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Preface

This book is about relativistic quantum mechanics and field theory of arbitrary

spin. An original author’s approach to the problem is considered.

The first goal is the derivation of the arbitrary spin relativistic wave equation

without redundant components. The special procedure of synthesis of higher

spin relativistic wave equations is suggested. The generalization for an arbitrary

spin is fulfilled. This approach is based on three level scheme: (i) relativistic

canonical quantum mechanics, (ii) the Foldy–Wouthuysen type canonical field

model, (iii) locally covariant field theory.

Relativistic wave equations for particle-antiparticle doublets are found step

by step. The start is given from the relativistic canonical quantum mechanics,

after that the transition to the Foldy–Wouthuysen type canonical field model is

fulfilled. Finally, on the basis of inverse Foldy–Wouthuysen type transforma-

tions locally covariant Dirac-like equations are derived. The examples of differ-

ent spin particle-antiparticle doublets and useful multiplets are considered.

The second goal is the proof of the Fermi–Bose duality property of a few

main equations of field theory, which before were known to have only single

Fermi (or single Bose) property. The proof of the existence of bosonic symme-

tries, solutions, conservation laws of the Dirac equation and spinor field is the

first step of this program. The fermionic properties of the Maxwell equations

are considered as well. The Fermi–Bose duality of few new equations for higher

spin also is considered.

The third goal is at least brief consideration of other corresponded original

ideas and approaches. They are the application of classical electrodynamics to

inneratomic problems, formulation of quantum electrodynamics in the terms of

field strengths, symmetries of relativistic hydrogen atom, model of atom without

quantum theory, etc.

Professionals know that it takes a lot of space to present a new approach.
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On the other hand modern journals with impact factor prefer to publish brief or

middle size articles. Therefore, an idea to explain it in book seems to be not

only useful but a necessary as well. Indeed, four first Chapters here have the

features of an introduction. Only after that the main ideas are presented and

explained.

Furthermore, the proof of our main assertions appeals to new mathematical

objects. They are the gamma matrix representation of 28-dimensional SO(8)

algebra, which contains the standard and additional spin operators, and the 64-

dimensional representations of the Clifford algebras C`R(4,2) and C`R(0,6) in

the terms of Dirac γ matrices. These SO(8) and Clifford algebras are determined

as the algebras over the field of real numbers. The new possibilities in com-

parison with standard 16-dimensional Clifford–Dirac algebra are demonstrated.

Therefore, these algebras are useful not only in this book frameworks, but can

contribute into other branches of contemporary theoretical physics. These new

objects are introduced here in the Chapter 1.

The diversity of the approaches to the problem of the Dirac equation deriva-

tion (Chapter 2) demonstrates that the variety of approaches to the field theory

model in general also is possible. In the Chapter 4 the helpfulness of the Foldy–

Wouthuysen representation is considered. The main results are presented in the

Chapters 5–10.

The author is much grateful to Profs. Ivan Krivsky, Boris Struminsky, Emil

Sabad and Anatoliy Prykarpatski for many useful discussions of the main ideas.

Symbols

C`R(4,2) and C`R(0,6) – two realizations of the 64-dimensional Clifford

algebra over the field of real numbers

C`C(1,3) – Clifford algebra over the field of complex

numbers, which gamma matrix representation

determines the Clifford–Dirac algebra

SO(1,5) – 15-dimensional special orthogonal group

SO(8) – 28-dimensional special orthogonal group

SU(2) – special unitary group

M(1,3) – Minkowski space-time
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R3 – space of coordinates

R3
~k

– momentum space

H3,4 – quantum-mechanical Hilbert space of

4-component functions

S3,4 ⊂ H3,4 ⊂ S3,4∗ – quantum-mechanical rigged Hilbert space of

4-component functions

S3,4 – Schwartz test function space of 4-component

functions

S3,4∗ – Schwartz generalized function space of

4-component functions

H3,N – quantum-mechanical Hilbert space of

N-component functions

S3,N ⊂ H3,N ⊂ S3,N∗ – quantum-mechanical rigged Hilbert space of

N-component functions

S3,N – Schwartz test function space of N-component

functions

S3,N∗ – Schwartz generalized function space of

N-component functions

L
↑
+ = SO(1,3) – proper ortochronous Lorentz group

L = SL(2,C) – universal covering of the proper ortochronous

Lorentz group

P
↑
+ = T(4)×)L

↑
+ ⊃ L

↑
+ – proper ortochronous Poincaré group

P – universal covering of the proper ortochronous

Poincaré group

D(1
2
, 1

2
) – vector representation of the Lie algebra of

Lorentz group

D(1,0)⊕(0,0) – tensor-scalar representation of the Lie algebra

of Lorentz group

D(0, 1
2
)⊕ ( 1

2
,0) – spinor representation of the Lie algebra of

Lorentz group
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FW – Foldy–Wouthuysen

RCQM – relativistic canonical quantum mechanics

SUSY – supersymmetry

IFR – inertial frame of reference



Chapter 1

On the “Old” and “New”

Gamma Matrix Representations

of the Clifford Algebra

The gamma matrix representation of 28-dimensional SO(8) algebra, which con-

tains the standard and additional spin operators, is under consideration. The

64-dimensional representations of the Clifford algebras C`R(4,2) and C`R(0,6)

in the terms of Dirac γ matrices are considered as well. The SO(8) and Clif-

ford algebras are determined as the algebras over the field of real numbers. The

relationships between the suggested representations of the SO(8) and Clifford

algebras are investigated. The role of matrix representations of such algebras

in the quantum field theory is considered. The role of gamma matrix repre-

sentation of SO(8) algebra in the proof of Fermi–Bose duality property of the

Dirac and higher spin Dirac-like equations is discussed briefly. Recent failed

interpretation is overcome.

1.1. Introduction to the Chapter 1

The role of the standard gamma matrix representations of the 16-dimensional

Clifford algebra C`C(1,3) (the Clifford–Dirac algebra) in the quantum field

theory and its applications are well known. Recently we have found the 64-

dimensional representations of the Clifford algebras C`R(4,2) and C`R(0,6) in

the terms of Dirac γ matrices. The 28-dimensional Lie algebra SO(8) in the
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terms of Dirac γ matrices, which is linked with C`R(0,6), has been introduced

as well. These SO(8) and Clifford algebras are determined as the algebras over

the field of real numbers. It is naturally to suppose that gamma matrix repre-

sentations of these algebras are useful in theoretical physics as well. Below the

description of gamma matrix representations of algebras SO(8), C`R(4,2) and

C`R(0,6) is given.

Consider the goal and subject of this chapter in some details.

The matrix representations of the SO(1,n), or SO(n), algebras (see, e.g.,

[1]) have the important applications in modern theoretical physics. First, these

mathematical objects are useful in the relativistic quantum mechanics and field

theory [1, 2]. Especially, the representations of SO(1,3) and SO(4) algebras

have been applied.

The matrix representations of the Clifford algebra (on the Clifford algebras

see, e.g., [3, 4]) have the important applications in modern theoretical physics

as well. These mathematical objects simplify the calculations in the relativistic

quantum mechanics and field theory. The most useful is the gamma matrix

representation of the 16-dimensional Clifford algebra C`C(1,3) over the field of

complex numbers. In physics this object is called the Clifford–Dirac algebra.

At first we investigated the different special representations [5–11] of the

16-dimensional Clifford algebra C`C(1,3) in the case of the Maxwell equa-

tions in the terms of electromagnetic field strengths. Recently, see [12–18],

we were able to introduce the more powerful and useful as the Clifford–

Dirac algebra mathematical objects. Over the field of real numbers the 64-

dimensional gamma matrix representation of the Clifford algebra C`R(0,6) and

28-dimensional gamma matrix representation of SO(8) algebra have been intro-

duced.

The gamma matrix representation of 64-dimensional C`R(0,6) algebra was

put into consideration in [12–18]. The algebra was considered over the field of

real numbers and for the 4×4 γ matrices. Mathematically correct interpretation

of C`R(0,6) algebra was given in [19–24], and especially in [23, 24].

The gamma matrix representation of SO(8) algebra containing two inde-

pendent sets of SU(2) generators was put into consideration in [15–18]. This al-

gebra was considered over the field of real numbers, in terms of anti-Hermitian

operators and for the 4×4 γ matrices. The interesting problem known from [16–

18] is the relationship between the 64-dimensional C`R(0,6) and 28-dimensional

SO(8) algebras. Today’s point of view on this problem is considered briefly in

[23, 24] and in details below.
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1.2. Notations, Assumptions and Definitions

One of the principal objects of the relativistic quantum mechanics and field

theory is the Dirac equation, see, e.g. [2]. This equation describes the particle-

antiparticle doublet with spins s=(1/2,1/2) or, in other words, spin 1/2 fermion-

antifermion doublet. The presentation of Dirac equation operator D≡ iγµ∂µ−m,

as well as a list of other operators of quantum spinor field, in the terms of γ

matrices gives a possibility to use the anti-commutation relations between the

Clifford algebra operators directly for finding the symmetries, solutions, conser-

vation laws, fulfilling the canonical quantization and calculating the interaction

processes in the quantum field models. The important fact is that application of

the Clifford algebra essentially simplifies the calculations.

We use the definition of Clifford algebra given in [3, 4].

Thus, for the case of free non-interacting spinor field the Dirac equation has

the form

(iγµ∂µ −m)ψ(x) = 0, (1.1)

where

x ∈ M(1,3), ∂µ ≡ ∂/∂xµ, µ = 0,3, j = 1,2,3, (1.2)

M(1,3) = {x ≡ (xµ) = (x0 = t,−→x ≡ (x j))} is the Minkowski space-time and

4-component function ψ(x) belongs to rigged Hilbert space

S3,4 ⊂ H3,4 ⊂ S3,4∗. (1.3)

Note that due to a special role of the time variable x0 = t ∈ (xµ) (in obvious

analogy with nonrelativistic theory), in general consideration one can use the

quantum-mechanical rigged Hilbert space (1.3). Here the Schwartz test function

space S3,4 is dense in the Schwartz generalized function space S3,4∗ and H3,4

is the quantum-mechanical Hilbert space of 4-component functions over R3 ⊂
M(1,3). For the manifestly covariant field theory the rigged Hilbert space is

taken as S4,4 ⊂ H4,4 ⊂ S4,4∗.
In order to finish with notations, assumptions and definitions let us note

that here the system of units ε = µ = ~ = c = 1 is chosen, the metric tensor in

Minkowski space-time M(1,3) is given by

gµν = gµν = g
µ
ν,
(
g

µ
ν

)
= diag(1,−1,−1,−1); xµ = gµνxµ, (1.4)

and summation over the twice repeated indices is implied.
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The Dirac γ matrices are taken in the standard Dirac-Pauli representation

γ0 =

∣∣∣∣
I 0

0 −I

∣∣∣∣ , γ` =

∣∣∣∣
0 σ`

−σ` 0

∣∣∣∣ , ` = 1,2,3, (1.5)

where the Pauli matrices are given by

σ1 =

∣∣∣∣
0 1

1 0

∣∣∣∣ , σ2 =

∣∣∣∣
0 −i

i 0

∣∣∣∣ , σ3 =

∣∣∣∣
1 0

0 −1

∣∣∣∣ , σ1σ2 = iσ3, 123!−circle.

(1.6)

1.3. Standard Matrix Representations of the C`C(1,3)

Clifford and the SO(1,5) Lie Algebras

Four operators (1.5) satisfy the anti-commutation relations of the Clifford alge-

bra

γµγν + γνγµ = 2gµν, γµ = gµνγν, γ†` = −γ`, γ†0 = γ0, (1.7)

and realize the 16-dimensional (24=16) matrix representation of the Clifford

algebra C`C(1,3) over the field of complex numbers.

For our purposes we introduce the additional matrix

γ4 = γ0γ1γ2γ3 = −i

∣∣∣∣
0 I

I 0

∣∣∣∣ , I =

∣∣∣∣
1 0

0 1

∣∣∣∣ . (1.8)

Such matrix satisfies the anti-commutation relations of the Clifford algebra as

well

γµ̄γν̄ + γν̄γµ̄ = 2gµ̄ν̄, µ̄, ν̄ = 0,4, (gµ̄ν̄) = (+−−−−), (1.9)

where metric tensor is given by 5×5 matrix. Contrary to four generators (1.5)

of this Clifford algebra the operator γ4 = γ0γ1γ2γ3 is dependent. Therefore, γ4

does not contribute to the definition of this algebra as 16-dimensional (24=16)

C`C(1,3).

Here and in our publications (see, e.g. the articles [5–24]) we use the anti-

Hermitian γ4 = γ0γ1γ2γ3 matrix instead of the Hermitian γ5 matrix of other au-

thors [2]. Our γ4 is equal to iγ5
standard. Notation γ5 is used in [12–24] and below

for a completely different matrix γ5 ≡ γ1γ3Ĉ.

The 16 elements of the γ matrix representation of the C`C(1,3) algebra are

given by the Table 1.1, where I4 = −γ0γ1γ2γ3γ4 is 4×4 unit matrix, s05, ..., s45
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Table 1. 1. The 16 elements of the γ matrix representation of the C`C(1,3)
algebra

I4

γ0γ1 γ0γ2 γ0γ3 γ0γ4 2s05 ≡ γ0

γ1γ2 γ1γ3 γ1γ4 2s15 ≡ γ1

γ2γ3 γ2γ4 2s25 ≡ γ2

γ3γ4 2s35 ≡ γ3

2s45 ≡ γ4

are five elements of SO(1,5) Lie algebra determined at once below and in Table

1.2.

In the papers [25, 26] 16 elements of the Clifford-Dirac algebra are linked

to the 15 elements of the SO(3,3) Lie algebra. In our papers [12–18] we were

able to give the link between the γ matrix representation of the C`C(1,3) algebra

(Table 1.1) and the 15 elements of the SO(1,5) Lie algebra:

sµ̃ν̃ =

{
sµ̄ν̄ ≡ 1

4

[
γµ̄,γν̄

]
, sµ̄5 = −s5̄µ =

1

2
γµ̄

}
, µ̃, ν̃ = 0,5, µ̄, ν̄ = 0,4. (1.10)

The generators (1.10) satisfy the commutation relations of the SO(1,5) Lie al-
gebra:
[
sµ̃ν̃,sρ̃σ̃

]
= −gµ̃ρ̃sν̃σ̃−gρ̃ν̃sσ̃µ̃ −gν̃σ̃sµ̃ρ̃ −gσ̃µ̃sρ̃ν̃; (gµ̃ν̃) = diag(+1,−1,−1,−1,−1,−1).

(1.11)

The 15 elements of the γ matrix representation of the SO(1,5) algebra are

given by the Table 1.2.

Thus, it is proved that one and the same 15 not unit elements determine both

the γ matrix representation of the C`C(1,3) Clifford algebra and the γ matrix rep-

resentation of the SO(1,5) Lie algebra (similarly for SO(6) algebra). Note that

set of elements of the SO(1,5) representation (1.10) contains the spin operators

of the spinor field and Dirac theory. Note that here in (1.10) the anti-Hermitian

realization of the SO(1,5) operators is chosen, for the reasons see, e.g., [12–18],
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Table 1. 2. The 15 elements of the γ matrix representation of the SO(1,5)

algebra

s01 ≡ 1
2
γ0γ1 s02 ≡ 1

2
γ0γ2 s03 ≡ 1

2
γ0γ3 s04 ≡ 1

2
γ0γ4 s05 ≡ 1

2
γ0

s12 ≡ 1
2
γ1γ2 s13 ≡ 1

2
γ1γ3 s14 ≡ 1

2
γ1γ4 s15 ≡ 1

2
γ1

s23 ≡ 1
2 γ2γ3 s24 ≡ 1

2γ2γ4 s25 ≡ 1
2 γ2

s34 ≡ 1
2
γ3γ4 s35 ≡ 1

2
γ3

s45 ≡ 1
2
γ4

for the possibility and mathematical correction to choose the anti-Hermitian op-

erators see, e.g., [27, 28].

Briefly these reasons are as follows. Some commutation and anti-

commutation relations, as well as some transformations between different rep-

resentations, are valid only in the terms of anti-Hermitian operators.

Comparison of the Tables 1.1 and 1.2 shows evidently that C`C(1,3) and

SO(1,5) are completely different algebras. Moreover, the algebra SO(1,5) can

not be the subalgebra of the C`C(1,3) algebra. Indeed, the first one is Clifford

and the second is Lie algebra, which have different structure. In particular, Lie

algebras do not contain the unit element as I4 = −γ0γ1γ2γ3γ4 from C`C(1,3).

1.4. Matrix Representations of the C`R(0,6), C`R(4,2)

Clifford and the SO(8) Lie Algebras

In addition to the Dirac equation the γ matrix representations of the Clifford al-

gebra are used widely for the multicomponent Dirac-like equations of arbitrary

spin such as the Bhabha [29, 30], Bargman–Wigner [31], Rarita–Schwinger (for

the field with the spin s=3/2 [32]), Iwanenko-Landau-Dirac–Kähler (see, e.g.,

[33]) equations.

Note that today the problem of arbitrary spin description is presented by

a set of different approaches [34–67] where the different wave equations for

higher and arbitrary spin are suggested (on our results see [19–22, 68–71]).

Note that these equations can describe both fermions and bosons. Moreover,

new equations for an arbitrary spin [19–22, 68–71], which are derived from the
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relativistic canonical quantum mechanics, are based on the γ matrix representa-

tions of the Clifford algebra as well. Here at first the proper arbitrary spin wave

equations are listed [34–46], further, the equations for the particles of spin 3/2

[47–54, 56–65, 67] and spin 2 [55, 66] are presented.

Thus, the application of the Clifford algebra in the quantum theory is more

wide then the 4-component Dirac equation and corresponded spinor field. It is

evident that the program of finding of more wide matrix representations then the

16-dimensional C`C(1,3) and 15-dimensional SO(1,5) algebras representations

is the interesting task. The corresponding matrix representations can be useful

both in the known quantum field theory models and in the development of new

approaches.

This problem has been considered in [12–22], where the new 64-

dimensional matrix representations of the C`R(0,6) and C`R(4,2) Clifford alge-

bras have been found as well as the 28-dimensional representation of the SO(8)

Lie algebra, all over the field of real numbers. Contrary to the well-known ma-

trix representation of the SO(1,5) algebra (15 generators of which accurate to

the 1/2 coefficient coincide with 15 not unit elements of the standard γ matrix

representation of the C`C(1,3) Clifford algebra and, furthermore, determine the

16-dimensional representation of this Clifford algebra as well) 64-dimensional

matrix representations of the C`R(0,6) and C`R(4,2) Clifford algebras essen-

tially do not coincide with 28-dimensional γ matrix representation of the SO(8)

Lie algebra. The 28 generators of the SO(8) algebra γ matrix representation do

not realize the Clifford algebra even after multiplication by factor 2 and adding

the unit element. In order to find some γ matrix representation of the Clifford

algebra on the basis of 28 SO(8) generators one must essentially expands the

list of these operators. Thus, one comes to the 64-dimensional matrix repre-

sentations of the C`R(0,6) and C`R(4,2) Clifford algebras over the field of real

numbers, which have been found earlier in [12–22].

By taking into account these new γ matrix representations of the Clifford

and SO(8) algebras the Bose symmetries, solutions and conservation laws for

the standard Dirac equation and spinor field with nonzero mass have been found

[12–18]. Therefore, the Fermi-Bose duality of these equation has been proved.

These interesting results are presented below in the Chapter 10. Furthermore,

in [19–22, 70, 71] the Fermi-Bose duality of the multicomponent Dirac-like

equations for higher spin has been proved as well (see the Chapter 7).

Let us consider briefly the new matrix representations of the Clifford and

SO(8) algebras and the history how these algebras have been put into consider-
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ation. We have started from the case of massless Dirac equation and the spinor

field of zero mass. Indeed, at first the Bose symmetries of the massless Dirac

equation have been found. We have used essentially so-called Pauli-Gürsey-

Ibragimov symmetry [72–74] of the Dirac equation with zero mass, i.e., the fact

that this equation is invariant with respect to the transformations generating by

the eight operators

{γ2Ĉ, iγ2Ĉ, γ2γ4Ĉ, iγ2γ4Ĉ, γ4, iγ4, i, I}, (1.12)

where imaginary unit i =
√
−1 is considered as the operator, Ĉ is the operator

of complex conjugation, Ĉψ = ψ∗ (the operator of involution in H3,4), i.e. these

operators are here the nontrivial orts of the algebra. Of course, the Pauli-Gürsey-

Ibragimov algebra is defined over the field of real numbers.

At first we have proved that six of the operators (1.12)

s01
PGI =

i

2
γ2Ĉ, s02

PGI = −1

2
γ2Ĉ, s03

PGI = − i

2
γ4, s23

PGI =
i

2
γ2γ4Ĉ, (1.13)

s31
PGI = −1

2
γ2γ4Ĉ, s12

PGI = − i

2
,

realizes the additional D(0, 1
2
)⊕ ( 1

2
,0) spinor representation [5–11] of the Lie

algebra of universal covering L = SL(2,C) of the proper ortochronous Lorentz

group L
↑
+ = SO(1,3)=

{
Λ =

(
Λ

µ
ν

)}
. Moreover, six corresponding operators

sµν =
{

s01, s02 s03, s23, s31, s12
}

from the set (1.10) commute with the operators

from (1.13).

Further, the application of the simplest linear combinations of the gen-

erators sµν (1.10) and (1.13) gives the possibility [5–11] to find Bose repre-

sentations of the Lorentz group L and the Poincaré group P ⊃ L = SL(2,C)

(here P is the universal covering of the proper ortochronous Poincaré group

P
↑
+ = T(4)×)L

↑
+ ⊃ L

↑
+), with respect to which the massless Dirac equation is

invariant. Thus, we have found the Bose D(1,0)⊕(0,0) and D(1
2
, 1

2
) representa-

tions of the Lie algebra of the Lorentz group L together with the tensor-scalar

of the spin s=(1,0) and vector representations of the Lie algebra of the Poincaré

group P , with respect to which the Dirac equation with m=0 is invariant.

After that the goal of further investigations has been formulated as follows.

To find the similar symmetries of the Dirac equation with nonzero mass. Our

first idea in this direction was to find the complete set of combinations of the

Pauli-Gürsey-Ibragimov operators (1.12) and the elements of the matrix repre-

sentation of the C`C(1,3) algebra demonstrated in the Table 1.1. This program
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has been fulfilled in [12–22] and resulted in the 64 elements of the matrix rep-

resentation of the Clifford algebra C`R(0,6). After that on the basis of these 64

elements the 28 generators of algebra SO(8) have been found [15–18].

Below the results are presented in modern mathematical notations of Clif-

ford algebras and in valid interpretation.

Consider the fact that seven γ matrices

γ1, γ2, γ3, γ4 = γ0γ1γ2γ3, γ5 = γ1γ3Ĉ, γ6 = iγ1γ3Ĉ, γ7 = iγ0, (1.14)

where γ0 =

∣∣∣∣
1 0

0 −1

∣∣∣∣ , γk =

∣∣∣∣
0 σk

−σk 0

∣∣∣∣, σk are the standard Pauli matri-

ces (1.6) and operator Ĉ is defined after the formula (1.12), satisfy the anti-

commutation relations

γAγB + γBγA = −2δAB, A,B = 1,7, (1.15)

of the Clifford algebra generators over the field of real numbers. Due to

the evident fact that only six operators of (1.14) are linearly independent,

γ4 = −iγ7γ1γ2γ3, it is the representation of the Clifford algebra C`R(0,6) of the

dimension 26 = 64.

The first 16 operators are given in the Table 1.1, the next 16 are found from

them with the help of the multiplication by imaginary unit i =
√
−1. Last 32

are found from first 32 with the help of multiplication by operator Ĉ of complex

conjugation. Thus, if to introduce the notation “stand CD” (“stand” and CD are

taken from standard Clifford–Dirac) for the set of 16 matrices from the Table

1.1, then the set of 64 elements of C`R(0,6) algebra representation will be given

by

{
(stand CD)∪ i · (stand CD)∪Ĉ · (stand CD)∪ iĈ · (stand CD)

}
. (1.16)

As the consequences of the equalities γ4 ≡ ∏3
µ=0 γµ → ∏4

µ̄=0 γµ̄ =−I, known

from the standard Clifford–Dirac algebra C`C(1,3), and the anticommutation

relations (1.15), in C`R(0,6) algebra for the matrices γA (1.14) the following

extended equalities are valid: γ7 ≡ −∏6
A=1 γA → ∏7

A=1 γA = I, γ5γ6 = i.

Another realization C`R(4,2) can be formed directly by the four γµ genera-

tors of C`C(1,3) taking together with the simplest independent generators from

(1.12) of the Pauli–Gürsey–Ibragimov algebra [72–74].
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The main structure elements of such joint set are given by

(γ0,γ1,γ2,γ3, i,ĈI4), where γµ are 4× 4 Dirac matrices in standard representa-

tion. It is easy to see that simplest set of the Clifford–Dirac algebra generators

can be constructed from these elements in the form (iγ0, iγ1,γ2, iγ3,ĈI4, iĈI4).

Therefore, the 4 × 4 matrix generators of the corresponding Clifford–Dirac

algebra over the field of real numbers can be found by the simple redefinition

γ̃1 ≡ iγ1, γ̃2 ≡ iγ3, γ̃3 ≡ ĈI4, γ̃4 ≡ iĈI4, γ̃5 ≡ iγ0, γ̃6 ≡−γ2, (1.17)

of the matrices (iγ0, iγ1,γ2, iγ3,ĈI4, iĈI4), where γµ are given in (1.5), (1.6).

Matrices (1.17) together with the matrix γ̃7 ≡ γ̃1γ̃2γ̃3γ̃4γ̃5γ̃6 = γ4 satisfy the

anti-commutation relations of the Clifford–Dirac algebra generators in the form

γ̃Aγ̃B + γ̃Bγ̃A = 2gAB; A,B = 1,7, (gAB) = (++++−−−). (1.18)

As well as in (1.14) among the generators of (1.18) only the 4+2=6 matrices

(1.17) are independent and form the basis of the algebra. Therefore, the found

above algebra over the field of real numbers is defined as C`R(4,2) and the

dimension of this algebra is 26 = 64.

Operators (1.14) generate also the 28 matrices

sÃB̃ = {sAB =
1

4
[γA,γB], sA8 = −s8A =

1

2
γA}, Ã, B̃ = 1,8, (1.19)

which satisfy the commutation relations of the Lie algebra SO(8)

[sÃB̃, sC̃D̃] = δÃC̃sB̃D̃ +δC̃B̃sD̃Ã +δB̃D̃sÃC̃ +δD̃ÃsC̃B̃. (1.20)

It is evident that here we have the algebra over the field of real numbers as well.

Furthermore, it is evident that 28 elements (1.19) of SO(8) do not form any

Clifford algebra and do not form any subalgebra of the Clifford algebra. It is

independent from the Clifford algebra mathematical object. Note that here (as

in (1.10)) the anti-Hermitian realization of the SO(8) operators is chosen, for

the reasons see, e.g., [12–18] and [27, 28].

The explicit form of the 28 elements of the γ matrix representation of the

SO(8) algebra is given in the Table 1.3.

The start of these investigations has been given in [12–15]. The exact inter-

pretation of considered algebraic objects is given for the first time in [24].
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Table 1. 3. The 28 elements of the γ matrix representation of the SO(8)

algebra

s12 ≡ 1
2
γ1γ2 s13 ≡ 1

2
γ1γ3 1

2
γ1γ4 1

2
γ1γ5 1

2
γ1γ6 1

2
γ1γ7 s18 ≡ 1

2
γ1

s23 ≡ 1
2
γ2γ3 1

2
γ2γ4 1

2
γ2γ5 1

2
γ2γ6 1

2
γ2γ7 s28 ≡ 1

2
γ2

1
2 γ3γ4 1

2 γ3γ5 1
2 γ3γ6 1

2 γ3γ7 s38 ≡ 1
2 γ3

1
2
γ4γ5 1

2
γ4γ6 1

2
γ4γ7 s48 ≡ 1

2
γ4

1
2
γ5γ6 1

2
γ5γ7 s58 ≡ 1

2
γ5

1
2 γ6γ7 s68 ≡ 1

2 γ6

s78 ≡ 1
2
γ7

1.5. Relationship between the γ Matrix Representations

of the SO(8) and C`R(0,6) Algebras

In our earlier publications on this subject [15–18] (and in some publications of

other authors) the interpretation of the relationship between the γ matrix rep-

resentation of SO(8) algebra and the Clifford algebra C`R(0,6) was not correct.

Nevertheless, in the last time publications [19–22] the classification of the found

64-dimensional γ matrix representation of the Clifford algebra has been given.

After that the situation became clear. The publications [23, 24] are free already

from the interpretation difficulties.

Consider briefly the assertions, which mast be used in correct interpretations

of found mathematical objects.

(i) The Clifford algebra (and Clifford–Dirac matrix representation as well)

can not be 29-dimensional because the dimension of C`R(m,n) algebra is 2m+n.

Therefore, the chain of possible dimensions is given by 16, 32, 64, 128, ... (ii)

For the same reasons the 29-dimensional algebra can not be any subalgebra of

the Clifford algebra. (iii) Further, such representations can not be “exclusive”

because all gamma matrix representations of that kind were considered already

in [12–18] and [19–22]. (iiii) Furthermore, 29 dimensions are related some-

where with SO(8) algebra. Unfortunately, the algebra SO(8) belongs to Lie

algebras and Lie algebras does not contain unit element. Therefore, the dimen-
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sion of SO(8) algebra is 28, not 28+1. (V) It is evident that any Lie algebra can

not coincide (or be the subalgebra) of any Clifford algebra. Clifford and Lie

algebras are different algebras with different structure. For example, contrary to

Lie algebras, Clifford algebras contain the unit element. (VI) The chain of pos-

sible dimensions for SO(m.n), or SO(n), algebras is given by 3, 6, 10, 15, 21, 28,

36, 45, 55, 66, ... (For the dimension of SO(n) algebra the formula n(n−1)/2

is valid.) Therefore, the most close to each other are 16-dimensional Clifford

C`C(1,3) and 15-dimensional SO(1,5) algebras over the field of complex num-

bers. Below in Table 1.1 and Table 1.2 the explicit forms of corresponding

gamma matrix representations are compared. There is no doubt in difference

between the elements of these representations. The comparison of introduced

in [12–18] gamma matrix representations of C`R(0,6) and SO(8) algebras is

given in [23, 24] and here. In this case the difference between the elements

of corresponding representations is evident. The comparison of the sets from

(1.16) and Table 1.3 can be fulfilled very easy. It is evident that these sets are

completely different

Note that the analysis of physical phenomena is impossible without math-

ematical correctness of consideration. Note further that the γ matrix represen-

tations of the algebras SO(8) and C`R(0,6) are the basis of the proof of the

nonzero mass Dirac equation Fermi–Bose duality [12–18]. Thus, these objects

are useful for contemporary classical and quantum field theory.

1.6. On the Possible Relation to SUSY

Note that the results of [12–18] are not related to SUSY (supersymmetry).

(i) SUSY partner for considered in [12–18] spin 1/2 particle-antiparticle

doublet s=(1/2,1/2) is the spin 0 particle-antiparticle doublet s=(0,0). In some

variants of SUSY the role of such super-partner can play the spin 1 particle-

antiparticle doublet s=(1,1). In [12–18] another object, namely spin s=(1,0)

particle-antiparticle multiplet, has been considered. Thus, results of [12–18] do

not relate to SUSY.

(ii) SUSY is based on fermion-boson super-multiplets. Such objects are not

considered in [12–18]]. Thus, results of [12–18] do not relate to SUSY.

(iii) SUSY is based on super-space, which in addition to Minkowski space-

time contains non-commutative spinor coordinates. Such objects are not con-

sidered in [12–18] as well. Thus, results of [12–18] do not relate to SUSY as

well.
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Moreover, super-partners with essentially large mass in comparison with

ordinary elementary particles are absent in [12–18].

It means that above mentioned concepts, definitions and notations deter-

mined SUSY as the concrete fixed model of physical reality. It is evident that in

[12–18] we deal with another theoretical model. In [12–18] following [75–77]

such phenomena were named the Fermi–Bose duality. If in future we will be

able to construct on the basis of [12–18] the new principal model of physical

reality it will be not contemporary SUSY.

Another question arises “Why somebody needs to follow SUSY today?”

Note that today hypothesis on SUSY is not so popular as 20 years ago! The

subject of [12–18] publications was the Fermi–Bose duality in the sense of [75–

77], without appealing to SUSY.

1.7. Generalization on Arbitrary Dimensions

Matrix representations of the Clifford and SO(8) algebras considered above for

the case of 4×4 gamma matrices can be generalized for an arbitrary dimensions

N=2s+1. The beginning was given in [20–22]. Such generalization is necessary

for the relativistic canonical quantum mechanics and field theory of arbitrary

spin [19–22]. The notation N=2s+1 was given for the particle singlet of arbitrary

spin and the notation 2N was given for the particle-antiparticle doublet. Note

that Pauli matrices exist only when the values of N are even.

Note further that in higher dimensions (as it follows, e.g., from [33] and

[78]) the more wide algebras as C`R(0,6) or SO(8) can be found.

1.8. Brief Consideration of Application

The first application of the matrix representations of the algebras C`R(0,6) and

SO(8) is the symmetry analysis (the search of groups and algebras with respect

to which the equation is invariant) of the Dirac equation with nonzero mass. It

is easy to understand that the Foldy–Wouthuysen (FW) representation [79, 80]

is preferable for such analysis. Indeed, in this representation one must calcu-

late the commutation relations of possible pure matrix symmetry operators from

(1.16) and Table 1.3 only with two elements of the FW equation operator: γ0

and i. After the determining of the symmetries of the FW equation one can find

the symmetries of the Dirac equation on the basis of the inverse FW transfor-
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mation. Note that after such transformation only the small part of symmetry

operators will be pure matrix, the main part of operators will contain the non-

local operator ω̂ ≡
√
−∆+m2 and the functions of it. The 31-dimensional Lie

algebra SO(6)⊕iγ0SO(6)⊕iγ0 has been found, which is formed by the elements

from C`R(0,6) and is the maximal pure matrix algebra of invariance of the Dirac

equation in the FW representation. For the Dirac equation only the part of this

algebra is pure matrix, other elements contain the operator ω̂ ≡
√
−∆+m2, see,

e.g., [12–18].

Furthermore, in the FW representation [79, 80] two subsets (s23, s31, s12)

and (s45, s64, s56) of operators sÃB̃ from the Table 1.3 (i) determine two dif-

ferent sets of SU(2) spin 1/2 generators, (ii) commute between each other and

(iii) commute with the operator of the Dirac equation in the FW representation.

Therefore, we can use here the methods developed in [5–11] for the case m = 0

(the brief consideration is given in section 1.4 above). The start of such investi-

gations for m 6= 0 has been presented in [12–18], where on this bases the Bose

symmetries, Bose solutions and Bose conservation laws for the Dirac equation

with nonzero mass have been found. Among the Bose-symmetries the important

Lorentz and Poincaré algebras of invariance of the Dirac equation with nonzero

mass were found (see also the Chapter 10 here).

Thus, the algebras C`R(0,6) and SO(8) are the basis of the proof [12–18] of

the nonzero mass Dirac equation Fermi–Bose duality.

1.9. Other Useful Gamma Matrix Representations

of the SO(8) Algebra Over the Field of Real

Numbers

It follows from the consideration above that the algebra SO(8) over the field of

real numbers, which was introduced in [12–18] and, finally, in [24], is the main

algebraic object for our further consideration.

In the fundamental FW representation, the 28 orts of the real algebra

SO(8) are given by the formulas (1.19), where the 6 generators of the corre-

sponding Clifford algebra C`R(0,6) representation, together with the matrix op-

erator γ7, are given in (1.14).

In the standard Pauli–Dirac representation, the so-called covariant (or lo-

cal) representation, the corresponding 28 orts of the SO(8) algebra are the con-

sequences of the inverse for the FW [79] transformation and are given by the
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corresponding generators

s̃ÃB̃ = {s̃AB =
1

4
[̃γA, γ̃B], s̃A8 = −s̃8A =

1

2
γ̃A}, (1.21)

where Ã, B̃ = 1,8, A,B = 1,7. In expressions (1.21) 6 generators γ̃A = V+γAV−

of the Clifford algebra C`R(0,6) representation and operator γ̃7, together with

operators γ̃0 = V +γ0V− and C̃ = V+ĈV−, are non-local and have the form:

−→̃
γ = −→γ −−→γ ·∇+m

ω̂
+−→p −−→γ ·∇+ ω̂ +m

ω̂(ω̂+m)
, (1.22)

γ̃4 = γ4−−→γ ·∇+m

ω̂
, (1.23)

γ̃5 = γ̃1γ̃3C̃, γ̃6 = ĩγ1γ̃3C̃, γ̃7 = ĩγ0, (1.24)

γ̃0 = γ0−
−→
γ ·∇+m

ω̂
, C̃ = (I+2

iγ1∂1 + iγ2∂2√
2ω̂(ω̂+m)

)Ĉ, (1.25)

where ω̂ ≡
√

−4+m2.

In the bosonic representation of the FW model, where the proof of the

bosonic properties of the FW and Dirac equation is most convenient, the corre-

sponding 28 orts of the SO(8) algebra are given by

s̆ÃB̃ = {s̆AB =
1

4
[γ̆A, γ̆B], s̆A8 = −s̆8A =

1

2
γ̆A}, (1.26)

where Ã, B̃ = 1,8, A,B = 1,7. In formulas (1.26) the 6 generators of the Clif-

ford algebra C`R(0,6) representation, together with operators γ̆0 γ̆7, operators i

and C̆, have the form

γ̆0 =

∣∣∣∣
σ3 0

0 σ1

∣∣∣∣ , γ̆1 =
1√
2

∣∣∣∣∣∣∣∣

0 0 1 −1

0 0 i i

−1 i 0 0

1 i 0 0

∣∣∣∣∣∣∣∣
, (1.27)

γ̆2 =
1√
2

∣∣∣∣∣∣∣∣

0 0 −i i

0 0 −1 −1

−i 1 0 0

i 1 0 0

∣∣∣∣∣∣∣∣
, γ̆3 = −

∣∣∣∣
σ2 0

0 iσ2

∣∣∣∣Ĉ, (1.28)
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γ̆4 =

∣∣∣∣
iσ2 0

0 −σ2

∣∣∣∣Ĉ, γ̆5 =
1√
2

∣∣∣∣∣∣∣∣

0 0 −1 −1

0 0 i −i

1 i 0 0

1 −i 0 0

∣∣∣∣∣∣∣∣
, (1.29)

γ̆6 =
1√
2

∣∣∣∣∣∣∣∣

0 0 −i −i

0 0 1 −1

−i −1 0 0

−i 1 0 0

∣∣∣∣∣∣∣∣
, γ̆7 = γ7 = iγ0, (1.30)

ĭ =

∣∣∣∣
iσ3 0

0 −iσ1

∣∣∣∣ , C̆ =

∣∣∣∣
σ3 0

0 I2

∣∣∣∣Ĉ. (1.31)

Transition from the fundamental representation of the SO(8) algebra to the
bosonic representation is fulfilled by the transformation γ̆A = WγAW−1 with the
help of the operator W :

W =
1√
2

∣∣∣∣∣∣∣∣

√
2 0 0 0

0 0 i
√

2C 0

0 −C 0 1

0 −C 0 −1

∣∣∣∣∣∣∣∣
, W−1 =

1√
2

∣∣∣∣∣∣∣∣

√
2 0 0 0

0 0 −C −C

0 i
√

2C 0 0

0 0 1 −1

∣∣∣∣∣∣∣∣
,

(1.32)

WW−1 = W−1W = I4.

where C is the simple operator of complex conjugation.

In the bosonic representation for the massless Dirac equation and

slightly generalized Maxwell equations with extended symmetry properties

[8–11] the corresponding 28 orts of the SO(8) algebra are given by

śÃB̃ = {śAB =
1

4
[γ́A, γ́B], śA8 = −ś8A =

1

2
γ́A}, (1.33)

where Ã, B̃ = 1,8, A,B = 1,7. In formulas (1.26) the 6 generators of the Clif-

ford algebra C`R(0,6) representation, together with operators γ́0 γ́7, operators í

and Ć, have the form

γ́0 =

∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

∣∣∣∣∣∣∣∣
Ĉ, γ́1 =

∣∣∣∣∣∣∣∣

0 0 0 1

0 0 −i 0

0 i 0 0

−1 0 0 0

∣∣∣∣∣∣∣∣
Ĉ, γ́2 =

∣∣∣∣∣∣∣∣

0 0 i 0

0 0 0 1

−i 0 0 0

0 −1 0 0

∣∣∣∣∣∣∣∣
Ĉ,
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γ́3 =

∣∣∣∣∣∣∣∣

0 −i 0 0

i 0 0 0

0 0 0 1

0 0 −1 0

∣∣∣∣∣∣∣∣
Ĉ, γ́4 = i, γ́5 =

∣∣∣∣∣∣∣∣

0 0 −1 0

0 0 0 −i

1 0 0 0

0 i 0 0

∣∣∣∣∣∣∣∣
Ĉ, γ́6 =

∣∣∣∣∣∣∣∣

0 0 0 i

0 0 −1 0

0 1 0 0

−i 0 0 0

∣∣∣∣∣∣∣∣
Ĉ,

(1.34)

γ́7 =

∣∣∣∣∣∣∣∣

0 −1 0 0

1 0 0 0

0 0 0 i

0 0 −i 0

∣∣∣∣∣∣∣∣
Ĉ, í =

∣∣∣∣∣∣∣∣

0 −1 0 0

1 0 0 0

0 0 0 −i

0 0 −i 0

∣∣∣∣∣∣∣∣
, Ć =

∣∣∣∣∣∣∣∣

C 0 0 0

0 −C 0 0

0 0 C 0

0 0 0 C

∣∣∣∣∣∣∣∣
.

In the relativistic canonical quantum mechanics [19–22] (axiomatic

foundations are given briefly in [20]) the 6 generators γ̄A, together with γ̄7, are

given by γ̄A = vγAv (operator v is known as v =

∣∣∣∣
I2 0

0 CI2

∣∣∣∣) and have an explicit

form:

γ̄1 = γ1Ĉ, γ̄2 = γ0γ2Ĉ, γ̄3 = γ3Ĉ, γ̄4 = γ0γ4Ĉ γ̄5 = γ1γ3Ĉ, γ̄6 = −iγ2γ4Ĉ, γ̄7 = i,

(1.35)

where contrary to simple complex conjugation C operator Ĉ is 4×4 matrix I4C.

1.10. Matrix Representation of the C`R(3,1) Algebra

in the Terms of Real Gamma Matrices and

Corresponded C`R(0,6)

Matrix representations of the Clifford algebras in the terms of real gamma matri-

ces are known from [81, 82]. Although the final physical results do not depend

on the applied representation of the Dirac matrices, e.g., due to the invariance of

traces of products of Dirac matrices, the appropriate choice of the representation

used may facilitate the analysis.

The generators of C`R(3,1) algebra in the terms of real gamma matrices

γ0
r =

∣∣∣∣∣∣∣∣

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

∣∣∣∣∣∣∣∣
, γ1

r =

∣∣∣∣∣∣∣∣

0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0

∣∣∣∣∣∣∣∣
, (1.36)

γ2
r =

∣∣∣∣∣∣∣∣

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

∣∣∣∣∣∣∣∣
, γ3

r =

∣∣∣∣∣∣∣∣

−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

∣∣∣∣∣∣∣∣
,
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were applied in [83] for Courant–Snyder theoretical model of two-dimensional

coupled linear optics. The author of [84] used another unitary equivalent repre-

sentation

γ̃1
r =

∣∣∣∣∣∣∣∣

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

∣∣∣∣∣∣∣∣
, γ̃2

r =

∣∣∣∣∣∣∣∣

0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

∣∣∣∣∣∣∣∣
, (1.37)

γ̃3
r =

∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

∣∣∣∣∣∣∣∣
, γ̃4

r =

∣∣∣∣∣∣∣∣

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

∣∣∣∣∣∣∣∣
,

The generators (1.36) (as well as (1.37)) can be rewritten in the terms of
Pauli matrices (1.6) as 2× 2 block matrices. The corresponded for (1.36) ex-
plicit forms are given by

γ0
r =

∣∣∣∣
iσ2 0

0 iσ2

∣∣∣∣ , γ1
r =

∣∣∣∣
−σ1 0

0 σ1

∣∣∣∣ , γ2
r =

∣∣∣∣
0 σ1

σ1 0

∣∣∣∣ , γ3
r =

∣∣∣∣
−σ3 0

0 −σ3

∣∣∣∣ .
(1.38)

The real matrices (1.36) (or (1.38)) satisfy the anti-commutation relations (1.7)

of the Clifford algebra generators, in which the metric tensor gµν = diag(−+

++).

The complete set of 16 elements of the Clifford algebra C`R(3,1) gamma

matrix representation is given by the Table 1.1. Here all 16 elements are real

matrices. The complete set of 64 elements of the Clifford algebra C`R(0,6)

gamma matrix representation is given by (1.16).

The link with SU(2) spin of fermionic-antifermionic particle doublet, with

SO(5,1) and SO(8) Lie algebras gamma matrix representations, is not so direct

and evident as in consideration above. Nevertheless, the SO(8) Lie algebra

gamma matrix representation and complete above given consideration can be

repeated on the basis of (1.36) or (1.37).
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Chapter 2

Twenty Six Variants of the Dirac

Equation Derivation

The 26 different ways of the Dirac equation derivation are presented. The var-

ious physical principles and mathematical formalisms are used. Three original

approaches of the authors to the problem are given. They are (i) the generaliza-

tion of H. Sallhofer derivation, (ii) the obtaining of the massless Dirac equation

from the Maxwell equations in maximally symmetrical form, (iii) the derivation

of the Dirac equation with nonzero mass from the relativistic quantum mechan-

ics of the fermion-antifermion spin s=1/2 doublet. Today we are able to demon-

strate new features of our derivations given in original papers. In some sense

the role of the Dirac equation today is demonstrated.

2.1. Introduction to the Chapter 2

The Dirac equation is one of the fundamental equations of modern theoreti-

cal physics. It is in service more than 90 years (1928–2019). The application

today is much wider than the areas of quantum mechanics, quantum field the-

ory, atomic and nuclear physics, solid state physics. Let us recall only that the

first analysis of this equation enabled Dirac to give the theoretical prediction of

the positron, which was discovered experimentally by Anderson in 1932. The

recent well-known application of the massless Dirac equation to the graffen rib-

bons is an example of the contemporary possibilities of this equation.

The successful derivation of some equation of mathematical physics is the
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first step to successful application. In such process the essence of the corre-

sponding model of nature, the mathematical principles and the physical founda-

tions are visualized. Here we deal with the different approaches to the problem

of the Dirac equation derivation

Here the original investigation of the problem of the Dirac equation deriva-

tion is presented. The different approaches, which are based on the various

mathematical and physical principles, are considered (26 methods). The impor-

tance of place of the Dirac equation in modern theoretical physics is discussed.

In our recent publications [2–8] we were able to extend the domain of the

Dirac equation application. We proved [2–8] that this equation has not only

fermionic but also the bosonic features, can describe not only fermionic, but

also the bosonic states.

Note that in modern quantum field theory the Dirac equation is applied not

only to the spin 1/2 spinor field description but in its different generalizations is

the base for the construction of the models of higher and arbitrary spin elemen-

tary particles as well.

Among the results of this monograph the original method of the derivation

of the standard Dirac and the Dirac-like equation for arbitrary spin is suggested.

The Dirac equation is derived here from the 4-component formalism of relativis-

tic canonical quantum mechanics (RCQM). In order to determine the place of

our derivation among the other known methods we consider below the different

ways of the Dirac equation derivation.

Thus, it is evident that the methods of the derivation of the Dirac equation

cause interest of the researchers. Indeed, the new ways of the Dirac equation

derivation automatically visualize the ground principles, which are in the foun-

dations of the modern description of the elementary particles. Hence, the active

consideration of the different ways of the Dirac equation derivation is the sub-

ject of many contemporary publications. Usually the start from the different

basic principles and assumptions is considered.

An introduction to the Dirac equation consideration is based on different

variants of its derivation. Below a brief review of the 26 different ways of the

Dirac equation derivation is given.

Here the system of units ~ = c = 1 is chosen, the metric tensor

in Minkowski space-time M(1,3) is given by gµν = gµν = g
µ
ν,
(
g

µ
ν

)
=

diag(1,−1,−1,−1), xµ = gµνxµ, and summation over the twice repeated in-

dices is implied. Note that in quantum-mechanical theories, where the time vari-

able plays the role of a parameter, the rigged Hilbert space S3,4 ⊂ H3,4 ⊂ S3,4∗
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is used. Nevertheless, in the formalism of the manifestly covariant field theory

the rigged Hilbert space is taken as S4,4 ⊂ H4,4 ⊂ S4,4∗.

2.2. Derivation of the Dirac Equation from Start

2.2.1. Dirac’s Derivation

At first, one should note the elegant derivation given by Paul Dirac in his

book [9] (of course, this consideration is based on origins of [1]). Until today it

is very interesting for the readers to feel Dirac’s way of thinking and to follow

his logical steps. One can follow his start from the principles of linearity, mani-

festly Lorentz invariance, relationship to the Klein–Gordon equation and finish

in determination of α and β matrices explicit forms.

Nevertheless, the Dirac’s consideration of the Schrödinger–Foldy equation

(our suggestion to call this equation as the Schrödinger–Foldy equation is con-

sidered after few steps below)
{

p0 −
(
m2c2 + p2

1 + p2
2 + p2

3

) 1
2

}
ψ = 0, which

was essentially used in his derivation [9], was quite hasty. Especially his asser-

tion that Schrödinger–Foldy equation is unsatisfactory from the point of view of

the relativistic theory. Dirac’s doubts were overcome later in [10–12] after the

Foldy–Wouthuysen (FW) consideration, in which the corresponding canonical

representation of the Dirac equation has been suggested and interpreted.

Today the significance of the Schrödinger–Foldy equation is confirmed by

few hundreds publications about FW (see, e.g., [13–29] and the references

therein) and the spinless Salpeter [30–47] equations (together with its gen-

eralizations), which have wide-range application in contemporary theoretical

physics. Our contribution in consideration of the FW and Schrödinger–Foldy

equations is presented in [48–55].

Suggestion to call the main equation of the contemporary N-component

relativistic canonical quantum mechanics as the Schrödinger–Foldy equation

was given in our publications. Our motivation was as follows. The start of

this model has been given in [10]. In the papers [11, 12] the two-component

version of equation i∂t f (x) =
√

m2 −∆ f (x) was considered and called as the

Schrödinger equation. The one-component version of this equation was sug-

gested in [30] and is called in the literature as the spinless Salpeter equation. In

the papers considering the Lévy flights the spinless Salpeter equation is called

as the Lévy-Schrödinger equation. Thus, the one-component case is identified

well. But what about many-component case?
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Taking into account the L. Foldy’s contribution [10–12] in the construction

of 2- and 4-component relativistic canonical quantum mechanics (RCQM) and

his proof of the principle of correspondence between the relativistic and non-

relativistic quantum mechanics, we propose to call the N-component equations

of this type as the Schrödinger-Foldy equations.

2.2.2. Van der Waerden–Sakurai Derivation

In this version of the Dirac equation derivation the spin of the electron is incor-

porated into the nonrelativistic theory, see, e.g., [56]. Above considered Dirac’s

derivation was supported by the application of the relation (−→σ · −̂→p )(−→σ · −̂→p ) =
−̂→p

2
and the factorization procedure in the form (p̂0 +

−→
σ · −̂→p )(p̂0−−→

σ · −̂→p ) = m2

is used. (Here −̂→p ≡ (p̂ j) = −i∇ is the quantum-mechanical momentum op-

erator, p̂0 ≡ i∂0 is the operator of energy and
−→σ are the Pauli matrices; the

standard representation is given in (1.6).) Then the procedure of transition from

2-component to 4-component equation is fulfilled and explained.

2.2.3. Briefly on “Factorization” of the Klein–Gordon Operator

In the well-known N.N. Bogoliubov and D.V. Shirkov book [57] one can find a

review of the Dirac theory and two different ways of the Dirac equation deriva-

tion. First, it is the presentation of the Klein–Gordon equation in the form of a

first-order differential system of equations, i.e., so-called “factorization” of the

Klein–Gordon operator in contemporary form. Following Dirac [1, 9] and [56]

author’s demonstrated that

�−m2 = (iγν∂ν +m)(iγµ∂µ −m), (2.1)

where the matrix operators γν (1.5) obey the conditions γνγµ + γµγν = 2gµν and

gµν is the corresponding metric tensor. Assertion (2.1) is the main step of the

given in [57] Dirac equation derivation.

2.2.4. Principle of Least Action for the Spinor Field

Application of the least action principle to the spinor field presents the next in-

dependent variant of the Dirac equation derivation. Again one can refer to [57],

where the Lagrange approach is considered and the Dirac equation is derived

from the variational Euler–Lagrange least action principle.
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The Lagrange function, for which the Euler–Lagrange equations coincide

with the free Dirac equation (1.1), is given by

LΨ(x) =
i

2

(
ψ(x)γµ ∂ψ

∂xµ
− ∂ψ

∂xµ
γµψ(x)

)
−mψ(x)ψ(x), (2.2)

where ψ(x) is the independent variational variable (in the set of solutions of the

Dirac equation (1.1) ψ(x) = ψ†(x)γ0).

The Dirac equation in external electromagnetic field of potentials Aµ(x) fol-

lows from the principle of least action, in which the Lagrange function have the

form L = LΨ +LInt, where the interaction Lagrangian is given by

LInt(x) = eψ(x)γµψ(x)Aµ(x). (2.3)

2.2.5. Ryder’s Derivation

In the L. Ryder book [58] (second edition) the Dirac equation is derived from

the manifestly covariant transformational properties of the 4-component

spinor.

2.2.6. Start from the Initial Geometric Properties

of the Space-Time and Electron

The derivation of the Dirac equation from the initial geometric properties of the

space-time and electron together with wide-range discussion of the geometric

principles of the electron theory is the main content of the J. Keller book [59].

The ideas of V. Fock and D. Iwanenko [60, 61] on the geometrical sense of Dirac

γ-matrices are the basis of the approach.

2.2.7. Origin in Bargman–Wigner Classification

One should point out the derivation of the Dirac equation based on the

Bargman–Wigner classification of the irreducible unitary representations of the

Poincaré group, see, e.g., [62, 63]. It is an illustrative demonstration of the pos-

sibilities of the group-theoretical approach to the elementary particle physics.

Indeed, within the group-theoretic approach to the elementary particles physics,

the Dirac equation follows from the Bargman–Wigner classification [62, 63] of

the elementary particles of arbitrary mass and spin on the basis of irreducible
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unitary representations of the Poincaré group. The Dirac Hamiltonian corre-

sponds to the irreducible representation of this group, which is characterized by

the eigen values m > 0 and s = 1/2 of the corresponded Casimir operators.

2.2.8. The Partial Case of the Bargman–Wigner Equation

Dirac equation is the partial case of the Bargman–Wigner equation [63] for

the arbitrary spin fields. Indeed, after the substitution s=1/2 case into 2s·4-

component Bargman–Wigner equation [63] one comes to 4-component Dirac

equation. Nevertheless, such derivation is week. Note that Bargman–Wigner

equation has been introduced as the 2s·4-component generalization of the Dirac

equation.

2.2.9. Inverse Foldy–Wouthuysen Transformation

In L. Foldy and S. Wouthuysen paper [10], and in L. Foldy articles [11, 12], one

can easy find the inverse problem, in which the Dirac equation can be derived

from the canonical FW equation.

Note that the FW transformation was introduced in the Dirac theory in order

to transform the Dirac equation into the special canonical form, in which the

quantum-mechanical interpretation is more evident in comparison with standard

manifestly covariant form. Indeed, in the FW representation (contrary to the

Dirac representation) the operators of position and velocity are defined well and

the spin commutes with the Hamiltonian itself (not only together with orbital

angular momentum). The orbital angular momentum commutes here with the

Hamiltonian as well. The FW representation is considered here in the Chapters

4, 6.

Nevertheless, the operators of energy and spin in the FW transformation still

can not be interpreted in the framework of quantum mechanics. The operator of

energy leads to the solutions with positive and negative energies and spin pro-

jection for the particle and antiparticle is similar. The well-defined energy and

spin operators are obtained after the extended FW transformation, which trans-

lates the Dirac model into the well-defined quantum-mechanical model without

negative energies and with different projections of spin for the particle and an-

tiparticle. Such extended transformation has been suggested in our articles [48–

55] and the corresponding representation of the Dirac theory has been called

as the RCQM. This model and its relation with the Dirac theory is considered

below in the Chapter 5.
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Not a matter of fact the FW representation is well-known, see, e.g., [13–29]

and the references therein. Therefore, the derivation of the Dirac equation from

the FW equation must be considered in the list of Dirac equation derivations.

Nevertheless, it is only the transition from one representation of the spinor field

to another, from the close to quantum mechanics nonlocal canonical represen-

tation to the local field manifestly covariant picture.

2.2.10. Feynman’s Derivation

The intriguing derivation was suggested by Feynman (for the SO(1,1) case with

one spatial dimension and one time dimension) and was given as a problem in

his book with Hibbs [64]. This approach was continued in [65], where the path

integral constitutes a generalization of Feynman’s checkerboard model to 3+1

space-time dimensions.

2.3. Unexpected Derivations

2.3.1. Sallhofer’s Derivation from the Maxwell

Electrodynamics in Medium

The first one who should be mentioned is the austrian scientist H. Sallhofer.

The following assertion has been proved [66, 67]. Matrix multiplication of the

Maxwell equations in medium (without currents and charges) on the Pauli vec-

tor~σ = (σ1,σ2,σ3) gives the massless stationary Dirac equation. Not stopping

at this, but taking his result as a basis, he put into consideration for the electric

and magnetic permeabilities of the inner-atomic medium the representation as

follows (here ~ 6= c 6= 1)

ε(−→x ) = 1− Φ (−→x )−mc2

~ω̃
, µ(−→x ) = 1− Φ (−→x )+mc2

~ω̃
, (2.4)

where Φ (−→x ) = −Ze2/ |−→x | is the external Coulomb field, ~ is the Planck con-

stant and c is the velocity of light. Further, the Sommerfeld–Dirac formula

for the hydrogen spectrum fine structure has been derived [68, 69] from the

Maxwell equations in medium (2.4) (for the first time after Dirac from a funda-

mentally different equation and even without appealing to quantum mechanics).

Thus, papers [66–69] contain considerably more information than simply the

derivation of the Dirac equation from the Maxwell equations.



34 Volodimir Simulik

2.3.2. In Addition to Ryder’s Derivation

Some remarks about Ryder’s derivation of the Dirac equation were considered

in [70], where the formalism of [58] was repeated together with taking into

account the physical meaning of the negative energies and the relative intrinsic

parity of the elementary particles. The authors believe that the derivation from

[58] is improved.

2.3.3. Derivation from the Langevin Equation Associated with a

Two-Valued Process

The object of contribution [71] was to show that the relativistic equation for

spin-1/2 particles can be obtained by an enlargement of the theory of stochastic

processes one step beyond the theory of complex measures. The quaternion

measurable processes were introduced and the Dirac equation was derived from

the Langevin equation associated with a two-valued process. A direct derivation

of the Dirac equation via quaternion measures has been suggested.

2.3.4. Derivation from the Conservation Law of Spin 1/2 Current

The author of [72] was able to derive the Dirac equation from the conservation

law of spin 1/2 current. The requirement that this current is conserved leads

to a unique determination of the Lorentz invariant equation satisfied by the rel-

ativistic spin 1/2 field. If so, then what is distinguished the conservation law

of spin-current in comparison with other constants of motion? Therefore, it is

logical to expect the successful derivations of the Dirac equation from other

conservation laws of the spinor field.

Let us briefly comment that the complete list of fundamental conservation

laws for the spinor field is the Noether consequence of the Dirac equation and

its symmetries. The 10 main conserved quantities are the consequences of the

Poincaré symmetry. Moreover, different additional and so-called hidden sym-

metries are known, see, e.g., [2–8]. The additional and hidden conservation laws

are known for the spinor field as well [6–8], where not only the Fermi but also

the Bose constants of motion are found. Note especially the list of additional

conservation laws for the spinor field, which was found in [73].

Moreover, as soon as the conserved currents follow directly from some

equation of motion, therefore, the validity of the inverse problem is really ex-

pected. And not only spin 1/2 conserved current can be useful.
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2.3.5. Derivation from the Master Equation of Poisson Process

The Dirac equation was derived [74] from the master equation of Poisson pro-

cess by analytic continuation. The extension to the case where a particle moves

in an external field was given. It was shown that the generalized master equation

is closely related to the three-dimensional Dirac equation in an external field.

2.3.6. Derivation from the Relativistic Newton’s Second Law

In [75], a method of deriving the Dirac equation from the relativistic Newton’s

second law was suggested. However, for these purposes the author put into

consideration the list of his own definitions, concepts and, even, special models.

Indeed, this derivation is possible in a new formalism, which relates the special

form of relativistic mechanics to the quantum mechanics. The author suggested

a concept of a velocity field. At first, the relativistic Newton’s second law was

rewritten as a field equation in terms of the velocity field, which directly reveals

a new relationship linked to the quantum mechanics. After that it was shown

that the Dirac equation can be derived from the field equation in a rigorous and

consistent manner. The impression is that the author seeks for coordination of

his approach with the well-tested model of Dirac.

2.3.7. A Geometrical Derivation of the Dirac Equation

A geometrical derivation of the Dirac equation, by considering a spin 1/2 par-

ticle traveling with the speed of light in a cubic space-time lattice, was made

in [76]. The mass of the particle acts to flip the multi-component wave func-

tion at the lattice sites. Starting with a difference equation for the case of one

spatial and one time dimensions, the authors generalize the approach to higher

dimensions. Interactions with external electromagnetic and gravitational fields

are also considered. Nevertheless, the idea of such derivation is based on the

Dirac’s observation that the instantaneous velocity operators of the spin 1/2

particle (hereafter called by the generic name “the electron”) have eigenvalues

±c. Note that today this fact is considered as a difficulty in the Dirac equa-

tion quantum-mechanical interpretation and was demonstrated, explained and

overcome in [10].

It will be useful to consider the link of this approach with the geometric

consideration of V. Fock, D. Iwanenko, J. Keller [59–61] briefly presented here

in subsection 2.2.6. Unfortunately, in [76] such link is absent. The appealing
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to such assumption as a ±c velocity of the massive fermion is a shortcoming of

the formalism of [76].

2.3.8. Start from the Geodesic Equation

Using the mathematical tool of Hamilton’s bi-quaternions, the authors of [77]

propose a derivation of the Dirac equation from the geodesic equation. Such

derivation is given in the program of application of the theory of scale relativity

to the purposes of microphysics at recovering quantum mechanics as a new non-

classical mechanics on a non-derivable space-time.

2.3.9. Derivation from a Generally Covariant Field Equation

for Gravitation and Electromagnetism

M. Evans was successful to express his equation of general relativity (generally

covariant field equation for gravitation and electromagnetism [78]) in spinor

form, thus producing the Dirac equation in general relativity [79]. The Dirac

equation in special relativity is recovered in the limit of Euclidean or flat space-

time. Thus, the Dirac equation was derived from a generally covariant field

equation for gravitation and electromagnetism.

2.3.10. Derivation from the Unique Conditions for Wave Function

Author of [80] first determines that each eigenfunction of a bound particle is a

specific superposition of plane wave states that fulfills the averaged energy rela-

tion. After that the Schrodinger and Dirac equations were derived as the unique

conditions the wave function must satisfy at each point in order to fulfill the

corresponding energy equation. The Dirac equation involving electromagnetic

potentials has been derived.

2.3.11. Derivation by Factorizing the Algebraic Relation

Satisfied by the Classical Hamiltonian

Author of this approach [81] started from classical-quantum correspondence,

that associates a linear differential operator with a classical Hamiltonian, and

that leads to regard energy and momentum as operators of this kind. The Dirac

equation is derived by factorizing the algebraic relation satisfied by the classical

Hamiltonian. The Whitham consideration [82] of the theory of classical waves
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was used, where for any linear wave equation one may define different “‘wave

modes”’, each of which is characterized by a dispersion relation, i.e., an explicit

dependence of the frequency ω as a function of the spatial wave (co-)vector

k, ω = W(k;X) (in the general case of heterogeneous propagation, when the

dispersion depends indeed on the space-time position X). It turns out [82] that

for a given wave mode the wave vector k propagates along the bicharacteristics

of a certain linear partial differential equation of the first order. When the latter

equation is put into characteristic form, one obtains a Hamiltonian system, in

which the Hamiltonian is none other than the dispersion relation W defining

the given wave mode of the wave equation considered. Therefore, with certain

precautions, which are made necessary by the existence of several wave modes,

one may recover the wave equation from the dispersion relation alone. It is the

basis of the derivation of the Dirac equation in [81] for the free particle, for

the case of external electromagnetic field and for the case of static gravitational

field. Note that the main point in such derivation is near standard factorization

of the Klein–Gordon operator considered above in subsection 2.2.3.

2.3.12. Origin in Conformal Differential Geometry

In [83] the Dirac equation is derived by conformal differential geometry. The

Hamilton–Jacobi equation for the particle is found to be linearized, exactly and

in closed form, by an ansatz solution that can be straightforwardly interpreted

as the quantum wave function of the 4-spinor solution of Dirac’s equation. All

quantum features arise from the subtle interplay between the conformal cur-

vature acting on the particle as a potential and the particle motion which af-

fects the geometric prepotential associated to the conformal curvature itself.

Finally, the Dirac equation is found in the form D̂+D̂−ψ = D̂−D̂+ψ = 0, D̂∓ ≡
γµ (pµ −eAµ)∓m.

2.3.13. Recent Derivation from Principles of Information

Processing

Recently, in [84] the derivation of the Dirac equation from principles of infor-

mation processing has been presented. It has been shown, without using the

relativity principle, how the Dirac equation in three space-dimensions emerges

from the large-scale dynamics of the minimal nontrivial quantum cellular au-

tomaton satisfying unitarity, locality, homogeneity, and discrete isotropy. The
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Dirac equation is recovered for small wave-vector and inertial mass, whereas

Lorentz covariance is distorted in the ultra-relativistic limit. The automaton can

thus be regarded as a theory unifying scales from Planck to Fermi.

2.4. Our Approaches to the Problem of the Dirac

Equation Derivation

We have contributed in the methods of Dirac equation derivation thrice: (i) the

Sallhofer’s derivation from the Maxwell electrodynamics in medium was gen-

eralized to the case of non-stationary equation and the complete set of corre-

sponding transformations was found, (ii) the massless Dirac equation was de-

rived from the maximally symmetrical form of the Maxwell equations, (iii) the

Dirac equation with nonzero mass was derived from the RCQM of spin 1/2

particle-antiparticle doublet. This determines our interest to the problem.

2.4.1. Generalization of Sallhofer’s Derivation

As it is already presented in subsection 2.3.1 above in the papers [67–69]

the link between the Dirac equation in external electromagnetic field and the

Maxwell equations in medium has been given. In the paper [85] Sallhofer’s

idea was generalized to the case of non-stationary Dirac equation and is pre-

sented in the framework of another formalism. Moreover, in [85] the complete

set of linking transformation was found. The main assertion of [85] is as fol-

lows.

Maxwell’s equations of source-free electrodynamics

ε

c
∂0
−→
E −curl

−→
H = 0,

µ

c
∂0
−→
H +curl

−→
E = 0, div

−→
E = 0, div

−→
H = 0, (2.5)

(c is the light velocity, ε and µ are the electric and magnetic permeabilities of

the medium) are linked to the Dirac-like equation

[
−→
α ·∇−

∣∣∣∣
εI2 0

0 µI2

∣∣∣∣
1

c

∂

∂t

]
ψel = 0, (2.6)

where
−→
α =

∣∣∣∣
0

−→σ−→
σ 0

∣∣∣∣,
−→
σ =

{
σ1,σ2,σ3

}
are the Pauli matrices (1.6), ψel is
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one of eight columns known from [85]

ψel =

∣∣∣∣∣∣∣∣

iE3

i(E1 + iE2)

H3

H1 + iH2

∣∣∣∣∣∣∣∣
, (2.7)

I2 is 2×2 unit matrix (In (2.5), (2.7) and below (
−→
E ,

−→
H ) are the electromagnetic

field strengths).

By applying the matrix-differential operator of (2.6) to the column (2.7) we

obtain a system of four equations in which the imaginary and real parts can

easily be separated. Then, by natural requiring that the imaginary and real parts

be equal to zero independently, we come to Maxwell’s equations (2.5).

It is evident that column ψel (2.7) contains only six real functions (
−→
E ,

−→
H ),

while four-component Dirac spinor ψD contains eight similar real functions,

which in general are not related to (
−→
E ,

−→
H ). Therefore, the components of the

column ψel (2.7) are the subset of the components of Dirac spinor ψD. Hence,

there is no one to one correspondence between components of ψel (2.7) and ψD.

Therefore, the inverse assertion that the massless Dirac equation follows

from the Maxwell equations (2.5) is not so evident. In order to fulfill such

inverse derivation it is necessary to put ε = µ = 1 and to complete the 6 real

components of (2.7) to the 8 real components of the standard Dirac spinor.

The complete set of columns, which can be chosen as ψel in (2.7), is eight.

In the notations

E± = E1 ± iE2, H± = H1 ± iH2, (2.8)

they are given by:

ψ1 =

∣∣∣∣∣∣∣∣

iE3

iE+

H3

H+

∣∣∣∣∣∣∣∣
, ψ2 =

∣∣∣∣∣∣∣∣

−E3

−E+

iH3

iH+

∣∣∣∣∣∣∣∣
, ψ3 =

∣∣∣∣∣∣∣∣

H3

H+

iE3

iE+

∣∣∣∣∣∣∣∣
, ψ4 =

∣∣∣∣∣∣∣∣

iH3

iH+

−E3

−E+

∣∣∣∣∣∣∣∣
, (2.9)

ψ5 =

∣∣∣∣∣∣∣∣

−iH−

iH3

E−

−E3

∣∣∣∣∣∣∣∣
, ψ6 =

∣∣∣∣∣∣∣∣

H−

−H3

iE−

−iE3

∣∣∣∣∣∣∣∣
, ψ7 =

∣∣∣∣∣∣∣∣

E−

−E3

−iH−

iH3

∣∣∣∣∣∣∣∣
, ψ8 =

∣∣∣∣∣∣∣∣

iE−

−iE3

H−

−H3

∣∣∣∣∣∣∣∣
.

(The set (2.9) includes column (2.7) as ψ1).
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The validity and suitability of the set (2.9) can be proven by direct sub-

stitution of every column of this set for ψel in (2.6). In order to prove that it

is really a complete set let us recall the eight Pauli–Gürsey–Ibragimov oper-

ators [86–88] {γ2Ĉ, iγ2Ĉ, γ2γ4Ĉ, iγ2γ4Ĉ, γ4, iγ4, i, I} (Ĉ is the 4× 4 matrix op-

erator of complex conjugation, Ĉψ = ψ∗, the operator of involution in H3,4).

These generators form a complete set of pure matrix operators, which leave the

massless Dirac equation being invariant. The verification that eight columns

from (2.9) are obtained by action of every Pauli–Gürsey–Ibragimov opera-

tor on the function ψel (2.7) finishes the proof. As soon as we have in

{γ2Ĉ, iγ2Ĉ, γ2γ4Ĉ, iγ2γ4Ĉ, γ4, iγ4, i, I} the complete set of operators, therefore,

the (2.9) is the complete set too.

Note that the four columns ψ3−6 can be chosen in (2.9) only together with

simultaneous interchange ε ↔ µ in (2.6).

Note, further, that in [89–91] different useful matrix representations of the

Lie algebras of the Lorentz and Poincaré groups have been found on the ba-

sis of Pauli–Gürsey–Ibragimov operators [86–88]. At first, it is the additional

D(0, 1
2
)⊕ ( 1

2
,0) representation of the Lie algebra of universal covering L =

SL(2,C) of the proper ortochronous Lorentz group L
↑
+ = SO(1,3)=

{
Λ =

(
Λ

µ
ν

)}
.

Further, the application of the simplest linear combinations of both standard

and additional D(0, 1
2
)⊕ ( 1

2
,0) generators gives the possibility to find Bose rep-

resentations of the Lorentz group L and the Poincaré group P ⊃ L = SL(2,C)

(here P is the universal covering of the proper ortochronous Poincaré group

P
↑
+ = T(4)×)L

↑
+ ⊃ L

↑
+), with respect to which the massless Dirac equation is

invariant. Thus, we have found [89–91] the Bose D(1,0)⊕(0,0) and D( 1
2
, 1

2
)

representations of the Lie algebra of the Lorentz group L together with the

tensor-scalar of the spin s=(1,0) and vector representations of the Lie algebra

of the Poincaré group P , with respect to which the Dirac equation with m=0 is

invariant.

Assuming harmonic time dependence in the form

Ψ = ψe−iω̃t → ∂

∂(ct)
Ψ = −i

ω̃

c
Ψ, (2.10)

from (2.6) the electromagnetic amplitude equation

[
−→
α ·∇+ i

ω̃

c

∣∣∣∣
εI2 0

0 µI2

∣∣∣∣
]

ψel = 0 (2.11)
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follows. A comparison with the Dirac amplitude equation


−→α ·∇+ i

ω̃

c

∣∣∣∣∣∣

(
1− Φ(−→x )−mc2

~ω̃

)
I2 0

0
(

1− Φ(−→x )+mc2

~ω̃

)
I2

∣∣∣∣∣∣


ψD = 0 (2.12)

in external Coulomb field Φ (−→x ) = −Ze2/r immediately shows the complete

formal agreement of electrodynamics with the Dirac theory. A consequence of

such a comparison are the Sallhofer’s formulas (2.4), on the basis of which the

description of hydrogen atom relativistic spectrum was presented in [68, 69] by

means of (2.4) and (2.5), i.e., in terms of Maxwell’s electrodynamics.

Similarly to the consideration above of column ψel (2.7) and four-

component Dirac spinor ψD, here again there is no one to one correspondence

between 6 real components of ψel (2.11) and 8 real components of ψD (2.12).

Not a meter of fact that above some formal agreement of electrodynamics

with the Dirac theory is presented the fine structure of hydrogen atom spec-

trum on this basis has been found both with application of (2.5) [68, 69] and

with application of 8-component form of Maxwell equations [90, 91] (espe-

cially in [92]). Such Maxwell system is considered in subsection 2.4.2 below.

The components of these slightly generalized Maxwell equations possess one to

one correspondence with the Dirac theory.

It is better to consider the above given presentation of [85] together with

our paper [93]. In [93] different relations between the free Maxwell equations

(2.5), when ε = µ = 1, and the massless Dirac equations were investigated: The

relationships between the Lagrangians, symmetries, solutions of free Maxwell

equations and Lagrangians, symmetries, solutions of the massless Dirac equa-

tions were found. Furthermore, the relationships between the conservation laws

for the electromagnetic and massless spinor field were found in [93] as well.

Note that recently the authors of [94] also marked the difference between

the approaches in [66, 67] and [85, 93]. Moreover, author of [66, 67] named his

model “The Maxwell-Dirac isomorphism”. Note further that “isomorphism” in

[66–69], as it is evident from consideration above, can be considered rather as

the physical, not as the mathematical assertion. In the papers [95–98] we named

it (together with the case of free Maxwell equations in vacuum in [93]) as the

“relationship” between the Dirac and the Maxwell equations. J. Keller in his

review [99] named it the “mapping” of the Maxwell formalism into the Dirac

formalism.

Thus, it is better to speak carefully that derivation of the Dirac equation in
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[66–69, 85] and here above is only partially based on mathematics and includes

so called physical intuition. Nevertheless, let us note that many important steps

in physics were made only on the basis of physical intuition without any appeal-

ing to mathematical derivations.

Finally, the results considered above are very interesting and can be useful

for further investigations.

2.4.2. Origin in Maximally Symmetrical Form of the Maxwell

Equations

More then ten years ago we already presented our own independent deriva-

tion of the Dirac equation [90, 91, 97, 98]. The Dirac equation was derived

from slightly generalized Maxwell equations with gradient-like current and

charge densities. Such Maxwell system includes magnetic gradient-like cur-

rent and charge densities (in another interpretation system contains additional

scalar field). This form of the Maxwell equations, which is directly linked to the

Dirac equation, is the maximally symmetrical variant of Maxwell system. Such

Maxwell equations are invariant with respect to a 256-dimensional algebra (the

well-known algebra of conformal group has only 15 generators). Of course, we

derived only massless Dirac equation.

Note that J.C. Maxwell derived a system of equations for describing elec-

tromagnetic phenomena on the basis of a generalized rewriting of all known

electrodynamics laws of Faraday, Ampere, Weber, etc., as well as from the

principle of symmetry. Looking for the equations for inneratomic problems in

the framework of classical electrodynamics we recall the Maxwell’s idea about

symmetry principle. By analogy with Maxwell’s suggestions in the articles [90,

91, 97, 98], perhaps the most symmetrical form of the Maxwell equations with

256 dimensional invariance algebra is introduced. It is precisely this system of

Maxwell equations that is directly related to the massless Dirac equation and

can describe the spectrum of hydrogen. The massless Dirac equation follows

from such non-ordinary Maxwell equations.

Consider this way of the Dirac equation derivation in some details.

The above mentioned equations for the system of electromagnetic and scalar

fields
−→
(E,

−→
H,E0,H0) have the form:

∂0
−→
E = curl

−→
H −gradE0, ∂0

−→
H = −curl

−→
E −gradH0,

div
−→
E = −∂0E0, div

−→
H = −∂0H0.

(2.13)
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Here and below the system of units ~ = c = 1 is used. The equations (2.13) are

nothing more than the weakly generalized Maxwell equations (ε = µ = 1) with

gradient-like electric and magnetic sources je
µ = −∂µE0, j

mag
µ = −∂µH0, i.e.,

−→
j e = −gradE0,

−→
j mag = −gradH0, ρe = −∂0E0, ρmag = −∂0H0. (2.14)

In terms of complex 4-component object

E ≡
∣∣∣∣∣
−→
E

E 0

∣∣∣∣∣= column
∣∣E1 − iH1,E2 − iH2,E3 − iH3,E0− iH0

∣∣ , (2.15)

and, further, in terms of following complex tensor

E = (E µν) ≡

∣∣∣∣∣∣∣∣

0 E 1 E 2 E 3

−E 1 0 iE 3 −iE 2

−E 2 −iE 3 0 iE 1

−E 3 iE 2 −iE 1 0

∣∣∣∣∣∣∣∣
(2.16)

equations (2.13) can be rewritten in the manifestly covariant forms

∂µEν−∂νEµ + iεµνρσ∂ρ
E

σ = 0, ∂µE
µ = 0, (2.17)

(vector form) and tensor-scalar form:

∂νE
µν = ∂µ

E
0. (2.18)

It is useful also to consider the following form of equations (2.13), (2.17),

(2.18):

(i∂0−
−→
S ·−→p )

−→
E − igradE

0 = 0, ∂µE
µ = 0, (2.19)

where
−→
S ≡ (S j) are the generators of irreducible representation D(1) of the

group SU(2):

S1 =

∣∣∣∣∣∣

0 0 0

0 0 −i

0 i 0

∣∣∣∣∣∣
, S2 =

∣∣∣∣∣∣

0 0 i

0 0 0

−i 0 0

∣∣∣∣∣∣
, S3 =

∣∣∣∣∣∣

0 −i 0

i 0 0

0 0 0

∣∣∣∣∣∣
;
−→
S 2 = 1(1 +1)I.

(2.20)

The general solution of equations (2.13), (2.17)–(2.19) was found in [95],

their symmetry properties were considered in [89], the application (after formu-

lation in specific medium (2.4)) to the hydrogen spectrum description was given
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in [92, 96]. The solution was found in the space (S(R4)⊗C4)∗ of Schwartz’s

generalized functions directly by application of Fourier method. In terms of

helicity amplitudes cᾱ(
−→
k ) this solution has the form

E (x) =
Z

d3k

√
2ω̃

(2π)3

{ [
c1e1 +c3 (e3 +e4)

]
e−ikx+[

c∗2e1 +c∗4 (e3 +e4)
]

eikx

}
, ω̃ ≡

√
−→
k 2,

(2.21)

where kx≡ ω̃t−−→
k −→x , ᾱ = 1,2,3,4, and 4-component basis vectors eα are taken

in the form

e1 =

∣∣∣∣
−→e1

0

∣∣∣∣ , e2 =

∣∣∣∣
−→e2

0

∣∣∣∣ , e3 =

∣∣∣∣
−→e3

0

∣∣∣∣ , e4 =

∣∣∣∣
0

1

∣∣∣∣ . (2.22)

Here the 3-component basis vectors which, without any loss of generality, can

be taken as

−→e1 =
1

ω̃
√

2(k1k1 +k2k2)

∣∣∣∣∣∣

ω̃k2 − ik1k3

−ω̃k1 − ik2k3

i
(
k1k1 +k2k2

)

∣∣∣∣∣∣
, −→e2 = −→e1

∗, −→e3 =

−→
k

ω̃
, (2.23)

are the eigenvectors for the quantum-mechanical helicity operator for the spin

s = 1.

Note that if the quantities E0,H0 in equations (2.13) are some given func-

tions, for which the representation

E0 − iH0 =

Z

d3k

√
2ω̃

(2π)3

(
c3e−ikx +c4eikx

)
(2.24)

is valid, then (2.13) are the Maxwell equations with the given sources, je
µ =

−∂µE0, j
mag
µ = −∂µH0 (namely these 4 currents we call the gradient-like

sources). In this case the general solution of the Maxwell equations (2.13),

(2.17)–(2.19) with the given sources, as follows from (2.21), has the form

−→
E (x) =

R

d3k
√

ω̃
2(2π)3

(
c1−→e 1 +c2−→e 2 +α−→e 3

)
e−ikx +c.c,

−→
H (x) = i

R

d3k
√

ω̃
2(2π)3

(
c1−→e 1 −c2−→e 2 +β−→e 3

)
e−ikx +c.c,

(2.25)

where the amplitudes of longitudinal waves −→e 3 exp(−ikx) are α = c3 + c4,

β = c3 − c4 and c3,c4 are determined by the functions E0,H0 according to the

formula (2.24).
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The following assertion is valid.

Equations (2.13), (2.17)–(2.19) are directly related to the free massless

Dirac equation

iγµ∂µψ(x) = 0. (2.26)

The proof is as follows.

Note at first that there is no reason to appeal here to the stationary case as it

was done in [66–69], where the case with nonzero interaction and mass m 6= 0

was considered. Indeed. the substitution of

ψ =

∣∣∣∣∣∣∣∣

E3 + iH0

E1 + iE2

iH3 +E0

−H2 + iH1

∣∣∣∣∣∣∣∣
= UE , U =

∣∣∣∣∣∣∣∣

0 0 C+ C−
C+ iC+ 0 0

0 0 C− C+

C− iC− 0 0

∣∣∣∣∣∣∣∣
; C∓ ≡ 1

2
(C∓1),

(2.27)

(C is the operator of complex conjugation, CE 1 = E 1∗; complex field strength

E is known from (2.15)) into Dirac equation (2.26) with γ matrices in standard

Pauli–Dirac representation (1.5) guarantees its transformation into the general-

ized Maxwell equations (2.13), (2.17)–(2.19).

Moreover, the substitution of column (2.15)

E =

∣∣∣∣∣∣∣∣

E1 − iH1

E2 − iH2

E3 − iH3

E0 − iH0

∣∣∣∣∣∣∣∣
= U−1ψ, U−1 = U† =

∣∣∣∣∣∣∣∣

0 C+ 0 C−
0 iC− 0 iC+

C+ 0 C− 0

C− 0 C+ 0

∣∣∣∣∣∣∣∣
, (2.28)

into the equation

γ̃µ∂µE (x) = 0 (2.29)

with γ̃µ = U−1γµU matrices

γ̃0 =

∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

∣∣∣∣∣∣∣∣
C, γ̃1 =

∣∣∣∣∣∣∣∣

0 0 0 1

0 0 −i 0

0 i 0 0

−1 0 0 0

∣∣∣∣∣∣∣∣
C, (2.30)

γ̃2 =

∣∣∣∣∣∣∣∣

0 0 i 0

0 0 0 1

−i 0 0 0

0 −1 0 0

∣∣∣∣∣∣∣∣
C, γ̃3 =

∣∣∣∣∣∣∣∣

0 −i 0 0

i 0 0 0

0 0 0 1

0 0 −1 0

∣∣∣∣∣∣∣∣
C,
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guarantees its transformation into the generalized Maxwell equations (2.13),

(2.17)–(2.19) as well.

Proved assertions demonstrate both the derivation of the slightly generalized

Maxwell equations from the massless Dirac equation and the derivation of the

massless Dirac equation from such kind of Maxwell system.

Note specially that ordinary Maxwell equation follow from (2.13), (2.17)–

(2.19), (2.29) in the case E0 = H0 = 0.

The transitions (2.27), (2.28) are based on unitary transformation. The uni-

tary properties of the operator U can be verified easily by taking into account

that the equations

(AC)† = CA†, aC = Ca∗, (aC)∗ = Ca (2.31)

hold for an arbitrary matrix A and a complex number a. We note that in the

real algebra (i.e., the algebra over the field of real numbers) and in the Hilbert

space of quantum mechanical amplitudes the operator U in (2.27), (2.28) has all

properties of unitarity: UU−1 = U−1U = 1, U−1 = U†, plus linearity.

Due to the unitarity of the operator U the γ̃µ matrices (2.30) still obey the

anticommutation relations of Clifford–Dirac algebra

γ̃µγ̃ν + γ̃νγ̃µ = 2gµν (2.32)

and have the same Hermitian properties as the Pauli - Dirac γµ matrices (1.5):

γ̃0† = γ̃0, γ̃k† = −γ̃k. (2.33)

The complete set of 8 transformations like (2.27), which relates generalized

Maxwell equations (2.13) and massless Dirac equation (2.26), was found in [89,

93]. The explicit form is as follows

ψI =

∣∣∣∣∣∣∣∣

E3 + iH0

E1 + iE2

iH3 +E0

−H2 + iH1

∣∣∣∣∣∣∣∣
, ψII =

∣∣∣∣∣∣∣∣

iE3 −H0

iE1−E2

−H3 + iE0

−H1 − iH2

∣∣∣∣∣∣∣∣
, ψIII =

∣∣∣∣∣∣∣∣

iE1 +E2

−iE3 −H0

−H1 + iH2

H3 + iE0

∣∣∣∣∣∣∣∣
,

ψIV =

∣∣∣∣∣∣∣∣

−E1 + iE2

E3 − iH0

−iH1 −H2

iH3−E0

∣∣∣∣∣∣∣∣
, ψV =

∣∣∣∣∣∣∣∣

−H3 + iE0

−H1 − iH2

iE3 −H0

iE1−E2

∣∣∣∣∣∣∣∣
, ψVI =

∣∣∣∣∣∣∣∣

−H1 + iH2

H3 + iE0

iE1 +E2

−iE3 −H0

∣∣∣∣∣∣∣∣
, (2.34)
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ψVII =

∣∣∣∣∣∣∣∣

iH3 +E0

−H2 + iH1

E3 + iH0

E1 + iE2

∣∣∣∣∣∣∣∣
, ψVIII =

∣∣∣∣∣∣∣∣

−iH1 −H2

iH3 −E0

−E1 + iE2

E3 − iH0

∣∣∣∣∣∣∣∣
.

Relationship between the generalized Maxwell equations (2.13), (2.17)–(2.19)

and massless Dirac equation (2.26) is considered here in the way similar to

the [93] and [85, 89]. The proof that the number of such transformation is

eight is similar to the proof given above for the set (2.9). This number is eight,

because the number of pure matrix Pauli–Gürsey–Ibragimov operators [86–88]

{γ2Ĉ, iγ2Ĉ, γ2γ4Ĉ, iγ2γ4Ĉ, γ4, iγ4, i, I}, which leave the massless Dirac equation

being invariant, is eight.

Note that equations (2.13), (2.17)–(2.19), (2.29) are the maximally symmet-

rical form of the Maxwell system. Indeed, here both Dirac-like and Maxwell-

like symmetries are natural and are ready for application. The Bose symme-

tries of the massless Dirac equation and Fermi symmetries of the the slightly

generalized Maxwell equations together with other corresponded results were

considered in [89–91].

Further, contrary to the formalism of the item 2.4.1 above, here there is

one-to-one correspondence between the solutions of the massless Dirac equa-

tion (2.26) and the slightly generalized Maxwell equations (2.13), (2.17)–(2.19).

Therefore, the presented here derivation of the massless Dirac equation is direct

and simple.

2.4.3. Derivation of the Dirac Equation from the Relativistic

Canonical Quantum Mechanics

In our recent papers [48–55, 100], the Dirac equation with nonzero mass has

been derived from the quantum-mechanical relativistic equation for the fermion-

antifermion particle doublet of spins s = 1/2. We proposed to call such 4-

component relativistic equation, which is the starting point of this derivation,

as the Schrödinger–Foldy equation (the one-component case is often called as

the spinless Salpeter equation [30–46] or as the equation for Lévy flight [47]).

Corresponded model of the physical reality, which is based on such equation

of motion, was called by us as RCQM of particle-antiparticle doublet. The

arbitrary spins and arbitrary dimensions have been considered.

For the partial case of spin 1/2 fermion-antifermion doublet the 4-
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component Schrödinger–Foldy equation is given by

i∂t f (x) =
√

m2 −∆ f (x), f =

∣∣∣∣∣∣∣∣

f 1

f 2

f 3

f 4

∣∣∣∣∣∣∣∣
, (2.35)

and is considered in the rigged Hilbert space S3,4 ⊂ H3,4 ⊂ S3,4∗, where S3,4 is

the 4-component Schwartz test function space over the space R3 ⊂ M(1,3) and

H3,4 is the Hilbert space of the 4-component square-integrable functions over

the x ∈ R3 ⊂ M(1,3)

H3,4 = L2(R3)⊗C⊗4 = { f = ( f 4) : R3 → C⊗4;

Z

d3x| f (t,−→x )|2 < ∞}, (2.36)

where d3x is the Lebesgue measure in the space R3 ⊂ M(1,3) of the eigenval-

ues of the position operator −→x of the Cartesian coordinate of the particle in

an arbitrary-fixed inertial frame of references, M(1,3) is the Minkowski space.

Further, S3,4∗ is the space of the 4-component Schwartz generalized functions.

The space S3,4∗ is conjugated to that of the Schwartz test functions S3,4 by the

corresponding topology (see, e.g., [101]).

The following assertion is valid.

The link between the quantum-mechanical equation (2.35) and the Dirac

equation

i∂0ψ(x) = (
−→
α ·−→p +βm)ψ(x),

−→
α ≡ γ0−→γ , β ≡ γ0, (2.37)

is given by the operator

V =
iγ`∂` + ω̂ +m√

2ω̂(ω̂ +m)

∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

0 0 C 0

0 0 0 C

∣∣∣∣∣∣∣∣
, V−1 =

∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

0 0 C 0

0 0 0 C

∣∣∣∣∣∣∣∣

−iγ`∂` + ω̂+m√
2ω̂(ω̂+m)

,

(2.38)

VV−1 = V−1V = I, ω̂ =
√
−∆+m2,

where C is the operator of complex conjugation, Cψ1 = ψ1∗, (the operator of

involution in H3,1). The following relationships are valid

V(∂0 + iω̂)V−1 = ∂0 + i(
−→
α ·−→p +βm), (2.39)
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for the anti-Hermitian operators of corresponding equations, and

ψDirac(x) = V f Sr−Foldy(x), (2.40)

for the corresponding general solutions. The vice-verse relations are valid as

well, but for the derivation of the Dirac equations directly the formulas (2.39),

(2.40) are used.

The proof of this assertion is fulfilled by direct calculations of (2.39) and

(2.40). In order to verify (2.40) the explicit forms of corresponding general

solutions are used. These solutions are given below.

Note that due to the presence of the operator C our extended FW operator

(2.38) is well-defined only in application to anti-Hermitian operators. For the

possibility and mathematical correctness in using the anti-Hermitian operators

in quantum theory see, e.g., [102, 103].

In (2.40) the general solution f Sr−Foldy(x) of the Schrödinger–Foldy equa-

tion of motion (2.35) has the form

f Sr−Foldy(x) =

∣∣∣∣
fpart

fantipart

∣∣∣∣ =
1

(2π)
3
2

Z

d3ke−ikx (2.41)

[a1(
−→
k )d1 +a2(

−→
k )d2 +a3(

−→
k )d3 +a4(

−→
k )d4],

where the orts {dα} of the Cartesian basis are given by

d1 =

∣∣∣∣∣∣∣∣

1

0

0

0

∣∣∣∣∣∣∣∣
, d2 =

∣∣∣∣∣∣∣∣

0

1

0

0

∣∣∣∣∣∣∣∣
, d3 =

∣∣∣∣∣∣∣∣

0

0

1

0

∣∣∣∣∣∣∣∣
, d4 =

∣∣∣∣∣∣∣∣

0

0

0

1

∣∣∣∣∣∣∣∣
, (2.42)

and the following notations

kx ≡ ω̃t −−→
k −→x , ω̃ ≡

√−→
k 2 +m2, (2.43)

are used.

The interpretation of the amplitudes in the general solution (2.41) follows

from equations

−̂→p e−ikxdᾱ =
−→
k e−ikxdᾱ, ᾱ = 1,2,3,4, (2.44)
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s3d1 =
1

2
d1, s3d2 = −1

2
d2, s3d3 = −1

2
d3, s3d4 =

1

2
d4, (2.45)

gd1 = −ed1, gd2 = −ed2, gd3 = ed3, gd4 = ed4, (2.46)

on eigen vectors and eigenvalues of the operators of stationary complete set

(−̂→p , sz ≡ s3, g). Thus, the functions a1(
−→
k ), a2(

−→
k ) are the momentum-spin

amplitudes of the particle (e.g., electron) with the momentum −̂→p , sign of the

charge (−e) and spin projections (1
2 ,−1

2 ), respectively. Further, the functions

a3(
−→
k ), a4(

−→
k ) in (2.41) are the momentum-spin amplitudes of the antiparticle

(e.g., positron) with the momentum −̂→p , sign of the charge (+e) and spin projec-

tions (−1
2
, 1

2
), respectively.

Taking into account the Pauli principle and the fact that experimentally

positron is observed as the mirror reflection of an electron, the operators of

the charge sign and the spin of the s=(1/2,1/2) particle-antiparticle doublet are

taken in the form

g ≡ −γ0 =

∣∣∣∣
−I2 0

0 I2

∣∣∣∣ ,
−→s =

1

2

∣∣∣∣
−→
σ 0

0−C
−→σ C

∣∣∣∣ , (2.47)

where
−→σ are the standard Pauli matrices (1.6), C is the operator of complex

conjugation, I2 is 2×2 unit matrix.

In the choice of the spin (2.47) the principle of correspondence and heredity

with the FW representation is used, where the particle-antiparticle doublet spin

operator is given by

−→s FW =
1

2

∣∣∣∣
−→σ 0

0
−→
σ

∣∣∣∣ . (2.48)

The link between the spins (2.47) and (2.48) v−→s FWv =−→s , v−→s v =−→s FW is given

by the transformation operator v

v = v−1 =

∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

0 0 C 0

0 0 0 C

∣∣∣∣∣∣∣∣
, vv−1 = v−1v = I, (2.49)

which extends the FW transformation in (2.38). Note that transformation v is

valid only for the case of anti-Hermitian form of spins (2.47), (2.48).
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In (2.40) the general solution ψDirac(x) of the Dirac equation (2.37) is given

by

ψ(x) = V+φ(x) =
1

(2π)
3
2

Z

d3k
[
e−ikxar(

−→
k )v−r (

−→
k )+eikxa∗ř(

−→
k )v+

ř (
−→
k )
]
,

(2.50)

r = (1,2), ř = (3,4).

The amplitudes aα(
−→
k ) in (2.50) are the same as in (2.41) in the corresponding

relativistic canonical quantum mechanics. The basis vectors are changed and

now have the form

v−1 (
−→
k ) = N

∣∣∣∣∣∣∣∣

ω̃ +m

0

k3

k1 + ik2

∣∣∣∣∣∣∣∣
, v−2 (

−→
k ) = N

∣∣∣∣∣∣∣∣

0

ω̃ +m

k1 − ik2

−k3

∣∣∣∣∣∣∣∣
, (2.51)

v+
3 (
−→
k ) = N

∣∣∣∣∣∣∣∣

k3

k1 + ik2

ω̃ +m

0

∣∣∣∣∣∣∣∣
, v+

4 (
−→
k ) = N

∣∣∣∣∣∣∣∣

k1 − ik2

−k3

0

ω̃ +m

∣∣∣∣∣∣∣∣
,

where

N ≡ 1√
2ω̃(ω̃+m)

, ω̃ ≡
√−→

k 2 +m2. (2.52)

Thus, the orts v±α (
−→
k ) are the standard 4-component Dirac spinors. Their condi-

tions of orthonormalization and completeness are well known, see, e.g., [57].

Hence, the Dirac equation (2.37) is derived from the quantum-mechanical

equation (2.35).

2.5. Conclusion and Perspectives

Original investigations of such important problem of modern theoretical physics

as the derivation of the Dirac equation are presented. A variety of approaches

and appeals to independent mathematical formalisms are demonstrated. In par-

ticular, the derivation of the Dirac equation from the principles of information

processing, or the obtaining of this equation on the basis of conformal differen-

tial geometry (in general 26 different methods), are considered.
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At first consider briefly the derivation of the Dirac equation given in subsec-

tion 2.4.3.

Note that the RCQM, which is based on Schrödinger–Foldy equation (2.35)

and its general solution (2.41) is free from difficulties of the Dirac model and,

moreover, is free from the difficulties of the FW model (contradictions of the

canonical FW representation with main principles of quantum mechanics are

considered briefly in subsection 2.2.9). Here in (2.41) the negative energies are

absent and the adventages of the spin operator (2.47) in comparison with the

FW spin (2.48) are evident as well. As a consequences on the basis of (2.35)

the self-consistent relativistic quantum-mechanical model can be built, which is

similar to the von Neumann’s non-relativistic consideration [104].

Furthermore, the natural generalization of the FW transformation is consid-

ered. The extended FW operator, which relates the Dirac and pure quantum-

mechanical models, is presented in (2.38).

The Schrödinger–Foldy equation (2.35) is the main equation of the RCQM

of spin s=(1/2,1/2) particle-antiparticle doublet. Hence, the Dirac equation has

been derived from the more fundamental model of the same physical reality,

which is formulated as the RCQM of the spin s=(1/2,1/2) particle-antiparticle

doublet.

In general, many faces of the Dirac equation derivation prove the interest to

the problem.

The performed analysis gives an opportunity to compare different meth-

ods of the Dirac equation derivation. Probably the simplest is considered in

[57] approach (subsection 2.2.3), which is based on the start from the Klein–

Gordon equation. Nevertheless, such approach becomes quite difficult, if to

begin from the Klein-Gordon equation derivation. It is more interesting to com-

pare the fundamentals of different conclusions, their physical and philosophical

significance. In this case it should be mentioned the subsection 2.4.3, where the

Dirac equation is derived from a relativistic canonical mechanics of the fermion-

antifermion doublet, which is more fundamental model of physical reality than

the Dirac model of the spinor field at the classical level. However, the most

fundamental is the derivation of the Dirac equation from the principle of the

Euler–Lagrange least action in the application to the classical spinor field (sub-

section 2.2.4).

A review of the 26 different derivations of the Dirac equation demonstrates

(in particular) that presented in [48–55] and here method of the Dirac equation

(and the Dirac-like equation for arbitrary spin) derivation is original and new.
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In general, the presented review demonstrates evidently that the Dirac equation

is related to the fundamental laws and principles of nature.

It follows from the above given consideration that new methods of the Dirac

equation derivation are not stopped and to be continued.

The main conclusion from the above considered variety of the approaches

to the Dirac equation derivation is the evident signal that the similar variety

in the approaches to the modern quantum field theory and standard model is

expected as well. For example, new approach to quantum electrodynamics is

the content of the book [105] and papers [106, 107]. One of the goals of the

consideration in this book below is to present few new approaches of such kind.
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Chapter 3

On the Representations of the

Poincaré Group for the Local

and Canonical Fields

This chapter contains minimum information on the representations of the

Poincaré group for the local and canonical fields, which is necessary for under-

standing of our further consideration. Our appealing to the prime anti-Hermitian

generators of the Lie algebra of the Poincaré group is explained.

We use the notation L = SL(2,C) for the universal covering of the proper

ortochronous Lorentz group L
↑
+ = SO(1,3)=

{
Λ =

(
Λ

µ
ν

)}
. And the notation P ⊃

L for the universal covering of the proper ortochronous Poincaré group P
↑
+ =

T(4)×)L
↑
+ ⊃ L

↑
+) is used. For the real parameters of the P group the 4-vector

of translations a = (aµ) ∈ M(1,3) and the tensor ω ≡ (ωµν = −ωνµ) are chosen.

Here ωµν is the angle of rotation in the Cartesian plane µν ⊂ M(1,3). For the

notation of element of the group P ⊃ L the same symbols (a,ω) are used.

The necessary notations for the Minkowski space-time M(1,3) and metric

tensor gµν together with brief consideration of the rigged Hilbert space are given

in the Chapter 1. The Lorentz square of the 4-vector in M(1,3) is given as

x2 = xµxνgµν = xµxµ = x2
0 −~x2; ~x = (x j) ∈ R3 ⊂ M(1,3). (3.1)

The arbitrary P -transformation of the field ϕ = (ϕA(x))A
n=1 (as an arbitrary-

fixed A-component P -covariant), which is generated by the P -transformation
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in M(1,3)

x → x́ = Λx+a ⇔ xµ → x́µ = Λ
µ
νxν +aµ, Λ = Λ(ω) ≡ (Λ

µ
ν) ∈ L , (3.2)

infinitesimally (inf) has the form

ϕ(x) → ϕ́(x)≡ (R(a.ω))ϕ(x)
inf
= (1− iaµpstand

µ − i

2
ωµν jstand

µν )ϕ(x), (a,ω) ∈ P .

(3.3)

Generators of the infinitesimal transformations (3.3) satisfy the commutation

relations of the Lie algebra of the Poincaré group P in the covariant form

[pstand
µ , pstand

ν ] = 0, [pstand
µ , jstand

ρσ ] = i(gµρpstand
σ −gµσ pstand

ρ ), (3.4)

[ jstand
µν , jstand

ρσ ] = −i(gµρ jstand
νσ +gρν jstand

σµ +gνσ jstand
µρ +gσµ jstand

ρν ),

and exponential series

(a,ω)→ R(a.ω) = exp(−iaµpstand
µ − i

2
ωµν jstand

µν ) (3.5)

determines the finite P -representations R(a.ω) in the space ϕ(x).

P -representation, which is determined by the formulas (3.3), or (3.5), is

called a local if P -generators (pstand
µ , jstand

µν ) have the form of the following Lie

operators

pstand
ρ ≡ i∂ρ, jstand

ρσ ≡ mstand
ρσ + sstand

ρσ , (3.6)

where

∂ρ ≡ ∂/∂xρ, mstand
ρσ ≡ xρ pstand

σ −xσ pstand
ρ , (3.7)

which, certainly, satisfy the commutation relations (3.4). Here sstand
ρσ are the

generators of pure matrix A-dimensional representation of the group L , i.e., the

operators of the pure matrix L-transformations ω → R(ω) (we call the set of 6

independent matrix generators sstand
ρσ as the Lorentz spin).

Note that operators mstand
ρσ , or sstand

ρσ , satisfy last formula in the commutation

relations (3.4) itself.

The characteristic feature of the locality of the P -transformation of the field

ϕ(x) is its explicit form

ϕ(x) → ϕ́(x) = R1(ω)ϕ(Λ−1(x−a)), (3.8)
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which is the consequence of the fact that generators (3.6) belong to the class

of the Lie operators. Note that in the class of the Lie operators the ma-

trix part R1(ω) (the transformation of form) and the differential part R2(a,ω)
((R2(a,ω)ϕ)(x) ≡ ϕ(Λ−1(x− a))) of the P -transformation (3.8) are separate

and independent.

Below we often use the P -representations for the Foldy–Wouthuysen (FW)

fields [1, 2]. Such representations of the Poincaré group are determined by the

sets of the generators, the part of which with necessity is given by the non-local,

non-Lie operators, which does not belong to the class of the Lie operators. The

first example is given by the operator of energy p̂0 = γ0ω̂ ≡ γ0
√
−∆+m2 in

the FW representation. Contrary to the operators (3.6) some generators of the

sets (p0, p j, jmn, j0k)
non−local,non−Lie can not be presented as a sum of differential

and matrix parts. Nevertheless, such sets (p0, p j, jmn, j0k)
non−local,non−Lie of P -

generators satisfy the commutation relations of the Lie algebra of P -group as

well.

Note that for our purposes (in order to demonstrate not only Fermi but the

Bose features of the Dirac equation and the spinor field as well) we use the

P -generators in anti-Hermitian form

pρ = ∂ρ ≡ ∂/∂xρ, jρσ = mρσ + sρσ, (3.9)

where

mρσ ≡ xρ∂σ −xσ∂ρ, (3.10)

and spin operators sρσ are ant-Hermitian as well. These generators are di-

rectly related to the real parameters of the P group (the 4-vector of translations

a = (aµ) ∈ M(1,3) and the tensor ω ≡ (ωµν = −ωνµ)). The authors of [3, 4]

recommend such operators for physicists. In our publications we call such op-

erators as primary or prime generators. The necessity of the forms (3.9), (3.10)

for our derivations and proofs is demonstrated below in next chapters. The link

with the ordinary P -generators is given by

pstand
ρ = ipρ ≡ i∂ρ, jstand

ρσ = i jρσ ≡ mstand
ρσ + sstand

ρσ , (3.11)

and vice versa

pρ = −ipstand
ρ , jρσ = −i jstand

ρσ . (3.12)

The prime operators (3.9) satisfy the commutation relations of the Lie algebra

of the group P in the form given by the formulas (4.2) in the Chapter 4.



66 Volodimir Simulik

It is useful to compare the SU(2) algebra commutation relations for the stan-

dard and for the prime anti-Hermitian generators. They are given by

[
s

j
stand, s`

stand

]
= iε j`nsn

stand,
[
s j, s`

]
= ε j`nsn, ε123 = +1, (3.13)

where ε j`n is the Levi-Civita tensor.

Below we essentially use the induced representations of the P group (see,

e.g., [5], for corresponding definitions an considerations).

The proof of bosonic properties of the Dirac equation and operator link be-

tween the relativistic canonical quantum mechanics (RCQM) and FW represen-

tation are possible only in terms of anti-Hermitian prime operators. Moreover,

in our program of synthesis of covariant particle equations some commutation

and anti-commutation relations between the necessary operators are valid if the

anti-Hermitian forms of corresponding operators are chosen.
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Chapter 4

Dirac Equation in the Canonical

Foldy–Wouthuysen

Representation

In this chapter the necessity of the Foldy–Wouthuysen (FW) representation [1–

3] for the quantum-mechanical interpretation of the Dirac equation is demon-

strated. The review and systematization of arguments on impossibility of the

Dirac spinor ψ(x) interpretation in the role of quantum-mechanical wave func-

tion of spin s=1/2 particle-antiparticle fermionic doublet is given. The sence of

the FW interpretation is considered.

4.1. Introduction to the Chapter 4

The start of the relativistic quantum mechanics was given by Paul Dirac with

his well known equation for electron. More precisely, in Dirac’s 4-component

model, the spin s=(1/2,1/2) particle-antiparticle doublet of two fermions was

considered (in particular, the electron-positron doublet). Nevertheless, the

quantum-mechanical interpretation of the Dirac equation, which should be sim-

ilar to the physical interpretation of the non-relativistic Schrödinger equation,

is not evident and is hidden deeply in the Dirac model. In order to visualize

the quantum mechanical interpretation of the Dirac equation, transformation to

the canonical (quantum-mechanical type) representation was suggested [1, 2].

In this FW representation of the Dirac equation, the quantum-mechanical in-
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terpretation is much more clear. Nevertheless, the direct and evident quantum-

mechanical interpretation of the spin s=(1/2,1/2) particle-antiparticle doublet

can be fulfilled only within the framework of the relativistic canonical quantum

mechanics (RCQM), see the consideration in next chapter. On the other hand

in quantum-mechanical interpretation the FW representation has the evident ad-

vantages in comparison with the Dirac model. The goal of this chapter is to

demonstrate the meaning of the FW representation.

4.2. Covariant and Schrödinger Forms of the

Dirac Equation

Here we consider the Dirac equation

(iγµ∂µ −m)ψ(x) = 0; ∂µ ≡ ∂/∂xµ, µ = 0,3 = 0,1,2,3, (4.1)

ψ ∈ S(M(1,3))×C4 ≡ S4,4,

as an equation in the test function space S4,4 of the 4-component functions over

the Minkowski space M(1,3). We note that the complete set {ψ} ≡ Ψ of so-

lutions of the equation (1) contains the generalized solutions belonging to the

space S4,4∗ ⊃ S4,4 of the Schwartz’s generalized functions, {ψgen} ⊂ S4,4∗. The

mathematically well-defined consideration of this fact demands (see, e.g., the

book [4] on the axiomatic approach to the field theory) the functional represen-

tation of the elements of ψgen ⊂ S4,4∗, which makes the consideration very com-

plicated. Hence, we recall that the test function space S4,4 is dense in S4,4∗. It

means that any element ψgen ⊂ S4,4∗ can be approximated (with arbitrary degree

of accuracy) by an element ψ ∈ S4,4 from the corresponding Cauchy sequence in

the space S4,4. Therefore, here for the equation (1) we have restricted ourselves

to the supposition ψ ∈ S4,4. Such supposition is physically verified and essen-

tially simplifies consideration without any loss of generality and mathematical

correctness.

Consider briefly the conventional relativistic invariance of equation (1). In

the modern consideration, it is the invariance with respect to the universal cover-

ing P ⊃ L=SL(2,C) of the proper ortochronous inhomogeneous Poincaré group

P
↑
+ ⊃ L

↑
+ = SO(1,3). For our purposes it is convenient to rewrite in the space

S4,4 the standard Fermi (spinor) representation of the group P in terms of the

primary P -generators (p ≡ (pµ), j ≡ ( jµν)). By the definition, these genera-

tors are associated with the real parameters (a, ω) ≡ (aµ, ωµν = −ωνµ) with
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well-known physical meaning. The generators (pµ, jµν) are the orts of the real

P -algebra, i.e., the algebra over the real numbers (we use the similar symbols

for groups and their algebras). The necessity of using the primary P -generators

and the real P -algebra will be evident below in our search for the additional

(hidden) symmetries of the equation (4.1).

In arbitrary representations, the primary P -generators (pµ, jµν), as the orts

of the real Lie P -algebra, satisfy the commutation relations

[pµ, pν] = 0, [pµ, jρσ] = gµρpσ −gµσ pρ, (4.2)

[ jµν, jρσ] = −gµρ jνσ −gρν jσµ−gνσ jµρ −gσµ jρν,

and generate a P -representation, which is defined by an exponential series

(a, ω) ∈ P → F̂(a, ω) = exp(aµpµ +
1

2
ωµν jµν)

inf
= 1+aµ pµ +

1

2
ωµν jµν, (4.3)

where symbol
inf
= defines “infinitesimally, i.e., in the neighborhood of the unit

element of the group P ”.
The primary generators (pµ, jµν) for the ordinary local spinor (Fermi) P -

representation in S4,4 are the following Lie operators

pρ = ∂ρ ≡ ∂/∂xρ, jρσ = mρσ + sρσ (mρσ ≡ xρ∂σ − xσ∂ρ, sρσ ≡ 1

4
[γρ, γσ]). (4.4)

The operators pµ, jµν from (4.4) commute with the Diracian iγµ∂µ −m. There-

fore, formulae (4.3) with generators (4.4) define the local spinor (Fermi) P F-
representation of the group P in the form

ψ(x) → ψ′(x) = [F̂(a, ω) ≡ F̂1(ω)F̂2(a, ω)]ψ(x)
inf
= (1 +aµ pµ +

1

2
ωµν jµν)ψ(x), (4.5)

which is the P -group of invariance of equation (4.1). In formula (4.5) the

following notations are used:

ψ, ψ′ ∈ S4,4, F̂1(ω) ≡ exp(
1

2
ωµνsµν)

inf
= (1+

1

2
ωµνsµν) ∼ (

1

2
,0)⊗ (0,

1

2
),

(4.6)

F̂2(a, ω)ψ(x)≡ exp(aµpµ +
1

2
ωµνmµν)ψ(x) = ψ(Λ−1(x−a)) (4.7)

inf
= (1+aµ pµ +

1

2
ωµνmµν)ψ(x), Λ−1 ∈ P

↑
+.
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Note that the primary P -generators from (4.2)–(4,4) are not our own sug-

gestion. For the possibility and mathematical correction of choosing the anti-

Hermitian operators like (4.2)–(4.4) in physics see, e.g., [5, 6].

We pay attention to the following detail of the mathematical correctness of

consideration. The space S4,4 is the common domain of definitions and values

both for the generators (pµ, jµν) (4.4) and for all functions from them, which we

use here (in particular, for the exponential series (4.3) convergent in the space

S4,4). Further, we mark that usually the fermionic P -transformations of the field

ψ are written in the form

ψ(x) → ψ′(x′) = F̂1(ω)ψ(x), x′ = Λx+a, Λ ∈ P
↑
+. (4.8)

However, this form (contrary to formula (4.5)) does not demonstrate manifestly

the mathematical definition of the group of invariance of equation (4.1), which

is given by the definition: P F is a group of invariance of equation (4.1), if

P FΨ = Ψ; or for arbitrary solution of equation (4.1): if from ψ(x) ∈ Ψ results

F̂(a, ω)ψ(x) ∈ Ψ ⊂ S4,4, where F̂(a, ω) is given by (4.5).

Let us note further that in conventional field-theoretical approach, instead

of our primary Lie generators (4.4), the following operators are used

pstand
ρ = ipρ ≡ i∂ρ, jstand

ρσ = i jρσ ≡ mstand
ρσ + sstand

ρσ (4.9)

(mstand
ρσ ≡ ixρ∂σ − ixσ∂ρ, sstand

ρσ ≡ i

4
[γρ,γσ]).

It is evident that these generators are associated with the pure imaginary param-

eters (−iaµ, −iωµν) and with corresponding P -algebra over complex numbers.

Below, as well as in other our publications on the symmetries, primary genera-

tors (4.4) and customary operators (4.9) should not be confused.

We recall that both pure matrix operators sρσ and pure differential opera-

tors mρσ from (4.4) satisfy the same commutation relations as [ jµν, jρσ] in (4.2).

However, the operators sρσ and mρσ (contrary to their sum jρσ) are not the sym-

metry operators (operators of invariance) of equation (4.1) (operator q̂ is called

a symmetry operator or the operator of invariance of equation (4.1), if equality

q̂Ψ = Ψ is valid, where Ψ ≡{ψ}⊂ S4,4 is the complete set of solutions of equa-

tion (4.1), see e.g., the corresponding definition in [7]). Therefore, both pure

matrix L-representation F̂1(ω) (4.6) and infinite-dimensional L-representation

F̂2(ω)ψ(x)≡ exp(
1

2
ωµνmµν)ψ(x) = ψ(Λ−1(x))

inf
= (1+

1

2
ωµνmµν)ψ(x) (4.10)
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in S4,4 are not the groups of invariance of equation (4.1). As a consequence of

these facts (see arbitrary conventional consideration in relevant papers, hand-

books and monographs), both matrix L-spin sρσ and orbital angular momentum

mρσ (differential L angular momentum) do not generate the conserved in time

integral constants of motion, i.e., being taken separately both spin and orbital

angular momenta of the field ψ are not conserved. Therefore, both pure ma-

trix F̂1(ω) (4.6) and infinite-dimensional F̂2(ω) representations in S4,4 of the

Lorentz group L are not the groups of invariance of the Dirac equation (4.1).

Besides the local P F-representation, the so-called induced (see, e.g., [2, 8])

P F-representation for the field ψ is useful and meaningful. Mathematically this

representation can be related to the conception of special role of the time vari-

able t ∈ (−∞,∞) ⊂M(1,3). Indeed, in the general consideration of the Dirac

equation in the axiomatic approach, it follows from equation (4.1) that the Dirac

field ψ satisfies identically the Klein – Gordon equation

(∂µ∂µ +m2 ≡ ∂2
0 −4+m2)ψ(x) = 0, ψ ∈ S4,4∗, (4.11)

which is the equation of hyperbolic type. As a consequence of this fact, the

generalized solutions of the Dirac equation (4.1) are the ordinary functions of

the time variable x0 = t ∈ (−∞,∞) ⊂M(1,3) (they are the generalized functions

of the variables −→x ≡ (x`) ∈ R3 ⊂ M(1,3) only). Therefore, due to a special

role of the time variable x0 = t ∈ (xµ) (in obvious analogy with nonrelativistic

theory), one can use in general consideration the quantum-mechanical rigged

Hilbert space S3,4 ⊂ H3,4 ⊂ S3,4∗, S3,4 ≡ S(R3)×C4, where the space H3,4 is

defined by (2.36). The space H3,4 is the quantum-mechanical Hilbert space

of the 4-component functions over R3 ⊂ M(1,3) (depending parametrically on

x0 = t), which are the square modulus integrable over the Lebesgue measure

d3x in the space R3 ⊂ M(1,3). Just the space R3 is interpreted as the coordinate

spectrum of the quantum-mechanical particles described by the field ψ.

In this concept, the Dirac equation in the Schrödinger form

i∂0ψ = Hψ ↔ (∂0 − p̃0)ψ = 0; H ≡ γ0(−iγk∂k +m), p̃0 = −iH, (4.12)

(which is completely equivalent to the equation (4.1)) in the integral form is

given by

ψ(t) = u(t0, t)ψ(t0); u(t0, t) = exp[−iH(t− t0)]; ψ(t0),ψ(t)⊂ S3,4∗.
(4.13)
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In formula (4.13), the unitary operator u(t0, t) (with arbitrary-fixed parameters

t0, t ∈ (−∞,∞) ⊂ M(1,3)) is the operator of automorphism in the rigged Hilbert

space (1.3) (below we set t0 = 0).

Recall that the test function space S3,4 has a few wonderful features. It

consists of the functions being infinitely smooth (infinitely differentiable with

respect to x`) rapidly decreasing at the infinity |−→x | → ∞ in arbitrary direction

in R3 together with its derivatives of arbitrary orders. Further, it contains the

space of the finite functions with the same properties. Moreover, the space S3,4

is kernel in the triple S3,4 ⊂ H3,4 ⊂ S3,4∗ (1.3). The last one means that this

space is dense both in the H3,4 and S3,4∗ spaces. Therefore, below we restrict

our consideration to the suggestion ψ ∈ S3,4 in equation (4.12). Such restriction

is both mathematically correct and technically appropriate (it does not require

the using of the functional form of the elements ψ ∈ S3,4∗). It is also physically

motivated. Indeed, an arbitrary measurement of a construction from ψgen ⊂
S3,4∗ by an equipment of an arbitrary degree of accuracy can be successfully

approximated (with forward fixing arbitrarily precise degree of accuracy) by the

corresponding constructions from the prelimit functions ψ∈ S3,4 ⊂H3,4 ⊂ S3,4∗.

Thus, the suggestion ψ ∈ S3,4 ⊂ H3,4 ⊂ S3,4∗ for the solutions of (4.12) is well-

defined too.
For definiteness below we use the Pauli–Dirac representation of the

Clifford–Dirac γ-matrices. The explicit forms are given in (1.5), (1.6). In
this representation, the SU(2)-spin primary generators are given by the matrices

s`n ≡ 1
4 [γ`,γn]. Two of them are quazidiagonal and the sz-matrix is diagonal:

−→s = (s23, s31, s12)≡ (s`) =
1

2

∣∣∣∣
−→
σ 0

0
−→σ

∣∣∣∣→ sz ≡ s3 =
1

2

∣∣∣∣∣∣∣∣

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

∣∣∣∣∣∣∣∣
. (4.14)

Therefore, the operator sz contains the projections of the spin −→s on the axis z

of the quantum-mechanical spin-1
2

doublet of particles.

The primary P -generators of the induced P -representation in the space S3,4

have the form of the following anti-Hermitian operators

p̃0 = −iH ≡−γ0(γ`∂l + im), p̃k = pk = ∂k, j̃kl = jkl = mkl + skl, (4.15)

j̃ok = t∂k −
1

2
{xk, p̃0},

where {A,B} ≡ AB+BA and t ∈ (−∞,∞) is the arbitrary-fixed parameter (the

primary generators q̃ = (p̃µ, j̃µν) (4.15) coincide with the corresponding opera-
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tors −iq̃stand, where q̃stand are given by the formulae (126)–(129) in [2]). Using

the Heisenberg commutation relations in the form [x`,∂ j] = δ` j and the SU(2)-

relations for s` (4.14), it is easy to show that the operators (4.15) satisfy the

commutation relations of P -algebra in the manifestly covariant form (4.2). Fur-

thermore, generators (4.15) commute with the operator (∂0− p̃0) of the equation

(4.12). Therefore, as a consequence of anti-Hermiticity of arbitrary operator

from (4.15), the induced P -representation

(a, ω) ∈ P → Ũ(a, ω) = exp(aµ p̃µ +
1

2
ωµν j̃µν) (4.16)

in the space S3,4 is unitary and is the group of invariance of equation (4.14).

Hence, in the definition

wµ ≡ 1

2
εµνρσ p̃ρ j̃νσ → w0 = s`∂` ≡ −→s stand ·−→p stand, (4.17)

the main Casimir operators for the generators (4.15) are given by

p̃µ p̃µ ≡ p̃2
0 −∂2

` ≡ m2I4, I4 ≡ diag(1,1,1,1), (4.18)

W ≡ wµwµ = m2−→s 2 = m2 1

2
(

1

2
+1)I4. (4.19)

According to the Bargman–Wigner classification, just this fact means that in

equation (4.12) (for which the induced P F-representation (4.16) is the group of

invariance) the field ψ is the Fermi field (the field of quantummechanical spin-1
2

doublet of particles with the mass m).

The relativistic invariance of the spinor field theory with respect to the rep-

resentation (4.16) has some special features. It should be stressed once more

that in the induced P F-representation (4.16) the time t = x0 plays a special role

in comparison to the role of space variables x`. Moreover, we use in the defini-

tion of Hilbert space H3,4 such P -non-covariant objects as the Lebesgue mea-

sures d3x (or d3k in the momentum representation of the rigged Hilbert space

S3,4 ⊂ H3,4 ⊂ S3,4∗ for the field states ψ ∈ S3,4). Nevertheless, the theory of

the spinor field ψ based on the induced P F-representation (4.16) is obviously

relativistic invariant. The proof is given in the text after formulae (4.15) and by

the Bargman–Wigner analysis of the Casimir operators (4.18), (4.19).

Now we are in position to give some comparison of the local and induced

P F-representations (4.5) and (4,16). It is easy to see that in the set of solutions
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Ψ = {ψ} of equations (4.12)=(4.1) the local P -representation (4.5) and the in-

duced P -representation (4.16) coincide. Moreover, the main Casimir operators

for the Lie P F-generators (4.4) have the form

ploc 2 ≡ pµ pµ ≡ ∂µ∂µ, W
loc ≡ m2−→s 2 =

3

4
∂µ∂µ. (4.20)

Therefore, the eigenvalues of the main Casimir’s for the P F-representations

(4.5) and (4.16) coincide. Note, by the way, that as it is easy to show for-

mulae (4.20) have the same form for arbitrary Lie operators (4.4) (i.e., for ar-

bitrary local P -representations), for which the Lorentz spins sµν generate the

L-representations (s,0)⊗ (0, s).

Mark that the local generators (4.4) in S4,4 are the functions of 14 indepen-

dent operators xρ, ∂ρ, sρσ (the Lorentz spin operators sρσ are the independent

orts of the CD-algebra). The conception of Hermiticity or anti-Hermiticity in

S4,4 is not inherent both for these 14 operators and P F-generators (4.4). There-

fore, the concept of unitarity is not inherent for the local P -representation (4.5)

as well. It means that the P -representation (4.5) itself (and, similarly, its genera-

tors (4.4)) does not contain the information “what quantum-mechanical particles

are described by the filed ψ from equation (4.1)”.

Contrary to these facts, the generators (4.15) of induced P F-representation

in the space S3,4 are the anti-Hermitian functions of (particularly) other 11

independent operators −→x = (x`), ∂`, sk`, γ0, m or are the functions of the

standard Hermitian in S3,4 operators: −→x = (x`),−→p stand = (−i∂`),
−→
s stand =

(is`n), γ0, m. Hence, the induced P F-representation (4.16) is unitary in the

quantum-mechanical rigged Hilbert space S3,4 ⊂ H3,4 ⊂ S3,4∗. However, the

restriction of the local P F-representation (4.5) on the set Ψ ⊂ S3,4 of solutions

of equation (4.1)=(4.12) coincides with the induced P F-representation (4.16).

4.3. Link between the Canonical Foldy–Wouthuysen

and the

Covariant Pauli–Dirac Representations of the

Dirac Theory

Both covariant and Schrödinger forms of the Dirac equation considerede above

have the difficulties in quantum-mechanical interpretation. These shortcomings
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are related to the Pauli–Dirac representation of the spinor field ψ.The step for-

ward in the quantum-mechanical interpretation of the Dirac theory is given by

the transition to the FW representation. In this representation, the equation for

the spinor field (the FW equation) has a form

(i∂0− γ0ω̂)φ(x) = 0, x ∈ M(1,3), φ ∈ S3,4 ⊂ H3,4 ⊂ S3,4∗; (4.21)

and is linked with the Dirac equation

(i∂0 −H)ψ(x) = 0, H ≡ −→
α · −̂→p +βm,

−→
α = γ0−→γ , β = γ0, (4.22)

by the FW transformation V±:

V± ≡ ±−→γ · −̂→p + ω̂ +m√
2ω̂(ω̂+m)

, (4.23)

where ω̂ ≡
√
−∆+m2, −̂→p = −i∇, ∇ ≡ (∂`), ∂` ≡ ∂/∂x`, I2 =

∣∣∣∣
1 0

0 1

∣∣∣∣ .
Relations between the states vectors in the covariant Pauli–Dirac and canoni-

cal FW representations (relations between the solutions of the Dirac and FW

equations) are given by

φ(x) = V +ψ(x), ψ(x) = V−φ(x). (4.24)

Relations between the operators in the covariant Pauli–Dirac and canonical FW

representations have the form

qFW = V+qPDV−, qPD = V−qFWV+, (4.25)

where qPD and qFW are the arbitrary operators in the covariant Pauli–Dirac and

canonical FW representations, respectively. For example, the relationship be-

tween the FW and Dirac Hamiltonians (and vice versa) is given by

V +γ0ω̂V− = −→α · −̂→p +βm, V−(−→α · −̂→p +βm)V+ = γ0ω̂. (4.26)

The relationship between the FW spin operator −→s (4.14) and Dirac spin has the

form

−→s PD = V+−→s V− = −→s −
−→γ ×∇

2ω̂
+

∇× (−→s ×∇)

ω̂(ω̂+m)
. (4.27)
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It is easy to verify that well-defined Dirac spin (4.27) commutes with the op-

erator i∂0 − (−→α · −̂→p + βm) of the Dirac equation (4.22) and satisfies the SU(2)

commutation relations.
The solution of the FW equation (4.21) is given by

φ(x) =
1

(2π)
3
2

Z

d3k{e−ikx[a1(
−→
k )d1 +a2(

−→
k )d2]+ eikx[a∗3(

−→
k )d3 +a∗4(

−→
k )d4]},

(4.28)

where the aᾱ(
−→
k ) are the quantum-mechanical momentum-spin amplitudes and

the orts {dᾱ} of the 4-dimensional Cartesian basis have the form

d1 =

∣∣∣∣∣∣∣∣

1

0

0

0

∣∣∣∣∣∣∣∣
, d2 =

∣∣∣∣∣∣∣∣

0

1

0

0

∣∣∣∣∣∣∣∣
, d3 =

∣∣∣∣∣∣∣∣

0

0

1

0

∣∣∣∣∣∣∣∣
, d4 =

∣∣∣∣∣∣∣∣

0

0

0

1

∣∣∣∣∣∣∣∣
. (4.29)

The solution of the Dirac equation (4.22) is given by

ψ(x) =
1

(2π)
3
2

Z

d3k[ar(
−→
k )v−r (

−→
k )e−ikx +b∗r(

−→
k )v+

r (
−→
k )eikx], r = 1,2,

(4.30)

b1(
−→
k ) ≡ a3(

−→
k ), b2(

−→
k )≡ a4(

−→
k ).

Here, similarly to (4.28), kx ≡ ω̃t−−→
k −→x , ω̃≡

√−→
k 2 +m2, and the 4-component

Dirac spinors are given by

v−r (
−→
k ) = N

∣∣∣∣∣
(ω̃+m)dr

(−→σ ·−→k )dr

∣∣∣∣∣ , v+
r (

−→
k ) = N

∣∣∣∣∣
(−→σ ·−→k )dr

(ω̃+m)dr

∣∣∣∣∣ ; (4.31)

N ≡ 1√
2ω̃(ω̃ +m)

, d1 =

∣∣∣∣
1

0

∣∣∣∣ , d2 =

∣∣∣∣
0

1

∣∣∣∣ .

4.4. Difficulties in the Quantum-Mechanical

Interpretation of the Dirac Theory

Recall that for most tasks of atomic and nuclear physics, the following assertion

is adopted.
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Ansatz. Energetic spectrum and other quantum-mechanical properties of the

electron-positron doublet of mass m and charges (e−, e+) (or other fermionic

charges), which interacts with the external electromagnetic field of potentials

A = (Aµ), satisfactorily is described satisfactorily by the Dirac equation

[γµ (i∂µ −eAµ(x)−m)]ψ(x) = 0. (4.32)

This Ansatz is also the basis of the Hartree-Fock-Dirac multi-particle

method. Furthermore, it is known that, for asymptotically large space-time dis-

tances (where experimental measurements of characteristics of initial and final

states are carried out), the quantum-mechanical properties of a spin s = 1/2

doublet must be described by a corresponding free equation (which does not

contain an external field A = (Aµ). If the above-mentioned Anzac is flawless,

then the equation (4.22), as a partial case of the equation (4.32), should perfectly

describe all the quantum-mechanical properties of a free doublet. However, as

shown in the original paper [1], and in many publications until today [2, 9–14],

the quantum-mechanical description of a free spin s = 1/2 doublet by equation

(4.22) has fundamental difficulties. What is the influence of these difficulties

at the accuracy of the methods of atomic calculations (such as Hartree-Fock-

Dirac)? The question is open.

Below the brief review of the difficulties of the quantum-mechanical Dirac

equation (4.22) is presented.

The velocity operator in a quantum-mechanical theory, based on the

Dirac equation (4.22), is not the operator of the velocity of the spin s = 1/2

particle-antiparticle doublet.

Indeed, the operator

−̇→x =
i

~
[H,−→x ] = cγ0−→γ (4.33)

(here and in (4.34) below ~ 6= c 6= 1) in accordance with the principles of hered-

ity and correspondence with non-relativistic quantum mechanics, should be

called the operator of the velocity of a doublet of spin s = 1/2 particles. In

(4.33) H is the Hamiltonian of the Dirac equation (4.22), ~ is the Planck con-

stant and c is the velocity of light in the vacuum. In his monograph [15] Dirac

was unsuccessful in attempts to give the interpretation of such “velocity”. The

statements of [1] are evident. Indeed, since (γ0γ`)2 = 1, then the absolute value

of the projection of this “velocity” on a given direction is always equal to c,

which is nonsense from the point of view of modern physics. Moreover, due
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to the fact that [γ0γ1,γ0γ2] 6= 0, if a projection of velocity is determined in one

direction, it is impossible to determine two other projections at the same time. It

is clear that all this contradicts with the experiments on measuring the electron

or positron velocity.

The coordinate operator in quantum-mechanical theory, based on the

Dirac equation (4.22), is not the operator of the coordinate of the spin s =

1/2 doublet (in particular, in the case of the interaction of an electron with a

nucleus field A0 = Ze/ |−→x |, the variable −→x is not the coordinate of the electron

motion relative to the point nucleus). This statement is a direct consequence

of the previous statement about velocity. The uncertainty (blurriness) of the

particle coordinates makes necessary an appealing to the so-called Schrdinger’s

“trembling” of the electron (zitterbewegung), which in turn generates a set of

additional theoretical problems and is artificial in areal of experimental facts.

The spin operator (4.14) in a quantum-mechanical theory, based on the

Dirac equation (4.22), is not the spin of s = 1/2 particle-antiparticle dou-

blet.

Direct calculation of the commutators of the projections −→s =

(s23, s31, s12)≡ (s`) of spin (4.14) with the Dirac Hamiltonian H ≡−→
α · −̂→p +βm

gives [
H,−→s

]
= icγ0(

−→
γ ×−̂→p ); −̂→p ≡ −i∇. (4.34)

It means that the spin of the Dirac particle-antiparticle doublet does not com-

mute with the Hamiltonian. Hence, the spin of the Dirac particle-antiparticle

doublet (none of its components separately) is not a constant of motion. There-

fore, since the Dirac equation (4.22) is considered to be a quantum mechanical

equation for a free particle-antiparticle doublet, then non-conservation of the

spin (4.14) means that, according to the free Dirac equation, spin-flip processes

(spin turning) are possible even for a free particle-antiparticle doublet, which

contradicts with the experiment.

Of course, the total angular momentum (orbital angular nomentum plus spin

angular momentum) −→
j = −→x ×−̂→p +−→s (4.35)

commutes with the Hamiltonian of the Dirac equation
[
H,

−→
j
]

= 0, (4.36)

which is considered until today as an achievement of the Dirac theory. Nev-

ertheless, taking into account (4.34) and the comments given, it is evident that
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this fact improves the situation only with respect to the total angular momentum

(4.35) and, in any case, not with respect to the spin angular momentum (4.14).

Taking into account (4.35) and (4.36) Dirac in [15] has come to a conclusion

“This result one can interpret by saying the electron has a spin angular momen-

tum −→s , which must be added to the orbital angular momentum −→x ×−̂→p , before

one gets the constant of the motion.” Taking into account the consideration [1],

this conclusion of Dirac is incorrect at least methodically. The fact is that in this

very representation (even without transition to the FW representation) there are

such “true coordinate” and “true spin” that, expressed in such a valid coordi-

nate, the orbital angular momentum itself, taken separately, commutes with the

Dirac Hamiltonian H (4.22), as well as taken separately “true spin”
−→
s PD (4.27).

Corresponding angular momentum is given by

−→x PD ×−̂→p (4.37)

and commutes with the Hamiltonian H (4.22) of the Dirac equation. Such “true

coordinate” has the form

−→x PD = V+−→x V− = −→x +
i
−→
γ

2ω̂
−

−→s ×−̂→p
ω̂(ω̂+m)

− i−̂→p (
−→
γ · −̂→p )

2ω̂2(ω̂+m)
. (4.38)

In [1] such “true spin” and “true coordinate” were called mean spin and mean

coordinate, respectively. Thus, both orbital angular momentum and spin angular

momentum are integrals of motion. So today, the reminded arguments of Dirac,

based on assertions (4.35) and (4.36), should be considered unconvincing and

unnecessary.

Unfortunately, Dirac’s argument is still used in modern textbooks on quan-

tum mechanics in order to introduce the concept of spin. Here and below, on

the bases of the results [1] and [16, 17], we emphasize the presence of a mathe-

matically correct and physically substantiated definition of spin in the theory of

a spinor field.

Dirac spinors are not the eigen vectors of the spin projection sz = s3 of

the spin (4.14).

It is well-known that the spinors v∓r (
−→
k ) (4.31) are called the spin states of

the doublet. Nevertheless, they are not the eigen vectors of the operator sz = s3

from −→s (4.14). They are the eigen vectors of the operator sPD
z ≡ s3

PD ⊂ −→s PD

from the mean spin operator for the spinor field ψ, which is given in (4.27) (and

in the table 1 in [1]) and which is obtained from the −→s (4.14) by the inverse
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FW-transformation [1]. Indeed, it is easy to see that the following equations are

valid:

szv
∓
1 (

−→
k ) 6= 1

2
v∓1 (

−→
k ), szv

∓
2 (

−→
k ) 6= −1

2
v∓2 (

−→
k ); (4.39)

sPD
z v∓1 (

−→
k ) =

1

2
v∓1 (

−→
k ), sPD

z v∓2 (
−→
k ) = −1

2
v∓2 (

−→
k ), (4.40)

(the assertions (4.39), (4.40) are our small addition [16] to the consideration [1]).

Moreover, operator −→s (4.14) does not commute with both the prime Dirac oper-

ator from equation (1) and the operator H from (4.22), which is already consid-

ered above. Therefore, for the spinor field ψ in the PD-representation the opera-

tor −→s (4.14) can not be interpreted as the quantum-mechanical spin operator for

the spin 1
2 -doublet of particles and does not generate the spin conservation law

(even in the absence of interaction), which contradicts the experiment. Further-

more, as it is already considered above, the operator −→x = (x`)∈ R3 ⊂M(1,3) in

the PD-representation for the field ψ also cannot be interpreted as the quantum-

mechanical operator of 3-coordinate for the spin 1
2
-doublet of particles. Never-

theless, operators −→s (4.14) and −→x are the important structure operators (which

possess the physically meaningful quantum-mechanical spectra) for the con-

struction of generators (4.4), (4.12), (4.15) and corresponding local and induced

P F-representations.

Shortcomings of the Dirac Hamiltonian

The Hamiltonian H ≡ −→α · −→p + βm (4.22) of the free Dirac equation (i∂0 −
H)ψ(x) = 0 contains non-diagonal operators that mix the components of the

wave functions of the electron and positron. Therefore, for example, the func-

tion

ψ−
~k

(x) = ar(
−→
k )v−r (

−→
k )e−ikx = e−iωtψ−

~k
(−→x ), (4.41)

which is eigen function of the operator H (4.22) with eigen value E+ = ω̃ =√−→
k 2 +m2, is interpreted as a “quantum-mechanical” wave function of (free)

electron. However, it is 4-component, not 2-component, as it is required by the

quantum mechanics of an electron (i.e., single spin s = 1/2 particle from an

electron-positron doublet). Further, the spectrum of the Hamiltonian H (4.22)

is sign-undetermined, so for an antiparticle in a “quantum-mechanical state”

ψ+
~k

(x) = b∗r(
−→
k )v+

r (
−→
k )eikx = eiωtψ+

~k
(−→x ), (4.42)
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which is eigen state for the operator H (4.22), a negative (complete relativistic)

energy E− = −
√−→

k 2 +m2 is corresponded that is the physical nonsense.

Remark. In order to overcome the last difficulty, Dirac proposed the concept

of “vacuum”, containing completely covered states with negative energy, and

with the status of the unobserved substance. And positron introduced by

him, he interpreted in a known way as a “hole” in such vacuum. Despite the

useful historical and heuristic significance of these considerations of Dirac, the

consistent physical and mathematical logic of quantum theory does not require

the manipulation with such an unobserved substance.

One of the fundamental reasons of the shortcomings listed here is the at-

tempt to use in the theory only manifestly relativistic invariant concepts in the

local representation of a spinor field, such as a local representation of the group

P , a relativistic invariant Lebesgue-Stieltjes measure, etc. Therefore, the way

out of such situation can be found in the rejection of manifestly local relativis-

tic covariance (or local invariance) without any loss of the ordinary relativistic

invariance of the theory of the spinor field in the modern definition of the invari-

ance of the field equation in relation to one or another transformation.

All above-mentioned conceptual difficulties in quantum-mechanical inter-

pretation of the free Dirac equation are also actual for the Dirac equation (4.32),

which includes the interaction with external potential field A = (Aµ). It gives rise

to known difficulties in the problem of obtaining a quasi-relativistic quantum-

mechanical approximation based on the equation (4.32).

It is the search for a mathematically correct transformation for the diago-

nalisation of the Hamiltonian of the free Dirac equation in order to provide a

consistent interpretation of the theory of the spinor field, which led to the FW

transformation, canonical FW representation and the FW relativistic equation of

motion. For the case of the free equation (4.22) there is an exact FW transfor-

mation, and for the equation (4.32) containing the interaction with the external

electromagnetic field, the transformation exists only as an approximation in the

form of the series in degrees 1/m [1] or as the series in degrees of charge e [12].



82 Volodimir Simulik

4.5. Advantages of the Foldy–Wouthuysen

Representation in the Quantum-Mechanical

Interpretation of the Dirac Theory

As shown in [1] the above considered shortcomings follow from the non-

diagonality of the Hamiltonian H = ip̃0 in (4.12) and (4.22). Therefore, in

the PD-representation of the field ψ, the particle and antiparticle states are

mixed. The progressive way of moving forward was suggested in [1]. The FW-

representation of the spinor field theory is free from the above shortcomings,

e.g., the coordinate −→x = (x`) of the FW-spinor φ and spin −→s (4.14) in this rep-

resentation have direct physical meaning of corresponding quantum-mechanical

observables of spin-1
2

doublet of particles. It is important that just the compo-

nents of this spin −→s are the elements of the Clifford–Dirac algebra in the Pauli–

Dirac representation. The above arguments force us [18, 19] to start from the

FW representation of the spinor field (not from the Pauli–Dirac representation)

and to consider the Clifford–Dirac algebra just inside the FW representation of

the spinor field.

Thus, the way to overcoming of the above considered difficulties of the

quantum-mechanical interpretation of the Dirac equation is in transition to the

FW representation [1].

In the FW representation the spin operator −→s (4.14) commutes with the FW

Hamiltonian [−→s ,γ0ω̂
]
= 0. (4.43)

Moreover, mean spin operator −→s PD (4.27), which is found from the operator −→s
(4.14) on the basis of FW transformation −→s PD = V+−→s V−, commutes with the

Dirac Hamiltonian [−→s PD,
−→
α · −̂→p +βm

]
= 0. (4.44)

As a consequence of (4.43) the situation with the equations (4.39) on the

eigen vectors and eigen values of the spin projection operator sz = s3 from −→s
(4.14) in the FW representation is improved as well. Indeed, the requirements

of the foundations of quantum mechanics in the FW representation are fulfilled.

It is easy to show that basis vectors {dα} (4.29) of the 4-dimensional Cartesian

basis are the eigen vectors of the spin projection operator sz = s3

s3d1 = +
1

2
d1, s3d2 = −1

2
d2, s3d3 = +

1

2
d3, s3d4 = −1

2
d4. (4.45)
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Furthermore, as a consequence of (4.44) the situation with the equations on

the eigen vectors and eigen values (4.39) is improved in the case of the mean

spin projection operator s3
PD, see (4.40). Therefore, the Dirac spinors v∓r (

−→
k )

(4.31) are the eigen vectors of the mean spin projection operator s3
PD, which is

found from the operator s3 in (4.14) on the basis of FW transformation −→s PD =

V+−→s V−. Operator V± is given in (4.23).

The velocity operator in the FW representation is well defined

−̇→x = i
[
γ0ω̂,−→x

]
= γ0

−̂→p
ω̂

. (4.46)

Similarly, in the FW representation all other deficiencies of the quantum-

mechanical interpretation of the Dirac equation are corrected. Moreover, if to

start from the FW representation and to fulfill the inverse transformation to the

Dirac model, then as a consequence the well-defined quantum-mechanical the-

ory is obtained for the Dirac equation and the spinor field as well. Therefore, in

our quest of the hidden Bose properties of the Dirac equation [18, 19] and [20,

21] we have started from the FW representation. For the same reason in [18–

21] the gamma matrix representation of the standard Clifford algebra, which

elements are linked s`n ≡ 1
4
[γ`,γn] with the spin s = 1/2 (4.14), and Clifford

algebra C`R(0,6) over the field of real numbers [22] we introduced into the FW

representation.

Note that contrary to many authors, which investigated the FW transfor-

mation from Dirac to canonical representations (the generalization of the FW

transformation for the fields of arbitrary spin, different variants of the FW trans-

formation in the case of external interaction) [23–34], we have considered [18–

21] the inverse FW transformation from the FW canonical representation to the

Dirac model of the s = 1/2 spinor field.
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Chapter 5

Relativistic Canonical Quantum

Mechanics of Arbitrary Spin

The axiomatic level description of the relativistic canonical quantum mechanics

(RCQM) of the particle singlet and particle-antiparticle doublet of an arbitrary

mass and spin has been given. The level of von Neumann’s consideration of

non-relativistic case is maintained. The introduced equations are without re-

dundant components. The partial examples for spins s = 0, 1/2, 1, 3/2, 2 are

presented.

5.1. Introduction to the Chapter 5

In previous chapter the advantages of the Foldy–Wouthuysen (FW) representa-

tion in quantum-mechanical description of the spin s=1/2 particle-antiparticle

doublet in comparison with the Dirac model [1, 2] is demonstrated. Neverthe-

less, the transition to the FW representation is only the first step for quantum-

mechanical interpretation of this model. Indeed, the positive and negative parts

of solution, which lead to both positive and negative energies, here still exist [3,

4]. Moreover, in the FW representation the spin of the antiparticle is not the

mirror reflection of the particle spin. These difficulties of the Dirac model are

not overcome by the transition to the FW representation. Some other difficulties

exist as well.

The complete quantum-mechanical picture of the spin s=1/2 particle-

antiparticle doublet is possible in the framework of another model. We call
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this model as the RCQM [5]. The foundations of this model of physical reality

are presented below. We are able to fulfill this task for the particle singlet and

particle-antiparticle doublet of an arbitrary mass and spin. The axiomatic level

of von Neumann’s [6] consideration of non-relativistic case is upheld.

The relativistic quantum mechanics under consideration is called canonical

due to three main reasons. (i) The model under consideration has direct link

with non-relativistic quantum mechanics based on non-relativistic Schrödinger

equation. The principles of heredity and correspondence with other models of

physical reality leads directly to non-relativistic Schrödinger quantum mechan-

ics. (ii) The FW model is already called by many authors as the canonical

representation of the Dirac equation or a canonical field model, see, e.g., the

paper [4]. And the difference between the field model given by FW and the

RCQM is minimal – in corresponding equations it is only the presence and ab-

sence of beta matrix. (iii) The list of relativistic quantum-mechanical models is

long, see, e.g., the review [7]. The Dirac model and the FW model are called by

the “‘old”’ physicists as the relativistic quantum mechanics as well (one of our

tasks in this book is to show in visual and demonstrative way that these models

have only weak quantum-mechanical interpretation). Further, the fractional rel-

ativistic quantum mechanics and the proper-time relativistic quantum mechanics

can be listed (recall matrix formulation by W. Heisenberg, Feynman’s sum over

path’s quantum theory, many-worlds interpretation by H. Everett), etc.

Therefore, in order to avoid a confusion the model under consideration must

have its proper name. Due to the reasons (i)–(iii) the best name for it is RCQM.

Note that here only the first-order particle and the field equations (together

with their canonical nonlocal pseudo-differencial representations) are consid-

ered. The second order equations (like the Klein–Gordon–Fock equation) are

not the subject of this investigation.

The goals of this chapter are as follows: to formulate the axiomatic foun-

dations of the RCQM of an arbitrary spin and mass, to demonstrate and ex-

plain this model on the examples of the spin s=0, s=1/2, s=1, s=3/2, s=2 sin-

glets, spin s=(0,0), s=(1/2,1/2), s=(1,1), s=(3/2,3/2), s=(2,2) particle-antiparticle

doublets, spin s=(1,0) multiplet and spin s=(1,0,1,0), s=(2,0,2,0), s=(2,1,2,1)

particle-antiparticle multiplets.

This chapter plays a special role in our consideration. It is the starting plat-

form of our program of synthesis of covariant particle equations of arbitrary

mass and spin. On the basis of RCQM we are able to construct the canoni-

cal FW model of arbitrary spin and, finally, to derive the manifestly covariant
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equations of arbitrary mass and spin.

Such procedure of synthesis of covariant particle equations of arbitrary mass

and spin consists of three levels, which are linked as follows.

COVARIANT LOCAL FIELD THEORY OF ARBITRARY SPIN

↑
CANONICAL FIELD THEORY OF ARBITRARY SPIN

↑
RELATIVISTIC CANONICAL QUANTUM MECHANICS

OF ARBITRARY SPIN

This program has the beginning here, a continuation in the Chapter 6 (the

FW type canonical field equations of arbitrary mass and spin) and is finished in

the Chapter 7 as the covariant local field theory of arbitrary mass and spin.

5.2. Dirac’s Comment

Note that the square-root operator equation (2.35), which is the main equation

of RCQM, has been rejected by Dirac. In his consideration in [2] (chapter 11,

section 67) of the main steps of [1] Dirac discussed this equation. His comment

was as follows.

Let us consider first the case of the motion of an electron in the absence of

an electromagnetic field, so that the problem is simply that of the free particle,

as dealt with in §30, with the possible addition of internal degrees of freedom.

The relativistic Hamiltonian provided by classical mechanics for this system is

given by equation 23 of §30, and leads to the wave equation

{
p0 −

(
m2c2 + p2

1 + p2
2 + p2

3

) 1
2

}
ψ = 0, (5)

where the p’s are interpreted as operators in accordance with (4). Equation

(5), although it takes into account the relation between energy and momentum

required by relativity, is yet unsatisfactory from the point of view of relativistic

theory, because it is very unsymmetrical between p0 and the other p’s, so much

so that one cannot generalize it in a relativistic way to the case when there is a

field present. We must therefore look for a new wave equation.
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Today another reason of Dirac’s rejection of the square-root operator equa-

tion is evident as well. The operations with the Dirac’s Hamiltonian are too

much easier than the operations with the pseudo-differential Hamiltonian of the

equation

i∂0 f (x) =
√
−∆+m2 f (x) (5.1)

for the N-component wave function

f ≡ column( f 1, f 2, ..., f N), N = 2s+1, f ∈ H3,N, (5.2)

in the case of particle singlet and for the M-component wave function (M =
2N = 2(2s+ 1)) in the case of particle-antiparticle doublet. Here H3,N is the

Hilbert space of N-component functions. Note that namely (5.1) is the equation

of motion in the RCQM.

Nevertheless, today, contrary to the year 1928, the definition of the pseudo-

differential (non-local) operator

ω̂ ≡
√

−̂→p
2
+m2 =

√
−∆+m2 ≥ m > 0, (5.3)

−̂→p ≡ (p̂ j) = −i∇, ∇ ≡ (∂`),

is well known. The action of the operator (5.3) in the coordinate representation

(see, e.g., [8]) is given by

ω̂ f (t,−→x ) =
Z

d3yK(−→x −−→y ) f (t,−→y ), (5.4)

where the function K(−→x −−→y ) has the form K(−→x −−→y ) = −2m2K2(m|−→x −−→
y |)

(2π)2|−→x −−→y |2
and

Kν(z) is the modified Bessel function (Macdonald function), |−→a | designates the

norm of the vector −→a .

Further, the following integral form

(ω̂ f )(t,−→x ) =
1

(2π)
3
2

Z

d3kei
−→
k −→x ω̃ f̃ (t,

−→
k ), (5.5)

ω̃ ≡
√−→

k 2 +m2, f̃ ∈ H̃3,N,

of the operator ω̂ is used often, see, e.g., [4, 9], where f and f̃ are linked by the

3-dimensional Fourier transformations

f (t,−→x ) =
1

(2π)
3
2

Z

d3kei
−→
k
−→
x f̃ (t,

−→
k ) ⇔ (5.6)
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f̃ (t,
−→
k ) =

1

(2π)
3
2

Z

d3ke−i
−→
k
−→
x f̃ (t,−→x ),

(in (5.6)
−→
k belongs to the spectrum R3

~k
of the operator −̂→p , and the parameter

t ∈ (−∞,∞) ⊂ M(1,3)).

Note that the space of states H3,N is invariant with respect to the Fourier

transformation (5.6). Therefore, both −→x -realization H3,N and
−→
k -realization

H̃3,N of the space of states are suitable for the purposes of our consideration. In

the
−→
k -realization the Schrödinger–Foldy equation has the algebraic-differential

form

i∂t f̃ (t,
−→
k ) =

√−→
k 2 +m2 f̃ (t,

−→
k );

−→
k ∈ R3

~k
, f̃ ∈ H̃3,N. (5.7)

Below in the places, where misunderstanding is impossible, the symbol “tilde”

is omitted.

Thus, today on the basis of above given definitions the difficulties, which

stopped Dirac in 1928, can be overcome.

5.3. Foldy’s Contribution

The name of the person, whose contribution in the theoretical model based on

the equation (5.1) was decisive, is Leslie Lawrance Foldy (1919–2001).

His interesting biography is presented in [10]. Les was born in Sabinov,

Czechoslovakia, on 26 October 1919, into a family with Hungarian roots. His

parents named him Laszlo Földi. In the turbulent times following World War I,

he immigrated with his parents to the US in 1921. His father changed the fam-

ily’s last name and Les’s first name; Les later added his middle name, unaware

of its more common spellings.

The first step of Foldy’s contribution is visualization of the quantum me-

chanical interpretation of the Dirac equation on the basis of transformation to the

canonical (quantum-mechanical) representation [3]. This transformation was

suggested together with the Netherlander Siegfried (Sieg) Wouthuysen (pro-

nounced Vout-high-sen). In this FW representation of the Dirac equation the

quantum-mechanical interpretation is much more clear. Nevertheless, the direct

and evident quantum-mechanical interpretation of the spin s=(1/2,1/2) particle-

antiparticle doublet can be fulfilled only within the framework of the RCQM:

the start was given in [4].
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In our investigations we always marked the role of L. Foldy. Taking into

account the L. Foldy’s contribution in the construction of RCQM and his proof

of the principle of correspondence between RCQM and non-relativistic quantum

mechanics, we propose [11, 12] to call the N-component equation (3) as the

Schrödinger–Foldy equation. Note here that equation (5.1), which is a direct

sum of one component spinless Salpeter equations [13], has been introduced

in the formula (21) of [4]. Furthermore, note here that the corresponding non-

local Poincaré group representation generators, which determine the Poincaré

symmetry of the equation (5.1), are known from the formulas (B-25)–(B-28) of

the L. Foldy’s paper [4].

5.4. On the Relativistic Canonical Quantum Mechanics

Status Quo

Contrary to the times of papers [1, 3, 4, 13], the RCQM today is sufficiently

tested and generally accepted theory. The spinless Salpeter equation has been

introduced in [13]. The allusion on the RCQM and the first steps are given

in [4], where the Salpeter equation for the 2s+1-component wave function was

considered and the cases of s=1/2, s=1 were presented as an examples. In [14]

L. Foldy continued his investigations [4] by the consideration of the relativistic

particle systems with interaction. The interaction was introduced by the specific

group-theoretical method.

After that in the RCQM were developed both the construction of mathe-

matical foundations and the solution of concrete quantum-mechanical problems

for different potentials. Some mathematical foundations and spectral theory of

pseudo-differential operator

√
−̂→p

2
+m2 −Ze2/r were given in [15–18].

The application of the RCQM to the quark-antiquark bound state problem

can be found in [19, 20]. The numerical solutions of the RCQM equation for ar-

bitrary confining potentials were presented in [20]. In [21] the spinless Salpeter

equation for the N particle system of spinless bosons in gravitational interaction

was applied. In [22] a lower bound on the maximum mass of a boson star on

the basis of the Hamiltonian

√
−̂→p

2
+m2 −α/r has been calculated.

In [23] results calculated by the author with the spinless Salpeter equation

are compared with those obtained from Schrodinger’s equation for heavy-quark

systems, heavy-light systems, and light-quark systems. In each case the Salpeter
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energies agree with experiment substantially better than the Schrodinger ener-

gies. The paper [24] deal with an investigation of the exact numerical solutions.

The spinless Salpeter equation with the Coulomb potential is solved exactly in

momentum space and is shown to agree very well with a coordinate-space cal-

culation.

In [25, 26] the problem of spectrum of energy eigenvalues calculations on

the basis of the spinless Salpeter equation is considered. The spinless relativistic

Coulomb problem is studied. It was shown how to calculate, by some special

choices of basis vectors in the Hilbert space of solutions, for the rather large

class of power-law potentials, at least upper bounds on these energy eigenvalues.

The authors of [25, 26] proved that for the lowest-lying levels, this may be done

even analytically.

In the paper [27] the spinless Salpeter equation was rewritten into integral

and integro-differential equations. Some analytical results concerning the spin-

less Salpeter equation and the action of the square-root operator have been pre-

sented. Further, in [28] F. Brau constructed an analytical solution of the one-

dimensional spinless Salpeter equation with a Coulomb potential supplemented

by a hard core interaction, which keeps the particle in the x positive region. In

the context of RCQM based on the spinless Salpeter equation it was shown [29]

how to construct a large class of upper limits on the critical value, g
(`)
c , of the

coupling constant, g, of the central potential, V (r) = −gv(r). In [30] a lower

bounds on the ground state energy, in one and three dimensions, for the spin-

less Salpeter equation applicable to potentials, for which the attractive parts are

in Lp(Rn) for some p ¿ n (n = 1 or 3), are found. An extension to confining

potentials, which are not in Lp(Rn), is also presented.

In the paper [31], the authors used the theory of fractional powers of linear

operators to construct a general (analytic) representation theory for the square-

root energy operator γ0

√
−̂→p

2
+m2 +V of FW canonical field theory, which is

valid for all values of the spin. The example of the spin 1/2 case, considering a

few simple yet solvable and physically interesting cases, is presented in details

in order to understand how to interpret the operator. Note that corresponding

results for the RCQM can be found from the FW canonical field theory results

[31] with the help of our transformation, see, e.g., operator (33) in [11] or added

to the FW transformation part of (2.38).

Using the momentum space representation, the authors of [32] presented an

analytical treatment of the one-dimensional spinless Salpeter equation with a
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Coulomb interaction. The exact bound-state energy equation was determined.

The results obtained were shown to agree very well with exact numerical cal-

culations existing in the literature. In [33] an exact analytical treatment of the

spinless Salpeter equation with a one dimensional Coulomb interaction in the

context of quantum mechanics with modified Heisenberg algebra implying the

existence of a minimal length was presented. The problem was tackled in the

momentum space representation. The bound-state energy equation and the cor-

responding wave functions were exactly obtained. The probability current for a

quantum spinless relativistic particle was introduced [8] based on the Hamilto-

nian dynamics approach using the spinless Salpeter equation. The correctness

of the presented formalism was illustrated by examples of exact solutions to

the spinless Salpeter equation including the new ones. Thus, in [8] the partial

wave packet solutions of this equation have been presented: the solutions for

free massless and massive particle on a line, for massless particle in a linear po-

tential, plane wave solution for a free particle (this formula is given here below

for N-component case as the solution of the equation (5.1)), the solution for free

massless particle in three dimensions.

Further, in the paper [34] other time dependent wave packet solutions of

the free spinless Salpeter equation are given. Taking into account the relation

of such wave packets to the Lévy process the spinless Salpeter equation (in one

dimensional space-time) is called in [34] as the Lévy-Schrödinger equation. The

several examples of the characteristic behavior of such wave packets have been

shown, in particular of the multimodality arising in their evolutions: a feature at

variance with the typical diffusive unimodality of both the corresponding Lévy

process densities and usual Schrödinger wave functions.

A generic upper bound is obtained [35] for the spinless Salpeter equation

with two different masses. Analytical results are presented for systems relevant

for hadronic physics: Coulomb and linear potentials when a mass is vanishing.

A detailed study for the classical and the quantum motion of a relativistic mass-

less particle in an inverse square potential has been presented recently in [36].

The quantum approach to the problem was based on the exact solution of the

corresponding spinless Salpeter equation for bound states. Finally, in [36] the

connection between the classical and the quantum descriptions via the compar-

ison of the associated probability densities for momentum has been made.

The goal of the recent paper [37] is a comprehensive analysis of the inti-

mate relationship between jump-type stochastic processes (e.g., Lévy flights)

and nonlocal (due to integro-differential operators involved) quantum dynam-
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ics. In [37] a special attention is paid to the spinless Salpeter (here, m ≥ 0)

equation and the evolution of various wave packets, in particular to their radial

expansion in 3D. Foldy’s synthesis of covariant particle equations is extended

to encompass free Maxwell theory, which however is devoid of any particle

content. Links with the photon wave mechanics are explored. The authors of

[37] takes into account our results [11] presented also in more earlier preprint,

see the last reference in [37].

In the papers [11, 12], where we started our investigations in RCQM, this

relativistic model for the test case of the spin s=(1/2,1/2) particle-antiparticle

doublet is formulated. In [11], this model is considered as the system of the

axioms on the level of the von Neumann monograph [38], where the math-

ematically well-defined consideration of the nonrelativistic quantum mechan-

ics was given. Furthermore, in [11, 12] the operator link between the spin

s=(1/2,1/2) particle-antiparticle doublet RCQM and the Dirac theory is given

and Foldy’s synthesis of covariant particle equations is extended to the start

from the RCQM of the spin s=(1/2,1/2) particle-antiparticle doublet. In [5, 38–

40] the same procedure is fulfilled for the spin s=(1,1), s=(1,0,1,0), s=(3/2,3/2),

s=(2,2), s=(2,0,2,0) and spin s=(2,1,2,1) RCQM. The corresponding equations,

which follow from the RCQM for the covariant local field theory, are intro-

duced.

Therefore, here and in [5, 38–40] we are not going to formulate a new rel-

ativistic quantum mechanics! The foundations of RCQM based on the spinless

Salpeter equation are already formulated in [7, 8, 11–37].

5.5. Axiomatic Foundations of the Relativistic

Canonical Quantum Mechanics of an

Arbitrary Spin

The RCQM of the particle singlet and the particle-antiparticle doublet of an

arbitrary spin was suggested in sections 2 and 18 of [38]. This model can be

formulated at the level of von Neumann’s consideration [6]. The difference is

only in relativistic invariance and in the consideration of multi-component and

multidimensional objects.

We start in section 7 of [38] from the example of spin s=1/2 particle-

antiparticle doublet. The RCQM of the arbitrary spin particle-antiparticle dou-

blet (or particle singlet) can be formulated similarly as the corresponding gen-
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eralization of this partial case.

Below the brief presentation of the list of the axioms is given. Note that

some particular content of these axioms is already given in section 2 of [38],

where the beginning of this investigation was laid.

5.5.1. On the Space of States

The space of states of isolated arbitrary spin particle singlet in an arbitrarily-

fixed inertial frame of reference (IFR) in its −→x -realization is the Hilbert space

H3,N = L2(R3)⊗C⊗N = { f = ( f N) : R3 → C⊗N; (5.8)
Z

d3x| f (t,−→x )|2 < ∞}, N = 2s+1,

of complex-valued N-component square-integrable functions of x ∈ R3 ⊂
M(1,3) (similarly, in momentum, −→p -realization). In (5.8) d3x is the Lebesgue

measure in the space R3 ⊂ M(1,3) of the eigenvalues of the position operator
−→x of the Cartesian coordinate of the particle in an arbitrary-fixed IFR. Further,
−→x and −̂→p are the operators of canonically conjugated dynamical variables of

the spin s=(1/2,1/2) particle-antiparticle doublet, and the vectors f , f̃ in −→x -

and −→p -realizations are linked by the 3-dimensional Fourier transformation (the

variable t is the parameter of time-evolution).

The mathematical correctness of the consideration demands the application

of the rigged Hilbert space

S3,N ≡ S(R3)×CN ⊂ H3,N ⊂ S3,N∗, (5.9)

where the Schwartz test function space S3,N is the core (i.e., it is dense both

in H3,N and in the space S3,N∗ of the N-component Schwartz generalized func-

tions). The space S3,N∗ is conjugated to that of the Schwartz test functions S3,N

by the corresponding topology (see, e.g., [41]).

Strictly speaking, the mathematical correctness of consideration demands to

make the calculations in the space S3,N∗ of generalized functions, i.e., with the

application of cumbersome functional analysis (see, e.g., [42]). Nevertheless,

one can take into account the properties of the Schwartz test function space S3,N

in the triple (5.9). The space S3,N is dense both in quantum-mechanical space

H3,N and in the space of generalized functions S3,N∗. Therefore, any physical

state f ∈ H3,N can be approximated with an arbitrary precision by the corre-

sponding elements of the Cauchy sequence in S3,N, which converges to the given
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f ∈ H3,N. Further, taking into account the requirement to measure the arbitrary

value of the quantum-mechanical model with non-absolute precision, it means

that all concrete calculations can be fulfilled within the Schwartz test function

space S3,N. Thus, such consideration allows us to perform, without any loss

of generality, all necessary calculations in the space S3,N at the level of correct

differential and integral calculus.

Furthermore, the mathematical correctness of the consideration demands

to determine the domain of definitions and the range of values for any used

operator and for the functions of operators. Note that if the kernel space

S3,N ⊂ H3,N is taken as the common domain of definitions of the generating

operators −→x = (x j), −̂→p = (p̂ j), −→s ≡
(
s j
)

= (s23, s31, s12) of coordinate, mo-

mentum and spin, respectively, then this space appears to be also the range of

their values. Moreover, the space S3,N appears to be the common domain of

definitions and values for the set of all below mentioned functions from the

9 operators −→x = (x j), −̂→p = (p̂ j),−→s ≡
(
s j
)

(for example, for the generators

(p̂µ, ĵµν) of the irreducible unitary representations of the Poincaré group P and

for different sets of commutation relations). Therefore, in order to guarantee

the realization of the principle of correspondence between the results of cog-

nition and the instruments of cognition in the given model, it is sufficient to

take the algebra AS of the all sets of observables of the given model in the

form of converged in S3,N Hermitian power series of the 9 generating operators
−→x = (x j), −̂→p = (p̂ j),−→s ≡

(
s j
)
.

Note that the Schrödinger–Foldy equation (5.1) has generalized solutions,

which do not belong to the space H3,N (5.8). Therefore, the application of the

rigged Hilbert space S3,N ⊂ H3,N ⊂ S3,N∗ (5.9) is necessary.

Some other details of motivations of the choice of the spaces (5.8), (5.9) (and

all necessary notations) are given in [12], where the corresponding 4-component

spaces are considered.

Note finally that in the case of arbitrary spin particle-antiparticle doublet the

dimension of spaces (5.8), (5.9) is M=2N=2(2s+1).

5.5.2. On the Time Evolution of the State Vectors

The time dependence of the state vectors f ∈ H3,N (time t is the parameter of

evolution) is given either in the integral form by the unitary operator

u(t0, t) = exp [−iω̂(t − t0)] ; ω̂ ≡
√
−∆+m2, (5.10)
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(below t0 = t is put), or in the differential form by the Schrödinger–Foldy equa-

tion of motion (5.1) with the wave function (5.2). In terms of operator (5.3)–

(5.5) this equation is given by

(i∂0− ω̂) f (x) = 0. (5.11)

Note that here the operator ω̂ ≡
√
−∆+m2 is the relativistic analog of

the energy operator (Hamiltonian) of nonrelativistic quantum mechanics.

The Minkowski space-time M(1,3) is pseudo Euclidean with metric g =
diag(+1,−1,−1,−1).

The step from the particle singlet of arbitrary spin to the corresponding

particle-antiparticle doublet is evident.

Thus, for the arbitrary spin particle-antiparticle doublet the system of two

N-component equations (i∂0−ω̂) f (x)= 0 and (i∂0−ω̂) f (x)= 0 is used. There-

fore, the corresponding Schrödinger–Foldy equation is given by (5.11), where

the 2N-component wave function is the direct sum of the particle and antiparti-

cle wave functions, respectively. Due to the historical tradition of the physicists

the antiparticle wave function is put in the down part of the 2N-column.

The general solution of the Schrödinger–Foldy equation of motion (5.11)

(in the case of particle-antiparticle arbitrary spin doublet) has the form

f (x) =
1

(2π)
3
2

Z

d3ke−ikxa2N
(−→

k

)
d2N, (5.12)

kx ≡ ω̃t −−→
k −→x , ω̃ ≡

√
−→
k 2 +m2,

where the orts of the N-dimensional Cartesian basis are given by

d1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

0

0

.

.

.
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

1

0

.

.

.
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, ...., dN =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

.

.

.
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.13)

The action of the pseudo-differential (non-local) operator ω̂ ≡
√
−∆+m2 is

explained in (5.4), (5.5).
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5.5.3. On the Fundamental Dynamical Variables

The dynamical variable −→x ∈ R3 ⊂M(1,3) (as well as the variable
−→
k ∈ R3

~k
) rep-

resents the external degrees of freedom of the arbitrary spin particle-antiparticle
doublet. The spin −→s of the particle-antiparticle doublet is the first in the list of
the carriers of the internal degrees of freedom. Taking into account the Pauli
principle and the fact that experimentally an antiparticle is observed as the mir-
ror reflection of a particle, the operators of the charge sign and the spin of the
arbitrary particle-antiparticle doublet are taken in the form

g ≡ −Γ0
2N ≡−σ3

2N =

∣∣∣∣
−IN 0

0 IN

∣∣∣∣ ,
−→s 2N =

∣∣∣∣
−→s N 0

0 −Ĉ
−→
s NĈ

∣∣∣∣ , N = 2s+1, (5.14)

where Γ0
2N is the 2N×2N Dirac Γ0 matrix, σ3

2N is the 2N×2N Pauli σ3 matrix,

Ĉ is the operator of complex conjugation in the form of N×N diagonal matrix,

the operator of involution in H3,2N, and IN is N×N unit matrix.

Thus, the spin is given by the generators of SU(2) algebra!

The spin matrices −→s 2N from (5.14) satisfy the commutation relations

[
s

j
2N, s`

2N

]
= iε j`nsn

2N, ε123 = +1, (5.15)

of the algebra of SU(2) group, where ε j`n is the Levi-Civita tensor and s j =
ε j`ns`n are the Hermitian 2N× 2N matrices (5.14) – the generators of a 2N-

dimensional reducible representation of the spin group SU(2) (universal cover-

ing of the SO(3)⊂SO(1,3) group). The spin matrices −→s N of the singlet satisfy

the SU(2) commutation relations as well.

The Casimir operator for the RCQM representation of SU(2) spin given in

(5.14) has the form
−→s 2

2N = 2s(s+1)I2N, (5.16)

where I2N is 2N×2N unit matrix.

Above in the text of this axiom the case of arbitrary spin particle-

antiparticle doublet has been considered. For the case of arbitrary spin particle

singlet the operator of the charge sign is absent. The spin operator
−→
s N is given

by the Hermitian N×N matrices – the generators of a N-dimensional irreducible

representation of the spin group SU(2). Therefore, the SU(2) commutation re-

lations in such notations have the explicit form

[
s

j
N, s`

N

]
= iε j`nsn

N, ε123 = +1, (5.17)
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and the corresponding Casimir operator is given by

−→s 2
N = s(s+1)IN. (5.18)

The validity of these assertions is proved by numerous partial examples pre-

sented below.

5.5.4. On the External and Internal Degrees of Freedom

The coordinate −→x (as an operator in H3,2N) is an analog of the discrete index of

generalized coordinates q ≡ (q1,q2, ...) in non-relativistic quantum mechanics

of the finite number degrees of freedom. In other words the coordinate −→x ∈
R3 ⊂M(1,3) is the continuous carrier of the external degrees of freedom of a

multiplet (the similar consideration was given in [43]). The coordinate operator

together with the operator −̂→p determines the operator mln = xl p̂n − xn p̂l of an

orbital angular momentum, which also is connected with the external degrees

of freedom.

However, the RCQM doublet has the additional characteristics such as the

spin operator −→s from (5.14), which is the carrier of the internal degrees of

freedom of this multiplet. The set of generators (p̂µ, ĵµν) (considered below

in (5.20), (5.21)) of the main dynamical variables (see also formulas (73) in

[38]) of the doublet are the functions of the following basic set of 9 functionally

independent operators

−→x = (x j), −̂→p = (p̂ j),−→s 2N ≡
(

s
j
2N

)
= (s23, s31, s12) . (5.19)

Note that spin −→s 2N from (5.14) commutes both with (−→x , −̂→p ) and with the

operator i∂t −
√
−∆+m2 of the Schrödinger–Foldy equation (5.1). Thus, for

the free doublet the external and internal degrees of freedom are independent.

Therefore, 9 operators (5.19) in H3,2N, which have the univocal physical sense,

are the generating operators not only for the 10 P generators (p̂µ, ĵµν) (5.20),

(5.21), but also for other operators of any experimentally observable quantities

of the doublet.

5.5.5. On the Algebra of Observables

Using the operators of canonically conjugated coordinate −→x and momentum −→p
(where

[
x j, p̂`

]
= iδ j`,

[
x j,x`

]
=
[
p̂ j, p̂`

]
= 0,) in H3,2N, being completed by
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the operators −→s 2N and g from (5.14), we construct the algebra of observables as

the Hermitian functions of 10 (−→x ,−→p ,−→s 2N, −Γ0
2N) generating elements of the

algebra.

5.5.6. On the Relativistic Invariance of the Theory

The relativistic invariance of the model under consideration (the relativistic in-

variance of the Schrödinger–Foldy equation (5.11)) requires, as a first step, con-

sideration of its invariance with respect to the proper ortochronous Lorentz L
↑
+ =

SO(1,3)=
{

Λ =
(
Λµ

ν

)}
and Poincaré P

↑
+ = T(4)×)L

↑
+ ⊃ L

↑
+ groups. This invari-

ance in an arbitrary relativistic model is the implementation of the Einstein’s

relativity principle in the special relativity form. Note that the mathematical

correctness requires the invariance mentioned above to be considered as the in-

variance with respect to the universal coverings L = SL(2,C) and P ⊃ L of the

groups L
↑
+ and P

↑
+, respectively.

The main information on the group P , which is necessary for our consider-

ation, is collected in the Chapter 3. For the group P we choose real parameters:

the 4-vector of translations a = (aµ)∈ M(1,3) and the tensor ω ≡ (ωµν =−ωνµ)

with well-known physical meaning. For the standard P generators (pstand
µ , jstand

µν )

(3.6) we use commutation relations in the manifestly covariant form (3.4).

The following assertion should be noted. Not a matter of fact that non-

covariant objects such as the Lebesgue measure d3x and non-covariant (non-

Lie) generators of algebras are explored, the model of RCQM of arbitrary spin is

a relativistic invariant in the following sense. The Schrödinger–Foldy equation

(5.11) and the set of its solution { f} (5.12) are invariant with respect to the

irreducible unitary representation of the group P , the N×N matrix-differential

generators of which for an arbitrary spin are given by the following non-local

operators

p̂0 = ω̂ ≡
√

−∆+m2, p̂` = i∂`, (5.20)

ĵ`n = x` p̂n −xn p̂` + sln ≡ m̂`n + s`n,

ĵ0` = − ĵ`0 = t p̂`−
1

2
{x`, ω̂}−

(
s`n p̂n

ω̂ +m
≡ s̆`

)
, (5.21)

where the orbital parts of the generators are not changed under the transition

from one spin value to another. Under such transitions only the spin parts of

the expressions (5.20), (5.21), which are determined by the explicit form of spin
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−→s = (s`n) from (5.14), are changed. Indeed, the direct calculations visualize

that generators (5.20), (5.21) commute with the operator of equation (5.11) and

satisfy the commutation relations (3.4) of the Lie algebra of the Poincaré group

P . In formulas (5.20), (5.21), the SU(2)-spin generators s`n have particular spe-

cific forms for each representation of the SU(2) group (see the list of examples

below).

Note that the generators (5.20), (5.21) are known from the formulae (B-25)

(B-28) of the paper [4].

Thus, the irreducible unitary representation of the Poincaré group P in the

space (5.9), with respect to which the Schrödinger-Foldy equation (5.11) and

the set of its solution { f} (5.12) are invariant, is given by a series converges in

this space

(a,ω)→U(a,ω) = exp(−ia0 p̂0 − i−→a −̂→p − i

2
ωµν ĵµν) (5.22)

where the generators (p̂µ, ĵµν) are given in (5.20), (5.21) with the arbitrary val-

ues of the SU(2) spins
−→
s = (s`n) (5.14), (5.15).

The validity of this assertion is verified by the following three steps. (i)

The calculation that the P -generators (5.20), (5.21) commute with the opera-

tor i∂0 − ω̂ of the Schrödinger–Foldy equation (5.11). (ii) The verification that

the P -generators (5.20), (5.21) satisfy the commutation relations (3.4) of the Lie

algebra of the Poincaré group P . (iii) The proof that generators (5.20), (5.21) re-

alize the spin s(s+1) irreducible representation of this group (or spin 2s(s+1) re-

ducible representation in the case of doublet). Therefore, the Bargman–Wigner

classification on the basis of the corresponding Casimir operators calculation

should be given. These three steps can be made by direct and non-cumbersome

calculations.

The expression (5.22) is well known, but rather formal. In fact the transition

from a Lie algebra to a finite group transformations in the case of non-Lie gen-

erators is a rather non-trivial action. The mathematical justification of (5.22)

can be fulfilled in the framework of Schwartz test function space and will be

given in next special publication.

The corresponding Casimir operators have the form

p2 = p̂µ p̂µ = m2IN, (5.23)

W = wµwµ = m2−→s 2 = s(s+1)m2IN, (5.24)
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where wµ is the Pauli–Lubanski pseudovector, IN is the N×N unit matrix and s

=1/2, 1, 3/2, 2, ...

Note that together with the generators (5.20), (5.21) another set of 10 oper-

ators commutes with the operator of equation (5.11), satisfies the commutation

relations (3.4) of the Lie algebra of Poincaré group P , and, therefore, can be

chosen as the Poincaré symmetry of the model under consideration. This sec-

ond set is given by the generators p̂0, p̂` from (5.20) together with the orbital

parts of the generators ĵ`n, ĵ0` from (5.21). Thus, this second set of Poincaré

generators is given by

p̂0 = ω̂ ≡
√

−∆+m2, p̂` = i∂`, (5.25)

m̂`n = x` p̂n −xn p̂`, m̂0` = −m̂`0 = t p̂`−
1

2
{x`, ω̂} .

It is evident that in the case s=0 only generators (5.25) form the Poincaré sym-

metry.

Note that the modern definition of P invariance (or P symmetry) of the

equation of motion (5.11) in H3,N is given by the following assertion, see, e.g.,

[44]. The set F ≡{ f} of all possible solutions of the equation (5.11) is invariant

with respect to the P f-representation of the group P , if for arbitrary solution f

and arbitrarily-fixed parameters (a,ω) of P -transformation the assertion

(a,ω)→U(a,ω){ f} = { f} ≡ F (5.26)

is valid.

Note further that in general the above given definition is valid for arbitrary

equation of mathematical physics and arbitrary transformation, which is ana-

lyzed for the symmetry property.

In spite of the fact that in RCQM many manifestly non-covariant objects are

used, the model under consideration is relativistic invariant in the sense of the

definition given above.

5.5.7. On the Dynamic and Kinematic Aspects

of the Relativistic Invariance

Consider briefly some detalizations of the relativistic invariance of the

Schrödinger–Foldy equation (5.11). Note that for the free particle-antiparticle

doublet of arbitrary spin the equation (5.11) has one and the same explicit form
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in arbitrary-fixed IFR (its set of solutions is one and the same in every IFR).

Therefore, the algebra of observables and the conservation laws (as the func-

tionals of the free particle-antiparticle doublet states) have one and the same

form too. This assertion explains the dynamical sense of the P invariance (the

invariance with respect to the dynamical symmetry group P ).

Another, kinematic, aspect of the P invariance of the RQCM model has the

following physical sense. Note at first that any solution of the Schrödinger–

Foldy equation (5.11) is determined by the concrete given set of the amplitudes

{A}. It means that if f with the fixed set of amplitudes {A} is the state of the

doublet in some arbitrary IFR, then for the observer in the (a, ω)-transformed

IFR′ this state f ′ is determined by the amplitudes {A′}. The last ones are re-

ceived from the given {A} by the unitary P A -transformation (5.22).

5.5.8. On the Clifford–Dirac Algebra

This axiom is additional and is not necessary. Nevertheless, such axiom is very

useful for the dimensions, where the Γ matrices exist.

Application of the Clifford–Dirac algebra is the useful method of calcu-

lations in RCQM. Three different definitions of the Clifford algebra and their

equivalence are considered in [45]. In different approaches to the relativistic

quantum mechanics the matrix representation of the Clifford algebra in terms

of the Dirac gamma matrices is used. This representation is called the Clifford–

Dirac algebra. We use also the gamma matrix representation of 64-dimensional

extended Clifford algebra over the field of real numbers. This our generalization

of Clifford–Dirac algebra is considered in the Chapter 1.

For our purposes the anti-commutation relations of the Clifford–Dirac alge-

bra generators are taken in the general form

Γ
µ̄
2NΓν̄

2N +Γν̄
2NΓ

µ̄
2N = 2gµ̄ν̄; (5.27)

µ̄, ν̄ = 0,4, (gµ̄ν̄) = (+−−−−),

where Γ
µ̄
2N are the 2N×2N Dirac Γµ̄ matrices (2N×2N generalization of the

Dirac 4× 4 γ matrices), Γ4
2N ≡ Γ0

2NΓ1
2NΓ2

2NΓ3
2N. Here and in our publications

(see, e.g., the articles [46–53]) we use the γ4 ≡ γ0γ1γ2γ3 matrix instead of the

γ5 matrix of other authors. Our γ4 is equal to iγ5
standard. Notation γ5 is used in

[46–53] for a completely different matrix γ5 ≡ γ1γ3Ĉ. As well as the element

Γ4
2N ≡ Γ0

2NΓ1
2NΓ2

2NΓ3
2N of (5.27) is dependent the algebra basis is formed by
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4=1+3 independent elements. Therefore, such Clifford algebra over the field

of complex numbers is denoted C`C(1,3) and the dimension of the algebra is

24 = 16.

Note that relations (5.27) are valid only for the dimensions, where the Γ2N

are defined (where the matrix representation of the Clifford algebra exists).

Therefore, the relations (5.27) can be useful not for all multiplets of RCQM.

Nevertheless, existing relations (5.27) are very useful in order to operate with

spins, with standard FW transformation and in order to formulate the FW trans-

formation generalizations for the dimensions 2(2s+1)>4.

It has been explained in [46–53] that the Clifford–Dirac algebra should be

introduced into consideration in the FW representation [3] of the spinor field.

The reasons are as follows. Part of the Clifford–Dirac algebra operators are

directly related to the spin 1/2 doublet operators (s1 ≡ 1
2
γ2γ3, s2 ≡ 1

2
γ3γ1, s3 ≡

1
2 γ1γ2) (in the anti-Hermitian form). In the FW representation for the spinor field

[3] these spin operators commute with the Hamiltonian and with the operator of

the FW equation of motion i∂0 − γ0ω̂. In the Pauli–Dirac representation these

operators do not commute with the Dirac equation operator. Only the sums of

the orbital operators and such spin operators commute with the Diracian. So if

we want to relate the orts γµ of the Clifford–Dirac algebra with the actual spin

we must introduce this algebra into the FW representation.

Of course, the Clifford–Dirac algebra can be introduced into the RCQM as

well. This opportunity is equal to the above considered. We choose the first one

and introduce the Clifford–Dirac algebra into the FW representation because

it is closer to the Dirac model. Indeed, the FW and Dirac representations are

linked by the unitary FW operator.

Here in general N-dimensional formalism of RCQM the situation is similar.

The anti-commutation relations of the Clifford–Dirac algebra generators (5.27)

and corresponding Γ2N matrices must be introduced in the FW representation.

Therefore, in order to apply (5.27) in RCQM one must transform the Γ2N matri-

ces from the FW representation into the RCQM representation. Corresponding

operator transformation is given by

v2N =

∣∣∣∣
IN 0

0 ĈIN

∣∣∣∣ , v−1
2N = v

†
2N = v2N, (5.28)

v2Nv2N = I2N, N = 2s+1,

where ĈIN is the N×N operator of complex conjugation. Indeed, the operator

(5.28) translates any operator from canonical field FW representation into the
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RCQM representation and vice versa:

v2Nq̂anti−Herm
cf v2N = q̂anti−Herm

qm , (5.29)

v2Nq̂anti−Herm
qm v2N = q̂anti−Herm

cf .

Here q̂anti−Herm
qm is an arbitrary operator from the RCQM of the 2N-component

particle-antiparticle doublet in the anti-Hermitian form, e.g., the operator (∂0 +
iω̂) of equation of motion (5.11), the operator of spin −→s 2N (5.14) taken in anti-

Hermitian form, etc., q̂anti−Herm
cf is an arbitrary operator from the canonical field

theory of the 2N-component particle-antiparticle doublet in the anti-Hermitian

form. Thus, the only warning is that operators here must be taken in anti-

Hermitian form, see Chapter 3 for the details and see [54, 55] for the mathe-

matical correctness of anti-Hermitian operators application (note that contrary

to [56, 57], where non-Hermitian operators have been considered, we appeal in

[5, 11, 12, 38–40] and here only to anti-Hermitian operators and corresponding

Foldy–Wouthuysen transformation).

Further, the operator (5.28) translates

φ = v2N f , f = v2Nφ, (5.30)

the solution (5.12) of the Schrödinger–Foldy equation (5.11) into the solution

φ(x) =
1

(2π)
3
2

Z

d3k

[
e−ikxaN(

−→
k )dN +eikxa∗N̆(

−→
k )dN̆

]
, (5.31)

N = 1,2, ...,N, N̆ = N+1,N+2, ...,2N, of the FW equation

(i∂0−Γ0
2Nω̂)φ(x) = 0, Γ0

2N ≡ σ3
2N =

∣∣∣∣
IN 0

0 −IN

∣∣∣∣ , (5.32)

ω̂ ≡
√
−∆+m2, N = 2s+1, and vice verso. Thus, the transformation (5.28),

(5.29) translates the matrices Γ0
2N and

Γ
j
2N =

∣∣∣∣∣
0 Σ j

N

−Σ
j
N 0

∣∣∣∣∣ , Γ4
2N = Γ0

2NΓ1
2NΓ2

2NΓ3
2N, j = 1,2,3, (5.33)

into the RCQM representation

Γ̄
µ̄
2N = v2NΓ

µ̄
2Nv2N, (5.34)
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where matrices Γ̄
µ̄
2N satisfy the anti-commutation relations

Γ̄µ̄
2NΓ̄ν̄

2N + Γ̄ν̄
2NΓ̄µ̄

2N = 2gµ̄ν̄; µ̄, ν̄ = 0,4, (gµ̄ν̄) = (+−−−−), (5.35)

of the Clifford–Dirac algebra generators as well. In (5.33) Σ
j
N are the N×N

Pauli matrices. Note that Pauli matrices exist only if the values of N are even.

The explicit forms of the RCQM representation of the Γ̄µ̄
2N matrices are given

by

Γ̄0
2N = Γ0

2N, Γ̄1
2N = Γ1

2NĈ, Γ̄2
2N = Γ0

2NΓ2
2NĈ, (5.36)

Γ̄3
2N = Γ3

2NĈ, Γ̄4
2N = Γ0

2NΓ4
2NĈ,

where Ĉ is the 2N×2N operator of complex conjugation and matrices Γ
µ̄
2N are

given in (5.32), (5.33).

Note that in the terms of Γ̄
µ̄
2N matrices (5.36) the RCQM spin operator (5.14)

has the form
−→
s =

i

2
(Γ̄2

2NΓ̄3
2N, Γ̄3

2NΓ̄1
2N, Γ̄1

2NΓ̄2
2N). (5.37)

Note further that formula (5.37) is valid for the multiplets of arbitrary dimension

but only for the spin s=1/2, whereas the formula (5.14) is valid for arbitrary spin.

Note also that in some dimensions the gamma matrices can not be defined. Fur-

thermore, the complete analogy between the (5.37) and the particle-antiparticle

spin s=1/2 doublet of arbitrary dimension in the FW representation exists

−→s FW =
i

2
(Γ2

2NΓ3
2N, Γ3

2NΓ1
2N, Γ1

2NΓ2
2N). (5.38)

It is very useful to consider a wider then C`C(1,3) Clifford–Dirac algebra. In

[46–53] such additional matrix representations of the Clifford algebras have

been introduced for the purposes of finding links between the fermionic and

bosonic states of the spinor field. New extended representation can be formed

by the generators of C`C(1,3) together with the generators of the Pauli–Gürsey–

Ibragimov algebra [58–60]. Here this new mathematical object (new gamma

matrix representation of the Clifford algebra) is considered in the Chapter 1.

The main structure elements of such set are given by (γ0,γ1,γ2,γ3, i,ĈI4),

where γµ are 4×4 Dirac matrices in standard representation. It is easy to see that

simplest set of the Clifford–Dirac algebra generators can be constructed from

these elements in the form (iγ0, iγ1,γ2, iγ3,ĈI4, iĈI4). Therefore, the 2N× 2N
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matrix generators of the corresponding Clifford–Dirac algebra over the field of

real numbers can be found by the simple redefinition

Γ̃1
2N ≡ iΓ1

2N, Γ̃2
2N ≡ iΓ3

2N, Γ̃3
2N ≡ ĈI2N, (5.39)

Γ̃4
2N ≡ iĈI2N, Γ̃5

2N ≡ iΓ0
2N, Γ̃6

2N ≡ −Γ2
2N,

of the matrices (iΓ0
2N, iΓ1

2N,Γ2
2N, iΓ3

2N,ĈI2N, iĈI2N), where Γ
µ
2N are given in

(5.32), (5.33).

Matrices (5.39) together with the matrix Γ̃7
2N ≡ Γ̃1

2NΓ̃2
2NΓ̃3

2NΓ̃4
2NΓ̃5

2NΓ̃6
2N =

Γ4
2N satisfy the anti-commutation relations of the Clifford–Dirac algebra gener-

ators in the form

Γ̃A
2NΓ̃B

2N + Γ̃B
2NΓ̃A

2N = 2gAB; (5.40)

A,B = 1,7, (gAB) = (++++−−−).

As well as in (5.27) among the generators of (5.40) only the 4+2=6 matrices

(5.39) are independent and form the basis of the algebra. Therefore, the found

above algebra over the field of real numbers is defined as C`R(4,2) and the

dimension of this algebra is 26 = 64.

Useful realization of (5.39), (5.40) is given in terms of completely anti-

Hermitian generators

Γ1
2N, Γ2

2N, Γ3
2N, Γ4

2N = Γ0
2NΓ1

2NΓ2
2NΓ3

2N, (5.41)

Γ5
2N = Γ1

2NΓ3
2NĈ, Γ6

2N = iΓ1
2NΓ3

2NĈ, Γ7
2N = iΓ0

2N,

where matrices
{

Γ
µ
2N

}
are given in (5.32), (5.33). Matrices (5.41) obey the

anti-commutation relations of 64-dimensional C`R(0,6) algebra in the form

ΓA
2NΓB

2N +ΓB
2NΓA

2N = −2δAB, A,B = 1,7. (5.42)

Note that here as well only 6 operators are independent generators: Γ4
2N =

−iΓ7
2NΓ1

2NΓ2
2NΓ3

2N.

Operators (5.41) generate also the 28 orts sĀB̄:

sĀB̄ = {sAB =
1

4
[ΓA

2N,ΓB
2N], sA8 = −s8A =

1

2
ΓA

2N}, (5.43)

where Ā, B̄ = 1,8 and generators sĀB̄ satisfy the commutation relations of SO(8)

algebra

[sĀB̄, sC̄D̄] = δĀC̄sB̄D̄ +δC̄B̄sD̄Ā +δB̄D̄sĀC̄ +δD̄ĀsC̄B̄. (5.44)
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Of course, the matrix representation (5.43) of the SO(8) algebra is considered

over the field of real numbers.

Note that SO(8) algebra is not any subalgebra of the Clifford algebra

C`R(0,6). It is impossible in principle. Indeed, the mathematical object

C`R(0,6) belongs to the Clifford algebras and mathematical object SO(8) be-

longs to the Lie algebras (see the consideration in Chapter 1).

As the consequences of the equalities

Γ4
2N ≡

3

∏
µ=0

Γ
µ
2N →

4

∏
µ̄=0

Γ
µ̄
2N = −I, (5.45)

known from the standard Clifford–Dirac algebra C`C(1,3), and the anticom-

mutation relations (5.42), in C`R(0,6) algebra for the matrices ΓA
2N (5.41) the

following extended equalities are valid:

Γ7
2N ≡−

6

∏
A=1

ΓA
2N →

7

∏
A=1

ΓA
2N = I, Γ5

2NΓ6
2N = i. (5.46)

The relationship (5.43) between the Clifford–Dirac algebra C`R(0,6) and alge-

bra SO(8) is similar to the relationship between the standard Clifford–Dirac al-

gebra C`C(1,3) and algebra SO(3,3) found in [61, 62]; the relationship between

C`C(1,3) and SO(1,5) see in the Chapter 1.

Note that subalgebra SO(6)⊂SO(8) is the algebra of invariance of the Dirac

equation in the FW representation [3, 4]. The 15 elements of this SO(6) algebra

are given by {
sAB
}

, A,B = 1,6, (5.47)

where {
sAB
}

=

{
sAB ≡ 1

4

[
Γ

A
2N,Γ

B
2N

]}
. (5.48)

Now only the first 6 matrices

{
ΓA

2N

}
=
{

Γ1
2N,Γ2

2N,Γ3
2N,Γ4

2N,Γ5
2N,Γ6

2N

}
(5.49)

from the set (5.41) play the role of generating operators in the constructions

(5.48), (5.49).

Here Γ4
2N is independent. Therefore, in application to Clifford algebras op-

erators (5.41) generate the 64-dimensional C`R(0,6) algebra as well.
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The maximal pure matrix algebra of invariance of the FW equation (5.32) is

the 31-dimensional algebra SO(6)⊕iΓ0
2N·SO(6)⊕iΓ0

2N.

The additional possibilities, which are open by the 28 orts of the algebra

SO(8) in comparison with 15 orts of the well-known algebra SO(1,5), are prin-

cipal in description of the Bose states in the framework of the Dirac theory

[85–91]. The algebra SO(8) includes two independent spin s=1/2 SU(2) subal-

gebras (s1 ≡ 1
2 Γ2

2NΓ3
2N, s2 ≡ 1

2 Γ3
2NΓ1

2N, s3 ≡ 1
2Γ1

2NΓ2
2N) and (š1 ≡ 1

2Γ5
2NΓ6

2N, š2 ≡
1
2
Γ6

2NΓ4
2N, š3 ≡ 1

2
Γ4

2NΓ5
2N) (in the anti-Hermitian form), whereas the SO(1,5) al-

gebra includes only one set of SU(2) generators given by the elements (s1 ≡
1
2
Γ2

2NΓ3
2N, s2 ≡ 1

2
Γ3

2NΓ1
2N, s3 ≡ 1

2
Γ1

2NΓ2
2N). Moreover, the algebra SO(6), which

is the algebra of invariance of the FW equation (5.32), includes these two in-

dependent SU(2) subalgebras as well. As long as these two spin s=1/2 SU(2)

sets of generators commute between each other, their combination gives the

generators of spin s=1 representation of SU(2) algebra. Such SU(2) algebra is

the building element in construction of spin s=1 Lorentz and Poincaré algebras,

with respect to which the FW equation (5.32) is invariant.

The transition to the RCQM is given by the transformation (5.28), (5.29).

Thus, in the quantum-mechanical representation the seven Γ matrices (5.41) (in

the terms of standard Γ
µ̄
2N matrices (5.32), (5.33)) have the form (5.36) together

with

Γ̄5
2N ≡ Γ1

2NΓ3
2NĈ, Γ̄6

2N ≡−iΓ2
2NΓ4

2NĈ, Γ̄7
2N ≡ i; (5.50)

Γ̄1
2NΓ̄2

2NΓ̄3
2NΓ̄4

2NΓ̄5
2NΓ̄6

2NΓ̄7
2N = I2N,

and satisfy the anti-commutation relations of the Clifford–Dirac algebra

C`R(0,6) representation in the following form

Γ̄A
2NΓ̄B

2N + Γ̄B
2NΓ̄A

2N = −2δAB, A,B = 1,7. (5.51)

The RCQM representation of the algebra SO(8) is given by

s̄ĀB̄ = {s̄AB =
1

4
[Γ̄A

2N, Γ̄B
2N], s̄A8 = −s̄8A =

1

2
Γ̄A

2N}, (5.52)

Ā, B̄ = 1,8,

where the matrices Γ̄A
2N are given in (5.36), (5.50) and generators s̄ĀB̄ satisfy the

commutation relations

[s̄ĀB̄, s̄C̄D̄] = δĀC̄s̄B̄D̄ +δC̄B̄s̄D̄Ā +δB̄D̄s̄ĀC̄ +δD̄Ās̄C̄B̄. (5.53)



Relativistic Canonical Quantum Mechanics of Arbitrary Spin 111

The RCQM representation of the algebra SO(6)⊂SO(8) is given by

{
s̄AB
}

, A,B = 1,6, (5.54)

where {
s̄AB
}

=

{
s̄AB ≡ 1

4

[
Γ̄

A
2N, Γ̄

B
2N

]}
. (5.55)

The maximal pure matrix algebra of invariance of the Schrödinger–Foldy equa-

tion (5.11) is the 31-dimensional algebra a31 =SO(6)⊕i·SO(6)⊕i.

In the RCQM representation two independent sets of generators of SU(2)

subalgebra of SO(6) algebra, with respect to which the Schrödinger–Foldy equa-

tion (5.11) is invariant, have the form

s̄1 ≡ 1

2
Γ̄2

2NΓ̄3
2N, s̄2 ≡ 1

2
Γ̄3

2NΓ̄1
2N, s̄3 ≡ 1

2
Γ̄1

2NΓ̄2
2N, (5.56)

¯̌s1 ≡ 1

2
Γ̄5

2NΓ̄6
2N, ¯̌s2 ≡ 1

2
Γ̄6

2NΓ̄4
2N, ¯̌s ≡ 1

2
Γ̄4

2NΓ̄5
2N, (5.57)

where the matrices Γ̄A
2N are given in (5.36), (5.50). The situation here is similar

to the FW representation. As long as these two spin s=1/2 SU(2) sets of gen-

erators commute between each other, their combination gives the generators of

spin s=1 representation of SU(2) algebra. Such SU(2) algebra is the building

element in construction of spin s=1 Lorentz and Poincaré algebras, with respect

to which the Schrödinger–Foldy equation (5.11) is invariant. Note that formulas

(5.57), (5.57) are valid for the N-dimensional multiplet but only for the spin s

= 1/2. The arbitrary spin cannot be written in terms of Γ2N matrices as (5.56),

(5.57).

The partial case of 4 component formalism and 4× 4 γ matrices algebra

follows from the above given consideration after corresponding substitutions

2N=4, etc.

An important fact is that in Pauli–Dirac representation the 31-dimensional

algebra SO(6)⊕iΓ0
2N ·SO(6)⊕iΓ0

2N still is the algebra of invariance of the Dirac

equation (or 2N component Dirac-like equation). The only difference is that in

Pauli–Dirac representation the operators sAB and gamma matrices ΓA
2N are not

pure matrix. They are the nonlocal pseudo-differential operators, which contain

the operator ω̂ ≡
√
−∆+m2. For the standard 4 component Dirac equation the

corresponding gamma matrices are given by (1.22)–(1.25) in Chapter 1.
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Another interesting fact is that operator of the Dirac equation with Hamil-

tonian H ≡ γ0−→γ · −̂→p + γ0m − e2/ |−→x | commutes with all 31 generators of

the SO(6)⊕ iγ0 · SO(6)⊕ iγ0 algebra, which elements are given in terms of

gamma matrices from (1.22)–(1.25). Therefore, the relativistic hydrogen atom

has wide additional symmetries given by the 31 nontrivial generators from

SO(6)⊕ iγ0 ·SO(6)⊕ iγ0. Moreover, the relativistic hydrogen atom has addi-

tional spin 1 symmetries, which for the free Dirac equation are known from

[47–53] and which are the consequences of the algebra SO(6)⊕iγ0 ·SO(6)⊕iγ0.

Indeed, more wide symmetries than SO(4) spin 1/2 symmetry of V. Fock [63]

or further symmetries found in [64–68] (see the brief analysis in [69]) can be

found on the basis of this 31-dimensional algebra.

Note that consideration of this axiom above is given as the simple general-

ization of the correct spin 1/2 particle-antiparticle doublet formalism. In reality

the dimensions of Clifford–Dirac (and SO(n)) algebras for the higher spin cases

2(2s+1)≥8 can be more higher then considered above 64-dimensional C`R(4,2)

and C`R(0,6) algebras (and SO(8) algebra). The reason of this situation is the

possibility to construct for 2(2s+1)≥8 cases the additional Γ matrices obeying

the Clifford–Dirac anticommutation relations. The concrete examples of such

additional Γ matrices can be found in [70, 71].

Visual and demonstrative description of matrix representations of C`R(0,6)

and SO(8) algebras in terms of 4×4 gamma matrices can be found in [72, 73]

and in Chapter 1.

5.5.9. On the Main and Additional Conservation Laws

Similarly to the nonrelativistic quantum mechanics the conservation laws are

found in the form of quantum-mechanical mean values of the operators, which

commute with the operator of the equation of motion.

The important physical consequence of the assertion about the relativistic

invariance is the fact that 10 integral dynamical variables of the doublet

(Pµ, Jµν) ≡
Z

d3x f †(t,−→x )(p̂µ, ĵµν) f (t,−→x ) = Const (5.58)

do not depend on time, i.e., they are the constants of motion for this doublet. In

(5.58) and below in the text of this axiom the wave function is chosen as (5.2),

(5.12) and generators (p̂µ, ĵµν) are given in (5.20), (5.21)].

Note that the external and internal degrees of freedom for the free arbitrary

spin particle-antiparticle doublet are independent. Therefore, the operator −→s
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(5.14) commutes not only with the operators −̂→p ,−→x , but also with the orbital part

m̂µν of the total angular momentum operator. And both operators −→s and m̂µν

commute with the operator i∂t −
√
−∆+m2 of the equation (5.11). Therefore,

besides the 10 main (consequences of the 10 Poincaré generators) conservation

laws (5.58), 12 additional constants of motion exist for the free arbitrary spin

particle-antiparticle doublet. These additional conservation laws are the conse-

quences of the operators of the following observables (index 2N is omitted):

s j, s̆` =
s`n p̂n

ω̂ +m
, m̂`n = xl p̂n −xn p̂`, m̂0` = −m̂l0 = t p̂`−

1

2
{x`, ω̂} ,

(5.59)

part of which are given and explained in (5.25). Here s j = s`n are given in (5.14).

Thus, the following assertions can be proved. In the space HA = {A} of the

quantum-mechanical amplitudes the 10 main conservation laws (5.58) have the

form

(Pµ,Jµν) =

Z

d3kA†(
−→
k )( ˇ̃pµ,

ˇ̃
jµν)A(

−→
k ), A(

−→
k ) ≡

∣∣∣∣∣∣∣∣∣∣∣

a1(
−→
k )

a2(
−→
k )
·
·

a2N(
−→
k )

∣∣∣∣∣∣∣∣∣∣∣

, (5.60)

where the density generators of P A, ( ˇ̃pµ,
ˇ̃
jµν) from (5.60) are given by

ˇ̃p0 = p0 = ω, ˇ̃p` = p` = k`,
ˇ̃
j`n = x̃`kn − x̃nk` + s`n, (5.61)

ˇ̃
j0` = −1

2
{x̃`,ω}− (˘̃s` ≡

s`nkn

ω+m
); (x̃l = −i

∂

∂kl
). (5.62)

In the formula (5.60) A(
−→
k ) is a 2N-column of amplitudes.

Note that the operators (5.60)–(5.62) satisfy the Poincaré commutation re-

lations in the manifestly covariant form (3.4).

It is evident that the 12 additional conservation laws

(Mµν, S`n, S̆`) ≡
Z

d3x f †(t,−→x )(m̂µν, s`n, s̆`) f (t,−→x ) (5.63)

generated by the operators (5.59), are the separate terms in the expressions

(5.60)–(5.62) of principal (main) conservation laws.



114 Volodimir Simulik

The 22 above given conservation laws are valid for an arbitrary spin (in the

case s=0 we have only 10 conservation laws generated by operators (5.25)).

Additional set of conservation laws is given by 31 quantities

(A31) ≡
Z

d3x f †(t,−→x )(̂a31) f (t,−→x ) = Const, (5.64)

or in terms of quantum-mechanical amplitudes

(A31) =

Z

d3kA†(
−→
k )(̂a31)A(

−→
k ). (5.65)

Here (̂a31) are the pure matrix generators of the algebra

A31 =SO(6)⊕i·SO(6)⊕i.

The conservation law of charge for the singlet has the form qs =

e
R

d3x f †(t,−→x ) f (t,−→x ) and in the case of particle-antiparticle doublet this quan-

tity is given by qd = e
R

d3x f †(t,−→x )g f (t,−→x ), where operator g is presented in

(5.14). In terms of quantum-mechanical amplitudes the corresponding conser-

vation laws are given by qs =
R

d3kA†(
−→
k )A(

−→
k ), qd =

R

d3kA†(
−→
k )gA(

−→
k ).

In the case of spin s=1/2 the conservation law of spin is given twice: in the

set (5.63) and in the set (5.65). For cases s>1/2 the sets (5.63) and (5.65) are

completely different.

5.5.10. On the Stationary Complete Sets of Operators

Let us consider now the outstanding role of the different complete sets of op-

erators from the algebra of observables AS. If one does not appeal to the com-

plete sets of operators, then the solutions of the the Schrödinger-Foldy equation

(5.11) are linked directly only with the Sturm-Liouville problem for the energy

operator (5.3). In this case one comes to so-called “degeneration” of solutions.

Recall that for an arbitrary complete sets of operators the notion of degenera-

tion is absent in the Sturm-Liouville problem (see, e.g., [42]): only one state

vector corresponds to any one point of the common spectrum of a complete set

of operators. To wit, for a complete set of operators there is a one to one corre-

spondence between any point of the common spectrum and an eigenvector.

The stationary complete sets play the special role among the complete sets

of operators. Recall that the stationary complete set is the set of all functionally

independent mutually commuting operators, each of which commutes with the

operator of energy (in our case with the operator (5.3)). The examples of the sta-

tionary complete sets in H3,2N are given by (−̂→p , sz ≡ s3
2N, g), (−→p ,−→s 2N · −→p , g),
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ets; g is the charge sign operator. The set (−→x , sz, g) is an example of non-

stationary complete set. The −→x -realization (5.8) of the space H3,2N and of

quantum-mechanical Schrödinger-Foldy equation (5.11) are related just to this

complete set.

For the goals of this paper the stationary complete set (−̂→p , sz ≡ s3
2N, g) is

chosen. The series of partial examples of equations on eigenvectors and eigen-

values for this stationary complete set is given in this chapter below. Consider

here as an example the spin s=3/2 particle-antiparticle doublet case. Corre-

sponding equations on eigenvectors and eigenvalues are given by

−̂→p e−ikxdĀ =
−→
k e−ikxdĀ, Ā = 1,8, (5.66)

s3
8d1 =

3

2
d1, s3

8d2 =
1

2
d2, s3

8d3 = −1

2
d3, s3

8d4 = −3

2
d4, (5.67)

s3
8d5 = −3

2
d5, s3

8d6 = −1

2
d6, s3

8d7 =
1

2
d7, s3

8d8 =
3

2
d8,

gd1 = −d1, gd2 = −d2, gd3 = −d3, gd4 = −d4, (5.68)

gd5 = +d5, gd6 = +d6, gd7 = +d7, gd8 = +d8,

where the Cartesian orts {dĀ} are given by {dĀ} = {δB̄
Ā
}, Ā, B̄ = 1,8.

Comparison of the given in equations (5.67) spin s=3/2 case with the spin

s=2 case (formulas (194) in [38] and (5.166) here in this chapter below) shows

that the general form is out of clear visualization. Thus, the appealing to such

general form is absent here.

The interpretation of the amplitudes in the general solution (5.12) follows

from equations of (5.66)–(5.68) type for the fixed value of arbitrary spin. In

general, the functions a2N(
−→
k ) are the quantum-mechanical momentum-spin

amplitudes. Thus, the first half of functions a2N(
−→
k ) is the momentum-spin

amplitudes of the particle with the momentum −̂→p , sign of the charge (−) and

corresponding spin projections, respectively. Further, the second (bottom) half

of functions a2N(
−→
k ) is the momentum-spin amplitudes of the antiparticle with

the momentum −̂→p , sign of the charge (+) and opposite spin projections, respec-

tively.

Thus, the conclusion about the fermionic (or bosonic) spin features of the

solution (5.12) (i.e., the interpretation of the solution (5.12)) follows from the
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equations on eigenvectors and eigenvalues (of (5.66)–(5.68) type) and the above

given interpretation of the amplitudes.

5.5.11. On the Solutions of the Schrödinger-Foldy Equation

Let us consider the Schrödinger-Foldy equation (5.11) general solution related

to the stationary complete sets (−̂→p , sz ≡ s3, g), where s3 is given in (5.14). The

fundamental solutions of the equation (5.11), which are the eigen solutions of

this stationary complete sets, are given by the relativistic de Broglie waves:

ϕ~k2N
(t,−→x ) =

1

(2π)
3
2

e−iωt+i~k~xd2N, (5.69)

where d2N are the orts of 2N-dimensional Cartesian basis (the Cartesian orts

are the common eigenvectors for the operators (sz, g)). The explicit form of

N-dimensional Cartesian basis is given in formulas (5.13).

Vectors (5.69) are the generalized solutions of the equation (5.11). These

solutions do not belong to the quantum-mechanical space H3,2N, i.e., they are

not realized in the nature. Nevertheless, the solutions (5.69) are the complete

ortonormalized orts in the rigged Hilbert space S3,2N ⊂ H3,2N ⊂ S3,2N∗. In sym-

bolic form the conditions of ortonormalization and completeness are given by

Z

d3xϕ†
~kα

(t,−→x )ϕ~k′α′(t,
−→x ) = δ(

−→
k −−→

k ′)δαα′ , (5.70)

Z

d3k
2N

∑
α=1

ϕ
β
~kα

(t,−→x )ϕ
∗β′

~kα
(t,−→x ′) = δ(−→x −−→x ′)δββ′ . (5.71)

The functional forms of these conditions are omitted because of their bulkiness.

In the rigged Hilbert space S3,2N ⊂ H3,2N ⊂ S3,2N∗ an arbitrary solution of

the equation (5.11) can be decomposed in terms of fundamental solutions (5.69).

Furthermore, for the solutions f ∈ S3,2N ⊂ H3,2N the expansion (5.12) is, (i)

mathematically well-defined in the framework of the standard differential and

integral calculus, (ii) if in the expansion (5.12) a state f ∈ S3,2N ⊂ H3,2N, then

the amplitudes a2N(
−→
k ) in (5.12) belong to the set of the Schwartz test functions

over R3
~k

. Therefore, they have the unambiguous physical sense of the amplitudes

of probability distributions over the eigenvalues of the stationary complete sets

(−̂→p , sz, g). Moreover, the complete set of quantum-mechanical amplitudes un-

ambiguously determine the corresponding representation of the space H3,2N (in
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this case it is the (
−→
k , sz, g)-representation), which vectors have the harmonic

time dependence

f̃ (t,
−→
k ) = e−iωtA(

−→
k ), A(

−→
k ) ≡

∣∣∣∣∣∣∣∣∣∣∣

a1(
−→
k )

a2(
−→
k )

·
·

a2N(
−→
k )

∣∣∣∣∣∣∣∣∣∣∣

, (5.72)

i.e., are the states with the positive sign of the energy ω.

The similar assertion is valid for the expansions of the states f ∈ H3,2N over

the basis states, which are the eigenvectors of an arbitrary stationary complete

sets. Therefore, the corresponding representation of the space H3,2N, which is

related to such expansions, is often called as the generalized Fourier transfor-

mation.

By the way, the −→x -realization (5.8) of the states space is associated with the

non-stationary complete set of operators (−→x , sz, g). Therefore, the amplitudes

f 2N(t,−→x ) = d
†
2N f (t,−→x ) = U(t) f (0,−→x ) of the probability distribution over the

eigenvalues of this complete set depend on time t non-harmonically.

5.5.12. The Axiom on the Mean Value of the Operators

of Observables

Note that any apparatus can not fulfill the absolutely precise measurement of a

value of the physical quantity having continuous spectrum. Therefore, the cus-

tomary quantum-mechanical axiom about the possibility of “precise” measure-

ment, for example, of the coordinate (or another quantity with the continuous

spectrum), which is usually associated with the corresponding “reduction” of

the wave-packet, can be revisited. This assertion for the values with the con-

tinuous spectrum can be replaced by the axiom that only the mean value of

the operator of observable (or the corresponding complete set of observables)

is the experimentally observed for ∀ f ∈ H3,N. Such axiom, without any loss

of generality of consideration, unambiguously justifies the using of the sub-

space S3,N ⊂ H3,N as an approximative space of the physically realizable states

of the considered object. This axiom as well does not enforce the applica-

tion of the conception of the ray in H3,N (the set of the vectors eiα f with an

arbitrary-fixed real number α) as the state of the object. Therefore, the map-

ping (a, ω) → U(a, ω) in the formulas (5.20)–(5.22) for the P -representations
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in S3,N ⊂ H3,N is an unambiguous. Such axiom actually removes the problem

of the wave packet “reduction”, which discussion started from the well-known

von Neumann monograph [6]. Therefore, the subjects of the discussions of all

“paradoxes” of quantum mechanics, a lot of attention to which was paid in the

past century, are removed also.

The important conclusion about the RCQM is as follows. The consideration

of all aspects of this model is given on the basis of using only such conceptions

and quantities, which have the direct relation to the experimentally observable

physical quantities of this “elementary” physical system.

5.5.13. On the Principles of Heredity and the Correspondence

The explicit forms (5.58)–(5.63) of the main and additional conservation laws

demonstrate evidently that the model of RCQM satisfies the principles of the

heredity and the correspondence with the non-relativistic classical and quantum

theories. The deep analogy between RCQM and these theories for the physical

system with the finite number degrees of freedom (where the values of the free

dynamical conserved quantities are additive) is also evident.

Our new way of the Dirac equation derivation (section 9 in [38]) has been

started from the RCQM of the spin s=(1/2,1/2) particle-antiparticle doublet.

5.5.14. On the Second Quantization

This axiom is external (not internal) in the RCQM. It is necessary for quantum

field theory. The formalism of RCQM is complete without this axiom. The

reader can see the brief consideration in the end of subsection 5.7.2 below in the

details of the example of spin s=(1/2,1/2) particle-antiparticle doublet.

5.5.15. On the Physical Interpretation

The physical interpretation always is the final step in the arbitrary model of the

physical reality formulation. In the beginning of the interpretation is better to

recall the different formulations of the quantum theory collected, e.g., in [7].

The above considered model of physical reality is called the canonical quan-

tum mechanics due to the principles of the heredity and correspondence with

nonrelativistic Schrödinger quantum mechanics [6].
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The above considered canonical quantum mechanics is called the relativis-

tic canonical quantum mechanics due to its invariance with respect to the corre-

sponding representations of the Poincaré group P .

The above considered RCQM describes the spin (s,s) particle-antiparticle

doublet due to the corresponding eigenvalues in the equations like (5.66)–(5.68)

for the stationary complete set of operators and the explicit forms of the Casimir

operators (5.23), (5.24) of the corresponding Poincaré group P representation,

with respect to which the dynamical equation of motion is invariant.

The axioms of this section eventually need to be reconciled with three levels

of description used in this paper: RCQM, canonical FW and Dirac models.

Nevertheless, this interesting problem cannot be considered in few pages. The

readers of this paper can compare the axioms of RCQM given above with the

main principles of the Dirac model given in B. Thaller’s monograph [74] on the

high mathematical level.

5.6. Examples of Particle Singlets

5.6.1. Spin s=0

A brief scheme of the relativistic canonical quantum mechanics of the single

spin s=0 boson is considered.

The Schrödinger–Foldy equation is given by

i∂t f (x) =
√

m2 −∆ f (x), f = f 1, (5.73)

where f (x) is one component function. It is the spinless Salpeter equation.

The space of the states is as follows

S3,1 ⊂ H3,1 ⊂ S3,1∗. (5.74)

The general solution of the Schrödinger–Foldy equation (5.73) is given by

f (x) =
1

(2π)
3
2

Z

d3ka1(
−→
k )e−ikx, (5.75)

where notations

kx ≡ ω̃t −−→
k −→x , ω̃ ≡

√−→
k 2 +m2, (5.76)

are used.
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The equation on eigenvalue of the momentum operator has the form
−̂→p e−ikx =

−→
k e−ikx.

The function a1(
−→
k ) is the quantum-mechanical momentum amplitude of

the spinless boson.

The Schrödinger–Foldy equation (5.73) and the set {f} of its solutions (5.75)

are invariant with respect to the irreducible unitary spin s = 0 representation

(5.22) ( ĵµν = m̂µν) of the Poincaré group P . The corresponding generators of

the Lie algebra of the Poincaré group P are given by (5.25).

The validity of this assertion is verified by the three steps considered after

the formula (5.22) above. The corresponding Casimir operators have the form

p2 = p̂µ p̂µ = m2I2, W = 0. (5.77)

Hence, above a brief consideration of the RCQM foundations of the particle

with the mass m > 0 and the spin s = 0 (spinless boson) has been given.

5.6.2. Spin s=1/2

A brief scheme of the relativistic canonical quantum mechanics of the single

spin s=1/2 fermion is considered.

The Schrödinger–Foldy equation is given by

i∂t f (x) =
√

m2 −∆ f (x), f =

∣∣∣∣
f 1

f 2

∣∣∣∣ . (5.78)

The space of the states is as follows

S3,2 ⊂ H3,2 ⊂ S3,2∗. (5.79)

The generators of the SU(2)-spin have an explicit form

−→s =
1

2

−→σ ,
[
s j, s`

]
= iε j`nsn, (5.80)

where
−→
σ are the standard Pauli matrices

σ1 =

∣∣∣∣
0 1

1 0

∣∣∣∣ , σ2 =

∣∣∣∣
0 −i

i 0

∣∣∣∣ , σ3 =

∣∣∣∣
1 0

0 −1

∣∣∣∣ . (5.81)

The Casimir operator is given by

−→s 2 =
3

4
I2 =

1

2

(
1

2
+1

)
I2, I2 =

∣∣∣∣
1 0

0 1

∣∣∣∣ . (5.82)
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The general solution of the Schrödinger–Foldy equation (5.78) is given by

f (x) =
1

(2π)
3
2

Z

d3ke−ikx
[
a−+(

−→
k )d1 +a−−(

−→
k )d2

]
, (5.83)

where notations (5.76) are used. The orts of the 2-dimensional Cartesian basis

have the form

d1 =

∣∣∣∣
1

0

∣∣∣∣ , d2 =

∣∣∣∣
0

1

∣∣∣∣ . (5.84)

The solution (5.83) is associated with the stationary complete set of opera-

tors −̂→p , s3 = sz, g =−e of the momentum, spin projection and sign of the charge

of the spin 1/2 fermion, respectively.

The equations on the eigenvalues of the momentum operator −̂→p , spin pro-

jection operator s3 = 1
2

∣∣∣∣
1 0

0 −1

∣∣∣∣ and sign of the charge operator g are given

by
−̂→p e−ikxdr =

−→
k e−ikxdr, r = 1,2,

s3d1 =
1

2
d1, s3d2 = −1

2
d2, (5.85)

gd1 = −ed1, gd2 = −ed2.

The interpretation of the amplitudes a−+(
−→
k ), a−−(

−→
k ) of the general solution

(5.83) follows from equations (5.85). The functions a−+(
−→
k ), a−−(

−→
k ) are the

quantum-mechanical momentum-spin amplitudes of the fermion with charge -e

and the spin projection eigenvalues +1/2 and -1/2, respectively.

The Schrödinger–Foldy equation (5.78) and the set {f} of its solutions (5.83)

are invariant with respect to the irreducible unitary spin s = 1/2 representation

(5.22) of the Poincaré group P . The corresponding 2× 2 matrix-differential

generators are given by (5.20), (5.21), where the spin 1/2 SU(2) generators −→s =
(s`n) are given in (5.80).

The validity of this assertion is verified by the three steps considered after

the formula (5.22) above. The corresponding Casimir operators have the form

p2 = p̂µ p̂µ = m2I2, (5.86)

W = wµwµ = m2−→s 2 =
1

2

(
1

2
+1

)
m2I2, (5.87)
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where I2 is given in (5.82).

Hence, above a brief consideration of the RCQM foundations of the particle

with the mass m > 0 and the spin s = 1/2 (fermion with spin s = 1/2) has been

given.

5.6.3. Spin s=1

A brief scheme of the relativistic canonical quantum mechanics of the single

spin s=1 boson is considered.

The Schrödinger–Foldy equation is given by

i∂t f (x) =
√

m2 −∆ f (x), f =

∣∣∣∣∣∣

f 1

f 2

f 3

∣∣∣∣∣∣
. (5.88)

The space of the states is as follows

S3,3 ⊂ H3,3 ⊂ S3,3∗. (5.89)

The generators of the SU(2)-spin in the most spread explicit form are given

by

s1 =
1√
2

∣∣∣∣∣∣

0 1 0

1 0 1

0 1 0

∣∣∣∣∣∣
, s2 =

i√
2

∣∣∣∣∣∣

0 −1 0

1 0 −1

0 1 0

∣∣∣∣∣∣
, s3 =

∣∣∣∣∣∣

1 0 0

0 0 0

0 0 −1

∣∣∣∣∣∣
.

(5.90)

It is easy to verify that the commutation relations

[
s j, s`

]
= iε j`nsn (5.91)

of the SU(2)-algebra are valid.

The Casimir operator for this representation of the SU(2)-algebra is given

by

−→s 2 = 2I3 = 1(1+1) I3, I3 =

∣∣∣∣∣∣

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
. (5.92)

The general solution of the Schrödinger–Foldy equation (5.88) is given by

f (x) =
1

(2π)
3
2

Z

d3ke−ikx
[
c1(

−→
k )d1 +c2(

−→
k )d2 +c3(

−→
k )d3

]
, (5.93)
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where notations (5.76) are used. The orts of the 3-dimensional Cartesian basis

have the form

d1 =

∣∣∣∣∣∣

1

0

0

∣∣∣∣∣∣
, d2 =

∣∣∣∣∣∣

0

1

0

∣∣∣∣∣∣
, d3 =

∣∣∣∣∣∣

0

0

1

∣∣∣∣∣∣
. (5.94)

The solution (5.93) is associated with the stationary complete set −̂→p , s3 = sz

of the momentum and spin projection operators of the spin s=1 boson, respec-

tively.

The equations on the eigenvalues of the momentum operator −̂→p and spin

projection operator s3 =

∣∣∣∣∣∣

1 0 0

0 0 0

0 0 −1

∣∣∣∣∣∣
are given by

−̂→p e−ikxd j =
−→
k e−ikxd j; s3d1 = 1d1, s3d2 = 0, s3d3 = −1d3. (5.95)

The interpretation of the amplitudes c j(
−→
k ) in (5.93) follows from equa-

tions (5.95). The functions c1(
−→
k ), c2(

−→
k ), c3(

−→
k ) are the quantum-mechanical

momentum-spin amplitudes of the boson with the spin projection eigenvalues

+1, 0 and -1, respectively.

The Schrödinger–Foldy equation (5.88) and the set {f} of its solutions (5.93)

are invariant with respect to the irreducible unitary spin s = 1 representation

(5,22) of the Poincaré group P . The corresponding 3× 3 matrix-differential

generators are given by (5.20), (5.21), whereas the spin 1 SU(2) generators −→s =

(s`n) are given in (5.90).

The validity of this assertion is verified by the three steps already given after

formula (5.22) above. The corresponding Casimir operators have the form

p2 = p̂µ p̂µ = m2I3, (5.96)

W = wµwµ = m2−→s 2 = 1(1+1)m2I3, (5.97)

where I3 is given in (5.92).

Hence, above a brief consideration of the RCQM foundations of the particle

with the mass m > 0 and the spin s = 1 (boson with spin s = 1) has been given.
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5.6.4. Spin s=3/2

A brief scheme of the relativistic canonical quantum mechanics of the single

spin s=3/2 fermion is considered.

The Schrödinger–Foldy equation is given by

i∂t f (x) =
√

m2 −∆ f (x), f =

∣∣∣∣∣∣∣∣

f 1

f 2

f 3

f 4

∣∣∣∣∣∣∣∣
. (5.98)

The space of the states is as follows

S3,4 ⊂ H3,4 ⊂ S3,4∗. (5.99)

The generators of the SU(2)-spin in the most spread explicit form are given

by

s1 =
1

2

∣∣∣∣∣∣∣∣

0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

∣∣∣∣∣∣∣∣
, s2 =

i

2

∣∣∣∣∣∣∣∣

0 −
√

3 0 0√
3 0 −2 0

0 2 0 −
√

3

0 0
√

3 0

∣∣∣∣∣∣∣∣
,

(5.100)

s3 =
1

2

∣∣∣∣∣∣∣∣

3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

∣∣∣∣∣∣∣∣
.

It is easy to verify that the commutation relations
[
s j, s`

]
= iε j`nsn of the SU(2)-

algebra are valid.

The Casimir operator for this representation of the SU(2)-algebra is given

by

−→s 2 =
15

4
I4 =

3

2

(
3

2
+1

)
I4, I4 =

∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣
. (5.101)

The general solution of the Schrödinger–Foldy equation (37) is given by

f (x) =
1

(2π)
3
2

Z

d3ke−ikx
[
b1(

−→
k )d1 +b2(

−→
k )d2 +b3(

−→
k )d3 +b4(

−→
k )d4

]
,

(5.102)
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where notations (5.76) are used. The orts of 4-dimensional Cartesian basis have

the form

d1 =

∣∣∣∣∣∣∣∣

1

0

0

0

∣∣∣∣∣∣∣∣
, d2 =

∣∣∣∣∣∣∣∣

0

1

0

0

∣∣∣∣∣∣∣∣
, d3 =

∣∣∣∣∣∣∣∣

0

0

1

0

∣∣∣∣∣∣∣∣
, d4 =

∣∣∣∣∣∣∣∣

0

0

0

1

∣∣∣∣∣∣∣∣
. (5.103)

The solution (5.102) is associated with the stationary complete set of op-

erators −̂→p , s3 = sz, g = −e of the momentum, spin projection and sign of the

charge of spin s=3/2 fermion, respectively.

The equations on the eigenvalues of the momentum operator −̂→p , spin projec-

tion operator s3 = 1
2

∣∣∣∣∣∣∣∣

3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

∣∣∣∣∣∣∣∣
and sign of the charge operator g = −e

are given by
−̂→p e−ikxdᾱ =

−→
k e−ikxdᾱ, ᾱ = 1,2,3,4,

s3d1 =
3

2
d1, s3d2 =

1

2
d2, s3d3 = −1

2
d3, s3d4 = −3

2
d4. (5.104)

gdᾱ = −edᾱ.

The interpretation of the amplitudes bᾱ(
−→
k ) in (5.102) follows from equa-

tions (5.104). The functions b1(
−→
k ), b2(

−→
k ), b3(

−→
k , b4(

−→
k ) are the quantum-

mechanical momentum-spin amplitudes of the fermion with the spin projection

eigenvalues 3
2
, 1

2
, −1

2
, −3

2
, respectively.

The Schrödinger–Foldy equation (5.98) and the set {f} of its solutions

(5.102) are invariant with respect to the irreducible unitary spin s = 3/2 rep-

resentation (5.22) of the Poincaré group P . The corresponding 4× 4 matrix-

differential generators are given by (5.20). (5.21), where the spin 3/2 SU(2)

generators −→s = (s`n) are given in (5.100).

The validity of this assertion is verified by the three steps already explained

after the formula (5.22). The corresponding Casimir operators have the form

p2 = p̂µ p̂µ = m2I4, (5.105)

W = wµwµ = m2−→s 2 =
3

2

(
3

2
+1

)
m2I4, (5.106)
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where I4 is given in (5.101).

Hense, above a brief consideration of the RCQM foundations of the particle

with the mass m > 0 and the spin s = 3/2 has been given.

5.6.5. Spin s=2

A brief scheme of the relativistic canonical quantum mechanics of the single

spin s=2 boson is considered.

The Schrödinger–Foldy equation is given by

i∂t f (x) =
√

m2 −∆ f (x), f =

∣∣∣∣∣∣∣∣∣∣

f 1

f 2

f 3

f 4

f 5

∣∣∣∣∣∣∣∣∣∣

. (5.107)

The space of the states is as follows

S3,5 ⊂ H3,5 ⊂ S3,5∗. (5.108)

The generators of the SU(2)-spin in the most spread explicit form are given

by

s1 =
1

2

∣∣∣∣∣∣∣∣∣∣

0 2 0 0 0

2 0
√

6 0 0

0
√

6 0
√

6 0

0 0
√

6 0 2

0 0 0 2 0

∣∣∣∣∣∣∣∣∣∣

, s2 =
i

2

∣∣∣∣∣∣∣∣∣∣

0 −2 0 0 0

2 0 −
√

6 0 0

0
√

6 0 −
√

6 0

0 0
√

6 0 −2

0 0 0 2 0

∣∣∣∣∣∣∣∣∣∣

,

(5.109)

s3 =

∣∣∣∣∣∣∣∣∣∣

2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2

∣∣∣∣∣∣∣∣∣∣

.

It is easy to verify that the commutation relations
[
s j, s`

]
= iε j`nsn of the SU(2)-

algebra are valid.

The Casimir operator for this representation of the SU(2)-algebra is given

by
−→s 2 = 6I5 = 2(2+1) I5, (5.110)
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where I5 is the 5×5 unit matrix.

The general solution of the Schrödinger–Foldy equation (5.107) is given by

f (x) =
1

(2π)
3
2

Z

d3ke−ikx
[
g1(

−→
k )d1 +g2(

−→
k )d2 + ...+g5(

−→
k )d5

]
, (5.111)

where notations (5.76) are used. The orts of the 5-dimensional Cartesian basis

have the form

d1 =

∣∣∣∣∣∣∣∣∣∣

1

0

0

0

0

∣∣∣∣∣∣∣∣∣∣

, d2 =

∣∣∣∣∣∣∣∣∣∣

0

1

0

0

0

∣∣∣∣∣∣∣∣∣∣

, d3 =

∣∣∣∣∣∣∣∣∣∣

0

0

1

0

0

∣∣∣∣∣∣∣∣∣∣

, d4 =

∣∣∣∣∣∣∣∣∣∣

0

0

0

1

0

∣∣∣∣∣∣∣∣∣∣

d5 =

∣∣∣∣∣∣∣∣∣∣

0

0

0

0

1

∣∣∣∣∣∣∣∣∣∣

. (5.112)

The solution (5.111) is associated with the stationary complete set −̂→p , s3 =

sz of the momentum and spin projection operators of the spin 2 boson, respec-

tively.

The equations on eigenvalues of the momentum operator −̂→p and spin pro-

jection operator s3 =

∣∣∣∣∣∣∣∣∣∣

2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2

∣∣∣∣∣∣∣∣∣∣

are given by

−̂→p e−ikxdA =
−→
k e−ikxdA,

s3d1 = 2d1, s3d2 = 1d2, s3d3 = 0, s3d4 = −1d4, s3d5 = −2d5. (5.113)

The interpretation of the amplitudes gA(
−→
k ), A = 1,5 in

(5.111) follows from the equations (5.113). The functions

g1(
−→
k ), g2(

−→
k ), g3(

−→
k , g4(

−→
k ), g5(

−→
k ) are the quantum-mechanical momentum-

spin amplitudes of the boson with the spin s = 2, mass m > 0 and with the spin

projection eigenvalues 2, 1, 0,−1, −2, respectively.

The Schrödinger–Foldy equation (5.107) and the set {f} of its solutions

(5.111) are invariant with respect to the irreducible unitary spin s = 2 repre-

sentation (5.22) of the Poincaré group P . The corresponding 5 × 5 matrix-

differential generators are given by (5.20), (5.21), whereas the spin 2 SU(2)

generators −→s = (s`n) are given in (5.109).
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The validity of this assertion is verified by the three steps, which already are

described after the formula (5.22). The corresponding Casimir operators have

the form

p2 = p̂µ p̂µ = m2I5, (5.114)

W = wµwµ = m2−→s 2 = 2(2+1)m2I5, (5.115)

where I5 is the 5×5 unit matrix.

Hence, above a brief consideration of the RCQM foundations of the particle

with the mass m > 0 and the spin s = 2 has been given.

5.7. Examples of Particle-Antiparticle Doublets

5.7.1. Spin s=(0,0) Particle-Antiparticle Doublet

A brief scheme of the relativistic canonical quantum mechanics of the bosonic

particle-antiparticle doublet with spin s=0 is considered.

The Schrödinger–Foldy equation is given by

i∂t f (x) =
√

m2 −∆ f (x), f =

∣∣∣∣
f 1

f 2

∣∣∣∣ . (5.116)

The space of the states is as follows

S3,2 ⊂ H3,2 ⊂ S3,2∗, (5.117)

i.e., is the direct sum of two spaces (5.74).

The general solution of the Schrödinger–Foldy equation (5.73) is given by

f (x) =
1

(2π)
3
2

Z

d3ke−ikx
[
a1(

−→
k )d1 +a2(

−→
k )d2

]
, (5.118)

where the orts of two dimensional Cartesian basis have the form (5.84) and the

notations (5.76) are used.

The equation on eigenvalues of the momentum operator −̂→p has the form
−̂→p e−ikxdr =

−→
k e−ikxdr, r = 1,2,

The function a1(
−→
k ) is the quantum-mechanical momentum amplitude of

the spinless boson. The function a2(
−→
k ) is the quantum-mechanical momentum

amplitude of the corresponding antiparticle.
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The Schrödinger–Foldy equation (5.116) and the set {f} of its solutions

(5.118) are invariant with respect to the reducible unitary spin s = 0 representa-

tion (5.22) ( ĵµν = m̂µν) of the Poincaré group P . The corresponding generators

of the Lie algebra of the Poincaré group P are given by (5.25).

The validity of this assertion is verified by the three steps considered after

the formula (5.22) above. The corresponding Casimir operators have the form

p2 = p̂µ p̂µ = m2I2, W = 0. (5.119)

Hence, above a brief consideration of the RCQM foundations of the bosonic

particle-antiparticle doublet with the mass m > 0 and the spin s = 0 has been

given.

5.7.2. Spin s=(1/2,1/2) Particle-Antiparticle Doublet

A brief scheme of the relativistic canonical quantum mechanics of the fermionic

spin s=(1/2,1/2) particle-antiparticle doublet is considered.

For the fermionic spin s=(1/2,1/2) particle-antiparticle doublet the system of

two 2-component equations (5.78) should be used. Therefore, the corresponding

Schrödinger–Foldy equation is given by

(i∂0− ω̂) f (x) = 0, f =

∣∣∣∣∣∣∣∣

f 1

f 2

f 3

f 4

∣∣∣∣∣∣∣∣
. (5.120)

Here the operator ω̂≡
√
−∆+m2 is the relativistic analog of the energy operator

(Hamiltonian) of nonrelativistic quantum mechanics.

Thus, for the fermionic spin s=(1/2,1 /2) particle-antiparticle doublet the

system of two 2-component equations (i∂0− ω̂) f (x) = 0 and (i∂0− ω̂) f (x) = 0

is used. Therefore, the corresponding Schrödinger–Foldy equation is given by

(5.120), where the 4-component wave function is the direct sum of the particle

and antiparticle wave functions, respectively. Due to the historical tradition of

the physicists the antiparticle wave function is put in the down part of the 4-

column.

The general solution of the Schrödinger–Foldy equation of motion (5.120)

has the form

f (x) =

∣∣∣∣
fpart

fantipart

∣∣∣∣=
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1

(2π)
3
2

Z

d3ke−ikx
[
a−+(

−→
k )d1 +a−−(

−→
k )d2 +a+

−(
−→
k )d3 +a+

+(
−→
k )d4

]
, (5.121)

where the orts {dᾱ} of the 4-component Cartesian basis are given in (5.103) and

the notations (5.76) are used.

The comparison of the general solution (5.121) of the Schrödinger–Foldy

equation with the general solution (4.28) of the FW equation demonstrates the

advantages of (5.121) in the quantum-mechanical interpretation. Indeed, here in

the framework of RCQM the positive and negative frequency terms are absent

in the solution. Therefore, the negative energies, which are the consequences of

corresponded frequency part of the solution, are absent as well.

The space of the states in the RCQM of the spin s=(1/2,1/2) particle-

antiparticle doublet is the rigged Hilbert space

S3,4 ⊂ H3,4 ⊂ S3,4∗, (5.122)

i.e., is the direct sum of two spaces (5.79). Here the Hilbert space H3,4 in its
−→x -realization is defined as

H3,4 = L2(R3)⊗C⊗4 = { f = ( f α) : R3 → C⊗4,

Z

d3x| f (t,−→x )|2 < ∞}, (5.123)

of complex-valued 4-component square-integrable functions of x ∈ R3 ⊂
M(1,3) (similarly, in momentum, −→p -realization). Here −→x and −̂→p are the op-

erators of canonically conjugated dynamical variables of the spin s=(1/2,1/2)

particle-antiparticle doublet, and the vectors f , f̃ in −→x - and −→p -realizations are

linked by the 3-dimensional Fourier transformation (the variable t is the param-

eter of time-evolution).

Thus, in the model under consideration information about the positive and

equal masses of the particle and antiparticle is inserted. Further, information

that the observer sees the antiparticle as the mirror reflection of the particle is

also inserted. Therefore, the charge of the antiparticle should be opposite in

sign to that of the particle, and the spin projection of the antiparticle should be

opposite in sign to the spin projection of the particle.
Therefore, according to these principles, the corresponding SU(2)-spin gen-

erators are taken in the form

s1 =
1

2

∣∣∣∣∣∣∣∣

0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

∣∣∣∣∣∣∣∣
, s2 =

1

2

∣∣∣∣∣∣∣∣

0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0

∣∣∣∣∣∣∣∣
, s3 =

1

2

∣∣∣∣∣∣∣∣

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

∣∣∣∣∣∣∣∣
.

(5.124)
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The matrices (5.124) can also be presented in the following useful form

−→s =
1

2

∣∣∣∣
−→σ 0

0−C
−→σ C

∣∣∣∣ , (5.125)

where
−→σ are the standard Pauli matrices (5.81), C is the operator of complex

conjugation, the operator of involution in H3,4, I2 is explained in (5.82).

In the choice of the spin (5.124)=(5.125) the principle of correspondence

and heredity with the FW representation is used, where the particle-antiparticle

doublet spin operator is given by

−→
s FW =

1

2

∣∣∣∣
−→σ 0

0
−→
σ

∣∣∣∣ . (5.126)

The link between the spins (5.125) and (5.126) is given by the transforma-

tion operator v (2.49) (note that transformation v is valid for the case of anti-

Hermitian form of spins (5.125), (5.126)).

The spin matrices (5.125), (5.126) satisfy the commutation relations[
s j, sl

]
= iε jlnsn, ε123 = +1, of the algebra of SU(2) group, where ε jln is the

Levi-Civita tensor and s j = ε j`ns`n are the Hermitian 4× 4 matrices (5.125),

(5.126) – the generators of a 4-dimensional reducible representation of the spin

group SU(2) (universal covering of the SO(3)⊂SO(1,3) group).

The Casimir operator for the RCQM representation of SU(2) spin given in

(5.125) has the form

−→s 2 =
3

4
I4 =

1

2
(

1

2
+1)I4, (5.127)

where I4 is 4×4 unit matrix.

The RCQM spin (5.124)=(5.125) in quantum-mechanical interpretation has

the advantage in comparison with the FW spin (5.126). Indeed, for the spin

(5.124)=(5.125) the spin projection of the antiparticle is opposite in sign to the

spin projection of the particle, i.e., here, contrary to the FW representation, the

observer sees the antiparticle as the mirror reflection of the particle.

Further, information that the observer sees the antiparticle as the mirror re-

flection of the particle is also inserted. Therefore, the charge of the antiparticle

should be opposite in sign to that of the particle, and the spin projection of

the antiparticle should be opposite in sign to the spin projection of the particle.

The stationary complete set of operators can be chosen in the terms of operators
−̂→p , s3 = sz, g = −e of the momentum, spin projection and sign of the charge of
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the spin 1/2 particle-antiparticle doublet, respectively. The equations on eigen

vectors and eigenvalues of the operators of this stationary complete set have the

form
−̂→p e−ikxdᾱ =

−→
k e−ikxdᾱ, ᾱ = 1,2,3,4, (5.128)

s3d1 =
1

2
d1, s3d2 = −1

2
d2, s3d3 = −1

2
d3, s3d4 =

1

2
d4, (5.129)

gd1 = −ed1, gd2 = −ed2, gd3 = ed3, gd4 = ed4, (5.130)

where the Cartesian orts {dᾱ} are given in (5.103).

The interpretation of the amplitudes in the general solution (5.121) follows

from equations (5.128)–(5.130). Thus, the functions a−+(
−→
k ), a−−(

−→
k ) are the

momentum-spin amplitudes of the particle (e.g., electron) with the momentum
−̂→p , sign of the charge (−e) and spin projections (1

2 , −1
2 ), respectively. Further,

the functions a+
−(

−→
k ), a+

+(
−→
k ) in (5.121) are the momentum-spin amplitudes of

the antiparticle (e.g., positron) with the momentum −̂→p , sign of the charge (+e)

and spin projections (−1
2
, 1

2
), respectively.

Thus, the conclusion about the fermionic spin s=(1/2,1/2) features of so-

lution (5.121) (i.e., the interpretation of the solution (5.121)) follows from the

equations (5.128)–(5.130) and the above given interpretation of the amplitudes.

The relativistic invariance of the model (implementation of the special rel-

ativity is ensured by the proof of the invariance of the Schrödinger–Foldy

equation (5.120) with respect to the unitary representation (5.22) of the uni-

versal covering P ⊃ L=SL(2,C) of the proper ortochronous Poincaré group

P
↑
+ = T(4)×)L

↑
+ ⊃ L

↑
+. Here L = SL(2,C) is the universal covering of proper

ortochronous Lorentz group L
↑
+.

The generators of the fermionic (P f) representation of the group P , with

respect to which the Schrödinger–Foldy equation (5.120) is invariant, are given

by (5.20), (5.21) in the −→x -realization of the space H3,4 (5.123) and by

p0 = ω̃, p` = k`, j̃`n = x̃`kn − x̃nk` + s`n; (x̃` = −i∂̃`, ∂̃` ≡
∂

∂k`
), (5.131)

j̃0` = − j̃`0 = tkl −
1

2
{x̃`, ω̃}−

(
s`nkn

ω̃+m
≡ ˘̃s`

)
, ω̃ ≡

√−→
k 2 +m2, (5.132)
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in the momentum
−→
k -realization H̃3,4 of the doublet states space, respectively.

The explicit form of the spin terms s`n in the expressions (5.20), (5.21), (5.131),

(5.132), which is used for the spin s=(1/2,1/2) particle-antiparticle doublet, is

given in the definition (5.124).

Despite the manifestly non-covariant forms (5.20), (5.21), (5.131), (5.132)

of the P f-generators, they satisfy the commutation relations of the P algebra in

the manifestly covariant form (3.4).

The P f-representation of the group P in the space H3,4 (5.123) is given by

a converged in this space exponential series (5.22) or, in the momentum space

H̃3,4, by a corresponding exponential series given in terms of the generators

(5.131), (5.132).

The corresponding Casimir operators have the form

p2 = p̂µ p̂µ = m2I4, (5.133)

W = wµwµ = m2−→s 2 =
1

2

(
1

2
+1

)
m2I4, (5.134)

where −→s is given in (5.124)=(5.125) and I4 is 4×4 unit matrix.

Hense, above a brief consideration of the RCQM foundations of the particle-

antiparticle fermionic doublet with the mass m > 0 and the spin s=(1/2,1/2) has

been given.

Finally, consider briefly the program of the canonical quantization of the

spin s = (1/2,1/2) RCQM model. Note that the expression for the total energy

P0 plays a special role in the procedure of a so called “second quantization”. In

the RCQM spin s = (1/2,1/2) doublet model, as it is evident from the expres-

sion for the P0 in (5.60) in terms of the charge sign-momentum-spin amplitudes

P
QM
0 =

Z

d3kω

(∣∣∣a−r (
−→
k )
∣∣∣
2

+
∣∣∣a+

ŕ (
−→
k )
∣∣∣
2
)
≥ m > 0,

the energy is positive. The same assertion is valid for the amplitudes related

to the arbitrary-fixed stationary complete set of operators. Furthermore, the

operator P̂0 of the quantized energy corresponding to above given expression

for P
QM
0 is a positive-valued operator. The explicit form of the operator P̂0

follows from the expression for P
QM
0 after the anticommutation quantization of

the amplitudes {
âᾱ(

−→
k ), â†

β̄
(
−→
k )
}

= δᾱβ̄δ
(−→

k −−→
k ′
)
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(other operators anticommute) and their substitution a∓ → â∓ into the formula

for P
QM
0 . Note that the quantized amplitudes determine the Fock space H F (over

the quantum-mechanical space H3,4). Moreover, the operators of dynamical

variables P̂µ, Ĵµν in H F, which are expressed according to formulae (5.60) in

terms of the operator amplitudes âᾱ(
−→
k ), â

†

β̄
(
−→
k ), automatically have the form

of “normal products” and satisfy the commutation relations (3.4) of the P group

in the Fock space H F. Operators P̂µ, Ĵµν determine the corresponding unitary

representation in H F. Other details are not the subject of this consideration.

5.7.3. Spin s=(1,1) Particle-Antiparticle Bosonic Doublet

A brief scheme of the relativistic canonical quantum mechanics of the 6-

component spin s=(1,1) particle-antiparticle bosonic doublet is considered.

For the bosonic spin s=(1,1) particle-antiparticle doublet the system of two

3-component equations (5.88) should be used. Therefore, the corresponding

Schrödinger–Foldy equation is given by

(i∂0− ω̂) f (x) = 0, f =

∣∣∣∣∣∣∣∣∣∣∣∣

f 1

f 2

f 3

f 4

f 5

f 6

∣∣∣∣∣∣∣∣∣∣∣∣

, (5.135)

where the pseudo-differential operator ω̂ is given in (5.3)–(5.5). In (5.135), the

6-component wave function is the direct sum of the particle and antiparticle

wave functions, whereas the particle wave function has the form (5.93). Ac-

cording to the quantum-mechanical tradition the antiparticle wave function is

put into the bottom part of the 6-column.

Therefore, the general solution of the Schrödinger–Foldy equation (5.135)

has the form

f (x) =

∣∣∣∣
fpart

fantipart

∣∣∣∣=

1

(2π)
3
2

Z

d3ke−ikx
[
c1(

−→
k )d1 +c2(

−→
k )d2 + ...+c5(

−→
k )d5 +c6(

−→
k )d6

]
, (5.136)
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where the orts of the 6-component Cartesian basis are given by

d1 =

∣∣∣∣∣∣∣∣∣∣∣∣

1

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣

, d2 =

∣∣∣∣∣∣∣∣∣∣∣∣

0

1

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣

, d3 =

∣∣∣∣∣∣∣∣∣∣∣∣

0

0

1

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣

, d4 =

∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

1

0

0

∣∣∣∣∣∣∣∣∣∣∣∣

, d5 =

∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

1

0

∣∣∣∣∣∣∣∣∣∣∣∣

d6 =

∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

1

∣∣∣∣∣∣∣∣∣∣∣∣

. (5.137)

Hence, the space of the states in the RCQM of the spin s=(1,1) particle-

antiparticle doublet is the rigged Hilbert space

S3,6 ⊂ H3,6 ⊂ S3,6∗, (5.138)

i.e., is the direct sum of two spaces (5.89).

Thus, in the model under consideration information about the positive and

equal masses of the particle and antiparticle is inserted. Further, information

that the observer sees the antiparticle as the mirror reflection of the particle is

also inserted. Therefore, the charge of the antiparticle should be opposite in

sign to that of the particle, and the spin projection of the antiparticle should be

opposite in sign to the spin projection of the particle.

Therefore, according to these principles, the corresponding SU(2)-spin gen-

erators are taken in the form

s1 =
1√
2

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0

1 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 −1 0

0 0 0 −1 0 −1

0 0 0 0 −1 0

∣∣∣∣∣∣∣∣∣∣∣∣

, s2 =
1√
2

∣∣∣∣∣∣∣∣∣∣∣∣

0 −i 0 0 0 0

i 0 −i 0 0 0

0 i 0 0 0 0

0 0 0 0 −i 0

0 0 0 i 0 −i

0 0 0 0 i 0

∣∣∣∣∣∣∣∣∣∣∣∣

,

s3 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

. (5.139)

The matrices (5.139) can also be presented in the following useful form

−→s =

∣∣∣∣
−→
s 3 0

0 −C−→s 3C

∣∣∣∣ , (5.140)
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where the 3×3-matrices −→s 3 are given in (5.90) and C is the operator of complex

conjugation.

It is easy to verify that for the operators (5.139), (5.140) the commutation

relations
[
s j, s`

]
= iε j`nsn of the SU(2)-algebra are valid.

The Casimir operator for this reducible representation of the SU(2)-algebra

is given by
−→
s 2 = 2I6 = 1(1+1) I6, (5.141)

where I6 is the 6×6- unit matrix.

The solution (5.136) is associated with the stationary complete set −̂→p , s3 =

sz of the momentum and spin projection operators of the spin s=(1,1) bosonic

particle-antiparticle doublet.

The equations on the momentum operator eigenvalues have the form

−̂→p e−ikxdA =
−→
k e−ikxdA, A = 1,6, (5.142)

and the equations on the spin projection operator s3 =∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0

0 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

eigenvalues are given by

s3d1 = d1, s3d2 = 0, s3d3 = −d3, s3d4 = −d4, s3d5 = 0, s3d6 = d6. (5.143)

Therefore, the functions c1(
−→
k ),c2(

−→
k ),c3(

−→
k ) in the solution (5.136) are

the momentum-spin amplitudes of the particle (boson) with the momentum
−̂→p and spin projection eigenvalues (+1, 0, -1), respectively, and the functions

c4(
−→
k ),c5(

−→
k ),c6(

−→
k ) are the momentum-spin amplitudes of the antiparticle

with the momentum −̂→p and spin projection eigenvalues (-1, 0, +1), respectively.

Note that for the bosons having charge (W∓ bosons) the stationary complete

set includes the sign charge operator and the additional equation on eigenvectors

and eigenvalues of this operator is valid. As soon as the W+ boson is considered

as the antiparticle for the W− boson, the sign charge operator is determined in

the form g = −Γ0
6 =

∣∣∣∣
−I3 0

0 I3

∣∣∣∣ . The corresponding equations on eigenvalues

are given by gd1 =−ed1, gd2 =−ed2, gd3 =−ed3, gd4 = ed4, gd5 = ed5, gd6 =
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ed6. In this case the functions c1(
−→
k ), c2(

−→
k ), c3(

−→
k ) in the solution (5.136) are

the charge-momentum-spin amplitudes of the particle (boson) with the charge

−e, momentum −̂→p and spin projection eigenvalues (+1, 0, -1), respectively, and

the functions c4(
−→
k ), c5(

−→
k ), c6(

−→
k ) are the charge-momentum-spin amplitudes

of the antiparticle with the charge +e, momentum −̂→p and spin projection eigen-

values (-1, 0, +1), respectively.

The Schrödinger–Foldy equation (5.135) and the set {f} of its solutions

(5.136) are invariant with respect to the reducible unitary bosonic representa-

tion (5.22) of the Poincaré group P . The corresponding 6×6 matrix-differential

generators are given by (5.20), (5.21), whereas the spin s=(1,1) SU(2) genera-

tors −→s = (s`n) are given in (5.139), (5.140).

The proof of this assertion is fulfilled by the three steps already described

after formula (5.22). The corresponding Casimir operators have the form

p2 = p̂µ p̂µ = m2I6, (5.144)

W = wµwµ = m2−→s 2 = 1(1+1)m2I6, (5.145)

where I6 is the 6×6 unit matrix.

Hense, above a brief consideration of the RCQM foundations of the particle-

antiparticle doublet with the mass m > 0 and the spin s=(1,1) has been given. In

the limit m=0 this model describes the particular case of the photon-antiphoton

doublet.

5.7.4. Spin s=(3/2,3/2) Particle-Antiparticle Fermionic Doublet

A brief scheme of the relativistic canonical quantum mechanics of the 8-

component fermionic spin s=(3/2,3/2) particle-antiparticle doublet is consid-

ered.

This model is constructed in complete analogy with the RCQM of the 4-

component spin s=(1/2,1/2) particle-antiparticle doublet, which is given in the

subsection 5.7.2. Moreover, the principles of constructing and describing such

particle-antiparticle multiplet within the framework of the RCQM are in a com-

plete analogy with the principles of the describing and the constructing of the

spin s=(1,1) particle-antiparticle doublet considered in subsection 5.7.3. The

difference is only in the dimensions of the corresponding spaces and matrices.
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Therefore, the details can be omitted. The model below is useful for the Σ-

hyperon description.

The 8-component fermionic spin s=(3/2,3/2) particle-antiparticle doublet is

constructed as the direct sum of the two spin s=3/2 singlets. The spin s=3/2

singlet was considered in the subsection 5.6.4.

The most important fact is that here the link with the Dirac-like equation is

similar to that between the spin s=(1/2,1/2) particle-antiparticle doublet and the

standard 4-component Dirac equation. Therefore, the spin s=(3/2,3/2) particle-

antiparticle doublet is of special interest.

The Schrödinger–Foldy equation and the space of states are given by

(i∂0− ω̂) f (x) = 0, f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f 1

f 2

f 3

f 4

f 5

f 6

f 7

f 8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (5.146)

(operator ω̂ is given in (5.3)–(5.5))

S3,8 ⊂ H3,8 ⊂ S3,8∗. (5.147)

The general solution of the equation (5.146) for the spin s=(3/2,3/2) particle-

antiparticle doublet is given by

f (x) =

∣∣∣∣
fpart

fantipart

∣∣∣∣=
1

(2π)
3
2

Z

d3ke−ikxbA(
−→
k )dA, A = 1,8, (5.148)

where the orts of the 8-component Cartesian basis have the form

d1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

1

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

1

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,d4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

1

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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d5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

1

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

1

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d7 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,d8 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

0

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.149)

The generators of the corresponding SU(2)-spin that satisfy the commuta-

tion relations (5.91) of the SU(2) algebra are as follows

−→s 8 =

∣∣∣∣
−→
s 0

0 −C−→s C

∣∣∣∣ , (5.150)

where CI4 is the diagonal 4× 4 operator of the complex conjugation and the

matrices −→s for the single spin s=3/2 particle are given in (5.100). In the explicit

form the SU(2) spin operators (5.150) are given by

s1
8 =

1

2
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
√

3 0 0 0 0 0 0√
3 0 2 0 0 0 0 0

0 2 0
√

3 0 0 0 0

0 0
√

3 0 0 0 0 0

0 0 0 0 0 −
√

3 0 0

0 0 0 0 −
√

3 0 −2 0

0 0 0 0 0 −2 0 −
√

3

0 0 0 0 0 0 −
√

3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

s2
8 =

i

2
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −
√

3 0 0 0 0 0 0√
3 0 −2 0 0 0 0 0

0 2 0 −
√

3 0 0 0 0

0 0
√

3 0 0 0 0 0

0 0 0 0 0 −
√

3 0 0

0 0 0 0
√

3 0 −2 0

0 0 0 0 0 2 0 −
√

3

0 0 0 0 0 0
√

3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (5.151)
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s3
8 =

1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −3 0 0 0 0

0 0 0 0 −3 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The Casimir operator has the form of the following 8×8 diagonal matrix

−→s 2 =
15

4
I8 =

3

2

(
3

2
+1

)
I8, (5.152)

where I8 is the 8×8 unit matrix.
The stationary complete set of operators is given by

g =

∣∣∣∣
−I4 0

0 I4

∣∣∣∣ , p̂ j = −i∂ j, s3
8 =

1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −3 0 0 0 0

0 0 0 0 −3 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(5.153)

where g is the charge sign operator, −̂→p = (p̂ j) is the momentum operator and

s3
8 = sz is the operator of the spin (5.151) projection on the axis z.

The equations on the eigenvalues of the operators g, −̂→p , s3
8 = sz have the

form

gd1 = −d1, gd2 = −d2, gd3 = −d3, gd4 = −d4,

gd5 = +d5, gd6 = +d6, gd7 = +d7, gd8 = +d8, (5.154)

−̂→p e−ikxdA =
−→
k e−ikxdA, A = 1,8, (5.155)

s3
8d1 =

3

2
d1, s3

8d2 =
1

2
d2, s3

8d3 = −1

2
d3, s3

8d4 = −3

2
d4,

s3
8d5 = −3

2
d5, s3

8d6 = −1

2
d6, s3

8d7 =
1

2
d7, s3

8d8 =
3

2
d8. (5.156)
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Therefore, the functions b1(
−→
k ), b2(

−→
k ), b3(

−→
k ), b4(

−→
k ) in solution (5.148)

are the momentum-spin amplitudes of the massive fermion with the spin s=3/2

and the spin projection (3/2,1/2,−1/2,−3/2), respectively; b5(
−→
k ), b6(

−→
k ),

b7(
−→
k ), b8(

−→
k ) are the momentum-spin amplitudes of the antiparticle (an-

tifermion) with the spin s=3/2 and the spin projection (−3/2,−1/2,1/2,3/2),

respectively.

The Schrödinger–Foldy equation (5.146) (and the set {f} of its solutions

(5.148)) is invariant with respect to the reducible unitary fermionic representa-

tion (5.22) of the Poincaré group P , whose Hermitian 8×8 matrix-differential

generators are given by (5.20), (5.21), where the spin s=(3/2,3/2) SU(2) gener-

ators −→s = (s`n) are given in (5.150), (5.151).

The proof is similar to that given after formula (5.22). The Casimir operators

of this reducible fermionic spin s=(3/2,3/2) representation of the group P have

the form

p2 = p̂µ p̂µ = m2I8, (5.156)

W = wµwµ = m2−→s 2
8 =

3

2

(
3

2
+1

)
m2I8, (5.157)

where I8 is the 8×8 unit matrix.

Thus, above the foundations of the RCQM of the 8-component spin

s=(3/2,3/2) particle-antiparticle doublet are considered briefly. It is the basis for

the transition to the covariant local field theory of the spin s=(3/2,3/2) particle-

antiparticle doublet given below.

5.7.5. Spin s=(2,2) Particle-Antiparticle Bosonic Doublet

A brief scheme of the relativistic canonical quantum mechanics of the 10-

component spin s=(2,2) particle-antiparticle bosonic doublet is considered.

This model is constructed in complete analogy with the RCQM of the

4-component spin s=(1/2,1/2) particle-antiparticle doublet (subsection 5.7.2),

spin s=(1,1) particle-antiparticle doublet (subsection 5.7.3) and spin s=(3/2,3/2)

particle-antiparticle doublet (subsection 5.7.4). The most close analogy is

with the model of bosonic spin s=(1,1) particle-antiparticle doublet (subsection

5.7.3).

For the bosonic spin s=(2,2) particle-antiparticle doublet the system of two

5-component equations (5.107) should be used. Therefore, the corresponding
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Schrödinger–Foldy equation is given by

(i∂0 − ω̂) f (x) = 0, f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f 1

f 2

f 3

f 4

f 5

f 6

f 7

f 8

f 9

f 10

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (5.158)

where the pseudo-differential operator ω̂ is given in (5.3)–(5.5). In (5.158), the

10-component wave function is the direct sum of the particle and antiparticle

wave functions, whereas the particle wave function has the form (5.109). Ac-

cording to the quantum-mechanical tradition the antiparticle wave function is

put into the bottom part of the 10-column.

Therefore, the general solution of the Schrödinger–Foldy equation (5.158)

has the form

f (x) =

∣∣∣∣
fpart

fantipart

∣∣∣∣=
1

(2π)
3
2

Z

d3ke−ikxgA(
−→
k )dA, A = 1,10, (5.159)

where the orts of the 10-component Cartesian basis are given by

d1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

0

0

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

1

0

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

1

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

1

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

1

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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d6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

1

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d7 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

1

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d8 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

0

1

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d9 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

0

0

1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d10 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

0

0

0

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.160)

Hence, the space of the states in the RCQM of the spin s=(2,2) particle-

antiparticle doublet is the rigged Hilbert space

S3,10 ⊂ H3,10 ⊂ S3,10∗, (5.161)

i.e., is the direct sum of two spaces (5.108).

Thus, in the model under consideration information about the positive and

equal masses of the particle and antiparticle is inserted. Further, information

that the observer sees the antiparticle as the mirror reflection of the particle is

also inserted. Therefore, the charge of the antiparticle should be opposite in sign

to that of the particle (in the case of the existence of the charge), and the spin

projection of the antiparticle should be opposite in sign to the spin projection of

the particle.

Therefore, according to these principles the corresponding SU(2)-spin gen-

erators are taken in the form

−→s 10 =

∣∣∣∣
−→s 5 0

0 −C−→s 5C

∣∣∣∣ , (5.162)

where the 5× 5-matrices −→s 5 are given in (5.109) and CI5 is 5 × 5 diagonal

matrix operator of complex conjugation.

It is easy to verify that for the operators (5.162) the commutation relations[
s j, s`

]
= iε j`nsn of the SU(2)-algebra are valid.
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In the explicit form the SU(2) spin operators (5.162) are given by

s1
10 =

1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2 0 0 0 0 0 0 0 0

2 0
√

6 0 0 0 0 0 0 0

0
√

6 0
√

6 0 0 0 0 0 0

0 0
√

6 0 2 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 −2 0 0 0

0 0 0 0 0 −2 0 −
√

6 0 0

0 0 0 0 0 0 −
√

6 0 −
√

6 0

0 0 0 0 0 0 0 −
√

6 0 −2

0 0 0 0 0 0 0 0 −2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

s2
10 =

i

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −2 0 0 0 0 0 0 0 0

2 0 −
√

6 0 0 0 0 0 0 0

0
√

6 0 −
√

6 0 0 0 0 0 0

0 0
√

6 0 −2 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 −2 0 0 0

0 0 0 0 0 2 0 −
√

6 0 0

0 0 0 0 0 0
√

6 0 −
√

6 0

0 0 0 0 0 0 0
√

6 0 −2

0 0 0 0 0 0 0 0 2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(5.163)

s3
10 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0

0 0 0 0 −2 0 0 0 0 0

0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The Casimir operator for this reducible representation of the SU(2)-algebra

is given by
−→s 2 = 6I10 = 2(2+1) I10, (5.164)
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where I10 is the 10×10 unit matrix.

The solution (5.159) is associated with the stationary complete set −̂→p , s3 =
sz of the momentum and spin projection operators of the spin s=(2,2) bosonic

particle-antiparticle doublet.

The equations on the momentum operator eigenvalues have the form

−̂→p e−ikxdA =
−→
k e−ikxdA, A = 1,10, (5.165)

and the equations on the spin projection operator s3
10 (5.163) eigenvalues are

given by

s3
10d1 = 2d1, s3

10d2 = d2, s3
10d3 = 0, s3

10d4 = −d4, s3
10d5 = −2d5,

s3
10d6 = −2d6, s3

10d7 = −d7, s3
10d8 = 0, s3

10d9 = d9, s3
10d10 = 2d10. (5.166)

Therefore, the functions g1(
−→
k ), g2(

−→
k ), g3(

−→
k ), g4(

−→
k ), g5(

−→
k ) in the solu-

tion (5.159) are the momentum-spin amplitudes of the particle (boson) with the

momentum −̂→p and spin projection eigenvalues (+2, +1, 0, -1, -2), respectively,

and the functions g6(
−→
k ), g7(

−→
k ), g8(

−→
k ), g9(

−→
k ), g10(

−→
k ) are the momentum-

spin amplitudes of the antiparticle with the momentum −̂→p and spin projection

eigenvalues (-2, -1, 0, +1, +2), respectively.

The Schrödinger–Foldy equation (5.158) and the set {f} of its solutions

(5.159) are invariant with respect to the reducible unitary bosonic representation

(5.22) of the Poincaré group P . The corresponding 10×10 matrix-differential

generators are given by (5.20), (5.21), whereas the spin s=(2,2) SU(2) genera-

tors −→s = (s`n) are given in (5.162), (5.163).

The proof of this assertion is fulfilled by the three steps already explained

after the formula (5.22). The corresponding Casimir operators have the form

p2 = p̂µ p̂µ = m2I10, (5.167)

W = wµwµ = m2−→s 2
10 = 2(2+1)m2I10, (5.168)

where I10 is the 10×10 unit matrix.

Hense, above a brief consideration of the RCQM foundations of the particle-

antiparticle doublet with the mass m > 0 and the spin s=(2,2) has been given. In
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the limit m=0 this model describes the partial case of the graviton-antigraviton

doublet. The hypothesis about the massive graviton and the problems of the

gravity in general are out of this consideration.

5.8. Examples of Particle Multiplets

5.8.1. Spin s=(1,0) Particle Multiplet

A brief scheme of the relativistic canonical quantum mechanics of the spin

s=(1,0) bosonic multiplet is considered.

In this case both partners of the multiplet are the ordinary particles. There-

fore, specification of the antiparticle, which is the content of the previous sec-

tion, is absent. Hence, the model of the spin s=(1,0) multiplet is constructed

as the ordinary direct sum of the spin s=1 and spin s=0 singlets. The last one

is described by the one component Schrödinger–Foldy equation also called the

spinless Salpeter equation [13, 26, 36]. As shown in [50–53], this s=(1,0) mul-

tiplet is directly linked with the spin s=(1/2,1/2) particle-antiparticle doublet (in

particular, with the e−e+ doublet).

Thus, the corresponding Schrödinger–Foldy equation has the form (5.98),

where the s=0 contribution is taken as the f 4 component of the column. This

equation is similar to that for the spin s=(1/2,1/2) particle-antiparticle doublet.

Therefore, equation (5.98) for the case s=(1,0) should be considered in the same

space of the states

S3,4 ⊂ H3,4 ⊂ S3,4∗, (5.169)

where the Schrödinger–Foldy equation for the spin s=(1/2,1/2) particle-

antiparticle doublet is determined. Moreover, equation of motion for s=(1,0)

multiplet and the rigged Hilbert space (5.169) are similar to equation and the

space of states for the spin s=3/2 particle singlet.

The general solution of the Schrödinger–Foldy equation (5.98) for the case

s=(1,0) is given by

f (x) =
1

(2π)
3
2

Z

d3ke−ikx
[
c1(

−→
k )d1 +c2(

−→
k )d2 +c3(

−→
k )d3 +c4(

−→
k )d4

]
,

(5.170)

where notations (5.76) are used. The orts of the 4-dimensional Cartesian basis

have the form (5.103).
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The generators of the corresponding SU(2)-spin that satisfy the commuta-
tion relations (5.91) of the SU(2) algebra are given by

s1 =
1√
2

∣∣∣∣∣∣∣∣

0 1 0 0

1 0 1 0

0 1 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, s2 =

1√
2

∣∣∣∣∣∣∣∣

0 −i 0 0

i 0 −i 0

0 i 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, s3 =

∣∣∣∣∣∣∣∣

1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

∣∣∣∣∣∣∣∣
.

(5.171)

The Casimir operator for this reducible representation of the SU(2)-algebra is

given by

−→s 2 = 2

∣∣∣∣
I3 0

0 0

∣∣∣∣ =
∣∣∣∣

1(1+1)I3 0

0 0

∣∣∣∣ , (5.172)

where I3 is 3×3 unit matrix.

The stationary complete set of operators is given by −̂→p , s3 = sz The equa-

tions on the eigenvalues of the spin projection operator s3 =

∣∣∣∣∣∣∣∣

1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

∣∣∣∣∣∣∣∣
have the form

s3d1 = d1, s3d2 = 0, s3d3 = −d3, s3d4 = 0. (5.173)

The equation on the eigenvalues of the momentum operator −̂→p is the same

as in (5.128).

Interpretation of the amplitudes cα(
−→
k ) in the solution (162) follows from

equations (5.128) and (5.173). The functions c1(
−→
k ), c2(

−→
k ), c3(

−→
k ), are the

quantum-mechanical momentum-spin amplitudes of the boson with the spin s=1

and the eigenvalues of the spin projection 1, 0,−1, respectively. The function

c4(
−→
k ) is the amplitude of the spinless boson.

The Schrödinger–Foldy equation (5.98) and the set {f} of its solutions

(5.170) are invariant with respect to the reducible unitary bosonic representa-

tion (5.22) of the Poincaré group P . The corresponding 4×4 matrix-differential

generators are given by (5.20), (5.21), where the spin s=(1,0) SU(2) generators
−→s = (s`n) are given in (5.171).

The proof is fulfilled similarly to that given after formula (5.22). The

Casimir operators of this reducible bosonic representation of the group P have

the form

p2 = p̂µ p̂µ = m2I4, (5.174)
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W = wµwµ = m2−→s 2 = m2

∣∣∣∣
1(1+1) I3 0

0 0

∣∣∣∣ , (5.175)

where I3 and I4 are the 3×3 and 4×4 unit matrices, respectively.

Hense, above a brief consideration of the RCQM foundations of the particle

multiplet with mass m > 0 and the spin s=(1,0) is given.

5.8.2. Spin s=(1,0,1,0) Particle-Antiparticle Multiplet

A brief scheme of the relativistic canonical quantum mechanics of the 8-

component bosonic spin s=(1,0,1,0) particle-antiparticle multiplet is consid-

ered.

The 8-component bosonic spin s=(1,0,1,0) particle-antiparticle multiplet is

constructed as the direct sum of the two spin s=(1,0) multiplets. The spin s=(1,0)

multiplet was considered in the previous section. The principles of construct-

ing and describing such particle-antiparticle multiplet within the framework of

the RCQM are in a complete analogy with the principles of the describing and

the constructing of the spin s=(1,1) particle-antiparticle doublet considered in

subsection 5.7.3. Therefore, the details can be omitted.

The most important fact is that here the link with the Dirac-like equation is

similar to that between the spin s=(1/2,1/2) particle-antiparticle doublet and the

standard 4-component Dirac equation demonstrated in subsection 5.7.2. There-

fore, the spin s=(1,0,1,0) particle-antiparticle multiplet is of special interest. It

is much more useful than the spin s=(1,0) particle multiplet.
Thus, the Schrödinger–Foldy equation has the form

(i∂0− ω̂) f (x) = 0, f =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f 1

f 2

f 3

f 4

f 5

f 6

f 7

f 8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (5.176)

where the operator ω̂ is given in (5.3)–(5.5).

The space of the states is as follows

S3,8 ⊂ H3,8 ⊂ S3,8∗. (5.177)
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The general solution of the Schrödinger–Foldy equation (5.176) is given by

f (x) =

∣∣∣∣
fpart

fantipart

∣∣∣∣=

1

(2π)
3
2

Z

d3ke−ikx
[
c1(

−→
k )d1 +c2(

−→
k )d2 + ...+c7(

−→
k )d5 +c8(

−→
k )d6

]
, (5.178)

where the orts of the 8-component Cartesian basis have the form (5.149)

The explicit form of the generators of the corresponding SU(2)-spin that

satisfy the commutation relations (5.91) of the SU(2) algebra is as follows

−→s 8 =

∣∣∣∣
−→s 0

0 −C−→s C

∣∣∣∣ , (5.179)

where CI4 is the diagonal 4×4 operator of the complex conjugation and com-

ponents of −→s are given in (5.171).

The Casimir operator is given by the following 8×8 diagonal matrix

−→s 2 = 2

∣∣∣∣∣∣∣∣

I3 0 0 0

0 0 0 0

0 0 I3 0

0 0 0 0

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1(1+1)I3 0 0 0

0 0 0 0

0 0 1(1+1)I3 0

0 0 0 0

∣∣∣∣∣∣∣∣
, (5.180)

where I3 is the 3×3 unit matrix.

The stationary complete set of operators is given by −̂→p , s3
8 = sz and the

equations on the eigenvalues of the operator s3
8 = sz have the form

s3
8d1 = d1, s3

8d2 = 0, s3
8d3 = −d3, s3

8d4 = 0,

s3
8d5 = −d5, s3

8d6 = 0, s3
8d7 = d7, s3

8d8 = 0. (5.181)

The equation on eigenvalues of the momentum operator −̂→p is known from

(5.155).

Therefore, the functions c1(
−→
k ), c2(

−→
k ), c3(

−→
k ) in solution (5.178) are the

momentum-spin amplitudes of the massive boson with the spin s=1 and the spin

projection (1,0,−1), respectively, c4(
−→
k ) is the amplitude of the spinless bo-

son; c5(
−→
k ), c6(

−→
k ), c7(

−→
k ) are the momentum-spin amplitudes of the antiparti-

cle (antiboson) with the spin s=1 and the spin projection (−1,0,1), respectively,

c8(
−→
k ) is the amplitude of the spinless antiboson.
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The Schrödinger–Foldy equation (5.176) (and the set {f} of its solutions

(5.178)) is invariant with respect to the reducible unitary bosonic representation

(5.22) of the Poincaré group P , whose Hermitian 8×8 matrix-differential gen-

erators are given by (5.20), (5.21), where the spin s=(1,0,1,0) SU(2) generators
−→s = (s`n) are given in (5.179).

The proof is similar to that givenafter formula (5.22). The Casimir operators

of this reducible bosonic spin s=(1,0,1,0) representation of the group P have the

form

p2 = p̂µ p̂µ = m2I8, (5.182)

W = wµwµ = m2−→s 2
8 = m2

∣∣∣∣∣∣∣∣

1(1+1) I3 0 0 0

0 0 0 0

0 0 1(1+1) I3 0

0 0 0 0

∣∣∣∣∣∣∣∣
, (5.183)

where I8 and I3 are the 8×8 and 3×3 unit matrices, respectively.

Thus, above the foundations of the RCQM of the 8-component multiplet of

two bosons with the spins s=(1,0) and their antiparticle doublet are considered

briefly. It is the basis for the transition to the covariant local field theory of the

spin s=(1,0,1,0) particle-antiparticle multiplet given below.

5.8.3. Spin s=(2,0,2,0) Particle-Antiparticle Multiplet

A brief scheme of the relativistic canonical quantum mechanics of the 12-

component spin s=(2,0,2,0) particle-antiparticle bosonic multiplet is consid-

ered.

This model is constructed in complete analogy with the RCQM of spin

s=(1,0,1,0) particle-antiparticle multiplet (subsection 5.8.2). The 12-component

bosonic spin s=(2,0,2,0) particle-antiparticle multiplet is constructed as the di-

rect sum of the two spin s=(2,0) multiplets. The principles of constructing

and describing such particle-antiparticle multiplet within the framework of the

RCQM are in a complete analogy with the principles of principles considered

in the previous sections. Therefore, the details can be omitted.

The most important fact is that here the link with the Dirac-like equation is

similar to that between the spin s=(1/2,1/2) particle-antiparticle doublet and the

standard 4-component Dirac equation. Therefore, the spin s=(2,0,2,0) particle-

antiparticle multiplet is of special interest. It is much more useful than the spin

s=(1,0) or (2,0) particle multiplets.
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Therefore, the corresponding Schrödinger–Foldy equation is given by

(i∂0 − ω̂) f (x) = 0, f =

∣∣∣∣∣∣∣∣∣∣∣∣

f 1

f 2

.

.

.

f 12

∣∣∣∣∣∣∣∣∣∣∣∣

, (5.184)

where the pseudo-differential operator ω̂ is given in (5.3)–(5.5). In (5.184), the

12-component wave function is the direct sum of the particle and antiparticle

wave functions. According to the quantum-mechanical tradition the wave func-

tion of two antiparticles is put into the bottom part of the 12-column.

Therefore, the general solution of the Schrödinger–Foldy equation (5.184)

has the form

f (x) =

∣∣∣∣
fpart

fantipart

∣∣∣∣=
1

(2π)
3
2

Z

d3ke−ikxgB(
−→
k )dB, B = 1,12, (5.185)

where the orts of the 12-component Cartesian basis are given by

d1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

0

0

0

0

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

1

0

0

0

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, ... , d12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

0

0

0

0

0

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.186)

Hence, the space of the states in the RCQM of the spin s=(2,0,2,0) particle-

antiparticle doublet is the rigged Hilbert space

S3,12 ⊂ H3,12 ⊂ S3,12∗, (5.187)

i.e., is the direct sum of 4 corresponding spaces.
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The corresponding SU(2)-spin generators are taken in the form

−→s 12 =

∣∣∣∣
−→s 6 0

0 −C−→s 6C

∣∣∣∣ , (5.188)

where the 6×6-matrices −→s 6 are given by

s1
6 =

1

2

∣∣∣∣∣∣∣∣∣∣∣∣

0 2 0 0 0 0

2 0
√

6 0 0 0

0
√

6 0
√

6 0 0

0 0
√

6 0 2 0

0 0 0 2 0 0

0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

, s2
6 =

i

2

∣∣∣∣∣∣∣∣∣∣∣∣

0 −2 0 0 0 0

2 0 −
√

6 0 0 0

0
√

6 0 −
√

6 0 0

0 0
√

6 0 −2 0

0 0 0 2 0 0

0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

,

s3
6 =

∣∣∣∣∣∣∣∣∣∣∣∣

2 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −2 0

0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

, (5.189)

and CI6 is 6×6 diagonal matrix operator of complex conjugation.

It is easy to verify that for the operators (5.188) the commutation relations[
s j, s`

]
= iε j`nsn of the SU(2)-algebra are valid.

The Casimir operator for this reducible representation of the SU(2)-algebra

is given by

−→s 2
12 = 6

∣∣∣∣∣∣∣∣

I5 0 0 0

0 0 0 0

0 0 I5 0

0 0 0 0

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

2(2+1)I5 0 0 0

0 0 0 0

0 0 2(2+1)I5 0

0 0 0 0

∣∣∣∣∣∣∣∣
, (5.190)

where I5 is the 5×5 unit matrix.

The solution (5.185) is associated with the stationary complete set −̂→p , s3
12 =

sz of the momentum and spin projection operators of the spin s=(2,0,2,0)

bosonic particle-antiparticle multiplet.

The equations on the momentum operator eigenvalues have the form

−̂→p e−ikxdB =
−→
k e−ikxdB, B = 1,12, (5.191)
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and the equations on the spin projection operator s3
12 (5.188) eigenvalues are

given by

s3
12d1 = 2d1, s3

12d2 = d2, s3
12d3 = 0, s3

12d4 = −d4, s3
12d5 = −2d5, s3

12d6 = 0,

s3
12d7 = −2d7, s3

12d8 = −d8, s3
12d9 = 0, s3

12d10 = d10, s3
12d11 = 2d11, s3

12d12 = 0.
(5.192)

Therefore, the functions g1(
−→
k ), g2(

−→
k ), g3(

−→
k ), g4(

−→
k ), g5(

−→
k ) in the so-

lution (5.185) are the momentum-spin amplitudes of the particle (boson) with

the momentum −̂→p , spin s=2 and spin projection eigenvalues (+2, +1, 0, -1, -

2), respectively, g6(
−→
k ) is the amplitude of the spinless boson; the functions

g7(
−→
k ), g8(

−→
k ), g9(

−→
k ), g10(

−→
k ), g11(

−→
k ) are the momentum-spin amplitudes of

the antiparticle (antiboson) with the momentum −̂→p , spin s=2 and spin projec-

tion eigenvalues (-2, -1, 0, +1, +2), respectively, g12(
−→
k ) is the amplitude of the

spinless antiboson.

The Schrödinger–Foldy equation (5.184) and the set {f} of its solutions

(5.185) are invariant with respect to the reducible unitary bosonic representation

(5.22) of the Poincaré group P . The corresponding 12×12 matrix-differential

generators are given by (5.20), (5.21), whereas the spin s=(2,0,2,0) SU(2) gen-

erators −→s = (s`n) are given in (5.188).

The proof of this assertion is fulfilled by the three steps already given in

section 2 after formula (5.22). The corresponding Casimir operators have the

form

p2 = p̂µ p̂µ = m2I12, (5.193)

W = wµwµ = m2−→s 2
12 = m2

∣∣∣∣∣∣∣∣

2(2+1) I5 0 0 0

0 0 0 0

0 0 2(2+1) I5 0

0 0 0 0

∣∣∣∣∣∣∣∣
, (5.194)

where I12 and I5 are the 12×12 and 5×5 unit matrices, respectively.

Hense, above a brief consideration of the RCQM foundations of the particle-

antiparticle multiplet with the mass m > 0 and the spin s=(2,0,2,0) has been

given. In the limit m=0 this model describes the partial case of corresponding

massless particle-antiparticle multiplet.
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5.8.4. Spin s=(2,1,2,1) Particle-Antiparticle Multiplet

A brief scheme of the relativistic canonical quantum mechanics of the 16-

component bosonic spin s=(2,1,2,1) particle-antiparticle multiplet is consid-

ered.

The 16-component bosonic spin s=(2,1,2,1) particle-antiparticle multiplet

is constructed as the direct sum of the two spin s=(2,1) multiplets. The prin-

ciples of constructing and describing such particle-antiparticle multiplet within

the framework of the RCQM are in a complete analogy with the principles of

principles considered in the previous sections. Therefore, the details can be

omitted.

The most important fact is that here the link with the Dirac-like equation is

similar to that between the spin s=(1/2,1/2) particle-antiparticle doublet and the

standard 4-component Dirac equation. Therefore, the spin s=(2,1,2,1) particle-

antiparticle multiplet is of special interest. It is much more useful than the spin

s=(1,0), (2,0), (2,1) particle multiplets.

Thus, the Schrödinger–Foldy equation has the form

(i∂0 − ω̂) f (x) = 0, f =

∣∣∣∣∣∣∣∣∣∣∣∣

f 1

f 2

.

.

.

f 16

∣∣∣∣∣∣∣∣∣∣∣∣

, (5.195)

where the operator ω̂ is given in (5.3)–(5.5).

The space of the states is given by

S3,16 ⊂ H3,16 ⊂ S3,16∗. (5.196)

The general solution of the Schrödinger–Foldy equation (5.195) is given by

f (x) =

∣∣∣∣
fpart

fantipart

∣∣∣∣=
1

(2π)
3
2

Z

d3ke−ikxbÃ(
−→
k )d

Ã
, Ã = 1,16, (5.197)
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where the orts of the 16-component Cartesian basis have the form

d1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, d2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, ... , d16 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.198)

The explicit form of the generators of the corresponding SU(2)-spin that

satisfy the commutation relations (5.91) of the SU(2) algebra is as follows

−→s 16 =

∣∣∣∣
−→s 8 0

0 −C−→s 8C

∣∣∣∣ , (5.199)

where the 8×8-matrices −→s 8 are given by

s1
8 =

1√
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
√

2 0 0 0 0 0 0√
2 0

√
3 0 0 0 0 0

0
√

3 0
√

3 0 0 0 0

0 0
√

3 0
√

2 0 0 0

0 0 0
√

2 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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s2
8 =

i√
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −
√

2 0 0 0 0 0 0√
2 0 −

√
3 0 0 0 0 0

0
√

3 0 −
√

3 0 0 0 0

0 0
√

3 0 −
√

2 0 0 0

0 0 0
√

2 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 −1

0 0 0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (5.200)

s3
8 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −2 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and CI8 is 8×8 diagonal matrix operator of complex conjugation.
The Casimir operator is given by the following 16×16 diagonal matrix

−→s 2
16 =

∣∣∣∣∣∣∣∣

6I5 0 0 0

0 2I3 0 0

0 0 6I5 0

0 0 0 2I3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

2(2+1)I5 0 0 0

0 1(1+1) I3 0 0

0 0 2(2+1)I5 0

0 0 0 1(1+1)I3

∣∣∣∣∣∣∣∣
,

(5.201)

where I5 and I3 are 5×5 and 3×3 unit matrices, respectively.

The stationary complete set of operators is given by −̂→p , s3
16 = sz and the

equations on the eigenvalues of the operators −̂→p and s3
16 = sz have the form

−̂→p e−ikxd
Ã

=
−→
k e−ikxd

Ã
, Ã = 1,16, (5.202)

s3
16d1 = 2d1, s3

16d2 = d2, s3
16d3 = 0, s3

16d4 = −d4,

s3
16d5 = −2d5, s3

16d6 = d6, s3
16d7 = 0, s3

16d8 = −d8. (5.203)

s3
16d9 = −2d9, s3

16d10 = −d10, s3
16d11 = 0, s3

16d12 = d12,

s3
16d13 = 2d13, s3

16d14 = −d14, s3
16d15 = 0, s3

16d16 = d16.
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Therefore, the functions b1(
−→
k )−b5(

−→
k ) in solution (5.197) are the momentum-

spin amplitudes of the massive boson with the spin s=2 and the eigenvalues of

the spin projection (2,1,0,−1,−2), respectively, b6(
−→
k )− b8(

−→
k ) are the am-

plitudes of the massive boson with the spin s=1 and the eigenvalues of the

spin projection (1,0,−1), respectively,; b9(
−→
k )− b13(

−→
k ) in solution (5.197)

are the momentum-spin amplitudes of the massive antiboson with the spin

s=2 and the eigenvalues of the spin projection (−2,−1,0,1,2), respectively,

b14(
−→
k )−b16(

−→
k ) are the amplitudes of the massive antiboson with the spin s=1

and the eigenvalues of the spin projection (−1,0,1), respectively.

The Schrödinger–Foldy equation (5.195) (and the set {f} of its solutions

(5.197)) is invariant with respect to the reducible unitary bosonic representation

(5.22) of the Poincaré group P , whose Hermitian 16× 16 matrix-differential

generators are given by (5.20), (5.21), where the spin s=(2,1,2,1) SU(2) genera-

tors −→s 16 = (s`n
16) are given in (5.199).

The proof is similar to that given in text after formula (5.22). The Casimir

operators of this reducible bosonic spin s=(2,1,2,1) representation of the group

P have the form

p2 = p̂µ p̂µ = m2I16, (5.204)

W = wµwµ = m2−→s 2
8 = m2

∣∣∣∣∣∣∣∣

2 (2 +1)I5 0 0 0

0 1 (1 +1)I3 0 0

0 0 2 (2 +1)I5 0

0 0 0 1 (1 +1)I3

∣∣∣∣∣∣∣∣
,

(5.205)

where I16, I5 and I3 are 16×16, 5×5 and 3×3 unit matrices8, respectively.

Thus, above the foundations of the RCQM of the 16-component multiplet of

two bosons with the spins s=(2,1) and their antiparticle doublet are considered

briefly. It is the basis for the transition to the covariant local field theory of the

spin s=(2,1,2,1) particle-antiparticle multiplet given below.
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5.9. On the Transition to the Nonrelativistic

Canonical Quantum Mechanics of the

Arbitrary Mass and Spin

In the nonrelativistic limit the Schrödinger–Foldy equation (5.11) is transformed

into the ordinary Schrödinger equation

(
i∂0 −

−→p 2

2m

)
ψ(x) = 0, (5.206)

for the N-component wave function (in the case of singlet)

ψ ≡ column(ψ1,ψ2, ...,ψN), N = 2s+1. (5.207)

Each of the above considered equations of motion of the RCQM (2-, 3-, 4-,

5-, 6-, 8-, 10-, 12-, 16-component) is transformed into the equation (5.206) with

the corresponding number of the components.

Moreover, here the SU(2) spin operator is the same as in the RCQM and

is given by the formulas (5.14), (5.17). Therefore, here as in the RCQM, the

SU(2) generators for the spin s=1/2 are given in (5.80), (5.81), for the spin s=1

in (29), for the spin s=1 in (5.90), for the spin s=3/2 in (5.100), for the spin s=2

in (5.109), e.t.c. for the doublet and multiplet SU(2) spins.

Therefore, the equation (5.206) is invariant with respect to same representa-

tions of the SU(2) group, with respect to which the relativistic equation (5.11)

is invariant. The difference is in the application of the Galilean group and its

representations instead of the Poincaré P group and its representations.

For the models with interaction it is much more easier to solve the equation

(5.206) with interaction potential V(x) instead of pseudo-differential equation

(5.11). Moreover, the solutions of the equation (5.206) with interaction can be

useful for the obtaining of the corresponding solutions of the equation (5.11).

Thus, the equation (5.206) can be useful not only itself but for the different

approximations of the relativistic equation (5.11) as well.
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[34] Petroni N.C., Lévy-Schrödinger wave packets, J. Phys. A., Vol.44, No.16,

165305 (1–27) (2011).

[35] Semay C., An upper bound for asymmetrical spinless Salpeter equations,

Phys. Lett. A., Vol.376, No.33, 2217–2221 (2012).

[36] Chargui Y., Trabelsi A., The zero-mass spinless Salpeter equation with

a regularized inverse square potential, Phys. Lett. A., Vol.377, No.3-4,

158–166 (2013).

[37] Garbaczewski P., Stephanovich V., Lévy flights and nonlocal quantum
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Chapter 6

Relativistic Field Theory of

Arbitrary Spin in Canonical

Foldy–Wouthuysen Type

Representation

The role of the Foldy–Wouthuysen (FW) representation in modern quantum

field theory is considered in the Chapter 4. After the start in [1, 2] the ap-

proach was developed for the case of presence of external field given by differ-

ent potentials, the FW transformation for an arbitrary field was investigated, the

different problems, which are actual in field theory, are considered in the FW

representation [3–14]. In the paper [15] the quantum electrodynamics in the FW

representation was constructed.

In our program of synthesis of field equations on the basis of start from

relativistic canonical quantum mechanica (RCQM) the FW type representation

for arbitrary spin is the intermediate stage between the RCQM and manifestly

covariant field theory. The link between these two representations is given by

the operator transformation suggested in our publications, see, e.g., [16–20].

Indeed, the chain of our synthesis program can be demonstrated as RCQM →
FW → manifestly covariant equations. Therefore, as a first step we derive here

the FW model starting from RCQM.
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6.1. General Formalism of Arbitrary Spin

The operator v2N, which transform the RCQM of the arbitrary spin particle-

antiparticle multiplet into the corresponding canonical particle-antiparticle field,

is given in (5.28). The operator v2N (5.28) translates any operator from RCQM

into canonical field FW representation and vice versa. The corresponded for-

mulas are presented in (5.29). Note that this transition is valid only for the

operators taking in anti-Hermitian form, see the subsection 5.5.8 of the Chapter

5. The possibility of using the anti-Hermitian operators is explained in [21, 22].

Thus, the equation of motion for the free non-interacting particle-

antiparticle fermionic doublet of arbitrary spin in the FW representation (the

FW type equation of arbitrary spin) has the form

(i∂0 −Γ0
2Nω̂)φ(x) = 0, (6.1)

where Γ0
2N ≡ σ3

2N =

∣∣∣∣
IN 0

0 −IN

∣∣∣∣ , ω̂ ≡
√
−∆+m2, N = 2s + 1, and vice

verso.

The operator of the FW equation (6.1) is derived here from the the operator

of the Schrödinger–Foldy equation (5.11) in anti-Hermitian form

v2N(∂0 + iω̂)v2N → (∂0 + iΓ0
2Nω̂). (6.2)

Further, the operator v2N (5.28) translates φ = v2N f , f = v2Nφ, the solution

(5.12) of the Schrödinger–Foldy equation (5.11) into the solution (5.31) of the

FW equation .

Thus, the formulas of the FW representations formalism are found here from

the corresponding formulas of RCQM with the help of the operator v2N (5.28)

on the basis of its properties (5.28), (5.29). For the general form of arbitrary

spin canonical particle-antiparticle field the equation of motion of the FW type

is found in the form (6.1). The general solution has the form (5.31), where

aN(
−→
k ) are the quantum-mechanical momentum-spin amplitudes of the parti-

cle and aN̆(
−→
k ) are the quantum-mechanical momentum-spin amplitudes of the

antiparticle, {d} is 2N-component Cartesian basis.

It is evident from (5.31) that the model under consideration is not quantum

mechanics. Indeed, contrary to (5.12) the solution (5.31) contains positive and

negative frequency terms and, as a consequence, equation (6.1) is dealing with

positive and negative energies (contrary to equation (5.11)).
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The spin operator, which follows from RCQM spin of (5.14), has the form

−→s 2N =

∣∣∣∣
−→s N 0

0 −→s N

∣∣∣∣ , N = 2s+1, (6.3)

where −→s N are N×N generators of arbitrary spin irreducible representations of

SU(2) algebra, which satisfy the commutation relations (5.15). In the terms of

Γ2N matrices (5.32), (5.33) the spin operator (6.3) has the form (5.38) (note that

the form (5.38) is valid only in the dimensions where the gamma matrices exist).

The equation on eigenvalues of the momentum operator −̂→p now changed

and has the form

−̂→p e−ikxdN =
−→
k e−ikxdN, −̂→p eikxdN̆ = −−→

k eikxdN̆, (6.4)

where N = 1,2, ...,N, N̆ = N + 1,N + 2, ...,2N. The interpretation of the am-

plitudes in the general solution (5.31) follows from the equations (6.4) and cor-

responding equations on eigenvalues of the operators of spin projection and sign

of the charge, which here have similar to the RCQM forms.

The generators of the reducible unitary representation of the Poincaré group

P , with respect to which the canonical field equation (6.1) and the set {φ} of its

solutions (5.31) are invariant, are given by

p̂0 = Γ0
2Nω̂ ≡ Γ0

2N

√
−∆+m2, p̂` = −i∂`, (6.5)

ĵ`n = x` p̂n −xn p̂` + s`n
2N ≡ m̂`n + s`n

2N,

ĵ0` = − ĵ`0 = x0 p̂`− 1

2
Γ0

2N

{
x`, ω̂

}
+Γ0

2N

(−→s 2N ×−→p )`

ω̂ +m
, (6.6)

where arbitrary spin SU(2) generators −→s 2N = (s`n
2N) have the form (6.3), Γ0

2N is

given in (5.32). The explicit forms (6.5), (6.6) of the generators (p̂0, p̂`, ĵ`n, ĵ0`)
are found here from the generators (5.20), (5.21) on the basis of the transforma-

tion given by the operator v2N (5.28), (5.29).

Note that together with the generators (6.5), (6.6) another set of 10 oper-

ators commutes with the operator of equation (6.1), satisfies the commutation

relations (3.4) of the Lie algebra of the Poincaré group P , and, therefore, can

be chosen as the Poincaré symmetry of the model under consideration. This

second set is given by the generators p̂0, p̂` from (6.5) together with the orbital
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parts of the generators ĵ`n, ĵ0` from (6.5), (6.6), respectively. In another way

this set follows from the set (5.25) after the transformation v2N (5.28), (5.29).

The explicit form of this set of generators, which is very useful for the case

s = 0 and arbitrary dimensions, is given by

p̂0 = Γ0
2Nω̂ ≡ Γ0

2N

√
−∆+m2, p̂` = −i∂`, (6.7)

m̂`n = x` p̂n −xn p̂`, m̂0` = −m̂`0 = x0 p̂` − 1

2
Γ0

2N

{
x`, ω̂

}
. (6.8)

The calculation of the corresponding Casimir operators p2 = p̂µ p̂µ, W =

wµwµ (wµ is the Pauli–Lubanski pseudovector) for the fixed value of spin com-

pletes the brief description of the model.

6.2. Examples of Particle-Antiparticle Doublets

6.2.1. The Example of Spin s=(0,0) Particle-Antiparticle

Doublet

The below considered formalism follows from the general formalism of arbi-

trary spin presented above in section 6.1 after the substitution s=0. On the other

hand this example of FW spin s=(0,0) particle-antiparticle doublet follows from

the consideration of spin s=(0,0) particle-antiparticle doublet in RCQM pre-

sented here in the Chapter 5 in subsection 5.7.1.

The RCQM Schrödinger–Foldy equation for spin s=(0,0) particle-

antiparticle doublet is given by (5.116), i.e., it is 2-component equation. The

partial case of operator v2N (5.28), which gives the link between the spin s=(0,0)

particle-antiparticle doublet in RCQM (subsection 5.7.1) and FW representa-

tion, has the form

v1 =

∣∣∣∣
1 0

0 C

∣∣∣∣ , v−1
1 = v

†
1 = v1, (6.9)

where C is the operator of complex conjugation, Cφ = φ∗.
The corresponding FW type equation of canonical field theory is given by

(i∂0 −σ3ω̂)φ(x) = 0; σ3 =

∣∣∣∣
1 0

0 −1

∣∣∣∣ , ω̂ ≡
√

−∆+m2. (6.10)
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The general solution is given by

φ(x) =
1

(2π)
3
2

Z

d3k
[
e−ikxa1(

−→
k )d1 +eikxa∗2(

−→
k )d2

]
. (6.11)

The interpretation of the amplitudes in the general solution (6.11) follows

from the equation on eigenvalues of the momentum operator −̂→p :

−̂→p e−ikxd1 =
−→
k e−ikxd1,

−̂→p eikxd2 = −−→
k eikxd2. (6.12)

The function a1(
−→
k ) is the amplitude of the spinless boson with momentum −̂→p

and the function a∗2(
−→
k ) is the amplitude of corresponding antiparticle. The

quantum-mechanical interpretation of the amplitudes a1(
−→
k ),a2(

−→
k ) is given in

the subsection 5.7.1 of the Chapter 5.

The Poincaré group P generators, with respect to which the equation (6.9)

and the set {φ} of its solutions (6.10) are invariant, have the form

p̂0 = σ3ω̂ ≡ σ3
√
−∆+m2, p̂` = −i∂`, (6.13)

ĵ`n = x` p̂n −xn p̂`, ĵ0` = − ĵ`0 = x0 p̂` − 1

2
σ3
{

x`, ω̂
}

. (6.14)

Generators (6.13), (6.14) are the partial 2× 2 matrix form of operators (6.5),

(6.6) taken with the spin terms equal to zero, or the partial 2×2 matrix form of

operators (6.7), (6.8).

6.2.2. The Example of Spin s=(1/2,1/2) Particle-Antiparticle

Doublet

This example is s the most studied. It was a starting point of the investigations

of that kind [1, 2]. The spin s=(1/2,1/2) particle-antiparticle doublet in the FW

representation is considered here in Chapters 2 and 5, especially in the Chapter

4. Therefore, below the brief description is given.

Two different ways of deriving the FW model of the spin s=(1/2,1/2)

particle-antiparticle doublet can be applied. This model is the partial case

of the considered in section 6.1 general formalism of arbitrary spin particle-

antiparticle doublet in the FW representation. Moreover, the special formalism

of the spin s=(1/2,1/2) particle-antiparticle doublet in the FW representation can

be derived from the similar formalism in the frame of RCQM.
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The FW equation for the free non-interacting spin s=(1/2,1/2) particle-

antiparticle doublet is presented in (4.21), the general solution of this equation

has the form (4.28). The operator v (2.49) transforms the RCQM Schrödinger–

Foldy equation (2.35) for spin s=(1/2,1/2) particle-antiparticle doublet into the

FW equation (4.21). According to the transformation v (2.49) the general so-

lution (2.41) of the Schrödinger–Foldy equation (2.35) is transformed into the

general solution (4.28) of the FW equation (4.21). Furthermore, the FW spin

operator (2.48) is the consequence of the transformation v (2.49) application to

the RCQM spin operator −→s from (2.47).

Note that the amplitudes aᾱ(
−→
k ), ᾱ = 1,2,3,4, in (4.28) are the same as in

solution f (x) = 1

(2π)
3
2

R

d3ke−ikx[a1(
−→
k )d1 +a2(

−→
k )d2 +a3(

−→
k )d3 +a4(

−→
k )d4] of

the Schrödinger–Foldy equation (2.35) and the orts {dᾱ} of the Cartesian basis

are given by (4.29). Note that transformation v (2.49) does not change the orts

{dᾱ}.

The Casimir operator for the SU(2) spin s`n ≡ i
4

[
γ`,γn

]
(or −→s FW (2.48)) has

the form
−→s 2 =

3

4
I4 =

1

2

(
1

2
+1

)
I4, (6.15)

where I4 is the 4×4 unit matrix. This operator also can be found by the transi-

tion v (2.49) from the corresponding Casimir operator in the RCQM.

The interpretation of the amplitudes in the general solution (4.28) follows

from the equations on eigen vectors and eigenvalues

−̂→p e−ikxdr =
−→
k e−ikxdr, r = (1,2); −̂→p eikxdř = −−→

k eikxdř, ř = (3,4), (6.16)

(4.45) and (2.46) of the operators −̂→p , s3 = sz, g = −e of the momentum, spin

projection and sign of the charge of the spin 1/2 FW particle-antiparticle dou-

blet, respectively.

Thus, the functions a1(
−→
k ), a2(

−→
k ) are the momentum-spin amplitudes of

the particle (e.g., electron) with the momentum −̂→p , sign of the charge (−e)

and spin projections (1
2 , −1

2 ), respectively. The functions a∗3(
−→
k ), a∗4(

−→
k )

are the complex conjugated functions to the quantum-mechanical amplitudes

a3(
−→
k ), a4(

−→
k ) of the standard quantum-mechanical sense, which was consid-

ered in the Chapter 5 in subsection 5.7.2 in the text after the formula (5.130).

An attempt to interpret the functions a∗3(
−→
k ), a∗4(

−→
k ) inside the FW model

leads to the result as follows. The functions a∗3(
−→
k ), a∗4(

−→
k ) in (4.28) are the
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momentum-spin amplitudes of the antiparticle (e.g., positron) with the momen-

tum −−̂→p , sign of the charge (+e) and spin projections (1
2
, −1

2
), respectively.

The explicit form of the generators of the reducible unitary representation

of the Poincaré group P , with respect to which the canonical field equation

(4.21) and the set {φ} of its solutions (4.28) are invariant, can be found both

as the partial 4× 4 matrix form of generators (6.5), (6.6) and as the v (2.49)

consequences of the corresponding spin s = (1/2,1/2) RCQM generators.

Thus, the generators of the reducible unitary representation of the Poincaré

group P , with respect to which the canonical field equation (4.21) and the set

{φ} of its solutions (4.28) are invariant, are given by

p̂0 = γ0ω̂ ≡ γ0
√

−∆+m2, p̂` = −i∂`, (6.17)

ĵ`n = x` p̂n −xn p̂` + s`n
FW ≡ m̂`n + s`n

FW,

ĵ0` = − ĵ`0 = x0 p̂`− 1

2
γ0
{

x`, ω̂
}

+ γ0 (−→s FW ×−̂→p )`

ω̂ +m
, (6.18)

where FW spin SU(2) generators −→s FW = (s`n
FW) have the form (2.48), γ0 is given

in (1.5).

The corresponding Casimir operators have the form

p2 = p̂µ p̂µ = m2I4, (6.19)

W = wµwµ = m2−→s 2
FW =

1

2

(
1

2
+1

)
m2I4, (6.20)

where
−→
s FW is given in (2.48) and I4 is 4×4 unit matrix.

Below some additional important features of the FW model are considered.

Here all operators are taken in anti-Hermitian form, which is necessary for the

transition from the RCQM to the FW model.

The FW equation with anti-Hermitian Hamiltonian has the form

(
∂0 + iγ0ω̂

)
φ(x) = 0; φ = v f ≡

∣∣∣∣
ϕ−
ϕ∗

+

∣∣∣∣ ∈ H3,4. (6.21)

The quantum-mechanical sense of the object φ in the FW representation is

as follows. The equation (6.21) is a system of two 2-component equations

(∂0 + iω̂)ϕ−(x) = 0, (∂0 − iω̂)ϕ∗
+(x) = 0. (6.22)
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The first equation is the equation for the wave function ϕ− of the particle (elec-

tron) and the second is the one for the function ϕ∗
+, being the complex conjugate

to the wave function ϕ+, of the antiparticle (positron).

The action of the operator v (2.49) on arbitrary RCQM ( or arbitrary FW)

operator is given by

vqanti−Herm
cf v = qanti−Herm

qm , vqanti−Herm
qm v = qanti−Herm

cf . (6.23)

Here qanti−Herm
qm is an arbitrary operator from the RCQM of the 4-component

particle-antiparticle doublet in the anti-Hermitian form, e.g., the operator (∂0 +
iω̂) of equation of motion (2.35), the RCQM spin operator −→s from (2.47) taken

in anti-Hermitian form, etc., qanti−Herm
cf is an arbitrary operator from the canon-

ical field theory of the 4-component particle-antiparticle doublet in the anti-

Hermitian form.

Under the transformations (6.23) the P f-generators (5.20), (5.21) (taken

with the spin term (2.47) and in the prime anti-Hermitian form) become the

prime P φ-generators (P -symmetries of the FW equation (4.21))

p0 = −iγ0ω̂, p` = ∂`, j`n = x`∂n −xn∂` + s`n ≡ m`n + s`n, (6.24)

j0` = t∂` +
i

2
γ0{xl, ω̂}+ γ0

s`npn

ω̂+m
, (6.25)

where

s`n = s`n ≡ 1

4

[
γ`,γn

]
, (6.26)

and γµ are the standard Dirac matrices (1.5) (in the Pauli–Dirac representation).

Therefore, the P φ-generators (6.24), (6.25) of the P φ-representation in H3,4

(as well as the operators qφ = vqfv = vqanti−Herm
qm v of the algebra of all observable

physical quantities in the FW model of the fermionic doublet) are the functions

generated by the 10 operators

−→x = (x j) ∈ R3, −→p = −∇, −→s ≡ (s23, s31, s12), γ0, (6.27)

where s`n are given in (6.26). The physical sense of these operators (as well as of

the functions qφ from them) follows from the physical sense of the correspond-

ing quantum-mechanical operators (−→x , −→p −→s , γ0) (and qf), which are verified by

the principles of the heredity and correspondence with non-relativistic quantum

and classical theories.
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Note that in the subsection 5.7.2 the general solution of the Schrödinger–

Foldy equation (5.120) for the spin s = (1/2,1/2) particle-antiparticle dou-

blet is presented in the form (5.121), where for the amplitudes the notations

a−+(
−→
k ), a−−(

−→
k ), a+

−(
−→
k ), a+

+(
−→
k ) are applied. Such notations are very useful

for the interpretation of the amplitudes in the case of spin s = (1/2,1/2)

particle-antiparticle doublet. Interpretation now is demonstrative and evi-

dent. Nevertheless, for the generalization for arbitrary spin the notations

a1(
−→
k ), a2(

−→
k ), a3(

−→
k ), a4(

−→
k ) are much better.

Further, similarly to the RCQM in the FW model the additional conservation

laws also exist together with the main 10 Poincaré conservation quantities

(pµ, jµν)
φ → (Pµ,Jµν)

φ =

Z

d3xφ†(x)i(pµ, jµν)
φφ(x). (6.28)

The 12 additional conservation laws, which were considered in subsection 5.5.9,

also exist and can be very easy calculated here. Naturally, due to non-unitarity

of the operator v from (2.49) the explicit form of the conservation laws (6.28)

does not coincide with the quantum-mechanical quantities (5.58). It is evident

from the expression (6.28) in the terms of quantum-mechanical amplitudes

(Pµ,Jµν)
φ =

Z

d3kAφ†(
−→
k )(p̃µ, j̃µν)

φAφ(
−→
k ), (6.29)

where Aφ(
−→
k ) has the form Aφ(

−→
k ) ≡

∣∣∣∣∣∣∣∣

a−+
a−−
a∗+−
a∗++

∣∣∣∣∣∣∣∣
, (p̃µ, j̃µν)

φ are given by

p̃0 = γ0ω̃, p̃` = γ0k`, j̃`n = x̃`kn − x̃nk` + ŝ`n, (6.30)

j̃0` = − j̃`0 = −1

2
{x̃`, ω̃}+ γ0(˘̃s` ≡

ŝ`nkn

ω̃+m
), (6.31)

and the definitions (x̃` = −i∂̃`, ∂̃` ≡ ∂
∂k` ), ω̃ ≡

√−→
k 2 +m2 are used.

For example, the total energy of the field φ, instead of the expression P
QM
0

in spin s = (1/2,1/2) particle-antiparticle doublet RCQM, has the form

P0 =

Z

d3kω
(

a∗−r (
−→
k )a−r (

−→
k )−a+

ŕ (
−→
k )a∗+ŕ (

−→
k )
)

, r = (1,2), ř = (3,4),

(6.32)
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which is not positively defined. In this sense, the FW model (whose quantum-

mechanical content is unambiguous) in fact is not the quantum-mechanical

model for the spin s=(1/2,1/2) particle-antiparticle doublet. Therefore, in the

procedure of “canonical quantization” of the field φ on the basis of anticommu-

tation relations {
âᾱ(

−→
k ), â

†

β̄
(
−→
k )
}

= δᾱβ̄δ
(−→

k −−→
k ′
)

(6.33)

an additional axiom is applied in this model for the quantized field φ̂. According

to this axiom the definition of the operators of the physical quantities in the Fock

space H F is extended by taking them only in the form of “normal products” with

respect to the operator amplitudes â−r (
−→
k ), â∗−r (

−→
k ), â+

ŕ (
−→
k ), â∗+ŕ (

−→
k ). It is easy

to verify that the operators of 10 main conserved quantities of the “quantized

field” φ̂ in the form of normal products coincide with the corresponding expres-

sions in the “second quantized” RCQM model of the Fermionic doublet

: (P̂µ, Ĵµν)
φ :=

Z

d3kÂ†(
−→
k )( ˇ̃pµ,

ˇ̃
jµν)Â(

−→
k ), (6.34)

where Â(
−→
k ) ≡

∣∣∣∣∣∣∣∣

â−+
â−−
â+
−

â+
+

∣∣∣∣∣∣∣∣
and ( ˇ̃pµ,

ˇ̃
jµν) are given in (5.61), (5.62).

6.2.3. The Example of Spin s=(1,1) Particle-Antiparticle

Doublet

The model based on the canonical field equation for the 6-component spin

s=(1,1) particle-antiparticle doublet is under consideration.

The RCQM of the spin s=(1,1) particle-antiparticle doublet is considered

in subsection 5.7.3. Transition to the canonical field theory is fulfilled in a

complete analogy with the method suggested in section 6.1 and subsection 6.2.2.

The difference is only in the explicit form of the transition operator, which is

now given by the 6×6 diagonal matrix with the 3×3 operator of the complex

conjugation in the bottom part.

Thus, the Schrödinger–Foldy equation (5.135) and its solution (5.136) are

linked with the canonical field theory equation

(i∂0 −Γ0
6ω̂)φ(x) = 0; Γ0

6 =

∣∣∣∣
I3 0

0 −I3

∣∣∣∣ , ω̂ ≡
√

−∆+m2, (6.35)
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and its solution

φ(x) =
1

(2π)
3
2

Z

d3k
[
e−ikxc`(

−→
k )d` +eikxc∗

˘̀
(
−→
k )d ˘̀

]
, ` = 1,2,3, ˘̀ = 4,5,6,

(6.36)

with the help of the following operator

v6 =

∣∣∣∣
I3 0

0 CI3

∣∣∣∣ ; v−1
6 = v

†
6 = v6, v6v6 = I6, (6.37)

where the Cartesian orts (d`, d ˘̀) are given in (5.137), C is the operator of the

complex conjugation and I3 is the 3×3 unit matrix.

The operator v6 (6.37) transforms an arbitrary operator q̂qm of the 6-

component RCQM into the corresponding operator q̂cf of the canonical field

theory and vice verso:

v6q̂anti−Herm
qm v6 = q̂anti−Herm

cf , (6.38)

v6q̂anti−Herm
cf v6 = q̂anti−Herm

qm , (6.39)

where the operators q̂qm and q̂cf must be taken in the anti-Hermitian form. The

corresponding link between solutions (5.136) and (6.36) is as follows

φ = v6 f , f = v6φ. (6.40)

Note that formulas (6.38), (6.39) are valid for the anti-Hermitian (prime)

operators only. For our goals we often use the operators in the anti-Hermitian

form (see also the comments in Chapter 3). The mathematical correctness of

such choice and the physical interpretation are explained in the books [21, 22].

Return to the Hermitian operators is very easy.

The important examples of the transitions (6.38), (6.39) are the transforma-

tions of the operators of equations (5.135), (6.35)

v6(∂0 + iω̂)v6 = ∂0 + iΓ0
6ω̂, (6.41)

v6(∂0 + iΓ0
6ω̂)v6 = ∂0 + iω̂, (6.42)

and of the SU(2) spin operators. The spin operators of the canonical field the-

ory, found from the RCQM SU(2) spin (5.139) on the basis of the transformation
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(6.37), satisfy the commutation relations
[
s j, s`

]
= iε j`nsn and have the follow-

ing form

−→s =

∣∣∣∣
−→s 3 0

0 −→s 3

∣∣∣∣ , (6.43)

where the 3×3 spin s=1 SU(2) generators are denoted as
−→
s 3 and are given in

(5.90). The corresponding Casimir operator is given by

−→s 2 = 2I6 = 1(1+1)I6, (6.44)

where I6 is the 6×6- unit matrix.

The stationary complete set of operators is given by the operators−→p , s3 = sz

of the momentum and spin projection. The equations on the eigenvectors and

eigenvalues of the operators −→p and s3 = sz from (6.43) have the form

−̂→p e−ikxd` =
−→
k e−ikxd`, ` = 1,2,3; −̂→p eikxd ˘̀ = −−→

k eikxd ˘̀, ˘̀= 4,5,6;

s3d1 = d1, s3d2 = 0, s3d3 = −d3, s3d4 = d4, s3d5 = 0, s3d6 = −d6, (6.45)

and determine the interpretation of the amplitudes in the general solution

(6.36). Note that the direct quantum-mechanical interpretation of the amplitudes

c`(
−→
k ), c∗

˘̀
(
−→
k ) in solution (6.36) should be taken from the quantum-mechanical

equations (5.142), (5.143) and is given in subsection 5.7.3.

The relativistic invariance of the canonical field equation (6.35) follows

from the corresponding invariance of the Schrödinger–Foldy equation (5.135)

and transformation (6.37)–(6.40) (for the anti-Hermitian operators). The ex-

plicit form of the corresponding generators follows from of the explicit form

the generators (5.20), (5.21) with the spin matrices (5.139), (5.140) and trans-

formation (6.37)–(6.39).

Thus, the canonical field equation (6.35) and the set {φ} of its solutions

(6.36) are invariant with respect to the reducible unitary bosonic representation

(5.22) of the Poincaré group P , whose Hermitian 6×6 matrix-differential gen-

erators are given by

p̂0 = Γ0
6ω̂ ≡ Γ0

6

√
−∆+m2, p̂` = −i∂`,

ĵ`n = x` p̂n −xn p̂` + s`n ≡ m̂`n + s`n, (6.46)

ĵ0` = − ĵ`0 = x0 p̂`− 1

2
Γ0

6

{
x`, ω̂

}
+Γ0

6

(−→s ×−̂→p )`

ω̂ +m
, (6.47)
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where the spin s=(1,1) SU(2) generators −→s = (s`n) have the form (6.43) and

matrix Γ0
6 is given in (6.35).

It is easy to prove by the direct verification that generators (6.46), (6.47)

commute with the operator (i∂0 −Γ0
6ω̂) of the canonical field equation (6.35)

and satisfy the commutation relations (3.4) of the Lie algebra of the Poincaré

group P .

The corresponding Casimir operators are given by

p2 = p̂µ p̂µ = m2I6, (6.48)

W = wµwµ = m2−→s 2 = 1(1+1)m2I6, (6.49)

where I6 is the 6×6 unit matrix. Note that the difference between the Casimir

operators (6.48), (6.49) and the corresponding expressions in RCQM, see the

formulae (5.144), (5.145) above, is only in the explicit form of the operator
−→
s .

Thus, due to the eigenvalues in equations (6.45), positive and negative fre-

quencies form of the solution (6.36) and the Bargman–Wigner analysis of the

Casimir operators (6.48), (6.49), one can come to a conclusion that equation

(6.35) describes the canonical field (the bosonic particle-antiparticle doublet)

with the spins s=(1,1) and m > 0. Transition to the m = 0 limit leads to the

canonical field equation for the photon-antiphoton field.

6.2.4. The Example of Spin s=(3/2,3/2) Particle-Antiparticle

Doublet

The model based on the canonical field equation for the 8-component spin

s=(3/2,3/2) particle-antiparticle fermionic doublet is under consideration.

The start of this derivation is given in subsection 5.7.4, where the RCQM

of the 8-component fermionic spin s=(3/2,3/2) particle-antiparticle doublet is

considered. The second step in our synthesis of covariant particle equations

is the transition from the Schrödinger–Foldy equation (5.146) to the canonical

field equation. This step is possible only for the anti-Hermitian form of the

operators. Nevertheless, the resulting operators can be chosen in the standard

Hermitian form and do not contain the operator C of complex conjugation. The

last step of the transition from the canonical field equation to the covariant local

field equation is fulfilled in analogy with the FW transformation in next Chapter

below.
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The transition from the Schrödinger–Foldy equation (5.146) and general

solution (5.148) to the corresponded FW type equation and its solution is given

by the operator

v8 =

∣∣∣∣
I4 0

0 CI4

∣∣∣∣ , v−1
8 = v

†
8 = v8, v8v8 = I8, (6.50)

φ = v8 f , f = v8φ, (6.51)

v8q̂anti−Herm
qm v8 = q̂anti−Herm

cf , (6.52)

v8q̂anti−Herm
cf v8 = q̂anti−Herm

qm . (6.53)

Here q̂anti−Herm
qm is an arbitrary operator from the RCQM of the 8-component

particle-antiparticle doublet in the anti-Hermitian form, e.g., the operator (∂0 +
iω̂) of equation of motion, the operator of spin (5.150)=(5.151), etc., q̂anti−Herm

cf

is an arbitrary operator from the canonical field theory of the 8-component

particle-antiparticle doublet in the anti-Hermitian form, CI4 is the 4× 4 oper-

ator of complex conjugation.

Thus, the canonical field equation for the 8-component spin s=(3/2,3/2)

fermionic particle-antiparticle doublet (8 component analogy of the FW equa-

tion) is found from the the Schrödinger–Foldy equation (5.146) on the basis of

the transformation v2N (5.28), taken above in 8× 8 partial form, and is given

by.

(i∂0 −Γ0
8ω̂)φ(x) = 0, φ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (6.54)

where

ω̂ ≡
√
−∆+m2, Γ0

8 =

∣∣∣∣
I4 0

0 −I4

∣∣∣∣ , I4 =

∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣
. (6.55)
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The general solution of this equation in the case of spin s=(3/2,3/2)

fermionic particle-antiparticle doublet is found with the help of the transforma-

tion v8 (6.50), (6.51) from the general solution (5.148) of the Schrödinger–Foldy

equation (5.146) and is given by

φ(x) =
1

(2π)
3
2

Z

d3k

[
e−ikxbA(

−→
k )dA +eikxb∗B(

−→
k )dB

]
, (6.56)

where A = 1,4, B = 5,8, the orts of the 8-component Cartesian basis are

given in (5.149) and the quantum-mechanical interpretation of the amplitudes

(bA(
−→
k ), b∗B(

−→
k )) is given according to (5.154)–(5.156).

The SU(2) spin operators, which satisfy the commutation relations (5.91)

and commute with the operator (i∂0 −Γ0
8ω̂) of the equation of motion (6.54),

are derived from the corresponding RCQM operators (5.150), (5.151) on the

basis of transformations (6.50), (6.52). These canonical field spin operators are

given by

−→s 8 =

∣∣∣∣
−→s 0

0 −→s

∣∣∣∣ ,
−→s 2

8 =
3

2

(
3

2
+1

)
I8, (6.57)

where the 4×4 operators
−→
s are given in (5.100). In the explicit form the SU(2)

spin operators (6.57) are given by

s1
8 =

1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
√

3 0 0 0 0 0 0√
3 0 2 0 0 0 0 0

0 2 0
√

3 0 0 0 0

0 0
√

3 0 0 0 0 0

0 0 0 0 0
√

3 0 0

0 0 0 0
√

3 0 2 0

0 0 0 0 0 2 0
√

3

0 0 0 0 0 0
√

3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

s2
8 =

i

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −
√

3 0 0 0 0 0 0√
3 0 −2 0 0 0 0 0

0 2 0 −
√

3 0 0 0 0

0 0
√

3 0 0 0 0 0

0 0 0 0 0 −
√

3 0 0

0 0 0 0
√

3 0 −2 0

0 0 0 0 0 2 0 −
√

3

0 0 0 0 0 0
√

3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (6.58)
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s3
8 =

1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −3 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The stationary complete set of operators is given by the operators g, −̂→p , s3
8 =

sz of the charge sign, momentum and spin projection, respectively. The equa-

tions on the eigen vectors and eigenvalues of the spin projection operator s3
8 = sz

from (6.58) have the form

s3
8d1 =

3

2
d1, s3

8d2 =
1

2
d2, s3

8d3 = −1

2
d3, s3

8d4 = −3

2
d4,

s3
8d5 =

3

2
d5, s3

8d6 =
1

2
d6, s3

8d7 = −1

2
d7, s3

8d8 = −3

2
d8. (6.59)

The equations on eigenvalues of the operators g, −̂→p are similar as in the above

given examples of FW particle-antiparticle doublets. Therefore, the func-

tions b1(
−→
k ), b2(

−→
k ), b3(

−→
k ), b4(

−→
k ) in solution (6.59) are the momentum-spin

amplitudes of the massive fermion with the spin s=3/2 and the spin projec-

tion (3/2,1/2,−1/2,−3/2), respectively; b∗5(
−→
k ), b∗6(

−→
k ), b∗7(

−→
k ), b∗8(

−→
k )

are the momentum-spin amplitudes of the antiparticle (antifermion) with the

spin s=3/2 and the spin projection (3/2,1/2,−1/2,−3/2), respectively.

Note that direct quantum-mechanical interpretation of the amplitudes in so-

lution (6.56) should be given in the framework of the RCQM. Such interpreta-

tion is already given in subsection 6.2.4 in paragraph after equations (5.156).

The generators of the reducible unitary fermionic spin s=(3/2,3/2) doublet

representation of the Poincaré group P , with respect to which the canonical field

equation (6.54) and the set {φ} of its solutions (6.56) are invariant, are derived

from the RCQM set of generators (5.20), (5.21) with the spin (5.150), (5.151)

on the basis of the transformations (6.50), (6.52).

Thus, the canonical field equation (6.54) and the set {φ} of its solutions

(6.56) are invariant with respect to the reducible unitary bosonic representation

(5.22) of the Poincaré group P , whose Hermitian 8×8 matrix-differential gen-
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erators are given by

p̂0 = Γ0
8ω̂ ≡ Γ0

8

√
−∆+m2, p̂` = −i∂`,

ĵ`n = x` p̂n −xn p̂` + s`n ≡ m̂`n + s`n, (6.60)

ĵ0` = − ĵ`0 = x0 p̂`− 1

2
Γ0

8

{
x`, ω̂

}
+Γ0

8

(−→s ×−̂→p )`

ω̂ +m
, (6.61)

where the spin s=(3/2,3/2) SU(2) generators −→s = (s`n) have the form

(6.57)=(6.58) and matrix Γ0
8 is given in (6.55).

It is easy to prove by the direct verification that the generators (6.60), (6.61)

commute with the operator (i∂0 −Γ0
8ω̂) of the canonical field equation (6.54)

and satisfy the commutation relations (3.4) of the Lie algebra of the Poincaré

group P . The Casimir operators for the representation (6.60), (6.61) with SU(2)

spin (6.57)=(6.58) are given by

p2 = p̂µ p̂µ = m2I8, (6.62)

W = wµwµ = m2−→s 2
8 =

3

2

(
3

2
+1

)
I8. (6.63)

Thus, due to the eigenvalues in equations (6.59), positive and negative

frequencies form of solution (6.56) and the Bargman–Wigner analysis of the

Casimir operators (6.62), (6.63) one can come to a conclusion that equa-

tion (6.54) describes the 8-component canonical field (the fermionic particle-

antiparticle doublet) with the spins s=(3/2,3/2) and m > 0.

6.2.5. The Example of Spin s=(2,2) Particle-Antiparticle

Doublet

The model based on the canonical field equation for the 10-component spin

s=(2,2) particle-antiparticle bosonic doublet is under consideration.

This model is constructed in complete analogy for the consideration of the

spin s=(1,1) particle-antiparticle doublet given in subsection 6.2.3.

The RCQM of the spin s=(2,2) particle-antiparticle doublet is considered

in subsection 5.7.5. Transition to the canonical field theory is fulfilled in a

complete analogy with the above applied method. The difference is only in
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the explicit form of the transition operator, which is now given by the 10×10

diagonal matrix with the 5×5 operator of the complex conjugation in the bottom

part.

Thus, the Schrödinger–Foldy equation (5.158) and its solution (5.159) are

linked with the canonical field theory equation

(i∂0 −Γ0
10ω̂)φ(x) = 0, Γ0

10 =

∣∣∣∣
I5 0

0 −I5

∣∣∣∣ , ω̂ ≡
√

−∆+m2, (6.64)

and its solution

φ(x) =
1

(2π)
3
2

Z

d3k

[
e−ikxgA(

−→
k )dA +eikxg∗B(

−→
k )dB

]
, (6.65)

A = 1,2,3,4,5, B = 6,7,8,9,10,

with the help of the following operator

v10 =

∣∣∣∣
I5 0

0 CI5

∣∣∣∣ , v−1
10 = v

†
10 = v10, v10v10 = I10, (6.66)

where the Cartesian orts (dA, dB) are given in (5,160), C is the operator of the

complex conjugation and I5 is the 5×5 unit matrix.

The operator v10 (6.66) transforms an arbitrary operator q̂qm of the 10-

component RCQM from subsection 5.7.5 into the corresponding operator q̂cf

of the canonical field theory and vice verso:

v10q̂anti−Herm
qm v10 = q̂anti−Herm

cf , (6.67)

v10q̂anti−Herm
cf v10 = q̂anti−Herm

qm , (6.68)

where the operators q̂qm and q̂cf must be taken in the anti-Hermitian form. The

corresponding link between solutions (5.159) and (6.65) is as follows

φ = v10 f , f = v10φ. (6.69)

Note that formulae (6.67), (6.68) are valid for the anti-Hermitian (prime)

operators only. For the goals stated in our previous papers [16–20], we often

use the operators in the anti-Hermitian form (see also the comments in Chapter

3). The mathematical correctness of such choice and the physical interpretation
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are explained in the books [21, 22]. Return to the Hermitian operators is very

easy.

The important examples of the transitions (6.67), (6.68) are the transforma-

tions of the operators of equations (5.158), (6.64)

v10(∂0 + iω̂)v10 = ∂0 + iΓ0
10ω̂, (6.70)

v10(∂0 + iΓ0
10ω̂)v10 = ∂0 + iω̂, (6.71)

and of the SU(2) spin operators. The spin operators of the canonical field the-

ory found from the corresponding RCQM SU(2) spin (5.163) on the basis of

the transformation (6.66) satisfy the commutation relations (5.91) and have the

following form

−→s 10 =

∣∣∣∣
−→s 5 0

0
−→
s 5

∣∣∣∣ , (6.72)

where the 5×5 spin s=2 SU(2) generators are denoted as −→s 5 and are given in

(5.109). The corresponding Casimir operator is given by

−→s 2
10 = 6I10 = 2(2+1)I10, (6.73)

where I10 is the 10×10- unit matrix.

The stationary complete set of operators is given by the operators −̂→p , s3
10 =

sz of the momentum and spin projection. The equations on the eigenvectors and

eigenvalues of the operators −̂→p and s3
10 = sz from (6.72) have the form

−̂→p e−ikxdA =
−→
k e−ikxdA, A = 1,5, −̂→p eikxdB = −−→

k eikxdB, B = 6,10,

s3
10d1 = 2d1, s3

10d2 = d2, s3
10d3 = 0, s3

10d4 = −d4, s3
10d5 = −2d5,

s3
10d6 = 2d6, s3

10d7 = d7, s3
10d8 = 0, s3

10d9 = −d9, s3
10d10 = −2d10, (6.74)

and determine the interpretation of the amplitudes in the general solution

(6.65). Note that the direct quantum-mechanical interpretation of the amplitudes

gA(
−→
k ), gB(

−→
k ) in solution (6.65) should be taken from the quantum-mechanical

equations (5.165), (5.166) and is given in subsection 5.7.5.

The relativistic invariance of the canonical field equation (6.64) follows

from the corresponding invariance of the Schrödinger–Foldy equation (5.158)

and transformation (6.66)–(6.69) (for the anti-Hermitian operators). The ex-

plicit form of the corresponding generators follows from of the explicit form
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the generators (5.20), (5.21) with the spin matrices (5.162), (5.163) and trans-

formation (6.66), (6,67).

Thus, the canonical field equation (6.64) and the set {φ} of its solutions

(6.65) are invariant with respect to the reducible unitary bosonic representation

(5.22) of the Poincaré group P , whose Hermitian 10× 10 matrix-differential

generators are given by

p̂0 = Γ0
10ω̂ ≡ Γ0

10

√
−∆+m2, p̂` = −i∂`,

ĵ`n = x` p̂n −xn p̂` + s`n
10 ≡ m̂`n + s`n

10, (6.75)

ĵ0` = − ĵ`0 = x0 p̂`− 1

2
Γ0

10

{
x`, ω̂

}
+Γ0

10

(−→s 10 ×−̂→p )`

ω̂+m
, (6.76)

where the spin s=(2,2) SU(2) generators −→s 10 = (s`n
10) have the form (6.72) and

Γ0
10 matrix is given in (6.64).

It is easy to prove by the direct verification that generators (6.75), (6.76)

commute with the operator (i∂0 −Γ0
6ω̂) of the canonical field equation (6.64)

and satisfy the commutation relations (3.4) of the Lie algebra of the Poincaré

group P .

The corresponding Casimir operators are given by

p2 = p̂µ p̂µ = m2I10, (6.77)

W = wµwµ = m2−→s 2
10 = 2(2+1)m2I10, (6.78)

where I10 is the 10 × 10 unit matrix. Note that the difference between the

Casimir operators (6.77), (6.78) and the corresponding expressions in RCQM,

see the formulas (5.174), (5.175) above, is only in the explicit form of the oper-

ator −→s 10.

Thus, due to the eigenvalues in equations (6,74), positive and negative fre-

quencies form of the solution (6.65) and the Bargman–Wigner analysis of the

Casimir operators (6.77), (6.78), one can come to a conclusion that equation

(6.64) describes the canonical field (the bosonic particle-antiparticle doublet)

with the spins s=(2,2) and m > 0. Transition to the m = 0 limit leads to the

canonical field equation for the graviton-antigraviton field (if the graviton is

massless ?).
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Final transition to the covariant local field theory in the case of this 10-

component doublet contains the specific features and is the subject of further

investigations. The result of such transition can be the Duffin–Kemmer–Petiau

equation or the 10-component Dirac-like equation for the spin s=(2,2) and m > 0

classical field. The resulting covariant local field theory equation can be found

in an analogy with the consideration of the spin s=(1,1) doublet.

6.3. Examples of Particle-Antiparticle Multiplets

6.3.1. The Example of Spin s=(1,0,1,0) Particle-Antiparticle

Multiplet

The model based on the canonical field equation for the 10-component spin

s=(1,0,1,0) particle-antiparticle bosonic multiplet is under consideration.

In this section, the canonical FW type field model of the spin s=(1,0)

bosonic multiplet and the corresponding spin s=(1,0) antiparticle multiplet is

constructed. The start of this derivation is given in subsection 5.8.2, where the

RCQM model of the 8-component bosonic spin s=(1,0,1,0) particle-antiparticle

multiplet is given. The analogy with the case of the spin s=(3/2,3/2) model of

the subsection 6.2.4 is used. Some formulas are similar. The case of the spin

s=(3/2,3/2) is 8-component as well. Therefore, the details can be omitted.

The canonical field equation of spin s=(1,0,1,0) particle-antiparticle multi-

plet is the same as in (6.54). The link with the corresponded RCQM is given by

(6.50)–(6.53). The general solution of equation (6.54) for s=(1,0,1,0) is given

by

φ(x) =
1

(2π)
3
2

Z

d3k
[
e−ikxcA(

−→
k )dA +eikxc∗B(

−→
k )dB

]
, (6.79)

where A = 1,4, B = 5,8 and the orts of the 8-component Cartesian basis are

given in (5.149).

The SU(2) spin operators, which satisfy the commutation relations (5.91)

and commute with the operator (i∂0 −Γ0
8ω̂) of the equation of motion (6.54),

are derived from the RCQM operators (5.179) on the basis of transformations

(6.50), (6.52). These canonical field spin operators are given by

−→s 8 =

∣∣∣∣
−→
s 0

0 −→s

∣∣∣∣ , (6.80)
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where the 4×4 operators −→s are given in (5.171). The corresponding Casimir

operator is given by the 8×8 diagonal matrix (5.180). Note that this Casimir

operator is the same both for the spin (5.179) and for the spin (6.80).

The stationary complete set of operators is given by the operators −̂→p , s3
8 = sz

of the momentum and spin projection. The equations on the eigenvectors and

eigenvalues of the spin projection operator s3
8 = sz from (6.80) have the form

s3
8d1 = d1, s3

8d2 = 0, s3
8d3 = −d3, s3

8d4 = 0,

s3
8d5 = d5, s3

8d6 = 0, s3
8d7 = −d7, s3

8d8 = 0. (6.81)

Therefore, the functions c1(
−→
k ), c2(

−→
k ), c3(

−→
k ) in solution (6.79) are the

momentum-spin amplitudes of the massive boson with the spin s=1 and the spin

projection (1,0,−1), respectively, c4(
−→
k ) is the amplitude of the spinless boson;

c∗5(
−→
k ), c∗6(

−→
k ), c∗7(

−→
k ) are the momentum-spin amplitudes of the antiparticle

(antiboson) with the spin s=1 and the spin projection (1,0,−1), respectively,

c∗8(
−→
k ) is the amplitude of the spinless antiboson.

Note that direct quantum-mechanical interpretation of the amplitudes in so-

lution (6.79) should be given in the framework of the RCQM. Such interpreta-

tion is already given in subsection 5.8.2 in paragraph after equations (5.181).

The generators of the reducible unitary bosonic spin s=(1,0,1,0) multiplet

representation (5.22) of the Poincaré group P , with respect to which the canon-

ical field equation (6.54) and the set {φ} of its solutions (6.79) are invariant, are

derived from the RCQM set of generators (5.20), (5.21) with the spin (5.179) on

the basis of the transformations (6.50), (6.52). These Hermitian 8×8 matrix-

differential generators are given by

p̂0 = Γ0
8ω̂ ≡ Γ0

8

√
−∆+m2, p̂` = −i∂`,

ĵ`n = x` p̂n −xn p̂` + s`n
8 ≡ m̂`n + s`n

8 , (6.82)

ĵ0` = − ĵ`0 = x0 p̂` − 1

2
Γ0

8

{
x`, ω̂

}
+Γ0

8

(−→s 8 ×−̂→p )`

ω̂ +m
, (6.83)

where the spin s=(1,0,1,0) SU(2) generators −→s 8 = (s`n
8 ) have the form (6.80)

and matrix Γ0
8 is given in (6.55).

It is easy to prove by the direct verification that the generators (6.82), (6.83)

commute with the operator (i∂0 −Γ0
8ω̂) of the canonical field equation (6.54)
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and satisfy the commutation relations (3.4) of the Lie algebra of the Poincaré

group P . The Casimir operators for the representation (6.82), (6,83) are given

by

p2 = p̂µ p̂µ = m2I8, (6.84)

W = wµwµ = m2−→s 2
8 = m2

∣∣∣∣∣∣∣∣

1(1+1) I3 0 0 0

0 0 0 0

0 0 1(1+1) I3 0

0 0 0 0

∣∣∣∣∣∣∣∣
, (6.85)

where I8 and I3 are 8×8 and 3×3 unit matrices, respectively.

Thus, due to the eigenvalues in equations (6.81), positive and negative

frequencies form of solution (6.79) and the Bargman–Wigner analysis of the

Casimir operators (6.84), (6.85) one can come to a conclusion that equa-

tion (6.54) describes the 8-component canonical field (the bosonic particle-

antiparticle multiplet) with the spins s=(1,0,1,0) and m > 0. Transition to the

m = 0 limit leads to the canonical field equation for the 8-component (photon

massless spinless boson)-(antiphoton- masslees spinless antiboson) field.

Note that in subsection 6.2.4 the same equation (6.54) was proved to de-

scribe another object, i.e., the fermionic spin s=(3/2,3/2) particle-antiparticle

doublet. Therefore, the equation (6.54) is good example in order to explain the

property of the Fermi-Bose duality of relativistic particle equations, which is

discussed in our last years publications, see, e.g., the papers [23, 24].

The investigation that only two concepts, the equation of motion and the

representation of the Poincaré group, under which the equation is invariant,

determine the physical interpretation of equation was presented first in [25]. We

wrote there “One of the conclusions of the investigation presented here is that

a field equation itself does not answer the question, what kind of particle (Bose

or Fermi) is described by this equation. To answer this question one needs to

find all the representations of the Poincaré group, under which the equation is

invariant. If more than one such Poincaré representation is found, including

the representations with integer and half-integer spins, then the given equation

describes both Bose and Fermi particles, and both quantization types (Bose and

Fermi) of the field function, obeying this equation, satisfy the micro-causality

condition.”



190 Volodimir Simulik

6.3.2. The Example of Spin s=(2,0,2,0) Particle-Antiparticle

Multiplet

The model based on the canonical field equation for the 12-component spin

s=(2,0,2,0) particle-antiparticle bosonic multiplet is under consideration.

In this subsection, the united canonical field model of the spin s=(2,0)

bosonic multiplet and the corresponding spin s=(2,0) antiparticle multiplet is

constructed. The complete analogy with the case of the spin s=(1,0,1,0) model

of subsection 6.3.1 is used.

The start of this derivation is given in subsection 5.8.3, where the RCQM

of the 12-component bosonic spin s=(2,0,2,0) particle-antiparticle multiplet is

considered.

Thus, the corresponding canonical field equation is found in the form

(i∂0 −Γ0
12ω̂)φ(x) = 0, φ =

∣∣∣∣∣∣∣∣∣∣∣∣

φ1

φ2

.

.

.

φ12

∣∣∣∣∣∣∣∣∣∣∣∣

, (6.86)

where

ω̂ ≡
√

−∆+m2, Γ0
12 =

∣∣∣∣
I6 0

0 −I6

∣∣∣∣ , I6 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

. (6.87)

The general solution of equation (6.86) is given by

φ(x) =
1

(2π)
3
2

Z

d3k
[
e−ikxgA(

−→
k )dA +eikxg∗B(

−→
k )dB

]
, (6.88)

where A = 1,6, B = 5,12 and the orts of the 12-component Cartesian basis are

given in (5.186).

The transition from the Schrödinger–Foldy equation (5.184) and its solution

(5.185) to canonical field equation (6.86) and solution (6.88) is given by the
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operator

v12 =

∣∣∣∣
I6 0

0 CI6

∣∣∣∣ , v−1
12 = v

†
12 = v12, v12v12 = I12, (6.89)

φ = v12 f , f = v12φ, (6.90)

v12q̂anti−Herm
qm v12 = q̂anti−Herm

cf , (6.91)

v12q̂anti−Herm
cf v12 = q̂anti−Herm

qm . (6.92)

Here q̂anti−Herm
qm is an arbitrary operator from the RCQM of the 12-component

particle-antiparticle doublet in the anti-Hermitian form, e.g., the operator (∂0 +
iω̂) of equation of motion, the operator of spin (5.188), etc., q̂anti−Herm

cf is an

arbitrary operator from the canonical field theory of the 12-component particle-

antiparticle doublet in the anti-Hermitian form, CI6 is the 6×6 operator of com-

plex conjugation.

The SU(2) spin operators, which satisfy the commutation relations
[
s j, s`

]
=

iε j`nsn and commute with the operator (i∂0 −Γ0
12ω̂) of the equation of motion

(6.86), are derived from the RCQM operators (5.188) on the basis of transfor-

mations (6.89), (6.91). These canonical field spin operators are given by

−→s 12 =

∣∣∣∣
−→s 6 0

0 −→s 6

∣∣∣∣ , (6.93)

where the 6×6 operators −→s 6 are given in (5.189). The corresponding Casimir

operator is given by the 12×12 diagonal matrix (5.190). Note that this Casimir

operator is the same both for the spin (5.188) and for the spin (6.93).

The stationary complete set of operators is given by the operators −̂→p , s3
12 =

sz of the momentum and spin projection. The equations on the eigenvectors and

eigenvalues of the spin projection operator s3
12 = sz from (6.93) have the form

s3
12d1 = 2d1, s3

12d2 = d2, s3
12d3 = 0, s3

12d4 = −d4,

s3
12d5 = −2d5, s3

12d6 = 0, s3
12d7 = 2d7, s3

12d8 = d8, (6.94)

s3
12d9 = 0, s3

12d10 = −d10, s3
12d11 = −2d11, s3

12d12 = 0.

Therefore, the functions g1(
−→
k ), g2(

−→
k ), g3(

−→
k ), g4(

−→
k ), g5(

−→
k ) in solution

(6.88) are the momentum-spin amplitudes of the massive boson with the spin
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s=2 and the spin projection (2,1,0,−1,−2), respectively, g6(
−→
k ) is the am-

plitude of the spinless boson; g7(
−→
k ), g8(

−→
k ), g9(

−→
k ), g10(

−→
k ), g11(

−→
k ) are the

momentum-spin amplitudes of the antiparticle (antiboson) with the spin s=2 and

the spin projection (2,1,0,−1,−2), respectively, g12(
−→
k ) is the amplitude of the

spinless antiboson.

Note that direct quantum-mechanical interpretation of the amplitudes in so-

lution (6.88) should be given in the framework of the RCQM. Such interpreta-

tion is already given in subsection 5.8.3 in paragraph after equations (5.192).

The generators of the reducible unitary bosonic spin s=(2,0,2,0) multiplet

representation (5.22) of the Poincaré group P , with respect to which the canon-

ical field equation (6.86) and the set {φ} of its solutions 6.88) are invariant, are

derived from the RCQM set of generators (5.20), (5.21) with the spin (6.93) on

the basis of the transformations (6.89), (6.91). These Hermitian 12×12 matrix-

differential generators are given by

p̂0 = Γ0
12ω̂ ≡ Γ0

12

√
−∆+m2, p̂` = −i∂`,

ĵ`n = x` p̂n −xn p̂` + s`n
12 ≡ m̂`n + s`n

12, (6.95)

ĵ0` = − ĵ`0 = x0 p̂`− 1

2
Γ0

12

{
x`, ω̂

}
+Γ0

12

(−→s 12 ×−̂→p )`

ω̂+m
, (6.96)

where the spin s=(2,0,2,0) SU(2) generators −→s 12 = (s`n
12) have the form (6.93)

and matrix Γ0
12 is given in (6.87).

It is easy to prove by the direct verification that the generators (6.95), (6.96)

commute with the operator (i∂0 −Γ0
12ω̂) of the canonical field equation (6.86)

and satisfy the commutation relations (3.4) of the Lie algebra of the Poincaré

group P . The Casimir operators for the representation (6.95), (6.96) are given

by

p2 = p̂µ p̂µ = m2I12, (6.97)

W = wµwµ = m2−→s 2
12 = m2

∣∣∣∣∣∣∣∣

2(2+1) I5 0 0 0

0 0 0 0

0 0 2(2+1) I5 0

0 0 0 0

∣∣∣∣∣∣∣∣
, (6.98)

where I12 is 12×12 unit matrix and I5 is 5×5 unit matrix.
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Thus, due to the eigenvalues in equations (6.94), positive and negative

frequencies form of solution (6.88) and the Bargman–Wigner analysis of the

Casimir operators (6.97), (6.98) one can come to a conclusion that equa-

tion (6.86) describes the 12-component canonical field (the bosonic particle-

antiparticle doublet) with the spins s=(2,0,2,0) and m > 0. Transition to the

m = 0 limit leads to the canonical field equation for the 12-component (graviton

massless spinless boson)-(antigraviton- masslees spinless antiboson) field.

6.3.3. The Example of Spin s=(2,1,2,1) Particle-Antiparticle

Multiplet

The model based on the canonical field equation for the 16-component spin

s=(2,1,2,1) particle-antiparticle bosonic multiplet is under consideration.

In this section, the field model of the spin s=(2,1) bosonic multiplet and the

corresponding spin s=(2,1) antiparticle multiplet is constructed. The complete

analogy with the case of the spin s=(1,0,1,0) model of subsection 6.3.1 and the

spin s=(2,0,2,0) model of the previous section is used.

The start of this derivation is given in subsection 5.8.4, where the RCQM of

the 16-component bosonic spin s=(2,1,2,1) particle-antiparticle multiplet is con-

sidered. The second step is the transition from the Schrödinger–Foldy equation

(5.195) to the canonical field equation. This step, as shown above, is possible

only for the anti-Hermitian form of the operators. Nevertheless, the resulting

operators can be chosen in the standard Hermitian form and do not contain the

operator C of complex conjugation. The last step of the transition from the

canonical field equation to the covariant local field equation is fulfilled in anal-

ogy with the FW transformation and is considered in next chapter.

Thus, the corresponding canonical field equation is found in the form

(i∂0 −Γ0
16ω̂)φ(x) = 0, φ =

∣∣∣∣∣∣∣∣∣∣∣∣

φ1

φ2

.

.

.

φ16

∣∣∣∣∣∣∣∣∣∣∣∣

, (6.99)
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where

ω̂ ≡
√
−∆+m2, Γ0

16 =

∣∣∣∣
I8 0

0 −I8

∣∣∣∣ , I8 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(6.100)

The general solution of equation (6.99) is given by

φ(x) =
1

(2π)
3
2

Z

d3k

[
e−ikxgA(

−→
k )dA +eikxg∗B(

−→
k )dB

]
, (6.101)

where A = 1,8, B = 9,16 and the orts of the 16-component Cartesian basis are

given in (5.198).

The transition from the Schrödinger–Foldy equation (5.195) and its solution

(5.197) to canonical field equation (6.99) and solution (6.101) is given by the

operator

v16 =

∣∣∣∣
I8 0

0 CI8

∣∣∣∣ , v−1
16 = v

†
16 = v16, v16v16 = I16, (6.102)

φ = v16 f , f = v16φ, (6.103)

v16q̂anti−Herm
qm v16 = q̂anti−Herm

cf , (6.104)

v16q̂anti−Herm
cf v16 = q̂anti−Herm

qm . (6.105)

Here q̂anti−Herm
qm is an arbitrary operator from the RCQM of the 16-component

particle-antiparticle doublet in the anti-Hermitian form, e.g., the operator (∂0 +
iω̂) of equation of motion, the operator of spin (5.199), etc., q̂anti−Herm

cf is an

arbitrary operator from the canonical field theory of the 16-component particle-

antiparticle doublet in the anti-Hermitian form, CI8 is the 8×8 operator of com-

plex conjugation.
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The SU(2) spin operators, which satisfy the commutation relations (5.91)

and commute with the operator (i∂0 −Γ0
16ω̂) of the equation of motion (6.99),

are derived from the RCQM operators (5.199) on the basis of transformations

(6.102), (6.104). These canonical field spin operators are given by

−→s 16 =

∣∣∣∣
−→s 8 0

0 −→s 8

∣∣∣∣ , (6.106)

where the 8×8 operators −→s 8 are given in (5.200). The corresponding Casimir

operator is given by the 16×16 diagonal matrix (5.201). Note that this Casimir

operator is the same both for the spin (5.199) and for the spin (6.106).

The stationary complete set of operators is given by the operators −̂→p , s3
16 =

sz of the momentum and spin projection. The equations on the eigenvectors and

eigenvalues of the spin projection operator s3
16 = sz from (6.106) have the form

s3
16d1 = 2d1, s3

16d2 = d2, s3
16d3 = 0, s3

16d4 = −d4,

s3
16d5 = −2d5, s3

16d6 = d6, s3
16d7 = 0, s3

16d8 = −d8, (6.107)

s3
16d9 = 2d9, s3

16d10 = d10, s3
16d11 = 0, s3

16d12 = −d12,

s3
16d13 = −2d13, s3

16d14 = d14, s3
16d15 = 0, s3

16d16 = −d16.

Therefore, the functions g1(
−→
k ), g2(

−→
k ), g3(

−→
k ), g4(

−→
k ), g5(

−→
k ) in solu-

tion (6.101) are the momentum-spin amplitudes of the massive boson

with the spin s=2 and the spin projection (2,1,0,−1,−2), respectively,

g6(
−→
k ), g7(

−→
k ), g8(

−→
k ) are the momentum-spin amplitudes of the massive

boson with the spin s=1 and the spin projection (1,0,−1); the functions

g9(
−→
k ), g10(

−→
k ), g11(

−→
k ), g12(

−→
k ), g13(

−→
k ) are the momentum-spin amplitudes

of the antiparticle (antiboson) with the spin s=2 and the spin projection

(2,1,0,−1,−2), respectively, g14(
−→
k ), g15(

−→
k ), g16(

−→
k ) are the momentum-spin

amplitudes of the antiparticle (massive antiboson) with the spin s=1 and the spin

projection (1,0,−1).

Note that direct quantum-mechanical interpretation of the amplitudes in so-

lution (6.101) should be given in the framework of the RCQM. Such interpreta-

tion is already given in subsection 5.8.4 in paragraph after equations (5.203).

The generators of the reducible unitary bosonic spin s=(2,1,2,1) multiplet

representation (5.22) of the Poincaré group P , with respect to which the canoni-

cal field equation (6.99) and the set {φ} of its solutions (6.101) are invariant, are
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derived from the RCQM set of generators (5.20), (5.21) with the spin (6.106)

on the basis of the transformations (6.102), (6.104). These Hermitian 16×16

matrix-differential generators are given by

p̂0 = Γ0
16ω̂ ≡ Γ0

16

√
−∆+m2, p̂` = −i∂`,

ĵ`n = x` p̂n −xn p̂` + s`n
16 ≡ m̂`n + s`n

16, (6.108)

ĵ0` = − ĵ`0 = x0 p̂` − 1

2
Γ0

16

{
x`, ω̂

}
+Γ0

16

(−→s 16 ×−→p )`

ω̂+m
, (6.109)

where the spin s=(2,1,2,1) SU(2) generators −→s 16 = (s`n
16) have the form (6.106)

and matrix Γ0
16 is given in (6.100).

It is easy to prove by the direct verification that the generators (6.108),

(6.109) commute with the operator (i∂0 − Γ0
16ω̂) of the canonical field equa-

tion (6.99) and satisfy the commutation relations (3.4) of the Lie algebra of the

Poincaré group P . The Casimir operators for the representation (6.108), (6.109)

are given by

p2 = p̂µ p̂µ = m2I16, (6.110)

W = wµwµ = m2−→s 2
16 = m2

∣∣∣∣∣∣∣∣

2(2 +1)I5 0 0 0

0 1(1 +1)I3 0 0

0 0 2(2 +1)I5 0

0 0 0 1(1 +1)I3

∣∣∣∣∣∣∣∣
,

(6.111)

where I16 is 16×16 unit matrix, I5 is 5×5 unit matrix and I3 is 3×3 unit matrix,

respectively.

Thus, due to the eigenvalues in equations (6.107), positive and negative

frequencies form of solution (6.101) and the Bargman–Wigner analysis of the

Casimir operators (6.110), (6.111) one can come to a conclusion that equa-

tion (6.99) describes the 16-component canonical field (the bosonic particle-

antiparticle doublet) with the spins s=(2,1,2,1) and m > 0. Transition to the

m = 0 limit leads to the canonical field equation for the 16-component (graviton

- photon)-(antigraviton - antiphoton) field.
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Chapter 7

Covariant Equations of

Arbitrary Spin

In this chapter the final step of our program of synthesis of arbitrary spin co-

variant field equations is presented. The link between the canonical Foldy–

Wouthuysen (FW) type of arbitrary spin equations and manifestly covariant

field equations is presented. For the case of spin s=(1/2,1/2) particle-antiparticle

doublet this link is given by the well-known inverse FW transformation [1, 2]

(see the brief comment in subsection 2.2.9). In subsection 2.4.3 the direct link

(2.38)–(2.40) between the relativistic canonical quantum mechanics (RCQM)

and the Dirac equation is considered. It is useful to investigate another link,

in which the FW type representation for arbitrary spin is the intermediate stage

between the RCQM and manifestly covariant field theory, see, e.g., the consid-

eration in [3–6]. Such link is useful due to the independent role of the canonical

FW type representation in the field theory. Indeed, interesting partial examples

of the doublets and multiplets described above in the Chapter 6 demonstrate the

role of consideration on the level of canonical FW type field model. We suggest

to pay attention for the spin s=(1,1) and spin s=(2,2) particle-antiparticle bosonic

doublets described above in the subsections 6.2.3 and 6.2.5, respectively. The

canonical FW type equations of motion (6.35) and (6.64) has been derived.

The chain of our synthesis program can be demonstrated as RCQM → FW

→ manifestly covariant equations. Therefore, here below the final step, where

we derive the Dirac-like manifestly covariant equation of arbitrary spin together

with partial cases of fixed spin particle-antiparticle doublets and multiplets.

Note that transition from the FW to the Dirac-like model does not need the
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appealing to the anti-Hermitian form of operators (which is necessary for the

link between the RCQM and FW models).

7.1. Brief Analysis of the Existing Covariant

Equations for an Arbitrary Spin

One of the goals of [3–6] (and this book) is the link between the RCQM of an

arbitrary spin and the different approaches to the covariant local field theory

of an arbitrary spin. Surely, at least the brief analysis of the existing covariant

equations for an arbitrary spin should be presented.

Note that in [3–6] and here only the first-order particle and the field equa-

tions (together with their canonical nonlocal pseudo-differential representa-

tions) are considered. The second order equations (like the Klein–Gordon–Fock

equation) are not the subject of this investigation. Thus, the Bhabha, Bargman–

Wigner, Pauli–Fierz and many other such type equations are under considera-

tion.

Different approaches to the description of the field theory of an arbitrary

spin can be found in [2, 7–24]. Again, as with the relativistic equation for the

electron, the Paul Dirac [7] was the first. Here and in [3–6] only the approach

started in [2] is the basis for further application. Other results given in [7–24]

are not used here.

Note only some general deficiencies of the known equations for arbitrary

spin. The consideration of the partial cases, when the substitution of the fixed

value of spin is fulfilled, is not successful in all cases. For example, for the

spin s > 1 existing equations have the redundant components and should be

complemented by some additional conditions. Indeed, the known equations [8,

9, 25] for the spin s=3/2 (and their confirmation in [26]) should be essentially

complemented by the additional conditions. The main difficulty in the models

of an arbitrary spin is the interaction between the fields of higher-spin. Even

the quantization of higher-spin fields generated the questions. These and other

deficiencies of the known equations for higher-spin are considered in [27–45]

(a brief review of deficiencies see in [37]).

Equations suggested in [3–6] and considered below here are free of these de-

ficiencies. The start of such consideration was given from [2], where the main

foundations of the RCQM were formulated. In the texts of [3–6] and here the re-

sults of [2] are generalized and extended. The operator link between the results
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of [1] and [2] (between the canonical FW type field theory and the RCQM) is

suggested. Note that the cases s=3/2 and s=2 are not presented in [2], especially

in explicit demonstrative forms. The results of [3–6] formally look like as the

given in [11, 13]. Nevertheless, the difference is evident. Indeed, in [11, 13] the

Bargman–Wigner equations and their Foldy–Wouthuysen representations have

been considered. Our approach [3–6] is completely different in comparison with

Bargman–Wigner approach.

Indeed, equations suggested in [3–6] do not contain redundant components.

The equations from [3–6] have been derived directly from the well-defined

equations of RCQM, where every component is well-defined. Therefore, the

partial differential equations for arbitrary spin found in [3–6] are without redun-

dant components. It is the advantage of equations from [3–6] in comparison

with equations considered in [7–24].

Indeed, the Rarita–Schwinger equation for spin s=3/2 contains 16 compo-

nents, whereas our equation [3–6] for spin s=(3/2,3/2) particle-antiparticle dou-

blet contains 8 components. The Bargman–Wigner equation [11, 13] in partial

case s=3/2 has 12 components. Bhabha itself [46] have analyzed the partial case

s=3/2 for his equation [10]. He have found [46] that in this case his equation

[10] coincides with the Rarita–Schwinger equation, i.e., has 16 components.

Therefore, in [3–6] the new equation for arbitrary spin has been suggested.

Even this brief analysis makes us sure in the prospects of the investigations

started in [3–6]. The description of the arbitrary spin field models [7–46] is not

the solved problem today.

7.2. General Formalism of Arbitrary Spin

Consider the results of the approach suggested in [3–6].

The operator, which transform the canonical (FW type) model of the ar-

bitrary spin particle-antiparticle field into the corresponding locally covariant

particle-antiparticle field, is the generalized FW operator and is given by

V∓ =
∓−→

Γ 2N · −̂→p + ω̂ +m√
2ω̂(ω̂+m)

, V− = (V+)†, (7.1)

V−V+ = V+V− = I2N, N = 2s+1,

where Γ
j
2N are known from (5.33) and Σ

j
N are the N×N Pauli matrices.
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Of course, for the matrices Γ
µ
2N (5.32), (5.33) (together with the matrix

Γ4
2N ≡ Γ0

2NΓ1
2NΓ2

2NΓ3
2N) the relations (5.27) are valid.

For the general form of arbitrary spin locally covariant particle-antiparticle

field the Dirac-like equation of motion follows from the equation (6.1) after the

transformation (7.1) and is given by

[
i∂0 −Γ0

2N(
−→
Γ 2N · −̂→p +m)

]
ψ(x) = 0. (7.2)

We must be careful in choosing the explicit form of Γ
µ
2N matrices in (7.1)

and (7.2). For our purposes of synthesis of covariant particle equations these

matrices can not be chosen as

Γ
µ
2N =

∣∣∣∣
Γ

µ
N 0

0 Γ
µ
N

∣∣∣∣ . (7.3)

Only the form

Γ0
2N ≡ σ3

2N =

∣∣∣∣
IN 0

0 −IN

∣∣∣∣ , Γ
j
2N =

∣∣∣∣∣
0 Σ j

N

−Σ
j
N 0

∣∣∣∣∣ , j = 1,2,3, (7.4)

is possible. Indeed, in the canonical FW type equation (6.1) for the arbitrary

spin the matrix Γ0
2N ≡ σ3

2N from (7.4) (not from (7.3)) is used.

Further, there is a degree of freedom in the choice of Σ
j
N matrices in (7.4).

This freedom started from the case of 4×4Σ
j
4 matrices, which can be chosen in

both forms

Σ
j
4 =

∣∣∣∣
σ j 0

0 σ j

∣∣∣∣ , (7.5)

where
{

σ j
}

are the standard Pauli matrices (1.6), and

Σ1
4 =

∣∣∣∣
0 I2

I2 0

∣∣∣∣ , Σ2
4 =

∣∣∣∣
0 −iI2

iI2 0

∣∣∣∣ , Σ3
4 =

∣∣∣∣
I2 0

0 −I2

∣∣∣∣ . (7.6)

Note that in formulas (7.1) and in all formulas before the end of the section

the values of N are only even. Therefore, the canonical field equation (6.1)

describes the larger number of multiplets then the generalized Dirac equation

(7.2).

The formulas (7.2) and (7.7)–(7.11) below are found from the corresponding

formulas (5.31), (5.32), (6.3), (6.5), (6.6) of canonical field model on the basis

of the operator (7.1).
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The general solution has the form

ψ(x) = V−φ(x) =

1

(2π)
3
2

Z

d3k
[
e−ikxaN(

−→
k )v−N(

−→
k )+eikxa∗N̆(

−→
k )v+

N̆
(
−→
k )
]
, (7.7)

where amplitudes and notation N̆ are the same as in (5.31);
{

v−N(
−→
k ), v+

N̆
(
−→
k )
}

are 2N-component Dirac basis spinors with properties of ortonormalization and

completeness similar to 4-component Dirac spinors from [47].

The spin operator is given by

−→s D = V−−→s 2NV +, (7.8)

where operator−→s 2N is known from (6.3). The explicit forms of few partial cases

of spin operators (7.8) are given in formulae (259)–(261), (284)–(286), (359) of

[48] for the particle-antiparticle multiplets s=(1,0,1,0), s=(3/2,3/2), s=(2,1,2,1),

respectively.

The generators of the reducible unitary representation of the Poincaré group

P , with respect to which the covariant field equation (7.2) and the set {ψ} of its

solutions (7.7) are invariant, have the form

p̂0 = Γ0
2N(

−→
Γ 2N · −̂→p +m), p̂` = −i∂`, (7.9)

ĵ`n = x`
D p̂n −xn

D p̂` + s`n
D ≡ m̂`n + s`n

D ,

ĵ0` = − ĵ`0 = x0 p̂`− 1

2

{
x`

D, p̂0
}

+
p̂0(−→s D ×−̂→p )`

ω̂(ω̂+m)
, (7.10)

where the spin matrices −→s D = (s`n
D ) are given in (7.8) and the operator −→x D has

the form

−→x D = −→x +
i
−→
Γ 2N

2ω̂
−

−→s Γ
2N ×−̂→p

ω̂(ω̂+m)
− i−̂→p (

−→
Γ 2N · −̂→p )

2ω̂2(ω̂+m)
, (7.11)

where specific spin-like matrices −→s Γ
2N are given by

−→s Γ
2N ≡

(
s1

2N, s2
2N, s3

2N

)
=

i

2
(Γ2

2NΓ3
2N, Γ3

2NΓ1
2N, Γ1

2NΓ2
2N) (7.12)

with Γ
j
2N given in (7.4).
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Note that for corresponding partial cases of −→x D in [48] ((267) for

s=(1,0,1,0), once more (267) but for s=(3/2,3/2), (333) for s=(2,0,2,0), (363)

for s=(2,1,2,1)) the corresponding −→s Γ
2N are given by

s = (1,0,1,0) and s = (3/2,3/2) :

−→s Γ
8 ≡

(
s1

8, s2
8, s3

8

)
=

i

2
(Γ2

8Γ3
8, Γ3

8Γ1
8, Γ1

8Γ2
8), (7.13)

for −→x D [48] (267), where the Γ
j
8 matrices are given in (253),

s = (2,0,2,0) :

−→s Γ
12 ≡

(
s1

12, s2
12, s3

12

)
=

i

2
(Γ2

12Γ3
12, Γ3

12Γ1
12, Γ1

12Γ2
12), (7.14)

for −→x D [48] (333), where the Γ
j
12 matrices are given in (324),

s = (2,1,2,1) :

−→s Γ
16 ≡

(
s1

16, s2
16, s3

16

)
=

i

2
(Γ2

16Γ3
16, Γ3

16Γ1
16, Γ1

16Γ2
16), (7.15)

for −→x D [48] (363), where the Γ
j
16 matrices are given in (353).

These partial cases can be found below in this Chapter in next sections as

well.

It is easy to verify that the generators (7.9), (7.10) for any N commute with

the operator of equation (7.2), and satisfy the commutation relations (3.4) of the

Lie algebra of the Poincaré group. The last step in the brief description of the

model is the calculation of the Casimir operators p2 = p̂µ p̂µ, W = wµwµ (wµ is

the Pauli–Lubanski pseudovector) for the fixed value of spin.

7.3. The Dirac Model of Spin s=(1/2,1/2)

Particle-Antiparticle Doublet

The below considered formalism follows from the general formalism of arbi-

trary spin presented above in section 7.1 after the substitution corresponded to

spin s=(1/2,1/2) formulas. On the other hand this example of spin s=(1/2,1/2)

particle-antiparticle doublet description follows from the consideration of spin

s=(1/2,1/2) particle-antiparticle doublet in canonical FW representation de-

scribed here in the Chapter 6 in subsection 6.2.2. Hence, below the well-known
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Dirac model of the spin s=(1/2,1/2) particle-antiparticle doublet is considered

as an consequence of more fundamental model of the physical reality. Note that

description of spin s=(1/2,1/2) particle-antiparticle doublet, which is considered

on three different levels in subsections 5.7.2, 6.2.2 and here, is the main testing

example and the generalization on arbitrary spin follows from this formalism.

Thus, on the basis of the inverse FW transformation V± (4.23) from the

FW equation (4.21) the Dirac equation (4.22) is derived. Relations between the

solutions of the Dirac and FW equations are given by (4.24). The solution of the

free Dirac equation is derived in the form (4.30), where the notations are given

by (4.31). The relationship between the FW spin operator −→s (4.14) and Dirac

spin has the form (4.27).

It is easy to verify that spin (4.27) commutes with the operator i∂0 − (
−→
α ·

−̂→p + βm) of the equation (4.22) and satisfies the SU(2) commutation relations.

Moreover, it is easy to verify that the Dirac spinors (4.31) satisfy the equations

on eigen vectors and eigenvalues of the spin operator (4.27) in the form (4.40)

similar to equations (4.45) from the FW representation. Furthermore, equations

(4.40) follow from equations (4.45) and the transformation V± (4.23).

The generators of the Lie algebra of the Poincaré group representation, with

respect to which the Dirac equation is invariant, are found as a partial case

of explicit forms of the expressions (7.9), (7.10). The partial case of 4× 4

standard Dirac gamma matrices (1.5) is chosen, the Dirac spin −→s D = (s`n
D ) is

given in (4.27), the position operator −→x D has the form (4.38) and the FW spin
−→
s Γ

2N ≡−→
s FW is known as (2.48)=(4.14). Thus, this partial spin s=(1/2,1/2) case

of (7.9), (7.10) has the form

p̂0 = γ0(
−→
γ · −̂→p +m), p̂` = −i∂`, (7.16)

ĵ`n = x`
D p̂n −xn

D p̂` + s`n
D ≡ m̂`n + s`n

D ,

ĵ0` = − ĵ`0 = x0 p̂`− 1

2

{
x`

D, p̂0
}

+
p̂0(−→s D ×−̂→p )`

ω̂(ω̂+m)
. (7.17)

Further, the substitution of the values (4.27), (4.38) and (2.48) into the formu-

las (7.16), (7.17), together with the gamma matrix Clifford–Dirac algebra anti-

commutation relations application, allows to simplify essentially the explicit

forms of these generators.

Finally, the assertion is valid. The Dirac equation (4.22) and the set {ψ}
of its solutions (4.30) are invariant with respect to the induced fermionic rep-
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resentation (5.22) of the Poincaré group P . The corresponding 4× 4 matrix-

differential generators are given by

p0 = HD = −→α · −̂→p +βm, p` = −i∂`, j`n = x`pn −xn p` + s`n ≡ m`n + s`n,

(7.18)

j0` = x0 p`− 1

2

{
x`,HD

}
= x0 p`−x` p0 + s0`,

whereas the SU(2) spin matrices are given by

−→s = (s23, s31, s12) = s`n = s`n ≡ i

4

[
γ`,γn

]
(7.19)

and the matrices of the spinor L
↑
+ = SO(1,3) representation of the Lorentz group

have the form

sµν ≡ i

4
[γµ,γν] . (7.20)

In the set of solutions {ψ} (4.30) of the Dirac equation (4.22), realization

(7.18) coincides with the covariant one

pµ = i∂µ, jµν = xµ pν −xν pµ + sµν, (7.21)

in which the generators have the form of the local Lie operators.

For the goals of this manuscript the important conclusion is as follows. The

realization (7.18) is the direct consequence of generators (6.17), (6.18) from the

FW representation. Generators (7.18) are found from those (6.17), (6.18) by the

FW transformation V± (4.23). Moreover, generators (7.18) are the consequence

of the RCQM generators (5.20), (5.21) with the spin members (5.14)=(5.124).

The operator of such resulting transformation is given by V (2.38)–(2.40) and is

valid only for the anti-Hermitian operators.

It is easy to verify by the direct calculations that both generators (7.18) and

generators (7.21) commute with the operator i∂0 − (−→α · −̂→p + βm) of the Dirac

equation (4.22). Furthermore, both sets of operators (7.18) and (7.21) satisfy

the commutation relations (3.4) of the Lie algebra of the Poincaré group P .

The results of the Casimir operators calculation for realization (7.18) co-

incide with the calculations of the invariant operators (6.19), (6.20). It is the

consequence of the link V± (4.23) between the sets of generators (6.17), (6.18)

and (7.18). For realization (7.21) given by the local Lie generators, the Casimir

operators have the form

p2 = pµ pµ = ∂µ∂µI4, (7.22)
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W = wµwµ = m2−→s 2 =
1

2

(
1

2
+1

)
∂µ∂µI4. (7.23)

In the set of solutions {ψ} (4.30) of the Dirac equation (4.22) (more exactly,

in the set of solutions of the Klein–Gordon–Fock equation) the Casimir opera-

tors (7.22), (7.23) of the realization (7.18) coincide with the invariant operators

(6.19), (6.20) for the sets of generators (6.17), (6.18).

Moreover, in the manifold ψ⊂H3,4 of the solutions (4.30) of the Dirac equa-

tion (4.22), the operators (7.21) coincide with the generators (7.18). Therefore,

the P ψ-representation determined by the generators (7.18) is called induced. As

a consequence of this fact, for example, the following equalities are valid for

the 10 main dynamical variables of the Dirac spinor field ψ

(pµ, jµν) → (Pµ,Jµν)
ψ ≡

Z

d3xψi(pµ, jµν)ψ =

Z

d3xψi(p̆µ, j̆µν)ψ = (Pµ,Jµν)
φ, (7.24)

where the conservation laws (Pµ,Jµν)
φ are given by formula (6.28) and in

terms of the amplitudes a−r (
−→
k ), a∗−r (

−→
k ), a+

ŕ (
−→
k ), a∗+ŕ (

−→
k ) are given by formula

(6.29). This means that the procedure of canonical quantization of the field ψ is

reduced to the corresponding procedure of the field φ quantization.

Note that the P -operators (7.21) are the functions of 14 independent “gen-

erated” operators xµ, ∂µ, ŝµν. Further, the P -generators (7.18) are the func-

tions of 12 independent operators x`, ∂`, ŝµν. Nevertheless, only the operator
−→p = −∇ has the physical sense of the quantum-mechanical Fermi doublet mo-

mentum operator among the above mentioned 14 independent operators. As it

is proven in [1], the operators −→x = (x`) and ŝµν essentially used in the construc-

tions (7.18), (7.21), have no physical sense of the quantum-mechanical opera-

tors of the fermionic doublet coordinate and the SU(2)-spin. This fact evidently

demonstrates the validity of the assertion that the standard Dirac local model

(in the ordinary version) is not the quantum-mechanical model of the fermionic

doublet at all.

The axioms of section 5.5 in Chapter 5 eventually need to be reconciled with

three levels of description used in this paper: RCQM, FW and Dirac equations.

Nevertheless, this interesting problem cannot be considered in few pages. The

simple level comparison of RCQM, FW and Dirac models given above is very

brief and not complete. Only the main features are considered briefly. The
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extended version will be given in next investigation. The readers of this book

can compare the axioms of RCQM (section 5.5) with the main principles of the

Dirac model given in B. Thaller’s monograph [49].

The important conclusion from this subsection is the group-theoretical and

quantum-mechanical interpretation of the Dirac equation. It is shown that its

relation to the spinor field (spin s = (1/2,1/2) particle-antiparticle doublet) with

the spin s=(1/2,1/2) and m > 0 follows from equations (4.40) and the Bargman–

Wigner analysis of the fermionic representations (7.18), (7.21) on the basis of

the Casimir operators (6.19), (6.20) and (7.22), (7.23), respectively. Only such

incomplete (in comparison with the interpretation given in subsection 5.7.2)

fermionic quantum-mechanical interpretation of the Dirac equation is possible.

The important external step in this interpretation is given in the section 6.2.2

and here. It is the direct link between the Dirac model and the spin s=(1/2,1/2)

particle-antiparticle doublet RCQM, where the quantum-mechanical interpreta-

tion is complete and evident.

In our papers [50–52] after the construction of the bosonic spin s=(1,0) rep-

resentations of the Poincaré group P , with respect to which the Dirac equation

(4.22) is invariant, the similar procedure of interpretation was used. On this ba-

sis in [50–52], the relation of the Dirac equation to the description of bosonic

field (spin s=(1,0) particle multiplet) of spins s=1, s=0 and m > 0 was proved.

Similarly to the above given fermionic interpretation such bosonic interpreta-

tion of the Dirac model is incomplete as well. And again the important external

step in such interpretation is the direct link between the spin s=(1,0), or spin

s=(1,1), RCQM and the corresponding Dirac, or Dirac-like equations. This link

is given in next chapters. Recal that in the framework of corresponding RCQM

the quantum-mechanical interpretation is complete and evident. Below in the

next sections the methods of interpretation developed here are applied to other

covariant models of higher-spin particle-antiparticle doublets.

Second important conclusion from subsections 5.7.2, 6.2.2 and this one is

the evident demonstration of the link between the non-local RCQM of the spin

s =(1/2,1/2) particle-antiparticle doublet and the covariant local spinor Dirac

model. In other words, in the subsections 5.7.2, 6.2.2 and here the derivation

of the Dirac equation from the RCQM Schrödinger–Foldy equation for the spin

s=(1/2,1/2) particle-antiparticle doublet is suggested (a review of other methods

of the Dirac equation derivation see in Chapter 2).

Below in similar way the Dirac-like equations for other particle-antiparticle

doublets of higher spins are derived. The start from the corresponding models
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of RCQM is given as well. Thus, here the foundations of the synthesis of covari-

ant particle equations on the basis of the start from the RCQM are formulated.

Hence, the author’s small addition to the Foldy’s synthesis of simplest covariant

particle equations is suggested.

7.4. Covariant Field Equation for the 8-Component

Spin s=(1,0,1,0) Bosonic Particle-Antiparticle

Multiplet

Considered below example of local covariant field model is useful for the deriva-

tion of the Maxwell-like equations with nonzero mass.

The operator of the transition to the covariant local field theory representa-

tion (the 8×8 analogy of the 4×4 FW transformation operator (4.23)) is given

by

V∓ =
∓−→

Γ 8 · −̂→p + ω̂ +m√
2ω̂(ω̂ +m)

, V− = (V+)†, V−V + = V+V− = I8, (7.25)

ψ = V−φ, φ = V +ψ, (7.26)

q̂D = V−q̂CFV+, q̂CF = V+q̂DV−, (7.27)

where q̂D is an arbitrary operator (both in the Hermitian and anti-Hermitian

form) in the covariant local field theory representation. The inverse transforma-

tion is valid as well.

Thus, on the basis of transformation (7.25)–(7.27) the 8-component Dirac-

like equation is found from the canonical field equation (6.54) in the form
[
i∂0 −Γ0

8(
−→
Γ 8 · −̂→p +m)

]
ψ(x) = 0. (7.28)

In transition operator (7.25) and in the field equation (7.28) the Γ
µ
8 matrices are

given by

Γ0
8 =

∣∣∣∣
I4 0

0 −I4

∣∣∣∣ , Γ j
8 =

∣∣∣∣
0 Σ j

−Σ j 0

∣∣∣∣ , (7.29)

where Σ j are the 4×4 Pauli matrices

Σ j =

∣∣∣∣
σ j 0

0 σ j

∣∣∣∣ , (7.30)
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and σ j are the standard 2×2 Pauli matrices (1.6).

The matrices Σ j satisfy the similar commutation relations as the 2×2 Pauli

matrices (1.6) and have other similar properties. The matrices Γ
µ
8 (7.29) satisfy

the anticommutation relations of the Clifford–Dirac algebra in the form

Γ
µ
8Γν

8 +Γν
8Γ

µ
8 = 2gµν. (7.31)

It is evident that equation (7.28) is not the ordinary direct sum of the two

Dirac equations. Therefore, it is not the complex Dirac–Kahler equation [53].

Moreover, it is not the standard Dirac–Kahler equation [54].

The solution of equation (7.28) is derived from solution (6.79) of this equa-

tion in the canonical representation (6.54) on the basis of transformation (7.25),

(7.26) and is given by

ψ(x) = V−φ(x) =
1

(2π)
3
2

Z

d3k

[
e−ikxcA(

−→
k )v−A(

−→
k )+eikxc∗B(

−→
k )v+

B(
−→
k )
]
,

(7.32)

where A = 1,4, B = 5,8 and the 8-component spinors (v−A(
−→
k ), v+

B (
−→
k )) are

given by

v−1 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω̃ +m

0

0

0

k3

k1 + ik2

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v−2 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

ω̃+m

0

0

k1 − ik2

−k3

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v−3 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

ω̃ +m

0

0

0

k3

k1 + ik2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v−4 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

ω̃+m

0

0

k1 − ik2

−k3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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v+
5 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k3

k1 + ik2

0

0

ω̃ +m

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v+
6 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 − ik2

−k3

0

0

0

ω̃+m

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.33)

v+
7 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

k3

k1 + ik2

0

0

ω̃+m

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,v+
8 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

k1 − ik2

−k3

0

0

0

ω̃+m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

N ≡ 1√
2ω̃(ω̃+m)

, ω̃ ≡
√−→

k 2 +m2. (7.34)

The spinors (7.33) are derived from the orts {dα} of the Cartesian basis

(5.149) with the help of the transformation (7.25), (7.26). The spinors (7.33)

satisfy the relations of the orthonormalization and completeness similar to the

corresponding relations for the standard 4-component Dirac spinors, see, e.g.,

[47]. In the covariant local field theory, the operators of the SU(2) spin, which

satisfy the corresponding commutation relations
[
s

j
8D, s`

8D

]
= iε j`nsn

8D and com-

mute with the operator
[
i∂0 −Γ0

8(
−→
Γ 8 · −̂→p +m)

]
of equation (7.28), are derived

from the pure matrix operators (6.80) with the help of operator (7.25), (7.27).

The explicit form of these SU(2) generators is given by

s1
8D =

1

2
√

2ω̂Ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.35)
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where the matrix elements have the form

11 = 2p13, 12 = 2p1z∗mΩ, 13 = p3z∗, 14 = z∗2,

15 = 2ip2Ω, 16 = −2p3Ω, 17 = −zΩ, 18 = 0,

21 = 2p1zmΩ, 22 = −2p13, 23 = Ω2− p33, 24 = −p3z∗,

25 = 2p3Ω, 26 = −2ip2Ω, 27 = 2p3Ω, 28 = z∗Ω,

31 = p3z, 32 = Ω2 − p33, 33 = 0, 34 = 0,

35 = zΩ, 36 = −2p3Ω,37 = 0, 38 = 0,

41 = z2, 42 = −p3z, 43 = 0, 44 = 0, 45 = 0, 46 = −zΩ, 47 = 0,48 = 0,

51 = −2ip2Ω, 52 = 2p3Ω, 53 = z∗Ω, 54 = 0

55 = 2p13, 56 = 2p1z∗mΩ, 57 = p3z∗, 58 = z∗2,

61 = −2p3Ω, 62 = 2ip2Ω, 63 = −2p3Ω, 64 = −z∗Ω,

65 = 2p1zmΩ, 66 = −2p13, 67 = Ω2− p33, 68 = −p3z∗,

71 =−zΩ, 72 = 2p3Ω, 73 = 0, 74 = 0, 75 = p3z,76= Ω2−p33, 77 = 0, 78 = 0,

81 = 0, 82 = zΩ, 83 = 0, 84 = 0, 85 = z2, 86 = −p3z, 87 = 0, 88 = 0,

s2
8D =

i

2
√

2ω̂Ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.36)

where the matrix elements are given by

11 = −2ip33, 12 = −2p3z∗mΩ, 13 = −p3z∗, 14 = −z∗2,

15 = −2p1Ω, 16 = 2p3Ω, 17 = z∗Ω, 18 = 0

21 = 2p2zmΩ, 22 = 2ip23, 23 = −Ω2 + p33, 24 = p3z∗,

25 = 2p3Ω, 26 = 2p1Ω, 27 = −2p3Ω, 28 = −z∗Ω,
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31 = p3z, 32 = Ω2 − p33, 33 = 0, 34 = 0,

35 = zΩ, 36 = −2p3Ω, 37 = 0, 38 = 0,

41 = z2, 42 = −p3z, 43 = 0, 44 = 0, 45 = 0, 46 = −zΩ, 47 = 0, 48 = 0,

51 = 2p1Ω, 52 = −2p3Ω, 53 = −z∗Ω, 54 = 0,

55 = −2ip23, 56 = −2p2z∗mΩ, 57 = −p3z∗, 58 = −z∗2,

61 = −2p3Ω, 62 = −2p1Ω, 63 = 2p3Ω, 64 = z∗Ω,

65 = 2p2zmΩ, 66 = 2ip23, 67 = −Ω2 + p33, 68 = p3z∗,

71 = −zΩ, 72 = 2p3Ω, 73 = 0, 74 = 0,

75 = p3z, 76 = Ω2 − p33, 77 = 0, 78 = 0,

81 = 0, 82 = zΩ, 83 = 0,84 = 0, 85 = z2, 86 = −p3z, 87 = 0, 88 = 0,

s3
8D =

1

2ω̂Ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.37)

where the matrix elements have the form

11 = Ω2 + p33, 12 = p3z∗, 13 = 0, 14 = 0, 15 = 0, 16 = z∗Ω, 17 = 0, 18 = 0,

21 = p3z, 22 = p11 + p22, 23 = 0, 24 = 0, 25 = −zΩ, 26 = 0, 27 = 0, 28 = 0,

31 = 0, 32 = 0, 33 = −Ω2 − p33, 34 = −p3z∗, 35 = 0, 36 = 0, 37 = 0, 38 = −z∗Ω,

41 = 0, 42 = 0, 43 = −p3z, 44 = −p11 − p22, 45 = 0, 46 = 0, 47 = zΩ, 48 = 0,

51 = 0,52 = −z∗Ω, 53 = 0, 54 = 0, 55 = Ω2 + p33, 56 = p3z∗, 57 = 0, 58 = 0,

61 = zΩ, 62 = 0, 63 = 0, 64 = 0, 65 = p3z, 66 = p11 + p22, 67 = 0, 68 = 0,

71 = 0, 72 = 0, 73 = 0, 74 = z∗Ω, 75 = 0, 76 = 0, 77 = −Ω2 − p33, 78 = −p3z∗,

81 = 0, 82 = 0, 83 = −zΩ, 84 = 0, 85 = 0, 86 = 0, 87 = −p3z, 88 = −p11 − p22.
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Above, in the formulae for matrix elements of the spin operators (7.35)–(7.37)

the following notations are used

p1zmΩ ≡ p1z+mΩ, p1z∗mΩ ≡ p1z∗+mΩ,

p2zmΩ ≡−ip2z+mΩ, p2z∗mΩ ≡ ip2z∗ +mΩ,

p12 ≡ p1 p2, p13 ≡ p1 p3, p23 ≡ p2 p3, p11 ≡ p1 p1, p22 ≡ p2 p2, p33 ≡ p3p3,
(7.38)

Ω ≡ ω+m, ω ≡
√−→p +m2, z ≡ p1 + ip2, z∗ ≡ p1 − ip2, z∗2 ≡ (z∗)2.

The equations on eigen vectors and eigenvalues of the operator s3
8D (7.37)

follow from the equations (6.81) and the transformation (7.25)–(7.27). In addi-

tion to it, the action of the operator s3
8D (7.37) on the spinors (v−A(

−→
k ), v+

B (
−→
k ))

(7.33) also leads to the result

s3
8Dv−1 (

−→
k ) = v−1 (

−→
k ), s3

8Dv−2 (
−→
k ) = 0, s3

8Dv−3 (
−→
k ) = −v−3 (

−→
k ), s3

8Dv−4 (
−→
k ) = 0,

(7.39)

s3
8Dv+

5 (
−→
k ) = v+

5 (
−→
k ), s3

8Dv+
6 (

−→
k ) = 0, s3

8Dv+
7 (
−→
k ) = −v+

7 (
−→
k ), s3

8Dv+
8 (

−→
k ) = 0.

In order to verify equations (7.39) the following identity

(ω̃+m)2 +(
−→
k )2 = 2ω̃(ω̃ +m), (7.40)

should be used. In the case v+
B (

−→
k ) in the expression for s3

8D(
−→
k ) (7.37) the

substitution
−→
k →−−→

k is fulfilled.

The equations (7.39) determine the interpretation of the amplitudes in the

solution (7.32). This interpretation is similar to the given above in subsection

6.3.1 in the paragraph after equations (6.81). Nevertheless, the direct quantum-

mechanical interpretation of the amplitudes should be given in the framework

of the RCQM, see the subsection 5.8.2 above.

The explicit form of the P -generators of the bosonic representation of the

Poincaré group P , with respect to which the covariant equation (7.28) and the

set {ψ} of its solutions (7.32) are invariant, is derived from the generators (6.82),

(6.83) on the basis of the transformation (7.25), (7.27). The corresponding gen-

erators are given by

p̂0 = Γ0
8(
−→
Γ 8 · −̂→p +m), p̂` = −i∂`, ĵ`n = x`

D p̂n −xn
D p̂` + s`n

8D ≡ m̂`n + s`n
8D,

(7.41)
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ĵ0` = − ĵ`0 = x0 p̂` − 1

2

{
x`

D, p̂0
}

+
p̂0(−→s 8D ×−̂→p )`

ω̂(ω̂+m)
, (7.42)

where the spin matrices −→s 8D = (s`n
8D) are given in (7.35)–(7.37) and the operator

−→x D has the form

−→x D = −→x +
i
−→
Γ 8

2ω̂
−

−→s Γ
8 ×−̂→p

ω̂(ω̂+m)
− i−̂→p (

−→
Γ 8 · −̂→p )

2ω̂2(ω̂+m)
, (7.43)

where the specific spin-like matrices −→s Γ
8 are given by

−→s Γ
8 ≡ i

2
(Γ2

8Γ3
8, Γ3

8Γ1
8, Γ1

8Γ2
8) (7.44)

with Γ
j
8 determined in (7.29).

It is easy to verify that the generators (7.41), (7.42) commute with the op-

erator
[
i∂0 −Γ0

8(
−→
Γ 8 · −̂→p +m)

]
of equation (7.28), satisfy the commutation re-

lations (3.4) of the Lie algebra of the Poincaré group and the corresponding

Casimir operators are given by

p2 = p̂µ p̂µ = m2I8, (7.45)

W = wµwµ = m2−→s 2
8D = m2

∣∣∣∣∣∣∣∣

1(1+1) I3 0 0 0

0 0 0 0

0 0 1(1+1) I3 0

0 0 0 0

∣∣∣∣∣∣∣∣
, (7.46)

where I8 and I3 are 8×8 and 3×3 unit matrices, respectively.

As it was already explained in details in the previous sections, the conclu-

sion that equation (7.28) describes the bosonic particle-antiparticle multiplet

of the spin s=(1,0,1,0) and mass m > 0 (and its solution (7.32) is the bosonic

field of the above mentioned spin and nonzero mass) follows from the analy-

sis of equations (7.39) and the Casimir operators (7.45), (7.46). Moreover, the

external argument in the validity of such interpretation is the link with the cor-

responding RCQM of spin s=(1,0,1,0) particle-antiparticle multiplet, where the

quantum-mechanical interpretation is direct and evident. Therefore, the bosonic

spin s=(1,0,1,0) properties of equation (7.28) are proved. In particular, the equa-

tion (7.28) can be used for the W∓-boson.
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Contrary to the above found bosonic properties of the equation (7.28), the

fermionic properties of this equation are evident. The fact that equation (7.28)

describes the multiplet of two fermions with the spin s=1/2 and two antifermions

with that spin can be proved much more easier then the above bosonic consid-

eration. The proof is similar to that given in the standard 4-component Dirac

model (subsections 5.7.2, 6.2.2 and section 7.3 above). Moreover, it is easy to

show that equation (7.28) can describe the spin s=(3/2,3/2) particle-antiparticle

doublet and the corresponding spinor field (section 7.6 below). Therefore, equa-

tion (7.28) has more extended property of the Fermi–Bose duality then the stan-

dard Dirac equation [50–52].

7.5. Maxwell-Like Equations for the Spin s=(1,0)

Bosonic Doublet with Nonzero Mass

In the partial case of m = 0 equation (7.28) describes (among the other pos-

sibilities) the system of the 8-component (photon massless spinless boson)-

(antiphoton masslees spinless antiboson) field. The 4-component photon mass-

less spinless boson subsystem was described in [55–58]. In other possible inter-

pretation [55–58], it is the system of the Maxwell equations with gradient type

current and charge densities (the magnetic gradient type current and charge den-

sities also are included). It was shown in [55–58] that this 4-component model

can describe the relativistic hydrogen spectrum (i.e., has the coupled finite so-

lutions) and the longitudinal electromagnetic waves. The 8-component model

given here above has the additional possibilities related to the antiphoton pres-

ence. The antiphoton can be considered as the photon with opposite sign of

helicity (or right-handed in comparison with left-handed photon).

The link between the standard 4-component Dirac equation and the original

Maxwell equations is the direct consequence of the substitutions like

ψ =

∣∣∣∣∣∣∣∣

E3 + iH0

E1 + iE2

iH3 +E0

−H2 + iH1

∣∣∣∣∣∣∣∣
, (7.47)

or

ψ =

∣∣∣∣
−→
E − i

−→
H

E0 − iH0

∣∣∣∣ , (7.48)
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into the massless Dirac equation. In formulae (7.47), (7.48) the functions−→
E = (E1,E2,E3),

−→
H = (H1,H2,H3) are the field strengths of electromagnetic

field and the functions E0, H0 are the corresponding characteristics of the spin-

less bosonic field. The results of substitutions like (7.47), (7.48) into the 4-

component spinors have been investigated step by step by many authors, see,

e.g., [59–75].

The link between the 8-component Dirac-like equation (7.28) and the orig-

inal Maxwell equations is the direct consequence of the substitution

ψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E3 + iH0

E1 + iE2

iH3 +E0

−H2 + iH1

−iH3 −E0

H2 − iH1

−E3 − iH0

−E1 − iE2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(7.49)

into equation (7.28). The resulting system of Maxwell-like equations is given

by

∂0E0 +∂ jE
j ∓mH3 = 0,

∂0E1 − (curl
−→
H )1 +∂1E0 ∓mE2 = 0,

∂0E2 − (curl
−→
H )2 +∂2E0 ±mE1 = 0,

∂0E3 − (curl
−→
H )3 +∂3E0 ∓mH0 = 0,

∂0H0 +∂ jH
j ±mE3 = 0, (7.50)

∂0H1 +(curl
−→
E )1 +∂1H0 ∓mH2 = 0,

∂0H2 +(curl
−→
E )2 +∂2H0 ±mH1 = 0,

∂0H3 +(curl
−→
E )3 +∂3H0 ±mE0 = 0.

Thus, we have found here the slightly generalized Maxwell equations, known

e.g., from [55–58] as massless, with nonzero mass.

The system of equations (7.50) contains 16 equations for the 8 real func-

tions Eα = (E0,E1,E2,E3), Hα = (H0,H1,H2,H3). The subsystem of 8 equa-

tions with upper sign near mass member is the consequence of the four upper
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equations from (7.28), while the subsystem of 8 equations with lower sign near

mass member is the consequence of the four lower equations from (7.28). The

situation is similar to the Dirac equation, wherever from the form of 8 equations

with ±m

(iγµ∂µ −m)(iγν∂ν +m) = −∂0∂0 +∆−m2 (7.51)

the system of 4 equations with −m, i.e., (iγµ∂µ −m)ψ(x) = 0 for 4 functions is

taken. In complete analogy here from the equations (7.50) the system of 8 equa-

tions with upper sign near mass for 8 functions Eα = (E0,E1,E2,E3), Hα =
(H0,H1,H2,H3) is taken. It is the system (7.50) with upper sign near mass.

The system of equations (7.50) (upper sign near mass) describes the bosonic

particle multiplet of the spin s=(1,0) and mass m > 0 (the coupled electromag-

netic and scalar fields in the case of zero mass). Contrary to (7.28), here (in

this form of equation) the relation to the Maxwell electrodynamics is evident.

In partial case m = 0 equations (7.50) (8 real or 4 complex equations) coin-

cide with the Maxwell equations with gradient-like current and charge densities

considered in [55–58].

Furtermore, the partial case E0 = H0 = 0 in (7.50) leads to the system of

equations

∂ jE
j −mH3 = 0,

∂0E1 − (curl
−→
H )1 −mE2 = 0,

∂0E2 − (curl
−→
H )2 +mE1 = 0,

∂0E3 − (curl
−→
H )3 = 0,

∂ jH
j +mE3 = 0, (7.52)

∂0H1 +(curl
−→
E )1 −mH2 = 0,

∂0H2 +(curl
−→
E )2 +mH1 = 0,

∂0H3 +(curl
−→
E )3 = 0.

Equations (7.52) can be considered as the generalized electrodynamics for the

electromagnetic field of the photon with mass. In general, equations (7.52)

describes the field of arbitrary boson with spin s=1 and mass m > 0.

The system of equations (7.52) is derived from the equations (5.135), (6.35)

for the spin s=(1,1) particle-antiparticle doublet in RCQM and FW represen-

tations, respectively, similarly to the way, in which the system of equations
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(7.28), and further (7.50) (with upper sign near mass), is derived from the

equations (5.176), (6.54) for the 8-component spin s=(1,0,1,0) bosonic particle-

antiparticle multiplet (in RCQM and FW representations, respectively). The

corresponding 6 component transformation of FW type will be the subject of

special consideration. Hence, the system (7.52) is the direct consequence of the

equations (5.135), (6.35) for the spin s=(1,1) particle-antiparticle doublet.

Moreover, equations (7.50) with upper sign near mass are linked directly

with the RCQM equation (5.98) for the spin s=(1,0) multiplet. This link is

based on the anti-Hermitian transformations, essential application of complex

conjugation operator C and the corresponding equations for eigenvectors lead

to complex number eigenvalues. Therefore, such links and transformations will

be given in special publication.

Finally, the substitution m = 0 into the system of equations (7.52) leads to

the Maxwell equations

div
−→
E = 0, ∂0

−→
E −curl

−→
H = 0, div

−→
H = 0, ∂0

−→
H +curl

−→
E = 0, (7.53)

for free electromagnetic field. Thus, the link between the RCQM and the

Maxwell electrodynamics is finished.

7.6. Covariant Field Equation without Redundant

Components for the 8-Component Spin s=(3/2,3/2)

Fermionic Particle-Antiparticle Doublet

The model is constructed in complete analogy with the consideration in section

7.4.

The start of this derivation is given in subsection 5.7.4, where the RCQM of

the 8-component fermionic spin s=(3/2,3/2) particle-antiparticle doublet is con-

sidered. The second step is the transition from the Schrödinger–Foldy equation

(5.146) to the canonical field equation. This step, as shown in subsection 6.2.4,

is possible only for the anti-Hermitian form of the operators. Nevertheless, the

resulting operators can be chosen in the standard Hermitian form and do not

contain the operator C of complex conjugation. The last step of the transition

from the canonical field equation to the covariant local field equation is fulfilled

in analogy with the FW transformation (4.23) with the help of the transforma-

tion (7.25).
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The operator of the transition to the covariant local field theory representa-

tion (the 8×8 analogy of the 4×4 FW transformation operator (4.23)) is the

same as in the section 7.4 and is given by (7.25)–(7.27). Thus, on the basis of

transformation (7.25)–(7.27)the 8-component Dirac-like equation is found from

the canonical field equation (6.54) in the form

[
i∂0 −Γ0

8(
−→
Γ 8 · −̂→p +m)

]
ψ(x) = 0, (7.54)

where the 8× 8 gamma matrices are given in (7.29). This equation only for-

mally coincide with the field equation (7.28) for spin s=(1,0,1,0) bosonic multi-

plet. Below we demonstrate that this equation can describe the spin s=(3/2,3/2)

particle-antiparticle doublet as well.

Note that equation (7.54) is not the ordinary direct sum of the two Dirac

equations. Therefore, it is not the complex Dirac–Kahler equation [53]. More-

over, it is not the standard Dirac–Kahler equation [54].

The solution of equation (7.54) is derived from solution (6.56) of this equa-

tion in the canonical representation (6.54) on the basis of transformation (7.25),

(7.26) and is given by

ψ(x) = V−φ(x) =
1

(2π)
3
2

Z

d3k

[
e−ikxbA(

−→
k )v−A(

−→
k )+eikxb∗B(

−→
k )v+

B(
−→
k )
]
,

(7.55)

where A = 1,4, B = 5,8 and the 8-component spinors (v−A(
−→
k ), v+

B (
−→
k )) are

given in (7.33).

The spinors (7.33) are derived from the orts {dα} of the Cartesian basis

(5.149) with the help of the transformation (7.25), (7.26). The spinors (7.33)

satisfy the relations of the orthonormalization and completeness similar to the

corresponding relations for the standard 4-component Dirac spinors, see, e.g.,

[47].

The direct quantum-mechanical interpretation of the amplitudes in solution

(7.55) should be given in the framework of the RCQM. Such interpretation is

already given in subsection 5.7.4 in paragraph after equations (5.156).

In the covariant local field theory, the operators of the SU(2) spin, which

satisfy the corresponding commutation relations
[
s

j
8D, s`

8D

]
= iε j`nsn

8D and com-

mute with the operator
[
i∂0 −Γ0

8(
−→
Γ 8 ·−→p +m)

]
of equation (7.54), are derived

from the pure matrix operators (6.57) with the help of transition operator (7.25),



Covariant Equations of Arbitrary Spin 223

(7.27) −→s 8D = V−−→s 8V+. The explicit forms of these s=(3/2,3/2) SU(2) genera-

tors are given by:

s1
8D = k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.56)

where the matrix elements are as follows

11 =
√

3p13, 12 =
√

3(p1z∗ +mΩ), 13 = p3z∗, 14 = z∗2,

15 = i
√

3p2Ω, 16 = −
√

3p3Ω, 17 = −Ωz∗, 18 = 0,

21 =
√

3(p1z+mΩ), 22 = −
√

3p13, 23 = 2mΩ+ p11
22, 24 = −p3z∗,

25 =
√

3p3Ω, 26 = −i
√

3p2Ω, 27 = 2p3Ω, 28 = z∗Ω,

31 = p3z, 32 = 2mΩ+ p11
22, 33 =

√
3p13, 34 =

√
3(p1z∗+mΩ),

35 = 2Ωz, 36 = −2p3Ω,37 =
√

3p1Ω, 38 = −
√

3p3Ω,

41 = z2, 42 = −p3z, 43 =
√

3(p1z+mΩ), 44 = −
√

3p13,

45 = 0, 46 = −Ωz, 47 =
√

3p3Ω,48 = −i
√

3p2Ω,

51 = −i
√

3Ω, 52 =
√

3p3Ω, 53 = Ωz∗, 54 = 0

55 =
√

3p13, 56 =
√

3(p1z∗ +mΩ), 57 = p3z∗, 58 = z∗2,

61 = −
√

3p3Ω, 62 = i
√

3p2Ω, 63 = −2p3Ω, 64 = −Ωz∗,

65 =
√

3(p1z+mΩ), 66 = −
√

3p13, 67 = 2mΩ+ p11
22, 68 = −p3z∗,

71 = −Ωz, 72 = 2p3Ω, 73 = −i
√

3p2Ω, 74 =
√

3p3Ω,

75 = p3z∗,76 = 2mΩ2 + p11
22, 77 =

√
3p13, 78 =

√
3(p1z∗+mΩ),

81 = 0, 82 = Ωz, 83 = −
√

3p3Ω, 84 = i
√

3p2Ω,

85 = z2, 86 = −p3z, 87 =
√

3(p1z+mΩ), 88 = −
√

3p13,
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s2
8D = k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 66 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.57)

where the matrix elements are given by

11 =
√

3p23, 12 = −i
√

3(mΩ+ ip2z∗), 13 = −− ip3z∗, 14 = −iz∗2,

15 = −i
√

3p1Ω, 16 = i
√

3p3Ω, 17 = iz∗Ω, 18 = 0,

21 = i
√

3(mΩ− ip2z), 22 =
√

3p23, 23 = −i(Ω2− p33), 24 = ip3z∗,

25 = i
√

3p3Ω, 26 = i
√

3p1Ω, 27 = −2ip3Ω, 28 = −iz∗Ω,

31 = ip3z, 32 = i(Ω2− p33), 33 =
√

3p23, 34 = −i
√

3(mΩ+ ip2z∗),

35 = izΩ, 36 = −2ip3Ω, 37 = −i
√

3p1Ω, 38 = i
√

3p3Ω,

41 = iz2, 42 = −ip3z, 43 = i
√

3(mΩ− ip2z), 44 = −
√

3p23,

45 = 0, 46 = −izΩ, 47 = i
√

3p3Ω,48 = i
√

3p1Ω,

51 = i
√

3p1Ω, 52 = −i
√

3p3Ω, 53 = −2iz∗Ω, 54 = 0,

55 =
√

3p23, 56 = −i
√

3(mΩ+ ip2z∗), 57 = −ip3z∗, 58 = −iz∗2,

61 = −i
√

3p3Ω, 62 = −i
√

3p1Ω, 63 = 2ip3Ω, 64 = iz∗Ω,

65 = i
√

3(mΩ− ip2z), 66 = −
√

3p23, 67 = −i(Ω2 − p33), 68 = ip3z∗,

71 = −izΩ, 72 = 2ip3Ω, 73 = i
√

3p1Ω, 74 = −i
√

3p3Ω,

75 = ip3z, 76 = i(Ω2− p33), 77 =
√

3p23, 78 = −i
√

3(mΩ+ ip2z∗),

81 = 0, 82 = izΩ, 83 = −i
√

3p3Ω, 84 = −i
√

3p1Ω,

85 = iz2,86 = −ip3z,87 = i
√

3(mΩ− ip2z), 88 = −
√

3p23,
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s3
8D = k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

11 12 0 0 0 16 0 0

21 22 0 0 25 0 0 0

0 0 33 34 0 0 0 38

0 0 43 44 0 0 47 0

0 52 0 0 55 56 0 0

61 0 0 0 65 66 0 0

0 0 0 74 0 0 77 78

0 0 83 0 0 0 87 88

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.58)

where the nonzero matrix elements have the form

11 = 3ωΩ− p11
22, 12 = p3z∗, 16 = z∗Ω,

21 = p3z, 22 = ωΩ+ p11
22, 25 = −zΩ,

33 = −ωΩ− p11
22, 34 = p3z∗, 38 = z∗Ω,

43 = p3z, 44 = −3ωΩ+ p11
22, 47 = −zΩ,

52 = −z∗Ω, 55 = 3ωΩ− p11
22, 56 = p3z∗,

61 = zΩ, 65 = p3z, 66 = ωΩ+ p11
22,

74 = −z∗Ω, 77 = −ωΩ− p11
22, 78 = p3z∗,

83 = zΩ, 87 = p3z, 88 = −3ωΩ+ p11
22.

Above, in the formulalas (7.56)–(7.58) and in corresponding matrix elements

the following notations are used

k ≡ 1

2ωΩ
, p11

22 ≡ p1 p1 + p2 p2. (7.59)

Other notations are already given in (7.38).

The equations on eigenvectors and eigenvalues of the operator s3
8D (7.58)

follow from the equations (6.59) and the transformation (7.25)–(7.27). In addi-

tion to it, the action of the operator s3
8D (7.58) on the spinors (v−A(

−→
k ), v+

B (
−→
k ))

(7.33) also leads to the result

s3
8Dv−1 (

−→
k ) =

3

2
v−1 (

−→
k ), s3

8Dv−2 (
−→
k ) =

1

2
v−2 (

−→
k ),

s3
8Dv−3 (

−→
k ) = −1

2
v−3 (

−→
k ), s3

8Dv−4 (
−→
k ) = −3

2
v−4 (

−→
k ),
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s3
8Dv+

5 (
−→
k ) =

3

2
v+

5 (
−→
k ), s3

8Dv+
6 (

−→
k ) =

1

2
v+

6 (
−→
k ), (7.60)

s3
8Dv+

7 (
−→
k ) = −1

2
v+

7 (
−→
k ), s3

8Dv+
8 (

−→
k ) = −3

2
v+

8 (
−→
k ).

In order to verify equations (7.60) the identity (7.40) is used. In the case

v+
B (

−→
k ) in the expression s3

8D(
−→
k ) (7.58) the substitution

−→
k →−−→

k is fulfilled.

The equations (7.60) (together with corresponding equations on eigen val-

ues of the sign of the charge and momentum operators) determine the inter-

pretation of the amplitudes in solution (7.55). This interpretation is similar to

the given above in the paragraph after equations (5.156). Nevertheless, the di-

rect quantum-mechanical interpretation of the amplitudes should be made in the

framework of the RCQM, see the subsection 5.7.4 above.

The explicit form of the P -generators of the fermionic representation of

the Poincaré group P , with respect to which the covariant equation (7.54) and

the set {ψ} of its solutions (7.55) are invariant, is derived from the generators

(6.60), (6.61) with SU(2) spin (6.58) on the basis of the tramsformation (7.25),

(7.27). The corresponding generators are given by (7.41), (7.42) where the spin

matrices
−→
s 8D = (s`n

8D) are given in (7.56)–(7.58) and the operator −→x D has the

form (7.43) with the specific spin-like matrices −→s Γ
8 (7.44).

It is easy to verify that the generators (7.41), (7.42), taken with SU(2) spin

(7.56)–(7.58), commute with the operator
[
i∂0 −Γ0

8(
−→
Γ 8 · −̂→p +m)

]
of equation

(7.54), satisfy the commutation relations (3.4) of the Lie algebra of the Poincaré

group and the corresponding Casimir operators are given by

p2 = p̂µ p̂µ = m2I8, (7.61)

W = wµwµ = m2−→s 2
8D =

3

2

(
3

2
+1

)
m2I8. (7.62)

As it was already explained in details in the previous sections, the con-

clusion that equation (7.54) describes the local field of fermionic particle-

antiparticle doublet of the spin s=(3/2,3/2) and mass m > 0 (and its solution

(7.55) is the local fermionic field of the above mentioned spin and nonzero

mass) follows from the analysis of equations (7.60) and the Casimir operators

(7.61), (7.62).

Hence, the equation (7.54) describes the spin s=(3/2,3/2) particle-

antiparticle doublet on the same level, on which the standard 4-component Dirac



Covariant Equations of Arbitrary Spin 227

equation describes the spin s=(1/2,1/2) particle-antiparticle doublet. Moreover,

the external argument in the validity of such interpretation is the link with the

corresponding RCQM of spin s=(3/2,3/2) particle-antiparticle doublet, where

the quantum-mechanical interpretation is direct and evident. Therefore, the

fermionic spin s=(3/2,3/2) properties of equation (7.54) are proved.

Contrary to the bosonic spin s=(1,0,1,0) properties of the equation (7.54)

(section 7.4), the fermionic spin s=(1/2,1/2,1/2,1/2) properties of this equation

are evident. The fact that equation (7.54) describes the multiplet of two fermions

with the spin s=1/2 and two antifermions with that spin can be proved much

more easier then the above given consideration. The proof is similar to that

given in the standard 4-component Dirac model. The detailed consideration

can be found in subsections 5.7.2, 6.2.2 and section 7.3. Therefore, equation

(7.54) has more extended property of the Fermi–Bose duality then the stan-

dard Dirac equation [50–52]. This equation has the property of the Fermi–

Bose triality. The property of the Fermi–Bose triality of the manifestly covari-

ant equation (7.54) means that this equation describes on equal level (i) the

spin s=(1/2,1/2,1/2,1/2) multiplet of two spin s=(1/2,1/2) fermions and two spin

s=(1/2,1/2) antifermions, (ii) the spin s=(1,0,1,0) multiplet of the vector and

scalar bosons together with their antiparticles, (iii) the spin s=(3/2,3/2) particle-

antiparticle doublet.

It is evident that equation (7.54) is new in comparison with the Pauli–Fierz

[8, 9], Rarita–Schwinger [25] and confirmed by Davydov [26] equations for

the spin s=3/2 particle. Contrary to 16-component equations from [9, 25, 26]

equation (7.54) is 8-component and does not need any additional condition.

Only formally equation (7.54) looks like to have some similar features with

the Bargman–Wigner equation [11] for arbitrary spin, when the spin value is

taken 3/2. The transformation V∓
8 = ∓−→

Γ 8·−→p +ω̂+m√
2ω̂(ω̂+m)

looks like the transformation

of Pursey [13] in the case of s=3/2. Nevertheless, the difference is clear. Equa-

tion (7.54) is not the ordinary direct sum of the two Dirac equations. Further-

more, the given here model is derived from the first principles of RCQM (not

from the FW type representation of the canonical field theory). Our considera-

tion is original and new. The link with corresponding RCQM, the proof of the

symmetry properties and relativistic invariance, the well defined spin operator

(7.56)–(7.58), the features of the Fermi–Bose duality (triality) of the equation

(7.54), the interaction with electromagnetic field and many other characteristics

are suggested firstly.
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Finally, the Bargman–Wigner equation [11] in the case s=3/2 has 12 com-

ponents. The comparison with Bhabha equation is evident as well. Bhabha

have proved itself [46] that his equation in the case s=3/2 coincide with Rarita–

Schwinger equation, i.e., has 16 components.

Interaction, quantization and Lagrange approach in the above given spin

s=(3/2,3/2) model are completely similar to the Dirac 4-component theory and

standard quantum electrodynamics. For example, the Lagrange function of the

system of interacting 8-component spinor and electromagnetic fields (in the

terms of 4-vector potential Aµ(x)) is given by

L = −1

4
FµνFµν +

i

2

(
ψ(x)Γµ

8

∂ψ(x)

∂xµ
− ∂ψ(x)

∂xµ
Γµ

8ψ(x)

)
− (7.63)

mψ(x)ψ(x)+qψ(x)Γ
µ
8ψ(x)Aµ(x),

where ψ(x) is the independent Lagrange variable and ψ = ψ†Γ0
8 in the space of

solutions {ψ}. In Lagrangian (7.63) Fµν = ∂µAν −∂νAµ is the electromagnetic

field tensor in the terms of potentials, which play the role of variational variables

in this Lagrange approach.

Therefore, the covariant local quantum field theory model for the interacting

particles with spin s=3/2 and photons can be constructed in complete analogy

to the construction of the modern quantum electrodynamics. This model can be

useful for the investigations of processes with interacting hyperons and photons.

7.7. Covariant Field Equation for the 12-Component

Spin s=(2,0,2,0) Bosonic Particle-Antiparticle

Multiplet

The constructed below model can be useful as a variant of the gravity.

The operator of the transition to the covariant local field theory represen-

tation (the 12× 12 analogy of the 4× 4 inverse FW transformation operator

(4.23)) is given by

V∓ =
∓−→

Γ 12 · −̂→p + ω̂ +m√
2ω̂(ω̂+m)

, V−V+ = V +V− = I12, V− = (V+)†, (7.64)

ψ = V−φ, φ = V +ψ, (7.65)
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q̂D = V−q̂CFV+, q̂CF = V+q̂DV−, (7.66)

where q̂D is an arbitrary operator (both in the Hermitian and anti-Hermitian

form) in the covariant local field theory representation. The inverse transforma-

tion is valid as well.

Thus, on the basis of transformation (7.64)–(7.66) the 12-component Dirac-

like equation is found from the canonical field equation (6.86) in the form

[
i∂0 −Γ0

12(
−→
Γ 12 · −̂→p +m)

]
ψ(x) = 0. (7.67)

In transformation operator (7.64) and in equation (7.67) the Γ
µ
12 matrices are

given by

Γ0
12 =

∣∣∣∣
I6 0

0 −I6

∣∣∣∣ , Γ
j
12 =

∣∣∣∣∣
0 Σ

j
6

−Σ
j
6 0

∣∣∣∣∣ , (7.68)

where Σ j
6 are the 6×6 Pauli matrices

Σ1
6 =

∣∣∣∣
0 I3

I3 0

∣∣∣∣ , Σ2
6 =

∣∣∣∣
0 −iI3

iI3 0

∣∣∣∣ , Σ3
6 =

∣∣∣∣
I3 0

0 −I3

∣∣∣∣ , (7.69)

and I3 is the 3×3 unit matrix.

The matrices Σ
j
6 satisfy the similar commutation relations as the 2×2 Pauli

matrices (1.6) and have other similar properties. The matrices Γµ
12 (7.68) satisfy

the anticommutation relations of the Clifford–Dirac algebra in the form

Γ
µ
12Γν

12 +Γν
12Γ

µ
12 = 2gµν. (7.70)

The solution of equation (7.67) is derived from solution (6.88) of this equa-

tion in the canonical representation (6.86) on the basis of transformation (7.64),

(7.65) and is given by

ψ(x) = V−φ(x) =
1

(2π)
3
2

Z

d3k

[
e−ikxgA(

−→
k )v−A(

−→
k )+eikxg∗B(

−→
k )v+

B(
−→
k )
]
,

(7.71)
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where A = 1,6, B = 7,12 and the 12-component spinors (v−A(
−→
k ), v+

B(
−→
k )) are

given by

v−1 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω̃+m

0

0

0

0

0

k3

0

0

k1 + ik2

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v−2 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

ω̃+m

0

0

0

0

0

k3

0

0

k1 + ik2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v−3 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

ω̃+m

0

0

0

0

0

k3

0

0

k1 + ik2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v−4 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

ω̃+m

0

0

k1 − ik2

0

0

−k3

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v−5 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

ω̃+m

0

0

k1 − ik2

0

0

−k3

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v−6 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

ω̃+m

0

0

k1 − ik2

0

0

−k3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.72)
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v+
7 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k3

0

0

k1 + ik2

0

0

ω̃+m

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v+
8 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

k3

0

0

k1 + ik2

0

0

ω̃+m

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v+
9 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

k3

0

0

k1 + ik2

0

0

ω̃ +m

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v+
10(

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 − ik2

0

0

−k3

0

0

0

0

0

ω̃+m

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v+
11(

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

k1 − ik2

0

0

−k3

0

0

0

0

0

ω̃+m

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v+
12(

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

k1 − ik2

0

0

−k3

0

0

0

0

0

ω̃ +m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where N is given in (7.34).

The spinors (7.72) are derived from the orts {d} of the Cartesian basis

(5.186) with the help of the transformation (7.64), (7.65). The spinors (7.72)

satisfy the relations of the orthonormalization and completeness similar to the
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corresponding relations for the standard 4-component Dirac spinors, see, e.g.,

[47].

In the covariant local field theory, the operators of the SU(2) spin, which

satisfy the corresponding commutation relations
[
s

j
12D, s`

12D

]
= iε j`nsn

12D and

commute with the operator
[
i∂0 −Γ0

12(
−→
Γ 12 · −̂→p +m)

]
of equation (7.67), are

derived from the pure matrix operators (6.93) with the help of operator (7.64),

(7.66):
−→s 12D = V−−→s 12V

+. (7.73)

The explicit form can be presented in analogy with previous sections.

The equations on eigenvectors and eigenvalues of the operator s3
12D (7.73)

follow from the equations (6.94) and the transformation (7.64)–(7.66). In addi-

tion to it, the action of the operator s3
12D (7.73) on the spinors (v−A(

−→
k ), v+

B (
−→
k ))

(7.72) also leads to the result

s3
12Dv−1 (

−→
k ) = 2v−1 (

−→
k ), s3

12Dv−2 (
−→
k ) = v−2 (

−→
k ),

s3
12Dv−3 (

−→
k ) = 0, s3

12Dv−4 (
−→
k ) = −v−4 (

−→
k ),

s3
12Dv−5 (

−→
k ) = −2v−5 (

−→
k ), s3

12Dv−6 (
−→
k ) = 0, (7.74)

s3
12Dv+

7 (
−→
k ) = 2v+

7 (
−→
k ), s3

12Dv+
8 (

−→
k ) = v+

8 (
−→
k ),

s3
12Dv+

9 (
−→
k ) = 0, s3

12Dv+
10(

−→
k ) = −v+

10(
−→
k ),

s3
12Dv+

11(
−→
k ) = −2v+

11(
−→
k ), s3

12Dv+
12(

−→
k ) = 0.

In order to verify the equations (7.74) the identity (7.40) should be used. In

the case v+
B(
−→
k ) in the expression s3

12D(
−→
k ) from (7.73) the substitution

−→
k →

−−→
k is fulfilled.

The equations (7.74) determine the interpretation of the amplitudes in solu-

tion (7.71). This interpretation is similar to the given above in the corresponding

FW representation in the paragraph after equations (6.94). Nevertheless, the di-

rect quantum-mechanical interpretation of the amplitudes should be made in the

framework of the RCQM, see the subsection 5.8.3 above.

The explicit form of the P -generators of the bosonic representation of the

Poincaré group P , with respect to which the covariant equation (7.67) and the set

{ψ} of its solutions (7.71) are invariant, is derived from the generators (6.95),
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(6.96) on the basis of the tramsformation (7.64), (7.66). The corresponding

generators are given by

p̂0 = Γ0
12(

−→
Γ 12 · −̂→p +m), p̂` = −i∂`,

ĵ`n = x`
D p̂n −xn

D p̂` + s`n
12D ≡ m̂`n + s`n

12D, (7.75)

ĵ0` = − ĵ`0 = x0 p̂`− 1

2

{
x`

D, p̂0
}

+
p̂0(−→s 12D×−̂→p )`

ω̂(ω̂+m)
, (7.76)

where the spin matrices −→s 12D = (s`n
12D) are given in (7.73) and the operator −→x D

has the form

−→x D = −→x +
i
−→
Γ 12

2ω̂
−

−→s 12×−̂→p
ω̂(ω̂+m)

− i−̂→p (
−→
Γ 12 · −̂→p )

2ω̂2(ω̂+m)
, (7.77)

where the specific spin-like matrices −→s Γ
12 are given by

−→s Γ
12 ≡

i

2
(Γ2

12Γ3
12, Γ3

12Γ1
12, Γ1

12Γ2
12) (7.78)

with Γ
j
12 determined in (7.68).

It is easy to verify that the generators (7.75), (7.76) commute with the oper-

ator
[
i∂0 −Γ0

12(
−→
Γ 12 · −̂→p +m)

]
of equation (7.67), satisfy the commutation re-

lations (3.4) of the Lie algebra of the Poincaré group and the corresponding

Casimir operators are given by

p2 = p̂µ p̂µ = m2I12, (7.79)

W = wµwµ = m2−→s 2
12D = m2

∣∣∣∣∣∣∣∣

2(2+1) I5 0 0 0

0 0 0 0

0 0 2(2+1) I5 0

0 0 0 0

∣∣∣∣∣∣∣∣
, (7.80)

where I12 is 12×12 and I5 is 5×5 unit matrix.
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As it was already explained in details in the previous sections, the conclu-

sion that equation (7.67) describes the bosonic particle-antiparticle multiplet

of the spin s=(2,0,2,0) and mass m > 0 (and its solution (7.71) is the bosonic

field of the above mentioned spin and nonzero mass) follows from the analy-

sis of equations (7.74) and the Casimir operators (7.79), (7.80). Moreover, the

external argument in the validity of such interpretation is the link with the cor-

responding RCQM of spin s=(2,0,2,0) particle-antiparticle multiplet, where the

quantum-mechanical interpretation is direct and evident. Therefore, the bosonic

spin s=(2,0,2,0) properties of equation (7.67) are proved.

7.8. Covariant Field Equation for the 16-Component

Spin s=(2,1,2,1) Bosonic Particle-Antiparticle

Multiplet

The model below can be useful for the approaches to gravity.

The operator of the transition to the covariant local field theory represen-

tation (the 16×16 analogy of the 4×4 FW transformation operator (4.23)) is

given by

V∓ =
∓−→

Γ 16 · −̂→p + ω̂ +m√
2ω̂(ω̂+m)

, V− = (V+)†, V−V + = V+V− = I16, (7.81)

ψ = V−φ, φ = V +ψ, (7.82)

q̂D = V−q̂CFV+, q̂CF = V+q̂DV−, (7.83)

where q̂D is an arbitrary operator (both in the Hermitian and anti-Hermitian

form) in the covariant local field theory representation. The inverse transforma-

tion is valid as well.

Thus, on the basis of transformation (7.81)–(7.83) the 16-component Dirac-

like equation is found from the canonical field equation (6.99) in the form

[
i∂0 −Γ0

16(
−→
Γ 16 · −̂→p +m)

]
ψ(x) = 0. (7.84)
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In operator (7.81) and in equation (7.84) the Γ
µ
16 matrices are given by

Γ0
16 =

∣∣∣∣
I8 0

0 −I8

∣∣∣∣ , Γ
j
16 =

∣∣∣∣∣
0 Σ

j
8

−Σ
j
8 0

∣∣∣∣∣ , (7.85)

where Σ j
8 are the 8×8 Pauli matrices

Σ j
8 =

∣∣∣∣∣∣∣∣

σ j 0 0 0

0 σ j 0 0

0 0 σ j 0

0 0 0 σ j

∣∣∣∣∣∣∣∣
, (7.86)

and the standard Pauli matrices σ j are given in (1.6).

The matrices Σ
j
8 satisfy the similar commutation relations as the 2×2 Pauli

matrices (1.6) and have other similar properties. The matrices Γ
µ
16 (7.85) satisfy

the anticommutation relations of the Clifford–Dirac algebra in the form

Γ
µ
16Γν

16 +Γν
16Γ

µ
16 = 2gµν. (7.87)

The solution of equation (7.84) is derived from solution (6.101) of this equa-
tion in the canonical representation (6.99) on the basis of transformation (7.81),
(7.82) and is given by

ψ(x) = V−φ(x) =
1

(2π)
3
2

Z

d3k
[

e−ikxgA(
−→
k )v−A(

−→
k )+ eikxg∗B(

−→
k )v+

B(
−→
k )
]
, (7.88)

where A = 1,8, B = 9,16 and the 16-component spinors (v−A(
−→
k ), v+

B (
−→
k )) are

given by

v−1 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω̃+ m

0

0

0

0

0

0

0

k3

k1 + ik2

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v−2 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

ω̃+ m

0

0

0

0

0

0

k1− ik2

−k3

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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v−3 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

ω̃+ m

0

0

0

0

0

0

0

k3

k1 + ik2

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v−4 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

ω̃+ m

0

0

0

0

0

0

k1− ik2

−k3

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v−5 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

ω̃+ m

0

0

0

0

0

0

0

k3

k1 + ik2

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v−6 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

ω̃+ m

0

0

0

0

0

0

k1− ik2

−k3

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v−7 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

ω̃+ m

0

0

0

0

0

0

0

k3

k1 + ik2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v−8 (
−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

0

ω̃+ m

0

0

0

0

0

0

k1− ik2

−k3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7.89)
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v+
9 (

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k3

k1 + ik2

0

0

0

0

0

0

ω̃ + m

0

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v+
10(

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 − ik2

−k3

0

0

0

0

0

0

0

ω̃ + m

0

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v+
11(

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

k3

k1 + ik2

0

0

0

0

0

0

ω̃+ m

0

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v+
12(

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

k1 − ik2

−k3

0

0

0

0

0

0

0

ω̃ + m

0

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

v+
13(

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

k3

k1 + ik20

0

0

0

0

0

ω̃+ m

0

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v+
14(

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

k1 − ik2

−k3

0

0

0

0

0

0

0

ω̃+ m

0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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v+
15(

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

k3

k1 + ik2

0

0

0

0

0

0

ω̃+ m

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, v+
16(

−→
k ) = N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0

0

0

0

0

0

k1 − ik2

−k3

0

0

0

0

0

0

0

ω̃ + m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where N and ω̃ are given in (7.34).

The spinors (7.89) are derived from the orts {d} of the Cartesian basis

(5.198) with the help of the transformation (7.81), (7.82). The spinors (7.89)

satisfy the relations of the orthonormalization and completeness similar to the

corresponding relations for the standard 4-component Dirac spinors, see, e.g.,

[47].

In the covariant local field theory, the operators of the SU(2) spin, which

satisfy the corresponding commutation relations
[
s

j
16D, s`

16D

]
= iε j`nsn

16D and

commute with the operator
[
i∂0 −Γ0

16(
−→
Γ 16 · −̂→p +m)

]
of equation (7.84), are

derived from the pure matrix operators (6.106) with the help of transformation

operator (7.81), (7.83):
−→s 16D = V−−→s 16V

+. (7.90)

The explicit form can be presented in analogy with previous sections. The third

component of this spin has the explicit form

s3
16D =

1

2ωΩ
· |16×16| , (7.91)

where the nonzero matrix elements a,b of 16×16 matrix are given by

1,1 = 4ωΩ− p11
22, 1,2 = p3z∗, 1,10 = z∗Ω,

2,1 = p3z, 2,2 = 2ωΩ+ p11
22, 2,9 = −zΩ,

3,3 = −p11
22, 3,4 = p3z∗, 3,12 = z∗Ω,

4,3 = p3z, 4,4 = Ω2 − p33, 4,11 = −zΩ,
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5,5 = −4ωΩ+3p11
22, 5,6 = −3p3z∗, 5,14 = −3z∗Ω,

6,5 = −3p3z, 6,6 = 2ωΩ−3p11
22, 6,13 = 3zΩ,

7,7 = −p11
22, 7,8 = p3z∗, 7,16 = z∗Ω,

8,7 = p3z, 8,8 = −Ω2 − p33, 8,15 = −zΩ,

9,2 = −z∗Ω, 9,9 = 4ωΩ− p11
22, 9,10 = p3z∗,

10,1 = zΩ, 10,9 = p3z, 10,10 = 2ωΩ+ p11
22,

11,4 = −z∗Ω, 11,11 = −p11
22, 11,12 = p3z∗,

12,3 = zΩ, 12,11 = p3z, 12,12 = −Ω2 − p33,

13,6 = 3z∗Ω, 13,13 = −4ωΩ+3p11
22, 13,14 = −3p3z∗,

14,5 = −3zΩ, 14,13 = −3p3z, 14,14 = 2ωΩ−3p11
22,

15,8 = −z∗Ω, 15,15 = −p11
22, 15,16 = p3z∗,

16,7 = zΩ, 16,15 = p3z, 16,16 = −Ω2 − p33.

Here in matrix elements the notations (7.38), (7.59) are used.

The equations on eigenvectors and eigenvalues of the operator s3
16D (7.91)

follow from the equations (6.107) and the transformation (7.81)–(7.83). In addi-

tion to it, the action of the operator s3
16D (7.91) on the spinors (v−A(

−→
k ), v+

B (
−→
k ))

(7.89) also leads to the result

s3
16Dv−1 (

−→
k ) = 2v−1 (

−→
k ), s3

16Dv−2 (
−→
k ) = v−2 (

−→
k ),

s3
16Dv−3 (

−→
k ) = 0, s3

16Dv−4 (
−→
k ) = −v−4 (

−→
k ),

s3
16Dv−5 (

−→
k ) = −2v−5 (

−→
k ), s3

16Dv−6 (
−→
k ) = v−6 (

−→
k ),

s3
16Dv−7 (

−→
k ) = 0, s3

16Dv−8 (
−→
k ) = −v−8 (

−→
k ), (7.92)

s3
16Dv+

9 (
−→
k ) = 2v+

9 (
−→
k ), s3

16Dv+
10(

−→
k ) = v+

10(
−→
k ),

s3
16Dv+

11(
−→
k ) = 0, s3

16Dv+
12(

−→
k ) = −v+

12(
−→
k ),

s3
16Dv+

13(
−→
k ) = −2v+

13(
−→
k ), s3

16Dv+
14(

−→
k ) = v+

14(
−→
k ),

s3
16Dv+

15(
−→
k ) = 0, s3

16Dv+
16(

−→
k ) = −v+

16(
−→
k ).
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In order to verify equations (7.92) the identity (7.40) should be used. In

the case v+
B(
−→
k ) in the expression s3

12D(
−→
k ) (7.91) the substitution

−→
k →−−→

k is

made.

The equations (7.92) determine the interpretation of the amplitudes in so-

lution (7.88). This interpretation is similar to the given above in the FW rep-

resentation in the paragraph after equations (6.107). Nevertheless, the direct

quantum-mechanical interpretation of the amplitudes should be made in the

framework of the RCQM, see the subsection 5.8.4 above.

The explicit form of the P -generators of the bosonic representation of the

Poincaré group P , with respect to which the covariant equation (7.84) and the

set {ψ} of its solutions (7.88) are invariant, is derived from the FW type gen-

erators (6.108), (6.109) on the basis of the tramsformation (7.81), (7.83). The

corresponding generators are given by

p̂0 = Γ0
16(

−→
Γ 16 · −̂→p +m), p̂` = −i∂`,

ĵ`n = x`
D p̂n −xn

D p̂` + s`n
16D ≡ m̂`n + s`n

16D, (7.93)

ĵ0` = − ĵ`0 = x0 p̂`− 1

2

{
x`

D, p̂0
}

+
p̂0(−→s 16D×−̂→p )`

ω̂(ω̂+m)
, (7.94)

where the spin matrices −→s 16D = (s`n
16D) are given in (7.90), (7.91), and the op-

erator −→x D has the form

−→x D = −→x +
i
−→
Γ 16

2ω̂
−

−→s Γ
16×−̂→p

ω̂(ω̂+m)
− i−̂→p (

−→
Γ 16 · −̂→p )

2ω̂2(ω̂+m)
, (7.95)

where the specific spin-like matrices −→s Γ
16 are given by

−→s Γ
16 ≡

i

2
(Γ2

16Γ3
16, Γ3

16Γ1
16, Γ1

16Γ2
16) (7.96)

with Γ
j
16 determined in (7.85).

It is easy to verify that the generators (7.93), (7.94) commute with the oper-

ator
[
i∂0 −Γ0

16(
−→
Γ 12 · −̂→p +m)

]
of equation (7.84), satisfy the commutation re-

lations (3.4) of the Lie algebra of the Poincaré group and the corresponding

Casimir operators are given by

p2 = p̂µ p̂µ = m2I16, (7.97)
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W = wµwµ = m2−→s 2
16D = m2

∣∣∣∣∣∣∣∣

2(2 +1)I5 0 0 0

0 1(1 +1)I3 0 0

0 0 2(2 +1)I5 0

0 0 0 1(1 +1)I3

∣∣∣∣∣∣∣∣
,

(7.98)

where I16, I5 and I3 are 16×16, 5×5 and 3×3 unit matrices, respectively.

As it was already explained in details in the previous sections, the conclu-

sion that equation (7.84) describes the bosonic particle-antiparticle multiplet

of the spin s=(2,1,2,1) and mass m > 0 (and its solution (7.88) is the bosonic

field of the above mentioned spin and nonzero mass) follows from the analy-

sis of equations (7.92) and the Casimir operators (7.97), (7.98). Moreover, the

external argument in the validity of such interpretation is the link with the cor-

responding RCQM of spin s=(2,1,2,1) particle-antiparticle multiplet, where the

quantum-mechanical interpretation is direct and evident. Therefore, the bosonic

spin s=(2,1,2,1) properties of equation (7.84) are proved.

It is easy to prove that equation (7.84) describes four spin s=(1/2,1/2)

fermionic particle-antiparticle doublets, two spin s=(3/2,3/2) fermionic particle-

antiparticle doublets and two spin s=(1,0,1,0) bosonic particle-antiparticle mul-

tiplets as well. Therefore, this equation has the extended property of Fermi–

Bose duality. Such characteristic can be called the quadro Fermi–Bose prop-

erty.

7.9. Natural Application to the Gravity

The most direct application for the gravity is the derivation of the field equa-

tion for the spin s=(2,2) particle-antiparticle bosonic doublet. Indeed, it is the

field model for the graviton-antigraviton doublet both in general case of nonzero

particle masses and in the limit m = 0. Above on the level of canonical field

this model is given in the subsection 6.2.5. In particular the canonical Foldy–

Wouthuysen type field equation and its solution are given by (6.64) and (6.65).

The only small difficulty is as follows. The covariant field theory equation

for the spin s=(2,2) particle-antiparticle doublet can not be presented in terms

of Γ matrices. Indeed, the 10× 10 Clifford–Dirac Γ matrices are not exist as

an mathematical objects. Therefore, one need to look for the locally covariant

field equations for spin s=(2,2) particle-antiparticle doublet not in the terms of

Γ matrices.
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Consider two ways of the derivation of the covariant field equations for spin

s=(2,2) particle-antiparticle doublet. The first way is based on the application

of the corresponding FW transformation directly to the canonical field equation

(6.64). Note that there is a nonzero chance to find the appropriate transformation

among a big number of so-called FW transformations for an arbitrary spin [76–

85]. Unfortunately for our approach, many authors considered for the spin s=1

case the 4-vector potential (see, e.g., [85]) and not 3-component wave function−→ψ =
−→
E − i

−→
E as it is in [3–6, 48, 55–58, 70–73]. Therefore, the objects for spin

s=2 case are different as well. Indeed, our approach for arbitrary spin equations

differs from other known approaches.

Hence, below (see some details in [5]) another way of the derivation of the

covariant field equations for spin s=(2,2) particle-antiparticle doublet is real-

ized. It is easy to construct the formalism of the RCQM of the spin s=(2,0,2,0)

particle-antiparticle multiplet. Further, the canonical FW type model of the spin

s=(2,0,2,0) particle-antiparticle field can be formulated. Moreover, both models

are presented above in subsections 5.8.3 and 6.3.2. After that the 12×12 opera-

tor transformation (7.64) should be applied for the canonical FW type equation

of the spin s=(2,0,2,0) particle-antiparticle multiplet.

Found by the above considered way (or found as the partial 12 ×
12 case of arbitrary spin equation (7.2)) covariant field equation for

the spin s=(2,0,2,0) particle-antiparticle multiplet (7.67) is given by[
i∂0 −Γ0

12(
−→
Γ 12 · −̂→p +m)

]
ψ(x) = 0, where the matrices Γ

µ
12 have the form

(7.68). The general solution of the equation (7.67) is given by the formula

(7.71).

In order to find the covariant field equations for spin s=(2,2) particle-

antiparticle doublet one can put equal to zero the scalar components in (7.67).

The place of the scalar components is evident from the corresponding quantum-

mechanical consideration in subsection 5.8.3.

The similar way was demonstrated in section 7.5 to find the covariant

Maxwell-like field equations for the spin s=(1,1) particle-antiparticle doublet

from the known Dirac-like equation (7.28) for the spin s=(1,0,1,0) particle-

antiparticle multiplet. Similarly to equation (7.50) the covariant field equation

(7.99) (or (7.100)), written below for the spin s=(2,2) particle-antiparticle dou-

blet, can be presented in terms of curl, div and grad operators as well.

Thus, the locally covariant field equations for 10 component spin s=(2,2)
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particle-antiparticle doublet found by this way has the form

i∂0ψ1 − p3ψ6 −mψ1 = 0,

i∂0ψ2 − p3ψ7 + ip2ψ10 − p1ψ10 −mψ2 = 0,

i∂0ψ3 − p3ψ8 + ip2ψ9 − p1ψ9 −mψ3 = 0,

i∂0ψ4 + p3ψ9 − ip2ψ8 − p1ψ8 −mψ4 = 0,

i∂0ψ5 + p3ψ10 − ip2ψ7 − p1ψ7 −mψ5 = 0,

i∂0ψ6 − p3ψ1 +mψ6 = 0,

i∂0ψ7 − p3ψ2 + ip2ψ5 − p1ψ5 +mψ7 = 0, (7.99)

i∂0ψ8 − p3ψ3 + ip2ψ4 − p1ψ4 +mψ8 = 0,

i∂0ψ9 + p3ψ4 − ip2ψ3 − p1ψ3 +mψ9 = 0,

i∂0ψ10 + p3ψ5 − ip2ψ2 − p1ψ2 +mψ10 = 0,

−ip2ψ1 − p1ψ1 = 0, −ip2ψ6 − p1ψ6 = 0,

or the Dirac-like form

[
i∂0 −Γ0

8(
−→
Γ 8 ·−→p +m)

]
ψ(x) = 0, (7.100)

(i∂0 −σ1 p3 −σ3m)χ = 0, (p1 + ip2)χ = 0,

where ψ = column(ψ1,ψ2, ...,ψ8), χ =

∣∣∣∣
ψ9

ψ10

∣∣∣∣ , Γ0
8 =

∣∣∣∣
I4 0

0 −I4

∣∣∣∣ , Γ
j
8 =

∣∣∣∣∣
0 Σ

j
4

−Σ
j
4 0

∣∣∣∣∣ , and Σ
j
4 are the 4 × 4 Pauli matrices Σ1

4 =

∣∣∣∣
0 I2

I2 0

∣∣∣∣ , Σ2
4 =

∣∣∣∣
0 −iI2

iI2 0

∣∣∣∣ , Σ3
4 =

∣∣∣∣
I2 0

0 −I2

∣∣∣∣ . The forms (7.99), (7.100) are linked by the or-

dinary linear transformation. The form similar to (7.50) is found by the method

similar to one presented in section 7.5.
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7.10. Synthesis of Arbitrary Spin Covariant Particle

Equations: Discussions, Conclusions, Perspec-

tives

The program of synthesis of arbitrary spin covariant particle equations is pre-

sented here in Chapters 5, 6 and in this chapter. The program is finished in

the section 7.9 above. Therefore, consider below discussions, conclusions and

perspectives.

7.10.1. Interaction

The consideration in Chapters 5, 6 and here in general is about free non-

interacting fields and particle states. Note at first that the free non-interacting

fields and particle states are the physical reality of the same level as the inter-

acting fields and corresponding particle states. Nevertheless, it is meant that the

interaction between a fields can be easily introduced on the every step of con-

sideration. One test model with interaction is considered in explicit form in the

section 7.6 above. The interaction can not be the deficiency in these construc-

tions and can be introduced in many places by the method similar to the formula

(7.63).

Note at first that the free non-interacting fields and particle states are the

physical reality of the same level as the interacting fields and corresponding

particle states. The best well-known example is the free Maxwell electromag-

netic field in the form of free electromagnetic waves. Therefore, the systematic

investigation of free non-interacting fields and particle states on the different

levels of the RCQM of arbitrary spin (based on the Schrodinger-Foldy equa-

tion), the relativistic canonical field theory of arbitrary spin (based on the FW

equation and its generalizations), the locally covariant field theory of arbitrary

spin (based on the Dirac equation and its generalizations) and, moreover, the in-

troduction of the operator link between these theories is some result as well and

can have some independent significance. The precise free field consideration is

the necessary first step in all consequent field theory presentation, in axiomatic

presentation as well. Further, it is well-known that when the free field models

are well-defined the interaction between them can be introduced very easy in

well-defined forms known from the literature.

The free particle RCQM today is the subject of other authors considerations

as well. Note that the wave packet solutions of the Salpeter equation and their
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unusual properties (rather recent papers [86, 87]) have been derived for the free

non-interacting cases.

Moreover, for the standard Dirac theory the interaction is given in all hand-

books on the relativistic quantum field theory and quantum electrodynamics.

Such consideration can be added here very easy. Nevertheless, here one typi-

cal interaction is considered already as the test example in order to demonstrate

the way of introduction of the interaction in corresponding models. For the spin

s=(3/2,3/2) field the interaction with electromagnetic potentials was given in the

section 7.6 in the formula (7.63). Thus, it is enough to explain the situation with

interaction here. The interaction can not be the deficiency in these constructions

and can be introduced in many places by the method similar to the formula

(7.63).

Other concrete physical effects and the problem of description of (inter)-

particle interactions in frames of the RCQM are described by other authors, see

the references [86–108]. Moreover, the way of introducing the interaction into

RCQM model is easy and direct (similarly to non-relativistic quantum mechan-

ics) not a matter of fact what particle-antiparticle doublet is under consideration.

After that the covariant field models with interaction can be found very easy

according to the operator links suggested in the Chapter 6 and in this chapter

above.

7.10.2. Application to the Discussion around the Antiparticle

Negative Mass

The system of vertical and horizontal links between the RCQM and the field

theory, which is proved above, has different useful applications. One of the

fundamental applications is the participation in the discussion around the an-

tiparticle negative mass. We emphasize that the model of the RCQM and the

corresponding field theory do not need the appealing to the antiparticle negative

mass concept [109–112]. It is natural due to the following reasons.

It is only the energy which depends on the mass. And the total energy

together with the momentum is related to the external degrees of freedom, which

are common and the same for the particle and antiparticle (for the electron and

positron). The difference between the particle and the antiparticle consists only

in internal degrees of freedom such as the spin −→s and the sign of the charge

g = −γ0. Thus, if in the RCQM the mass of the particle is taken positive then

the mass of the antiparticle must be taken positive too.
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On the other hand, a comprehensive analysis [110] of the Dirac equation

for the doublet had led the authors of [110] to the concept of the negative mass

of the antiparticle. Therefore, the consideration here gives the additional argu-

ments that the Dirac model (or the Foldy–Wouthuysen model related to it) is

not the quantum-mechanical one. Furthermore, in the problem of the relativis-

tic hydrogen atom the use of the negative-frequency part ψ−(x) = e−iωtψ(−→x ) of

the spinor ψ(x) in the “role of the quantum-mechanical object” is not valid. In

this case neither |ψ(−→x )|2, nor ψ(−→x )ψ(−→x ) is the probability distribution den-

sity with respect to the eigenvalues of the Fermi-doublet coordinate operator. It

is due to the fact [6] that in the Dirac model the −→x is not the experimentally

observable Fermi-doublet coordinate operator.

The application of the RCQM can be useful for the analysis of the experi-

mental situation found in [113]. Such analysis is interesting due to the fact that

(as it is demonstrated here and in [3–6]) the RCQM is the most fundamental

model of the particle-antiparticle doublet.

Another interesting application of the RCQM is inspired by [114], where

the quantum electrodynamics is reformulated in the FW representation. The

author of [114] essentially used the result of [110] on the negative mass of the

antiparticle. Starting from the RCQM we are able not to appeal to the concept

of the antiparticle negative mass.

7.10.3. The Partial Case of Zero Mass

All equations of motion considered here are valid for the partial case m = 0. The

corresponding expressions are found by the transition m → 0. This assertion is

valid both for the RCQM and for the covariant local field theory.

In the case m = 0 the above considered equations of motion are invariant

with respect to all representations of the SU(2) group, which are mentioned in

this article. The SU(2) symmetry does not depend on the difference between

m = 0 and m 6= 0.

The difference between m = 0 and m 6= 0 is observed only for the symmetry

with respect to the Poincaré group P . In the case of m = 0 equations of motion

are invariant with respect to all Poincaré generators given above in the paper.

Nevertheless, the Casimir operators are equal to zero in this case. Therefore,

another class of Poincaré group representations, using the Casimir operator −→s ·
−→p related to the helicity of elementary particles, is preferable. Hence, in the

case m = 0 the momentum-helicity basis vectors are preferable in comparison
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with momentum-spin basis, which is applied in this paper.

After this warning the theory for m = 0 follows from the theory with m 6= 0.

7.10.4. Discussions, Conclusions, Perspectives

In the presented above text (and briefly in [3–6]) our experience in the time span

2002–2015 in the investigation of the spin s=1/2 and s=1 fields is applied for the

first time to the higher spin cases s=3/2 and s=2. Thus, our “old” papers are aug-

mented by the list of new results for higher spins and generalization for arbitrary

spin. Moreover, here (the start has been given in [3–6]) the system of different

vertical and horizontal links between the arbitrary spin particles descriptions on

the levels of relativistic quantum mechanics, canonical field theory (of FW type)

and locally covariant field theory is suggested.

Among the results of this paper the original method of derivation of the

Dirac (and the Dirac-like equations for higher spins) is suggested (Chapters 5–

7). In order to determine the place of this derivation among the other known

methods in Chapter 2 the different ways of the Dirac equation derivation have

been reviewed. Thus, a review of the different derivations of the Dirac equa-

tion demonstrates that presented in Chapters 5–7 general method is original

and new. Here the Dirac equation is derived from the Schrödinger–Foldy equa-

tion (5.120) (in 4-component case) of the RCQM. The RCQM model of the

spin s=(1/2,1/2) particle-antiparticle doublet has been considered in details in

Chapter 5. Hence, the Dirac equation is derived from the more fundamental

model of the same physical reality, which is presented by the RCQM of the spin

s=(1/2,1/2) particle-antiparticle doublet. The analysis of the spin s=(1/2,1/2)

particle-antiparticle doublet is the basis of our generalization for the higher spin

models and for arbitrary spin.

One of the general fundamental conclusions is as follows. It is shown by

corresponding comparison that customary FW representation can not give the

complete quantum-mechanical description of the relativistic particle (or parti-

cle multiplet). The analysis of canonical FW representation is presented in the

Chapter 4. Compare, e.g., the equations on eigenvectors and eigenvalues for the

third component of the spin operator in each quantum-mechanical and canon-

ical field theory model here above. It is useful also to compare the general

solutions in RCQM and in field theory (for this purpose it is enough to consider

the field theory in the canonical FW representation). Contrary to RCQM in FW

representation the general solution consists of positive and negative frequency
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parts. As a consequence contrary to RCQM in FW representation the energy

has an indefinite sign. Hence, the complete quantum-mechanical description of

the relativistic particle (or particle multiplet) can be given only in the framework

of the RCQM. Therefore, the customary FW transformation is extended here to

the form, which gives the direct link between the locally covariant field theory

and the RCQM. Hence, such extended inverse FW transformation is used here

to fulfill the synthesis of covariant particle equations. The start of such synthe-

sis is given here from the RCQM and not from the canonical field theory in the

representations of the FW type.

Comparison of RCQM and FW representation visualizes the role of the J.

von Neumann axiomatic [115] in this presentation. Therefore, relation of J.

von Neumann axiomatic [115] to the overall contents of the paper is direct and

unambiguous. It is shown that among the above considered models only RCQM

of arbitrary spin can be formulated in J. von Neumann’s axiomatic, whereas

canonical and covariant field theories can not be formulated in its framework.

The new operator links v2N =

∣∣∣∣
IN 0

0 ĈIN

∣∣∣∣ , N = 2s+1, found here between

the RCQM of arbitrary spin and the canonical (FW type) field theory enabled

ones to translate the result found in these models from one model to another. For

example, the results of [90–108] from RCQM can be traslated into the canonical

field theory. Contrary, the results of [104] from canonical field theory can be

translated into the RCQM (for free non-interacting cases and in the form of

anti-Hermitian operators). Note that operator (5.28) is not unitary but is well

defined and having inverse operator.

The partial case of the Schrodinger-Foldy equation, when the wave function

has only one component [116], is called the spinless Salpeter equation and is un-

der consideration in many recent papers [86, 93, 96, 97, 99–101, 106–108]. The

partial wave packet solutions of this equation are given in [86]. The solutions for

free massless and massive particle on a line, massless particle in a linear poten-

tial, plane wave solution for a free particle (these solution is given here in (5.12)

for N-component case), free massless particle in three dimensions have been

considered. Further, in the paper [87] other time dependent wave packet solu-

tions of the free spinless Salpeter equation are given. Taking into account the

relation of such wave packets to the Levy process the spinless Salpeter equation

(in one dimensional space) is called in [87] as the Levy-Schrodinger equation.

The several examples of the characteristic behavior of such wave packets have

been shown, in particular, of the multimodality arising in their evolutions: a fea-
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ture at variance with the typical diffusive unimodality of both the correspond-

ing Levy process densities and usual Schrodinger wave functions. Therefore,

the interesting task is to extend such consideration to the equations of the N-

component relativistic canonical quantum mechanics considered above and to

use the links given here in order to transform wave packet solutions [86, 87] into

the solutions of the equations of the locally covariant field theory.

In this chapter the original FW transformation [1] is used and slightly gen-

eralized for the many component cases. The improvement of the FW transfor-

mation [1] is the task of many authors from 1950 until today, see, e.g., the list

of publications [76–85]. Nevertheless, this transformation for free case of non-

interacting spin 1/2 particle-antiparticle doublet is not changed from 1950 (the

year of first publication) until today. Alexander Silenko was successful in FW

transformation for single particles with spin 0 [117], spin 1/2 [118] and spin 1

[119, 120] interacting with external electric, magnetic and other fields. In the

case of non-interacting particle, when the external electric, magnetic and other

external fields are equal to zero, all results of [85, 117–120] and other authors

reduce to the earlier results [1, 76]. Therefore, the choice in this paper of the ex-

act FW transformation from 1950 as the initial (and basic for further generaliza-

tions for arbitrary spin) is evident and well-defined. For our next publications,

we have a plan to consider interacting fields and to use the results of [117–120]

and recent results of other authors, which generalize the FW formulas in the

case of interaction.

A few remarks should be added about the choice of the spin operator. Au-

thors of recent paper [121] considered all spin operators for a Dirac particle sat-

isfying some logical and group-theoretical conditions. The discussion of other

spin operators proposed in the literature has been presented as well. As a re-

sult only one satisfactory operator has been chosen. This operator is equivalent

to the Newton–Wigner spin operator and FW mean-spin operator. Contrary

to such way the situation here is evident. Above the choice of the spin oper-

ator for spin s=1/2 particle-antiparticle doublet is unique. The explicit form

for such operator follows directly from the main principles of the RCQM of

spin s=1/2 particle-antiparticle doublet, which are formulated in the Chapter 5.

Such operator from RCQM is given here in formula (5.124) taken for N=2. Af-

ter that the links between the RCQM, FW representation and the Dirac model

unambiguously give at first the FW spin (5.126) (with N=2) and finally the

spin (4.27), which is called in literature as the FW mean-spin operator (for

the spin s=(1/2,1/2) particle-antiparticle doublet). Therefore, the similar con-
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sideration for the higher spin doublets gives unambiguously the well-defined

higher spin operators, which are presented in this chapter above. These new

mean-spin operators (7.35)–(7.37), (7.56)–(7.58), (7.91) for higher spin mul-

tiplets s=(1,0,1,0), s=(3/2,3/2) and s=(2,1,2,1) are the interesting independent

results.

The goal of the paper [122] is a comprehensive analysis of the intimate rela-

tionship between jump-type stochastic processes (e.g., Levy flights) and nonlo-

cal (due to integro-differential operators involved) quantum dynamics. Special

attention is paid to the spinless Salpeter equation and the various wave packets,

in particular to their radial expression in 3D. Furthermore, Foldy’s approach [2]

is used [122] to encompass free Maxwell theory, which however is devoid of any

“particle” content. Links with the photon wave mechanics are explored. Con-

sideration in the subsections 5.7.3, 5.8.1, 5.8.2, 6.2.3, 6.3.1, sections 7.4 and 7.5,

demonstrates another links between the Maxwell equations and the RCQM. In

the generalization of the Foldy’s synthesis of covariant particle equations given

above the Maxwell equations and their analogy for nonzero mass are related to

the RCQM of spin s=(1,1) and spin s=(1,0,1,0) particle-antiparticle doublets.

The electromagnetic field equations that follow from the corresponding RCQM

equations are considered. The new electrodynamical equations containing the

hypothetical antiphoton and massless spinless antiboson are introduced. The

Maxwell-like equations for the boson with spin s=1 and m > 0 (W-boson) have

been introduced as well. In other words the Maxwell equations for the field with

nonzero mass are introduced.

The covariant consideration of arbitrary spin field theory given above con-

tains the non-covariant representations of the Poincaré algebra. Nevertheless,

it is not the deficiency of the given model. For the Poincaré group P genera-

tors of spin s=(1/2,1/2) the covariant form (7.21) is well-known, in which the

generators have the form of the local Lie operators. In order to have the uni-

form consideration (7.9), (7.10) the Poincaré generators for spin s=(1,0,1,0),

(3/2,3/2), (2,0,2,0), (2,1,2,1) fields are given in formulas (7.41), (7.42), (7.75),

(7.76), (7.93), (7.94) in corresponding uniform forms of non-covariant opera-

tors in covariant theory. After further transformations of these generators sets in

the direction of finding the covariant forms like (7.21) some sets of generators

can be presented in the manifestly covariant forms. For other sets of genera-

tors covariant forms are extrinsic. Some sets of generators can be presented

only in the forms, which are similar to given in [50–52], where the prime anti-

Hermitian operators and specific eigen vectors – eigenvalues equations (with
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imagine eigenvalues) are used, see, e.g., formula (21) in [50].

The second reason of the stop on the level (7.41), (7.42), (7.75), (7.76),

(7.93), (7.94) is to conserve the important property of the Poincaré generators

in the canonical FW type representation. Similarly to the FW type Poincaré

generators in the sets (7.41), (7.42), (7.75), (7.76), (7.93), (7.94) both angular

momenta (orbital and spin) commute with the operator of the Dirac-like equa-

tion of motion (7.2). Contrary to the generators (7.9), (7.10), in the covariant

form (7.21) only total angular momentum, which is the sum of orbital and spin

angular momenta, commutes with the Diracian.

The main point is as follows. The non-covariance is not the barrier for the

relativistic invariance! Not a matter of fact that non-covariant objects such as the

Lebesgue measure d3x and the non-covariant Poincaré generators are explored,

the model of locally covariant field theory of arbitrary spin presented in section

7.2 is a relativistic invariant in the following sense. The Dirac-like equation

(7.2) and the set {ψ} of its solutions (7.7) are invariant with respect to the re-

ducible representation of the Poincaré group P the non-local and non-covariant

generators of which are given by (7.9), (7.10). Indeed, the direct calculations vi-

sualize that generators (7.9), (7.10) commute with the operator of equation (7.2)

and satisfy the commutation relations (3.4) of the Lie algebra of the Poincaré

group P .

The 8-component manifestly covariant equation (7.54) for the spin s=3/2

field is the s=3/2 analogy of the 4-component Dirac equation for the spin s=1/2

doublet. It is shown that synthesis of this equation from the relativistic canonical

quantum mechanics of the spin s=3/2 particle-antiparticle doublet is completely

similar to the synthesis of the Dirac equation from the relativistic canonical

quantum mechanics of the spin s=1/2 particle-antiparticle doublet. The differ-

ence is only in the value of spin (3/2 and 1/2). On this basis and on the basis of

the investigation of solutions and transformation properties with respect to the

Poincaré group this new 8-component equation is suggested to be well defined

for the description of spin s=3/2 fermions. Note that known Rarita-Schwinger

(Pauli-Fierz) equation has 16 components and needs the additional condition.

The properties of the Fermi–Bose duality, triality and quadro Fermi–Bose

properties of equations found have been discussed briefly.

Hence, the method of synthesis of manifestly covariant field equations on

the basis of start from the relativistic canonical quantum mechanics of arbitrary

spin is suggested. Its approbation on few principal examples is presented.

The main general conclusion is as follows. Among the three main models of
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arbitrary spin (relativistic canonical quantum mechanics, canonical field theory

and covariant field theory) considered here the relativistic canonical quantum

mechanics is the best in rigorous quantum-mechanical description. The tran-

sition from the relativistic canonical quantum mechanics to the canonical field

theory essentially worsens the quantum-mechanical description. And the final

transition from the canonical field theory to the covariant field theory essentially

worsens the quantum-mechanical description once more.

Therefore above the following results can be found: the covariant local field

theory equations for spin s = (1,1) particle-antiparticle doublet, spin s = (1,0,1,0)

particle antiparticle multiplet, spin s = (3/2,3/2) particle-antiparticle doublet,

spin s = (2,2) particle-antiparticle doublet, spin s = (2,0,2,0) particle-antiparticle

multiplet and spin s = (2,1,2,1) particle-antiparticle multiplet. The Maxwell-like

equations for the boson with spin s = 1 and nonzero are considered as well. The

general form describing arbitrary spin also is presented.
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Chapter 8

Link between the Stationary

Dirac Equation with Nonzero

Mass in External Field and the

Stationary Maxwell Equations

in Specific Medium

Here in order to extend the limits of classical theory application in the mi-

croworld some slight generalization of Maxwell electrodynamics is consid-

ered. It is shown that slightly generalized classical Maxwell electrodynamics

can describe the inneratomic phenomena with the same success as relativistic

quantum mechanics can do. Group-theoretical grounds for the description of

fermionic states in terms of Bose formalism are presented briefly. The advan-

tages of generalized electrodynamics in inneratomic region in comparison with

standard Maxwell electrodynamics are demonstrated on testing example of hy-

drogen atom. We are able to obtain some results, which are impossible in the

framework of standard Maxwell electrodynamics. The Sommerfeld–Dirac for-

mula for the fine structure of the hydrogen atom spectrum is obtained on the

basis of such Maxwell equations without appealing to the Dirac equation. The
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Bohr postulates and the Lamb shift are proved to be the consequences of the

equations under consideration. The relationship of the new model with the Dirac

theory is investigated. Possible directions of unification of such electrodynamics

with gravity are mentioned.

8.1. Introduction to the Chapter 8

There is no doubt that the Maxwell classical electrodynamics of macroworld

(without any generalization) is sufficient for the description of electrodynami-

cal phenomena in macro region. On the other hand it is well known that for

micro phenomena (inneratomic region) the classical Maxwell electrodynamics

(as well as the classical mechanics) cannot work and must be replaced by quan-

tum theory. Trying to extend the limits of classical electrodynamics application

to the inneratomic region we came to the conclusion that it is possible by means

of generalization of standard Maxwell classical electrodynamics in the direc-

tion of the extension of its symmetry. We also use the relationships between the

Dirac and Maxwell equations for these purposes. Furthermore, the relationships

between relativistic quantum mechanics and classical microscopical electrody-

namics of media are investigated. Such relationships are considered here not

only from the mathematical point of view – they are used for construction of

fundamentals of a non-quantum-mechanical model of microworld.

The foundations of non-quantum-mechanical model of microworld are

given by model of atom on the basis of slightly generalized Maxwell’s equa-

tions, i.e., in the framework of moderately extended classical microscopical

electrodynamics of media. This model is free from probability interpretation

and can explain many inner-atomic phenomena by means of classical physics.

Despite the fact that we construct the classical model, for the purposes of such

construction we use essentially the analogy with the Dirac equation and the

results, which were achieved on the basis of this equation. Note also that elec-

trodynamics is considered here in the terms of field strengths without appealing

to the vector potentials as the primary (input) variables of the theory.

The first step in our consideration is the one-to-one relationship (and wide

range analogy) between the Dirac equation and slightly generalized Maxwell

equations [1, 2].
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Our second step is the symmetry principle. On the basis of this principle we

introduced in [3, 4] the most symmetrical form of generalized Maxwell equa-

tions, which now can describe both bosons and fermions because they have (see

[3, 4]) both spin 1 and spin 1/2 symmetries. On the other hand, namely these

equations are unitary connected with the Dirac equation. Therefore, we have

one more important argument to suggest these equations to be the equations of

specific inneratomic classical electrodynamics.

In our third step we refer to Sallhofer, who suggested in [5–8] the possibility

of introduction of interaction with external field as the interaction with specific

media (a new way of introduction of the interaction into the field equations).

Nevertheless, our model of atom (and of electron) [1, 2] is essentially different

from the Sallhofer’s one.

On the basis of these three main ideas we are able to postulate the slightly

generalized Maxwell equations as the equations for inneratomic classical elec-

trodynamics which may work in atomic, nuclear and particle physics on the

same level of success as the Dirac equation can do. Below we illustrate it con-

sidering hydrogen atom within the classical model.

The interest to the problem of relationship between the Dirac and Maxwell

equations dates back to the time of creation of quantum mechanics [9–26]. But

the authors of these papers during long time considered only the most simple ex-

ample of free and massless Dirac equation. The interest to this relationship has

grown due to the results [5–8], where the investigations of the case m 6= 0 and

the interaction potential Φ 6= 0 were started. Another approach was developed

in [27–32], where the quadratic relations between the fermionic and bosonic

amplitudes were found and used. In our above mentioned papers [1–4, 21–24]

and herein we consider the linear relations between the fermionic and bosonic

amplitudes. In [21] we have found the relationship between the symmetry prop-

erties of the Dirac and Maxwell equations, the complete set of 8 transformations

linking these equations, the relationship between the conservation laws for the

electromagnetic and spinor fields, the relationship between the Lagrangians for

these fields. Here we summarize our previous results and give some new details

of the intraatomic electrodynamics and its application to the hydrogen atom.

The possibilities of unification with gravitation are briefly discussed.
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8.2. Hydrogen Atom Model in Classical

Electrodynamics

8.2.1. Hydrogen Solutions

Consider the slightly generalized Maxwell equations in a medium with specific

form of sources:

curl
−→
H −∂0ε

−→
E =

−→
j e, curl

−→
E +∂0µ

−→
H =

−→
j mag,

divε
−→
E = ρe, divµ

−→
H = ρmag,

(8.1)

where
−→
E and

−→
H are the electromagnetic field strengths, ε and µ are the electric

and magnetic permeabilities of the medium being the same as in the electro-

dynamical hydrogen atom model of H. Sallhofer [5–8] (see formula (2.4) in

Chapter 2, where Φ (−→x ) = −Ze2/r). We use the units: ~ = c = 1, transition to

the standard system is fulfilled by the substitution ω̃ −→ ~ω̃, m −→ mc2. The

current and charge densities in equations (8.1) have the form

−→
je = gradE0,

−→
j mag = −gradH0,

ρe = −εµ∂0E0 +
−→
E gradε, ρmag = −εµ∂0H0 +

−→
H gradµ,

(8.2)

where E0,H0 is the pair of functions (two real scalar fields) generating the den-

sities of gradient-like sources.

One can easily see that equations (8.1) are not ordinary electrodynamical

equations known from the Maxwell theory. These equations have the additional

terms which can be considered as the magnetic current and charge densities - in

one possible interpretation, or equations (8.1) can be considered as the equations

for compound system of electromagnetic
−→
(E,

−→
H) and scalar E0,H0 fields in

another possible interpretation.

The reasons of our slight generalization of the classical Maxwell electrody-

namics are the following.

1. The standard Maxwell electrodynamics cannot work in inneratomic re-

gion and its equations are not mathematically equivalent to any of quantum

mechanical equations for electron (Schrödinger equation, Dirac equation, etc...)

2. The existence of direct relationship between the equations (8.1) and the

Dirac equation for the massive particle in external electromagnetic field in the

stationary case can be applied. Namely these equations were shown in papers
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[2–4] to be unitary equivalent with such Dirac equation (see also section 8.3

below).

3. Equations (8.1) can be derived from the principle of maximally possible

symmetry - these equations have both spin 1 and spin 1/2 Poincaré symmetries

and in the limit of vanishing of the interaction with medium, where ε = µ = 1,

they represent [2–4] the maximally symmetrical form of the Maxwell equa-

tions. This fact means first of all that from the group-theoretical point of view

of Wigner, Bargmann–Wigner (and of modern field theory in general) equations

(8.1) can describe both the states of bosons and of fermions (for more details

see section 8.4 below). As a consequence of this fact one can use these equa-

tions particularly for the description of the electron. On the other hand, this

fact means that inneratomic classical electrodynamics of electron needs further

(relatively to that having been done by Maxwell) symmetrization of Weber–

Faraday equations of classical electromagnetic theory which leads to the max-

imally symmetrical form (8.1). Below we demonstrate the possibilities of the

equations (8.1) in the description of testing example of hydrogen atom.

Here the equations (8.1) are solved directly by means of separation of vari-

ables method. It is useful to rewrite these equations in the mathematically equiv-

alent form where the sources are maximally simple:

curl
−→
H −ε∂0

−→
E =

−→
j e, curl

−→
E +µ∂0

−→
H =

−→
j mag,

div
−→
E = ρ̃e, div

−→
H = ρ̃mag,

(8.3)

where

−→
je = gradE0,

−→
j mag = −gradH0, ρ̃e = −µ∂0E0, ρ̃mag = −ε∂0H0. (8.4)

Consider the stationary solutions of equations (8.3). Assuming the harmonic

time dependence for the functions E0,H0

E0(t,−→x ) = E0
A(−→x )cosω̃t +E0

B(−→x ) sinω̃t,

H0(t,−→x ) = H0
A(−→x )cosω̃t +H0

B(−→x ) sinω̃t,
(8.5)

we are looking for the solutions of equations (8.3) in the form

−→
E (t,−→x ) =

−→
E A(−→x )cos ω̃t +

−→
E B(−→x ) sinω̃t,−→

H (t,−→x ) =
−→
H A(−→x )cos ω̃t +

−→
H B(−→x ) sinω̃t.

(8.6)
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For the 16 time-independent amplitudes we obtain the following two non-

linked subsystems

curl
−→
HA − ω̃ε

−→
EB = gradE0

A, curl
−→
EB− ω̃µ

−→
HA = −gradH0

B,

div
−→
EB = ω̃µE0

A, div
−→
H A = −ω̃εH0

B,
(8.7)

curl
−→
HB + ω̃ε

−→
EA = gradE0

B, curl
−→
EA + ω̃µ

−→
HB = −gradH0

A,

div
−→
EA = −ω̃µE0

B, div
−→
H B = ω̃εH0

A.
(8.8)

Below we consider only the first subsystem (8.7). It is quite enough because

the subsystems (8,7) and (8.8) are connected with transformations

E −→ H, H −→−E, εE −→ µH, µH −→−εE,
ε −→ µ, µ −→ ε,

(8.9)

which are the generalizations of duality transformation of free electromagnetic

field. Due to this fact the solutions of subsystem (8.8) can be easily obtained

from the solutions of subsystem (8.7).

Furthermore, it is useful to separate equations (8.7) into the following sub-

systems:

ω̃εE3
B−∂1H2

A +∂2H1
A +∂3E0

A = 0,

ω̃εH0
B +∂1H1

A +∂2H2
A +∂3H3

A = 0,
−ω̃µE0

A +∂1E1
B +∂2E2

B +∂3E3
B = 0,

ω̃µH3
A −∂1E2

B +∂2E1
B −∂3H0

B = 0,

(8.10)

and
ω̃εE1

B−∂2H3
A +∂3H2

A +∂1E0
A = 0,

ω̃εE2
B−∂3H1

A +∂1H3
A +∂2E0

A = 0,

ω̃µH1
A −∂2E3

B +∂3E2
B −∂1H0

B = 0,
ω̃µH2

A −∂3E1
B +∂1E3

B −∂2H0
B = 0.

(8.11)

Assuming the spherical symmetry case, when Φ(−→x ) = Φ(r), r ≡ |−→x |, we

are making the transition into the spherical coordinate system and looking for

the solutions in the spherical coordinates in the form

(E,H) (−→r ) = R(E,H) (r) f(E,H) (θ,φ) , (8.12)

where E ≡
(

E0,
−→
E

)
, H ≡

(
H0,

−→
H

)
. We choose for the subsystem (8.10) the
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d’Alembert Ansatz in the form

−
E0

A=
−

CE4
RH4

P
−

m4

lH4
e−

−
im4φ,

−
Ek

B=
−

CEk
REk

P
−

mk

lEk
e−

−
imkφ,

−
H0

B=
−

CH4
RE4

P
−

m4

lE4
e−

−
im4φ, k = 1,2,3.

−
Hk

A=
−

CHk
RHk

P
−

mk

lHk
e−i

−
mkφ,

(8.13)

We use the following representation for ∂1,∂2,∂3 operators in spherical coordi-

nates

∂1CRPm
l e∓imφ = e∓imφC

2l+1
cosφ

(
R,l+1Pm+1

l−1 −R,−lP
m+1
l+1

)
+e∓i(m−1)φC m

sinθ Pm
l

R
r
,

∂2CRPm
l e∓imφ = e∓imφC

2l+1
sinφ

(
R,l+1Pm+1

l−1 −R,−lP
m+1
l+1

)
∓e∓i(m−1)φC im

sin θPm
l

R
r
,

∂3CRPm
l e∓imφ = e∓imφC

2l+1

(
R,l+1(l +m)Pm

l−1 +R,−l(l−m+1)Pm
l+1

)
.

(8.14)

Substitutions (8.13) and (8.14) together with the assumptions

REα = RE , lEα = lE , RHα = RH , lHα = lH ,
−

m1=
−

m2=
−

m3 −1 =
−

m4 −1 = m,
−

CH1
= i

−
CH2

,
−

CE2
= −i

−
CE1

,
−

CH4
= −i

−
CE3

,
−

CH3
= −i

−
CE4

,

−
CI

H2
=

−
CI

E4
(lI

H +m+1),
−

CI
E3

= −
−

CI
E4

≡
−
CI ,

−
CI

E1
=

−
CI

E3
(lI

E −m), lI
H = lI

E −1 ≡ lI ,

−
CII

H2
= −

−
CII

E4
(lII

H −m),
−

CII
E3

= −
−

CII
E4

≡
−

CII ,
−

CII
E1

=
−

−CII
E3

(lII
E +m+1), lII

H = lII
E +1 ≡ lII

(8.15)

into the subsystem (8.10) guarantee the separation of variables in these equa-

tions and lead to the pair of equations for two radial functions RE ,RH (for the

subsystem (8.11) the procedure is similar):

εω̃RI
E −RI

H,−l = 0, µω̃RI
H +RI

E,l+2 = 0, (8.16)

εω̃RII
E −RII

H,l+1 = 0, µω̃RII
H +RII

E,−l+1 = 0; R,a ≡
(

d

dr
+

a

r

)
R. (8.17)
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For the case Φ = −ze2/r the equations (8.16), (8.17) coincide exactly with the

radial equations for the hydrogen atom of the Dirac theory and, therefore, the

procedure of their solution is the same as in well-known monographs on rel-

ativistic quantum mechanics. It leads to the well-known Sommerfeld - Dirac

formula for the fine structure of the hydrogen spectrum. We note only that here

the discrete picture of energetic spectrum in the domain 0 < ω̃ < mc2 is guar-

anteed by the demand for the solutions of the radial equations (8.16), (8.17) to

decrease on infinity (when r → ∞ ). From the equations (8.16), (8.17) and this

condition the Sommerfeld–Dirac formula

ω̃ = ωhyd
n j =

mc2

~

√
1+ α2

(nr+
√

k2−α2)
2

(8.18)

follows, where the notations of the Dirac theory (see, e.g., [33]) are used: nr =
n− k, k = j + 1/2, α = e2/~c. Let us note once more that the result (8.18)

is obtained here not from the Dirac equation, but from the Maxwell equations

(8.1) with sources (8,2) in the medium (2.4).
Substituting (8.15) into (8.13) one can easy obtain the angular part of the

hydrogen solutions for the
−→
(E,

−→
H,E0,H0) field and calculate according to (8.2)

the corresponding currents and charges. Let us write down the explicit form

for the set of electromagnetic field strengths
−→
(E,

−→
H ), which are the hydrogen

solutions of equations (8.1), and also for the currents and charges generating
these field strengths (the complete set of solutions is given in Appendices I, II):

−→
EI = RI

E

∣∣∣∣∣∣

(−l +m−1)Pm
l+1 cosmφ

(l−m+1)Pm
l+1 sinmφ

−Pm+1
l+1 cos (m+1)φ

∣∣∣∣∣∣
,

−→
HI = RI

H

∣∣∣∣∣∣

(l +m+1)Pm
l

sinmφ
(l +m+1)Pm

l cosmφ

−Pm+1
l sin(m+1)φ

∣∣∣∣∣∣
,

−→
jI
e = gradRI

HPm+1
l cos (m+1)φ,

−−→
jI
mag = −gradRI

ePm+1
l+1 sin(m+1)φ,

ρI
e = −

(
εRI

E

)
,l+2

Pm+1
l cos (m+1)φ, ρI

mag = −
(
µRI

H

)
,−l

Pm+1
l+1 sin(m+1)φ,

(8.19)

−→
EII = RII

E

∣∣∣∣∣∣

(l +m)Pm
l−1 cosmφ

(−l−m)Pm
l−1 sinmφ

Pm+1
l−1

cos(m+1)φ

∣∣∣∣∣∣
,

−→
HII = RII

H

∣∣∣∣∣∣

(−l +m)Pm
l sinmφ

(−l +m)Pm
l

cosmφ

−Pm+1
l sin(m+1)φ

∣∣∣∣∣∣
−→
jII
e = gradRII

H Pm+1
l

cos (m+1)φ,
−−→
jII
mag = −gradRII

E Pm+1
l−1

sin(m+1)φ,

ρII
e = −

(
εRII

E

)
,−l+1

Pm+1
l cos (m+1)φ, ρII

mag = −
(
µRII

H

)
,l+1

Pm+1
l−1 sin(m+1)φ.

(8.20)
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In the first possible interpretation the states of the hydrogen atom are de-

scribed by the field strength functions
−→
(E,

−→
H generated by the corresponding

currents and charge densities).

It is evident from (8.1) that currents and charges in (8.19), (8.20) are gen-

erated by scalar fields (E0,H0). Corresponding to (8.19), (8.20) (E0,H0) solu-

tions of equations (8.1) are as follows:

EI0 = RI
HPm+1

l cos (m+1)φ, HI0 = RI
EPm+1

l+1 sin(m+1)φ,

EII0 = RII
H Pm+1

l cos(m+1)φ, HII0 = RII
E Pm+1

l−1 sin(m+1)φ.
(8.21)

Thus, in the second possible interpretation the states of the hydrogen atom

are described by these field strength functions
−→
(E,

−→
H,E0,H0) of electromagnetic

and scalar fields.

In (8.19), (8.20) for the current and charge densities the following notations

are used (
εR

β
α

)
,l+2≡ ε

(
d

dr
+

l +2

r

)
R

β
α +R

β
α

dε

dr
, etc. (8.22)

The solutions of the second subsystem (8.8) follow from (8.19)–(8.21) after

the application of transformation (8.9).

As in quantum theory, the numbers n = 0,1,2, ...; j = k − 1
2

= l ∓ 1
2

(k =

1,2, ...,n) and m = −l,−l + 1, ..., l mark both the terms (8.18) and the corre-

sponding exponentially decreasing field functions
−→
E ,

−→
H (and E0,H0) in (8.19)–

(8.21), i.e., they mark the different discrete states of the classical electrodynam-

ical field (and the densities of the currents and charges) which by definitions

describes the corresponding states of hydrogen atom in the model under consid-

eration.

It is evident from this example that the discreteness of the physical system

states (and its characteristics such as energy, etc.) may be a consequence of both

quantum systems (Schrödinger, Dirac) and the classical (Maxwell) equations for

the given system. In the present case, this discreetness is caused by the proper-

ties of the medium, which are given by the electric and magnetic permeabilities

(2.4).

Note that the radial equations (8.16), (8.17) cannot be obtained if one ne-

glects the sources in equations (8.1), or one (electric or magnetic) of these

sources. Moreover, in this case there is no solution effectively concentrated

in atomic region.
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8.2.2. On the Bohr’s Postulates

Now we can show on the basis of this model that the assertions known as Bohr’s

postulates are the consequences of equations (8.1) and of their classical inter-

pretation, i.e., these assertions can be derived from the model, there is no ne-

cessity to postulate them from beyond the framework of classical physics as it

was in Bohr’s theory. To derive the first Bohr’s postulate one can calculate the

generalized Pointing vector for the hydrogen solutions (8.19)–(8.21), i.e., for the

compound system of stationary electromagnetic and scalar fields
−→
(E,

−→
H,E0,H0)

−→
P gen =

Z

d3x(
−→
E ×−→

H −−→
E E0 −−→

H H0). (8.23)

The straightforward calculations show that not only vector (8.23) is identi-

cally equal to zero but the Pointing vector itself and the term with scalar fields

(E0,H0) are also identically equal to zero:

−→
P =

Z

d3x(
−→
E ×−→

H )≡ 0,

Z

d3x(
−→
E E0 +

−→
H H0)≡ 0. (8.24)

This means that in stationary states hydrogen atom does not emit any Point-

ing radiation neither due to the electromagnetic
−→
(E,

−→
H ) field, nor to the scalar

(E0,H0) field. That is the mathematical proof of the first Bohr postulate.

Similar calculations of the energy for the same system (in formulae (8.19)–

(8.21) the functions
−→
(E,

−→
H,E0,H0) are taken in appropriate physical dimension,

which is given by the formula (8.25) below)

P0 =
1

2

Z

d3xE
†
E =

1

2

Z

d3x(
−→
E 2 +

−→
H 2 +E2

0 +H2
0 ) = ωhyd

n j (8.25)

give a constant ωnl , depending on n, l (or n, j) and independent of m. In our

model this constant is to be identified with the parameter ω̃ in equations (8.7),

which in the stationary states of
−→
(E,

−→
H,E0,H0) field appears to be equal to the

Sommerfeld–Dirac value ωhyd
n j (8.18).

By abandoning the ~ = c = 1 system and putting arbitrary ”A” in equations

(8.1) instead of ~ we obtain final ωhyd
n j with ”A” instead of ~. Then the numer-

ical value of ~ can be obtained by comparison of ω
hyd
n j containing ”A” with the

experiment. These facts complete the proof of the second Bohr postulate.

This result means that in this model the Bohr postulates are no longer pos-

tulates, but the direct consequences of the classical electrodynamic equation
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(8.1). Moreover, together with the Dirac or Schrödinger equations we now have

a new equation, which can be used to find the solutions to atomic spectroscopy

problems. In contrast to the well-known equations of quantum mechanics, our

equation is classical. Thus, we have verified equations (8.1,) introduced by us,

in the test case of the hydrogen atom (the third motivation of our generalization

of the Maxwell system).

8.2.3. Lamb Shift, the Electric Charge, and Briefly on Gravity

It is very useful to consider the Lamb shift in the approach presented here. This

specific quantum electrodynamic effect (as modern theory asserts) can be de-

scribed here in the framework of the classical electrodynamics of media. In

order to obtain the Lamb shift one must add to Φ (−→x ) = −Ze2/r in (2.4) the

quasipotential (known, e.g., from [34], which follows, of course, from quantum

electrodynamics)

− Ze4

60π2m2
δ(r) (8.26)

and solve the equations (8.1)=(8.3) for this medium, similar to the proce-

dure presented above. Finally one obtains the Lamb shift correction to the

Sommerfeld–Dirac formula (8.18). Therefore, the Lamb shift can be interpreted

as a pure classical electrodynamic effect. It may be considered a consequence

of the polarization of the medium (2.4), and not a polarization of some abstract

concept, such as the vacuum in quantum electrodynamics. This brief example

demonstrates that our proposition can essentially extend the limits of applica-

tion of classical theory in the microworld, which was the main purpose of this

part of our investigations.

The Electric Charge

Due to the unitary connection to the Dirac theory (considered above) the electric

charge is still a conserved quantity here in the same sense as in the Dirac model.

It may be defined similarly to the Dirac theory, or be derived from it on the basis

of the unitary relationship between the massless Dirac and slightly generalized

Maxwell equations (see here below or in [35]).
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Brief Hypothesis on Gravity

A unified theory of electromagnetic and gravitational phenomena may be con-

structed in the approach under consideration in the following way. The main

primary equations again are written as (8.1) and gravity is treated as a medium in

these equations, i.e., the electric ε and magnetic µ permeabilities of the medium

are some functions of the gravitational potential

ε = ε(Φgrav), µ = µ(Φgrav). (8.27)

Gravity as a medium may generate all the phenomena that in standard Einstein

gravity are generated by Riemann geometry. For example, the refraction of the

light beam near a massive star is a typical medium effect in a unified model of

electromagnetic and gravitational phenomena. The main idea is as follows. The

gravitational interaction between massive objects may be represented as an in-

teraction with some medium, much as the electromagnetic interaction between

charged particles is considered in equations (8.1) here.

8.2.4. Interpretation

Being aware that few interpretations of quantum mechanics (e.g., Copenhagen,

statistical, Feynman’s, Everett’s, transactional, see e.g., [36–38]) exist, we are

far from thinking that here the interpretation can be the only one. But the main

point is that now the classical interpretation (without probabilities) is possible.

Today we prefer the following interpretation of hydrogen atom in the ap-

proach, when one considers only the motion of electron in the external field

of the nucleon. In our model the interacting field of the nucleon and electron

is represented by the medium with permeabilities ε,µ given by formulae (2.4).

The atomic electron is interpreted as the stationary electromagnetic-scalar wave−→
(E,

−→
H,E0,H0) in medium (2.4), i.e., as the stationary electromagnetic wave in-

teracting with massless scalar fields (E0,H0), or with complex massless scalar

field E 0 = E0 − iH0 with spin s = 0.

In other words, the electron can be interpreted as an object having the struc-

ture consisting of a photon and a massless meson with zero spin connected,

probably, with leptonic charge. The role of the massless scalar field is the fol-

lowing: it generates the densities of electric and magnetic currents and charges

(ρ,
−→
j ), which are the secondary objects in such model. The mass is the sec-

ondary parameter too. There is no electron as an input charged massive corpus-

cle in this model! The mass and the charge of electron appear only outside such
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atom according to the law of electromagnetic induction and its gravitational

analogy. That is why no difficulties of Rutherford–Bohr model (about different

models of atom see, e.g., [39]) of atom are present here! The Bohr postulates

are shown to be the consequences of the model.

This interpretation is based on the hypothesis of bosonic nature of matter

(on the speculation of the bosonic structure of fermions) according to which

all the fermions can be constructed from different bosons (something like new

SUSY theory). Of course, before the experiment intended to observe the struc-

ture of electron and before the registration of massless spinless meson it is only

the hypothesis but based on the mathematics presented here. We note that such

massless spinless boson has many similar features with the Higgs boson and the

transition here from intraatomic (with high symmetry properties) to macroelec-

trodynamics (with loss of many symmetries) looks similarly to the symmetry

breakdown mechanism.

The successors of magnetic monopole can try to develop here the monopole

interpretation (see e.g., [40]) for the review and some ideas about monopole)

– we note that there are few interesting possibilities of interpretation but we

want to mark first of all the mathematical facts which are more important than

different ways of interpretation.

8.3. The Unitary Relationship between the

Relativistic Quantum Mechanics and

Classical Electrodynamics in Medium

Hence, the above considered Maxwell type equations are proved to describe

the fine structure of the hydrogen spectrum. Therefore, below we are able to

formulate the link between the stationary Dirac equation with nonzero mass in

external field and the stationary Maxwell equations in specific medium (2.4)

modeling the inneratomic interaction.

Let us consider the connection between the stationary Maxwell equations

curl
−→
H − ω̃ε

−→
E = gradE0, curl

−→
E − ω̃µ

−→
H = −gradH0,

div
−→
E = ω̃µE0, div

−→
H = −ω̃εH0,

(8.28)

which follow from the system (8.7) after ommitting indices A,B, and the sta-

tionary Dirac equation following from the ordinary Dirac equation
(
iγµ∂µ −m+ γ0Φ

)
Ψ = 0, Ψ ≡ (Ψᾱ), ᾱ = 1,2,3,4, (8.29)
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with m 6= 0 and the interaction potential Φ 6= 0. Assuming the ordinary time

dependence

Ψ(x) = Ψ(−→x )e−iω̃t =⇒ ∂0Ψ(x) = −iω̃Ψ(x), (8.30)

for the stationary states and using the standard Pauli–Dirac representation for the

γ matrices, one obtains the following system of equations for the components

Ψα of the spinor Ψ:

−iω̃εΨ1 +(∂1 − i∂2)Ψ4 +∂3Ψ3 = 0,
−iω̃εΨ2 +(∂1 + i∂2)Ψ3−∂3Ψ4 = 0,

−iω̃µΨ3 +(∂1 − i∂2)Ψ2 +∂3Ψ1 = 0,
−iω̃µΨ4 +(∂1 + i∂2)Ψ1 −∂3Ψ2 = 0,

(8.31)

where ε and µ are the same as in (2.4). After substitution in equations (8.31)

instead of Ψ the following column

Ψ = column
∣∣−H0 + iE3,−E2 + iE1,E0 + iH3,−H2 + iH1

∣∣ . (8.32)

one obtains Eqs. (8.28). A complete set of 8 such transformations can be ob-

tained with the help of the Pauli–Gursey symmetry operators [41–43] similarly

to [3, 21, 24].

It is useful to represent the right-hand side of (8.32) in terms of components

of the complex function (2.15), where
−→
E =

−→
E − i

−→
H is the well-known form for

the electromagnetic field used by Majorana as far back as near 1930 (see, e.g.,

[10]), and E 0 = E0−iH0 is a complex scalar field. In these terms the connection

between the spinor and electromagnetic (together with the scalar) fields has the

form

E = WΨ, Ψ = W †
E , (8.33)

where the unitary operator W is as follows:

W =

∣∣∣∣∣∣∣∣

0 iC− 0 C−
0 −C+ 0 iC+

iC− 0 C− 0

iC+ 0 C+ 0

∣∣∣∣∣∣∣∣
; C∓ ≡ 1

2
(C∓1), CΨ ≡ Ψ∗, CE ≡ E

∗.

(8.34)

The unitarity of the operator (8.34) can be verified easily by taking into

account that the equations

(AC)† = CA†, aC = Ca∗, (aC)∗ = Ca (8.35)
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hold for an arbitrary matrix A and a complex number a. We note that in the real

algebra (i.e., the algebra over the field of real numbers) and in the Hilbert space

of quantum mechanical amplitudes this operator has all properties of unitarity:

WW−1 = W−1W = 1, W−1 = W †, plus linearity.

The operator (8.34) transforms the stationary Dirac equation

[
(ω̃−Φ)γ0 + iγk∂k −m

]
Ψ(−→x ) = 0 (8.36)

from the standard representation (the Pauli–Dirac representation) into the

bosonic representation

[
(ω̃−Φ) γ̃0 + ĩ̃γk∂k −m

]
E (−→x ) = 0. (8.37)

Here the γ̃µ matrices have the following unusual explicit form

γ̃0 =

∣∣∣∣∣∣∣∣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

∣∣∣∣∣∣∣∣
C, γ̃1 =

∣∣∣∣∣∣∣∣

0 0 i 0

0 0 0 −1

i 0 0 0

0 1 0 0

∣∣∣∣∣∣∣∣
,

γ̃2 =

∣∣∣∣∣∣∣∣

0 0 0 1

0 0 i 0

0 i 0 0

−1 0 0 0

∣∣∣∣∣∣∣∣
, γ̃3 =

∣∣∣∣∣∣∣∣

−i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 i

∣∣∣∣∣∣∣∣

(8.38)

in which γ̃0 matrix explicitly contains operator C of complex conjugation. We

call the representation (8.38) the bosonic representation of the γ matrices. In this

representation the imaginary unit i is represented by the 4×4 matrix operator:

ĩ =

∣∣∣∣∣∣∣∣

0 −1 0 0

1 0 0 0

0 0 0 −i

0 0 −i 0

∣∣∣∣∣∣∣∣
. (8.39)

Due to the unitarity of the operator (8.34) the γ̃µ matrices still obey the

Clifford–Dirac algebra

γ̃µγ̃ν + γ̃νγ̃µ = 2gµν (8.40)

and have the same Hermitian properties as the Pauli–Dirac γµ matrices:

γ̃0† = γ̃0, γ̃k† = −γ̃k. (8.41)
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Indeed, the formulae (8.38) give an exotic form of γµ matrices, which belong to

the representation of the Clifford–Dirac algebra over the field of real numbers.

In the vector-scalar form the equation (8.37) is as follows

−icurl
−→
E +[(ω̃−Φ)C−m]

−→
E = −gradE

0, div
−→
E = [(ω̃−Φ)C +m]E

0.
(8.42)

Fulfilling the transition to the common real field strengths according to the

formula E = E−iH and separating the real and imaginary parts we obtain equa-

tions (8.28) which are mathematically equivalent to the equations (8.1) in sta-

tionary case.

We emphasize that the only difference between the equation (8.37) in the

case of description of fermions and in the case of bosons is the possibility of

choosing γµ matrices: for the case of fermions these matrices may be chosen in

arbitrary form (in each of representations of Pauli–Dirac, Majorana, Weyl, ...),

in the case of the description of bosons the representation of γµ matrices and

their explicit form must be fixed in the form (8.38). In the case of bosonic inter-

pretation of equation (8.36) one must fixes the explicit form of γµ matrices (e.g.,

in standard Pauli–Dirac representation) and form of corresponding Ψ (8.32).

The mathematical facts considered here prove the one-to-one correspon-

dence between the solutions of the stationary Dirac and the stationary Maxwell

equations with 4-currents of gradient-like type. Hence, one can, using (8.32),

write down the hydrogen solutions of the Maxwell equations (8.1 ) (or (8.3))

starting from the well-known hydrogen solutions of the Dirac equation (8.29),

i.e., without special procedure of finding the solutions of the Maxwell equations,

see [1].

In the case of zero mass the validity of the presented here link is evident

without any proof.
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Chapter 9

Specific Case of Zero Mass

In the case of zero mass the Dirac equation is linked with the Maxwell equation.

This fact and its consequences is the main content of the chapter below.

A slightly generalized classical Maxwell equations in a specific medium,

modeling the relativistic atom, is considered in the previous Chapter. Here the

link of this equation in the simplest case of free non-interacting electromagnetic-

scalar field with the free massless Dirac equation is considered. The prop-

erty of the Fermi-Bose duality of the massless Dirac equation is proved. The

property of the Fermi-Bose duality of slightly generalized Maxwell system for

electromagnetic-scalar field is proved as well. The fermionic symmetries, solu-

tions, conservation laws and quantization procedure for such Maxwell equations

are presented.

9.1. Slightly Generalized Maxwell Equations and Link

with the Massless Dirac Equation

Consider briefly the case of absence of interaction of the compound field−→
(E,

−→
H,E0,H0) with media, i.e., the case ε = µ = 1, and the symmetry prop-

erties of the corresponding equations. In this case equations for the system

of electromagnetic and scalar fields
−→
(E,

−→
H,E0,H0) have the form (2.13). The

equations (2.13) are nothing more than the slightly generalized Maxwell equa-

tions (ε = µ = 1) with gradient-like electric and magnetic sources je
µ = −∂µE0,

j
mag
µ = −∂µH0 given in (2.14).

In terms of complex 4-component object E = E − iH from formula (2.15)
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and in terms of complex tensor (2.16) equations (2.13) can be rewritten in the

manifestly covariant forms (2.17), (2.18), respectively. The form (2.19), in

which the generators
−→
S ≡ (S j) (2.20) of irreducible representation D(1) of the

group SU(2) are used, has been introduced as well.

The general solution of equations (2.13)=(2.17)=(2.18)=(2.19) is given

by (2.21), see the details in subsection 2.4.2. Further, in subsection 2.4.2

other useful forms of such solution were considered. Furthermore, equa-

tions (2.13)=(2.17)=(2.18)=(2.19) are written in the form of massless Dirac

equation iγµ∂µψ(x) = 0 (2.26) and in bosonic representation of this equation

γ̃µ∂µE (x) = 0 (2.29) with gamma matrices (2.30).

The main assertions of consideration in subsection 2.4.2 are as follows.

The operator links (2.27), (2.28) between the massless Dirac equation and the

slightly generalized Maxwell equations are presented. This Maxwell system is

derived from the massless Dirac equation and vice versa: the massless Dirac

equation is derived from the equations (2.13)=(2.17)=(2.18)=(2.19). The com-

plete set (2.34) of the corresponding transformations is presented.

Therefore, it is naturally to suppose the existence of Fermi symmetries of the

slightly generalized Maxwell equations and the Bose symmetries of the mass-

less Dirac equation. These non-ordinary symmetries were found in [1–5].

Thus, we introduce our generalization of the Maxwell equations on the basis

of the Dirac equation (the first foundation of our generalization).

It is evident that there is no any relation of such generalization to other

modifications of Maxwell’s theory, i.e., to the Born–Infeld theory, Heisenberg–

Euler approach, Podolsky’s generalization, etc.

9.2. Bosonic Symmetries of the Massless Dirac

Equation and Fermionic Symmetries of the

Slightly Generalized Maxwell Equations

The massless Dirac equation is given by

iγµ∂µψ(x) = 0; x ≡ (xµ) ∈ R4, ψ ≡ (ψµ), ∂µ ≡
∂

∂xµ
, µ = 0,1,2,3. (9.1)

Consider two different representations of the Lorentz group SO(1,3) in the

useful for us notations, which are associated with the massless Dirac equation
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(9.1). The first one is determined by the operators

s
ρσ
I ≡ 1

4
[γρ,γσ] ∈ D

(
1

2
,0

)
⊕
(

0,
1

2

)
, (9.2)

where s
ρσ
I are the generators of spinor representation D

(
1
2
,0
)
⊕
(
0, 1

2

)
of

SL(2,C) group. Let us define in terms of the six operators from the set (1.12)

the SO(1,3) generators (1.13).

It is easy to verify that the operators (1,13) obey the same commutation re-

lations as the generators (9.2) do, and, as a consequence, they form the another

realization of the same spinor representation D
(

1
2 ,0
)
⊕
(
0, 1

2

)
of the SL(2,C)

group. But, contrary to operators (9.2), generators (1.13) themselves (with-

out any differential angular momentum part) are the symmetry operators of the

massless Dirac equation (9.1), i.e., they leave this equation being invariant.

In order to consider the additional symmetries of the massless Dirac equa-

tion another representation (the so-called bosonic representation (2.30)) of the

Dirac γµ matrices is preferable. This representation can be obtained from the γµ

matrices (1.5) in the PD-representation by the unitary relationship γµ −→ γ̃µ ≡
U†γµU , where the unitary operator has the form (2.27), (2.28). Let us note that

in the real algebra (i.e., the algebra over the field of real numbers) and in the

Hilbert space of quantum mechanical amplitudes this operator has all properties

of unitarity: UU−1 = U−1U = 1, U−1 = U†, plus linearity.

The unitarity of the operator U (2.27), (2.28) is the reason for that the γ̃µ ma-

trices obey the same relations (1.7) of the Clifford–Dirac algebra as the γµ ma-

trices (1.5) in the standard PD-representation do. It is shown in subsection 2.4.2

that the massless Dirac equation γ̃µ∂µE (x) = 0 (2.29) can be considered not

only as the equation for the spinor field but also as the equation for the bosonic

field. Therefore the representation (2.29), (2.30) is called the bosonic represen-

tation (shortly: B-representation). The complete set of 8 transformations like

(2.27), which relates generalized Maxwell equations (2.13) and massless Dirac

equation (2.26), is presented in (2.34).

Operators (9.2), (1.13) satisfy the commutation relations of the Lie algebra

of the Lorentz group SO(1,3) in the form:

[sµν, sρσ] = −gµρsνσ −gρνsσµ −gνσsµρ −gσµsρν. (9.3)

The transition in B-representation is described in subsection 2.4.2, the rea-

sons of such transition are described there as well. The equation (2.29) is pre-
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sented in the different forms (2.13), (2.17)–(2.19). In addition to the considera-

tion in 2.4.2 the following information is useful

γ̃4 = i, γ̃01 =

∣∣∣∣∣∣∣∣

0 0 0 1

0 0 i 0

0 −i 0 0

1 0 0 0

∣∣∣∣∣∣∣∣
, γ̃02 =

∣∣∣∣∣∣∣∣

0 0 −i 0

0 0 0 1

i 0 0 0

0 1 0 0

∣∣∣∣∣∣∣∣
,

γ̃03 =

∣∣∣∣∣∣∣∣

0 i 0 0

−i 0 0 0

0 0 0 1

0 0 1 0

∣∣∣∣∣∣∣∣
, γ̃µ4 = −ĩγµ, γ̃ jk = −iε jklγ̃

0l,

(9.4)

where γ̃µν... ≡ γ̃µγ̃ν.... The last relations in (9.3) are the transforms of the follow-

ing PD-representation relations

γµ4 = −γ4γµ, γ jk = ε jklγ0l4 (γ4 = γ0123). (9.5)

In the B-representation, the complex number i is represented by the following

matrix operator

ĩ = U†iU = iΓ, Γ ≡

∣∣∣∣∣∣∣∣

0 i 0 0

−i 0 0 0

0 0 0 −1

0 0 −1 0

∣∣∣∣∣∣∣∣
= Γ† = Γ−1, Γ2 = 1, (9.6)

and the set (9.2) has the form

s̃
ρσ
I =

1

4
[̃γρ, γ̃σ] : s̃

jk
I = −iε jkl s̃

0l
I , s̃0l

I =
1

2
γ̃0l, ε123 ≡ +1. (9.7)

Let us write down the explicit form of the s
ρσ
II operators (1.13) in the B-

representation:

s̃
ρσ
II ≡U†s

ρσ
PGIU : s̃mn

II = iε jkls̃
0l
II ,

s̃01
II = 1

2

∣∣∣∣∣∣∣∣

0 0 0 1

0 0 −i 0

0 i 0 0

1 0 0 0

∣∣∣∣∣∣∣∣
, s̃02

II = 1
2

∣∣∣∣∣∣∣∣

0 0 i 0

0 0 0 1

−i 0 0 0

0 1 0 0

∣∣∣∣∣∣∣∣
, s̃03

II = 1
2

∣∣∣∣∣∣∣∣

0 −i 0 0

i 0 0 0

0 0 0 1

0 0 1 0

∣∣∣∣∣∣∣∣
,

(9.8)
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Now we are able to introduce, in addition to the sets of generators (9.2),

(1.13), the following two sets of matrices sρσ:

s̃0k
III = s̃0k

I − s̃0k
II , s̃mn

III = −s̃mn
I + s̃mn

II , (9.9)

s̃0k
IV = −s̃0k

I − s̃0k
II , s̃mn

IV = −s̃mn
I + s̃mn

II . (9.10)

Lemma. The commutation relations (9.3) of the Lorentz group are valid for

each set s
ρσ
I−IV of the sρσ matrices. The sets (9.2), (1.13) (or (9.7), (9.8)) are the

generators of the same (spinor) representation D
(

1
2 ,0
)
⊕
(
0, 1

2

)
of the SL(2,C)

group, the set (9.9) consists of the generators of the D(0,1)⊕ (0,0) represen-

tation and the set (9.10) consists of the generators of the ireeducible vector

D
(

1
2
, 1

2

)
representation of the same group.

PROOF. The fact that the matrices (9.2) (or in another representation (9.7))

are the generators of the spinor representation of the SL(2,C) group is well

known. It is better to fulfill the proof of the nontrivial assertions of this lemma

in the B-representation, where their validity can be seen directly from the ex-

plicit form of the operators sρσ even without the Casimir operators calculations.

In fact, using the explicit forms of the matrices (9.7), (9.8) we find

s̃
ρσ
II = Cs̃

ρσ
I C ⇐⇒ s̃

ρσ
I = Cs̃

ρσ
II C, (9.11)

s̃01
IV =

∣∣∣∣∣∣∣∣

0 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 0

∣∣∣∣∣∣∣∣
, s̃02

IV =

∣∣∣∣∣∣∣∣

0 0 0 0

0 0 0 −1

0 0 0 0

0 −1 0 0

∣∣∣∣∣∣∣∣
, s̃03

IV =

∣∣∣∣∣∣∣∣

0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

∣∣∣∣∣∣∣∣
,

(9.12)

s̃mn
IV =

∣∣∣∣
smn 0

0 0

∣∣∣∣= s̃mn
III ; s̃0k

III =

∣∣∣∣
s0k 0

0 0

∣∣∣∣ , (9.13)

where

s0k = i
2 εkmnsmn = −sk0, ε123 = +1,

s23 =

∣∣∣∣∣∣

0 0 0

0 0 1

0 −1 0

∣∣∣∣∣∣
, s31 =

∣∣∣∣∣∣

0 0 −1

0 0 0

1 0 0

∣∣∣∣∣∣
, s12 =

∣∣∣∣∣∣

0 1 0

−1 0 0

0 0 0

∣∣∣∣∣∣
.

(9.14)
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The unitarity of the C operator in relations (9.11), the direct calculation of

correspondings commutators and the Casimir operators s± of the SL(2,C) group

s2
± =

1

2
(τ1± iτ2), τ1 ≡−1

2
Sµνsµν, τ2 ≡−1

2
εµνρσsµνsρσ, (9.15)

complete the proof of the lemma. QED.

It is interesting to mark the following. Despite the fact that the matrices s̃
ρσ
I

and s̃
ρσ
II are unitarily interconnected according to formulae (9.11), which in the

PD-representation have the form

s
ρσ
I =

∧
C s

ρσ
II

∧
C,

∧
C≡ UCU† =

∣∣∣∣∣∣∣∣

C 0 0 0

0 1 0 0

0 0 C 0

0 0 0 1

∣∣∣∣∣∣∣∣
, (9.16)

the matrices s
ρσ
I (9.2) (or (9.7)), as well as the matrices (9.9), (9.10) (or (9.12),

(9.13)), contrary to the matrix operators (1.13) (or (9.8)) being taken themselves

are not the invariance transformations of the massless Dirac equation (9.1) (or

(2.29)). It is evident because the C operator does not commute (or anticommute)

with the Diracian γµ∂µ. Nevertheless, due to the validity of the relations

[
s

ρσ
II , s

ρσ
I,III,IV

]
= 0, µ,ν,ρ,σ = (0,1,2,3), (9.17)

not only the generators (∂, ĵI) of the well known spinor representation PS of the

Poincaré group, but also the following generators

j
ρσ
III,IV = mρσ + s

ρσ
III,IV (9.18)

are the transformations of invariance of the massless Dirac equation. It means

the validity of the following assertion.

From the consideration in subsection 2.4.2 and from here one can come to

the conclusion as follows. The equations (2.13)=(2.17)=(2.18)=(2.19)=(2.29)

is the maximally symmetrical form among the generalized and non-

generalized forms of Maxwell equations. Due to the fact that equations

(2.17)=(2.18)=(2.19)=(2.29) are manifestly covariant vector, tensor-scalar and

spinor forms of one and the same equation (2.13), respectively, the following

theorem is valid.
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Theorem. The slightly generalized Maxwell equations written as

(2.13)=(2.17)=(2.18)=(2.19)=(2.29) are invariant with respect to the three dif-

ferent transformations, which are generated by three different representations

PV, PTS, PS of the Poincaré group P(1,3) given by the formulae

E (x) → E V(x) = ΛE (Λ−1(x−a)),
E (x)→ E TS(x) = F(Λ)E (Λ−1(x−a)),

E (x)→ E S(x) = S(Λ)E (Λ−1(x−a)),

(9.19)

where Λ is a vector D( 1
2
, 1

2
), F(Λ) is a tensor-scalar D(0,1)⊗(0,0) and S(Λ) is

a spinor representation D(0, 1
2)⊗ ( 1

2 ,0) of SL(2,C) group. This means that the

equations (2.13)=(2.17)=(2.18)=(2.19)=(2.29) have both spin 1 and spin 1/2

symmetries.

Proof. Let us write the infinitesimal transformations, following from (9.19), in

the form

E
V,TS,S(x) =

(
1−aρ∂ρ −

1

2
ωρσj

V,TS,S
ρσ

)
E (x). (9.20)

Then the generators of the transformations (9.20) have the form

∂ρ =
∂

∂xρ
, j

V,TS,S
ρσ = xρ∂σ −xσ∂ρ + s

V,TS,S
ρσ , (9.21)

where

(sV
ρσ)

µ
ν = δ

µ
ρgσν −δ

µ
σgρν, sV

ρσ ∈ D

(
1

2
,

1

2

)
, (9.22)

sTS
ρσ =

∣∣∣∣
sρσ 0

0 0

∣∣∣∣∈ D(0,1)⊕(0,0), sρσ =−sσρ : s0k =− i

2
εkmnsmn, (9.23)

where sρσ are given in (9.14) and

sS
ρσ =

1

4
[̃γρ, γ̃σ], sS

ρσ ∈ D(0,
1

2
)⊕ (

1

2
,0), (9.24)

where γ̃ matrices in specific bosonic representation are given in (2.30) and

satisfy the standard Clifford-Dirac algebra relations. Now the proof of the

theorem is reduced to the verification that all the generators (9.21) obey the

commutation relations of the P(1,3) algebra and commute with the operator of

the generalized Maxwell equations (2.29).



290 Volodimir Simulik

Corollary. The transition (2.28) transforms the equations

(2.13)=(2.17)=(2.18)=(2.19)=(2.29) into the massless Dirac equation (9.1)

with matrices γµ in standard Pauli–Dirac representation. This means that

massless Dirac equation has the same three different PV, PTS, PS Poincaré

symmetries as the slightly generalized Maxwell equations (2.29). QED

This result about the slightly generalized Maxwell equations (2.17)–(2.19)

means the following. From group theoretical point of view these equations

can describe both bosons and fermions. This means that one has direct group-

theoretical grounds to apply these equations for the description of electron, as it

is presented in Chapter 8.

A distinctive feature of the equation (2.17) for the system E = (
−→
E ,E 0) (i.e.,

for the system of interacting irreducible (0,1) and (0,0) fields) is the following.

It is the manifestly covariant equation with minimal number of components, i.e.,

the equation without redundant components for this system.

Note that each of the three representations (9.19) of the P(1,3) group is a

local one, because each matrix part of transformations (9.19) (matrices Λ, F(Λ)
and S(Λ) ) does not depend on coordinates x ∈ R4, and, consequently, the gener-

ators (9.21) belong to the Lie class of operators. Each of the transformations in

(9.19) may be understood as connected with special relativity transformations

in the space-time R4 = {x), i.e., with transformations in the manifold of inertial

frame of references.

We emphasize that the equation (2.29) has the form of massless Dirac equa-

tion for fermions field. In such consideration of equation (2.29) the γ̃µ matrices

may be chosen in arbitrary representation (e.g., in each of representations of

Pauli-Dirac, Majorana, Weyl, ...). However, only in exotic representation (2.30)

equation (2.29) is the Maxwell equation for the system of interacting electro-

magnetic
−→
E =

−→
E − i

−→
H and scalar E 0 = E0 − iH0 fields (therefore, we have

called the representation (2.30) the bosonic one). Thus, if one considers the

equation (2.29) as bosonic one, the representation of γµ matrices and their ex-

plicit form must be fixed in the form (2.30). In the case of bosonic interpretation

of the equation (9.1) one must fixes the explicit form of γµ in standard Pauli–

Dirac representation and fixes the form of Ψ as (2.27).

It follows from the equations (2.17)=(2.29) that the field E = (
−→
E ,E 0) is

massless, i.e., ∂ν∂νE µ = 0. Therefore it is interesting to note that neither PV,

nor PTS symmetries cannot be extended to the local conformal C(1,3) sym-

metry. Only the spinor CS representation of C(1,3) group, obtained from the

local PS representation, is the symmetry group for the slightly generalized
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Maxwell equations (2.17). This fact is understandable: the electromagnetic

field
−→
E =

−→
E − i

−→
H obeying equations (2.17) is not free, it interacts with the

scalar field E 0.

Consider the particular case of standard (non-generalized) Maxwell equa-

tions, namely, the case of equations

∂0

−→
E = icurl

−→
E −gradE

0, div
−→
E = −∂0E

0, (9.25)

or (2.17), without magnetic charge and current densities, i.e., the case when

H0 = 0 but E0 6= 0. The symmetry properties of such standard equations are

strongly restricted in comparison with the generalized equations (2.17): they

are invariant only with respect to tensor-scalar (spins 1 and 0) representation

of Poincaré group defined by the corresponding representation D(0,1)⊕(0,0) of

proper ortochronous Lorentz group SL(2,C). Another symmetries mentioned in

the theorem are lost for this case too. The proof of this assertion follows from

the fact that the vector D
(

1
2
, 1

2

)
and the spinor D

(
0, 1

2

)
⊕
(

1
2
,0
)

transformations

of E = (
−→
E ,E 0) mix the E 0 and

−→
E components of the field E , and only the

tensor-scalar (0,1)⊕ (0,0) transformations do not mix them.

For the free Maxwell equation in vacuum without sources (the case E0 =

H0 = 0) the losing of above mentioned symmetries is evident from the same

reasons. Moreover, it is well known that such equations are invariant only with

respect to tensor (spin 1) representations of Poincaré and conformal groups

and with respect to dual transformation:
−→
E → −→

H ,
−→
H → −−→

E . We have ob-

tained the extended 32-dimensional Lie algebra [6, 7] (and the correspond-

ing group) of invariance of free Maxwell equations, which is isomorphic to

C(1,3)⊕C(1,3)⊕dual algebra. We were successful to prove it appealing not to

Lie class of symmetry operators but to a more general, namely, to the simplest

Lie–Backlund class of operators. The corresponding generalization of symme-

tries of equations (9.25)=(2.17) presented in the above theorem leads to a wide

246-dimensional Lie algebra in the class of first order Lie–Backlund operators.

Many other additional symmetries of the massless Dirac equation can be found

in [1, 2].

Therefore, the Maxwell equations (2.13)=(2.17)=(2.18)=(2.19)=(2.29) with

electric and magnetic gradient-like sources have the maximally possible sym-

metry properties among the standard and generalized equations of classical elec-

trodynamics.

Thus, we introduce our generalization of the Maxwell equations on the basis

of symmetry principle (the second foundation of our generalization).
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9.3. Link between the Fermionic and Bosonic

Amplitudes

Finally, knowing the operator U (2.27), it is easy to obtain the relationship be-

tween the amplitudes ar(
−→
k ), br(

−→
k ) determining the well known fermionic so-

lution of the massless Dirac equation (in Pauli–Dirac representation), and the

amplitudes cα(
−→
k ), determining the bosonic solution (2.21). The general solu-

tion of the massless Dirac equation (9.1) has the form

ψ(x) =
1

(2π)
3
2

Z

d3k[ar(
−→
k )v−r (

−→
k )e−ikx +b∗r(

−→
k )v+

r (
−→
k )eikx], r = 1,2,

(9.26)

where kx ≡ ω̃t−−→
k −→x , ω̃ ≡

√−→
k 2, and the 4-component Dirac spinors are given

by

v−r (
−→
k ) = N

∣∣∣∣∣
ω̃dr

(
−→
σ ·−→k )dr

∣∣∣∣∣ , v+
r (

−→
k ) = N

∣∣∣∣∣
(−→σ ·−→k )dr

ω̃dr

∣∣∣∣∣ ; (9.27)

N ≡ 1√
2ω̃

, d1 =

∣∣∣∣
1

0

∣∣∣∣ , d2 =

∣∣∣∣
0

1

∣∣∣∣ .

The link between the fermionic and bosonic amplitudes from (2.21) and

(9.26) is as follows:

a1 =
1

2ω̃

[
i

√
(ω̃−k3)(ω̃+k3)(c1 −c2)− (ω̃−k3)c3 +(ω̃ +k3)c4

]
, (9.28)

a2 =
1

2ω̃


−i(k1 + ik2)



√

ω̃ +k3

ω̃−k3
c1 +

√
ω̃−k3

ω̃ +k3
c2


+(k1 + ik2)(c3 +c4)


 ,

b1 =
1

2ω̃

[
i

√
(ω̃−k3)(ω̃+k3)(c1 +c2)+(ω̃ +k3)c3 +(ω̃−k3)c4

]
,

b2 =
1

2ω̃


i(k1 + ik2)



√

ω̃−k3

ω̃+k3
c1 −

√
ω̃+k3

ω̃−k3
c2


+(k1 + ik2)(c3−c4)


 .
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In terms of unitary operator V this formulae have the form:

â ≡

∣∣∣∣∣∣∣∣

a1

a2

b1

b2

∣∣∣∣∣∣∣∣
=

1

2ω

∣∣∣∣∣∣∣∣∣∣

i
√

pq −p −i
√

pq q

−iz∗
√

q
p

z∗ −iz∗
√

p
q

z∗

i
√

pq q i
√

pq p

iz
√

p
q

z −iz
√

q
p

−z

∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣

c1

c3

c2

c4

∣∣∣∣∣∣∣∣
= V · ĉ, (9.29)

where p = ω̃ − k3, q = ω̃ + k3, z = k1 − ik2, z∗ = k1 + ik2, ω̃ ≡
√−→

k 2. The

operator V (the image of operator U (2.27) in the space of quantum-mechanical

amplitudes ĉ and â , i.e., in the rigged Hilbert space S3,4 ⊂ H3,4 ⊂ S3,4∗, where

S3,4∗ is the space of 4-component generalized Schwartz functions) is unitary

one: VV−1 = V−1V = 1, V−1 = V †, plus linearity.

Hence, the fermionic states may be constructed as linear combinations

of bosonic states, namely, of the states of the coupled electromagnetic
−→
E =−→

E − i
−→
H and scalar E 0 = E0 − iH0 fields. The inverse relationship between

bosonic and fermionic states is also valid. We prefer the first possibility, which

is new (bosonic) realization of the old idea (Thomson, Abraham, etc) of elec-

tromagnetic nature of mass and of material world. Thus, today on the basis of

(8.25), (2.27), (9.28), (9.29) we may speak about more general conception of

the bosonic field nature of material world.

On the basis of this link the relationship between quantized electromagnetic-

scalar and massless spinor field was obtained. The possibility of both Bose

and Fermi quantization types for electromagnrtic-scalar field (and, inversely,

for the Dirac spinor field) was proved. We will not touch above the problems

of quantization because above we are trying to demonstrate new possibilities of

classical theory.

9.4. Two Types of Quantization

In the quantum theory of fields under consideration, the following connections

are valid.

If bosonic creation-annihilation operators c
†ᾱ
k

,cᾱ
k

satisfy the standard com-

mutation relations
[
cᾱ

k ,c
†β̄

k
′

]
= δᾱ

β̄
δ
(−→

k −−→
k

′
)

; ᾱ, β̄ = 1,2,3,4, (9.30)
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(the commutators of all other pairs are equal to zero), then the fermionic

creation-annihilation operators a†,b†,a,b, connected with the bosonic opera-

tors by the transformation (9.29), or by inverse to (9.29) transformation, satisfy

the following commutation (not anticommutation !) relations
[
a1

k,a
1†

k
′

]
= −

[
b

1†
k ,b1

k
′

]
= 3ω̃2+k3k3

ω̃ δ
(−→

k −−→
k

′
)

,[
a2

k,a
2†

k
′

]
= −

[
b

2†
k ,b2

k
′

]
= 3ω̃2−k3k3

ω̃ δ
(−→

k −−→
k

′
)

,[
a1

k ,a
2†

k
′

]
= −

[
b

1†
k

,b2

k
′

]
= (k1−ik2)k3

ω̃ δ
(−→

k −−→
k

′
)

,[
a1

k,b
2†

k
′

]
= −

[
a2

k,b
1†

k
′

]
= −(k1 + ik2)δ

(−→
k −−→

k
′
)

,

(9.31)

(the commutators of all other pairs are equal to zero).

Quite similarly the anticommutators of fermionic creation-annihilation op-

erators a†,b†,a,b are connected with the anticommutators of c†,c operators.

Furthermore, the anticommutator(!)
{

E (x),E
†(x

′
)
}

= U†
Dγ0UD ≡ γ̃µγ̃0∂µD(x−x

′
) (9.32)

for the bosonic field E (x) is obtained from the anticommutator of the Heisen-

berg spinor (fermionic) field ψ(x)
{

ψ(x),ψ(x
′
)
}

= DD(x−x
′
), D ≡ γµ∂µ, (9.33)

D(x) ≡ i

(2π)3

Z

d3k

2ω̃
(e−ikx−eikx), (9.34)

by substituting ψ = UE into formula (9.33).

Similarly, the commutator(!)
[
ψ(x),ψ(x

′
)
]

= U†
M Uγ0D(x−x

′
) (9.35)

for the fermionic field ψ(x) is obtained after the substitution of E = Vψ into the

commutator [
E (x),E

†(x
′
)
]

= M D(x−x
′
), (9.36)

which can be found for the bosonic field E (x) on the basis of relations (9.30).

Here the notations

M D(x) ≡ i

(2π)3

Z

d3k

2ω̃
M(

−→
k )(e−ikx−eikx), (9.37)
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M(
−→
k ) ≡−iω̃2

[
e1e

†
1 +(e3 +e4)(e

†
3 +e

†
4)
]
, (9.38)

are used.

Because of the unitary properties of the operator U and the starting point

from the causal commutator (anticommutator) of the fields under considera-

tion all the commutation (anticommutation ) relations obtained here satisfy the

microcausality condition. Let us underline that here we can find the causal com-

mutation relations (9.35) (not anticommutation!) for the fermionic spinor Dirac

field only for the m = 0 case.

9.5. Corresponding Lagrangians

Having the Lagrangian L (ψ) for the massless spinor field and using the connec-

tion (2.27), one obtains the Lagrangian L (E) for the system of electromagnetic

and scalar fields:

L (ψ) ≡ i
2

(
ψγµψ,µ −ψ,µγµψ

)
=

− i
2

(
E †γ̃0Γγ̃µE,µ −E †

,µγ̃0Γγ̃µE
)
≡ L (E).

(9.39)

Of course, the Euler–Lagrange equation for the Lagrangian (9.39) coincides

with the equation

iΓγ̃µ∂µE = 0; E = E − iH. (9.40)

The Lagrange function for the system of interacting Dirac spinor field and

electromagnetic-scalar field has the form

L = − i

2

(
E

†γ̃0Γγ̃µ
E,µ −E

†
,µγ̃0Γγ̃µ

E
)
+

i

2

(
ψ(x)γµ ∂ψ(x)

∂xµ
− ∂ψ(x)

∂xµ
γµψ(x)

)
−

(9.41)

mψ(x)ψ(x)+eψ(x)γµψ(x)Eµ(x).

The Lagrange approach based on the function (9.41) presents the analogy of

the well-known Lagrange formalism in the terms of the vector-potentials Aµ(x)

of the contemporary quantum electrodynamics. However, the non-trivial step

is using of the electromagnetic-scalar field strengths E µ(x) as the Lagrange

variables. Therefore, the based on (9.41) least action principle appeals to the

electromagnetic-scalar variational variables E µ(x) and does not touch the po-

tentials Aµ(x).
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Note that reformulation of the quantum electrodynamics in the terms of

field-strengths (without vector-potentials) is an interesting problem of mod-

ern quantum theory (see the results of [8–11] and the review therein). The

approach (9.41) is a good solution. Indeed, it is proved above that the field

E µ(x) can be considered as the P(1,3) vector. Therefore, on the bases of tech-

niques similar to developed by Gupta–Bleuler [12, 13] one can formulate here

the two-component photon model of quantum electrodynamics without redun-

dant components. Furthermore, the 4-component model here, contrary to the

Aµ(x) formalism, does not contain the non-physical “time” photons (longitu-

dinal photons can be explained). Thus, the 4-component model of interacting

electromagnetic-scalar and spinor fields has a good perspectives as well. Note

that there are few well-defined possibilities to introduce interaction Lagrangian

LI = eψ(x)γµψ(x)Eµ(x) in the physical dimension of LI = eψ(x)γµψ(x)Aµ(x)

and to reconcile the dimensions of all terms in (9.41).

9.6. Conclusion and Comments

9.6.1. Symmetry

One of the conclusions of our investigation presented here is that a field equa-

tion itself does not answer the question what kind of particles (Bose or Fermi) is

described by this equation. To answer this question one needs to find all the rep-

resentations of the Poincaré group under which the equation is invariant. If more

than one such Poincaré representations are found, including the representations

with integer and half-integer spins, then the given equation describes both Bose

and Fermi particles, and both quantization types (Bose and Fermi) of the field

function, obeying this equation, satisfy the microcausality condition. The strict

group-theoretical ground of this assertion is the following: both slightly gen-

eralized Maxwell equations (with ε = µ = 1) and massless Dirac equation for

the free spinor field are invariant with respect to three different local represen-

tations of Poincaré group, namely the standard spinor, vector and tensor-scalar

representations generating by the D(0, 1
2)⊗ ( 1

2 ,0), D( 1
2 , 1

2 ), D(0,1)⊗(0,0) repre-

sentations of the Lorentz SL(2,C) group, respectively.

Therefore, the pair “Dirac equation plus reducible, spins 1 and 0, represen-

tation” may describe a double bosonic system (photon plus boson).

The pair “Dirac equation plus spin 1/2 representation” may describe

fermions (electron, neutrino, etc.).
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The pair “generalized Maxwell equation plus spin 1 and 0 representation”

may describe a double bosonic system (photon plus boson).

Finally, the pair “generalized Maxwell equation plus spin 1/2 representa-

tion” may describe fermions, e.g., the electron. This latter possibility is consid-

ered in this paper.

9.6.2. Model of Atom

Using the slightly generalized Maxwell classical electrodynamics (equations for

the system of electromagnetic and scalar fields) and taking a spin 1/2 represen-

tation, we arrive at a model of the electron. Such model is based on the deriva-

tion of the hydrogen spectrum and Bohr’s postulates (see Chapter 8 above).

The electron can be interpreted as a system of electromagnetic and scalar fields

(waves) in a specific medium (compound system of photon plus massless bo-

son with spin equal to zero). The electron is a standing wave in the stationary

case. Because it is a system of electromagnetic and scalar waves (not a charged

corpuscle), it is free from the radiation difficulties of Rutherford’s electron in

electrodynamics. The charge here is a secondary quality, generated by interact-

ing electromagnetic-scalar fields. The limit m 6= 0 interaction potential equal

to zero produces the free electron. Thus, the electron can be constructed from

bosons.

The simplest case m = 0, interaction potential equal to zero, is treated in de-

tail in sections 9.3 and 9.4, where it is shown that amplitudes of fermionic states

(or their creation-annihilation operators) are the linear combinations of ampli-

tudes (or of creation-annihilation operators) of bosonic states. In this sense our

model, where the electron is considered to be a compound system of photon

plus mass-less spin-less boson (i.e., the electron’s states are linear combina-

tions of states of the electromagnetic-scalar field) has an analogy in modern

quark models of hadrons. On the basis of our consideration we are able to con-

struct fermionic states from bosonic states. Moreover, formula (8.25) expresses

the mass of the atom in terms of bosonic (electromagnetic and scalar) field

strengths! This is the basis for our hypothesis: the material world is bosonic

in nature (more general than simple electromagnetic). Furthermore, changing

the field strengths in (8.25) may cause a change in the mass of a material object

like an atom. Can a new flying machine, with mass going to zero, be constructed

on the basis of this phenomenon?

Thus, in the model of atom under consideration based on the equations of
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Maxwell’s electrodynamics, not of quantum mechanics, the atomic electron is

interpreted as a classical stationary electromagnetic-scalar wave (the details of

the interpretation see in subsection 8.2.4). That is why this model is essentially

distinguished from the first electrodynamical hydrogen atom model suggested

by Sallhofer, see, e.g., [14–16].

It is evident from the example of the hydrogen atom presented in section 8.2

that the discreetness of the physical system’s states (and its characteristics, such

as energy, etc.) may be a consequence of both quantum systems (Schrödinger,

Dirac) and the classical (Maxwell) equations for the given system. In the present

case, discreetness is caused by the properties of the medium, which are given

by the electric and magnetic permeabilities (2.4).

The main conclusion from Chapters 8, 9 is the following. The unitary equiv-

alence between the stationary Dirac equation and the stationary Maxwell equa-

tions with gradient-like currents and charges in a medium (2.4) offers the pos-

sibility of reformulating all the problems of atomic and nuclear physics (not

just the problem of describing the hydrogen atom, which is only one exam-

ple), which can be solved on the basis of the stationary Dirac equation, in the

language of the classical electrodynamic stationary Maxwell equations. This

means that our model for the stationary case is just as successful as conven-

tional relativistic quantum mechanics. In the approach based on slightly gen-

eralized Maxwell equations, it is possible to solve other stationary problems of

atomic physics without appealing to the Dirac equation or the probabilistic or

Copenhagen interpretation.

Some non-stationary problems, e.g., the problem of transitions between sta-

tionary states caused by external perturbation, can probably be solved in terms

of this electrodynamic model, just as this problem is now solved in terms of the

stationary Schrödinger equation with corresponding perturbation.

9.6.3. Interpretation of the Dirac ψ Function

A few words can be said about the interpretation of the Dirac ψ function. As

follows from the consideration presented here, e.g., from the relationship (2.27),

(9.28), the new interpretation of the Dirac ψ function can be suggested too: ψ

function is the combination of the electromagnetic field strengths
(−→

E ,
−→
H

)
and

two scalar fields
(
E0,H0

)
generating the electromagnetic sources, i.e., in this

case the probability or Copenhagen interpretation of the function ψ is not nec-

essary. Taking into account that many interpretations of quantum mechanics
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(e.g., Copenhagen, statistical, Feynman’s, Everett’s, transactional [16–19]) ex-

ist, we are under no illusion that our interpretation should be the only one.

In our publications [3-5, 11] we have tried to develop the classical elec-

trodynamic interpretation of the above facts, which is the main purpose of

our investigation. Nevertheless, we have also emphasized [5] that a standard

quantum mechanical Dirac (or spinor classical field-theoretical) interpretation

is certainly also possible here. In this case the above facts only demonstrate in

explicit form the classical electrodynamic aspect of the Dirac equation [5]. In

other words, our equations may be considered (interpreted) as the Dirac equa-

tion for the classical (not quantum) spinor field in a specific electromagnetic

representation. We have written one special paper [5] to admit this possibility,

which may be more suitable for readers who are beyond the influence of

Standard Model. Magnetic monopole enthusiasts may attempt to develop the

monopole interpretation [20]: we note that there are few specific possibili-

ties for interpretation. Thus, the new features that follow from our approach are:

(i) the classical interpretation,

(ii) a new equation and method in atomic and nuclear physics based on

classical electrodynamics in an inneratomic medium as in (2.4),

(iii) hypothesis of the bosonic nature of matter (bosonic structure of

femions),

(iv) application of classical theory extended further into the microworld,

(v) foundations of a unified model of electromagnetic and gravitational phe-

nomena, in which gravitation is considered a medium in generalized equations,

(vi) the electron is described as a classical electromagnetic-scalar wave and

is related to the corresponded equation of motion.

(vii) Lagrange approach for quantum electrodynamics in the terms of field

strengths.
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Chapter 10

Fermi-Bose Duality of the Dirac

Equation with Nonzero Mass

Fermi–Bose duality of the massless Dirac equation, which is considered in the

previous Chapters 8, 9, is generalized here for the case of nonzero mass. This

generalization is non-trivial. Corresponding derivations essentially appeal to the

64-dimensional gamma matrix representation of the Clifford algebra C`R(0,6)

over the field of real numbers and the 28-dimensional gamma matrix representa-

tion of the algebra SO(8) (over the field of real numbers as well). Moreover, the

start from the canonical Foldy–Wouthuysen (FW) representation is necessary

and Fermi–Bose duality properties of the Dirac equation follow from the cor-

responding properties of the FW equation. The bosonic symmetries, solutions

and conservation laws are considered.

10.1. Fermi–Bose Symmetries of the Dirac Equation

with Nonzero Mass

Bosonic symmetries of the Dirac equation with nonzero mass, which existence

is under consideration after our publications [1–6] in the years 2011–2015, are

proved here on the basis of two different methods. The first one appeals to the

64-dimensional gamma matrix representation of the Clifford algebra C`R(0,6)

over the field of real numbers and the 28-dimensional gamma matrix represen-

tation of the algebra SO(8) (over the field of real numbers as well). The second

way of proof is based on the start from the relativistic canonical quantum me-
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chanics (RCQM) of spin (1,0) particle multiplet and its relationship with the

Dirac equation, which is given by the extended FW transformation suggested

by us in 2014–2017. Both the Lorentz and Poincaré bosonic symmetries are

considered. The 31-dimensional algebra of invariance is found. The bosonic

solutions and conservation laws are found as well. The considered phenomenon

is called the fermion-boson duality of the Dirac equation according to P. Gar-

baczewski’s titles suggested in [7–9].

10.1.1. Motivation and Goals

It is well-known that the Dirac equation is invariant with respect to the transfor-

mations, which are determined by the spin s = 1
2 representation of the Poincaré

group. On the basis of this fact the conclusion that the Dirac equation de-

scribes the spin s = 1
2 fields and particles (fermions) is formulated. The repre-

sentations of the proper ortochronous Poincaré group (inhomogeneous Lorentz

group) have the principal importance.

Below we are able to demonstrate another hidden half of the Dirac equation

possibilities. We consider here the bosonic symmetries, solutions and conserva-

tion laws for the Dirac equation with nonzero mass.

Note that the Dirac equation taken itself (as well as every other field equa-

tion) does not carry the complete information on the subject what field (particle)

is described by this equation. The complete information is given only by the pair

of conceptions: equation and the transformation law of the field function (see

the examples in Chapters 7, 9). Therefore, the transformations, which are de-

termined not by the 1/2 eigen values of the particle spin operator, have a special

importance and physical meaning among the additional transformations, with

respect to which the Dirac equation is invariant.

Here two proofs of Bose properties of the Dirac equation with nonzero mass

are considered. The first one is based on the new mathematical objects. These

objects are the 64-dimensional gamma matrix representation of the Clifford al-

gebra C`R(0,6) over the field of real numbers and the 28-dimensional gamma

matrix representation of the algebra SO(8) (over the field of real numbers as

well). These objects are considered in Chapter 1. The additional elements of

gamma matrix representations of these algebras unable us to prove the bosonic

symmetries of the Dirac equation and, as a consequence, to demonstrate the

bosonic solutions and conservation laws.

The second proof is based on the start from the RCQM of Bose spin (1,0)
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particle multiplet and its link with the Dirac equation, which is given by the

extended FW transformation.

In addition to the Dirac equation the γ matrix representations of the Clifford

algebra are used widely for the multicomponent Dirac-like equations of higher

and arbitrary spin such as the Bhabha, Bargman–Wigner, Rarita–Schwinger (for

the field with the spin s=3/2), Iwanenko-Landau-Dirac–Kähler equations, etc.

Thus, the application of the Clifford algebra in the quantum theory is more

wide then the 4-component Dirac equation and corresponded spinor field. It is

evident that the program of finding of more wide matrix representations then the

16-dimensional C`C(1,3) and 15-dimensional SO(1,5) algebras representations

is the interesting task (see Chapter 1). The corresponding matrix representa-

tions can be useful both in the known quantum field theory models and in the

development of new approaches for higher spin.

Starting from the first steps of quantum mechanics and during the period of

its growth many authors, see, e.g., [10–12] and the list of references in Chapter

8, have been investigated the Fermi-Bose duality of the massless spinor field

and of the related electromagnetic field in the terms of field strengths. Such

investigations were called the Maxwell–Dirac isomorphism [13], the relations

between the Dirac and Maxwell equations [14], the mapping of the Maxwell

formalism into the Dirac formalism [15], etc. Recent interest to the problem is

known as well [16, 17], especially in graphene investigations [18].

For the most simple case of the massless Dirac equation the bosonic symme-

tries, solutions and conservation laws were found by us more then 15 years ago,

see e.g., Chapters 8, 9 and the references therein. The corresponding fermionic

properties of the slightly generalized original Maxwell equations were consid-

ered as well. The investigations of the general case of nonzero mass lead us to

the new mathematical objects of Chapter 1. Only after introducing of the 64-

dimensional gamma matrix representation of the Clifford algebra C`R(0,6) [1–

6] over the field of real numbers (as well as the 28-dimensional gamma matrix

representation of the real algebra SO(8) [19, 20]), considered here in Chapter

1, we were successful in extension of the results to the general case, when the

mass in the Dirac equation is nonzero.

The interesting case for the symmetry analysis is the Dirac equation with

nonzero mass and with nonzero Coulomb potential. In physical literature this

case is called the symmetry of relativistic hydrogen atom. Here we pay for it a

special attention.
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10.1.2. Start from the Extended Clifford–Dirac Algebra

and from the Foldy–Wouthuysen Representation

The first application of the matrix representations of the algebras C`R(0,6) and

SO(8) presented in Chapter 1 is the symmetry analysis (the search of groups and

algebras with respect to which the equation is invariant) of the Dirac equation

with nonzero mass. It is easy to understand that the FW representation [21, 22]

is preferable for such analysis. Indeed, in this representation one must calculate

the commutation relations of possible pure matrix symmetry operators from Ta-

ble 3 in section 1.4 only with two elements of the FW equation (4.21) operator:

they are γ0 and i. After determining of the symmetries of the FW equation one

can find the symmetries of the Dirac equation on the basis of the inverse FW

transformation. Note that after such transformation only the small part of sym-

metry operators will be pure matrix, the main part of operators will contain the

nonlocal operator ω̃ ≡
√
−∆+m2 and the functions of it.

Furthermore, in the FW representation two subsets (s23, s31, s12) and

(s45, s64, s56) of operators sÃB̃ from the Table 3 in Chapter 1 (i) determine two

different sets of SU(2) spin 1/2 generators, (ii) commute between each other

and (iii) commute with the operator of the Dirac equation in the FW represen-

tation. Therefore, we can use here the methods developed in Chapter 9 for the

case m = 0. Moreover, as it was demonstrated in the Chapter 4 the spin operator

of the fermionic particle-antiparticle doublet should be introduced in the FW

representation. At least it better to do in the canonical FW and not in the Dirac

local field representation.

The start of such investigations for m 6= 0 has been presented in [1–6], where

on this bases the Bose-symmetries, Bose-solutions and Bose- conservation laws

for the Dirac equation with nonzero mass have been found. Among the Bose-

symmetries the important Lorentz and Poincaré algebras of invariance of the

Dirac equation with nonzero mass were found.

10.1.3. Known Symmetries of the Relativistic Hydrogen Atom

Symmetry studies of the equations for the hydrogen atom originate from the

non-relativistic case. The SO(4) symmetry of the non-relativistic Schrödinger

equation for a hydrogen atom was found by V. Fock [23], see also [24].

Relativistic hydrogen atom is modeled here by the Dirac equation in the
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external Coulomb field

(
i∂0 − Ĥ

)
ψ(x) = 0; Ĥ ≡ γ0~γ ·~p+ γ0m− Ze2

|~x| , (10.1)

where x ∈ M(1,3), ∂µ ≡ ∂/∂xµ, Z = 1, M(1,3) is the Minkowski space-time and

4-component function ψ(x) belongs to rigged Hilbert space S3,4 ⊂ H3,4 ⊂ S3,4∗

and ~ = c = 1. The Dirac γ matrices are taken in the standard Dirac-Pauli rep-

resentation (1.5).

Below we prove the Dirac equation in the external Coulomb field (10.1)

to possess the symmetry determined by the 31 operators, which form

the 31-dimensional algebra SO(6)⊕iγ0·SO(6)⊕iγ0. Two different fermionic

D(1/2,0)⊕(0,1/2) representations of the SO(1,3) algebra of the Lorentz group

are found. Two different bosonic tensor-scalar D(1,0)⊕(0,0) and vector

D(1/2,1/2) representations of this algebra are found as well. The corresponding

generators of the above mentioned algebras commute with the operator of the

Dirac equation in the external Coulomb field (10.1), and, therefore, determine

the hidden symmetries (algebras of invariance) of such Dirac equation.

At first we consider the known symmetries of the Dirac equation (10.1)

after that we present the mathematical tools, which are necessary for our inves-

tigations and, finally, the list of different hidden symmetries of the relativistic

hydrogen atom.

The first four constants of motion (symmetry operators, which commutes

with the operator of the Dirac equation) for the equation (10.1) were found

by P. Dirac in his paper [25], where the equation (10.1) has been derived and

introduced. They are three components of the vector ~J = (J1, J2, J3) of the total

angular momentum

~J =~L +~s, ~L ≡~x×~p, ~s ≡ 1

2

∣∣∣∣
~σ 0

0 ~σ

∣∣∣∣ , (10.2)

where~L is the orbital angular momentum,~s is the spin-1/2 angular momentum,

and the found by Dirac additional constant of motion K:

K = γ0
(

2~s ·~L+1
)

, K2 = ~J2 +
1

4
. (10.3)

Next symmetry operator is the Johnson–Lippman constant of motion [26]

D = 2~s · ~x

|~x| +
1

mZe2
Kγ4

(
Ĥ − γ0m

)
, D2 = 1+

(
Ĥ2

m2
−1

)
K2

Z2e4
, (10.4)
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which commutes with the operator
(

i∂0 − Ĥ
)

of the Dirac equation and anti-

commutes with the Dirac symmetry operator K of (10.3). Here the anti-

Hermitian γ4 = γ0γ1γ2γ3 instead of Hermitian γ5 of other authors is used. Note

that article [26] about excellent result (10.4) was published as a brief 1/10 of a

journal page remark, containing only single formula for D from (10.4).

After that the way to SO(4) symmetry of the relativistic hydrogen atom was

direct. This symmetry was found in [27] and [28], for the consideration in [29]

see the comments of [30]. Thus, the SO(4) symmetry of the Dirac equation

(10.1) for the hydrogen atom is given by the six operators

~I = ~J +~T , ~R = ~J −~T , (10.5)

where ~J is known from (10.2) and components of ~T = (T 1, T 2, T 3) have the

form

T 1 =
D

2
√

D2
, T 2 =

iDK

2
√

D2K2
, T 3 =

K

2
√

K2
. (10.6)

In the paper [27] the object ~T = (T 1, T 2, T 3) (10.6) was called as Lentz spin-1/2

vector operator. The notations used in (10.6) are explained in (10.3) and (10.4)

above.

Next symmetry is as follows. The Pauli–Gürsey operators [31] and [32]

s01 =
i

2
γ2Ĉ, s02 =

1

2
γ2Ĉ, s12 = − i

2
, (10.7)

where Ĉ is the operator of complex conjugation, Ĉψ = ψ∗ (the operator of in-

volution in the space H3,4), determine according to [33] the SO(1,2)⊂SO(1,3)

algebra of invariance of the Dirac equation in the form (iγµ∂µ−m+ e2

|~x|)ψ(x) = 0.

In [34] the symmetry of relativistic hydrogen atom in the form of gl(8,R)

algebra has been found. The stationary case of the Dirac equation (10.1) was

considered and the discrete transformation were used.

The author of [35] considered another problem. The quasi-potential two-

particle model was presented for the description of spinless relativistic hydrogen

atom. The O(4) symmetry and its breaking were investigated.
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10.1.4. New Fermionic Symmetries of the Dirac Equation

in External Coulomb Field

Below we present both the symmetries of the FW equation [21] in the external
Coulomd field

(i∂0− γ0ω+
e2

|~x| )φ(x) = 0; ω ≡
√

−∆+m2, x ∈ M(1,3), φ ∈
{

S3,4 ⊂ H3,4 ⊂ S3,4∗
}

, (10.8)

and, of course, the symmetries of the Dirac equation (10.1) in such external

field as well.

Now we can start the consideration of the new symmetries of relativistic

hydrogen atom. The beginning was suggested in [36, 37]. The fundamental

assertions are as follows.

(i) The gamma matrix representation of the subalgebra SO(6) of the algebra

SO(8) from Chapter 1, which is formed by the operators

{sĂB̆}= {sĂB̆ ≡ 1

4
[γĂ,γB̆]}, Ă, B̆ = 1,6, (10.9)

determines the algebra of invariance of the Dirac equation in the FW rep-

resentation (∂0 + iγ0ω − e2

|~x|)φ(x) = 0 (in (10.9) the six matrices {γĂ} =

{γ1,γ2,γ3,γ4,γ5,γ6} are known from (1.14)).

(ii) On the basis of SO(6) (10.9) the 31-dimensional gamma matrix rep-

resentation of the Lie algebra SO(6)⊕iγ0SO(6)⊕iγ0 is constructed, which is

formed by the elements from C`R(0,6) and is the maximal pure matrix alge-

bra of invariance of the Dirac equation in the Foldy–Wouthuysen representation

(∂0 + iγ0ω− e2

|~x|)φ(x) = 0.

(iii) The Dirac equation in external Coulomb field (10.1) is invariant with

respect to the 31-dimensional gamma matrix representation of the algebra

S̃O(6)⊕ ĩγ0S̃O(6)⊕ ĩγ0, where the representation of the algebra S̃O(6) is given

in the form of (10.9) with gamma operators (1.22)–(1.25). These formulas give

the images of gamma matrices (1.14) in the Dirac representation after fulfilling

the inverse FW transformation [21].

Thus, the S̃O(6) ⊕ ĩγ0S̃O(6) ⊕ ĩγ0 algebra is found from

SO(6)⊕iγ0SO(6)⊕iγ0 on the basis of the inverse FW transformation [21].

For the Dirac equation only the part of this algebra is pure matrix, other

elements contain the operator ω̃ ≡
√
−∆+m2.

Consider the symmetries of the relativistic hydrogen atom with respect to

the Lorentz group. On the basis of C`R(0,6) and SO(8) we can determine two
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different realizations of the D(0, 1
2)⊕ ( 1

2 ,0) representation of the Lie algebra

of universal covering L = SL(2,C) of the proper ortochronous Lorentz group

L
↑
+ = SO(1,3)=

{
Λ =

(
Λ

µ
ν

)}
, with respect to which the equation (∂0 + iγ0ω−

e2

|~x|)φ(x) = 0 is invariant:

s
µν
I = {s0k

I =
i

2
γkγ4, skm

I =
1

4
[γk,γm]}, γ4 ≡ γ0γ1γ2γ3, (k,m = 1,3),

(10.10)

s
µν
II = {s01

II = − i

2
γ2Ĉ, s02

II = −1

2
γ2Ĉ, s03

II =
1

2
γ0, (10.11)

s23
II = −1

2
γ0γ2Ĉ, s31

II =
i

2
γ0γ2Ĉ, s12

II = − i

2
},

10.1.5. Bose Symmetries of the Relativistic Hydrogen Atom

Taking the combinations of operators (10.10), (10.11) we construct the genera-

tors of bosonic representations:

s
µν
TS = {s0k

TS = s0k
I + s0k

II , smn
TS = smn

I + smn
II }, (10.12)

s
µν
V = {s0k

V = −s0k
I + s0k

II , smn
V = smn

TS},
where s

µν
TS and s

µν
V are the generators of the tensor-scalar D(1,0)⊕ (0,0) and

irreducible vector D( 1
2
, 1

2
) representations of the Lie algebra SO(1,3) of the

Lorentz group L respectively, with respect to which the FW equation (∂0 +

iγ0ω− e2

|~x|)φ(x) = 0 is invariant.

Anti-Hermitian operators of every set (10.10)–(10.12) satisfy the commuta-

tion relations (9.3) of the Lie algebra SO(1,3) of the Lorentz group L . For the

application of anti-Hermitian operators in physics see [38, 39] and the Chapter

3.

For the Dirac equation in the space of Dirac spinors {ψ} (i.e., in the

Pauli–Dirac representation) the form of the generators of the tensor-scalar

D(1,0)⊕(0,0) and irreducible vector D( 1
2
, 1

2
) representations of the Lie algebra

SO(1,3) of the Lorentz group L is similar to (10.12) (with (10.10), (10.11) but

the gamma operators are in this case too much complicated and are given by

(1.22)–(1.25). The images of the operators (10.10)–(10.12) in the Dirac repre-

sentation determined by gamma operators (1.22)–(1.25) satisfy the commuta-

tion relations (9.3) as well.
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In [5, 6] for the free Dirac and FW equations we used also the bosonic

representation of (10.12), in which the Casimir operators are diagonal and the

proof of Bose properties is most convenient. Such bosonic representation of

(10.12) can be useful here as well. The corresponding transition operator is

given by (1.32) and translates the gamma matrices (1.14) into the form (1.27)–

(1.31). Further, transformation (1.32) translates smn
TS operators from (10.12) into

the form

s̆1 =
1√
2

∣∣∣∣∣∣∣∣

0 0 iC 0

0 0 −C 0

−iC C 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, s̆2 =

1√
2

∣∣∣∣∣∣∣∣

0 0 C 0

0 0 −iC 0

−C iC 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, (10.13)

s̆3 =

∣∣∣∣∣∣∣∣

−i 0 0 0

0 i 0 0

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
,

−→̆
s 2 = −1(1+1)

∣∣∣∣
I3 0

0 0

∣∣∣∣ ,

where the Bose character of the operators is demonstrated (here operator of

complex conjugation C is not matrix).

Representation (10.13) is very useful for the link RCQM→FW→Dirac,

which is used in this book for the synthesis of covariant particle equations. The

reason is in special box structure of the operator s̆3 in (10.13) and in relation to

Cartesian basis.

Consider another bosonic representation of the generators (10.12), in which

their Bose properties are evident. Transition to such evident bosonic represen-

tation, which corresponds to the cyclic basis, is performed by the operator

WB =
1√
2

∣∣∣∣∣∣∣∣

0 −1 0 C

0 i 0 iC

−1 0 C 0

−1 0 −C 0

∣∣∣∣∣∣∣∣
, W−1

B =
1√
2

∣∣∣∣∣∣∣∣

0 0 −1 −1

−1 −i 0 0

0 0 C −C

C iC 0 0

∣∣∣∣∣∣∣∣
,

(10.14)

WBW−1
B = W−1

B WB = 1.

In such cyclic Bose-representation, the γµ B = WBγµW−1
B matrices contain not

only the operator i, but also the operator C of complex conjugation:

γ0B =

∣∣∣∣∣∣∣∣

0 i 0 0

−i 0 0 0

0 0 0 1

0 0 1 0

∣∣∣∣∣∣∣∣
, γ1B =

∣∣∣∣∣∣∣∣

0 0 0 C

0 0 iC 0

0 −iC 0 0

−C 0 0 0

∣∣∣∣∣∣∣∣
, γ2B =

∣∣∣∣∣∣∣∣

0 0 −iC 0

0 0 0 C

iC 0 0 0

0 −C 0 0

∣∣∣∣∣∣∣∣
,
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γ3B =

∣∣∣∣∣∣∣∣

0 iC 0 0

−iC 0 0 0

0 0 0 C

0 0 −C 0

∣∣∣∣∣∣∣∣
, iB =

∣∣∣∣∣∣∣∣

0 −1 0 0

1 0 0 0

0 0 0 i

0 0 i 0

∣∣∣∣∣∣∣∣
, ĈB =

∣∣∣∣∣∣∣∣

C 0 0 0

0 −C 0 0

0 0 C 0

0 0 0 C

∣∣∣∣∣∣∣∣
,

(10.15)
(of course, they satisfy the Clifford–Dirac relations (1.7)). Calculation of op-

erator constructions (10.12) needs also the explicit forms of operators iB, ĈB,

therefore we present them in (10.15) too. Now, together with γµ B matrices, they

are not so simple as iI4, ĈI4 in standard PD-representation (I4 is 4×4 unit ma-

trix). Nevertheless, we note, the Lorentz spin matrices sB
µν = WBs

V,TS
µν W−1

B in the

cyclic Bose-representation do not contain the operator Ĉ and take the explicit
forms known well for the matrix representations D(1,0)⊗(0,0) and D(1/2,1/2)
of the group L ∼SO(1,3):

s
V,TSB
12 =

∣∣∣∣∣∣∣∣

0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, s

V,TSB
31 =

∣∣∣∣∣∣∣∣

0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, s

V,TSB
23 =

∣∣∣∣∣∣∣∣

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
,

sTSB
01 =

∣∣∣∣∣∣∣∣

0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, sTSB

02 =

∣∣∣∣∣∣∣∣

0 0 i 0

0 0 0 0

−i 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, sTSB

03 =

∣∣∣∣∣∣∣∣

0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
,

(10.16)

sVB
01 =

∣∣∣∣∣∣∣∣

0 0 0 −1

0 0 0 0

0 0 0 0

−1 0 0 0

∣∣∣∣∣∣∣∣
, sVB

02 =

∣∣∣∣∣∣∣∣

0 0 0 0

0 0 0 −1

0 0 0 0

0 −1 0 0

∣∣∣∣∣∣∣∣
, sVB

03 =

∣∣∣∣∣∣∣∣

0 0 0 0

0 0 0 0

0 0 0 −1

0 0 −1 0

∣∣∣∣∣∣∣∣
.

It is easy to verify that generators (10.16) commute with the operator (∂0 +

iBγ0 Bω̃− e2

|~x|)φ(x) = 0 of the FW equation in the Bose-representation (10.15).

The corresponding symmetries of the Dirac equation are obtained with the help

of inverse FW transformation [21].

10.1.6. Bosonic Poincaré Symmetries of the Free

Non-Interacting Dirac Equation

In the case when interaction is absent the set of symmetry operators for the

Dirac equation is much more wide. In addition to above given symmetries we

can determine bosonic Poincaré symmetry of the Dirac equation for the free

spinor field.
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The FW equation (4.21) is invariant not only with respect to the well-known

standard spin 1/2 P F-representation (6.24), (6.25), but also with respect to

the canonical-type spin 1 representation (Bose representation) of the Poincaré

group P , i.e., with respect to the unitary (in the set {φ} of solutions of equation

(4.21)) P B-representation, which is determined by the primary generators

p̂0 = p̌0 = −iγ0ω̂, p̂n = p̌n = ∂n, ĵln = xl∂n −xn∂l + sI
ln + sII

ln, (10.17)

ĵ0k = x0∂k + iγ0{xkω̂ +
∂k

2ω̂
+

[(−→s I +−→s II)×−→
∂ ]k

ω̂+m
},

where sI
ln and sII

ln are given in (10.10), (10.11), respectively, and ~sI,II =

(s23, s31, s12)
I,II.

The proof is performed by the straightforward calculations of (i) the cor-

responding P -commutators (4.2) between the generators (10.17), (ii) the com-

mutators between generators (10.17) and operator (∂0 + iγ0ω̂), (iii) the Casimir

operators of the Poincaré group for the generators (10.17). Acoording to the

Bargman–Wigner classification of the P -covariant fields, just these facts (espe-

cially (iii)) visualize the hidden Bose essence of the P B-representation, gener-

ated by the operators (10.17). For the P B-representation the explicit form of

main Casimir operators is following

p̂µ p̂µ = m2, W
B = wµwµ = m2(−→s TS)2, (10.18)

(compare with (6.19), (6.20)), where wµ ≡ 1
2εµνρσ p̂ρ ĵνσ and, after diagonaliza-

tion carried out with the help of operator WB (10.14),

(−→s TS)2 = (−→s TSBose)2 =−1(1+1)

∣∣∣∣
I 3 0

0 0

∣∣∣∣ , I3 ≡

∣∣∣∣∣∣

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
. (10.19)

It is easy to see that the prime Dirac equation

(∂0 + iH)ψ(x) = 0, H ≡−→
α · −̂→p +βm,

−→
α = γ0−→γ , β = γ0, (10.20)

has all above mentioned spin 1 symmetries of the FW equation. The correspond-

ing explicit forms of the generators qPD in the manifold {ψ} are obtained from

the corresponding formulae (10.9), (10.12), (10.17) for the FW generators qFW

with the help of the inverse FW operator (4.23): qPD = V−qFWV +.
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As a meaningful example, we present here the explicit form for the spin 1

generators of P B symmetries of the Dirac equation

p̂PD
0 = p̃0 = −iH, p̂PD

k = ∂k, ĵPD
kl = xk∂l −xl∂k + skl + ŝkl, (10.21)

ĵPD
0k = x0∂k −xk p̃0 + s0k +

εk`nŝ0`∂n

ω̂ +m
,

where εkln is the Levi-Chivitta tensor (ε123 = +1), and the operators sµν, ŝµν =
V−sII

µνV+ have the form

sµν =
1

4
[γµ,γν] , µ,ν = 0,3,

ŝµν = {ŝ01 =
1

2
iγ2Ĉ, ŝ02 =−1

2
γ2Ĉ, ŝ03 =−γ0

−→
γ ·−→p +m

2ω̂
=− H

2ω̂
, (10.22)

ŝ12 =
i

2
, ŝ31 =

iH

2ω̂
γ2Ĉ, ŝ23 =

H

2ω̂
γ2Ĉ}

(the part of the Lorentz spin operators from (10.22) is not pure matrix because

they depends on the pseudodifferential operator ω̂ ≡
√
−∆+m2 well-defined in

the space S3,4). Of course, the Casimir operators for the P B generators (10.21)

have the same final form (10.18), (10.19) as for the generators (10.17). The

Dirac equation in the Bose representation of the γ-matrices (γµ B = WBγµW−1
B ) is

the Maxwell-type equation for a massive tensor-scalar field.

Note that the generators (10.17) without the additional terms sII
ln (10.11) and

~sII = (s23, s31, s12)
II directly coincide with the well-known generators (6.24),

(6.25) of standard Fermi (spin 1/2) P F symmetries of the FW equation (simi-

lar situation occurs for the generators (10.21) taken without the terms includ-

ing the operators ŝµν from (10.22) – they coincide with the operators (4.15) of

the induced P F-representation (4.16)). These well-known forms determine the

Fermi-case, while operators suggested here are related to the Bose interpretation

of equations (4.21), (4.22), which is found here also to be possible. The only

difference of our Fermi-case from the spin 1/2 generators in [21] is that we

use the prime form of generators related to the real parameters of the Poincare

group.

10.1.7. The Case of Zero Mass, Brief Remix

After the analysis of the arbitrary mass case presented here, the specific char-

acter of the zero mass case in Chapters 8, 9 becomes evident. For m = 0 the
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analogs of the additional operators ŝµν (10.22) are the local pure matrix Lie op-

erators (see, e.g., formulae (9.9), (9.10), (9.12), (9.13)). Therefore, for the m = 0

case, the corresponding P B generators are much simpler than those in (10.21)

and not contain non-local terms (see (9.21)). Moreover, for the m = 0 case the

appealing to the FW representation and extended Clifford–Dirac algebra is not

necessary. In Chapter 9 all Bose symmetries of the massless Dirac equation are

found in the standard Pauli–Dirac representation of the spinor field ψ on the

basis of the ordinary Clifford–Dirac algebra and known [25, 26] PGI operators.

Thus, the search for the additional bosonic symmetries of the massless Dirac

equation is technically much easier. Therefore, our results in Chapters 9, 10,

contain a lot of additional meaningful information in comparison with the re-

sults presented here for the nonzero mass. In Chapters 9, 10, the full considera-

tion of the Fermi–Bose duality of the massless Dirac equation is given. Further-

more, the Fermi–Bose duality of the Maxwell equations with the gradient-type

sources, which are the Bose partner of the massless Dirac equation, is investi-

gated in details. Thus, it is evident that the application of the developed here

methods to the case of m = 0 essentially extend the symmetry properties of the

corresponding massless equations.

10.2. Bosonic Solutions and Conservation Laws of

the Dirac Equation with Nonzero Mass

10.2.1. Bosonic Solutions of the Foldy–Wouthuysen and

Dirac Equations

Here as the next step in the Fermi–Bose duality investigation we consider the

bosonic solution of the Dirac (FW) equation. A bosonic solution of the FW

equation (4.21) is found completely similarly to the procedure of construction

of standard fermionic solution. We use essentially the proved above Bose sym-

metry of the FW equation (4.21), which is based on the Bose generators (10.13).

Thus, the bosonic solution is determined by some stationary diagonal

complete set of operators of bosonic physical quantities for the spin s=(1,0)-

multiplet in the FW representation, e.g., by the set momentum operator and spin

projection operator taken in the Hermitian form. Corresponding spin projection
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operator found from the bosonic set (10.13) is given by

s̀3 = is̆3 =

∣∣∣∣∣∣∣∣

1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, (10.23)

and the stationary diagonal complete set of operators consists of

(−̂→p = −∇, s̀3). (10.24)

The fundamental solutions of equation (4.21), which are the common eigen

solutions of the bosonic complete set (10.24), have the form

ϕ−
~kr

(t,−→x ) =
1

(2π)
3
2

e−ikxdr, ϕ+
~kŕ

(t,−→x ) =
1

(2π)
3
2

eikxdř, (10.25)

where kx = ωt −−→
k −→x and dᾱ = (δ

β̄
ᾱ) are the Cartesian orts in the space C⊗4 ⊂

H3,4, numbers r = (1,2), ř = (3,4) mark the eigen values (+1,−1,0,0) of the

operator s̀3 from (10.23).

The bosonic solutions of equation (4.21) are the generalized states belong-

ing to the space S3,4∗; they form a complete orthonormalized system of bosonic

states. Therefore, any bosonic physical state of the FW field φ from the dense

in H3,4 manifold S3,4 (the general bosonic solution of the equation (4.21)) is

uniquely presented in a form

φ(1,0)(x) =
1

(2π)
3
2

Z

d3k[ξr(
−→
k )dre

−ikx +ξ∗ř(
−→
k )dře

ikx], (10.26)

where ξ(
−→
k ) are the coefficients of expansion of the bosonic solution of the FW

equation (4.21) with respect to the Cartesian basis dᾱ = (δ
β̄
ᾱ) (5.103).

The interpretation of the amplitudes in general solution (10.26) follow from

the equation on eigen vectors and eigenvalues of the operators (10.24)

−̂→p e−ikxdr =
−→
k e−ikxdr, r = (1,2); −̂→p eikxdř = −−→

k eikxdř, ř = (3,4), (10.27)

s̀3d1 = d1, s̀3d2 = −d2, s̀3d3 = 0, s̀3d4 = 0. (10.28)
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Thus, the functions ξ1(
−→
k ), ξ2(

−→
k ) are the momentum-spin amplitudes of the

spin s=1 boson with the momentum −̂→p and spin projections (1,−1), respec-

tively. An attempt to interpret the functions ξ∗3(
−→
k ), ξ∗4(

−→
k ) inside the FW

model leads to the result as follows. The function ξ∗3(
−→
k ) is the momentum-

spin amplitude of the spin s=1 boson state with the momentum −−̂→p and spin

projections 0. The function ξ∗4(
−→
k ) in (10.26) is the momentum-spin amplitude

of the spinless boson with the momentum −−̂→p . And if φ(1,0)(x) ∈ S3,4, then the

bosonic amplitudes ξ(
−→
k ) belong to the Schwartz complex-valued test function

space too.

It is evident from the consideration in Chapters 4–7 that exact quantum-

mechanical interpretation of the amplitudes should be given inside the quantum

mechanics. Here it is the RCQM from Chapter 5. The RCQM of the spin

s=(1,0) particle multiplet is considered in the subsection 5.8.1. The images of

the operators (10.13) in RCQM have the form:

s̆1 =
1√
2

∣∣∣∣∣∣∣∣

0 0 i 0

0 0 −1 0

i 1 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, s̆2 =

1√
2

∣∣∣∣∣∣∣∣

0 0 1 0

0 0 −i 0

−1 −i 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, (10.29)

s̆3 =

∣∣∣∣∣∣∣∣

−i 0 0 0

0 i 0 0

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
;
[
s̆ j, s̆`

]
= ε j`ns̆n.

The transition from the canonical field FW representation (10.13) to the

RCQM is fulfilled on the basis of operator v (2.49) (transformation (2.49) is

valid for the prime anti-Hermitian operators). The quantum-mechanical Hermi-

tian form of the operators (10.29) is as follows:

s̆1
QM =

1√
2

∣∣∣∣∣∣∣∣

0 0 −1 0

0 0 −i 0

−1 i 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, s̆2

QM =
1√
2

∣∣∣∣∣∣∣∣

0 0 i 0

0 0 1 0

−i 1 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
, (10.30)

s̆3
QM =

∣∣∣∣∣∣∣∣

1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

∣∣∣∣∣∣∣∣
;
[
s̆

j
QM, s̆`

QM

]
= iε j`ns̆n

QM.
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The general solution in RCQM is the consequence of the FW bosonic solu-

tion (10.26) and the transformation v (2.49) as well. It has the form

f(1,0)(x) =
1

(2π)
3
2

Z

d3ke−ikx
[
ξ1(

−→
k )d1 +ξ2(

−→
k )d2 +ξ3(

−→
k )d3 +ξ4(

−→
k )d4

]
.

(10.31)

Generators (10.30) are unitary related to the standard spin s=(1,0) SU(2)

generators (5.171). Corresponding transformation is given by

−̆→s QM = u−→s u−1; u =

∣∣∣∣∣∣∣∣

1 0 0 0

0 0 i 0

0 −1 0 0

0 0 0 1

∣∣∣∣∣∣∣∣
, u−1 = u† =

∣∣∣∣∣∣∣∣

1 0 0 0

0 0 −1 0

0 −i 0 0

0 0 0 1

∣∣∣∣∣∣∣∣
;

(10.32)

uu−1 = u−1u = 1.

The equations on eigen vectors and eigenvalues for the diagonal stationary

complete set of operators have the form

−̂→p e−ikxdᾱ =
−→
k e−ikxdᾱ, ᾱ = (1,2,3,4), (10.33)

s̆3
QMd1 = d1, s̆3

QMd2 = −d2, s̆3
QMd3 = 0, s̆3

QMd4 = 0. (10.34)

Now we can give the quantum-mechanical interpretation of the ampli-

tudes both in the RCQM solution (10.31) and in the canonical FW field so-

lution (10.26) as well. The functions ξ1(
−→
k ), ξ2(

−→
k ), ξ3(

−→
k ) are the quantum-

mechanical momentum-spin amplitudes of the spin s=1 boson with the momen-

tum −̂→p and spin projections (1,−1,0), respectively. The function ξ4(
−→
k ) is the

quantum-mechanical momentum-spin amplitude of the spinless boson with the

momentum −̂→p .

The main step in the proof of the bosonic nature of the solution (10.31) is

the corresponding bosonic Poincaré symmetry of the set { f(1,0)(x)} of solutions

(10.31).

Indeed, the Schrödinger–Foldy equation (5.98) and the set { f(1,0)(x)} of

its solutions (10.31) are invariant with respect to the reducible unitary bosonic

representation (5.22) of the Poincaré group P . The corresponding 4×4 matrix-

differential generators are given by (5.20), (5.21), where the spin s=(1,0) SU(2)

generators −→s = (s`n) are given in (10.30).
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The proofs of similar asserions are presented in the Chapter 5.

Moreover, the set {φ(1,0)(x)} of solutions (10.26) is invariant with respect to

the unitary bosonic representation of the group P , which is determined by the

generators (10.17) and the Casimir operators (10.18). Therefore, the Bargman–

Wigner analysis of the Poincaré symmetry of the set {φ(1,0)(x)} of solutions

(10.26) completes the demonstration that it is the set of Bose states φ(1,0) of

the field φ, i.e., the s=(1,0) multiplet states. Hence, the existence of bosonic

solutions of the FW equation is proved.

Note that the link between the fermionic amplitudes from the solutions

(4.28), (4.30) and the bosonic amplitudes from (10.26) can be presented in

the form of relations (42) in [6]. The formulas (42) from [6] are the con-

sequences of application of operator (1.32) to the column of corresponding

quantum-mechanical amplitudes.

The bosonic solution of the Dirac equation follows from the bosonic solu-

tion (10.26) of the FW equation ψ = V−φ as a result of inverse FW transforma-

tion V− from (4.24).

In the terms of bosonic quantum-mechanical momentum-spin amplitudes

ξᾱ(
−→
k ) from (10.31) and (10.26) the bosonic spin (1,0) multiplet solution ψ =

V−φ of the Dirac equation (10.20) is given by

ψ(1,0)(x) =
1

(2π)
3
2

Z

d3k[ξr(
−→
k )vre

−ikx +ξ∗ř(
−→
k )vře

ikx], r = (1,2), ř = (3,4),

(10.35)

where the amplitudes and their quantum-mechanical interpretation are similar

to (10.31), (10.26) and the 4-component spinors are the same as in the Dirac

theory of fermionic doublet

v1(
−→
k ) = N

∣∣∣∣∣∣∣∣

ω̃ +m

0

k3

k1 + ik2

∣∣∣∣∣∣∣∣
, v2(

−→
k ) = N

∣∣∣∣∣∣∣∣

0

ω̃+m

k1 − ik2

−k3

∣∣∣∣∣∣∣∣
, (10.36)

v3(
−→
k ) = N

∣∣∣∣∣∣∣∣

k3

k1 + ik2

ω̃ +m

0

∣∣∣∣∣∣∣∣
, v4(

−→
k ) = N

∣∣∣∣∣∣∣∣

k1 − ik2

−k3

0

ω̃+m

∣∣∣∣∣∣∣∣
,

and notation N is as follows N ≡ 1√
2ω̃(ω̃+m)

.
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Finally, the bosonic nature of the solution (10.35) is proved on the basis of

bosonic representation (10.21) of the Poincaré group P , with respect to which

the Dirac equation (10.20) is invariant. Indeed, the Casimir operators for the

representation (10.21) have the bosonic eigenvalues.

Note that the Bose solutions of the Dirac equation can be found without

the framework of our program of synthesis of arbitrary spin covariant parti-

cle equations without redundant components, which is the main content of the

Chapters 5–7. Nevertheless, above such solutions are found inside this program

as well. It is possible only after special procedure of transition (10.32) to the

specific representation (10.30).

The reason is as follows. The program of such synthesis is developed

for the particle-antiparticle doublets. It is evident that the spin s=(1,0) multi-

plet is the object of another nature. Therefore, in Chapters 5–7 we appeal to

the 8-component form of the Dirac equation in comparison with bosonic spin

s=(1.0.1,0) particle-antiparticle doublet, where the proof of the Fermi–Bose du-

ality is fulfilled without transitions like (10.32), (10.30), and is the standard

procedure of the step by step synthesis RCQM → FW → Dirac-like model.

10.2.2. Lagrangian for the Foldy–Wouthuysen Equation

Before the Noether analysis of conservation laws we must consider the La-

grange approach (L-approach) for the spinor field φ(x) in the FW representa-

tion. The L-approach in this representation has been formulated first in [40,

41]. Representation of the operator ω̂ ≡
√

−4+m2 in a form of the series over

the Laplace operator 4 powers has been used. Author applied a nonstandard

formulation of the least action principle in the terms of infinite order derivatives

from the field functions. We have a questions for such consideration.

Therefore, we present in [42] and below briefly a well-defined L-approach

for the spinor field in the FW representation, which is based on the standard for-

mulation of the least action principle. The quantum-mechanical rigged Hilbert

space (both in the coordinate and momentum realizations of this space) is used,

but the start is well-defined from momentum realization. In such realization

rigged Hilbert space is given by

S̃3,4 ⊂ H̃3,4 ⊂ S̃3,4∗; H̃3,4 = L2(R3
k)⊗C⊗4

= {φ = (φµ) : R3
k → C⊗4;

Z

d3k| f (t,
−→
k )|2 < ∞}}, (10.37)
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Here R3
k is the momentum operator −→p spectrum, which is canonically con-

jugated to the coordinate −→x , ([x j, pl] = iδ jl). Corresponding −→x -realization is

connected to (10.37) by 3-dimensional Fourier transformation. The alternative

use of both realizations is based on the principle of heredity with classical and

non-relativistic quantum mechanics of single mass point and with the mechan-

ics of continuous media. The Lagrange function and the action (in alternative −→x
or

−→
k -realizations) are constructed in complete analogy with their consideration

in the classical mechanics of a system with finite number of freedom degrees

q = (q1,q2, ...). The difference is only in the fact that here the continuous vari-

able
−→
k ∈ R3

k
is the carrier of freedom degrees.

In the
−→
k -realization, where this analogy is maximally clear, the Lagrange

function has a form

L = L(φ̃, φ̃†, φ̃,0 , φ̃†,0 ) =
i

2
[φ̃†(φ̃,0 +iγ0ω̃φ̃)− (φ̃†,0−iω̃φ̃†γ0)φ̃], (10.38)

and in the −→x -realization this function can be found from (10.38) by the Fourier

transformation. The Euler–Lagrange equations coincide with the FW equation

in both realizations. For example, in the
−→
k -realization the Euler–Lagrange

equations

δW

δφ̃†
≡ ∂L

∂φ̃†
− ∂

∂t

∂L

∂φ̃†,0
= 0,

δW

δφ̃
≡ ∂L

∂φ̃
− ∂

∂t

∂L

∂φ̃,0
= 0, (10.39)

coincide with the FW equation for the vectors φ̃ ∈ H̃3,4:

(i∂0 − γ0ω̃)φ̃(t,
−→
k ) = 0; ω̃ ≡

√−→
k 2 +m2,

−→
k ∈ R3

k , (10.40)

and with conjugated equation for φ̃†.

The well defined L-approach for the FW field becomes essentially actual

problem after the construction in [43] of the quantum electrodynamics in the

FW representation.

10.2.3. The Fermi–Bose Conservation Laws for the Spinor Field

Note briefly the existence of the Fermi–Bose conservation laws for the spinor

field. It is preferable to calculate them in the FW (not local Pauli–Dirac) rep-

resentation too. In FW representation the Fermi spin −→s from (4.14) (together
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with the “boost spin”) is the independent symmetry operator for the FW equa-

tion. The orbital angular momentum and pure Lorentz angular momentum (the

carriers of external statistical degrees of freedom) are in this representations the

independent symmetry operators too (one can find the corresponding indepen-

dent spin and angular momentum symmetries in the Pauli–Dirac representation

for the Dirac equation too, but the corresponding operators are essentially non-

local). Hence, one obtains 10 Poincaré and 12 additional (3 spin, 3 pure Lorentz

spin, 3 angular momentum, 3 pure angular momentum) conservation laws.

Therefore, in the FW representation one can find very easily the 22

fermionic and 22 bosonic conservation laws. Separation into bosonic and

fermionic set is caused by the existence of the Fermi–Bose symmetries and

solutions. Indeed, if substitution of bosonic P generators q (10.17) and bosonic

solutions (10.26) into the Noether formula

Q =

Z

d3xφ†(x)qφ(x) (10.41)

is made, then automatically the bosonic conservation laws for s=(1,0)-multiplet

are obtained. Of course, the standard substitution of corresponding well-known

fermionic generators and solutions gives fermionic conservation laws.

We illustrate briefly the difference in fermionic and bosonic conservation

laws on the example of corresponding spin conservation. For the fermionic spin

(4.14) in FW model and bosonic spin (10.13), (10.16) the conservation laws are

given by

SF
mn =

Z

d3xφ†(x)smnφ(x) =

Z

d3kA†(~k)smnA(~k)), (10.42)

SB
mn =

Z

d3xφ†(x)s̆mnφ(x) =

Z

d3kB†(~k)s̆mnB(~k)), (10.43)

where

A(~k) = column(a1, a2, a∗3, a∗4), (10.44)

B(~k) = column(ξ1, ξ2, ξ∗3, ξ∗4). (10.45)

We present these conservation laws in terms of quantum-mechanical Fermi

and Bose amplitudes. Such explicit quantum-statistical form is common for all

integral conserved quantities.
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10.2.4. Conclusion Remarks

Fermi–Bose duality of the Dirac equation with nonzero mass is demonstrated.

The property of the Fermi–Bose duality of the Dirac equation is proved above

on the three levels: bosonic symmetries, bosonic solutions and corresponding

conservation laws. The role of the Clifford algebra C`R(0,6) and corresponded

28-dimensional Lie algebra SO(8) in the proof of these assertions is demon-

strated.

We do not consider here the Pauli principle. Our results are not related to

this concept. In any case we do not change the main well-known postulates

and theory of the Fermi–Dirac and Bose–Einstein statistics. Our results have

another, new principal, meaning. In our approach the Fermi–Bose duality of the

spinor field found on the level of amplitude relations is proved in another way

on the examples of the existence of the bosonic symmetries (section 10.1), so-

lutions and conservation laws (section 10.2) of the Dirac equation with nonzero

mass. It opens new possibilities of the Dirac equation application for the de-

scription of bosonic states. The specific case of zero mass is presented in the

chapters 8, 9.

Thus, the property of the Fermi–Bose duality of the Dirac equation does

not break the Fermi statistics for fermions (with the Pauli principle) and Bose

statistics for bosons (with Bose condensation). We also never mixed the Fermi

and Bose statistics between each other. Our assertion is following. One can

apply with equal success both Fermi and Bose statistics for one and the same

Dirac equation and one and the same spinor field, i.e., the Dirac equation can

describe both fermionic and bosonic states.
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Appendices

Appendix I. The Complete Set of the Hydrogen Solutions

(Angular Part) of the Equations (8.1)

−
E

I0

A =
−
C

I

RI
HPm+1

lI cos(m+1)φ,
−
E

I1

B = −
−
C

I (
lI −m+1

)
RI

EPm
lI+1

cosmφ,
−
E

I2

B =
−
C

I (
lI −m+1

)
RI

EPm
lI+1

sinmφ,
−
E

I3

B = −
−
C

I

RI
EPm+1

lI+1
cos(m+1)φ,

−
H

I0

B =
−
C

I

RI
EPm+1

lI+1
sin(m+1)φ,

−
H

I1

A =
−
C

I (
lI +m+1

)
RI

HPm
lI sinmφ,

−
H

I2

A =
−
C

I (
lI +m+1

)
RI

HPm
lI cosmφ,

−
H

I3

A = −
−
C

I

RI
HPm+1

lI sin(m+1)φ,
−
E

II0

A =
−
C

II

RII
HPm+1

lII cos(m+1)φ,
−
E

II1

B =
−
C

II (
lII +m

)
RII

E Pm
lII−1

cosmφ,
−
E

II2

B = −
−
C

II

(lII +m)RII
E Pm

lII−1
sinmφ,

−
E

II3

B = −
−
C

II

RII
E Pm+1

lII−1
cos(m+1)φ,

−
H

II0

B =
−
C

II

RII
E Pm+1

lII−1
sin(m+1)φ,

−
H

II1

A = −
−
C

II (
lII −m

)
RII

HPm
lII sinmφ,

−
H

II2

A = −
−
C

II (
lII −m

)
RII

HPm
lII cosmφ,

−
H

II3

A = −
−
C

II

RII
HPm+1

lII sin(m+1)φ,
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+
E

I0

A=
+
C

I (
lI +m+1
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RI

HPm
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+
E

I1

B =
+
C

I

RI
EPm+1

lI+1
cos(m+1)φ,

+
E

I2

B=
+
C

I

RI
EPm+1

lI+1
sin(m+1)φ,

+
E

I3

B = −
+
C

I

(lI −m+1)RI
EPm

lI+1
cosmφ,

+
H

I0

B = −
+
C

I (
lI −m+1

)
RI

EPm
lI+1

sinmφ,
+
H

I1

A =
+
C

I

RI
HPm+1

lI sin(m+1)φ,
+
H

I2

A= −
+
C

I
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HPm+1

lI cos(m+1)φ,
+
H

I3

A=
+
C

I

(lI +m+1)RI
H Pm

lI sinmφ,

+
E

II0
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+
C

II (
lII −m
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RII

H Pm
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+
E

II1

B =
+
C
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RII
E Pm+1

lII−1
cos(m+1)φ,

+
E

II2

B =
+
C

II

RII
E Pm+1

lII−1
sin(m+1)φ,

+
E

II3

B =
+
C

II

(lII +m)RII
E Pm

lII−1
cosmφ,

+
H

II0

B =
+
C

II (
lII +m

)
RII

E Pm
lII−1

sinmφ,
+
H

II1

A =
+
C

II

RII
HPm+1

lII sin(m+1)φ,
+
H

II2

A = −
+
C

II

RII
HPm+1

lII cos(m+1)φ,
+
H

II3

A = −
+
C

II

(lII −m)RII
HPm

lII sinmφ,

Appendix II. The Complete Set of Charges for the

Equations (8.1)

−
ρ

I

e= −
−
C

I

Pm+1
lI cos(m+1)φ

(
εRI

E

)
,lI+2 ,

−
ρ

II

e = −
−
C

II

Pm+1
lII cos(m+1)φ

(
εRII

E

)
,−lII+1 ,

+
ρ

I

e= −
+
C

I

(lI +m+1)Pm
lI cosmφ

(
εRI

E

)
,lI+2 ,

+
ρ

II

e =
+
C

II

(lII −m)Pm
lII cosmφ

(
εRII

E

)
,−lII+1 ,
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−
ρ

I

mag= −
−
C

I

Pm+1
lI+1

sin(m+1)φ
(
µRI

H

)
,−lI ,

−
ρ

II

mag= −
−
C

II

Pm+1
lII−1

sin(m+1)φ
(
µRII

H

)
,lII+1 ,

+
ρ

I

mag=
+
C

I

(lI −m+1)Pm
lI+1

sinmφ
(
µRI

H

)
,−lI ,

+
ρ

II

mag= −
+
C

II

(lII +m)Pm
lII−1

sinmφ
(
µRII

H

)
,lII+1 ,

where the following notations are used

(
εR

β
α

)
,l+2≡ ε

(
d

dr
+

l +2

r

)
R

β
α +R

β
α

dε

dr
, etc.

Appendix III. Verification of the Hydrogen Solutions

Our experience both in publications and conferences [1–7] shows that for the

readers it is not so easy to believe in the possibility of using classical electro-

dynamics in medium instead of relativistic quantum mechanics, especially for

such a fundamental problem as the description of hydrogen spectrum, which,

as we can recall from the history (see, e.g., [8]), was the birthplace of quantum

mechanics. So our proof here must be completely clear. The best thing in such

situation is the direct verification made by direct substitution of solutions into

the equations in order to demonstrate them being transformed into identities.

Moreover, it can help the readers.

Let us make the substitution of solutions (8.19)–(8.21) into the equations

(8.1). We verify here only the first component of the first curl-equation in (8.11)

(and only for one set of the solutions)

∂2H3 −∂3H2 − ω̃εE1 −∂1E0 = 0, (10.45)

– the verification of another components is similar. We are using the specific

formulae in spherical coordinates which can be easily found with the help of

the well-known recurrence relations for spherical harmonics. They are:

∂1

[
RI

HPm+1
l cos(m+1)φ

]
=

= 1
2l+1

cosφcos(m+1)φ
(
RI

H ,l+1 Pm+2
l−1 −RI

H ,−l Pm+2
l+1

)
+

+m+1
sin θ Pm+1

l
RI

H

r
cosmφ,

(10.45)
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∂2

[
RI

HPm+1
l sin(m+1)φ

]
=

= 1
2l+1 sinφ sin(m+1)φ

(
RI

H ,l+1 Pm+2
l−1 −RI

H ,−l Pm+2
l+1

)
+

+m+1
sin θ Pm+1

l

RI
H

r
cosmφ,

(10.45)

∂3

[
(l +m+1)RI

H Pm
l cosmφ

]
=

= (l +m+1) cosmφ
2l+1

[
(l +m)RI

H ,l+1 Pm
l−1 +(l−m+1)RI

H ,−l Pm
l+1

]
.

(10.45)

With the help of these formulae and a simple trigonometric formula equation

(1) is transformed to the form:

cosmφ




ω̃ε(l−m+1)RI
EPm

l+1−
− 1

2l+1

(
RI

H ,l+1 Pm+2
l−1 −RI

H ,−l Pm+2
l+1

)
−2 m+1

sin θ Pm+1
l

RI
H

r
−

− (l+m+1)
2l+1

[
(l +m)RI

H ,l+1 Pm
l−1 +(l −m+1)RI

H ,−l Pm
l+1

]


 = 0.

(10.45)

It is useful for a moment to refuse in equation (5) from the notations (8.17) and

to apply the formula

2(2l +1)m+1
sin θ Pm+1

l = −(l +1)Pm+2
l−1 − lPm+2

l+1 −
−(l +1)(l +m+1)(l +m)Pm

l−1 − l(l −m)(l−m+1)Pm
l+1,

(10.45)

which is the linear combination of the well-known recurrence relations for

spherical harmonics. After that it is easy to come to the result

(l−m+1)Pm
l+1 cos(mφ)

[
εωRI

E −RI
H,−l

]
= 0, (10.45)

which consists of a nonzero expression and the first one of the radial Dirac

equations (8.16). Q. E. D.

References

[1] Simulik V.M., Solutions of the Maxwell equations describing the spec-

trum of hydrogen, Ukr. Math. J., Vol.49, No.7, 1075–1088 (1997).

[2] Simulik V.M., Krivsky I.Yu., Clifford algebra in classical electrodynami-

cal hydrogen atom model, Adv. Appl. Cliff. Algebras. Vol.7, No.1, 25–34

(1997).

[3] Simulik V.M., Spectrum of hydrogen in classical electrodynamics, Ukr.

J. Phys., Vol.42, No.4, 406–407 (1997).



Appendices 333

[4] Simulik V.M., Krivsky I.Yu., Relationship between the Maxwell and

Dirac equations: symmetries, quantization, models of atom, Rep. Math.

Phys., Vol.50, No.3, 315–328 (2002).

[5] Simulik V.M. and Krivsky I.Yu., ”An electrodynamical version of the hy-

drogen spectrum.” in Proceedings of the 28th European Group for Atomic

Spectroscopy Conference, Graz., Austria, 1996, edited by L. Windholz

(European Physical Society, Paris), p. 41.

[6] Simulik V.M. and Krivsky I.Yu., ”On a bosonic structure of electron

and muon” in Proceedings of the 29th European Group for Atomic Spec-

troscopy Conference, Berlin, 1997, edited by H.-D. Kronfeldt (European

Physical Society, Paris), p. 154.

[7] Simulik V.M. and Krivsky I.Yu., ”Theoretical derivation of atomic spectra

in the classical electrodynamical model of atom” in Proceedings of the

29th European Group for Atomic Spectroscopy Conference, Berlin, 1997,

edited by H.-D. Kronfeldt (European Physical Society, Paris), p. 198.

[8] Lakhtakia A., Models and modelers of hydrogen, World Scientific, Lon-

don, 1996, 440 p.





Author Contact Information

Prof. Volodimir Simulik
Full Doctor of Physical and Mathematical Sciences

Principal Researcher

Institute of Electron Physics

National Academy of Sciences of Ukraine

Uzhgorod, Ukraine

E-mail: vsimulik@gmail.com



 



 

 

 

 

 

 

 

 

 

 

 

Index  
 

 

A 

algebra of observables, 100, 101, 104, 114 

amplitude, 40, 41, 120, 128, 147, 149, 153, 

171, 188, 192, 317, 318, 323 

arbitrary dimensions, 13, 47, 170 

arbitrary mass, 22, 31, 88, 89, 158, 253, 314 

B 

Bargman–Wigner classification, 31 

Bargman–Wigner equation, 32 

baryon, 25, 60, 163, 281, 326 

Bose symmetries, 7, 8, 284, 303, 310, 315, 

322 

boson, 6, 12, 25, 56, 92, 119, 120, 122, 123, 

126, 127, 128, 136, 137, 145, 147, 149, 

153, 157, 160, 171, 188, 189, 191, 192, 

193, 195, 217, 218, 220, 250, 252, 260, 

264, 267, 275, 278, 296, 297, 304, 317, 

318, 323, 324, 325 

Bosonic doublet with nonzero mass, 218 

C 

canonical quantum mechanics, xiii, xvi, 7, 

13, 17, 20, 24, 25, 28, 29, 30, 47, 51, 57, 

58, 61, 66, 87, 89, 91, 92, 93, 95, 97, 99, 

101, 103, 105, 107, 109, 111, 113, 115, 

117, 119, 120, 121, 122, 123, 124, 125, 

126, 127, 128, 129, 131, 133, 134, 135, 

137, 139, 141, 143, 145, 146, 147, 148, 

149, 150, 151, 153, 154, 155, 157, 158, 

159, 161, 162, 163, 165, 198, 201, 249, 

251, 252, 256 

classical electrodynamics, xiii, 42, 264, 265, 

267, 273, 297, 299, 332 

classical mechanics, 36, 89, 264, 321 

classification, 11, 31, 73, 102, 313 

Clifford algebra, xiv, 1, 2, 3, 4, 5, 7, 9, 10, 

11, 12, 14, 15, 17, 18, 19, 21, 25, 26, 61, 

83, 85, 104, 105, 107, 109, 162, 165, 

303, 305, 323, 325, 332 

Clifford–Dirac algebra, xiv, 1, 2, 9, 10, 19, 

20, 46, 53, 82, 85, 104, 105, 107, 108, 

109, 110, 162, 163, 207, 212, 229, 235, 

277, 278, 285, 306, 315, 323, 324 

complex numbers, 2, 4, 70, 105 

conformal differential geometry, 37 

conservation law of spin 1/2 current, 34 

conservation laws, xiii, 7, 14, 20, 25, 34, 41, 

54, 60, 85, 104, 112, 113, 114, 118, 163, 

175, 198, 209, 256, 265, 282, 283, 300, 

303, 304, 305, 306, 315, 320, 321, 322, 

323, 324, 327 

Coulomb interaction, 94 



Index 338 

D 

Dirac equation derivation, xiv, 27, 28, 30, 

33, 38, 42, 52, 53, 118, 210, 247 

Dirac model, 32, 52, 67, 68, 83, 87, 88, 105, 

119, 207, 209, 210, 227, 246, 249, 273 

duality, xiii, 1, 7, 12, 13, 14, 20, 25, 53, 84, 

162, 163, 189, 218, 227, 241, 251, 268, 

283, 303, 304, 305, 315, 323, 324 

dynamic and kinematic aspects, 103 

dynamical variable, 96, 99, 100, 112, 130, 

209 

E 

electric charge, 273 

electricity, 281, 301 

electromagnetic, 2, 19, 22, 23, 24, 31, 35, 

36, 37, 38, 39, 40, 41, 42, 54, 61, 77, 81, 

85, 89, 197, 218, 219, 220, 221, 227, 

228, 244, 245, 250, 253, 254, 255, 256, 

257, 258, 265, 266, 267, 268, 270, 271, 

272, 274, 275, 276, 279, 281, 283, 291, 

293, 295, 296, 297, 298, 299, 300, 305, 

324, 325 

electromagnetic fields, 228 

electromagnetic waves, 218, 244 

electromagnetism, 36, 258, 281 

electron, 19, 30, 31, 35, 50, 53, 58, 61, 67, 

77, 78, 79, 80, 89, 132, 158, 172, 202, 

245, 257, 258, 261, 265, 266, 267, 274, 

275, 279, 280, 281, 290, 296, 297, 298, 

299, 324, 325, 333 

elementary particle, 13, 21, 28, 31, 34, 246, 

253 

energy, 30, 32, 36, 56, 65, 81, 89, 93, 94, 

98, 114, 117, 129, 133, 160, 161, 245, 

248, 260, 271, 272, 298 

external and internal degrees of freedom, 

100, 112 

external Coulomb field, 33, 41, 307, 309 

F 

Fermi–Bose, xiii, 1, 12, 13, 14, 20, 53, 163, 

218, 227, 241, 251, 303, 315, 320, 321, 

322, 323, 324 

Fermi–Bose conservation laws, 321 

Fermi--Bose duality, xiii, 1, 12, 13, 14, 20, 

53, 163, 218, 227, 241, 251, 303, 315, 

323, 324 

Fermi--Bose triality, 227 

Fermionic and Bosonic amplitudes, 292 

fermions, 6, 67, 218, 227, 251, 264, 267, 

275, 278, 290, 296, 297, 304, 323 

field of real numbers, xiv, 1, 2, 7, 8, 9, 10, 

46, 83, 104, 108, 109, 277, 278, 285, 

303, 304, 305 

field theory, xiii, xiv, 2, 3, 13, 20, 23, 24, 

29, 57, 58, 68, 73, 82, 89, 93, 95, 118, 

141, 150, 157, 162, 167, 170, 174, 176, 

180, 183, 184, 187, 191, 194, 198, 201, 

202, 203, 211, 213, 222, 227, 228, 229, 

232, 234, 238, 241, 244, 245, 246, 247, 

248, 249, 250, 251, 252, 254, 256, 267 

Fock space, 134 

Foldy–Wouthuysen representation, 55, 59, 

69, 71, 73, 75, 77, 79, 81, 83, 85, 159, 

203, 306, 309, 326, 327 

Foldy–Wouthuysen transformation, 22, 32, 

54, 85, 106, 253 

fundamental dynamical variables, 99 

G 

gamma matrix representations, 1, 2, 3, 5, 7, 

9, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 

25, 85, 165, 304, 325 

gamma matrix(ies), 1, 3, 5, 7, 9, 11, 13, 14, 

15, 17, 19, 21, 23, 25 

geodesic equation, 36 

gravitation, 36, 59, 265, 299 

gravitational field, 35, 60, 261 

gravity, 146, 228, 234, 241, 264, 273, 274 



Index 339 

H 

Hamiltonian, 22, 24, 32, 36, 37, 56, 57, 60, 

62, 77, 78, 79, 80, 81, 82, 89, 90, 92, 98, 

105, 129, 159, 160, 173, 253, 255, 259, 

260 

helicity, 44, 218, 246 

Hermitian operator, 6, 49, 70, 72, 106, 168, 

177, 178, 185, 208, 248, 250, 310, 317 

Higgs Boson, 275 

Hilbert space, xv, 3, 28, 29, 48, 63, 71, 73, 

74, 90, 93, 96, 97, 116, 130, 135, 143, 

146, 151, 277, 285, 293, 307, 320 

hydrogen, xiii, 19, 33, 41, 42, 43, 55, 61, 

112, 159, 162, 164, 218, 246, 261, 263, 

265, 266, 267, 270, 271, 272, 273, 274, 

275, 278, 281, 297, 298, 301, 305, 306, 

307, 308, 309, 326, 331, 332, 333 

hydrogen atom model, 19, 61, 162, 266, 

298, 332 

hydrogen solutions, 266, 270, 272, 278, 

329, 331 

I 

inertial frame of reference (IFR), xvi, 48, 

96, 104 

information processing, 60 

involution, 8, 40, 48, 99, 131 

K 

kinematic aspects, 103 

Klein­Gordon equation, 52 

Klein–Gordon operator, 30, 37 

L 

Lagrangian formalism, 62 

Lagrangians, 41, 265, 295, 300 

Lamb shift, 263, 273 

Langevin equation, 34 

Lie algebra, xv, 1, 4, 5, 6, 7, 8, 10, 11, 12, 

18, 40, 63, 64, 65, 102, 103, 109, 120, 

129, 169, 179, 183, 186, 189, 192, 196, 

206, 207, 208, 217, 226, 233, 240, 251, 

285, 291, 309, 310, 323 

Lie group, 84 

M 

magnetic field, 262, 300 

magnetic moment, 24, 256 

magnetism, 281, 301 

massless Dirac equation, 8, 16, 27, 38, 39, 

40, 41, 42, 46, 47, 199, 219, 265, 283, 

284, 285, 288, 290, 291, 292, 296, 303, 

305, 315, 325 

matrix algebra, 14, 110, 111 

matter, 33, 58, 101, 245, 251, 275, 299 

Maxwell electrodynamics in medium, 33, 

38 

Maxwell equations, xiii, 16, 25, 27, 33, 38, 

39, 41, 42, 43, 44, 45, 46, 47, 61, 164, 

218, 219, 220, 221, 250, 258, 263, 264, 

265, 266, 270, 273, 275, 278, 280, 281, 

283, 284, 285, 288, 289, 290, 291, 296, 

298, 299, 305, 315, 324, 326, 332 

N 

nonzero mass, 7, 8, 12, 13, 14, 19, 20, 27, 

38, 47, 53, 54, 85, 162, 163, 198, 199, 

211, 217, 218, 219, 234, 241, 250, 256, 

265, 267, 269, 271, 273, 275, 277, 279, 

281, 303, 304, 305, 306, 307, 309, 311, 

313, 315, 317, 319, 321, 323, 324, 325, 

327 

O 

one dimension, 94, 248 

operators of observables, 117 



Index 340 

P 

partial differential equations, 203 

particle mass, 241 

particle multiplets, 146, 150, 154 

particle physics, 265, 281 

particle singlets, 119 

Particle-Antiparticle Bosonic Doublets, 134, 

141, 183, 201, 241 

path integrals, 58 

Pauli–Dirac Representation, 74 

photons, 228, 296 

physical fields, 258, 280 

Poisson process, 35, 59 

positron, 27, 50, 67, 77, 78, 80, 81, 132, 

173, 174, 245 

principle of least action, 30, 31, 300 

principle of least action for the spinor field, 

30 

principles of heredity, 88, 118 

probability distribution, 116, 117, 246 

Q 

quantization, 3, 19, 22, 23, 25, 60, 133, 176, 

189, 202, 209, 228, 253, 254, 255, 257, 

278, 280, 283, 293, 296, 300, 324, 333 

quantum electrodynamics (QED), xiii, 53, 

62, 167, 228, 245, 246, 258, 273, 280, 

288, 290, 295, 296, 299, 300, 321 

quantum field theory, 1, 7, 12, 21, 28, 53, 

84, 162, 164, 228, 245, 305 

quantum theory, xiii, 7, 25, 49, 53, 81, 88, 

118, 158, 271, 293, 296, 305, 324, 325 

R 

real gamma matrices, 17 

reducible unitary bosonic representation, 

145, 150, 153, 157, 178, 182, 186 

relativistic invariance, 68, 73, 95, 101, 103, 

132, 178, 185, 227, 251 

S 

scalar field, 19, 23, 42, 61, 220, 255, 257, 

266, 271, 272, 274, 276, 281, 283, 291, 

293, 295, 297, 298, 314 

spinor field, xiii, 3, 5, 7, 20, 28, 30, 33, 34, 

41, 52, 53, 59, 65, 73, 75, 79, 80, 81, 82, 

83, 105, 107, 159, 163, 209, 210, 218, 

265, 285, 293, 295, 296, 299, 305, 312, 

315, 320, 321, 323, 324, 327 

stationary Dirac equation, 33, 38, 265, 267, 

269, 271, 273, 275, 277, 279, 281, 298 

stationary Maxwell equation, 263, 275, 298 

supersymmetry (SUSY), xvi, 12, 13, 275 

synthesis of arbitrary spin covariant particle 

equations, 244 

T 

time evolution, 97 

total energy, 133, 175, 245 

two­valued process, 234 

V 

Van der Waerden–Sakurai Derivation, 30 

vector, xv, 8, 37, 38, 40, 43, 63, 65, 90, 101, 

114, 227, 228, 242, 264, 272, 278, 287, 

288, 289, 291, 295, 296, 300, 307, 308, 

310 

velocity, 32, 33, 35, 36, 38, 77, 78, 83 

W 

wave function, 36, 37, 55, 80, 84, 90, 92, 

94, 98, 112, 129, 134, 142, 151, 158, 

174, 198, 242, 248, 249 

wave vector, 37 



Index 341 

Z 

zero mass, 8, 220, 246, 278, 283, 285, 287, 

289, 291, 293, 295, 297, 299, 301, 314, 

323



 



 



 


	Contents
	Preface
	1 On the “Old” and “New” Gamma Matrix Representations of the Clifford Algebra
	2 Twenty Six Variants of the Dirac Equation Derivation
	3 On the Representations of the Poincar´e Group for the Local and Canonical Fields
	4 Dirac Equation in the Canonical Foldy–Wouthuysen Representation
	5 Relativistic Canonical Quantum Mechanics of Arbitrary Spin
	6 Relativistic Field Theory of Arbitrary Spin in Canonical Foldy–Wouthuysen Type Representation
	7 Covariant Equations of Arbitrary Spin
	8 Link between the Stationary Dirac Equation with Nonzero Mass in External Field and the Stationary Maxwell Equations in Specific Medium
	9 Specific Case of Zero Mass
	10 Fermi-Bose Duality of the Dirac Equation with Nonzero Mass
	Appendices
	Author Contact Information
	Index
	Related Nova Publications



