, nonnegative measure on

IR, satisfying (3.48), for z = E + iε ∈ IC with Im z = ε �= 0, is defined by

(3.49) Fµ(z) ≡
∫

dµ(λ)

λ− z
.

It is useful to record here the real and imaginary parts of the Borel transform,

both of which exist provided ε �= 0:

(3.50) Im Fµ(E + iε) = ε

∫
dµ(λ)

(λ− E)2 + ε2
,
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and

(3.51) Re Fµ(E + iε) =

∫
(λ− E)µ(λ)

(λ− E)2 + ε2
.

In preparation for the Aronszajn-Donoghue Theorem, our first goal is to relate

the Lebesgue decomposition of a measure µ into its singular µs and absolutely

continuous µac parts to the behavior of the boundary-value of the Borel transform

of the measure Fµ. In the applications of interest to us, the measure µ will be a

spectral measure of a self-adjoint operator. We will see that the Borel transform is

related to matrix elements of the resolvent of that self-adjoint operator.

We recall that a measure ν is supported on a subset S ⊂ IR if ν(IR\S) = 0. We

will also need the function Bµ(E + iε) defined by

(3.52) B(E + iε) ≡
[∫

dµ(λ)

(E − λ)2 + ε2

]−1

.

Proposition 3.2. Let µ be a real, nonnegative measure on IR satisfying (3.48).

We define the following subsets of IR:

Sµ ≡ {E | lim
ε→0

Im Fµ(E + iε) = ∞};(3.53)

Cµ ≡ {E | lim
ε→0

ImFµ(E + iε) > 0 and finite};(3.54)

Pµ ≡ {E | E ∈ Sµ, Bµ(E) = 0, and lim
ε→0

εIm Fµ(E + iε) �= 0}.(3.55)

Then, µ is supported on Sµ ∪ Cµ, the measure µ|Sµ is singular with respect to

Lebesgue measure, the measure µ|Cµ is absolutely continuous with respect to

Lebesgue measure, and µ|Pµ is a pure point measure. Furthermore, the density

of µ|Cµ is given by

(3.56)
dµac

dE
(E) = lim

ε→0

1

π
Im Fµ(E + iε),

and for any E0,

(3.57) µ({E0}) = lim
ε→0

ε Im Fµ(E + iε).

Sketch of the Proof.
1. For any continuous function f of compact support, it is easy to show that

(3.58) lim
ε→0

∫
f(E)

1

π
Im Fµ(E + iε)dE =

∫
f(E)dµ(E).

Consequently, the weak limit as ε → 0 of Im Fµ(E + iε) exists for Lebesgue almost-

every E ∈ IR. Furthermore, it is a classical result, called Fatou’s Lemma, that the

pointwise limε→0 Im Fµ(E + iε) exists almost everywhere. The limit is exactly the

Radon-Nikodym derivative dµac

dE (E) of µ with respect to Lebesgue measure. The

theorem of de la Vallée Poussin states that the singular part of the measure is

supported on the set Sµ.

2. An application of the Lebesgue Dominated Convergence Theorem shows that

(3.59) µ({E0}) = lim
ε→0

ε ImFµ(E0 + iε).

If this is nonzero, it follows that E0 ∈ Sµ. Now suppose the measure µ has an atom

at E0 with weight C(E0). Then the function Bµ(E) satisfies

(3.60) lim
ε→0

εBµ(E0 + iε)−1 = C(E0).
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Hence, the set Pµ supports the pure point part of the measure µ. �
We mention a related criterion for absolutely continuity of a measure which

was recently proved and used by Klein [88] in the study of extended states for the

Anderson model on the Bethe lattice.

Proposition 3.3. Let µ be a real, nonnegative, measure µ on IR satisfying

(3.48) with Borel transform Fµ(z). If

(3.61) lim
ε→0+

∫ b

a

|Fµ(E + iε)|2 dE < ∞,

then µ|(a, b) is absolutely continuous with respect to Lebesgue measure.

Another proof of this result, and related results concerning the relation between

properties of the measure and the boundary behavior of the Lp-norm of the Borel

transform, are given in Simon [117].

The subject of the Aronszajn-Donoghue theory is the instability of the singular

spectrum under rank-one perturbations. It is well-known (cf. [81]) that the abso-

lutely continuous spectrum is stable under a trace class perturbation. Let H0 be

a self-adjoint operator on a separable Hilbert space H. We assume that H0 has a

cyclic vector φ ∈ H and form the rank-one, orthogonal projector P ≡ |φ〉〈φ|. We

consider the one-parameter family of operators

(3.62) Hλ ≡ H0 + λP.

The resolvent of this family is denoted Rλ(z) = (Hλ − z)−1. Since φ is cyclic for

H0, the spectral measure µ0,φ, defined by

(3.63) 〈φ, R0(z)φ〉 =

∫
dµ0,φ(η)

η − z
,

determines the operator H0. Similarly, the measure µλ,φ determines Hλ since φ is

also cyclic for each Hλ.

We have seen that information about a measure can be recovered from the

boundary-value of its Borel transform. We want to obtain information about the

perturbed measure µλ,φ, and hence about the perturbed operator Hλ, from knowl-

edge of the boundary behavior of the Borel transform of the measure µ0,φ, cor-

responding to H0. In the rank-one perturbation case, the Borel transform of the

spectral measure is just the matrix element of the resolvent. Hence, we define

(3.64) Fλ(z) ≡ 〈φ, Rλ(z)φ〉.
A key role is played by the equation relating Fλ(z) to F0(z). To derive this

equation, we begin with the second resolvent formula,

(3.65) Rλ(z) = R0(z)− λRλ(z)PR0(z).

Upon taking the matrix element of this equation in the state φ, we find

(3.66) Fλ(z)(1 + λF0(z)) = F0(z).

When the factor (1+λF0(z)) is invertible, we can deduce the behavior of Fλ(E+iε),
as ε → 0, from the behavior of F0(E + iε) in the same limit. Note that the beauty

of a rank one perturbation is that this equation (3.22) is simply a relation between

functions which are analytic in the upper half-plane.

The first main result of the Aronszajn-Donoghue analysis is the following the-

orem.
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Theorem 3.5. Relative to the function F0(E + iε) defined above, we define the
following sets for λ �= 0,

(3.67) C ≡ {E | lim
ε→0

Im F0(E + iε) = Φ(E) > 0 and finite };

(3.68) Sλ ≡ {E | lim
ε→0

F0(E + iε) = −1/λ};

Then, the set C is the support of µλ,ac, for all λ, and the set Sλ is the support of
µλ,s, for λ �= 0.

Of course, the absolutely continuous spectrum is invariant under finite-rank

perturbations, and this fact is reflected by the first part of the theorem. The

singular spectrum, however, is very unstable with respect to the perturbation. One

of the most interesting consequences of Theorem 3.3 concerns the singular spectrum

of Hλ.

Corollary 3.3. Under the conditions of Theorem 3.5,

(1) The absolutely continuous parts of Hλ and Hβ are unitarily equivalent;

(2) The singular components of the spectral measures of Hλ and Hβ , for

λ �= β, are mutually singular.

We recall that the second part of the corollary means that the if µλi,s are the

singular parts of the spectral measures for Hλ1 and Hλ2 , for 0 �= λ1 �= λ2 �= 0, then

they are mutually singular if µλi,s(Sλj
) = 0, for i �= j, where Sλj

is the set defined

in (3.68).

With regard to the eigenvalues of Hλ, for λ �= 0, we have the following finer

decomposition of the singular set Sλ in (3.68).

Corollary 3.4. As in framework of Theorem 3.5, we define the function

B0(E) by

(3.69) B0(E) ≡
[∫

I

R
dµ0(s)

(s− E)2

]−1

.

Suppose that E is not an eigenvalue of H0. Then, the energy E is an eigenvalue

of Hλ if and only if E ∈ Sλ, where Sλ is defined in (3.68), and B0(E) > 0.

Consequently, E ∈ σsc(Hλ) if and only if E ∈ Sλ and B0(E) = 0.

3.4. Perturbation of Singular Spectra. Our goal is to extend the ideas

of the Aronszajn-Donoghue theory to relatively compact perturbations. This is

essential for the our treatment of multidimensional, continuous random operators.

A similar analysis for Schrödinger operators was performed by Howland [76].

Analogous to (3.2)–(3.4), we consider one parameter families of the form

(3.70) Hλ = H0 + λV, λ ∈ IR.

We require that V is a nonzero, bounded, self-adjoint operator and that it admits

a factorization of the form V = CD∗. In the applications, V = u, the single-

site potential, so we can take C = D = u1/2. As in section 3.2, we set Rλ(z) =

(Hλ − z)−1, for λ ∈ IR. We consider a fixed energy interval I ⊂ IR. We need the
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following assumptions

(A1) Γ(z) ≡ D∗R0(z)C is compact ∀ z, Im z �= 0;

(A2) there exists a subset I0 ⊂ I, |I0| = |I|, and constants C(E) < ∞, such that

sup
ε=0

‖R0(E + iε)X‖ ≤ C(E) < ∞

∀E ∈ I0 and X = C and D.

We show that (A2) is a sufficient condition for the absence of singular continuous

spectrum of Hλ in I for almost-every λ in the case that C = ±D. This is a variation

of the instability of singular spectrum result presented in Theorem 3.5. As above,

let H̃ be the cyclic subspace of H generated by C and Hλ:

H̃ = [f(Hλ)Cφ, f ∈ L∞(IR), φ ∈ H]closure.

We write H̃λ for the restriction of Hλ to the invariant subspace H̃, which is inde-

pendent of λ.

Theorem 3.6. Let us assume that the operator H0 and the perturbation V =

CD∗ satisfy (A1) and (A2). We then have

(1) σac(H̃λ) ∩ I = ∅, ∀ λ ∈ IR;

(2) σ(H̃λ) ∩ I0 is pure point, ∀ λ ∈ IR \ {0}.
If, in addition, C = ±D, then we have

(3) σsc(H̃λ) ∩ I = ∅ for Lebesgue almost every λ ∈ IR.

Consequently, the spectrum H̃λ, for Lebesgue almost-every λ ∈ IR, is pure point in
I with finitely-degenerate eigenvalues.

Proof. 1. We omit the tildes for simplicity of notation. From the second resolvent

equation, we can express Rλ(z) in terms of R0(z) and Γ(z) ≡ D∗R0(z)C. We

obtain

(3.71) D∗Rλ(z)C(1 + λΓ(z)) = Γ(z),

which is the analogue of the Aronszajn-Donoghue formula (3.66) in our case. In

accordance with the Aronszajn-Donoghue theory, we want to study the boundary

values of Rλ(E+iε), as ε → 0+, given the information about the boundary values of

R0(E + iε) given in (A2). We first note that for all λ ∈ IR, the operator (1+λΓ(z))

is invertible for z ∈ IC with Im z �= 0. If it were not invertible for some λ and z ∈ IC,

with Im z �= 0, then condition (A1) and the Fredholm alternative for compact

operators implies that ∃ ψ ∈ H such that

(3.72) (1 + λΓ(z))ψ = 0.

This equation is equivalent to

λD∗ 1

H0 − z
Cψ = −ψ.

Multiplying both sides by C and defining ξ = (H0 − z)−1Cψ ∈ H, we get

−λV ξ = (H0 − z)ξ,
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or,

(Hλ − z)ξ = 0,

which shows Hλ has a complex eigenvalue, which is impossible since Hλ is self-

adjoint.

2. We next study the behavior of the boundary-values of Γ(E + iε). For E ∈ I0,

condition (A2) implies that n− limε→0 Γ(E + iε) ≡ Γ(E + i0) exists. This operator

is also compact by (A1). It now follows by the Bounded Inverse Theorem and the

Fredholm alternative that for E ∈ I0,

(3.73) n− lim
ε→0+

(1 + λΓ(E + iε))−1 = (1 + λΓ(E + i0))−1

exists if and only if there is no η ∈ H such that

(3.74) (1 + λΓ(E + i0+))η = 0.

We will show that this equation holds only at energies E ∈ I0 that are eigenvalues of

Hλ. The idea is as in (1) but now one has to control the limit of ηε ≡ R0(E+iε)Cη.

Since condition (A2) implies that ‖ηε‖ ≤ C(E), we have that η0 ≡ w − limε→0 ηε

exists. We now need to show that η0 �= 0. For this, we have for any φ ∈ D(H0),

(3.75) 〈(H0 − E)φ, η0〉 = lim
ε→0

〈(H0 − E)φ, ηε〉 = 〈φ, Cη〉.
Since D(H0) is dense and Cη �= 0, this shows that η0 �= 0. It follows from (3.74)

that

〈C∗φ, η〉 = −λ〈C∗φ, Γ(E + i0)η〉
= − lim

ε→0
λ〈C∗φ, D∗ηε〉

= −λ〈φ, V η0〉.(3.76)

Inserting this equation into (3.75), we obtain

(3.77) 〈(Hλ − E)φ, η0〉 = 0,

which holds for all φ ∈ D(H0) = D(Hλ). It follows that (Hλ − E)η0 = 0, so that

the energy E is an eigenvalue of Hλ. Let us recall that the number of eigenvalues

of Hλ is countable. Hence, for each λ ∈ IR, there exists a subset Iλ ⊂ I0, with

|Iλ| = |I0| so that n− limε→0(1 + λΓ(E + iε))−1 exists for all E ∈ Iλ.

3. Using the second resolvent equation as in (3.71), we have for all E ∈ Iλ,

(3.78) Rλ(E + iε)C = R0(E + iε)C(1 + λΓ(E + iε))−1.

By the result of part (2) and (A2), which controls the boundary value of R0(E+iε)C,

we obtain

(3.79) sup
ε>0

‖Rλ(E + iε)C‖ < C(E) < ∞, ∀ E ∈ Iλ.

Hence, we have obtained control on the boundary values of the resolvent of the per-

turbed operator given control on the boundary values of the unperturbed operator

as in (A2).

4. We now exploit this control in order to make conclusions about the spectrum of

Hλ in I. First, with regards to the absolutely continuous spectrum, the existence

of the bound (3.79) implies that for all φ ∈ H, and for all E ∈ Iλ,

(3.80) lim
ε→0

Im 〈φ, C∗Rλ(E + iε)Cφ〉 = 0.

PETER D. HISLOP76

                                                                                                                    

                                                                                                               



36 PETER D. HISLOP

This proves σac(H̃λ) ∩ I = ∅. Concerning the point spectrum in I0, we know that

the countably-many points E ∈ I0 where the limit in (3.73) does not exist are

eigenvalues of H̃λ. At the other points in I0, the bound (3.79) holds and, as in

Theorem 3.3, this set cannot support the singular continuous component of the

spectral measure of H̃λ. This proves the first part of the theorem.

5. As for singular continuous spectrum, it can only be supported in I \ I0, which

has |I \ I0| = 0. We now use Corollary 3.2 taking h(λ) = (1+λ2)−1 (one can check

that this type of function can be used in the proof). Since we have C = ±D, we

set B = C in Corollary 3.2 and obtain,

(3.81) ‖
∫

dλ

1 + λ2
CEλ( |I \ I0| )C‖ ≤ C|I\I0| = 0.

Consequently, for Lebesgue almost-every λ ∈ IR, we have that ‖CEλ(I \ I0)C‖ =

0. Due to the generating nature of the operator C, this proves that the singular

component of the spectral measure of H̃λ is not supported on I\I0. Accordingly,

the singular spectrum of H̃λ in I consists only of eigenvalues in I0, for almost-

every λ ∈ IR. The finite degeneracy of the eigenvalues follows from compactness of

Γ(E + i0). �

4. The Wegner Estimate and the Integrated Density of States

4.1. Overview. The term Wegner estimate refers to an upper bound on the

probability that a given energy E is separated from the spectrum of a local Hamil-

tonian HΛ. Equivalently, this is the probability that the local Hamiltonian HΛ has

an eigenvalue in a given interval. A good Wegner estimate is one for which the up-

per bound depends linearly on the volume |Λ| and on the distance from the energy

E to the spectrum of HΛ. In this chapter, we will present two proofs of Wegner’s

estimate in order to illustrate the ideas and difficulties involved. Wegner’s original

proof [136] introduced the clever device of interchanging differentiation with re-

spect to energy with differentiation with respect to the random variables on which

the random potential depends. Since an expectation is taken in the course of the

proof, these derivatives can be removed by an integration-by-parts with respect to

the random variables. In some way, all subsequent proofs of the Wegner estimate

depend on this trick.

We begin in section 1 by sketching a proof of Wegner’s estimate for energies in

a spectral gap of H0 which follows the original argument. The proof is transparent

but unfortunately leads to a |Λ|2-volume dependence. This is sufficient for the proof

of Anderson localization but provides no information in the IDS. We then give a

simple version of the proof of a good Wegner’s estimate from [28] that works for a

wide variety of models at all energies. We will show how this implies the Lipschitz

continuity of the integrated density of states (IDS). We remark that one can use

the spectral shift function (SSF) (cf. [27, 78]) in the proof of Wegner’s estimate,

but the result is not as strong.

We mention that the Wegner estimate discussed here depends crucially on the

fact that the single-site potential u is sign-definite. There have been some extensions

to the nonsign-definite case, see [71, 129], and the review [130] for related results.

The nonsign-definite case is important for applications to the proof of Anderson

localization for Schrödinger operators with random vector potentials [68, 71, 72].
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4.2. Wegner’s Argument: A First Proof of Wegner’s Estimate. Here

we give a proof of Wegner’s estimate for energies in the gap of the unperturbed

operator H0. The proof of the Wegner estimate begins by replacing the probability

with an expectation which, in general, is easier to compute. Let us assume that

H0 has a spectral gap G and that E ∈ G. Since the local potential VΛ is a rela-

tively compact perturbation of H0, its effect is to introduce at most finitely-many

eigenvalues Ej(Λ) into the gap G. We label these eigenvalues in increasing order,

including multiplicity. Let η > 0 be chosen so that Iη ≡ [E − η/2, E + η/2] ⊂ G.

We want to estimate

(4.1) IP{ dist (E, σ(HΛ)) < η}.
This probability is expressible in term of the finite-rank spectral projector for the

interval Iη and HΛ, which we write as EΛ(Iη). This projection is a random variable,

depending on the process restricted to the region Λ in the iid case, but we suppress

this in the notation. We have

(4.2) IPΛ{ dist (E, σ(HΛ)) < η} = IPΛ{Tr(EΛ(Iη)) ≥ 1}.
We recall that Chebyshev’s inequality for a random variable X is

(4.3) IP{X ≥ η} ≤ 1

η
IE{X}.

We apply this to the random variable Tr(EΛ(Iη)) and obtain

(4.4) IPΛ{ dist (E, σ(HΛ)) < η} ≤ IEΛ{Tr(EΛ(Iη))}.
We now proceed to estimate the expectation of the trace on the right in (4.4).

We follow the original argument of Wegner [136] as modified by Kirsch [83] and

using some results of [86]. Let ρ be a smooth, monotone increasing function such

that ρ(x) = 1, for x > η/2, and ρ(x) = 0, for x < −η/2. We choose E ∈ G as above

and η such that [E − 3η/2, E + 3η/2] ⊂ G. By the functional calculus, we have

(4.5)

ρ(HΛ−E +η)−ρ(HΛ−E−η) =
∑

j

{ρ(Ej(Λ)−E +η)−ρ(Ej(Λ)−E−η)}Pj(Λ),

where the sum is over eigenvalues Ej(Λ) of HΛ in [E−3η/2, E+3η/2]. The operators

Pj(Λ) are the projectors onto the corresponding eigenspaces. The difference of the

two operators is therefore trace class. Note that this difference ρ(HΛ − E + η) −
ρ(HΛ−E−η) is, roughly, the number of eigenvalues of HΛ less than E+3η/2 minus

the number of eigenvalues of HΛ less than E − 3η/2. However, the operator HΛ

may have continuous spectrum to the left of E−3η/2 so the operator ρ(HΛ−E−η)

by itself is not trace class.

The coefficient in (4.5) is always nonnegative and precisely equal to one for

Ej(Λ) ∈ Iη, so we have

(4.6) Tr(EΛ(Iη)) ≤ Tr(ρ(HΛ − E + η)− ρ(HΛ − E − η)).

Thus, the right side will give us an upper bound for the right side of (4.4). There

is one other advantage to the introduction of the smooth function ρ. The counting

function for eigenvalues is not differentiable since it is a step function. We will use

the differentiability of ρ below.
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Returning to the expectation of the trace in (4.4), we can now bound it above

by

(4.7) IEΛ{Tr[ρ(HΛ−E+η)−ρ(HΛ−E−η)]} ≤ IEΛ{Tr

[∫ η

−η

d

dt
ρ(HΛ − E − t)

]
}.

Since the support of ρ′(s) lies in the interval [−η/2, η/2], we write

(4.8) Tr{ρ′(HΛ − E − t)} =
∑

j

ρ′(Ej(Λ)− E − t),

where, as above, the sum is over the eigenvalues of HΛ in the interval [E−3η/2, E+

3η/2] including multiplicity. The first part of Wegner’s trick is to consider the eigen-

values as functions of the random coupling constants and rewrite the differentiation

with respect to the energy t in terms of differentiation with respect to the coupling

constants λj ∈ Λ̃. By the chain rule for differentiation, we have

(4.9)
∑
k∈Λ̃

∂

∂λk
ρ(Ej(Λ)− E − t) = ρ′(Ej(Λ)− E − t)

∑
k∈Λ̃

∂

∂λk
Ej(Λ).

In the next step, we need to estimate the sum
∑

k∈Λ̃
∂

∂λk
Ej(Λ) from below so

we can solve (4.9) for an upper bound on ρ′(Ej(Λ)−E − t). We use the Feynman-

Hellman formula for the variation of an eigenvalue with respect to a parameter.

Theorem 4.1. (Feynman-Hellman Theorem.) Let H(s) be a one-parameter
family of self-adjoint operators for s ∈ I, a neighborhood of zero. Suppose that
H(s) has a simple eigenvalue E(s) ∈ C1(I) with eigenfunction φ(s) ∈ C1(I). We
then have

(4.10)
d

ds
E(s) = 〈φ(s),

(
d

ds
H(s)

)
φ(s)〉.

Proof: We begin with the simple identity, valid for s ∈ I,

(4.11) 0 = 〈φ(s), (H(s)− E(s))φ(s)〉,
and differentiate each side. Note that the eigenvalue equation implies that

(4.12) 0 = 〈 d

ds
φ(s), (H(s)− E(s))φ(s)〉,

and similarly for the conjugate term. Since ‖φ(s)‖ = 1, we obtain the result from

the term involving d
ds(H(s)− E(s)). �

We will use this identity again in chapter 5. The theorem is particularly useful

in cases of analytic perturbation theory for which the hypotheses of the theorem

are satisfied.

Returning to our discussion of the Wegner estimate, we apply the Feynman-

Hellman Theorem to the eigenvalues Ej(Λ), which depend on the coupling constants

λk, k ∈ Λ̃, and obtain

(4.13)
∑
k∈Λ̃

∂

∂λk
Ej(Λ) =

∑
k∈Λ̃

〈φj ,
∂

∂λk
HΛ φj〉.

The Anderson-type potential depends linearly on the coupling constants so that

(4.14)
∂HΛ

∂λk
= uk.
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It follows from this and (4.12) that we need to estimate from below the sum

(4.15)
∑
k∈Λ̃

〈φj , ukφj〉,

for an eigenfunction φj of HΛ.

Let us now suppose for simplicity that the single-site potential u is bounded

and has support in BR0(0) ⊂ Λ1(0). We assume that u ≥ 0 and satisfies u ≥ ε1 on

BR1(0) ⊂ Λ1(0) for some ε1 > 0 and some R1 > 0. Let us define a subset of Λ by

Λ′ ≡ ∪k∈Λ̃ BR1(k). We then have

(4.16)
∑
k∈Λ̃

uk ≥ ε1χΛ′ .

We estimate from below the quantity 〈φj , χΛ′φj〉 using the Comparison Theo-

rem of Kirsch, Stollmann, and Stolz (KSS) [86]. Let H0 be a background Hamil-

tonian with an open spectral gap G, which is perturbed by a localized potential

VΛ. For any region O ⊂ IRd, let χO be the characteristic function of the region.

Theorem 4.2. Let H0 and VΛ be as above and HΛφ = Eφ with E ∈ G and
φ ∈ L2(IRd). Suppose that the following two conditions are satisfied:

(1) There exists a potential V0 such that, with H0
Λ ≡ H0 + V0, we have E ∈

ρ(H0
Λ);

(2) There exists a subset F ⊂ Λ and a constant θ > 0 so that dist (F ∪
Λc, {x | VΛ(x) �= V0(x)}) > θ > 0.

Then, there exists a constant C0, depending on dist (E, σ(H0))
−1, such that

(4.17) ‖φ‖ ≤ C0(1 + ‖(H0
Λ − E)−1W1‖)‖χF φ‖,

where W1 ≡ [H0, χ1]. Here, χ1 is a smoothed characteristic function of compact
support with χ1 = 1 on supp (1− χF ), and χ1 = 0 on D ≡ {x | VΛ(x) �= V0(x)}.
Referring to this theorem, we must construct a comparison potential V0. We do this

as follows. We choose a radius 0 < R2 < R1 and an ε2 ≥ ε1 so that u | BR2(0)c ≤ ε2.
We define a subset of Λ by D ≡ ∪k∈Λ̃ BR2(k). We define the comparison potential

V0 as follows

V0(x) = VΛ(x) for x ∈ Dc ∩ Λ

= 0 for x ∈ D(4.18)

With this definition, we can take the set F to be F ≡ (Λ′)c ∩ Λ. Note that the

distance from the set D on which the potentials are not equal to F is (R1−R2) > 0.

Furthermore, we have |V0(x)| ≤ ε2. Consequently, the spectrum of H0
Λ is contained

in the complement of the gap G̃ ≡ (B− + ε2, B+− ε2). Given an energy E ∈ G and

an η as above, we choose R2 and R1 sufficiently close to R0 so that ε2 is sufficiently

small in order to guarantee that the 3η/2-interval around E does not intersect the

gap G̃. This insures that any eigenvalue of HΛ in the interval is not in the spectrum

of the comparison operator H0
Λ.

Having verified all the hypotheses of the KSS Comparison Theorem, we obtain

the estimate

(4.19) 〈φj , χΛ̃φj〉 ≥ C0‖φj‖2,
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for a constant depending on dist (E, σ(H0)). Returning to (4.13), we have the lower

bound,

(4.20)
∑
k∈Λ̃

∂Ej(Λ)

∂λk
≥ C0,

so we obtain

(4.21) ρ′(Ej(Λ)− E − t) ≤ 1

C0

∑
k∈Λ̃

∂ρ

∂λk
(Ej(Λ)− E − t).

With this estimate, the right side of (4.7) can be bounded above by

(4.22)
1

C0

∑
j

∑
k∈Λ̃

∫ η

−η

IEΛ{ ∂ρ

∂λk
(Ej(Λ)− E − t)} dt.

The expectation is the integral over the random variables λl with the product

measure. Let us integrate over one of these variables, say the kth one. Because of

the positivity of ρ′ and of the density g, we obtain

(4.23)∫
dλk g(λk)

∂ρ

∂λk
(Ej(Λ)−E−t) ≤ ‖g‖∞ {ρ(EM,k

j (Λ)−e−t)−ρ(Em,k
j (Λ)−E−t)},

where EM,k
j is the jth-eigenvalue of the local Hamiltonian HΛ with the coupling

constant at the kth-site fixed at its maximum value. Similarly, the small m denotes

the minimum value. Consequently, we are left with the task of estimating

(4.24)
‖g‖∞
C0

∑
k∈Λ̃

∫ η

−η

dt

∫
Πl =kg(λl)dλl Tr{ρ(HM,k

Λ −E− t)−ρ(Hm,k
Λ −E− t)}.

The expression involving the trace is basically the number of eigenvalues created

in the interval by increasing the kth-coupling constant from the minimum to the

maximum value. In fact, the trace can be rewritten in terms of the spectral shift
function (SSF). Estimates on the SSF are key to a good Wegner estimate and we

will discuss this in the next section. Let us note here that Weyl’s upper bound for

the eigenvalue counting function gives a crude estimate in terms of the volume:

(4.25) |Tr{ρ(HM,k
Λ − E − t)− ρ(Hm,k

Λ − E − t)}| ≤ C1|Λ|.
Finally, this estimate and equations (4.4) and (4.24), lead us to the result

(4.26) IP{dist (E, σ(HΛ)) < η} ≤ 2η
‖g‖∞C1

C0
|Λ|2.

This estimate is sufficient for the proof of localization for the models we will discuss.

There are two defects in the simple proof sketched above. First, the restriction

to the spectral gap of H0 was necessary for the crucial lower bound estimate (4.19)

following from Theorem 4.2. This lower bound is a form of the unique continuation

theorem for solutions to elliptic equations. Roughly, if the left side of (4.19) is

zero, this means that the eigenfunction φj vanishes on an open set. However, if φj

were analytic, this would imply that φj = 0 identically. A refined and quantitative

version of this type of result will allow us to get a good lower bound without using

Theorem 4.2. Secondly, the crude estimate on (4.25) is too big. The upper bound

should depend on the size of the support of the perturbation u, not the total volume

|Λ|.

LECTURES ON RANDOM SCHRÖDINGER OPERATORS 81
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4.3. The Wegner Estimate: Preliminaries. The optimal form of the Weg-

ner estimate has an upper bound that depends on the first power of the volume

and the first power of the length of the interval. This first power of the volume will

insure that the thermodynamic limit exists, whereas the first power of the interval

size will prove the Lipschitz continuity of the IDS via the bound, for E ≤ E′,

(4.27) 0 ≤ N(E′)−N(E) ≤ lim inf
|Λ→∞

IE{Tr(EΛ([E, E′])}.

We will prove, then, for any small energy interval,

(4.28) IE{TrEΛ([E, E′])} ≤ CI |E − E′||Λ|,
for some locally uniform constant CI . In order to prove the Lipschitz continuity,

we will assume that the single-site probability distribution has a bounded density

with compact support. Much more general situations are discussed in [28].

In order to control the background operator, we make the assumption that

H0 = (−i∇ − A0)
2 + V0 is a periodic Schrödinger operator with a real-valued,

periodic, potential V0, and a periodic vector potential A0. We assume that V0 and

A0 are sufficiently regular so that H0 is essentially self-adjoint on C∞
0 (IRd). We

assume that both V0 and A0 are periodic with respect to the group Γ = ZZd because

of the form of the Anderson-type potential. We note that we could work with a

nondegenerate lattice Γ, by defining a corresponding Anderson-type potential, but

we will explicitly treat the case Γ = ZZd.

Concerning the Anderson-type random potential, We will always make the

following four assumptions:

(A1): The background operator H0 = (−i∇ − A0)
2 + V0 is a lower semi-

bounded, ZZd-periodic Schrödinger operator with a real-valued, ZZd-periodic,

potential V0, and a ZZd-periodic vector potential A0. We assume that V0

and A0 are sufficiently regular so that H0 is essentially self-adjoint on

C∞
0 (IRd).

(A2): The periodic operator H0 has the unique continuation property (UCP),

that is, for any E ∈ IR and for any function φ ∈ H2
loc(IR

d), if (H0−E)φ =

0, and if φ vanishes on an open set, then φ ≡ 0.

(A3): The nonzero, nonnegative, compactly-supported, single-site potential

u ∈ L∞
0 (IRd), and it is strictly positive on a nonempty open set.

(A4): The random coupling constants {λj(ω) | j ∈ ZZd}, are independent

and identically distributed. The distribution has a density h0 ∈ L∞(IR)

with supp h0 ⊂ [0, 1].

We make three important comments on these hypotheses:

(1) For a given density h0 of compact support [m, M1], we can always add

the periodic potential m
∑

j uj , with uj(x) = u(x− j), to the background

potential V0, so that the random coupling constants take their value in an

interval [0, M ], with M = M1 −m.

(2) Because of the explicit disorder parameter λ > 0, we can rescale the

coupling constants so that, without loss of generality, the support of h0 is

included in the interval [0, 1].

(3) Hypotheses (A1) and (A2) imply the following. There exists a finite con-

stant C1(u, M, d) > 0, depending only on the single-site potential u, and
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the dimension d ≥ 1, so that for all Λ ⊂ IRd,

(4.29) 0 ≤ V 2
Λ ≤ C1(u, d)ṼΛ,

where VΛ and ṼΛ are defined in (1.3) and (1.4), respectively. This simple

inequality is used in the proof of Theorem 4.3.

These hypotheses overlap with the hypotheses of chapter 1. As we have dis-

cussed, the Wegner estimate and the continuity of the IDS are very closely related.

We first give the result on the Wegner estimate.

Theorem 4.3. Assume hypotheses (A1)–(A4). Let ∆ ⊂ IR be a bounded, closed
interval. Then, there exists a finite constant CW > 0, locally uniform in energy,
and depending on d, u, and λ > 0, so that

(4.30) IE{TrEΛ(∆)} ≤ CW |Λ| |∆|.
We note that one can show that CW ∼ 1/λ. It is possible to obtain a weaker

Wegner estimate for which the constant CW is independent of λ (cf. [27] and an

application to continuity of the IDS with respect to the disorder in [73]). This

has consequences for the continuity, with respect to the disorder λ of the IDS [73].

Under the same conditions, we obtain the following Lipschitz continuity result on

the IDS.

Theorem 4.4. Assume hypotheses (A1)–(A4). Then, the IDS N(E) for the
random family Hω(λ) = H0 +λVω, for λ �= 0, is locally Lipschitz continuous on IR.

4.3.1. Quantitative Unique Continuation Principle. Before we sketch the proof

of Theorem 4.3, we must discuss an important consequence of hypothesis (A2) on

the background operator H0 that we refer to as a quantitative UCP. We first recall

the Floquet decomposition of a Γ-periodic operator. Let Γ∗ denote the dual lattice,

that is, Γ∗ = {γ′ | γ · γ′ ∈ 2πZZ, for all γ ∈ Γ}. We let IT d = IRd/ZZd be the

torus, and (IT d)∗ = (IRd)∗/(ZZd)∗ be the dual torus. We denote by C0 the unit cell

for Γ = ZZd, and by C∗
0 the unit cell for Γ∗ = (ZZd)∗. The Floquet decomposition

of H0 yields a family of operators H0(θ), for θ ∈ (IRd)∗. Each operator H0(θ) is

self-adjoint on L2(IT d), and has a compact resolvent. We denote the eigenvalues of

H0(θ) by En(θ). The spectrum of H0 is given by

(4.31) σ(H0) =
⋃

θ∈(IT d)∗
σ(H0(θ)) =

⋃
n∈IN

⋃
θ∈(IT d)∗

En(θ).

For an open, relatively compact interval ∆ ⊂ IR, we let E0(∆, θ) denote the spectral

projector of H0(θ) onto the eigenspace of H0(θ) spanned by its eigenfunctions with

eigenvalues En(θ) ∈ ∆. Because of the discreteness of the spectrum of H0(θ), the

dimension of RanE0(∆, θ) is finite and locally constant.

We also need to consider H0 as an nΓ-periodic operator for any n ∈ IN . Let

Hn
0 (θ) be the operator H0 restricted to the torus IRd/(nΓ), with θ-quasi-periodic

boundary conditions. For I ⊂ IR, an interval, let En
0 (I, θ) denote the spectral

projection onto the interval I for Hn
0 (θ). We remark that in section 2 we took

I = ∆̃. Finally, for any Γ-periodic function g, we write g(n) for the same function

understood as an nΓ-periodic function.

Theorem 4.5. Let V : IRd → IR be a bounded, real-valued, Γ-periodic function.
Consider a bounded interval I ⊂ IR. Then, if there exists a finite constant C(I, V ) >
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LECTURES ON RANDOM SCHRÖDINGER OPERATORS 43

0 such that, for all θ ∈ IRd, one has

(4.32) E0(I, θ)V E0(I, θ) ≥ C(I, V )E0(I, θ),

then, for all n ≥ 1 and all θ ∈ IRd, one has, with the same constant C(I, V ),

(4.33) En
0 (I, θ)V (n)En

0 (I, θ) ≥ C(I, V )En
0 (I, θ),

where V is considered as a Γ-periodic function in (4.1), and V (n) represents the
corresponding nΓ-periodic function in (4.2).

We next show that, in fact, condition (4.1) holds for a wide family of periodic

potentials V . We remind the reader that in the applications, we will take the

potential V appearing in (4.1) to be the single-site potential u, restricted to the unit

cell Λ1(0), viewed as a Γ-periodic function. The nΓ-periodic function appearing in

(4.2) is Ṽ (x) =
∑

j u(x− j), restricted to Λ(n), where Λ(n) is the basic nΓ-periodic

cell.

Theorem 4.6. Let V : IRd → IR be a bounded, Γ-periodic, nonnegative func-
tion. Suppose that V > 0 on some open set and H0 has the unique continuation
property. Then, condition (4.1) holds for any compact interval I ⊂ IR with a finite
constant C(I, V ) > 0.

As a summary of these results, we have the following. Let Λ ⊂ IRd be a ZZd-

periodic cell. There exists a finite constant C0 > 0, depending only on u and the

dimension d, so that for any closed, bounded interval I ⊂ IR, we have

(4.34) EΛ
0 (I)ṼΛEΛ

0 (I) ≥ C0E
Λ
0 (I).

This is the quantitative UCP. It plays a key role in the proof of Theorem 4.3.

4.3.2. Spectral Averaging. The second ingredient is the spectral averaging re-

sult, Theorem 3.1 of chapter 3, and its Corollary 3.1. We use this estimate (3.43)

as follows. Let E0 ∈ IR be fixed and arbitrary. We consider an interval ∆ε =

[E0, E0 + ε], for some fixed 0 < ε < ∞. A simple use of the spectral theorem for a

self-adjoint operator H with spectral family EH(·) shows that∫
∆ε

dE 〈φ,�(H − E − iε)−1φ〉

= 〈φ,

[
tan−1

(
E0 + ε−H

ε

)
− tan−1

(
E0 −H

ε

)]
φ〉

≥ (tan−1 1)〈φ, EH(∆ε)φ〉 = (π/4)〈φ, EH(∆ε)φ〉,(4.35)

so that

(4.36) 〈φ, EH(∆ε)φ〉 ≤ 4

π

∫
∆ε

dE 〈φ,�(H − E − iε)−1φ〉.

We combine (4.36) with Theorem 3.1 to obtain

(4.37) IE{〈φ, ujEΛ(∆)ujφ〉} ≤ 8|ε| ‖φ‖2.
We remark that Theorem 3.3 leads to a similar upper bound for more general

probability distributions with the factor ε replaced by the Levy concentration s(ε)
of the probability measure as described in (3.35) and Corollary (3.1), see also [28].
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4.4. Proof of Theorem 4.3. 1. As in section 2, we need to estimate

(4.38) IE{TrEΛ(∆)}.
We begin with a decomposition relative to the spectral projectors EΛ

0 (·) for the

operator HΛ
0 . We write

(4.39) TrEΛ(∆) = TrEΛ(∆)EΛ
0 (∆̃) + TrEΛ(∆)EΛ

0 (∆̃c).

We require ∆ ⊂ ∆̃ satisfy |∆| < 1 and that the distance from the interval ∆ to

the unbounded set ∆̃c be strictly positive, that is, d∆ > 0. If ∆̃, and consequently

∆, lies in a spectral gap of H0, then only the second term on the right in (4.39)

contributes and the result follows from (4.49). Hence, we only need to consider the

case when ∆ does not lie in a spectral gap of H0.

2. The term involving ∆̃c is estimated as follows. Since EΛ(∆) is trace class, let

{φΛ
m} be the set of normalized eigenfunctions in its range. We expand the trace in

these eigenfunctions and obtain

(4.40) TrEΛ(∆)EΛ
0 (∆̃c) =

∑
m

〈φΛ
m, EΛ

0 (∆̃c)φΛ
m〉.

From the eigenfunction equation (HΛ
ω − Em)φΛ

m = 0, we easily obtain

−(HΛ
0 − Em)−1EΛ

0 (∆̃c)VΛφΛ
m = EΛ

0 (∆̃c)φΛ
m.

Substituting this into the right side of (4.40), and resumming to obtain a trace, we

find

(4.41) TrEΛ(∆)EΛ
0 (∆̃c) =

∑
m

〈φΛ
m,

(
VΛ

EΛ
0 (∆̃c)

(HΛ
0 − Em)2

VΛ

)
φΛ

m〉.

We next want to replace the energy Em ∈ ∆ in the resolvent in (4.41) by a fixed

number, say −M , assuming HΛ
0 > −M > −∞. To do this, we define an operator

K by

(4.42) K ≡
(

HΛ
0 + M

HΛ
0 − Em

)2

EΛ
0 (∆̃c),

and note that K is bounded, independent of m, by

‖K‖ ≤ K0 ≡
[
1 +

2(M + ∆+)

d∆
+

(M + ∆+)2

d2
∆

]
,

where ∆ = [∆−, ∆+]. Now, for any ψ ∈ L2(IRd),〈
ψ,

EΛ
0 (∆̃c)

(HΛ
0 − Em)2

ψ

〉
≤

〈
EΛ

0 (∆̃c)

(HΛ
0 + M)

ψ, K
EΛ

0 (∆̃c)

(HΛ
0 + M)

ψ

〉

≤ K0

〈
ψ,

EΛ
0 (∆̃c)

(HΛ
0 + M)2

ψ

〉

≤ K0

〈
ψ,

1

(HΛ
0 + M)2

ψ

〉
,(4.43)

since EΛ
0 (∆̃c) ≤ 1. We use the bound (4.43) on the right in (4.41) and expand the

potential. To facilitate this, let χ ≥ 0 be a function of compact support slightly
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larger than the support of u, and so that χu = u. We set χj(x) = χ(x − j), for

j ∈ ZZd. Returning to (4.41), we obtain the bound

TrEΛ(∆)EΛ
0 (∆̃c) ≤ K0 TrEΛ(∆)

(
VΛ

1

(HΛ
0 + M)2

VΛ

)
≤ K0

∑
i,j∈Λ̃

|ωiωj |
∣∣∣∣ Tr

[
ujEΛ(∆)ui ·

(
χi

1

(HΛ
0 + M)2

χj

)]∣∣∣∣
≤ K0

∑
i,j∈Λ̃

∣∣∣∣ Tr

[
ujEΛ(∆)ui ·

(
χi

1

(HΛ
0 + M)2

χj

)]∣∣∣∣ .
(4.44)

3. Let us make the simplifying assumption that uiuj = 0, if i �= j. This is the case

when u has support inside a unit cube. It is also the most difficult case. We refer

to [28] for the general case. We note that the operator Kij ≡ χi(H
Λ
0 + M)−2χj

in (4.41) is trace class for d = 1, 2, 3. It is proved in [28] that the operator Kij

is trace class in all dimensions when χiχj = 0, and the trace norm ‖Kij‖1 decays

exponentially in ‖i− j‖ as

(4.45) ‖Kij‖1 = ‖χi(H
Λ
0 + M)−2χj‖1 ≤ C0e

−c0‖i−j‖, i i �= j,

for positive constants C0, c0 > 0 depending on M . This exponential decay is crucial

for controlling the double sum in (4.44) in order to obtain just one power of the

volume. Omitting some technical details that arise in dimensions d > 3, we write

the trace on the last line of (4.44) as

(4.46)
∑

i,j∈Λ̃

Tr[ujEΛ(∆)ui ·Kij ],

with Kij trace class and satisfying the decay estimate (4.45). The canonical repre-

sentation of ˜K(n)ij (where we write j for jn) is

K̃(n)ij =
∑

l

µ
(ij)
l |φ(ij)

l 〉〈ψ(ij)
l |

where (φ
(ij)
l )l, (ψ

(ij)
l )l are orthonormal families and

∑
l |µ(ij)

l | < +∞.

Inserting this into (4.46), we obtain∑
i,j∈Λ̃

Tr[ujEΛ(∆)ui ·Kij ] ≤
∑

i,j∈Λ̃

∑
l

µ
(ij)
l 〈ψ(ij)

l , ujEΛ(∆)uiφ
(ij)
l 〉

≤
∑

i,j∈Λ̃

∑
l

µ
(ij)
l

{
〈ψ(ij)

l , ujEΛ(∆)ujψ
(ij)
l 〉+

〈φ(ij)
l , uiEΛ(∆)uiφ

(ij)
l 〉

}
.(4.47)

It follows from (4.37) that the expectation of the matrix elements in (4.47) satisfy

the following bound

(4.48) IE{〈ψ(ij)
l , ujEΛ(∆)ujψ

(ij)
l 〉} ≤ 8|∆|.

Returning to (4.44), we obtain

(4.49) TrEΛ(∆)EΛ
0 (∆̃c) ≤ K0C(u, m)|∆||Λ|.
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3. As for the first term on the right in (4.39), we use the fundamental assumption

(4.34). As in [25], we will use the spectral projector E0(∆̃) of HΛ
0 in order to

control the trace. We have

TrEΛ(∆)EΛ
0 (∆̃) ≤ 1

C(∆̃, u)

{
TrEΛ(∆)EΛ

0 (∆̃)ṼΛEΛ
0 (∆̃)

}
≤ 1

C(∆̃, u)

{
TrEΛ(∆)ṼΛEΛ

0 (∆̃)

−TrEΛ(∆)EΛ
0 (∆̃c)ṼΛEΛ

0 (∆̃)
}

.(4.50)

We estimate the second term on the right in (4.50). Using the Hölder inequality

for trace norms, we have, for any κ0 > 0,

|TrEΛ(∆)EΛ
0 (∆̃c)ṼΛEΛ

0 (∆̃)|
≤ ‖EΛ(∆)EΛ

0 (∆̃c)‖2 ‖ṼΛEΛ
0 (∆̃)EΛ(∆)‖2

≤ 1

2κ0
TrEΛ

0 (∆̃c)EΛ(∆) +
κ0

2
TrEΛ(∆)EΛ

0 (∆̃)Ṽ 2
ΛEΛ

0 (∆̃)EΛ(∆).

(4.51)

We next estimate the second term on the right in (4.51). Let D0 be a finite constant

so that Ṽ 2
Λ ≤ D0ṼΛ. Using this, we find that for any κ1 > 0,

TrEΛ(∆)EΛ
0 (∆̃)Ṽ 2

ΛEΛ
0 (∆̃)EΛ(∆)

≤ D0‖EΛ(∆)EΛ
0 (∆̃)ṼΛ‖2 ‖EΛ

0 (∆̃)EΛ(∆)‖2
≤ D0κ1

2
TrEΛ(∆)EΛ

0 (∆̃)Ṽ 2
ΛEΛ

0 (∆̃)EΛ(∆) +
D0

2κ1
TrEΛ(∆)EΛ

0 (∆̃).

We choose κ1 = 1/D0 > 0 so that (1−D0κ1/2) = 1/2. Consequently, we obtain

(4.52) TrEΛ(∆)EΛ
0 (∆̃)Ṽ 2

ΛEΛ
0 (∆̃)EΛ(∆) ≤ D2

0TrEΛ(∆)EΛ
0 (∆̃).

Inserting this into (4.51), we find

(4.53)

|TrEΛ(∆)EΛ
0 (∆̃c)ṼΛEΛ

0 (∆̃)| ≤ 1

2κ0
TrEΛ

0 (∆̃c)EΛ(∆) +
κ0D

2
0

2
TrEΛ(∆)EΛ

0 (∆̃).

As a consequence of (4.53), we obtain for the first term on the right in (4.39),(
1− κ0D

2
0

2C(∆̃, u)

)
TrEΛ(∆)EΛ

0 (∆̃)

≤ 1

C(∆̃, u)
|TrEΛ(∆)ṼΛEΛ

0 (∆̃)|+ 1

2κ0C(∆̃, u)
TrEΛ(∆)EΛ

0 (∆̃c).

We choose κ0 = C(∆̃, u)/D2
0 so that we have

(4.54)

TrEΛ(∆)EΛ
0 (∆̃) ≤ 2

C(∆̃, u)
|TrEΛ(∆)ṼΛEΛ

0 (∆̃)|+ D2
0

C(∆̃, u)2
TrEΛ(∆)EΛ

0 (∆̃c).
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As for the first term on the right in (4.54), we use Hölder’s inequality and write

|TrEΛ(∆)ṼΛEΛ
0 (∆̃)|

≤ ‖EΛ
0 (∆̃)EΛ(∆)‖2 ‖EΛ(∆)ṼΛEΛ

0 (∆̃)‖2
≤ 1

2σ
‖EΛ

0 (∆̃)EΛ(∆)‖22 +
σ

2
‖EΛ(∆)ṼΛEΛ

0 (∆̃)‖22
≤ 1

2σ
TrEΛ

0 (∆̃)EΛ(∆) +
σ

2
TrEΛ

0 (∆̃)ṼΛEΛ(∆)ṼΛEΛ
0 (∆̃),(4.55)

for any constant σ > 0. In light of the coefficient in (4.54), we choose σ = 2/C(∆̃, u)

and obtain from (4.54) and (4.55),

TrEΛ(∆)EΛ
0 (∆̃) ≤ 4

C(∆̃, u)2
TrEΛ

0 (∆̃)ṼΛEΛ(∆)ṼΛEΛ
0 (∆̃)

+
2D2

0

C(∆̃, u)2
TrEΛ(∆)EΛ

0 (∆̃c).(4.56)

The second term on the right in (4.56) is bounded above as in (4.47) and (4.49).

4. We estimate the first term on the right in the last line of (4.56). Let f∆ ∈
C∞

0 (IR) be a smooth, compactly-supported, nonnegative function 0 ≤ f ≤ 1, with

f∆χ∆ = χ∆, where χ∆ is the characteristic function on ∆. Note that we can take

|supp f | ∼ 1 so that the derivatives of f are order one. By positivity, we have the

bound

TrEΛ
0 (∆̃)ṼΛEΛ(∆)ṼΛEΛ

0 (∆̃)

= TrEΛ(∆)ṼΛEΛ
0 (∆̃)ṼΛEΛ(∆)

≤ TrEΛ(∆)ṼΛf∆(HΛ
0 )ṼΛEΛ(∆).(4.57)

Recall that χj is a compactly-supported function so that ujχj = uj . Upon expand-

ing the potential ṼΛ, the term on the right in (4.57) is

(4.58)
∑

j,k∈Λ̃

Tr ukEΛ(∆)uj · χjf∆(HΛ
0 )χk.

The operator χjf∆(HΛ
0 )χk is a nonrandom, trace class operator. As with the

operator Kij in (4.44), it admits a canonical representation

(4.59) χjf∆(HΛ
0 )χk =

∑
l

λ
(jk)
l |φ(jk)

l 〉〈ψ(jk)
l |,

for orthonormal functions φ
(jk)
l and ψ

(jk)
l . This operator also satisfies a decay

estimate of the type

(4.60) ‖χjf∆(HΛ
0 )χk‖1 ≤ CN (f)(1 + ‖k − j‖2)−N ,

for any N ∈ IN and a finite positive constant depending on ‖f (j)‖ independent of

|∆|. This can be proved using the Helffer-Sjöstrand formula, see, for example, [64].
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Expanding the trace in (4.58) as in (4.47), we can bound (4.58) from above by

TrEΛ
0 (∆̃)ṼΛEΛ(∆)ṼΛEΛ

0 (∆̃) =
∑

l

∑
j,k∈Λ̃

λ
(jk)
l 〈ψ(jk)

l , ujEΛ(∆)ukφ
(jk)
l 〉

≤
∑

l

∑
j,k∈Λ̃

λ
(jk)
l {〈ψ(jk)

l , ujEΛ(∆)ujψ
(jk)
l 〉

+〈φ(jk)
l , ukEΛ(∆)ukφ

(jk)
l 〉}.(4.61)

It is now clear that each matrix element can be estimated as in part 3 applying

(4.37). This completes the proof. �

5. Resolvent Estimates and Multiscale Analysis

5.1. Introduction. In chapter 3 we derived a necessary condition for the

absence of singular and absolutely continuous spectrum for a one-parameter per-

turbation of an operator. We showed that the models discussed in chapter 1 fit into

this framework if we consider the variation of one-coupling constant while holding

the others fixed. In order to apply this theory, we must show that our family of

Hamiltonians satisfy the condition (A2) of section 3.4 for Lebesgue almost-every

energy in an interval near the band edges. Since the perturbed and unperturbed

Hamiltonians have structurally the same form (they differ only in the realization of

the perturbation), we must verify that

(5.1) sup
ε=0

‖R(E + iε)u‖ ≤ C(E),

for some finite constant and for almost-every energy in an interval near B̃− and

B̃+.

This is an estimate on the infinite-volume Hamiltonian which we expect to

have dense pure point spectrum in the energy interval we are considering. Thus, we

cannot expect such an estimate to hold at every energy. What saves the situation is

the fact that we are dealing with a random family of operators. Since the probability

that any fixed energy E is an eigenvalue of Hω is zero, we can expect that a bound

like (5.1) might hold with probability one.

How can we expect to prove such an infinite-volume estimate? Following the

notion of thermodynamic limit in statistical mechanics, Fröhlich and Spencer [56]

proved an almost-sure fixed energy resolvent bound for the multidimensional lat-

tice Anderson model through an iterative process starting with estimates on finite-

volume Hamiltonians. This technique is called multiscale analysis (MSA). The

work of Fröhlich and Spencer opened the way to proving localization for multidi-

mensional models. The technique was refined in the work of von Dreifus and Klein

[131], Spencer [120], and extended to continuous models in Holden and Martinelli

[101], Combes and Hislop [25], Barbaroux, Combes, and Hislop [8], and Kirsch,

Stollmann, and Stolz [86].

In this chapter, we provide a general framework for the fixed energy multiscale

analysis. We show that infinite-volume estimates such as (5.1) can be derived from

two basic estimates on the finite-volume Hamiltonians. These two estimates are the

Wegner estimate, proved in chapter 4, and the initial length scale estimate, referred

to as [H1](�0, γ0). The estimate [H1](�0, γ0) on the finite-volume Hamiltonians is

proved for additive perturbations in chapter 6.
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We also show how to improve these estimates in order to obtain exponential lo-

calization. The details of the inductive step in the multiscale analysis are presented

in chapter 6. Finally, we must show how to turn these fixed-energy estimates for the

resolvent with respect to one coupling coefficient into an almost sure estimate with

respect to the realizations of the potential. We present this probabilistic argument

in the last section of this chapter.

5.2. Some Probability Theory: The Borel-Cantelli Lemmas. We will

use repeatedly the two Borel-Cantelli Lemmas that we recall here. Let {An} be a

family of subsets of a given set X. We define two subsets of X, lim sup An and the

lim inf An, by

(5.2) lim inf
n

An ≡
∞⋃

k=1

⎛⎝⋂
k≥j

Aj

⎞⎠ ,

and

(5.3) lim sup
n

An ≡
∞⋂

k=1

⎛⎝⋃
k≥j

Aj

⎞⎠ .

Let us recall that x ∈ lim infn An if and only if x belongs to all but finitely many

of the sets An. Similarly, x ∈ lim supn An if and only if x belongs infinitely many

of the sets An. As subsets of X, it is clear that lim infn An ⊂ lim supn An.

Theorem 5.1. (The First Borel-Cantelli Lemma) Let {An ∈ F} be a countable
family of measurable subsets of Ω such that

∑
n IP (An) < ∞. Then, the measure

of the set of points that lie in infinitely-many of the sets An (that is, which occur
infinitely-often) is zero. That is, IP{lim supn An} = 0.

Theorem 5.2. (The Second Borel-Cantelli Lemma) Let {An ∈ F} be a count-
able family of measurable subsets of Ω which are independent and for which

∑
n IP (An) =

∞. Then, the measure of the points that lie in infinitely-many of the sets An (that
is, which occur infinitely-often) is one. That is, IP{lim supn An} = 1.

5.3. The Geometric Resolvent Equation. The basic idea which makes

the multiscale analysis practical for continuous models (see [101] for a presentation

using boundary conditions) is to use geometric methods for analysis of resolvents

which have been used extensively in semiclassical analysis (see, for example, [75]).

We review the notation that we have used in previous chapters. Let Λl be a cube

of side l centered at the origin

(5.4) Λl = {x ∈ IRd | |xi| < l/2, i = 1, ..., d}.
We fix some δ > 0. In practice, this δ is determined by diam(suppu). Let Λ,δ ⊂ Λl

be the subcube defined by

(5.5) Λ,δ ≡ {x ∈ Λl | dist (x, ∂Λl) > δ}.
Note that δ is independent of l. Let Λl(x) be a cube centered at x ∈ IRd. We

need smoothed characteristic functions χl such that χl ≥ 0, χl|Λ,δ = 1, and

supp (∇χl) ⊂ Λl \ Λ,δ. When working with length scales lk, we write χk and

Λk(x), for notational convenience. We also define Λδ to be the subset of Λ defined

as in (5.5).
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We treat the additive case in this chapter. We consider a random family Hω =

H0 + Vω of self-adjoint operators with a common dense domain D0 ⊂ L2(IRd). For

any regular region Λ ⊂ IRd, we define HΛ to be the local Hamiltonian associated

with Λ by either

(5.6) HΛ = H0 + VΛ, on L2(IRd),

where

(5.7) VΛ ≡ V | Λ,

or by

(5.8) HΛ = (H0 + Vω)|Λ, on L2(Λ),

with self-adjoint boundary conditions on ∂Λ. It is often convenient to use one form

or the other of the local Hamiltonian. The MSA is the same regardless of the form

used except that the equations hold on L2(IRd) in the first case, or L2(Λ) in the

second case. We will write H for either space.

Let RΛ(z) = (HΛ − z)−1 be the resolvent of HΛ on H. For two regions Λ ⊂
Λ′ ⊂ IRd, we can compare the resolvents RΛ(z) and RΛ′(z) associated with the local

Hamiltonians as follows. Let WΛ be the first-order differential operator defined by

(5.9) WΛ = [H0, χΛ].

We recall that supp(∇χΛ) ⊂ Λ\Λδ so that WΛ is localized near ∂Λ. To compare

the two resolvents, RΛ(z) and RΛ′(z), we write

(5.10) χΛ(HΛ′ − z) = (HΛ − z)χΛ −WΛ,

from which it follows that

(5.11) χΛRΛ′(z) = RΛ(z)χΛ + RΛ(z)W (χΛ)RΛ′(z),

acting as an operator on L2(IRd) or on L2(Λ′), where χΛ serves as the natural

injection. By taking the adjoint of (5.11) and replacing z by z, we can also write

this equation as

(5.12) RΛ′ (z)χΛ = χΛRΛ(z)−RΛ′ (z)W (χΛ)RΛ(z).

We used the fact that VΛ′ |Λ = VΛ. This last relation VΛ′ |Λ = VΛ does not always

hold, especially if the support of the single-site potential extends beyond the unit

cube Λ1(0). The difference, however, can be easily incorporated into the MSA. We

refer to either of the geometric resolvent eqautions, (5.11) or (5.12), as the GRE.

5.4. The ELF Theorem. The name of this theorem was inspired by the

French oil company ELF, since it is what makes the MSA work. We also name

the ingredients ε, length-scale �, and f . This is the basic theorem that allows us

to control the iteration of resolvent estimates for finite-volume Hamiltonians over

several increasing length scales. We need the following:

(i) {εn}, a monotone decreasing sequence of positive numbers

with lim
n→∞ εn = 0;

(ii) {lk}, a monotone increasing length scale: lk ↑ ∞;

(iii) f > 0, is a non-decreasing function with (1/f) ∈ L2
loc

(IR).
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For example, we can take f(s) = 〈s〉α, for any α < 1/2.

We need two basic hypotheses on the local Hamiltonians Hk ≡ HΛ�k
, where �k

is a length scale as in (ii) above, and their resolvents Rk(z) ≡ (Hk − z)−1:

[H1]. For each k ∈ IN , there exists a probability P̃k, with (1− P̃k) ∈ �1(IN), such
that

(5.13) IP{sup
ε>0

‖W (χk)Rk(ε)χk−1‖ ≤ ε2k+1} ≥ P̃k.

Note that this requires estimates over multiple length scales, and is not practical

from a computational point of view. We will improve this below. The second

hypothesis is a Wegner estimate on each length scale:

[H2]. For some sequences {lk} and {εk}, as in [H1], we have ∀ k ∈ IN ,

(5.14) Pk ≡ IP{dist (σ(Hk), E) < f(εk)} ∈ �1(IN).

Given these two hypotheses, the basic result is

Theorem 5.3. Let {lk}, {εk}, and f be as above and suppose c is a function
of compact support. If [H1] and [H2] hold, then for IP -almost every ω there exists
a constant 0 < dω < ∞ such that

(5.15) sup
ε>0

‖(H − E − iε)−1c‖ ≤ dω‖c‖∞.

Proof. Since c has compact support, there is a k0 so that for all k > k0, we have

χkc = c. We choose k large enough so χk−1c = c. Let R(εk) ≡ (H − E − iεk)−1.

Applying the geometric resolvent equation twice, we obtain,

R(εk+1)R(εk)c = R(εk+1){χkRk(εk) + R(εk)WkRk(εk)}c
= χkRk(εk+1)Rk(εk)c + R(εk+1)WkRk(εk+1)Rk(εk)c

+R(εk+1)R(εk)WkRk(εk)c

= I + II + III.(5.16)

By hypothesis [H1],

(5.17) ‖III‖ ≤ ||c||∞ ε2k+1 ·
(

1

εk+1

)(
1

εk

)
≤ ‖c‖∞,

with probability ≥ P̃k. As for II, we use the first resolvent formula for Rk and

obtain,

(5.18)

‖R(εk+1)Wk[Rk(εk+1)−Rk(εk)](εk+1 − εk)−1c‖

≤ 1

εk+1
· 1

(εk − εk+1)
· (‖WkRk(εk+1)c‖+ ‖WkRk(εk)c‖) .

By choosing a subsequence, if necessary, we assume that εk > 2εk+1. Then, the

bound in (5.18) is less than

(5.19) 2 · 1

ε2k+1

· ε2k+1 · ||c||∞ ≤ 2‖c‖∞,

with a probability ≥ P̃k. As for I, [H2] implies that

(5.20) ||I|| ≤ 1

f(εk+1)

1

f(εk)
||c||∞ ≤ 1

f(εk)2
||c||∞,
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with a probability ≥ 1− Pk. Hence, the event

(5.21) Bk ≡
{

ω ∈ Ω| ‖R(εk+1)R(εk)c‖ ≤ 2‖c‖∞
f(εk)2

}
,

occurs with probability

(5.22) IP (Bk) ≥ P̃k − Pk,

or

(5.23) IP (Bc
k) ≤ 1− P̃k + Pk.

But, by our assumptions,

(5.24)
∑

k

IP (Bc
k) ≤

∑
k

(1− P̃k) +
∑

k

Pk < ∞.

By the first Borel Cantelli lemma 5.1, it follows that IP{lim supk Bc
k} = 0.

As (lim sup Bc
k)c = lim inf Bk, we have that IP (lim inf Bk) = 1. So for any ω ∈

lim infk Bk, there exists a k0(ω), so that for all k > k0(ω), the event on the right in

(5.21) occurs. Consequently, for k > k0(ω), we write

(5.25)

R(εk) = R(εk0) +

k−1∑
l=k0

(R(εl+1)−R(εl))

= R(εk0) +

k−1∑
l=k0

(εl+1 − εl)R(εl+1)R(εl).

Since ω ∈ Bl, we use the estimate on the right in (5.21), and obtain

(5.26) ‖R(εk)c‖ ≤ ‖R(εk0)c‖+

k−1∑
l=k0

(
2‖c‖∞ (εl − εl+1)

f(εl)2

)
.

The sum is finite and bounded by a constant due to the fact that (1/f)2 ∈ L1(IR).

As a consequence, for each ω ∈ lim inf Bk, a set of full measure, there is a finite

constant C(c, ω) > 0 so that

(5.27) lim sup
k→∞

‖R(εk)c‖ ≤ C(c, ω) < ∞,

with probability one. �

5.5. Reduction to an Initial Length Scale Estimate. We next want to

show how to simplify [H1] by reducing it to an initial estimate at one length scale.

We have two new hypotheses modifying [H1]-[H2].

[H1](γ0, l0). For some γ0 > 0 and length l0 >> 1, such that γ0�0 >> 1, there exists
an exponent ξ > 2d such that

(5.28) IP

{
sup
ε>0

‖W (χl0)RΛl0
(E + iε)χl0/3‖ ≤ e−γ00

}
≥ 1− l−ξ

0 .

The next version of [H2] is satisfied by the models for which a Wegner’s estimate

can be proved.
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[W] There exists constants 0 < CW < ∞, exponent 1 ≤ τ < infty, and 0 < q ≤ 1,
such that for all sufficiently large Λ, and all η > 0,

(5.29) IP{dist (σ(HΛ), E) < η} ≤ CW |Λ|τηq.

The main technique result, which requires the multiscale analysis, consists in

proving

[H1](γ0, l0) + [W] ⇒ [H1].

This is given in the following lemma, whose proof we give in chapter 8.

Lemma 5.4. Let γ0 > 0 and assume [W]. There exists a minimum length scale
l∗ = l∗(γ0, CW , τ, q, d), such that if [H1](γ0, l0) holds for l0 > l∗, then for length
scales lk ≡ l

(3/2)k

0 , ξ > 2d, ∃ 0 < κ < ∞ such that for each k

IP{||WlkRlk(E + iε)χlk/3|| ≤ e−κγ0lk} ≥ 1− l−ξ
k .

A consequence of this lemma is an improvement in the hypotheses of Theorem

5.3.

Theorem 5.5. Let γ0 > 0 and assume [W]. There exists a minimum length
scale l∗ = l∗(γ0, CW , τ, q, d), such that if [H1](γ0, �0) holds for �0 > �∗, and if c
is any function of compact support, then for almost every ω, there exists a finite
constant dω(c) < ∞ such that

(5.30) sup
ε>0

||(H − E − iε)−1c|| ≤ dωδ(c).

Proof. From Lemma 5.4, we have [H1] in a strong form with:

εk+1 = (lk)−(3+δ1)τd, 0 < δ1 << 1;

lk = l
(3/2)k

0 ;

P̃k = 1− l−ξ
k , ξ > 2d.

We apply Theorem 5.1 with f(ε) = ε1/2−δ, 0 < δ << δ1. Then, we see that

1− P̃k ∈ l1, f−1 ∈ L2
loc

and

|Λk|τf(εk) = l−σ
k

for some σ > 0. This verifies the assumptions of the theorem. �

5.6. Exponential Decay Estimates. We now obtain exponential decay es-

timates on the infinite-volume resolvents with good probability. We observe that

Theorem 5.5 suffices to prove localization by condition (A2), Theorem 3.4, and the

results of the next section. If we want exponential decay of the eigenfunctions, we

need stronger estimates on the Green’s function. In the case that supp u is not

compact, we can only get polynomial decay estimates.
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Theorem 5.6. Let χx be the characteristic function of a unit cube centered at
x. Then, under the assumptions of Theorem 5.5, we have
(1) If c has compact support, then with probability one there exists a constant 0 <
dω < ∞ such that for all large ‖x‖,
(5.31) sup

ε>0
‖χxR(E + iε)c‖ ≤ dω‖c‖∞e

− 1
6
√

d
γ0‖x‖

.

(2) If c satisfies |c(x)| < δ(c)(1 + ‖x‖)−β, with β > 9dτ/2, then with probability
one there exists a constant 0 < dω < ∞ such that for ‖x‖ large,

(5.32) sup
ε>0

‖χxR(E + iε)c‖ ≤ dωδ(c)‖x‖−β/2

Proof. We take ‖x‖ large so 3lk−1 < |x| < 3lk for some k. Applying the GRE

(5.11) to R and R8lk , we obtain

(5.33) χxRc = χxR8lkχ8lkc + χxR8lkW8lkRc.

Let ck ≡ c|Λlk−1 . We estimate (5.33) by

(5.34) ‖χxRc ‖ ≤ ‖χxR8lkck‖+ ‖χxR8lkχ8lk(c− ck)‖+ c0‖χxR8lkW8lk‖,
where we used Theorem 5.3 to bound ‖Rc‖ with probability one. We now bound the

first and third terms using a variation of Lemma 5.4. When supp c is non-compact

one must use the decay of c to estimate the second term. �
Theorem 5.6 reduces the proof of exponential localization to the verification of

[H1](γ0, l0) and [W]. The proof of [W] is given in chapter 4. For the additive models

of chapter 1, the proof of [H1](γ0, l0) is presented in chapter 6.

5.7. Probabilistic Estimates for Localization. Let us fix a closed energy

interval I for which we can verify conditions [H1](γ0, �0) and [W] for the finite-

volume Hamiltonians. According to Theorem 5.3, we can then verify the key hy-

pothesis of (A2) on the perturbation of one-parameter families at each energy E ∈ I.

Recall that we consider fixing all but one random variable, say λ0, and study the

spectrum of the resulting one-parameter family of operators. The main result of

Theorem 3.4 states that under the condition (5.28) on the unperturbed Hamil-

tonian, the spectrum of the one-parameter family in the interval I is dense pure

point.

What we have proved is the following: for IP -almost every configuration ω,

there is a set Jω of values of the random variable λ0 for which the resulting one-

parameter family of operators Hω0,ω⊥ has pure point spectrum in the interval I.

The problem is that the set of λ0 values Jω depends on the initial configuration

ω chosen. Another way to think of this is as follows. Consider the configurations

ω̂ having the property that λ0(ω̂) = 0. There is a set of values λ0 for which the

configurations ω = (ω̂, λ0) for which (5.28) holds at almost-every energy in I. We

will show that configurations of this form have full measure. This will imply the

result. Hence, we need to turn this result into a result for almost-every configuration

ω.

In order to do this, we introduce a device of extending the probability space

(Ω, IP ) in the following manner. Let us define subsets Ω0 ⊂ Ω and Ω1 ⊂ Ω by

(5.35) Ω0 ≡ {ω | sup
ε>0

‖(H − E − iε)−1c‖ ≤ δ(c)Cω,E < ∞ ∀E ∈ I},
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and for any function c as in Theorem 5.6, and

(5.36) Ω1 ≡ {ω | Hω is pure point in I with finitely degenerate eigenvalues }.

The weak measurability of the spectral projectors show that the set Ω1 is measur-

able. Our goal is to show that IP (Ω1) = 1. Let ω ∈ Ω0 and consider the variation

of the random variable λ0. As in chapter 3, we write

(5.37) Hλ,ω = Hω + λu.

By Theorem 3.2, there exists a set Sω ⊂ supp g, such that
∫

Sω
g(λ)dλ = 1, for

which the following holds:

λ ∈ Sω → {H̃λ,ω has pure point spectrum in I

with finite multiplicities }.(5.38)

Here we write H̃λ,ω for the restriction of the operator in (5.37) to the cyclic subspace

generated by the action of f(H) on the set {u1/2φ | φ ∈ L2(IRd)}. In our models,

this cyclic subspace is the entire Hilbert spaces, so we will drop the tilde from the

notation. We define a third subset of Ω by

(5.39) Ω2 ≡ {(ω + λδ0i) | ω ∈ Ω0 and λ ∈ Sω}.

The notation ω + λδ0i means λj(ω + λδ0i) = λj(ω), for j �= 0, and λ0(ω + λδ0i) =

λ0(ω) + λ. Note that Ω2 ⊂ Ω1.

We now consider the quotient of each of the subspaces Ωi by IR along the zero

site. We denote by ω̂ those configurations in Ω for which λ0(ω̂) = 0. We define the

sets

(5.40) Ω̃i ≡ {ω̂ | ∃ µ ∈ IR so that ω̂ + µδ0i ∈ Ωi}.

We note an important identity: Ω̃0 = Ω2/IR ⊂ Ω̃1. Given an element ω̃ ∈ Ω̃i, we

define a section S(ω̃ | Ωi) by

(5.41) S(ω̃ | Ωi) ≡ {λ ∈ IR | (ω̂, λ) ∈ Ωi}.

These subsets of IR are measurable with respect to the measure g(λ)dλ and have

full measure.

We now compute the probability measure of the set Ω1 using Fubini’s Theorem.

For this, we note that Ω1 = Ω̃1 × S(ω̃|Ω1), that Ω̃0 ⊂ Ω̃1, with IP (Ω̃0) = 1, and

that S(ω̃|Ω1) ⊂ S(ω̃|Ω2). Using these relations, we can write∫
Ω1

dIP =

∫
Ω̃1

dĨP

∫
S(ω̃ | Ω1)

g(λ)dλ

≥
∫

Ω̃0

dĨP

∫
S(ω̃ | Ω2)

g(λ)dλ

= 1.(5.42)

Given the result on the H-cyclicity of the set {u1/2φ | φ ∈ L2(IRd)}, we have

proven that the set Ω1 has full probability measure.
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5.8. Probabilistic Estimates for Exponential Decay. We show how to

use the refined decay estimates of Theorem 5.6 to prove exponential decay of the

eigenfunctions for those ω exhibiting localization. The argument is similar to the

one presented in subsection 5.7. For the simplicity of presentation, we consider only

the case when the single-site potential u has compact support.

Let χn be the characteristic function for the unit cube centered at n ∈ ZZd. We

define a function fE(n) by

(5.43) fE(n) = e−γE‖n‖.

We define another set of configurations Ω0 ⊂ Ω as follows.

Ω0 ≡ {ω | sup
ε>0

‖χn(H − E − iε)−1c‖ ≤ δ(c)Cω,EfE(n)

for a. e. E ∈ I(δ0) and for all n large },(5.44)

and for any function c as in Theorem 5.6. It follows from Theorem 5.6 that IP (Ω0) =

1.

We now use the one-parameter theory to show that the eigenfunctions of Hω

decay exponentially. We use the notation Hλ,ω as in subsection 5.6. For any ω ∈ Ω0,

Theorem 3.4 implies that there exists a subset S(ω) ⊂ IR, of full measure, such that

λ ∈ S(ω) implies that Hλ,ω has pure point spectrum in I(δ0). For any E which is

an eigenvalue of Hλ,ω with eigenfunction ψE , it follows from the analysis in chapter

3 that

(5.45) −s− lim
ε→0

λ(Hω − E − iε)−1VωψE = ψE .

Since ω ∈ Ω0, we obtain for any n ∈ ZZd,

(5.46) ‖χnψE‖ ≤ Cω(E)fE(n),

where we used the normalization ‖ψE‖ = 1.

Let PE
ω be the spectral projector for Hω onto the eigenspace for the eigenvalue

E. We now define another subset Ω1 ⊂ Ω0 by

Ω1 ≡ {ω ∈ Ω | σ(Hω) ∩ I(δ0) is pure point and for any E ∈ σ(Hω) ∩ I(δ0),

and for any δ > 0,
∑

n

‖n‖−1−δfE(n)−1‖χnPE
ω ‖ < ∞}.(5.47)

Since the projector is weakly measurable and bounded, it follows that ‖χnPE
ω ‖ is

measurable, which implies that the set Ω1 is measurable.

To prove that IP (Ω1) = 1, we proceed as above. We define another set Ω2 ⊂ Ω

by

(5.48) Ω2 ≡ {ω + λδ0i | ω ∈ Ω0, λ ∈ S(ω)},
so that Ω2 ⊂ Ω1. We now consider the quotient of each of the subspaces Ωi by IR
along the zero site. We denote by ω̂ those configurations in Ω for which λ0(ω̂) = 0.

We define the sets

(5.49) Ω̃i ≡ {ω̂ | ∃ µ ∈ IR so that ω̂ + µδ0i ∈ Ωi}.
By construction, we have Ω̃0 = Ω̃2 ⊂ Ω̃1. Given an element ω̃ ∈ Ω̃i, we define a

section S(ω̃ | Ωi) by

(5.50) S(ω̃ | Ωi) ≡ {λ ∈ IR | (ω̂, λ) ∈ Ωi}.
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These subsets of IR are measurable with respect to the measure g(λ)dλ and have

full measure.

We can now compute the probability measure of the set Ω1 using Fubini’s

Theorem, as above, ∫
Ω1

dIP =

∫
Ω̃1

dĨP

∫
S(ω̃ | Ω1)

g(λ)dλ

≥
∫

Ω̃2

dĨP

∫
S(ω̃ | Ω2)

g(λ)dλ

= 1.(5.51)

Hence, for any ω ∈ Ω2, and for any E ∈ σ(Hω) ∩ I(δ0) with eigenfunction ψE ,

there exists a constant Cω(E) so that for any δ > 0,

(5.52) ‖χnψE‖ ≤ Cω(E)f(n)‖n‖δ/2.

Now let Jk be the characteristic function on the set Ak ≡ {x ∈ IRd | k− 1 < ‖x‖ <
k, k ∈ IN}. We define a function F by

(5.53) F (x) ≡ e(γ−ε)‖x‖.

We then have ∫
|F (x)ψE(x)|2 ≤

∑
k

∫
F (x)2Jk(x)|ψE(x)|2

≤
∑

k

Cω(E)F (k + 1)2kd+δf(k)2,(5.54)

which is finite. We complete the proof of exponential decay by using subsolution

estimates, as in [35], to pass from L2-bounds to pointwise bounds.

6. Localization for Families of Random Schrödinger Operators

6.1. Introduction. We are now in position to prove localization at band-edge

energies for random families of Schrödinger operators. In chapter 5, we established

two conditions on the local Hamiltonians which will guarantee localization. First,

we must establish an initial length-scale estimate for the local Hamiltonians at the

energies of interest:

[H1](γ0, �0). For some γ0 > 0, and for some length scale �0 > 0, so that γ0�0 >> 1,
there exists an exponent ξ > 2d such that

(6.1) IP{sup
ε>0

‖W (χ0)RΛ�0
(E + iε)χ0/3‖ ≤ e−γ00} ≥ 1− �0

−ξ.

Second, we must prove a Wegner estimate at those energies:

[W]. There exist constants 0 < CW < ∞, τ > 1, and σ > 0, so that for all |Λ|
sufficiently large and for all η > 0,

(6.2) IP{ dist(σ(HΛ), E) < η} ≤ CW (|Λ|τη + e−|Λ|σ ).

We note that for the Anderson and breather models, the probability estimate

in the Wegner estimate is much simpler: one can replace the right side of (6.2) by

CW η|Λ|.
We already proved [W ] in chapter 4. We prove condition [H1](γ0, �0) in this

chapter for additive perturbations. We refer the reader to the literature (for ex-

ample, [33]) for the case of multiplicative perturbations. Our general approach to
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proving this estimate is to study the dependence of the eigenvalues of the local

Hamiltonian HΛ on the random variables in Λ. We will prove that with a good,

nonzero probability, the eigenvalues will stay away from a small interval of ener-

gies near the band edges B̃− and B̃+. We can then apply the refined version of

the Combes-Thomas exponential decay estimate given in [8] in order to establish

the exponential decay of the localized resolvent at these energies. We mention

that whereas the Wegner estimate holds at all energies in the unperturbed spectral

gap G = [B−, B+], it is the estimate [H1](γ0, �0) which determines the interval of

energies for which we have localization.

6.2. Eigenvalues of the Local Hamiltonians. The goal of this section is

to prove the hypothesis [H1](γ0, �0) for finite-volume Hamiltonians corresponding

to the additively perturbed models introduced in chapter 1. Let us recall the

construction of the finite-volume Hamiltonians. As in previous chapters, we let

Λ ⊂ IRd denote a bounded open region, and Λ(x0) ≡ {x ∈ IRd | |xi − x0,i| <
�/2, i = 1, ..., d}. When x0 = 0, we will write Λ for simplicity. The potential

depending only on the ωi in a region Λ is denoted VΛ = (Vω|Λ). The finite-volume

Hamiltonians HΛ,ω are defined as HΛ,ω ≡ H0+VΛ. For notational simplicity, we will

omit the ω when writing HΛ, when no particular configuration is considered. Since

VΛ has compact support, it is a relatively compact perturbation of H0 and hence

σess(H0) = σess(HΛ). One of our first tasks is to locate precisely the eigenvalues

of HΛ in the unperturbed spectral gap G = (B−, B+) with good probability.

The condition [H1](γ0, �0) in (6.1) is an estimate on the decay of the on the

resolvent of HΛ, which we write as RΛ(z) = (HΛ − z)−1, when it exists. We recall

that the most general form of H0 is H0 = (p−A)2 +V0, where p ≡ −i∇, and A and

V0 are periodic vector-valued and scalar functions, respectively. For any χ ∈ C2,

define the first order differential operator W (χ) by

(6.3) W (χ) ≡ [H0, χ] = −i(p−A) · ∇χ− i∇χ · (p−A).

This operator is localized on the support of ∇χ. We choose any δ > 0 small, and let

Λ,δ ≡ {x ∈ Λ | dist(∂Λ, χ) > δ}. We will use χ to denote a function satisfying

χ|Λ,δ = 1, suppχ ⊂ Λ, and 0 ≤ χ ≤ 1. It follows that supp∇χ ⊂ Λ\Λ,δ,

and W (χ) is also localized in this region. With these definitions, the condition we

must verify is

[H1](γ0, �0). There exist γ0 > 0 and �0 >> 1, such that γ0�0 >> 1, and

(6.4) IP{ ‖W (χ)RΛ�
(E + iε)χ/3‖ ≤ e−γ00‖ } ≥ 1− �−ξ

0 ,

for E near the band edges B̃± and for some ξ > 2d.
We do this in two steps. We first prove that for δΛ > 0 small, dist(σ(HΛ), B̃±) >

δΛ, with good probability. We can then apply the Combes-Thomas result of Appen-

dix 2 to conclude exponential decay at energies E ∈ (B̃−−δΛ/2, B̃)∪(B̃+, B̃++δΛ/2)

with a good probability. We then verify [H1](γ0, �0) for an appropriate choice of γ0

and �0.
We now discuss the location of the spectrum of the finite-volume Hamiltonians

HΛ in the unperturbed spectral gap. Recall that by (H8) the family {Hω} has an

almost sure spectrum Σ with an open spectral gap (B̃−, B̃+). The probability space

for the models is Ω = (supp g)ZZd

.

LECTURES ON RANDOM SCHRÖDINGER OPERATORS 99
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Lemma 6.1. Suppose µ ≡ µΛ,ω0 ∈ σd(HΛ,ω0) ∩ (B−, B+), for some ω0 ∈ Ω,
then µ ∈ Σ.

Proof: Let ψω0 be an eigenfunction of HΛ,ω0 with eigenvalue µΛ,ω0 ≡ µ : HΛ,ω0ψω0 =

µψω0 , ‖ψω0‖ = 1. For any R such that Λ ⊂⊂ ΛR, and for any ν > 0, we define the

following events:

IR,ν ≡
{

ω ∈ Ω| |ω0 − ωi| ≤ ν(6|Λ| ‖u‖∞)−1 , ∀i ∈ Λ̃
}

,

and

ER,ν ≡
{

ω ∈ Ω| |ωi| < ν(6|Λ̃R\Λ̃| ‖u‖∞)−1 , ∀i ∈ Λ̃R\Λ̃
}

.

Set BR,ν ≡ IR,ν ∩ ER,ν . Let χ ∈ C2 be a smoothed characteristic function with

supp χ ⊂ Λ2, χ ≤ 1, and χ|Λ1 = 1. For R > 1, set χR(x) ≡ χ(R−1x) so that

‖∂αχR‖ = O(R−|α|), for |α| = 0, 1, 2. Choose R1 sufficiently large so ‖χR1ψω0‖ >
1
2 , and for R > R1 define ψR ≡ ‖χRψω0‖−1 χRψω0 so ‖ψR‖ = 1. Then, by the

definition of ψR and the local Hamiltonians,

(Hω − µ)ψR = (HΛ,ω0 − µ)ψR +
∑
i∈eΛ

(ωi − ω0)uiψR +
∑

i∈eΛR\Λ
ωiuiψR ,

and it follows that for all ω ∈ BR,ν,

(6.5) ‖(Hω − µ)ψR‖ ≤ 2‖ [H0, χR]ψω0‖+
1

3
ν

The commutator is estimated as follows. As H0 = (p−A)2 + V0, we have

(6.6) [(p−A)2, χR]ψω0 = −2i∆χR(p−A)ψω0 − (∆χR)ψω0 .

Now ψω0 is an eigenfunction of HΛ,ω0 and, in particular, ψω0 ∈ D(H0), so

(p−A)jψω0 = (p−A)j(H0 − z)−1(µ− z − VΛ,ω0)ψω0 .

Setting z = iδ , δ > 0, we obtain

(6.7) ‖(p−A)jψω0‖ ≤ δ−1‖µ− iδ − VΛ,ω0‖∞ .

which is independent of R. Hence, by taking R sufficiently large, it follows from

(6.5) that

‖(Hω − µ)ψR‖ ≤ 2

3
v .

This shows that for any ν > 0, σ(Hω)∩[µ−ν, µ+ν] �= ∅ with probability IP (BR,ν) =

IP (ER,ν)IP (IR,ν) > 0. Since the spectrum of {Hω} is deterministic, this implies

µ ∈ Σ. �
Lemma 6.2. Let µΛ,ω ≡ µ ∈ σd(HΛ,ω)∩(B−, B+), with eigenfunction φω, ‖φω‖ =

1. Assume that VΛ,ω ≥ 0. Then we have

〈φω, VΛ,ωφω〉 ≥ [dist(µ, σ(H0))]
2
M−1

∞ .

Proof: Since M∞VΛ,ω ≥ (VΛ,ω)2 under the hypothesis that VΛ,ω ≥ 0, we have

〈φω, VΛ,ωφω〉 = M−1
∞ 〈φω, M∞VΛ,ωφω〉

≥ M−1
∞ ‖VΛ,ωφω‖2 .

The eigenvalue equation gives VΛ,ωφω = −(H0 − µ)φω, so that

〈φω, VΛ,ωφω〉 ≥ M−1
∞ ‖(H0 − µ)φω‖2

≥ M−1
∞ [dist(σ(H0), µ)]

2
,
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which proves the estimate. �

Proposition 6.1. Let δ± ≡ 1
2 |B̃±−B±|, and for any 0 < δ < 1

2M−1
∞ min(δ+, δ−),

assume that ωi < (1− δM∞[min(δ+, δ−)]−2)M, ∀i ∈ Λ̃. Then we have

sup
{

σ(HΛ,ω) ∩ (−∞, B̃−)
}

< B̃− − δ

and

inf
{

σ(HΛ,ω) ∩ (B̃+,∞)
}

> B̃+ + δ .

Proof: Without loss of generality, we assume HΛ,ω has an eigenvalue µΛ,ω ≡
µ ∈ [B̃− − δ, B̃−]. Furthermore, we can assume that VΛ,ω ≥ 0, since by Lemma

6.1, we always have µ ≤ B̃− and the eigenvalues of HΛ,ω are increasing functions

of the coupling constants
{
ωi|i ∈ Λ̃

}
. This fact follows, for example, from the

Feynman-Hellman formula, Theorem 4.1, and the positivity of u. Indeed, if φω is

an eigenfunction of HΛ,ω, so that HΛ,ωφω = µφω, then

∂µΛ,ω

∂ωi
= 〈φω,

∂HΛ,ω

∂ωi
φω〉

= 〈φω, uiφω〉 > 0 .

The family T (θ) ≡ H0 + θVΛ,ω, for θ in a small neighborhood of θ0 = 1, is an

analytic type A family which is self-adjoint for θ real. If µ has multiplicity m, there

are at most m functions µ(k)(θ), analytic in θ for θ near θ0 = 1, and which satisfy

lim
θ→θ0=1

µ(k)(θ) = µ. Let φ(k)(θ) be an eigenfunction for µ(k)(θ), with ‖φ(k)(θ)‖ = 1

for θ real and |θ− 1| small. Applying the Feynman-Hellman formula again, we find

(6.8)
dµ(k)(θ)

dθ
= 〈φ(θ), VΛ,ωφ(θ)〉
= θ−1〈φ(θ), (θVΛ,ω)φ(θ)〉 .

We now assume ωi < (1− δM∞[min(δ+, δ−)]−2)M, ∀i ∈ Λ̃, and fix

θ1 =min
i∈eΛ

(
M

ωi

)
≥

(
1− δM∞ [min(δ+, δ−)]

−2
)−1

> 1 .

Applying Lemma 6.2 to VΛ,ω under these conditions yields

dµ(k)(θ)

dθ
≥ θ−1M−1

∞
[
dist(µ(k)(θ), σ(H0))

]2
,

Upon integrating over [1, θ1], we get, by monotonicity of µ(k)(θ):

µ(k)(θ1) ≥ µ + (logθ1)M
−1
∞ min

{[
dist(µ(k)(θ1), σ(H0))

]2
, [dist(µ, σ(H0))]

2
}

≥ µ + δ > B̃− .

This shows that
(
H0 +

∑
i∈eΛ Mui

)
has an eigenvalue outside of Σ which contradicts

Lemma 6.1. �
This proposition is the main technical result. We can now easily compute the

probability that dist(σ(HΛ,ω), B̃±) > δΛ.
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Corollary 6.1. For 0 < δ < 1
2M−1

∞ min(δ+, δ−), we have

sup
{

σ(HΛ,ω) ∩ (−∞, B̃−)
}

< B̃− − δ,

and

inf
{

σ(HΛ,ω) ∩ (B̃+,∞)
}

> B̃+ + δ,

with a probability larger than

1− |Λ| max
X=m,M

∣∣∣∣∣
∫ X

1−δM∞[min(δ+,δ−)]−2X

g(s)ds

∣∣∣∣∣
Proof: The probability that ωi < (1 − δM∞[min(δ+, δ−)]−2)M , ∀i ∈ Λ̃, is given

by
[
1− ∫M

(1−δM∞∆−2)M
h(s)ds

]|Λ|
. The corollary now follows by expanding this

probability and from Proposition 6.1.

6.3. Verification of [H1](γ0, �0). We verify [H1](γ0, �0) by combining Corol-

lary 6.1 on the location of the spectrum of HΛ�,ω and the exponential decay estimate

of [8]. We note that hypothesis (H6) on the decay of the tail of the density h near

the endpoints of its support m and M is essential in order to control the probability

in Corollary 6.1. We first give the decay estimate for the localized resolvent and

then comment on the gradient term.

Proposition 6.2. Let χi, i = 1, 2, be two functions with ‖χi‖∞ ≤ 1, supp χ1 ⊂
Λ/3 and supp χ2 localized near ∂Λ and δ± ≡ 1

2 |B̃+ − B̃−|. For β > 0 as in

(H6), consider any ν > 0 such that 0 < ν < 4β(2β + 3d)−1. Then ∃��
0 ≡

��
0(M∞, δ+, δ−, M) such that ∀�0 > ��

0 and ∀E ∈ (B̃−−�ν−2
0 , B̃−]∪ [B̃+, B̃+ +�ν−2

0 ),

sup
ε>0

‖χ2RΛ�0
(E + iε)χ1‖ ≤ e−

ν/3
0 ,

with probability ≥ 1− �−ξ
0 , for some ξ > 2d.

Proof: From Corollary 6.1 and (H7), we compute the probability that σ
(
HΛ�0 ,ω

)
is at a distance δ = 2�ν−2

0 from B̃±,

(6.9)

IP
{
dist

(
σ
(
HΛ�0 ,ω

)
, B̃±

)
> 2δ

}
≥ 1− �d

0

(
2�ν−2

0 M∞ [min(δ+, δ−)]
−2

X
)3d/2+β

,

where X = m for B̃− and X = M for B̃+. A simple computation shows that the

right side of (6.9) is bounded below by 1− �−ξ
0 for some ξ > 2d provided ν satisfies

0 < ν < 4β(2β + 3d)−1. We now apply the Combes-Thomas exponential decay

estimate [8] HΛ�0 ,ω. Since dist(supp χ2, suppχ1) ≥ �0/3 (in dimension d > 9, this

is no longer true; one has to replace �0/3 by �0/(3
√

d), for the diameter of the inner

cube), we obtain

‖χ2RΛ�0
(E + iε)χ1‖ ≤ C2 sup

(
|B̃+ − B̃−|−1, �2−ν

0

)
× e−inf(α0,C1

ν/2−1
0 | eB+− eB−|1/2)0/6

The result follows by taking �0 large. �
Corollary 6.2. There exists a length scale ��

0 > 0 such that ∀�0 > ��
0, hy-

pothesis [H1] (γ0, �0) holds ∀E ∈ (B̃− − �ν−2
0 , B̃−] ∪ [B̃+, B̃+ + �ν−2

0 ) and any ν
satisfying 0 < ν < 4β(2β + 3d)−1, β as in (H6).
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Proof: As in (8.23) of chapter 8, we write

(6.10)
‖W (χ,υ)RΛ�

χ/3‖ ≤ ‖(∆χ,υ)RΛ�
χ/3‖

+2
∑d

j=1 ‖(∂jχ,υ)(p−A)jRΛ�
χ/3‖

for a function χ,υ localized within distance υ of ∂Λ. Let χi, i = 1, 2, be smooth

functions such that χiχ,υ = χ,υ, χ2χ1 = χ1, and supp χi is localized within a

distance 2υ for i = 1 and 3υ for i = 2, of ∂Λ. Then, we write for each j and any

u ∈ L2(IRd),

‖(∂jχ,υ)(p−A)jRΛ�
u‖2 ≤ C0〈(p−A)jRΛ�

u, χ1(p−A)jχ2RΛ�
u〉

≤ C0‖χ2RΛ�
u‖ ‖(p−A)jχ1(p−A)jRΛ�

u‖
Taking u = χ/3f , we see that (6.10) is bounded above as in Proposition 6.2 (tak-

ing ��
0 larger) provided we have ‖(p − A)2RΛ�0

u‖ bounded. This follows with a

probability ≥ 1− �−ξ
0 , since V0 is relatively bounded and V

Λ�0
ω is bounded. �

7. Random Magnetic Schrödinger Operators and the Integer Quantum
Hall Effect

7.1. Overview: Integer Quantum Hall Effect. This chapter is devoted

to the study of the family of random Schrödinger operators describing an electron

moving in two-dimensions and subject to a random potential and a constant, trans-

verse magnetic field, and the application of this model to the integral quantum Hall

Effect (IQHE). The classic Hall effect for a thin conductor of width δ and infinite

spatial extend in the (x1, x2)-directions, may be described as follows (we follow

[15]). The conductor is viewed as a collection of fixed, positively charges centers

and a sea of negatively charged, noninteracting, electrons with charge q and density

n. The sample is subject to a transverse, constant magnetic field B = (0, 0, B). In

this ideal experiment, suppose that a constant electric field E = (E, 0, 0) is applied

in the x1-direction. This creates a current J of electrons moving in the x1-direction.

The Lorentz force, proportional to J ×B, acts on the electrons in the x2-direction.

As a result, a potential difference develops in the x2-direction with a corresponding

electric field, the Hall field EH , in the x2-direction. If the system is in equilibrium,

the force on the electrons from EH and the Lorentz force must balance, giving rise

to the equation

(7.1) nqEH + J ×B = 0.

We can solve this equation by taking the curl with the magnetic field B and obtain,

(7.2) J = σEH ,

Restricting to the (x1, x2)-plane, and changing to surface density δn, the 2 × 2

conductivity tensor σ has zero diagonal elements and nonvanishing off-diagonal

elements given by

(7.3) σ21 =
nqδ

B
= −σ12,

We call σ12 the Hall conductance σH . It is proportional to the electron density in

the plane nδ. This is the classic Hall effect and has been observed since the end of
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the nineteenth century. For comparison with the IQHE, we define the filling factor

by

(7.4) ν ≡ nδh

Bq
,

where h is Planck’s constant. In terms of this, the Hall conductance (7.3) is

(7.5) σH = ν
q2

h
,

which is proportional to the filling factor.

In the 1980’s, experimental techniques had advanced to the point where the

Hall effect experiments could be performed at very low temperatures. As is now

widely known, the law in (7.3) is not observed, but rather von Klitzing and co-

workers observed a quantization of the Hall conductivity. In particular, they found

that

(7.6) σH ∈ q2

h
IN,

That is, the Hall conductance is quantized in integer multiples of q2/h. As the

filling factor increases, the Hall conductance remains constant and then increases

by integer amounts. The experiments are extremely accurate. This behavior of

the Hall conductance can now be explained in terms of the Kubo formula for the

conductance and properties of one-particle random Schrödinger operators, see, for

example [15].

7.2. Landau Hamiltonians with Random Potentials. We consider a one-

particle Hamiltonian which describes an electron in two-dimensions (x1, x2) subject

to a constant magnetic field of strength B > 0 in the perpendicular x3-direction,

and a random potential Vω. The Hamiltonian Hω has the form

(7.7) Hω = (p−A)2 + Vω = HA + Vω,

on the Hilbert space L2(IR2), where p ≡ −i∇, and the vector potential A is

(7.8) A =
B

2
(x2,−x1),

so the magnetic field B = ∇× A is in the x3-direction. The random potential Vω

is Anderson-like having the form

(7.9) Vω(x) =
∑
i∈ZZ2

ωiu(x− i).

We denote by HA ≡ (p−A)2, the Landau Hamiltonian. As is well-known, the

spectrum of HA consists of an increasing sequence {En(B)} of eigenvalues, each of

infinite multiplicity, given by

(7.10) En(B) = (2n + 1)B, n = 0, 1, 2, . . .

We will call En(B) the nth Landau level and denote by Pn the projection onto the

corresponding subspace. The orthogonal projection is denoted by Qn ≡ 1− Pn.

This family of random Schrödinger operators plays a key role in the theory of

the integer quantum Hall effect (IQHE) described in section 7.1. Several recent dis-

cussions of the integer quantum Hall effect (IQHE) [14, 15, 70, 96, 108, 109, 126]

require certain spectral properties of this family of random, one-particle Schrödinger

operators. As proved in [15], the one-particle model of a free electron moving in two
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dimensions in the presence of a constant, transverse magnetic field will not exhibit

the IQHE. Rather, the conductance follows the classical law (7.3). At very low

temperatures, when dissipative effects are small, it is commonly believed that ran-

dom impurities in the sample provide a necessary mechanism for the quantization

of the Hall conductance and the appearance of the plateaus. The key hypothesis

on the spectral properties of one-particle Hamiltonian is the existence of regions of

localized states between the Landau levels.

In this chapter, we discuss the existence of localized states for Landau Hamil-

tonians with random perturbations. We provide the necessary arguments for the

Wegner estimate and the initial length scale estimate that are necessary for the

proof of the existence of localized states at energies between the Landau levels

En(B), and to within O(log B B−1) of the Landau energies, for fixed disorder and

large magnetic field depending on the Landau level n. The actual proof that these

estimates suffice to prove Anderson localization requires a more refined MSA than

that presented in chapter 8 here and we refer the reader to the original references

[62, 63].

There are two cases to consider. In the first case, the random potential is

bounded. For bounded perturbations, a large magnetic field means that there are

spectral gaps between the Landau bands of length O(B) since the Landau levels

broaden no more than ‖Vω‖∞, which is bounded independent of B. The corre-

sponding eigenfunctions for energies in the localized regime decay exponentially

with respect to distance and the magnetic field strength B. Kunz’s proof [96] of

the IQHE requires the existence of spectral gaps and localized states near the band-

edges with finite localization length. A consequence of his analysis is a proof that

the localization length diverges at some energy in each band. It is believed that

for neutral samples, the localization length should diverge precisely at the Landau

energy.

In the second case, the random potential is unbounded. Typically, the spectral

gaps no longer exist, having been completely filled-in by spectrum. The importance

of this case is discussed in a review article by Bellissard, van Elst, and Schulz-

Baldes [15]. These authors point out that in experiments, the disorder is strong

enough to fill the gap between the Landau levels. In their proof of the IQHE, they

require regions of localized states between the Landau energies in order that the

quantum Hall conductivity exhibits a plateau region. They do not require a spectral

gap. They prove that if the quantum Hall conductivity jumps by an integer (as

a function of the filling factor), then the localization length must diverge at some

energy between the localized state regions.

The second result presented in this chapter concerns the integrated density

of states. Using a proof simpler than the one presented in chapter 4, we prove

that, in general, the integrated density of states (IDS) is Lipschitz continuous at

all energies but the Landau energies. If, in addition, the support of the single

site potential u includes the unit cell, then the IDS is Lipschitz continuous at all

energies. It is now known that the IDS for the random Landau Hamiltonian is

Lipschitz continuous at all energies, [28, 29, 66], but the proof requires a different

version of the quantitative unique continuation principle. Much less is known about

the regularity of the IDS. W. M. Wang [134, 135] proved the smoothness of the

IDS at energies away from the Landau energies provided the single-site probability

density is smooth.
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From the point of view of models, the randomly perturbed Landau Hamiltonian

is interesting because the proof of localization requires the use of nontrivial results

from the theory of bond percolation. In particular, the critical probability for bond

percolation, the probability above which an infinite cluster exists almost surely,

enters in a key way.

7.3. A Description of the Model and the Main Results. We make the

following assumptions on the single-site potential u and the coupling constants {ωi}
appearing in the Anderson-type potential (7.7).

(V1) u ≥ 0, u ∈ C2, supp u ⊂ B(0, 1/
√

2), and ∃C0 > 0 and r0 > 0 s.t.

u|B(0, r0) > C0.

(V2) {ωi} is an independent, identically distributed family of random variables

with common distribution g ∈ L∞([−M, M ]), for some 0 < M ≤ ∞, s.t.

g(−ω) = g(ω), g(ω) > 0 Lebesgue a.e. ω ∈ [−M, M ], and for some ε > 0,

supω∈IR{ω3+εg(ω)} < ∞.

The condition on the decay of g implies that the first two moments are finite,

i.e.
∫ |ω|kg(ω)dω < ∞, for k = 0, 1, 2. The above condition does not require any

differentiability of the density g. If we require g to be twice differentiable, we can

replace (V2) by another condition.

(V2)’ {ωi} is an independent, identically distributed family of random variables

with common distribution g ∈ C2([−M, M ]), for some 0 < M ≤ ∞, s.t.

g(−ω) = g(ω), g(ω) > 0 Lebesgue a.e. ω ∈ [−M, M ], ‖g(p)‖1 < ∞, for

p = 0, 1, 2, and
∫M

−M
ω2g(ω) < ∞.

We remark for future use that either condition (V2) or (V2)’ implies that

(7.11) IP{ω ≥ ξ > 0} = O(ξ−N ), for all ξ > 0 large and some N ≥ 2.

An important example is the case of Gaussian distributed coupling-constants for

which g(ω) = (απ)−1/2e−αω2
, for some α > 0.

Our main theorem concerning localization for random Landau Hamiltonians is

the following [26, 63, 133].

Theorem 7.1. Let Hω be the family given in (7.7) with vector potential A as
in (7.8) with B > 0, and the random potential Vω as in (7.9), and satisfying (V1)
and either (V2) or (V2)’ Let In(B) denote the unbounded set of energies

In(B) ≡ (−∞, B −O(log B ·B−1)
]∪ n⋃

j=0

[
Ej(B) +O(logB ·B−1), Ej+1(B)−O(log B ·B−1)

]
,

where the term O(log B · B−1) depends on n. For each integer n > 0, there exists
Bn � 0 such that for B > Bn,

Σ ∩ In(B)

is pure point and the corresponding eigenfunctions decay exponentially.

We remark that we can also prove localization at energies between the Landau

levels for fixed, nonzero B > 0 for the family Hω(g) ≡ HA + gVω, with a coupling

constant g > 0, provided that we work in the small coupling regime. This result

does not require percolation theory, but we cannot control the spectrum to within

O(B−1) of the Landau levels. We refer the reader to section 6 of [8] where results

of this type are proved in general situations. As with previous work, the Wegner

estimate for the finite-area Hamiltonians allows us to control the integrated density
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of states. However, we no longer need to take B large as in [26]. The proof of the

following theorem is given in [28] based on results in [29, 66].

Theorem 7.2. Let Hω be the family given in (7.7) with vector potential A as
in (7.8) with B > 0, and the random potential Vω as in (7.9) and satisfying (V1)
and either (V2) or (V2)’. Then, the integrated density of states is locally uniformly
Lipschitz continuous on IR.

7.4. The Wegner Estimate. The Wegner estimate for this model follows

the same lines of the proof of the Wegner estimate given in chapter 4. There are

some simplifications which we will mention due to the explicit structure of the

unperturbed Landau Hamiltonian HA. As these are of interest in themselves, we

give a proof of the Wegner that works for all energies away from the Landau levels.

The proof of the Lipschitz continuity of the IDS at all energies is given in [28]. We

will use the spectral averaging result of chapter 3. The local Hamiltonians HΛ are

defined as in chapter 4. For a bounded region Λ ⊂ IR2, we define the local potential

VΛ by Vω |Λ. The local Hamiltonian is HΛ ≡ HA + VΛ. As discussed in chapter

4, the essential spectrum of HA is invariant under this perturbation. The Wegner

estimate for these local Hamiltonians takes the following form.

Theorem 7.3. There exists a constant B0 > 0 and a constant CW > 0 such that
for all B > B0 and for any E �∈ σ(HA) and η > 0 so that [E−η, E+η]∩σ(HA) = ∅,
we have,

IPΛ{dist (σ(HΛ), E) < η} ≤ CW [dist (σ(HA), E)− δ]−2||g||∞ηB|Λ|.
In the proof of this theorem, the exponential decay of the resolvent of the

unperturbed Hamiltonian is replaced by the explicit exponential decay of the pro-

jectors onto the the Landau levels when localized between disjoint sites. Let Pn be

the orthogonal projection on the nth Landau level of HA. The projector Pn has an

integral kernel given by

(7.12) Pn(x, y) = Be−i B
2 x∧ypn

(
B1/2(x− y)

)
,

where pn(x) is of the form

(7.13) pn(x) =
{
nth degree polynomial in x

}
e−|x|2/2,

and independent of B. We define the projector Qn as Qn ≡ 1− Pn. We will make

repeated use of the following two elementary lemmas. The proof of Lemma 7.4

follows by direct calculation using the kernel (7.12)–(7.13).

Lemma 7.4. Let χ1, χ2 be functions of disjoint, not necessarily compact, support
with |χi| ≤ 1, and let δ ≡ dist (supp χ1, supp χ2) > 0. Then,

(1) ||χ1Pnχ1||1 ≤ CnB|supp χ1| ;

(2) ||χ1Pnχ2||HS ≤ CnB1/2e−Bδ2/8 inf {|supp χ1|, |supp χ2|}1/2
,

where Cn varies from line to line and depends only on n, and HS denotes the
Hilbert Schmidt norm.

The next lemma allows us to estimate the size of the overlap between the per-

turbed band given by the range of E∆ and the orthogonal complement of the first

unperturbed Landau level.
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Lemma 7.5. The restriction of the projection Q0 to the first band satisfies

(7.14) ‖E∆Q0E∆‖ ≤ d−2
∆

(
1− (2d∆)−1|∆|)−2

M2
0 ,

where d∆ ≡ dist (σ(HA)\{B}, ∆) = O(B), and M0 ≡ ‖Vω‖∞ ≤ M‖u‖∞.

Proof. Let Em ∈ ∆ be the center of the interval. We then can write

E∆Q0E∆ ≤ [dist (σ(HA)\{B}, ∆)]−1(E∆(HA − Em)Q0E∆)

≤ d−1
∆ {E∆(HΛ − Em)Q0E∆ + E∆VΛQ0E∆}.

This implies that

||E∆Q0E∆|| ≤ d−1
∆ {|∆|/2||E∆Q0E∆||+ M0||Q0E∆||} .

Since d∆ = O(B), it is clear that for all B sufficiently large (2d∆)−1|∆| � 1, so

||E∆Q0E∆|| ≤ d−1
∆

(
1− (2d∆)−1|∆|)−1

M0||E∆Q0E∆||1/2,

and the result follows. �
We will compute the Wegner estimate under the assumption that the closest

point in σ(HA) to the energy E is the first Landau level E0(B). The arguments

apply to any Landau level but the constants depend on the index n.

Proof of Theorem 7.3.
1. As in the proof of Theorem 4.3, we must estimate IEΛ(TrE∆). Working with

the first Landau level for simplicity, we separate the trace into a piece depending

upon P0, and one depending on Q0,

(7.15) TrE∆ = TrE∆P0E∆ + TrE∆Q0E∆.

We make the simple estimate

(7.16) TrE∆Q0E∆ ≤ ||E∆Q0E∆||(TrE∆),

where we used the fact that E∆Q0E∆ ≥ 0. Now by Lemma 7.3, ||E∆Q0E∆|| =

O (B−2
)
, so it follows that for all B sufficiently large,

(7.17) TrE∆ ≤ 2Tr(P0E∆P0).

2. Let us now suppose inf ∆ > B for definiteness. From (7.7), and positivity we

obtain

(7.18)
TrE∆P0E∆ ≤ Tr(E∆(HΛ −B)P0(HΛ −B)E∆) · [dist (∆, B)]−2

≤ Tr(P0VΛE∆VΛP0) · [dist (∆, B)]−2.

We now expand the potential VΛ, writing VΛ =
∑

i

ωiui for short. The trace in

(7.18) is

(7.19)
∑
i,j

ωiωjTr(P0uiE∆ujP0),

where i, j ∈ Λ ∩ ZZ2. Defining Aij ≡ u
1/2
i Au

1/2
j , for any A ∈ B(H), we have from

(7.7.19),

(7.20)
∑
i,j

ωiωjTr
(
P ji

0 Eij
∆

)
.
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We must estimate

(7.21)

IEΛ

⎛⎝∑
i,j

ωiωjTr
(
P ji

0 Eij
∆

)⎞⎠ ≤
∑
i,j

IEΛ

(
|ωiωj | |Tr

(
P ji

0 Eij
∆

)
|
)

≤ M2
∑
i,j

IEΛ

(
|Tr

(
P ji

0 Eij
∆

)
|
)

.

3. To estimate IEΛ

(
|Tr

(
P ji

0 Eij
∆

)
|
)
, we write the spectral decomposition of the

trace-class operator P ji
0 as

P ji
0 =

∞∑
n=1

µn〈ψn, ·〉φn,

where {µn} are the deterministic, non-negative eigenvalues of |P ji
0 |, so that

∑
n

µn =

‖P ji
0 ‖1, and the set {ψn} (respectively, {φn} ) is the orthonormal basis of eigenvec-

tors for |P ji
0 | (respectively, |(P ji

0 )∗| = |P ij
0 |). Expanding the trace in (7.21) in this

basis, we obtain,

(7.22)

|Tr
(
P ji

0 Eij
∆

)
| ≤

∑
n

µn|〈ψn, Eij
∆φn〉|

≤ 1
2

∑
n

µn

(
〈φn, Ejj

∆ φn〉+ 〈ψn, Eii
∆ψn〉

)
.

The expectation on the right side of (7.22) can be bounded above by

(7.23) IEΛ

(
|Tr

(
P ji

0 Eij
∆

)
|
)
≤ 1

2
||P ji

0 ||1supnIEΛ

(
〈φn, Ejj

∆ φn〉+ 〈ψn, Eii
∆ψn〉

)
.

We estimate the two inner products on the right side of (7.23) using the spec-

tral averaging result Corollary 3.1, with B equal to u
1/2
j and u

1/2
i , respectively.

Consequently, (7.20) is bounded above by

(7.24) M2||g||∞|∆|
∑
i,j

||P ji
0 ||1,

since C0 = 1.

4. To evaluate the sum, we first consider those indices i and j for which |i− j| < 2.

Let χij be the characteristic function for supp (ui + uj). Then the contribution

from these indices to the sum in (7.24) is

(7.25)

∑
|i−j|<2

||P ji
0 ||1 ≤ ‖u‖2∞

∑
|i−j|<2

‖χijP0χij‖1

≤ C1B|Λ| |supp u|,
by Lemma 7.4, part (1). Next, in order to estimate the sum over the complimentary

set of indices, we define the function χ+
ij to be the characteristic function for the

set {x ∈ R2 | |x− i| < |x− j|}, and write χ−
ij ≡ 1− χ+

ij . Using the inequality

(7.26) ||AB||1 ≤ ||A||HS ||B||HS ,

we obtain

(7.27) ‖P ji
0 ‖1 ≤ ‖u1/2

j P0χ
+
ij‖HS‖χ+

ijP0u
1/2
i ‖HS + ‖u1/2

j P0χ
−
ij‖HS‖χ−

ijP0u
1/2
i ‖HS .
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If |i− j| ≥ 2, condition (V1) on the support of uj implies that

(7.28)
dist(supp χ+

ij , supp uj) ≥ |i− j|
2

− 1√
2

≥ a|i− j|,
for some strictly positive constant a. A similar inequality holds for dist(supp χ−

ij , supp ui).

By part (2) of Lemma 7.4, one obtains from (7.27) and (7.28),

(7.29) ‖P ji
0 ‖1 ≤ 2C2

0B|supp u|e−aB|i−j|2/8.

from which it follows that

(7.30)
∑

|i−j|≥2

‖P ji
0 ‖1 ≤ C2|supp u| |Λ|.

Combining (7.25) and (7.30) in (7.24), we obtain an upper bound for all B large

enough,

(7.31) IEΛ(TrE∆) ≤ CW [dist(B, E)− δ]−2B‖g‖∞|∆| |Λ|,
where CW depends on M , ‖u‖∞, and supp u. This proves the theorem. �

7.5. Percolation Theory. The most interesting aspect of the proof of local-

ization for the randomly perturbed Landau Hamiltonian is the use of classical bond

percolation theory. This is used in order to prove the initial length-scale exponen-

tial decay estimate [H1](γ0, �0). We begin by giving a brief overview of percolation

theory in two dimensions. These are standard results on percolation theory which

can be found in [69] and [22].

Let ZZ2 be the square lattice (the length of the side plays no role in the calcu-

lations). A bond (edge) of ZZ2 is said to be occupied with probability p, 0 ≤ p ≤ 1,

and empty with probability 1−p. We are interested in the case when the bonds are

independent. This is called Bernoulli bond percolation. The critical percolation

probability pc is defined as follows. Let P∞(p) be the probability that the origin

belongs to an infinite, connected, cluster of occupied bonds. Then, we define

pc ≡ inf{p|P∞(p) > 0}.
For 2-dimensional Bernoulli bond percolation, it is a major result that pc = 1/2.

Hence if p > pc, occupied bonds percolate to infinity. That is, we can find a

connected cluster of occupied bonds running off to infinity with non-zero probability.

Of importance for us are the results concerning the existence of closed circuits

of occupied bonds. Let rn, be a rectangle in ZZ2 of width � and length n�. Let

Rn, be the probability that there is a crossing of rn,, the long way, by a connected

path of occupied bonds. This probability is controlled by an exponential factor

m(p), which is strictly positive for p < pc and m(p) ↘ 0 as p ↗ pc. This factor

measures the probability that the origin 0 ∈ ZZ2 is connected to x ∈ ZZ2 by a path

of occupied bonds

(7.32) P0x(p) ≤ e−m(p)|x|.

The basic result on the probability that a rectangle rn, is crossed, the long way,

by a cluster of occupied bonds is the following theorem.

Theorem 7.6. For p > pc, Rn, ≥ 1− C0n�e−m(1−p), for some constant C0.
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We will relate the existence of an effective potential barrier, which prevents an

electron from percolating to infinity, to the existence of annular regions, about any

point in space, which contain a closed cluster of occupied sites. From Theorem 7.6,

we can derive the probability that such closed clusters exist in annular regions.

Let us write r for r1,, the square box of side length �. An annular region of

width �, between two concentric boxes, is denoted by a ≡ r3\r. A closed circuit

of occupied bonds in a is a connected path of occupied bonds lying entirely within

a. Using Theorem 7.6 and the FGK inequality, one can compute the probability

A of a closed circuit of occupied bonds in a for p > pc.

Theorem 7.7. For any p ∈ [0, 1], A ≥ [R3,(p)]4. In particular, if p >
pc, ∃0 < C0 < ∞ as in Theorem 7.6, such that

(7.33) A ≥ 1− 12C0�e
−m(1−p).

7.6. Exponential Decay Estimates from Percolation Theory. Some of

the earlier work on randomly perturbed Landau Hamiltonians concentrated on the

one-band approximation. Instead of studying the full Hamiltonian Hω directly, one

considers the restricted Hamiltonian P0HωP0 on the subspace P0L
2(IR2) (cf. [40,

41]). In the situation when the random potential is bounded, this approximation

is reasonable for large magnetic fields since the separation of the Landau bands is

O(B). Hence, one expects the interband interaction to be small. We will prove

that this is true. In this way, the one-band approximation will give us some insight

into the nature of localization.

Formally, if one neglects the band interaction, the effective Hamiltonian for an

electron at energy E, near the first Landau level E0(B) = B, is E ∼ P0HωP0 =

B + P0VωP0 ∼ B + Vω(x). We assume that the interaction terms, P0VωQ0, and

its adjoint, and the term coming from the other bands, Q0VωQ0, are small. Con-

sequently, in this approximation, the electron motion is along equipotential lines

V (x) + B − E = 0. Since the potential V is random, it is natural to estimate the

probability that these equipotential lines percolate through a given box. If there

is no percolation, the (classical) electron will remain confined to bounded regions.

One can expect that the interband interaction will not change this picture. We will

first show how to reformulate our problem as a problem in bond percolation. We

will then show that the Green’s function decays exponentially in x and B through

regions where |V (x) + B − E| > a > 0.

Recall that Vω(x) =
∑
i∈ZZ2

ωiu(x− i), where the single-site potential u ≥ 0 and

has support inside a ball of radius ru < 1/
√

2. We define ru to be the smallest

radius such that supp u ⊂ B(0, ru). Consider a new square lattice Γ ≡ eiπ/4
√

2ZZ2.

The midpoint of each bond of Γ is a site of ZZ2. We will denote by bj the bond of

Γ having j ∈ ZZ2 as it’s midpoint. For definiteness, we assume E ∈ (B, B + M0).

The other energy interval (B −M0, B) can be treated similarly.

Definition 7.8. The bond bj of Γ is occupied if ωj < (E − B)/2. The

probability IP {ωj < E −B/2} ≡ p is the probability that bj is occupied (p is

independent of j by the iid assumption).

Let us assume that the bond bj is occupied and consider,

(7.34) Rj ≡
{
x | dist (x, bj) < 1/

√
2− ru ≡ r1

}
.
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Obviously, Rj does not intersect the support of the other single-site potentials

centered on ZZ2\{j} so that V (x) = ωju(x− j) ∀ x ∈ Rj . Then, if bj is occupied,

one has V (x) < (E −B)/2 ∀ x ∈ Rj (recall that (E −B)/2 > 0). We now assume

that there is a closed circuit of occupied bonds C ≡ ∪
j∈γ

bj , γ ⊂ ZZ2 (i.e. a connected

union of occupied bonds). We call R ≡ ∪
j∈γ

Rj the closed ribbon associated with

C. For all x ∈ R, we have V (x) < (E −B)/2. If we take a ≡ (E −B)/2, then

(7.35) V (x) + B − E < −a ∀ x ∈ R.

The existence of a closed ribbon R so that V satisfies condition (7.35) is a

consequence of the existence of a closed circuit C in Γ of occupied bonds. We saw

in the previous section how to estimate the probability that C exists. We now apply

the result of Theorem 7.7 to our reformulation of the equipotential line problem.

First, we need a definition. For a subset O ⊂ IR2, the in–radius of O is defined

to be sup{R > 0|BR ⊂ O}, where BR denotes a ball of radius R. We will write

Inrad O for the in-radius of O.

On the lattice Γ, the probability that any bond is occupied is given by

p =

∫ a

−M

g(ω)dω,

so, under our assumptions on the density g, if a > 0 then p > pc = 1/2, and we are

above the critical percolation threshold pc = 1/2. Note that when E = B, a = 0 so

p = 1/2 = pc, the critical probability. It follows from Theorem 7.7 that any annular

region a ≡ r3\r in Γ of in–radius
√

2� ≡ 1/2(3
√

2� −√
2�) and sides parallel to

the bonds of Γ contains a closed circuit of occupied bonds with probability given by

(7.33). By the argument above, there is a ribbon R associated with C in a whose

properties we summarize in the next proposition.

Proposition 7.1. Assume (V1) and (V2) and suppose that supp u ⊂ Bru
(0).

Let � >
√

2, E ∈ σ0\{B}, and a > 0. Then for m(1 − p) and C0 as in Theorem

7.8, there exists a ribbon R satisfying

(7.36) inradR ≥ 2
(
1/
√

2− ru

)
;

(7.37)
dist (R, ∂r3), dist (R, ∂r) ≥ 1/

√
2 + ru;

R ⊂ a,

and such that

(7.38) V (x) + B − E < −a, ∀ x ∈ R,

with a probability larger than

(7.39) 1− 12C0�e
−m(1−p),

where

(7.40) p ≡
∫ a

−M

g(ω)dω.

It is important to note that the probability p defined in (7.40) is a function of a.

In the applications, the constant 0 < a = (E −B)/2, for E > B. As E approaches

the Landau level B, a → 0 and p → pc, so it is important to have a lower bound
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on the effective mass m(p(a)), defined in (7.32), in order to obtain both the region

of localization to within O(log B/B) of the Landau levels, and good exponential

bounds on the eigenfunctions. We refer to [64] for a detailed discussion of this

question.

The ribbon R i described in Proposition 7.1 provides an effective barrier for

the equipotential lines along which a classical electron at energy E would move.

The addition of quantum effects results in exponential decay of the resolvent of

the Hamiltonian at energy E through the ribbon region. We now show how to

prove such an estimate. This will lead to our verification of [H1](γ0, �0). By the

geometric resolvent equation, we will show that it suffices to consider the following

ideal situation, where for some a > 0,

(7.41) V (x) + B − E < −a, ∀ x ∈ IR2,

or, alternately,

(7.42) V (x) + B − E > a, ∀ x ∈ IR2.

A condition such as (7.41) with E > B is satisfied, with a probability given in

Proposition 7.1, by a smoothing of the potential VR defined as

(7.43) VR(x) =

{
V (x) x ∈ R
0 x ∈ IR2 \ R.

Here we obtain decay estimates on the model Hamiltonian

(7.44) HR ≡ HA + VR,

with VR having compact support with nonempty interior and satisfying (7.41) or

(7.42).

As is often the case, we will derive exponential decay estimates through the

introduction of analytic families of operators associated with Hω, and the projectors

P0 and Q0. We will obtain a priori bounds on these operators using condition (7.41)

or (7.42). The type of argument used in the proof of the next lemma is similar to

that used in the proof of the Combes-Thomas estimate given in [8], so we will just

sketch it.

Let O be an open, bounded, connected set in IR2 with smooth boundary and

define ρ(x) = dist (x,O). Let η ∈ C∞
0 (IR2) with η > 0 and supp η ⊂ B1(0). For

any ε > 0, define ηε(x) = η(x/ε). We consider the smoothed distance function

ρε(x) ≡ (ηε � ρ)(x); supp ρε ⊂ IR2 \ {x | dist (x,Oc) < ε}. We fix ε > 0 small and

write ρ for ρε below for simplicity. We have ||∇ρ||∞ < C0/ε and ||∆ρ||∞ < C1/ε2,
for constants C0, C1 > 0 depending only on η and O. This ε will play no role in

the analysis below and, consequently, we absorb it into the constants C0 and C1.

We consider one-parameter families of operators defined for α ∈ IR as

HA(α) ≡ eiαρHAe−iαρ;(7.45)

H(α) ≡ HA(α) + V ;(7.46)

P (α) ≡ eiαρPe−iαρ, etc..(7.47)

Here, we write P for the projector P0 and Q ≡ 1 − P . For α ∈ IR, these families

are unitarily equivalent with the α = 0 operators.

Lemma 7.9. The family H(α), α ∈ IR, has an analytic continuation into the
strip

(7.48) S ≡ {α ∈ IC| |Im α| < ηρB
1/2, }

LECTURES ON RANDOM SCHRÖDINGER OPERATORS 113
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as a type A analytic family with domain D(H). The positive constant ηρ depends
only on the distance function ρ. Furthermore, in this strip S, one has P (α)2 =

P (α), and for some constant C1 independent of α,

(7.49) ‖P (α)‖ < C1

and

(7.50) ‖Q(α)(HA(α)− z)−1‖ < C1B
−1, if dist (z, B) ≤ B.

Sketch of the Proof. For α ∈ IR, one has

HA(α) = (−i∇− α∇ρ−A)2

= HA − α[∇ρ · (p−A) + (p−A) · ∇ρ] + α2|∇ρ|2
= HA + α2|∇ρ|2 + iα∆ρ− 2α∇ρ · (p−A).(7.51)

We first show that HA(α) is a type A analytic family on the strip S. For this, it

suffices to show that

{α2|∇ρ|2 + iα∆ρ− 2α∇ρ · (p−A)}(HA − z)−1,

has norm less than 1 for some z �∈ σ(HA) and |Imα| < ηρB
1/2 (cf [81], in particular,

Theorem IV.1.1 and Chapter VII.2). We now proceed to bound each term for

z ∈ C(B) ≡ {z| |z − B| = B}, circle of radius B centered at B. Since type

A analyticity is stable under bounded perturbations, it follows that H(α) is a

type A analytic family of operators on S. For the projectors, we use the integral

representation

(7.52) P (α) =
−1

2πi

∫
C(B)

(HA(α)− z)−1 dz.

�
Theorem 7.10. Assume that (V, E, B) satisfy (7.41) or (7.42) for some a > 0

and E ∈ σ0 \ {B}. Furthermore, assume that supp V is compact with non-empty
interior. There exists constants C2 ≤ ηρ, C3, and B1, depending only on M0 ≡
‖V ‖∞, ‖∇ρ‖∞, and ‖∇V ‖∞, such that if we define γ ≡ C2 min {B1/2, aB}, and u
is a solution of

(7.53) (HA + V − z)u = v, z ≡ E + iε, ε > 0, E > 0,

for some v ∈ D(eγρ), then for B > B1, ∀ α ∈ IC, |Im α| < γ, we have

(7.54) u ∈ D(eiρα),

(7.55) ‖eiαρPu‖ ≤ C3a
−1‖eiαρv‖,

and

(7.56) ‖eiαρQu‖ ≤ C3B
−1‖eiαρv‖.

Proof. Let v(α) = eiαρv, so that v(α) is analytic in the strip |Im(α)| < γ. Let

u(α) = eiαρu, α ∈ IR, i.e.,

(7.57) u(α) = (H(α)− z)−1v(α) ≡ ((H − z)−1v)(α),

with H ≡ HA + V , as above. Since V is HA-compact by assumption, H has

point spectrum, and according to Lemma 7.9 and standard arguments, H(α) has

real spectrum independent of α in the strip S defined in (7.48). Then, u(α) has

an analytic continuation in |Im(α)| < γ, which proves (7.54). Furthermore, this
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continuation satisfies (7.53) in the whole strip S, i.e. (H(α) − z)u(α) = v(α), for

all α ∈ S. Projecting this equation along P (α) gives

(7.58) (B + V − z)(Pu)(α) = (Pv)(α) + ([QV P − PV Q]u)(α),

where (Pu)(α) ≡ P (α)u(α), etc. Taking the scalar product of (7.58) with (Pu)(α)

results in the inequality,

(7.59)

a‖(Pu)(α)‖2 ≤ ‖(Pu)(α)‖ ‖(Pv)(α)‖

+{‖(P ∗Q)(α)‖ ‖(QV P )(α)‖}‖(Pu)(α)‖2

+‖(PV Q)(α)‖ ‖(Pu)(α)‖ ‖(Qu)(α)‖.
One can prove that for B large enough,

(7.60) ‖(QV P )(α)‖ ≤ C4B
−1/2,

and

(7.61) ‖(P ∗Q)(α)‖ ≤ C5 |Imα| B−1/2.

With these estimates, we obtain from (7.59),

(7.62)

(a− C6γB−1)‖(Pu)(α)‖2 ≤ ‖(Pu)(α)‖ ‖(Pv)(α)‖

+C7B
−1/2‖(Pu)(α)‖ ‖(Qu)(α)‖,

where the constants C6 and C7 depend only on ‖V ‖∞, ‖∇V ‖∞, and ‖∇ρ‖∞. To

estimate ‖(Qu)(α)‖, it follows from the resolvent equation and (7.57) that

(7.63)

‖(Qu)(α)‖ ≤ ‖(Q(HA − z)−1v)(α)‖+ ‖{Q(HA − z)−1QV (Q + P )u}(α)‖

≤ C1B
−1‖v(α)‖+ C1B

−1M0‖(Qu)(α)‖

+C1B
−1M0‖(QV Pu)(α)‖,

with M0 ≡ ‖V ‖∞ < ∞. Using an estimate on QV P similar to (7.60), and taking

B > 2M0C1, we obtain,

(7.64) ‖(Qu)(α)‖ ≤ 2C1B
−1‖v(α)‖+ C8B

−3/2‖(Pu)(α)‖,
where C8 ≡ 2M0C1C2. Substituting (7.64) into (7.62), we obtain

(7.65) (a− C6γB−1 − C7C8B
−2)‖(Pu)(α)‖ ≤ (C1 + 2C1C7B

−3/2)‖v(α)‖.
This proves (7.55) for B large enough. Inserting (7.55) into (7.64) yields (7.56). �

Corollary 7.1. Let O be an open, connected, bounded subset of IR2 with

smooth boundary, and suppose E ⊂ IR2 \ O. Let E ∈ σ0 \ {B} and assume that

(B, E, V ) satisfy (7.41) or (7.42) for some a > 0. Let χX , X = O and E , be

bounded functions with support in X and s.t. ‖χX‖∞ ≤ 1. Then,

(7.66) sup
ε=0

‖χE(HA + V − E − iε)−1χO‖ ≤ C max {a−1, B−1}e−γd,

where C and γ are as in Theorem 7.10 and d ≡ dist (O, E).
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Proof. This is an immediate consequence of Theorem 7.10 We set ρ(x) ≡ dist(x,O)

and choose v ≡ χOv. Then, eiαρv = v, ∀ α ∈ IC. For u a solution of (HA + V −
E − iε)u = χOv, one has ∀ α ∈ IC, |Im α| < γ,

||χE(HA + V − E − iε)−1χOv|| = ||χE(P + Q)u||

≤ e−d(Im α){||e−iαρPu||+ ||e−iαρQu||}

≤ e−d(Im α)C max {a−1, B−1}||v||,
by Theorem 7.17 Taking Im α → γ, we obtain (7.66). �

7.7. Verification of Hypothesis [H1](γ0, �0). It remains to verify the ini-

tial length-scale hypothesis. The proof of localization then follows the lines as for

Schrödinger operators as given in chapter 6, but requires the bootstrap MSA of

Germinet and Klein [62, 63]. In particular, we see from (7.67) that the expo-

nential decay of the localized resolvent at initial length scale �0 is approximately

∼ C1min (aB, B1/2)/�0. From this we see that �0 cannot be too big relative to B
and a. On the other hand, the MSA requires the initial length scale to be large

enough. These two opposing demands require a more refined multiscale analysis

than the one presented in chapter 8 and we refer to [62, 63]. The underlying ideas,

however, are similar.

Proposition 7.2. Let χ2 be any function, ||χ2||∞ ≤ 1, supported on Λ ∩
ExtR, where ExtR ≡ {x ∈ IR2|λx �∈ R ∀ λ ≥ 1

}
, so that, in particular, supp χ2∩

R = ∅. For any E ∈ σ0\{B}, δ > 0, ε > 0, and a > 0, we have

(7.67)
sup
ε=0

||χ2RΛ�
(E + iε)χ/3|| ≤ Ce−γd max

{
a−1, B−1

} ·max
{
δ−1,

(2M0 + |E|)δ−2
}

,

where C depends on C3 of Theorem 7.10, the constants χ2 and γ are defined in

Theorem 7.10, and d ≡ (r1 − 3ε)/2 (r1 ≡ inradR), with a probability larger than

(7.68) 1− {C�e−m + CW [dist (E, B)− δ]−2||g||∞δB�2
}

.

In particular, for χ,δ defined above and E ∈ σ0 with a = (E−B)/2 = O (B−1+σ
)
,

any σ > 0, we have that for any �0 >
√

2 and large enough, and any

ξ > 4, ∃ B(�0) > 0 such that ∀ B > B(�0), [H1] (γ0, �0) holds for some γ0 >
γd/4�0 > 0, so that γ0 = O{min(B1/2, Bσ)}.
Proof.
1. By Proposition 7.1, there exists a constant B0 such that B > B0 implies there

exists a ribbon R ⊂ Λ\Λ/3 (with a probability given by (7.39) satisfying

(7.69) dist (R, ∂Λ), and dist (R, ∂Λ/3) > 1/
√

2 + ru > 0,

and

(7.70) r1 ≡ inradR > 2
(
1/
√

2− ru

)
,

and such that

(7.71) V (x) + B − E > −a ∀ x ∈ R, a = E −B/2·
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We assume E > B ; similar arguments hold for E < B. For any ε > 0, 3ε � r1,

define the border of R by

Rε ≡ {x ∈ R| dist (x, ∂R) < ε} .

Then Rε ≡ R+
ε ∪ R−

ε , where R±
ε are two disjoint, connected subsets of R. Let

C ≡ {x ∈ R|dist (x,R+
ε ) = dist (x,R−

ε )} ; C is a closed, connected path in R. Let

Cε ≡ {x ∈ R|dist (x, C) < ε/2} ⊂ R, so that inradCε = ε and

(7.72) dist
(Cε,R±

ε

) ≥ (r1 − 3ε)/2.

This is strictly positive. Because of this, we can adjust Cε so that ∂Cε is smooth.

We need two, C2, positive cut-off functions. Let χR > 0 satisfy χR|Cε = 1 and

supp |∇χR| ⊂ Rε. Let χ1 satisfy χ1|Λ/3 = 1 and supp |∇χ1| ⊂ Cε. By simple

commutation, we have (with χ2 as in the proposition),

(7.73)

χ2RΛ�
(E + iε)χ/3 = χ2RΛ�

χ1χ/3

= χ2RΛ�
W (χ1)RΛ�

χ/3

= χ2RΛ�
χRW (χ1)RΛ�

χ/3.

Next, denote by RR the resolvent of HR defined in (7.44). The GRE relating RΛ�

and RR is

(7.74) RΛ�
χR = χRRR + RΛ�

W (χR)RR.

Substituting (7.74) into (7.73) and noting that χ2χR = 0, we obtain

(7.75) χ2RΛ�
χ/3 = χ2RΛ�

W (χR)RRW (χ1)RΛ�
χ/3.

Note that from (7.72) and the choice of χR and χ1, we obtain that

(7.76) dist (supp W (χR), supp W (χ1)) ≥ (r1 − 3ε)/2.

We apply Wegner’s estimate, Theorem 7.4 to control the two RΛ�
factors in (7.75),

and the decay estimate, Corollary 7.1, to control the factor RR, which is possible

due to the localization of W (χR) and W (χ1) and (7.76).

2. To estimate the RR(E + iε) contribution, we use Corollary 7.1 with O ≡ Cε

and E = Rε. Let χX , X = O and E , be a characteristic function on these sets.

Then W (χR)χE = W (χR) and χOW (χ1) = W (χ1). Inserting these localization

functions into (7.75), we obtain from Corollary 7.1,

(7.77) ‖χERR(E + iε)χO‖ ≤ C max
{
a−1, B−1

}
e−γd,

with probability larger than

(7.78) 1− C�e−m,

for some m = m(1− p) > 0 (see (7.39) and 0 < C < ∞. The factor d satisfies

(7.79) d ≥ (r1 − 3ε)/2,

where r1 ≡ inradR as in (7.36).

3. Next, we turn to

(7.80) W (χ1)R(E + iε)χ/3,

and

(7.81) χ2R(E + iε)W (χR),
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where we write R for RΛ�
for short. We will bound R by Wegner’s estimate and

the terms (7.80)–(7.81) via Proposition 7.2. From Theorem 7.4, we have for any

δ > 0,

(7.82) ‖R(E + iε)‖ < δ−1,

with probability larger than

(7.83) 1− CW [dist (E, B)− δ]−2||g||∞δB�2.

From Proposition 7.2, both (7.80) and (7.81) are bounded above by

(7.84) C4 max
{

δ−1/2, (2M + |E|)1/2δ−1
}

,

with probability at least (7.39). The constant C4 depends on ∂αχ1, for |α| = 0, 1, 2.

4. Using the estimate P (A∩B) ≥ P (A)+ P (B)− 1, and (7.75)–(7.77), (7.77), and

(7.82)–(7.83), we find

(7.85)
||χ2R(E + iε)χ/3|| ≤ 2C max

{
a−1, B−1

} ·max
{
δ−1,

(2M0 + |E|)δ−2
} · e−γd,

with probability at least

(7.86) 1− {C�e−m + CW [dist (E, B)− δ]−2||g||∞δB�2
}

.

This proves the first part of the proposition.

5. To estimate W (χ,δ)Rχ/3, we again use Proposition 7.2 which gives

(7.87)

‖χ2(p−A)iRχ/3‖2 ≤ ‖χ2Rχ/3‖+ (2M + |E|)‖χ2Rχ/3‖2

+2 max
i=1,2

‖(∂iχ2)Rχ/3‖ ‖χ2(p−A)iRχ/3‖.

Since ∂iχ2 satisfies the same condition as χ2, the factor ‖(∂iχ2)Rχ/3‖ in (7.87)

satisfies the estimate (7.85) with possibly a different constant. Solving the quadratic

inequality (7.87), we obtain

(7.88)

‖χ2(p−A)iRχ/3‖ ≤ max
i=1,2

{
‖(∂iχ2)Rχ/3‖

+
[‖(∂iχ2)Rχ/3‖2 +

(‖χ2Rχ/3‖

+(2M0 + |E|)‖χ2Rχ/3‖2
)]1/2

}
,

which can be estimated as in (7.85). Finally, we write

(7.89) ‖W (χ,δ)Rχ/3‖ ≤ ‖ (∆χ,δ)Rχ/3‖+ 2

2∑
j=1

‖ (∂jχ,δ) (p−A)jRχ/3‖,

which can be estimated from (7.77) with χ2 ≡ ∆χ,δ and (7.88) with χ2 ≡ (∂jχ,δ).

6. We now show that for any �0 large enough, ∃B0 ≡ B0(�0) such that for all

B > B0, condition [H1](�0, γ0) is satisfied with γ0 = O{min(B1/2, Bσ)}. We take

E ∈ [B −M0, B −O(B−1)]∪ I0(B)∩ σ0 and a = (E −B)/2 = O (B−1+σ
)
, for any

σ > 0. First, we require that (7.66) be bounded above by e−γd/2. This leads to the

condition

(7.90) Cδ−2B2−σe−γd ≤ e−γd/2,
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where γ = C2min{B1/2, Bσ}. This condition implies that we must choose δ in

(7.90) to satisfy

(7.91) δ > B1−(σ/2)e−γd/4.

If we now define γ0 ≡ γd/4�0, we find that

(7.92) ‖W (χ,δ)Rχ/3‖ ≤ e−γ00 .

Next, in order to obtain the probability estimate (5.28), it follows from (7.67) that

we must require that

(7.93) C�e−m0 + C2B
3−2σδ�20 ≤ �−ξ

0 ,

or, for all �0 large,

(7.94) C3B
3−2σδ�20 ≤ �−ξ

0 ,

for some ξ > 4. We can choose δ so that both conditions (7.90) and (7.94) are

satisfied provided the condition

(7.95) �ξ+2
0 < B3/2−(5/2)σeγd/4,

is satisfied for some ξ > 4. It is clear from the definition of γ, that for any �0,
there exists a B0 ≡ B0(�0) such that condition (5.28) is satisfied for all B > B0.

We remind the reader again that m is a function of a = (E − B)/2, so this must

be kept in mind while making these estimates. This completes the proof of the

theorem. �

8. Fixed-Energy Multiscale Analysis

8.1. Introduction. In this chapter, we complete the discussion of chapter 5

on the multiscale analysis (MSA) by giving the proof of Lemma 5.4. We introduced

two hypotheses on the finite-volume Hamiltonians, called [H1](γ0, �0) and the Weg-

ner estimate [W], in chapter 5. We show in this chapter that these two hypotheses,

[H1](γ0, �0) and [W], allow us to prove the hypotheses [H1] and [H2] of chapter 5.

Hypotheses [H1] and [H2] are required for Theorems 5.3 and 5.6. As a result of the

proofs in this chapter, we will have shown that these two hypotheses [H1](γ0, �0)
and [W] are the starting points for deriving the almost sure exponential decay of

the infinite-volume Green’s function. We saw in chapter 3 that this estimate on

the resolvent is essential for eliminating the continuous singular spectrum almost

surely. The proof given here is a simplified and modified version of the multiscale

analysis for lattice models developed in the work of Fröhlich and Spencer [56],

Spencer [120], and von Dreifus and Klein [132]. A summary of this method for

lattice models is given in the book of Carmona and Lacroix [21]. The proof for

random operators on IRd requires the use of geometric methods common in this

book. The MSA used here is a fixed-energy MSA. There are other methods, pio-

neered by von Dreifus and Klein [132] in which all energies in a fixed interval are

treated simultaneously. In this method, the techniques of chapter 3 are replaced by

an analysis of the generalized eigenfunctions. This is discussed in the next section.

The energy-interval method for Schrödinger operators on L2(IRd) is presented in

[62]. Let us first recall Lemma 5.4.
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Lemma 8.1. Let γ0 > 0 and assume [W]. There exists a minimum length scale
l∗ = l∗(γ0, q, d, CW ) such that if [H1](γ0, l0) holds for l0 > l∗, then for lk ≡ l

(3/2)k

0 ,
and for some ξ > 2d, there exists a finite constant κ > 0 such that for each k

(8.1) IP{sup
ε>0

‖WlkRlk(E + iε)χlk/3‖ ≤ e−κγ0lk} ≥ 1− l−ξ
k .

This lemma shows that the two assumptions [H1](γ0, �0) and [W] are sufficient

to prove the hypotheses of Theorem 5.3. Theorem 5.3 is the almost sure bound-

edness of the boundary-value of ‖(Hω − E − i0+)−1c‖, for suitable functions of

compact support c.

8.2. Fixed Energy vs. Energy Interval Hypotheses. As has been dis-

cussed in previous chapters, we take the fixed energy approach to proving localiza-

tion. Another approach, introduced in Fröhlich, Spencer, Martinelli, and Scoppola

[55], and simplified in the work of von Dreifus and Klein [132], considers working

in a fixed-energy interval. The technical aspects of these two approaches differ in

two respects. First, the energy interval approach does not use the results on the

perturbation of singular spectra presented in chapter 3. Instead, the approach uses

the result that the spectrum of a Hamiltonian is characterized by the existence of

polynomially-bounded solutions to the eigenvalue equation Hωψω = Eψω, for spec-

trally almost all energies and fixed ω. Secondly, the probabilistic estimates required

for the inductive step, presented in section 8.3, are different. We present these to

contrast and compare them with our hypotheses [H1](γ0, �0) and [W].

The basic finite-volume Hamiltonian assumption used by von Dreifus and Klein

[132] is the following.

[vDK1]. Let I ∈ IR be an energy interval, and let p > d, L0 > 0, and take
1 < α < 2p/d. We set Lk+1 ≡ Lα

k . Then, for any k = 0, 1, . . . , we have

(8.2) IP{ for any E ∈ I, either Λk(x) or Λk(y) is γ−good at energy E} ≥ 1−L−p
k ,

for any x, y ∈ Γk with ‖x− y‖ > Lk.
Note that unlike our hypotheses, control over the resolvent is required at all

energies E ∈ I. Given hypothesis [vDK1], the main step replacing the Theorem

5.3, and the perturbation of singular spectra analysis of chapter 3, is the use of

the generalized eigenfunctions associated with Hω. A generalized eigenfunction at

energy E is a nonzero, polynomially bounded solution of the equation Hψ = Eψ.

An energy E for which there exists a generalized eigenfunction is called a generalized
eigenvalue. The main result about these generalized eigenfunctions is the following

theorem. A proof of this theorem can be found, for example, in [35].

Theorem 8.2. Let H be a self-adjoint operator on a separable Hilbert space.
With respect to the spectral measure of H, almost every energy E ∈ IR is a gener-
alized eigenvalue.

One defines a set Ω0 of configurations with IP (Ω0) = 1, and for which not

too many singular sites occur for the corresponding local Hamiltonians. One then

proves that for ω ∈ Ω0, the generalized eigenfunctions of Hω decay, in fact, expo-

nentially fast. Hence, they are eigenfunctions.

Condition (8.2) is not easy to prove directly. As in chapter 5, it is reduced to

a consequence of two fixed length-scale hypotheses. The inductive part of the mul-

tiscale analysis then involves showing that these two fixed length-scale hypotheses
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imply condition (8.2). The fixed length-scale hypotheses of von Dreifus and Klein

[132] are the following.

[P1]. There exists an L0 > 0, so that for some E0 ∈ IR, we have

(8.3) IP{ΛL0(0) is γ − good at energy E0} ≥ 1− L−p
0 ,

for some p > d.

[P2]. For some η > 0, and for all E ∈ (E0 − η, E0 + η), and for all L > L0, there
is a β satisfying 0 < β < 1, and a q > 4p + 6d, such that

(8.4) IP{ dist(E, σ(HΛL(0)) < eLβ} ≤ L−q.

These two hypotheses correspond to our hypotheses [H1](γ0, �0) and [W], re-

spectively. It is easy to show by using the first resolvent equation that condition

[P1] can be extended to a small interval of energy about E0. Condition [P2] is

similar to the Wegner estimate [W]. A Wegner estimate at any fixed energy can

always be extended to an interval about that energy.

8.3. The Inductive Step. The key to the proof of Lemma 5.4 is an inductive

step. The proof of this step goes back to the fundamental work of Fröhlich and

Spencer [56], and was successively refined by Spencer [120] and von Dreifus and

Klein [132]. Like most of the proofs in the field of random operators, it has two

components. First, one makes an assumption about the scarcity of regions which

will produce eigenvalues for the local Hamiltonians close to the energy of interest.

These regions are called resonant regions. Their presence causes small denominators

in the iterated geometric resolvent equation. Second, one computes the probability

that the bad, resonant regions occur.

For a given l, we will consider a covering of IRd by boxes Λl/3(x), centered at

points x on a scaled lattice Γ ≡ l
3�ZZd. In particular, the box Λl(0) is covered

by 3d such boxes of side length �/3. We define a family of n chained l boxes to

be a sequence of boxes Λl(xk), k = 1, ..., n, such that xk ∈ Γl ∩ Λl(xk−1) and

xk �= xk−1. For later purposes, we note that d(xk, ∂Λl(xk−1)) = 1
6 l, and that

|xn − x1| ≤
√

2
3 (n − 1)l. Whenever convenient, we write χl, Rl, etc. for χΛl

, RΛl
,

etc. Let us recall that for a fixed δ > 0, we define a subbox Λ̃l of Λl by Λ̃l ≡ {x ∈
Λ | dist (x, ∂Λl) > δ}.

We single out a family of boxes for which the resolvent of the local Hamiltonian

has exponential decay across the box. This condition is roughly equivalent to saying

that the eigenvalues of HΛl
are far separated from the energy E of interest.

Definition 8.3. A box Λl is called a γ-good l-box at energy E, for some γ > 0,

if

(8.5) sup
ε>0

‖W (χl)RΛl
(E + iε)χΛl/3‖ < e−γl.

We show that if there are not too many disjoint γ-bad l-boxes Λl in a bigger

box Λl′ , then the assumption that Λl is γ-good implies that Λl′ is γ′-good without

losing too much in the exponent γ.

Lemma 8.4. Let l′ >> 4l be chosen large enough and assume [W]. If γ >> d/l
and

(8.6) IP{Λl is a γ-good box} ≥ 1− η,
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then we have

(8.7) IP{Λl′ is a γ′-good box} ≥ 1− η
′
,

where, for a constant cd depending only on d and any ξ > 2d,

(8.8) η′ = cd

(
l
′

l

)2d

η2 +
1

2
(l

′
)−ξ,

and

(8.9) γ
′
=
(
γ − c1

l

)(
1− 4l

l′

)
− c2

log l
′

l′
,

for some constants c1, c2 > 0 depending on d, ξ, and CW .

Proof. Without restricting generality we consider the cube Λl′ centered at the

origin.

1. We first assume that Λql
′ , for q ≥ 2, does not contain two non-overlapping γ-bad

boxes Λl centered on the scaled lattice Γl. This means that there may be only one

cluster Λb of overlapping γ-bad l-cubes in Λql′ centered on Γl. The diameter of this

bad region Λb is at most 5
√

2
3 l. We now consider a covering of Λl′/3(0) by boxes

Λl/3 with centers in Γl ∩ Λl′/3(0). There are (l
′
/l)d such centers and we call x one

of them. We also consider a covering of Λl′(0) \ Λ̃l′(0) by such cubes Λ/3 with

centers in Λql′(0)∩Γl. There are (dδ/l′)(3l′/l)d such centers. Let y be one of them

so that ‖x− y‖ ≥ (l′/3− δ/2). We want to estimate

(8.10) ‖χl/3(x)Rql′(E + iε)χl/3(y)‖,
for the multiplier q ≥ 2. We need the estimate for q ≥ 2 in order to compensate for

the boundary, as we will explain below.

2. We estimate this norm by constructing suitable families of chained l-boxes, which

are γ-good l-boxes with a certain probability, starting at x1 ≡ x or y1 ≡ y. By

iterating the geometric resolvent equation (GRE) presented in section 5.1 (5.11)

along such a chain, we obtain an estimate for the decay of the operator in (8.10)

due to (8.1) and an a priori estimate derived from the Wegner estimate. In order

to begin this process, we write the GRE as

(8.11) χl/3(x)Rql′ − Rlχl/3(x) = RlWl(x1)Rql′ .

Substituting this into (8.10), and using the fact that χl/3(x)χl/3(y) = 0, we obtain

(8.12) χl/3(x1)Rql′ χl/3(y) = χl/3(x1)RlWl(x1)Rql′ χl/3(y).

3. Let χ
(m)
l be a covering of ∂Λl(x1) ≡ suppWl(x1) by cubes Λl/3 centered on Γl ∩

Λl(x1). One needs bd ≤ (dδ/l)3d < 3d such cubes. We decompose the perturbation

W(x1) appearing in (8.12) as

(8.13) Wl(x1) =

bd∑
m=1

Wl(x1)χ
(m)
l/3 .

Substituting this into (8.12), one obtains from (8.10)

(8.14)

‖χl/3(x1)Rql′ χl/3(y1)‖

≤ bd ‖χl/3(x1)RlWl(x1)‖
{

max
m

‖χ(m)
l/3 Rql′ χl/3(y1)‖

}
.
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If x1 �∈ Λb and if x2 denotes the center in Γl for which the maximum on the right

hand side of (8.14) is reached, one obtains

(8.15) ‖χl/3(x1)Rql′ χl/3(y1)‖ ≤ bde
−γl‖χl/3(x2)Rql′χl/3(y1)‖.

4. If x2 �∈ Λb and Λl(x2) ∩ Λl/3(y1) = ∅, one can continue this procedure and

construct in this way a family of n chained γ-good boxes Λl(xk), k = 1, ..., n.

The chain is stopped when d(xn, Λb) = l/6 or ‖xn − y‖ = l/3. In the case that

‖xn − y‖ = l/3, the number of elements in the chain satisfies n ≥ 3 ‖x − y‖/l so

that, assuming γ > log bd/l:

(8.16) ‖χl/3(x1)Rql′χl/3(y)‖ ≤ e−3(γ−(log bd)/l)‖x−y‖ ‖χl/3(xn)Rql′ χl/3(y)‖.

In the first case when d(xn, Λb) = l/6, one starts a new chain (y1, ..., ym) from

y1 = y. Once again, the chain is stopped when d(ym, Λb) = l/6 or |xn − ym| = l/3.

In this last case, the number of sites in the chain starting at y1 satisfies m ≥
3 |xn − y1|/l, so that m + n ≥ 3‖x − y‖/l, and an inequality like (8.16), with ym

instead of y, still holds. In the first case for which d(ym, Λb) = l/6, we find that

(8.17) (m + n− 2)
l

3
+ 2l ≥ ‖x− y‖,

and one obtains

(8.18) ‖χl/3(x)Rql′χl/3(y)‖ ≤ e−(γ−(log bd/l)[3 ‖x−y‖−4l]‖Rql′‖.

Note that ‖x− y‖ ≥ l
′
/3. We now turn this estimate into an estimate for

(8.19) ‖χl′/3Rql′(E + iε)χ̃l′‖.

We use our covering of Λl′/3 and of the boundary region Λl′\Λ̃l′ . Since each term

satisfies an identical estimate, we obtain

(8.20) ‖χl′/3Rql′(E + iε)χ̃l′‖ ≤ δd

l′
3d

(
l
′

l

)2d

e−(γ−(log bd)/l)(l
′−4l)‖Rql′(E + iε)‖,

where χ̃l′ is a characteristic function of the boundary region Λl′ \ Λ̃l′ .

5. The main reason for introducing q ≥ 2 is twofold. First, we must make sure

we can cover all of the boundary region Λl′\Λ̃l′ with cubes Λl/3 centered on the

lattice Γl. Secondly, in the case when the chain starting at x1 stops because it

meets the bad regions Λb, we must be sure that we can iterate the chain starting

at y1 sufficiently far enough so that the combination (n + m) satisfies an estimate

like (8.17). For example, it might occur that a chain starting at y1 in the boundary

region has to be stopped because it hits the boundary of Λl′ before m is large

enough. To avoid this, we continue to iterate into the expanded region Λql′ , if

necessary. The price that we pay for this is not serious: we obtain a factor qd in

the coefficient of the resolvent estimate and in the probability estimate. Since these

constants are independent of the length scale, they do not affect the results.

6. From (8.20), one obtains a similar bound for ‖χl′/3Rql′(E + iε)Wl′‖, with an

extra multiplicative constant which only depends on ‖∇χl′‖∞ and ‖∆χl′‖∞. This
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is easily seen by writing Wl′ = −2∇·∇χl′−∆χl′ , and using the following inequality:

‖∇(∇χl′u)‖2 = 2Re 〈−∆u, |∇χl′ |2u〉+ 2‖(∆χl′)u‖2

≤ 2 |Re 〈(HΛql′ − E − iε)u, |∇χl′ |2u〉|+ 2

d∑
i=1

‖|∇∂iχl′ |u‖2

+2|Re 〈(E − V0 − VΛql′ )u, |∇χl′ |2u〉|.(8.21)

This inequality can be proved using the equality

(8.22) ‖∇(ψu)‖2 = Re 〈∇u,∇(ψ2u)〉+ ‖ |∇ψ|u‖2,
which can be found in the book by Agmon [1] on page 20, equation (1.16). Taking

u = Rql′(E+iε)χl′/3ψ, for any ψ ∈ L2(IRd), and using the fact that |∇χl′ | χl′/3 = 0,

we finally obtain

‖Wl′Rql′(E + iε)χl′/3‖ ≤
⎛⎝ 2

d∑
i,j=1

‖∂i∂jχl′‖∞ + 2‖E − VΛl′ − V0‖1/2
∞ ‖∇χl′‖2∞

+2‖∇χl′‖∞ ‖∆χl′‖∞ )

× ‖χ̃l′Rql′(E + iε)χl′/3‖.(8.23)

Here, we take a function χ̃l′ with a slightly larger support so that χ̃l′χl′ = χl′ .

7. Next, we use the GRE to pass from the result for Rql′ to one for Rl′ . As we have

(8.24) χl′Rql′ −Rl′χl′ = Rl′Wl′Rql′ ,

we obtain

(8.25) Wl′Rql′χl′/3 = Wl′Rl′χl′/3 + Wl′Rl′Wl′Rql′χl′/3.

We rewrite this equation to obtain a bound involving some constant C, depending

only on ‖∇χl′‖∞, ‖∆χl′‖∞, and E, similar to the coefficient on the right side of

(8.23),

(8.26)

‖Wl′Rl′(E+iε)χl′/3‖ ≤ C(1+‖Rl(E+iε)χl′/3‖)‖χ̃l′Rql′χl′/3‖+‖Wl′Rql′(E+iε)χl′/3‖.
8. Finally, we use the Wegner estimate [W] to bound the norm of the resolvent on

the right side of (8.23) and of (8.26) by

(8.27) ‖Rpl′(E + iε)‖ ≤ 2CW pd(l′)ξ+d, for p = 1 or q.

This estimate holds with probability at least 1− 1
2 (l′)−ξ, provided l, and hence l′,

is large enough. We have obtained the following estimate on the resolvent of the

local Hamiltonian HΛl′ from (8.26)–(8.27),

(8.28) ‖Wl′Rl′(E + iε)χl′/3‖ ≤ e−γ′l′ ,

with

(8.29) γ′ =

(
γ − log bd

l

)(
1− 4l

l′

)
− c

log l′

l′
,

with a constant c depending only on d, CW , and ξ. Recall that ξ > 2d, so ξ can be

taken to be a simply a multiple of d. This holds provided the resolvent estimate

(8.27) is satisfied, and there are not two disjoint or more γ-bad Λl boxes centered in

Γl∩Λql′ . The probability of this last event is larger than 1−cd(l
′/l)2dη2, where cd is

a combinatorial factor depending only on d and q. Here, we use the independence

of events associated with disjoint regions. Consequently, our localized resolvent
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estimate (8.28) holds with probability ≥ 1− cdη
2(l′/l)2d − 1

2 (l′)−ξ. This concludes

the proof of Lemma 8.4. �

8.4. Consequences of the Inductive Step. We prove Lemma 5.4 from the

inductive step described in Lemma 8.4.

there

Proof of Lemma 5.4. Assuming l0 is large enough, say l0 ≥ l∗1, one can define γk

inductively according to (8.9) in Lemma 8.4,

(8.30) γk+1 = γk

(
1− 4lk

lk+1

)
− ck,

where

ck =
c1

lk

(
1− 4lk

lk+1

)
+ c2

log lk+1

lk+1
.

We find

(8.31) γk+1 = γ0

k∏
j=0

(1−Nj)−
k∑

l=0

(l−1)∏
j=0

(1−Nj)ck−l,

with Nj = 4lj/lj+1. It is easy to check that

k∏
j=0

(1−Nj) is uniformly bounded below

by a strictly positive number κ uniformly in l0 if l0 ≥ 2. The subtracted term in

(8.31) is certainly ≤ κγ0/2 if l0 is large enough, say l0 ≥ l∗2, so that γk ≥ κγ0/2 for

all k. According to Lemma 8.4, suppose Λk is γk-good with probability ≥ 1 − ηk,

where ηk = l−ξ
k . We compute an upper bound on ηk+1 using the definition given in

(8.8),

(8.32)

ηk+1 = cdl
(d−2ξ)
k + 1

2 l−ξ
k+1 = cd(lk+1)

2(d−2ξ)/3 + 1
2 l−ξ

k+1

≤
(

1
2 + cdl

(2d−ξ/3)
k+1

)
l−ξ
k+1.

This is less than l−ξ
k+1 since ξ > 2d for l0 > l∗3 = (2cd)

(ξ−2d)/3. In these last

estimates, we have used the identity lk+1 = l
3/2
k . We obtain the result with l∗ =

max {l∗i , i = 1, 2, 3}. �
We now give a refinement of these lemmas needed in the proof of Theorem 5.4.

Lemma 8.5. Let γ0 > 0 and assume [W]. Let l∗ be the minimum length scale
of Lemma 5.4 and suppose [H1](γ0, l0) holds for l0 > l∗. Then, there exists a
constant Cp = Cp(γ0, CW , d), such that for any cube Λ ⊂ IRd sufficiently large so
that Λqlk ⊂ Λ, for some large k and q ≥ 2, and x, y ∈ Λ such that

(8.33) dist (x or y, ∂Λ) > ‖x− y‖ > qlk,

and

(8.34) qlk+1 > ‖x− y‖ > qlk,

one has
(8.35)

IP

{
sup
ε > 0

‖χxRΛ(E + iε)χy‖ ≤ e−(1/2
√

d)γ0 ‖x−y‖
}
≥ 1− Cp |Λ| q2d ‖x− y‖−ξ,
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where χx, χy are characteristic functions of unit cubes centered at x or y and we
write γ0 for κγ0/2 of Lemma 8.4 for simplicity.

Proof. Let us suppose dist (x, ∂Λ) ≥ dist (y, ∂Λ); in the other case we begin the

construction at y. We assume without restricting generality that x, y ∈ Γlk . As in

Lemma 8.4 we can find a least n chained boxes of side lk centered on points in Γlk

starting at x before reaching ∂Λ or y where n ≥ 3 ‖x− y‖/lk. By Lemma 8.4, the

probability that each box Λlk is γ0-good is ≥ 1 − l−ξ
k . As in the proof of Lemma

8.4,

(8.36) sup
ε > 0

‖χlk/3(x)RΛ(E + iε)χlk/3(y)‖ ≤ e−(3/4
√

d)γ0 ‖x−y‖‖RΛ(E + iε)‖,

with probability ≥ 1− ηl−ξ
k ≥ 1− l−ξ

k |Λ|cd, where cd depends only on d. Here we

have assumed that k is large enough so that

γ0 − log bd

lk
>

3γ0

4
.

We use Wegner’s lemma [W] to estimate ‖RΛ‖ and obtain

(8.37) IP{‖RΛ(E + iε)‖ ≤ e(1/4
√

d)γ0lk} ≥ 1− CW |Λ| e−(1/4
√

d)γ0 lk .

Estimates (8.36)–(8.37) yield

sup
ε > 0

‖χlk/3(x)R(Λ)(E + iε)χlk/3(y)‖ ≤ e−(1/2
√

d)γ0 ‖x−y‖,

with probability ≥ 1−|Λ|{CW e−(1/4
√

d)γ0lk + l−ξ
k } ≥ 1−cp |Λ|q2d ‖x−y‖−2d, where

we have used the identity lk = (lk+1)
2/3. �
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Contemporary Mathematics

Quantum Mechanics, The Stability of Matter and Quantum
Electrodynamics

Elliott H. Lieb

Abstract. Much progress has been made in the last few decades in develop-
ing the necessary mathematics for understanding the full implications of the
quantum-mechanical many-body problem and why the material world appears
to be as stable as it is despite the serious −1/|x| singularity of the Coulomb
potential that attracts negative electrons to positive atomic nuclei. Many
problems remain, however, especially the understanding of the interaction of
matter and the quantized radiation field discovered by Planck in 1900. A short
review of some of the main topics is given.

1. Introduction

This paper is a brief survey of the quantum-mechanical many-body problem,

especially the question of the interaction of matter with radiation. The quantum-

mechanical revolution of the 1920’s brought with it many successes, but also a

few problems that have yet to be resolved. The realization that there were a few

problems with the simple textbook theory surfaced three or four decades ago. Since

then some of the mathematical questions have been answered, but some big ones

remain. This brief overview might, it is hoped, encourage some mathematicians to

look into this fascinating topic.

We begin with a sketch of the topics that will concern us here.

1.1. Triumph of Quantum Mechanics. One of the basic problems of clas-

sical physics (after the discovery of the point electron by Thomson and of the

(essentially) point nucleus by Rutherford) was the stability of atoms. Why do

the electrons in an atom not fall into the nucleus? Quantum mechanics explained

this fact. It starts with the classical Hamiltonian of the system (nonrelativistic

kinetic energy for the electrons plus Coulomb’s law of electrostatic energy among
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2 ELLIOTT H. LIEB

the charged particles). By virtue of the non-commutativity of the kinetic and po-

tential energies in quantum mechanics the stability of an atom – in the sense of a

finite lower bound to the energy – was a consequence of the fact that any attempt

to make the electrostatic energy very negative would require the localization of an

electron close to the nucleus and this, in turn, would result in an even greater,

positive, kinetic energy.

Thus, the basic stability problem for an atom was solved by an inequality

that says that 〈1/|x|〉, the expected value of 1/|x|, can be made large only at the

expense of making the kinetic energy, which is proportional to 〈p2〉, even larger.

A fundamental hypothesis of quantum mechanics is that p is represented by the

differential operator −i�∇ with � = h/2π and h =Planck’s constant. In elementary

presentations of the subject it is often said that the mathematical inequality that

ensures this fact is the famous uncertainty principle of Heisenberg (proved by Weyl),

which states that 〈p2〉〈x2〉 ≥ (9/8)�2.

While this principle is mathematically rigorous it is actually insufficient for the

purpose, as explained, e.g., in [19, 21], and thus gives only a heuristic explanation

of the power of quantum mechanics to prevent collapse. A more powerful inequal-

ity, such as Sobolev’s inequality (2.6), is needed (see, e.g., [23]). The utility of

the latter is made possible by Schrödinger’s representation of quantum mechanics

(which earlier was a somewhat abstract theory of operators on a Hilbert space) as

a theory of differential operators on the space of square integrable functions on R3.

The importance of Schrödinger’s representation is sometimes underestimated by

formalists, but it is of crucial importance because it permits the use of functional

analytic methods, especially inequalities such as Sobolev’s, which are not easily vis-

ible on the Hilbert space level. These methods are essential for the developments

reported here.

To summarize, the understanding of the stability of atoms and ordinary matter

requires a formulation of quantum mechanics with two ingredients:

• A Hamiltonian formulation in order to have a clear notion of a lowest

possible (ground state) energy. Lagrangian formulations, while popular,

do not always lend themselves to the identification of that quintessen-

tial quantum mechanical notion of a ground state energy. In quantum

mechanics a Hamiltonian is not a function on phase space but rather a

(pseudo-) differential operator.

• A formulation in terms of concrete function spaces instead of abstract

Hilbert spaces so that the power of mathematical analysis can be fully

exploited.

1.2. Some Basic Definitions. As usual, we shall denote the lowest energy

(eigenvalue) of a quantum mechanical system by E0. (More generally, E0 denotes

the infimum of the spectrum of the Hamiltonian H in case this infimum is not an

eigenvalue of H or is −∞.) Our intention is to investigate arbitrarily large systems,

not just atoms. In general we suppose that the system is composed of N electrons

and K nuclei of various kinds. Of course we could include other kinds of particles

but N and K will suffice here. N = 1 for a hydrogen atom and N = 1023 for a mole

of hydrogen. We shall use the following terminology for two notions of stability:

E0 > −∞ Stability of the first kind,(1.1)

E0 > C(N + K) Stability of the second kind(1.2)
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for some constant C ≤ 0 that is independent of N and K, but which may depend

on the physical parameters of the system (such as the electron charge and mass).

Usually, C < 0, which means that there is a positive binding energy per particle.

Stability of the second kind is absolutely essential if quantum mechanics is going

to reproduce some of the basic features of the ordinary material world: The energy

of ordinary matter is extensive (i.e., it is proportional to the number of particles),

the thermodynamic limit exists (i.e., the N → ∞ limit exists) and the laws of

thermodynamics hold. Bringing two stones together might produce a spark, but

not an explosion with a release of energy comparable to the energy in each stone.

Stability of the second kind does not guarantee the existence of the thermodynamic

limit for the free energy, but it is an essential ingredient [22] [19, Sect. V].

It turns out that stability of the second kind cannot be taken for granted,

as Dyson discovered [9]. If Coulomb forces are involved, then the Pauli exclu-
sion principle is essential. (This means that the L2 functions of N variables,

Ψ(x1, x2, . . . , xN ), xi ∈ R
3, is antisymmetric under all transpositions xi ↔ xj .

Particles, like electrons, whose functions Ψ obey this principle are called fermions.
Particles whose Ψ functions are symmetric under permutations are called bosons.)

Charged bosons are not stable because for them E0 ∼ −N7/5 (nonrelativisti-

cally) and E0 = −∞ for large, but finite N (relativistically, see Sect. 3.2). While

positively charged bosons exist in the form of atomic nuclei, negatively charged,

long-lived bosons do not exist in nature. This is a good thing in view of the insta-

bility just mentioned.

1.3. The Electromagnetic Field. A second big problem handed down from

classical physics was the ‘electromagnetic mass’ of the electron. This poor creature

has to drag around an infinite amount of electromagnetic energy that Maxwell

burdened it with. Moreover, the electromagnetic field itself is quantized – indeed,

that fact alone started the whole revolution [34].

While quantum mechanics accounted for stability with Coulomb forces and

Schrödinger led us to think seriously about the ‘wave function of the universe’,

physicists shied away from talking about the wave function of the particles in the

universe and the electromagnetic field in the universe. It is noteworthy that physi-

cists are happy to discuss the quantum mechanical many-body problem with ex-

ternal electromagnetic fields non-perturbatively, but this is rarely done with the

quantized field. The quantized field cannot be avoided because it is needed for a

correct description of atomic radiation, the laser, etc. However, the interaction of

matter with the quantized field is almost always treated perturbatively or else in

the context of highly simplified models (e.g., with two-level atoms for lasers).

The quantized electromagnetic field greatly complicates the stability of matter

question. It requires, ultimately, mass and charge renormalizations. At present

such a complete theory does not exist, but a theory must exist because matter exists

and because we have strong experimental evidence about the manner in which the

electromagnetic field interacts with matter, i.e., we know the essential features of

a Hamiltonian that adequately accounts for the low energy processes that exist in

every day life. In short, nature tells us that it must be possible to formulate a

self-consistent quantum electrodynamics (QED) non-perturbatively, (perhaps with

an ultraviolet, or high frequency, cutoff of the field at a few MeV). It should not

be necessary to have recourse to quantum chromodynamics (QCD) or some other

high energy theory to explain ordinary matter.
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Physics and other natural sciences are successful because physical phenomena

associated with each range of energy and other parameters are explainable to a

good, if not perfect, accuracy by an appropriate self-consistent theory. This is

true whether it be hydrodynamics, celestial dynamics, statistical mechanics, etc.

If low energy physics (atomic and condensed matter physics) is not explainable

by a self-consistent, non-perturbative theory on its own level one can speak of an

epistemological crisis.

Some readers might say that QED is in good shape. After all, it accurately

predicts the outcome of some very high precision experiments (Lamb shift, g-factor

of the electron). But the theory does not really work well when faced with the

problem, which is explored here, of understanding the many-body (N ≈ 1023)

problem and the stable low energy world in which we spend our everyday lives.

1.4. Relativistic Mechanics. When the classical kinetic energy of a particle,

p2/2m, is replaced by its relativistic version
√

p2c2 + m2c4 the stability question

becomes much more complicated, as will be seen later. It turns out that even

stability of the first kind is not easy to obtain and it depends on the values of the

physical constants, notably the fine structure constant

(1.3) α = e2/�c = 1/137.04 ,

where −e is the electric charge of the electron.

For ordinary matter relativistic effects are not dominant but they are noticeable.

In large atoms these effects severely change the innermost electrons and this has

a noticeable effect on the overall electron density profile. Therefore, some version

of relativistic mechanics is needed, which means, presumably, that we must know

how to replace p2/2m by the Dirac operator (see (5.1)).

The combination of relativistic mechanics plus the electromagnetic field (in

addition to the Coulomb interaction) makes the stability problem difficult and

uncertain. Major aspects of this problem have been worked out in the last few

years (about 35) and that is the subject of this paper.

2. Nonrelativistic Matter without the Magnetic Field

Maxwell’s equations define the electric and magnetic fields in terms of poten-

tials. While the equations determine the fields, the potentials are not determined

uniquely; the choice of potentials is called the choice of gauge. We work in the

‘Coulomb’ gauge for the electromagnetic field. Despite the assertion that quantum

mechanics and quantum field theory are gauge invariant, it seems to be essential to

use this gauge, even though its relativistic covariance is not as transparent as that

of the Lorentz gauge. The reason is the following.

The Coulomb gauge is the gauge in which electrostatic part of the interaction

of matter with the electromagnetic field is just the conventional Coulomb “action

at a distance” potential Vc given by (2.1) below (in energy units mc2 and length

units the Compton wavelength �/mc). This part of the interaction depends only

on the coordinates of the particles and not on their velocities. The dependence of

the interaction on velocities, or currents, comes about through the magnetic part of

the interaction. Despite appearances, this picture is fully Lorentz invariant (even
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if it is not gauge invariant).

Vc = −
N∑

i=1

K∑
k=1

Zk

|xi −Rk| +
∑

1≤i<j≤N

1

|xi − xj | +
∑

1≤k<l≤K

ZkZl

|Rk −Rl| .(2.1)

The first sum is the interaction of the electrons (with dynamical coordinates xi)

and fixed nuclei located at Rk of positive charge Zk times the (negative) electron

charge e. The second is the electron-electron repulsion and the third is the nucleus-

nucleus repulsion. The nuclei are fixed because they are so massive relative to the

electron that their motion is irrelevant. It could be included, however, but it would

change nothing essential. Likewise, there is no nuclear structure factor because if it

were essential for stability then the size of atoms would be the size of nuclei, about

10−13 cm, instead of about 10−8 cm, contrary to what is observed.

Although the nuclei are fixed points the constant C in the stability of matter

(1.2) is required to be independent of the Rk’s. Likewise (1.1) requires that E0

have a finite lower bound that is independent of the Rk’s.

For simplicity of exposition we shall assume here that all the Zk are identical,

i.e., Zk = Z.

The magnetic field, which will be introduced later, is described by a vector

potential A(x) which is a dynamical variable in the Coulomb gauge. The magnetic

field is B = curlA.

There is a basic physical distinction between electric and magnetic forces which

does not seem to be well known, but which motivates this choice of gauge. In

electrostatics “like charges repel” while in magnetostatics “like currents attract”.

A consequence of these facts is that the correct magnetostatic interaction energy

can be obtained by minimizing the energy functional 1
2

∫
B2−∫ j·A with respect to

the vector field A, where j is the electric current density. The positive electrostatic

energy, on the other hand, cannot be obtained by a minimization principle with

respect to the field (e.g., minimizing 1
2

∫ |∇φ|2 − ∫ φ� with respect to φ).

The Coulomb gauge, which puts in the electrostatics correctly, by hand, so to

speak, and allows us to minimize the total energy with respect to the A field, is the

gauge that gives us the correct physics and is consistent with the “quintessential

quantum mechanical notion of a ground state energy” mentioned in Sect. 1.1. In

any other gauge one would have to look for a critical point of a Hamiltonian rather

than a true global minimum.

The type of Hamiltonian that we wish to consider in this section is

(2.2) HN = TN + αVc .

Here, TN is the kinetic energy of the N electrons and has the form

(2.3) TN =

N∑
i=1

Ti ,

where Ti acts on the coordinate of the ith electron. The nonrelativistic choice is

T = p2 with p = −i∇ and p2 = −∆ in appropriate units.

2.1. Nonrelativistic Stability for Fermions. The problem of stability of

the second kind for nonrelativistic quantum mechanics was recognized in the early

days by a few physicists, e.g., Onsager, but not by many. It was not solved until
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1967 in one of the most beautiful papers in mathematical physics by Dyson and

Lenard [10].

They found that the Pauli principle, i.e., Fermi-Dirac statistics, is essential.

Mathematically, this means that the Hilbert space is the subspace of antisymmetric

functions, i.e., Hphys = ∧NL2(R3; C2). This is how the Pauli principle is interpreted

post-Schrödinger; Pauli invented his principle a year earlier, however!

Their value for C in (1.2) was rather high, about −1015 eV (electron volts) for

Z = 1. (The ground state energy of a hydrogen atom is -13 eV.) The situation

was improved later by Thirring and myself [31] to about −20 eV for Z = 1 by

introducing an inequality that holds only for the kinetic energy of fermions (not

bosons) in an arbitrary state Ψ.

(2.4) 〈Ψ, TNΨ〉 ≥ (const.)

∫
R3

�Ψ(x)5/3 d3x ,

where �Ψ is the one-body density in the (normalized) fermionic wave function Ψ

(of space and spin) given by an integration over (N − 1) coordinates and N spins

as follows.

(2.5) �Ψ(x) = N
∑

σ1,...,σN

∫
R3(N−1)

|Ψ(x, x2, ...,xN ; σ1, . . . σN )|2 d3x2 · · ·d3xN .

Inequality (2.4) allows one simply to reduce the quantum mechanical stability

problem to the stability of Thomas-Fermi theory, which was worked out earlier by

Simon and myself [30].

The older inequality of Sobolev, mentioned in Sect. 1.1,

(2.6) 〈Ψ, TNΨ〉 ≥ (const.)

(∫
R3

�Ψ(x)3 d3x
)1/3

,

is not as useful as (2.4) for the many-body problem because its right side is pro-

portional to N instead of N5/3. It is, however, strong enough to yield the stability

of a system, like an atom, that has only a few electrons.

It is amazing that from the birth of quantum mechanics until 1967 none of the

luminaries of physics had quantified the fact that electrostatics plus the uncertainty

principle do not suffice for stability of the second kind, and thereby make thermo-

dynamics possible (although they do suffice for the first kind). See Sect. 2.2. It

was noted, however, that the Pauli principle was responsible for the large sizes of

atoms and bulk matter (see, e.g., [9, 10]).

2.2. Nonrelativistic Instability for Bosons. What goes wrong if we have

charged bosons instead of fermions? Stability of the first kind (1.1) holds in the

nonrelativistic case, but (1.2) fails. If we assume the nuclei are infinitely massive, as

before, and N = KZ then E0 ∼ −N5/3 [10, 20]. To remedy the situation we can

let the nuclei have finite mass (e.g., the same mass as the negative particles). Then,

as Dyson showed [9], E0 ≤ −(const.)N7/5. This calculation was highly non-trivial!

Dyson had to construct a variational function with pairing of the Bogolubov type

in a rigorous fashion and this took several pages.

Thus, finite nuclear mass improves the situation, but not enough. The question

whether N7/5 is the correct power law remained open for many years. A lower

bound of this type was needed and that was finally obtained in [6].
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The results of this Section 2 can be summarized by saying that stability of the

hydrogen atom is one thing but stability of many-body physics is something else !

3. Relativistic Kinematics (no magnetic field)

The next step is to try to get some idea of the effects of relativistic kinematics,

which means replacing p2 by
√

p2 + 1 in non-quantum physics. (Recall that mc2 =

1 in our units.) The simplest way to do this is to substitute
√

p2 + 1 for T in

(2.3). The Dirac operator will be discussed later on, but for now this choice of T
will suffice. Actually, it was Dirac’s choice before he discovered his operator and

it works well in some cases. For example, Chandrasekhar used it successfully, and

accurately, to calculate the collapse of white dwarfs (and later, neutron stars).

Since we are interested only in stability, we may, and shall, substitute |p| =√−∆ for T . The error thus introduced is bounded by a constant times N since

|p| <
√

p2 + 1 < |p| + 1 (as an operator inequality). Our Hamiltonian is now

HN =
∑N

i=1 |pi|+ αVc.

3.1. One-Electron Atom. The touchstone of quantum mechanics is the Hamil-

tonian for ‘hydrogen’ which is, in our case,

(3.1) H = |p| − Zα/|x| = √−∆− Zα/|x| .

It is well known (also to Dirac) that the analogous operator with |p| replaced

by the Dirac operator (5.1) ceases to make sense when Zα > 1. Something similar

happens for (3.1).

(3.2) E0 =

{
0 if Zα ≤ 2/π;

−∞ if Zα > 2/π .

The reason for this behavior is that both |p| and |x|−1 scale in the same way.

Either the first term in (3.1) wins or the second does.

A result similar to (3.2) was obtained in [11] for the free Dirac operator D(0)

in place of |p|, but with the wave function Ψ restricted to lie in the positive spectral

subspace of D(0). Here, the critical value is αZ ≤ (4π)/(4 + π2) > 2/π.

The moral to be drawn from this is that relativistic kinematics plus quantum

mechanics is a ‘critical’ theory (in the mathematical sense). This fact will plague

any relativistic theory of electrons and the electromagnetic field – primitive or

sophisticated.

3.2. Many Electrons and Nuclei. When there are many electrons is it true

that the condition Zα ≤ const. is the only one that has to be considered? The

answer is no! One also needs the condition that α itself must be small, regardless

of how small Z might be. This fact can be called a ‘discovery’ but actually it is

an overdue realization of some basic physical ideas. It should have been realized

shortly after Dirac’s theory in 1927, but it does not seem to have been noted until

1983 [8].

The underlying physical heuristics is the following. With α fixed, suppose

Zα = 10−6 � 1, so that an atom is stable, but suppose that we have 2 × 106

such nuclei. By bringing them together at a common point we will have a nucleus

with Zα = 2 and one electron suffices to cause collapse into it. Then (1.1) fails.

What prevents this from happening, presumably, is the nucleus-nucleus repulsion

energy which goes to +∞ as the nuclei come together. But this repulsion energy is
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proportional to (Zα)2/α and, therefore, if we regard Zα as fixed we see that 1/α
must be large enough in order to prevent collapse.

Whether or not the reader believes this argument, the mathematical fact is

that there is a fixed, finite number αc ≤ 2.72 ([32]) so that when α > αc (1.1) fails

for every positive Z and for every N ≥ 1 (with or without the Pauli principle).

The open question was whether (1.2) holds for all N and K if Zα and α are

both small enough. The breakthrough was due to Conlon [5] who proved (1.2), for

fermions, if Z = 1 and α < 10−200. The situation was improved by Fefferman and

de la Llave [13] to Z = 1 and α < 0.16. Finally, the expected correct condition

Zα ≤ 2/π and α < 1/94 was obtained in [32]. (This paper contains a detailed

history up to 1988.) The situation was further improved in [27]. The multi-particle

version of the use of the free Dirac operator, as in Sect. 3.1, was treated in [18].

Finally, it has to be noted that charged bosons are always unstable of the first

kind (not merely the second kind, as in the nonrelativistic case) for every choice of

Z > 0, α > 0. E.g., there is instability if Z2/3αN1/3 > 36 ([32]).

We are indeed fortunate that there are no stable, negatively charged bosons.

4. Interaction of Matter with Classical Magnetic Fields

The magnetic field B is defined by a vector potential A(x) and B(x) =

curlA(x). In this section we take a first step (warmup exercise) by regarding

A as classical, but indeterminate, and we introduce the classical field energy

(4.1) Hf =
1

8π

∫
R3

B(x)2dx .

The Hamiltonian is now

(4.2) HN (A) = TN (A) + αVc + Hf ,

in which the kinetic energy operator has the form (2.3) but depends on A. We

now define E0 to be the infimum of 〈Ψ, HN (A)Ψ〉 both with respect to Ψ and with
respect to A.

4.1. Nonrelativistic Matter with Magnetic Field. The simplest situation

is merely ‘minimal coupling’ without spin, namely,

(4.3) T (A) = |p +
√

αA(x)|2

This choice does not change any of our previous results qualitatively. The field en-

ergy is not needed for stability. On the one-particle level, we have the ‘diamagnetic

inequality’ 〈φ, |p+A(x)|2φ〉 ≥ 〈|φ|, p2|φ|〉. The same holds for |p+A(x)| and |p|.
More importantly, inequality (2.4) for fermions continues to hold (with the same

constant) with T (A) in place of p2. (There is an inequality similar to (2.4) for |p|,
with 5/3 replaced by 4/3, which also continues to hold with minimal substitution

[7].)

The situation gets much more interesting if spin is included. This takes us a

bit closer to the relativistic case. The kinetic energy operator is the Pauli operator

(4.4) TP (A) = |p +
√

α A(x)|2 +
√

α B(x) · σ ,

where σ is the vector of 2 × 2 Pauli spin matrices and L2(R3) is replaced by

L2(R3; C3)
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4.1.1. One-Electron Atom. The stability problem with TP (A) is complicated,

even for a one-electron atom. Without the field energy Hf the Hamiltonian is

unbounded below. (For fixed A it is bounded but the energy tends to −∞ like

−(log B)2 for a homogeneous field [2].) The field energy saves the day, but the

result is surprising [14] (recall that we must minimize the energy with respect to

Ψ and A):

(4.5) |p +
√

α A(x)|2 +
√

α B(x) · σ − Zα/|x|+ Hf

is bounded below if and only if Zα2 ≤ C, where C is some constant that can be

bounded as 1 < C < 9π2/8.

The proof of instability [33] is difficult and requires the construction of a zero

mode (soliton) for the Pauli operator, i.e., a finite energy magnetic field and a

square integrable ψ such that

(4.6) TP (A)ψ = 0 .

The usual kinetic energy |p + A(x)|2 has no such zero mode for any A, even when

0 is the bottom of its spectrum.

The original magnetic field [33] that did the job in (4.6) is independently in-

teresting, geometrically (many others have been found since then).

B(x) =
12

(1 + |x|2)3 [(1− x2)w + 2(w · x)x + 2w ∧ x]

with |w| = 1. The field lines of this magnetic field form a family of curves, which,

when stereographically projected onto the 3-dimensional unit sphere, become the

great circles in what what is known as the Hopf fibration.

Thus, we begin to see that nonrelativistic matter with magnetic fields behaves

like relativistic matter without fields – to some extent.

The moral of this story is that a magnetic field, which we might think of

as possibly self-generated, can cause an electron to fall into the nucleus. The

uncertainty principle cannot prevent this, not even for an atom!

4.1.2. Many Electrons and Many Nuclei. In analogy with the relativistic (no

magnetic field) case, we can see that stability of the first kind fails if Zα2 or α is

too large. The heuristic reasoning is the same and the proof is similar.

We can also hope that stability of the second kind holds if both Zα2 and α are

small enough. The problem is complicated by the fact that it is the field energy

Hf that will prevent collapse, but there there is only one field energy while there

are N � 1 electrons.

The hope was finally realized, however. Fefferman [12] proved stability of

the second kind for HN (A) with the Pauli TP (A) for Z = 1 and “α sufficiently

small”. A few months later it was proved [28] for Zα2 ≤ 0.04 and α ≤ 0.06. With

α = 1/137 this amounts to Z ≤ 1050. This very large Z region of stability is

comforting because it means that perturbation theory (in A) can be reliably used

for this particular problem.

Using the results in [28], Bugliaro, Fröhlich and Graf [3] proved stability of

the same nonrelativistic Hamiltonian – but with an ultraviolet cutoff, quantized

magnetic field whose field energy is described below. (Note: No cutoffs are needed

for classical fields.)

There is also the very important work of Bach, Fröhlich, and Sigal [4] who

showed that this nonrelativistic Hamiltonian with ultraviolet cutoff, quantized field
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and with sufficiently small values of the parameters has other properties that one

expects. E.g., the excited states of atoms dissolve into resonances and only the

ground state is stable. The infrared singularity notwithstanding, the ground state

actually exists (the bottom of the spectrum is an eigenvalue); this was shown in [4]

for small parameters and in [15], [26] for all values of the parameters. (See Sect.

7.)

5. Relativity Plus Magnetic Fields

As a next step in our efforts to understand QED and the many-body problem

we introduce relativity theory along with the classical magnetic field.

5.1. Relativity Plus Classical Magnetic Fields. Originally, Dirac and

others thought of replacing TP (A) by
√

TP (A) + 1 but this was not successful

mathematically and does not seem to conform to experiment. Consequently, we

introduce the Dirac operator for T in (2.3), (4.2)

(5.1) D(A) = α · p +
√

α α ·A(x) + βm ,

where α and β denote the 4 × 4 Dirac matrices and
√

α is the electron charge as

before. (This notation of α and α is historical and is not mine.) The Hilbert space

for N electrons is now changed to

(5.2) H = ∧NL2(R3; C4) .

The well known problem with D(A) is that it is unbounded below, and so we

cannot hope to have stability of the first kind, even with Z = 0. Let us imitate

QED (but without pair production or renormalization) by restricting the electron

wave function to lie in the positive spectral subspace of a Dirac operator.

Which Dirac operator?

There are two natural operators in the problem. One is D(0), the free Dirac

operator. The other is D(A) that is used in the Hamiltonian. In almost all formu-

lations of QED the electron is defined by the positive spectral subspace of D(0).

Thus, we can define

(5.3) Hphys = P+ H = ΠN
i=1πiH ,

where P+ = ΠN
i=1πi, and πi is the projector of onto the positive spectral subspace

of Di(0) = α ·pi +βm, the free Dirac operator for the ith electron. We then restrict

the allowed wave functions in the variational principle to those Ψ satisfying

(5.4) Ψ = P+ Ψ i.e., Ψ ∈ Hphys .

Another way to say this is that we replace the Hamiltonian (4.2) by P+ HN P+

on H and look for the bottom of its spectrum.

It turns out that this prescription leads to disaster! While the use of D(0) makes

sense for an atom, it fails miserably for the many-fermion problem, as discovered

in [29] and refined in [16]. The result is:

For all α > 0 in (5.1) (with or without the Coulomb term αVc) one can find N
large enough so that E0 = −∞.

In other words, the term
√

α α·A in the Dirac operator can cause an instability

that the field energy cannot prevent.

It turns out, however, that the situation is saved if one uses the positive spectral

subspace of the Dirac operator D(A) to define an electron. (This makes the concept

of an electron A dependent, but when we make the vector potential into a dynamical
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quantity in the next section, this will be less peculiar since there will be no definite

vector potential but only a fluctuating quantity.) The definition of the physical

Hilbert space is as in (5.3) but with πi being the projector onto the positive subspace

of the full Dirac operator Di(A) = α ·pi +
√

α α ·A(xi) + βm. Note that these πi

projectors commute with each other and hence their product P+ is a projector.

The result [29] for this model ((4.2) with the Dirac operator and the restriction

to the positive spectral subspace of D(A)) is reminiscent of the situations we have

encountered before:

If α and Z are small enough stability of the second kind holds for this model.
Typical stability values that are rigorously established [29] are Z ≤ 56 with

α = 1/137 or α ≤ 1/8.2 with Z = 1.

6. Quantized Electromagnetic Fields

Let us now try to analyze some of the problems connected with the quantization

of the electromagnetic field. The great discovery of Max Planck [34], which was the

first step in the new quantum theory, was that the energy of the electromagnetic

field came in quantized units. The energy unit of electromagnetic waves of frequency

ν is hν, and in terms of wave number k (i.e., the wave is proportional to exp(ik ·x))

it is �c|k| since 2πν/|k| = c = speed of light.

We begin with the problem of generalizing the results in the previous subsection

to the quantized field.

6.1. Relativity Plus Quantized Magnetic Field. The obvious next step

is to try to imitate the strategy of Sect. 5.1 but with the quantized A field. This

was done in [24]. The quantized A field is described by an operator-valued Fourier

transform as

(6.1) A(x) =
1

2π

2∑
λ=1

∫
|k|≤Λ

ελ(k)√|k|
[
aλ(k)eik·x + a∗

λ(k)e−ik·x
]
d3k ,

where Λ is the ultraviolet cutoff on the wave-numbers |k|. The operators aλ, a∗
λ

satisfy the usual canonical commutation relations

(6.2) [aλ(k), a∗
ν(q)] = δ(k− q)δλ,ν , [aλ(k), aν(q)] = 0, etc

and the vectors ελ(k) are two orthonormal polarization vectors perpendicular to k
and to each other.

The field energy Hf is now given by a normal-ordered version of (4.1)

(6.3) Hf =
∑

λ=1,2

∫
R3

|k| a∗
λ(k)aλ(k)d3k

The Dirac operator is the same as before, (5.1). Note that Di(A) and Dj(A)

still commute with each other (since A(x) commutes with A(y)). This is important

because it allows us to imitate Sect. 5.1.

In analogy with (5.2) we define

(6.4) H = ∧NL2(R3; C4)⊗F ,

where F is the Fock space for the photon field. We can then define the physical
Hilbert space as before

(6.5) Hphys = Π H = ΠN
i=1πiH ,
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where the projectors πi project onto the positive spectral subspace of either Di(0)

or Di(A).

Perhaps not surprisingly, the former case leads to catastrophe, as before. This

is so, even with the ultraviolet cutoff, which we did not have in Sect. 5.1. Because

of the cutoff the catastrophe is milder and involves instability of the second kind

instead of the first kind. This result relies on a coherent state construction in [16].

The latter case (use of D(A) to define an electron) leads to stability of the

second kind if Z and α are not too large. Otherwise, there is instability of the first

kind. The rigorous estimates are comparable to the ones in Sect. 5.1.

Clearly, many things have yet to be done to understand the stability of matter

in the context of QED. Renormalization and pair production have to be included,

for example.

The results of this section suggest, however, that a significant change in the

Hilbert space structure of QED might be necessary. We see that it does not seem

possible to keep to the current view that the Hilbert space is a simple tensor prod-

uct of a space for the electrons and a Fock space for the photons. That leads to

instability for many particles (or large charge, if the idea of ‘particle’ is unaccept-

able). The ‘bare’ electron is not really a good physical concept and one must think

of the electron as always accompanied by its electromagnetic field. Matter and the

photon field are inextricably linked in the Hilbert space Hphys.

The following tables [24] summarize some of the results of this and the previous

sections

Electrons defined by projection onto the positive
subspace of D(0), the free Dirac operator

Classical or quantized field Classical or quantized field

without cutoff Λ with cutoff Λ

α > 0 but arbitrarily small. α > 0 but arbitrarily small.

Without Coulomb Instability of Instability of

potential αVc the first kind the second kind

With Coulomb Instability of Instability of

potential αVc the first kind the second kind

Electrons defined by projection onto the positive
subspace of D(A), the Dirac operator with field
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Classical field with or without cutoff Λ

or quantized field with cutoff Λ

Without Coulomb The Hamiltonian is positive

potential αVc

Instability of the first kind when either

With Coulomb α or Zα is too large

potential αVc Stability of the second kind when

both α and Zα are small enough

6.2. Mass Renormalization. In both classical and quantum electrodynam-

ics there is a problem of mass renormalization. This means that when a charge is

accelerated its accompanying electromagnetic field is also accelerated and acts like

an additional mass. The ‘bare mass’ of the particle (which is the mass that appears

in the Hamiltonian) must be chosen so that the final, physical mass (as measured

in experiments) agrees with the physically measured value.

For a point particle, the additional mass is infinity, classically. For QED it is

also infinite, but the divergence is less rapid as the radius of the charge goes to zero.

In any case, with a finite ultraviolet cutoff Λ the additional mass is finite, but it is

far from clear that, for each Λ > 0 one can adjust the bare mass (while keeping it

positive) to give the correct physical mass. Opinions differ on this point and very

little is known rigorously about the problem outside of perturbation theory. See

[17].

There are two ways to define mass renormalization. Take one particle (N = 1)

and then either
1. Find the bottom of the spectrum of T + Hf under the condition that the

total momentum of particle plus field is p. Call it E(p) and write, for small p,

E(p) = E(p = 0) + p2/2mphysical

or else

2. Compute the binding energy of hydrogen (N = 1, K = 1, Z = 1). Call it E0

and set

E0 = mphysicalc
2α2/2�

2

The first way is the usual one; the second is motivated by the earliest experiment

in quantum mechanics. These two definitions are not the same. In any case, we

[25] can now obtain non-trivial bounds on the binding energy (in the context of the

Schrödinger Hamiltonian or the Pauli Hamiltonian interacting with the quantized

field) and thereby get some bounds on the renormalized mass using definition 2.

For large cutoff Λ, these bounds differ in their Λ dependence from what might be

expected from perturbation theory.

7. Existence of Atoms in Non-relativistic QED

One of the most recent topics concerns the seemingly trivial question of the

existence of atoms. In some sense this question is the opposite of the stability of

matter question.
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The Hamiltonian we shall use to describe an atom or molecule with N electrons

is

(7.1) HN =

N∑
i=1

TP
i (A) + αVc + Hf

where TP
i (A) is the Pauli kinetic energy operator (4.4), but A is the quantized

magnetic field given by (6.1), and Hf is the energy of the quantized field given by

(6.3). As before, Vc is the Coulomb potential (2.1) of some fixed nuclei whose total

nuclear charge is denoted by Z =
∑

Zj .

To show the existence of stable atoms we need to establish two things about

HN

1. The ground state energy (bottom of the spectrum) of HN is lower than

that of HN ′ i.e., of a system with N ′ < N electrons (with the remaining N − N ′

electrons being allowed to escape to infinity). This is called the binding condition.

2. The bottom of the spectrum of HN is actually an eigenvalue, i.e., Schrödinger’s

equation has a square integrable solution with E = the bottom of the spectrum.

In the case of the Schrödinger equation without the field, problem 1. was solved

by Zhislin in 1960 for the case N < Z + 1, which includes the neutral molecule.

He did this by using a localization technique, whose positive localization energy

(r−2) is more than offset by the Coulomb attraction (−r−1) of a positively charged

system (Z−N ′) to a negatively charged electron. The existence of the ground state

(problem 2.) follows from standard arguments because in this case the bottom of

the spectrum is negative while the bottom of the essential spectrum (which, in

this case, is the bottom of the continuum) starts at zero. Thus, there is a gap

in the spectrum and the technique of taking weak limits easily yields a non-zero

eigenfunction [23].

When we turn on the interaction with the quantized magnetic field the situation

changes significantly. One major difference is that the bottom of the essential

spectrum is now the bottom of the spectrum because we can always create photons

with arbitrarily small energy (recall that the energy of a photon with momentum

k is |k|). Therefore, if a ground state exists it necessarily lies at the bottom of the

essential spectrum and is not isolated. Eigenvalues in the continuum are notoriously

difficult to handle, even for the simple Schrödinger operator.

A second major difference is that it is necessary to localize the A field as

well as the electrons. This localization costs an energy r−1, not r−2 as before,

essentially because the field energy is proportional to |k| instead of k2. Thus, the

field localization competes with the Coulomb attraction.

Problems 1. and 2. were solved in [4] under the condition that α and Λ are

small enough.

The first general result, valid for all values of the various constants, was in [15],

where it was shown that 2. holds whenever 1. holds.

Finally, 1. was shown to hold for all values of the constants [26] under the

same natural condition as Zhislin’s, i.e., N < Z + 1.
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