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Preface

Quantum theory grew up, from Planck to Heisenberg and Schroedinger, in response to a welter of new experimental
phenomena: measurements of the heat radiation spectrum, the photoelectric effect, specific heats of solids, radioactive
decay, the hydrogen spectrum, and confusingly much more. Yet this theory, emerging from the mire and blood of
empirical research, radically affected the scientific world-picture. If it did describe a world ‘behind the phenomena’, that
world was so esoteric as to be literally unimaginable. The very language it used was broken: an analogical extension of
the classical language that it discredits, and redeemed at best by the mathematics that it tries to gloss.

Interpretation of quantum theory became genuinely feasible only after von Neumann's theoretical unification in 1932.
Von Neumann himself, in that work, attempted to codify what he took to be the common understanding.
Astonishingly, the attempt led him to assert that in measurement something happens which violates Schroedinger's
equation, the theory's cornerstone. As he saw very clearly, interpretation enters a circle when its main principle is
Born's Rule for measurement outcome probabilities, while at the same time measurements are processes in the domain
of the theory itself. Behold the enchanted forest: every road leads into it, and none leads out—or does the hero's
sword cleave the wood by magic?

An empiricist bias will be evident throughout this book, but my own interpretation of quantum mechanics does not
begin until Chapter 9. The first three chapters provide philosophical background; though they overlap my Laws and
Symmetry, I have tried to make them interesting in their own right. The next four chapters mainly outline the
achievements of foundational research, though with an eye to the philosophical issues to come. The negative part is to
show that the phenomena themselves, and not theoretical motives, can suffice to eliminate Common Cause models of
the observable world. The positive part is the conclusion that there are adequate descriptions of



measurement—in the sense required for Born's Rule—internal to quantum theory. To make the book relatively self-
contained, Chapters 6 and 7 introduce all the quantum mechanics needed for the philosophical discussions to come.

From a purely philosophical point of view, the most important clarification reached since 1925 concerns the criteria of
adequacy for interpretations of quantum mechanics. It appears at present that more than just one tenable
interpretation, already in process of development, can meet those criteria.

I regret that I may have done little justice to the promising interpretations now underway which differ from my own,
although I have tried to point to them as often as I could. I regard every interpretation as increasing our
understanding, and believe that an awareness of what rival interpretations may be tenable is crucial to clarity. But that
attitude already needs defence, for it involves views on what science is, and what philosophy can hope for.

I have also tried to take the philosophical debates somewhat further, into the fascinating cluster of problems that
concern quantum-statistical mechanics and identical particles. At every point, but here especially, I was acutely aware of
rapid progress in foundational research and of the kaleidoscopically changing philosophical debates. It is true that
interpretation focuses on a single theory at one more or less definite historical stage—and yet, what we try to interpret
is not static. Every time we understand a little more, we change what we are trying to understand. It is not surprising
that scientists often become impatient with philosophy: what is ever achieved if every generation has to face the same
questions again, with a new understanding of what is being asked, unable to rest on past answers? But philosophy does
not create our predicament. It is only a myth that modern science had arrived at a clear and well-integrated world-
picture, or that contemporary science has already effectively given us a new one. At best, we are in process of replacing
what never has existed by something that never will. It is only in this unendliche Aufgabe, this reaching for what we
cannot finally have or hold, that understanding consists.

The pleasures of acknowledgement are always accompanied by a good deal of soul-searching. Debts are subtle, and
always
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so numerous that only a few can be avowed, for philosophy is a thoroughly historical and communal enterprise. For
the first part of the book, devoted to general philosophical background, my debts are largely acknowledged already in
my previous books. But I must thank above all my teachers Adolf Grünbaum, who led me into the intricacies of
determinism and indeterminism, and Wilfrid Sellars, who would not allow me to treat those or any other subjects in
isolation. To Henry Margenau I believe I am indebted in two ways, first through what I received from him through
Grünbaum, who was his student and my teacher, and then directly as he drew me into his quantum-mechanical
questioning during my two years at Yale. In the next year at Indiana UniversityWesley Salmon took me in, as it were, to
instil a preoccupation with causality, probability, and frequency. Salmon was the first to comment on my fledgling ideas
about identical particles. It was also around then that I participated in a symposium with Hilary Putnam, who
challenged me with a new way to see quantum logic. In the individual chapters I have tried as much as possible to
indicate my more specific debts, for example to Enrico Beltrametti and Gianni Cassinelli, whose book became one of
my bibles, to my frequent collaborator, R. I. G. Hughes, and to Jeffrey Bub, Nancy Cartwright, Roger Cooke, Maria
Luisa Dalla Chiara, Arthur Fine, Clifford Hooker, Simon Kochen, Pekka Lahti, James McGrath, Peter Mittelstaedt,
and Brian Skyrms, among others. Alan Hajek and R. I. G. Hughes read large parts of the manuscript and gave many
helpful comments. Almost every section of each chapter benefited from the close reading and comments by Sara
Foster. The National Science Foundation and Princeton University steadfastly supported my research, while Anne
Marie De Meo typed the results and helped me generously through many practical difficulties.

B.C.v.F.
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1 What Is Science?

As painting, sculpture, and poetry turned abstract after the turn of the century; as Minkowski recast the
electrodynamics of moving bodies in four-dimensional geometry; as Hilbert and Russell turned geometry and analysis
into pure logic; philosophy of science too turned to greater abstraction. But philosophy of science is still philosophy,
and is still about science. Before broaching the philosophy of physics, and the foundations of quantum mechanics, I
shall locate those projects in the larger enterprise of philosophical reflection on science as a whole.

1. Two Views About Science
There is quite a difference between the questions ‘What is happening?’ and ‘What is really going on?’ Both questions
can arise for participants as well as for spectators, and usually no one has more than a fragmentary answer. To the
second question the answer must undeniably be more doubtful, because it has to be somewhat speculative in the
interpretation it puts on what happens. Yet both questions seem crucially important.

So far I might have been talking about war, a political movement, contemporary art, the Diaspora, the Reformation, or
the Renaissance—as well as about science, its current state or its historical development. Scientists, the participants in
this large-scale cultural activity, we can consult only about what is happening. Both these participants and the more
distant spectators cannot help but attempt some interpretation as well. Indeed, we are all to some extent both
participant and spectator, for science has become an activity of our civilization as a whole.

Philosophy of science has focused on theories as the main product of science, more or less in the way philosophy of
art has



focused on works of art, and philosophy of mathematics on arithmetic, analysis, abstract algebra, set theory, and so
forth. Scientific activity is understood as productive, and its success is measured by the success of the theories
produced. In the most general terms, of course, the aim of an activity is success, and what that aim exactly is depends
on the ‘internal’ criterion of success. The personal aim of the chess-masters may well be fame and fortune, but the aim
in chess—as such, the ‘internal’ criterion of success in chess—is checkmate. To say what is really going on in science,
therefore, we try to determine its aim in this sense.

Both scientists and philosophers have come up with very different answers to this. To some extent, the differences may
reflect personal aim. Newton for example may have understood the aim of science as such as uncovering God's
design, or arriving at the truth about the most basic laws of nature. To some extent, also, the answers have reflected
current beliefs about just what it is possible to achieve in science. Newton believed that there was a unique derivation
of the laws of nature from the phenomena. If that is indeed so, it is of course reasonable to say that this is exactly what
science aims to do. When Mach answers instead in terms of economy of thought and organization of knowledge, or
when Duhem denies that the aim of science includes explanation, that is undoubtedly in part because they believed so
much less about what could be achieved in science, or any other way.

Can we find an internal criterion of success that characterizes scientific activity for all ages, and equally for
philosophical and unphilosophical participants? The first thing to do is see exactly what the product is whose success is
to be assessed by that criterion. When we focus on the scientific theory, as product of science, we turn this into a
question about theories. So, first, what sort of thing is a theory? A scientific theory must be the sort of thing that we
can accept or reject, and believe or disbelieve. Accepting a theory implies the opinion that it is successful; science aims to give
us acceptable theories. More generally, a theory is an object for the sorts of attitudes expressed in assertions of
knowledge and opinion. A typical object for such attitudes is a proposition, or more generally a body of putative
information, about what the world is like.

2 INTRODUCTION



Given this view about theories, we return to the question of aim.

First answer: realism. At this point we can readily see one very simple possible answer to all our questions, the answer we
call scientific realism. This philosophy says that a theory is just the sort of thing which is either true or false; and that the
criterion of success is truth. As corollaries, we have that acceptance of a theory as successful is, or involves, the belief
that it is true; and that the aim of science is to give us (literally) true theories about what the world is like.

That answer would of course have to be qualified in various ways to allow for our epistemic finitude and the tentative
nature of reasonable attitudes. Thus realists may add that, although it cannot generally be known whether or not the
criterion of success has been met, we may reasonably have a high degree of belief about this, and that the scientific
attitude precludes dogmatism. Whatever doxastic attitude we adopt, we stand ready to revise in face of further
evidence. These are all qualifications of a sort that anyone must acknowledge. They do not detract from the appealing
and, as it were, pristine clarity of the scientific-realist position. But that does not mean that it is right. Even a scientific
realist must grant that an analysis of theories—even one that is quite traditional with respect to what theories are—does not
presuppose realism. We may grant that theories are the sort of thing which can be true or false, that they say something
about what the world is like; it does not follow that we must be scientific-realists.

Second answer: empiricism. There are a number of reasons why I advocate an alternative to scientific realism (see van
Fraassen 1980b, 1985a). One concerns the difference between acceptance and belief; reasons for acceptance include
many which, ceteris paribus, detract from the likelihood of truth. This point was made very graphically by William James;
it is part of the legacy of pragmatism. The reason is that, in constructing and evaluating theories, we follow our desires
for information as well as our desire for truth. We want theories with great powers of empirical prediction. For belief
itself, however, all but the desire for truth must be ‘ulterior motives’. Since therefore there are reasons for acceptance
which are not reasons for belief, I conclude that acceptance is not belief. It is an elementary logical
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point that a more informative theory cannot be more likely to be true; therefore the desire for informative theories
creates a tension with the desire to have true beliefs.

Once we have driven the wedge between acceptance and belief, we can reconsider the ways to make sense of science.
As one such way, I wish to offer the anti-realist position I advocate, which I call constructive empiricism. It says that the
aim of science is not truth as such but only empirical adequacy, that is, truth with respect to the observable phenomena.
Acceptance of a theory involves as belief only that the theory is empirically adequate. But acceptance has a pragmatic
dimension; it involves more than belief.

The agreement between scientific realism and constructive empiricism is considerable and includes the literal
interpretation of the language of science, the concept of a theory as a body of information (which can be true or false,
and may be believed or disbelieved) and a crucial interest in interpretation, i.e. finding out what this theory says the
world is like.1 There is much that the two can explore together. Acceptance has a clear pragmatic aspect: besides belief,
it involves commitments of many sorts. Realists may hold that those commitments derive from belief, but they will
wish to join empiricists in exploring just what they are. Similarly, empiricists will wish to explore in the same way as
realists just what it is that our accepted theories say. Both agree, after all, that theories say something about what the
world is like. The content of a theory is what it says the world is like; and this is either true or false. The applicability of
this notion of truth value remains here, as everywhere, the basis of all logical analysis. When we come to a specific
theory, the question: how could the world possibly be the way this theory says it is? concerns the content alone. This is the
foundational question par excellence, and it makes equal sense to realist and empiricist alike.

2. Theories and Models
To formulate a view on the aim of science, I gave a partial answer to the question of what a scientific theory is. It is an
object of belief and doubt, so it is the sort of thing that could be
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true or false. That makes sense only for a proposition, or a larger body of putative information. It does not follow that
a theory is something essentially linguistic. That we cannot convey information, or say what a theory entails, without
using language does not imply that—after all, we cannot say what anything is without using language. We are here at
another parting of the ways in philosophy of science. Again I shall advocate one particular view, the semantic view of
theories. Despite its name, it is the view which de-emphasizes language.

Words are like coordinates. If I present a theory in English, there is a transformation which produces an equivalent
description in German. There are also transformations which produce distinct but equivalent English descriptions.
This would be easiest to see if I were so conscientious as to present the theory in axiomatic form; for then it could be
rewritten so that the body of theorems remains the same, but a different subset of those theorems is designated as the
axioms, from which all the rest follow. Translation is thus analogous to coordinate transformation—is there a
coordinate-free format as well?

The answer is yes (though the banal point that I can describe it only in words obviously remains). To show this, we
should look back a little for contrast. Around the turn of the century, foundations of mathematics progressed by
increased formalization. Hilbert found many gaps in Euclid's axiomatization of geometry because he rewrote the
proofs in a way that did not rely at all on the meaning of the terms (point, line, plane, . . . ). This presented philosophers
with the ideal: a pure theory is written in a language devoid of meaning (a pure syntax). A scientific theory should then
be conceived of as consisting of a pure theory (the mathematical formalism, ideally an exact axiomatic system in a pure
syntax) plus something that imparts meaning and so connects it with our real concerns.

This did help philosophical understanding of science in one crucial case. How could the geometry of the world be non-
Euclidean? What sense does this make? Well, as pure theory, both Euclidean and non-Euclidean geometries are
intelligible. Suppose now we impart meanings by what Reichenbach called coordinative definitions. For example, say that a
light ray is the physical correlate of a straight line or geodesic. Then, at that point, it becomes an empirical question
whether physical
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geometry is Euclidean. For it is an empirical question how light rays behave.

For a little while it seemed that the meaning-restoring device would be very simple—a dictionary or a set of
‘operational definitions’. By its use, the language of theoretical physics would receive a complete translation into the
simple language of the laboratory assistant's observation reports. But the example of physical geometry already shows
that the physical correlates do not yield a complete translation. Any two points lie on a straight line, but not necessarily
on a light ray. If, on the other hand, we translate ‘straight line’ as ‘possible light ray path’, the theoretical element is not
absent, and criteria of application are indefinite; is this possibility relative to laws and circumstances which could be
stated without recourse to geometric language? The opposite view is to consider the mathematics in use an abstraction
from the science that uses it, and to leave the reconstruction of language along formalist lines to a different
philosophical enterprise.

Despite certain undoubted successes, the linguistic turn in analytic philosophy was eventually a burden to philosophy
of science. The first to turn the tide was Patrick Suppes, with his well-known slogan: the correct tool for philosophy of
science is mathematics, not meta-mathematics. This happened in the 1950s; bewitched by the wonders of logic and the
theory of meaning, few wanted to listen. Suppes's idea was simple: to present a theory, we define the class of its models directly,
without paying any attention to questions of axiomatizability, in any special language, however relevant or simple or
logically interesting that might be.2

This procedure is common in contemporary mathematics, where Suppes had found his inspiration. In a modern
presentation of geometry we find not the axioms of Euclidean geometry, but the definition of the class of Euclidean
spaces. Similarly, Suppes and his collaborators sought to reformulate the foundations of Newtonian mechanics, by
replacing Newton's axioms with the definition of a Newtonian mechanical system. This gives us, by example, a format
for scientific theories. In Ronald Giere's recent encapsulation, a theory consists of (a) the theoretical definition, which
defines a certain class of systems, and (b) a theoretical hypothesis, which asserts that certain (sorts of) real
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systems are among (or related in some way to) members of that class (see especially Giere 1985, 1988).

This new tradition is called the ‘semantic approach’ or ‘semantic view’. It has been developed, since the mid-1960s, by
a number of writers, some scientific realists (like Giere) and some not.3 In this approach the role of language (and
especially syntax or questions of axiomatization) is resolutely de-emphasized. The discussion of models treats them
mainly as structures in their own right, and views theory development as primarily model construction. Almost all
questions in philosophy of science take on a new form, or are seen in a new light, when asked again within the
semantic view. Two books have recently appeared, applying the semantic view in philosophy of biology (Lloyd 1988;
Thompson 1989). Most studies within this approach, however, have focused on philosophy of physics.

Families of structures, mathematically described, are something quite abstract. This is true even if we take an example
like ‘A Newtonian planetary system is a structure consisting of a star and one or more planets and is such that . . . ’.
The nouns are not abstract, and if a formalist says that we should deduce consequences from this definition only by
arguments which rely not at all on the meanings of ‘star’ and ‘planet’, that is just his or her predilection. The
abstractness consists rather in the fact that the same family of structures can be described in many ways; it is something
non-linguistic, but (banal as that is) we can still present it only by giving one specific verbal description. So concepts
relating to language must also retain a certain importance. Objectively, the conceptual anchor of informativeness is
logical implication: if T implies T′ then T is at least as informative as T′. But its informativeness for us depends on the
formulation we possess, and the extent to which we can see its implications. This brings us from semantics into the
area of pragmatics; our pragmatic reasons for accepting one theory rather than another may include that the former is
more easily processable by us.

How does this affect our conception of the aim of science? The empiricist takes this aim to be to give us empirically
adequate theories; the realist says that it is to give us true ones. Now, we identify a theory as a class of models. So is not
that aim at once satisfied, in either case, by someone who says: ‘I
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have a nice theory. It has as models exactly those structures which are isomorphic to the real world in the following
respects’?4 I think the problem arises equally for empiricist and realist. But I do not think that we need to revise the
statement of the aim of science. We should answer that person: ‘Of course we believe that your theory is true (or
adequate in the respects you specify). Obviously the real world, properly conceived, is one of the models of your
theory. But we have no reason to make the other commitments that go into acceptance—such as designing a research
programme for it, using it to answer why or how questions, attempting to redescribe phenomena in its terms, and the
like. The relevant pragmatic factors are missing because, however informative it is in a strictly objective or semantic
sense, it is not informative for us.’

It might be countered to this answer that the aim of science is not exactly to produce true or adequate theories, but to
produce acceptable ones. That seems wrong to me. Analogously, it is not the aim of mathematics to produce proofs
that we can follow; it is merely the case that we cannot know, or have good reason to believe, a given putative theorem
unless we can follow the proof. This concerns not the criteria of success, but our ability to see whether the criteria are
met. Nevertheless, this is a qualification of the description I gave in The Scientific Image of the theoretical virtues. My
gloss on ‘we want informative theories’ was that we want empirical strength, which I characterized as independent of
pragmatic factors. The qualification is that, as with other virtues characterizable semantically, whether they are
perceptible depends on the formulations of the theory that we actually possess.

3. Interpretation: Science as Open Text
The main project of the latter part of this book will be an interpretation of quantum mechanics. One other sort of
interpretation, following the lead given by von Neumann, will also be described in contrast, and still others will be
briefly discussed. But what sort of project is this? The semantic approach requires no axiomatization, nor a division
into pure syntax plus an interpretation in the sense of something that bestows meaning
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on that syntax. Nor does it propose a dissection of the language of science into a theoretical and pure observational
terminology, or even suggest that this is possible. With all those philosophical projects of an earlier generation gone,
what can be meant by interpretation of science today?

There is interpretation both in science and of science. Science does not simply represent the phenomena, but interprets
them. That interpretation is incomplete in various ways, even within its own terms, and so itself calls for completion.
Here we must distinguish attempted completion by means of extensions with new empirical content, and by
interpretations, which render a fuller account but with no added empirical content. The working scientist is mainly intent
on the former, and may be dismissive of the ‘empirically superfluous’ factors (as Feyerabend called them) in the latter.
But the interpretational demands ofWhat is really going on (according to this theory)? or even the more modest How could the
world possibly be how this theory says it is? will not disappear if science is to help us construct and revise our world-pictures.5

This too is a view of science, and contrasts with other views. Just as art was once conceived of as a mode of
representation pure and simple, so was science:6

Now there do exist among us doctrines of solid and acknowledged certainty, and truths of which the discovery has
been received with universal applause. These constitute what we commonly call Science . . . (Whewell 1840, 1–2)

But in science as in art, the work does not merely represent, and even as soon as Aristotle began to explore this view
inherited from Plato, that became apparent. For both the artist and the scientist manage to represent their object as
thus or so, and this introduces an element of interpretation. In almost parallel passages in the Poetics and the Physics,
Aristotle tells both the dramatist and the physicist to depict events as part of a causal story ‘proceeding in accordance
with necessity or probability’. That is, the events are to be represented as links in a causal chain.

This Aristotelian view of science need not be accepted to make the general point. Far from deriving the laws from the
phenomena, Newton showed us how to conceive of our solar
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system as a system of classical mechanics, and Einstein showed us how to reconceive it as a system of relativistic
mechanics. The example is not perfect because some phenomena of which Newton had no knowledge did not fit his
conception. But the phenomena he did know, we now realize, can be represented as either.

My second point was that such interpretations of the phenomena as science actually gives us are radically incomplete in
themselves, and therefore call for interpretation too. The analogous point is certainly more easily made for art or
literature; consider for instance the much discussed question: who is the true protagonist of the Antigone, Antigone or
Creon? In the case of science many open questions are just waiting on new experimental and theoretical developments.
They may still come to light with an element of surprise, and answers might parade as really just the old accepted
theory, better understood.

Ronald Giere (1988) gives a good example of incompleteness in meaning in his discussion of what Newton's
mechanics was. Certainly Newton is outstanding in how much he dictates in the Scholia for the interpretation of his
work. But when Newtonians tried to model new phenomena, what was to count as an admissible Newtonian force
function? Are only central forces allowed, as the paradigm example of gravitational force certainly is? Must phenomena
of attraction and repulsion always be due to distinct kinds of force? (What about the magnet?) And later: do systems
not described by Lagrangians or Hamiltonians, if any exist, count as Newtonian or not? It was Poincaré who pointed
out that the hypothesis of central forces was a distinct eighteenth-century addition to classical mechanics (Poincaré
1905/1952, 101 ff.). The nineteenth century added conservation of energy.7 These are additions to the theory; they
pare the Newtonian family of systems down to a narrower one.

However, Newton did not just leave open questions to be answered by experimentation, observation, and new
empirical postulates. Meaning gaps remained as well. This comes out clearly, for instance, in the different treatments of
mass in attempted axiomatizations of classical mechanics. The kinematic history of a system places limits on the values
that the parameters of mass (and/or force) can take. But kinematic data only sometimes, and not always, suffice to
identify those values
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uniquely. In different axiomatizations the parameter is then allowed to take an arbitrary value, a stipulated don't-care
value, or no value at all. This is interpretation; neither theoretical necessity nor empirical phenomena force a choice.8 It
should not be pretended that the answers were already implicit in Newton's Principia.

Now we have arrived at the sort of thing currently meant by interpretations of quantum mechanics. Foundational
research has laid bare certain structures which can be found in the theory, and produced concomitant reconstructions
of that theory. But this work is not merely reconstructive, it is creative as well. Foundational research has two effects: it
allows us to see quantum theory as one of a large family of theories, hence placing it in a larger perspective, and it
shows us what is open to interpretation and also what must be accepted as rock-bottom common ground for all
interpretations.

There is no dearth of topics for interpretation. Quantum theory employs probability—but what is probability? The
theory introduced indeterminism at a fundamental level into modern science—but just what is (in)determinism? At the
very basis of quantum theory, already we encounter the notion of measurement—but isn't that also a physical
interaction, and hence a subject within the theory's own domain? In the probabilities assigned in this indeterministic
world we see patterns of distant correlation, so what has happened to action by contact and the limits on causal
accessibility that seemed crucial to relativity theory? And on it goes.

If we try to answer such questions, we take for granted that it is legitimate for us to produce our own reading of
physics—as a candidate to be assessed, needless to say—and that physics itself does not implicitly dictate entirely how
we should understand it. Again, that is one view. It does not denigrate science.

Analogies with art and literature, even if sometimes just mystifying, are of real use here. A closed text is one that comes
with its meaning dictated by the author.9 One example would be a novel which does not simply show us the characters
but tells us what they feel and think, dictating, as it were, how we are to assign motives to their actions, what the
expressed emotions signify. That is characteristic of bad literature; the text shows the heroine with heaving bosom, and
says that she
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realizes (a word that entails the truth of what follows) that she has fallen in love. We are not allowed to remain puzzled
for long when she stabs the hero to the heart; she does this because she loves him too much to let him go to perdition
in the arms of another woman. The reader is not left so comfortably, in a totally passive role, in Anna Karenina. We are
shown this life; we have as much, and as little, basis for interpretation as we might in reality.

4. Models and Scientic Practice
So far we have concerned ourselves mainly with limit cases, which ignore the complexities of practice, but

Between the idea/ And the reality
Between the motion/ And the act
Falls the Shadow . . .

It was right to do so, in my opinion—clear understanding of a subject should begin with its clearest cases—but there
must also be a clear way to apply our concepts to practice. Not coincidentally, the gap may be filled here by explaining
how the scientist does exactly what we are doing right now: beginning with the ideal and then attending to its links with
the less ideal.

To accept a theory without qualification involves the unqualified belief that it is empirically adequate. Empirical
adequacy, like truth, admits of no degrees. There is no such thing as just a little bit true, no more than being just a little
bit alive. But in both cases the attribute is surrounded by a large cluster of closely related conditions (the heart has
stopped but the brain has been without oxygen for only 30 seconds so far . . . ). To be empirically adequate is to have
some model which can accommodate all the phenomena. But at any point, science has carried through the model
construction only so far, and does not yet know whether certain phenomena can be accommodated. This qualification
does not affect the question of empirical adequacy as such, but is certainly a relevant qualification of acceptance. In
practice we are always in this position.

But in practice, the conscious attempt is not to do something ideal and do it badly: it is to do something feasible and do
it
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well. Our picture of what scientific theories are like must therefore go beyond the ideal case. I shall here present Nancy
Cartwright's more nearly phenomenological description of scientific activity, and shall try to show how it can be
accepted as a friendly amendment to the semantic approach.10

In Giere's scheme the theory defines a certain kind of system—or, in effect, the class of models which represent
systems of that kind—plus a hypothesis to the effect that certain real things are of that sort. Nancy Cartwright has
disputed schemas of this order of simplicity. In practice, the scientist constructs models that are overtly of a sort the real
things do not fit. The hypothesis which relates real phenomena to the explicitly worked out models is much more
complex, for the relation is mediated by approximations, idealizations, and fictions.

In classical mechanics, for instance, the texts may state Newton's laws at the beginning and/or present Lagrange's or
Hamilton's formalism with mathematical generality. But then they go on to prove theorems about very special
mechanical systems: the linear oscillator—the spring, the pendulum—the damped linear oscillator, motion on a
frictionless plane, a two-body gravitational system with no imposed external forces, etc. All these are wildly idealized or
simplified with respect to the real entities to which they are nevertheless applied. Demonstration experiments illustrate the
results. ‘Illustrate’ is the operative word, for it is not literally true that the pendulum on the bench is correctly
represented by the model provided. But there is a good approximate fit to the data because the factors not
represented—though not irrelevant—have ‘negligible’ effect relative to the precision and scope of the measurement
carried out. The hypothesis is not that the real pendulum is a pendulum in the textbook sense, but that it bears this
more complicated relation to it.

Does that mean we should reject Giere's schema? We need not reject it, provided we add that the demonstration
experiment is also meant to make plausible the tacit claim that there is some mechanical model—the textbook
pendulum model with a number of extra parameters added into its equations—which does fit the real pendulum. That
tacit claim is part of the unqualified claim of truth.11

As Cartwright describes it (1983, 132–4), the typical scientific
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episode has as beginning a two-stage theory entry process. The first stage is an unprepared description which emerges as
starting point. Historically, this is already in midstream. One of her examples is the description of the laser, say after
the first working laser was produced, and after the laboratory issued a report on its construction and the effects
observed. The report is issued by scientists, of course, but a well-trained laboratory staff without theoretical education
should be able to duplicate the reported construction. The next stage is to turn this into a prepared description which must
be such that the theory, as it has been developed so far, should be able to match an equation:

Shall we treat a CW GaAs laser below threshold as a ‘narrow band black body source’ rather than . . . ‘quieted
stabilized oscillator’ . . . ? Quantum theory does not answer. But once we have decided to describe it as a narrow
band black body source, the principles of the theory tell what equations will govern it. (Cartwright 1983, 134)

This prepared description will be explicitly and overtly incorrect, strictly speaking, in the same sense that it is strictly
incorrect to describe the pendulum on the bench as a pendulum in the sense of a certain paragraph in a mechanics
textbook. But it is useful because the theory, or at least the text, also informs us which sorts of approximation are
usable here. The data are accordingly not even meant to fit the given equations perfectly. They shouldn't; there would be
something wrong if they did! And—here is a crucial point—as the project of better and better theoretical treatment
continues, we never get to an essentially different sort of stage:

After several lectures on classical electron oscillators [in an engineering course], Professor Anthony Siegman
answered that he was ready to talk about the lasing medium in a real laser. I thought he was going to teach about
ruby rods—that ruby is chromium doped sapphire. . . . Instead he began ‘Consider a collection of two-level atoms.’
(Cartwright 1983, 148)

As a general view which fits this scientific activity better than the picture of a search for truth or even empirical
adequacy, Cartwright proposes a view of physics as theatre. This view already fits the discipline of history as conceived
by Thucydides, she says; a historical episode is reconstructed not with an eye to veracity in all details, but to veracity in
relevant respects—not

14 INTRODUCTION



with, for example, the actual words in a political speech, but with the general sense of what was actually said.

So far it is easy to agree, and Cartwright's account is very illuminating. But now we come to the assessment of what this
means for our view of science. In her view, if we never have a science that is empirically adequate, but find models for
all phenomena that yield approximations to a required extent of quantities in which we have special interest, then
science will still meet the highest and strictest criterion of success. If that is so, then the aim of science is exactly that.
With this conclusion I do not agree. I do not believe that complete truth in the description of actual observable
phenomena is rejected even as ideal. The final question about an apparent anomaly will never be whether we really are
or ever will be interested in certain divergences from our calculation, but whether the divergence is at least in principle
compatible with the general theory—interesting or not. (The decision to investigate that final question or not is
another matter.) But we can accept everything short of Cartwright's final conclusion as an amendment to the semantic
view. Indeed, we can see a parallel, at this level of interpretation of science, to what Cartwright describes as the
scientist's procedure in the interpretation of nature. Cartwright's model of two stages of theory entry serves the same
function as the textbook pendulum, a very important function indeed: it helps us to understand real episodes in science
in a way that the fully general account cannot. And yet it falls under that fully general account.

5. More About Empiricism
The choice between the semantic approach to science and its rivals is entirely independent of the controversies
between scientific realism and anti-realism. As Giere (1988) and Hacking (1983) especially have emphasized, scientists
in the throes of empirical research express themselves just as would true believers in the reality of the entities
postulated. We do not need to take this way of talking as necessarily indicating a point of view embodied in the very
enterprise of science—many famous scientists appear not to have done so, and I certainly do not.
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But the semantic approach would start with a severe handicap if it embodied a particular stance on such questions.

Although I have tried to present the approach in mutually acceptable form, my exposition here has been from an
empiricist point of view. At this point of conclusion I would like to add a little more about the empiricist view: about
what are good models, about the strong feelings involved in adherence to a scientific tradition, and about loss of
innocence.

To be good, it is not necessary for a model to have all its elements correspond to elements of reality. What is needed
instead is that the model should fit the phenomena it was introduced to model. But—this must be
emphasized—neither this modest virtue nor a complete and strict mirroring of reality is enough. Even in its strong
form, correct representation of facts is by itself too weak a criterion. We also want our theories to be informative; for
that virtue we are willing to risk forgoing total empirical adequacy. This too is not enough. We are finite; we always
work at one particular stage in history; so we always have an eye on the future. A new model will be the more highly
valued if we regard it as suggesting new ideas for how to extend our theories, how to construct yet further models,
how to open up new avenues of experimental and theoretical research. This virtue is pragmatic and historically
relative—but so are we; we cannot transcend, even in our highest achievements, what is possible for us at our historical
stage.

In this reflection we have a glimpse of the strong emotions, loyalty, and overriding commitment a scientific tradition
can exact. Newton did not just give the world a nicely working model of mechanical and astronomical phenomena—he
gave it, by example, a new way to approach all phenomena, including those still far beyond the reach of his own
century. In the terms Kuhn taught us, his example became a paradigm. Scientists forsook all others, and wedded
themselves to this new research programme, in hope and in faith. We have but a brief moment in eternity—to choose
thus is to wager one's all. Call it true belief, purity of commitment, or cognitive dissonance—surely one cannot make
such a choice and preserve perfect intellectual neutrality, theoretical detachment, and an undiminished sense of irony?

But now I have overstated the matter! So do, I think, the
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scientific-realists, though perhaps not so blatantly. All I said is true enough, but even deep and true commitment does
not require a sacrifice of the intellect. We can still distinguish science from scientism, a view in which science, which
allows us so admirably to find our way around in the world, is elevated (?) to the status of metaphysics. By metaphysics
I mean here a position, reaching far beyond the ken of even possible experience, on what there is, or on what the world
is really like. Scientism is also essentially negative; it denies reality to what it does not countenance. Its world is as
chock-full as an egg; it has room for nothing else. Commitment to the scientific enterprise does not require this. If
anyone adopts such a belief, he or she does it as a leap of faith. To make such a leap does not make us ipso facto
irrational; but we should be able to live in the light of day, where our decisions are acknowledged and avowed as our
own, and not disguised as the compulsion of reason.
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Part I Determinism and Indeterminism in Classical
Perspective



When philosophers turned to quantum mechanics, they brought with them conceptual tools that had been crafted in
encounters with Newton's physics, statistical mechanics, and relativity theory. They found very soon that the new
science called for more; yet what they had went quite far. Indeed, it went farther than was at first appreciated, and the
exposition here of matters conceptually prior to quantum mechanics can be drawn on extensively when we come to
that theory.



2 Determinism

As science developed from antiquity to the present, it was recurrently faced with the question of whether nature is
subject to chance to any extent, or evolves deterministically. For most of that time, the need to include chance was
avoided by abstraction; the subject of study was so delimited as to allow its description as a deterministically evolving
system. As the theory of probability developed in modern times, even chance came within the fold of predictability,
and the degree of abstraction could be lowered. A great deal of the systematic description of deterministic systems still
carries over, however, and it is indeed possible now to form a clearer idea of what exactly that ideal of determinism
signified.

1. How Symmetry Is Connected to Determinism
Two preambles are needed before we try to explicate the idea of a deterministic system. The first concerns symmetry,
its associated strong but sometimes deceptive intuitions, and its proper role in the systematic description of
mathematical spaces. The second concerns the use of such spaces to study physical systems, by representing their
possible states and possible modes of evolution. Here we begin the first preamble.

1.1. Asymmetries and Hidden Variables
When we read that certain conclusions were reached on the basis of considerations of symmetry, we will not always
find a pure and a priori demonstration. Instead, there may just be an assumption of actual symmetry in the actual
world. To say that a symmetry was broken means then only that the world did not after all go along with the
assumption. But at other times it



seems that something impossible has happened: where could this newly found asymmetry have come from?

Asymmetries do often seem merely accidental. For example, humans all have their heart on the same side. Does this
establish a global asymmetry for the world as a whole? The local asymmetry in one body defines a global asymmetry if
its mirror image exists nowhere in nature. Of course, it can't be just the placing of the heart. Imagine we were spheres,
rolling around on the earth, with hearts just off centre. Each sphere would have some asymmetry, but it does not even
make sense to ask whether all the spheres have their heart on the same side. The significant relationship exhibited by
the human species must have to do with some other features as well, like feet, head, navel. . . . All this seems so
accidental that we speculate at once that the whole of fundamental physics can be written without reference to this
‘handedness’ of nature. Such a pervasive asymmetry on earth must have been due to some asymmetry in the initial
conditions. In technical jargon, parity is surely not violated on the most fundamental level.

That speculation is however not a priori certain. If it is not true, how deeply are our intuitions shaken? The recent
story of parity violation which changed nuclear physics (theory by Lee and Yang, experiments by Madame Wu) was
indeed disturbing. A radioactive nucleus emits an electron when it decays. The nucleus itself has a certain asymmetry
describable in terms of spin. If we change our spatial frame of reference by a geometric reflection, then the spin we
called ‘up’ will become ‘down’. But whether a given electron is emitted in the direction of the spin cannot have the
same answer for both frames of reference. The experiments showed a preponderance of emissions in the direction of
spin. This shows that the sort of global asymmetry we can associate with the human race, expressed in terms of hands
and heart, can also be found on the level of the nucleus.

We could again speculate that parity will be conserved at some still more elementary level. The disturbing quality of the
result was that atomic physics did not appear to allow that option. In the context of this theory, the one we cherish,
parity violation is indeed more fundamental. But how shall we analyse the inclination to assume or speculate insistently
on such symmetries anyway? The reply is that we are trying to ask ‘where
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the asymmetry came from’, what the reason for it was, why things should be this way. To insist that such questions
must have an answer is also typical when determinism shows its hold on our imagination, and we shall see below
exactly how the two are logically related. In the nineteenth century, there were notable examples of successful
postulation of hidden variables to explain the reasons for observed asymmetry. A good example was given by Mach.
When a wire is ‘electrified’, a parallel suspended compass needle will ‘choose’ a direction in which to turn. So
described, it is like a little miracle, for the term ‘electrify’—pre-theoretically understood—does not indicate any
preferred direction. The air of the miraculous disappears when we postulate a directed electric current. The intuitive
reaction which makes us think that there must be such a hidden asymmetry that accounts for the asymmetry in the
observed event is also our intuitive reaction to Buridan's ass: if it eats, there must have been some asymmetry after all
in its little mind, or in qualities of fodder it can detect and we can't. What is that, if not an insistence on hidden
determinism?

Pierre Curie formulated this as an explicit principle, to govern physical theory.1 I would express his principle as: an
asymmetry can only come from an asymmetry. Curie expressed it in causal terminology, again suggesting a link with
determinism—‘When certain causes produce certain effects, the elements of symmetry of the causes must be found in
the effects produced’—and asserts that this principle ‘prevents us from being misled into the search for unrealizable
phenomena’ (Curie 1894, 401, 413). But it cannot very well be a priori, since it rules on an empirical question. For
there may simply not be any hidden agency; the ‘choice’ of direction could be a true chance event. Even if it is a
persistent or widespread uniformity, it might still be one which does not derive from any hidden mechanism but just is.

Several objections could be raised to my suggestion that Curie's principle stands or falls with the principle of
determinism. First of all, perhaps the examples show only accidental links of symmetry with determinism, and there is
no logical connection. Secondly, perhaps the question of the possible existence of such an agency is not an empirical
matter: perhaps all possible observable phenomena are at least consistent with a hidden determinism. Both objections
can be answered, but not
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without more preparation. The first I will take up below, in Section 4. The second will be the main topic of Chapter 4,
which deals with Bell's Inequalities. There we will see that a photon reaching a filter may ‘choose’ a polarization in a
way which cannot be ‘traced back’ to any preceding features of the situation, and yet is not random with respect to the
rest of nature. If both objections can be answered, we have to conclude that Curie's putative principle (even in my
formulation, which did not use causal terms) has no fundamental ontological status. If so, it betokens only a thirst for
hidden variables, for hidden structure that will explain, will answer why?—and nature may simply reject the question.

1.2. Symmetries of Problems

The rhythmical complexity of the songs . . . follows its own mysterious laws. In one kind of Moravian dance song,
for example, the second half of the measure always lasts a fraction of a second longer than the first half. Now, how
can that be notated? The metrical system used by art music is based on symmetry. A whole note divides into two
halves, a half into two quarters. A bar breaks down into two, three, or four identical beats. But what can be done
with a measure that has two beats of unequal length?
Jaroslav in Milan Kundera, The Joke

Although no single mundane symmetry is a priori, and although a given asymmetry may have no explanation at all in
terms of ‘prior’ asymmetries, Curie's principle does have significance. It codifies a methodological tactic: the tactic of
seeking solutions which import no asymmetry absent from the problem. That means, first of all, the choice of models
with as much internal symmetry as possible. In slogan form, it is the requirement that a solution should ‘respect’ the
symmetries of the problem.2

In fact, of course, there is absolutely no guarantee that the problem was posed in a way that exhibits all the factors
physically relevant to the phenomenon studied. Sometimes it will be impossible to find a solution at all without
introducing new factors—new asymmetries—not found in the problem as posed. Imagine the predicament of
Buridan's ass, if it is asked
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for a rule which takes as input the symmetric arrangement of its mouth and the two piles of food, and has as output a
configuration in which its palate is in contact with food. It will get nowhere if it respects the symmetries of the
problem. The example is funny exactly because that is what it should try first, and because without further information
the tactic obviously will not work. Tactics have their limits; but let us see how this tactic works when it does.

Faced with an intuitively stated problem, we choose a model for the situation. The model is at least somewhat general,
with a set P of specifiable variables. The problem now takes on the manageable form: what unique object of type
OUTPUT is associated with each INPUTm? Here m stands for variables belonging to P. The solution must be a rule, a
function, which effects this sought-for unique association. Now it appears that the chosen model has symmetries.
Intuitively speaking, the situation has both relevant and irrelevant aspects, and certain transformations affect the values
of the variables, but leave the problem ‘essentially’ or ‘relevantly’ the same. At this point, a tactical dictate comes into
play: Same problem, same solution! The rule or function offered as solution must ‘respect those symmetries’. Denoting that
function as f, and one of those transformations as t, we must be able to ‘close the diagram’ (Fig. 2.1). That is the
stringent hidden requirement that makes the diagram ‘commute’:

which needs to be met in consequence of the explicitly imposed demand.

Fig. 2.1
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These ideas also allow us to make clear what is meant by the solution depending on a parameter. The function f does not
depend on parameter p if p can be independently varied without affecting the value of f—i.e. if f is an invariant of the
relevant transformations which change p without affecting other members of P. Note however that this is relative to
the designation of set P as the primitive parameters. That is an aspect of the model: we must not expect to find model-
independent notions in this neighbourhood without invoking metaphysics.3

One use of this tactic is that, by transforming one problem into another (which we regard as essentially the same), we
may come to one that is easier to solve. Perhaps this is indeed crucial to understanding.4 We have understood a
problem ‘in its full generality’ only when we know exactly what counts as essentially the same problem; that means
when we know exactly which transformations do and which do not change the situation in relevant respects. Now, to
state a problem in its full generality is to achieve the proper degree of abstraction: to abstract the problem itself from
the concrete guise of its appearance. Generality, abstraction, transformation, equivalence of problems—some very old
philosophical ideas are here mobilized in new logical form.

2. State-Space Models and Their Laws
The semantic approach to scientific theories means to refine the analysis of their structure. At the level of analysis of
the preceding chapter, we addressed the notion of theory überhaupt. To go further, we must consider relativistic and
non-relativistic theories separately. With very few exceptions, our discussion of quantum mechanics will remain with its
non-relativistic formulation; the difference this makes is that we can keep time as a separate category. A physical
system is assumed capable of certain states, and to be characterized by physical magnitudes (observables) pertaining to
the system, which can take certain values. In classical science, the state of the system at a given time can be construed
broadly enough so as to determine also the values of the relevant observables at that time. (Whether
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this is so for quantum mechanics, too, is a matter of interpretation.) This means that we can represent the classical
system's history—its evolution in time—simply as a trajectory in its space of possible states (state-space). Such a trajectory
is essentially just a map s: time→ state-space (Fig. 2.2). We may classify a certain class of systems together as a kind of
system if the states they can have form overlapping parts of one single ‘large’ state-space and/or if the trajectories they
can have are in some way similar. Obviously this notion of kind is vague, though some philosophers insist that a given
such classification can be natural (‘cutting reality at its joints’, in Plato's phrase) or merely arbitrary.

Fig. 2.2 [s: T→ H]

A prime example is the classic harmonic oscillator. Imagine an object constrained to move on a given straight line, but
subject to a force directed towards a given point and proportional to the distance from that point. With q standing for
its position on the line, its motion is described by the equation(1)

where constant n depends on the force. In terms of its momentum p = m(dq/dt),(2)

The possible states are represented by couples in the p–q plane,
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and the possible trajectories by curves which satisfy equation (2) or, equivalently,(3)

which in effect describes the total energy of the system, and says that it is conserved. Those trajectories are therefore
represented by the elliptical curves in Fig. 2.3.

Fig. 2.3 Trajectories in p–q plane

We get a more general representation, applicable to other mechanical systems as well, by expressing p and q in terms of
the Hamiltonian H:(4)

A scientific theory will in general have many such clusters of models, to represent sub-kinds of the kind of system it
studies, each with its state-space. So its presentation will describe a class of state-space types. (See further Proofs and
illustrations.)

For such a non-relativistic theory, we can see at once that there must be basic equations of two types, which
correspond to the traditional ideas of laws of coexistence and laws of succession. The former type, of which Boyle's Law
PV = rT is a typical example, restricts positions in the state-space. Selection and superselection rules are the
quantum-theoretical version of such restrictions. The other type has the classical laws of motion, in Newton's
formulation or Hamilton's ((3) above), and
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Schroedinger's equation as typical examples: they restrict trajectories in (through) the state-space. Symmetries of the
model—of which Galileo's relativity is the classical example par excellence—are ‘deeper’ because they tell us something
beforehand about what the laws of coexistence and succession can look like. It is in the twentieth century's quantum
theory that symmetry, coexistence, and succession became most elegantly joined and most intricately connected.

The laws in question are ‘laws of the model’: important features by which models may be described and classified. The
distinction between these features and others that characterize the model equally well is in the eye of the theoretician.
There is no obvious warrant to think that they correspond to any division in nature.5 To put it differently, there may
not be any objective difference between laws of nature and ‘mere’ facts in the world; that difference is only ‘projected’
by us onto the world, characterizing not what it is like, but how we see it. Some revisions which do affect what the laws
of the model are have absolutely no effect on its adequacy. Suppose we replace one model by another, whose state-
space is just what remains in the first after the laws of coexistence are used to rule out some set of states. Then we have
not diminished what can be modelled. Similarly, if we include in the state some functions of time, laws of succession
may be replaced by laws of coexistence. We can illustrate this with different ways to write Newton's laws. The most
obvious is to say that the second law of motion, F = ma, is a law of succession. But another way to think of it is this:
the second derivative with respect to time, of position conceived as a function of time, is one parameter represented in
the state, just as well as the total force impressed and the mass. The second law of motion, F = ma, is then a law of
coexistence rather than of succession: it rules out certain states as impossible. This sort of rewriting has been strikingly
exhibited in certain philosophical articles about Newtonian mechanics (see Ellis 1965; Earman and Friedman 1973).

Elementary Statements.
Although the semantical approach focuses on models rather than on axioms, there is still an important place for
language in its view of theories. To present
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a theory is to describe—in natural language, augmented by terms from any relevant branch of mathematics—its family
of models. But there are two sorts of statements (elementary statements) about a physical system whose truth conditions
are clearly represented in models of that system:

State attributions: system X has state s (a state of type S) (at time t)
Value attributions: physical magnitude (observable) Q has value r (value in

E) (at time t)

In classical science these are so intimately tied together that the state attributions can encompass the value attributions
as a special case. When interpreting quantum theory, we shall not be able to take that for granted (and, moreover, we
shall have to think about ‘unsharp’ value attributions).

It is however characteristic of the semantic approach to abstract from the linguistic form in which such attributions are
expressed, and to focus on counterparts in the models. For example:

Elementary state attributionA is true about system X exactly if the state of X is (represented by a point) in region SA

of its state-space.

The region SA is or represents a set of possible states; that set is then called the proposition expressed by statementA. In
quantum mechanics, when A attributes a pure state, that region is a subspace. The family of propositions in general
inherits a certain amount of structure from the geometric character of the state-space. To explore that structure is ipso
facto to explore the logic of elementary statements. General relations of logical interest here include:

A implies B exactly if SA is a subset of SB.
C is the conjunction of A and B exactly if SC is the g.l.b. (greatest lower bound) (with respect to the implication
relationship) of SA and SB in the family of propositions.

Again we must enter the caveat that, unless value attributions are reducible to state attributions, the propositions may
not simply be regions of the state-space.
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Proofs and Illustrations
I will just add some brief remarks here on how we should regard relativistic theories, and on state-space types.

In the case of relativistic theories, early formulations can be described roughly as relativistically invariant descriptions
of objects developing in time—say in their proper time, or in the universal time of a special cosmological model. A
more general approach, developed especially by Clark Glymour and Michael Friedman, takes space-times themselves
as the systems. Presentation of a spacetime theory Tmay then proceed as follows: a (T) space–time is a four-dimensional
differentiable manifold M, with certain geometrical objects (defined on M) required to satisfy the field equations (of T),
and a special class of curves (the possible trajectories of a certain class of physical particles) singled out by the equations
of motion (of T).

Returning to the non-relativistic case, I shall describe briefly how models are classified by state-space type in Elisabeth
Lloyd's approach.6 In Lloyd's account of state-space models, a distinction is drawn between parameters and variables:
the former are constants that characterize the model (their values only constrained but not determined by the theory),
while the latter vary within the model. In our previous example of the linear oscillator, the total energy of the system
may be a parameter of a model, while position, momentum, and kinetic energy are variables. These variables are
functions of the state. In a stochastic model, only a probability distribution for the values of the variable may be linked
to a state. A state-space type is a class of state-spaces (belonging to models of a given theory) produced by changing the
values of those parameters that define a given state-space. This division induces a corresponding one of models into
model types. In one generic use the word ‘model’ tends in fact to refer to a model type: ‘the Bohr atom’ and ‘the linear
oscillator’ are singular terms that denote not a single model but a model-type (compare the generic ‘The cow is a
herbivore’ to ‘The cow has been eating the garden vegetables again’).

In classical statistical mechanics and also in quantum theory (in a somewhat different way) the variables—physical
magnitudes, observables—only have their probabilities determined
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by the state. Population genetics models are also stochastic, and simple to present. Suppose that in a certain population
offspring of brown-eyed parents are more likely to have brown eyes, but no deterministic pattern is discernible. We can
nevertheless postulate an underlying determinism in the fashion of Mendel. For example, we suppose that each parent
supplies one colour gene, of typeA or a, to each offspring. We add that an individual that has twoA genes has brown
eyes, while all the others have blue eyes. How do the frequencies of blue and brown eyes change in the population?
Will an equilibrium be reached and maintained?

We have now specified an underlying state-space for individuals (three possible (gene combination) states) and for the
population a corresponding three-dimensional state-space; each axis represents the variable which is the frequency of
one of the three individual states. The individual states AA, Aa (= aA), and aa are also called genotypes; the state of the
population is a distribution of these genotypes, with proportions #AA, #Aa, and #aa (summing to 1). We can express
it differently in terms of the gene frequencies:(1)

which also sum to 1 then. (Thus p is the proportion of the genes present that are of type A, to which an individual
contributes 2/ N if it is of genotypeAA, whenN is the total number of genes.) The initial p : q ratio does not generally
contain as much information as the genotype distribution.

As dynamical law, let us assume random mating and random contribution of genes by parents, and no correlation of
genotype and sex in the parents. That means for example that an offspring of two Aa parents can be of any genotype,
but it has probability 1/4 of beingAA, also 1/4 of being aa, and 1/2 of beingAa. We quickly calculate that the second
generation will have proportions(2)

for genotypes AA, Aa, and aa. Applying (1) to (2), we see that this is a fixed point of the transformation:(3)
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so the third generation will have exactly the same distribution of genotypes as the second. This is the Hardy–Weinberg
law, and the above distribution (2) is the Hardy–Weinberg equilibrium reached from the given initial distribution.

The described model is the simplest, because of the assumption of random mating and mixing of genes. If brown-eyed
individuals live much longer, or are more likely to reach mating age, than blue-eyed ones, the model assumption of
randomness is independently disconfirmed. That is a stroke against the model whether or not the statistics of the
actual population match its probabilities. But the Hardy–Weinberg law can be viewed alternatively as a schema in
which other parameters can be inserted. The differential survival to mating age can be reflected in a fitness parameter.
That parameter will be a function of genotype, and can be set to characterize somewhat more sophisticated models.
Depending on that parameter, we will find different equilibria or none at all. That parameter, unlike p and q, does not
vary in the model but characterizes a model type.

3. Symmetry, Transformation, Invariance
The themes of this chapter so far—that opting for symmetry in a model is a good tactic even if not a sure guide, and
that the model typically has a state-space at its heart—must now be connected. As already noted, symmetry is the clue
to structure. When geometry was being generalized in the last century, a systematic way of describing geometric spaces
was needed. By the time Minkowski drew on those new developments to formalize relativity theory, the way was well
established: a space is characterized by its symmetries, by the description of its transformations and what they leave
invariant. I shall present this subject first through its simplest and most familiar example, then in the abstract.

3.1. Symmetries of Space
The most instructive and quickly appreciated examples of symmetry are those of (Euclidean) space. Euclid laid down
his postulates as evident truths about spatial relations and structure.
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It would be hard to maintain that he had a concept of Euclidean space (his sort of space as opposed to what?) or even
of space, let alone of a space. Today the postulates appear only as clauses in the definition of a Euclidean space, which
now can have any dimensionality.7 We treat all geometric objects as sets of points. A metric space is a set (the points) with a
distance function. This is a function d which maps every pair of points into a non-negative real number, and such that

Which metric spaces are the Euclidean ones is most easily explained through the representation theorem. The
Euclidean space of dimension k is isomorphic to the metric space, whose elements are the k-tuples of real numbers,
with the distance d(x, y) being the norm of their difference; that is, . All other geometric notions such as angle and
congruence can here be defined in terms of distance. Having said all this, though, let us proceed more intuitively.

If I put a cardboard capital letter F on the table, I cannot produce its mirror image just by moving that cardboard letter
around on the table-top. I could do it by picking the letter up and turning it upside down. A reflection in the plane can
be duplicated by a rotation in three-dimensional space. But a reflection through a mirror (three-dimensional reflection)
cannot be produced by rotations, because we have no fourth dimension to go through or into. Reflections and
rotations are transformations which leave all Euclidean geometric relations—equivalently, all distances—the same.
They are accordingly called symmetries of Euclidean space, for they are all isometries, the transformations that leave all
distances the same.

The simplest sort of isometry is neither reflection nor rotation, but translation. A translation just moves everything
over, a fixed distance, in a fixed direction. But every translation is the product of two reflections. To translate plane
figure F from point A to point B, draw two lines m, n between A and B, perpendicular to the line that joins them.
Reflect F through line m; then reflect the result through line n. If you spaced the lines
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correctly, F will then be situated at B. In fact, we can also produce rotations in this way; let m and n not be parallel but
intersect; translate the result of the second reflection back to the point of origin.

Basic theorem: The isometries are exactly the products of finite sequences of reflections.

By a product is here meant simply successive application; so the product of the rotations through 45 and 30 degrees is
the rotation through 75 degrees. If the minimum number of reflections needed to produce a given isometry is even, it
is called a rigid motion or proper motion; if odd, it is called an improper motion.

To show the important difference, imagine again that the letter F is moved across a plane surface. If the figure traces
out a continuous path, then none of these isometries that connect the figures at successive times can be improper
motions. Single reflections, for example, can never be used in this process. For if you reflected the figure around some
line, at a definite time t, then at least one of the tips of the figure would ‘make a jump’ at that time. It would not trace a
continuous path at all. Therefore the proper motions are properly so-called—for they represent real motion of real
objects. The proper motions of the plane represent real motion on flat surfaces, and the proper motions of space
represent real motions in three dimensions.

A product of proper motions is always again a proper motion. But a product of improper motions need not be
improper. So the proper motions by themselves form a natural family, while the improper motions do not. What is
meant here by a natural family is exactly the topic of the next subsection.

Besides symmetries of the space as a whole, we can also study symmetries of specific figures. A symmetry of a figure is
an isometry which leaves this figure invariant, i.e. acts like the identity on this figure. The letter R has no symmetries
except the identity itself. Of course, O has a large family: all rotations around the centre, and all reflections in lines that
pass through its centre, and all products of series of these rotations and reflections. For each figure there is therefore a
specific family of symmetries, and it is again a natural family, in that the product of any two members is again a
symmetry of that figure.8
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3.2. Groups and Invariants
Having seen several examples of natural families of symmetries, we turn now to the study of such families. This is the
theory of groups. I shall try to show how group structure can be looked at in three different ways, each instructive in
its own way, but equivalent. Let us begin with the philosophical idea of abstraction. For example, if we first discuss
individual animals, and then abstract (‘the mouse is long-tailed’, ‘the shark is one of the oldest extant species’, ‘the
human is an omnivore’), we have switched attention from the individuals to types. We have thereby divided the
individuals into classes and produced a partition:

A partition of a set K is a class X of subsets of K which is:

exhaustive: the union of X is K
disjoint: no two members of X overlap

The members of the partition are called cells. Notice that this abstraction proceeded by classifying the individuals as
the same in some respect. That sameness is an equivalence relation; and the cells are just the classes of animals grouped
together by this relation:

R is an equivalence relation on K exactly if R is:
reflexive: x bears R to x
symmetric: R is its own converse—if x bears R to y then y bears R

to x
transitive: if x bears R to y, and y does to z, then x also bears R to z

for all members x, y, z of K.

Here is the first result: equivalence relation and partition are effectively the same concept. Corresponding to partition
X, we have the equivalence relation, call it X-equivalence, of belonging to the same cell of X. Conversely, any relation R
on K associates with each member x of K the class R(x) = {y ∈ K : x bears R to y}. If R is an equivalence relation, these
are called (R-) equivalence classes, and they form a partition of K. This correspondence between partitions and
equivalence relations is one-to-one.

We introduce now the idea of a transformation of the set—a
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one-to-one mapping of K onto itself—and consider just those transformations which ‘respect’ the cells. That means, if
t is such a transformation, then t(x) is in the same cell as x itself. It may come as no surprise that this is an example of a
set of transformations which corresponds exactly to the equivalence relation:

If T is the family of all transformations t of K such that t(x) is in the same cell ofX as x is, then two elements y and z
of K are X-equivalent if and only if z = t(y) for some member t of T.

The interesting question which leads directly to the concept of group is now, What must a family of transformations of
K be like, in order to be related in this way to a partition (or equivalence relation)? We define:

Class T of transformations of domain K is a semi-group (a transformation semi-group on K) exactly if tt′ belongs to T if t
and t′ belong to T.
A monoid is a semi-group which contains the identity transformation I(x) = x of its domain.
A group is a monoid which contains for each member t also an inverset−1: t(x) = y if and only if t−1 (y) = x.

We have already seen that there is an exact correspondence between partitions and equivalence relations. We add now a
similar correspondence of the two to groups of transformations of the same domain.

If T is a family of transformations of set K, then x and y in K are called T-equivalent if x can be transformed into y, i.e.
if t(x) = y for some member t of T.
Theorem: (a) If T is a group of transformations of K, then T-equivalence is an equivalence relation on K.
(b) If S is an equivalence relation on set K, then there is a group G of transformations of K such that S is the relation
of G-equivalence.

(See Proofs and illustrations.) The geometrical examples we had before will illustrate this very well. In Euclidean geometry,
the
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most basic equivalence relationship is congruence; the corresponding group is the family of isometries of the space, also
called its symmetry group. The family of proper motions is also a group, a subgroup of the isometries. In the case of a
specific given figure F, the family of symmetries of F is also a group; the partition is then a very simple one, for the
figures are just divided into F and all the others. In the case of a class of figures, we must distinguish the symmetries of
the class (which transform all and only the members of that class into members of that class) and the transformations
which are symmetries of all its members. But in both cases we find a group.

We call a subset S of K invariant under g (under T) exactly if g(x) is in S for all x in S (for all g in T). Similarly, a relation R
on K is invariant under g (under T) exactly if g(x) Rg(y) whenever xRy (for all g in T).

Invariance is related to our previous notions as follows. Suppose that S is invariant under T. Then T[x] = {g(x) : g ∈ T}
is part of S for each x in S. Now if T is a group, then T[x] is exactly the set of objects which are T-equivalent to x—it is
a cell of the partition formed by the T-equivalence classes. Hence S is equivalently a set closed under the operations of
T, a set closed under T-equivalence, and a union of cells of the corresponding partition of T-equivalence classes.

Proofs and Illustrations
To prove the theorem, note first that, since a group is a semi-group, the relation of T-equivalence is transitive. Because
a group is a monoid, it is also reflexive. And because the group is closed under inverses, the relation is symmetric. For
part (b) let us take as G simply the class of all one-to-one functions t of K onto itself such that t(x) bears S to x.
Recalling that S partitions K into the family of equivalence classes S(x), we see that each member t of G is just pasted
together from functions tx which map S(x) one-to-one onto itself. Conversely, any such pasting together produces a
member of G. So if y and z belong to S(x), then there is a member t of G such that t(y) = z, and otherwise there is not.
That G is a group is easy to prove too, so S is just G-equivalence.

One word of caution, however. The correspondence we found
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between partitions and equivalence relations is one-to-one, but this is not so for the correspondence with groups. Two
distinct groups can generate the same equivalence relation. As an example, let K = {1, 2, 3, 4}, and let t be defined by

We call the result of applying t successivelyN times in a row theNth power of t. This set of powers is a transformation
group on K, for the inverse of t is just its second power, and the identity operation is the third power of t. (So every
power of t is the same as either t or tt or ttt.) The corresponding equivalence relation holds between the numbers 1, 2,
and 3, but relates 4 to itself alone. Yet it is easy to see that this group is not the group which the proof of the theorem
constructs for this job, for the powers of t do not include the transformation which maps 1 and 3 into each other, but
which maps 2 as well as 4 into itself. So here we have two groups with the same corresponding equivalence relation.

4. Symmetries of Time: Classical (In)determinism
Determinism and indeterminism are related to symmetry in two ways. One has to do with the very meaning of
determinism, the other with its empirical implications.

We cannot even ask the question whether the world, or a given (kind of) system, or a theory is deterministic unless we
have a precise meaning for the term first. I shall not occupy myself with the question of what kind of theory should be
called deterministic; following the semantic approach, we must address ourselves primarily to systems. Suppose that a
given system has a state-spaceH. A trajectory of such a system is a map s: Time → H. What exactly must be true of these
trajectories to make the system a deterministic one? To approach this question, we must think about the relation of the
possible trajectories of the system to its state-space. In the case of Newtonian science, for example, space is Euclidean,
which means that the symmetries of Euclidean space induce also symmetries of the state-space as a whole. This means
in turn that, if we describe a possible history of a Newtonian system, and then change this description
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so that the result depicts an exactly similar history but with all geometric configurations transformed by an isometry,
then that is also a possible history of this kind of system.

1. If S is a symmetry of the state-space, and s a possible trajectory, then s′ : s′(x) = S(s(x)) is also a possible
trajectory.

This is a general principle which says something about the set of possible trajectories as a whole, as opposed to a law of
succession which constrains the trajectories individually. But laws of succession must be of a form which allows this
principle to hold, and that fact constrains theory. The symmetries of the state-space do not ‘reach across time’,
however, except in such implications. We must add diachronic symmetry separately.

Bertrand Russell (1953) suggested that determinism requires that time itself not appear as a factor in the evolution of
the state. That means that there must be a function f such that, for all times t and positive numbers b, s(t + b) = f(s(t), b).
This ascribes a certain periodicity to the actual history, for it means the same as:

For any times t, t′, if s(t) = s(t′) then s(t + b) = s(t′ + b).

Periodicity is a certain kind of symmetry in time. It is not mirror-image (‘bilateral’) symmetry, but symmetry under
translation t → t + x of time: the symmetry of identical repetition.

This is still not enough if we require it only of the actual history of the system we are looking at.9 The system was
capable of different possible states, including ones that it never actually has. The idea of determinism certainly requires
that the evolution also would not have depended on the absolute time if the system had followed one of its other
possible trajectories.10 We shall require then of a deterministic system.11

2. There is a function f such that, for all times t, all positive numbers b, and all possible trajectories s′, s′(t + b) =
f(s′(t), b).

Another way to put this, which shows that it is not vacuous, is this:

2a. For all times t and t′, for all b > 0, and possible
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trajectories u and v, if u(t) = v(t′), then u(t + b) = v(t′ + b).

Time translation thus induces a symmetry which imparts periodicity to each individual trajectory but also relates
trajectories.

Define now the operations Ub on the possible states of our system, by means of the equation

4. Ubv(t) = v(t + b)

This defines Ub uniquely, if the above condition of determinism is satisfied. The family of operators {Ub : b ≥ 0} is a
semi-group with identity—a monoid—and is also called the dynamic semi-group of the system. Obviously U0 is the
identity, and the product of two operators is given by

5. UbUc = Ub + c

We can use this to rephrase the condition we had arrived at:

6. The system S has a dynamic semi-group, namely a family {Ub : b ≥ 0}, such that 4 and 5 hold.

And this we can equivalently take as the definition of determinism.

There is also a stronger notion in the literature, bi-determinism, which means that the past must also have been the same
if the present is. This is defined equivalently by the conditions

7. For any real number b, any times t, t′, any possible trajectories u and v, if u(t) = v(t′) then u(t + b) = v(t′ + b).
8. The system has a dynamic group, namely a family {Ub : b a real number}, such that 4 and 5 hold and .

The operators Ub are in all cases called evolution operators. One way of looking at mechanics is to say that the laws of
motion (or Schroedinger's equation, in quantum mechanics) describe the dynamic group.

Let us now step back, and put this discussion in larger perspective. Since only the possible states and possible
trajectories played a real role, the above conditions pertain properly to kinds of systems. Rather than say that a given
system is deterministic, we should say that it belongs to a deterministic kind. But kinds may be sub-kinds of other
kinds, so it may also
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belong to a kind which is not deterministic. In the semantic view a theory typically, in presenting a class of models,
describes a kind of system, with an implied classification of sub-kinds. Whether a given real system—such as the
world, or you, or I—is deterministic is therefore definitely not a univocal question. This also suggests various options
for the interpretation of theories.

First, it does not matter how a theory presents its class of models. So it might just say, for example, that the models all
have a certain state-space type, and the possible trajectories satisfy certain equations and are deterministic. If the
equations are not everywhere defined, for example if there is a discontinuity, the stipulation of determinism may not be
redundant.12 One might object that this will make the theory radically incomplete, if there is more than one maximal set
of possible trajectories which satisfy (singly) the equations where defined, and (jointly) condition 6 of determinism.
But, first of all, incompleteness is the rule rather than the exception when it comes to theories; secondly, it would mean
that we appear to have certain options of interpretation. Let the theory be T; clearly, T-systems are not a deterministic
kind in this case, but they divide e.g. into TA-systems and TB-systems which are deterministic sub-kinds. Option 1 is to
give as theoretical hypothesis that any two real systems belong to the same sub-kind if they belong to either, but we do
not know which. This is essentially an ordinary sort of incompleteness. Option 2 is to say that there are real systems
belonging to each. Then we face the further question of whether they are distinguished by certain physical magnitudes,
not treated in theory T. To say that they are—option 2(a)—is to attribute to T again an ordinary sort of
incompleteness. To say that they are not—Option 2(b)—appears to be an unequivocal assertion of indeterminism in
the real world.

Two qualifications must be entered here, for in one way that assertion looks stronger than it is, and in another way it
looks weaker. From an empiricist point of view, at least, the most we can really say about a real system X in this regard
is:

System kind K is (is not) deterministic, and is such that one system of this kind has a history which coincides with
the history of real system X, in the time interval d, with respect to the values of the relevant physical magnitudes.
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This means that it makes sense to say of a real system not that it is or is not deterministic, but only that it can be
thought of as (or as not) deterministic. Typically, the same system can be thought of as a (temporal part of a) system of
many different kinds.

More interesting, and equally valid for the empiricist, is the question of whether the phenomena are not only such that
we can think of X as a system of an interesting indeterministic kind, but such that we cannot think of it as deterministic.
Is that even possible? Despite the great value the nineteenth century apparently attached to the ideal of determinism,
and its consequences for the scientific world-view, this question was not truly broached. Transposing Kant's theory of
our constitution of the empirical world, neo-Kantians had the conviction that any phenomena whatever could in
principle be fitted to a deterministic account, and they regarded theory construction as not finished until such an
account is produced. But even Hans Reichenbach, in his influential attacks on this conviction, went no further than
insisting on the possibility of choosing Option 2(b) above. In the case I described there, we have ipso facto a possible
deterministic completion of T, by postulating that the subscripts A and B correspond to so far undescribed physical
quantities. Reichenbach pointed out that it is purely contingent whether or not there would be observable quantities to
play that role, and insisted that it was reasonable to postulate sometimes that there are no such quantities at all in
reality.13 But there is a worse case, not like this schematic example. Let us say that what Reichenbach envisaged here is
classical indeterminism, characterized by the fact that it is at least possible to conceive of the case as incompletely described
determinism. It was only after the advent of quantum theory that we came to see the possibility of non-classical
indeterminism in the phenomena, which is not even conceptualizable as compatible with an underlying determinism.

Proofs and Illustrations14

In classical mechanics, systems are typically described by a set of differential equations(1a)
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or in matrix form(1b)

The single higher-order differential equation,(2)

is also equivalent to a system of form (1). The general solution of (1) consists in the fact that under suitable conditions
(e.g. if all the partial derivatives of Xi in xj exist and are continuous) it is equivalent to(3)

Owing to the linearity of integration, this describes evolution in accordance with a dynamic group x(t + b) = Ubx(t),
provided the integrated part is independent of t. That is not always the case, illustrating essentially the fact that classical
indeterminism is formally indistinguishable from the case of a system which is one part of (and affected by another
part of) a larger deterministic system.

5. Conservation Laws and Covariance
Descartes's most basic physical principle was a conservation law: that the same amount of motion is always preserved
in the universe. From this principle, via his concept of quantity of motion, he purported to derive the law of inertia and
the laws of collision. Though he was not successful in this, the form of his attempt set a great precedent for modern
science.

As noted above, an observable or physical magnitude or measurable quantity—terms often used interchangeably—has
possible values and bears certain relations to both states and trajectories. In classical conception the values are real
numbers, or numerical constructs, such as vectors with real-number components, and are functionally related to the
state. In contemporary physics and its interpretations we come across quantities construed rather differently. One
departure is that a quantity capable of taking precise real-number values may be said to have sometimes no precise
value, or an ‘unsharp value’ represented
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by an interval. In another departure, the possible values of a quantity are related to the state indeterministically,
through a probability distribution. Although I focus here on classical ideas, I do still want to explain what quantities are
in a way that is classically correct, yet suited to generalization. Suppose m is an observable and E an interval of real
numbers.15 With this supposition we can in all these cases divide the states into two classes. In the simple classical case,
the division picks out those states in which m has a specific value which lies in E. In the other cases, it may pick out
those states in which m has a sharp or unsharp value represented by some subset of E, or else those for which the
corresponding probability distribution gives 1 to E. (The latter could be read as: in these states, m must certainly have
value in E, though it may have a sharper value than this indicates.) Formally, we would say that the observable m is
represented by a function which maps the intervals of real numbers to sets of states. Proceeding somewhat more
intuitively, let us introduce the notation [m, E] and its equivalent readings:

1(a) State x belongs to [m, E],
1(b) [m, E] is the set of states in which m must have value in E,
1(c) m must have value in E if the system to which it pertains has a state in [m, E].

In the terminology of Section 2, these are equivalent elementary statements of the sort I called state-attributions, and
[m, E] is the proposition which they express. We can say a little more now about their logical interconnections, e.g.

2. [m, E ∩ F] = [m, E] ∩ [m, F].

The simple classical case is distinguished by the fact that, if m must have value in a certain interval, then it must have
one of its possible sharp values which lies in that interval. Then we have equivalently:

3a. [m, E ∪ F] = [m, E] ∪ [m, F] for all intervals E and F.
3b. There is a function m′ which maps the state-space into the real numbers and such that x is in [m, E] if and only

if m′(x) is in E.
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If observable m is thus, we can call it a classical state-attribute. In the simple classical case, all observables are classical
state-attributes.

A conservation law is a principle to the effect that some quantity m is conserved (retains its value, is constant) in time,
under certain conditions. We can immediately restate this as: if a possible trajectory (of the relevant sort) enters
[m, E]—for E chosen appropriately—it will not leave it again. Equivalently, those state-attributions are invariants of
the dynamic (semi-) group:

4. For all t: if x is in [m, E], then Ut(x) is in [m, E].

So that is what a conservation law is: a description, in terms of an observable, of invariants of the dynamic
(semi-)group. If 4 holds for all intervals E, then the observable m is a constant of the motion; the observable
represents a conserved quantity. Note that, in the case of a group, the if–then arrow can be replaced by an equivalence:
a trajectory which has a point in [m, E] has all its points, both past and future, in that region.

Formally related to this is the somewhat similar notion of covariance. If states x and y are related by a symmetry, one
expects the values of the observables of systems in those states also to bear some relation to each other. An observable
may be called an ‘absolute’ quantity if it is related to the symmetries of the state-space in the above way.
(The corresponding state attributions are invariants of the symmetry group.) In the case of classical mechanics, the
symmetries are the Galilean transformations, and acceleration is one of the invariants. Velocity, on the other hand, does
not remain invariant under these transformations. There is an intermediate case, in which a quantity varies
systematically in a certain way with the transformations. This is the case for velocity with a Euclidean reflection
through a plane (multiplication by −1 of the relevant velocity component), but not with a Euclidean translation
(the velocity is unaffected). We shall not need to exploit this notion of covariance for quantities, but must note that it is
also applied in a certain way to equations that relate quantities. When we write for example that PV = rT, we mean that
the values of these quantities are always related so as to provide a solution for the corresponding numerical equation.
In that case, let us say that
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the quantities (taken in the right order) satisfy the equation. The general concept of covariance for such an equation is
then:

An equation EQ is covariant with respect to group G exactly if the following is the case: for all transformations g in
G, if 〈 x1, . . . , xn 〉 satisfies EQ, so does 〈 g(x1), . . . , g(xn) 〉.

When G is the group of evolution operators, this can of course be rewritten as a conservation law: instead of writing
PV = rT, for example, we can state that the quantity PV − rT = 0, in which case covariance of the equation means that
a trajectory which enters [PV − rT, {0}] does not leave it again. Hence covariance of an equation with respect to a
group of symmetries of the state-space is formally analogous to a conservation law.

Proofs and Illustrations
Conservation of energy; stability. In 1669 Huyghens proposed that in perfectly elastic collisions not only the momentum is
conserved, but also another quantity (soon thereafter called the vis viva), namely the sum of the products of mass with
velocity squared. Over the next century this idea was extended to other mechanical situations; proportional to the vis
viva is the kinetic energy, in addition to which another factor is to be recognized, the potential energy. The form of the
extended conservation laws which appeared in Lagrange's Analytical Mechanics (1788) may be summed up as follows:

In a conservative system the state depends on a certain real vector x, its derivative d x/d t, and two real continuous
functions, the kinetic energy KE(x; d x/d t), which is non-negative with KE = 0 iff dx/dt = 0, and the potential energy
V(x), determined only up to a constant, such that KE + V is constant.

Lagrange's theorem (proved only later by Dirichlet) says that, if in position X(0) the potential energy V is at a
minimum, that position is in a stable equilibrium. This means that for any ɛ > 0 there is a δ > 0 such that, if |x| + |dx/
dt| is smaller than δ at t = 0, it remains smaller than ɛ for all t′ > 0. Thus the trajectory is such as to stay in a significant
sense ‘near’ its critical point at t = 0.
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There is a well-known slogan especially associated with the results of Emmy Noether: ‘For every symmetry a
conservation law’. In classical mechanics as in quantum mechanics, the cash value of this slogan consists in the
theorems which say that, if the Hamiltonian has a certain symmetry, then a certain quantity is conserved. This is really
a more beautiful subject in quantum than in classical mechanics, but the main classical results are also striking. In the
Hamiltonian formalism, the system with Hamiltonian H is conservative exactly if dH/dt = 0, an equation which is
covariant with respect to Galilean transformations. For a conservative Hamiltonian system, with Hamiltonian function
H:

(a) if H is invariant under space translation, then the total momentum is conserved.
(b) If H is invariant under time translation, then the total energy is conserved.
(c) If H is invariant under spatial rotation, the total angular momentum is conserved.

These three facts, (a)–(c), are the principal classical conservation laws. To instantiate the slogan, they should be phrased
in the form: if spatial translation (time translation, rotation) is a symmetry of H, then total momentum (total energy,
total angular momentum) is conserved (see e.g. Aharoni 1972, 295).
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3 Indeterminism and Probability

No doubt the reader will be astonished to find reflections on the calculus of probabilities in such a volume as
this. What has that calculus to do with physical science?
Henri Poincaré, Science and Hypothesis (1905)

Pure chance and indeterminism were discussed by Aristotle, Lucretius, and Aquinas, but were relegated to illusion and
ignorance in modern times. Yet when they reappeared in contemporary physics, they found the way prepared—in the
interval, through that very connection with ignorance, they had become conceptually tractable.

1. Pure Indeterminism and the Modalities
Let us say that the present and past are settled fact, a system X has evolved up to time t = now along its state-space
trajectory u(t), and many possible futures stretch out before it. Is this world-picture unintelligible?1 Not at all; as soon as
we have a precise conception of determinism, we have one ipso facto of its opposite. As we found in the preceding
chapter, we can imagine our ignorance of what the future will bring to be irremediable. Nature may lack those hidden
factors needed to extend the true history of the phenomena into a deterministic story.

There may still be limits on that future. All possible trajectories which agree with u(t) up to t = now may lead the system
eventually into region S of the state-space. This might be just the set of states in which observable m has value in E: the
ones which, in our previous symbolism, make the proposition [m, E] true. In that case we say, equivalently:

All possible futures of X are such that [m, E] will be true.
It is necessary that [m, E] will be true.



This reveals several logical facts about necessity and possibility. The first is that the words ‘necessary’ and ‘possible’
must behave logically like ‘all’ and ‘some’. For example, just as ‘Not all Greeks are virtuous’ is the same as ‘Some
Greeks are not virtuous’, so ‘It is not necessary for the population to grow exponentially’ is the same as ‘It is possible
that the population will not grow exponentially’. In contemporary logic, necessity is symbolized by a square and
possibility by a diamond. Hence we express this point, and several related ones, as follows:

This formal analogy serves as a good guide to reasoning with the modalities, as possibility, necessity, actuality, and
contingency are called.

The second point our discussion reveals is that there is something relative about this sort of necessity and possibility.
After all, it is in virtue of having its past represented by the trajectory function u, ranging from the far past to t = now,
that the statement of necessity for [m, E] in its future is true for system X. It might not have been true if the system
had a different past and/or present. What we called the possible futures for X were the trajectories bearing a certain
relation to its actual trajectory. Let us introduce some relative modalities as illustration:

Trajectory v is possible1 relative to trajectory u at time t: exactly if u(t′) = v(t′) for all t′ ≤ t.
A system with actual trajectory u:

necessarily1 has feature F at time t exactly if any and every system with a trajectory v which is possible1 relative
to u at t also has feature F;
necessarily2 has a certain state-attribute exactly if any and every system with a trajectory v which is possible1
relative to u has that state-attribute for all t′ ≥ t.

The duals ‘possibly1’ and ‘possibly2’ are of course defined
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dually. Other varieties of possibility and necessity can also be introduced, for the modalities are neither univocal nor
absolute.

But let us continue for a moment with these. In the characterization of determinism, a crucial role was played by the
time translation symmetry. We can postulate this symmetry also for indeterministic systems in a weaker form.

Postulate: Let g be a time translation. Then:

(i) u is a possible trajectory exactly if ug is;
(ii) v is possible1 relative to u at t if and only if vg is possible1 relative to ug at g(t).

Given this postulate, we can introduce an indeterministic counterpart to the dynamic (semi-)group.

For any subset S of the state-space, and b ≥ 0, define:

Tb(S) = {x: for some possible trajectory u, time t, and state y in S, u(t) = y and u(t + b) = x};
.

A given set S may be ‘fragmentary’, in that it is only a proper part, and not the whole, of , so that these
‘vague’ evolution operators do not form a group. But they do form a semi-group with identity, since, for b and c both
non-negative, TbTc = Tb + c. (See Proofs and illustrations.)

So formulated, we see that what is necessary2 about the future as a whole depends exactly on what is invariant under
the dynamic semi-group {Tb: b ≥ 0}. This is a rather interesting, if modest, formal structure. Yet there is no doubt that
a state-space model equipped with no more than an indeterministic set of possible trajectories would give us a very
weak theory. It is time to look at probability, the grading of the possible.

Proof and Illustrations
Let us designate as the t-cone of trajectory u the set of possible trajectories which agree with u up to and including t
(i.e. the set of those defined as possible1 relative to u at t). Next, let the b-surface for u at t be the set of states v(t + b): v in
the t-cone
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of u. We can think of this as a time slice or instantaneous snapshot of the t-cone, taken at the later time t + b.

1. The b-surface for u at t equals the b-surface for ug at g(t).

For by the postulate of time translation symmetry, v is in the t-cone of u, exactly if vg is in the t-cone of ug and vg(t + b)
= v(g(t + b)) = v(g(t) + b), given that g is a time translation.

2. For any k, Tb(S) = the union of all the b−surfaces at t = k of trajectories u such that u(k) is in S.

That Tb(S) includes the described set is obvious by definition. Now suppose that x is in Tb(S) because u(t′) = y is in S
and u(t′ + b) = x. Then we can set g = +t′ − k, and so ug(k) = u(t′) = y in S and ug(k + b) = u(t′ + b) = x. Therefore Tb(S)
is also included in the described set.

3. TbTc(S) = Tb + c(S) for b, c ≥ 0.

By the preceding, Tc(S) is the union of all the c-surfaces at t = 0 of trajectories u such that u(0) is in S. Also, Tb(Tc(S)) is
the union of all the b-surfaces at c of trajectories v such that v(c) is in Tc(S). That means: the set of states v(b + c) of
trajectories v such that v(0) is in S, i.e. in Tb + c(S).

At time t, what is necessary1 for a system with actual trajectory u can be summed up as: the system's trajectory lies in
the t-cone of u. Let Ct(u) be the union of all b-surfaces of u at t, for all b ≥ 0. That is just the set of all states after t in the
trajectories possible1 relative to u at t. So Ct(u) is invariant under the semi-group {Tb: b ≥ 0}. Also, Ct(u) must be
included in [m, E] for that state-attribute to be necessary2 at t for a system with actual trajectory u. Relevant to
necessity2, we have the following:

4. Ct(u) = ∪ {Tb({u(t)}): b ≥ 0}
5. Ct(u) is invariant under {Tb: b ≥ 0}
6. S is invariant under {Tb: b ≥ 0} iff Ct(u) ⊆ S for all u such that u(t) is in S
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7. [m, E] is necessary2 at t in a system with actual trajectory u exactly if Ct(u) ⊆ [m, E]

as was to be shown for its connection with invariance.

2. Probability as Measure of the Possible
Reflecting on our possible future, we do gauge some things as more likely to happen than others. In modelling the
evolution of a physical system, we would like similarly to grade some continuations of its trajectory beyond a given
time t as more or less probable. What exactly that means is not at all transparent, and gives rise to many philosophical
problems. For the most part I shall leave these aside here, and concentrate on the structure of probability while relying
on our intuitive understanding.2

To have a well-defined probability, one needs to specify to what objects the probability is assigned. This may be a
family of events that may or may not occur, of propositions that may or may not be true, or of (purported) facts that may
or may not be the case. The family must have at least the simple sort of structure that allows representation by means
of sets. From measure theory, probability inherited the concentration on fields (Boolean algebras of sets) for which I
shall show the motivation below.

A field of sets on a set K is a class F of subsets of K such that:

K and Λ are in F
If A, B are in F, so are A ∩ B, A ∪ B, A − B
A field F on K is a Borel field or sigma field on K if in addition F contains the union of any countable class
A1, . . . , An, . . . , of its members.

It follows automatically that, if A1, . . . , An, . . . are in a Borel field, so is their intersection.

Intuitively, measure is a generalization of the familiar notions of length, area, volume, etc. Precisely, a measure is a non-
negative, countably additive function defined on a sigma field,
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which need not have an upper bound; indeed, some sets may have infinite measure.

Why this insistence on fields; why not have the measure defined on every subset of K? To understand this we must
take a brief look at the history of this subject. Measure theory began in the 1890s with some rather tentative and
sceptical attempts to use Cantor's set theory in analysis, and only finite additivity was originally noted as a defining
requirement for measure. Countable additivity was made part of the definition in Emile Borel's monograph (1898).
The measure which Borel defined on the unit interval [0, 1]—which we now call Lebesgue measure—is not defined for all
sets of real numbers in that interval. The definition runs as follows:

The measure of an interval of length s has measure s; a countable union of disjoint sets with measures s1, . . . , sn, . . .
has measure Σ si; and if E ⊆ E′ have measures s1 and s2, then E′ − E has measure s2 − s1.

The sets encompassed by these clauses Borel called measurable, and the measurable subsets of [0, 1] we now call the
Borel sets on that interval. It is clear that they form a Borel field, so here we see the origin of our terminology. The Borel
subsets of the whole set of real numbers, of the plane, of three-space, and of the n-dimensional space Rn, are defined in
the same way. The role of the intervals is there played by the generalized rectangles {(x1, . . . , xn): a1 ≤ x1 ≤ b1, . . . ,
an ≤ xn ≤ bn}. The class of Borel sets in that space is the smallest class that contains these and is closed under countable
union and set-difference.

Henri Lebesgue posed the explicit problem of defining a measure on all the subsets of a space. There are trivial
measures of that sort, for example those which assign 1 to any subset of [0, 1] that includes a given number and 0 to
the others. The question is whether the requirement to be everywhere defined would eliminate important or interesting
functions. Lebesgue (1962, 236) introduced his Measure Problem as follows: can we have a measure defined on all
subsets of a space which satisfies the following conditions:

(i) There is a set whose measure is not zero.
(ii) Congruent sets have equal measure.
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(iii) The measure of the sum (union) of a finite or denumerable infinity of disjoint sets is the sum of the measures
of these sets.

Congruence is the relation between sets which can be transformed into each other by symmetries of the space. In the
Euclidean case, one of the symmetry transformations is translation, and so we see at once that the measure Lebesgue
calls for is already essentially uniquely determined on all the Borel sets:

Lebesgue measure is (up to a multiplicative constant) the unique measure defined on the Borel sets in the n-
dimensional space Rn, n = 1, 2, 3, . . . , which is translation-invariant.

For in an n-dimensional space, all the Borel sets can be set-theoretically approximated by choosing the Borel field
generated by the family of the generalized rectangles congruent to a single very small generalized cube Cn. The
approximation gets progressively better as we take Cn smaller and smaller. But it is obvious that, if the generalized unit
cube has measure 1, it can be divided into mn disjoint generalized cubes which must (by additivity) all receive measure
1/mn. Thus, the measure of all little generalized cubes is uniquely determined, and hence, by continuity, is the measure
of all the Borel sets.

Lebesgue's Measure Problem was solved in a rather curious way. Around 1905 there was a heated debate about the
Axiom of Choice in set theory. Borel was one of its staunchest and most vocal opponents. Lebesgue was more
moderate but rejected it as well. In his own proofs, however, Lebesgue seemed to have tacitly relied on the Axiom of
Choice. It turned out that, if the Axiom of Choice is true, Lebesgue's ‘Measure Problem’ has no solution.3 Therefore
the requirement to have measures defined everywhere is unacceptable.

Turning now to probability, this is, since Kolmogorov, standardly defined as a measure with maximum 1. For future
reference, it will be useful to have a summary of the defining characteristics in more perspicuous form:

P is a probability measure on set K, defined on sigma field F — and 〈 K, F, P〉 is a probability space — exactly if
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(1) P(A) ∈ [0, 1] for each member A of F
(2) P(Λ) = 0, P(K) = 1
(3) P(A ∩ B) + P(A ∪ B) = P(A) + P(B) for any members A, B of F
(4) if A is the union of the series A1 ⊆ . . . An ⊆ . . . of members of F.

Here (3) and (4) have some more familiar equivalents:

(3a) P(A ∪ B) = P(A) + P(B) if A ∩ B = Λ
(4a) P(∪ Ai) = Σ P(Ai) if Ai ∩ Aj = Λ for all i ≠ j
(4b)

The property described by (3a) is finite additivity and that described by (4a) is sigma additivity or countable additivity. It is
clear from formulations (4) and (4b) that the countable additivity is just finite additivity plus a continuity requirement.

There are also derivative notions, of which the most important is conditional probability. What is the probability that a
certain atom will decay in the next five minutes, given that it is either radium or radon? There is an immediate
temptation to read ‘given that’ as ‘if ’—perfectly all right when speaking informally, but thoroughly treacherous
otherwise. For if we do so, we shall assume the conditional probability of A given B to be the ordinary probability of
some third proposition, i.e. if A then B. It is almost impossible to construe that assumption so as to make it tenable or
even sensible (see Harper et al.1981; Hajek 1989). Discussions of quantum mechanics have sometimes foundered on
those shores. Formally, the most perspicuous characterization is:

If P(A) = 0, then P(|A) is undefined; otherwise, P(|A) is the unique probability measure P′ such that P′(A) = 1 and
P′(B) : P′(C) = P(B) : P(C) for all subsets B, C of A in the domain of P.

As immediate corollary, P(X|A) = P(X ∩ A)/P(A) when defined. There are ‘deeper’ characterizations of conditional
probability, but this will suffice for us (see van Fraassen 1989, ch. 13). A second derivative notion is the expectation value
of a
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quantity: if m has possible values x1, x2, . . . , with probability P(m = x1), P(m = x2), . . . , then the expectation value of m
equals Σ xiP(m = xi).

3. Symmetry and a Priori Probability4

In the eighteenth and nineteenth centuries, probability was conceived as objective—in the sense that its assignment was
unique—and yet not empirical, for the unique assignment was correct on a priori grounds. In the slogan form
associated with Laplace, the probability of an event is the ratio of cases favourable to the event to the total number of
equipossible cases. The question is obviously how to make this precise. Indeed, while the attempts to do so were in the
main abandoned by the turn of our century, there have been noteworthy new attempts thereafter. That the conception
kept a hold on the imagination even after its official abandonment is nowhere more evident than in the reactions to
Bose–Einstein and Fermi–Dirac statistics in quantum mechanics. It will therefore be worthwhile surveying both the
downfall of the classical conception and the reach of its success in circumscribed contexts.

Harking back to the earliest disputes at the time of de Méré, Poincaré (1905) asked: what is the probability that at least
one of two thrown dice turns up six? The obvious answer is that there are 6 × 6 = 36 equipossible cases, of which 11
are favourable. But if we just ask what are the possible (unordered) pairs of numbers that may come up, we count only
21, of which six are favourable. Which division really divides by equipossibility? Since the example is finitary, we may
be tempted to answer: it must be the most exhaustive relevant division, into 36. The danger now lurks in ‘relevant’, but
in any case, the problem examples are not all finitary. Von Kries, and later Bertrand, asked: what is the probability that
a meteorite falling on earth hits Eurasia? If I am given no prior information as to areas, should I count for each
continent the number of countries, or should I just count the number of continents?

In this case we may insist that the probability assignment must go by area. But does that mean then that the a priori
determination of probability is either (a) impossible to carry out in the
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absence of certain types of relevant information, or (b) relative to the statement of the problem? Two further
difficulties emerge immediately. Area means Lebesgue measure; but on what basis is that privileged among the infinite
diversity of measures of the regions on which it is defined? And secondly, what happens when two problems are not
merely equivalent but logically equivalent? The answer—driven home by Bertrand's family of paradoxes published
around 1890—was truly disturbing. Ask for instance what is the probability that a given square of area ≤ 4 has an area
≤ 1. Judged by area, using Lebesgue measure for the division into equipossibility, the answer is . But judged by edge
length, the question is for the probability of length ≤ 1 given length ≤ 2, which by the same type of division equals .

There are explanations of why these foundational problems should not have prevented fruitful applications of the
classical idea of probability in the preceding history of physics. But they are explanations in terms of the contingently
good common sense of the physicists (so classifiable, of course, only in retrospect). Nevertheless, we can also outline
the sorts of explicit and tacit assumptions under which a certain form of reasoning does lead to correct prior
assignments, with an air of resting on no more than considerations of ‘indifference’ or ‘sufficient reason’. The clue is
once more symmetry.

We have to list Henri Poincaré, E. T. Jaynes, and Rudolph Carnap among recent writers who believed that the Principle
of Indifference could be refined and sophisticated, and thus saved from paradox.5 Their general idea applies to all
apparent ambiguities in the Principle of Indifference: a careful consideration of the exact symmetries of the problem
will remove the inconsistency, provided we focus on the symmetry transformations themselves, rather than on the
objects transformed.

As first example, let us take the following problem. I have drawn a square S, and inside it a square s of area of S,
and have tossed a (negligibly small) coin into the larger square. What is the probability that the coin has landed in the
smaller square? It is certainly true that I can define other measures on the relevant space (say, surface of the earth)
besides area. Whatever measure m I use, my answer will be the ratio m(s) : m(S). But if I am to give a rule which
answers this type of problem, it will take as input two squares with diagonal corners at certain coordinates. The specific
coordinates are not
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relevant to the problem: if we give other coordinates related to the former by an isometry, the problem has not been
essentially changed. The rule we give must respect the symmetries of the problem. But that means that the measure it
uses is translation-invariant, and so (as we saw above) it is Lebesgue measure, i.e. area. Hence the answer for this
problem is , as of course we should have expected. Note however that this depended on my requiring a rule, so that
the ‘Same problem, same solution!’ symmetry requirement could be applied. It depended also on my tacitly using a
model in which the squares were drawn in a Euclidean plane, or a sufficiently similar geometric structure to have the
required translation symmetry.6

But now consider the problem: I have found a table of numerical entries (e.g. amounts of chlorine found in water
supplies of various cities) and look at a randomly chosen entry. What is the probability that the first digit after the
decimal point is 5? Note that the significant entry is really the original minus its integer part, hence a decimal
representing a number in [0, 1]. We don't know to what extent the number was rounded off, so the question is the
same as: what is the probability that this decimal is in [0.5, 0.6)? The answer should surely be in some sense no different if
we had asked the question about 3, but we must not at once assume that the sense is that found in the preceding
problem. The sameness must again be that of ‘Same problem, same solution!’ In this case, imagine we take the table in
question, and convert it to a different unit of measurement. This means multiplying by a constant k; suppose it is .
Then the interval [0.5, 0.6) turns into [0.6, 0.72). Surely the probability that the original number chosen is in the former
interval equals the probability that its conversion is in the latter? The rule we should give as solution should assign
corresponding probabilities for corresponding questions about the two tables (see Rosenkranz, 1977, 63–8; 1981,
4.2–2 ff. and sect. 4.1*). We conclude that we need a scale-invariant measure M:

for any positive number k (invariance under dilations).

There is indeed such a measure, and it is unique in the same sense. That is the log uniform distribution:
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where ln is the natural logarithm. This function is defined on the positive real numbers; is increasing, one-to-one, and
non-negative; has value 0 for argument 1; and has the nice properties:

so

but should be used only for positive quantities, because it moves zero to minus infinity. The first of these equations
shows already that M is dilation-invariant. The second shows us what is now regarded as equiprobable:

The intervals (bn, bn+k) all receive the same value k ln b, so within the appropriate range, the following are series
of equiprobable cases:

(0.1, 1), (1, 10), (10, 100), . . . , (10n, 10n+1), . . .
(0.2, 1), (1, 5), (5, 25), . . . , (5n, 5n+1), . . . .

and so forth. It is reported that the physicist Frank Benford found empirical support for the log uniform distribution
when inspecting the first significant digit in numerical table entries.7

This is striking. But we can see again that the answer found was arrived at because we asked for a rule that would apply
‘in the same way’ to a conceptual family of problems which we singled out as ‘relevantly’ the same. Whether or not this
way of solving a given empirical problem succeeds is therefore empirically contingent; nature may or may not have
adopted a solution with exactly this sort of generality. For that generality consists in the criteria for what the relevant
variables are, and hence what the symmetries of the problem are which that rule must respect. To imagine that it would
not be—that empirical predictions could be made a priori, by ‘pure thought’ analysis—is feasible only on the
assumption of some metaphysical scheme such as Leibniz's, in which the symmetries of the problems which God
selects for attention determine the structure of reality.

In our century Harold Jeffreys introduced the search for invariant priors into the foundations of statistics; there has
been
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much subsequent work along these lines by others.8 However impressive the results, we must see them as conditioned
in the above fashion.9 The most general version of the approach in terms of symmetries outlined above is due to
Jaynes.10 This draws on mathematical theorems to guarantee that under certain conditions there exists indeed only one
possible probability assignment to a group.

The general pattern of the approach is as follows. First, one selects the correct group of transformations on our set K
which should leave the probability measure invariant. Call the group G. Then one finds the correct probability measure
p on this group. Next, define(1)

where x0 is a chosen reference point in the set K on which we want our probability defined. If everything has gone well,
P is the probability measure ‘demanded’ by the group. What is required at the very least is that (a) p is a privileged
measure on the group; (b) P is invariant under the action of the group; and (c) P is independent of the choice of x0.
Mathematics allows these desiderata to be satisfied; if the group G has some ‘nice’ properties, and if we require p to be
a left Haar measure (which means that p(S) = p({gg′ : g′ ∈ S}) for any measurable subset S of G and any member g of G)
then these desired consequences follow, and p, P are essentially unique.11 The required conditions may indeed hold in
sufficiently nice geometric models. The important points are two. First, there is no valid a priori reasoning from
principles of sufficient reason or indifference which dictate our models of the phenomena. But second, once we settle
on some way of modelling them, even if still only in a very general way, the symmetries of our model may go a long
way to dictate the assignment of probabilities.

4. Permutation Symmetry: De Finetti's Representation Theorem12

Appeals to sufficient reason or indifference typically attempt to motivate the use of a uniform distribution. On a single
toss of a
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die, with no information about its constitution, such an appeal may introduce the assignment of equal probability to all
six faces. But there is another use: to motivate treating different events or factors as mutually independent. Faced with
the fact that so few men are both handsome and intelligent, one might be tempted to conclude that either factor
inhibits the other. But instead, one could reason that these factors have probabilities p and q, both less than , and in
the absence of any information about connections between them, one would assign their conjunction the probability
pq, which is considerably less than either and certainly smaller than . This includes a tacit appeal to indifference to
motivate a probability assignment which renders these factors (statistically or stochastically) independent. Even if such
an appeal carries no logical weight, the model may be a good one.

Imagine next that, in settling on such a model, we do not have determinate probabilities for the individual event. As an
example, take the tossing of a die which may be either fair or biased in several ways. We have in effect a mixture of
several hypotheses, according to each of which the tosses are mutually independent. As our probability assignment, we
can accordingly choose a mixture (convex combination) of the corresponding several probability measures. What is the
character of this mixture? It still has, like its components, permutation invariance. This is the subject of a deep theorem
due to De Finetti, with many interesting applications. We begin with a definition and a lemma.

P is symmetric on set S of events if and only if, for all members E1, . . . , En (n = 1, 2, 3 . . . ), the probability of the
sequence [E1, . . . , En] is invariant under permutation of indexes; i.e., P([E1, . . . , En]) = P([Et1, . . . , Etn]) for any
permutation t of {1, . . . , n}.
Lemma: If P and P′ are symmetric on S, so is their mixture cP + (1 − c) P′ with 0 ≤ c ≤ 1.

To illustrate: whether the die is fair or biased, the sequence 123 has the same probability of coming up as 312, namely,
the product of the three individual probabilities. This feature is evidently preserved under mixing.

62 DETERMINISM AND INDETERMINISM



But correlations are not preserved under mixing. (This fact is sometimes called Simpson's paradox, and shows up in
many interesting places.) For example, whether the die tossed is fair or biased, there is zero correlation between
successive tosses. If the die is fair, the probability of ace is always , if it is a certain biased die it is always , and so
forth. But on the mixture, successive tosses are not independent. Intuitively: if you see ace come up on the first toss,
you have some evidence that the die is biased, and that figures in your calculation of probability for the next toss. Thus,
if those two are the only possibilities, and c = 0.5, then the overall probability of ace on the first toss is . Similarly, the
probability of two aces in a row is the average of the squares of and , that is, . The conditional probability of ace
on the second toss, given ace on the first, is therefore , and not the same as the absolute probability .

In this example, we constructed a symmetric probability function out of what might be called chance functions, which
treat the different tosses as independent. De Finetti's representation theorem says (with the qualifications given below)
that every symmetric probability function is a mixture of chance functions. This is certainly a representation of the
more complex in terms of the simpler. For if I tell you that P is symmetric on S, then to know exactly which function P
is on S, you need to know the numbers.

P(k occurrences among n members of S) = pkn

But given that P is a chance function on S, then to determine P uniquely, you need only the probability p of occurrence
of each member of S.

To make this precise, it must be stated in terms of random variables on product spaces. A random variable represents
a classical observable when the probability space is a state-space. Suppose F is a Borel field on a set K, and m a measure
with domain F. Then a function f : K → R is a random variable (also called a measurable function) provided the inverse
images f−1(E) are in F for all the Borel sets E. That means intuitively that the proposition that variable f takes a value in
E is assigned a measure (a probability if the measure is a probability function). Given many such pairs〈 Ki, Fi 〉, we
construct the product space 〈 K, F〉 by taking as elements for K the infinite
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sequences s : s(i) is in Ki for i = 1, 2, 3, . . . To construct a new field, we take to begin with the sets:

where each Ai belongs to corresponding field Fi. These sets are a family closed under countable intersection; F is the
smallest Borel field of sets which contains them all. Given the sequence m : m(i) of measures defined on the field Fi, the
function

is uniquely extendible to a measure on F, called a product measure. These product measures correspond to what I called
chance functions. If for instance the event Ai is the event of ace on the ith toss of the chosen die, then m treats that as
statistically independent of the event Aj.

There are evidently other measures on F. With the notation only a little adjusted, the above definition of symmetric
measures applies here. The random variables on〈 K, F〉 too are constructible (by limit operations) from those on the component
spaces. There is for example for f defined on K the variable fn which takes on s the value which f takes on s(n), and so forth.
By concentrating on these, we can introduce an equivalent concept of permutation symmetry definable for arbitrary
probability spaces, ignoring the complexities of product construction. That is the concept of exchangeability. Given K, F,
and probability measure P defined on F, we define:

[f < r] = {x in K : f(x) < r}, the event that f takes a value < r; random variables f(i), i = 1, . . . , m are exchangeable
exactly if P(∩ {[f(i) < r(i)] : i = 1, . . . , m}) = P((∩ {[f(ti) < r(i)] : i = 1, . . . , m}) for any permutation t and any
numbers r(i).

A countable sequence of random variables is called exchangeable if the condition holds for all its finite subsequences.
Not every finite sequence of exchangeable random variables is extensible to a countable such sequence.13

In this context we can present De Finetti's theorem as follows. Given a sequence of exchangeable random variables f(i),
we can represent their individual distributions P([f(i) < r]) as all produced by integration on a set of distributions
deriving from probability measures for which these variables are independent
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(that is, measures p such that p([f(i) < r] ∩ [f(j) < q]) = p([f(i) < r])p([f(j) < q])).

5. Ergodic Theory: Underlying Determinism
In many cases, the evolution of probabilities will be induced by evolution in their domain, and that is the subject to
which we now turn.14

A physical system has a variety of possible states, which together constitute its state-space. Even if the evolution of its
states is deterministic—as in the case of an isolated classical mechanical system—we may have to use probabilities,
because the initial states may be uncertain. ‘Initial’ refers here to an arbitrarily picked time zero. So the problem we deal
with—the abstract form of the problem of statistical mechanics—is characterized by three factors:

a state-space H;
a probability measure m on H;
a dynamic semi-group {Ut : t ≥ 0} of evolution operators for H.

This dynamic semi-group we encountered in the discussion of determinism in the preceding chapter. Here I shall not
consider only the case of bi-determinism (dynamic group) but allow that a system could reach a given end-state from
more than one possible initial state.

The meaning of the probability m(A) is that, at an arbitrarily chosen instant, the probability that the state is in part A of
the state-space equals m(A). Of course this is not consistent unless that is also the probability that five minutes ago it
was in a state which could evolve into one in A by a process lasting five minutes. This gives us the basic condition
relating measure and evolution operators. If T is any operator acting on H, define T−1(A) = {x : T(x) ∈ A}. In other
words, T−1(A) is the set of points that the elements of A could come from by transformation T. Therefore the
condition in question can be written this way:

Basic Condition: For each member T of the dynamic semigroup, and each set A in the domain of m, m(A) =
m(T−1(A)).
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Notice this requires automatically that if the probability m is defined for A, then T−1(A) also belongs to its domain of
definition.15

For purposes of illustration, let us define a simple special case. Let the transition times be minutes or seconds or other
discrete units; the dynamic semi-group is {Ut : t = 0, 1, 2, . . .}. Now U0 is just the identity, and U2 = U1+1 = U1U1. In
general, if we define

we have Un = Tn and {Ut : t = 0, 1, 2, . . .} = {Tn : n = 0, 1, 2, . . .} or {Tn} for short. Call this a discrete case. Any real
case can be ‘approximated’ by discrete cases, by taking the unit successively smaller: minute, second, millisecond, etc.

Henri Poincaré approached this subject in terms of the question of eternal recurrence. Drawn to popular attention by
such writers as Heine and Nietzsche, the question of whether the world returns eternally to its same states over and
over again was of some interest (see van Fraassen 1985b, ch. III, sect. 1). Nietzsche himself sketched a rudimentary
proof in The Will to Power that in a simple enough universe (as modelled by a set of dice) it is so. Our actual universe
isn't that simple, but in the nineteenth century it was still assumed to be deterministic. And Poincaré was able to give an
almost completely positive answer to the question for a world conceived as a dynamic system of the sort we have now
described.

Define x in H to be a recurrence point of set A exactly if Ut(x) is in A for some t > 0 and an eternal recurrence point of A if
Ut(x) is in A for infinitely many intervals t.

(Poincaré) If m(A) is positive, then almost every point in A is an eternal recurrence point of A.

‘Almost every’ has the usual probabilistic meaning: the probability measure of the set of points that are not recurrence
points of A, equals zero. I shall omit the proof, which may be found in the references.16

Of course, this result is compatible with such a return
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occurring hardly ever at all. That is the problem with the infinite long run. For example, if you look through the
numbers 1, 2, 3, . . . it will happen infinitely many times that you will come across an even number. In fact, in a
straightforward sense, you find an even one exactly half the time. You will also come across powers of 10 infinitely
many times. But after an initial flurry, it happens less and less often, and indeed, the fraction of powers of 10, among
the inspected numbers, gets smaller and smaller as you go along (1/10, 2/100, 3/1000, . . . , which converge to zero). In
the same sense, therefore, it happens hardly ever at all.

The next problem of ergodic theory is therefore to quantify Poincaré's result, and prove exactly what fraction of its
time a system will spend back in set A, once it has passed through there. This is the problem solved by Birkhoff's
ergodic theorem. In statistical mechanics, Boltzmann had in effect speculated that, for every possible dynamic system,
the answer would be determined in the same way: the amount of time spent in set A is proportional to the measure of
A (ergodic hypothesis). This is certainly not true in the abstract, and the ergodic theorems which were eventually proved in
the twentieth century require special assumptions.

I will first explain and state Birkhoff's general theorem pertaining to the ergodic hypothesis. It makes no special
assumptions. Then I will define the subclass of ergodic systems and show how the ergodic hypothesis is true of them.
Because of the nice relationship between dynamic systems and the approximating discrete cases they contain, I shall
now focus entirely on such a discrete case.

Let us first define the relative frequency with which a system with initial state x returns to a state inA in the series of times
t = 0, 1, 2, . . .

Here IA is the characteristic function of A; that is, IA(x) = 1 if x is in A and = 0 otherwise. As illustration, let us take as
trajectory the series 1, 2, 3, . . . and A = set of even integers, B = set of positive integral powers of 10. Then Ā(1) is the
limit of the series 0/1, 1/2, 1/3, 2/4, 2/5, 3/6, . . . , and this limit is 1/2.
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The number B(1) is the limit of 0/1, . . . , 0/9, 1/10, . . . , 1/100, 2/100, . . . , 2/999, 3/1000, . . . , and this limit is zero.
Limits do not always exist, of course, but only if the sequence converges.

(Birkhoff) For a dynamic system with probability measure m and dynamic semi-group {Tn : n = 0, 1, 2, . . .} and
measurable set A,

(1) for almost all x, Ā(x) exists;
(2) Ā(Tnx) = Ā(x) if that exists;
(3) the expectation value of the function Ā(·) equals m(A).

The set of points {Tkx} is called the (forward) trajectory of point x. Call a set A invariant exactly if it contains the whole
trajectory of each point in it. In other words, if a state lies in set A, evolution in time from this state leads only to more
states in A.

Secondly, define the dynamic system to be ergodic exactly if all its invariant sets have measure 0 or 1. This means that, if
there is any positive probability at all that the system's state could be outside, as well as inside, set A, then it must be
possible to have some state in A eventually evolve into one outside A. We can now state three results for ergodic
systems:

Theorem: If 〈 H, m, {Tn}〉 is ergodic and m(A) ≥ 0, then:

(1) almost every trajectory enters A;
(2) the forward trajectory of A ‘fills’ the space, i.e. has measure 1;
(3) for almost all x, Ā(x) = m(A).

The important part is of course the third, which says that the ergodic hypothesis is true for ergodic systems.

6. A Classical Version of Schroedinger's Equation
How do probabilities evolve if we do not assume an underlying determinism? As a general problem, that is not well
posed, but we can easily think of examples in which we take there to be a lawful evolution of probability without first
imagining an underlying mechanism. Examples might be: what is the probability
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that a given radium atom has decayed by time t, the probability that a customer in a bank has been served in the first n
hours of waiting, the probability at time t that Vesuvius will erupt in the next five minutes?

We can approach this by taking the states of the system to be themselves probability measures, and describing change,
as before, as a transformation of state. I will discuss a finite case. The set of simplest possibilities will be a disjoint finite
set E1, . . . , En. The probabilistic states of the system will be the probability measures on the field generated by these.
This field is itself finite, consisting of all the unions of simple events (with K = E1 ∪ . . . ∪ En). Hence such a probability
measure P is completely specified by giving p1 = P(E1), . . . , pn = P(En). So P is adequately represented by the vector
〈 p1, . . . , pn〉.

It will make our discussion still simpler if we switch to odds, i.e. probability ratios. Since we know that P(E1) + . . . +
P(En) = 1, we would also have specified P completely if we were just given certain ratios, such as p1/p2, p1/p3, . . . , p1/pm.
To give an example, suppose the probabilities that the television or radio, or neither, is on (when at most one can play
at any given time) initially (at t = 0) equal 0.5, 0.3, 0.2. That information is conveyed equally well by saying that the
odds are 5 : 3 : 2. So this probability function can be represented by the probability vector 〈 0.5, 0.3, 0.2〉 or by the odds
vector 〈 5, 3, 2〉. And of course, to say that the odds are 50 : 30 : 20 is also the same. One form of evolution that is
easy to imagine is that the odds are just raised to the power of the time elapsed:

Time Odds Probabilities
1 5 3 2 0.5 0.3 0.2
2 25 9 4 0.66 0.24 0.1
3 125 27 8 0.78 0.17 0.05

This evolution of probabilities is itself not deterministic, because the initial probabilities at t = 0 recur at t = 1, but not
at t = 2. In fact, there is a strange discontinuity at time zero. So though imaginable, this is not plausible. To find
something more lawlike, we need to pay attention to the symmetries of the state-space we have chosen here.

To introduce some notation, say that x = 〈 x1, . . . , xn〉 is an
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(n-ary) odds vector iff x1, . . . , xn ≥ 0. An odds vector is a probability vector iff its components sum to 1.

(1) Odds vectors x and y are equivalent iff there is a positive real number k such that x = ky (i.e. xi = kyi for
i = 1, . . . , n).

We have now embedded the set of probabilistic states of the system—our basic concern—in a large set, the space of
odds vectors. Obviously, we have not added at all to our descriptive capacity—an odds vector is just another way to
represent probabilities. We have added ease. The reason is that the requirement that the numbers add up to 1, for
probabilities, always means that you write one number more than you need: xn = 1 − x1 − . . . − xn − 1 after all. Yet that
number conveys lots of information; for example, that the last possibility En is 17 times more probable than the first
E1. By writing down the odds, there is no redundancy, and the arbitrariness of setting total probability equal to 1 has
been removed.

What kind of structure does this space of odds vectors have? We have already seen the relation of equivalence, which we
could have called total congruence. There are also partial congruences; for example,

the odds E1 : E2 are the same for both probability measures P1 and P2;

and, more generally, there are partial comparisons, like

the odds E1 : E2 according to P1 are 17 times the odds E1 : E2 according to P2.

Let us codify this as follows:

(2) The equation (xi/xj) = k(yi/yj) is an odds comparison of vector x with vector y.

The equation is not defined, and the odds comparison does not exist if either denominator equals zero.

We know all there is to be known about the relations between two odds vectors x and y if we know the set of well-
defined numbers (xi/xj) : (yi/yj). And it is easy to check that equivalence can be explicated as follows:

(3) Odds vectors x and y are equivalent exactly if all their
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odds comparisons with any third odds vector z are the same.

The symmetries of the space of odds vectors are the transformations which leave the structure so defined entirely
intact.

(4) A symmetry (of the space of odds vectors) is a one-to-one transformation U such that the odds comparisons of
Ux and Uy are the same as those of x and y, for all odds vectors x and y.

Of course, the definition applies equally to probability vectors.

Theorem 1: A transformation U of the set of odds vectors is a symmetry if and only if it is positive and linear; that is,
iff there are positive numbers u1, . . . , un, un such that, for all x, Ux is equivalent to 〈 u1x1, . . . , unxn〉.

For proof see below.

Without loss of generality, I shall now take as symmetries the transformations U such that there are positive numbers
u1, . . . , un, such that Ux is not only equivalent to, but equal to, 〈 u1x1, . . . , unxn〉 for all x.

With respect to geometry we discussed uniform motions, which were changes over time that preserved all symmetries.
We already saw there and in the discussion of determinism that the motion must be described by at least a semi-group
of ‘evolution operators’. If x(t) is the probabilistic state of t, then it yields at t + d the state x(t + d) = Udx(t) and Ud+e =
UdUe, with U0 = identity, as we saw at that time. So let us repeat the definition for our new context:

(5) A uniform motion of the odds vectors is a one-parameter semi-group {Uz : z ≤ 0} such that each Uz is a
symmetry.

Theorem 2: If {Uz : z ≤ 0} is a uniform motion, then there are positive numbers k(1), . . . , k(n) such that, for each
time interval z, Uzx = 〈 ek(1)zx1, . . . , ek(n)zxn〉.

In matrix formalism, Uzx = eKzx; again, see below for proof. Readers familiar with various parts of science will
recognize a familiar form here—that of Lambert's law of light absorption,
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the law of radioactive decay, the calculation of continuously compounded interest, and, most interesting of all,
Schroedinger's equation in quantum mechanics.

In the example we had before, let us set k(i) = i for i = 1, 2, 3. Then the evolution by uniform motion takes the form
(with time t = 0 now not at all a singularity):

Time Odds Probabilities
t + z 5ez 3e2z 2e3z

t + 0 5 3 2 0.5 0.3 0.2
t + 0.5 8.2 8.1 8.9 0.33 0.32 0.35
t + 1 13.6 22.1 40.2 0.18 0.29 0.53
t + 2 37 164 807 0.04 0.16 0.80

Proofs and Illustrations

Theorem 1.
If U is positive and linear, then it is a symmetry. To prove the other half, let 1 be the vector all of whose components
equal 1, and let U1 = 〈 u1, . . . , un〉. Then if U is a symmetry and x any vector, and we write x′ = Ux, we have

and also

Thus Ux must be equivalent to 〈 u1x1, . . . , unxn〉.

We can sum up the idea of the proof this way: the odds comparison of Ux with x is the same for all x. And
equivalently, we can say: the symmetries are the one-to-one linear transformations.

Theorem 2.
First recall the preceding theorem, and notice that, for each index z, U is positive and linear, so we can write

We now focus on the functions ui(z). Because we deal with a semi-group, we have

Switching to the logarithmic formulation fi(z) = ln ui(z), we
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have an additive function, so by a lemma from calculus, fi(z) = kiz + b. But since U0 is the identity, we have fi(0) = 0;
thus fi(z) = kiz. Turning back to ui, we have ln ui(z) = kiz, so ui(z) = ek(i)z. This ends the proof.

7. Holism: Indeterminism in Compound Systems
The most striking feature of quantum theory is perhaps its holism: when a system is complex, the states of the parts do
not determine what the state of the whole will be. This is not unrelated to its probabilistic character. I shall first explain
the holistic character already found in classical probability theory, and then discuss abstract modelling of interaction.
The latter discussion applies indirectly to measurement and will help to clear up an apparent circularity concerning the
foundations of quantum theory.

Suppose that we have two systems X and Y, each with a space of possible states HX and HY. On each of these state-
spaces we assume specified a field of subsets, FX and FY, on which probabilities are to be defined. For example, if A is
in FX, then one significant proposition about X is: X has a state in A. The members of HX are states of X; let us call
probability functions defined on FX the statistical states of X—and similarly for Y.

We can now regard X and Y as together forming one system X + Y, and indeed, this will be especially apt if the two are
somehow related to each other or interacting. We are here in a purely classical context; there it is natural to make up a
product space as in the discussion of De Finetti's theorem above:

What are the statistical states of (X + Y)? The fact is that for each choice of statistical states pX and pY for X and Y,
there are many corresponding statistical states for X + Y. Each of these will incorporate some form of dependence or
independence between the two component systems. The one in which X and Y appear as totally independent is the
product measure:
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But suppose that X and Y are so coupled thatX can be in any of its possible states, but when it is in state x then Y is in
state yX. This is the case of total or strict dependence:

There are many cases between, of less strict correlation.

On the other hand, the state of the whole does determine unique states for the parts, called the marginals (marginal
probabilities or probability distributions). Suppose p is a statistical state for the compound system X + Y; let us write
then:

and the holism consists in the fact that p determines, but is not itself determined by, these two reductions # p and p#.

When we are dealing with three or more components, there is a marginal probability for every finite subset thereof. For
example, (X + Y + Z) has state-spaceHX × HY × HZ, while (X + Z) has state-space HX × HZ. A statistical state pXYZ for
the whole has marginals pX, pXY, pXZ and so forth. These are consistent in the sense that pX = #pXZ and pZ = (pXZ)# and so
on. Conversely, if we have a collection of statistical states for subsystems of a given compound system, which are
consistent in this sense, then there exists a statistical state for the whole of which they are all marginals (see e.g. Loève
1955, pt. I, ch. 1, sects. 4.1–4.3).

Turning now to time and interaction, consider the evolution of a compound system X + Y in the space HX × HY. If
that evolution is deterministic, we have a dynamic (semi-)group

but this need not mean that each component is a deterministic system in itself. The reason is obviously that the
connection with Y may for example constrain the evolution of X. We have then this pattern:

Looking at the component system X by itself, for instance, this shows us the indeterministic transition law:
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where HY now serves only for bookkeeping, as an index set for the states in which X may land time t after initial state
x. There is really no information conveyed by that indexing.

The total system may also be indeterministic, in which case we only have a map

the image being the set of states in which the compound system may end time t after that initial state. This does induce
a similar indeterministic transition for the component X:

We may however do better at this point with probabilities. Suppose compound system X + Y does not evolve
deterministically in its proper state-space, but does do so in its statistical state-space (in the fashion of either of the two
preceding sections). This is the space

SX + Y = the set of probability measures defined on FXY

Suppose the evolution has the form

Given statistical state p of the whole, components X and Y have marginal states # p and p# respectively. Taken by
themselves, these do not evolve deterministically:

I have kept this discussion in the classical context of the preceding section—but that was not necessary. Let us
consider an abstract compound system with its components:

(a) state-space HXY, HX, HY

(b) fields of events FXY, FX, FY

(c) a map hX : HXY → HX such that for each A in FX

(d) a map hY : HXY → HY such that for each B in FY

(e)
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Intuitively, are the states which the compound system could have, given that X is in state x. Now we define
marginals in an abstract sense.

Given statistical state p on 〈 HXY, FXY〉, define

It is easily verified that and are disjoint if A and A′ are, and that , and
also that # p and p# are indeed probability functions. The evolution of the compound system now induces evolutions
for the state of the components in just the same way as we have discussed above, except that the indexing may have a
less neat looking form—but that was not informative anyway. Yet we are not restricted now to such a classically
produced construction for the compound state-space. The generalization is entirely natural, and it will be well to
remember how naturally this holism—such a puzzling feature of quantum mechanical states—emerges from classical
probability theory.
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Part II How the Phenomena Demand Quantum
Theory



To a traditional mind, quantum theory is perplexing—and we all start with traditional minds. Need our physics be so
peculiar? What do the phenomena demand? The early quantum theory startlingly depicted matter as not continuous,
and energy as transmitted only in quanta. But more curious features would appear: correlations between separate,
distant events, looking almost like telepathy in nature. Although the quantum theory clearly developed in response to
experimental results, the suspicion could not help but arise that physics could have succeeded in a more traditional
format. Some historical studies have lately reinforced such suspicions: cultural pressures perhaps inclined physicists to
greater sympathy than their predecessors had with indeterminism and holism.

After a half-century of ‘no hidden variable’ theorems, proofs by John Bell clearly showed that some of the most
disturbing features reside in the phenomena themselves. They are not contributed by theory, for any theory which fits
the phenomena must accommodate them. It is important to take this up before we look at quantum theory, so as not to
disguise or hide the solid empirical basis. Of course, the empirical data still underdetermine theory; they do not
establish the truth of the theory. But they rule out a whole range of possible theories, of the sort which certain
traditional intuitions about causality would require. The next step, to develop one particular way of modelling those
phenomena, is not uniquely determined. To prepare for quantum theory itself, we will also inquire into the general
form which this next step can take.



4 The Empirical Basis of Quantum Theory

To begin, I will try to show that the appearance of paradox cannot be dismissed as an artefact of quantum theory, nor
as merely a matter of indeterminism. Before we look at quantum theory, I shall describe such strange phenomena, and
show that they cannot possibly be fitted into traditional (‘causal’) models.1 I shall also discuss the extent to which actual
experiments indicate or establish that such phenomena indeed exist. The two philosophically significant points are
(a) that the world can harbour such phenomena; and (b) that, if it does, then physical theory must provide us with
models which are not deterministic, or ‘causal’ in a certain wider sense, and which also cannot be embedded in ones
that are. In that case, in other words, the phenomena themselves demand the main peculiarities of the new theory.

1. Threat of Indeterminism
Radioactive decay and the photoelectric effect were studied and recognized at the beginning of our century. The
models proposed were ones in which matter is particulate and energy transmitted only in quanta. Let us begin by
looking at the threat immediately posed by them for determinism. How conservative could a theory remain, while
confronting that threat?

The most familiar law of radioactive decay is just this: the half-life of radium is 1600 years.2 Roughly: a sample of
radium, left alone for 1600 years, will have partially decayed into radon, with exactly half the amount of radium
remaining. Now you can see at once that this so-called law must, strictly speaking, be false. For what if the sample
consists of an odd number of radium atoms?



The same point emerges if we look at the fully fledged phenomenological law of radioactive decay. Let the amount of
material be N(t) at time t, with N(0) the initial amount at time t = 0. Then(1)

where A is the decay constant characterizing the substance. But this fraction e− At ranges over all the positive numbers
from 1 to 0, many of them irrational. Now, whether the initial amount was an odd or an even number of atoms, an
irrational fraction of them is not a number of atoms at all. Think especially of the case of one radium atom: what does
this fraction signify about when it will decay?

The answer given—and how could there be another?—is that e− At is the probability that a given, single radium atom
will remain stable for time interval t. Then formula (1) defines the expectation value of the quantity of remaining
radium, in the sense defined in probability theory. Now determinism is threatened because this law has taken on a
statistical form. The threat, however, looks like one that might in principle be countered. Could it not be that each
individual radium atom has some hidden feature which determines its exact time of decay? Our ignorance then
introduces the probability—it is the probability of remaining stable, given only that it is a radium atom in which the
hidden parameter has one of its many possible values.

Nothing counts against that speculation at this point. Consider next the case of polarized light and polarization filters
(such as the lenses of some sunglasses). A vertically polarized light-wave encounters such a filter astride its path. The
filter may be oriented in various directions. If it is vertical, it lets all this light through; if horizontal, none; and if
oriented at intermediate angle θ it lets through proportion cos 2 θ. (This produces the odd phenomenon that two filters
placed together, at right angles to each other, let no light through at all—but do let light through if we place a third
filter between them at an angle!) In the new models, light comes in photons, and we have the same problem as before.
The function cos 2 θ will often enough turn whole numbers into fractions, even irrational ones. The result cannot be a
number of photons. Thus we answer again that, for an individual photon, the probability of passing through equals
cos 2 θ.
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What would the idea of a hidden determinism look like here? Each photon comes equipped with a certain hidden
parameter, which determines for each direction whether or not it will pass through a filter with that orientation. But
then, it cannot be that the filter merely lets the photon through. For if we place a vertical filter behind the one with
orientation θ, it diminishes the beam again to a proportion of cos 2 θ. So many of the photons had lost the
characteristic of being certain to pass through a vertical filter. Therefore this hidden parameter would be interacting
with the filter, and changed by it. Still, we cannot yet rule out the possibility of such a deterministic model. So far,
indeterminism is only a threat—the probabilities might be merely superficial.

2. Causality in an Indeterministic World
How much could be saved of the modern world-picture if determinism were given up? Physicists certainly had no
logical guarantee that these probabilities for atomic decay and photon absorption had to be ultimate and irreducible.
Yet they were receptive to the idea of indeterminism in the world, and were daily less impressed with the traditional
conviction that a theory is not complete until it is deterministic. In the preceding Part we saw that the philosopher
Hans Reichenbach tried to analyse what conceptual departures were possible. Later he went beyond the argument I
noted above, that the question of indeterminism is an empirical one, and attempted to show how causality still makes
sense in a universe of chance.

Reichenbach had worked extensively on the foundations of relativity theory, and had shown how it could be conceived
as describing aspects of the causal structure of the world. Causality was therefore, in his view, the key to the
understanding of this novel and revolutionary theory. We must add at once, however, that the aspects of causality
which entered this analysis of physics were very minimal—certainly not adding up to what any philosopher would
regard as the entire concept of causality. The structure of space–time, according to Reichenbach, derives from the
relational structure constituted by connections between events through transmission of energy and matter (signals and
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transport of bodies). These are at best a very special example of what had traditionally been understood as causation.

Faced with the still more radical divergences from the classical world-picture in atomic physics, Reichenbach turned
again to the notion of causality. Classically, causality and determinism had been inseparable notions. But in Lucretius'
world of atoms, all connections between events were through transport of matter—travelling atoms—and yet this
world was not deterministic: the atoms were subject to a slight, unpredictable swerve. From Reichenbach's minimalist
perspective, we have here a world with a definite causal order, although an indeterministic one. Could the quantum-
mechanical world not be understood in some such way?

But when is a theory to be regarded as complete, in this case? Completeness cannot require a deterministic account if
an exhaustive survey of all real factors does not provide the wherewithal for such an account. Individual events may be
spontaneous, may happen for no reason at all—that is what it means for the world to be indeterministic. But then we
need a new criterion to judge theories—what must they provide, if not that? Reichenbach's answer was: a causal
explanation not for individual events but for every correlation.3 An indeterministic universe may still display pervasive and
large-scale regularities, in the form of statistical correlations, and these must all be accounted for in a manner which is
not trivial or vacuous. His great paradigm in the theory of relativity had been the principle of action by contact: all
influences are transmitted in such a way as to fit into a recognizable order of continuous processes. Something
approaching this ideal must also be found in quantum mechanics, he thought; our task is only to analyse it.

Clearly, some correlations can be explained, as it were, logically. A coin comes up tails if and only if it does not come up
heads. But that is because tails and heads are just two distinct values of a single parameter; once we see that, we do not
regard it as a coincidence crying out for explanation. This is a special case, and presumably a limiting case; only an
extreme rationalist could imagine that all correlations could eventually be reduced to such logical identities. The
correlation between smoking and lung cancer (rate of cigarette consumption at t and presence or absence of lung
cancer) is not so perfect. But in this
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case too the two factors, call them A and B, are correlated in the statistical sense that P(A|B) ≠ P(A). This is a
symmetric relationship in A and B if neither has probability zero; it can be written as P(A and B) ≠ P(A) P(B). But we
explain it by tracing it back to a common cause: in this case, the smoking history of the patient.

You can imagine this easily enough. The doctor says that his unknown next patient has, say, a 10 per cent probability of
having lung cancer. As the patient comes in he is lighting one cigarette with the butt of another. The doctor raises the
probability to 15 per cent. But if the doctor had known the patient's smoking history, the first announced probability
would not have been changed upon seeing the patient's present behaviour. This is a familiar story. The patient's
smoking history contributed to his present smoking habits and also to his present state of health. More: there is no
independent contribution to his presently having cancer or not by his present smoking—the latter can only be an indicator
of the history which did make a contribution. Thus we have for this correlation between A and B a common cause in
factor C exactly if:

(1) C precedes A and B
(2) P(A|C ) > P(A|not C ) and P(B|C ) > P(B|not C )
(3) P(A and B|C ) = P(A|C ) P(B|C )

Condition (3) is the crucial condition of causality: preceding factor C not only raises the probabilities of A and B, but
also screens off A from B. Note that if we were to omit (1), then (2) and (3) could easily be satisfied by setting C = (A&B).
But if we omitted (1), the temporal precedence, we couldn't very well speak of a causal explanation at all. However, it
could be a ‘logical’ explanation of the sort indicated above.

There is no attempt here to explicate the notion of causality as such. That may be very intricate; its intricacies may also
have nothing to do with physics. But physical science does often satisfy us with an account of an observed correlation
in the way described, and this has generally been given as a pervasive example of causal explanation. If that could
always be done, we might well be persuaded to say that we still live in a true causal order. If on the other hand even
these conditions must be
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violated by any account of the phenomena, we should surely admit a radical breach in the modern world-picture.

By a causal model of the correlation of A and B, we shall understand a model in which that correlation is traceable to a
common cause in the above sense.4 As we shall see below, we need to look very carefully at the constraint indicated by
(1), which precludes for example a statistical dependency of C on the actions of the experimenter at the time of
occurrence of A and B.

Reichenbach's view of science, as recently elaborated, amended, and defended by Wesley Salmon (1984), could be
called causal realism. For this view holds that science is to provide us with models of phenomena, subject to two
conditions:

(a) The putative physical factors represented in these models must all correspond to elements of reality.
(b) These models must be causal models for all the represented correlations in the phenomena.

Perhaps the demand is actually stronger: perhaps the models must be causal models as well for all correlations seen
inside them, even among factors which do not represent observable characteristics. Whether this was intended will not
affect our discussion. We can also qualify the demand a little: the above conditions are to be met by a theory which is
ideal, and so the models of a young or developing theory are required only to be embeddable, in principle, in models
which satisfy (a) and (b). The completeness criterion has been weakened from determinism to causality in a sense that
could be found in an indeterministic world as well. If quantum theory meets Reichenbach's demands, then it does still
describe a causal order, although not a deterministic order.

Modest though the requirements are in comparison with the traditions against which Reichenbach rebelled, the view is
not tenable. In the quantum-mechanical world, not only determinism but also causality is lost, even in this minimal
sense.

Proofs and Illustrations
Before turning to a rigorous and general argument to this effect, I can illustrate the crucial bite in Reichenbach's
demands with a
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simple if fanciful example. Imagine two chameleons in separate cages. These chameleons, a special breed, can be only
red or green, and each changes colour in apparently random fashion. But we notice a perfect correlation: each is red
when and only when the other is green. Now postulate a common cause; this means a factor C which can be absent or
present (a moment beforehand) and such that the information it provides about whether or not either chameleon is
red, say, cannot be augmented by information about the other chameleon.

But now we can reason as follows. We already know that the probability of the first chameleon being red if the second
is red equals zero. What then of P(first red|C and second red)? Well, either it is not well defined, or it equals 0. In the
first case the antecedent has probability 0, and in the second case we can use our assumption that common cause C
‘screens off ’ the first fact from the second. Hence

either P(C and second red) = 0, i.e. P(second red|C) = 0; or P(first red|C) = 0.

Since green gets probability 1 when red has probability 0, we see that C is in all cases a perfect predicator of what will
happen. The presence of C guarantees either the situation (first chameleon red and second green) or the situation (first
chameleon green and second red). Thus the correlation has a common cause to explain it only if the two-chameleon
system is deterministic.

This insight, that the principle of the common cause entails determinism for the special case of perfect correlation,
provides the central lemma in the deduction of Bell's Inequalities, to which we now turn.

3. Deduction of Bell's Inequalities
It is not true that every possible phenomenon admits of a causal model. The first proof of the fact, without assuming
that the model must be of the sort described by quantum mechanics or any other theory, was given by John Bell (1964,
1966). He showed that any such model must satisfy certain conditions—Bell's Inequalities—and that their satisfaction is
not a logical but purely a contingent matter. I shall give the deduction in an easy
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form, illustrated by a schematic example—not in full generality, but sufficiently general for our purposes.5

3.1. Surface Description of a Phenomenon
There are two generals, Alfredo and Armand, who wish to strike a common enemy simultaneously, unexpectedly, and
very far apart. To guarantee spy-proof surprise, they ask a physicist to construct a device that will give them a
simultaneous signal, whose exact time of occurrence is not predictable. (This is a science-fiction story—their physics is
like ours but their technology is much advanced. It happened in a galaxy long ago and far, far away. . . . ) The physicist
gives each a receiver with three settings, and constructs a source which produces pairs of particles at a known rate,
travelling towards those receivers. In each receiver is a barrier; if a received particle passes the barrier, a red light goes
on, and otherwise a green one is on. The probability of this depends on the setting chosen. But when the two generals
choose the same setting, one member of the pair of particles passes if and only if the other does not. Alfredo and
Armand agree to choose a common setting and agree to turn on their receivers for 1 minute every other morning at
eight o'clock (starting on a certain day), and then Alfredo will strike the first time his light is green while Armand will
strike as soon as his light is red.

The story makes clear that no theory is presupposed in the description of what happens to the generals; and that is
where the important correlation is found. Before looking at possible theories that might explain this curious correlation
(which in itself is perfectly possible so far, even from a classical point of view), I shall make this description precise, and
general.

3.2. The Experimental Situation
Two experiments will be made, one on each of a pair of particles produced by a common source, referred to as the left
(L) and the right (R). Each experiment can be of three sorts, or be said to have one of three settings. The proposition
that the first kind of experiment is done on the left particle will be symbolized L1; and so forth.
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Each experiment has two possible outcomes, 0 (‘green’) or 1 (‘red’). The proposition that the second kind of experiment
is done on the right particle and has outcome 0 will be symbolized R20; and so forth. Note that L1 is equivalent to the
disjunction of L11 and L10. To allow general descriptions, I shall use indices i, j, k to range over {1, 2, 3} and a, b over
{0, 1}. In addition, let x = 1 − x, so that ā is the opposite outcome of a.

A situation in which the two experiments are going to be done on a single particle-pair can be described in terms of a
small field of propositions, generated by the logical partition

which has 36 distinct members. These propositions include for example:

Setting 1 used on the left = L1 = the disjunction of the propositions

and so forth. So we have here the resources for any sort of factual description at the surface level.

3.3. Surface Probabilities
Probabilities for these propositions come from two sources. First, we may have some information about how the two
settings will be chosen (possibly, to ensure randomness, by tossing dice). This gives us probabilities for the proposition
in a coarser partition:

Secondly, we may have a hypothesis or theory which gives information about how likely the outcomes are for different
sorts of experiments. Because there may be correlation, the information optimally takes the form of a function

giving the probability of the (a, b) outcome for the (Li, Rj) experimental setup. Let us call this function P a surface state.
Note that it is not a probability function on our field; but it can be extended to one by combining it with a probability
assignment to PRchoice (which may be called a choice weighting). Such
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a probability function on the whole field may be called a total state. Hypotheses concerning the surface state are directly
testable: we simply choose the settings, start the source working, and do the relevant frequency counts—see how often
the lights flash—to follow our story.

3.4. Perfect Correlation
The special case I wish to examine satisfies two postulates for the surface states:

I. Perfect Correlation P(Lia & Ria|Li & Ri) = 0
II. Surface Locality P(Lia|Li & Rj) = P(Lia|Li)

P(Rjb|Li & Rj) = P(Rjb|Rj)

It should be emphasized again that these probability assertions are directly testable by observed frequencies.

The Perfect Correlation Principle can be stated conveniently as: Parallel experiments have opposite outcomes.
Similarly, the Surface Locality Principle says that the outcomes at either apparatus are statistically independent of the
settings on the other. This assertion, verifiable at the surface level of detectable phenomena, rules out that one general
can signal the other by twirling the settings. Both these conditions, symmetric in L and R, are simple conditions on the
surface states. If both principles hold, we obviously have

but the reader is asked to resist counterfactual (and dubious) inferences such as that, if the L1 experiment has outcome
1, then, if the R1 experiment had been done, it would have had the outcome 0!

3.5. Common Causes as Hidden Variables
When principles I and II hold, there is a clear correlation between outcomes in the two experiments. What would a
causal theory of this phenomenon be like? It would either postulate or exhibit a factor, associated with the particle
source, that acts as common cause for the two separate outcomes in the examined probabilistic sense. I shall refer to
this as ‘the hidden factor’—not
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not because I assume that we cannot have experimental or observational access to it, but because it does not appear in
the surface description (i.e. in the statement of the problem).

Symbolizing as Aq the proposition that this hidden factor has value q, the space of possibilities now has the still finer
partition

where I is the set of possible values of that factor. A total state must be a probability function defined on the (sigma)
field generated by this partition. (Let us not worry about how to restate this in case I is uncountable; as will shortly turn
out, that precaution is not needed.) A causal model of the phenomena in terms of this hidden factor must satisfy the
following conditions:

III. Causality6

IV. Hidden Locality7

V. Hidden Autonomy

This requirement V on the causal models is usually specified only informally, as ruling out certain kinds of cosmic
conspiracy or pre-established harmony, which would make the hidden factor statistically dependent on the apparatus
setting to be chosen then or later. (Notations in which q appears as a subscript to the probability function cannot
express this condition.) We can of course imagine that V is false, for example if hidden forces are determining the
experimenter's choices, or his random number generator if he is taking precautions. I shall leave it to the reader to
investigate what, if anything, could be established if condition V is dropped, and what level of scepticism would require
that.
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I shall break up the ensuing argument into three sub-arguments, in which these postulates are separately exploited. But
I shall say a few words here to defend the idea that a proper causal theory must satisfy all three.

Causality is just the probabilistic part of the Common Cause Principle stated before. The other two, Hidden Locality
and Hidden Autonomy, are meant to spin out implications of the idea that it is the common cause alone, and not
special arrangements, or relationships between the two separate experimental setups, that account for the correlation.
If we had only III to reckon with, it could be satisfied simply by defining

where the actual settings chosen are (Lit, Rjt) and the actual outcomes are (at, bt). But the common cause is meant to be
located at the particle source, in the absolute past of the two events that have space-like separation. Hence its character
should be totally settled by the facts, before choice of setting or actual outcome. The choices of the experimental
settings, and of the particular type of source used, can all be made by means of any chance mechanisms or
experimenters' whims you care to specify.

Principle II governs the surface phenomena, and is part of what is to be explained. It will play no role in the deduction
below. In fact, although II does not follow from Hidden Locality alone—the familiar point of Simpson's paradox—it
does follow from IV and V combined.8

Of course, I am not saying that nature must be such as to obey these postulates—quite the opposite. These postulates
describe causal models, in the ‘common cause’ sense of ‘causes’, and the question before us is whether all correlation
phenomena can be embedded in such models.

3.6. Causality Alone: A Deduction of Partial Determinism9

Principles I and III alone already imply that when parallel settings are chosen the process is deterministic; the common
cause determines the outcomes of the experiments with certainty. For abbreviating ‘Li & Rj & Aq’ to ‘Bijq’, we derive
from those two principles:
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But since the product is 0, one of the two multiplicands must be 0; the other will be 1. For example, if P(Li1|Biiq) = 0,
then P(Li0|Biiq) = 1. But setting a = 0 in the above deduction, we conclude that if P(Li0|Biiq) ≠ 0 then
P(Ri0|Biiq) = 0, and hence P(Ri1|Biiq) = 1. So we see that, conditional on Biiq, all experimental outcomes have
probability 0 or 1.

I doubt very much that Reichenbach can have perceived this consequence of his principle, because he had explicitly
designed it so as not to require determinism for causal explanation. Had Einstein read Reichenbach and perceived this
consequence in time, he could have added a little codicil to the Einstein–Podolsky–Rosen paradox: according to the
Common Cause Principle, conditional certainties of the sort found in that paradox can exist only if they are the result
of a hidden deterministic mechanism; so quantum mechanics is incomplete. See how much we have got—and we have
hardly begun!

3.7. Hidden Locality: A Deduction of Complete Determinism
We have just deduced that, conditional on the antecedent (Li & Ri & Aq), all probabilities for outcomes are 0 or 1. But
Hidden Locality (our condition IV) says that this antecedent contains irrelevant information as far as the outcome at
either side, separately, is concerned. Hence we deduce:

This follows therefore from I, III, and IV together. It says that, given the value of the hidden variable that acts as
common cause, the outcome of any performable experiment on either side is determined with certainty.

3.8. Hidden Autonomy: The Testable Consequences
It was a tenet of modern philosophy, owed to Kant, that the mere assertion of causality, or even determinism, has no
empirical consequences. Any phenomenon at all can be embedded in
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a causal story; only specific causal hypotheses have testable consequences. Nothing we have seen so far refutes that
tenet, for all the consequences drawn have been about the hidden variables and not about the surface phenomena
themselves. But we come now to the peculiar twist that Bell discerned.

Wigner (1970) observed that, given the preceding, there are only eight relevant classes of values for the hidden variable.
(And, accordingly, no generality in the causal theory will be lost if we say that the variable has only eight possible
values.) For these values can be classified by their answers to the questions:

(a) Suppose Li. Is it the case that Li1?
(b) Suppose Rj. Is it the case that Rj1?

Given Aq, as we have now seen, each of these questions receives a definite yes or no answer (with probability 1). And
indeed, the answers to the second type of question are determined by those to the first, since each outcome must be 0
or 1, and opposite to the outcome at the other side for the same setting. (In this reasoning, we rely on I, III, IV.)

Since there are three questions of form (a), each with two possible answers, these answers divide the hidden variable
values into 23 = 8 types. Let us say that q is of type (a1, a2, a3) when this value q predicts outcomes a1, a2, a3 for
arrangements L1, L2, L3 respectively. And let us abbreviate the assertion that the actual value is of this type to Ca1a2a3.
Precisely:

Ca1a2a3 = the disjunction of all the propositions Aq such that

This is an ordinary finite disjunction of form (Aq1or . . . orAqm) if the set of values of the hidden variables is finite (and
we know now that we can assume that without loss of generality). Thus we have not introduced new propositions; we
are still working within the field generated by PRtotal.

Suppose now that we have chosen settings L1 and R2; what is the probability that we shall get outcomes L11 and R21?
Well, let us put it a different way. SupposingAq, what must the value q be like if we are to get outcomes L11 and R21?
It must
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clearly be of type (1, 0, b) for some value b or other. In other words, this outcome will happen only if (C101 orC100) is
the case. But this proposition has a probability of its own—and that probability is our answer.

The argument I have just given tacitly presupposes Principle V of Hidden Autonomy, for it assumes that the choice of
L1 and R2 as settings does not affect the probabilities for value q. Let us state the argument precisely. To begin, define
a new notation:

We note the theoretical equivalence:

We notice now that in the summation the conditional probability equals 0 except in cases where q is of type (1, 0, 1) or
of type (1, 0, 0). Hence we have

In just the same way, we deduce

Adding up the first two equations, we get the sum of four probabilities, two of which appear again in the equation for
p(1;3). Hence

Mutatis mutandis for the cyclic permutations of 1, 2, 3. These are Bell's famous Inequalities in the form Wigner gave
them.

It hardly needs pointing out that the numbers p(i; j) are surface probabilities by their definition (in which the hidden
variable does not occur). So these inequalities are testable directly by means of observable frequencies. Thus, our quite
metaphysical-looking principles have led us to an empirical prediction!
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4. The Experiments
We have now seen that there are possible phenomena for which it is logically impossible to have a causal model. Hidden
determinism was ruled out along the way, for the argument proceeded in two main steps: (1) a causal model for such a
phenomenon must in fact be a deterministic model; and (2) any such deterministic model must satisfy Bell's
Inequalities. But violation of these inequalities is certainly conceivable. The next question is of course: are any such
possible phenomena actual? That is not so important to the philosopher, but certainly is of some interest in its own
right.

Experiment cannot establish so much. Of course, we are dealing here with the probabilities of observable
events—lights flashing, bells ringing, numbers appearing on computer printouts. But there are two obstacles to saying
that we have seen violations of Bell's Inequalities—one relatively trivial, the other insuperable. The first is that in
actuality we have only the relative frequencies of the events, displaying a good or bad—perhaps even excellent—fit to
the probabilities. This leeway between the actual frequencies and the probabilities is always there, in every experimental
investigation; that is why I call the point relatively trivial. The second obstacle is that, for the phenomena to be telling, it
must be asserted that the correlated events were simultaneous, or at least temporally sufficiently close together, to
prevent the existence of signal-connections between them. The required time intervals are so short that the check must
rely on instruments whose theory itself belongs to atomic physics. Properly appreciated, the point becomes very general: the
best we could hope for is a demonstration that the given theoretical model of the experimental setup (which we already
have in physics) cannot be extended to a causal model of the correlations in the experimental outcomes.

The results of the new experiments must be very carefully described. It would be no news at all now to say that the
theory of quantum mechanics cannot provide a causal model for certain correlations which it admits as possible. This is
for us already implied by the Einstein–Podolsky–Rosen paradox of 1935. It is at best a little news to say that we have
actual experiments, whose quantum-mechanical description includes correlations of
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the sort in question. But that is still news about this particular, historically given, theory. Logically speaking, we go
further yet when we say: (a) the best theoretical model we have of the measurement apparatus entails that the
frequency counts in question are of events with space-like separation (i.e. as good as simultaneous), and (b) without any
reliance on theory, we can show that these frequency counts display an unacceptably—indeed, incredibly—bad fit to
the probabilities of any causal model whatsoever. This is the correct description of what has been found. And it is, even
in principle, the best we could have from experimental inquiry.

To provide more food for our starved imagination, I shall briefly describe some of the actual experiments.10 Their
design was of course inspired by quantum-theoretical predictions of correlation. When an excited atom cascades
towards its ground state, it emits photons, and their polarizations are correlated.

The 0–1–0 case. A calcium atom, excited from the 41S0 ground state to the 61P1 state by absorption of a photon of 2275l
light, cascades first to a (j = 0) state, then, with the emission of a photon of 5513l, to a (j = 1) state, and finally to the
(j = 0) ground state with the emission of a photon of 4227l.

The 1–1–0 case. A mercury atom, excited by electron bombardment to one of the (j = 1) states, cascades via a (j = 1)
state to the (j = 0) triplet ground state, emitting in this course one photon of 5677l and one of 4048l.

The mean decay times are very short in both cases (between 10−8 and 10−9 seconds). The correlations to be inspected
are in the polarizations of the described photons (other emitted photons being eliminated by colour filters).

Photon detectors are placed in the +z and −z direction from the emitting atoms, with colour filters so that the first
detector is sensitive only to the first photon and the second detector sensitive only to the other photon. We can
measure the coincidence counting rate R(0) of the two detectors—a coincidence consisting in detection by both
detectors within an adjustable time interval.

Let us now place perpendicularly to the +z-axis a polarization filter F(1, θ), with its polarization direction oriented at
angle θ to the x-direction. The coincidence rate changes from R(0) to R(1, θ). If instead we place such a filter F(2, θ)
perpendicular to

EMPIRICAL BASIS OF QUANTUM THEORY 95



the −z-axis, the coincidence rate changes instead to R(2, θ). In both our cases, according to atomic theory, the light is
unpolarized, so the filters pass 50 per cent of the emitted light. Thus we have, whatever angles θ, γ we choose,

We now consider the coincidence count R(θ, γ) when we put both filters, F(1, θ) and F(2, γ), in place. If there were no
correlation at all, the probabilities of detection are just multiplied, and we would have

because the factor by which R(0) is decreased is just the probability of photons reaching the detectors.

But if quantum mechanics is correct, then the experimental outcome must be otherwise. Indeed, the rate R(θ, γ)
depends systematically on the angle (θ − γ) between the two filters. The results are

Therefore, the coincidence count drops to zero in the 0–1–0 case if the filters are placed at right angles towards each
other, also in the 1–1–0 case if the filters are parallel. These are examples of perfect correlation, of the sort more
schematically considered in our ‘two-generals’ thought-experiment.

The experiments by Clauser and Holt were along these lines, and showed the expected good fit between actual
frequency counts and prediction. The experimental tests by Aspect and his collaborators are more recent and very
impressive. First proposed by Aspect in 1975 and 1976, the tests were carried out and the results were reported in
1981 and 1982. The basic scheme of the Aspect optical version of the Einstein–Podolsky–Rosen (EPR) experiment is
given in Fig. 4.1. The pair of photons ν1 and ν2 is analysed by linear polarizers I and II (with orientations and ).
There is a coincidence if both photons pass the polarizers, and this coincidence is monitored and its relative
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Fig. 4.1 Aspect experiment schema

frequency measured. The coincidence rate N(a, b) depends on the orientations, and Bell's Inequalities can be deduced
for these rates, on the assumption that they fit the probabilities in some causal model or other. The deduction does not
depend on the details, but yields an invariant relationship for all causal models, as we saw in the preceding section.

However, with such a static setup one could challenge the locality assumptions that the events at polarizer II are
independent of the orientation chosen for polarizer I, and that the state in which the photons are emitted at source S is
also independent of these orientations. (We called these the assumptions of hidden locality and hidden autonomy in
our deduction.) This challenge can be given experimental form, to some extent, by introducing mechanisms to vary the
orientations of I and II after the particles leave the source, and late enough so that no signal with a speed of at most
that of light could communicate the new setting from one polarizer to the other before the event. With all times
somewhat indeterminate, this challenge requires sufficient margins to ensure definite space-like separation of all
hypothetical events—including the ones imagined for the hidden parameter. There can then still be a further challenge
raising the possibility of a pre-established harmony, set far enough back in time, to co-ordinate the mechanisms which
vary the orientation. Verification therefore can not be logically watertight, but can still have great cogency.

In Aspect's experiment, the distances between switch and source are of the order of 6 meters, so that the time interval
for signals to traverse them is appreciable (c.40 ns). Switching
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occurs by means of an acousto-optical interaction with an ultrasonic standing wave in water, about every 10 ns. The
lifetime of the intermediate level of the cascade used (type 0–1–0 in calcium) is about 5 ns. The form of Bell's
Inequality used for calculation was that of Clauser, Horne, Shimony, and Holt, which has the form

where S is a function of the coincidence rates for the settings which occur during the experimental run. The reported
experimental results in 1982 yielded

a violation of the condition S ≤ 0 by 5 standard deviations. The quantum-mechanical prediction for the same situation
was S = 0.112, comfortably within the experimental range.

We must be very careful again to distinguish observational finding from theoretical interpretation. A good deal of
atomic physics is assumed to construct the basic theoretical model of this experimental situation. This model does not
necessarily require extant quantum theory for its intelligibility. We can think of it as theoretically accessible around, say,
1918, after Einstein's theory of photons and Bohr's theory of the atom were assimilated by physics, but before the
theoretical unification of Heisenberg or Schroedinger in 1925/6. The question is then: how can this model be
developed further so as to accommodate the found coincidence rates? One putative answer is: as does the new
quantum theory. And it is found that a model of this sort does exist which fits the experimental phenomena. Another
putative answer is: as a causal model incorporating some common cause for the coincidence rate for parallel polarizers.
It is then found that for no value of the hidden parameter, which represents that common cause, is there such an
extended model which fits the phenomena.

In other words, we do not have a presuppositionless result here, but we do have a clear verdict on how the old
quantum theory could be amended and developed if the new quantum theory were to be empirically adequate. The
verdict is: not such as to turn it into a causal theory.
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5. General Description of Causal Models
A surface model of given phenomena may or may not satisfy Bell's Inequalities. In this section I shall present a
description (essentially due to Arthur Fine) of the range of theoretical models which can fit those surface models that
do satisfy the inequalities. The surface state is always a fragment of some classical probability function, but that function
may not emerge from any ‘simple’ model—that is how the matter was put intuitively above. The question is now: what
does ‘simple’ mean here?

The general idea is this: to construct a ‘simple’ model, we assume that the parameters measured always have some
value (in the range of possible outcomes), and this value is faithfully revealed when any measurement is made.11 Such a
model is exactly of the sort in which correlations in measurement outcomes can be traced to a common cause, namely
the condition of the object which is independent of but faithfully revealed by measurement. To this relation between a
classical conception of measurement and causality I shall return in the next chapter. Suppose for example that our
surface model instantiates the measurements in a black box schema, with Ri the proposition that the same
measurement is made as described by proposition Li, on the same object, but at a different time and with the
outcomes 0, 1 relabelled as 1, 0. The assumption underlying the ‘simple’ model now implies that Lia, for example, is
true if and only if the relevant parameter A is measured (Li) and A has value a (A = a). Moreover, the probability ofA
having this value is not affected by whether any measurement is performed:

Thus the situation in such a ‘simple’ model is as follows. There is a partitionQ whose members are the sets q = (A1 = a
& A2 = b & A3 = c), and the following hold:

for all i, j, a, b, c. It is easily deduced now that
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We have therefore immediately arrived at the very last stage of the Bell's Inequality proof, in effect, and Bell's
Inequalities hold. Indeed, we can cite Arthur Fine's results (1982b, 1986) to prove that such a ‘simple’ model exists if
and only if Bell's Inequalities hold.

Fine proved the empirical equivalence of four sets of conditions, each of which defines a class of models. (See below
for the meaning of ‘empirical equivalence’.) One of these is what I have called the class of simple models; Fine's results
provide a definitive picture of that model class.12

For ease of exposition, we limit our set of observable quantities to four: A and A′ are measured by different settings of
one apparatus (the ‘left’) while B and B′ are measured by different settings of another apparatus (the ‘right’). Assume
also that each of these four admits only two values, say 0 and 1. The surface state gives us the probabilities which we
shall denote as P(A), P(AB), P(A − B), . . . , to be read as:

P(A) = the probability that a measurement of A, if made, yields value 1
P(AB) = the probability that measurement of A and B both yield value 1
−S = the observable which has value 1 − x if S has value x.

The observables A, A′, −A, −A′ I shall call the left observables, and B, B′, −B, −B′ the right observables. Note that the
surface state will include the joint probability P(SS′) > 0 only if one of S and S′ is a left, and the other a right,
observable, though a theoretical model could of course give joint probabilities for other combinations.

A model for this sort of situation is any model which specifies at least such a surface state. Now we describe various
conditions which such a model could satisfy. It will be seen that class I, the first to be described, is the class of ‘simple’
models intuitively discussed above.

I. A deterministic hidden variable (h.v). model has a set Q of hidden states (‘complete’ or ‘hidden’ state specifications, in Fine's
terminology), a probability density function m on Q, and a response function h: if S is any of the above observables, and υ
is in Q, then h(S, υ) is 0 or 1. The surface state in this model
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is the function

where S and T are any two observables, one right and one left.

II. A joint probability model is any model in which the surface state P is part of a ‘hidden’ probability function P* which
assigns probabilities to all combinations SS′ TT′, with one of S and T a left and the other a right observable, such that

and so forth (the surface state represents the ‘marginals’ of the ‘hidden’ probability function).

III. A Bell/Clauser–Horne (CH) model is any model in which the surface state P satisfies the inequality

and also the other seven inequalities formed by permutingA withA′, then B with B′, and thenA with A′ and B with B′
together.13

IV. A stochastic h.v. model has a set Q of hidden states, a probability density function m on Q, and a stochastic response function r:
if S is an observable and v is in Q, then

whenever one of S and T is a left and the other a right observable. The surface state in this model is the function
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where S and T are two observables, one right and one left.

A few comments: that the probability function on the hidden states can be written in the integral form with density
function m is a very small restriction only in this context, and would not have affected our discussion in the preceding
sections. The more general form given here to the Bell Inequalities in III was introduced by Clauser and Shimony
specifically to suit the discussion of less than totally perfect correlations, arising perhaps from some stochastic element
in the response.

In the stochastic h.v. models, the response function does not assign a specific value to each observable in each hidden
state, but only a probability distribution on its possible values. This widening of the discussion thus lets in an
appreciable element of chance. But Fine's results establish that, if the phenomena admit such a factorizable stochastic
model, then they also admit another model in which the element of chance is entirely absent—a deterministic model.

It is important to note clearly just what is established and what is not. The four model classes are not identical. On the
contrary, the joint probability models, which include both the deterministic and the stochastic h.v. models, constitute
logically a significant widening of the class of simple models (i.e. of class I). However, Fine's results establish the
equivalence of the four conditions, in the sense that each fits the same family of surface models (empirical equivalence).
Because all the members of that family fit the Bell Inequalities, these model classes are not rich enough in structure to
be adequate to phenomena involving peculiarly quantum behaviour.

6. Does Locality Really Play a Role?
It has been argued that violation or satisfaction of Bell's Inequalities has nothing to do with causality (or locality, or
separability, or other physically significant concepts) because these inequalities can be derived as theorems in the
classical probability calculus. This point is then supported by noting that, in the derivation of such results as those of
Arthur Fine, discussed in the preceding section, no premises are included
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concerning time, causes, localization, and so on.14 If that is so, our whole discussion in this entire chapter has been
misguided and misleading.

The argument rests on an equivocation. There is a result which can be proved in classical probability theory, and the
formulas in that result are indeed Bell's Inequalities. But that result describes a general feature which is (trivially)
satisfied by all the experiments which we cite as violations of Bell's Inequalities. There is another result of classical
probability theory, which was proved in Sections 3.6–3.8 above, in which those same formulas occur. It concerns only
the special case of causal models; it describes a feature not found in those experiments, and that is their significance.

Let us spell this out precisely. At the beginning of the preceding section I described a ‘simple’ model one could offer of
the two-generals situation. It involved the assumptions that the experimental outcomes were results of measurements
which faithfully revealed the values of certain parameters Ai and Bi. These parameters were represented by random
variables on a classical probability space. Other such variables represented whether or not a certain kind of
measurement takes place. The postulate of hidden autonomy said then simply that the values of the first two kinds of
variables are statistically independent of whether any measurement is carried out or not. The hidden variable now
became just the specification of values for the first two sets of variables, and the Bell Inequalities can then be deduced
by the same argument as in Section 3.8. Having told this whole story, however, we can think about it again in a more
abstract way. Given this independence and faithfulness of measurement, let us just ignore the whole discussion of
measurement, which now makes no essential difference. We realize then that the proof in Section 3.8 proves in effect a
little theorem in classical probability theory, namely:

Result 1(a) IfAi and Bj are 0–1 valued random variables on a classical probability space and P is a classical probability
function such that P(Ai = Bi) = 0, and we define
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then

for k, m, n distinct.

The corresponding result using the alternative formulation of Bell's Inequalities preferred by Clauser and Horne is as
follows.

Result 1(b) If there is a set of events {Ai : i ∈ I} such that pi = P(Ai) and pij = P(Ai ∩ Aj) for i, j in I and P is a classical
probability function defined on the field generated by that set of events, then

for k, m, n, q in I.

This follows at once from Fine's results reported in the preceding section.

But if we rewrite 1(a) with all the probabilities conditional on corresponding antecedents Cij, it is no longer a theorem.
In that rewriting, the elements of the inequalities become probabilities conditionalized on different antecedents, and
then the argument no longer goes through. The reason is simply that, if the set {Cij} is a partition, the probability
calculus places no restriction on the numbers pij, except that they be in [0, 1]. Each cell of the partition can be thought
of as a separate probability space. The one extra condition we do have, namely pii = 0, will obviously not force
restrictions on the case i ≠ j. It will entail that the inequality is satisfied when two or all of m, k, and n are identical, but
that is all.

The argument I reported therefore hinges on the confusion of results 1(a) and 1(b)—which are theorems about
unconditional probabilities—with results not provable in any probability theory concerning conditional probabilities.
Sections 3.1–3.7 used the assumptions of the Common Cause model to reduce that special case of the conditional
‘result’ to the unconditional one.

We can illustrate these abstract points with another brief look at Fine's results. The first thing we must note is that
locality is really built into Fine's definition of stochastic h.v. models, tacitly. For it is clear in his interpretation that the
probabilities are tacitly conditional on measurement. Hence in that definition
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P(S) is elliptical for P(S|S is measured), and P(ST) for P(ST|S and T are both measured). Similarly for the hidden
response function: r(S,v) is elliptical for r(S|v and S is measured). Therefore what is there called ‘factorizability’ means:

r(ST|v; S and T are both measured) = r(S|v; S is measured)r(T|v; T is measured)

which is literal factorizability pure and simple plus the contraction into the right-hand side of the product

r(S|v; S and T are measured)r(T|v; S and T are measured).

Similarly for the definition of joint probability models: there the marginality condition for the theoretical probability
function P* really means

P*(A|A is measured) = P*(AB|A and B are measured) + P*(AB|A and B are measured)

Given how B and B are related, their conditions of measurement are the same; and conditional on that measurement,
one or other must take the value 1. Therefore the condition implies P*(A|A is measured) = P*(A|A and B are both
measured)—the very premiss which I called Hidden Locality. So we see that the locality conditions are only apparently
absent from Fine's derivations.15

Of course, this whole discussion now throws doubt on the intuitive possibility of regarding the experimental results as
outcomes of measurements of classically conceived observables which faithfully reveal their pre-existing values. This is
exactly what we shall take up first in the next chapter.
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5 New Probability Models and Their Logic

No causal model can fit the phenomena that violate Bell's Inequalities. What sorts of models will fit? That is again an
empirical question, and the exact answer cannot be a priori. Quantum theory will give us one answer, by offering
models which are not causal, and do allow such violations. But the theory is not empirically empty, so these models too
will have their limits.

To understand this situation, to see how this question could be answered at all, we need to broaden our concept of
statistical model. This wider concept must allow for phenomena that fit into no Common Cause pattern. It must also
point the way to some interesting model constructions that are worth exploring, and prepare us for the study of
quantum mechanics proper. To this end I shall introduce the general notion of geometric probability models, of which the
quantum-theoretical models will be a natural development, abstractly speaking. This will also introduce us to some
basic elements of quantum logic (so-called) and its role in interpretation. This role is important, in my view, but there will
be no suggestion of any revolution in logic generally.

1. When Are Values Indeterminate?
Much undeserved mystery has surrounded Bell's results. The proof that causality is lost, that conceivable and
apparently actual phenomena rule out determinism and even the Common Cause pattern, is astonishing. But the
argument is perfectly intelligible to the classical mind. The logic and the ideas about probability involved in the
argument are also all of a perfectly familiar sort. Yet it has been proposed that a proper appreciation requires us to turn
to non-classical logic and/or non-classical probability theory.



We can divide such arguments nicely into those which involve specific considerations of modality, and those which do
not. In this section we shall look at the latter, leaving possibility and counterfactuals to a later section. That means that,
for now, we shall be looking at a sort of argument that predates the Bell literature, at least in essence.

Consider a strange situation in which we measure three physical parameters, A, B, and C. The data are that, for each,
measurement yields values 0 and 1 with equal frequency. We are able to measure them two at a time, and always find
opposite values. Thus:

1. for X, Y = A, B, C we extrapolate probabilities

(a) P(X = 1) = 0.5
(b) P(X = 1 or X = 0) = 1
(c) P(X = 1 & Y = 1) = 0 if X ≠ Y

What kind of model can represent this situation?

Here is the argument that none can, if we do not violate classical probability theory and/or logic. Consider the
statements:

2. No two of A, B, C have the same value.
3. Each of A, B, C has value 0 or 1.

It is clear that 2 and 3 are inconsistent with each other. Yet 1(b) entails that statement 3 has probability 1 and 1(c) entails
that statement 2 has probability 1. By ordinary probability theory, their conjunction must then have probability 1 also.
But it is also a principle of that theory that a self-contradiction receives probability 0!

Yet this entire argument is spurious. For the data at the beginning are about measurement outcomes, while the
extrapolated probabilities were absolute and unconditional. As we did conscientiously in the preceding chapter, so we
should here state explicitly the condition of measurement. LetM(X) be the proposition that parameter X is measured.
Then 1 must be replaced by, or be regarded as a sloppy ellipsis for, the following:

4. for X, Y = A, B, C we extrapolate the probabilities

(a) P(X = 1|M(X)) = 0.5
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(b) P(X = 1 or X = 0|M(X)) = 1
(c) P(X = 1 and Y = 1|M(X) & M(Y)) = 0 if X ≠ Y

Now this certainly has models allowed by classical probability theory and logic. We must note simply that we have here
three parameters which cannot be jointly measured. That is, we can deduce

and that is our solution.

How good a solution is it? Conditions 1(a)–(c) were impossible to satisfy by any classical probability function. But
4(a)–4(c) are satisfiable by many—they do not specify any one completely. Nor do they do so if we just add the
probabilities of M(A), M(A) & M(B), etc. What value does C have, while A and B are measured?

Should we try to answer that question here at all? The only thing we really can do at this early stage is to eliminate some
wrong answers. Obviously, a measurement is some way of getting information about the object measured. But classical
intuitions (if such beings exist) may suggest two postulates:

Value Definiteness: Each physical parameter always has some value, one of the values which may be found by
measurement.
Veracity in Measurement: Measurement of a parameter faithfully reveals the value it really has.

These two postulates can be consistently added to our above story, but then they imply some sort of conspiracy about
when measurements are made: whenA and C both have value 1, we are lucky or clever enough not to measure the two
of them! That is unacceptable. Perhaps we should put it this way. The conjunction of these postulates would be an
attempt to say that the world is basically the same, whether things are being measured or not. But given the above
story, the two postulates are both true only if things are not basically the same in the two cases, because the measured
situations are all of a special sort. So the attempt fails: some difference between measured and unmeasured world will
have to be admitted.

That first postulate of Value Definiteness was called Classical
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Principle C by Paul Feyerabend (1958). It is not logic, but this principle that must be rejected, he argued. From Bohr to
Feynman, physicists have expressed similar opinions: an observable (measurable parameter) might not have a specific
value outside the context of measurement. That is part of the orthodox or Copenhagen interpretation. This rejection
may well be palatable from other points of view. Perhaps it is not even all that radical. In ordinary common sense, we
attribute colours to liquids; but when the liquid is vaporized, the question of what colour it is then has no answer.
However, the second postulate—Veracity in Measurement—has also been much looked upon as a candidate for
rejection or revision. To keep the first postulate and reject the second—the explanation through disturbance by
measurement—would not be a happy option. It would imply some sort of conspiracy again: if A and C do sometimes
both have value 1, how does the uncontrollable disturbance in measurement carefully and systematically hide that fact?

To reject classical principle C is so far the only palatable option. It does itself imply a weakening of Veracity in
Measurement. For if, at a certain time, parameterA has no value, and is measured, then this measurement yields a value
as outcome, but clearly does not reveal a value. When we specify what counts as a measurement of A, we describe a
physical arrangement which must have one of two outcomes (indicator values), in this case 0 or 1. It would indeed not
be a measurement if this outcome gave us no information at all about the system which is subjected to measurement.
But what sort of information it does yield, and how much, we shall have to consider very carefully. Imagine for
instance a pollster who receives the answers yes, no, don't know from his informants, but notes always yes or no for each.
Depending on two factors—our interests and his procedure—this may constitute an acceptable measurement. (Do we
care about the percentage of undecided informants? When he hears don't know, does he automatically write yes or no or
does he flip a coin?) As long as we know what he is doing, we can cull information from his results. We had better not
say more just now. Exactly how measurement is to be conceived in the new physics is a central issue of interpretation,
and we should not try to settle it here a priori.
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But the rejection of Classical Principle C is surely not classical? No, it is not classical, in some sense; but neither does it
contradict classical logic. That a given parameter should sometimes have no value at all may look like a violation of the
logical principle of Excluded Middle. But it is not. Logic cannot compel us to regard the family {A has value x:x ∈ R}
for example as a logically exhaustive division of possibilities. What if we defined the parameter A so as to guarantee this
form of Excluded Middle by definition? Well, we could do that; but then we would have no guarantee that the defined
construct must correspond to reality.1

Proofs and Illustrations
The example of the strange situation which I gave at the beginning of this section is a mere scientifiction and so could
not really prove anything. But the lines of argument displayed in it, in simple form, are just those in the real arguments
in the literature, i.e. that quantum theory leads to a violation of classical probability and/or logic.

The plot thickens when we look to where logic and/or probability may be going wrong. We can expand statement 3 to

(3)

(a) (A = 1 orA = 0) and (B = 1 orB = 0) and (C = 1 orC = 0)
(b) (A = 1 andB = 1 andC = 1) or (A = 1 andB = 1 andC = 0) or . . . or (A = 0 andB = 0 andC = 0)

It is clear that each conjunct in 3(a) receives probability 1 by 1(b), and that each disjunct in 3(b) receives probability 0 by
1(c). Therefore 3(a) has probability 1 and 3(b) has probability 0. But finally—here is the paradox—3(a) and 3(b) are
logically derivable from each other. All this clear reasoning nevertheless relies on some theorems of classical logic and
probability theory, of which the most important is:

5. Xand (YorZ) is logically equivalent to (XandY) or (XandZ)

That is needed to show that 3(a) and 3(b) are logically equivalent. But statement 4 is the logical law of Distribution,
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which has been questioned by various authors who considered abandoning classical logic for the sake of the quantum-
mechanical world. (See further Section 6 below.)

Let us briefly look at the simplest of the familiar, somewhat more realistic, examples, the Two-Slit experiment. Here an
electron source sends out a stream of particles towards a screen. There is a barrier, with two slits which can be open or
closed. This is a crude position measurement: if one slit is closed and an electron hits the screen, then it must have
passed through the other slit. If we place detectors at the slits, we find that any electron found on the screen side was
detected at one or other slit. There are now three important probabilities for any region X on the screen being hit:

1. P(X|slit 1 open) = p12.
P(X|slit 2 open) = p2

3. P(X|both slits open) = p12
Suppose we try the following model. There is a parameter Y which takes value 1 or 0 depending on whether the
electron passed through slit 1 or 2. Then surely(?) we have

4. p1 = P(X|Y = 1) 5.
p2 = P(X|Y = 0)

6. p12 = P(X|Y = 1 orY = 0)

It follows at once that p12 is some sort of average (a convex combination) of p1 and p2.2 Therefore the model requires
that:

7. p12 lies in the interval with endpoints p1, p2.

In other words, p12 cannot be larger than both, or smaller than both. In the experiment, unfortunately, the interference
pattern which appears when both slits are open shows many violations of this condition.

One reaction would be to stick with the model, and reject the probability theory and/or logic involved in the deduction
of 7 from 4–6. That is the cry for logical revolution. But the other, and more orthodox, reaction is to reject the
representation of 1–3 by 4–6. To put it in other words: we can reject the idea that the electron must have a definite
position (in slit 1 or in slit 2) at the time of its passing the barrier.3

I have said enough for now, I think, to show that the easy and quick argument, i.e.
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random variables on a classical probability-space satisfy Bell's Inequalities; since those are violated, we must reject
classical probability theory (and/or logic),

is a non sequitur. It is wonderful enough that some phenomena may not admit any possible causal model—wonderful
enough to establish the need for a theory diverging drastically from classical physics. The surface phenomena in the
experiment are easily representable by a classical probability function. This does not ipso facto remove their mystery. The
point is only, to put it bluntly, that classical logic and probability theory as such do not rule out miracles, nor telepathy,
nor violation of Bell's inequalities.

2. General and Geometric Probability Models
The new phenomena do not force violations of classical probability theory or logic. On the other hand, they do not fit
the classical Common Cause models. What sorts of models do they fit? What sorts of models does quantum theory
utilize; do they perhaps depart from classical logic in fact? Let us take a closer look first at what theoretical models must
be like in general, and then inspect the curiously geometrized kind of probability models found in quantum theory. In
this chapter we will have a preliminary look only, but one sufficient to make clear the basic ideas. All of this will be
properly and precisely generalized in the next chapter.

A theory is, in essence, a set of models. These models are provided in the first instance to fit observed and observable
phenomena. But of course, the description of these phenomena is in practice already by means of some models—a
very modest sort, which we call ‘data models’ or ‘surface models’. When the theory is devised, and the official
theoretical models are constructed, certain parts thereof are offered as images of the empirical phenomena; I call these
empirical substructures. They are meant to be isomorphic to the data models that encapsulate the phenomena to be ‘saved’
by the theory. This can be put in another way: the data or surface models must be isomorphically embeddable in
theoretical models.
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A great deal of thought has been given, since the advent of quantum theory, to the form that any possible surface
model must take. Foundational work on the theory, especially in the ‘quantum logic’ tradition, sometimes looks as if
one is engaged in deducing the whole of quantum theory from assumptions about what any observable phenomenon
(any surface model) must be like, a priori. These deductions do go remarkably far, on the basis of assumptions that
seem surprisingly weak and plausible.4 I shall not discuss this further here. For the purpose of our present chapter, it
suffices to stay with a quite naive characterization of the surface models.

The preceding chapter focused on an experimental situation of a quite simple structure. We were given several
alternative measuring arrangements, a classification of possible outcomes, and some probabilities extrapolated from
(imagined) observed frequencies. As the structure we are given the following:

A surface model consists of:

(a) two sets of observable conditions: PRC is a set of realizable measurement choices, and PRS a set of possible
outcomes;

(b) the surface state P, a non-negative real-valued function P with domain part of PRC × PRS and range [0, 1], which
assigns probabilities of outcomes conditional on measurement.

This structure is subject to certain minimal conditions which (as discussed) guarantee that P is mathematically
extendible to a classical probability function. The numbers assigned by the surface state I call surface probabilities. Surface
models are also referred to as experimental or data models.

What about theoretical models? The ‘classical’ case studied in the preceding chapter we can sum up as follows. There is
a partition Q (of ‘hidden states’) whose members determine, with probability 1, the exact outcome of each
measurement performed. The more general case must therefore be the one in which even the finest partition—of
possible ways the situation can be—fails to lead us to such perfect predictions of the outcomes of measurements, if
performed. States there may be, but this much information they cannot give. Thus we arrive at
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the general idea of a theoretical model for an experimental situation:

The model provides a family M of observables (physical magnitudes) each with a range of possible values; a set S of
states; and a stochastic response function for each m inM and s in S, which is a probability measure on the range of m.

The number is to be interpreted as the probability that a measurement of m will yield a value in E, if performed
when the state is s. This explains to some extent what it shall mean for such a theoretical model to ‘fit’ an experimental
model. But it does not quite—it only tells us the probabilities of surface phenomena, on the supposition of a
measurement and of a state. The latter is again something theoretical, behind the phenomena. I propose to use the
most stringent notion of fit that we can have here:

A theoretical model MT fits an experimental model ME just in case MT has some state s such that the function
contains the surface state of ME, relative to some identification of the measurement setups as measurement of the
physical magnitudes m.

An objection will at once occur: what if the theoretical model is really right, but the experiment is being done many
times with the system now in state s, then in state s′, etc.? My answer is that, if this is possible, then the theoretical
model had better also contain a state s* which gives the correct results for that case. Clearly, s* will have to be or act
like a mixture or average of the states s, s′, . . . But we should not pretend that we already know a priori how such ‘mixed
states’ are related to other states or other measurements—that will all be part of the theoretical model construction.

With this very general notion of theoretical model, any surface state can in principle be fitted. At the risk of being
boring, I repeat that the surface state is just part of a probability function, in the sense of classical probability theory,
which is defined for all surface phenomena. To that extent, anyway, every theoretical model is ‘classical’. But these
models need not be classical in the sense of being deterministic or even causal
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models. We should now look for some construction that does furnish us with surface states, as simply as is possible,
but without entailing even partial determinism.

For ease of discussion, let us continue to consider only quantities that have 0,1 as possible values. Then a state s must
specify two probabilities for a given quantity . Obviously, p1, p2 are non-negative and sum to 1. Now
there is an easy geometric representation of this, with a vector of length 1 (see Fig. 5.1). By Pythagoras' theorem

, and obviously these squares are non-negative. So why not represent the state by the vector
(x1, x2) such that ? We can immediately introduce more quantities, such as m′, by rotating the axes of the
coordinate system. The vector which is (x1, x2) as described in the m-frame is (y1, y2) as described in the m′-frame, but of
course again because length is invariant. So these numbers , can be the probabilities
, . The geometric frame of reference depicts, therefore, the experimental arrangement which measures the

quantity in question.

If the vector (x1, x2) lies along the m1-axis, then x2 = 0, so x1 = 1. In this case the outcome of an m-measurement is
determined with probability 1 to be the first (m = 1) value; similarly for the m0-axis and x2. Thus we also say that the
pair of vectors (x1, 0) and (0, x2) represent eigenstates of m: the states in which the outcome of an m-measurement is
determined with value 1. (The possible values of m—in this case, 0 and 1—are its eigenvalues.) Call these vectors |1〉
and |0〉 or, if we need to be more explicit, |m1 〉, |m0 〉. Then the probabilities represented by vector
v = (x1, x2) can be expressed also geometrically as follows:

And we can also express this algebraically in a convenient calculation form, because:

If (x1, x2) and (z1, z2) are two unit vectors (as described in the same coordinate system) then x1z1 + x2z2 = cos
(the angle between them).
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Fig. 5.1

Do we now know how to represent any surface state? Well, the quantities m and m′ depicted above cannot be jointly
measured (are ‘incompatible’), as far as our representation is concerned; for we cannot select two frames of reference
at once.

But it is clear that the choice of axes to represent quantities m and m′ entails a certain relationship between the pairs of
functions . We must proceed very delicately when we think about this, to avoid falling prey to false analogies
with the earlier, causal models. Suppose the angle between the two sets of axes (in the plane) equals θ. If s = |m1 〉,
that means that
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These two numbers are the transition probabilities. We can also write them so as to indicate the conceptual connection
with conditional probability. So we can write T(m′ = 1|s) as T(m′ = 1|m = 1) since s = |m1 〉, and therefore also as T(m
= 1|m′ = 1) since the quantity remains the same if we interchange m and m′. Such alternative ways of writing may be
convenient, but must be used with great care to avoid philosophical confusion. The number so designated is the
probability that an m′-measurement yields value 1, when performed on a system in state s, on the supposition that
s = |m1 〉, i.e. given that an m-measurement would have been certain to yield value 1. It must not be confused with ‘on the
supposition that an m-measurement (has or) would have yielded 1’; however we construe that, we court logical disaster
if we drop the word ‘certain’. (Given the controversies in our subject, it is impossible to emphasize this point too
much.)

So the transition probability is a conditional probability, but with a special class of antecedents. Investigating this a little
further, we can see what role it can play and also the disanalogy with a more unfettered classical use. Let us take
another state s represented by a vector v in the same plane, and let the angles between v and |m1 〉, |m′1 〉 respectively
be φ and ψ, with φ + θ = ψ:(1)

(2)

So the probabilities are related as follows for the state s represented by vector v:(3)

(4)

Remembering that transition probabilities are symmetric here, we can deduce:5
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(5)

of which the third term is sometimes called a ‘probability interference’ term. The equation may call to mind a classical
theorem. Recall that 1 − T(m′ = 1|m = 1) = T(m′ = 0|m = 1), and so by the symmetry of T equals also
T(m = 1|m′ = 0). Therefore (5) is the same as(5*)

If you now thought of the state attribution [m = 1] as an ordinary statement, which had [m = 0] as its negation, and so
forth, you would write (5*) in the form(5!!)

and so be under the impression that you had found a violation of equality(6)

which is the classical ‘theorem of total probability’. But of course this shows instead that in this context, although m′
can only have value 0 or 1, the expression ‘[m′ = 0]’ does not stand for the negation of ‘[m′ = 1]’. It stands instead for
the state in which a measurement of m′ is certain to have outcome 0.

Still, (5) and (5*) show that the probabilities for measurements of m are always constrained by the probabilities for
measurements of m′, together with the factor T(m = 1|m′ = 1) that relates the two observables. I say ‘constrained’, not
‘determined’, because square roots can be positive or negative, so we had to write ± in the equation. The connection
with conditional probability will be pursued further in Chapter 6.
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Proofs and Illustrations
So far I have focused on the geometric representation of probabilities in the real plane, i.e. two-dimensional space with
real-number coordinates. The possibilities of representation are enormously enriched by allowing more dimensions,
and, even more liberally, complex-number coordinates. Here is a question to illustrate a use of three dimensions: can
we have two observables A and B which are incompatible, and have only the two values ± 1, yet a state in which each
possible value is equally likely to be found for either? Not if A and B are represented by axes in the same plane. So let
us use three-dimensional space. Where X is either A or B, let X have only one eigenvector |X1 〉 for value +1 but
two for value −1. Now can we choose a vector which makes a 45° angle (whose ) with both |A1 〉

and |B1 〉? Certainly, if we go outside the plane on which these two lie. These are all unit vectors, so their points lie on
a sphere. Think of it as the Earth; let |A1 〉 be at the North Pole and |B1 〉 at Greenwich (latitude, let us say, 50° N).
We look at the 45° N latitude and find a point Y on it. Draw a great circle through Y and Greenwich, and measure the
separation. If it is less or more than of the circle (45°), move point Y until you get it right: then Y marks the state
vector required. If it represents state s, then and of course too. This
sort of pictorial argument will remain useful below.

In Chapter 6 I shall relate a fundamental theorem, due to Gleason, which determines exactly what combinations of
probabilities can be represented in Hilbert space geometry.

3.Accardi's Inequalities
Not every experimental situation can fit the simple, causal models of the preceding chapter because Bell's Inequalities
might be violated. But neither is it the case that every experimental situation can fit the simple geometric models of the
preceding section. (This point is crucial to guarantee empirical significance!) We can conceive of violations of their
basic features. Two of these features are common to all quantum-mechanical models. One is the rather obvious
symmetry in
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transition probabilities, which we cannot expect very well a priori. The second is that for each m and b there must be a
state in which an m-measurement is certain to have outcome b. One is tempted to say here: well, let the theorist
conjecture all such states. But that is not generally possible; this feature limits what the theory can countenance as a
genuine measurement of quantity.

Just as Bell's Inequalities are statistical invariants of causal modelling, so must there also be statistical invariants of
geometrical probability modelling that describe its empirical limits. This point was made and developed by Luigi
Accardi; I shall here report the initial results (Accardi and Fedullo 1982), which were stated in terms of transition
probabilities.

Going back to the deduction of (5) in the preceding section, suppose that s is the eigenstate |m″1 〉 of a third
observable, which also has just the two eigenvalues 0 and 1. For brevity write

In a geometric probability model these are symmetric; i.e., T(X = 1|Y = 1) = T(Y = 1|X = 1). This fact, together with
the limitation to just two values, means that all transition probabilities are now determined. For example, for m and m′
we have:

There is also no difficulty at all in finding an angle θmm′ such that p = cos 2 θmm′ ; in that case 1 − p = 1 − cos 2 θmm′ = sin 2

θmm′ . Similarly for q and r. But now, all three angles θmm′ , θmm″ , and θm′m″ must coexist between vectors in the same space!
(Though not necessarily in the same plane.) Accardi deduces:

(7) If m, m′, and m″ are represented by means of vectors based on the real number field, then
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This result is actually a corollary to a more general one, for, as is well known, quantum theory uses the geometry of
vector spaces based on the field of complex numbers. That more general result is:

(8) (Accardi–Fedullo): If m, m′, and m″ are represented by means of vectors based on the complex number field, then

We see therefore that the admission of complex numbers allows for the whole range of possibilities, whose extreme
limits appeared in result (7) about real number representation.

This can be illustrated by means of polarized light. Suppose filters FA and FB have orientations inclined to each other
with angle θAB. We can then prepare a photon in eigenstate |A1 〉 by passing it through FA. Any such photon has
probability cos 2 θAB of passing through filter FB. The angles here are all co-planar, a rather simple situation. Yet if we
thought that the filters did not change the photons sometimes, but only revealed preceding properties, then (as Accardi
also points out) the numbers p, q, r would have to satisfy a typical Bell inequality—which is violated. This form of the
Bell Inequalities (for the transition probabilities) is:(9)

Of course, this is different from Wigner's formulation, which concerns probabilities of joint measurement outcomes.

We have now seen that there are strict theoretical limits to what (conceivable) empirical phenomena could be
represented in the geometric probability models, just as there are for causal modelling.

Can there be phenomena that admit not even any complex geometric model? If such phenomena occurred, then
quantum mechanics too would be in trouble. And indeed, it is not so difficult to envisage violations of condition (7), at
least in the abstract. There are also beautifully picturable thought-experiments, devised by Mielnik (1968, 55)6 and by
Aerts (1986), in which such violations occur.
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4. The End of Counterfactual Deniteness
Let us quickly take stock. In the preceding discussion of incompatible observables—parameters which cannot be
jointly measured—we found no reason to call for a revolution in logic or probability theory. But this was in part
because I did not ask for the imposition of such postulates as Value Definiteness and Veracity in Measurement. I do
not think of this as a giving up, or as an admission or concession—I doubt that anyone ever cherished such principles.
(You can't just introspect, catch a sense of comfort, and say oh, that is a principle which governed classical thought!
Our breast harbours no such oracle of intellectual history.) The basic idea of measurement or observation has not had
this connotation of passively received revelation since what Kant called his own Copernican revolution. A
measurement situation puts nature to the question—in the Inquisitors' infamous sense—and so yields one of the
possible values. Measurement reveals; it reveals something; but not always, in a straightforward way, a value already
possessed independently.7

We turn now to some other arguments directed against logic and supposedly classical intuitions. Here we are much
more closely concerned with Bell's Inequalities. John Bell himself, in his (1981) article on Bertlmann's socks, confronts
us with more or less the following puzzle.8

Suppose we think of the two-generals situation as involving two particles travelling to the two receivers. There they will
meet barriers, which depend on the setting. Armand chose setting 2 on the right, and his particle passed. Now, given
that the right particle passed the barrier of setting 2, our perfect correlation entails that the left particle was not able to
pass the setting 2 barrier there. However, Alfredo chose setting 1, and the left particle did pass. So we conclude:

1. The left particle was able to pass barrier 1 and was not able to pass barrier 2,

and write this in our experimental report.

Let us abbreviate ‘the left particle was able to pass barrier i’ as A(i). That abbreviates 1 to [A(1) & not-A(2)]. The
following is a theorem of classical probability theory:
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2. The probability of A(1) and not-A(2) plus the probability of A(2) and not A(3) is greater than or equal to the
probability of A(1) and not-A(3).

But we continue the experiment, writing down many reports like statement 1. Then we extrapolate the probabilities
from our data, and lo! theorem 2 is violated.

Is 2 really a theorem? The reader can check it with a little calculation, without trouble. So the experiment has violated
our classical blend of logic and probability. Yet it did this by its usual violation of Bell's Inequalities.

There is no sleight of hand here, with omitted suppositions of measurement, as in the preceding section. Each
experimental report, however, involved an inference from a measurement outcome to the existence of a property that
the particle already had when it came to the barrier. This was the modal property of being able to pass—or else not being
able to pass. Now this inference had its own ideas, so to say, about what measurement reveals. And it also relied on the
conclusion that, if the right particle passed the barrier, this showed that the left particle could not have passed it if it had
been put to the same test. So we have an inference to a ‘counterfactual conditional’: a conditional statement about what
would have happened if something else had been done.

This subject of counterfactual conditionals has been much studied in contemporary logic, and we are in a good
position to evaluate such arguments. The initial literature concerning this twist to Bell's results, however, proceeded
without reference to recent logic. Mainly following Henry Stapp, some writers have given short and elegant derivations
of Bell's Inequalities by relying on intuitions concerning counterfactuals (see Stapp 1971; Eberhard 1977; Herbert and
Karush 1978). The main one is:

3. Counterfactual Definiteness: If a measurement can only have outcomes 0 or 1, then one of the following two
statements is true:

(a) if the measurement is (be, were) done, then the outcome will be (would be) 0;
(b) if the measurement is (be, were) done, then the outcome will be (would be) 1.
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This is an instance of a principle of the first successful logic of counterfactual conditionals, which was due to Robert
Stalnaker (1968):9

4. Conditional Excluded Middle:

How does this lead to Bell's Inequalities?

Well, as Common Cause factor, we choose the conjunction of all such conditionals which are true as the particles leave
the source. By 3, this conjunction implies logically what the outcome will be for each setting choice. That puts us
immediately at the end-stage of the deduction of Bell's Inequalities, just at the point where one introduces Wigner's
eightfold classification.

If Stalnaker's (1968) original logic of conditionals were an inalienable part of classical logic, we would now have
grounds for a logical revolution.10 But in the history of this chapter of logic, Conditional Excluded Middle had been
immediately attacked by David Lewis, and Stalnaker had weakened it to a status in which it no longer licenses
Counterfactual Definiteness (see van Fraassen 1974b). Thus, those arguments in the physics literature rested on a
‘plausible intuition’, which had however already been rejected in formal logic. One good example to bring out the
reasons is the venerable example, Which is true, if Verdi and Bizet had been compatriots, Verdi would have been
French? or Bizet would have been Italian?

This defence has one shortcoming: it leaves open that there may be some sense of the conditional, for which 3 and 4
hold. There are happily two other defences. One is that, in the last stage of the Bell's Inequalities deduction, in the
preceding chapter, we needed to appeal to Hidden Autonomy. That is the assumption that the hidden Common Cause
factor is stochastically independent of the settings. In our present application to this hidden variable made up of
counterfactuals, that appears to require something of form

5. P(A → B|A) = P(A → B)

But by some simple principles of probability, and a principle common to both Stalnaker and Lewis (thatA & (A → B)
is equivalent to A & B), we derive
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6. P(A → B) = P(B|A)

which is another hotly debated, and generally rejected, principle in this area (see Harper et al.1981 and Hajek 1989 for
details).

Finally, probabilities are not necessarily attachable to any and all propositions, no matter how tenuously linked to fact.11
Perhaps they do not attach to counterfactual conditionals, for example.

So we have seen that the devastatingly demure argument with which we began was full of hidden complexities, none of
them more than tenuously connected to classical probability and logic as such. Yet, again we have learned something.
The violation of Bell's Inequalities demonstrates empirically that we should not look to measurement outcomes to give
us direct information about state, propensity, capacity, ability, or counterfactual facts. From fact to modality, only the
most meagre inferences are allowed.

5. Models of Measurement: A Trilemma for Interpretation
There is a distinct threat of circularity for such a theory as quantum mechanics, which mentions measurement in its
basic principles and yet itself covers measurements as a subclass of interactions. In this section we shall have a
preliminary exploration of the threat.

To begin, we need to specify what a theoretical model, as introduced in Section 2 above, looks like for a compound
system. Suppose that, for individual systems X and Y and the compound system X + Y, we have

Sets of states SX, SY, SXY

Families of observables MX, MY, MXY

Stochastic response functions , , where m and s range over the relevant observables and states in
each case.

Obviously there must be certain relations among these which reflect the compound–component relation. Specifically,
there must be a way of thinking, for example, of a state of X or Y as
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some aspect or part of a state of X + Y. This relationship can be captured by two functions:

Similarly each observable on X + Y must somehow concern each of X and Y, however trivially, and we can let the
same mappings extend to this relationship as well:

So far these mappings carry no information, but we note that MX and MY include the trivial observables which always
have value 1; call these iX and iY. Now when hY(m) = iY, we can think of m as really just representing its image hX(m), an
observable pertaining to X alone. In this way the families MX and MY pertaining to X and Y alone have each a ‘copy’
inside MXY.

To enter the last link, which will give all this a use, let us first simplify the notation. When s is a state of X + Y, we think
of its images hX(s) and hY(s) as ‘reduced states’ pertaining to its components. Let us designate these more briefly as #s
and s# respectively. Secondly, when we look at an observable m pertaining to X + Y, let us

Then we need to have the following alignment of stochastic response functions:

for all states in SXY.

We will see this general scheme instantiated in a specific manner when we come to the quantum-mechanical treatment
of compound systems in Chapter 7.

So far so good, but the theory also covers, as processes described, those measurement interactions for which it makes
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predictions. Suppose particularly that Y is the measuring apparatus for m, and the measuring process is the evolution
of X + Y from state s to state s′. Since Y is the apparatus, its final condition must register the measurement outcome.
Therefore the probability measure must at least indirectly give us probabilities for what state s′# of Y at the end
must be.

A word of caution here. It will be natural and tempting to think that our present discussion applies directly to quantum
theory—in the abstract, anyway—with those states being the usual quantum-mechanical states. That should not be
assumed. What I have said so far (or am about to say) concerns at best the picture we shall have of what quantum
theory says after it is interpreted in some definite way. These different interpretations will display some connection between
the usual quantum-mechanical states and the states discussed here, but may or may not identify them.

To continue then: for each Borel set E of possible values of m there must be a corresponding set of possible states
Y(E) of system Y, so that admits of the dual interpretation:12

(*1*) is the probability that an outcome in E will be found, given that m is measured on X,
beginning with an initial state s of (X + Y) such that x = #s.

(*2*) is the probability that the final state s′ of (X + Y) will be such that s′# is in Y(E), when this
process began with a certain initial state s of (X + Y) such that x = #s.

But it is clear now that in this story the transition s → s′ is indeterministic. Indeed, is now seen to be in effect a
probability measure on the set of possible final states of X + Y resulting from this process that starts with a given
initial state s(X, Y).

So—this story cannot fit a theory in whose models of measurement the total system develops deterministically. And
now we have come to the paradigm puzzle about quantum mechanics: in its models of an isolated process, the
quantum-mechanical state does develop deterministically, in accordance with Schroedinger's equation.
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There are only three ways to reconcile quantum theory with the conclusion we drew.

1. If a measurement takes place in isolation, the process is not subject to Schroedinger's equation, but evolves
indeterministically (there is an ‘acausal’ transition).

2. No measurement interaction is the temporal evolution of an isolated system; an interaction with an
environment, incompletely described, is part of what a measurement is.

3. The quantum-mechanical state is only one aspect or part of the total state of the system at a given time; which
observables have what values is a second aspect or part of what the system is like at that time.

All three of these solutions are found, in various versions and guises, in the literature on the interpretation of quantum
mechanics. What we note here is that the disjunction of this trio is forced on us by the general discussion. For it
established:

If every process in an isolated system is a deterministic state-transition, and the probability measure is not trivial
(with values 0, 1 only), and if measurement requires the coincidence of characterizations *1* and *2* of that
probability measure, then no process is the temporal evolution of an isolated system.

The possible reactions, to allow for measurement in quantum mechanics after all, are therefore just these three:

(a) Not every quantum-mechanical state transition in an isolated system is deterministic.
(b) A measurement is a process in a non-isolated system.
(c) The quantum-mechanical state of an isolated system does develop deterministically, but it is not the total state,

and some aspect of that total state evolves indeterministically.

The modal interpretation that I shall advocate will take the third option.

6. Introduction to Quantum Logic
There is no need for a logical revolution to appreciate the subject of quantum logic. That quantum-mechanical
propositions
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have a logic of their own was suggested by von Neumann in his book Mathematical Foundations of Quantum Mechanics in
1932. Birkhoff and von Neumann (1936) gave the idea an especially elegant form. Herman Weyl's essay (1940) ‘The
Ghost of Modality’, written in memory of Husserl, related it to modal logic—indeed, Weyl gave in rudimentary but
prescient form the outline of the semantic analysis that would eventually unify modal, quantum, and intuitionistic
logic.13 We are now in a good position to understand this logic, for many of its features appear equally well in the
general context of geometric probability models.

A theoretical statement about a system, whether real or imagined, typically says something about its state. As
representative here, let us take

1. The system is in some state s such that

for which we can use our previously introduced term state-attribution (since it fits the use in Part I of that term, in
classical contexts). That form is of wider application than it may seem; for suppose observable m′ is defined by saying
that it has value 1 exactly when the value of m is in interval E and has value 0 if the value of m outside that interval.
Then we can equate:

2(a). The system is in a state s such that
(b). The system is in a state s such that

thus broadening state-attributions to sets of values.14 Finally, we abbreviate 2(b) to

3. [m, E].

Now we can go to the geometric probability model, to see how this proposition is represented there. Obviously, it is
true whenever the system is in some state which is an eigenstate of m with respect to interval E (i.e. of m′, with respect
to value 1). In a three-dimensional example, with m having distinct eigenvalues 1, 2, 3 and E = {1, 2}, we see that
statement 3 requires the vector which represents state s to lie in the plane containing vectors |m = 1〉 and |m = 2〉.
If E = {1}, that vector must actually be |m = 1〉; that is, it is constrained to lie in a certain line through the origin. If
E had N distinct eigenstates of m in it, the constraint would be to an N-dimensional
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subspace. So: the state-attributions are represented by subspaces.

The logic of state-attributing propositions can now be ‘read off ’ the model. We say that state s makes true or satisfies
[m, E] if it is as described in 2(a)–(b). The first logical notions are clear:

4. [m, E] entails [m′, E′] exactly if any state which satisfies the former also satisfies the latter; that is, exactly if [m, E]
⊆ [m′, E′]

5. [m, E] is the conjunction or meet of [m′, E′] and [m″, E″] exactly if the former is satisfied whenever the latter two
are satisfied; that is, exactly if [m, E] = [m′, E′] ∩ [m″, E″]

Happily, the intersection of two subspaces is always again a subspace. As a special case we note:

6. [m, E ∩ E′] = [m, E] ∩ [m, E′]

which makes good intuitive sense. For the other familiar operations of logic, more care is needed.

What does ‘or’ mean? One classically correct answer is this:

7. The disjunction (P or Q) of two propositions P and Q is the logically strongest proposition which is entailed by P
and also by Q

‘Logically strongest’ means that it itself entails as much as possible. Hence we gather from definition 7:

8. P entails (P or Q); Q entails (PorQ)
9. if P entails R and Q entails R then (P or Q) entails R

These are also in lattice theory the principles for the join operation. There is indeed such an operation on the subspaces
(they form a lattice, in mathematical parlance):

10. If P and Q are two subspaces, there is a smallest subspace P ⊕ Q which contains both—the orthogonal union or
join of P and Q.

11. [m, E] ⊕ [m, E′] = [m, E ∪ E′]
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Corollary 11 shows us that in the simplest case (each proposition is ‘about’ the same observable m) this construction
agrees well with our intuitive grasp of ‘or’. But even here, we note at once that a probability measure can give 1 to E ∪

E′ without giving 1 to either part E or E′. Similarly in the geometric representation:

12. If vector x is in P and vector y in Q, then not only x and y but every superposition (i.e. linear combination)
ax + by also lies in P ⊕ Q.

So the orthogonal union can be much larger than the ordinary union. P ⊕ Q may represent a true proposition, while
neither P nor Q does so.

We can proceed similarly with ‘not’, though here it is easier because we automatically deal with one observable only. In
analogy to definition 7, we write

13. The negation (not-P) of a proposition is the logically weakest proposition which is logically incompatible with P.

Here P and Q are logically incompatible exactly if no state can satisfy both. The strongest such proposition Q is of
course always the self-contradiction. If P = [m, E], then the weakest such proposition—which entails as little as
possible—must be [m, R − E]. And indeed, we have a corresponding operation on the subspaces:

14. If P is a subspace, there is a largest subspace P⊥—the orthocomplement of P—such that P ∩ P⊥ contains only the
null-vector.

The following are consequences of this definition:

15. P ⊕ P⊥ = whole space
16. If P ⊆ Q then Q⊥ ⊆ P⊥

17. (P ∩ Q)⊥ = P⊥ Q⊥; (P ⊕ Q)⊥ = P⊥ ∩ Q⊥

18. [m, E]⊥ = [m, R − E]

Properties 17 are called DeMorgan's Laws; corollary 18 shows
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again that we have good intuitive contact with our pre-theoretic intuition.

But P⊥ and P do not together exhaust the whole space, although P ⊕ P⊥ does. The vectors in P⊥ are those which are
orthogonal to the ones in P. Thus, if P is a line through the origin, and the whole space is three-dimensional, then P⊥ is
a plane through the origin. The ‘Excluded Middle’—property 15—is therefore somewhat illusory, for it does not imply
‘Bivalence’. A given state may satisfy neither P nor P⊥. Of course, this derives from the fact that a probability function
must assign 1 to the whole of its range, but may fail to assign 1 either to a given set E or to its complement R − E.

Birkhoff and von Neumann noted especially that the familiar distributive laws of classical logic are not obeyed here. Let P
and Q be two orthogonal lines through the origin, containing vectors x and y respectively. Now let a > 0 and consider
line S which contains superposition ax + (1 − a)y. Then we see that all three lines meet pairwise in the origin—the null
vector:

(a) (S ∩ P) ⊕ (S ∩ Q) = the null space
(b) S ∩ (P ⊕ Q) = S

since P ⊕ Q is the plane that contains all the superpositions of P and Q, and therefore S. The distributive law, which
fails here, holds in classical logic as

19. (SandP) or (SandQ) = [Sand (PorQ)]

and this discrepancy is often pointed out as the failure of classical logic in quantum theory.

Let us follow this introduction with a more advanced presentation, to introduce the abstract concepts at work here.

A partially ordered set (poset) is a set K ordered by a relation ≤ which is:

reflexive, i.e. x ≤ x for all n in K;
transitive, i.e. if x ≤ y and y ≤ z, then x ≤ z, for all x, y, z in K;
antisymmetric, i.e. if x ≤ y and y ≤ x then x = y.

The notions of greatest lower bound (g.l.b.) and least upper
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bound (l.u.b.) in this partial ordering are generalizations of meet and join, to cover more than just finite combinations.
Thus:

the g.l.b. of a subsetX of K in the ordering ≤ is the elementVX such thatVX ≤ y for all y inX, and if z ≤ y for all y
in X also, then z ≤ VX.

Dually for the l.u.b. of X. (Informally, the l.u.b. ‘lies below’ (or, in logic, entails) all and only those elements ‘above’ all
members of X.) But there may not be any such elements in a given poset.

Definition: The poset K, ≤ is a lattice if every finite subset of K has a g.l.b. and l.u.b. (with respect to ≤ in K), and is a
(sigma-)complete lattice if this is so for every (countable) subset of K.

The lattice laws are simply the conditions required by this definition, as stated in the paragraph above.

There are many sorts of lattices. The g.l.b. or join of the whole of K, if it exists, is the unit element 1 and its l.u.b. or meet
is the null or zero element 0. If there is an operator ⊥ on K which satisfies mutatis mutandis the description given in
14–18 above, the lattice is called orthocomplemented. If the distributive law 19 is satisfied (where and and or stand for
meet and join), the lattice is of course called distributive. If it is both orthocomplemented and distributive, then
orthocomplement is unique, and the lattice is called Boolean. It is then indeed a Boolean algebra, familiar to us from set
theory and classical logic both.

In the present context, it is the lattice of subspaces that is of interest. I shall not make the notions of space and
subspace precise until the next chapter, but shall here state some geometrical intuitions. The subspaces do indeed form
an orthocomplemented complete lattice, partially ordered by set inclusion. It is also atomistic. (An atom is a non-zero
element x such that 0 ≠ y ≤ x only if y = x. The property of atomism is that for each non-zero element y there is some
atom x such that x ≤ y, and indeed y is the l.u.b. of the set of such atoms.)

For a space with dimension greater than 1, this lattice is not
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distributive. It may be remarked that, if the dimension is finite, the lattice is still modular; i.e.,

but this too fails for infinite dimensionality. What properties do hold with complete generality? Two subspaces are
compatible if they are made up by orthogonal union of members of a set of mutually orthogonal subspaces. This can be
stated in lattice-theoretic terms in various ways.15 Jauch notes that the subspace lattice is always weakly modular; i.e.,

Apart from the above, the only further property of the subspace lattice which is at all well known is the so-called
Ortho-Arguesian Law, but it is already noxiously complicated.16 The fact is that the set of laws which characterize
exactly the family of lattices of subspaces is not axiomatizable. This was shown by Rob Goldblatt (1984). There are
however representation theorems, due to Piron and others, which answer the question by less strict standards than that
of the logicians' axiomatizability.17 The only question is whether this fragment is especially important in some way. Von
Neumann himself flirted later with needed extensions. (In terminology which will be explained later, the assertion that
a system is in a particular mixed state, for example, is not a state-attribution in the above sense.) On some
interpretations of quantum theory the entire focus is on this fragment; on others the fragment is too meagre to
describe all significant features of a theoretical model. (I shall opt for the latter.) But the family of state-attributions,
and its logical structure, does remain very important on all accounts, even if not paramount.

7. Is Quantum Logic Important?
Now I have explained quantum logic, and the meaning of its operations; did you have to relinquish classical logic to
understand me? Of course not.

You may well reply that I wrote all this in the metalanguage, in which language and semantic facts are described. So the
logic
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of the language in which this chapter is written is classical. The language we spoke about—the little language of state-
attributions—has a logic which is not classical. This is what we established.

Yet we established also that the language of state-attributions has an exact copy in our classical language. The
proposition [m, E] we talked about has as copy in our language statement (2b) of the preceding section, which we can
assert if we like. Thus, the little language of state-attributions, whose ‘inner logic’ is not classical, is a fragment of a
larger language, whose logic is classical.

There is absolutely nothing revolutionary about a fragment whose inner logic is not that of the whole.

In the last section of the preceding chapter and the first of this one, I discussed an equivocation which could lead one
to the conclusion that experimental results which violate Bell's Inequalities also violate classical probability theory.
Because of the latter's close connection with logic, one might then also conclude that logic and/or the probability
calculus must be revolutionized. It is not my idea to conjecture that anyone who advocates that conclusion was actually
misled by an equivocation.18 But I do want to insist that the very valuable concepts, techniques, and insights gained in
the course of developing the quantum-logical approach to quantum mechanics can be appreciated well enough aside
from any such non-standard interpretations. The interpretation I shall advocate, beginning with Chapter 9, will also
focus on families of propositions whose internal logic is quantum logic. But this advocacy will still go well with a
resolutely classical point of view with respect to logic and probability themselves.

NEW PROBABILITY MODELS AND THEIR LOGIC 135



This page intentionally left blank 



Part III Mathematical Foundations



The empirical content of the quantum theory can be summed up as: all empirical phenomena admit models of the sort
that were sketchily introduced in the preceding chapter. Our next step is to describe more precisely and
comprehensively the exact class of models that quantum mechanics provides. Happily, we have more than half a
century of foundational research to draw on. Unhappily, it is not possible to present the results briefly while remaining
rigorous and entirely neutral with respect to interpretation. These next two chapters will concentrate on what is
specially required for our purpose: joint probabilities, symmetries, conservation laws, selection and superselection rules,
composition of systems, interaction, and of course measurement.

I have tried to keep in mind two possible sorts of readers, with quite different needs. The first has little mathematical
background; so I start off slowly, and often give proofs for special or simple cases, so that this reader can get to a
working knowledge of foundations at an elementary level. The second is mathematically advanced; he or she can use
these chapters as a handy reference, a key to the inevitable idiosyncrasies of terms and notation later on, and a guide to
recent literature. Neither needs proofs for the main theorems, though there the one needs more faith than the other.
For a less abstract introduction to foundations, oriented more towards the physics itself, I recommend Hughes (1989);
for greater rigour and mathematically more advanced points of view, consult for example Redhead (1988) and
Beltrametti and Cassinelli (1981a).



6 The Basic Theory of Quantum Mechanics

This chapter will treat of single systems, ignoring that they may consist of parts, and may interact with other systems.

1. Pure States and Observables
The custom in quantum theory to refer to physical quantities as observables reflects the initial conviction that each
physical quantity must be associated with a realizable measurement (or experimental) arrangement. The stochastic
response function is intuitively thought of as giving the probabilities of measurement outcomes. Later we shall look to
see how measurement too can be modelled as a quantum-mechanical process, but for now we rely on that intuition. In
the notation of the preceding chapter, we read as the probability that a measurement of observable m yields a
value in Borel set E. Before turning to the Hilbert space representation, I want to explain some concepts definable
generally in terms of the stochastic response function, which will prepare us for questions to be raised later.

There are two concepts of purity for states. To begin, if s is a state, and m is an observable, let be the function which
assigns probabilities to outcomes of measurements of m, on the basis of state s. Then if s, t, and u are states such that(1)

for a number 0 < b ≤ 1 and all observables m, we call s a mixture of states t and u. This convex sum of the stochastic
response functions can also be countable, provided only that the ‘weights’ are non-negative and sum to 1. We call s pure
if it is not a mixture of other states. When (1) holds we also call t and u components of s. These components provide an
example of the following relation:



(2) t is possible relative to s iff assigns probability 1 wherever assigns the probability 1.

When equation (1) holds, we may say that t is ‘classically’ possible relative to s; we must leave open here whether we
shall also find ‘non-classical’ cases. This relation yields a second concept of purity, but I will use a different word:

(3) s is prime iff for any other state t, t is possible relative to s only if s is also possible relative to t.

In other words, the set of certainties in such a state is maximal; it cannot consistently be increased.

In quantum-mechanical models, the same word ‘pure’ can be used for both concepts because the two defined
extremes coincide.1 It is also true in quantum mechanics that the complete class of states consists of the pure states and
their mixtures (i.e. that decomposition of form (1) cannot go on for ever, but must eventually reach just pure states, at
least if we allow countable sums).2

When we relate states and observables to each other via the stochastic response function, however, we cannot speak so
categorically about what quantum mechanics assumes without straying into interpretation.

(4) States s and t are empirically indistinguishable exactly if for all observables m. Observables m and n are
empirically indistinguishable exactly if for all states s.

Does empirical indistinguishability imply identity? Since any representation can without loss of adequacy be embedded
in a ‘larger’ representation, the question makes no sense in general. After all, the set of states is a postulation, a
theoretical construct used to model the phenomena. We can only ask: is there a ‘smallest’ model in which this is so?

But quantum mechanics is a theory, and a theory is identified by the set of models with which it provides us. Can we
not just ask whether empirical indistinguishability implies identity in each of these models? This is the point where
foundations and interpretation merge. The models provided in physics practice form an open-ended class, and are in
certain respects only
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sketched. On the interpretation which I will advocate in the next Part, the question is answered yes. As far as the
present chapter goes, that answer seems obviously compatible with the theory until we come to superselection rules;
then it still is, though somewhat less obviously.

2. Pure States, Observables, and Vectors
From now until we come to superselection rules, we will discuss only models in which all pure states are represented
by vectors. In this section the observables are all represented by sets of vectors (‘eigenvectors’). There is a simple rule,
Born's Rule, for calculating probabilities in this representation. Though simple, the representation is neither unique nor
elegant, it omits mixed states, and treats observables at best somewhat clumsily.

The models all use as pure state-space a separable Hilbert space, which is a vector space with inner product. I shall take
some knowledge of vectors for granted, but will list and illustrate the basic definitions for Hilbert space in Proofs and
illustrations. The inner product of vectors x and y I will denote (x · y); the norm or length of x, i.e. the square root of
(x · x), as |x|. There will be three notational quirks. The first is that if b is a complex number, I write b2 to denote its
squared modulus, i.e. b*b. This is to make my notation as far as possible neutral between real and complex numbers, a
difference which does not usually intrude on general discussion. The second is that Σ sums over all indices when it
appears without any. The third also concerns indices. These are usually written as subscripts, e.g. x1, x2, .. . , xi, . . . But if
the term itself occurs as a subscript, or some other baroque form, it is convenient to write x(1), x(2), . . . , x(i), . . .
instead. This is accurate, since xi is just the value of some function—call it x—at the number i, after all.

Each vector represents a pure state; two vectors x and y represent the same pure state if they are parallel (i.e. if x = ky
for some number k). When z = Σ aixi we say that z represents a superposition of the states represented by the vectors xi.

Suppose that observable m has a set S of possible values. We call S its spectrum and these values its eigenvalues.3 To
represent the observable, we choose a basis {xi} for the space and a
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mapping: xi → mi of this basis on to S. The observable is represented by the basis so associated with it, and we call the
members of that basis eigenvectors of the observable, sometimes writing xi = |mi 〉 as convenient shorthand. (This is
adapted from Dirac notation, which I shall not use in general.)

Now we are ready to state the rule for calculating probabilities of measurement outcomes in this representation. We
begin with a simple case: observable m has exactly one unit eigenvector |mk 〉 corresponding to possible value mk.
Then:

Born's Rule (simple case): If m is measured in the pure state represented by unit vector y = Σ ci|mi 〉, the probability
of outcome mk equals the number .

This can be connected with the geometrical intuition as follows. Each vector y can be uniquely represented in terms of
any basis {x1, x2, . . .} of unit vectors, using the inner product: y = Σ(xi · y)xi. That is easy enough to see; for let y = Σ
cjxj. Then

for the vectors xi are orthogonal—hence (xi · xj) = 0 if i ≠ j—and of unit length. We also use the following
terminology: if y = Σ cixi, then ckxk = (xk · y)xk is the projection of vector y along basis vector xk. The squared length of the
projection along |mk 〉 is therefore exactly the probability mentioned in the Born Rule.

This rule referred to a unit vector, and applied only to the case in which there is just one basis vector for each
eigenvalue. To cover all other cases is also straightforward. If the vector y you use to represent a pure state is not a unit
vector, equate the probability to that calculated for the unit vector y/|y|. If the basis {|mi 〉} that represents
observable m contains duplication—e.g.
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m1 = m2 — we say that m is not maximal or that its spectrum is degenerate. In that case we proceed a little more gingerly;
here is the general statement.

Born's Rule: The probability of a measurement of observable m, as described above, on a system in state y, having
value b as outcome, equals ∑i{(|mi 〉 · y)2: mi = b}.

We note in any case that we could have thought here of m as a function of a maximal observable, and reached the same
conclusion. Suppose that the vectors |mi 〉 and |mj 〉 are sometimes distinct even when mi = mj. Take a maximal
observable m′ with the same eigenvectors, and define f: f(m′i) = mi. The probability of a measurement of m having
outcome b equals the sum of the probabilities of a measurement of m′ having one of the outcomes m′i such that
f(m′i) = b. Hence we have reached a consistently generalized version of Born's Rule. Because of this, we can summarize
this section in the following slightly more elegant form.

Summary of First Form of Representation
1. A maximal observable m with the discrete set of distinct possible values (eigenvalues) m1, m2, . . . has an associated

basis of unit vectors x1, x2, . . . (called its eigenvectors). We write xi = |mi 〉 to indicate the one-to-one
correspondence.

2. A pure state is represented by a unit vector y, which can be expanded in terms of the orthonormal basis {xi} in
the form y = Σ cixi, where ci = (xi · y). The probability of a measurement of the maximal observable m yielding
outcome value ; that is to say, (xk · y)2. Specifically, the probability of outcome eigenvalue mk in eigenstate
xk equals 1. Any scalar multiple ky of y (k ≠ 0) represents the same state as y, but the rule of calculation is given
for the unit vectors.

3. Every observable m′ with discrete spectrum can be equated with a function of some maximal observable m, in
the sense that m′ has eigenvalues {f(mi)} where m1, m2, . . . are the eigenvalues of m; and m′ has the same
eigenvectors as m. The probability of a measurement of m′ in state
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y having outcome b equals the probability that a measurement of m in state y has one of the outcomes mk such
that f(mk) = b.

Proofs and Illustrations
Here I will give the precise definitions of the notions of vector space and Hilbert space, and then describe the simplest
examples of such spaces.

To define a vector space, we begin with a number field. The two most common are the field of real numbers and that
of complex numbers. Every complex number has the form a + bi, where a, b are real and i is the positive square root
of −1. The conjugate of (a + bi) is (a + bi)* = (a − bi), and I write b2 as short for b*b when b is complex, whenever that is
not confusing.

A vector space S over number field F is a set with operations of scalar multiplication and addition. For each b in F and
x, y in S, bx (the scalar multiplication of x by b) and (x + y) are also in S. The operations are such that

(1) there is a unique zero vector Ø = 0x for all x in S;
(2) a(x + y) = ax + ay; (a + b)x = ax + bx;
(3) Ø + x = x;
(4) + is commutative and associative.

The simplest example is the space Fn over F whose members are the n-tuples〈 b1, . . . , bn 〉 of members of F. The
operations are defined by a 〈 b1, . . . , bn 〉 =〈 ab1, . . . , abn〉 and 〈b1, . . . , bn〉 + 〈

c1, . . . , cn〉 = 〈
b1 + c1, . . . , bn + cn 〉. Of

course, we are familiar with this from analytic geometry, where〈 b1 . . . , bn 〉 would be the set of coordinates of a
point in an n-dimensional space.

Geometric spaces have an inner product. In the n-dimensional space Fn this can be defined by .
The general properties of the inner product are these: for each x, y in S there is a number (x · y) in F such that(5)

(6)
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(7)

(8)

Note accordingly that (bx · y) ≠ b(x · y) in general but (bx · y) = (y · bx)* = [b(y · x)]* = b*(y · x)* = b*(x · y). The
number (x · x) however is obviously real, and (x · y)2 = (y · x)2; when talking about the Born probabilities it is often
convenient to rely on these facts, and I shall do so without comment.

In terms of the inner product, we define the length or norm |x| of vector x:

Thus |Ø| = 0 and |x| > 0 if x ≠ Ø. We call x a unit vector if |x| = 1. In the example of a two-dimensional space

which ties in neatly with the Pythagorean theorem and the geometric picture (Fig. 6.1). The inner product has also a
more direct geometric significance in Euclidean space. First of all we call x and y orthogonal, writing x ⊥ y, exactly if
(x · y) = 0. To generalize this, suppose that the vector in the figure has unit

Fig. 6.1
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length √(b2 + c2) = 1. Then cos θ = b and cos (90° − θ) = c. Consider now the unit vector 〈 1, 0〉:

But θ is the angle between〈 1, 0〉 and〈 b, c〉. In general, in a Euclidean space, if x and y are unit vectors, then (x · y)
equals the cosine of the angle between them.

A basis of the space is a set B of mutually orthogonal vectors such that every vector is a linear combination of members
of B. When the members of a basis are all unit vectors, it is called ‘orthonormal’, and I shall simply write ‘basis’ for
‘orthonormal basis’ except in contents where that might lead to confusion.

All bases for a space have the same cardinality, which is the dimension of the space. We call a space separable if it has
bases which are finite or countably infinite. Henceforth we assume that all spaces considered are separable. A Hilbert
space is a vector space with inner product, which is complete in the sense that, if a sequence of vectors converges, then
there is a vector in the space which is its limit. To make this precise, call the sequence x2, x2, . . . of vectors a Cauchy
sequence exactly if the sequence of norms |(xm − xn)| converges to 0. The vector space is complete if for every such
Cauchy sequence it has a limit which is a vector in the space.

In consequence, we can in Hilbert space make up infinite (countable) linear combinations of vectors. The infinite sum
is the limit of the sequence of finite sums (and exists provided that sequence converges). If x1, . . . , xn, . . .

are vectors in a Hilbert space, then the smallest Hilbert space which contains all of them is called the subspace [{x1, . . . ,
xn, . . .}] spanned by these vectors. A vector y is called a superposition of x1, . . . , xn, . . . exactly if y belongs to that subspace.
Note that the completeness property which defines Hilbert space guarantees that all the finite and infinite sums of
vectors described above are superpositions of those vectors.

The n-dimensional spaces described above as examples are all Hilbert spaces. The simplest infinite-dimensional Hilbert
space is F∞, the set of countable sequences〈 b1, b2, . . .〉 of numbers in the field F, such that is finite. (Recall that
if b is complex then b2 means b*b.) The operations of scalar product, sums, and inner product are defined pointwise,
just as above.
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3. Observables and Operators
The representation so far has been simple but clumsy. Still remaining with the pure states only, we turn now to the
representation of observables by means of operators.

3.1. Representation by Hermitean Operators
Let m be an observable with possible values a1, a2, . . . (duplications such as a1 = a2 allowed in this list), and
corresponding orthonormal basis {x1, x2, . . .}. Define the following operator on all basis vectors:(1)

and extend it to all the vectors in the space by linearity, i.e.(2)

An operator M satisfying (2) is called linear. The one we are looking at has several other properties. First of all, it is
everywhere defined: it operates on all vectors in the space. Secondly, its eigenvalues (numbers or such thatMx = ax for some
vector x) are all real. Thirdly, it may have the following two properties:

Bounded: there is a positive number b such that |Mx| ≤ b|x| for
all x

Self-adjoint: (x · My) = (Mx · y)

M is Hermitean; this term, so common in the physics literature, though mostly avoided now by mathematicians, has not
had an everywhere uniform usage. Generally it just means self-adjoint; sometimes it means bounded and self-adjoint.
Unbounded self-adjoint operators cannot be everywhere defined. Like most other complexities too intimately
connected with the infinite, I shall remark on them only in passing.

The Hermitean operator M represents the observable m very conveniently. For example, given a unit state vector
x = Σ cjxj, the probability of value aj being found is , so the expectation value of the measurement outcome equals .
This number is again identifiable by an inner product construction:
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which is just that number, the expectation value of the outcome of a measurement of this observable.

All of the above works equally well if some of the possible values aj are the same. If for example a1 = a2 = a but a1 ≠ ai

for any i after 2, then the probability of a measurement finding value a, given state x = Σ cjxj, must equal . Let us
define a new operator as follows:

where Ø is the null vector, and again extend the operator from the basis {x1, x2, . . .} to the whole space by linearity.
Then if x is as above, we have

The above calculation of (x · Mx), if now used for , gives us the number , that is, that very same probability.
So we have the results:

The expectation value of a measurement of m in unit state vector x equals (x · Mx), and the probability that this
measurement will yield value b equals .

There is another way to express this probability. Suppose x = Σ cixi; then . Now the length of that vector
is . If we drop the square root sign, we have exactly the probability. So we can also say:

The probability that a measurement of M in state (unit
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vector) x will yield value b equals .

This construction is easily generalized to sets of values:

and then we deduce:

The probability that a measurement of m in state (unit vector) x will give a value in E equals , or equivalently
.

The operators , are projection operators which are definable as: Hermitean operators I such that II = I. Their only
eigenvalues are 1 and 0, because if Ix = bx then IIx = I(bx) = bbx, and since therefore b2x = bx it follows that b is 0 or
1. There is again a clear geometric intuition, for is the length of the projection of x along the eigenvector |b〉 of
M, if there is only one eigenvector corresponding to eigenvalue b.

Operators, like any other functions, can be combined by the same operations as their argument. Thus, for operators on
any vector space, we can write

These particular functions are linear, and so are, as it were, inherited from the structure of the vector space.
(In Sections 3.2 and 3.3 I shall consider functions of observables more generally.) In the case we have been examining,
therefore, we can write . We call the equation of M with this convex combination of projection
operators a decomposition of M.

Not all Hermitean operators on all Hilbert spaces have this simple construction as a sum of projection operators. The
ones that do are exactly the ones we say have a discrete pure point spectrum, this spectrum being the discrete set a1, a2,
a3, . . . There are observables, such as position, which are not to be represented in this way. I shall restrict the discussion
to omit them (but see Proofs and illustrations for some further details about spectral decomposition of observables).4
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Summary of Second Form of Representation
1. Every observable m is represented by a Hermitean operator M. Vector x represents an eigenstate of m

corresponding to eigenvalue a if and only if Mx = ax. The observable is non-degenerate (maximal) if all
eigenvectors corresponding to any one eigenvalue are parallel (i.e., Mx = ax and My = ay implies x = ky for
some number k).

2. A Hermitean operator I which is its own square, i.e. is such that II = I, is a projection operator. Given observable
M and Borel set E, we can define to be the Hermitean operator I such that Ix is x if Mx = ax for some
value a in E and is the zero vector ifMx = bx for some value b outside E. If the eigenvalues ofM are a1, a2, . . .
then .

3. The probability that a measurement of M in a pure state represented by unit vector y has an outcome in set E
equals the probability that a measurement of in that state has outcome 1. That probability is the number

, which is also equal to the number . In general, the expectation value of the outcome of a
measurement of observable M in unit state vector y equals (y · My).

Proofs and Illustrations.
In quantum mechanics infinite-dimensional Hilbert spaces are certainly important, and unfortunately the limits of our
discussion above are connected with dimensionality. Let us here note some of these. If the space is finite-dimensional
and A is Hermitean (or unitary, if it is a space on the complex number field; see Section 6 below), then A can be
described completely in terms of its eigenvalues and eigenvectors: there is an orthonormal basis of the space consisting
of eigenvectors. This may be so if the space is not finite-dimensional (and my discussion is restricted to those operators
for which it is so), but not necessarily.

In the infinite-dimensional case, a Hermitean or unitary operator may have no eigenvalues or eigenvectors at all—this
is so for the traditional ‘basic’ observables of position and momentum. There is still always a spectral decomposition
A = ∫ r dEr where the ‘spectral family’ {Er} is a set of projection operators
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too. The operator Er is the projection with E the set of all real numbers less than or equal to r. The equation means
that

The set of numbers r on which Er increases is the spectrum ofA. This is then divided into the point spectrum (those points
r at which Er jumps) and the continuous spectrum (points r where Er increases continuously). The eigenvalues of A are
exactly the numbers in its point spectrum; the possible values are all numbers in its spectrum. Hence if the continuous
spectrum is empty, then the possible values are just the eigenvalues, and we say that A has a discrete or pure point
spectrum. In a more general way, the spectral decomposition establishes a one-to-one correspondence between the
self-adjoint operators A (bounded and unbounded) and the projection-valued measures (sigma-homomorphisms of the real
Borel sets to the projection operators) .

What does this mean for interpretation? If r is a possible value, it can appear as a measurement outcome. However,
only if r is an eigenvalue of A is there any state in which it is certain to be the outcome of an A-measurement. This
introduces a complication for interpretation, and there is important recent work on this subject.5

3.2. Projection Operators and Subspaces
A projection operator clearly represents a very simple observable, one that has only 0 and 1 as possible values. The
observables with pure point spectra are thus all definable in terms of these simple (yes/no) observables. That is why
much writing on the foundations of quantum mechanics has focused on projection operators. John von Neumann
referred to them as propositions: represents the proposition that a measurement of m is certain to yield a value in D.
Others have called them questions: to measure the observable represented by is to ask a question which can only
have the answers yes (1) and no (0). What I have called the surface state in preceding sections is clearly definable by their
means:
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The reason such an operator I is called a projection operator is that it ‘projects’ each vector into a certain subspace.
Define(1)

Then S(I) is a subspace. (That means: if x1, . . . , xn, . . . are in S(I), then so are their scalar multiples, and if the numbers
sum to 1, then Σ anxn is also in S(I).) If S = S(I) we shall also designate I as Is, and call I the projection on S.

The set S⊥ of vectors y which are orthogonal to all members of S is called the orthogonal complement of S. If S is a
subspace, then so is S⊥. Also, if I is the projection on S, then

is the projection on S⊥. Thus x is as it were split into two orthogonal parts, Ix and I⊥x, which belong to the orthogonal
subspaces S and S⊥. These parts sum to x, so nothing is left out in this splitting. We call Ix the projection of x on
subspace S(I).

The smallest subspace spanned by a set of vectors x1, . . . , xn, . . . is called [x1, . . . , xn, . . . ], the span of these vectors.
Obviously a single vector x spans a very small subspace [x], the one-dimensional ‘ray’ consisting of all scalar multiples
of x. The projection on [x] is accordingly called a one-dimensional projection operator, and I shall more briefly
designate it as Ix. This sort of projection operator is explicitly definable:(2)

Thus the inner product (x · y), if real and positive, is the length of the projection of y along x when they are unit
vectors.

Proofs and Illustrations.
This fits in very well with the geometric link between inner product and cosine in the figure above. There z = (x · y)x
and has length (x · y) if x has length 1; but of course the length of z is also the cosine of the enclosed angle θ.
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3.3. Compatible Observables and Joint Probabilities
In Chapter 4 we noted Arthur Fine's (1982b, 1982c) proof which connected the Bell Inequalities with the existence of
joint probability distributions. Both are characteristic of classical observables, but they reappear in quantum mechanics
as an important special case. Intuitively, we think of observables as compatible if they are jointly measurable (with any
desired precision). Here we shall give the quantum-mechanical characterization, but show how it is connected with
classical features of the probabilities associated by Born's Rule.

Two projection operators I and J are compatible if they commute, that is if IJ = JI. Two observables A and B are
compatible if commutes with for any two Borel sets E and F. When A and B are bounded this just amounts to
AB = BA. This relationship is not transitive; it is possible that A is compatible with B and B with C although A is not
compatible with C. This is true already for projections. In fact:

Theorem: Projection operators I and J, which project on subspaces S and T, are compatible if and only if there are
three mutually orthogonal subspaces S′, S″, T′ such that S is the orthogonal sum of S′ and S″ while T is the
orthogonal sum of S″ and T′.

Note that, when the condition is satisfied, then I is the sum of the projections on S and on S′, while J is the sum of the
projections on S′ and T′; those three projections are also mutually orthogonal, in that applying one of them after another
will turn a given vector into the null vector.6

More generally, if we have a family F of projections which all commute with each other, then there is also a family G of
mutually orthogonal projections such that each member of F is a sum of members of G. The following theorem is due
to von Neumann and Varadarajan:

Theorem: A, B, . . . are mutually compatible observables if and only if there is a single observable C such that
A, B, . . . are all Borel functions of C.

A Borel function f is an operation on real numbers such that, if E is a Borel set, so is f−1(E) = {x:f(x) is in E}. Given
that f

BASIC THEORY OF QUANTUM MECHANICS 153



is a Borel function, and is an observable with pure point spectrum, is again an observable with
the spectrum {f(ci)}. (For other observables a similar definition can be given via the spectral decomposition.) This has
the following consequence for probabilities:

Theorem: For any state x, if .

That is, the probability that a measurement ofA = f(C) will have as outcome a value r such that f(r) is in E is exactly the
probability that a measurement of C will have as outcome a value in E. The Born probabilities for measurement of A
= f(C) can therefore be calculated from those for C.

The converse of this statement holds also, rightly construed. To show this, we need to become more precise about the
description of joint probability functions for several observables. Here I shall follow Fine (1982c), and Cassinelli and
Lahti (1989b).

If p and q are probability measures defined on R, the function pq(E × F) = p(E)q(F), for Borel sets E and F, can be
uniquely extended to a probability measure on R2. The measure pq has p and q as first and second marginals; that is,
p(E) = pq(E × R) and q(F) = pq(R × F). If q is concentrated on a countable set S, that means also that
p(E) = Σ {pq (E × {k}) : k ∈ S}. The construction can again be extended similarly to any finite sequence of probability
measures. Moreover, p and q are marginals of many probability measures r on R2 besides the product measure pq; any
such measure r is called a joint distribution of p and q. In the case of compatible observables A and B, we can define a
joint distribution for their associated Born probability assignments: begin with

and extend this to a measure on R2. In that case is obviously a marginal of the defined measure. Similarly for any
finite sequence of compatible observables. In fact, something stronger can be said in this case, because we can also
define observables which are functions of several commuting observables. Given two commuting operators

and a Borel function of R2 into R, there exists an
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observable . Clearly, A and B are also Borel functions of C: the probability that a measurement of C
yields a value in E is the same as the probability that a measurement of A yields a number r such that, for some s, the
couple 〈 r, s〉 is in f−1(E). This construction is easily generalized to any finite number of mutually compatible
observables, because the projections on their eigenspaces will all commute. If we now take specifically the Borel
function f such that, for a given pair E and F,

then E × R = f−1({1,3}) and R × F = f−1({2,3}). So we argue that if C = f(A,B) then

(a) the probability that a measurement of C has value 1 or 3 equals the probability that a measurement of A has a
value in E;

(b) the observable is the same as the observable ;
(c) is a joint distribution for .

Could all this be done for incompatible observables as well? To answer this we must first define the requisite
counterpart notion for arbitrary quantum-mechanical observables. Then there is a theorem which shows that the
answer is no.

Definition: Observables A1, . . . , An meet the joint distribution condition (briefly, (JD)) if and only if: for every state x
there is a probability measure px on Rn such that, for any Borel function f of Rn into R, there exists some observable
M(f) such that

is the ith marginal of px

for all Borel sets E and any state x.
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Joint Distribution Theorem (Fine): A finite family of observables meets (JD) if and only if they are all mutually
compatible.

I will give a small but crucial part of the proof, to show how this works. Let A and B be two observables with pure
point spectra {ai} and {bj}, and suppose they meet (JD), and let x be a state. Let px represent their joint distribution on
R2, so that, for any Borel function f,

(1) for any Borel sets E and F,

It will be sufficient to show that, for any Borel sets E and F, the projection operators commute. Let f be the
Borel function that was defined above. Then we use (1) to conclude that there is some observable, call it C, which plays
the role of M(f) in (1) for this function. Since E × R = f−1({1,3}) and R × F = f−1({2,3}), we argue:

(2)

But these are also the marginals of px, hence equal the numbers (x · Ix) and (x · Jx). Since all this holds for any state x,
we conclude that . Therefore I and J commute with each other. We conclude, since this was shown for
arbitrary E and F, that A and B are compatible.

In the Proofs and illustrations for this subsection and the next I shall describe some further relevant results.

Proofs and Illustrations.
We can also define partial compatibility (partial commutativity), which can be utilized in discussion of ‘crude’
measurements. Let com . This is a closed subspace; if it is H itself, then A and B are
(totally) compatible, and if it is the null space they are totally incompatible. The theorem, due to von Neumann and
Varadarajan, was generalized and connected with joint probability distributions by Gudder (1968b), Pullmanova
(1980), and Ylinen (1985); see also Lahti and Ylinen (1987), Schroeck (1989), and Cassinelli and Lahti (1989b). Let
be the projection on the intersection of the subspaces on which project; this acts like exactly when those two
commute.
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Theorem: The function extends to a (unique) probability measure on R2 if and only if x is in com (A,B).

The more general form of this theorem for mixed states will be given in the Proofs and illustrations of the next
subsection.

4. Mixed States and Operators7

We have so far only a representation for pure states. In the abstract notation we used to begin, if t and u are states, then
there should, for example, be a state s such that

for all observables m. This state s is a mixture of t and u. But what represents it with respect to the Hilbert space? We
should like ideally to have a uniform representation of both pure and mixed states, and this suggests that vectors have
outlived some of their usefulness.

To arrive at such a uniform representation, we must do two things: explore projection operators somewhat more, and
introduce a special function called the trace.

To apply the lessons of the preceding section, let us compare the pure state represented by unit vector x and the
observable represented by projection Ix. The latter has only two possible values, 0 and 1. If measured in state x, we are
certain to have outcome values 1, and if measured in a state y orthogonal to x, we are certain to find outcome 0. But
we can go further: the probability of finding value b, if we measure arbitrary observable m in state x, could be
expressed in terms of observable Ix. For obviously there is a one-to-one correspondence between the vector-rays and
these one-dimensional projection operators. All we need to do is enter this correspondence into the rule for calculating
probabilities.

There is a neat way to do exactly that, using the trace calculation; I shall describe it intuitively before giving the precise
definition. The trace Tr is a linear map of operators into numbers, which is order-independent for products; i.e., Tr(AB)
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= Tr(BA). This mapping is such that, if I′ is any projection operator, then

But that means of course that the probability calculation we found at the end of the last section can be rewritten as

Let us see now how we can extend this new representation of pure states, by means of operators, to one of mixed
states as well.

Focus on the mixed states s described above, and suppose its component states t and u to be represented by
orthogonal projections Ix and Iy respectively. Then for an observable represented by projection operator I′, we must
have:

by the linearity of the trace function. So if we now define the new operator W to be (0.25Ix + 0.75Iy), the above
probability takes the form

which is the same general form as before. So operator W looks like a good candidate for the representation of that
mixed state. It is also intuitively just right, because it is formed from the representations of the component pure states
by the same linear combination as the probabilities themselves.

The linearity and order independence of the trace allows also a convenient calculation of expectation values. For
suppose M = Σ aiIi. Then the expectation value of M in state x equals
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so we have exactly the same format for the calculation of expectation values as of probabilities. This is easily seen to
work the same way if we turn to mixed state s and insert its representationW: the expectation value is then Tr(WM).

It is clearly time now for official definitions. The above operator W is called a statistical operator or density matrix. We
define:

(1) An operator A is of trace-class if the number Σ (xi · Axi) exists and is the same for every basis {xi}.
(2) If A is of trace-class, then Tr(A) = Σ (xi · Axi), where {xi} is a basis.8
(3) A statistical operator (or density matrix) is a Hermitean operator W with discrete spectral decomposition

W = Σ piIx(i) where {xi} is a set of vectors and {pi} a set of positive real numbers that sum to 1.

Result: The statistical operators are exactly the positive Hermitean operators of trace-class, with trace 1.

A mixture can be made up out of any states you like.9 Because of the linearity of the trace operation, weighted sums of
statistical operators, even if not mutually orthogonal, yield corresponding mixtures of probability measures. For example,
suppose x and y are any vectors whatsoever, not necessarily orthogonal, andW = bIx + (1 − b)Iy for 0 < b < 1. Then if
B is a base, and :
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and notice that , and similarly for . Therefore the Born probability function
for outcomes of measurements of M for state W is just the classical b/(1 − b) mixture of the two corresponding
probability measures for state x and state y.

We turn now to the relations in general between pure states and mixtures. Just as all probability used to be thought of
as merely measuring ignorance (‘it is one of these, but I don't know which’), so mixtures have been thought of as just
representing ignorance of the system's real state which is pure. There is much to be said against this ignorance
interpretation of mixtures, but I shall take it up in the next chapter. Undoubtedly it has on its side the fact that calculations
with mixed states can typically be done in terms of the pure ones of which they are mixtures. In contexts of calculation,
especially important are the orthogonal decompositions:

IfW is a statistical operator, {yi} is a basis and {wi} is a sequence of non-negative real numbers such that Σ wi = 1,
then the equation

is an orthogonal decomposition of W.

The numbers wi, called weights, need not all be distinct; if they are not, this decomposition is not unique. These weights
are obviously the eigenvalues ofW. When some are equal, we call that also a case of degeneracy. When the states yi are not
all mutually orthogonal, the equation is a non-orthogonal decomposition.

From the point of view of interpretation, as opposed to ease of calculation, the orthogonal decompositions may or
may not be especially important. Let us consider three other relations:
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(4) x is a component of W exactly if x occurs non-trivially in a decomposition of W; i.e. if

for some 0 < b ≤ 1 and statistical operator W′.
(5) x is in the support ofW exactly if x is in the subspace spanned by the eigenvectors ofW with non-zero weights.
(6) x is possible relative to W exactly if for all observables M and Borel sets E, .

The notion of relative possibility we saw already in more general form above. To begin the discussion of these three
relationships, let us note that the last two coincide. For I[S] takes value 1 with probability 1 in stateW which has support
S, so to be possible relative toW a pure state must lie in [S]. But if x is in [S] and T is any other subspace, then IT takes
value 1 with probability 1 in x if [S] ⊆ T, hence if T takes value 1 in W with probability 1. Since for some
subspace T, the conclusion follows:

(8) Pure state x is possible relative to W if and only if x is in the support (image space) of W.

The relationship between a mixture and its components is rather more complicated, as will at once be clear from the
following theorem:10

(7) Theorem (Hadjisavvas): x is a component ofW if and only if x is in the range ofW1/2 (which is also the range of
W in the finite-dimensional case).

To elucidate this, we shall first take a closer look at the support of W. Let W = Σ {pxIx : x ∈ S} with all values px

positive, Σ px = 1, and the set S orthonormal. The subspace [S] is then the support ofW. Let S ∪ T = {yi} with S and T
disjoint be an orthonormal basis, so we can always write z = Σ ciyi for any vector z. If y ∈ T, thenWy = Σ {pxIxy : x ∈ S},
which is the null vector because x ⊥ y when x is in S and y in T. For the same reason I[S]y = Ø. So the space is divided
into the two subspaces [S] and [T] = [S]⊥. The operatorW maps x either into [S] or into {Ø}, so [S] contains the range
of W, all the ‘images’ of vectors under the mapping x → Wx. Accordingly we also call [S] and [T] the image space and
null space of W respectively.
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It is possible that [S] is the whole space, so that [T] is {Ø}. Is [S] in general identical with the range ofW? The answer
is yes in the case of a finite-dimensional Hilbert space. For let y = Σ {cxx : x ∈ S} in [S], and let z = Σ {dxx : x ∈ S}.
ThenWz = Σ {dxpxx : x ∈ S}, and this is y provided cx = dxpx for all x. Therefore we simply choose dx = cx/px to show
that this vector y in [S] is itself in the range, i.e. is the image of z produced by applying W.

However, if the set S is not finite, then sum Σ {(cx/px)x : x ∈ S} may not exist, because the set of finite partial sums of
which that is defined as the limit may not converge. It is easy to see how that could happen if the sequence {px} itself
converges to 0. Therefore it is not true in general that the range of W is the whole image space.

Now we can return again to the somewhat less tractable relation of being a component. In classical probability theory, any
mixture (convex combination) of probability measures is again a probability measure. This is also true, mutatis mutandis,
for mixed states in quantum mechanics. But consider now the ‘converse’ question: is there an observable Q such that

(9) If P, P′ are probability measures, then P = bP′ + (1 − b)Q, for 1 > b > 0 and some probability measure Q, only
if

(a) P(A) = 1 implies P′(A) = 1;
(b) bP′(A) ≤ P(A) for all A in the domain?

Define Q = (P − bP′)/(1 − b). This is easily seen to be additive, and to assign 1,0 wherever P assigns 1,0. But it is not
allowed to assign negative numbers, and it is guaranteed that it will not do so exactly if P − bP′ is nowhere negative, as
(b) requires.

The similar conditions required for the component relation in quantum mechanics show at once that not every vector
in the image space is in general a component. For in (4) we must have W′ = (W − bIx)/(1 − b) giving non-negative
probabilities by Born's Rule. With Wy = pyy, this means that

must be non-negative. Hence the ‘transition probability’ between x and y (squared cosine of the angle) must be no
greater
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than py/b. Can we find such a number b for given x andW? We need b ≤ py/Tr(IxIy), but this series may be divergent if
the decomposition is infinite. In that case there is no such number b. We conclude:

(10) In general, not all pure states possible relative to W (vectors in the image space of W) are
components of W.

Summary of Third Form of Representation
1. Each observable is represented by a Hermitean operator. Every state, pure or mixed, is represented by a

Hermitean operator with trace 1; such an operator is called a statistical operator or density matrix. A statistical
operator is a projection operator only if it projects on a one-dimensional subspace; if so, it represents a pure
state.

2. If M represents an observable and W a state, then the expectation value of an outcome of an M-measurement
in state W equals Tr(WM). The probability that the outcome value is in the set D equals .

Proofs and Illustrations.
The earlier calculation of probabilities and expectation values remains the most convenient for pure states. It is quite
easy to see that they agree with the trace calculation. Given unit state vector x = Σ ciyi, the expectation of B in x is

if the vectors yi are unit eigenvectors of B with Byi = biyi. By the trace calculation, it looks like this:
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which is of course the same. (It is important in both calculations that x is a unit vector. Otherwise Ixy equals
[(x · y)/(x · x)]y instead.) If we know the decomposition of a given mixed state asW = Σ piIx(i), then we can use the old
calculation instead; no need to use the idea of trace.

A second point that helps to move conceptually back and forth between the two sorts of state representations
concerns what happens in projection. Suppose z = ISx. Then how is Iz related to Ix? To put it another way, what
operation on Ix corresponds intuitively to the projection of x on the subspace S?

To prove this, consider any vector y and note that ISIxISy = ISIx(ISy) = IS(x · ISy)x = (x · ISy)ISx = (x · ISy)z = (ISx · y)
z = (z · y)z = Izy. Hence the two operators ISIxIS and Iz are the same everywhere.

There is also a useful way to describe the relation between a mixture and its components: by means of a matrix, i.e. a
square array of numbers. Suppose first that {xi} is a base of unit vectors and W = Σ piIx(i). An operator is equally well
described if we give its effect on every vector and for W that is clearly by the equation

Suppose now that {zj} is another basis of unit vectors, and for each i, xi = ∑jaijzj. Then

If we let then the square array [wjk] is called the
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matrix which represents W relative to basis {zj}. If we look back now we see that in this terminology the matrix
[qjk = pjδjk], where δjk equals 1 if j = k and 0 otherwise, representsW relative to the original basis {xi}. This matrix [qjk] is
such that only its diagonal elements qjj (= the probabilities pj) are non-zero, and is therefore called a diagonal matrix. We
say then also thatW is diagonal in basis {xi}. ThusW has an orthogonal decomposition in a certain basis if and only if it
is diagonal in that basis, which means that it is represented by a diagonal matrix relative to that basis.

Finally, we can state the complete theorem discussed in the previous subsection for compatible and partially
compatible observables. (See Cassinelli and Lahti 1989b, Schroeck 1989, and the other references cited above.) The
notation denotes again the projection on the subspace which is the intersection of the subspaces on which
project. As stated before, if and only if commute. To illuminate the theorem due to Fine, described in the
preceding subsection, we reflect as follows. Suppose now that G is a finite family of observables, and

. Now the members of G all commute with each other if and only if all the members of G*
commute with each other. This is the case, by the above theorem, if and only if all the functions can be
extended to probability functions on R2 for all components of all states W—hence for all pure states W. By Fine's
theorem we see now that this is in turn equivalent to the existence of observables defined via Borel functions from the
family G, which are statistically related to this family in the appropriate way.

5.Gleason's Theorem and Its Implications
We now have a uniform representation of observables as Hermitean operators, and of states as Hermitean operators
with trace 1. There is an overlap in representations: one and the same operator can represent both a state and an
observable. This is perhaps a little curious but need not worry us much; for clearly, the state represented byW is just a
state s such that the following holds:
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Any state t is possible relative to s if and only if the observable represented by W has expectation value 1 in t.

The relationship of relative possibility was introduced in Section 1: that t is possible relative to s means that assigns
probability 1 whenever does, for all observables m.

It is possible to ask a certain kind of completeness question for this representation. A state determines the probabilities
of measurement outcomes. These are conditional probabilities: probabilities that measurement of m yields a value in D,
given that m be measured. Suppose we are given an arbitrary but consistent description of such probabilities, and call it
a ‘putative state’. Does our representation of states have room for every such putative state?

Gleason's famous theorem answers this question affirmatively—relative to one precise way of taking the question. For
to make the question definite, we must know what counts as a consistent description of such conditional probabilities.
The way this is specified—as assumption of the theorem—is that all observables can be defined in terms of those
represented by Hermitean operators, and that every Hermitean operator represents an observable. (In a later section
we shall come up against the limits of this assumption.) The way in which operators represent observables is also taken
for granted to some extent. The theorem is then that the possible probability assignments (those which respect these
stipulations about the representation of observables) are exactly those determined by the density matrices in the usual
way.

There are also two important corollaries which I shall take up. The first shows the impossibility of recasting quantum
theory in classical mould, in a certain way. The second shows how states can be ‘conditionalized’ in a way that parallels
the usual conditionalization of single probability functions. Both of these corollaries play an important role with respect
to interpretation of the theory.

5.1. Exposition of Gleason's Theorem
Recall that what a projection operator projects on is a subspace. If y = Σ cixi, we call y a superposition of the states {xi}.
The set
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of all these superpositions (both countably infinite and finite sums) is the span of this set {xi} and is denoted [{xi}].
This span is a subspace, and if the vectors xi are mutually orthogonal unit vectors, they form therefore a basis of this
subspace. Conversely, any subspace has such a basis.11

If S is a subspace, the set of vectors orthogonal to S is called S⊥, the orthocomplement of S. If S and T are subspaces, then
S ∩ T, their meet, is also a subspace. The least subspace containing both S and T is called S ⊕ T, their join or sum or
orthogonal union. This is not the set-theoretic union of S and T, but the set of all sums of vectors x + y such that x ∈ S
and y ∈ T.

The calculus of subspaces with these operations, and with ⊆ as relation, is a familiar mathematical structure: it is a
lattice. That means that ∩ and ⊕, when considered each of itself, act just like and and or in logic, or ∧ and [in Boolean
algebra or set theory. Their countably infinite analogues ∩iSi, and ⊕iSi, taken by themselves, also exist and behave as
usual. But the operations do not interact with each other in a Boolean way (see e.g. Beltrametti and Cassinelli 1981
a; Kalmbach 1984). For example, the familiar distribution law,

does not hold for ∩ and ⊕. The orthocomplement again has some familiar features:

whereØ is the null space containing only the zero vector and H is the entire Hilbert space. It also obeys the usual rules
of interaction with ∩ and , called DeMorgan's Laws:

But, owing to the failure of distributivity, we do not have an analogue in ∩, ⊕ to such Boolean equations as
S = (S ∩ T) ∪ (S ∩ T).

All the usual Boolean equations do hold when the subspaces
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S, T, R are mutually compatible. Two subspaces S and T are called compatible if S ⊕ T has a basis B, and if certain parts
B1 and B2 of B are bases of S and T respectively. Let us illustrate this with a three-dimensional case. Suppose {x1, x2, x3}
is a basis for S and so is {x1, y2, y3}, but y2,y3 are not orthogonal to x2,x3. (For example, y2 and y3 are in [x2, x3] but are
formed from x2 and x3 by rotating both of them through some angle.) Then

[x1] is compatible with [x1, x2] and also compatible with [x1,y2], but [x1,x2] and [x1,y2] are not compatible with each
other.

So compatibility, though obviously reflexive and symmetric, is not transitive. It is not an equivalence relation but an
‘overlap’ relation.

I have discussed this calculus of subspaces because we can think of the measurement outcome probabilities as
numbers assigned to subspaces. Recall that the probability that a measurement of m has as outcome a value in set D,
given state x, equals

But is just the projection operator which projects on the subspace spanned by those eigenvectors of M, whose
corresponding eigenvalues lie in D. Thus in our previous example, if D = {a1,a2}, where m has possible values {ai} and
associated basis {xi}, we have the following: exactly if i = 1,2. Hence if y ∈ [x1,x2], then y = cx1 + dx2 and

. So let us introduce the function Px as follows: Px maps the subspaces S into [0,1] by the rule

where IS is of course the projector on S. This function Px carries the same information as the whole family of functions
—and indeed, no extra information, if every Hermitean operator (hence every projector operator)

represents some observable. But while each function is a classical probability function, it is clear that Px is not.
Instead Px is a pasting together of probability functions, a condensed
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summary of them, and so it is a different kind of mathematical object. For example, a probability function is defined
on a field of sets, which is a Boolean algebra; but the domain of Px is the non-Boolean lattice of subspaces. Yet it has
some familiar properties, and we use these to define its kind.

Definition: A (quantum) probability measure on a sigma-complete orthocomplemented lattice is a map P of L into [0,1],
such that:

(a) P(Ø) = 0
(b) P(H) = 1
(c) P is countably additive: for every countable sequence {Si} of mutually orthogonal elements in L, the series

converges and P(⊕iSi) = ∑iP(Si)

Here Ø and H are the zero element and maximal element of the lattice; that it is sigma-complete means that the
countably infinite meets ∩i and joins ⊕i also exist. We call S and T orthogonal exactly if S ⊆ T⊥, or (equivalently, given
the properties of the orthocomplement) exactly if T ⊆ S⊥. The notion of measure has here been generalized in
reasonable fashion, since it is a non-negatively real-valued, normalized, and countably additive function.

It is an immediate corollary that the class of probability measures on L is closed under mixtures (countable convex
combinations). That is,

If 0 < wi ≤ 1 and Σ wi = 1 and {Pi} is a countable set of probability measures on L, then the mixture Σ wiPi is also a
probability measure on L.

In preceding sections we represented pure states by the vectors x in a Hilbert space, each with its associated probability
measure Px on the lattice of subspaces. We have also seen how to make up mixtures. For this we used density matrices
W and we had the probability measure on the range of observable m, defined by

Here too we can use our method of pasting together all the probability functions into the function
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defined on the lattice of subspaces. These measures will typically be mixtures (but pure if W = Ix for some vector x).

However, it is as yet an open question at this point in the exposition whether the above construction of probability
measures really exhausts all the ones that exist, mathematically speaking. This question is answered by:

Theorem (Gleason): If the dimension of separable Hilbert space H is ≥ 3, then, for every probability measure P on
the lattice of subspaces of H, there is a unique density matrix W defined on H such that P derives from W; that is,
P(S) = Tr(WIS) for all subspaces S.

The proof, given by Gleason in 1957, is long and non-trivial; it was only recently simplified by Cooke et al. (1985).12

Gleason's remarkable theorem shows us that we have, in the quantum-mechanical representation of empirical ‘surface’
probabilities, one of those gratifying cases in which the intuitive constructions genuinely exhaust all the mathematical
possibilities.

5.2. First Corollary: No Hidden Variables
One corollary to Gleason's theorem is Kochen and Specker's famous result (1967) that quantum theory does not
admit of a certain sort of hidden variable interpretation (see also Fine and Teller 1978). (It should be added, however,
that Kochen and Specker's proof gives a good deal more information.) The assumptions which define this sort look
very weak, and are roughly as follows: (a) each observable has a sharp value which belongs to the spectrum of its
representing operator; (b) two observables which have the same expectation value in every quantum-mechanical state
are identical; (c) compatible observables are functionally related in the same way as their representing operators. (For
further discussion, see Chapter 10 below.) Note that the second assumption implies that distinct observables cannot be
represented by the same operator.

Suppose now that function v assigns to each observable a sharp value in its spectrum. By that implication of (b), this
indirectly assigns the same value to each Hermitean operator which represents an observable. Let us assume this to
include at
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least all projection operators; each then receives value 1 or 0. By assumption (c), it follows that no two orthogonal
projections will each receive value 1. But, of any maximal set of mutually orthogonal projections, at least one will
receive value 1, since the identity must receive 1 by (a) and is the sum of that set. Clearly, assignment υ has indirectly
yielded a quantum probability measure on the lattice of subspaces (since these correspond one to one to the
projections in the right way). If we now finally add the supposition that the Hilbert space of pure states has dimension
at least 3, then Gleason's theorem tells us that this measure derives from a statistical operator. Which statistical
operator could this be? Let B be a basis, and let us extend υ still further and say that it (indirectly again) assigns to
vector x the same value that it assigns to [x]. Now clearly, υ assigns 1 to one and only one member x of B, so that
statistical operator must be Ix. But in that case υ cannot assign either 1 or 0 to the observable Iy for any vector y which
is neither parallel nor orthogonal to x. This contradicts the given.

This impossibility result is of prime significance for the interpretation of the theory.

5.3. Second Corollary: Conditional Probabilities and Lueders's Rule13

Gleason's theorem has a very important second corollary, but it is fraught with interpretative difficulties. As a
preliminary, I shall remind us of the subject of conditional probability as it already appears in a classical context. Then I
shall raise the question: what is the exact formal analogy to this for quantum-mechanical states? The question has
appeared in the literature almost solely in the guise of heavily interpretation-laden discussion of measurement (see e.g.
Herbut 1969, Bub 1977). But it can be separated out and answered by itself.

Conditional probability has often been presented in terms of learning, in the sense of coming to know. The familiar
formula goes something like this: if someone assigns probabilities to events X by means of function P, then P(X|A) is
the probability he assigned (would assign) if he learns14 (were to learn) solely that A is the case. There are quite a
number of things wrong with this formula, if taken as definition.
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In the first place, it could at best define personal or subjective probability. If there is also physical probability, we need
an account that covers that as well. Secondly, the formula is not applicable if A could never be one's sole, total new
information, so the ‘definition’ would at best be partial. Thirdly, there are cases in which it is definitely false.
(The second and third point have often been discussed in the literature on personal or subjective probability.) Worst of
all, the above formulation, in terms of learning, and the equation P(X|A) = P(X & A)/P(A) have no logical
connection with each other at all.

The equation (which holds provided P(A) ≠ 0) does follow at once from the following account: P(−|A) is the
probability function P′ which assigns 1 to A and agrees with P on the odds between events that imply A. Odds are
probability ratios, so that means that P′(X & A)/P′(Y & A) always equals P(X & A)/P(Y & A), and this, plus the
condition P′(A) = 1, yields the above equation at once.

A quantum-mechanical state is, as it were, a bundle of probability functions. Can such a state—the whole bundle, so to
say—also be conditionalized in analogous fashion? We can approach this question now in the terms set by Gleason. It
becomes then:

(Q1) For a given stateW and subspace S, is there a stateW′ which gives (by the Born Rule) probability
1 to the observable IS and agrees with W on the odds between observables IT, IU for T, U ⊆ S?

Before turning to the answer, let us remark that we are dealing here with the explication in quantum mechanics of the
conditional or transition probability T(A = 1|B = 1) discussed in general terms in the preceding chapter. The connection
is this: if the state of the system isW, the 1-eigenspace of B is S and the 1-eigenspace of A is T, then T(A = 1|B = 1) is
the number

whereW′ is the (unique) state related toW as described in (Q1). In view of this, it is quite easy to see what the answer
to (Q1) would have to be if we restricted the discussion to pure states (see Proofs and illustrations).

It is possible to answer question (Q1) directly (see Beltrametti
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and Cassinelli 1981a). But it is also instructive to note that Gleason's theorem has an immediate corollary to answer
question (Q1). For W induces a probability measure on the lattice of subspaces of the whole space. If we restrict that
function to the subspaces of the subspace S, we shall have a new probability measure, on that lattice, provided we
amend it by renormalizing. The latter means that, for T ⊆ S, we have the new assignment of probability

to T. This makes sure that S receives 1, and obviously the probability ratios for T, U ⊆ S are preserved. Now Gleason's
theorem steps in and says: there is a density matrixW′ corresponding to this new probability measure, and it is unique if
the dimension of S is ≥ 3.

The above discussion already tells us whatW′ is, restricted to subspaces of S. Only a little work is needed to see what it
is on the whole Hilbert space in question. For clearly, we must have Tr(W′ IV) = 0 for all V ⊆ S⊥, and with this
additional information the following result can be obtained (see Proofs and illustrations):

Theorem: If P is a probability measure on the lattice of subspaces of H, there exists a probability measure P′ on the
same lattice such that P′(T) = P(T)/P(S) for all subspaces T ⊆ S of H. Moreover, if P derives from the density
matrix W, then P′ derives from density matrix W′ = ISWIS/Tr (ISWIS), and from no other density matrices if S has
dimension greater than 2.

This means that we can write unambiguously PW(T|S) = P ′W(T) = Tr(ISWISIT)/Tr(WIS) because
Tr(ISWIS) = Tr(WISIS) = Tr(WIS).

In caseW is pure, there is a unit vector x such thatW = Ix. In that case we have, by the lemma in Section 4 (Proofs and
illustrations), that ISIxIS = Iz where z = ISx. The conditionalization of this pure state on S is therefore represented by the
vector ISx, the projection of x on S. We note in passing that the divisor Tr(ISIxIS) = Tr(Iz) = |z|2 needs to be inserted
because z = ISx is in general not a unit vector.

It may be objected that, while the abstract first part of the
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theorem takes a familiar enough form, what follows the ‘Moreover’ shows that this is deceptive. Why can't we just
define P(T|S) = P(T ∩ S)/P(S)? The answer is that this is indeed correct and deducible from the theorem, provided T
and S are compatible subspaces. (In that case IT and IS commute, and IT∩ S = ITIS = ISIT.) But the non-distributivity of the
lattice defeats this idea in the general case. For suppose that T and S are orthogonal, but are not compatible with U, so
(T ⊕ S) ∩ U ≠ (T ∩ U) ⊕ (S ∩ U). Now if we condition on U in the classical way, we can get the numbers

with p ≠ q + r. This is a violation of the additivity condition. Indeed, the example can be so chosen that q = r = 0; for
let us choose three co-planar vectors s, t, u with s ⊥ t. Then ([s] ⊕ [t]) is the plane [s, t] in which all of them lie; thus
([s] ⊕ [t]) ∩ [u] = [u]. But [s] ∩ [u] = Ø = [t] ∩ [u]. And of course P(Ø) = 0, so the classical equation would demand
P([s, t]) = 0 + 0 = 0 for any probability function P at all!

To put it another way: what we demanded of the ‘conditionalized’ stateW′ made very clear how it should behave with
respect to observables that commute with IS. But of course, it will also behave in some way or other towards
non-commuting observables. Gleason's theorem then tells us that we really have no choice in the matter. The new state
has already been fixed uniquely, and all we can do is ask submissively what is implied for all the rest.

What is the significance of conditionalization? We shall see later that in discussions of measurement and the EPR
paradox it has taken on significance. This is certainly in part because of the mathematical relationship brought to the
fore in our discussion so far—but also partly a matter of interpretation. To prepare us more thoroughly for this, we
must take the discussion one step further.

Suppose A is a certain observable with eigenvalues a1, a2, . . . Let Si be the ith eigenspace, that is, the subspace of
vectors x such that Ax = aix. These subspaces are a partition in the sense that they are mutually orthogonal and their
orthogonal union equals the whole space. Now consider a given state W, and let
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pi be the probability that a measurement of A in stateW will yield outcome ai so that pi = Tr(WIS(i)). The question that
was raised in discussions of measurement was:

(Q2)What is the stateW1 = Σ piWi such that, for each index i, the stateWi gives probability 1 to outcome value 1 for
the observable IS(i) and agrees with W on the odds between observables IT, IU for T, U ⊆ Si?

The answer can be seen at once if A has a simple spectrum so that each Si takes the form [xi]. For then we see
immediately that

This is the equation von Neumann gave in connection with his Projection Postulate for the nature of measurement. By
the corollary to Gleason's theorem that we just discussed, we see at once that the general answer (covering also non-
maximal observables) is:

which is Σ IS(i)WIS(i) because pi = Tr(WIS(i)).

This is the corresponding equation behind what is known as Lueders's Rule, which Lueders proposed in 1951 as the
proper generalized form of von Neumann's Projection Postulate.15 I will not discuss here what significance von
Neumann and Lueders attached to this—later we shall look carefully at the interpretation of quantum mechanics
which connects all this with measurement. We may note however that, for classical probability theory, such ‘multiple’
conditioning (on a partition) is known as Jeffrey Conditionalization (see van Fraassen 1989, ch. 13).

Proofs and Illustrations16

Here I shall first discuss the answer to (Q2) if it is restricted to pure states, an instructive special case; then I shall
discuss a different approach to the question in its general form. As pointed out, we can understand (Q2) as being
about transition probabilities. So let us ask: given pure state x and subspace S, can we find a pure state x′ such that
ISx′ = x′ and
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(x′ · y) = (x · y) for all y in S? Since x can be written uniquely as x = x1 + x2 with x2 in S and x1 in S⊥, it follows that
(x · y) = (x2 · y) if y is in S. Therefore the answer is x′ = x2, i.e. the projection of x on S.

Question (Q2) was answered by appeal to the answer found to (Q1), and that in turn was a corollary to Gleason's
theorem. But (Q2) can also be approached in other ways, which throw additional light on this notion of one state as
the conditionalization of another state on some subspace. I shall briefly outline the results obtained by Herbut (1969),17
but without the gloss in terms of measurement in which they were originally couched. I shall first state the main
theorem, and then explain it.

Theorem: Let H be a separable Hilbert space, x an element of H, and S a subspace of H. The following three
conditions are equivalent:
1. y is the unique element of S closest to x;
2. y is the unique element of S whose inner product (y · z) equals (x · z), for all elements z of S;
3. y is the projection of x into S.

The word ‘closest’ in condition 1 refers to the metric defined in terms of the inner product, so 1 means

1′. y is the unique element of S such that |x − y| ≤ |x − z| for all z in S.

The projection of a vector x into a subspace S is the unique element x′ such that x = x′ + x″, with x′ in S and x″ in S⊥.

Although clause 2 obviously connects with questions about probability, the relevance of this theorem to the general
question (Q2) is not immediately obvious. But the statistical operators on a Hilbert space are also elements of a certain
other Hilbert space, to which this theorem can be applied. Herbut calls this the operator Hilbert space; let us designate it
Ho:

Ho: The elements of Ho are the operators A on H with finite absolute norm; i.e., using * for adjoint, Tr(A*A) is
finite. The scalar product (B · C) in Ho equals Tr(B*C). The linear combination aB + bC is defined as usual for
operators.

Returning now to question (Q1), and noting the connection
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between inner product and probability, we can see that one answer to it will be formulable in terms of clause 2 in the
above theorem, applied however to statistical operators (now treated as vectors in the operator Hilbert space). The
noted equivalence of 1 and 2 leads then very quickly to the description of the new statistical operator, which is the
same as in the answer we gave as corollary to Gleason's theorem.

There is a good deal of other useful information in Herbut's proof, and particularly in the Appendix, which
investigates the relations between statistical operators and observables in general. I note some of it here. Let observable
A = Σ anIn where In is the projection on its nth eigenspace. Then the probability(1)

because and Tr(AB) = Tr(BA). Hence this probability equals 1 ifW = InWIn. But moreover, the converse follows
as well by a lemma due to Lueders, so we have(2)

Next it is shown that the following three are equivalent:(3)

and these equivalences quickly lead from (2) to(4)

So we see that the case of probability 1 can be expressed for all eigenstates (mixtures as well as pure states) in the same
form.

6. Symmetries and Motion: Schroedinger's Equation
At the still point . . . there the dance is,
But neither arrest nor movement. And do not call it fixity
. . . Except for the point, the still point,
There would be no dance, and there is only the dance.

T. S. Eliot, Four Quartets

We turn now to the dynamics of quantum-mechanical systems, and focus on the case of an isolated, conservative
system. Here
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the temporal evolution has nothing to do with the absolute value of time, but only with the duration of the process.
Given that the world is indeterministic, the outcome of any measurement is to some extent a matter of pure chance.
But this does not rule out that this chance, the probability for measurement outcomes, itself evolves deterministically.
Of course, if the measurement is actually made, that is an interference, and the system is no longer isolated. So we just
ask here: how do the probabilities of measurement outcomes evolve, for as long as we do not measure, but leave the
system isolated?

The idea that this evolution could be deterministic and a function of elapsed time only means that it is governed by a
dynamic group (see Chapter 2, Section 3). The results of Part I, which were very general, will be recognizable here in
new guise. Specifically, the very nice ‘law of motion’ which we found for classical probabilities (Chapter 3, Section 6),
evolving in this way (p → etkp), will find here an analogue in Schroedinger's equation.

A symmetry of Hilbert space is a transformation which leaves all its structure the same. If U is such a transformation,
and x, y are vectors, we must therefore have:

for any scalar k. (As corollary, of course, it follows that if k = |x| then k = |Ux|; i.e., U does not change the length of
a vector.) Obviously, given these properties, U is a linear operator, and we define a unitary operator to be any one-to-one
linear operator that preserves inner product (or, equivalently as it turns out, that preserves length). This is in fact
equivalent to:

A unitary operator is a bounded linear operator, whose effect on an orthonormal basis is to produce another
orthonormal basis for the space.

The eigenvalues of such an operator U must all have absolute value 1. For if Ux = ux then (x · x) = (Ux · Ux) = (ux ·
ux) = u*u(x · x), so u*u = 1.
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Now that means that u is a complex number of form (a + bi) such that a2 + b2 = 1. This in turn allows us to find an
angle 0 ≤ θ ≤ 2π such that a = cos θ and b = (sin θ), so u = cos θ + i sin θ. And, surprisingly enough, that is equal to
the exponential eiθ. This is why unitary operators can be described somewhat metaphorically as imaginary rotations. We
note in passing that only one of these eigenvalues can be a real number, namely 1, which labels the fixed points of U.

Turning now to evolution over time, we must stick robustly to the probabilities of measurement outcomes which are
empirically attestable. To measure the observable Ix is to perform a test which has outcome 1 with certainty if
performed on a system in state x, and outcome 0 with certainty if the state is orthogonal to x (and finally, outcome 1
with probability (x · y)2 if performed on some state y). Recall that for any pure state y the probability (y · Ixy) = (x · y)2 is
often called the transition probability between states x and y. (See Chapter 5 for a warning about the confusing
connotations.)

Now suppose that the state x = x(0) evolves over time into states x(t) = Ttx for a certain dynamic group {Tt:t ∈ R}. We
can prove quite simply that all the evolution operators Tt must be unitary. For consider: the probability of finding value
1 if we perform measurement Iy(0) on this system at time t = 0 should be just the same as that of getting value 1 if at
time t we measure Iy(t) on it. So we must have

Therefore if T is the operator Tt we have (x · y)2 = (Tx · Ty)2. This is true if T is unitary, but it is also true if T is anti-
unitary, namely if Tcx = c*Tx for any state x and complex number c, but otherwise like a unitary operator—in which
case (Tx · Ty) = (x · y)*. For after all, (x · y)2 = ((x · y)*)2, so the two cases cannot be distinguished.18 The point is of
course that distinct vectors can give us the same surface probabilities, because these probabilities are squares of their
coefficients.

However, these evolution operators form a one-parameter group, so that Tt+t′ = TtTt′. Thus we also have T2t = TtTt. If T
is unitary, so is T2. But in addition, if T is anti-unitary, then we have (T2x · T2y) = (Tx · Ty)* = (x · y)** = (x · y). So T2t is
unitary no matter what Tt is. This reasoning holds for all values
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of t; hence Tt is unitary for all t. Therefore the dynamic group is a group of unitary operators. Assuming continuity of
evolution, such a group can be described by means of another famous theorem.19

Theorem (M. K. Stone): If {Ut} is a one-parameter group of unitary operators and (x · Uty) is a continuous function
of t for all vectors x,y, then there exists a Hermitean operator H such that

and any bounded operator commutes with all the Ut if and only if it commutes with H.

Mathematically, this operator H is the infinitesimal generator of the group. In quantum mechanics it is called the
Hamiltonian of the system, and the equation Ut = e−itH can be written, with x(t) = Utx, in either of the forms(1)

(2)

which are the familiar, equivalent statements of Schroedinger's equation. The observable represented by H is called the
energy of the system.

I have focused so far on pure states. IfW(0) = aIx(0) + bIy(0) is a mixed-state subject to the same process, then it develops
into W(t) = aIx(t) + bIy(t). If x(0) and y(0) are orthogonal unit vectors, then they are here eigenvectors of W(0) with
corresponding eigenvalues a and b. The evolution Ut turns them into eigenvectors of W(t) corresponding to the same
eigenvalues. Let us abbreviate as follows: x = x(0), y = y(0), x′ = x(t), y′ = y(t), and T = Ut. Then
W(0)z = a(x · z)x + b(y · z)y and

Now notice that

which therefore equals W(t) z provided only the inverse T−1 of
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a unitary operator T has the property that (Tx z) = (x · T−1z). And this is indeed true. Therefore we have found, by
illustration, the form this law of motion takes for mixed states:(3)

I assumed here that the evolution preserves the convexity structure of the set of statistical operators:

This means of course that the evolution of a mixed state is derivative from the evolution of pure states, in the way that
the ignorance interpretation would have suggested. Equation (3) was derived with that assumption, plus the previously
derived fact that Ut is unitary (which followed from the assumption that the transition probabilities are preserved).
There is also a theorem, due to Mackey and Kadison, that the assumption that the convexity structure is preserved in
the evolution of statistical operators already entails that the evolution operators are unitary (see Beltrametti and
Cassinelli 1981a, sect. 23.2).

7. Symmetries and Conservation Laws
What exactly can a conservation law be, for a probabilistic theory? In classical science, a conservation law states that a
certain quantity—mass, say, or energy—remains constant in time, in an isolated system. In quantum mechanics the
situation is not quite so simple at first sight. But in a certain respect it is also simpler, because the intimate relation
between conservation and symmetry becomes crystal-clear here.

Recall from the preceding section that there exists a Hermitean operator H, the Hamiltonian, such that

(a) Utx = e−itHx;
(b) any observable commutes with all the operators Ut if and only if it commutes with H.

This H also represents an observable, the energy of the system.20 But what is the significance of that relationship,
commutation with the dynamic group, described in (b) above?
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Our interest in a group of transformations such as {Ut} generally concerns exactly what is invariant under them, what
is conserved. And that is just what (b) tell us:

Theorem: A quantity is conserved (remains invariant over time) exactly if its representing operator commutes with all
the evolution operators.

The main part of proving this is to say what it means. Conservation means here that the probabilities for outcomes of
measurement remain the same in time. Suppose M does commute with all the operators Ut, and let us begin with
eigenstate x such that Mx = mx. Then

hence M(Utx) = mUtx. In other words, the evolution of a vector in an eigenspace of M stays inside that same
eigenspace. Hence if measurement of M is certain to have an outcome in set D at one time, this remains certain at any
later time.

Consider next the superposition y = Σ cixi where Mxi = mixi. In that case Uty = Σ ciUtxi. As we have just seen, the
vectors, Utxi belong to the same eigenspaces as the xi, and occur with the same coefficients ci. Hence all the
measurement outcome probabilities for M are the same in the evolved state as in the initial state.

The theorem says ‘if and only if ’; so supposeM is not conserved. That means that for some y the probability of some
measurement outcome, say mk, is different in y and in Uty. Looking at the above, we see that this must be due to ck
having changed to some other number d, so some of the xi did not stay in their own eigenspace when acted upon by
Ut. But ifMx = mx and MUtx ≠ mUtx, then M and Ut do not commute, as we can see from the second-last paragraph.
Therefore the operator M does commute with all evolution operators if and only if all probabilities of measurement
outcomes for M remain the same throughout time.

We have already implicitly introduced the nice geometric way to describe the same situation. The observable M
corresponds to a partition of the Hilbert space into subspaces H1, H2, . . . , the eigenspaces ofM: Mx = mkx if and only if
x is in subspace Hk. Now the statement that M commutes with the dynamic
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group means exactly that all these eigenspaces are invariant under the action of this group. Evolution of a state cannot
lead out of, or into, such a subspace. The system's state-trajectory in time, if it is ever in such a subspace, remains in it,
and never was out of it. In a terminology which we shall use again, these subspaces reduce each evolution operator.

Obviously H commutes with itself, and so as corollary to (b), and to this little theorem, we have the result that energy
(by definition, the observable represented by H) is conserved over time.21 It is one of those constant ‘essential’
characteristics left invariant by the evolution of state, of a system of the sort studied here. And that means: a system
whose evolution in time is characterized by a dynamic group. And that means in turn: one whose evolution in time has the
time-translation symmetry. So here we have, just falling out as a corollary, the deep connection between this temporal
symmetry and conservation of energy.

An operator which commutes with the dynamic group, and thus partitions the space into time-invariant subspaces, is
sometimes called a selection operator. The statement that this operator commutes with the dynamic group (equivalently,
with H) is then called a selection rule. In the next section we shall take up a more drastic sort of
selection—‘superselection’.

As an illustration which will also help below, we shall look in some detail at another conservation law. This is the law of
conservation of angular momentum, which follows from a spatial rather than a temporal symmetry. The formal
structure is quite similar to what we have seen already. There is a group {Vθ} of unitary operators which represent
physical rotation through angle θ, around a specific axis—say the z-axis of our spatial frame of reference. Then by
Stone's theorem there is a special operator J, such that Vθ = e−iθ J. This operator J, or more perspicuously Jz, represents
angular momentum around the z-axis. Invariance of the state under rotation is thus logically linked with the
conservation of angular momentum. In general we must say: every physical symmetry leads thus to a conservation law.

To make this illustration concrete, we need to look at the unitary representation of the spatial rotation group, and the
associated observable of angular momentum. Suppose that
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the state is specified as a function not of time, but of spatial coordinates. Let r, s, . . . stand for positions in Euclidean
space, and let our states be given as functions x(r), x(s), . . . , y(r), y(s), . . . This is actually how Schroedinger originally
constructed a specific example of Hilbert space, for his wave mechanics.22 Now the symmetries of Euclidean space are
represented among the symmetries of the Hilbert space built upon it. Consider for example the group of rotations Rθ

around the z-axis in Euclidean space, and the functions Vθ defined by

These functionsVθ are a group of unitary operators which represent the group {Rθ}. Obviously we can reason about it
much as we reasoned about the group {Ut}, which in that same sense represents the group of translations of time:

Again therefore Stone's theorem applies, and we can express Vθ in the form

The operator J = Jz is again Hermitean; it is called the angular momentum (around the z-axis), and Stone's theorem tells us
that an observable commutes with Jz if and only if it commutes with all the Vθ.

A physical system may be invariant under rotation, in the sense that the evolution of a rotated state is exactly the same
as the rotation of an evolved state.

Theorem: If a physical system is invariant under rotation (around an axis) then its angular momentum (around this
axis) is conserved.

To see how this follows, note that we are here thinking of the state as a function of both time and space coordinates
x = x(r, t), so that Vθx = x(Rθr, t) and Ubx = x(r, t + b). The invariance explained above means that UbVθ = VθUb for
any b and θ. So we see at once that Ub commutes with all theVθ, and hence with Jz. But then Jz commutes withH and is
conserved, by our previous result.
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8. The Radical Effect of Superselection Rules
The topic we now broach was a relatively recent introduction, but is very important for philosophical discussions. It
will make us look back on the exposition so far, and see that some of it involved real oversimplifications. The selection
operators partition the Hilbert space into subspaces which cannot be entered or left—but the superselection operators
partition it into subspaces between which there can (also) be no genuine superpositions. This is a very drastic effect. As
we shall see, it affects even such very basic ideas as that pure states are uniquely representable by single vectors.

A selection operator was an operator which commutes with the operator H or, equivalently, with all evolution
operators. Its partition of eigenspaces ‘reduces’ the evolution operators in this sense: each such eigenspace is invariant
under temporal evolution. Now, a superselection operator is defined as one which commutes (not just with H, but) with
all observables.23

The first question is: does this definition pick out anything except trivialities? And the answer is: that depends on what
observables there are. If all Hermitean operators on the Hilbert space represent observables, then only the identity
operator, and its constant multiples, are superselection operators. That is trivial. But the famous paper by Wick et al.
(1952) argued cogently that there must be non-trivial superselection operators. In that case, then, not all Hermitean
operators represent observables. This possibility had always been considered in the abstract (though von Neumann
argued against it), and now it had to be taken seriously.

As a special case, think of how we can represent rotation through 360° (say, around the z-axis). As far as ordinary
space is concerned, this leaves everything the same. Now recall how rotation in general was represented in the
preceding section. Rotation through angle θ is represented by unitary operator Vθ. These operators form a one-
parameter group, and by Stone's theorem, Vθ = e−iθ J for all angles θ. Now as a matter of fact, this operator J has only
integers and half-integers as eigenvalues. For the special case of 360° or 2π radians, we have
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So we see that V2π, although it represents the identity operator among rotations, is not itself the identity.

Measurement predictions are not affected by this, in the following sense: probabilities of measurement outcomes are
the same for states x and −x, and hence for x and V2πx. But in superpositions the difference shows up: those
probabilities are not the same for y + x and y − x, and so may not be the same for y + x and y + V2πx. Various
experiments illustrate this fact (see Klein and Opat 1975, 1976).

The complete physical invariance under 360° rotation can be imposed in the form of a superselection rule:

V2π commutes with all observables.

By definition, this statement says that V2π is a superselection operator. We shall not expect this relatively trivial example to
be of earthshaking importance, but let us see what consequences this rule has.

We have just seen that V2π has the two eigenvalues ± 1, so it has two eigenspaces—let us call them S+ and S−—which
partition the Hilbert space. This partition reduces all observables in the sense we encountered before.

For all vectors x and observables A, the vector Ax belongs to S+ (respectively, S−) if and only if x does.

In other words, each of these two eigenspaces is invariant under the action of any Hermitean operator which
represents an observable. (See Proofs and illustrations for the proof.)

The existence of a superselection operator therefore gives us a partition—consisting of the eigenspaces of this
operator—which reduces every observable. These subspaces are also called the coherent subspaces. What exactly does
this do to the states?

There are three interesting consequences. The first is that the principle of superposition is curtailed: what looks
mathematically like a superposition of pure states may actually represent a mixed state. The second is that the
representation of states—by density matrices, as established by Gleason's theorem—is no longer unique. The third,
still more curious, is that even the representation of pure states may not be unique.

For the first consequence, let us consider a superposition of two vectors x and y which belong to different coherent
subspaces—say
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x is in S+ and y in S−, and z = ax + by. All the curious features of quantum mechanics are related to the fact that in
general vector z (or density matrix Iz) represents a new pure state. Certainly Iz is not mathematically the same as

which represents a mixed state. But because x and y belong to distinct coherent subspaces, we shall find that Iz and W
do, in this case, represent the same state; for all probabilities of measurement outcomes are the same in both.

The proof will be found in Proofs and illustrations. Its idea is simple enough. If partition {S+, S−} reduces observable A,
then A really falls apart into two operators, one on each subspace. We might call these A+ and A−. The expectation
value of the outcome of a measurement of A will be the sum of the expectation values of A+ and A−. But only the part
of the state that lies in S+ is relevant to the former, and only its part lying in S− is relevant to the latter.

This is the sense in which no genuine superposition of states represented by vectors lying in distinct coherent
subspaces is possible.

The second consequence, that representation of state is no longer unique, follows at once as a corollary. After all,
density matrices Iz and W are distinct, but (however we choose a and b such that a2 + b2 = 1), Iz and W represent the
same state.

We can always find a ‘canonical’ representation which is unique. A quick look will show that W does and Iz does not
commute with the projections I+ and I− on the coherent subspaces. Given a density matrix W, we can make up a new
one:

which represents the same state as W and does commute with all the projections on coherent subspaces (Beltrametti
and Cassinelli 1981a, sect. 5.4). Indeed, we can choose this as the unique ‘canonical’ representation of state. But there is
one remaining worry: do two vectors that lie in the same coherent subspace sometimes represent the same state?

This brings us to the third consequence: they may or may not.
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For we make room for the existence of non-trivial superselection rules by saying that not all Hermitean operators
represent observables. At that point, we no longer know which operators do represent observables. This question has
no uniform general answer. The easy way to close the discussion at this point would be to say: every vector in a
coherent subspace represents a unique pure state, as does equivalently the projection along that vector (one-
dimensional projection). This requires the existence, for every two vectors x and y lying in a coherent subspace, of an
observableM with different expectation in x and y. If Ix is an observable, that will do very well. But if we do not know
what observables there are, we have admitted (at least in principle) the possibility that x and y, although distinct unit
vectors, have no separating observable. The empirically purest case could then at best be represented by the two-
dimensional subspace [x, y] or projection I[x,y], and not by a one-dimensional subspace or projection operator.

Messiah and Greenberg (1964) explicitly acknowledged this possibility and introduced the term ‘generalized ray’ for it.
The possibility should be taken seriously, in part because of its connection with quantum-statistical mechanics, as we
shall see in a later chapter. But it would mean that a certain amount of theory needs to be rewritten. The projection I[x,y]
does not have trace 1 but trace 2. So in this case the Hermitean operators which represent states are not singled out by
having trace 1. Instead, we would first have to say that a pure state is represented by Is if and only if the expectation of
all observables is the same for all vectors in S, but not always the same for a vector in S as for a vector outside S. We
would have to say that a mixed state is represented by a convex combination of such projection operators. Finally, a
variant of Gleason's theorem would have to be proved for this, and some standard terminology revised. Most of this
looks fairly straightforward, except that it would be risky to speculate about the exact variant of Gleason's theorem
(i.e. how much uniqueness remains).

What happens to temporal evolution? Schroedinger's equation depicts a process which turns vectors into vectors, and
hence (we would have said before) pure states into pure states. But now some vectors (those outside coherent
subspaces) represent
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mixed states. So could the evolution of an isolated system now turn a pure state into a mixture?

The answer is no if the Hamiltonian H is an observable. For if it is, then it commutes with the superselection operator,
and hence the latter represents a conserved quantity. This was shown in the preceding section, and means that
temporal evolution cannot lead out of a coherent subspace. (The superselection operator is then also a selection
operator and the eigenspaces of the superselection operator are invariant under the action of the dynamic group.)
Notice the supposition: if H were not an observable, it could be one of those Hermitean operators that do not
commute with the superselection operator. So then a pure state could evolve into a mixture.24 But the assumption that
the Hamiltonian H represents an observable, namely the energy, is very strong and appears to be usually taken for
granted.

What we have now discussed for the superselection operator V = V2π, which has only the two eigenvalues +1 and −1,
can be generalized. First of all, we can imagine a superselection rule that effectively partitions the space into any
number of subspaces. (We still refer to members of this partition as coherent subspaces.) Secondly, we can imagine that
we have more than one superselection rule. In that case the situation is not very different if the superselection
operators all commute with each other. For then they can all be defined as functions of a single superselection
operator. But if they do not all commute, the situation is a little more complex.

In fact the Permutation Group, which we shall see at work in our discussion of the statistics of identical particles, is
non-commutative. So this more complicated case is important; we shall postpone its complexities until the necessity
arises.

Proofs and Illustrations
Let us first prove that, if S+ and S− are the two eigenspaces of unitary superselection operatorsV (e.g. V2π), then each is
invariant under the action of a Hermitean operator M which represents an observable. Since V is unitary, it has an
inverse V−1; because V commutes with M, so does its inverse. Now let x be in S+ and y in S−. Then we can give a
slightly roundabout
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proof that My is also in S−, by showing that it is orthogonal to x in S+.

but since only 0 equals minus itself, this means that (x · My) = 0, i.e. x ⊥ My. This reasoning holds for all vectors x in
S+, so My is orthogonal to all of S+ and therefore belongs to S−. Thus, if y is in S−, so is My for any observableM—and
mutatis mutandis for S+.

Next we prove that, if x and y lie in S+ and S− respectively, the two density matrices

represent the same state. (There is no genuine superposition of states belonging to distinct coherent subspaces.) It will
suffice to consider an observableM and compare the expectation values (z · Mz), (x · Mx), (y · My). (For simplicity of
calculation, first set a = b = 1 here.)(1)

(2)

(3)

(4)

(5)

(6)

(7)
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Here step (1) follows because I+ + I− is just the identity operator IH; step (3) because projection operators are
idempotent; step (4) because they commute with M (because V does); step (6) because projection operators are
Hermitean. The rest follow because I+z = x and I−z = y. (If more generally we replace x and y by ax and by, the
coefficients a2 and b2 appear.)

This is what is meant when one says that a superselection operator splits the Hilbert space into subspaces, between
which no superposition is possible. The point is not that a certain algebraic operation x + y is not meaningful. It is
rather that a state so described is empirically indistinguishable from a mixture.

Kay-Kong Wan (1980) gave the following elegant and concise representation of quantum theory with superselection
rules. It is however not the most general case, because it allows only for commuting superselection operators.

Postulate: Every quantum system with its associated Hilbert space H possesses the following two properties:

(a) On states: Let S denote the set of all pure states. Then S ⊆ H and H may be decomposed into a direct sum of
mutually orthogonal subspaces Hn, i.e.

such that

There is no further such decomposition of Hn.
(b) On observables: Let Q denote the set of all observables. Then a bounded Hermitean operator A on H belongs to

Q if and only if A leaves Hn invariant; i.e.,

We make the following observations. Part (b) is in no way entailed by the theory of superselection; it is a postulate
opting for the largest feasible choice of represented observables. (Unbounded observables can be defined.) Secondly,
for any observable A we have

BASIC THEORY OF QUANTUM MECHANICS 191



where Pn is the projection on Hn. Thus these orthogonal projections are superselection operators. They are essentially
the only ones: all are sums of these projectors. Thus the set of superselection operators is Abelian; i.e., any two of them
commute with each other.

In a later chapter we will look at a family of non-commuting superselectors, the permutations. There we will see what
may be denied in Wan's Postulate. The orthogonal coherent subspaces do not sum to the whole Hilbert space any
more, and the postulate of Dichotomy (restricting elementary particles to fermions and bosons) eliminates many pure
states and observables admitted by Wan.
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7 Composite Systems, Interaction, and
Measurement

The three main issues in the philosophical foundations of quantum mechanics are measurement, the ‘paradoxes’
(Schroedinger's Cat, EPR, etc.), and the problem of identical particles. Each of these concerns the composition of
several systems—sometimes interacting and sometimes not—which is a subtle matter in quantum mechanics. Dirk
Aerts very aptly sums up these issues as the problem of the One and the Many, which has here taken on a new form of
life. This chapter contains the technical background for those discussions, with only a little philosophical discussion to
explain their putative significance.1

1. Composition
Some systems are composed of others, or may be so modelled—a solid or gas composed of molecules, molecules of
atoms, atoms of elementary particles. Any physical theory must allow the representation of compound systems, and
give some guidance as to how the state of the whole is related to the state of the parts. Whether there should be very
strict constraints on this has long been a question in natural philosophy; a logical or philosophical atomism holds that
the properties of the parts entirely determine those of the whole, while a holism allows for some independence of the
whole. The question is sometimes logically finessed: could not the relations between the parts be themselves parts of
the whole—or, being related in some fashion, be itself a property of the part? But since a physical theory begins with a
specific form of representation for the states of systems in general, the question still remains whether the state of the
whole, as represented, is determined by the states of the parts, so represented. We shall see here that the



quantum-mechanical treatment is, in the above terminology, holistic rather than atomistic—one way in which today's
atom is not yesterday's atomos.

Let us consider two systems X and Y, and the compound system X + Y. The pure states ofX and Y are represented by
the vectors of the Hilbert spaces H1 and H2, possibly the same.2 Similarly, the pure states of X + Y should be
represented by the elements of a larger vector space H12. This should have room at least for the case in whichX and Y
have nothing to do with each other physically, but are just joined ‘in thought’. In that case, the state of X + Y is just
described by saying what states X and Y have respectively, say x and y. Let us denote this state of X + Y as x ⊗ y. Then
the most conservative picture we can draw of H12 is this:

1. There is a map ⊗ of H1, H2 into H12 such that:

(a) the set of vectors {x ⊗ y : x H1, y ∈ H2} spans the space H12

(b) ⊗ is bilinear: x ⊗ (y + z) = (x ⊗ y) + (x ⊗ z)
(x + y) ⊗ z = (x ⊗ z) + (y ⊗ z) b(x ⊗ y) = (bx ⊗ y) = (x ⊗ by)
(c) ⊗ multiplies the scalar products:

The conservativism lies especially in (a), because it is the nearest we can come to demanding an atomistic
(i.e. non-holistic) policy while admitting that H12 must also be a Hilbert space. Clauses (b) and (c) say in effect that the
operations definitive of a vector space with inner product are carried over ‘pointwise’ from the old context to the new.
Again this is conservative: it forbids emergence of new structure, underivative from the old.

It is a theorem that for each H1 and H2 there is essentially only one such H12 (up to isometry); and this is called their
tensor product. We also call x ⊗ y the tensor product of x and y; in many texts the symbol ⊗ is simply omitted. I will
provide the details at the end of this section; the properties displayed in 1 above suffice for intuitive discussion.

Despite our conservativism, it is clear that we now have states for X + Y which are not of the form x ⊗ y, namely such
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superpositions as (x ⊗ y) + (x′ ⊗ y′). Perhaps the bilinearity condition 1(b) looks at first sight as if it reduces this to
(x + x′) ⊗ (y + y′), but that is not the case. Indeed, by 1(b), the latter expands to

which has two more summands than (x ⊗ y) + (x′ ⊗ y′). So we now have ‘mingled’ states which will give us ‘tangled’
statistics for the compound system. The fact is that our insistence on conservativism binds us, with mathematical
necessity, to the emergence of new states for the wholes which are not simple patchwork combinations of states of the
parts.

Something similar happens with the observables. We could ask about X + Y the question ‘What are the respective
momenta of X and Y?’ but also the quite different question: ‘What is the total momentum of X + Y?’ or ‘What is the
sum of the momenta of X and of Y?’. Thus we must have room for observables which properly pertain to the whole
system, and the crucial issue will be how they are related to the observables pertaining to the subsystems. This issue
has two parts: the first concerns the Hermitean operators and the second, the probabilities of measurement outcomes.

If A and B are Hermitean operators on H1 and H2 respectively, we can define their tensor product A ⊗ B by

and extend it to all vectors in H12 by linearity. The result is a Hermitean operator on H12. In addition, if A1,A2 are
Hermitean, so is aA1 + bA2 for real numbers a,b. Therefore we have operators that work on the state of the whole in
an intuitive way. The operator M defined on H1 can be identified with M ⊗ I2 (where I2 is the identity on H2) and
similarly for M′ defined on H2 and I1 ⊗ M′. These represent the observables that really pertain to only one of the
subsystems. Probabilities of measurement outcomes are now formally calculated as before, but we shall be looking
quite a lot at how these probabilities can involve correlations between the parts of the compound.
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To complete the discussion, I will now state the official, abstract definition of the tensor product and its consequences,
although it will play a very small role in what follows. (See further Jauch 1968, sect. 11–7, or van Fraassen 1972a, app.)
I shall use the Greek letters for vectors in tensor product spaces.

If H1 and H2 are two Hilbert spaces, we define H1 ⊗ H2 to be the set of conjugate linear mappings from H2 into H1; that
means the set of maps ϕ such that:

(i) ϕ (x + y) = ϕ x + ϕ y
(ii) ϕ (ax) = a*ϕ x

One such map is (x ⊗ y) defined for x in H1 and y in H2 by

The maps (x ⊗ y), now called vectors inH1 ⊗ H2, span that set considered as a vector space. The scalar product in this
‘tensor product space’ is defined by

where {yr} is any base ofH2. The properties listed in the text as 1(a)–(c) follow quickly from this definition. From them
in turn we can deduce:

2. Tensor Product Theorem

(a) If {xi}, {yj} are bases of H1, H2, respectively, then {xi ⊗ yj} is a basis of H12

(b) |x ⊗ y| = |x| |y|
(c) ax ⊗ by = ab(x ⊗ y)
(d)

(e)
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Here (a) is deducible from 1(a) and (b); (b), (c), (d) are readily deducible from 1(b) and (c); and (e) is a generalization of
1(b), to countable sums.

We can also use the official definition of tensor product space to prove another basic property which I did not list
above:

3. Uniqueness Property: If the vectors xi are mutually orthogonal, and Σ xi ⊗ yi = Σ xi ⊗ zi, then yi = zi for each
index i.

Of course the same is true if Σ yi ⊗ xi = Σ zi ⊗ xi, but I shall just prove the one case. By definition we have

which are two descriptions of the same vector inH1, if w is inH2. But inH1 each orthogonal decomposition of a vector
is unique, hence we conclude

But from that we infer that yi = zi.

Proofs and Illustrations
There is an important consistency point about measurement probabilities and composition which was raised by David
Finkelstein and discussed by Jeffrey Bub.3 The law of large numbers of classical probability theory says that, if we make
independent trials of the same type, of which the possible outcomes a, b, c, . . . have probabilities pa, pb, pc, . . . , then the
probability equals 1 that the limit of the relative frequency of outcome a equals the number pa. The second occurrence
of ‘probability’ refers here to the same function p, extended by product construction from simple trials to sequences
thereof. If the Born Rule is a tenable assignment of probabilities for quantum mechanics, then the tensor product
construction must connect it to a similar result.

This is indeed the case. Let A be an observable, and for a given state x in its domain consider the N-fold state
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the product taken N times. The corresponding observable on this compound state is

also taken N times, but we are more interested in the mean value:

where in the first equation of course A occurs in the ith place, and i = 1, . . . , N. Now we assert that there is a unique
number, namely

the expectation value of A in state x, such that

The proof was formulated elegantly by Bub's student David Devine as follows:4

Noting that A(i)xN is just x ⊗ . . . ⊗ Ax ⊗ . . . ⊗ x, with Ax in the ith place, this expression simplifies to

which does indeed tend to [(x · Ax) − r]2 = 0 as N goes to infinity.
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2. Reduction
If compound system X + Y is in stateW onH1 ⊗ H2, what about its componentsX and Y? A state is supposed to give
us probabilities of measurement outcomes, so we must require:

the expectation of A in the state of X equals the expectation of A ⊗ I2 in the state of X + Y

where I2 is the identity on H2. Similarly for component Y and I1 ⊗ B, if B pertains to Y. When A is a projection
operator, that expectation value is just a probability.

We deduce at once, from Gleason's theorem, that we can indeed assign such a state to X. For the expectation values of
IS ⊗ I2 in stateW are perfectly good probabilities to be associated with the subspaces S of H1. Therefore the theorem
tells us that there exists a statistical operator, which we may call #W or #W[X] or #W[1], that represents such a state.
I will call this state a reduction ofW, or the state of X + Y reduced with respect to X, or with respect to the Hilbert space
H1. This terminology comes from a standard procedure used in this context, called ‘reduction of the density matrix’.
Details concerning this procedure will be given in Proofs and illustrations. But we can already say quite a bit about these
reduced states, simply on the basis of how we just introduced them:

1. If W is a statistical operator on H1 ⊗ H2, then # W[1] is the statistical operator on H1 such that
Tr(A #W[1]) = Tr((A ⊗ I2)W) for all Hermitean operators A on H1.

This is easy to generalize to a general system X1 + . . . XN with a stateW on the tensor product space H1 ⊗ . . . ⊗ HN

and its reduction #W[K, . . . , M] with respect to the subsystem XK + . . . + XM. Notice that 1 (which can serve as
definition) makes best sense in a context where all Hermitean operators represent observables. If it is not so, the
statistical operator representing the reduced state can still be so defined, but obviously its job of representation could
be done equally well by some others—uniqueness is then lost, as usual.

2. A reduction of a mixture is a corresponding mixture of reductions; i.e.,
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It will be convenient to abbreviate #I
ϕ
to #ϕ. Result 2 is an immediate corollary to definition 1, because trace is linear.

3. Reduction is transitive; that is,

This is quite easy to see for a small compound. Suppose X + Y + Z is in pure state ϕ in H1 ⊗ H2 ⊗ H3. ThenA has in
#ϕ[Z] the same expectation as I1 ⊗ I2 ⊗ A has in ϕ, and also as I2 ⊗ A has in #ϕ[Y + Z]. Of course the two numbers
must agree, because, by the definition, I2 ⊗ A must have the same expectation in #ϕ[Y + Z] as I1 ⊗ (I2 ⊗ A) has in ϕ.
The abstract point is that the tensor product construction, like the composition of physical systems, is (essentially)
associative.

4. If X + Y is in the ‘perfectly correlated’ state, ϕ = Σ cixi ⊗ yi with {xi} and {yi} bases of unit vectors for H1 and
H2, then

I will refer to this corollary as the Special Reduction result. It is a very important case because discussions of
measurement, and also of many paradoxes in quantum mechanics, centre on such states of perfect correlation. It is
exactly in this case that we can see at once what the reduced states are. This corollary can be proved as follows.

The expectation value of B on Y equals
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which is just the average of the expectation values of B in the pure states yi, weighted with the factors . But that is
the expectation in the mixture .

This Special Reduction result has two obvious but important sub-corollaries:

5. If ϕ = x ⊗ y, then #ϕ[X] = Ix, and #ϕ[Y] = Iy.
6. The reduced states are in general not pure but mixed, even when the total system is in a pure state.

This last observation brings us back to the same holism we saw in our discussion of composition, now seen ‘from
below’, so to say. The ‘tangled statistics’ in the total system make it impossible in general to assign a pure state to its
parts. Schroedinger called this the peculiarity of quantum mechanics. It is also quite easy to see that in consequence, the
(mixed) states of the parts do not determine uniquely the state of the whole.

7. Pure state Σ cixi ⊗ yi has the same reductions as mixed state

This is easy to verify; use the Special Reduction result 4 for the one and use results 2 and 5 for the other. Von
Neumann proved the following much more general proposition (1955, 426–9):

8. For any statesW1 on H1 andW2 on H2, there is a stateW on H1 ⊗ H2 with reduced statesW1 on H1 andW2 on
H2 respectively; W is unique if and only if at least one of W1 or W2 is pure.

I will not prove this; but in Proofs and illustrations I will prove another result due to von Neumann (1955, 436–7):

9. Every vector in H1 ⊗ H2 can be written in the perfectly correlated form described in statement 4.

As von Neumann remarks, this means that a pure state on
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H1 ⊗ H2 always effects a one-to-one correspondence between certain quantities represented on those spaces.5

Proofs and Illustration
There is a very abstract approach to composition and reduction, which is beautiful; and also a workaday recipe for
‘reduction of the density matrix’ found in textbooks.6 But I shall follow the intermediate route charted by Everett
(1973), though without broaching his interpretation.

In what follows, bases will all consist of unit vectors, unless noted otherwise. If vector z is in H1, and {xi} is a basis for
H1, then z has a description:

i.e., z is the sum of its projections along the basis vectors. Similarly, therefore, if in addition {yj} is a basis for H2, and ϕ
is in H1 ⊗ H2, it can be described as(2)

If we set cij = (xi ⊗ yj · ϕ), then we can rewrite this equivalently by grouping the factors in two ways:(3)

Now these groupings tell us in effect what the reduced states are. Indeed, with ϕ and the bases as above, we have the
result:General Reduction: With ϕ as above,(4)

Note that and ; so all numbers and vectors involved can be read off from the description of ϕ
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in terms of the given bases. Note also, however, that the vectors u(j) and v(i) are in general not unit vectors and do not
form orthogonal bases. The reduced states are indeed explicitly described here but are not orthogonally decomposed.

Let us just calculate the expectation value of I1 ⊗ B in state ϕ, and see how it relates to the expectations of B in the
states v(i).

Because v(i) is not in general a unit vector, the expectation of B in v(i) equals (v(i) · Bv(i)) divided by the square of its
length, i.e. |v(i)|2. Thus we have deduced

The expectation value of I1 ⊗ B in ϕ is the average of the expectations of B in v(i), weighted by the factors |v(i)|2

which is just what the General Reduction result says about the reduced state #ϕ[2]. A similar deduction yields its
assertion about the other reduced state.

Because it is sometimes useful to get to an informative corollary about orthogonal decompositions, let us take a look at
matrix representation. Recall from the preceding chapter that Hermitean operator A is represented relative to basis
{xi} by matrix [amn] exactly if

The first thing we need to know is the matrix representation of the reduced states. For ϕ as above, let us calculate on
H2:
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so #ϕ[2] is represented relative to basis {yj} by the matrix . In just the same way, we can deduce that #ϕ[1]
is represented relative to basis {xi} by matrix .

Recall also from the preceding chapter that the operator has an orthogonal decomposition in that basis exactly if the
representing matrix is diagonal. That means that only the diagonal elements aii are non-zero. Now we have the
wherewithal to prove the following result, also due to Everett:

6. If ϕ is as above, and #ϕ[1] has an orthogonal decomposition in basis {xi}, then the decomposition of #ϕ[2]
into the states v(i) is also orthogonal.

In that case we call the equation ϕ = Σ |v(i)|xi ⊗ v(i)/|v(i)| a canonical description of ϕ. This is a perfectly correlated
form. Since obviously #ϕ[1] must always have at least one orthogonal decomposition, ϕ can always be written in such
a canonical form. This was von Neumann's result described at the end of our section.

To prove this we need only show that the vectors v(i) are orthogonal to each other:
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but that is an element in the matrix which represents #ϕ[1] relative to the basis {xi}. By supposition, that element is
zero unless i = j. Hence the vectors v(i) are mutually orthogonal.

We observe from this result that the decompositions #ϕ[S′] and #ϕ[S − S′]—in which a compound system is split into
two parts—must have image spaces of equal dimension. Otherwise no such canonical description could be true. At
first this is surprising; if, for example, H1, H2, H3 have the same dimension, thenH2 ⊗ H3 has a much larger dimension
thanH1. So we could choose mixturesW1 andW2 whose respective sets of eigenvectors span H1 and H2 ⊗ H3. But the
theorem then tells us that there is no pure state ϕ in H1 ⊗ H2 ⊗ H3 such thatW1 = #ϕ[S′] andW2 = #ϕ[S − S′]. The
large compound system S must itself then be in some mixed state.

To finish, let us connect the important relation of reduction to that other important relation among states: relative
possibility. Recall from Sections 1 and 4 of the preceding chapter that state W′ is possible relative to W exactly if the
former assigns probability 1 to all that the latter gives probability 1. The representation of this relation is most easily
summarized in two steps: the pure states possible relative to W are represented by the vectors in its image space (see
Chapter 6, Section 4); and thenW′ is possible relative toW if it is a mixture of such pure states, i.e. exactly if the image
space of W′ is part of the image space of W.

(7) If ϕ is possible relative to W, then #ϕ is possible relative to # W

This holds for corresponding reductions to any subsystem.

The proof has three steps. Let total system S have a stateW on Hilbert space Ha ⊗ Hb ⊗ Hc while its subsystem S′ has
state-space Hb. Now let P be any projection operator on that space Hb, and suppose that P has expectation 1 ∈ #W[S′].
Then Ia ⊗ P ⊗ Ic has that same expectation in W, by definition.

Now letW have orthogonal decompositionW = Σ wiIx(i) and ϕ = Σ cixi where ci is not 0 only if wi is positive, so that ϕ is
in the image space ofW. Then (Ia ⊗ P ⊗ Ib)xi = xi for each i, because Ia ⊗ P ⊗ Ib has expectation 1 in each component
of
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W. But then (Ia ⊗ P ⊗ Ic)ϕ = ϕ. Therefore P has expectation 1 also in #ϕ[S′].

Take now as special case the projection P on the image space of #W[S′]. Since it has expectation 1 in that state, it also
has this expectation in #ϕ[S′], by our argument. So if the latter is the mixture Σ vjIy(j), it follows that Pyj = yj for each
index j for which vj is positive. So all those components of #ϕ[S′] are in the image space of #W[S′] on which P projects.
Therefore also the image space of #ϕ[S′], spanned by those components, is entirely part of the image space of #W[S′].
This is what was to be proved.

3. Interaction and the Ignorance Interpretation of Mixtures7

It has sometimes been suggested that mixed states in quantum mechanics are like the probability distributions used in
classical physics, which merely represent ignorance of the true state. That would mean that every system is always really
in a pure state, though we may not know which. This ignorance interpretation of mixtures was explicitly advocated by Hans
Reichenbach (1948) as the key to interpreting measurement and distant correlations. Hans Margenau and his students,
on the other hand, advocated the contrary idea that pure states are only a special subclass, and that a system may well
be in no pure state at all.8

As it turns out, this has much to do with interaction. But already before that, it is clear that this ignorance
interpretation would have to answer several disturbing questions. Exactly what are the pure states that system X may
be in if it is in mixed state W = bIx + (1 − b)Iy? The first answer might be: x with probability b and y with probability
(1 − b). But if , this orthogonal decomposition is not unique, and we have equally . Now
the system cannot have probability each for being in distinct states x, y, z, w! Here we face a choice: shall we say that
all orthogonal decompositions are on a par, or that one is privileged?9 If the latter, quantum mechanics is definitely
incomplete, for it does not tell us which. If the former, why exactly this privilege for orthogonal decompositions?
Recalling the preceding chapter, we
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could widen the set of possible pure states for X to be the set of all components (of possibly non-orthogonal
decompositions) or even to the whole image space of W.

Suppose someone decided to advocate this last version: X is in mixed state W only if X is in a pure state x which is
possible relative to W (is in the image space of W). We would then ask him or her how different mixtures with the
same image space arise, and the answer would be: that is the part which reflects our ignorance of how to assign
probabilities. A little more would be needed to give a full answer, surely! But there is a greater difficulty.

If X is part of X + Y in pure state ϕ = (1/√ 2)(x ⊗ x′ + y ⊗ y′), so thatW = #ϕ, it must follow that X is in either x or
x′ and Y is in either y or y′. The ignorance interpretation so far has given us no reason to eliminate the combination
(X in x and Y in y′), yet we predict with certainty that a measurement of Ix⊗ y′ will have value 0. Could the ignorance
interpretation be amended, with a special addition for the case in which the mixed state of X is the reduction of a pure
state of a larger system? Certainly, but now we wonder where the probability interference effects come from. If the real
situation is either (X in x, Y in y) or (X in x′, Y in y′), why are the correct measurement outcome predictions not the
same as for X + Y in the mixed state ?

It is sometimes said that the ignorance interpretation entails the false consequence that if X is in state W then it is in
stateW′. The above rhetorical question is turned into a reductio ad absurdum. As defenders have pointed out, this is not
logically valid. In general, if we are told that X and Y are in pure states x and y, we will represent X + Y as having state
x ⊗ y. But if we must accept that knowledge of the states of the parts does not uniquely determine the state of the
whole, this could be the place to do it. It does look like grasping at straws, though. If the motive for the ignorance
interpretation was that it is simple and dissolves mysteries, this motivation has now been lost.

To gain a somewhat larger perspective on this subject, we should perhaps reflect on the concept of state. This has at
least three sides to it: (i) a state is the basis for (statistical) prediction; (ii) a state is prepared by means of a physical
preparation or filtering procedure; and (iii) a state evolves in time, under
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constraints strictly linked to the characteristics of the system and its environment. In this chapter we have found a
fourth side: (iv) the states of the parts of a compound system are functionally determined by, but in general do not
determine, the state of the whole. Only if we concentrate entirely on (i) will we be able to think of the ignorance
interpretation as at all ‘obvious’.

Point (iv) strongly qualifies (ii): a system could have been prepared in a certain state, by past interaction with another
system, from which it is now wholly separated. Looked at in another way, the two systems that have interacted are still
together one total system—their own states are only reductions of the total state. And the statistical correlations in that
total state may have the parts thoroughly ‘tangled’ (as Arthur Fine very aptly calls it).

In fact, interaction of two systems can tangle, untangle, and tangle again. A simple and instructive example is given by
Beltrametti and Cassinelli (1981a, sect. 7.5) of a dynamic evolution in which a subsystem evolves continuously back
and forth between pure and mixed states.

4. The Quantum-Mechanical Theory of Measurement
The empirical basis for quantum theory is provided by phenomena, and more specifically by reports of measurement
outcomes. On the other hand, what goes on in such a measurement itself is also a physical interaction, and must
therefore in principle admit its own quantum-theoretical model. Twentieth-century ears, accustomed to the paradoxes
engendered by theories applicable to the very resources used to state them, immediately detect the threat of vicious
circles, paradox, and inconsistency here.

4.1. In Search of a Physical Correlate
Not every procedure that ends with writing down a number is a measurement. On the other hand, not everything
traditionally expected of measurement may be essential to it. Perhaps the ideal of ‘just looking’ was always something
only God could do: a way of interacting with the object which, while having no
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disturbing effect whatever, gathers information about what the object was like, useful for predicting what it would be
like later on. Such an impossible ideal should not guide our thinking about real measurement.

Our initial target is the term ‘measurement’ in the Born interpretation rule: if a measurement of observableM is made on
a system in stateW, the probability of an outcome in E equals . This is a conditional statement, and we need to
explain under what conditions its antecedent is true, and also correlatively when its consequent is true. The criteria of
adequacy for the explanation we give are not that we capture the full meaning of ‘measurement’, but only that we
correctly single out a class of processes which (a) meet minimal criteria for designation of the term ‘measurement’, and
(b) are such that the statement implied by Born's interpretation rule can tenably be maintained to be true.

We should look at this in two ways. On the one hand, there is the scientist, who only looks to see whether the theory is
empirically adequate: do the phenomena fit the models? On the other hand, there is the believer, who describes even
what this scientist does in quantum-mechanical terms. Pure cases of either are fictions, but everyone can partake of
each to some extent.

For the first, the phenomena are described by statements which are typically measurement outcomes (observable M
has value b), or more generally a frequency count of such simple outcomes. The quantum-mechanical states need to be
such that, from these reported phenomena, it is possible to infer ‘backwards’ to such a state. For example, we see a
pattern of spots on a screen, and in the model we make up those spots are the points of impact of electrons, which
emerged from a certain source in some state or other. Empirical adequacy demands that there be at least one stateW
such that the pattern of spots fits a position probability-distribution linked, via Born's Rule, to stateW. Putting together
the beginning and end of this little discussion, we derive at least this: an outcome of a measurement is a value attribution,
a proposition that some observable had a certain value. This observable pertains not to the object, but to the
measurement apparatus; however, the outcomes must correspond in a certain statistical way to a possible initial state of
the object.
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Coming now to the imagined believer with the quantum-mechanical world-picture, we must be careful to ask of him
only as much as makes sense from his point of view. I said above that what goes on in a measurement is also a physical
interaction. This does not mean that we can give a description of a certain kind of physical interaction—in terms
provided by physics—and then say: this is what the word ‘measurement’ means. I do not wish to enter here into a
discussion on the philosophy of mind, or the so-called mind–body problem, but I do wish to discuss measurement
without being naive about such issues. When I say that I measured the temperature of the tea with a mercury
thermometer, I imply first of all that a certain physical interaction took place. But I also imply that I did something
intentional and deliberate, which distinguished that episode from, say, measuring the temperature of the thermometer
by means of a cup of tea. I designated a certain observable (temperature of the tea) as the observable being measured,
and another one (height of the mercury) as the ‘pointer-observable’. In doing so, I presupposed that the thermometer had
certain physical characteristics which made it suitable to be chosen as an apparatus for such measurements. The first
stage in our inquiry is therefore not at all to find out what ‘measurement’ means, but only this:

Given systems X and Y, and observablesA pertaining to X and B pertaining to Y, what must be minimally required
of these in order to measure A on X by means of Y (chosen as apparatus) with B designated as pointer-observable?
What must be minimally required of an interaction between X and Y as necessary condition for A being measured
on X by means of Y with pointer-observable B?

These questions can be answered in purely physical terms. If we regard the answers as complete within the domain of
physics—omitting such factors as that some person made certain choices or had certain intentions—then we can
henceforth say, without fear of confusion: a measurement interaction is (as far as physics is concerned) that sort of
physical interaction.

Of course, I myself have relied on an assumption here. I assume that the Born Rule, which assigns probabilities of
measurement outcomes, should be read as pertaining simply to
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those physical interactions qua physical interactions. Whether or not some person actually had such intentions or made
such choices, I take to be irrelevant to those probabilities. It is on the basis of this assumption that I can hope to use
the term ‘measurement interactions’, in the context of this book, to refer solely to physical processes of the sort
required as necessary conditions for measurements by us. For this assumption I offer neither apology nor warrant.

4.2. Metacriteria for Measurement
The most general notion of measurement requires therefore only that we be able to infer from information of
outcomes to information about the measured object system's initial state. This may be formally captured as follows. A
measurement process of observable A on object system X is characterized by four factors: the Hilbert space of the
measuring apparatus Y, the pointer-observable B, the groundstateW of the apparatus, and the evolution operator U. At
this point we do not assume that U is unitary. Also, I shall not specify at this point exactly how apparatus and object
system are to be coupled at the outset. The initial reduced state of the apparatus must be the groundstateW. Supposing
that the initial state of the total system (X + Y) is V such that #V = T and V# =W, it is required that U changes that
to a final state U(V) whose reduction W′ = U(V)# to the final state of the apparatus alone is such that

(M1) for all Borel sets E.

But this is not enough to have a measurement. Imagine a process which changes (X + Y) when it is initially in state
(x ⊗ y) so that it ends in state (y ⊗ x). Then we can say that, for every observableA pertaining to X, and setting B = A,
the condition (M1) is satisfied. Indeed, if this is acceptable, we could also set Y = X, and say that every observable
pertaining to X is always being instantaneously measured by X itself. But surely, no single observable is truly measured
here, let alone all the mutually incompatible observables pertaining to X! Should we conclude then that the apparatus
must be a ‘classical’ system, or must be subject to superselection rules which separate the
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pointer-observable's eigenspaces? That has sometimes been suggested even on the basis of a conviction that a
measurement apparatus must be macroscopic, and that all macroscopic observables are thus. Unless the problems
force us to do so, we should not go so far. The reason is that we should not simply pre-empt the true believer who
takes it that quantum mechanics, via Born's Rule, also gives probabilities for outcomes of structurally similar
microscopic processes. A more modest requirement is:

(M2) W′ is a mixture of B-eigenstates; i.e., W′ = Σ piW′i such that .

Does this remove the intuitive difficulties posed above?

There is still a difficulty arising from ‘accidental’ degeneracy. Consider the following argument that it is possible to
measure incompatible observables jointly sometimes. Suppose A and B are observables on a Hilbert space, with
disjoint associated orthonormal bases {|a(i)〉} and {|b(i)〉}. But suppose that a(1) = a(2) = a, and [|a(1)〉,
|a(2)〉] = [|b(2)〉, |b(3)〉] = S. For simplicity, also assume that the apparatus has the same Hilbert space, and that
A and B themselves serve there as the two pointer-observables for A and B pertaining to the object system. Then if
the latter's initial state is in S, we conclude by (M1) and (M2) that the apparatus final state is . But notice that

. So we also have

Thus, with B itself designated as pointer-observable for the measurement of B on the object, we conclude that (M1)
and (M2) are both satisfied for a measurement of B. Therefore two incompatible observables have been jointly
measured. This shows that (M1) and (M2) are not jointly sufficient to characterize measurement quantum-
mechanically. This is however a case of accidental degeneracy; it occurred because we chose that particular initial state. Part
of the solution to this problem, at least, must lie in the fact that we should insist that the process must be such that
(M1) and (M2) are satisfied for any initial state of the object. Not just any process which happens to meet conditions
(M1) and (M2) on its initial and end states qualifies as a measurement:
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The apparatusM must be a physical structure such that (M1) and (M2) must hold whenever this process is initiated,
and regardless of the initial state of the object system.10

The general idea is obviously this: since we model the phenomena by choosing incompatible observables to represent
quantities which cannot be jointly measured, the quantum-mechanical correlate of measurement must be a process in
which the observables designated as measured are compatible. Our end in view requires us to characterize the correlate
so as to satisfy this condition. On the other hand, there may well be many different kinds of measurement, and there
may also be a variety of alternative accounts of measurement which form parts of different tenable interpretations of
quantum mechanics. Hence I propose to proceed somewhat delicately, in two stages. First, I shall define a wide class of
physical interactions—to be called measurement setups.11

To set the stage, consider two systems X and Y, with Hilbert spaces HX and HY and with Y so constructed that, if Y in
groundstate W is coupled withX in initial state T, the evolution of (X + Y) through a certain time interval is governed by
evolution operator U. The crucial factors here are W and U, whose specification must include the information that
identifies HY and HX; and only HX is relevant to what X is like. Identify the apparatus Y with the couple Y =〈 W, U〉.
If we now look upon the process governed by U as a measurement, we are selecting for attention a measured observable A
defined on HX, and a pointer-observable which pertains to Y. This correspondence is defined simply by our decision
to look upon the situation in this way, so we can choose to have the same eigenvalues as A does, and also such that
the correspondence A to is one-to-one. But that also means that we must make our notions independent of this
correspondence, which I shall call cmp: A, ; and of course, we must recognize that the choice of correspondence
presupposes that (M1) holds. (‘cmp’ is a mnemonic name for the function that chooses a corresponding pointer-
observable for the measured observable in question.)

Definition: S(Y, A) = 〈 A, W, U〉 is a cmp-measurement setup for observable A on system X, exactly if
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Y =〈 W, U〉 is an apparatus with W as ground-state (the associated apparatus), and evolution operator U transforms
the initial state T ⊗ W of (S + M) in such a way that (M1) holds for the reduced final state W′ of Y, for pointer-
observable , for all possible initial states (statistical operators) T on HX.

In any definition of a kind of measurement, we must now consider the possibility that such an apparatus Y will serve
for non-trivial cases of joint measurement. Hence we impose the following metacriteria:

Metacriteria for ideal measurement: A class CS of cmp-measurement setups is a class of ideal measurements only if, for
every associated apparatus Y:

(M2) the reduced endstate W′ of Y is a mixture of joint eigenstates of all observables such that S(Y, A) is
in CS;
(M3) if S(Y, A) is in CS then for all x which are orthogonal to every possible reduced end state of Y;
(M4) if S(Y, A(i)) is in CS for i = 1, . . . , n and f is an n-ary Borel function, then there exists an observable A
such that S(Y, A) is in CS and .

Despite the new phrasing, (M2) has not been strengthened, and the function of pointer-observables in (M4) is well
defined because (M2) and (M3) entail that the pointer-observables are mutually compatible.

In a moment I shall discuss the motivation and scope of these requirements. But whenever we lay down exact
identities, we depart from pure explication of practice; even (M1) can be faulted in that respect. While I shall come
back to this point, I think we should add here that any defined class of measurements must include a class of ideal
measurements as special cases. The classes of von Neumann measurements and von Neumann–Lueders
measurements discussed below are among the most prominent in the literature; we shall see that they satisfy this
metacriterion.

These metacriteria would be overly restrictive if they ruled
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out kinds of measurement generally recognized as such in the practice of quantum mechanics. But, in themselves, the
criteria are not very restrictive. Suppose that for the class CS we choose the singleton {S(Y, A)}. Then (M2) says that
the apparatus ends up in a mixture of eigenstates of , and our preceding discussion surely forces us to require at least
that much. If S(Y, A) does not satisfy (M3), that is because of the correspondence cmp. But suppose that, under that
correspondence, . Now let us define B′ to be the observable which is like B on the subspace S of HY spanned by
the components of the possible reduced end states of Y, and maps the orthogonal subspace into Ø (i.e. B′ = ISBIS).
Then the new correspondence cmp′ which sets BYA = B′ will leave (M1) satisfied but will also satisfy (M3). Finally,
since CS has only one member, (M4) is trivially satisfied.

So what is the importance of these metacriteria? An interpretation of quantum mechanics must follow upon a
specification of what counts as measurement. In constructing an interpretation, it is advantageous not to insist too
strongly on one's own ideas about this specification. It is better to make sure that the interpretation will still be tenable
given any tenable specification of measurement. So if these metacriteria are to be accepted, then to have a good
interpretation it will suffice to have one that works, provided the class of interactions proclaimed to be measurements
satisfy those metacriteria.

Metacriterion (M4) has not yet been motivated. Intuitively, it seems unexceptionable. Imagine an apparatus with 15
dials, each recording a simultaneous-measurement outcome—for example, the object measured is a car, and the dials
indicate mass, tyre pressure, colour, etc. A paper-and-pencil operation suffices to calculate the value of derivative
characteristics: the average tyre pressure, the ratio of mass to average tyre pressure, and so on. The condition says then
that there is in fact an observable on the object system, which is measured with the defined pointer-observable.12

Metatheorem on Joint Measurement: If CS is a class of ideal cmp-measurements, then the observables A such that
S(Y, A) is in CS are mutually compatible.
Proof. In view of (M2) and (M3), we see that all the
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pointer-observables have all eigenstates in common, hence they are compatible. By Fine's joint distribution (JD)
theorem (see Chapter 6, Section 3), they satisfy the JD condition. Since the distributions are the same as the
distributions , (M4) entails that the family of measured observables A such that S(Y, A) is in CS also satisfy the
JD condition and are therefore, by the same theorem, also mutually compatible.

Proofs and Illustrations
To define the physical correlate of measurement, we try to state what conditions a process must meet to be a candidate
for something by which we perform a measurement, under the conventions that identify our choice of groundstate,
evolution interval, and pointer-observable. The conditions I have laid down do not entail that the apparatus is
macroscopic. Yet I have left open that we may add further conditions, and there certainly are important accounts of
measurement in the literature (some of which I will discuss in later chapters) which impose and utilize additional
requirements. As things stand here, the physical conditions can be met by microscopic processes, and that means that
the Born Rule entails also predictions for humanly unobservable events. That is how I think it should be. Empiricism
should not insist that the theory cannot predict anything about the unobservable; in my opinion (as I explained in
Chapter I) empiricism should enter at a different level.

To deal with the problem of accidental degeneracy, I imposed conditions on the operator that governs the temporal
evolution, and not on the character of initial and final state alone. Hence it is not ruled out that the end state may be
the same in two measurements, on systems in the same initial state, of two incompatible observables. This is a little
curious, though not troubling if the concept of measurement pertains to the type of process as a whole. There is
however another approach to the problem which appears to rule this out as well. In addition, it appears to eliminate
the need for a choice of pointer-observable by entailing a condition on that choice which selects it uniquely. This is the
approach taken by Zurek (1981), though with a very different idea about what a general account of measurement must
do.13

In a measurement, Zurek specifies three significant elements:
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the object, the apparatus, and the environment. As in the von Neumann measurements which we shall discuss in the
next subsection, the interaction that occurs must be unitary and must correlate the measured observable A pertaining
to the object with the pointer-observable B pertaining to the apparatus, so that the final compound state will have the
form φ = Σ ci|ai 〉 ⊗ ya(i). Normally, the further interaction of the object + apparatus system with the environment will
immediately destroy any such correlation. To be a measurement, Zurek specifies, the result must be sufficiently stable
to constitute a record, and therefore the interaction with the environment must leave the pointer-observable
undisturbed.

This is a condition on the temporal evolution, hence on the Hamiltonian which governs the process, just as my extra
condition was; but it extends to the process that includes apparatus–environment interaction. Let us as before call the
apparatus and object Y and X respectively, and the environment E. The total system is E + Y + X, and the process is
governed by a unitary operator U, determined by its Hamiltonian

To simplify, it has been assumed that all interactions are pairwise, and Zurek further simplifies by assuming that
HEX = 0 (the object is isolated from direct interaction with the environment) and that the interaction of apparatus and
object effectively ceases when the correlated state is reached.

The crucial new condition, however, is that the pointer reading must not be disturbed by environmental action. This
means that the pointer-observable B commutes with the interaction Hamiltonian HEY. (See the previous discussion of
conserved quantities, in the preceding chapter.) If this condition picks out B uniquely, then we are finished.

This uniqueness need only be established up to compatibility, since a measurement that registers, say, charge also
registers, via a mere paper-and-pencil operation, the square of the charge, the charge +10, etc. Since compatibility is
not transitive, it is so far not ruled out that HEY also commutes with some observable B′ incompatible with B. This is
not true if HEY is a maximal observable, but it is possible if HEY is non-maximal, even for
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two maximal observables B and B′ in the Hilbert space of the apparatus. If HEY is known and maximal, however, the
occurrence of an A-measurement can be identified through the occurrence of the appropriate final state of (apparatus
+ object) alone, since the pointer-observable is unique (see further Dieks 1988a, sect. 5). This should certainly be
noted, but I shall not make Zurek's condition part of the definition of a measurement interaction.

4.3. The Class of Von Neumann Measurements
So far our discussion has been very general. Most of the literature on measurement, beginning with von Neumann's
formalization of the discussion, concentrates on relatively simple paradigms. Von Neumann himself described the class
most usually (and most easily) addressed. Following our preceding discussion, let us leave tacit the function cmp which
represents our choice of pointer-observables, and proceed somewhat less formally.

A measurement setup S(Y, A) is a von Neumann measurement if the groundstate of the apparatus Y is a pure state y0
and the evolution operator is unitary and such that, if the initial state of the object system is a pure eigenstate of A,
then its final state is the same eigenstate of A.

There are three special conditions here: pure groundstate, unitary evolution, and non-disturbance of eigenstates of the
measured observable. It is quite easy to see that this class includes a class of ideal measurements as special cases:

A von Neumann measurement is ideal if the pointer-observable B is non-degenerate with the same spectrum of
values as A, and the initial state of (X + Y) is T ⊗ Ty(0).

As usual, I restrict the discussion to observables with pure point spectrum. Then suppose that A has associated basis
{|ai : i = 1, 2, . . .} of eigenvectors (degeneracy still allowed at this point in our discussion) and B has corresponding
basis {yi = |bi〉 : i = 1, 2 . . .}. If ai = aj, then not only bi = bj but |bi 〉 = |bj 〉, so the correspondence is then many-to-
one. The requirements imply therefore:
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(1)

(2)

(3)

(4)

Here (2) follows from (1) at once by the linearity of U; and (3), (4) follow because of the result that, if both reduced
states of a mixture are pure, then the compound state is uniquely determined as the tensor product.14 Von Neumann
pointed out that in such a case immediate performance of the same measurement again will yield the same result.
Indeed, he described the object system as having been projected into an eigenstate of A, since

(2*) With initial state ϕ = ∑ ci|ai〉 ⊗
y0, the final state is

and the reduced final object and apparatus states are

If the observable A ⊗ I is measured on this system in that final state, the outcome will again show value ai with
probability . But moreover, if we design a two-part apparatus, of which one part measures A and the other
immediately afterward measures A ⊗ I from its groundstate z0, we see the evolution:
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in which perfect correlations are set up all round. We could also design the apparatus so that a third stage checks on
whether the end results of the first and second stage agree. That requires that the third stage with groundstate v0 is such
that the evolution has the character

where v(ij) is v+ if i = j and v− if i ≠ j.

Clearly, the outcome, if t = 0, 1, 2 were as above but with the third apparatus coupled on, is

so the reduced final state of the third apparatus is then just the pure state v+, indicating total agreement of the first two
outcomes. This repeatability of the measurement is a feature which von Neumann regarded very highly. In the next
chapter we shall see what role it played in his interpretation, but in Section 4.6 we shall also discuss it as a demonstrable
feature of measurement classes.

Taking (2*) as the summary statement of what von Neumann measurements are like, we see also that it characterizes
the ideal measurements of this sort only in context. If we forget the context, the problem of accidental degeneracy will
at once return. In this case, where the measurement effects a correlation of the measurement and pointer-observable,
the difficulty takes a striking form. This was brought out by the Einstein–Podolski–Rosen (EPR) paradox, in which a
certain initial state x ⊗ y is turned by a certain process into a final state:(5)

where {xi} and {x′i} are bases of incompatible (non-commuting) observables B and B′ while {yi} and {y′i} are bases of
two other incompatible observables A and A′.

The difficulty is this: if (2*) were the defining characteristic of a measurement process, and such a process had final
state (6), then we would have to say:

A was measured (with B as pointer-observable);
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A′ was simultaneously measured (with B′ as pointer observable).

But non-commuting Hermitean operators are meant to represent observables which cannot be subjected to
simultaneous joint measurement.15

This difficulty disappears entirely when we insist that it is not the end state alone, but the character of the entire
process, that is at issue. Imagine that there is a process governed by unitary operator U such that(6)

(7)

Then we use the fact that U is unitary, and hence preserves inner product, to derive(8)

(9)

and similarly (x0 · x2)(y2 · y0) = 1. But that is impossible, since the xj(j ≠ 0) and also the yi(i ≠ 0) are mutually orthogonal.

The preceding theorem on joint measurement applies to ideal von Neumann measurements as well. But this case is so
simple that we can give a more direct proof, by considering a special sort of initial state:

Theorem on Joint Measurement: If two observables have a joint von Neumann measurement, then they are compatible.

To prove this, suppose that system Y is at one and the same time an A and an A′ -measurement apparatus with the
same groundstate y0, so both measurements can be performed at once. Now consider a state x = Σ cixi with all the
numbers distinct. Let x = Σ dix′i also, with no assumption being made about the coefficients di. The end state of the
process is U (x ⊗ y0) = Σ ci(xi ⊗ yi) = Σ di(x′i ⊗ yi). Then by Special Reduction, system X is in final state .
Because the numbers are all distinct, T′ does, in this case, have a unique orthogonal decomposition. Hence the two
sets of operators Ix and I′x are the same. Hence A and A′ are both functions of a single observable, and therefore are
compatible.
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4.4.Von Neumann–Lueders Measurements
Von Neumann himself had raised the question whether his account applies to non-maximal observables. We may
equally ask whether the restriction to pure initial states, and the strong correlation between measured and pointer-
observables in the final state, entail an important loss of generality. Lueders (1951) gave a more general account, which
we already touched upon in Chapter 6, Section 5 in connection with the conditionalization of quantum states.

We keep the idealization that the apparatus has exactly one pure eigenstate of pointer-observable B for each eigenvalue
of the measured observable A. We start again with the system X in state with , where a ranges over the
distinct eigenvalues of A and is an orthonormal basis for the space made up out of unit eigenvectors of A. The
subspace spanned by for a given a is the a-eigenspace of A, and obviously is the projection on that subspace,
hence . Most generally, the initial object system state is a mixture T of such pure states. The general description
of a measurement proposed is now:

The evolution U of the measurement setup is unitary, the groundstate y0 is pure, and the end state of the object
system is the conditionalization of its initial state on the partition of eigenspaces of the measured observable.

There is nothing in the general notion of measurement which motivates us to focus on what happens to the object
system during the process. It is rather a special characteristic of the von Neumann measurement that the initial object
system is undisturbed when it is an eigenstate of the measured observable. This is also a characteristic of the Lueders
measurement, because the conditionalization of a pure state on a subspace is just its projection on that subspace. The
above description entails therefore:

If the initial state of the object system is (or, indeed, if it is any unit vector in one of the eigenspaces of A), then
its final state is the same. If the initial total state is and the pointer-observable is non-degenerate, then the final
total state is .
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Thus the von Neumann measurement is a special case. Moreover, if the initial total state is just T ⊗ Iy(0) with
T = Σ paIx(a), then the convex structure is preserved and so the fact that the evolution is unitary tells us that the final
state is Σ paIx(a) ⊗ y(a).

The exact connection with conditionalization is as follows. Clearly, the vector represents the conditionalization of
the state which is represented by x, on the a-eigenspace of A. The squared length of that vector is the corresponding
Born probability for the outcome a in a measurement. Recalling the formula for conditionalization and writing xa for
:

(10) The conditionalization of the state represented by x, on the a-eigenspace of A, is represented by the statistical
operator

In the case in which the initial total state is and the pointer-observable is non-degenerate, we can find the final
object system state by reduction:

(11) Final state of X + Y is

(12) Final state of X is ∑ |xa|2Ix(a)/|x(a)|

But that is the conditionalization of the initial object state Ix on the partition consisting of the eigenspaces of A, as was
announced.

Exactly the same happens with a mixed initial object state, namely, that the reduced final object state is the same
conditionalization of the initial object state. The complete Lueders rule is:

(13) If the object is initially in mixed state W when A is measured, the reduction of the final total state gives the
reduced object state
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where is the conditionalization of W on the a-subspace of A.

The number is of course the Born probability for the a outcome. Recalling what is, we see that the reduced
final state is:(14)

which is a simpler expression, and useful in what follows.

To follow this relatively intuitive discussion with precision, let us again put this in our canonical form:

A measurement setup S(Y, A) is a von Neumann–Lueders measurement if the groundstate of the apparatus Y is a pure
state y0, and if the evolution operator is unitary, and such that the reduced final state of the object system X is the
conditionalization of its initial reduced state T on the partition of eigenspaces of A. The measurement is ideal if the
pointer-observable is non-degenerate and has the same spectrum of values as A, and the initial total state of X + Y
is T ⊗ Iy(0).

Much of our reasoning about von Neumann measurements carries over to this more general class. That jointly
measurable observables are compatible in the ideal case is again made easy to show by the non-degeneracy of the
pointer-observable.

4.5 Unitary Measurements
The generalization by Lueders is still a special case, from the general point of view of the quantum-mechanical theory
of measurement. But how special? In the next subsection, discussing repeatability, we will see that continuous
quantities cannot be measured that way. Restricting ourselves here to discrete quantities, that is, to observables with
pure point spectrum, we will see that the von Neumann–Lueders measurement actually
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all but exhausts the class of measurements by our criteria.

Intuitively, as we saw above, a measurement could be any process in which, at least in a statistical sense, the final
characteristics of the ‘apparatus’ give a reliable indication of the initial state of the ‘object’. We are idealizing to the
extent of asking the final apparatus state to reproduce the relevant statistics exactly, and we have added the requirement
that the apparatus end up in a mixture of eigenstates of the designated pointer-observable. There is a large and growing
literature on such processes, with many important results to classify the conceivable varieties of measurement setups. I
shall refer here mainly to the work of Beltrametti, Cassinelli, Lahti, and Ozawa, and shall follow the exposition given by
Lahti (1988).

The most basic result is due to Ozawa (1984): a measurement setup exists for every physical quantity. This was already
established in von Neumann's discussion for discrete observables; Ozawa extends it to observables with continuous or
mixed spectra as well. In the remainder of this section I shall concentrate on discrete observables, but shall not assume
that a measurement needs to take anything like the form described by von Neumann.

Suppose that the observable A to be measured has eigenvalues a with degeneracy n(a), and orthonormal basis of
eigenvectors as before. Let the pointer-observable B be non-degenerate on its space, with the same point
spectrum, and corresponding orthonormal basis {ya}. Let the apparatus groundstate be the pure state y0. All vectors
below will be unit vectors unless the context shows otherwise. So far, the assumptions involved are generally regarded
as merely simplifying. But now assume:

1. The evolution of the total system is a mapping of total states into total states which preserves the convexity
structure of the statistical operators, and the extreme points.

This means that, if the evolution changes total initial stateVi toVi′, then (a) ifVi is pure, so isVi′, and (b) it changes the
mixture Σ piVi into mixture Σ piVi′. This has the following consequence (Beltrametti et al.1989):
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2. The evolution is a continuous linear extension of a mapping B of form
3.

where {zai : i = 1, . . . , n(a)} is a set of unit vectors which are mutually orthogonal in the second index.

That is, zai is orthogonal to zaj if i ≠ j, but possibly is not orthogonal to zbi.

It is obvious where the von Neumann–Lueders measurements are located in this general scheme: they are the ones in
which 3 takes the special form

4.

Let us call this operator V a Lueders map. It is unitary; but actually, that is not very special here. From the same source
we have the theorem:

5. The map extends to a unitary operator U if and only if zai is a set of unit vectors which are mutually
orthogonal in the second index. The operator U can be decomposed as U = U′V, where U′ is unitary and V is
a Lueders map.

The class of measurement setups we are presently considering therefore all have the appearance of von
Neumann–Lueders measurements which have been allowed or made to evolve unitarily a bit beyond a ‘proper’ end
stage. This appearance may be a fiction; but the end would have been the same if that is what had happened. The
change to the state of the object system in this case is as follows:

6. If the initial state of the object system is , then its final state is , where and
.

But are these measurement setups all measurements in our sense, with only the object system state somewhat different
from what Lueders considered right? No, for the reduced state belonging to the apparatus is now not generally
diagonal in the basis of eigenstates of the pointer-observable, and so this class as a whole fails to meet our
metacriterion.
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4.6. Repeatable Measurements and Correlations
Von Neumann–Lueders measurements have two characteristics, not unrelated to each other, which played an
important role in von Neumann's thinking. One was that, at the end, the measured and pointer-observables are
strongly correlated with each other. Thus, in the simplest case the end state is:(1)

As we saw above, this means that, if we construct an apparatus which measures A ⊗ B but only registers agreement
(+) and disagreement (−), and apply it to the end state of the first measurement setup, we will get the (+) outcome with
certainty. Secondly, if we were to construct an apparatus which simply measures A again, or, if you like, A ⊗ I on the
total system X + Y starting in the end state of the first measurement, we will get the same outcome twice. This point
should be made precise, and that can be done in several ways. The first is again to think of ourselves as constructing a
further measurement apparatus which checks for agreement (+) and disagreement (−) between the first and secondA-
measurement outcomes. It will show (+) with certainty. The second, and more probative, way takes a little explanation.

It is convenient here to focus on the notion of instrument, which was originally introduced in the operational quantum
mechanics due in various forms to Davies, Ludwig, and Mielnik. In the measurement process the compound state
evolves in a way largely constrained by conditions pertaining to the reduced initial and final states:W changes toW′, let
us say, and initial object state T changes to T′. To characterize the latter change in a very general way, we define a
function called the instrument associated with this measurement process. I shall designate it J (which depends on A and
U):

For any initial state T of the object and any Borel set E, the function gives us J(T, E) which is the final state T′ of the
object, conditionalized on the proposition that the value of A is in E with certainty. (More precisely: conditionalized
on the subspace on which projects, the E eigenspace of A.)
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Many commonly discussed properties of measurement interactions are really best discussed in terms of the associated
instruments.

We must emphasize here the exact relation between T′ and J. If we know what T is and we know the value of J(T, E) for
all Borel sets E, then we can deduce what T′ is, and conversely. The instrument is at this point for us a merely formal
notion, whose interest lies in the uses to come.

To study repeatability, we ask what happens in sequential measurements, in which the system in state T is subjected to
an A-measurement, and at the end the same system (now in state T′) is subjected to the same measurement again. The
final state at the end of the two-stage process is characterized by the family of transformed conditionalized states:(2)

due to the successive applications of the same instrument. We now say that the measurement is repeatable if the second
stage made no difference to Born probabilities, i.e. if(3)

with as corollary, of course,(4)

for arbitrary T, E, F. We may equally say that the instrument is repeatable.

Obviously, not all measurement processes have this property. The class of measurements discussed by von Neumann
were said by him to be repeatable in this sense. The instrument J associated with the von Neumann–Lueders
measurement is easily characterized in view of our preceding discussion, as the function(5)

for state T and Borel sets E; and this is repeatable. For let J(T, E) = T′; the(6)
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Now if b = d, and it is the null operator which turns every vector into the zero vector if b ≠ d. So
where δ(d, b) = 1 if d = b and = 0 if d ≠ b, and we continue the calculation:

as was to be shown. Repeatability, emphasized by von Neumann, is therefore mathematically demonstrable for this
class of measurement interactions. The theory of measurement processes described within quantum mechanics already
entails that, if a von Neumann–Lueders measurement is twice repeated, the statistical predictions for outcomes are
exactly as for a single application.

But notice that the von Neumann–Lueders measurement was defined for an observable with discrete spectrum.
Ozawa (1984) also proved the following:

(7) An observable admits of a measurement (precisely: a measurement setup with a positive evolution operator)
which is repeatable if and only if the observable is discrete.

Thus, continuous quantities like position and momentum (unlike their arbitrarily finely discretized versions) do not
admit of repeatable measurement. (See especially the discussion in Lahti 1988.)

In the cited paper by Beltrametti et al. (1989), repeatability is studied in general, and in relation to strong correlations.
The general notion of a correlation coefficient is taken over from
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classical probability theory in a fairly straightforward way (see Beltrametti and Cassinelli 1981a, sects. 3.1 and 7.3). The
coefficient of correlation between two observables A and B in stateW is proportional to the expectation value of A ⊗

B inW minus the product of the expectation values of A in#W and B inW #. If it equals 1, the correlation is perfect,
and that is what we find in the end state of a von Neumann–Lueders measurement. Being interested in such perfect
correlation only here, for discrete observables A and B with corresponding eigenvalues, we can explain it quite simply:

(8) A and B are perfectly correlated in state V exactly if

Let us recall the outcome of a general measurement of a discrete observable A from the last section. Recall the
notation used:

(9) The map extends to a unitary operator U if and only if {zai} is a set of unit vectors which are
mutually orthogonal in the second index.

(10) If the initial state of the object system is , then its final state is , where and
.

We can now ask whether there is a perfect correlation in the total final state between the pointer-observable
eigenvalues on the one hand, and on the other, either the eigenvalues of the measured observables, or else the states z(a)
which we know to occur always in an orthogonal decomposition of the final object state. These questions are answered
by some revealing theorems:

(11) Given that the operator U is as in (9), then the projection operators Iz(a) and are perfectly correlated in the
total end state (for all eigenvalues a which did not receive an initial Born probability zero), if and only if {zai} is
an orthonormal set.

(12) Given that the operator U is as in (9), then the projection operators and are perfectly correlated in the
total end state (for all eigenvalues a which did
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not receive an initial Born probability zero), if and only if {zai} is an orthonormal set, with zai in the a-
eigenspace of A.

(13) In both cases, the reduced final state of the apparatus is a mixture of eigenstates of the pointer-observable.

Note that in case (12) there is no difference to speak of between that sort of measurement and a von
Neumann–Lueders measurement. In addition:

(14) A unitary measurement is of first kind, i.e. the Born probabilities for A are the same in the initial as in the final
object system state, if and only if the perfect correlation condition of (12) holds.

First kindness is of course a cruder version of repeatabilility, and is implied by repeatability.

As announced in the preceding section, we have therefore found that the class of von Neumann–Lueders
measurements looks practically exhaustive as far as measurements of discrete observables go.

4.7. Approximation to Measurement
There is a sense in which incompatible observables can be measured: they can be measured jointly but crudely. Such a
crude measurement is however just an ordinary measurement of compatible observables.

If all eigenspaces of A are subspaces of eigenspaces of A′, let us call A′ a coarsening of A. What I just called a crude
measurement is the measurement of a coarsening. It is easily seen that A′ might well be a coarsening of two distinct
and incompatible observables. And more generally, A′ may belong to a family of mutually compatible coarsenings of
incompatible observables. Finally, in this derivative sense any two incompatible observables are jointly crudely
measurable because the identity I is a coarsening of every observable.

This subject has more interesting aspects, of course; the Heisenberg uncertainty relations pertain to how much
coarsening is necessary for crude joint measurement. We should also insist that we are not just playing with
terminology; that
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takes value 1 can also be expressed by saying that A takes values in E, or thatA takes ‘unsharp’ value E. Undoubtedly,
measurement of gives us some information about the initial object system state and pertaining to A.

But are all approximate measurements in practice to be construed this way? If I take a ruler and measure the table edge
in centimetres, recording results to one significant decimal, even requirement (M1) is not fulfilled. This example we can
plausibly handle as above, I think: the results I write down in metres, recording one significant decimal, do satisfy (M1).
We may even think of this as a von Neumann measurement. But correlations are treacherous. There is the table, there
is the ruler, there is the person who records. We expect something like this to happen:

But what if this person has a hangover, and writes down ‘1.2’? This is an extreme case, but in practice there are such
errors.16 It is exactly the part of statistics developed in the eighteenth and nineteenth centuries for this purpose which
will translate a distribution in a finite set of readings into a probability distribution in which we have greater confidence.
This latter statistic is what we take to be the proper summary of outcomes—that is, the place where we should see
whether (M1) is satisfied. But this does not remove the problem of principle.

With the possibility of such errors, we cannot say that the Born Rule predicts the measurement outcomes. For in the
case in question, the rule would say: given that a measurement is performed, the outcome 1.1 occurs with certainty.
Since therefore the hangover scenario is not a measurement, do we have any prediction about what will happen?Not via
the Born Rule! But who would doubt that we do use the theory to make predictions for such imperfect attempts at
measurement?

This is the problem of principle: (i) with a strict criterion for measurement, we end up with no predictions for the
processes we usually refer to as measurement, but (ii) with a permissive criterion for measurement, we shall imply that
incompatible observables can be jointly measured. That is quite a dilemma.
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Here is another way to pose it. In theoretical discussions of measurement we usually assume that the
object + apparatus is an isolated system or, in Zurek's version, that the environment leaves the apparatus
undisturbed in relevant respects. In practice, this will usually not be so. But then, since the only probabilities for events
that the theory itself gives us came by Born's Rule, it follows that it usually makes no predictions at all. This is an
apparent consequence which we cannot accept.

It is becoming increasingly difficult here to keep interpretation at bay. Let me advance an answer. What we discuss
theoretically are models. It may well be that nature contains phenomena which fit some of these models exactly. But
the phenomena we refer to do not typically fit exactly the models we construct. In the possible worlds in which
quantum theory is true—that is to say, in its theoretical models—Born's Rule gives the probabilities of pointer-
observable values for processes which fall in specific classes of measurements, and never for joint measurements of
incompatible observables. Interpretation of the theory must make sense of these possible worlds. Acceptance of the
theory, however—and now I speak as an empiricist—involves the decision to let the theory function as expert
predictor (probability assigner) for the phenomena as we classify them. We can let it function that way to our chosen
degree of approximation, with our chosen confidence intervals, and so forth. So in use the Born Rule is extended,
modulo such qualifications, even to instruments subject to earth tremors and observers with hangovers. This answer is
not open, I think, to any who want to insist that we can let quantum-mechanical probabilities guide our own
expectations only on the basis of the belief that a certain quantum-mechanical statement (summed up as: ‘this process is
a measurement’) is true.17

5. Preparation of State
Von Neumann's interpretation of measurement, which we shall study in the next chapter, entailed that measurements
are also state preparations. The system X on which we measure observable A emerges in an eigenstate of A. This
assertion is an
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interpretation; it is not implied by anything we have found out about measurement so far. Recall from Section 3 above
that attributing a mixture of eigenstates of A to X is not the same as saying that X is really in one of those pure states
though we don't know which! But however all this may be (and we shall return to it at length), we do face another
foundational question here: Just what sorts of interactions could be preparations of state? Can there be state
preparation at all? Is there any process that simply prepares an ensemble of systems in state |a 〉?

This cannot just be a matter of interpretation. What we are asking for is the possibility of a state preparation machine,
call it M, with groundstate u. One suggestion could be that, if we couple it to a system X in state x, we have the
evolution

Hence, if y = z + z⊥ with z ɛ S and z⊥ in S⊥, then u ⊗ y → u1 ⊗ z. This process will steer system X either into a state in
subspace S or else into the null vector, which represents no physical state at all (destruction).

An intuitive example would be a Stern–Gerlach apparatus with two exits (for spin-up, spin-down), and one of the exits
blocked by an absorbing wall.

But if this process is really a quantum-mechanical process, then it must be governed by a unitary evolution operator.
Suppose for simplicity that X just has a two-dimensional Hilbert space with S = [x+] and S⊥ = [x−]. Then the process is
governed by operator U:

To be unitary, we require of U that (Uy · Uz) = y · z, i.e. that it preserves inner products. We calculate first:

which looks fine. But now let U act on the superpositions in the following inner product:
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Calculating the dot product of what U turns these two vectors into, we find:

Since b and d appear in the first equation, are unconstrained, and do not appear in the second, the two results will in
general disagree. Therefore U is not unitary.

It follows now that elementary quantum theory by itself denies the possibility of a state preparation process in the
sense suggested. We need, or so it seems, a little miracle: something like von Neumann's Projection Postulate, which
‘really destroys’ selected components in a superposition. To add such a principle is to deny universal validity to
Schroedinger's equation.

There are however several options. We can introduce the little miracle, and leave it unexplained. We can be more
sophisticated, and note that in quantum theory, with superselection rules, there is a destruction of those components in
a superposition which lie outside the coherent subspaces. That gives us state preparation processes—but note well that
it works only when there are relevant superselection rules. That is certainly not true throughout, and so it seems that at
least many sorts of states might not allow this sort of preparation.

Thirdly, we can say that, in the sense needed, state preparation is possible even if Schroedinger's equation has unrestricted
validity. Of course, that sense cannot be the ‘strict’ sense thought up above. Yet again, there are several alternatives.
One is to add some constraint to those which define repeatable measurement, but of the same general sort, to define
‘preparatory measurement’ (see e.g. Lahti 1988). A second alternative is to exploit infinite dimensionality. I shall now
show that, on the general empiricist view adopted here, to exploit infinity is both helpful and all right. For let us
suppose we have the above
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machine M with its groundstate u, but let {ui} be a basis of its Hilbert space HM. We now consider two cases, first the
one in which the Hilbert spaces are infinite-dimensional, and then the finite-dimensional case. We shall observe first of
all that the impossibility proof above for strict state preparation does not generalize to the infinite-dimensional case.
Then we shall see how the result can be carried over, in a sense, to the case of finite dimension.

First, then, let object system X have Hilbert space H of same dimension as HM, and assume this is infinite.H has basis
{xj}, and we are asked to steer X into subspace [xj: j ≥ k] = Sk+. Let operator U be such that

This can be a unitary operator; we showed this for k = 0 when we first discussed measurement, and this case is not
essentially different. (To help the imagination, reflect on the fact that V defined by Vxj = xj+1 is a unitary operator in
the infinite-dimensional case, a point which often appears in textbook exercises.) If the dimensionality were finite,
however, the operator U could not be unitary; but here we assume it is infinite. Now notice that

and the reduced state for X has no terms xj for j < k. Therefore this reduced state places X entirely in the subspace Sk+.

What if X has a finite-dimensional Hilbert space? The empiricist approach adopted in Chapters 4 and 5 to the subject
as a whole gives no objective status to this supposition. The phenomena involving X may require a Hilbert space of
dimension no less than a certain number for their representation. But whatever can be represented in a given Hilbert
space, H can also be represented in a spaceH′ of higher dimension, provided only H′ has a subspace isomorphic to the
smaller space. Since the empirical adequacy of the model requires only that all the relevant phenomena can be
represented in it, there is no objective upper bound to the dimensionality of ‘the right’ Hilbert space.
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To apply this, let us go back to the two-dimensional case in which H = [x+, x−]. We now choose infinite-dimensional
Hilbert space H′ with basis {xj}, and we identify

These are orthogonal as required, and if we now let U and u be as in the second-last preceding paragraph, we see that

which is orthogonal to all states of form u′ ⊗ x−. Thus, x− is not even possible relative to the new state of X found by
reduction at the end of this process. It has disappeared entirely.

Of course, if we conclude that a given system X can undergo such a process, we cannot also claim that all phenomena
pertaining to X can be represented in a finite dimensional-Hilbert space.
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Part IV Questions of Interpretation



The preceding chapters admittedly included some explicit though modest attempts at interpretation. Throughout, I
took a theory to consist essentially in the family of models it provides for the representation of phenomena. I argued
that certain sorts of phenomena logically require models at odds with determinism or even causality, at least in the
strong sense of Common Cause explanation. But I also argued that no departures are needed from classical logic or
probability theory. None of this is entirely uncontroversial. But there are questions of interpretation that go well
beyond all this.

The three focal questions I shall address are: What is really going on in measurement? Is the quantum-mechanical
description of nature incomplete? What is the identity of identical particles? In my opinion there is likely to be more
than one tenable answer. Some I shall discuss critically; perhaps none is as yet free of all intuitive difficulties. I shall
argue that diversity of interpretation does not entail lack of understanding—perhaps the contrary. But I shall advocate
a specific approach to these questions: that of the modal interpretation or, more specifically, of what I have elsewhere
called the Copenhagen variant of the modal interpretation.



8 Critique of the Standard Interpretation

When von Neumann codified the mathematical foundations of quantum mechanics in 1935, he also gave it an
interpretation. Undoubtedly, he took that interpretation to be implicit in scientific practice. If there is such a thing as
the mainstream understanding of the theory during the fifty years that followed this work, it is von Neumann's. As I
shall try to show, it involved two principles, one tacit and one explicit. The first is that all quantum-mechanical
description can be given in terms of state-attributions; the second his famous Projection Postulate, the ‘acausal’ state
transition in measurement. Our first task will be to enquire how the two principles are related to each other, and
whether they are forced on us by the theory.

1. What Is an Interpretation?
The interpretation of quantum mechanics is a lively philosophical issue, and controversial. Stances on this issue
included Einstein's realism, Bohr's and Heisenberg's versions of the Copenhagen interpretation, von Neumann's
postulate of ‘acausal’ collapse of the wave function, and the ‘ensemble’ interpretation of states. These views did not
constitute specific, rigorously developed interpretations, such as we now have (notably, those which emerged in the
detailed foundational work of Mittelstaedt, and of Ludwig; the quantum-logical interpretation developed by Putnam,
Bub, Demopoulis, Friedman, and Stairs; the ‘operational’ theory of theories due to Foulis and Randall; the
‘perspectival’ interpretation of Kochen; and the ‘modal’ interpretation which I shall elaborate below). To understand
such answers, we need to understand the question. So we must first ask: what is an interpretation of a theory? And this
question in turn must be preceded by: what is a theory?



In Chapter 1 we saw that there are a number of answers to this latter question. According to the semantic view, to
present a theory is to present a family of models. This family may be described in many ways, by means of different
statements in different languages, and no linguistic formulation has any privileged status. Specifically, no importance
attaches as such to axiomatization, and a theory may not even be axiomatizable in any non-trivial sense.

There are two important relations that a theory may have to reality. The first is truth: this means that one of the models
is an exact copy of reality: each part or element of the model represents something real, and those real things are
related in just the way that the model represents. The second is empirical adequacy: at least one of the models is such that
all actual observable phenomena are correctly represented in it. This means also of course that there are two distinct,
important forms of (unqualified) assent to a theory. The first is belief that it is true, and the second, mere belief that it
is empirically adequate.

Ideally, belief presupposes understanding. This is true even of the mere belief that a theory is true in certain respects
only. Hence we come to the question of interpretation: Under what conditions is this theory true? What does it say the world is
like? These two questions are the same. The reason they are often difficult to answer is, in my opinion, that scientific
discussion is so thoroughly focused on the question of empirical adequacy alone. As a result, philosophers who read
scientific discussions of theories, even at a foundational level, tend to be disappointed and to accuse scientists of
positivism and worse. The question of interpretation—what would it be like for this theory to be true, and how could
the world possibly be the way this theory says it is?—does indeed go beyond almost all discussions in science. But it is
also broached by scientists, just because the theory about the phenomena can rarely be well understood except as part
of what it says the world as a whole is like.

But what answer could we give to such a question? Suppose I attempt to answer the question: what is the world like
according to quantum mechanics? The question asks for the content of the theory, but an answer will strive for a certain
completeness, and
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so almost inevitably will extrapolate. So, almost inevitably, my answer will be an interpretation of that theory. You could
then classify my answer in various ways, by asserting for example that it disagrees with Bohr, Einstein, or von Neumann
at certain points. You could also dispute it, by pointing to some aspect of quantum mechanics which my answer leaves
obscure, or fails to take into account. Even worse, you could accuse it of, in effect, producing a different theory by
showing that quantum mechanics, under my interpretation, makes predictions different from or in addition to those of
the theory itself.

Obviously, attempts to interpret are very much like, if not the same thing as, attempts to introduce hidden
variables—to construct a hidden variable (h.v.) theory that subsumes quantum mechanics. The difference is that h.v.
theorists might welcome the result that their construction yields different predictions from standard quantum
mechanics. In that case, we definitely cannot speak of an ‘interpretation’ of quantum mechanics, but have before us an
alternative theory, which, if successful, (a) agrees with quantum mechanics within limits of experimental error on
previously found results, and (b) gives true predictions at variance with those of quantum mechanics for new
experiments. This is the only sort of h.v. theory that could excite scientists as such very much, because it concerns
empirical success. An h.v. interpretation, on the other hand, would be one that yields exactly the same predictions as
quantum mechanics itself. In that case, the virtue that could be claimed would be this: the introduced h.v. are, as
Feyerabend put it, ‘empirically superfluous’, but they show how the world could be the way quantum mechanics
describes.

To put it paradoxically, any adequate interpretation must be an h.v. interpretation with empirically superfluous hidden
variables. I mean this as follows. Suppose we agree that there can, in logical principle, be more than one adequate
interpretation of a theory. Then it follows at once that interpretations go beyond the theory; the theory + interpretation
is logically stronger than the theory itself. (For how could there be differences between views, all of which accept the
theory, unless they vary in what they add to it?) So an interpretation introduces factors not found in the theory
originally—and what else does ‘hidden variables’ mean? The empirical superfluousness is required to
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ensure that no new or different predictions are forthcoming—else we have an alternative theory rather than an
interpretation.

2. Two Forms of Indeterminism
Born's interpretation of the quantum-mechanical state, which consists in his rule for calculation of probabilities,
became so thoroughly accepted that it must be counted part of the theory itself. At the time, it was put forward in
opposition to, for example, Schroedinger's attempt to think of the state as a wave in a real medium as opposed to a
‘probability wave’ (i.e. a composite of probability functions which has some of the mathematical characteristics of a
wave). But later questions of interpretation are always about how one might go beyond Born. These questions arise, in
fact, as soon as we try to understand what Born's Rule says:

Born:The probability that a measurement of yes—no observable P will yield value 1, if made in state W, equals
Tr(WP).

This statement gives us the probability of the occurrence of an event, conditional on the occurrence of a certain
measurement process in a given state. The indeterminism of quantum mechanics consists in the first instance in the fact
that this probability may be neither 0 nor 1, even if the attribution of stateW reflects no ‘mere’ ignorance on our part.

But what is this event? During the measurement process we see an initial situation change into a final situation. The
initial situation can be analysed into two parts: the system of interest is in state W, and the environment (presence of
and interaction with the measuring apparatus in its groundstate) has a certain character—call it IN. In the final
situation, this system's state will have evolved into, say, W′, and the environment will have a new character—call it
OUT—which includes e.g. that the pointer on the apparatus now sits at the number 1. So we have a transition:

This transition could be indeterministic in two ways. Recall that
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we have a probability for OUT. Another possible transition—one that could have occurred but did not—may be
described as

and it too had a probability.

Indeterminism, Form 1 (indeterministic output): Given the initial situation (IN, W), the final state W′ is completely
determined (soW″ =W′), and the probability we are given is really the probability of character OUT, given that
the system is then in state W′.
Indeterminism, Form 2 (indeterministic state transition): Given the final state, the outcome character is completely
determined (so if OUT ≠ OUT then W′ ≠ W″), and the probability we are given is the probability of the
transition from state W to W′, when the initial situation has character IN.

There is a third possible form, with the final state and outcome character more independent of each other, but then
several probabilities are involved. Born gave us only one probability, so it would seem that we must restrict ourselves
to these two forms. Now, which of these correctly typifies quantum mechanics?

This is a question of interpretation, and a number of different answers have been given.1 Some fall very squarely in
form 1 and some in form 2. The latter includes von Neumann's famous acausal state transition (Projection Postulate).
The term ‘collapse of the wave packet’ usually refers to this, though sometimes it is used loosely to refer to whatever
transition occurred from the possible to the actual—as any indeterministic theory must say there is. ‘No-collapse’
interpretations, such as the modal interpretation to be proposed below, take form 1

3. What Happens in Measurement? Von Neumann's Answer
The interpretation of quantum mechanics must begin with a discussion of measurement. The reason is twofold: like all
empirical theories, it is held accountable with respect to the
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phenomena reported as measurement outcomes; but it also purports to be the most basic physical theory, and hence
covers the processes designated as measurement interactions. So we face, among other issues, a serious consistency
problem. The first and basic principle of interpretation, Born's Rule, is stated in terms of measurement—and
measurement is one of the processes in the theory's domain of application. The threat of inconsistency, or of a vicious
circle, is therefore very real.

Most of the quantum-theoretical theory of measurement belongs to the mathematical foundations. From the preceding
chapter I shall summarize only briefly the characteristics of von Neumann measurements, on which von Neumann's
interpretation focuses. Let us take a system X in pure stateW = Ix, where x is a unit vector in the appropriate Hilbert
spaceHX. Next, for the environment we take a measurement apparatus Y, in pure groundstate Iy (y also a vector, in the
state space for Y), and assume that X + Y in the initial situation is in pure tensor product state Ix ⊗ y. Now IN is specified
by saying that X + Y is an isolated system in pure state x ⊗ y. An observable is measured: let us call itA, and assume it
to have a basis of eigenvectors |ai〉 in Hx. There is a ‘pointer-reading’ observable: let us call it B and assume it to have
associated basis of eigenvectors |bi〉 in HY. And the measuring process, which is the evolution of this isolated system
during a certain interval, has character(S1)

and therefore, if x = ∑ci|ai〉, also(S2)

Now if IN is the character described by saying that, initially, isolated compound system X + Y is in state ϕ = x ⊗ y,
then OUT is similarly described by the information that, at the final time, X + Y is in state ϕt = ∑ci |ai > ⊗|bi 〉. We
recall that, by reduction of the density matrix, this implies that(a)

(b)
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but that (a) and (b) together do not give all the information present in the full assertion:(c)

We must also emphasize here, as we did in the preceding chapter, that this description of measurement is not complete
until we add that the process is not a measurement of A if it merely ‘accidentally’ takes the form (S2). The real
condition is that the Hamiltonian (more generally, the group of evolution operators) which governs this process is such
as to guarantee this form for groundstate y with any initial state x of the object. Only by reading our description in this
strong sense is the measured observable A uniquely identifiable.2 So far, the purely quantum-theoretical description.

But how shall we connect this with Born's Rule? There will be a connection only if the actual outcome of the
measurement is included in the description of what happens at the end. We should be able to say that there is (also?)
some true assertion of form:

(d) Pointer-reading observable B has value bk

so this must at least be consistent with (a)-(c). How shall we construe (d)?

Von Neumann saw this problem very clearly, and in answering it he could reasonably think that he merely formalized
what the developers of the theory had been saying informally. Indeed, if we look for instance at the famous
Einstein—Podolsky—Rosen (EPR) paper, we find the authors writing in just the way von Neumann could have taken
as paradigmatic—and most of the replies to EPR went along with it. Von Neumann formulated (even if he did not
originate) the following answer to the question of how we shall construe an observable having a value:

(e) Von Neumann's interpretation rule: An observable B pertaining to system Y has value b if and only if Y is in a
corresponding eigenstate of B.

That means, Y is in a stateW such that . So far, the only interpretation we placed on this was Born's: in such a
state, the probability of a measurement of B having outcome b
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equals 1. Can von Neumann consistently add that B has value b under exactly these conditions?

One possible objection is that a state is nothing more than a cluster of probability functions, a sort of mathematical
summary of probabilities of measurement outcomes. If we say that, we land in an infinite regress. How can we equate
the meaning of ‘B has value b’ with ‘the probability that a measurement of B would yield value b equals 1’? The
assertion that the measurement does yield value b, which is itself equivalent to the statement that e.g. pointer-observable
C has value c, comes then to mean that another measurement would have outcome c with probability 1, and so on ad
infinitum. If actual ≠ possible, we cannot everywhere equate the meaning of statements about what is the case with
other ones that are about what would be if.3 But I have tried from the beginning (since I knew this point was coming) to
speak of states in a way that allows (for the possibility) that a state merely determines, and is not identical with, the
corresponding cluster of conditional probabilities. As analogue, imagine FBI or Immigration Department files:
everyone is there represented by some vital statistic (birthplace and date, social security number, etc.), but of course the
person is only identifiable through, and is not identical with, these vital statistics. We may conclude that von
Neumann's interpretation rule, although it is not logically forced on us, is a consistent addition.

But we have a second problem. Suppose that, in the measurement process described by (a)–(c), we have a non-trivial
superposition (not every coefficient ck equals 0 or 1). Then if the apparatus Y is completely described at the end of
measurement by the reduced stateWY, we note that, since for any index i, von Neumann's interpretation rule
asserts that B does not have any value! That contradicts (d), the very assertion we are trying to construe.

Therefore von Neumann adds that the assertion that Y is in state WY is at best incomplete. Indeed, he asserts that

(f) At the end of the measurement there is some index k such that X is in state |ak 〉 and Y in state |bk 〉

This is consistent with (a) and (b) on one interpretation of mixed states: the ignorance interpretation. And that
interpretation appears to be correct in many circumstances—but is problematic
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exactly when the mixed states are arrived at by reduction from a compound system in a pure state. Thus the real
question is: is (f) consistent with (c)—the attribution of ϕt to X + Y?

Von Neumann regarded the two as not consistent. Hence he added his famous Projection Postulate:4

(g) At the end of measurement process described by (S2) there is a further transition, an acausal transition of state ϕt

to some state |ak 〉 ⊗ |bk 〉.
(h) The transition from ϕt to |ak 〉 ⊗ |bk 〉 has probability , i.e. the Born probability of the A-measurement

outcome ak for initial state x, i.e. the squared length of the projection of ϕt on the corresponding eigenspace.

The acausal transition is also commonly called a collapse of the wave packet, a term which derived from Schroedinger's
wave mechanics formalism. Von Neumann did not ask how this transition occurs, restricting himself to questions of
consistency. He added two arguments to support his interpretation. One is to the effect that the Projection Postulate
adds no new empirical predictions. The other is to the conclusion that the phenomena of immediately repeated
measurement require the Projection Postulate.5 There is a certain tension between these two: if the phenomena
demanded this Postulate, then there would have to be an inadequacy with respect to empirical predictions without it!
Hence it seems that, if either argument is successful, the other must be wrong.

Before looking at von Neumann's defence of his Postulate, let us note that he interprets quantum mechanics as
exhibiting indeterminism in form 2 (indeterministic state transition). Principle (e), which I call von Neumann's
interpretation rule, insists that what the state is totally determines the truth value of any attribution of values to
observables. Accordingly, the indeterminism noticed in Born's Rule has to consist in an indeterministic state transition.
Once (e) is given, one must postulate an acausal transition of state.6

In this section, I have outlined only one answer to the questions about measurement. It is clear that alternatives must
begin at (e), where von Neumann's interpretation rule augments Born's. If we agree with von Neumann there, the next
crossroads come, as it were, after the Projection Postulate. That is, once we agree with (e), we can only try to show that
the
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‘acausal transition’—so called because it falls outside the process (S2) described by Schroedinger's equation—arises in
some intelligible fashion, and does not lead either to inconsistency or to new, false empirical predictions.

Hence I shall turn first to von Neumann's defence, then to other defences of the Projection Postulate, which appeal to
the idea of special ‘macro-observables’ or the macro—micro level distinction. In the next chapter I shall propose an
alternative to von Neumann's interpretation rule.

4.Von Neumann's First Defence: Consistency of Measurement7

Von Neumann had two defences for his interpretation of measurement. The problem with them is that one makes the
Projection Postulate empirically vacuous—hence purely a matter of interpretation—but the other gives it empirical
import. This ambiguity in von Neumann's own thinking (are we merely interpreting, or adding a postulate demanded
by the phenomena?) has plagued much subsequent discussion of the ‘collapse of wave packet’.

Imagine that the complex system X + Y of the preceding section, which was isolated (say in a hermetically sealed box
out in space), is now looked at by an observer Z. Clearly, this breaks the isolation—for instance, Z opens the box and
looks to see what the pointer on apparatus Y indicates. This too is a measurement.

As von Neumann noted, we can retrospectively analyse the situation in two ways. We can regard (X + Y) as the subject
on which a measurement is performed by interaction with Z. The ‘pointer’ on Z will now indicate the value zk

correlated with value (ak;bk) of observable A⊗ B on X + Y for some index k. Alternatively, we can regard (Y + Z) as
the apparatus, with X as the subject of measurement. If C is the pointer-reading observable on Z, then B ⊗ C is the
pointer-reading observable on (Y + Z). However—here is the essence of von Neumann's consistency argument—the
probability is in each case for the kth outcome. However we divide up the world here, we make essentially the same
predictions.
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The argument was clarified by Groenewold (1952, 1962) to show that, despite the talk about observables, no subjective
element need have been introduced. Groenewold asks us to consider a system X at ta in state x, subjected to a
measurement by apparatus M1 = Y in interval (ta, t) as in our schematic discussion above, and then to another
measurement of observable C by apparatus M2 on X during interval (t, tb). Then we calculate the probabilities of
outcomes of the second measurement in two ways:

(i) assuming that at t no acausal transition occurs, but the measurement by M2 is made on X in state WX;
(ii) assuming that at t, in accordance with the Projection Postulate, X transits to pure state |ak 〉 with probability

, and the measurement by M2 is made on X in the resultant state.

Again, it is easy to see that the probabilities of outcomes for the second measurement are the same in both cases,
because . We can go further and introduce a third way of describing the situation:

(iii) assuming that M2 measures observable C ⊗ I on X ⊗ M1 in state Øt at t.

And again, we must arrive at the same probabilities of second-measurement outcomes, just becauseWX is by definition
the state for which probabilities for any observable C are the same as the probabilities for C ⊗ I on state Øt.

Thus we have a complete consistency of predictions, for measurements of observables pertaining to the system X,
regardless of where we draw the line demarcating observed system from observing environment.

But, as Margenau (1936, 1950, 1963) clearly pointed out, this consistency proof is also an empirical redundancy proof.
Since predictions of measurement outcomes for, say, assumptions (i) and (ii) are the same, the two situations described
cannot be empirically distinguished by measurements performed on system X alone. Margenau concluded, therefore,
that rejection of the Projection Postulate does not rob quantum mechanics of any predictive power. This conclusion
must be qualified, as we shall see below.8
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If we grant the point, then the retort would have to be that what is robbed is not prediction but explanation or
interpretation—what does it mean to say that the measurement had a certain outcome? And indeed, as I argued above,
the Projection Postulate is practically forced on us by von Neumann's response to the request for interpretation. Thus
it focuses scrutiny on von Neumann's interpretation rule. Margenau himself saw this very well, and stated explicitly
that, once the Projection Postulate is rejected, we face anew the question: what happens in a measurement?

A final word about the question of whether the addition of the Projection Postulate makes new predictions, going
beyond the Born Rule. As David Albert has emphatically pointed out, there certainly are observables for which the
predictions are different, depending on whether or not the acausal transition has occurred.9 If the transition is from ϕt

to |ak 〉 ⊗ |bk 〉, then a measurement of the observable represented by the projection on subspace [ϕt] is certain to
yield value 1 before the transition, and not afterward. Even if we do not know exactly when the transition occurs, we
can surely carry out many measurements, whose outcomes will support or disconfirm this prediction.

That is a telling point in this context. However, we shall see below in Section 8 that the best elaboration of the
Projection Postulate story involves exactly the denial that all Hermitean operators represent observables. Albert's main
point, that there must be testable predictions in this sort of interpretation, may stand nevertheless, since we shall also
see in Section 8 that this denial too appears to be empirically testable.

5.Von Neumann's Second Defence: Repeatable Measurement
The second defence listed above, concerning immediately repeated measurements, may well have been more influential
than the first. If the wave packet does not collapse—if the state-vector is not projected into an eigenstate of the
relevant observable—why should the immediate repetition of the same measurement yield the same result? It does; so
surely(?) the state of the
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object system must have been changed from one in which the outcome was uncertain to one in which it was certain?
Yet this defence does much more badly than the first, when properly scrutinized.

There have been two episodes in the discussion of this defence. The first belongs roughly with the discussions in the
preceding section. It consists of von Neumann's analysis of the Compton—Simon effect, and responses essentially
given in Margenau's and Groenewold's papers discussed above. The second episode was the purely quantum-
mechanical analysis of measurement processes and the conditions under which they have the characteristic of
repeatability demanded by von Neumann. I will take up each in turn.

Von Neumann's second defence may be read either as resting on a challenge to explain, or as claiming a predictive
success. On the second reading, it says: unless the Projection Postulate is added, or made part of the interpretation, the
interpreted theory fails to predict this salient fact of repeatability about repeated measurements. On this reading, then,
von Neumann's Project Postulate has empirical import over and above the theory as interpreted by his interpretation
rule. Let us see what we can make of this.

The sort of illustration that immediately occurs to one (and is often enough given) actually does not fit. Suppose for
example that a beam of unpolarized light arrives at a vertical polarization filter. The photons go through with
probability , so the beam intensity is reduced from its initial value r to r/2. If we have two such filters, close together,
they still reduce the beam intensity only by a factor of . Does that not show the correctness of above reasoning?

No, for no measurement has been made twice. What observable plays the role of pointer-reading observable here?
The answer is none, because no detection of the photons was described. We could put photographic plates behind each
filter, but that would destroy the experiment because the photons would be absorbed before they can reach the second
filter; similarly if we use charged particles and a magnetic field. If we detect the presence of the particle in one beam,
the detection device will disturb the very features of the particle that help to determine its reaction to the second field.
This point will be
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only a minor quibble, however, if we can formulate a reasonable design for repeated measurements.

So von Neumann looked for a more sophisticated method in which the first measurement is guaranteed not to disturb
what the second measurement measures, and yet the whole setup counts as a twice-repeated measurement of a single
observable (von Neumann 1955, 212–14). Is this possible?

In an experiment by Compton and Simon, light is scattered by electrons and the scattered light and scattered electrons
are intercepted and have their energy and momentum measured. It was concluded from this experiment that the
mechanical laws of collision hold. But von Neumann reformulates the conclusion as follows. If we assume that the
laws of collision are valid, the position and central line of the collision may be calculated from the measurement of the
path of either the light quantum or the electron after the collision. It is an empirical fact that the two calculations always
agree. But the two measurements do not occur simultaneously; the measurement apparatus may be arranged so that
either process may be observed first. So we have two measurements,M1 andM2, the second after the first; beforehand,
their outcome is only statistically determined, but afterM1, the outcome ofM2 may be inferred. From this, plus the fact
that M1 and M2 are in effect (i.e. via calculation) measurements of the same observable (say, a coordinate of the place of
collision or of the direction of the central line), von Neumann infers that, if an observable is measured twice in
succession, the second measurement ‘is constrained to give a result which agrees with that of the first’. And since the
outcome of the second measurement can be predicted with certainty, von Neumann infers that, after the first
measurement, the measured system must be in an eigenstate of that observable.10

But what we have here is two measurements on distinct objects—an electron and a photon—which have interacted
and whose states have become entangled. That is, we have a compound system X + Y which has state ϕt = Σci|ai 〉 ⊗

|bi 〉. In that case it is certainly true that, if we measure A ⊗ B, we must get a pair of values (ai; bj) such that i = j.
What we calculate from them is not much to the point. It is only in the sense of a paper-and-pencil operation afterward
that one observable is
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measured twice on the same (complex) system. This does not support the idea that the (component) system, subject
directly to measurement, transits into some eigenstate.

Indeed, Groenewold's discussion already shows us exactly what we should say about immediately repeated
measurements. In the discussion of his version of the consistency argument, let M1 = M2, so the same observable is
measured twice over. We are not allowed to destroy the isolation, or the immediate succession, by interfering with any
kind of look at the midpoint, time t. In the absence of such a look at the midpoint, however, we can check only the
outcome of the second measurement. But, as he showed, our prediction of that outcome is the same, whether or not
we suppose that an acausal transition occurred at time t. The second argument therefore has a valid case which
establishes no more than the first—consistency—and derives its intuitive appeal from a mistaken picture that allows
‘free looks’ in the middle of an isolated process, without disturbance.

To the second episode in this discussion was the recent formal development of the quantum theory of measurement.
It is now possible to demonstrate that repeated measurement does not provide a telling criterion for interpretation.
Instead, it turns out that the issues concerning repeatability are already settled on the level of quantum theory itself,
before we enter upon interpretation. In the measurement process we see both a change of state in the total system
(object + apparatus) and, derivatively, changes of state—assigned by reduction—in each component. We have here
two sorts of mappings—evolution and reduction—and the natural question to ask is (as mathematicians put it): can
the diagram be completed? (This refers to Fig. 8.1.) To complete the diagram, an arrow also marked ‘evolution’ should
be drawn along the bottom, to go from initial to final object state. That arrow purports to represent a well-defined
function—and indeed, that function exists. The function J so described, which still depends on the measured
observable A and the evolution operator U of the total system, because that derivative evolution does so, is the
instrument of this measurement.

Imagine a setup in which the same measurement is executed twice in immediate succession. We must insist that the
total process be isolated—no interference from outside, not even a
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Fig. 8.1

quick look or photograph is allowed—and we must assume that the measurement apparatus resets itself (to its
groundstate) without any effect on the object. The holism of quantum mechanics now makes it impossible even to
think that the order in this two-stage procedure is immaterial—at least, not in general. But if the total two-stage
derivative evolution

is in fact no different, regardless of the order, and gives indeed the same predictions as the one-stage procedure would
to someone interested in whether the outcome value is in both E and F, that is if

then we call the measurement (and the instrument) repeatable. What this implies is that, if we were to measure further
whether there was value agreement between the first final state and the second final state with respect to the pointer-
observable, then we would be sure to get a yes answer.

Not all measurement processes need have this property. The class of measurements discussed by von Neumann were
said by him to be repeatable in this sense, and he explained their repeatability by means of the Projection Postulate. For
that postulate said that the system really emerged in an eigenstate of the measured observable, and therefore the
second stage had no effect at all. So the burning question for us is: is that explanation really needed? In the preceding
chapter we already found
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that the answer is no. The instrument associated with the above-described von Neumann—Lueders measurement is
repeatable.

We have now come to the conclusion that neither the Projection Postulate nor any other principle of interpretation is
needed to explain repeatability. The theory of measurement processes described within quantum mechanics already
entails that, if a von Neumann—Lueders measurement is twice repeated, the statistical predictions for outcomes are
exactly as for a single application.

Proofs and Illustrations
Margenau was of course quite right to point out that a particle subjected to measurement is usually absorbed at the
end. This makes repetition of a measurement on the same particle rather difficult. But R. H. Dicke (1989) has devised
a method of sequential measurement in which the information about what happens in the intermediate stages is
encoded, preserved, and collected only at the end of the whole sequence. This is a process which, while remaining
isolated, consists of a series of measurement interactions with the results encoded, stored, and eventually inspected
together—though of course in the only sense in which that is allowed by quantum theory, and which does not
necessarily fit classical requirements.

The technique is illustrated with the design of an experiment in which a photon is subjected to a sequence of
measurement of circular polarization. The energy of the photon itself serves as ‘apparatus register’ on which the
measurement results are encoded, and which can be ‘read’ at the end. I shall here just sketch the general design. The
observable S to be measured has eigenvectors |k〉, k = ±1. The apparatus has state function y(q) with groundstate y0.
The unitary operator U which governs the evolution

is due to the interaction Hamiltonian Hint = − CSq/δ t, which is the dominant term in the total Hamiltonian
Happ + Hobj + Hint. Thus,
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so that, in the above equation, yk = y0 exp[iCkq/ħ]. Now the variable p = (ħ/i)(δ/δq) conjugate to q can serve as
‘pointer’ or ‘register’. Its eigenvalues are pk = Ck.

In the sequential measurement, the constant C is replaced by C2n for the nth measurement, and Happ is a function of p.
The former change allows the sequence of results Sk, Sj, . . . to be encoded as a sum in the ‘register’, and the latter
makes p a constant of the motion in intervals between the measurements, so that the record is stable.

The complete evolution of the compound state ϕ = Σck|k〉 ⊗ y0 is into the final state

where Un = exp[i2nCSq/ħ] and the Hamiltonian time displacement T = exp[−i(Hobj + Happ)(Δt/ħ)] operates during the
intervals (assumed equal here) between the measurement stages. There are 2n possible histories superposed in the total
process, correlated with the terminal values

of the variable p. In other words, the final state ϕ′ has the form of a superposition of tensor product states for the
compound (object + apparatus), where on the apparatus side we see the indicator states

with pkji . . . as above.

In the experiment designed as illustration, a photon passes through a series of photon spin–energy correlators. These
correlators each consist of two half-wave plates, one rotating and one fixed. Such a plate reverses the sign of circular
polarization. If the disc is rotating with angular velocity −ω, the energy ±2ħω is transferred from disc to photon, with
the sign determined by the spin state. If the photon was in a spin eigenstate, that is not affected (as is proper to a
measurement) because the two plates together reverse the sign twice. But the photon energy is shifted by ±2ħω
depending on the spin state.
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6.R. I. G.Hughes's Argument from Conditional Probability
R. I. G. Hughes has argued in his recent book that the Projection Postulate can be understood as a conditionalization
of the quantum-mechanical total (object system + apparatus) state, and cannot be removed from the theory
(see Hughes 1989, sect. 8.8, 9.3, 9.4, 10.3). The argument occurs in the development of another interpretation, so may
be taken out of context here. I want to show, however, that the argument cannot play the role of a defence of von
Neumann's interpretation rule.

We have already seen how von Neumann—Lueders measurements are related to conditionalization. Such a
measurement of observable A transforms the reduced initial object system state W into its conditionalization on the
partition of eigenspaces of A; that is,

where Wa is the conditionalization of W on the a-eigenspace of A, and . If W is pure, then Wa is just the
projection on that subspace. It is tempting to read the numbers pa as measures of ignorance; really, at the end of the
measurement the object system has transited into an eigenstate of A, though we don't know which, but it is Wa with
probability pa. And this temptation can now be reinforced in two steps. The first is to say that the apparatus is in some
pointer-observable eigenstate—for example the one corresponding to value a. The second step is to say that, if we
were given the information which value that was—for example a0—then we should update our assignment of the state
to the total system by conditionalizing on the subspace Hx ⊗ Ha(0) where Ha(0) is the a0-eigenspace of the pointer-
observable. Then, because of the perfect correlation between apparatus Y and object system X, the reduction of that
conditionalized total state to Hx would be Wa(0).

This is seductive, but there are two assumptions at work, closely connected. The first is that, just because the pointer-
observable has value a0, it follows that the state of the apparatus is an a(0)-eigenstate of that observable. That, of
course, is von
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Neumann's interpretation rule ((e) in Section 3 above) at work. The second is that, if we find that the measurement
outcome is a0, we should think that the state has changed by conditionalization on Hx ⊗ Ha(0). That second assumption
entails the first, so they are not independent. But the second is perhaps derived from a deeper assumption, namely that
conditionalizing the quantum-mechanical state one attributes to a system is just updating one's opinion on the new
information available. Even that deeper assumption, if we let it stand without controversy, needs the first to get off the
ground. For what is the new information? Only if it is the information that the compound system is now in Hx ⊗ Ha(0)

can we conditionalize on that. But the new information is only that the pointer-observable has value a0—we need von
Neumann's interpretation rule to translate that into: the new apparatus state is an a0-eigenstate, or, equivalently, the new
total state is in Hx ⊗ Ha(0). Hence these reflections support very clearly my suggestion that the crucial step beyond
Born, taken by von Neumann, is his interpretation rule—after which the Projection Postulate is forced upon us.
Hughes's argument illuminates this by connecting it with conditional probability, but does not add to it.

This will be clearer if we connect the argument further with the notion of instrument in the preceding section. The
initial and final states of the system were called T and T′ there, and the instrument of the process was the two-place
function J which takes the pair 〈 T, E〉 into the conditionalization of T′ on the E-eigenspace of A.

But note that J(T, E) is not T′ for any E except ones such that the E-eigenspace of A contains the image space of T′.
That this instrument is repeatable implies only that, if we design a process in which the A-measurement is twice
repeated by the same apparatus on the same system (all in isolation), and we add a further apparatus which checks
whether the same value was obtained twice, so to say, then we are sure to get a yes answer there. But this is because of
correlations set up in the total system, and not because the first final state T′ was really identical with one of its
conditionalizations on an eigenspace of A. That conclusion can be postulated as due to a further ‘acausal’ transition,
but it cannot be derived.

Let us sum up therefore where we are. If we are given von

260 QUESTIONS OF INTERPRETATION



Neumann's additional rule of interpretation—going beyond Born's statistical interpretation of the quantum-
mechanical state—then we must agree to the Projection Postulate. This postulate fits with current quantum mechanics
in a straightforward way: it says that, at the end of a measurement, some rule comes into effect which erases the
distinction between the superposition ϕt and the corresponding mixture. (‘Corresponding’ refers here to the set of
eigenvectors of the relevant observable.) I have now phrased this in a way that will call superselection rules to mind for
the contemporary reader, so we should begin to pursue that idea.

7. Two Cat Paradoxes and the Macro World
After superselection rules appeared in the literature, it was found that these allow a sophisticated, consistent
reformulation of the Projection Postulate. That new development I shall take up in the next section. Here I shall lay the
groundwork by discussing the motivation for introducing a fundamental distinction between macro and micro world.
Associated with this there is a conviction that quantum mechanics as originally formulated cannot apply universally.
Two ways to say that in contemporary terminology are (a) that the principle of superposition (i.e., for any two pure
states x and y, there is a pure state ax + by) does not have universal validity, or (b) that quantum mechanics must be
amended by allowing for superselection rules. We begin here with a reflection on the putatively distinctive character of
the macro world.

In his reflections on the EPR paradox and elsewhere, Schroedinger pointed to ‘sinister’ consequences that clearly hinge
on von Neumann's Projection Postulate. They also concern the jeopardy in which quantum mechanics seems to place
our intuitive picture of the world we live in—the macro world. For that reason, his deliberations are a good
prolegomenon to certain attempts to explain (or explain away) the ‘collapse’ or ‘projection’ as not a physical, acausal
change, but connected with the peculiarly macroscopic character of measurement. I shall first present his famous Cat
Paradox (Schroedinger 1935b), and then a variant in which the cat receives the body of a kitten.
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Schroedinger imagined a cat in a box, in which there is an interaction formally a little like that in measurement.

A cat is placed in a steel chamber, together with the following hellish contraption (which must be protected against
direct interference by the cat): In a Geiger counter there is a tiny amount of radioactive substance, so tiny that
maybe within an hour one of the atoms decays, but equally probably none of them decays. If one decays then the
counter triggers and via a relay activates a little hammer which breaks a container of cyanide. If one has left this
entire system for an hour, then one would say that the cat is still living if no atom has decayed. The first decay
would have poisoned it. The Ψ-function of the entire system would express this by containing equal parts of the
living and dead cat.
The typical feature in these cases is that an indeterminacy is transferred from the atomic to the crude macroscopic
level, which then can be decided by direct observation. This prevents us from accepting a ‘blurred model’ so naively
as a picture of reality. By itself it is not at all unclear or contradictory. There is a difference between a blurred or
poorly focused photograph and a picture of clouds or fog patches. (Schroedinger 1935b; trans. Jauch 1968, 185)

The cat has two possible states: alive |b1〉 and dead |b2〉—a shallow representation, but not incorrect. The system with which it is coupled also has two possible states: a particle has not
passed through a certain filter and been absorbed by a detector |a1〉, and it has |a2〉. The system begins in state |a1〉 ⊗ |b1〉 and is isolated. The evolution of
the state is described by

So the final state, call it Ψ, can be described as a perfectly correlated one. We see that this final state is not an eigenstate
of the observable I ⊗ B, which describes the condition of the cat. By von Neumann's interpretation rule, we could say:

If the state of the whole system is Ψ, then the cat is
alive if and only if (I ⊗ B) Ψ = b1 Ψ, and
dead if and only if (I ⊗ B) Ψ = b2 Ψ

but we already know here that, for the end state Ψ, neither of these is the case. Now we open the box; the look is a
measurement, and surely what we see is either a live cat or a dead one. This example is disturbing, because when it
comes to
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cats (and other macroscopic objects) we feel sure that whatever we see when we open the box was already there. Or
else, the other thing we might have seen was there; it is not inconceivable that the cat was alive till we opened the box,
and died at that very moment. But our sensibilities are miffed, if not outraged, by the idea that it was not true that the
cat was dead and also not true that it was alive. Obviously we can put the problem more generally: if quantum
mechanics is applied uncritically, it allows superpositions of any states a macroscopic object can have—but what sense
can we make of this?

The following variant of the Cat Paradox also exhibits interference on the macroscopic level which appears possible if
the theory applies without qualification to that level. Let us call this one the Benign Cat Paradox.

LetA be the observable pertaining to the cat, whose eigenvalues an correspond to the properties of having the body of
an n-year-old. The corresponding eigenstates |an 〉, |am 〉 are orthogonal: obviously, no animal could have at once
the body of a 1-year-old kitten and a 12-year-old cat. But we are also interested in the curious state

We now devise a measurement of the observable Ix. According to von Neumann, this will project the initial state, say
|a12 〉, into either x itself or a state orthogonal to x. Now we rig up, after the first measurement apparatus, a filter
which will pass state x but not states orthogonal to x. And after that we place an A-measurement apparatus. The effect
of the latter will be to project state x into either |a1 〉 or |a12 〉 according to von Neumann. projections in this story
all have associated probability . So here is what will happen: the cat, entering the process in state |a12 〉, has a
probability of dying (because of the filter), of emerging in the same state in which it entered, and of emerging
with the body of a kitten. If the cat places enough value on the possibility of rejuvenation, it might well choose to
submit—as might, in a more advanced version of the experiment, a sufficiently old rational animal!

The assumptions made here are really just the same as in the more famous Cat Paradox. They are that we can ensure
total
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isolation for this complex system; that all superpositions are allowed, for macro states as well as micro states. Another
assumption involved, if not equally obvious, is that the Hermitean operators which distinguish these superpositions
really represent observables. In sum, what is assumed is the unrestricted applicability of elementary quantum
mechanics.

All this sounds so strange, as applied to our own familiar world, that we must wonder if quantum mechanics applies
differently at the macroscopic and microscopic levels. This cannot be asserted arbitrarily. First of all, the boundary line
between the two is vague: cats are macroscopic and individual electrons are not, but where is the dividing line?
Secondly, the boundary is prima facie drawn in terms of human observability—but humans have no privileged status
in fundamental physics. Still, it is clear that macroscopic objects, which involve many elementary particles, have a much
greater level of physical complexity. Perhaps the observables whose values can be distinguished at the level of human
observations are subject to restrictions that do not hold for all observables—not that it has to be that way, but perhaps
the world could be that way. We turn now to some solutions of the measurement problem suggested by this line of
thought.

8. Macroscopic Character and Superselection Rules
In recent decades, von Neumann's account of measurement has in effect been improved and defended by the assertion
that the apparent acausal transitions are not outside quantum mechanics but must appear as natural consequences for
the correct treatment of macroscopic systems. 11 This line of thought reaches its most elegant and successful form
through an appeal to super-selection rules. 12 Indeed, as I shall try to show, in this form the Projection Postulate
becomes not only defensible but in some sense (logically, anyway) invulnerable. However, there appear to be involved
several conjectures which have at present no further substantiation, and whose implications are not entirely clear.
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Attempts to make sense of measurement along these lines advance a conclusion of roughly the form:

1. When Y is a macroscopic object—such as any real measurement apparatus is—then the final state
φ = ∑ci | ai 〉 ⊗ |bi 〉 is empirically indistinguishable from the mixed state

Furry, who was perhaps the first to consider this possibility, pointed, out quite correctly that, if all Hermitean operators
represent observables, then those two states do lead to different measurement outcome predictions.13 But the ‘if ’, we
know now, is deniable. Danieri et al. (1962) argued that developments in quantum thermodynamics support conclusion
1, for large systems, as an approximation. Such approaches were thoroughly criticized by Bub (1968), who made clear
that results about approximation cannot remove the conceptual distinctions that engender the puzzles—as Earman
was to say later (1986, 224), in such a case a miss is as good as a mile.14 Hepp's demonstration that the two states
become literally and strictly indistinguishable for the case of infinitely many degrees of freedom does not counter this
objection effectively, for such a case is also at best an approximation to that of large but finite systems, which alone are
actual.15

Let us turn now to the alternative presented by Beltrametti and Cassinelli, which appeals to a superselection rule.
Indeed, conclusion 1 has exactly the form that bespeaks such a rule. For the concept of a superselection operator is the
way we found in quantum mechanics of saying that certain states cannot really be superposed, whatever the
mathematical formalism allows. It suffices now to insist that this is exactly the distinguishing macroscopic character of
the cat's being alive or dead, or of the indicator-states of the measurement apparatus.

Let B be the pointer-reading observable for apparatus Y, with eigenspaces B0, B1, . . . and eigenvectors |b0 〉, |b1 〉, . .
. We may take |b0 〉 to be the groundstate of the apparatus. Postulate now a superselection rule which entails that
these eigenspaces are the coherent subspaces; in other words, B is a superselection operator.

What this means for the complex system X + Y, when
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apparatus is coupled to system to be measured, is that I ⊗ B is a superselection operator for the tensor product space
HX ⊗ HY. Assume that no other superselection rules are in force. Then the coherent subspaces are HX ⊗ B0, which
contains the initial state x ⊗ |b0 〉; and HX ⊗ B1, HX ⊗ B2, . . . If x = ∑ci|ai 〉 then the final state will be ∑ci|ai 〉 ⊗

|bi 〉, which does not lie in any coherent subspace. But as we know from the discussion of superselection rules, it still
represents a state, namely, exactly the same state as . And thus we have deduced conclusion 1.

The logical character of that conclusion, which puzzled so many writers in the past, is now in one sense beyond
reproach. But we still need to ask about the conjecture of a superselection rule on which this deduction is based. There
are three problems: the first noted by Beltrametti and Cassinelli themselves, the second raised in effect by R. I. G.
Hughes, and the third by Leggett. All three problems are addressed in Bub's more recent solution, but there I shall
point out a fourth problem that is perhaps the most fundamental of all.

The first problem is: what accounts for this postulated super-selection rule? It is conjectured to be due to the
macroscopic character of the measurement apparatus. If such conjectures were allowable without limit, classical
behaviour could never disconfirm quantum predictions. For instance, if there had been no violations of Bell's
Inequalities in, say, Aspect's experiments, we could have ‘saved’ the quantum-mechanical description by conjecturing
superselection rules. The mere conjecture of super-selection rules—though formally the very thing that substantiates
suggestion 1—is too easy and universal a tool for restoring consistency. If it is to be plausible, the conjecture needs
particular substantiation. Hence Beltrametti and Cassinelli very rightly ask:

whether the very mechanism of combining subsystems can cause, at least in the limit of very large numbers of
subsystems, the birth of superselection rules of the compound system. . . . Of course, should one have a theory
predicting the appearance of superselection rules as an effect of the combination of subsystems with purely
quantum behavior, one would have at hand the possibility of a deep understanding of the ‘classical limit’ of
quantum mechanics. (Beltrametti and Cassinelli 1981a, 74)
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In the part omitted, they note that such a prediction of the appearance of superselection rules arising from complexity
could not involve any simple extrapolation by numbers. For macroscopic bodies and substances usually behave as
classical systems, but there are remarkable exceptions: ‘a pot of liquid helium is macroscopic but displays quantum
behaviour’. The gap that needs to be filled in this account is therefore by no means trivial.

The second problem, raised in effect by Hughes (1989, sect. 9.7), is also serious. In our initial discussion of
superselection rules we noted that, if the Hamiltonian H is an observable—and we were used to thinking of it as
almost the paradigmatic quantum-mechanical observable—then evolution out of a coherent subspace is impossible by
any process of the form described by Schroedinger's equation. In that case, there could be no evolution from the
groundstate in HX ⊗ B0 to any other indicator state of the apparatus! Therefore, this treatment of the measurement
problem must assume that H does not represent an observable. The implications of this, or its consequences for the
applicability of quantum mechanics to macroscopic systems, are not clear. Even if there are conditions under which a
Hamiltonian can safely fail to represent an observable, measurement may not be one of those.

The third point concerns empirical fact. In connection with von Neumann's first defence, we faced the question of
whether or not the Projection Postulate adds new empirical predictions, beyond those derivable from the basic theory
plus the Born Rule for probability calculations. Suppose we have a more sophisticated theory of measurement, which
does begin with von Neumann's interpretation rule, but derives the Projection Postulate from a superselection rule. In
this version, are there new empirical predictions?

We should expect that the answer is yes, since superselection rules in general add empirical content. There is no doubt
that, in a model with superselection rules, fewer imaginable phenomena can be embedded, because some pure states
are eliminated. As we recall, a vector which does not lie in a coherent subspace represents not a pure but a mixed state,
namely the same state as is also represented by a certain statistical operator which is not a projection operator. The
resulting absence of
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‘probability interference’ certainly does make a difference to predictions of measurement outcomes.

In this case, the superselection rule has not been completely specified, but we know this much about it: it places each
eigenspace of some macroscopic observable inside a distinct coherent subspace. To succeed as a general account of
measurement, this must happen for each macroscopic observable which can function as the ‘pointer-observable’ of a
measurement. Finally, the class of macro observables has also not been completely specified, but we know this much
about it: those observables whose values correspond to humanly directly detectable differences in humanly observable
objects must be among the macro observables.

A few years ago, Anthony Leggett proposed experiments designed to test the assertion that the eigenspaces of
macroscopic observables are indeed separated in this way by super-selection rules (see Leggett 1980, 1986; Leggett and
Garg 1985). Leggett formulated the empirical question as follows:

Is it possible, in practice, to prepare a macroscopic system . . . which can be in one or two or more macroscopically
distinct states, and then present ourselves with the choice of either measuring which of the two states it is in, or of
observing the interference between the two possibilities? Further, could we then demonstrate that in the second
case it could not have been in a definite macrostate? (Leggett 1986, 47)

Leggett observes that Bohr would probably have argued that the first question has a negative answer. But he adds that
the situation has been altered dramatically by the prediction of the Josephson effect (1962), and the experiments in
progress on that effect. As to the second question, Leggett shows that the answer is yes by a demonstration adapted
from that of the Bell Inequalities.

Conceptually, we are here certainly well within the realm of possibility. Schroedinger remarked that the emission of a
single photon can sink a battleship—it suffices to amplify the absorption of one photon in a photoelectric cell
sufficiently to trigger a missile. So if we can strongly correlate the states of two systems, one microscopic and one
macroscopic, we shall detect interference of probabilities on the macroscopic level unless there is a superselection rule
which effectively turns some macro states
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(correlated with pure micro states) into mixtures. Nor is there a conceptual absurdity in the idea of detecting
probability interference at the macroscopic level; that is exactly the message of the Bell Inequalities.

The relevant experiments are in progress (see Proofs and illustrations). Almost every discussant has voiced the opinion
that the interference of probabilities will be detected. If that is so, and if we generalize that result to all macro-
observables, then the presence of the Projection Postulate (in the derivable form it has in the superselection theory of
measurement) implies false empirical predictions. Even if the predictions agree, however, we learn from Leggett that
this theory of measurement does not merely interpret the basic quantum mechanics plus Born Rule, but adds empirical
content.

What we had hoped for was an interpretation which would allow the interpreted theory to stand regardless of the
outcome of such experiments. If no such interference of probabilities is detected, fine; then we can say that we have
found that macro states are separated by superselection rules. That is the sort of discovery that ‘writes theory by
experimental means’, and we hope for much normal progress in science of this sort. But the interpreted theory should
not run ahead of the experiments and design itself so as to be incapable of accommodating a contrary experimental
result. This, it seems to me, is a fundamental indictment of the Projection Postulate.

All three problems are confronted directly in a new version of the present sort of solution, recently proposed by Jeffrey
Bub (1988, 1989b, 1989d). Bub proposes to model macroscopic systems as quantum-mechanical systems with an
infinite number of degrees of freedom. This does not just mean that one uses a Hilbert space of countable
dimensionality—we already know that in any case, by embedding, whatever can be modelled in a finite-dimensional
space can also be modelled in an infinite-dimensional space. No, Bub is speaking here of a direct sum of infinite-
dimensional Hilbert spaces, each of which provides a different irreducible representation of the algebra of observables
that pertain to the system. But each of these spaces can also be regarded as a coherent subspace, modelling one macro
state of the system, separated by a superselection rule. One simple physical model Bub discusses is an infinite one-
dimensional
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array of spin systems. Schroedinger's cat, or even an elephant, consists of less than 1025 particles. Quantum-
mechanical systems of the sort discussed by Bub are asymptotic idealizations.

Is this acceptable as a solution? Bub notes that the superselection rule emerges naturally here, that the Hamiltonian is
not an observable but the evolution is still unitary, and that such asymptotic idealizations have very familiar uses in
classical physics. He adds, à propos Leggett, that he has not excluded macroscopic systems with finite degrees of
freedom. All this is correct, and I shall not quarrel with the radical idealization proposed here, which regards
macroscopic observables as emerging in collective behaviour only in the case where idealization shades off into fiction.
An empiricist point of view would not be a good basis from which to start such a quarrel!

But I have a more fundamental misgiving with all the versions of the approach discussed in this section. For I see a
disparity between this sort of solution and the crucial problem to which all this is addressed—which I can state no
better than in Bub's words:

The point is that we must have determinateness somewhere in the theoretical scheme for the probabilities [in Born's
Rule] to make sense. What we want is to relate the probabilities to a generalized ‘counting’ (in the measure-theoretic
sense) over determinate possibilities. . . . Measurement results are determinate. . . . But our most fundamental
physical theory is not simply about measurements—it is about the behavior of physical systems. (Bub 1989d, 135)

Exactly—and surely, quantum theory, literally understood, predicts also outcomes of micro processes in the
ionosphere? The only predictions are via Born's probabilities for measurement outcomes. So if an interpretation of
quantum mechanics resolutely pegs measurement interactions at special macroscopic processes alone, does it not say
that quantum theory makes no predictions for what happens in micro processes in the ionosphere? It is one thing to
point out that all our practically relevant expectations concern macroscopic phenomena; it is quite another thing to
interpret the theory as attaching probabilities only to those phenomena at the anthropocentrically important level. The
passage just quoted reveals the central foundational problem behind all discusions overtly focused on
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measurement in quantum mechanics: to display this theory's significant coherent probability assignments to
determinate events.

Proofs and Illustrations
After a few brief historical remarks, I shall describe the experiment proposed by Leggett.

It appears that in 1980 the superselection rule solution to the problem of measurement was developed independently
by Beltrametti and Cassinelli (1981a) and Kay-Kong Wan (1980). The suggestion that there is no superposition
between macroscopic states had been in the literature for some time, in various forms (e.g. Gottfried 1966; Cartwright
1974b). In Chapter 6, Section 8 I stated Wan's description of quantum systems with (Abelian) superselection rules. To
this he added the postulate that time evolution is unitary. Wan explicitly discusses the point that the Hamiltonian is not
an observable, in his solution. He cites parallel examples elsewhere: Dirac's Hamiltonian formulation of General
Relativity, and the Gupta—Bleurer formulation of quantum electrodynamics. It is not clear to what extent we can be
sanguine about this with respect to the measurement interaction, however.

The Josephson effect (Josephson 1962) is one in which the temporal evolution of a macroscopic variable can be
controlled by a microscopic energy, on the order of the thermal energy of an atom at room temperature. The
‘Josephson device’ on which Leggett concentrates is an RF SQUID ring. This is a bulk super-conducting ring interrupted
by a single Josephson junction. The macroscopic dynamic variable is the total flux (circulating current) in the ring. The
ring has available to it two degenerate states, corresponding to the current circulating in either the clockwise or the
anti-clockwise direction. The magnitude of the current is on the order of a few microamperes—it is proposed that this
be counted as macroscopic, because it is a current that could certainly have been studied in a classical experimental
context, before the advent of quantum theory.

If a measurement is made to detect the direction of the current at any given time, one of two results obtains: clockwise
(+1), or anti-clockwise (−1). The question can now be posed: what are the probabilities of finding +1 twice for
measurements
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made at distinct times t, t′? Let the relevant observable be denoted as P(t); then with the usual idealizations the
calculated expectation value is(1)

where Δ is the characteristic resonance frequency of the system. This is the expectation value if we regard the total
system as a quantum-mechanical system not subject to superselection rules. The formula reveals a correlation between
P(t) and P(t′); e.g., if t′ − t is half a cycle, then the predicated value of P(t′), conditional on value +1 for P(t), equals −1
with certainty. If however we add the supposition that at an intermediate time, e.g. at quarter-cycle, the state was a
mixture of the ±1 eigenstates, we obtain a different prediction.

It is more instructive to look at the general demonstration adopted from Bell's argument than to continue with these
details. One form in which Bell's Inequalities can be stated, for expectation values of observables P(i), i = 1, 2, 3, 4
which take only value ±1, is the following:(2)

but if we set the difference between successive times t, t′ (t′ = 2, 3, 4, t = t′ − 2) equal to (π/4)Δ, and hence the interval
between t = 4 and t = 1 equal to (3π/4)Δ, formula (1) implies(3)

a violation of (2), and hence of Bell's Inequalities.
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9 Modal Interpretation of Quantum Mechanics1

On the one hand, it is a truism that quantum physics describes an indeterministic world. On the other, the quantum
theory of an isolated system describes its state as evolving deterministically. How can the two be reconciled?

The question can be posed more generally: how could any theory be like that? In this form I discussed it already in
Chapter 5. We found three alternatives; I shall list these here, and mention the interpretations of quantum mechanics
which they cover. The first is that, in certain isolated systems, the state does after all not develop deterministically. We
examined this alternative, in von Neumann's version, in the preceding chapter. The second denies not the determinism
but the apparent indeterminism. It says that a measurement is not a process characterizable as the evolution of an
isolated system, ever: a measurement is an interaction incompletely described, by leaving out something or other. There are
various interpretations along this line. Perhaps the most radical is the idea that quantum theory was devised to describe
only situations in which an observer (or at least, the measuring environment) is involved, while leaving that part out of
the description. John Wheeler noted this as a major alternative; it is certainly reminiscent of some early Copenhagen
texts.2 Equally radical, but in a different direction, is Everett's many-worlds interpretation: indeterminism is an illusion,
and disappears if we also describe all the worlds there are besides our own. The third alternative is to deny neither the
determinism of the total system evolution nor the indeterminism of outcomes, but to say that the two are different
aspects of the total situation. Specifically, we can deny the identification of value-attributions to observables with
attributions of states; the state can then develop deterministically, with only statistical constraints on changes in the
values of the observables. The modal interpretation takes this third road.3



This separation of states and observables was always left open in our general discussion; it was ruled out only by von
Neumann's interpretation. To explain the modal interpretation I shall proceed in two ways. Sections 1–5 will be kept at
an intuitive level. A more rigorous presentation will be found in Sections 6–7. The reader may choose to read these in
either order, depending on his or her frustration with imprecision and abstraction respectively. The discussion is
limited to systems with at most two components, throughout both these basic presentations. Sections 8 and 9 take up
the major question of consistency of the interpretation extended to many-body systems.

1. The Modal Interpretation
Von Neumann's interpretation tells us how to read attributions of values to observables: they are classifications of
states, just as they were in modern science before our century:

1. Observable B has value b if and only if a B-measurement is certain to have outcome b.

This looks agreeably classical and right. But that in itself is suspicious here, for in the classical world-picture measuring
was just looking, without disturbing, as if by a disembodied intelligence. It was also assumed there that for any
observable, at any time, there is a unique value which is certain to be shown by a correct measurement. All this hangs
together nicely (the values are there, and will be seen if one looks), but what happens to this picture when we admit
states in which measurement has uncertain outcomes? Von Neumann gave a radical answer: if the outcome of a
measurement of B is uncertain, then B has no value. That answer is tenable, but then the classical look of statement 1,
which it had at first sight, was deceptive. It is not classical at all, for it says that unmeasured observables have no value,
except in the special case of certainty. So the classical look of 1, being deceptive, can't very well be cited as a reason for
accepting it.

Let us now step back and look at states and observables in
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the larger perspective developed in Part I. The term ‘state’ is familiar from classical mechanics, thermodynamics,
chemistry, engineering, and so on. Beginning with this classical background, we would assume that a state is given if we
know

(a) the value of all observables

and that, if we knew the state, then we would know all there is to know about

(b) how the system will develop if left alone and how it will react if acted upon

where such action-upon includes measurement, of course. If it is assumed that observables simply have values, there to
be seen if we look, and also that the temporal evolution is determined entirely by what those values are, then there is
no need to keep (a) and (b) very separate. But the times have changed. So we must be cautious, and distinguish two
concepts of state, one for each of the above two roles:

Value state: fully specified by stating which observables have values
and what they are

Dynamic state: fully specified by stating how the system will develop if
isolated, and how if acted upon in any definite, given
fashion

Note that measurement is an interaction, so the prediction of measurement outcome probabilities belongs to the role
of the dynamic state. The concept of dynamic state remains the primary one.

Another way to present this same conceptual distinction was to distinquish between two sorts of propositions:

Value-attributing proposition: e.g. 〈 m, E 〉 says that observable m actually has a
value in E

State-attributing proposition: e.g. [m, E] says that the state is such that a measurement
of m must have an outcome in E

The connection between these presentations is of course that the value state is what makes value-attributions true,
while the

MODAL INTERPRETATION OF QUANTUM MECHANICS 275



dynamic state similarly determines the truth-values of state-attributing propositions. (In general, there may be other
state-attributing propositions besides those of form [m, E]; the dynamic state may carry other sorts of information; see
the discussion of mixtures in Proofs and illustrations.) To reject von Neumann's interpretation rule is to reject the
equivalence of value-attributing and state-attributing propositions. Because of the very tight logical structure we saw in
the preceding chapter, everything will look a little different once we deny this. As preliminary to a closer look, let us
just see roughly and intuitively what we could now say about measurement–specifically, von Neumann measurement.

I propose the following: to suppose that the outcome of a measurement of observable A pertaining to system X is b is
to suppose that the pointer-observable has value b (at the time marking the end of that measurement). But we do not
infer that X is in an eigenstate of A. Hence the pure state Σ ci|ai 〉 ⊗ |bi 〉 of the combined system X + Y is not the
same as, and has not become, the corresponding mixture.

However, we do think of measurement outcomes as relevant to the question what state the system was in. This
suggests that [m, E] implies〈 m, E〉–if the state was such that m must have a value in E, then it does actually have a
value in E. More generally, from information about what values observables did have, we can — by looking for a statistical fit—
infer backward to the state. In general, such inference, being statistical, will require much more than a single measurement.4
It will be possible to conclude, in this way, that a certain source or preparation procedure produces systems in stateW
— or to attribute stateW to the systems in an ensemble of which we have inspected a sample— but not to determine
that a single given system is in this state, otherwise. Finally, if [m, E] were not true— if the state were not such that m
must have a value in E — then it is still possible that m does actually have a value in E anyway. This is a true transition
from the possible to the actual.

Referring back to Chapter 8, Section 2, we can now see that this allows us to think of quantum-mechanical
measurement as having indeterminism of form 1 (‘indeterministic output’):
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In this schema we can now say: IN and OUT are the initial and final values of observables (value states), whileW andW′
are the dynamic states. The evolution ofW intoW′ is deterministic, in accordance with Schroedinger's equation above,
and without acausal jumps or collapses. But W′ only tells us what is the possible and probable character of OUT
(including some necessities, of course) and does not fully determine it.

It may be noted that IN, on this picture, plays no direct predictive role. The character of the initial values of the
observables could at best be a symptom or clue to what the initial state is. The expectation and indeed character of the
future is determined, to the partial extent that it is determined at all, by the dynamic stateW (of the whole system) alone.
The value state must be allowed to change unpredictably, within the limits set by the dynamic state, in order to allow
for indeterminism in the phenomena.

What then is the empirical significance of actual values of observables? They do not increase predictive power if added
to a description of the concurrent dynamic state. In that sense they are ‘empirically superfluous’. But taken by
themselves, they do have predictive value, exactly because they are symptomatic of the dynamic state.

Proofs and Illustrations
Let us think a bit more about states and observables and see if there are any additional reasons for accepting von
Neumann's interpretation rule. A state can always be represented by a statistical operator — if only a projection
operator, projecting along a specific vector— and that is a Hermitean operator. But Hermitean operators are meant to
represent observables. Does it not follow then that being in a state is the same as, or in some strong sense equivalent to, a
certain observable's having a certain value? For example, to be in pure state x, isn't that just the same as for observable Ix to
have value 1?

But this just assumes the interpretation rule again. To be in state x is to be in an eigenstate, corresponding to
eigenvalue 1, of observable Ix. By Born, that implies being such that a measurement of Ix is certain to have outcome 1.
But the question at issue is whether the converse implication holds. Indeed, for the mixed states we must be still more
careful if we
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want to spell out this state-observable correspondence: to be in state W is not the same as for observable W to have
value 1. Consider

where x ⊥ y. Then the yes/no observables which have value 1 with certainty in these states are the same, namely those
represented by a projection operator I[x, y]. But the two mixed states are not the same. So the correspondence between
states and observables is only this: a state is uniquely specified if and only if we give the expectation values of all
observables in that state— equivalently, the probabilities of all measurement outcomes. Only for the pure states does
that reduce to spelling out the certainties.

This point has been noted generally as a limitation to the quantum-logical approach initiated by von Neumann. That
approach, which has been very valuable in foundational research, has also been extrapolated rather far by philosophers.
Great caution is needed in such extrapolation, exactly because of what we noted above. In von Neumann's and
Birkhoff's early writings on this, propositions are identified as projection operators or equivalently as subspaces. The way
this is read is, in effect, via von Neumann's interpretation rule. Thus, the proposition [M, E], represented by the
subspace S = [{x: Mx = kx for some k ∈ E}], is read as ‘M has a value in E’. That proposition is satisfied by a state
which assigns 1 to S — i.e. a state W such that Tr(WIS) = 1 — so that one can indeed say: the proposition [M, E] is
satisfied if and only if M has a value in E. (That is, the reading fits the proposition, if one accepts von Neumann's
interpretation rule.) Again, all this hangs nicely together, but it must be noted that above examplesW1 andW2 of distinct
mixed states satisfy exactly the same propositions, in this sense. Thus, the family of propositions, so conceived, is not rich
enough to separate distinct mixed states.

To sum up, we see an intimate connection between states and observables, but it is not intimate enough to force von
Neumann's cutting of the Gordian knot. Indeed, we have found some reason against that move. States can be
identified in terms of observables, but cannot be identified with them.
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2. The Modal Account Developed
One of the chief difficulties in the epistemology of quantum mechanics is its apparent inadequacy for describing
events. The fact that there are systems which do not admit dispersion free states leads to the inevitable and
irreducible probability statements concerning certain events. Such events may be the measurements associated with
yes-no experiments. . . . The individual occurrence of such phenomena is then completely outside the scope of the
theory; only the probabilities for such events can be accounted for in our description of the state. (Jauch 1968, 173)

I will not pretend that Jauch would have endorsed the modal interpretation. Yet the above words seem to express the
modal alternative exactly. They say that a state, which is in the scope of quantum mechanics, gives us only probabilities
for actual occurrence of events which are outside that scope. They can't be entirely outside the scope, since the events
are surely described if they are assigned probabilities; but at least they are not the same things as the states which assign
them probability.

In other words, the state delimits what can and cannot occur, and how likely it is— it delimits possibility, impossibility,
and probability of occurrence— but does not say what actually occurs. The transition from the possible to the actual is
not a transition of state, but a transition described by the state.

We know how states are described and represented in quantum mechanics— what about the events in question? They
are described by statements of form

1. Observable B pertaining to system X (actually) has value b

and the Born interpretation rule sometimes tells us the probability of this event actually occurring (this statement
actually being true) at the end of an appropriate measurement. This requires, as we noted in the preceding section, that
such a statement as 1 cannot be equated with any of the form

2. The system is in a state of type . . .

which has specific forms like

2(a). The system is in state W
2(b). The system is in some pure state in subspace S
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2(c). The system is in some mixture of states x1, . . . , xn

2(d). The system is in some state W such that Tr(WIS) = 1

For each of 2(a)–2(d) can at best give us a probability of statement 1 being true.

But there must also be some logical connection between value-attributions (form 1) and state-attributions (form 2).
What are they? Recall that, at the end of a von Neumann measurement of non-degenerate observable A on system X
by apparatus Y with pointer-observable B, we have the following description of total and reduced states:

(a) X is in state
(b) Y is in state
(c) X + Y is in state ϕt = Σ ci|ai〉 ⊗ |bi〉

Now the Born Rule, given our proposed modal alternative to von Neumann's interpretation rule, leads here to

(d) For some index k, pointer-observable B has value bk; and the probability that this index k is the index i, equals
.

It is clear that (d) only establishes a link between the state at the end of an A-measurement and the statements
attributing values to B. The obvious question is: could this simply be a consequence of a larger principle which
connects states more generally with values of observables?

The interpretational question facing us is exactly: in general, which value-attributions are true? The response to this
question can be very conservative or very liberal. Both court later puzzles. I take it that the Copenhagen
interpretation—really, a roughly correlated set of attitudes expressed by members of the Copenhagen school, and not a
precise interpretation—introduced great conservatism in this respect. Copenhagen scientists appeared to doubt or
deny that observables even have values, unless their state forces us to say so. I shall accordingly refer to the following
very cautious answer as the Copenhagen variant of the modal interpretation. It is the variant I prefer.

This interpretation says that, if system X has dynamic stateW at t, then the state-attributions [M, E] which are true are
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those such that . About the value-attributions, it says that they cannot be deduced from the dynamic state, but
are constrained in three ways:

(i) If [M, E] is true then so is the value-attribution 〈 M, E 〉: observable M has value in E:
(ii) All the true value-attributions could have Born probability 1 together:
(iii) The set of true value-attributions is maximal with respect to feature (ii).

Let us use the following terminology: W makes [M, E] true exactly if . Then clauses (ii) and (iii) tell us that we
already have a ‘bookkeeping device’ to identify the set of true value-attributions. Call this set S. Then (ii) tells us there
must be dynamic state W′ such that 〈 M, E 〉 is in S only if W′ makes [M, E] true. Adding (iii), we see that W′ is
pure, that〈 M, E 〉 is in S if and only ifW′ makes [M, E] true, and thatW′ is unique. Finally, (i) tells us thatW′ is, in
the terminology of Chapter 6, possible relative to W.

That dynamic stateW′ is the bookkeeping device which identifies the true value-attributions correctly. Hence it can be
used to represent the value state. That does not mean that value states are dynamic states, but only that each admits the
same sort of mathematical representation. I will call this pure state W′ the value state of X as true t, but that does not
imply that X really has dynamic stateW′. No, it has dynamic stateW, as I said to begin with. We can sum all this up in a
single postulate, which describes our family of models for physical situations governed by quantum mechanics:

(e ) Given that system X is in state W at time t, then for all observables M pertaining to X:

(e1) a state-attribution [M, E] is true if and only if W makes it true;
(e2) there is a certain pure state x which is possible relative toW, and the value-attribution〈 M, E 〉 is true if

and only if x makes [M, E] true.
The first consequence we deduce from this postulate is that
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(i)–(iii) hold, as required. The second consequence concerns the identification of observables. My terminology and
notation ‘Hermitean operatorM represents observable m’ allow for the possibility that two distinct observables can be
represented by the same operator. If that could happen, principle (e) above would have to be read as applying to all
observables represented by given operatorM. But so read, it implies that, if two observables are represented byM, it is
not only their measurement outcome probabilities that are always the same, but also their values. This is because of the
‘if and only if ’ in (e2). Hence there is then no difference at all between these observables; they are the same. In other
words, implicit in this interpretation (Copenhagen variant of the modal interpretation) is the following principle:

Identity of Observables: If observables m and m′ are represented by the same Hermitean operator, then m = m′.

This answers a question raised at the beginning of Chapter 6. It is a principle that plays a crucial role in the ‘no hidden
variables’ theorems, a point that will be discussed further in Chapter 10. It is not a tautology, of course; indeed, it may
be regarded as a peculiarly empiricist constraint upon interpretation. It does give us the advantage that we may use the
same name now for an observable and its representing operator.5

Thirdly, we can point out that, in a certain sense, it is as if the ignorance interpretation of mixtures were correct. For if system X
is in mixed stateW, then the actual values of observables pertaining to X are exactly those it would have had if it had
been in a pure state in the image space ofW. But we don't know which pure state—all of them are possibilities for us,
if we are told only that X is in mixed stateW. We remember of course from Chapter 7 that the ignorance interpretation
is not tenable, for a number of reasons, but perhaps this helps to explain its intuitive appeal. For some of what it entails
for values of observables is right.

The fourth consequence is the rejection of the Classical Principle, that each observable always has one of its possible
sharp values. We can derivatively attribute ‘unsharp’ values. To observable M there correspond a large set of
observables , as we know, having eigenvalues 1 and 0 only. Now we have the equation
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Therefore we have the following result concerning state-attributing propositions:

where I abbreviate ‘[. . . , {. . .}]’ by dropping the set parentheses. The Copenhagen variant of the modal interpretation
entails now, because of its adoption of (e2)—or, equivalently, of (i)–(iii)—that, similarly,

That also means that〈 M, E 〉 is not the classical disjunction of the value attributions〈 M, r 〉 : r ∈ E. Indeed, we
should note:

If is true if and only if Borel set E0 ⊆ E, then E0 is also the smallest Borel set such that〈 M, E0 〉 is true

and we should say that M has unsharp value E0. If M and M′ are incompatible observables, which have no eigenvectors
in common, and〈 M′, s 〉 is true, then〈 M, r 〉 is not true for any value r. Yet〈 M, R 〉 is still true, because it
just means〈 IR, 1〉 is true, and that is a tautology (R the set of all real numbers.) We can therefore distinguish, for
value-attributing propositions, the principle of Excluded Middle (〈 M, R 〉 is true for every observable M), which is
correct, and that of Bivalence (either 〈 M, E 〉 is true or 〈 M, R − E 〉 is true), which is false.

A more classical looking ‘anti-Copenhagen’ variant would replace (e2) with the assertion that for each M there is some
value r such that 〈 M, r 〉 is true. That is logically tenable but has very curious features—features which, after
acquaintance with the Copenhagen way of thought, seem much more curious than value gaps. I shall not discuss the
anti-Copenhagen variant any further here, but shall return to it briefly in Chapter 10.

3. What Happens in a Measurement?
There are actually two questions about measurement when it comes to interpretation. Many questions about what
happens have been settled by the foundational research on which Chapter 7 reports. We have seen there that, if a
physical
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process is to be a candidate for designation as a measurement at all, it must satisfy certain requirements. And we have
also seen what implications those requirements have inside quantum theory. But it remains to ask: (a) what is the
significance of measurement? and (b) what is really going on in a measurement? In the next section I shall broach the
second question; here I shall stick with the first.

One recurring worry among philosophers is that the appearance of the term ‘measurement’ in the Born Rule bears its
anthropocentric connotations essentially. That would mean that we cannot think of quantum theory as a putative
autonomous description of the world in neutral physical terms and prospectively complete. In the jargon: if that were
so, we could not be realists with respect to the theory, but only instrumentalists. This worry is much reinforced by
‘philosophical’ discussions by some of the great physicists who were involved in the development of quantum theory. I
hope that the discussion in Chapter 7 has already laid this question to rest, since the requirements upon physical
correlates of measurement involved no reference to us, to persons or consciousness, and not even to the macro–micro
distinction.

But then, if that worrisome idea about the significance of measurement is gone, what is the significance? I believe it is
the following. Every interpretation of quantum mechanics begins qualitatively, by speaking out on whether an
observable always (sometimes, never) has sharp values, while the system is (is not) in one of its eigenstates, and so
forth. But then must come a next step: assignment of probabilities. Human acts being nothing very special among the
physical categories, the probabilities announced when Stern and Gerlach, or Aspect, or Compton, or Leggett designs
an experiment to be actually carried out in a laboratory must be a special case. Fine; but how do we draw out
consistent, self-coherent probabilities in general? Some particle in the ionosphere is capable of various spin states; is
there a definite probability, given its physical past and circumstances, that the value of its spin along the (earth
centre)–(North Star centre) axis equals 1? The given had better be handled very delicately, or else we'll give such
implicitly incoherent answers as were derived from the naive ignorance interpretation.
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Officially, quantum mechanics allows for only one way to assign probabilities—via Born's Rule. We can interpret this to
extend to all processes, even on the microscopic level in the ionosphere, which meet the minimal requirements for a
physical correlate of measurement. Can we go a little further? Von Neumann went a lot further. Can we go a little way
along with him, exploiting for example the correlations set up in those special von Neumann, or von
Neumann–Lueders, measurements? The answer is yes, but we must proceed as if barefooted in a field strewn with
glass. This problem—the general problem of drawing a consistent general recipe for probability assignments from
quantum theory—is what is really behind the seemingly disproportionate attention to measurement.

To spell out in detail what happens in measurement, and how the Born probabilities as interpreted in (d) are in
accordance with the large principle (e), we must become a little more precise. The situation of system X at given time t
is characterized according to (e) by two states: its dynamic state W and its value state x. What does this look like whenX is
a compound system? We need to characterize the situation for it and also for its components. So if Z = X + Y, we have
both a dynamic state and a value state for each of Z, X, Y. I shall here discuss only the case in which Z has a pure
dynamical state ϕ. Let us designate the mixed states assigned to X and Y, by ‘reduction of the density-matrix’ as # ϕ

and ϕ #. Then the situation is this:

(f) (X+ Y), X, and Y have dynamic states ϕ, # ϕ, ϕ # respectively
(g) (X + Y), X, and Y have as value states ϕ, x, y respectively, where x is possible relative to # ϕ and y possible

relative to ϕ #.

We cannot specify what x and y are: there are a number of possibilities. We only know that they must be possible
relative to # ϕ and ϕ #. This means mathematically that they are vectors in the image spaces of # ϕ and ϕ #.

What we would like next is a probability distribution on these possibilities. The non-unique decomposability of
mixtures stands in the way of a general rule for probability assignments which is at once simple and consistent.6 But the
Born Rule is meant to assign probabilities coherently if the situation comes at the end
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of a measurement. The rule presupposes that measurement is a process which is so structured that it singles out certain
observables, and tells us the probabilities for their possible values—without the inconsistencies that plague the
ignorance interpretation. That means of course that the observables singled out are mutually compatible.

The major recognized classes of measurement in the literature satisfy the metacriterion which was suggested by this
thought. When that metacriterion is met, reasoning of the following form:

1. Process PP was a measurement of observable A with B designated as pointer-observable, and also an A′-
measurement with B′ designated as pointer-observables, and . . .

2. The probability that B had value a at the end equals Pa, for a = a1, a2, . . . ; the probability that B′ had value a′ at
the end equals pa′, for a′ = a1′, a2′, . . . ; . . .

in which statement 2 follows from 1 by Born's Rule, never leads to an incoherent probability assignment.

Well, how could it anyway? Easily enough, if we respect the functional relations among observables. That is the
message of the ‘no hidden variables’ theorems. If the above sort of reasoning is continued with, i.e.

3. B′ = f(B) and B″ = g(B) and . . . So the probability that B′ had a value in E equals the probability that B had a
value in f−1(E), the probability that B″ had a value in F equals the probability that B had a value in g−1(F), and . . .

then those theorems tell us that 1–3 will lead to incoherence (i.e. to inconsistency with the classical probability calculus)
unless all those observables are mutually compatible.

Obviously, these reflections can be met with different responses. Some may object to the use of classical logic on which
I relied, others may make light of the classical probability calculus. But both folklore and foundational literature honour
overwhelmingly the conviction that the mere description of the outcomes of (joint) measurements does not, as such,
violate
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classical logic or probability. In Chapters 4 and 5 we saw that, though deterministic or more generally causal
underpinnings cannot be postulated, the surface state in an experimental situation is classical in the sense of logic and
probability theory. Since this very same surface state clearly violated the Bell Inequalities, it can still be very non-
classical in the sense that it requires (something like) quantum-mechanical modelling. But then, there is no reason why
these very same surface states could not represent micro situations in nature just as well.

The metacriterion in question was that, if a process measures various observables on an object system jointly, then it
ends with the apparatus in a mixture of joint eigenstates of the pointer-observables. It is to these, in the first instance,
that the Born Rule assigns probabilities. As usual, the paradigm illustration is the von Neumann measurement of an
observable with non-degenerate spectrum. We can consistently add to our previous principles:

(h) If the situation described in (f) and (g) is at the end of an A-measurement with B designated as pointer-
observable, and with ϕ = Σ ci|ai 〉 ⊗ |bi 〉, then the probability is that y = |bk 〉

This has Born's Rule translated into our present representation of this physical situation, as corollary, since y = |bk 〉

exactly if B has value bk. It is consistent with the preceding because x and y do, as they must, lie in the image spaces of
# ϕ and ϕ #. But of course, a von Neumann measurement has a special feature. It does not just allow statistical
inference backward to the initial state of the object system. In addition, it effects a perfect correlation between
measurement and pointer-observables. Hence we can go one step further, and add:

(h′) If the situation described in (f) and (g) is at the end of an A-measurement with B designated as pointer-
observable, and with ϕ = Σ ci|ai 〉 ⊗ |bi 〉, then the probability equals that both y = |bk 〉 and x = |ak 〉.

In the Proofs and illustrations I will discuss the similar principle for the more general class of von Neumann–Lueders
measurements. I will also look more closely there at the obvious query about consistency.
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The extension of (h) to (h′) is important, because it leads immediately to the result that a pointer-reading result bk

implies with certainty that observable A had value ak at that point:

(i) If the situation described in (g) and (h) is the end of an A-measurement with ϕ = Σ ci|ai 〉 ⊗ |bi 〉, then the
probability that value-attribution〈 A, ak 〉 is true, given that value-attribution〈 B, bk 〉 is true, equals 1.

The proof of this is simple. The probabilities of the combinations (x = |ai 〉 and y = |bi 〉) sum to 1, therefore the
probability of any combination (x = |ai 〉 and y = |bj 〉) with i ≠ j must equal 0. Notice also, however, that a
possibility which has probability 0 may still really occur. Probability 0 does not imply impossibility. The addition of (h)
and (h′) to our interpretation assigns probabilities; it does nothing else.

We are tempted to exclaim: it is as if the Projection Postulate were correct. For at the end of the measurement of A on system
X, it is indeed true that A has the actual value which is the measurement outcome. But, of course, the Projection
Postulate is not really correct: there has been a transition from possible to actual value, so what it entailed about values
of observables is correct, but that is all. There has been no acausal state transition.

Proofs and Illustrations
In general, a measurement need not effect a correlation, and the probabilities are only assigned to the pointer-
observable values. In such a case, there should be no statistical inference concerning the values of observables on the
object system. Even in the von Neumann case, one might worry about consistency. In Chapter 7 I took up Jon
Dorling's query whether we might not have a case of dual von Neumann measurement: X measures B on Y, with
pointer-observable A, while Y measures A′ on X with pointer-observable B′—and A is incompatible with A′. We
found that that is in fact impossible, given the general character of von Neumann measurement. This result carries
over to the class of von Neumann–Lueders measurements.

There is another way in which inconsistency could result.
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Imagine that, in one and the same process, Y measures A onX and Zmeasures B onX, with the measurements ending
at the same time.7 Then the inferences to the value state of X via principle (i), applied to both measurements, entail that
this value state is a joint eigenstate of A and B. Will that necessarily be so?

The total system (Z + X + Y) can equally be described as X + (Y + Z). In the envisaged case, at the initial time, Y and
Z are in their pure groundstates y and z, and end up in mixtures of their indicator states yi and zj. Because of the
correlations, we see:

X + Y has final state
X + Z has final state

We do not know prima facie that Y + Z is a measuring instrument for any observable pertaining to X. Specifically, we
do not know prima facie that Y + Z ends up in a mixture of states yi ⊗ zj. But the same reasoning we used before
removes this spectre of inconsistency. We do know from the above that

X has final state

The coefficients were arbitrary, so let us take it that all are distinct. The relevant evolution operator, subject to the
requirements for measurements, must act the same way, whatever the coefficients are. But in that case, the orthogonal
decomposition of T′ is unique, and therefore {|ai 〉} = {|bj 〉}. Cases of ‘accidental degeneracy’ do not bother us,
since the probabilities are assigned only conditional on measurement, and that is a condition not on the particular
episode, but on the type of evolution.

All of this carries over to measurement in general, mutatis mutandis. If the measurement is not of the von
NeumannLueders class, then we have the analogue of principle (h) but not the analogue of (h′). Inferences to what the
measured object system is or was like are only of a statistical sort, to its initial state. In the general Lueders case, the
observable that is measured may be degenerate, and so may the pointer-observable . The evolution
U : x ⊗ y → U(x ⊗ y) = ϕ is such however that there is a strong
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correlation. Using the notation ‘W[A(a)]’ as short for ‘the conditionalization of W on the a-eigenspace of A’,

Here is the probability at once that A has value a on the measured system, at the end, and that pointer-
observable B has value a at that time.

4. Puzzle: How Far Does Holism Go?
Every interpretation of quantum mechanics has some features that bespeak the distinctively non-classical character of
this theory. Adjusting ‘the story’ might make it sound deceptively classical, but can never remove its air of paradox
altogether.

In the modal interpretation, Copenhagen variant, there are three especially puzzling features which make its world-
picture truly non-classical. One we saw already; it is the possibility of observables taking unsharp values, the failure of
Bivalence. Another strange possibility concerns what happens when no measurement is going on, and I shall discuss
that in the next section. The one I want to discuss now is the way in which the holism of quantum states—the same
holism already found in classical probability, as we saw in Chapter 3—extends also to observables and their values.

One of the virtues of our present interpretation, which I recounted in Section 2, was the principle I called Identity of
Observables. It says that, if observables are represented by the same Hermitean operator, they are one and the same
observable. This could be seen by looking at the model of a possible situation: since the value state is represented by
means of a vector in Hilbert space, and an observable has a value only if that vector is one of its eigenvalues, there can't
be any more to an observable than that. Given that we were looking at models of situations involving a single system
(treated as a unit), we can restate this principle in the following way:
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1. Identity of Observables (second version): If the probabilities for measurement outcomes for observables A and B
are the same for every dynamic state of any system to which both A and B pertain, then A = B.

The reference to physical systems could be replaced here: whether or not an observable pertains to a given system
depends solely on its (dynamic) state-space, so we could have referred to that instead. I am being very careful here for
reasons that will soon be clear.

Turning now to a reflection on holism, we need to ask what statement 1 entails for compound systems. The reduced
state # W assigned to compound X of system X + Y in state W is determined by definition through the equation

# W is the state such that Tr(A#W) = Tr((A ⊗ I)W) for all observables A pertaining to X.

Let HX and HY be the Hilbert spaces for X and Y respectively, so HX ⊗ HY is the Hilbert space for (X + Y). The
quantification ‘for all A’ is therefore over all the Hermitean operators on HX, and I is the identity operator, in HY. How
does principle 1 apply to A and A ⊗ I? We tend to think of these two observables as ‘essentially’ the same, since we
feel it is our choice whether to model X's behaviour by itself or as part of a larger system.

But 1 does not apply to A and A ⊗ I at all, since they do not pertain to the same system. There is certainly a very
intimate relation between them, in the Born probabilities:

The probabilities of measurement outcomes for A and for A ⊗ I, conditional on their measurement on any system
X and any system X + Y respectively, are the same.

But that is not the same equivalence relationship as discussed in principle 1. The importance of this point appears in
the more general context of how joint probabilities for A and B, pertaining to X and Y, are related to those for A ⊗ B.
The first thing to notice is that there is in general not a one-to-one correspondence between the outcomes:
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for ab does not in general stand in one-to-one correspondence to the pair〈 a, b〉. Nor do the predictions of measurement
outcomes taken separately relate very closely. The probabilities of outcomes a′ and b′, for measurements on A and B on the two
components of X + Y in state Σ cab|a〉 ⊗ |b〉, do not tell us what the probability of outcome a′b′ for a measurement
of A ⊗ B is–not even if the correspondence〈 a′, b′〉 ↔ a′b′ is unique (i.e. not even if ab = a′b′ only if a = a′ and
b = b′). For the cross-reference in the coefficients cab determines the correlation, which cannot be read off from the two
marginal probabilities. Quite independent of the details of the modal interpretation, we must therefore beware of
fudging the distinctions between such observables as A, B on the one hand, and A ⊗ B, A ⊗ I, etc., on the other.

To see the holism of states reappear as holism of values, consider the question:

2. Is there an observableA&B, definable by the equivalence:A&B has value akm if and only if A has value ak and
B has value bm?

Here k, m → akm must at least be a unique correspondence; the probative case arises whenA and B pertain to different
systems X and Y, so that A ⊗ B pertains to X + Y. For the latter, we have

3. The probability of an outcome in E for a measurement of A ⊗ B equals the probability of outcomes ak and bm

such that akm is in E, for joint measurement of A and of B.

Putting 1 and 3 together, we must conclude that, if there is such an observable as A&B then A&B = A ⊗ B. This
shows that there is no such observable at all! For in the case in whichX + Y is in correlated pure state ϕ = Σ ci|ai 〉 ⊗

|bi 〉, for example, it is quite possible that A and B have sharp values. But since X + Y has a pure dynamic state, its
value state is the same. Hence if several are between 0 and 1 then A ⊗ B has no sharp value. Question 2 must
therefore be answered: in general, no! Of course there is no similar obstacle to the principle that A ⊗ B has value akm if
and only if A ⊗ I has
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value ak and I ⊗ B has value bm; for in our example, none of the three has a sharp value at all.

However logical this is, I fear that the reader's mind may now boggle. How could A and A ⊗ I have such different
values? But we are not being asked to imagine a strange experimental outcome. When we translate out puzzlement into
a truly empirical question, it disappears. To see this, suppose that A and A ⊗ I are both measured on systems X and
(X + Y) respectively. This entails that they are part of a large system (X + Y + Z + W + V + . . . ). It may be that Z
measures A on X and W measures A ⊗ I in (X + Y), or perhaps Y itself measures A on X. The question is: will the
outcomes of the measurements agree? To get a probability for that, we must assume that a further measurement is
being made, by V say, on that state of (X + Y + Z + W) to see if there is such agreement. My assertion is that the
theory predicts that this last measurement will have outcome yes with probability 1.

To keep the discussion simple, suppose that X is a particle in state , that Y is an A-measurement
apparatus with groundstate y and pointer observable B:

and that Z is a measurement apparatus with groundstate z and pointer-observable C. The eigenvalues of C are 1 to
register agreement and 0 to register disagreement:

and of course in all cases the evolution is linear. Now we see what happened:
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in other words, the answer will be yes, agreement with probability 1.

The strange holism which allows A and A ⊗ I to take different values in our models therefore ‘shows up’ only outside
measurement contexts—in other words, it has probability 0 of ever really showing up. That is why we can in practice
ignore the difference between A and A ⊗ I.

5. Puzzle: Is There Chaos Behind the Regularities?
Quantum mechanics gives us probabilities only for measurement outcomes, conditional on the hypothesis that a
measurement is made. That is very stingy. It has also to philosophers a very empiricist or even positivist sound, but
that is deceptive. At least on our present interpretation, any process at all is a measurement if it satisfies certain purely
physical conditions, which make no reference to conscious observers, and need not be macroscopic. But we are still
left with the question: what can happen when no measurement is being made?

The answer on our present interpretation is: anything is possible. Of course, ‘anything’ does not mean anything logically
conceivable; for, according to the distinctive Copenhagen principles laid down above, no value-attributing propositions
can be true together unless they can be certain together (in the sense of receiving Born probability 1). This is a very
weak constraint on what actually happens, and it still allows things to happen in actuality which have zero probability of
ever appearing as measurement outcomes. That is partly because zero probability is not strict impossibility, and partly
because something which has Born probability 1 under some circumstances need not have Born probability 1 under any
circumstances realized in the particular system or process you are considering. That is because, in a given particular
case, the dynamic state may have correlations in it which are not to be found in all dynamic states of which the system
is capable. I think we should compare this carefully with what could happen in a classical statistical theory. The
probabilities it gives us are conditional on measurement; and while that is not to be construed anthropocentrically, it is
still limited. What is more, the probabilities evolve—embodied
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in the quantum-mechanical dynamic states—without ‘feedback’ from the actual values.

Here is a classical example of evolving probability. I toss a die repeatedly; the die is fair to begin, but it is so constructed
that with each toss it becomes more biased in a certain way. Let p[n, i] be the probability that face ‘i’ comes up in trial n.
Suppose for i = 1, . . . , 6, but

where T(n) is the needed normalization factor (so that the sum of probabilities remains equal to 1). Now we have two
descriptions of this world: first, the deterministic development of that probability distribution, and second, the actual
series of toss outcomes. Logically speaking, the latter can be any sequence of integers between 1 and 6. But we note to
ourselves that this class of possible outcome sequences has an induced probability measure—roughly speaking, the
higher-numbered faces become continually more likely to turn up. The ‘mechanics’ however resides solely in the first
part of the description, the temporal evolution of the probabilities.

If we study the temporal evolution of a wave function of a compound system in quantum mechanics, certain episodes
qualify as the measurement of some observable on one part of the system by another part. There the Born Rule gives
us probabilities for events. The total history of the system then consists of two parts: (a) the aforementioned,
temporally evolving, quantum-mechanical state, and (b) the sequence of actual outcome events. The latter could
logically speaking be any sequence of possible measured values of the observables in question—but, of course, we
have an induced probability measure on those sequences. So far we have a parallel.

In my classical example it was clearly implied that the evolution of the probabilities was independent of the actual
outcomes. What if the die had been so constructed that each time a face came up it was more likely to come up again
later? Then probability-evolution and outcome-sequence would be interdependent. Should we not think analogously
that in quantum physics the process of interaction designated as measurement changes the probabilities? What, for
instance, if I am the measurement apparatus, and I decide beforehand that if I detect
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a red light I shall shoot the piano player? Does it not follow then the occurrence of an actual value (and not just the
total quantum-mechanical state) affects the probability of what happens next?

There is a fallacy here. The interaction affects the measured system if we think of it by itself, apart from the total isolated
system of which it is part. But if we have before us the description of the total evolution of the state of the entire
system, then the description of some internal episode as a measurement adds nothing—it is simply a classification. If we
want to reflect on, for example, von Neumann's graphic ‘immediate repetition’ demand, we do it as follows. We ask:
what about the total evolution of a system in which a certain episode qualifies as an immediate succession of two
measurements of the same observable, plus a measurement which checks on whether the two outcomes agreed? What
are the probabilistic predictions for outcomes of that? To get the answer, we look again to the wave function of a total
system in which that happens, and the Born Rule allows us to deduce: we can expect the outcome the two agreed! with
probabilistic certainty.

It is exactly at this point that our intuitions tend to declare war on our deductions. ‘We don't want to know’, they insist,
‘what probabilities are derived for the outcome of a third measurement, if performed—we want to know purely and
simply whether, if the first two measurements occur, their outcomes do agree!’

But this question has a presupposition: namely that quantum mechanics, if it is to be complete and accurate, should
give us such information. In other words, it is assumed that the theory must give us more than the probabilities of
measurement outcomes. And this is an assumption that does not come from physics, but from somewhere outside. If
it had some independent justification of its own, it would be a desideratum which might be imposed as a criterion of
adequacy for interpretation. But it does not.

This war of intuitions lies very deep, and appears nowhere so clearly as in the thought-experiments in which we
imagine ourselves involved as observers and manipulators. In this area even subtle thinkers leave philosophical clarity
behind, and regress to a primitive mind–body dualism or naive materialism.
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In any supposed total description of the universe and its entire history (let us call that a Universal Story), our actions
and observations must appear no different from other processes. It is that initial supposition of having a Universal
Story which entails that their designation as free actions or conscious observations can only be a classification of certain
episodes already entirely encompassed by other supposed descriptions. If I then additionally suppose myself to be
somehow outside the process and capable of reporting directly on the state of the system–as if I had an 'ontological
telescope'–I am supposing that there is something not encompassed in the Universal Story. But by supposition it
encompasses everything! The result is incoherence.

Here is a more down-to-earth issue. If the measurement outcomes' probabilities are set by the evolving state but the
outcomes do not provide a ‘feedback’ input to that evolution, should we not expect a very chaotic life? Imagine the
following measurement (observation) outcomes in everyday life. Looking out of my window I see two cars collide;
next the drivers emerge gesticulating towards each other; a crowd gathers; a police car shows up and stops at the
accident. If at each moment the probabilities for possible events were given by the total state at that time, shouldn't we
expect to see very often some ‘unconnected series’? For example, a car stops askew in the middle of the intersection; a
police car appears; a crowd gathers; and then another car, whose speed has been fluctuating noticeably, hits the first
one. Stranger sequences yet can be imagined. Also, in the case of Schroedinger's Cat, the account I gave above is
logically comparable with the cat being sometimes alive and sometimes dead, between the triggering of the device and
the opening of the box.

This is only a more complicated version of earlier points about repeated measurement. Here we have a correlation
over time; we could ask a similar question about a simultaneous correlation. In Aspect's experiment, each photon has a
50 per cent probability of passing if the filters' orientation is parallel: why should there be a correlation observed? The
answer is the same to both questions: given the total state of the system, the uncorrelated outcome combinations are
given a zero or negligible probability.8
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Proofs and Illustrations
There are important differences between the modal interpretation, Ballentine's ensemble interpretation, and Everett's
many-worlds interpretation. The latter says that all possible measurement results are real–the world branches into
many real worlds at that point, each associated with one of those possible outcomes. As a result, indeterminism is a
matter of appearance only. Reality did not choose among alternatives, but embraced all of them. We are invited to
classify our memory and opinion about ‘what happened’ as ‘belonging’ to one of the alternative branches.

The first difference is therefore philosophical only: the modal interpretation says that only one of the alternative
outcomes is real. But in addition, the alternative possible system histories are identified differently. In the modal
interpretation, if the system as a whole is isolated, and begins in a pure state, then its state remains pure, and the values
of observables pertaining to the system as a whole are entirely determined by that state. At that level there is no
indeterminism. However, each subsystem has a state too (found by the usual ‘reduction of the density matrix’). There
we see indeterminism, for the values of the observables pertaining to the subsystem correspond to one of the
components of its mixed state. In this way, the modal interpretation will be like (a cleaned-up version of) the ignorance
interpretation of mixtures.9 Obviously, the holism of the total state introduces here a radical holism also for what really
happens: what is really true of the system as a whole does not supervene, in any respect, on what is true of the
subsystems.

In the many-worlds interpretation, the world's branching was tied to components of the total state written as a
superposition. This introduced some very strange features, for superposition–unlike mixture–is nothing like the
combination of alternatives that we see in possible world models. The idea of ‘relative states’ which Everett introduced
brings some strange asymmetries into the interpretation.10

The ‘ensemble interpretation’ has often been viewed sympathetically by physicists. It too differs sharply from von
Neumann's interpretation, especially in the form developed and recently defended by Leslie Ballentine (1970, 1989).
According to this interpretation, the quantum-mechanical state characterizes
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no individual system, but rather the statistical properties of an aggregate or ensemble of similarly prepared systems.
This sort of interpretation also admits of a number of variants. Ballentine's motivation certainly derives largely from
the sort of dissatisfaction with von Neumann's interpretation, and specifically with the Projection Postulate, which I
have also expressed.

The modal interpretation does attribute states to individual systems, but formally it is a sort of ensemble interpretation
nevertheless. At least this is so on the standard (possible worlds) semantics for modality. The ensemble is in this case
not a set of similar physical systems, but a set of ways that a given system could be. Each element is the same system
configured differently, i.e. characterized by different values for the observables, but with the same dynamic state. For
the dynamic state summarizes what is common to all the different ways the system could be, and does not indicate
which is the actual one. However, ensemble interpretations tend to try for statistical proportions in the aggregate at all
times. In the modal interpretation as elaborated in this chapter, the dynamic state is linked only to statistical
distributions on the ensemble at the end of measurement interactions it could enter, and not under other conditions.

The intuitive agreement of modal and ensemble interpretations is best seen in the case of a mixed (dynamic) state W.
Under this modal interpretation, the set of ways in which the system in state W could be is represented by the entire
collection of alternatives {〈 dynamic state W, value state y 〉: y in the image space of W}. This corresponds to the
ensemble (perhaps a virtual ensemble) in the other interpretation.

6. The Resources of Quantum Logic11

In the 1960s and 1970s quantum logic became a highly developed mathematical subject. The inspiration was in part
the apparent, tacit agreement to develop quantum theory itself starting with the most general notion of a theoretical
model which could possibly fit any data the future might bring. The postulates of quantum logic narrowed down this
class of models step by step, and eventually the representation theorems showed
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that the state-space was constrained to be a Hilbert space.12 As the term ‘logic’ shows, the project was subject to very
high standards of rigour. This gives it a special value for the project of interpretation of quantum mechanics. For the
more or less axiomatic development allows us to introduce the interpretational additions also at each relevant point,
with absolute clarity. In my opinion, any philosophical view on contemporary physics should eventually measure itself
by this standard. Yet I also admit willingly that readers not so interested in formal logic can omit this section and the
next without hindering their understanding of what follows after.

My construction will proceed in two stages. First I shall present–in one particular version–the quantum-logical
approach to the structure of physical theory in general. This will continue the discussion begun on a more intuitive
level in Chapter 5; if the discussion here becomes at times too uncompromisingly abstract, the reader may wish to
review Section 6 of that chapter. The next section will instantiate that general format in accordance with the modal
interpretation.

You cannot understand sentences of the language of physics without understanding physics. In other words, the
interpretation of what we may call the language of a theory is determined by that theory. This determination occurs via
the family of models which that theory offers for the purpose of modelling the physical phenomena we study. So if we
want to study the logic–and hence the language–of a theory in general, we must begin with a general account of what a
theory gives us. Here I propose, in a tentative spirit, a relatively shallow analysis of this subject. A theory deals with
physical systems of a certain sort; it tells us what the possible states of such a system are, what observables (physical
magnitudes) pertain to such a system and what values they can have; and it specifies a relation between the states and
values of those observables. Obviously, theories do much more, providing for instance dynamical laws for change of
state with time. But this much will do for now.

The relation between states and observables is the subject of the first assumption I shall list. In classical physics, the
state determined a precise value for each observable, and did so uniquely. In quantum mechanics, the nearest we come
is Born's rules for the calculation of probabilities. Since our assumptions
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should cover both cases, and possible generalizations thereof, without becoming uselessly vacuous, we have the
following:

First Assumption: A physical theory relates the states and observations it has specified in a way that assigns to each
state x and to each observable m a classical probability measure on the Borel sets of possible values.

To simplify the discussion, and without real loss of generality, I shall also assume that the observables are real valued,
and that for each observable m there is a smallest countable set of real numbers–the spectrum of the observable, thus
assumed discrete–which receives probability 1 from all these measures. The precise content of this First Assumption as
it occurs in elementary quantum theory, and its interpretation, will be discussed later.

6.1. Properties, Observables, and Propositions
Properties, observables, propositions, and possible situations form a family of concepts, any of which can be taken as
basic.

A physical system has some properties, and is capable of other properties. We classify systems into types or sorts by
the properties which they are capable of having.

An observable (or physical magnitude) corresponds to a family of properties. That is, we may say that two properties
are orthogonal if it is impossible for a system to have both at once. Then an observable corresponds to a maximal
family of mutually orthogonal properties. If we index these properties as (Pn: n ∈ I), then we can restate (X has
property Pn) as (the observable has value n on system X). So either properties or observables can be taken as basic.

To take propositions as basic, we simply think of the property P as the function that takes system X into the
proposition (X has P).

The notion of possible situation enters when we think of truth. Some propositions are true and others not; but if the
situation has been different, those other propositions would have been true. If propositions are taken as basic, then a
possible situation is a map of propositions into the value 1 (true) and 0 (not true). But in some ways the simplest
course is to take
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possible situations as basic. Then a proposition can be identified with a set of situations (intuitively, the ones in which it
is true), a property maps systems into propositions, and an observable maps values into properties. A proposition q is
true in situation w exactly if w is in q, and q is impossible exactly if it is empty. The spectrum of an observable is the set
of values which it does not map into the impossible property (i.e. the property that maps all situations into the
impossible proposition).

Most important is not what we take as basic, but rather the facility to switch effortlessly from any one of these
concepts to any other. Equally important, however, is the need to renounce certain classical intuitions which these
concepts themselves do not force on us (see Feyerabend 1958; van Fraassen 1972b). As a simple example, consider the
temperature T measured on the Kelvin scale, and the derivative quantity T* which has integer value n exactly when T
has a value in the half-open interval [n, n + 1). Let us generalize the description a little:

1. Observables m and fm are related by the fact that, if m has value r, then fm has value f(r).

Because of the conceptual surroundings in which we first encountered temperature, the example will immediately
mobilize the following (see Chapter 5, Section 1):

2. Classical Principle: If system X is capable of having any member of the family of properties corresponding to an
observable, then it must always have one of them.

In other words, if the observable m pertains to system X, then it always has a sharp value.

Using 2, we infer from 1 immediately, first, that the observable fm is uniquely determined by f and m, and second, that
if fm has value r then m must have some value in f−1(r) = {x : f(x) = r}. The first consequence is not denied in any
interpretation of quantum mechanics I know, but the second is denied. So we must take care not to accept principle 2
from the outset. Neither should we deny it at once, however, for it is true of classical theories, and is also accepted in
some other interpretations of quantum mechanics.

Using only the relation specified in the First Assumption, we can formulate many propositions which describe the
(dynamic) state of a physical system. We could say, for instance, ‘This
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system has a state x such that .’ But quantum logic is characterized by a preoccupation with propositions in
which the only probabilities are 0 and 1. Herein lie both its power and its limitations. As before, I define:

3. A state-attributing proposition [m, E] is a proposition which is true about a physical system if and only if that
system is in a state x such that .

Relative to those concerns which I have outlined so far, propositions that always have the same truth-value are not
relevantly different in any way. This means that we can identify a proposition with (more accurately: represent it by) the
set of states which make it true. We arrive then at the following characterization of state-attributing propositions, and
of the relation among them which corresponds to valid argumentation:

4.
5. Propositions [m1, E1], . . . , [mk, Ek], . . . together imply [m, E] exactly if ∩ {[mi, Ei] : i = 1, . . . , k, . . .} ⊆ [m, E].

There is no choice here, if the assertion that one proposition implies another is to mean that we can validly argue from
the one as premiss to the other as conclusion. The family of all state-attributing propositions I shall call P.

What is the structure of P? This is the central question of quantum logic. We see in proposition 5 that P has a natural
and significant partial order. Our First Assumption allows us in addition to apply some classical probability theory,
with the following consequences:

6. If E ⊆ F then [m, E] ⊆ [m, F].
7. If index set I is countable, then ∩ {[m, Ei] : i ∈ I} = [m, ∩ {Ei : i ∈ I}].

We note however that these concern only propositions relating to a single observable.

6.2. Propositions Relating Different Observables
If m is any observable, let us denote as [m] the class of all state-attributing propositions of the form [m, E]. We can
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introduce three partial orders on this class, which I call the proposition range of m:

8. [m, E] ⊆ [m, F].
9. For all states then also .
10. For all states .

By definition, 8 and 9 coincide; and of course 10 implies 9. Almost everywhere in quantum logic, we see the
assumption that all three relations are the same.

Second Assumption: If [m, E] ⊆ [m, F], then for all states .

Within [m], the states are ‘strongly order-determining.’ This has the consequence that we can define a complement and
join, as well as a meet, within [m], and that its structure is completely determined.

11. [m, E]⊥ = [m, R − E]
12. ⊍ {[m, Ei] : i ∈ I} = [m, ∪ {Ei : i ∈ I}] for countable index set I.

At this point it is possible to deduce:

13. 〈 [m], ⊥, ∩, · 〉 is a Boolean sigma-algebra.

A Boolean algebra is, of course, the algebraic notion of which a field of sets is the most familiar instance. Indeed, with
our simplifying assumption of a countable spectrum, we can add to 13 that this structure is a complete lattice, and
isomorphic to the Boolean sigma algebra (in fact, sigma field) of Borel subsets of its spectrum.

So far we know about the proposition ranges [m] of two different observables [m] and [m′] only that each is Boolean
and that they share a common unit and zero. They overlap, and within such overlap they may ‘disagree’ on structure.
The next assumption widens the Second Assumption about how states determine order, to the whole of P.

Third Assumption. If m and m′ are distinct observables, and [m, E] ⊆ [m′, F], then for all states.

The first consequence is that P is an orthoposet; that is,

304 QUESTIONS OF INTERPRETATION



14. The operation introduced in statement 11 determines an orthocomplement on P:

(i) if[m, E] = [m′, F], then [m, R − E] = [m′, R − F]
(ii) P⊥ ⊥ = p
(iii) p ∩ p⊥ = Ø; p ⊍ p⊥ = K
(iv) if p ⊆ q then q⊥ ⊆ p⊥

Here K andØ are the unit and zero element of P, K being of course the set of all the states andØ the set of ‘impossible
states’ (for example the null vector, if we represented the states by a Hilbert space). The second consequence is that

15. The intersection of [m] and [m′] is again a Boolean sigma algebra, and the operations of [m] and [m′] are
coincident on that intersection.

Thus we have deduced that P is the sort of ‘pasting together’ of Boolean algebras which Kalmbach and Hardegree
have studied and honoured with various names; it is already almost what Kochen and Specker (1965a, 1965b) called a
partial Boolean algebra.13

To provide more structure, still further assumptions need to be introduced. We define p and q to be compatible if there is
a proposition range [m] to which they both belong, and orthogonal if p ⊆ q⊥. Common assumptions added in quantum
logic are:

16. Any finite set of pairwise compatible propositions is jointly compatible.
17. Any finite set of pairwise orthogonal propositions is jointly compatible.

The first of these has the consequence that P is a partial Boolean algebra in the sense of Kochen and Specker. The
second implies that P is an orthomodular orthocomplemented poset; that is, in addition to the above, whenever p and
q are orthogonal their lowest upper bound exists; it may consistently be denoted p ⊍ q, for inside a single proposition
range the previously defined join is that lowest upper bound.
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In such a structure it is still not guaranteed that arbitrarily chosen propositions p and q have a meet (greatest lower
bound). If that is so, the structure is a lattice, though generally not Boolean. Still further assumptions may be made,
leading to the consequence that P is a lattice and, eventually, to its isomorphism to the lattice of subspaces of a
separable Hilbert space (as in Piron's famous representation theorem),14 thus establishing final contact with the subject
of quantum mechanics where we began.

Every assumption introduced raises a new problem of interpretation. The mathematical content is always clear
enough, but what is its physical or empirical content? For each assumption, this question is more difficult than for the
one before.

7. The Modal Interpretation, Quantum-Logically
In connection with the modal interpretation, what I have discussed in this chapter so far is indeed the structure of
physical theory proper. But it still encompasses only the theory of the dynamic state, and leaves open entirely what
exactly the probabilities are probabilities of. That is why I said that the precise content of the First Assumption as it
occurs in quantum theory was to be discussed later. In the modal interpretation, the probabilities are of events, each
describable as an observable having a certain value, which are parts or aspects of the value states. Section 6 was a preamble;
now I shall develop the modal interpretation as a theory in the style of quantum logic. The statements P1, . . . will be
postulates; D1, . . . definitions; and T1, . . . theorems.

7.1. Value States and Dynamical States
If w is a physical situation in which system X exists, thenX has both a dynamic state x and a value state λ in situation w.
For the time being I shall be concentrating on one-body situations, and so I shall write, for brevity, w =〈 x, λ 〉 or
else x = x(w), λ = λ(w). Note that, alone, ‘x’ and ‘λ’ are variables, but ‘x()’ and ‘λ()’ are names of functions. The variables
x, y, . . . from
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the end of the alphabet will range over dynamic states; λ, λ′, . . . over value states.

Having renounced what Feyerabend called the Classical Principle, λ will not in general assign a value to every
observable m pertaining to X. However, we might say that λ assigns m an unsharp value in a derivative way. Suppose
that 1E is the characteristic function of a set E of values, and consider the observable 1Em. If it has value 1, then it is
impossible that m has a value outside E—and it is necessary that 1(E ∪ F)m has value 1 too; and so forth.

So we have two ways of treating λ. One way is to say that it is a partial function assigning values to some observables
but not to others, while respecting the relationship described in 1 above between m and fm. The second way is to say
that λ assigns something to each observable m, namely the least set E such that it assigns {1} to 1Em. It is obviously
more convenient to follow the second course; and we can then prepare ourselves for applications of probability theory
by insisting that the sets assigned are Borel sets.

P1: A value state λ is a map of observables into non-empty Borel sets.
P2: If λ (w)(m) = λ (w)(m′) for all possible situations w, then m = m′.
D1: S(m) = {x : λ(w)(m) = {x} for some w}.
D2: fm is the observable (if any) such that λ (w) (fm) = f(λ(w)(m)), where f(X) = {f(x) : x ∈ X)}.

We call S(m) the spectrum of m. I will limit the discussion of the theory format here to discrete point spectra, because in
known theories other observables can be mathematically construed from these.

P3: S(m) is a countable set of real numbers.
P4: If f is a Borel function, and m an observable, then the observable fm exists.
P5: λ (w)(m) ⊆ S(m) for all w.

We note that, because the spectrum is countable, both f(X) and f−1(X) are Borel sets if X is a set of possible values of m.

We can now introduce propositions as sets of possible situations, which describe the value state:
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D3:

The proposition 〈 m, E〉 is thus true in situation w exactly if λ (w)(m) ⊆ E, and so exactly if 1Em has value 1 in that
situation. We can read〈 m, E〉 conveniently as ‘m (actually) has value in E’. The set V of all such propositions I call the
set of value-attributions.

The family〈 m〉 of propositions which attribute (approximate, ‘unsharp’) values to m, I shall call the value range of m. It admits
the following operations:D4:

T1:

T1:

That the join is well defined on〈 m〉 follows from T1, because the partial ordering of the family is isomorphic to the set inclusion
ordering of the subsets of S(m). That is because P5 and D1 guarantee that the correspondence of〈 m, E〉 with S(m) ∩ E
is one-to-one, an isomorphism with the Borel subsets of S(m). This fact does not depend on P3. We note that we have
at present no guarantee that if〈 m, E〉 = 〈 m′, E′〉 then〈 m, R − E〉 = 〈 m′, R − E′〉 and that even within
〈 m〉 the join of two propositions is not in general equal to their set-theoretic union. We conclude, however:

T3: V is the union of a family of Boolean sigma algebras〈 m〉 with common unit and zero equal to 〈 m, S(m)〉 and
〈 m, Λ〉 respectively.

The situation is very, but not entirely, classical; as before, we
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have the Law of Excluded Middle (every situation w belongs to q [q⊥) but not the Law of Bivalence (a situation w may
belong neither to q nor to q⊥).

Our prediction of what will or would happen to a system under contemplated physical conditions is based on the
dynamic state. Hence, in particular, so are our predictions about measurement outcomes. This means that the state
must provide us, for each observable m, with a probability measure on the possible values of m, telling us the
conditional probability that a value is found in E, if m be measured on a system in dynamic state x. I will restrict
the discussion here to von Neumann–Lueders measurements, in which correlations are set up. The reader will easily
see, by comparison to Section 5 above, what to omit for the more general case of any sort of measurement.

We make several assumptions to introduce our next postulate. The first is that at the end of the measurement m will
have a sharp value, and the probability that it is a given value is exactly the probability that the measurement apparatus
will indicate that value. Secondly, we assume that the probability that m will have a value in E if m is measured is exactly
the same as the probability that 1Em will have value 1 if it is measured. Together, these assumptions imply that the
derivative function

is well defined on V. The third assumption is that dynamic states are experimentally distinguishable; if two such states
are distinct, then there must be some observable for which they yield different predictions of measurement outcomes.
Hence we can identify the state x with the function Px:

P6: A dynamic state x is a function from V into [0, 1], whose restriction to each Boolean sigma algebra〈 m〉 is a
probability measure.

Note that I use the term ‘probability measure’ only in the classical, Kolmogoroff, sense (though with the more general
‘Boolean sigma algebra’ replacing ‘sigma field’). Also note that we have here a postulate, not a definition (similarly for
P1 about value states). Merely to fix the terminology exactly, therefore, I stipulate:
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P7: x and λ are a dynamic state and a value state respectively, only if there exist possible situations w and w′ such
that x = x(w), λ = λ(w′).

We can now return to the traditional topic of quantum logic as introduced by Birkhoff and von Neumann: the
propositions which describe the dynamic state:

D5: x is an eigenstate of m, with corresponding eigenvalue r, exactly if x(〈 m, {r}〉) = 1.
D6: [m, E] = {w : x(w)(〈 m, E〉) = 1}.

[m] = {[m, E] : E a Borel set}.
P = {[m, E] : m an observable, E a Borel set}.

P is the set of state-attributions, [m] the proposition range of m, and we read [m, E] briefly as ‘m must have value in E’, or
more accurately as ‘1Em must have value 1’. On our present interpretation these readings are accurate, provided we
take the former as concerning an unsharp value. It does not mean that there is some eigenvalue in the set E such that
m has that value. On the other hand, it means more than that an outcome in E is certain if a measurement be made. If
[m, E] is true, then 1Em does have value 1 whether any measurement be made or not. This is the way in which the
interpretation goes beyond what quantum mechanics itself implies.

In Section 6 I discussed various postulates that bestow structure on P. Here I shall only state the major such postulate
(‘strong order separation’) and its consequences, without further comment, though adapted to the present modal
framework.

P8: [m, E] ⊆ [m′, E′] only if, for all dynamical states x, x(〈 m, E〉) ≤ x( m′, E′〉)
D7: [m, E]⊥ = [m, R − E]

[m, E] ⊍ [m, F] = [m, E ∪ F].
T4: ⊥ is well defined on P and ⊍ on [m].
T5: [m, E] ∩ [m, F] = [m, E ∩ F].
T6: [m] is a Boolean sigma algebra with operations ⊥, ∩, ⊍; and with unit and zero elements equal to [m′, S(m′)], and

[m′, Λ] for any m′.
T7: The intersection [m] ∩ [m′] is again a Boolean sigma algebra with the operations of [m] and [m′] coinciding in

this overlap.
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T8: 〈 P, ⊆, ⊥ 〉 is an orthoposet (i.e. ⊥ is an ortho-complement).

Thus P is an orthoposet formed by ‘pasting together’ a family of Boolean algebras, whole operations coincide in areas
of overlap. More postulates could clearly be added, as we discussed above, so as to approach the lattice of subspaces of
a Hilbert space.

7.2 General Approach to Mixed States
Some dynamic states are more informative than others: the predictions we base on them are more precise, with
probabilities closer to 1 and 0. In familiar cases such as classical and quantum mechanics, the less informative cases are
always mixtures (convex combinations) of more informative ones. What about the general case? We must first
reintroduce the requisite concepts for our now very general framework. Based on the idea that giving more
information amounts to ruling out more possibilities that were considered open beforehand, I introduce here the first
technical use of ‘possible’ in the present context:

P9: If A = {xi} is a countable set of dynamic states and 0 < ci ≤ 1 with Σ ci = 1, then Σ cixi is also a dynamic state
(called a mixture of A).

D8: x is pure iff x = cy + (1 − c)z and c ≠ 0 only if x = y = z; otherwise x is mixed.
D9: y is possible relative to x (briefly, xRy) exactly if, for all q in V, if x(q) = 1 then y(q) = 1.
D10.w′ is possible relative to w (briefly, wRw′) exactly if, for all q in V, if w is in q then w′ is in q.
D11:x is prime if xRy implies that x = y.

Although it will not play a silent role in our discussion here, it may help to mention the idea of superposition. We can
generalize D9 as follows:

y is possible relative to the set X of states exactly if, for all q in V, if x(q) = 1 for all x in X then y(q) = 1.

In quantum mechanics, this relation comprises both superpositions (proper) and mixtures. (Precisely: y is in that case a
mixture of pure states, each of which is a superposition of elements of X.) Some writers use ‘superposition’ in this
general
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sense, and speak of ‘coherent’ and ‘incoherent’ superpositions.

In the case of quantum mechanics, as we recall, prime is the same as pure and xRy if and only if y is a state whose image
space is included in that of x.15 This result suggests at least directions of inquiry to us, and we begin by noting the
following elementary consequences of our definitions:

T9: wRw′ if and only if x(w) Rx(w′).
T10:

(a) If B ⊆ A, x a mixture of A and y a mixture of B, then xRy.
(b) If x is a mixture of A, then x(q) = 1 if and only if y(q) = 1 for all y in A (for q in V).

T11: If x and x′ are mixtures of the same set A, x(w) = x and x(w′) = x′ and q ∈ P, then w is in q if and only if w′ is
in q.

T12: A state is prime only if it is pure.

T10 follows easily because, if x is a mixture of y and some other state, and y(q) ≠ 1, then x(q) ≠ 1. The immediate
corollary T11 establishes that quantum-logical propositions (i.e. members of P) do not separate mixed states with the
same components. Finally, T12 follows because if x is not pure, say x = cy + (1 − c)z, and y ≠ x, then by T10 we have
xRy, so x is not prime.

At this point we try to introduce minimal reasonable assumptions to secure the equivalence of pure and prime. T11
establishes that quantum-logical propositions do not separate mixed states in general; but we can postulate that they
separate pure states. We can also postulate that there are enough prime states so that each dynamic state corresponds
naturally at least to a set of prime states:

P10: If x and y are pure and x ≠ y, then there is a proposition q in V such that x(q) = 1 ≠ y(q).
P11: For all q in V, x(q) = 1 if and only if y(q) = 1 for all prime states y such that xRy.
T13: A state is pure only if it is prime.

Let us denote the set of prime states which are possible relative to a given state x as PR(x). Due to P6, the state x will
give 1 to some but not all value-attributing propositions, so this set PR(x) will never be empty. To prove T13, suppose
x is pure
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and let y be a prime state possible relative to x. Then by definition PR(y) contains PR(x). But since y is prime, PR(y)
contains only y. Therefore PR(x) = {y} = PR(y). Since y is prime it is also pure, by T12. Therefore by P10, it follows
that x = y, since they give 1 to the same value-attributing propositions. Hence x is prime.

The separation postulate P10 would of course follow from the stronger assumption that P is atomistic (generated by
its atoms) and that pure states correspond to its atoms. This is true for the lattice of subspaces of a separable Hilbert
space.

The coincidence of pure and prime does not establish that if xRy then x is a mixture of y and some (other) state. Suppose
we can find a positive real number c such that cy(q) ≤ x(q) for all q in V. Then we can define a function z on V by

and conceptually there is no reason why z should not be a dynamic state. But our earlier discussion in Chapter 6,
Section 4, shows that the existence of such a state is connected to the dimensionality of the space.

7.3. Relations Between States and Observables
We have finally come to the point where we must choose between alternative interpretations of the probability
measures in our formal theory. The guiding idea will be this: there is no ‘collapse of the wave packet’ in a
measurement, as far as the dynamic state is concerned—yet at the end of the measurement of an observable, that
observable has one of the possible values in its spectrum, with probability as given by the initial state.

Suppose we know the dynamic state at time t; can we infer anything about values of observables at that time? The
obvious candidate for a principle relating the two is that, if x(w) is an eigenstate of m, for eigenvalue r, then m actually
does have value r. In view of P4, this will then generalize to any set E of eigenvalues. In our symbolism,

This does not follow from the P1–P11 above, but I shall assume it. It will imply that, at least in the case of an
eigenstate, a
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measurement does reveal the value the observable had at the outset.

Secondly, how many of the value-attributions allowed by the preceding assumption are true? If we say an absolutely
minimal set, we embrace what I have called von Neumann's interpretation rule. If we say absolutely maximal, then we
imply that every observable always has a precise value in its spectrum, and hence the Classical Principle, which
Feyerabend made explicit. The latter requires in turn that we say either that a single Hermitean operator can
correspond to more than one observable, or else that the values of functionally related observables may, on individual
occasions, violate those very functional relationships. (This follows from Kochen and Specker's ‘no hidden variables’
proof, as I shall discuss in the next chapter.) I will take a middle course and assume only that the set of propositions in
V that are true in a given situation is relatively maximal: if all the value-attributions true in w are also true in w′, then the
converse is true as well; that is, exactly the same value-attributions are then true in both.

Finally, I shall add what I consider the distinctive Copenhagen school assumption: propositions about a system cannot
be jointly true unless they can be jointly certain. In other words, the Uncertainty Principle exhibits not simply a limit to
our knowledge, but a limit of what can be objectively true at the same time. All of the above is summarized in
postulates P12–P14:

P12: [m, E] ⊆ 〈 m, E 〉

P13: If λ(m) ⊆ λ′(m) for all m, then λ = λ′.
T14: If w is in q only if w′ is in q, for all q in V, then also for all q in V, w′ is in q only if w is in q.
P14: If X ⊆ V and w is in ∩ X, then there is a dynamic state x such that x(q) = 1 for all q in X.

We can now deduce the consequences by which this theory merits at once the epithets ‘modal’ and ‘Copenhagen’.
Recalling the discussion of necessity in Chapter 1, we define modal operators on the following propositions:

D12:If q is any proposition, then
□ q = {w: for all w′, if wRw′ then w′ ∈ q}
◊ q = {w: for some w′, wRw′ and w′ ∈ q}
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T15:

(a) For each situation w there is a pure dynamic state y such that x(w) Ry, and for all q in V,w is in q if and only if
y(q) = 1.

(b) [m, E] = □ 〈 m, E〉.
(c) Identity of observables: If x(〈 m, E〉) = x(〈 m′, E〉) for all dynamic states x and all Borel sets E, then

m = m′.
To prove (a), let T = {q ∈ V: w ∈ q}. By P14, there is a dynamic state z such that z(q) = 1 for all q in T. We have to show
that z is possible relative to x(w), that z is pure, and that also, conversely, if z(q) = 1 then q is in T. The relevant feature
here is obviously the relative maximality depicted in P13 and T14.

Let us first take the case in which x(w) is pure, which is to say prime (by T12 and T13). By P12 we see that if
x(w)(q) = 1 then w is in q, so q is in T. So if x(w)(q) = 1 then also z(q) = 1; that is, x(w) Rz. But x(w) is prime, so then
x(w) = z. We have now proved the following:

Lemma: If x(w) is pure, then w is in q if and only if x(w)(q) = 1.

Consider next the case in which x(w) is not pure. It is still true by P12 that if x(w)(q) = 1 then q is in T, and so x(w) Rz,
by the same reasoning as above. To bring T14 into play, we note that by P11 there is a pure state y such that zRy, and if
z(q) = 1—hence also if q is in T—then y(q) = 1. By transitivity, also x(w) Ry. We look now at the alternative situation w′
whose dynamical state x(w′) is that prime state y. By the lemma above, w′ is in q if and only if y(q) = 1. By T14 and the
fact that y assigns 1 to all members of T, we see that:

For all q, if q is in T then w′ is in q.

Hence the antecedent of T14 holds, and we conclude that also conversely, if w′ is in q, so is w. The two equivalences
together now imply that w is in q if and only if pure state y assigns 1 to q.

Clearly, at this point, we can for all practical purposes represent the value state λ(w) by that pure dynamic state y. The
equation is this: λ(w)(m) = E exactly if E is the least Borel set such that y(〈 m, E〉) = 1.
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To prove (b) we must show that w is in [m,E] if and only if all w′ such that wRw′ are in〈 m, E〉. But w is in [m,E] if
and only if x(w)(〈 m, E〉) = 1, so this amounts to

x(w)(q) = 1 iff, for all w′, if wRw′ then w′ is in q.

By T9 (or D10), the right-hand side is equivalent to: for all w′, if x(w)Rx(w′) then x(w′)(q) = 1. This follows from the left-
hand side by the definition of R. Conversely suppose the right-hand side is true. By P7 it follows then that, for all
prime states z, if x(w)Rz then z(q) = 1. But then also by P11 it follows that x(w)(q) = 1, as required.

Finally, to prove (c), the identity criterion for observables, note that its antecedent entails that, for all Borel sets E and
all pure states y, we have y(〈 m, E〉) = y(〈 m′,E〉). In view of part (a) of the present theorem and P7, we can
represent the value states by the pure dynamic states. So we conclude that, for all w, λ(w)(m) = λ(w)(m′), for if that
equation did not hold there would be a pure state y such that λ(w)(m) is the smallest Borel set E such that y
(〈 m, E〉) = 1 but not such that y(〈 m′,E〉) = 1, which is counter to hypothesis. Therefore by P2 we conclude that m = m′. This
last consequence T15(c) we express as: Statistically equivalent observables are identical.

Returning now to our modal operators, we can ferret out the logic of value-attributions. As we have just seen, [m, E]
can be read as ‘Necessarily,〈 m, E〉’ because [m, E] = □〈 m, E〉. However, this says only that the dynamic state assigns 1 to
〈 m, E〉 if and only if the value state that accompanies any relatively possible dynamic state makes 〈 m, E〉 true. Another sense of
necessity is given by: it is necessary that q (in V) exactly if any value state that could accompany the present dynamic state
makes q true.

D13:If q is any proposition,
.

P15: If wRw′ there is a possible situation w″ such that x(w″) = x(w) and λ(w″) = λ(w′).
T16: .

To prove T16, suppose first that w is in [m,E]. Then by T15(b), w is in □〈 m, E〉, so all w′ such that wRw′ are in
〈 m, E〉. A fortiori, all w′ such that x(w) = x(w′) are in 〈 m, E〉,
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in view of T9. Therefore w is in . Suppose on the other hand that w is not in [m,E]. Then again by T15(b) there
must be some w′ such that wRw′ and w′ is not in〈 m, E〉. That means that λ(w′)(m) is not included in E. By P15, there is
now a possible situation w″ such that x(w″) = x(w) and λ(w″) = λ(w′), and w″ is therefore not in〈 m, E〉. But then w is
not in .

While the operation □ was based on the transitive relative possibility relation R, the new operator is based on an
equivalence relation. We are here not interested in saying anything about iterated or nested modal operators—where
transitivity, etc., makes a difference—but we should notice that this character of establishes a correspondence
between V and P (a sort of ‘supervaluation’ relationship).

T17: w is in [m, E] iff {w′: x(w) = x(w′)} ⊆ 〈 m, E〉.
T18: [m, E] implies [m′, E′] if and only if 〈 m, E〉 implies 〈 m′, E′〉.

Both follow at once from T16. Thus the map [m, E]→ 〈 m, E〉 is an isomorphism of the posets 〈 P, ⊆rangle and〈 V,
⊆rangle. Recalling definition D4 and theorems T4 and T8 concerning the orthocomplement on P, we infer also that:

T19: If 〈 m, E〉 = 〈 m′, E′〉 then 〈 m, R − E〉 = 〈 m′, R − E′〉.
T20:〈 P, ⊆, ⊥〉 and 〈 V, ⊆, ⊥〉 are isomorphic orthoposets.

Similar inferences may be drawn from T7 concerning the intersections of Boolean algebras〈 m〉. Briefly, the logic of V
is just that of P: quantum logic.

7.4. Representation of Complex Systems and Measurement
So far I have concentrated on systems taken as wholes, ignoring whether they have other systems as components or,
alternatively, are components of other systems. All the postulates I have laid down, it must be emphasized, concern
propositions, and classes of propositions, which are about a single system treated as a unit.

The representation of complex systems is, not surprisingly, a complex subject. I have said little enough about the
algebraic
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structure of the set of observables pertaining to one system; I shall leave undiscussed even more about the abstract
relations between the algebras of observables of a system and its components.16 But I shall introduce enough here to
provide a sufficient framework for the description of measurement processes.

Relying on the preceding sections, I shall now simply identify the value state λ with the pure dynamic state y to which it
corresponds by theorem T15(a). Thus we can also write w = 〈 x(w), y(w)〉, where w is in 〈 m, E〉 exactly if y(w)
(〈 m, E〉) = 1. (Note here also that in this notation y is a variable when alone, but y( ) names a function.)

In the case of a complex system X3 = (X2 + X1) involved in situation w, both dynamic and value states must be ascribed
to the whole system and to its components. The dynamic and value state of Xi in w will be denoted xi(w) and yi(w), or
alternatively I write:

Each situation wi =〈 xi, yi 〉 is a possible situation of the one-body type, and must therefore satisfy all the postulates
laid down so far. These constraints can now be summarized of course as: xiRyi. (In Sections 8 and 9 we shall discuss
why this cannot be the end of the matter, however.)

In the case of a one-body system we had the simple principle that whatever propositions in V can be jointly true can be
jointly certain. Something analogous, if not equally simple, must be said when we consider a class of propositions some
of which are about one system, say X3, and some about another, say X1 or X2. The principle I wish to impose here is
that all the value-attributions true about X3 could also, through a suitable preparation of state, be jointly certain,
without making it thereby impossible that the actually true value-attributions to X2 and X1 are still true.

To express this more precisely, let subscripts indicate which system an observable pertains to; so, for instance,
〈 m1, E〉 says that observable m1 has actual value in E on system X1. Now we can look at some observable m3 on X3,
and suppose that the value states are such that, say, m3 has actual value r, m2 has actual value s, and m1 has actual value t.
The principle I described in the preceding paragraph says then that the system
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X3 = (X2 + X1) could, in some possible situations, be such that the dynamic state of X3 is an eigenstate of m3

corresponding to eigenvalue r, while m2 and m1 still have actual values s and t respectively. This consequence we could
even express by means of our modal symbolism if we let q1 =〈 m1, E1 〉, q2 =〈 m2, E2 〉, and q3 =〈 m3, E3 〉:

T21: (q1 ∩ q2 ∩ q3) implies ◊ (q1 ∩ q2 ∩ □ q3).

Because of the correspondence between, and our consequent present identification of value states with, pure
dynamical states, we can state the general principle very simply:

P16: If w is a possible situation, then there is also a situation w′ such that x3(w′) = y3(w), and yi(w′) = yi(w) for i = 1, 2, 3.

This implies T21 above, which of course could not be deduced beforehand.

It might be asked why P16 and its consequence T21 are not strengthened to accord more nearly with the
corresponding postulate P14. Why, in fact, do we not assert:

The reason is that in quantum mechanics the complex system is capable of having certain dynamic states which are
pure and yet leave open various possibilities for the value states of the components. This is crucial to the description of
measurement processes with uncertain outcomes.

How are the dynamic states related to each other? This is more difficult to describe, since it concerns exactly the
algebras of observables pertaining to different systems, which I shall leave largely undiscussed on the abstract level. But
in quantum mechanics, the state x3 determines the states x2 and x1 by reduction of the density matrix. Using that as our
guide, and choosing a suggestive symbolism reminiscent of tensor products, we can introduce the following postulate:

P17: For each observable m2 and observable m1 pertaining to X2 and X1, there are observables m2 ⊗ I and I ⊗ m1

which pertain to system X3 = (X2 + X1), and such that, for all possible situations w, and all Borel
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sets E, where xi(w) = xi:

(i) x3(〈 m2 ⊗ I, E 〉) = x2(〈 m2, E 〉)
(ii) x3(〈 I ⊗ m1, E 〉) = x1(〈 m1, E 〉)

The observables (m2 ⊗ I) and (I ⊗ m1) are uniquely determined by equations (i) and (ii), according to theorem T15(c). If
we are given x3(w), then x2(w) and x1(w) are uniquely determined by (i) and (ii) since they are functions defined on the
sets 〈 m2 〉 and 〈 m1 〉 consisting of the propositions 〈 m2, E 〉 and 〈 m1, E 〉. Hence we can introduce a
functional notation:

D14:If equations (i) and (ii) hold for given dynamical states x3, x2, x1 for all observables m2 and m1 pertaining to X2

and X1, and all Borel sets E, then x2 = #x3; x1 = x3#.
T18: If w is a possible situation involving X3 = (X2 + X1), then

(a) x2(w) = #x3(w) and x1(w) = x3(w)#.
(b) #y3(w)Ry2(w) and y3(w)#Ry1(w).

That # is well defined, as well as T18(a), is established by the immediately preceding discussion. To see T18(b) we
simply apply P16 and T18(a): Given the possible situation w =〈 x3, x2, x1; y3, y2, y1 〉, there must be another situation
w′ =〈 x′3 = y3, x′2, x′1; y3, y′2 = y2, y′1 = y1 〉. But xiRyi. Since x′3 = y3 is pure, it follows that y′3 = y3 as well. But x′2 = #x′3
= # y3, and x′2Ry′2; so #y3Ry2. Similarly for y3# and y1.

This theorem allows a simple summary description of a situation involving a complex system:

where x3Ry3, (#y3)Ry2, and (y3#)Ry1.

In general, #x3 and x3# are mixed even when x3 is pure.

It must be strongly emphasized that, because of T15(c), the complex observable m2 ⊗ I is uniquely determined by m2

simply because its statistical distribution relative to every dynamical state is determined. This leaves open the possibility
that the actual value of m2 does not determine the actual value of m2 ⊗ I.
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Having described complex systems in general, we can now look at measurement and ask how elementary quantum
theory fits the general structure exhibited so far. The situation I shall concentrate on is the familiar ideal description of
von Neumann–Lueders measurement, which requires us to look at a model of sufficient generality, namely of the
interaction of two systems (object and apparatus) leading to a correlation of observables.

The evolution of the dynamic state of an isolated system is governed by a one-parameter group U of unitary
transformations, with infinitesimal generator H, the Hamiltonian of the system. Suppose now that X1 and X2 are two
systems, and the complex system (X2 + X1) is isolated; under what conditions can we say that a measurement of
observable m is performed on X1, by means of apparatus X2, during the time interval (t, t′)? The answer I gave in
Chapter 7 is that the Hamiltonian of the complex system must be of a certain sort, regardless of what else we may say
about the system. In order to keep separate our abstract formulation so far from the concrete instance of extant
quantum mechanics, I shall use Greek letters here for all pure quantum states.

A possible situation w = 〈 x, y 〉 will evolve in time, with the evolution of the dynamical state x governed by
quantum theory. That is, if the system is isolated, then there is a dynamic group of evolution operators Ud such that
w(t + d) =〈 x(t + d), y(t + d)〉 =〈 Udx(t), y(t + d)〉. Notice that this gives us no information about how the value
state evolves, except for such general constraints as that x(t)Ry(t) for all t.

A process is a map t → w(t) of time into possible situations. If t1 is the initial time of a measurement of the sort just
described (with X2 as apparatus and X1 as object), then the situation at time t1 is of the following sort:(1)

Since all three systems begin in pure states in the case we are
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examining (and because of P16, this is sufficiently general for discussion), the initial situation is especially simple; it is
just(2)

During the interval d, x3(t1) is transformed by Ud to x3(t2) where t2 = t1 + d; the equations governing measurement allow
us therefore to infer an exact description of the final situation:(3)

We can put also the last clause in quantum-mechanical terms. Denoting as S(xi) the image space of statistical operator
xi:

(4) y2(t2) = Iψ′, for some vector ψ′ in S(x2(t2)), i.e. in the subspace spanned by {ψi:ci ≠ 0}.
(5) y1(t2) = I

ϕ′, for some vector ϕ′ in S(x1(t2)) = the subspace spanned by {ϕi:ci ≠ 0}.

Since these are the total constraints on the final situation, we see that the process was indeterministic, because there are
many possible situations that satisfy the description of w(t2) in (3)–(5) above. They are all the same with respect to
dynamic states, but not with respect to value states.

7.5. Probabilities of Measurement Outcomes
We have now arrived at the interpretation of the probabilities which are calculated from the dynamic state. Briefly, the
probability that initial dynamic state x1(t1) gives us for〈 m, E 〉 is just the probability that the final value state y1(t2)
will make 〈 m, E 〉 true. In the present context we assume that any observable is uniquely represented by a
Hermitean operator, and it will be convenient to cease distinguishing observable m
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and the Hermitean operatorM that represents it. We already use the termsM,M′ to stand for observables pertaining to
X1 and X2 respectively, so we can write without ambiguity:(6)

I shall label as ‘PQ’ special assumptions that interpret the mathematical representation in Hilbert space.

PQ1:
The pure dynamic states y are (represented by) one-dimensional projections I

ϕ
and the observables are

(represented by) Hermitean operators M = Σ riIi, with {Ii} an orthogonal set of projection operators such that:

(a) the eigenvalues ri of M are the solutions of the equations Mϕ = riϕ = riIiϕ

(b) y(〈 M, E 〉) = 1 iff , where y = ϕ and
The theory was designed from the outset to equate〈 m, E 〉 =〈 1Em, {1}〉; hence we see that every proposition
in V corresponds to a projection operator:

(7) w(t) is in 〈 M, E 〉 iff y1(t) = I
ϕ
for some vector ϕ such that .

We may also postulate the other half of the correspondence:17

PQ2:
If P is a Hermitean operator, it is (or represents) some observable.

Looking now at an arbitrary dynamic state x, we see that it induces a map of the projection operators into [0, 1] with
the following properties:

(i) x(I) = 1 when I is the identity.
(ii) If P and Q are orthogonal, then x(P + Q) = x(P) + x(Q).

The second property follows because if P and Q are orthogonal then we can find a Hermitean operatorM with spectral
decomposition Σ riPi such that P1 = P, P2 = Q; in which case P and Q correspond to disjoint propositions in the range
〈 M 〉; and our
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basic postulate on states, P6, then entails (ii). But now it follows by Gleason's theorem18 that

(8) Each dynamical state x is (representable by) a statistical operator such that .

This is a large part of what was contained in Born's Rule for calculating probabilities in quantum mechanics. It follows
for us here, via Gleason's theorem, from the basic pairing of observables and pure dynamic states with operators, plus
our theorem T15 which established that value states stand in an exact correspondence to pure dynamic states.

But there is a second part to Born's Rule, which cannot be deduced so far. What do the calculated probabilities attach
to? What are they probabilities of? The answer that they are the probabilities of measurement outcomes, conditional
on the measurement having been made, must be added to the theory as an interpretative postulate. I give it here for
von Neumann–Lueders measurement:

PQ3: (Born): When M is an observable pertaining to X1, and the process〈 w(t)〉 =〈 xi(t); yi(t)〉,
i = 1,2,3, such that w(t1)→ w(t2) is a measurement of M on X1 by X2, with pointer-observableM′,
then x1(t1)(〈 M, E 〉) is the probability that w(t2) is in 〈 M, E 〉, and equally the probability
that it is in 〈 M′, E 〉.

PQ3 is consistent because the measured observable is essentially unique, as we saw in our previous discussions of von
Neumann–Lueders measurement. Without that, the postulate could assign probabilities to propositions attributing
sharp values to noncommuting observables.

Because x restricted to the value range 〈 m 〉 of a single observable is a classical probability measure, we deduce:

(9) The probabilities x1(t1) (〈 M, {ri}〉) thatM will have sharp value ri in final situation w(t2) sum to 1; and hence
the probability is 1 that M will have some precise value at the end of the measurement.

Similarly of course for the ‘pointer’-observable. We can summarize this finding, recalling the role of the value state, as
follows:
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(10) The probability equals 1 that y2(t2) is one of the pure states Iψ(i) and y1(t2) one of the pure states I
ϕ(i).

What we have not yet discussed is whether the final value state of the apparatus is a certain indication of the final value
state of the object. Here we can derive the following fact, simply by applying the whole preceding account to a further
measurement. Note that M′ ⊗ M has among its eigenvectors (ψi ⊗ ϕi):(11)

and we deduce, just like above:

(12) If an M′ ⊗ M measurement be made on a system with initial dynamical state x3(t2) (i.e. the projection along Σ
ciψi ⊗ ϕi), then the probability equals 1 that (the outcome) will be r′iri for one of the indices i.

Thus, if we check the whole process by looking at the apparatus and simultaneously measuring M again independently
(a complex new operation performed on the complex system X3 = (X2 + X1) as a whole), we are certain (probability 1)
to find that the measurement apparatus correctly indicated the final value of M on the object system.

The modal interpretation, Copenhagen variant, is very minimal, and I shall end with a quick look at one way in which it
might be possible to extend it. Intuitive accounts of measurements often point out that the weights ei in the orthogonal
decomposition x = Σ eiIϕ(i) of a mixed state are non-negative and sum to 1, hence act like classical probabilities. If we
can read them as genuine probabilities, is there not also some hope of deducing the second half, PQ3, of Born's
probability rule?

It would in any case be pleasing to be able to give a realistic reading to those weights. The obvious candidate for us
would be:

(*) If the dynamic state is x = Σ eiIϕ(i) and {ϕi} is a complete orthogonal set, then the probability equals ei that the
value state is I

ϕ(i) . . .

Unfortunately, the non-uniqueness of the decomposition when
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some of the weights ei are equal makes that assertion logically self-contradictory if maintained in general. So we would
have to add:

(*) . . . provided all the weights ei are different.

However, we can group together those states which appear with equal weights. If ei is positive, then there can be at
most finitely many vectors such that ej = ei (since an infinite sum of equal positive numbers would be considerably
higher than 1 = Σ ei). So we have something like this:

Now I1 + I2 is again a projection operator; in this way we arrive at a decomposition of form:

and this is unique; it does not depend on the base {ϕi} initially used.

We can now clearly interpret the values ei (that is, the values a in A) as probabilities with reference to this
decomposition. I state this here as a possible new postulate, which can be added if we wish:

PQ4: If the dynamic state is x = Σ{aIa : a ∈ A} where the Ia are orthogonal projection operators, as
above, then the probability equals a dim Ia that the value state y is such that Iay = y.

Here dim Ia is the dimension of the subspace on which Ia projects, that is, the size of an orthogonal basis for that
subspace. But do we derive any advantage from such an addition? If we had only PQ1, PQ2, and PQ4, we would not
be able to deduce that the observableM has a precise value at the end of an M-measurement. (This would follow only
in the special case in which x1(t2) has a unique decomposition into pure states, that is, only if all the coefficients ci in
x1(t1) = I

ϕ
, with ϕ = Σ ciϕi, have distinct squares.)
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So we could not replace PQ3 by PQ4 without loss. On the other hand, what PQ4 adds is only information about the
possible situations which is not reflected in any measurement outcomes. Though not forced by the problématique, PQ4
could be added as an intuitively pleasing embellishment.19

8. Modal Interpretation of Composition and Reduction
Let us now set the quantum-logical approach aside again, and return to the main story.

The modal interpretation can be summed up in part by saying that in salient respects it is as if the Projection Postulate,
and the ignorance interpretation of mixtures, were true. To attribute a (dynamic) state is to assert a statistical
hypothesis—that is, to assert a related cluster of probability judgements. Those probabilities must be probabilities of
something; contrary to von Neumann, we take that something to be not states but events, and take an event to consist in
some observable having some value.

The touchstone for the interpretation will be the quantum-theoretical treatment of compound states. That is where the
probabilities and possibilities are tangled, and where the holistic character of the quantum world becomes manifest.
The familiarity of certain ways of thinking about this should not blind us to the complexity of the question: is it really
even consistent to say that the world is as if those familiar ways are correct? Many questions are disarmed when the
agnostic asserts only that the world is as if thus or so is the case—but not the question of consistency! And we have
been shielded from the full impact of this question so far, because the most complicated system we have looked at has
still consisted of only two parts: measuring apparatus and measured object.

In general, we must consider an N-body system S = X1 + . . . + XN. The order in which the components are listed has
no counterpart in reality; but when we describe the states and observables, some such order creeps into our
representation. The system can also be mutually divided in various ways: X1 + X2 + X3 into a two-component system if
thought of
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as X1 + (X2 + X3), or as (X1 + X2) + X3. The system X1 + X3 is also a subsystem of X1 + X2 + X3; all these divisions
are equally good as alternative representations.

The total system S has a dynamic state; so does each subsystem. If S is in state W, and S′ is a subsystem, then S′ is in
reduced state # W[S′]. This reduction was discussed at some length in the preceding chapter. It has very nice formal
features, which ensure consistency of attribution. Thus, # W[X1 + X2] can be reduced again to give a state to X2,
namely # (# W[X1 + X2])[X2]. But, as consistency requires, that is just the state # W[X2]. Of course, if one of these
components is a measurement apparatus, carrying out a measurement on one of the other components, this reduction
of states is part of the formalization of the so-called Projection Postulate as well.

The reduced states are in general mixtures, even if the total stateW of whole system S is pure. According to the modal
interpretation, the actual values of observables correspond, for a system in mixed state W′, to those made certain by
some pure state x in the image space of W′. Thus we have for each subsystem S′ a dynamic state # W[S′] and a value
state λ [S′]. If W itself was pure, let us say it is equally represented by the vector ϕ, we arrive then at the following
picture for a three-component system:

where I have indicated the subsystems of S = (X1 + X2 + X3) just by indices; e.g., # ϕ [1, 2] and λ12 are respectively the
dynamic state # ϕ [X1 + X2] and the value state λ [X1 + X2].

Both the ignorance interpretation of mixtures and the modal interpretation require this picture to remain consistent
subject to the following requirements:

(a) # ϕ [S′] is the reduction of state ϕ of S with respect to subsystem S′.
(b) λ [S′] is a pure state in the image space of # ϕ [S′], i.e., is possible relative to the latter.

But it is clear that there is an additional requirement, which
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comes into play exactly when the compound has more than two components. The situation would not be as if the
ignorance interpretation were true if we could not pretend that the dynamic state ofX1 + X2 is really λ [X1 + X2]! For that
interpretation said that # ϕ [1, 2] just represents incomplete knowledge. So the following alteration of part of the
picture:

must still be consistent, subject to demands (a) and (b) above. That is, λ1 should be possible not only relative to # ϕ

[X1], or equivalently # (# ϕ [12])[X1], but also relative to the reduction # λ12[X1] of the value state λ12. This extra
criterion therefore amounts to

(c) If S″ ⊆ S′ then λ [S″] is a pure state also in the image space of # (λ [S′])[S″].

Whenever several overlapping constraints are imposed jointly, inconsistency threatens.20 What about here?

We can settle part of the question at once by reasoning from definitions. The consistency of (b) and (c) requires:

Theorem: If ϕ is in the image space of W, then the image space of # ϕ [S′] is part of the image space of # W[S′].

The total system, of which W and ϕ can be states, can here be thought of as divided into two parts, S″ + S′. Let the
Hilbert space for this total system be H1 ⊗ H2, so # W and # ϕ are states on H2. The observable which is the
projection on the image space of #W we may callA. Clearly, A has expectation 1 in #W and I ⊗ A has expectation 1
inW. Since ϕ is in the image space ofW it is possible relative toW, hence I ⊗ A also has expectation 1 inW. Therefore
A has expectation 1 in # ϕ. This requires that # ϕ is really a state on the subspace on whichA projects, or equivalently
that all eigenvectors of # ϕ lie in that subspace, or again equivalently, that the image space of # ϕ is part of it.

But this little result, though reassuring, is not enough. For the
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first alteration of the picture, which had to remain consistent, is matched by another one:

and we see λ2 appearing in both altered pictures. To put it differently, criterion (c) demands that λ [X2] be possible
relative to the reductions of the value states of both (X1 + X2) and (X2 + X3). Those value states were, as it were,
random selections from two image spaces (of # ϕ [12] and # ϕ [23]). It is not obvious, and certainly not entailed by
the above theorem, that consistency allows this sort of overlap, i.e. that there will exist a state (a candidate for being λ
[X2]) which is possible relative to the two reductions of those randomly selected elements of the two image spaces.

Nevertheless, though not obvious, it is so.21 The proof, which follows, makes precise the qualitative sense, in which
mixed states are really quite classical. Reasoning about mixed states can thus be, to a very large extent, like reasoning
about pure states under conditions of ignorance—even when these mixed states are attributed by reduction to
interacting components of a complex system in a truly ‘tangled’ quantum-mechanical state.

9. Consistency of the Description of Compound Systems
Because the proof is a little intricate, I will begin with a three-body example, which will also serve to introduce the
notation.22 The total system S = (Xa + Xb + Xc) has pure state ϕ = Σ eijk(xi ⊗ yj ⊗ zk) with all coefficients non-zero.
Each subsystem is identified by an ordered set of indices, e.g. Sab = (Xa + Xb). The numerical indices i, j, k are of course
variables ranging over positive integers, and if Σ appears without subscripts it sums over all free numerical variables.
Once such a variable is replaced by a numerical constant, it is no longer summable: in Σ ei3k(xi ⊗ zk) the sum is over i
and k.

To each subsystem we assign a dynamic state by reduction in the usual way, denoted by W with subscripts. Thus:
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Now we shall assign a value state to each subsystem, denoted as λ with subscripts. We do this by choosing a new
number each time a numerical variable needs to be instantiated. Thus:

For brevity I have omitted the normalization factors. To obtain the unit vector representing the state λab, divide
Σ eij2(xi ⊗ yj) by its length which is Σ|eij2|2; similarly for the others.

Note that, in the choice of λa, there was no freedom left: k had already been instantiated to 2 and j to 3. The selection
of prime numbers, instead of some other set of numerical constants, and also the order in which the states are assigned
by this procedure, is logically immaterial—provided that none of these vectors is zero, which is here guaranteed because
all coefficients are assumed to be non-zero.

That the value state chosen thus is always possible relative to
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the dynamic state follows from the general reduction results in Chapter 7. We must now check criterion (c): that
reduction of value states instead gives us a consistent alternative:

And indeed, λa is possible relative to both these reduced value states, because when we again instantiate k to 2 and j to
3 we find

All we need to do to complete the proof is generalize the procedure in attractive notation, to show why these different
roads had to lead to the same result. We note also that the recipe we follow here leads to one ‘possible world’ for each
choice of bases in which to represent the pure state ϕ, and of series of numerical constants used for instantiation, and
of order of assignment of value states to subsystems. Thus, a single system with given dynamic total state allows a
whole system of alternative possible distributions of values to observables.

To generalize all this, we need to lift two restrictions. The first is that in the expression describing ϕ all coefficients
have been assumed to be non-zero. The second is the restriction of the number of componentsN toN = 3. To lift the
first restriction is easy, for we can always write ϕ in such a form—an elementary point about vector geometry.23 Next
we must repeat the above for N arbitrary.

We consider therefore the general state

with all coefficients again assumed to be non-zero. Let S be the total set of letter indices a, . . . , n, and let T be the set
of letters used as numerical indices (variables) i(a), . . . , i(n). Any
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integer numerical constant 1, 2, 3, . . . can replace a numerical index (instantiation). We need several more pieces of
notation:

Hence, in our notation, ϕ = Σ f. If g is any formula, then

gS′ is the result of deleting from formula g every term , for each letter index k which belongs to the subset S′
of S.
g|S′ is the result of replacing in formula g every numerical index i(k) by the integer constant c(k), for each letter
index k which belongs to set S′.

To illustrate this new notation, let us see how it works for our three-body example first.24 We rewrite i, j, and k now as
i(a), i(b), and i(c). Thus the vector v(j) which appeared in the description of Wac should now be denoted as

It is formed by dropping the term from the expression f used to describe ϕ as Σ f, and then prefixing a summation
symbol for a sum over the other indices, i.e. in this case i(a) and i(c). This is of course a prelude to the replacement of the
variable term i(b) with a constant term such as ‘3’. Now if we let T be the set containing just the symbol b, then we can
write

To make the description more perspicuous, however, let S′ be the set of all letter indices except b, so that S′ = S − T and
T = S − S′. Then we can redescribe the same vector as

which shows the first bit of notation in use.

Next, when we constructed λac we did this by choosing v(j) with j = 3. In our present notation that means that we let the
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variable i(b) take a certain constant value K(b) uniquely associated with letter index b. So we obtain

the summation being with respect to variable terms that still remain present. In this instance the set S′ = {a, c}, so we
can also write this as

λ(S′) = ∑ (the result of changing expression f by first deleting all terms and then replacing each occurrence
of the term i(n) which remains by the constant term K(n), for all letter indices n in S − S′)
= ∑ f(S − S′)|(S − S′)

The summation is with respect to all the variable terms which remain, which are just those terms i(n) for which letter
index n is in the set S′. The ones outside S′ have now disappeared.

We can now go further and use the notation to put the General Reduction Theorem of Chapter 7 in the perspicuous
form:

(A): The reduction of ϕ = Σ f to the Hilbert space spanned by the vectors , with S′ = {c, . . . , k} is the
statistical operator

where

Now we make the assignment of dynamic and value states to all subsystems (represented by subsets S′ of the index set
S):

(B): W(S′) = #ϕ[S′]
(C): λ(S′) = ∑ f(S − S′)|(S − S′)

Since the pure state represented by λ(S′) is one of the summands in the formula given above to describe #ϕ[S′], it
follows at once that this state is in the image space of W(S′).
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Lemma: If S″ ⊆ S′ ⊆ S, then λ (S″) is possible relative to # λ (S′)[S″].

To prove this, we must apply (A) to (C). This yields(D):

Because S″ is part of S′, the only terms that remain in w(S − S″) have k in the smaller set S″. But the coefficients are
still written with index variables that may be in S′ though outside S″. So we can also describe w(S − S″) as

since the removal of the terms with k outside S′ can just as well be done in one step. The only variable terms that
remain here (uninstantiated, and unbound by a summation) are the terms i(n) with n in S′ − S″. Hence one of the
summands in (D) is the formula(E):

in which all those remaining free variables are replaced by the corresponding numerical constants. But(F):

as we were required to prove, for this shows that λ(S″) is indeed a relatively possible state, being in the image space of
the mixture.

10. Interpretation and the Virtue of Tolerance
When Descartes wrote (in his Principles of Philosophy, iv. 204) that ‘touching the things which our senses do not perceive,
it is
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sufficient to explain what they could be, though perhaps they are not as we describe them’, he voiced a thoroughly
empiricist sentiment. Under a given interpretation, a physical theory describes how things are—one way they might
indeed be—but the story is not unique, and for an empiricist it need not be unique.

There is more than one tenable interpretation of quantum mechanics. It is true that each adds something to the theory:
von Neumann surprises us with acausal transitions, and implies action at a distance behind the scenes, even if the
transitions are respectably dressed as superselection rules. The modal account surprises us too, by separating
observables from states, and even from each other, in unexpected ways. These additions are ‘empirically superfluous’.
That is a virtue if we simply want to have our questions answered in ways that do not contradict the theory's empirical
adequacy, but it is a vice if empirical adequacy is all we want to take seriously. To complain about empirically
superfluous, odd, or surprising additions, however, is not to deny tenability.

Quantum theory is well understood. How can I say this when there are several mutually contradictory, and perhaps
equally plausible, interpretations in the field? Well, I assert it exactly because we do have interpretations that have so far
stood the test of debate. Perhaps one of the above, or another such as Everett's or Kochen's which I have not
discussed, will eventually prove far superior in ways we don't yet appreciate. But that is not needed, as far as I am
concerned, to call quantum mechanics a well understood theory.

Could one object that I do not know what the theory says if I cannot single out the uniquely correct interpretation? In
a strict sense this is true. The theory was developed with eyes fixed firmly on empirical success, in collaboration by
many people. It was not a case of a Newton, who tried to delimit exactly what his theory said the world was like, and
made it include the existence of Absolute Space and the hypothesis that the solar system's centre of mass is at absolute
rest, before publishing. The tenability of several interpretations does mean that the theory as such was not logically
complete but left various questions open. But is that so important? Newton's talk about God's sensorium was quietly
ignored by later Newtonians, and
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the question of determinism on which they did often have an official stand was actually not nearly as well settled in the
theory as they thought (cf. Earman 1986).

In my own opinion, that objection can be made but is misplaced. Suppose the theory had originally been stated with
von Neumann's interpretation built in, and all its developers, in Germany as well as Copenhagen, had been unanimous.
Then the theory would have been much more definite in what it said the world was like. It would also have gone
considerably beyond claims about the empirical phenomena. Its empirical success would not, in my eyes, have
constituted adequate grounds for belief in its truth, taken as a whole. As I see it, the result would not have been a
better theory, by science's own criteria of success. The less committed way it was actually done seems all to the good.

Why then be interested in interpretation at all? If we are not interested in the metaphysical question of what the world
is really like, what need is there to look into these issues? Well, we should still be interested in the question of how the
world could be the way quantum mechanics—in its metaphysical vagueness but empirical audacity—says it is. That is the
real question of understanding. To understand a scientific theory, we need to see how the world could be the way that the theory says it
is. An interpretation tells us that. The answer is not unique, because the question ‘How could the world be the way the
theory says it is?’ is not the sort of question to call for a unique answer. Faith in the actual truth of a good answer, so
interpreted, is not required by understanding, nor does it help.
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10 EPR: When Is a Correlation not a Mystery?1

Einstein, Podolsky, and Rosen presented their argument in 1935. They did not present it as a paradox, but rather as a
demonstration that quantum mechanics does not, even in principle, describe all there is. The quantum-mechanical
state, even if completely specified, does not encode all true (physically significant) information. This conclusion is, in
some form, common to almost all interpretations of the theory. Thus, von Neumann would say that the state does not
tell us which possible acausal transition will actually happen in a measurement, and the modal interpretation says that
the state does not give full information about the values observables have or come to have. Indeed, how could
indeterminism be reflected otherwise? But the EPR paper purports to establish a more specific conclusion about the
values of incompatible observables. As we shall see, the fascination with the argument concerns a cluster of problems,
centring on the non-classical correlations which we encountered already in the chapter on the empirical basis of
quantum mechanics (Chapter 4) and have come across at many junctures since.

1. The Paper by Einstein, Podolsky, and Rosen
The structure of the EPR argument is both simple and clear. It is already set out in the abstract at the beginning, which
I quote here in full:

In a complete theory there is an element corresponding to each element of reality. A sufficient condition for the
reality of a physical quantity is the possibility of predicting it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities described by non-commuting operators, the knowledge of
one precludes



the knowledge of the other. Then either (1) the description of reality given by the wave function in quantum
mechanics is not complete or (2) these two quantities cannot have simultaneous reality. Consideration of the
problem of making predictions concerning a system on the basis of measurements made on another system that
had previously interacted with it leads to the result that if (1) is false then (2) is also false. One is thus led to
conclude that the description of reality as given by a wave function is not complete. (EPR 1935, 777)

While the structure of the argument is logically clear, therefore, the same cannot be said of the terms employed in it.
Such phrases as ‘element of reality’ are to be used lightly, and do not easily bear the weight of a searching critique. But
if we can state the argument using only more familiar terms like ‘value of an observable’, then the problem will survive
such worries.2 Let us rephrase the second and third sentence in the abstract as follows:

(1) If the outcome of a measurement of observable A, pertaining to system X, and made without disturbing the
state ofX, will have value ak with certainty, thenA has value ak (at the appropriate time, but whether or not that
measurement is actually carried out).

(2) IfA and B are represented by non-commuting operators which have no eigenvectors in common, then it is not
possible to predict with certainty the outcomes of A and B measurements for the same time (conditional on
being carried out) on the basis of any quantum-mechanical state.

The second is obvious: the Born probability cannot be 1 for outcomes ak and bm if A and B have no eigenvectors in
common. The first is made very plausible by the ‘no-disturbance’ clause: if the outcome is not made certain by
manipulating the subject, then surely it must reflect what was simply there?

To continue the argument, then, a situation must be exhibited in which we can predict with certainty for two
incompatible observables. That is, we must produce a situation in which both the following are true:

(a) If A is measured, then the outcome will definitely (with probability 1) be ak
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(b) If B is measured, then the outcome will definitely (with probability 1) be bm

where A, B are incompatible observables pertaining to the same system. And at first sight it is impossible to find such
a situation, because of point (2) above.

But suppose that system X interacts with system Y and the interaction produces a correlated state (similar to that in a
measurement interaction):

where i = 1, . . . , n and |ai 〉, |bi 〉 are eigenvectors of observables A and B, pertaining to X and Y respectively. In
that case, if we measure B on Y—or equivalently I ⊗ B on X + Y—and also measure A on X—or equivalentlyA ⊗ I
on X + Y—we have the following conditional certainty:

The outcomes could not be bi, aj with i ≠ j; therefore, if the first measurement yields outcome bi then the second
must yield ai.

Now this is still true if the interaction was such as to let X and Y drift very far apart from each other after the initial
coupling. In such a case the B-measurement would be made in one place, and the A-measurement very far away. The
distances and times could be such that even light signals cannot connect the two measurement operations. So clearly,
the person who carries out the B-measurement (i) does not disturb or interact with system X, and (ii) can predict with
certainty what his colleague, who measures A, is finding at that very moment, if indeed he makes the A measurement.

On the basis of (1), the B-measurer should now conclude: I have found value bk, so observable A pertaining to X
definitely does have value ak—whether or not my colleague measures it.

So far this looks like an argument for the Projection Postulate. For it asks us to conclude something which could be
explained—given von Neumann's interpretation rule—by the assertion that the B—or, better, the I B—measurement
‘projects’ ϕ into an I ⊗ B eigenstate. This eigenstate would have to be one of the {|ai 〉 ⊗ |bi 〉}, of course. And if
that is happening instantaneously, then X + Y has been put into state
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|ak 〉 ⊗ |bk 〉, so no wonder the other measurer, at that very moment, finds value ak if he ‘looks’. The eventual lack
of cogency in this argument, however, has already appeared in our previous discussions.

But now the EPR argument goes on: we can choose a different basis {|rm 〉 ⊗ |sn 〉} for the subspace [{|ai 〉 ⊗ |bj

〉}], and if all the coefficients ci are equal, then we have an equation

with all the dj equal too (j = 1, . . . , n). This point is easily illustrated, for example by rotating a basis. But consider now
the observable R with eigenstates |rm 〉; it has no eigenvectors in common with A, if we chose a radically different
basis. Similarly for S and B. So we have A incompatible with R, and B incompatible with S.

Now the B-measurer may reflect that, instead of measuring B, he could choose to measure S on Y. Again he has a
conditional certainty:

If we measure S and R, the outcomes could not be sn, rm with m ≠ n; therefore, if the first measurement yields sn, the
second is certain to yield rn.

So if he does measure S, and finds value sj, he can conclude: if my colleague measures R, he is sure to find rj. Since I can
predict this with certainty, by (1) it follows that R has value rj, whether measured or not.

2. Initial Defence of the Argument
Have we now arrived at the conclusion that A and R both have definite values? No, not yet; for as Copenhagen
scientists were quick to point out, the character in the story could not measure both B and S. His prediction with
certainty cannot be made till he has carried out his own measurement—and then he can go through the above
reasoning only for that observable which he actually measured.

The EPR paper replied to this sort of objection pre-emptively in a way that sharpens the interpretation of (1), but
which also appears to constitute a rejection of the Projection Postulate. The
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authors use ‘collapse of the wave packet’, as a means of calculation, and in their phrasing suggest a real change of state.
But they reject the idea that an operation on Y could affect the whole system X + Y — in this separated case—so as to
produce any real change in X:

We see therefore that, as a consequence of two different measurements performed upon the first system, the
second system may be left in states with two different wave functions. On the other hand, since at the time of
measurement the two systems no longer interact, no real change can take place in the second system in consequence
of anything that may be done to the first system. This is, of course, merely a statement of what is meant by the
absence of interaction between the two systems. Thus, it is possible to assign two different wave functions . . . to the same
reality. (EPR 1935, 779)

And they add later that to suppose that what the second system X is like could be brought about by this action on Y, is
unacceptable:

This makes the reality of P and Q depend upon the process of measurement carried out on the first system, which
does not disturb the second system in any way. No reasonable definition of reality could be expected to permit this.
(EPR 1935, 780)

When I said before that the first part of the demonstration looked like an argument for the Projection Postulate, it was
because that postulate offers an explanation for how observable A could become so predictable. Here, Einstein,
Podolsky, and Rosen reject any explanation of a sort that entails a real change occurring in X, with the character of that
change depending on what is done to Y, in these circumstances. The projection of ϕ into |ai 〉 ⊗ |bi 〉 makes X go
into |ai 〉, so either that is not a physical change of state, or else they are rejecting it as impossible.

Exactly at this point, many readers suspect that Einstein, Podolsky, and Rosen have run into logical trouble of their
own. But I think they could be sanguine here. The structure of the argument is that of a reductio, or of St Anselm's
‘Even the fool sayeth in his heart . . . ’. That is, the argument proceeds by calculating all probability as quantum
mechanics prescribes, hence by ‘reduction of the wave packet’. (This has the formal structure reified by the Projection
Postulate, which asserts that
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this reduction represents a physical change, just as much as the wave function represents a physical state.) Using this
calculation, we arrive at two remarkable conditional probabilities:(3)

where ‘X = x’ means ‘the X-measurement has outcome x’. These conditional probabilities follow, without question,
from the quantum mechanical description of the situation.

To this demonstrated conclusion the EPR paper added premisses which say that, in a situation in which these
consequences are true, the following are also true:(4)

for some (unknown) indices k and j. And finally, they add that when this is so the following are also true:(5)

for these same indices k and j.

Those extra premisses which lead from (3) to (4) and (5) are somehow conveyed by the passages I have quoted.3

What I have said so far does not identify those premisses precisely, but it does imply that they are of the sort that make
up an interpretation, that they are at odds with von Neumann's interpretation (because they forbid a change of state for
X), and that they either are at odds with or at least go well beyond the modal interpretation. Therefore we are not led
inevitably to Einstein, Podolsky, and Rosen's conclusion, since their premisses are not uncontroversial.

Without going further into this matter, we note that it was just the remarkable conditional probabilities (3)—the
correlation in statistical predictions for separated systems—that make EPR important for everyone, regardless of
interpretative agreement or disagreement. They represent the non-classical, empirically testable correlations to which I
devoted Chapters 4 and 5. In the remainder of this chapter I propose to discuss the general challenge they present for
any interpretation of quantum mechanics.
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3. The Step to Empirical Testability
The more orthodox physicists pointed out that the one observer who can calculate the probabilities for joint
measurement outcomes of pairs 〈 A, B〉 and 〈 R, S〉 cannot after all measure both A and R. In consequence, they
may well have tacitly supposed that the discussion must always remain a dispute about hidden elements of reality, with
no direct experimental test possible. Quantum mechanics could then still maintain itself against classical intuitions by
some ‘inference’ from overall success.

But this idea was mistaken. There is indeed no direct experimental test to divide opinions about what happens in
measurements pertaining to two pairs of correlated variables. But there is for three pairs. This was John Bell's insight in the
early 1960s. There the radically non-classical structure of quantum mechanics (QM) shines through on the
macroscopic level. We have discussed this in a (logically) pre-QM context in Chapter 4. Now we should look at the
exact transition from EPR to Bell. I shall describe it intuitively here and give details in Proofs and illustrations.

Let us begin with two pairs of observables, but introduce a more manageable notation. Suppose observables F, F′ are
respectively correlated with G, G′ and pertain to different components in a compound system X + Y. Let the total state
be(1)

where the lower-case letters are used for eigenvectors. Question: can we find a violation of Bell's Inequalities in such a
paradigmatic EPR situation?4 The answer is no, for we can deduce (see below) that(2)

so the form of (1) does not really have the generality suggested by that notation.

There is however the result already noted by Schroedinger in his discussion of EPR (see further Section 6.1 below) that
each correlation brings infinitely many others in tow. We need only note this point modestly as:
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(3) Given (1) for distinct observables F ≠ F′, there exists a distinct third pair of observables F″ and G″ such that

as will be shown below. The construction will be such that F, F′, and F″ are mutually incompatible. But with three pairs
of such correlated observables we can make up the quantum-mechanical counter-examples to Bell's Inequalities. Thus
one might say that the EPR type of situation implicitly contains the possibility of violating those inequalities. In view of
(2) above, it will be a matter just of choosing the three bases {fi}, {f′i}, and {f″i} for the same component X of X + Y,
so that the inner products are properly related. That we can do; I shall give a simple example below.

So now quantum mechanics is seen to predict, or at least to allow as possible, such violations of Bell's Inequalities as
were discussed in Chapter 4. Unlike the causal theories discussed there, quantum mechanics is therefore not refuted by
phenomena which exhibit such violations.

Proofs and Illustrations
For definiteness, suppose first that F, F′ pertain to system X, and have non-overlapping orthonormal bases {fi} and
{f′i} of eigenvectors, similarly for the observables G, G′ with system Y and base {gi} and {g′i}. The total state ϕ of the
system X + Y could now have the following form:(1)

The probability that a joint measurement of F and G yields the ith eigenvalue of F and the jth eigenvalue of G equals(2)

Similarly for F′ and G′, F and G′, and so on. Let us focus on the first eigenvalue as example, and denote as P(FG) the
probability that such a joint measurement yields the 1st value of F and also the 1st value of G; similarly for P(FG′),
P(F′G), P(F′G′):

Lemma 1:
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from which the first equation follows. The second follows mutatis mutandis if we use the first decomposition of ϕ
instead of the second in (1):

Lemma 2:

Proof: The argument in Lemma 1 establishes similarly:

Hence

Therefore, (f1 · f′1)2 = (g1 · g′1)2. Combining this with Lemma 1, we conclude also that . Our focus on the
first values in the orderings was inessential, so the equalities hold for each index i, and not just for the first.

Remark 1: If we allow F and F′ or G and G′ to have overlapping bases, the same proof yields the weaker result that for
each i there is some index j such that . But by the symmetry of the situation, this will also be true
for all j and corresponding i. Therefore we can re-order the bases so as to set i = j and obtain the same result.

Remark 2: We can now write condition (1) in the new form:(3)

But we can eliminate the ± without loss of generality, for if the vector f1 in basis {fi} is replaced by −f1, the result is a
new orthonormal basis anyway. All this is so even if the numbers are complex, since if , we can similarly
replace one basis by another one so as to have equality there. That is so because if a = b* then there is some number r
and angle x such that a = reix and b = re−ix. So then, if we replace
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any vector u by u′ = e−2ixu, we see that bu = re−ix (e2ixu′) = au′. Therefore, if equation (1) holds, then so will equation (3)
for some (new) choice of bases.

Theorem: There is a distinct third pair of correlated variables if there are two pairs; i.e., condition (1) can be rewritten
as(4)

Proof: We first drop the ± sign in condition (3) as indicated. Then let U, V be the unitary operators defined by

Then (U ⊗ V)(ϕ) = ϕ. So ϕ is an eigenvector of (U ⊗ V) and hence also of the unitary operator (U ⊗ V)2.
But then

The sets {Uf′i} and {Vg′i} are new orthonormal bases of spacesH1 and H2 respectively. Therefore we have our
third pair of correlated variables, unless the second step took us back to the first decomposition. But that is
possible only if U2 and V2 act as the identity operator on the two original bases. However, a unitary operator is
its own inverse only if it is itself the identity or minus the identity. (Reason: it can be written in form exp (i H),
whose square is exp (2i H).) Notice also that, since the bases are distinct and related in that way, they are
eigenvector bases for distinct maximal observables, which are mutually incompatible. It suffices to choose
eigenvalues without degeneracy.

To align the present discussion with Chapter 4, let each of the observables only have two values (i = 1, 2) and label
them as follows.

The observable measured is:

F if the first (left) apparatus is in setting 1
F′ if it is in setting 2
F″ if it is in setting 3

and similarly for G, G′, and G″ with the second (right)
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apparatus. What we write here as P(F′G′) is then the probability, designated in Chapter 4 as p22, of getting the first
eigenvalue (‘particle goes through filter’) on both the left and right side, with both apparatuses in setting 2. One
member of Wigner's formulation of Bell's Inequalities will then be violated, for example the one written alternatively in
the following two ways:

Note that here the settings are different on the two sides; e.g., p12 = P(FG′) is the probability of getting the first
eigenvalue on both sides (‘particle goes through filter on both sides’) with the left apparatus in setting 1 and the right
apparatus in setting 2.

The probabilities (find 1st values of both observables if jointly measured) are the squared moduli of the calculated
numbers, namely, as we have seen:

It is easy to get a counter-example to Bell's Inequalities here, if we choose angles which are not co-planar. We express
all vectors in terms of the first basis:

To check the inequality we can drop the scalar term throughout, and we then observe

Hence the inequality is violated.
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4. How Are Correlations Explained?
The core puzzle that remains concerning the EPR situation, even if we discount von Neumann's interpretation rule or
his Projection Postulate, is this: how is it possible to have those correlations between spatially separated events? The
events are measurement outcomes, and we have very surprising conditional certainties about what they are for one
system, given the outcomes for the other. Of course, the general puzzle of distant correlation is not new in the history
of physics (see e.g. McMullin 1989). To see what options we have, let us canvass the sorts of explanations that have
traditionally been offered, and try to see what could in principle count as a satisfactory answer.

We speak of a (positive) correlation when we have two classes of events and a correspondence between them, and
when an event in the one class is more likely to happen if its correspondent in the other class does too. The probability
calculus allows us to state this in equivalent ways:(1)

But these formulas leave tacit the correspondence relation that links event-types A and B. In the familiar example of
smoking and lung cancer, the correlation is of a present smoking rate and a present lung condition—hence two events
simultaneous in one body. There is also a correlation with past smoking rates, i.e. of non-simultaneous events; and a
correlation with industrial pollution, i.e. of simultaneous but spatially separated events. The most interesting—but not
the only mysterious—type is of a correspondence with space-like separation (simultaneous and spatially distant, in some
frame of reference).

There appear, in the history of science and philosophy, six types of explanation which attempt to render correlations
unmysterious. They are: chance, coincidence, co-ordination, pre-established harmony, logical identity, and common
cause.

The first two were described and distinguished by Aristotle (Physics, ii. 4–6). Aristotelian science, like our own and
unlike
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that of classical modern physics, eventually (at least in the Middle Ages) admitted a significant amount of
indeterminism; individual events, though generally produced by some cause, could also just happen, by chance. An
observed correlation could be like that. In the play Rosencrantz and Guildenstern Are Dead, the same coin tossed by one
particular person always comes up heads. To say it is a fair coin, and the person honest, is to attribute this to
chance—any sequence A1, . . . , An of outcomes, after all, has the same probability (1/2n) as any other. To offer this
diagnosis, however, is to assert also that the correlation is extremely unlikely to persist—it was a mere accident. The
diagnosis is that there was no ‘real’ correlation, for one does not extrapolate the observed frequencies to a probability
function of character (1).

Coincidence is not the same. When you and I meet in the market, it may be by coincidence—and this may be so even if
many of our meetings are there. It is a coincidence if my going to the market is for reasons that have nothing to do
with yours. But it is not chance, for our trips to the market do not just happen; we each could explain them causally.
There was perhaps an initial chance alignment of circumstances; it is causally propagated, thus bringing about a
correlation. Of this we have a good example in recent physical hypotheses. In E. A. Milne's cosmology, atomic clocks
and astronomical clocks induced two different time metrics. But the two are related by a logarithmic function. This is a
very exact correlation; it is not pure chance, and it is not because the two rates were somehow set by the same
mechanism (as far as the theory goes). Here we do (if we accept the theory) predict persistence; but we attribute it to
the causal propagation of an alignment in two separate parts or features of the world. The correlation is not
mysterious, but only because no question remains when each part has been explained separately.

Of course, the mysteries we perceive in quantum mechanics cannot be dismissed in this fashion. So we must turn to
the four remaining types.

By co-ordination I mean a correspondence effected by signals (in a wide sense): some energy or matter travelling from
one location to another, and acting as partial producing factor for the corresponding event. The situation need not be
deterministic;
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there can be indeterministic signalling if the signal is not certain to arrive and/or not certain to have the required effect.
But the word travel must be taken seriously. Hence this explanation cannot work for corresponding events with space-
like separation. To speak of instantaneous travel from X to Y is a mixed or incoherent metaphor, for the entity in
question is implied to be simultaneously at X and at Y—in which case there is no need for travel, for it is at its
destination already. I do not mean to rule out phenomena that one might be tempted to describe in this way—it is
exactly how Descartes at one point described the connection between emission and absorption of a light ray—but it is
still a misdescription; one should say instead that the entity has two (or more) coexisting parts, that it is spatially
extended. Correlation between distant events happening to parts of the same extended entity, however, are not ipso facto
less mysterious.

The recent experiments by Aspect and others leave no hope for co-ordination to explain the quantum mysteries. We
have three types left, and the first, pre-established harmony, is instructive exactly because of the reasons for its proposal (by
Malebranche and Leibniz). Consider the correlation between such mental events as my decision to raise my arm and
the bodily rising of my arm. We cannot attribute this to chance, for we confidently predict its persistence. We do not
consider it a coincidence in the sense of Aristotle, if we believe in free will; we predict that the correlation will persist
even if, for the sake of experiment, I make these decisions in some new way or even randomly. Now these
philosophers saw no causal mechanism that could co-ordinate these events through ‘signals’ from mind to body. Thus
they had a phenomenon which does not fit the above sorts of explanations. To call it pre-established harmony, of
course, can have only one of two functions: to postulate an Entity which has either predetermined my apparently free
actions or co-ordinates the two series of events ‘from outside’, or else, to admit that we have no explanation but refuse to
consider the correlation mysterious nevertheless. Taken in this sense, disdain on our part may be inappropriate, for it is an
attitude that has often occurred in the history of science and is now perhaps forced upon us, if we are to maintain the
completeness of physics.
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Explanations through logical identity are the most beautiful and satisfying, and also the most treacherous. They were
the paradigm of genuine scientific explanation for Aristotle: his favourite examples of explanation are all of the form
‘phenomenonX just is Y’ (see van Fraassen 1980a). In modern terms: the correlation between corresponding values of
variables A and B is explained if each is definable as a function of a third variable. Then we say, A and B just are f(C)
and g(C), as in ‘temperature just is the mean kinetic energy of the molecules’. Clark Glymour (1980b, 1985) gave the
following clear and instructive example. Ptolemy had already noted that, for the superior planets, the following
correlation holds:

Let us denote:
n = number of solar years
q = number of oppositions in those years
r = number of revolutions of longitude in those years

with the variables q and r being calculated for the same superior planet.
In that case n = q + r whenever n, q are whole numbers.

The explanation given by Copernicus consists in the three identifications:

n = number of orbits of the earth around the sun during a certain period of time
q = number of times the faster-moving earth overtakes the superior planet during that time
r = number of orbits of the superior planet around the sun during that time

plus the strictly mathematical calculation showing that, for integral values of these variables, n = q + r. The correlation
is therefore wholly unmysterious.

Hidden-variable models, when successful, can also take this form. A good example is Kochen and Specker's classical
model for electron spin (1967), in which the observables are identified with certain random variables defined on the
unit sphere. (Of course, this model cannot be extended to the whole of quantum theory.)
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This sort of explanation was the paradigm of a scientific account in Aristotle's Posterior Analytics. In his phrasing: the
explanation derives from real (as opposed to nominal, merely verbal) definitions, which state what the things really are.
These real definitions, however, which summarize the ‘essential’ properties, are by post-Aristotelian lights themselves
substantive hypotheses. (This is shown clearly enough by such Aristotelian examples as ‘thunder is the noise of fire
being quenched in the clouds’, and especially by ‘ice is condensed water’, the one which Galileo attacked when he came
to Florence.)

It should be easy to see then why I called this explanation pattern treacherous. Being convinced empirically that two
terms are co-extensive, we may adopt their equation as a definition or convention. The equation is then no longer
mysterious, because it follows ex vi terminorum. But when the procedure is carried out in that way, it sweeps under the
rug the presuppositions, which were substantive. For a certain model was earlier proposed and adopted for good
reasons, but its adequacy was not a priori. This is as true for Copernicus as for Aristotle. In addition, this procedure
has demonstrable limits, which showed up exactly in the ‘no hidden variable’ theorems. To this point I shall return
below.

Finally, correlation of simultaneous separated events can be explained if we can find a common cause, that is, if both can
be traced back to some events in their common past. If two equivalent clocks, in uniform motion, are synchronized
and started just at the moment when their paths cross, they remain synchronized, although no further signals are
exchanged, and still without telepathy. For the two were pre-programmed at the initial point of coincidence. This
concept, as we recall from Chapter 4, is a concept of causality which can be generalized so that it still makes sense in an
indeterministic universe.

It seems to me that this insight of Reichenbach's, described by him in the 1920s and 1930s—and well known to
Einstein, though I do not know how early—was one of great importance. For it showed exactly how, and to what
extent, one could sensibly speak of a causal order in the context of indeterminism. Two points should be made to
qualify this. First, Reichenbach only outlined a pattern, which is not by itself sufficient for explanation. Telekinesis at
speeds slower than light would be
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mysterious even if it fitted the pattern! Wesley Salmon has laid down, as further necessary condition, that there be
spatially continuous processes linking the correlated effects with the common cause. This requirement is, it seems to
me, too strong for microphysics, and too weak elsewhere (since a wave produced in water, propagating outwards from
my body but apparently produced and sustained by will power, would still be mysterious). Thus we have only necessary
conditions for causal order in an indeterministic world. The second point is that these necessary conditions entail Bell's
Inequalities, as we saw in Chapter 4. Therefore nature may not, and apparently does not, agree even to these necessary
conditions. To this point too I shall return below.

5. Attempts at Perfect Explanation
Pre-eminent among the above patterns of explanation are those through logical identities and through common causes.
In this section I shall take up the former, which promise perfect explanations that close the subject altogether.5 Recall
that such an explanation accounts for a correlation between two things, in effect, by asserting that they are really but
two aspects of the same thing. In the case of quantities A and B, this means that they are definable as two functions,
A = f(C) and B = g(C), of a third. What classical features do such functional relationships retain in the quantum-
theoretical environment, and how far can they get us?

5.1. Functional Relationships Everywhere
The first point to be appreciated about the quantum-mechanical formalism is that it is, as it were, made for representing
correlations in an indeterministic world. We can see this already in the representation of a single, non-compound
system, as follows.

Let A and B be two observables that have certain eigenvectors in common, call them x1, . . . , xn, with corresponding
eigenvalues: Axi = aixi and Bxi = bixi. Consider now solely the Hilbert (sub-)space H0 spanned by these vectors. Any
vector
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therein is a superposition y = ∑ cixi, and we can predict with certainty that, if observables A and B are both measured
on a system in this state, the outcome will be (ak, bk) for some k. We have a conditional certainty: if a measurement of A
yields value ak, then a measurement of B is certain to yield the corresponding value bk (if all the ai are distinct; or else, a
value in the set {bi: ai = ak}).

The supposition here was really that A and B (restricted to subspace H0) are compatible, that is, jointly measurable. In
general, we would expect this not to be an onerous requirement, and to imply no logical connection between them,
merely a certain irrelevance, a mutual non-interference. But sub specie the quantum-mechanical formalism, the world is
much more tightly organized and internally connected than our general intuitions suggest. For we have at once an
explanation by way of logical identity for the above correlation: there exists a maximal observable C on the space H, and
functions f and g such that A = f(C) and B = g(C). A measurement of A or B is ipso facto a partial and/or indirect
measurement of C—so no wonder we find correlations!

I am trying to make the best possible case for this sort of explanation of the quantum-mechanical mysteries. We can
certainly take the motivation still a step or two farther. This logical identification is not embarrassed by composition or
spatial separation. To see this, we look at compound systems.

For any two observables A pertaining to system X, with eigenvectors {|ai〉} and B pertaining to system Y with {|bj 〉},
we can define a state ϕ = ∑ ci|ai〉 ⊗ |bi〉 for (X + Y) in which we have not just conditional probability, but conditional
certainty of the value found in a B-measurement, given the result of an A-measurement. But this is exactly like the first
case I considered. Thinking about the complex system (X + Y), the observables measured are A ⊗ I and I ⊗ B, which
are both simple functions of a single observable A ⊗ B. Thus A and B measurements are, despite appearances, partial
and/or indirect measurements of a single observable. No wonder that correlations can be found in suitably chosen
states!

Finally, we should add to this von Neumann's observation about compound states in general, which we noted in
Chapter 7. If ϕ is any two-body state at all, then it has some bi-orthogonal
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decomposition (‘canonical decomposition’) ϕ = ∑ ci(xi ⊗ yi) such that the reduced states #ϕ[1] and #ϕ[2] are diagonal
in the bases {xi} and {yi}. If A and B are the observables such that Axi = eixi and Byj = djyj (with ei ≠ ek and dj ≠ dm if i ≠
k and j ≠ m), then the quantities A and B are thus perfectly correlated in the two components. So the situation of
perfect correlation is not rare or unusual—the mathematics of the theory entails that every situation displays some
perfect correlation if looked at in a certain way.

This pattern of logical identity explanation of correlations, is very appealing. It was perhaps taken further in the so-
called quantum-logical interpretation, and I think that it lay also at the heart of Bohr's ‘holistic’ reply to EPR.6 But now
we must look back on the chain of thought we have just gone through, and consider it more critically.

Of the logical identity explanation pattern, I said that it was in principle the most satisfying, but also the most
treacherous: it tends to insinuate more than it can establish. If measurements of A and B are partial and/or indirect
measurements of the same observable C, should we really at once conclude that it is no wonder if their outcomes are
correlated? This looks so innocuous. But let us begin this way: certainly it is no wonder, provided C already, prior to
measurement, has a certain value, and the measurements merely reveal that value. Then the correlations—if it is merely
a matter of looking twice, three times, . . . at the same thing, through different glasses, as it were—are indeed no
wonder.

But having said this, we at once remember that Bohr's reply came in a context in which this way of regarding
observables and measurement had already been given up. The measured observable was thought to take on its value in the
context of a measurement situation. Now when the two parts of the complex system are far apart, and apparently not
in communication, and are made subject to very different sorts of measurement (which could not have been jointly
imposed on either alone)—then what?

To this rhetorical question, we must add here that a single measurement operation on part Y is a partial and/or indirect
measurement of many, mutually incompatible observables defined on the complex system (X + Y). Somehow, when
the
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measurement is completed by a second operation carried out on the distant part X, the system must know what
answer to give. That this further undermines the proffered explanation is strongly suggested by Schroedinger (see
below). The assertion of identity of what is measured, though initially satisfying, is now surrounded by doubts about
how far it can carry us. In fact, these doubts are implicitly borne out in the limitative theorems concerning hidden
variables.

5.2. The Limits: ‘No Hidden Variable’ Proofs
The history of the ‘no hidden variable’ proofs can be seen as the investigation of these doubts and as uncovering the
limits of this sort of explanation of the mysterious correlations.

This history began with von Neumann's proof in 1932. I do not wish to discuss this in detail, but we can get to von
Neumann's conclusion via an illustration which Schroedinger gave in 1935 (in his famous ‘Cat Paradox’ paper) which
makes the same point about equally well. To see the point, we must first carefully consider the picture painted by the
above reflections on identification of observables. It is especially crucial in this context to insist on the conceptual
distinction between observables and the operators which represent them. Let us start simplistically. We assume that
each Hermitean operator M (on a certain Hilbert space) represents a unique observable m (pertaining to a certain
system). A little later we shall have need for a somewhat less simplistic outlook.

If operator N has eigenvectors, each of which corresponds to a distinct eigenvalue, which form a basis of the space,
then N is a maximal Hermitean operator. The following fact is very useful: if F is the family of these maximal
operators, and M is any given Hermitean with discrete spectrum, then there exists a member N of F and a function fM
such that M = fM(N). This function corresponds to a simple relation between the eigenvalues: if x is an eigenvector of
N corresponding to eigenvalue b, then x is also an eigenvector ofM corresponding to eigenvalue fM(b). In other words,
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This determines M uniquely, because it assigns M a basis of eigenvectors with corresponding eigenvalues.

Recalling the correspondence of operator M to observable m, we can pose von Neumann's question this way:

For the answer to be yes, we should be able to say that whenever observable n has value b then m has value fM(b)—and
of course, that when m has value c, then n must have some value in the set .

At first sight it seems that the answer must be yes. But quantum mechanics itself only tells about probabilities of
measured values. Thus in the above case it tells us that, for measurements made in state x, the probability of an M-
measurement yielding outcome c equals the probability of an N-measurement yielding one in set . Now the
temptation is to think that there must be a reason for this connection among probabilities, and that the only sort of
reason there can be must entail a yes answer for that question. That is, we are tempted or invited to think that relations
among probabilities must come from patterns of what must happen in any individual case.

The temptation can also be described in a different way. Suppose that M is a non-maximal and N a maximal
observable, and that I make an M-measurement. That is too crude to count as a proper N-measurement. But if I had
made the latter, a certain value b would have been found. Therefore theM-measurement must have outcome fM(b). Put
in this form, the word ‘temptation’ will seem very apt, for now we have made a connection with the discussions in
Chapter 5 about this sort of reasoning, involving ‘counterfactual definiteness’.

And the fallacy is very easy to spot here. For since M does not determine N, there will also be some other maximal
operator N′ such thatM = gM(N′). ObviouslyN and N′ are incompatible, and it is not possible to measure them jointly.
If we had measured N′ instead of N, then a certain value c would have been found (reasoning as we did for N above).
Hence the M-measurement must have outcome gM(c). Putting the two bits of reasoning together, we would have to
conclude that fM(b) = gM(c). What this means is that we have now concluded
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the complex, nested counterfactual conditional: if we measured N and found value b, then if we had measured N′
instead we would have found a value in .

If it seems that I am needlessly balking at counterfactual conclusions here—owing to some empiricist prejudice—recall
from Chapter 5 that the assumption of counterfactual definiteness here at work leads to a proof that Bell's Inequalities
cannot be violated. But it is perhaps easier to see how counter-intuitive the consequences are if we make up a simpler
example. Suppose the eigenstates of N are the orthonormal triple x, y, z corresponding to eigenvalues 1, 2, 3. Let M
have this triple as an eigenbasis as well, but corresponding to eigenvalues 1, 1, 3. For our other maximal observable
choose N′ with orthonormal eigenbasis x′, y′, z, and corresponding eigenvalues 1, 2, 3 as well. The subspace on which
M takes value 1 is thus [x, y] = [x′, y′]. The above reasoning then looks like this:

Suppose we measure N and find value 3. Therefore (!?) if we had measured M with a coarser apparatus that
registers only 3 and not-3 for N (equivalently, 1 and 3 for M), we would also have found value 3. So (!?) if we had
measured N′ instead, we would have found value 3 as well.

Is this good reasoning? Test it in imagination on the case in which the observed system has initial state .
Then quantum mechanics tells us, for each of the three measurements in question, that it has outcome 3 with
probability , if performed. This is statistical information, saying nothing about the individual case, and does not
sanction the above reasoning at all. Indeed, that passage suggests nothing so much as the fallacy: we got outcome 3, so
the system must have been in eigenstate z.

Perhaps it will be countered that the nested counterfactual conditional to which I objected might be true, even though
quantum mechanics does not imply it (on e.g. my own or von Neumann's interpretation) and although it looks as if it
was derived from a fallacy. It is hard to evaluate this, and I think useless to try unless the conclusion in question turns
out to be implied on some interesting interpretation. But I also think that the general connection between counterfactual
definiteness and Bell's Inequalities speaks strongly against it.
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Schroedinger's example of how such functionality breaks down for the single case—and has therefore been mistakenly
extrapolated from functional relationships in the statistics—is quite amusing. Quantization is a curious thing, and
refuses to let this story, of an intricately organized world of logically connected observables, be carried to its ‘natural’
conclusion. Schroedinger discusses the EPR example in which two systems are characterized each by a single
coordinate q and Q respectively, with the canonically conjugate momenta p and P respectively. The state is so entangled
that q = Q and p = −P, yielding the conditional certainties that measurement of q or p will establish at once the
outcome of a measurement of Q or P respectively. So, he says, it looks as if to ask for values of Q or P, when q or p has
already been measured, is like asking a student for the right answer to a question—and this student is so clever that he
or she always knows the right answer. But, and this is the important point here, it was not sufficient for this student to
have hit on only two correct answers to begin with, and then to calculate the answer to any other question we ask. For
suppose we ask for the value of

with a an arbitrary constant. In the EPR example, the student will always give the right answer. But here, quantum
mechanics tells us that the answer must have form

Now suppose he had memorized the right answer for the questions about P and Q, say P = 4 and Q = 7; and suppose
he now calculates (42 + a272) and finds the answer naħ for a certain odd integer n. He will have been extremely lucky,
and he cannot be that lucky all the time. For if this works for particular constant a, it is guaranteed not to work for
infinitely many other numbers that a could have been. For example, if we change a to a + d, and take d small enough,
the difference between (42 + a272) and (42 + (a + d)272) will be less than 2aħ, so he will come up with a coefficient
between the two odd integers n and n + 2—and that will be wrong.

This illustrates elegantly what von Neumann's proof established: that we cannot associate with every Hermitean
operator B a sharp value V(B) and have even the relationship
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Thus, if the observables have sharp values, they are not functionally related in the same way as the operators that
represent them!

Now it will be noticed that in Schroedinger's example, as has also often been pointed out about von Neumann's proof,
essential use is made of incompatible observables (represented by non-commuting operators). Could the mystery be
localized here?

Subsequent work by Jauch, Gleason, Kochen and Specker, and Bell, among others, established that this is not so. (See
the discussion of the ‘no hidden variables’ implications of Gleason's theorem and Kochen and Specker's result above,
in Chapter 6.) Assignment by hidden variables of sharp values to all observables, plus the requirement that functional
relations among the operators reflect those among compatible observables, already leads to inconsistency. This cannot be
surprising once we see that compatibility is not transitive. Indeed, it seems almost obvious, given our reflection above
that it is possible to have two non-commuting maximal observables N and N′, and function f and g such that a given
operator M is f(N) and is also g(N′). Thus the functionality requirement for compatible observables entails indirect
restrictions on the values assigned to incompatible observables as well. The exact import of this result, obtained in
different ways in the famous papers of Kochen and Specker and of Bell, is clearly presented in Fine and Teller (1978),
and the further equivalence to postulation of hidden joint probability distributions is in Fine (1982b, 1982c).

Thus presented, the impression has sometimes been gained that the results obtained in this subject by Kochen and
Specker on the one hand and by Bell on the other are the same. I think that ignores the distinct crucial insights to be
found in both papers. In the remainder of this section I shall describe what I see as the ‘abstract’ achievement here,
which shows the exact limits to any attempt to solve quantum mysteries of correlation through logical identities. Here I
think the Kochen–Specker paper contains exactly the crucial points. In the next section I shall take up the import of
the distinctive contribution by Bell.

Recall that I introduced the notation: operator M represents observable m. That presumes that a Hermitean operator
represents a single observable only. But quantum mechanics itself
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only uses the operators to represent the statistics of measurement outcomes. The following is conceptually possible:
two distinct observables m and m′ have the same set of possible values, and in each quantum-mechanical state the
probability of a given outcome for an m-measurement is the same as for an m′-measurement. Obviously, m and m′
would then have to be represented by the same Hermitean operator M. In what sense could m and m′ still be distinct?
Well, we can tenably add to the above that m and m′ always each have a definite value (so an actual situation is only
incompletely represented by a quantum-mechanical state) and their values are not all the same. The statistical
predictions could still coincide. That this is indeed a tenable hidden-variable model is established by a theorem due to
Gudder (1968a).

Indeed, this ‘de-occamization’ (as Michael Redhead calls it) need not be performed everywhere: the model allows that
maximal Hermitean operators do each correspond to a unique observable. The little bits of reasoning we went through
above, and which got us into trouble, assumed that a non-maximal operator M could be described as a function fM of
one maximal operator and as a function gM of another, and could also still be assumed to represent a unique observable.
That was (logically speaking) the trouble.

What is missing in the description of this de-occamized hidden-variable model is the assumption that identity of
measurement statistics implies identity tout court for the observables. Without that, the ‘no hidden variable’ proofs do
not work. This is made clear by Kochen and Specker when they explicitly assume

(K–S): If two observables pertaining to a system have the same expectation value in every quantum-mechanical
state (are, that is to say, empirically equivalent, according to quantum mechanics), then they are identical

which is equivalent to the assertion that if M = M′ then m = m′ in the above notation.

Measurement procedures are identified in terms of the Hermitean operator; that is why it is sometimes said that to
deny (K–S) is to say that the same observable has different values
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depending on how it is measured—e.g. with the apparatus rotated along one of its axes of symmetry. That is a mis-
statement, for it confuses two diagnoses. If we have a ’de-occamized‘ hidden variable model, and it agrees in its
empirical predictions with quantum mechanics, thus violating (K–S), such a rotation of the apparatus is the
measurement of a different observable. Although f(N) = g(N′), we have two distinct observables, identified by the
couples f and N, g and N′—they are distinct though empirically equivalent.7

So now we have found the exact limits. As a purely logical or metaphysical exercise, we can indeed take the logical
identity explanation very far. A look at Gudder's proof will show that we could have done this almost no matter what
quantum theory could have been like. But here the metaphysical explanation shades off into a merely verbal
one—made possible because, as far as logical consistency is concerned, almost any thesis can be superimposed on the
facts. Once we impose a fairly minimal constraint—formulated as (K–S) above—on the interpretation of quantum
mechanics, the putative explanation of the statistical correlation among measured observables becomes hollow. For
then, to maintain logical consistency itself, we must deny functional relationships among the individual values that
could have explained those found in the joint probability distributions (of the compatible observables) to which we
addressed ourselves to begin with!

6. Sinister Consequences and Spooky Action at a Distance
If we discount as despair the idea of a pre-established harmony, there are only two patterns of explanation that might
prove equal to the mysterious correlations predicted by quantum mechanics. Pursuit of logical identity having yielded
only illusory gains, we turn to the last, that of causal explanation—where the correlated effects are traced back to a real
or hypothetical common cause. Perhaps because this is the form of every would-be scientific response to claims of
telepathy or psychokinesis, it is often thought of as the explanation-type that
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eliminates appearance of action at a distance. As a first objective in this section, I will therefore discuss how one might
get an impression of action at a distance in EPR correlations—and whether that impression is justified. As second
objective, I will try to understand the limits to causal explanation of such correlations.

6.1. No Empirically Veriable Action at a Distance8

In Schroedinger's reply to—or perhaps I should say, elaboration of—the EPR paradox in his 1935–6 papers on
relations between separated systems, he purports to demonstrate a ‘sinister’ consequence. This consequence, which
Einstein called in 1947, in a letter to Born, ‘spooky action at a distance’, is exactly that we can affect what happens at a
distance without intervening causal chains.

An exposition of this argument will certainly show graphically why there has been an impression of (instantaneous)
action at a distance in quantum mechanics of the very sort that Einstein was thought to have banished in relativity
theory. But the exposition will also reveal—as I shall argue—that the arguments crucially involve what I called von
Neumann's interpretation rule (equivalently, his Projection Postulate), and that the action-at-a-distance exists only on
one interpretation of the phenomena. On other interpretations it does not happen; and indeed, any attempt to verify it
empirically along Schroedinger's lines is ruled out by quantum mechanics itself.

Schroedinger begins by noting what he takes to be not ‘one but rather the characteristic trait of quantum mechanics, the
one that enforces its entire departure from classical lines of thought’ (1935a, 555). It is that if two systems, initially in
pure states, enter into interaction, their joint state generally develops in such a way that they can no longer individually
be ascribed pure states at all. All knowledge of the component systems taken individually could be lost, and only
through measurements can we arrive at a new attribution of a pure state to either component. But then, knowledge of
the initial states and the interaction allows us to infer without further measurement a pure state for the other one.

The ‘sinister importance’ of this fact lies, Schroedinger says,
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in its being involved also in the quantum-mechanical description of measurement. But, as we have seen in earlier
chapters, the move from the fact that at the end of measurement a certain value is recorded to the ascription of a
corresponding eigenstate is not part of the theory but part of an interpretation. The inference just pointed to by
Schroedinger is valid on the standard interpretation, but not on all interpretations. Let us continue however with
Schroedinger's argument. Schroedinger elaborates the sinister consequences as follows. Imagine a complex system
(X + Y) which has become entangled in the above way, and is now as a whole characterized by the state ϕ in the tensor
Hilbert space HX ⊗ HY. Imagine also that we should like to steer component system Y into some pure state (or more
generally, some subspace ofHY), but we have no direct access to it because it is by now far away from X, where we are
located. Indeterminism being ineliminable, we cannot steer Y into that desired (sort of) state with an absolute
guarantee. But, and this is what Schroedinger proves here, we can design measurements to be performed on X which
will have that effect on Y, generally with some positive probability.

To see, in rough outline, how the proof proceeds, suppose that y is a possible pure state of system Y, and belongs to the
image space of statistical operator W′. It follows then that there is some non-degenerate observable measurable on X,
let us say A, with eigenvectors |ai 〉 such that(1)

and y = xm for some value m, with cm ≠ 0. (The set {xi} will in general not be orthogonal.) A measurement of A on X,
i.e. of A ⊗ I on the combined system, sends (X × Y) via the Projection Postulate, into state |am〉 ⊗

xm—and hence Y
into state xm—with non-zero probability. This non-causal change in what Y is like, over which the experimenter
appears to have non-negligible control, happens instantaneously at the end of the measurement performed on X, on
this analysis.

We have now arrived at a troublesome conclusion which appears to go some way beyond those drawn in the EPR
paper. The conditional certainties were difficult enough to interpret. But here, analysing exactly the same situation, we
have arrived
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at a consequence which Einstein was quite right to describe as ‘spooky action at a distance’. The question arises
immediately whether it could be eliminated from the interpretation of quantum mechanics. It would sound decidedly
hollow if at this point I simply repeated my claim that other interpretations (for example the modal interpretation) are
tenable and do not license Schroedinger's inference. For has he not just demonstrated an empirically testable
consequence, namely that we can effectively (that is, with calculable probability) steer a distant component of a two-
body system into almost any state we like?

The answer is no, Schroedinger has not demonstrated an empirically verifiable possibility. He gave only half of the
argument that would be needed to show that.

What Schroedinger neglected to ask was: what would have been the probability of finding system Y in the desired state
if we had not carried out any measurement on X first? The answer is: it would have been just the same. Mind you, we must
interpret the question and answer purely empirically: if we measure the observable Iy—the projection along vector
y = xm—what is the probability of finding the value 1, on the supposition that we have first measured the observableA
on X? And the answer is: exactly the same as without that supposition. (See Proofs and illustrations.)

To sum up, then: the expectation of I ⊗ B must be the same for both experimenters, since it involves no reference to
measurements on X—but each calculates that this equals his own expectation for measurements of B on Y, on the
supposition that he measures his own choice of A or A′ on X. The fallacy all too easily committed is to confuse the
latter supposition with some assumption about the information actually obtained from the chosen measurement on X,
as opposed to information obtained from the choice itself.

The action at a distance described by Schroedinger thus takes place, according to the von Neumann interpretation of
what happens in measurement, as a real collapse of the wave packet—a real counterpart to the mathematical operation
used in calculating probabilities. Under this description, the wilful experimenter indeed makes the desired result
happen, with non-negligible probability. But there is no empirical manifestation of this; if we make measurements on the
systems for which he has
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those desires, we cannot tell from our findings whether he is engaged in his nefarious activity or not.

As far as that is concerned, his efforts designed to steer Y into desired state xm are just magic—sticking pins into a
voodoo doll. There is, in the EPR situation, no empirically verifiable action at a distance.

Proofs and Illustrations.
To prove the assertion that Schroedinger's sinister experiments would have no empirically discernible effect on the
distant system, consider the most interesting, i.e. doubly correlated, EPR state:(1)

where the first orthogonal expansion is in terms of observablesA and B, and the second is in terms ofA′ incompatible
with A, and B′ incompatible with B. Now there is a unitary transformation which connects the alternative bases; let(2)

We note that the probability of getting value bk in a measurement of B on the second component equals , whether or
not A is measured first, because of the perfect correlation of A and B.

As first step we prove
Lemma:

The proof is by the consistency of two ways of calculating the probability of the answer (1) if I ⊗ B is measured. From
the first equation in (1), we see that the answer must be , using our notational conversion for complex numbers.
From the second equation and (2), we get

whose squared length is ∑i(dieki)2. Therefore the two numbers are the same.

Now we imagine someone saying to himself: if I were to
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measureA′ first, and then B, what is the probability of getting bk in the second measurement? He then says to himself: I
must get one of the combinations a′i followed by bk, if that is what happens. But each such combination has as
probability the squared length of

which is (dieki)2. Adding up all those possible combinations, we arrive at total probability Σi(dieki)2—which, by the above
lemma, is just the probability of finding bk after a preceding measurement of A.

6.2. No Communication by ‘Bell Telephones’
What I showed in the preceding section is a fact that has appeared in the literature in a number of ways. The apparent
instantaneous action at a distance was also an apparent violation of relativity theory, and that was shown to be illusory.9
In a more general way, exploiting violations of Bell's Inequalities for communication was shown to be impossible
almost as soon as it was mooted.10 The point, put very briefly, is that, since observables pertaining to two regions with
space-like separation commute, the expectation for measurements in one such region is independent of the decision as
to what measurements to make in the other.

Herbert (1981) proposed a way to circumvent this equality of expectation values, by exploiting not a series but a single
measurement. His idea was refuted by Dieks (1982); it will be instructive to see why the ruse could not work.

We consider again system X + Y described in the preceding subsection, a case of double correlation without
degeneracy. But this time, as soon as the measurement—whatever it be—on X has been carried out, Y enters a
multiplier (think of a laser) which emits a whole burst of particles of the same type as Y and in the same state. We have
two experimenters with access to X; one would like to measure A and the other would prefer to measure A′.
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Now, the first experimenter argues, once I measure A, I will predict with certainty an eigenvalue bk for a measurement
of B on Y. So I will predict that, if measurements of B are made on samples from that burst, they will all yield the same
value—namely, bk.

Meanwhile, the second experimenter argues: once I make my measurement of A′, I will predict with certainty an
outcome b′m for a B′ measurement on Y. So I predict that, if the whole burst is subjected to B′ measurement, that value
b′m occurs with relative frequency 1. But on that basis I calculate that, if instead B is measured, value bi will be found
with a certain frequency |eim|2 which is not 1 for any index i. So I predict that, if I measure A′, then a B-measurement
on samples from the burst will not all give the same result.

If both are right, then making B-measurements on the burst into which Y has been ‘multiplied’ will reveal whether A
or A′ was measured on X. Thus the choice will be communicated—by what Einstein might have called ‘spooky
multiplication at a distance’.

What Dieks points out is that, although quantum mechanics may allow for multipliers, it cannot allow for multipliers
of this sort. The reason is the linearity of evolution operators. In the above reasoning the Projection Postulate was again
assumed, but we can leave it uncontested here. Suppose that I measure A, find value ak, and the other component Y
goes into eigenstate |bk 〉. Now it enters the multiplier, presently in its groundstate, and out comes a burst of N
particles just like Y, and all of them in state |bk 〉. We describe the process that has just happened in a ‘black box’
form, but can still say this. At the initial moment we have [multiplier] + Y in state

and there is an evolution of this system into a system [multiplier] × [N−particle system] in state

Since the multiplier was itself presumably a compound system with some structure, this supposition presents no
difficulty in principle. That is, the description |m0 〉 ⊗ |bk 〉 may just be a very incomplete or shallow description of
an (N + 1)-body
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system, and may really stand therefore for a vector in an (N + 1)-dimensional space. What is important is that the
transition must be governed by a unitary and hence linear evolution operator.

Suppose then that I measure A′ instead, find value a′n, and Y goes into eigenstate |b′n 〉. The initial state of
[multiplier] + Y is now

By linearity that must now evolve into the exactly similar superposition of the final states we encountered before:

Suppose that now we make a measurement to see how many of the particles in the burst are in state |b1 〉 and how
many in |b2 〉. For example, what is the probability that we will find half in the first state and half in the second?

The answer is zero. The reason is that any state of, for example, form |m1 〉 ⊗ |b1 〉 ⊗ |b1 〉 ⊗ . . . ⊗ |b2 〉
⊗ |b2 〉 is orthogonal to every state of form |m1 〉 ⊗ |bk 〉 ⊗ . . . ⊗ |bk 〉. It is the latter sort of state which we may
detect with probability |enk|2. Thus, anything we may detect with non-zero probability will bear out the expectation of
finding the same eigenvalue of B throughout the burst.

Thus we see that, even with the assumption of the Projection Postulate uncontested, the designed device cannot exist.11

6.3. The Empirical Content of Bell's Inequalities
It is certainly true that violation of Bell's Inequalities is testable, and was ruled out in all the models that classical
physics made available to us. But we must be very clear on how exactly quantum mechanics enriches our modelling so
as to allow for it. All statistical predictions for a quantum-mechanical model which pertain solely to a set of mutually
compatible observables can be
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duplicated in a classical (Common Cause) model. (It may be of course that such a model would leave us empirically up
a tree, because there might be no empirical trace of the postulated common cause.) That is the exact sense in which,
classically, instantaneous action at a distance was not inconceivable.

In the statistical correlations in measurement results for a set of observables not all mutually compatible, a terrible new
beauty is born. We shall remain mystified unless we carefully distinguish two possibilities:

(a) violations of the probability calculus itself;
(b) violations of expectations calculable on the basis of any Common Cause model whatever.

We could get from (b)—which we now fully believe ourselves to have obtained in actual experiments—to (a) only on
the basis of an assumption that reduces all the new riches of quantum mechanics to nought. That is the assumption
that the conditional probabilities of measurement outcomes for incompatible observables—conditional on their being
measured—can just be thought of as unconditional probabilities, or probabilities all of which are conditional on the
same single complex physical situation.

The mechanics of mystification are quite clear. If we imagine that the conditional probabilities

pij = probability (〈 1, 1〉| observable Li and observable Rj are measured)

are equal to unconditional probabilities,

then, no matter how the propositional matrix f(−, −, −) is constructed, we can deduce from the probability calculus
that Bell's Inequalities hold (given the apparently harmless assumptions that f(L, i, 1) is disjoint from f(L, i, 0) etc.).

The fact is, there is logically nothing harmless about such a reduction from conditional to unconditional probability.
Probability theory never implied that this is always possible. Logicians who investigated the matter could only find the
most outré reduction along such lines, and never so as to preserve those ‘harmless assumptions’ in general.
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The whole content of Bell's Inequalities, as far as the empirical facts are concerned, lies in their conflict with (b) above.
But that is quite enough.

7. The End of the Causal Order?
We have now come to the end of the line; we have exhausted all the traditional ways to explain correlations, and seem
to have found no satisfactory way to remove the EPR mystery. But is it a mystery? The word ‘mystery’ is not merely
descriptive—to call something a mystery is not so much a statement as a demand, a demand for explanation.
Demands need not always be met. The Aristotelian question about the law of inertia—‘But what keeps a body moving
if there are no forces impressed on it?’—was not answered but discarded by the seventeenth century. It appears to be
very hard to treat such demands ruthlessly, for even Newtonians would still speak of a vis inertiae, paying lip service to
that old demand for explanation.

Each scientific age comes with its own philosophical propaganda. The Enlightenment told us that the new physics
would give a complete and deterministic explanation of all empirical phenomena and that it would be unscientific not
to demand that sort of theory. When the propaganda gets into trouble, such an aim becomes more easily attainable if
standards are lowered, if some why-questions are discarded—and that is exactly what happened. For Newton had still
regarded the correlations described by his law of universal gravitation as demanding explanation.12 But a century later,
the law itself was accepted as the explanation!

The force of attraction mutually exerted by two bodies of mass m and m′ respectively, separated by distance r, equals
F = Gmm′/r2. Read in the context of the Second Law of Motion, F = ma, we see that, if the second body's position is
made to change ever so slightly, there is an immediate effect on the velocity of the first. What explanation could be
given for this? Not co-ordination through travelling influences or signals, for no travel time is available. It is true that
this correlation is not formally as mysterious as the EPR kind. Formally speaking, it admits of a deterministic variant of
the Common Cause
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explanation. Suppose the bodies with masses m and m′ are like earth and moon, and the disturbance is that a small but
exceedingly fast travelling meteor hits the earth. The dislocation of the ‘earth’ is at once accompanied by a disturbance
in the motion of the ‘moon’. But perhaps we can treat the three bodies together as an isolated system; given the initial
positions, velocities, and masses a million years ago, we can calculate this very disturbance in the motion of the ‘moon’
today.

However, without any mechanism for telling the mutually separated ‘earth’, ‘moon’, and ‘meteor’ at that initial time
where the others are and what they are doing, we still have here a coincidence on a grand scale. Even if the bodies were
close together a million years ago, and could have ‘perceived’ each other's states, there appears to be no mechanism by
which they can ‘remember’ this information. The seventeenth-century scientists liked the image of synchronized clocks
running at equal rates though separately. But here we have something like clocks that run in synchrony, but have no
clockworks inside! Thus, among our patterns of explanations only pre-established harmony—to the determinist, the
name for despair—fits gravitational ‘interaction’.

The difference between this and the EPR correlation is that in the Newtonian case the structure of the law taken by
itself presents no formal obstacle to reductive explanation. It would have been consistent to postulate some
explanation of the sort Newton wanted, though actual history of science did not proceed in that way. Newton's
disciples in the next century discarded the demand for explanation in the same way as his predecessors had discarded
the demand for an explanation of the law of inertia. The law, as now, described what was to be taken as normal.

We should not disdain these changes in attitude as metaphysical cowardice. Certainly the new generation became blind
to the conceptual difficulties that disturbed the old—but there are close and necessary connections between blindness
and insight. What the actual development of scientific ideas denies here is merely what certain philosophers and
philosophically minded scientists assert, namely, that strict demands for explanation act as regulative ideals for science.
That conception makes physics continuous with metaphysics, and is characteristic of the
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so-called ‘realist’ traditions in philosophy. There is also an alternative tradition, exemplified by the fourteenth-century
nominalists (whose William of Ockham issued the first explicit rejection of the demand for reasons for inertial
motion), the British empiricists, the French positivists and conventionalists, and the Vienna and Berlin Circles. This
alternative empiricist, anti-metaphysical tradition (not exactly monolithic in outlook in other ways, and replete with less
admirable traits as well) equates scientific explanation with the provision of relevant descriptive information.

The intricacies of the universe, and those of the quantum-mechanical world-picture, are astonishing. But attempts to
explain the correlations and conditional certainties there can be about separated systems, by interpretations which
‘explain’ them through action at a distance ‘behind the phenomena’, simply add mystery to mystery. They are like the
talk about vis inertiae to ‘explain’ the First Law of Motion (or like the short-lived idea of ‘Pauli forces’ to explain the
Exclusion Principle). To understand quantum mechanics means to understand how the world could possibly be the
way quantum mechanics says it is. This search for understanding would be not aided but hindered by insistence that
every regularity must have a reason.
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11 The Problem of Identical Particles

One of the earlier and also most persistent problems in philosophy is that of the One and the Many. In natural
philosophy that problem emerges especially as the question: does a compound or aggregate have characteristics which
do not simply follow from or supervene on the properties of its parts? Is an aggregate a ‘mere’ aggregate? Are there
principles which are trivial or vacuous as far as non-compound systems are concerned (if there be any!) but take on
force when compounds are considered?

We have already encountered a holism in quantum theory at a number of junctures. Specifically, the state of X + Y
determines but is not determined by the reduced states for its parts X and Y. In Chapter 3 we saw that this sort of
holism characterizes even classical probability functions; it becomes non-trivial in quantum theory because there
probability is ‘irreducible’. But even when all that is understood, there is something more.

The something more is the principle of Permutation Invariance for compounds with distinct but ‘identical’ parts. The
sense of ‘identical’ needs to be made precise; two conjectures suggest themselves and must be investigated. The first is
that Permutation Invariance accounts for the well-known but puzzling departures from classical statistics of
aggregates. The second is that, when ‘identical’ is properly understood, it entails Permutation Invariance tautologically.
In this chapter and the next, I shall argue that both conjectures are false, though each has a core of truth.1

1. Elementary Particles: Aggregate Behaviour
An atom . . . possesses two kinds of symmetry properties: (1) the laws governing it are spherically symmetric,



i.e. invariant under an arbitrary rotation about [its centre]; (2) it is invariant under permutation of its . . .
electrons.
Herman Weyl (1929)

An elementary particle is characterized first of all by certain constant features, which serve to classify it. Mass is such a
constant: baryons have large mass, mesons intermediate, and leptons small. Other constants, such as charge, subdivide
these classes. In terminology that philosophers dislike, physicists have often referred to particles characterized by all
the same constants as ‘identical’. In that sense, two particles can be identical, and yet be in different states of
motion—so the identity is not strict numerical identity, or even strict qualitative identity. But it is also possible that two
identical particles are in the same state. Then they are certainly qualitatively the same, in all the respects representable in
quantum-mechanical models—yet still numerically distinct. If that is so, the particles are ‘indistinguishable’ in a sense
going beyond that of ‘identical’ as used above. At this point, philosophical puzzles went beyond terminology. As we
shall see, physicists too became uneasy, and began to speak of a ‘loss of identity’.

Let us describe first the two ways in which non-classical aggregate behaviour appeared. (For more historical details see
also Dieks 1990.)

1.1.Bose, Einstein, and the Boson
The introduction of Bose–Einstein statistics in Bose (1924) was the last step in a historical development directly
concerned with electromagnetic radiation and statistical–mechanical analogies. If a certain amount of light, say, is
introduced into an evacuated enclosure with perfectly reflecting walls, we have a situation in some ways similar to an
enclosed body of gas. Specifically, the ‘radiation gas’ exerts a pressure on the walls and work must be expended to
decrease the volume. If now a piece of matter is introduced, capable of emitting radiation in every frequency, then
emission and absorption will happen until their two rates are equal, and remain so: an equilibrium is reached. The
intensity of light of a given frequency in the enclosure is a function solely of that frequency and the temperature of that
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enclosure. The description of that function was the subject of Stefan's, Wien's, Rayleigh's, and finally Planck's laws of
radiation. While Stefan's law is based on experimental results, and was accepted as a partial constraint on the required
function, Wien's and Rayleigh's were based respectively on a thermodynamical argument and a deduction from the
classical laws of electromagnetism (both using additional assumptions). These latter two turned out to be erroneous on
the whole although approximately correct in certain limits. At this point Planck introduced his ‘quantum theory’, and
was able to deduce his empirically satisfactory radiation law. But the deduction was based partly on classical
assumptions and partly on assumptions incompatible with classical physics—not a theoretically satisfactory situation.

Einstein's treatment of the photoelectrical effect, in which corpuscular properties were attributed to energy quanta
(radiation of frequency v consisting of photons having energy hv and momentum hv/c), made the statistical mechanical
view more than a mere analogy. The pressure which the radiation exerts on the walls can now be attributed to the
impact of the photons, exactly the same mechanism as for an ordinary gas. If Boltzmann's classical statistical
mechanics is now applied to the distribution of numbers of photons over the various energy levels (corresponding to
intensities of radiation over various frequencies) for an equilibrium situation, we obtain Wien's law. But Planck's law
should result! The innovation introduced by Bose was in effect a non-classical assumption of equiprobability. The
classical assumption would be that each arrangement of individual particles, classed together when they have the same
energy level, is equiprobable. As we now construe Bose's work, the identity of the particles is ignored, and each
possible assignment of occupation numbers to the different energy levels is equiprobable. This is analogous to the
assertion that, if two coins are tossed, the possibilities of 2 heads, 1 head, and 0 heads are equiprobable. The move was
ad hoc: but it led to Planck's law.

Bose himself may or may not have appreciated the radical step he had taken. Einstein did, and explained it in articles
published immediately afterward (1924–5). Hence we refer to the new statistics as Bose–Einstein (BE) statistics,
contrasting it
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with the ‘normal’ or classical Maxwell–Boltzmann (MB) statistics. To illustrate their differences, imagine them applied
to the tossing of two ‘identical’ coins mentally labelled as a and b:

Heads Tails MB BE
a, b 1/4 1/3
a b 1/4 1/3
b a 1/4

a, b 1/4 1/3

If we don't want to use labels, even mental or imaginary, we would describe the different cases and their probabilities as
follows:

Cases MB BE
2 heads 1/4 1/3
1 head, 1 tail 1/2 1/3
2 tails 1/4 1/3

At this point we suspect a poor motive that might explain why some writers spoke of ‘loss of identity’. That poor
motive is the Indifference Principle, whose fortunes and demise we already discussed in Chapter 3. For it would say: all
distinct possible cases must be given equal probabilities. Thus if BE (rather than MB) is correct, then the second table
(and not the first) divides the possibilities correctly. Hence the use of labels must introduce an unreal distinction. But
that use presupposed only that distinct labels be assigned to distinct particles. Hence this distinctness (or its opposite,
identity) corresponds to no real division. At this point it is very puzzling how we can still speak of two, rather than one,
particle at all. I will leave this issue for now; since the Indifference Principle had already been generally rejected by this
time, this bit of reasoning looks anyway too spurious to be of help.2

1.2.Pauli and the Exclusion Principle
Within a year, it became clear that Bose's treatment could not apply to aggregates of identical particles in general. For
in 1925 Pauli introduced his Exclusion Principle for electrons in an atom. Pauli wrote in that article:
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In an atom there cannot be two or more equivalent electrons for which the values of all four quantum numbers
coincide. If an electron exists in an atom for which all of these numbers have definite values, then this state is
‘occupied’. (Pauli 1925, 766)

The assumption is that the four quantum numbers suffice for a complete description of the state, and that an
‘occupied’ state cannot be entered by another electron.

The assumption of completeness here may have a ‘metaphysical’ air, but it is involved in the very application to atomic
structure for which the Exclusion Principle was introduced. To show this, let us look at the application of this principle
in the theory of atomic structure, and its reconstruction of the periodic table of chemical elements. For the structure of
the hydrogen atom, three quantum numbers n, l, m, were already introduced, which together determine the hydrogen
atom wave functions. The principal number n determines the total energy En, and the number of nodes (radial and
angular) which is n − 1. This number n can take any positive integral value. The azimuthal number l is the number of
angular nodes; it is thus less than or equal to n − 1, and can otherwise take any non-negative integral value. It
determines the square of the angular momentum; the magnetic quantum number m determines one component of
angular momentum, which equals mħ. This quantum number takes the values, 0, ±2, . . . , ±l. Considering only one
electron, when n = 1 (electron in the lowest orbit), l and m are obviously constrained to be 0. Hence if these three
numbers told us all, and the Exclusion Principle applied, there could be only one electron in the lowest orbit. But this is
not so. In 1925 Goudsmit and Uhlenbeck introduced a fourth property to characterize the atomic electron, the spin,
quantum number s being associated with total spin ( for all electrons) and the quantum number ms associated with
one component thereof . Having thus a new parameter with two possible values, we have at least two possible
states for the case n = 1.

If we now assume the description to be complete, there are exactly two possible states available for n = 1 and, if the
Exclusion Principle is then applied, a maximum number of two electrons in the first orbit. This gets us as far as the
model of the helium atom, with a nucleus of charge +2e and two orbital
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electrons. Application to the three-atom lithium atom entails that the third electron cannot also have the lowest orbital
state. For the second energy level (n = 2), there are four orbital states: as we have already seen, l can then have value 0
and m value 0, or l can have 1 and m = 0, ±1. Adding that each of these states can be further distinguished by ms, it
follows that there are at least eight possible states available. Assuming completeness of this description, there are
exactly eight states, and applying the Exclusion Principle, we conclude that there can be at most eight electrons in the
second orbit. And so forth. So the completeness assumption, used above in the suggested deduction of the Exclusion
Principle, is also essential to its primary application in atomic theory, and is not extraneous to the scientific context.

If we now ask about the statistics applicable to an aggregate of identical particles, of a type for which the Exclusion
Principle holds, we must get a different answer from before. To use the analogy of coins again, two heads cannot occur
(unless there are relevant properties not describable in terms of heads and tails). Let us use the alternate analogy of two
dice: if the Exclusion Principle holds, there are only 6 × 5 = 30 and not 62 = 36 possible combinations. That the face
values of the dice add up to 11 (combination of 6 and 5), Maxwell–Boltzman and the ordinary gambler give probability
1/18, while the Exclusion Principle statistics—called Fermi–Dirac (FD) after its creators—gives it 1/15.
Bose–Einstein statistics gives the same possibility the value 1/21. In any such example we have BE < MB < FD,
because, intuitively speaking, FD favours combinations of distinct numbers, and BE favours ‘doubles’. So also the
possibility that the face-values add up to 12 (combination of 6 and 6) receives 0 from FD, 1/36 from MB, and 1/21
from BE. Thus for ‘doubles’ we have FD < MB < BE. Once more, we face a puzzle of statistical correlation.

That bit of cogitation about identity and indistinguishability received support, of a sort, from the general quantum-
theoretical treatment of aggregates. This emerged at the hands of Dirac and of Heisenberg in 1926, and was properly
generalized in 1926/7 by Wigner. Identity and indistinguishability were given the precise form of a symmetry principle.
I will explain this in more detail below.
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2. Permutation Invariance and the Dichotomy Principle
Given two systems X and Y which are capable of the same states, we represent the composite system X + Y by means
of a tensor product. Let H be the Hilbert space of individual pure states; then a pure state of X + Y is presumably
represented by a vector in H ⊗ H, and, in general, any state by a statistical operator on H ⊗ H. We recall also that, in
the presence of superselection rules, this representation of states is no longer unique.

Any given vector in H ⊗ H takes the form ϕ = Σ cijxi ⊗ yj where {xi} and {yj} are bases for H. Intuitively, we describe
this as a superposition of states xi ⊗ yj in which X has state xi and Y has state yj. What about the permuted situation, in
which X has yj and Y has xi? Mathematically, vector y ⊗ x ≠ x ⊗ y. Similarly, the general state ϕ has permutation

Here we have two particles only, X and Y, and the group of permutations has only one non-trivial element and one
trivial one (the identity). In the case of N particles there are N! permutations, forming a larger group. Every
permutation s can be represented by a unitary operator Ps which transforms the states in the obvious way, illustrated
here by the change of ϕ into ϕ′.

Does the mathematical change in the vector by such a permutation lead to the representation of a new state? Or is a
permutation like our previous example of rotation through 360 degrees? For identical particles X and Y, the assertion
is that, indeed, there is no ‘real’ difference in states represented by permuted vectors such as x ⊗ y and y ⊗ x.

Permutation Invariance: If ϕ is the state of a composite system whose components are identical particles, then the
expectation value of any observable A is the same for all permutations of ϕ.

The Permutation Invariance Requirement requires a limitation either on the states (perhaps not all vectors represent
pure
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states that can really be found in nature) or else on the observables (perhaps not all Hermitean operators represent
measurable physical quantities). And indeed, these two sorts of limitations must go hand in hand. If the vector ϕ
represents no state that can really occur, what of the superpositions of ϕ with other vectors? If we say they don't either,
then the projection operator I

ϕ
would at best represent the yes/no observable whose measurement must always have a

negative (null) outcome. The link of the phenomena with this Hermitean would be no different from that with the
projection along the null vector. On the other hand, if not all Hermitean operators represent observables, then some
distinct vectors appear to represent states which are empirically indistinguishable.

The thesis of Permutation Invariance has therefore two aspects. If we regard ourselves as already knowing what the
observables are, we can try to state it in the following form:

Permutation Invariance 1: If some observable A does not have the same expectation value in ϕ and its
permutation ϕ′, then ϕ does not represent a (physically possible) pure state of an aggregate of identical
particles.

In this formulation the requirement has bite if we add for example that all Hermitean operators, or a certain subclass
thereof, represent (real, measurable) observables.

If instead we regard ourselves as knowing already what states there are, we can attempt to formulate Permutation
Invariance as follows:

Permutation Invariance 2: If some state ϕ is such that Hermitean operator A does not have the same expectation
value in state ϕ as in its permutation ϕ′, then A does not represent a (real, measurable) observable.

This formulation acquires bite if for example we add that all vectors in HN represent states (even if not uniquely).

The two formulations may or may not have the same amount of bite. Whether or not they do, and how well they
succeed in capturing the intuitively stated principle, is to be seen.

Some vectors are affected only inessentially by permutation, in that they remain parallel to themselves. In the case
N = 2, there is only one non-trivial permutation, which replaces x ⊗ y
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by y ⊗ x; extended by linearity, it replaces Σ cij(xi ⊗ yj) by Σ cij(yj ⊗ xi). If ϕ is the original vector, let ϕ′ be its replacement
by this non-trivial permutation. Then we have two special cases:

In both cases, the expectation value of any Hermitean operator A remains the same, i.e. (ϕ · A ϕ) = (ϕ′ · A ϕ′). Hence
we are sure that such a vector ϕ can be admitted as representing a state which satisfies Permutation Invariance 1. For
the two-particle case, these form two subspaces:

Symmetric states: ϕ = Σ cij(xi ⊗ yj + yj ⊗ xi)
Anti-symmetric states: ψ = Σ cij (xi ⊗ yj − yj ⊗ xi)

The definition can be extended to the general case: ϕ in HN is symmetric if every two-particle permutation leaves it the
same, and anti-symmetric if every such permutation turns it into − ϕ. Note the place of ‘every’: we are not including e.g.
the case in which some such permutation turns ϕ into − ϕ and some other one turns it into itself! Having noted this,
we can postulate the Dichotomy Postulate:

Dichotomy: Every type of particle is such that its aggregate can take only symmetric states (boson), or else such
that its aggregates can take only anti-symmetric states (fermion).

I do not maintain as self-evident that this is the best choice of definitions, nor that the postulate is an inalienable part
of quantum mechanics. It will look familiar enough to many readers, but is nevertheless debatable.

Below we will see that the given definitions do indeed imply the applicability of Fermi–Dirac statistics to fermions, and
of Bose–Einstein statistics to bosons. The postulate therefore ‘explains’ or ‘accounts for’, or at least fits the dichotomy
of, statistical behaviour found in nature. It also accounts in some sense (to be discussed) for the Exclusion Principle
which holds for fermions.

We must however sharply distinguish the Dichotomy Postulate I have just described from the preceding weaker
postulate of Permutation Invariance. Looking back, you will see that I
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asserted the following: we find that in the two-particle case two sorts of states automatically satisfy Permutation
Invariance for all Hermitean operators. The postulate of Dichotomy, presented next, was a proposed generalization.
For we must reflect that (a) the general N-particle case is not a simple extrapolation of the two-particle case, and (b)
Permutation Invariance concerns observables, and it is possible that not all Hermitean operators represent
observables.

Proofs and Illustrations: Spin and Statistics
Pauli (1940) proved an important theorem for relativistic quantum mechanics, which was sometimes taken as
establishing Dichotomy. This was his famous Spin and Statistics theorem. All known particles were (and are) bosons or
fermions. In addition, all known bosons have integral spin and all known fermions, half-integral spin. This is too
beautiful a connection to be a coincidence, one would think; and indeed it is not. Pauli proved that in the relativistic
formulation, (a) the field operators of particles with integral spin cannot obey the fermion commutation relationship,
and (b) the field operators of those with half-integral spin cannot obey the boson commutation relationship.

Logically this does not lead to Dichotomy at all: if particles with integral spin cannot be fermions, it does not follow
they are bosons.3 Indeed, in the 1950s Green (1953) and Volkov (1959, 1960) showed that relativistic quantum
mechanics admits field operators which are of neither type. These were exploited in the literature on ‘parastatistics’ in
the next decade, in connection with conjectures about quarks. Parastatistics are statistics of neither the Bose nor the
Fermi type, and it is therefore clear that Pauli's theorem had not established Dichotomy even for relativistic quantum
mechanics.

3. The Exclusion Principle
Before continuing our discussion of Dichotomy, let us pause to see what happened to Pauli's Exclusion Principle. In
1925
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Wolfgang Pauli formulated his principle for orbital electrons in the atom:

In an atom there cannot be two or more equivalent electrons for which the values of all four quantum numbers
coincide. If an electron exists in an atom for which all of these numbers have definite values, then this state is
‘occupied’. (Pauli 1925, 965)

In general terms, if states are specified completely, one would say then that two fermions of the same type cannot be in
the same state. But this, though intuitively satisfying, is not accurate in relation to the general treatment. Suppose an
aggregate of two fermions, X + Y, is in the anti-symmetric state:(1)

It is indeed true that x = y is excluded, for that would make this the zero vector. But in what sense do the two particles
‘occupy’ different states? Could we say that one is in state x and the other in state y? That does not sit well at all with
our previous discussion of composition and reduction. The two reduced states are the same:(2)

So Reduction assigns the same state to both. If we amend the slogan to ‘fermions cannot occupy the same pure state’,
we do indeed rule out x ⊗ x as a fermion state. But we do not thereby rule out the boson state(3)

whose reductions are all three equal to(4)

so it is not true that two particles occupy the same pure state in this boson case, either.

To capture the distinction between fermions and bosons which the literature keeps alluding to in terms of exclusion,
define an exclusive product state to be any tensor product state x1 ⊗ . . . ⊗ xn in which xi = xj only if i = j. Then we have
the following:
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QM Exclusion Principle: All anti-symmetric states are superpositions of exclusive product states only; not all
symmetric states are.

This distinguishes the anti-symmetric and symmetric subspaces from each other, but not the individual states.

It may be that the ignorance interpretation—which functions often enough as a good pons asinorum, whatever its
philosophical difficulties—has helped to keep the slogan formulation of Exclusion alive. There is something intuitively
feasible about a picture of identical fermions all occupying mutually orthogonal states, only we don't know (or it makes
no sense to ask) which particle is in which state. The precise truth behind this feeling lies perhaps in the following
corollary:

QM Exclusion Corollary: If X1 + . . . + XN is in anti-symmetric state ϕ, then the reduced states # ϕ[XJ] are all the
same, and have an image space of at least N dimensions.

In other words, each particle is in the same reduced state, which is a mixture of at least N mutually orthogonal pure
states. I shall prove these results in Proofs and illustrations; their significance for interpretation will be discussed below.

Proofs and Illustrations
Let us here prove the QM Exclusion Principle for the anti-symmetric states. To say that ϕ is anti-symmetric means
that a permutation of two particles turns it into − ϕ. A permutation of three particles, leaving none in its own place, is
a product of two-particle permutations (two ‘exchanges’), so turns ϕ into − (− ϕ) = ϕ again. (Thus, if we write Sij for
the permutation of the ith and jth element in a sequence, then S12S23 (〈 a, b, c〉) = S12 (〈 a, c, b〉) = 〈 c, a, b〉. We
can accordingly designate S12S23 as S321 which is read ‘cyclically’: replace 3rd by 2nd, 2nd by 1st, 1st by 3rd. (In this notation,
then, S321 = S213 = S132.) All permutations are products of exchanges. We call a permutation odd (even) if it is the product
of an odd (even) number of exchanges. The signature s(P) of a permutation is +1 if P is even and −1 if P is odd.

Now suppose ϕ is an anti-symmetric vector in HN, the pure state of an aggregate X1 + . . . + XN. Then let B be a base
for
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H, so the set {y1 ⊗ . . . ⊗ yN}, with all yi in B, is a base for HN. Obviously many elements of this product basis are
permutations of other elements. Suppose P is an exchange, that ψ is a product basis vector, and ϕ = aψ + bPψ + Σ dkξk,
where the ξk are the remaining base vectors. We now apply P to ϕ, to obtain

Since permutation is one-to-one, the vectors Pξ are base vectors distinct from, and hence orthogonal to, ψ and Pψ. So
unless a = − b, Pϕ cannot be − ϕ. We conclude that a = − b.

Imagine now that ψ had a duplication in it; specifically that P = Sij, where the ith and jth component of the tensor
product ψ are the same. Then Pψ = ψ. But then

i.e., ψ does not appear in the expansion of ϕ.

This proves the QM Exclusion Principle. It also establishes that ϕ takes the very specific form(1)

where the collection {ψR} is an enumeration of exclusive base vectors, one from each permutation equivalence class, and
P1, . . . , PN! from the group of permutations for N particles. The vectors(2)

span the subspace of anti-symmetric vectors, of course.

By an exactly similar argument, any symmetric vector ψ takes the form:(3)
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with the signature omitted, since any permutation must leave ψ the same as it was. Of course, the exclusion argument
cannot be given in this case. So here the ξR are an enumeration of basis vectors, one from each permutation
equivalence class, but with duplications inside them allowed.

We can now also add the QM Exclusion Corollary. Having proved that ϕ takes form (1), and that it is the state of an
N-particle system X1 + . . . + XN, we can ask for a reduction, to assign a (mixed) state to each particle. Each reduction
# ϕ[Xj] will be the same for j = 1, . . . , N, because of the permutation invariance of the anti-symmetric vector. What is
noteworthy is that its image space must have dimension ≥ N. If we could accept the ignorance interpretation of
mixtures, we could then say: each particle is in a distinct pure state, with a certain probability.

I shall not advocate the ignorance interpretation, but I do want to prove that corollary.

We can rewrite (1) as(4)

where {ϕr} is an enumeration of the exclusive product states, and as = s(P)ar whenever ϕs = Pϕr. But that we can in turn
rewrite as(5)

where {ψs} is an enumeration of the (N − 1)-ary exclusive product vectors. By General Reduction, the vectors(6)

span the image space of # ϕ[XN]. Without loss of generality, let the enumeration be such that a1 ≠ 0 and

where we clearly have ar = ±a1 for r = 1, . . . , N. Looking
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now at definition (6), we see that w(1) = a1x1 + by, where y must be a sum of vectors in base B which are distinct from
and hence orthogonal to x1, . . . , xN. Moreover, both components of w(1) are orthogonal to x2, . . . , xN; hence w(1) is
too. This observation generalizes easily to w(2), . . . , w(N). So we give the proof about dimensionality as follows:

1. w(2)

x2 and w(1) ⊥ x2.
2. Hence w(2) ∉ [w(1)].
3. Hence [w(1), w(2)] has dimension 2.
4. Suppose that for all s ≤ r < N, [w(1), . . . , w(s)] has dimension s.
5. w(r + 1)

xr+1 but w(1), . . . , w(r) ⊥ xr+1.
6. Hence w(r + 1) ∉ [w(1), . . . , w(r)].
7. Hence [w(1), . . . , w(r), w(r + 1)] has dimension r + 1.

By mathematical induction, and so [w(1), . . . , w(N)] has dimensionN. But it is included in the image space of # ϕ[XN],
which therefore has dimension ≥ N.

4.Blokhintsev's Proof of the Fermion-Boson Dichotomy
The assertion that all elementary particles are either fermions or bosons means that only symmetric and anti-
symmetric states are allowed for aggregates of identical particles. In the case of a two-particle aggregate, this can be
deduced from Permutation Invariance, as we shall see. Indeed, in this section we take up a proof, which establishes this
for an N-particle aggregate, for any finite number N. But this proof is based on an assumption which becomes
questionable exactly when we note that Permutation Invariance can be viewed as a superselection rule. With that
assumption questioned, the proof will remain valid for the case of two particles, but not for N > 2.

The proof, due to Blokhintsev (1964b, 399 ff.), purports to demonstrate that there can be only fermions and bosons. It
is not the only proof of its sort, but it is a very clear one.4

Let us temporarily submit:

Assumption: Every pure state is represented by a vector, and
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if a vector x represents a pure state then the projection operator Ix represents an observable.

This assumption gives us a handle on what states and observables there are and, again, looks relatively familiar. The
proof to follow shows that under this assumption Permutation Invariance entails the Dichotomy postulate.

It follows at once from the Assumption that, if the expectation values of all observables are the same in pure states x
and y, then x = ky for some scalar k. For one of these observables is Ix, and the supposition entails therefore that it has
expectation value 1 in y.

Next, consider state ϕ(q1, . . . , qn) of an assembly of N particles, with these labels or coordinates qi representing the
particles. Let Sij be the linear operator which represents the permutation of the ith and jth particles. Hence S12 ϕ
(q1, . . . , qn) = ϕ(q2, q1, . . . , qn) and so forth. According to the Permutation Invariance Requirement, the expectation
value of any observable must be the same for ϕ and for S12 ϕ, so, as we just saw, these two vectors must be constant
multiples of each other. Therefore, if S12ϕ = kϕ, then

but since Sij is its own inverse, that means that ϕ = k2ϕ, so k = ±1.

In this deduction I assumed that the group of permutations of particles is represented by a group of unitary operators
on the Hilbert space, in just the way we examined already in Chapter 7. (When we look at the example N = 2 below,
this will be quite obvious.) The permutation of the 1st and 2nd component, let us call it S12, changes x1 ⊗ x2 ⊗ x3 ⊗ . . .
⊗ xN into x2 ⊗ x1 ⊗ x3 ⊗ . . . ⊗ xN. By linearity it extends to other vectors: S12Σ ϕi = Σ S12ϕi. I designate the unitary
operator by the same name Sij as the permutation it represents.

So now each permutation operator Sij classifies the states allowed by Permutation Invariance into two sorts for each
index couple (i, j):

ϕ is symmetric for (i, j) if Sijϕ = ϕ.

ψ is anti-symmetric for (i, j) if Sijψ = − ψ.
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The fundamental dichotomy to be proved is clearly that a vector is (anti-)symmetric either for all couples (i, j) or for
none.

Theorem: If ϕ satisfies the Permutation Invariance requirement, then there exists a number k = ±1 such that
Sijϕ = kϕ for all couples (i, j).

This result is certainly impressive, but let us go back to the beginning of our argument, and look closely at the
assumptions. The crucial step was the assertion that Sijϕ=kϕ for some k. This was supposed to hold for any state ϕ which
satisfies the Permutation Invariance requirement. And we could derive this from the following assertion:

For any observable A, the expectation value of A in ϕ is the same as in Sij ϕ, if ϕ is a pure state allowed by
Permutation Invariance,

only by means of an auxiliary premiss about the existence of some observables, such as that in our listed Assumption:

If ϕ is a pure state allowed by the Permutation Invariance requirement, then I
ϕ
represents an observable;

for I
ϕ
has expectation 1 in any state ψ if and only if ψ = kϕ for some scalar k. It is possible to replace the Assumption by

something more sophisticated.5 But as we shall see in the next section, the step can be denied, whatever assumption it
relies on.

Notice what has happened here. The intuitively stated Permutation Invariance principle speaks of observables. If every
Hermitean operator represents an observable, then every vector represents a pure state uniquely characterized by the
observables of which it is an eigenstate—and two vectors represent the same such state only if they are parallel. Hence
in that case the requirement becomes: each permutation is a symmetry of each possible state, and each vector
representing a pure state is an invariant of every permutation operator. Under those conditions, Dichotomy can be
deduced.

There are other proofs of this same sort. One result that significantly improves on Blokhintsev is due to another
Russian physicist, I. G. Kaplan (1976). When an n-body system of one sort is in pure state ϕ, we can assign a state
#ϕ[i] to its ith
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component, i = 1, . . . , N, by ‘reduction of the density matrix’. Intuitively, # ϕ[i] is the state in which any observable
which ‘really’ pertains only to the ith component has the same expectation value, whether we consider the state ϕ of
the whole or the reduced state # ϕ[i] of the component. This reduced state # ϕ[i] is generally mixed rather than pure.

Kaplan assumes that, if the system is an aggregate of identical particles, then # ϕ[i] is the same for all i = 1, . . . , N.
From this he deduces Dichotomy. He does not purport to deduce his own assumption from what I have called
Permutation Invariance 1, as indeed he could not. That thesis will tell us only that all observables pertaining to a single
particle must have the same expectation value in each # ϕ[i]. Indeed, this reduced state is represented by a statistical
operator; let us call itWi for perspicuity. Then ifN = 2, for example, he requiresW1 =W2. But Permutation Invariance
1 entails only that, if A is an observable we can measure, then it will have the same expectation value for both. If we
now want to deduce that W1 = W2, we need the postulate that, whatever these reduced states are, there are always
sufficient observables to ‘separate’ them. That is, for any two states Wi, Wj there is some observable A such that
Tr(AWi) ≠ Tr(AWj) if Wi ≠ Wj. I doubt that any concrete assumption weaker than Blokhintsev's about what
observables there are will secure this separation. But the point stands in any case: a strong, independent assumption
about the class of observables is needed, to get us from Permutation Invariance 1 to Dichotomy.

The same point can be made for the proof given by Sarry (1979). As Permutation Invariance principle, Sarry assumes
that the permutation operators commute with all observables. Then he assumes that a certain HermiteanA represents
an observable. He offers the following justification:

As a rule this question [whether an operator represents an observable] turns out to be very difficult, but a simple
criterion is sometimes helpful . . .: ‘Ô is an observable if it satisfies an algebraic equation of a polynomial type.’
(Sarry 1979, 680)

The operatorA in question satisfiesA3 − |λ|2A = 0, and so meets the criterion. For this criterion, however, Sarry cites
Dirac's text, which dates well before the understanding of
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superselection rules that puts the question into the limelight for us. The criterion itself could be listed as a (rather
strong) assumption concerning what observables there are. Hence the same point emerges very clearly: Permutation
Invariance implies Dichotomy only via assumptions concerning what observables there are.

Proofs and Illustration
We need to prove the theorem, and also to spell out exactly what a vector needs to be like in order to be
(anti-)symmetric.

Lemma 1: If Sab ϕ = Sbc ϕ = ϕ, then Sac ϕ cannot be − ϕ (triangle equality).

To prove this, let us use a ‘double labelling’ picture. Let ϕ = ϕ(q1, . . . , qn) and a, b, c be three ‘places’ between 1 and N
inclusive. Suppose these places are occupied by qi, qj, qk; depict it as follows:(1)

We now look at the effect of the permutations Sab (exchange coordinates that used to occupy places a and b) and so
forth:(2)

Assume, for reductio, that Sab ϕ = Sbc ϕ = ϕ and Sac ϕ = − ϕ. Then we have(3)

(4)

(5)

(6)
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(7)

(8)

But now we have a contradiction between (7) and (8), thus refuting the hypothesis and hence proving the lemma.

Lemma 2: If Sab ϕ = Sbc ϕ = − ϕ, then Sac ϕ cannot be ϕ.

This is proved exactly like Lemma 1, mutatis mutandis.

The theorem is now proved by reductio ad absurdum, namely, of the hypothesis that Sab ϕ = ϕ and Scd ϕ = − ϕ.

First, consider Sbc and Sac, and let us show that Sbc ϕ = Sac ϕ = ϕ. If Sbc ϕ = ϕ, then by Lemma 1, Sac ϕ = ϕ as well. If
Sbc ϕ = − ϕ we have two subcases:

(i) Sbc ϕ = − ϕ, Sac ϕ = ϕ, Sab ϕ = ϕ. But Sab = Sba, so by Lemma 1, Sbc ϕ = ϕ contra supposition.
(ii) Sbc ϕ = − ϕ, Sac ϕ = − ϕ, Sab ϕ = ϕ. But Sbc = Scb, so Sac ϕ = Scb ϕ = − ϕ and thus by Lemma 2 we have

Sab ϕ = − ϕ, contra
supposition.

Second, we consider Sac, Sad. By an argument exactly like the preceding and with reference to the hypothesis that
Scd ϕ = − ϕ, we deduce that Sac ϕ = Sad ϕ = − ϕ as well.

But now we have two arguments, one of which leads to Sac ϕ = ϕ and the other to Sac ϕ = − ϕ, thus refuting our
supposition. This establishes the theorem.

To finish this section, we need to be sure exactly which vectors are symmetric for all permutations (i, j) and which are
anti-symmetric. The definition we have is enough to single them out abstractly, but do they really have to look the way
we say? For concreteness, I shall just discuss this for the case N = 2 explicitly.
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Our Hilbert space here is the tensor product H2 = H ⊗ H, with basis {x ⊗ y : x in basis B1 for H and y in basis B2 for
H}. A permutation of x ⊗ y is y ⊗ x, and this is definitely not ±(x ⊗ y). Hence this does not represent a state allowed
by Permutation Invariance. However,

So these are examples of anti-symmetric and symmetric vectors. Consider the subspaces

We prove first that all vectors in are anti-symmetric:

where {ϕij} = B−. Similarly, all the vectors in are symmetric. Next, is the whole space, for every basis vector x
⊗ y can be rewritten

so superpositions of members of basis B1 ⊗ B2 can be rewritten as superpositions of members of B+ and B−.

Finally, could any such superposition be symmetric for all permutations or anti-symmetric for all? Well, in this simple
case we only have to look at permutation S12:

It is clear that in this case the operation does not multiply by ±1 unless all the aij, or else all the bij, are zero. Thus we
have found that these two sets of vectors, the symmetric ones and the anti-symmetric ones, are indeed subspaces.
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5. Permutations as Superselection Operators
In the preceding section we began by ignoring the problem of what observables there are, and focusing on which states
are allowed by permutation invariance. Since the two questions are not independent, as we noted, it turned out that the
derivation of the statistical dichotomy involved a special assumption about observables. Pure states were assumed to
be represented by vectors, and projections along those vectors were assumed to represent observables.

When we discussed symmetries before, and found the notion of superselection rule, we also found that not every
Hermitean operator can just automatically be assumed to represent an observable. After their introduction, therefore,
we do not pretend to have any simple recipe for what represents what. Shortly after their introduction, this was the
assessment:

The preceding discussion reflects our knowledge on the limitations of the measurability of operators. This is an
incomplete knowledge, and it is generally believed that the measurability of most operators is open to question. It is,
in fact, not very likely that the limitations on measurability can be all formulated in terms of superselection
operators with which all measurable operators commute. However, it is also believed that no incorrect conclusion
will be arrived at by assuming the measurability of all self-adjoint operators which commute with all superselection
operators. (Houtappel et al.1965, 616)

At this point therefore it becomes advantageous for us to think of Permutation Invariance in the second formulation:
an operator can represent an observable only if its expectation value is not affected by permutation.

In Permutation Invariance 2 the Permutation Invariance requirement reads: there are no observables whose
measurement could distinguish between a state and its permutation. We can restate this in terms of the unitary
representation of the permutation group:

Permutation Invariance 2: if Hermitean operator A has a different expectation in states ϕ and Sab ϕ, then A
does not represent an observable.

Now this entails that, if A is (represents) an observable, then A commutes with Sab. This operator Sab is a unitary
operator, so
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Permutation Invariance 2 entails, for any ϕ and for any Hermitean operator A representing an observable,

Because Sab is unitary and its own inverse, this can be rewritten as

If we now assume that the set of states is rich enough to separate any two observables, this entails that A = SabASab or,
equivalently, since Sab is its own inverse,

Thus we have a new formulation of Permutation Invariance:

Permutation Invariance 3: Each permutation operator commutes with all observables.

But that means, by definition, that the permutation operators are superselection operators. Hence there are no genuine
pure states which are superpositions of vectors taken from distinct eigenspaces of such a permutation operator. (And if
the Hamiltonian is an observable, we recall that this means that a state cannot evolve out of one such subspace into
another.)

This observation brings us a source of new insights into permutational symmetry. Looking back to the beginning of
Blokhintsev's proof, we note that, if the number of particles N = 2, then the permutation operator S12 has two
eigenvalues, +1 and −1. Knowing now that S12 is a superselection operator, we can immediately infer the following
corollaries. Let H+ and H− be the subspaces made up respectively by the symmetric and anti-symmetric vectors in H2.
Then it follows that:

1. A vector in H+ or in H− may represent a pure state, but a non-trivial superposition aϕ + bψ with ϕ in H+ and ψ
in H− does not represent a pure state, but only a mixture of ϕ and ψ.

2. If the Hamiltonian H is an observable, then no state in H+ can evolve into one in H−; nor vice versa.

Thus, for N = 2, Dichotomy is clearly established. Moreover,
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the slogan for every symmetry a conservation law is cashed out in corollary 2, which is a consequence derived previously in
our general discussion of superselection rules.

But since the permutations are now themselves supposed to be non-trivial superselection operators, we conclude that
membership in the family of observables is definitely not something to be taken for granted in this context. Hence we
cannot follow Blokhintsev's way of generalizing this demonstration.

Looking already at the case N = 3, we find that the permutations do not commute:

This non-commuting group of superselection operators must be treated more delicately. What can be made of the
assertion that the superselection operators ‘split’ the total Hilbert space into a family of ‘coherent’
subspaces—superposition of states being genuinely possible within, but not between, these coherent subspaces?

We begin by finding maximal sets of mutually commuting superselection operators, constructed from the permutation
group. In any group G, two elements P and Q are called conjugate if they are related by an equation

for some other element S of the group. This conjugacy is an equivalence relation, and the group is thus partitioned into
a set of equivalence classes [P] = {SPS−1 : S in G}, called conjugacy classes.

For each such conjugacy class C, define the ‘character’ XC of C to be the operator Σ {P : P in C}. If we are dealing
with the group of permutations of N particles—or its unitary representation—these sums are of course all finite.

Now these operators XC commute with all the permutation operators, and with each other. They form a set which is
maximal in this respect. In addition, all its members commute with all observables. Thus we have here a maximal set of
mutually commuting superselection operators. They have all eigenvectors in common, and we can define their
eigenspaces:
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Hi = is the class of vectores ϕ such that

These are the coherent subspaces allowed by this set of superselection rules, similar to H+ and H− in the case N = 2.
The fundamental dichotomy is now clearly not a corollary, because there will in general be more than two such
coherent subspaces. The number of operators X[P] is the number of conjugacy classes of the N-particle permutation
group—a number that goes up very quickly withN—and this is also the number of irreducible representations of that
group. The symmetric and anti-symmetric subspaces correspond to the (‘one-dimensional’) representations, but from a
general point of view these are just a special case.

The conclusion is therefore this: if we do not begin with such a special assumption as was used e.g. by Blokhintsev,
then the Permutation Invariance requirement does not by itself lead to the fundamental dichotomy of symmetry types.

In the Proofs and illustrations we shall look at the case ofN = 3 particles and exhibit a two-dimensional subspace which is
invariant under all permutations. It is quite possible then that this subspace also cannot be ‘empirically subdivided’, i.e.
that for all observables the expectation value is the same for all vectors in that subspace. This must be allowed as a
possibility if only some, and not all, Hermitean operators correspond to observables. And if it is so, then this subspace
is at best a ‘generalized ray’: its vectors all represent the same state. Thus, the negative criticism of Blokhintsev's proof
is backed more positively by an illustration which is a clear counter-example, if anyone were to suggest that his or any
such proof could succeed on the basis of Permutation Invariance alone.

Where do we stand now? The dichotomy ‘found in nature’ can be explained by the permutation symmetry, if we are
given some extra assumption. And our reflection on superselection rules, which illuminate this symmetry, undermines
exactly the previously uncontroversial status of that assumption. This is why, in the 1960s, scientists could contemplate
denying the dichotomy for quarks, and talk of intermediate ‘para-statistics’. The idea appears to have been dropped;
but conceptual possibilities never fade away. Of course, as things presently stand,
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Dichotomy appears to be correct, and to that extent those assumptions (and the strong version, Permutation
Invariance 1) are plausible. They are just not inherently more plausible than Dichotomy itself, nor incontrovertible.6

Proofs and Illustrations
We need to show that the ‘character’ operators X[P] commute with each other and with all the permutation operators.
And then we are to display, for the case of N = 3 particles, a two-dimensional subspace invariant under all
permutations, and yet not representing either an anti-symmetric (fermion) or a symmetric (boson) type of state.

Let S be the permutation group for N objects, and let U be its representation, a group of unitary operators. The
relation of conjugacy, ≈, is defined on S, and on U, in the usual way: A ≈ B exactly if the group also contains some X
such that A = XBX−1. This is an equivalence relation, and thus partitions the group into equivalence classes
[A] = {B : B ≈ A} = {XAX−1 : X in the group}. When A is in U, we define ΣA to be the sum Σ [A], which is finite
because the number N of objects is finite.

Lemma for the groupU:

(a) AXBX−1 = YBY−1A for some Y
(b) XBX−1A = AYBY−1 for some Y

For (a), let Y = AX so Y−1 = X−1A−1 and we get YBY−1A =AXBX−1A−1A =AXBX−1 as required. For (b), let Y = A−1X
and we get AYBY−1 = AA−1XBX−1A = XBX−1A also as required.

Now defineA[B] = {AX : X ∈ [B]} and [B]A = {XA : X ∈ [B]}. Then we have of course A [B] = {AXBX−1 : X ∈ U}
and [B]A = {XBX1A: X ∈ U}. Therefore the lemma shows that A[B] = [B]A. But it is also clear that AΣB = Σ(A[B])
and ΣBA = Σ([B]A), so we see that AΣB = ΣBA. Thus all the character-operators ΣA for A in U do indeed commute
with all of U. That they also commute with each other follows a fortiori:
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We note that this proof assumes only that S is a finite group, and thus holds for any finite unitary group representation.

Now we turn to the example of the conceptual possibility of a generalized ray which represents a state which is clearly
not of the boson or fermion type, and yet satisfies Permutation Invariance. The smallest number of particles for which
this can be done is three.7

As in the section on Blokhintsev, I shall use ‘double labelling’, but since N = 3 the top is always abc, and after a few
lines I shall drop it. The permutations of three particles are 3! = 6. The first is the identity, and the second is:

the others are Sac, Sbc, Sabc, Sacb where I use the cyclic notation: Sabc replaces a by b, b by c, and c by a; thus

The last two permutations are products of the others: Sabc = SabSac and Sacb = SacSab, and they are each other's inverse while
Sab, Sac, Sbc are each their own inverse.

The example SabSac = Sabc shows how to read Table 11.1. Starting with vector , I will now for brevity just denote
it as (123) and I will just denote (213) and so forth. Let

and let Hq be the subspace which they span.
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Table 11.1 Product Table for the N = 3 Permutation Group

I Sab Sac Sbc Sacb Sabc

I I Sab Sac Sbc Sacb Sabc

Sab Sab I Sabc Sacb Sbc Sac

Sac Sac Sacb I Sabc Sab Sbc

Sbc Sbc Sabc Sacb I Sac Sab

SabSac = Sabc Sabc Sbc Sab Sac I Sacb

SacSab = Sacb Sacb Sac Sbc Sab Sabc I

To show that this space is two-dimensional, we have to see that (ϕ1 · ϕ2) = 0. To see this, note first of all that ϕ itself
can be taken as a vector x ⊗ y ⊗ z in H3, with x, y, z all orthogonal to each other. Then (123) ⊥ (213), etc. Also, we can
take x, y, z and have ϕ as of unit length, so (ϕ · ϕ) = 1 and similarly for (213), etc. Thus we keep only the terms (123)2,
(213)2, . . . = 1, the others being zero, and we find

To show next that this subspace is not reduced by Permutation Invariance, we must show that, if any vector is in it, so
are all its permutations. Such a vector looks like this:

and if S is a permutation, Sϕ3 = aSϕ1 + bSϕ2; hence it suffices to show that all permutations of ϕ1, ϕ2 are in this same
subspace. However, since Sabc and Sacb are products of the others, we do not need to check them. So we must calculate
six equations of form Sϕ = ϕ′. This will also show very graphically that we are not dealing with either symmetric or anti-symmetric
vectors here. Thus, if these vectors themselves (as opposed to this subspace) represented a pure state, they would violate Permutation
Invariance. The example is not a counter-example to Blokhintsev's proof, but shows instead exactly how his special Assumption was
substantial and crucial to the argument. Using the product table to verify steps, we see that:
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Some permutations are as follows (I won't check all six):

Similarly,

Thus, the subspace as a whole is invariant under permutations, even though the individual vectors in it are not.

6. Quantum Statistical Mechanics
In the two-particle case, Permutation Invariance leaves us only two sorts of states, symmetric and anti-symmetric. Let
us accept without question for now the extrapolation of this dichotomy to larger aggregates of fermions (capable only
of anti-symmetric states) and of bosons (having only symmetric states). How does this lead us to Fermi–Dirac and
Bose–Einstein statistics?

First, we should state the basic topic of statistical mechanics in its new quantum setting. Suppose there is an aggregate
of particles, sufficiently diffuse so that we can ignore energy exchange between them. Suppose also that we know what
sort of particles they are, and perhaps such global features of the aggregate as number, total mass, and total
energy—but nothing beyond this about the individual states of the particles. What predictions should be made for
outcomes of measurement on this aggregate?

The problem situation is one of ignorance, and we propose to
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model it as follows. We describe the possible pure states for the aggregate, and then choose an ‘informationless’
mixture thereof.8 That is, we assign a mixed state which gives equal weight to all possible pure states. Then we answer
the question of measurement predictions by calculating them from this mixture.

I shall do this now in some detail for a very finite case—two particles and a two-valued observable—of distinguishable
particles, and also of bosons. The results forN particles of any sort I shall describe more abstractly and without proof,
but the nature of the extrapolation will be clear.

Let our observable A of interest have two eigenstates: Ax = x and Ay = 0, so its eigenvalues are 1 (‘heads’) and 0
(‘tails’). We are interested to begin with in the very small Hilbert space H = [x, y]. But we wish to model two particles,
so we form the tensor produce H2 spanned by the product states:

This will do for two particles of different types, distinguishable by constant features such as different mass. Suppose we
wish to model two bosons, so that all allowable states are symmetric, with γ, δ ruled out. Then we look at a subspace
H+ of H2, spanned by

We note that {α, β, η} is a base, and {α, β, ξ} is an orthonormal base. To see this we must check for orthogonality. For
example,

which equals zero because x ⊥ y (utilizing also the fact that x and y are unit vectors).

So H+ is a three-dimensional subspace of the four-dimensional
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space H2. We should check also that H+ would have been just the same if we had begun with a different basis for H.
For let {z, w} be another base of H, for example

which are orthogonal because

Then we find a new basis of symmetric vectors

which are orthogonal for similar reasons as before. But this basis is included in H+, and therefore (because the
dimension is 3) must be just another basis for it. For μ, ν, and σ can be expressed as superpositions of α, β, η because
the tensor product is bilinear:

and similarly for ν.

Having the needed Hilbert spaces now at hand, we turn to the informationless mixture. Let us first see what it is for
our smallest space H:
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This is an equal mixture of the pure states represented in the basis {x, y}. It is exactly the same mixture if we choose
another base, because the result can only be times the identity operator on the space. If the space isN-dimensional, it
is of course (1/ N) times the identity. So now we know what our required mixed states are for H2 and H+:

where I2 and I+ are the identity operators on H2 and H+ respectively.

What is the probability of a measurement result in this sort of state? Let us concentrate on an observable B which has
only 1 and 0 as eigenvalues, so that the probability of outcome value 1 equals the expectation value of B:

Similarly, in W(2) it is and in W+ it is , if B is a projection operator on H2. (The trace itself is also calculated
with reference to the appropriate space.)

So far so good. Recall that our basic observable was A, with eigenvalues 1 (‘heads’) and 0 (‘tails’) in space H. Let us
choose three new ‘counting observables’ which, as it were, count the number of ‘heads’:

Here a measurement of B2 on any state inH2 has as expectation value exactly that of a combined measurement ofA ⊗

I and I ⊗ A, i.e. of A on each of the individual particles. (The reason is that x and y are the two eigenvectors of A in
H.) Thus ‘B2 has value 1’ corresponds to the intuitive ‘two heads’; and so on.

The probability that a measurement of Bi inW(2) has value 1 equals . But inH2 each of B2 and B0 have trace 1 and
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B1 has trace 2. For example:

because, for example, B1γ = (Ix ⊗ Iy + Iy ⊗ Ix)(x ⊗ y) = (Ix ⊗ Iy)(x ⊗ y) + (Iy ⊗ Ix)(x ⊗ y) = (Ixx) ⊗ (Iyy) + (Iyx) ⊗
(Ixy) = (x ⊗ y) + 0. So we have the results:

Note that these are exactly the probabilities you would give in a fair toss of two fair coins, the paradigm of
Maxwell–Boltzmann statistics.

Now we do the same calculation forW+. Here we have a probability equal to (1/3) the trace, and we find that all three
traces are 1. For example:

for B1ξ = (Ix ⊗ Iy + Iy ⊗ Ix)(x ⊗ y + y ⊗ x) = (Ixx) ⊗ (Iyy) + 0 + 0 + (Iyy) ⊗ (Ixx) = x ⊗ y + y ⊗ x. So here we have

and this equiprobability of distinct occupation numbers is indeed the paradigm example of Bose statistics.

In this way we get statistical behaviour which is quite extraordinary, because it displays such strong correlations in the
behaviour of separated particles. We can depict this situation in the abstract by imagining coins (characterized only by
whether they land heads up (characteristicH) or tails (not-H). The classical, Maxwell–Boltzmann, statistics prescribes a
probability
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measure pmb for two such coins in which there is zero correlation. The Bose statistics applied to this case gives us a
probability measure pbe showing positive correlation. The Exclusion Principle requires the Fermi–Dirac probability
distribution pfd, which shows negative correlation tabulated:

H not-H pmb pfd pbe

Case 1 2 0 1/4 0 1/3
Case 2 1 1 1/2 1 1/3
Case 3 0 2 1/4 0 1/3

This table shows the probabilities of 2 heads, 1 head and 1 tail, 2 tails. If we refer to the particles by distinct names a, b,
the second case must be re-described as two cases:

H not-H pmb pfd pbe

Case 1 a, b 1/4 0 1/3
Case 2(i) a b 1/4 1/2 1/6
Case 2(ii) b a 1/4 1/2 1/6
Case 3 a, b 1/4 0 1/3

Thus, whether Maxwell–Boltzmann or Bose–Einstein gives equal probabilities to equipossible cases depends on
whether the first or second table reflects the ‘real’ equipossible partition. In terms of the second table, we can calculate
conditional probabilities of having the same characteristic:

A more graphic illustration appears if we consider two particles a, b and a partition into four characteristics (‘cells’) F1,
F2, F3, F4. Table 11.2 presents a tabulation. Here I calculate conditional
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probabilities of having different characteristics (being in different cells)—hence the correlations are reversed. As done
above, if we introduce labels a and b, we must replace each of the first six cases by two subcases each. We have a
picture then in which pfd, pbe, pmb each assign 1/4 to the event F1a (a in cell F1). The conditional probabilities calculated
then are not the same:

Table 11.2

pfd pbe pmb F1 F2 F3 F4

1/6 1/10 2/16 1 1
1/6 1/10 2/16 1 1
1/6 1/10 2/16 1 1
1/6 1/10 2/16 1 1
1/6 1/10 2/16 1 1
1/6 1/10 2/16 1 1
0 1/10 1/16 2
0 1/10 1/16 2
0 1/10 1/16 2
0 1/10 1/16 2

It looks therefore as if, in the behaviour of indistinguishable particles, we have exactly those sorts of distant
correlations which give such trouble to traditional causal models.9
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7. Classical ‘Reconstruction’ Via Carnap and Via De Finetti's
Theorem
If classically conceived particles could in principle exhibit Bose–Einstein or Fermi–Dirac statistical behaviour, then the
subject might perhaps harbour no conceptual mysteries after all. And they can; but I shall argue that the classical
‘reconstructions’ are so partial that they do not remove any conceptual puzzles related to Permutation Invariance in
quantum theory.

If we look at the probabilities displayed above, which pertain to the counting observables B0, B1, B2, we do not see
anything very non-classical. It appears that we can describe systematic differences between the different cases
(distinguishable particles; bosons, fermions) in terms of three different classical probability functions.

That appearance is deceptive, for it leaves out (a) the peculiarities of predictions made on the basis of any single state,
as opposed to the uniform mixture W, and (b) the peculiarities even W has for predictions about non-commuting
observables. The above family B0, B1, B2 all commute with each other, and that is a special case. Still, the above table
is so striking that it will be worth our while to ask: in general, what statistics doesW entail for a partition of ‘cells’ (joint
values of commuting observables)?

Since this question, so restricted, coincides with a ‘classical’ question, we can actually find the answer in the literature
on probability and foundations of statistics. As we shall also see, various authors have already related that literature to
quantum statistics, though sometimes with misguided suggestions derived for the interpretation of quantum
mechanics. I shall discuss two different sorts of classical ‘reconstruction’ of quantum statistics, one via Carnap's logical
theory of probability and the other via De Finetti's Representation Theorem.

Carnap (1950) gave a very straightforward description of simple probability measures. He assumes the cells to be
described by conjunctions of simple sentences and their negations. A state-description for him is a conjunction of this
sort:

where &, ∼ stand for ‘and’, ‘not’. The constants a, b are here to be thought of as labels of particles. Some sentences are
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logically equivalent to permutation of individual constants in others: let us call them isomorphic:

for example. A structure-description is the set of all state-descriptions isomorphic to a given one. A symmetric probability
function always gives the same value to isomorphic sentences. Some symmetric probability functions are defined as
follows:

1. m+ gives the same value to all state-descriptions with the same individual constants.
2. m* is symmetric and gives the same value to all structure-descriptions with the same constants.
3. mF gives zero to each state-description in which two individual constants are indiscernible, and the same value to

all other state-descriptions.

By ‘indiscernible’ I mean here that permutation of these constants just produces the same sentence, except for some
syntactic rearrangement. (Thus, upon permutation of a and b, Fa & Fb & ∼ Fc becomes Fb & Fa & ∼ Fc, which differs
only by the syntactic order of the conjuncts.)

Two remarks are at once in order. The first is that the set of all state-descriptions in given constants a, b, c, . . . , k is a
logically exhaustive and disjoint set—so the probabilities of its members must add up to 1. Hence 1, 2, 3 define their
functions uniquely. The second is that mF is obviously m+ conditionalized on some premiss that amounts to: no two
named individuals are indiscernible. But mF is exactly the same conditionalization of m* (see Proofs and illustrations). Thus,
both m+ and m* become mF in the presence of a sort of Exclusion Principle, which makes mF very natural indeed.

It is clear that m+, m*, and mF are the classical counterparts of Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac
statistics. Also, definitions 1–3 show us exactly how to reconstruct tables such as we had above, in this way:

m+ m* mF

(i) Fa & Fb 1/4 1/3 0
(ii) ∼ Fa & Fb 1/4 1/6 1/2
(iii) Fa & ∼ Fb 1/4 1/6 1/2
(iv) ∼ Fa & ∼ Fb 1/4 1/3 0
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because the structure descriptions are {(i)}, {(ii), (iii)}, and {(iv)}. These structure descriptions correspond to the cells
of a partition, as discussed above: C1 to (i), C2 to [(ii) or (iii)] and C3 to (iv).

Costantini and his colleagues have given us a general classification of a family of probability functions to which these
belong, in terms of the correlations we see in joint behaviour in the quantum statistics (Costantini et al.1982, 1983); see
also Costantini (1979, 1987). Suppose for example that I have two particles a, b and three cells. Each of the statistics
gives the same value to any one particle being in any given cell:

and similarly for a, C1, C3. But if a is in C1, the probabilities may change:

So for m+ it stayed the same (no correlation, independence), while for m* it went down (negative correlation) and for
mF it went up (positive correlation). We can easily explain this. For mF I argue: if a is in C1, then b cannot be there, so it
must be in C2 or C3, and of these, each is equally likely. In the case of m* I have to see that some structure-
descriptions have only one state-description in them (e.g. a, b both in C1), while some have two (a in C1, b in C2, or a
in C2, b in C1) but still get the same probability.

The above numbers are characteristic of those probability functions, in Costantini's classification, where they appear as
(1/ K) e(m), with

being called the relevance quotient. In our example the number of cells K = 3, so the three numbers are (1/3), (1/3)
(3/4) = (1/4), and (1/3)(3/2) = 1/2. In the case of mF, it is crucial that there be no more than K particles, and also at
least
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two cells, for it to make sense at all. Thus, in the case of two cells and three particles we can calculate only the first two
numbers, as (1/2) and (1/3) respectively, which shows the same independence for m+ and negative correlation for m*.

These statistical correlations can be expressed intuitively as follows. Bosons tend to aggregate in the same cells,
fermions in different cells, while distinguishable particles show no tendency either way. This colourful language about
the statistics should not be taken too piously. As we shall see in the next section, the m* correlations have a simple
classical ignorance model as well. These probability functions, because they represent only the joint probabilities for
any given set of commuting observables in quantum-statistical mechanics, may look odd, but they do not nearly exhaust
the latter's non-classical character.

We turn now to a second approach, which essentially utilizes De Finetti's Representation Theorem (see above, Chapter
3, Section 4).

There are actually simple and familiar examples where correlation in our probabilities results not from objective lack of
independence, but from our ignorance. Suppose I have two coins, one fair and one a magician's coin which comes up
‘heads’ 90% of the time. You don't know which I have in my hand, and so your probability that I will get ‘heads’ if I
toss that one equals (50% + 90%)/2 = 70%. If I ask you, after it has come up ‘heads’ the first time, what the
probability is of doing it again, both the following answers are correct:

(a) The (objective) probability is the same as it was for the first, because it is the same coin and the tosses are
independent.

(b) My probability for ‘heads’ next is no longer 70% but 75.7%.

This is because I now have some reason to think that you are using the magician's coin. So in my personal probability,
which is an average of two objective chances, successive tosses are not independent.

In 1983, J. Tersoff and D. Bayer published ‘Quantum Statistics for Distinguishable Particles’, with the following
abstract:

Quantum statistics can be reconciled with such classical ideas as distinguishable particles. Bose–Einstein and
Fermi–Dirac statistics are
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derived for distinguishable particles by making an assumption which is different from the traditional assumption
but equally reasonable. (Tersoff and Bayer 1983, 553)

The main result they proved had actually appeared earlier in the philosophical literature. It appears as a corollary to De
Finetti's Representation Theorem in Richard Jeffrey's discussion in 1965, which relates that theorem to Carnap's
programme (Jeffrey 1983, 199–202).

Alexander Bach's ‘On Wave Properties of Identical Particles’ (1984) noted that Tersoff and Bayer's result is a corollary
to De Finetti's theorem.10 Bach uses the theorem to reconstruct the apparent indistinguishability of particles in terms of
De Finetti's purely classical notion of exchangeability. Bach (quite rightly) maintains, contrary to Tersoff and Bayes,
that the result does not amount to a reconciliation of quantum statistics with classical concepts.

Let us here concentrate on Bose–Einstein statistics forN particles and two cells (‘heads’ and ‘tails’). The measure is the
same as Carnap's measure m* and can be characterized uniquely as the probability function P such that

BE1: P is exchangeable, that is, invariant under permutations of individuals. Thus P(H(1) & . . . & H(m))
depends only on m and is the same regardless of which particles are designated as 1, . . . , m

BE2: P(H(m)|H(1) & . . . & H(m − 1)) = m/(m + 1) for all numbers m ≤ N.

De Finetti's theorem applies to exchangeable probability measures generally. It allows us to reconstruct any such
measure as a (subjective) mixture of (objective) chance functions. These chance functions are probability measures of
the following sort:

For w ∈ [0, 1], the chance function cw is the probability function which assigns probability wk to each
conjunction H(1) & . . . & H(k), for any k particles 1, . . . , k.

Thus cw treats each particle the same way, and treats them as independent of each other. For example,
cw(H(1)) = w = cw(H(1) & H(2)) + cw(H(1) & ∼ H(2)) = w2 + cw(H(1) & ∼ H(2)), so we deduce that this last term equals w
− w2; and so
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forth. If we now symbolize our probability that the number w (objective probability of ‘heads’) is no greater than x as
F(x), we can represent our personal probability function as:

for any propositionX concerning the toss outcomes (see Jeffrey 1983, 199). Indeed, by De Finetti's theorem, this is the
form of any exchangeable function on that domain. The greatest possible ignorance, or agnosticism, is perhaps one in
which all values for w seem equally likely; this is the case F(x) = constant and gives us the special case:

which is just BE2.

We must now ask two questions: Exactly what interpretation of boson behaviour does this suggest? And, would this
interpretation remain tenable if we looked at other aspects of boson behaviour?

In framing the interpretation, let us consider M disjoint cells and N particles, for the reconstruction in general. First I
shall state three postulates that give us the classical Maxwell–Boltzmann statistics.11

Postulate I: The particles are individually distinguishable, and for each particle the objective chances of being
found in cell Ci is the same number wi.

Postulate II: (Independence) The objective chance of particles 1, . . . , N(1) being in cell C1, and . . . , and particles
k + 1, . . . , k + N(M) in cell
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CM—for any ordering of particles—equals the product .
Postulate III: The number wi is the same for each cell Ci, namely 1/ M.

These three postulates pick out a single probability function. If we accept them, we profess no ignorance of what the
objective chances are. To get Bose–Einstein statistics we must replace Postulate III by a much weaker one:

Postulate III(BE):The numbers wi, are constrained solely by the total probability condition ∑ wi = 1.

This postulate insists that all objective chance functions remain possible, as far as our theoretical model goes. If we
treat them all as equally likely, therefore, we form the mixture which treats as equally likely (a) all orderings of the sort
described in Postulate II, and (b) all possible assignments of chances to cells.

The precise representation is then as follows. Let X stand for the state of affairs of there being N(1) particles in cell C1,
and . . . , and N(M) particles in cell CM. Let N be the sum of the numbers N(1), . . . , N(M). Next, let p be an index
parameter which ranges over the set of all possible chance functions (corresponding to the sequences whose
elements are non-negative and sum to 1). Our ignorance about objective chance is then represented by a density
function F(p) defined on this index set. Taking into account the possible orderings, we have then the personal
probability function P such that:

When our ignorance is such that we treat all the objective chance functions as equally likely, the density function F(p) is
constant. In that case, the same sort of calculation as before yields

which is the correct general BE assignment. It can be expressed briefly as: P(X) = 1 divided by the number of
partitions of N(M) into M ordered summands.12

The technical result is impressive and interesting. We have
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seen the Bose statistics appear as the natural probability function, for a perfectly simple and natural combination of
ignorance and chance. We have now seen that it really is just the same statistics as we would use for a magician who
chooses a coin or die to be tossed from an unlimited supply of differently biased ones. But should we conclude that
boson behaviour can be interpreted entirely in purely classical terms? Should we try to think of bosons as classically
conceived, independent, indeterministic devices?

The answer to this seductive question, we can quickly show, is no. The two pictures indeed agree under conditions of
maximal ignorance. Under those conditions, both use a uniform statistical distribution—and that is the sole point of
contact between the quantum models and the suggested classical model. Success for the latter would require that the
agreement persist under conditions of accessible information, of diminished ignorance. Suppose for example that we
prepare an ensemble of identical particles in a pure state—a single state of form (x ⊗ y) + (y ⊗ x). Then the quantum-
mechanical treatment ceases to use the uniform distribution over pure states—the statistical operator (1/ K) I—so that
sole point of contact between the two pictures is lost. But the quantum model still incorporates correlations of
individual behaviour, without any assumption of interaction.

First, let the particles be individually distinguishable, with the state of the two-particle system x ⊗ y, and let cell C1 be
represented by observable (operator) B. Then we have

So the joint probability is indeed merely the product of the individual probabilities.

But in a symmetric state (x ⊗ y) + (y ⊗ x) we find ‘probability interference terms’:
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I did not normalize, so the number 2 is an irrelevant proportionality factor. The term (x · Bx)(y · By) is just the product
of the individual probabilities, but the other term (x · By)(y · Bx) is additional, an ‘interference term’.

If at this point someone were to suggest that we could continue to look for a classical model—with the two particles
having independent but unknown chances of being found in C1—he would run into the usual obstacle for all hidden-
variable interpretations. For we would ask him to let the interpretation cover various divisions into cells, to correspond
to non-commuting observables. The ‘no hidden variable’ theorems would show that this could not be done, with any
single probability function.

So, despite the interest of the results, they cannot be cited as reason to look for a classical interpretation after all. What
is established is only that the use of the uniform distribution in the maximum ignorance case can lead to Bose statistics
in both classical and quantum models. It is of no help in understanding boson behaviour in the quantum case of
minimum ignorance (the pure state), which needs to be understood as well.

Proofs and Illustrations
Suppose S is a state-description which assigns no more than one named individual to any one cell. Then its
isomorphism class equals just the number of permutations of the individuals. Hence isomorphism classes are
equinumerous, whenever mF does not assign them zero. Therefore mF results equally from the m+ policy or the m* policy
for assigning probabilities.

If we have K cells, and N ≤ K particles, the exclusive state-descriptions are produced by choosing one of K cells for the
first, . . . , one of K − (N − 1) cells for the last. The total number of exclusive state-descriptions is therefore
K!/(K − N)! Dividing that by the number N! of permutations of particles, we get the number of isomorphism classes;
the result is usually written for short.
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If we drop the ‘no duplication’ requirement, we have K choices for each particle, so a total of KN state-descriptions.
Permutation affects a state-description now only if it interchanges particles in different cells, so the isomorphism
classes are not equal. In this case the number of structure-descriptions turns out to be . For 2 cells and 3
particles these numbers KN and are 8 and 4, with no state-descriptions which are exclusive; for 3 cells and 2
particles, there are 9 state-descriptions, 6 structure-descriptions, and 6 exclusive state-descriptions which are
isomorphic in pairs (with each pair uniquely determined by which cell is empty).

8. The Modal Interpretation Applied to Aggregate Behaviour
Let us now turn from the challenges posed by the quantum statistics for any attempt at interpretation, to those it
presents for my favourite, the modal interpretation. I shall show how permutation invariance for the dynamic states
places constraints also on the values observables can have in actuality. But these constraints are not entirely rigid. It is
possible to utilize the Exclusion Corollary for fermion states of Section 3 above to produce models in which fermions
are individuated and the Identity of Indiscernibles is not violated. In the case of bosons, however, that is not
possible—at least, not if we take the quantum-mechanical description of reality, as understood in the modal
interpretation, to be complete.

9. Possible World-Models for Quantum Mechanics
For what follows it will be best to consider the modal interpretation in the format in which it can be cast to secure
maximal precision.

A possible world-model consists of a set (‘the worlds’) with certain relations and functions defined thereon. One such
function gives to each world another set: its domain, the (ordered) set of things that exist in that world (or, of which
that world
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consists). We shall look here only at the simple sort of model in which the domain is the same set of entities for each
world. Thus, each world represents one way that these entities could be.

Another function, call it s, assigns to each world a history. Thus, if x is a world and t a time, s(x, t) is the condition or
configuration of x at time t. But x consists of a set of entities, its domain—for example, a set of particles, or some
particles and some measuring apparatus. This configuration of x must therefore be the configuration of a total physical
system, possibly quite complex.

According to the modal interpretation, this configuration—which encapsulates all information being given—has really
two aspects: the dynamic state (which is the main subject of physical theory) and the value state (which specifies the values
of the observables). It is also part of the interpretation to say that the value states are describable by formally speaking the
same mathematical representation as the pure dynamic states—and in addition that the value states at any given time
are constrained to some extent by the dynamic states.

The description of a possible world-system so far therefore looks as follows. There is a setW of worlds, a (n ordered)
set D of entities, a set K representing the states, an interval T of time—these are the building blocks. The set K is, for
example, the set of all statistical operators on a Hilbert space, each of these operators representing a possible
instantaneous state of the total aggregate D. Next, there is a function s which assigns to each world x, at each time t, a
value s(x, t)—something which represents what x is like at time t. This something splits into parts—say the dynamic
state sd(x, t) and the value state sv(x, t), both of which are members of the set K of possible states. (And indeed, since
these pertain only to the total aggregate D, we need still further functions, assigning dynamic and value states to the
parts of D.) This is only the beginning of our description: we have not yet introduced, e.g., the Hamiltonian, which
governs how the dynamic state varies with t, or any probabilities.

Some functions must assign probabilities. If the model is one of an isolated quantum-mechanical system, which starts
off in a pure state, then the dynamic states are the same in each possible world at all times—for their evolution is
deterministic.
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But the dynamic states of the subsystems are sometimes mixtures, and these leave open various options for the value
states (of these subsystems at those times). Each option is realized in one of the possible worlds.

If this were the model of a classical physical system, we would ask physical theory for a single probability function,
developing deterministically in time, for these options. That is, we would ask for a single function P which gives us, for
each time t, a measure (‘proportion’) for the set of worlds x such that subsystem Xi has value state λj in x at time t. In
Part I, the section on ergodic theory shows in principle what such classical models look like. But according to the
modal interpretation, quantum mechanics gives us probability assignments of this sort only for special times and
special subsystems—namely, at the end of measurement interactions, for the systems involved in those interactions.
The theory does nothing else, in the way of assigning probabilities. For other times and/or other subsystems, we have
only a description of the possibilities, with no probabilities attached by the theory.

We need to keep in mind here that the function(s) which assign the dynamic states do not give all the information
about the system—even from the quantum-mechanical point of view. To classify one of the subsystems as an A-
measurement apparatus is to say that that is the sort of thing for which a certain kind of interaction is always governed
by a certain sort of Hamiltonian. This goes beyond saying what happens in just those interactions which happen in this
dynamic process presented by this possible world-system. And indeed, even the Hamiltonian for this dynamic process
cannot be uniquely inferred from the succession of dynamic states in it. The description of the Hamiltonian—e-
quivalently, of the dynamic group—is again an independent bit of information. By keeping this in mind, we also keep
at bay the idea that the assignment of Born's probabilities for measurement outcomes refers to consciousness or some
other subjective element. It does not: it refers to the classification of certain subsystems as measurement apparatuses,
and that is a classification of the sort of interactions in which they can take part.

A logician sums all this up in the form: a possible world-model of type . . . is an ordered sequence
〈 W, D, K, . . . ; s, p, . . . 〉 which satisfies the following conditions . . . I will just take
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for granted that readers can put everything into that form if they so wish. It is important however to inquire further
into those conditions which characterize the admitted models.

A proposition is identified with the set of worlds in which it is true. In the possible world-models described above, we
see special sets of worlds describable in rather simple ways. Corresponding propositions are denoted as follows:

Where X is a set of states:

(i) the proposition [X, t] is (true in) the set of those worlds x such that dynamic state sd(x, t) of x at t is in set X;
(ii) the proposition〈 X, t〉 is (true in) the set of those worlds x such that the value state sv(x, t) of x at t is in set

X.

One main condition we place on the possible world-systems is that [X, t] implies 〈 X, t〉, whenever the proposition
〈 X, t〉 can be read as saying that a certain observable has a certain value at t. That is, one of the conditions such an ordered
sequence 〈 W, D, K, . . . ; s, p, . . . 〉 must meet, in order to belong to the type of possible world-models we are
describing, is that the set [X, t] is part of the set 〈 X, t〉 for such an X.

I could only sketch this condition so far; it is to be given precise content. When a certain possible world-model meets
that Permutation Invariance condition for dynamic states, will it automatically meet an analogous condition for the
value states? This is the same question as: can we think of these particles, which are certainly not individuated by the
attributed dynamic states, as individuated by the actual, unpredictable, values of observables? From a purely formal
point of view, that is the main question investigated in the remainder of this chapter.

I have already announced the guess that we should regard fermions, but not bosons, as individuated by their quantum-
mechanical description. This is actually not as easily tenable as it looks at first sight. I propose to do three things. First,
I shall discuss the question of individuation for fermions. Here we have to cope with an argument due to Margenau,
which says that electrons violate the Principle of Identity of Indiscernibles (PII), if quantum-mechanical description is
complete. Then I shall discuss the question for bosons. There we have to consider Reichenbach's discussion of identity
over time and material identity. The general conclusion I shall maintain is that it is
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tenable to hold PII, though only with the implication that there are characteristics which are not covered in quantum-
mechanical description, but which have no empirical effect. The exact philosophical status of PII, and of possible
violations, is to be discussed in the next chapter.

10. The Exclusion Principle in the Modal Interpretation
The idea of a connection with Leibniz's Principle of the Identity of Indiscernibles was perhaps first suggested by
Herman Weyl, who referred to the Exclusion Principle as ‘the Pauli–Leibniz principle of exclusion’. The nomenclature
suggests the connection. Consider two distinct orbital electrons in an atom. Each is characterized by certain constants,
definitive of electrons, plus a state of motion. The quantum-mechanical description admits nothing further, so if we
assume that description to be complete, then the identity of indiscernibles requires their states to be different. This is
the content of PII: any entities which are numerically distinct must differ in some significant respect.

The assumption of completeness here may have a ‘metaphysical’ air, but it is involved in the very application to atomic
structure for which the Exclusion Principle was introduced. This can be seen in its use in the theory of atomic
structure, which I described in Section 1 above. PII plus a list of quantum numbers determines the maximum number
of atoms for each orbit. It appears therefore that the Exclusion Principle can appear simply as a corollary, if we assume
that we have, in this list, a complete set of characteristics that could individuate the particles.

In the light of this, it is with some surprise that we find Margenau (in 1944 and again in 1950) citing the electron as
violating Leibniz's principle, in writings specifically devoted to the Exclusion Principle. But looking more closely at the
Permutation Invariance Principle, we can reconstruct an argument that leads to Margenau's conclusion.13 Consider a
two-particle system in the simple anti-symmetric state ϕ = (1/√2) [(x ⊗ y) − (y ⊗ x)]. What states, if any, can we
attribute to each particle? The answer is given by the Principle of Special
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Reduction, and is the same for each, namely:

The uniform superposition in the state of the whole gives us a uniform distribution (mixture) for each part. That each
component must receive the same reduced state is clear for any anti-symmetric or symmetric state of the whole.14

Partly at issue here is the so-called ‘ignorance interpretation’ of mixed states. It is true of course that, if I am sure that a
given particle was prepared either in state x or in state y, but I have no idea which, I can adequately represent the
situation by a mixed state, a half-and-half mixture of these two pure states. In that case my ascription of a mixed state
reflects my ignorance. But mixed states are encountered also in a different context. Sometimes a complex system has a
pure state, and it is different from any pure state we would ascribe it, in view of, say, the spatial separation of its
components, on the basis of any supposition of pure states for those components. This happens typically after past
interaction; Schroedinger called it ‘the’ distinguishing feature of quantum mechanics. In that case, however, predictions
about observables relating to one component can be based on a ‘reduction of the density matrix’, which ascribes a
mixed state to the component part. One view is that the component has no state at all (of its own). Another view,
which I attribute here to Margenau, is that the mixture is the state of the component; and, correlatively, that mixtures
are the possible states of motion, with pure states representing only an unprivileged special case.

But on this view, the two particles discussed in the second-last paragraph (which are, as an aggregate, in a
superposition of exclusive product states) are not themselves in different states at all. Hence they are literally
indiscernible, at least if this description is complete—though they are not identical.

The violation of identity of indiscernibles, at which we have now arrived, is implied in part by a certain interpretation
of the difference between superpositions and mixtures of states.

Let us begin with the notion of state itself. This is connected with two concepts of operational procedures: preparation
and measurement. Our notion of state must be such that, for each
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possible state, it is in principle possible to prepare a system in that state, and that distinct states result from distinct
state-preparation procedures, though not necessarily conversely (see Beltrametti and Cassinelli 1981b; 1981a, sects, 2.4,
43; also De Muynck and van Liempd 1986). But secondly, this notion must be such that, given the state, we have a
determinate probability for each possible outcome of any measurement of an observable pertaining to the system.
These requirements are met by both pure and mixed states.

Given an aggregate of identical particles, can we ascribe a state to an arbitrary single member of the assembly? First, we
have a range of possible states available that a single particle can have, so, logically speaking, the answer is at once
affirmative. Secondly, given our knowledge of the state of the aggregate, we can also predict with determinate
probabilities the outcomes of any measurement made on any arbitrary member of that aggregate. It makes no physical
sense to choose one member rather than another. Whatever we can attribute to any member, we must attribute to all.
Thus, Margenau is quite correct in saying that, if a state is to be attributed to any member of the aggregate, it must be
the same state that is attributed to each. This state must be, in effect, the summary of the predictions that can be made
about any one member, on the basis of the state of the aggregate. And so the only candidate is the mixture described
above.

At first sight we have only two options. The first is to insist on the ignorance interpretation. With a little strain, it will
allow us to say, in the above case, that one particle is in state x and the other in state y, but we don't know which, and
that this truth is in any case irrelevant when we predict their joint behaviour. I say ‘a little strain’, but actually a
gratuitous addition is made, to rule out the case that both are in state x or both in state y, which the unaided ignorance
interpretation would certainly allow. The second option is Margenau's, which insists equally that the states of the
components are irrelevant to predictions of joint behaviour, but entails in addition that PII is violated, if the
description is complete.

However, the modal interpretation allows us a reconciliation. In its possible world-models for such a complete system,
the
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dynamic states are assigned exactly as by Margenau. But in addition, each subsystem S′ (including the whole system)
has a value state λ[S′] which assigns actual values to the observables. It is true that in some of the possible worlds PII
will be violated if we let λ[S′] be whatever it can be, subject only to the general constraints. But if we eliminate, or
classify as unreal, those worlds in which this happens, the system of possible worlds is not rendered defective. All the
same dynamic states can still occur, so the basis of prediction is left untouched.

As an example, let us take again the simplest two-particle fermion aggregate X + Y in dynamic state ϕ = (1/√2)
(x ⊗ y − y ⊗ x). The dynamic state of X and Y is the same, namely . If we ignore the fact that this is a
fermion aggregate, we associate (at least) four distinct possible worlds with this dynamic state:

Value states X + Y X Y
In world 1 ϕ x y
In world 2 ϕ y x
In world 3 ϕ x x
In world 4 ϕ y y

But to represent a fermion aggregate, this is a ‘bad’ system of possible worlds, according to the suggestion that
fermions are individuated by their value states. So we must rule out the last two worlds. Happily, the image space ofW
has dimension 2, so there is no need to assign the same states to X and Y; indeed, we can assign them orthogonal
states. In Section 3 we saw that, in any fermion aggregate state, the reduction to the single-particle space has a
dimension at least as great as the cardinality of the aggregate. Therefore, as far as that is concerned, there are indeed
enough possible states for all the individual particles.

Note well that, in accordance with our discussions of PII, the particles need only be distinguished in some way, two by
two. Thus it suffices if, for every two particles, there is an observable which has distinct values. The value states
assigned to the particles need not be an orthogonal set, therefore; it suffices that a distinct value state is assigned to
each particle. The Hermitean operators which represent those observables that pertain to a single particle will separate
these value states.
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11. A Fermion Model With Individuation
What I have said now does not yet establish that the modal interpretation can be carried through in this fashion. For,
as we saw in an earlier chapter, that interpretation needs to meet certain criteria especially applicable to many-particle
systems. The proof that these can be met here too follows below. This proof builds on the more general consistency
proofs given in Chapter 9, Sections 8 and 9.

To substantiate the modal interpretation of the aggregate states of fermions, we need to fulfil four desiderata for a
possible choice of value states:

(a) All three general criteria (a)–(c) for the attribution of component states, listed in Chapter 9, Section 8, must be
satisfied.

(b) The value state assigned to each sub-aggregate must itself also be anti-symmetric.
(c) The value states assigned to distinct individual particles must be different.15

The tenability of the interpretation requires that some such choice be possible for each anti-symmetric total state of a
fermion aggregate.

To fulfil (a) most easily, it is best to begin with the construction used in Chapter 9, Section 9. If either (b) or (c) is not
automatically satisfied, we should then modify the construction. We start again with the three-body example ϕ = Σ aijk

(xi ⊗ xj ⊗ xk), with for example the value state attributed to subsystem (Xa + Yb):

To say that ϕ is anti-symmetric means that, if (xi′ ⊗ xj′ ⊗ xk′) is a permutation P of (xi ⊗ xj ⊗ xk), then ai′j′k′ = s(P)aijk

where s(P) is the signature of P. If that is so, will λab also be anti-symmetric? We need only look here at the (odd)
permutation which exchanges the first two vector terms. By hypothesis, if (xj ⊗ xi ⊗ x2) = xi′ ⊗ xj′ ⊗ x2, then ai′j′2 = −aij2,
as is required. Thus λab is indeed anti-symmetric. Thus desideratum (b) is fulfilled in this special case.
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To prove that in general, we go to the general notation, with ϕ = Σ f, where f = ai(a). . . i(n)(xi(a) ⊗ . . . ⊗ xi(n)). By hypothesis,
if the term xi′(a) ⊗ . . . ⊗ xi′(n) denotes permutation P of the vector denoted by xi(a) ⊗ . . . ⊗ xi(n), then

If we now look at the value state

we see that the only relevant permutations are those exchanging vectors keyed to index subset S′. But these are clearly
covered correctly by the hypothesis, in just the same way as happened in our special example above. So we conclude
that desideratum (b) is fulfilled in general.

This really concerned only the subsystems which are aggregates of at least two particles. A one-particle state is
vacuously and trivially both symmetric and anti-symmetric. Hence, if we alter the general construction in a way that
affects only the single-particle value state λa, λb, . . . , the above conclusion will remain intact.

To consider desideratum (c), we begin again with the three-particle example. This includes value states:16

Could these be the same? We note that the anti-symmetry of ϕ requires that there be no repetitions. Thus, ai32 = 0 if xi

= x3 or xi = x2. Since all three bases are the same, this means that ai32 = 0 equals zero unless xi is orthogonal to [x3, x2].
Therefore, λa must be orthogonal to that little subspace.

The integer constants were chosen carefully: a532 is not zero, so none of these vectors is the zero vector. But then λb

includes the summand a532x3, which is clearly not orthogonal to [x3, x2]. Therefore we conclude that λa ≠ λb. By exactly
similar reasoning, we conclude that all three vectors are distinct.
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Again, the reasoning transposes easily to the general context. There we find the individual particle value states

and so forth, where (S − a) is the index set minus index a. Thus, more concretely we could have, e.g.,

By the anti-symmetric decree against repetitions, we deduce as above that

and that λk is not orthogonal to it, if k ≠ a. Thus λa ≠ λk. Similarly for every other pair—as we were required to prove.

12.Bosons and Genidentity
Boson aggregates are capable of symmetric states, and not of anti-symmetric ones. Margenau's argument can be given
for such a symmetric state:

where each Ψr has form , in which repetitions are now allowed (no restriction to exclusive product states). It
has the same conclusion: we can assign reduced states to the N particles, but they will all be the same. Hence the
assignment of states does not individuate the boson. If this description is complete, then PII is violated.

Now even the modal interpretation cannot help in all cases. For let ϕ = x ⊗ x; then both particles are assigned x as
dynamic state, and hence also as value state.

However, we have restricted our discussion so far to the state of the aggregate at a given moment. Should we not, now
that we are stymied, bring in the time-variable, which certainly has a role in quantum mechanics as well? Then we can
follow Aquinas's course with respect to disembodied souls and say that
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each boson may be individuated by its history. We would have to add, though, that the historical individuation is to be
regarded as empirically superfluous for the statistics (in the sense I explained above), if it goes in any way beyond the
description of (dynamic and value) states. And surely it will go beyond, if we are allowed to image a boson aggregate
created in state x ⊗ x and annihilated before any change of state. Nothing in the theory forbids that.

It has been emphasized and clearly explained by Peter Mittel-staedt that re-identification over time has no empirical
significance in quantum mechanics. Mittelstaedt (1983) illustrates this specifically with a boson aggregate: a class of free
He4-atoms with a conserved momentum. When Mittelstaedt constructs possible world-models, he interprets only
definite descriptions, and does not allow singular terms (such as names) without descriptive content. The same issue is
examined by Dalla Chiara and Toraldo di Francia (1983), and is graphically described for both electrons and photons.
They propose the even more radical departure of a theory of ‘quasets’, which are abstract objects which have a
cardinality but no order type. For the reasons given above, I am more sanguine about the applicability of classical logic
and set theory without presupposing PII. But one main conclusion we must accept from these discussions: identity
through time—history or, in Reichenbach's terminology, ‘genidentity’—loses at least its empirical significance in
quantum mechanics.

It was Reichenbach who tied the discussion of individuation of fermions and bosons on the question of identity
through time. Reichenbach reformulated the traditional questions concerning genidentity (his term for identity across
time), first in connection with relativity (1957, sect. 43) then for quantum mechanics (1956, sect. 26). The classical
particle/wave distinction is used as illustration. A floating cork bobs up and down when a wave reaches it; thus we see
that no water moves laterally, although the wave moves across the surface. If the individual water droplets, or better its
molecules, are entities persisting in time, the wave is merely a changing configuration of these entities. In Reichenbach,
a particle has material identity (its temporal stages, or the events involving it, are genidentical with each other) and the wave
does not. Hence questions of
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individuation or identification of waves (which may form superpositions) are either misplaced, or can be settled by
convention.

The suggestion may fit photons (which are in various ways atypical among elementary particles, and even among
bosons) especially well. Let us here just address the general suggestion that bosons are ‘not genidentical’. This means
that, where intuitively we have, say, an assembly of N photons, each persisting in time, we really have only at each
moment N photon-stages (temporal slices), and there is no objectivity of any sort to the classification of one of these
photon-stages at time t belonging to the same photon as one or other of the stages at time t + d. A photon-stage at a
certain time is really no more than an event—the being-occupied of a certain photon-state. But now we recall that the
boson aggregate states are symmetric, which entails that several or even all of these events may correspond to the same
pure state at once. Hence all N events may have exactly the same character—there are n being-occupieds of the same
photon-state. If these events are not individuated by their historical connections to previous such events, or in any
other way, then we have a clear violation of PII.

Reichenbach does not draw this conclusion, for he does not discuss PII at all. But he gives an argument for why we
should regard bosons as not genidentical. If we think of bosons as entities persisting through time, then the
correlations evident in Bose–Einstein statistics mean that these particles tend to go into the same states. They exhibit
this tendency even though there is no non-negligible interaction between them in the past. Hence this is correlation
without common cause. Reichenbach had, most of the time, the same attitude toward interpretation as I espouse.
Hence he writes in conclusion:

We see now how the thesis concerning indistinguishable particles is to be qualified. In precise language we cannot
simply say: The particles are indistinguishable. We must say: Either the particles are indistinguishable, or their
behavior displays causal anomalies. We are left the choice of selecting the one or the other interpretation. Neither
interpretation is ‘more true’ than the other; the two are equivalent descriptions.
However, only one of the two descriptions supplies a normal system, that is, a system free from causal anomalies;
this is the description according to which the particles are indistinguishable. When we follow
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the usual rule of employing a normal system whenever it is possible, we may therefore say, without hesitation, that
the particles are indistinguishable. (Reichenbach 1956, 234–44)

But Reichenbach was writing a decade or so before Bell's Inequalities were published, and well before the Common
Cause Principle had been clearly seen to contradict the empirical predictions of quantum mechanics. No normal
interpretation, in his sense, is possible anyway. Secondly, to regard m+ as more natural than m* for empirical statistics,
when the particles are historically individuated (as he clearly does, when he concludes that Bose statistics exhibits an
anomaly prima facie), can only rest on an arbitrary application of the flawed Principle of Indifference.

Much more puzzling perhaps is the question: why aren't all particles fermions? The answer in the modal interpretation
can be: because fermions represent the special case of particles individuated not historically, but by their description, in
quantum-mechanical language, at any given time. We can consistently add to this: and the bosons are individuated,
possibly through genidentity or through some other difference, in a way not represented in the quantum-mechanical
description of states and observables.

This inversion of Reichenbach's classification (which had instead allowed fermions to be genidentical) was suggested in
a paper I gave in 1969. It was challenged in a paper by Cortes (1976), who argued that it is better to reject PII than to
admit empirically superfluous factors into one's interpretation. There were a series of further papers. Barnette (1978)
accused Cortes of confusing metaphysics and epistemology. Ginsburg (1981) showed that, in quantum field theory,
Barnette's reasoning looked much less plausible (see also Teller (1983b). Aerts and Piron (1981), as I have noted
before, took exactly the position that bosons are distinguished by some feature ignored in the physical description.

In conclusion, I would maintain the tenability of PII only in the form of this non-specific assertion by Aerts and Piron.
The example I gave of a state x ⊗ x for a system which exists only briefly allows of no ‘internal’ historical
differentiation. Hence individuation, if it is insisted on, is by characteristics not describable in quantum-mechanical
terms, as well as being
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empirically superfluous. That seems fine to me, for an interpretation. The intelligibility it conveys derives from the way
it leads us in detail from one aspect of the story to another, always guided by the same thread. That is all; but it is still
worth making explicit.
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12 Identical Particles: Individuation and Modality1

If our question is directed simply to a yes or no, we are well advised to . . . consider what we would gain as the
anwer is in the affirmative or in the negative. Should we then find that in both cases the outcome is sheer
nonsense, there will be good reason . . . to determine whether the question does not itself rest on a groundless
presupposition . . .
I. Kant, Critique of Pure Reason, A485/B514

The most satisfying way to end a philosophical dispute is to find a false presupposition that underlies all the puzzles it
involves. Contrary to my own, as well as others', previous writings on indistinguishability and quantum statistics, I shall
argue that the ‘loss of identity’ dispute can be so dissolved. The questions rest on a mistake—or, more precisely, on a
metaphysical position which has already been moribund for centuries.

1. Are There Individual Particles?
How shall we make intelligible the passing of the Maxwell–Boltzmann statistics' primacy, and the hegemony of the new
quantum statistics? One response was: we must derive consequences for statistics from assertions of
indistinguishability.2 The other main response, which tended to point meaningfully to the quantum field formalism,
was this: we must eliminate the idea of individual particles altogether. If we do so, quantum statistics will be derivable
or made intelligible.

This thesis and antithesis have much in common. Both entail that we must turn to ontology; a new conception of
substance must replace the old, and will provide a foundation for the new statistics. They share a common diagnosis of
the problem: that



the very concept of an individual, with its own identity, so to say, forces us into Maxwell–Boltzmann statistics. Despite
their opposition, they agree that we must discard a cherished concept of individual, deeply embedded in the structure
of our thinking so far. They differ only in the final step: either we must arrive at a concept of individual particles which
can be many and yet have no identity (in some sense), or we must say that there are no individual particles. In the
second case the replacement will be fields, and while this move is reminiscent of aether theories, those fields fall under
no classical concept either. Like the particles which have no individuality or identity of their own, these fields are to
have a mode of being entirely different from anything dreamt of in Descartes's, Newton's, or even Einstein's
philosophy.

One philosophical illusion concerning science is absolutely perennial: that a theory wears its content on its sleeve,
written unambiguously into the shape of its formalism. Elementary quantum theory is written in a way that uses labels
apparently associated with individual particles. The quantum field formalism does not. Does that mean that the one is
a theory of particles, and the other not? Or is the second a streamlined and improved formulation of the
first—allowing finally for the description of systems, in which the number of particles varies with time? Or, thirdly,
does it bring a new ‘ontological insight’; do we have here an improved formalism that shows that the original theory
was not really a theory about particles after all? The illusion is that those questions can be answered simply by looking
at the formalism.

Even if that illusion is rejected, the questions can be taken seriously on the basis of an assumption. We may assume
that we have two different world-pictures on offer as basis for interpreting science: in the first the world is a world of
particles with their own individuality, so to say, and in the second there is no such thing. The opposition is subliminally
supported by the connotation of ‘particle’, that particles are spatially localized. But no idea of space or locality is
essentially involved in that of individuation. The assumption is that, even if the empirical phenomena might well turn
out to fit both ways of thinking, the two pictures are incompatible; the two worlds depicted are genuinely different.
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What I have just said is necessarily obscure; it refers to a puzzle in metaphysics. Let me give a more blatant example.
Consider the two statements There is more than one cow and The species COW is multiply instantiated. Can we understand the
second in such a way that it does not imply the first, and could be true in a world in which there are no individual
cows? But if so, can we not understand the first in the same way? There must be some metaphysical doctrine about
individuals or individuality that we presuppose when we say the two are genuinely different. But are they?

In the next section I will explain the field formalism. What I shall argue for is that, despite the improvement it
incorporates, it is not a different theory. It is equivalent to a somewhat enriched and more elegantly stated theory of
particles. That we can take it as a description of a world which is particle-less only masquerades as an incompatible
alternative. We will have to look at the general metaphysical puzzle, and see if we can escape its possessively loving
clutches. In subsequent sections I shall argue that the loss of individuality is illusory, since there is no individuality to be
lost.

2. Brief Exposition of Second Quantization3

In Section 3 below I shall discuss coordinate-free formalism in general. Whenever we have a symbolism designed for a
general case, and then impose a symmetry to define a special case, the symbolism can be simplified. The invariance
imposed by the symmetry makes some aspect of the symbolism redundant. In the quantum-mechanical treatment of
particle assemblies, permutation invariance makes individual particle labels redundant. This is the reflection that leads
to ‘second quantization’.

2.1. Describing Bosons
To be concrete, let us consider the case of an assembly of identical bosons. As a beginning we specify a definite
cardinality N for this assembly. Let H be the Hilbert space for a single
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such particle, and HN its Nth tensor power. This space is too large; we look at the symmetric subspace :

Let PP be the group of permutation operators on HN, and define PP+ to be the linear operator on HN which
satisfies

for x, . . . , xN ∈ H. Then PP+ is a projection operator; the subspace on which it projects is the subspace of
symmetric vectors in HN.

For example, if N = 2 and ϕ = (x ⊗ x), ϕ′ = (x ⊗ y), then PP+ ϕ = ϕ, and PP+ ϕ′ = [(x ⊗ y) + (y ⊗ x)]/2. This
subspace is the state-space for such a boson assembly, as we have discussed before.

The division by N! is there not to normalize the result, but to ensure the idempotency of PP+. If we omitted it we
would have PP+ ϕ = 2ϕ, PP+ (PP+ ϕ) = 4ϕ, etc. Given an orthonormal basis {xi} for H, we obtain a basis for HN

which is also orthonormal. If we then apply PP+ we obtain a basis for of which the members are mutually
orthogonal, but not of norm 1. This is the point at which we can begin to simplify our symbolism.

Take the basis vector ψ = xi(1) ⊗ . . . ⊗ xi(N), and let us define the occupation number function n—which really depends on
ψ, so n is short for nψ—as follows:

For example, if our original basis was {x1, x2, x3}, then for ψ = x1 ⊗ x2 ⊗ x1, the occupation numbers are: n(1) = 2,
n(2) = 1, n(3) = 0. Obviously, those numbers have to sum to 3; in general, for HN they will sum to N. Each of these
occupation numbers n(j) defined for ψ is linked to a specific pure state xj in the original space H. Hence for a fully
explicit terminology we should say that n(j) is the occupation number of ψ for xj, so of xj in ψ. At this point, we may still
think of ψ as the state of an assembly consisting of n(j) particles in pure state xj.

Lemma 1: If nψ(j) = nψ(j) for j = 1, …, N, then PP+ψ = PP+ϕ.
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This is quite easy to see, because if P is any permutation, then PP+ (Pϕ) = PP+ (ϕ). Hence in the case imagined we
permute ψ and ϕ first so that all the indices 1 occur first, then all the indices 2, and so on, to produce something of
form

The subsequence of xj ⊗ . . . ⊗ xj must have length n(j), so we get the same result in both cases. But then the two
projections by PP+ are also the same.

Lemma 2: With ψ as above, |PP+ϕ|2 equals Σn(j)!/N!

This I won't bother to prove; it merely shows what the normalization factors must be to turn {PP+ (xi(1) ⊗ . . . ⊗ xi(N))}
into an orthonormal basis for , which is what we wanted. More important are the implications of Lemma 1. Given
that lemma, we can write the basis vectors of as

(which has last member n(dim H) if H is finite-dimensional), in terms of the occupation numbers rather than the
individual particle labels. Now we have a coordinate-free—i.e. in this case an individual-label-free—notation for the
vectors in this space. As the quick proof of Lemma 1 shows, this is exactly because of the permutation invariance in
the symmetric subspace.

It is not difficult to see how this construction can be modified for an assembly of fermions. As projection operator, we
define

where s(P) is the signature of permutation P. This projects on to the anti-symmetric subspace. For concreteness I will
continue mainly with the boson case, with side-remarks like these to cover fermions.

2.2. Number as Observable
Recall that the above construction was carried out beginning with a specific one-particle space basis {xi}. The basis
elements
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can be the eigenvectors of a non-degenerate, i.e. maximal Hermitean operator A, with xi = |ai 〉. Now the
phraseology can be made still more explicit:

n(j) is the occupation number of the jth eigenvalue of A in the state ψ,

where ψ is a basis vector xi(1) ⊗ . . . ⊗ xi(N) of HN as above.

Let us now ask whether there is an operator Nj on the symmetric subspace such that NjPP+ ψ = n(j) PP+ ψ. That
would be what before I called a counting observable, in our discussion of quantum statistics, and the discussion there
should show that the answer here is indeed yes. That is easy to see because of the following lemma:

Lemma 3 : If ψ and ϕ are basis vectors of HN constructed from {xi} as above and nψ(k) ≠ n
ϕ
(k), then ψ ⊥ ϕ

and PP+ (ψ) ⊥ PP+ (ϕ).

If the antecedent holds, and ψ = z1 ⊗ . . . ⊗ zN while ϕ = y1 ⊗ . . . ⊗ yN with zj, yk all in the basis {xi}, then we conclude
at once that, for at least one index j, zj ≠ yj. But since they are chosen from the same basis, they must then be
orthogonal, so ϕ ⊥ ψ. The same holds for any permutation of either, since that operation preserves the occupation
numbers. Hence also Pϕ ⊥ P′ψ for P, P′ in PP and PP+ ϕ ⊥ PP+ ψ.

Therefore, the equations n(j) = 0, n(j) = 1, n(j) = 2, . . . , n(j) =N partition the basis vectors of the space , and we can
define the linear operator Nj as required. Note then that eachNj is a function of maximal operator A, and should really
be written .

Now we can go a real step forward, beyond the mathematical representations so far explicitly utilized in this book. For
we can think of an open system, an assembly with a variable number of elements. Particles can come in from outside
or leave; they can also be emitted (created) or absorbed (annihilated). The reason we have not come to this before is
simply, I think, that most philosophical discussions—e.g. of perfect correlations, Schroedinger's Cat, measur-
ement—focus especially on the case of an isolated closed system.

Definition : The direct sum of the finite or countable indexed collection {Hr} of Hilbert spaces is the space ⊕
Hr whose
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vectors are the sequences

such that Σ |vr|2 is finite and the vector operations are defined by

This direct sum ⊕ Hr is again a Hilbert space; the norm is as is to be expected:

Now we return to the collection of which the arbitrary Nth member has been holding our attention. We need a
special vacuum state, all of whose occupation numbers are zero, for technical reasons below; we give it convenient slot
.

Definition : The Fock space for boson assemblies is

What do the elements of this space represent?

Above we focused on space H with basis {xi}, and the basis vectors ψ = xi(1) ⊗ . . . ⊗ xi(N) of HN, and then basis vectors
which are the vectors PP+ ψ (normalized) of . The latter are specified uniquely by their occupation numbers, so we
could also write them as

This vector reappears in the Fock space, as the sequence whose (N + 1)th member is ψ 〈 n(1), . . . 〉 and whose
other elements are zero vectors. Two such vectors, characterizing N-particle and N′-particle systems, reappear thus in
Fock space as mutually orthogonal when N ≠ N′. For example, x and x ⊗ x reappear as components in the scalar
product

Therefore these vectors so produced form an orthonormal basis for the Fock space. Each is characterized jointly by
the total
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particle number N and the sequence n =〈 n(j)〉 of occupation numbers. But since N = Σ n(j), the latter sequence
alone suffices even here. Let us therefore introduce the perspicuous notation: ψ(〈 n(1), n(2), . . .〉) in reappears in
Fock space as unit vector

with N = Σ n(j). By the same reasoning as for Lemma 3, they form an orthogonal and complete basis.

Two cautionary remarks. Of course, this means also that each number operator Nj can also be defined, as before; and as
the above notation shows at once, these operators form a complete set for the space. Remember that they are not the
only such set: Nj is short for , and A was a specific operator whose basis we selected originally to characterize H.
Because that basis can be transformed, yielding a new description of the space in terms of an operator which does not
commute with A, we must definitely not think of the above vector as the state of a simple collection of particles with
n(1) in pure state x1 and so forth. This is a point about the holism of the quantum-mechanical total state, and we shall
return to it below.

The second remark to be made here is that we must not confuse the sequence v =〈 v0, v1, . . .〉, which appears in the
definition of Fock space, with either the sequence n =〈 n(1), n(2), . . .〉 or the unit vector denoted via that sequence
as |n〉. So for example, |n〉 + |n′〉 ≠ |n + n′〉 and k|n〉 ≠ |kn〉. All the vectors |n〉 for distinct sequences n are
orthogonal to each other.

Creation and annihilation. Since Fock space is a Hilbert space, we can define Hermitean operators in the usual ways, by
specifying how they transform individual vectors. The interesting new possibility is to change an occupation number
n(j) to n(j) + 1—creation of a particle in such a way that state xj occurs one more time—or to n(j) − 1—annihilation of
one particle so that this state occurs one less time. One is tempted to say here ‘create an extra particle in state xj’. That
temptation had better be resisted, as we noted above.

The unit vector |n〉 has a single non-zero element which is a
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unit vector that belongs to the Hilbert space where N = Σ n(i)—the space for N-particle assemblies. If we change
the sequence n by adding 1 to its rth element:

and treat this new sequence as specifying the occupation numbers, then that uniquely identifies a new unit vector in the
space and a corresponding one in Fock space. Of course, that is the vector we call |(r +)n 〉. The linear operator
, defined by its effect,

on the basis vectors is a creation operator. The operator ar corresponds to a similar numerical operation on sequence

and is an annihilation operator. (Note that the result is the null vector if n(r) = 0.) The operator is Hermitean.

2.3. The Label-Free Theory
At this point we can leave the construction behind, and think of Fock space as an abstract object in itself, ignoring the
way in which we came to it. Looking at the creation and annihilation operators, we see that they are each other's
adjoint:

Either scalar products both are zero, or both are √ (n(r) + 1), because if any occupation number is different, the vectors
are orthogonal.

Next, we note for the same reason that we have the commutation rules
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where the commutator [b, c] = bc − cb. The operator satisfies

so we can use that as the definition for the (rth occupation) number observable. The total number observable is just
N = Σ Nr.

Several times above I made a point of emphasizing that we should not read an equation like n(1) = 3 as saying that we
have here an assembly of particles, three of which are in pure state x1. The reason is not that there is anything wrong
with the concept of a particle in this context; the reason is the holism of the total state. If N = 2, for example, and the
assembly is in pure state (x1 ⊗ x2) + (x2 ⊗ x1), then neither particle is in a pure state—each is in a 50/50 mixture of
states x1 and x2. The two occupation numbers n(1) and n(2) each equal 1, but that does not count the number of
particles which are in specific pure states, for there are indeed 2 = n(1) + n(2) particles, but both are in the same mixed
state.

As usual, this holism has to do with the principle of superposition. We made the transition from ‘labelled’ to ‘label-free’
formulation by choosing initially a one-particle maximal observable A, and its basis {xi} of eigenstates, and eventually
ended up with the creation and annihilation operators and ar. But we can choose another maximal observable B,
incompatible with A, and its basis {yj} of eigenstates. Then we must arrive similarly at creation and annihilation
operators and br. How are the two modes of creation and annihilation related to each other?

The bases {xi} and {yj}, and the operators A and B, are related by a unitary operation:

where the unitary matrix [cmn] is a matrix representation of unitary operator U. From the basis {yj} of H we can get to a
basis of unit vectors of as we did above, and we can define
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the associated occupation numbers (1), (2), . . . , which count occurrences of y1, y2, in the state so expanded. Then, as
before, the occupation numbers specify the symmetric state uniquely, and we can write

Next, we can build up the Fock space in which Ψ reappears as

All this goes as before and, because we started by merely redescribing the same situation in terms of a different basis,
we must here have arrived at the same Fock space. But the new basis {| 〉} is not the same as the earlier basis {|n〉}. Indeed,
| 〉 must be expressible as a superposition of the vectors {|n〉}. What exactly is their relationship? The picture of a set of Σ
(j) particles neatly arranged in cells 1, 2, 3, . . . occupied by (1), (2), . . . particles respectively certainly makes no
sense, if the depicted entity is also to be a superposition of other ways in which these particles could have been
arranged. Beware, as usual, the lures of the classical imagination!

Think for a moment about the one-particle state |n(1) = 1, 0, 0, 0, . . .〉. That is the sequence〈 Ø, x1, Ø, Ø, . . .〉
in the construction of Fock space. By the above equation, that is〈 Ø, Σ cm1ym, Ø, Ø, . . . Ø〉; but by the definition of
the operations on the constructed Fock space, that is Σ cm1 〈 Ø, ym, Ø, Ø, . . .〉. And here the components are the
one-particle states related to the B basis. Hence

If we now think of the one-particle states as produced by creation operators from the same vacuum state, we write this
as

Therefore on the vacuum state, acts as cm1bm, and more generally acts as . This argument can be continued
for the adjoint annihilation operators and for other states; let us accept this as a proof by illustration of the equations
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Hence the creation and annihilation operator families transform exactly, as do the bases in the ‘label’ formalism,
namely via unitary matrices.

Proofs and illustrations. Let us take an even briefer look at two subjects which will not enter the main line of argument.
The first is what the relativistic quantum field formalism looks like, and the second is the relation between second
quantification and the thesis of Dichotomy discussed in the preceding chapter.

The last item above was the kind of transformation that corresponds to changes of basis in the original Hilbert space.

The trick we used there with the vacuum state is of course always possible. Indeed, each unit vector ψ in Fock space
belongs to some orthonormal basis, hence there is some suitable one-particle observableA such that we can write ψ in
terms of the associated occupation numbers, as ψ = |n〉. Now that means that ψ can be produced from the vacuum state by
repeated applications of creation operators:

and so forth. But this means in turn that we can think of any linear operator, specified through its effect on a given
basis, as defined in terms of repeated creation and annihilation. For example, suppose that R|n〉 = 3| 〉 where n(1)
= 1 = n(2) and n(j) = 0 for j > 2, and where (2) = 1 and (i) = 0 for i ≠ 2. Then we notice that the effect of R on |n〉
can also be produced as follows:
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So

This is not a good format for defining R, but it shows that any one operation can be reconstructed as a linear
combination of sequential creation and annihilation operations.

But these reflections will be a good preparation for the formalism of relativistic quantum field theory. In classical
relativity, a model will consist of a space–time, which may have a field defined on it—that is, a function which takes a
certain value at each space–time point. The function is a tensor, which represents a physical quantity that varies over
space–time, the field strength. In the quantum case, of course, physical quantities are represented no longer by scalars,
vectors, or tensors, but rather in terms of operators on the states which allow us to calculate measurement outcome
probabilities. Accordingly, a field assigns to each space–time point a linear combination of creation and annihilation
operators. These operators act on the quantum-mechanical state, in the way we have described, and the role of the old
field strengths is taken over by the calculable expectation values. That it can be sufficient for a quantum field to have
this simple structure should be plausible given the outline above of how the effect of any observable on any given state
is duplicated by the effect of a certain linear combination of creation and annihilation operators.

Returning now to the non-relativistic context, let me first fill in the story as it applies not just to bosons but to particles
in general (see e.g. Merzbacher 1970, ch. 20, sect. 3). The transformations that relate the different creation and
annihilation families are in all cases by unitary matrix in the format that was exhibited above:(1)

However, the commutation relations I gave above,(2)

hold only for bosons. We can derive the possibilities in the following way. If we apply and sequentially to a state,
we increase the numbers related to pure single-particle states xr and
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xs by one each. The result should not depend on the order of application, therefore, except perhaps by a constant
factor which will be removed by the normalization required to yield a unit vector. Hence we conclude:(3)

where k might depend on r and s. By (1) above we deduce from (3):(4)

(5)

(6)

However, in (1) the unitary matrix [cmn] is subject only to the constraint that for all r and q. Accordingly, (6)
will not hold unless, for all m and n, individually,(7)

(8)

Since this holds for all m and n, we can add the consequence:(9)

(10)

(11)

which means that the commutation relations must take either the form (2), which says that the commutator
, or the form(12)

which says that the anticommutator is 0. The first characterizes bosons, and the second fermions.

So now it appears that we have a new deduction of Dichotomy, in the non-relativistic quantum field formalism. In the
relativistic theory Pauli's Spin and Statistics theorem does indeed have bearing on Dichotomy, though it does not
establish it.4 Do we really have something much stronger here? Of course

IDENTICAL PARTICLES 447



the answer is no; the deduction we have just given has the same status as Blokhintsev's. Equation (3) above follows
from the preceding remarks only if it is assumed that two vectors cannot represent the same state unless they are
parallel. That is to say, the pure states are represented by rays or one-dimensional projection operators, and therefore
there are no superselection rules present. But that is an assumption holding only for the simplest case.

2.4. Field Representation, and the Proper Conclusion5

Starting with elementary quantum theory, we arrived above at (elementary, non-relativistic) quantum field theory by
construction. I use the term ‘construction’ here in its mathematical sense. Beginning with any set, we can construct a
group, for example the group of one-to-one mappings of this set on to itself. There is a converse procedure. It can be
proved that this method of construction suffices for groups: every group is isomorphic to a group of transformations.
That result is a representation theorem: every group can be represented as a transformation group. Construction is never
enough to draw much of a conclusion. Representation as well, however, means that we really have just one
mathematical concept, realized in different ways, more or less abstractly.

The question we must now ask therefore is: does the above way of constructing those quantum field models suffice?
Can we make the journey back, so to say, to the ‘label’ formalism if we are given an abstract presentation, the ‘label-
free’ formalism in its unencumbered self-sufficiency?

The answer is yes. This question has been investigated by several writers, notably by De Muynck, who carried through a
reformulation of quantum field theory with the ‘individual particle labels’ reinserted. All models of (elementary, non-
relativistic) quantum field theory can be represented by (i.e. are isomorphic to) the sort of Fock space model
constructions I have described above. Since the latter are clearly carried out within a ‘labelled particle’ theory, we have a
certain kind of demonstrated equivalence of the particle—and the particle-less—picture.

What does this entail? That depends obviously on exactly
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what kind of equivalence we have found. It is a strong kind; but we must be careful not to jump to philosophical
conclusions. I quote the remark on this point by one strong defender of a particle-less interpretation, Allen Ginsberg
(see also Ginsberg 1981):

Cognoscenti may object to the position taken in this paper on the following grounds. It is a well-known fact that the
non-relativistic QFT [quantum field theory] formalism is mathematically equivalent to the many-particle
Schroedinger equation formalism of EQM [elementary quantum mechanics]. Since the two theories are equivalent
how can they ‘really’ say anything different from one another? (Ginsberg 1984, 348)

Ginsberg has two answers. The first is that the fundamental theories of contemporary physics are relativistic, and there
is no similar demonstrated equivalence there. This is not in my opinion a relevant point. There has not been, as far as I
know, an equally thorough investigation of what is possible at that level, and Ginsberg's own interpretation of the
subject contains some at least controversial philosophical elements. Obviously, the puzzle about continuants versus
events characteristic of space–time theories will also be involved there (see Section 2.1 below). But in any case, we
should not take the attitude that, if a more recent or rival theory avoids a certain problem of interpretation, the
problem disappears. Otherwise we shall always be in the position of saying that (a) we can't interpret the newest theory
yet because it is still incomplete and in flux qua developing science, and meanwhile (b) we do not understand the older
theory, however recent, but it has been supplanted anyway! The questions of interpretation at issue here concern the
non-relativistic quantum theory.

Ginsberg's second reply, however, relates directly to the significance of that equivalence.

Secondly, I do not agree that mathematically equivalent theories always ‘say the same thing’. Newtonian
gravitational theory [for example] can be formulated either in terms of bodies acting on each other at a distance, or
in terms of bodies interacting locally with fields. I see no reason to say that these mathematically equivalent
formulations are also equivalent with respect to the model of reality they embody. (Ginsberg 1984, 348)
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Ginsberg is making a point here, I think, which I also consider valid and important. But the point is obscured in
various ways, because we need to be precise first of all on the difference between rival theories and rival interpretations
of one theory, and secondly on the possible meanings of ‘mathematically equivalent’. The example he gives hinders
rather than helps if we are not told the precise relations between Newton's theory and the two purported formulations.

The equivalence between the field formalism and the many-particle formalism which we found above is neither very
weak nor the strongest one could have. This sort of equivalence holds between the abstract theory of groups and the
theory of transformation groups, as demonstrated by the representation theorem. It is the equivalence, I think (though
there have been demurrals) between Schroedinger's wave mechanics and Heisenberg's matrix mechanics and von
Neumann's abstract Hilbert space formalism. Each of these pairs is also inequivalent in a certain way; similarly, in
terms of our example, there are groups which are not transformation groups. But is this inequivalence significant?

As a result of the demonstrated equivalence—the representability of one sort of mathematical object as another
sort—a weaker but philosophically more interesting equivalence holds: the theories are necessarily empirically equivalent.
Any possible phenomena that can be accommodated in the one sort of model can also be accommodated in a model
of the other sort. This in turn entails several still weaker but philosophically interesting equivalences, such that all
actual, or all known, phenomena are such that, if the one theory can model them, then so can the other theory. But the
demonstrated equivalence is stronger than any of these.

Schroedinger's wave mechanics, Heisenberg's matrix mechanics, and von Neumann's abstract quantum theory may
well have been differentially instrumental in suggesting the different interpretations of quantum mechanics being
advocated today. Because of their strong equivalence, however, any interpretation tenable for any one of the three is
mutatis mutandis tenable for the others. This is exactly what must also be said about the field formalism and the many-
particle formalism which we have discussed here. Indeed, each may suggest a different sort of
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interpretation; perhaps even they are communicated in ways that involve drawing incompatible pictures of the world.
But we must add about the models which they offer us for representing the world: their structure cannot rule out the
rival interpretation of their content.

Let me give one other example. The normal way, post-set-theory, of conceiving of geometry is as a theory of points
and relations among points. Spheres, for example, are definable sets of points. But it is also possible to write an
equivalent theory (in the above sense of equivalence) in which the elements are spheres and relations among spheres.
Points are then identifiable with a definable set of spheres (intuitively, the point is a set of spheres which contain it;
points are introduced by limit construction). Obviously we are here offered two rival world-pictures for our
consideration. But if someone likes to talk in terms of spheres, I can reconstrue his every assertion salva veritate (and
saving also all valid inferential relations) as an assertion about points. And vice versa! This is not to deny that it is
possible for a person to believe that points are the only real concrete individuals—what we cannot do is to say that
geometry forces this view on us.

3. Three Parallel Debates in Metaphysics
Philosophical puzzles do not have just one native habitat; they tend to crop up, sometimes overtly and sometimes
disguised, in many places. A preliminary look at some other metaphysical debates will equip us with some of the
concepts needed for the discussion of the identity of identical particles: genidentity, coordinate-free descriptions,
indiscernibility as symmetry, reference with or without individuation.

3.1. Substance and Event in the Relativistic Universe

‘That is a very Earthling question to ask, Mr. Pilgrim. Why you? Why us for that matter? Why anything? Because this
moment simply is. . . . All time is all time. It does not change. It does not lend itself to warnings or explanations. It
simply is. . . . ‘You sound to me as though you don't
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believe in free will,’ said Billy Pilgrim. ‘If I hadn't spent so much time studying Earthlings,’ said the Tralfamadorian,
‘I wouldn't have any idea what was meant by “free will”. I've visited thirty-one inhabited planets in the universe, and
I have studied reports on one hundred more. Only on Earth is there any talk of free will.’
Kurt Vonnegut, Slaughterhouse-Five

Billy Pilgrim is kidnapped by a flying saucer, by beings who, so to say, live in space–time; they can witness what occurs
at any space–time point by focusing their attention there. So there is for them no question about what to decide to do;
what they will do they can see by looking. The concept of decision does not have any applicability for them. Billy
realizes that, space–time being as they (and we in this century) conceive of it, he must accept their conclusion that
decision and freedom of will are an illusion. Do you like this story? If you do, you will love twentieth-century medieval
metaphysics.

Relativity theory was the great impetus for the development of logical empiricism—it was for the Vienna and Berlin
Circles the paradigm of science's progress when metaphysics is cleansed away. As they saw it, the ‘operational’ analysis
Einstein gave of simultaneity revealed the element of convention and the baselessness of absolute synchronicity. That
is what made relativistic electrodynamics possible; and it was also the paradigm for logical empiricist philosophy of
science. In England, on the other hand, relativity was instrumental in a return to realist metaphysics, as part of the
revolt against idealism. Samuel Alexander, Alfred North Whitehead, and Bertrand Russell developed new systems of
the world, in which the relativistic view of nature was the ‘natural’ one. The simplest of these was Russell's, which had
perhaps as much debt to Hume as to Einstein. Individuals persisting in time, he held, were mere logical constructs
from events. What we think of as the history of a single entity which exists, say, both now and a year ago is a class of
events linked by such purely external relations as contiguity and similarity.

How exactly is this metaphysical view related to relativity in physics? In just the way that can keep us endlessly
fascinated without profit. It is perfectly possible to accept that metaphysics
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while remaining loyal to classical physics. It is also possible to take the contrary view while embracing Einstein. But
there is a suggestive link. That is what feeds the desire of metaphysics to find support in science, and the desires of
those puzzled by science to find peace. After Einstein, the relations among events which have the objectivity of
invariance—the ones that are not perspectival, or relative to frames of reference—are neither spatial nor temporal. The
distance between my outstretched hands is nothing absolute, nor is the time that will have elapsed between my first
love and last rites. Doesn't that make my identity an illusion as well? Is it not the events, whose only proper location is a
spatio-temporal one, that are the relata of ‘real’ relations, such as the space–time interval:

Events located at coordinates (x, y, z, t) and (x′, y′, z′, t′) in any frame are separated by a space–time interval with
magnitude [(x − x′)2 + (y − y′)2 + (z − z′)2 − (t − t′)2], and this is the same in every inertial frame of reference,

so doesn't modern physics do away with entities which are not so related? In the non-perspectival, coordinate-free
description of nature, the remarks I like to make about my armspan do not even appear in the formalism.

Note especially here the emphasis on the new formalism: it omits notation for what is not invariant, which has all
dropped out of this description of nature, and hence(?) physics no longer acknowledges its reality.

But this is spurious. Certainly my birth and death are events between which there is an invariant relation, the
space–time interval, and indeed, it is measurable as my Eigenzeit. That they are related by being the birth and death of
the same person is also an invariant relationship, the same in every moving observer's frame of reference, unless we
assume already that persons are unreal. That my armspan is of puny extent in your frame of reference is amusing to
remark, but it certainly does not threaten my identity. That the coordinate-free formalism leaves out such remarks
altogether we may attribute to a selection of what is of interest sub specie physics, without implying that what interests
me is an illusion. Physics as such has no interest in where I am now, but I do, and if I did not, I would not be in a
position to apply science at all.
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Does such a Humean philosophy of nature, as Russell once espoused for example, make Einstein more intelligible? If
it gives a clue to a possible, and possibly adequate, way to interpret physics, yes. But in the end, while it does help to
realize that a certain form of language is feasible, preference for it does not help. Reichenbach discussed the issue in
several books, using the term genidentity for the relationship between events which belong to the history of a single
persistent individual. Since he developed a relational theory of space–time—roughly siding with Leibniz against
Newton on the issue of Absolute Time and Space, and with Einstein against certain neo-Kantians—he could not very
well use spatio-temporal relations to define genidentity. Instead, he attempted to use causal and genidentity relations to
define spatio-temporal order. Nevertheless, as he pointed out, a description of nature in terms of events, causation,
and genidentity does not imply (nor does it contradict) either that persistent entities are real, or that they are merely
logical constructs. In his terms, the object-language and the event-language can both be systematically developed, and a
preference for either must rest on convenience or convention, if not on superfluous metaphysics. Science certainly
does not rule either way.

There is something very heady about the idea that a new development in physics can settle or inspire truly
philosophical questions (or, less excitingly, answers). Inspiration and new enthusiasm—without which no insight is
perhaps ever achieved—are indeed welcome; but they are not honoured by logical fallacy. Whether persistent
individuals are real, or only events, or some third sort of miasma, is not the question. Which forms of language are and
are not adequate is an objective matter, and then, only relative to the criteria of adequacy we impose—that is all.

3.2. Incongruous Counterparts and Absolute Space
When two figures are congruent—i.e. are related by a Euclidean transformation—but cannot be ‘moved into
coincidence’—i.e. are not related by a proper motion—they are called enantiomorphs or incongruous counterparts.6
Intuitively, they are each other's mirror image. So, being congruent, they are exactly the
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same, geometrically speaking; yet they stand in a geometric relationship which precludes identity! We are theoretically
torn: if they are geometrically the same but numerically distinct, does it not follow that the geometric description of the
world is incomplete? But on the other hand, the non-identity is entailed by a geometric relationship; so why suspect
incompleteness in geometry; why not suspect rather their geometrical sameness?

Kant attacked the question in this way: what is the difference between a pair of two left hands and a pair consisting of
one left hand and one right hand? Let us idealize the question by assuming that the spatial regions occupied are
perfectly congruent. That means that any spatial relations internal to any of these hands—length of thumb, angle
between thumb and forefinger, and so on—are exactly the same. But while you can then move the left hands so that
one comes to occupy the position of the other exactly, you could never do this for the right and left hand.

Imagine next a universe containing a single hand. Kant insists that it must be either a left hand or a right hand—but the
internal spatial relations do not suffice to answer the question, and they are the only physically instantiated relations in
that universe. So spatial relations among physical entities are not all there is to space!

One way out of the impasse is certainly this: space is real, an independent entity in its own right, and left-handedness is
a relation to space itself. Another way out is to say that left-handedness is an irreducible property of the object, not
consisting in relations either to other bodies or to space. This second move would be analogous to the medieval
flirtation with the ubi, the ‘where-ness’, of an individual, as basic spatial property. And the third reaction is to say that, if
the universe contains only a hand, then it is neither a left hand nor a right hand. In this last option, there is then a
definite ‘loss of handedness’!

The parallel to discussions of identical particles becomes even more striking when we look at a universeU containing a
left hand and a right hand. It is easy to distinguish a universe U′ with two left hands from U—in the second case,
Euclidean reflection in a certain plane is a symmetry of the figure, and in the first case it is not. But now let us label one
hand A and the other B. We use these labels in our description; we cannot
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actually go into that world and attach the labels. Isn't it objectively true either that A is the left hand or A is the right
hand? In other words, if we imagine the universe rU produced from U by that Euclidean reflection, don't we have this
problem: U ≠ rU but no internal spatial relations are different? There are no people in either, but if we had an
ontological telescope to look at them one at a time, we would see no difference. If through that ontological telescope
we look at both together, we see that they are distinct.7 But what is it to look at U and rU side by side if not to look at a
third universe U+ containing two pairs of hands? The very idea of looking at two possible universes through one
ontological telescope is absurd.

Could one assert then that U = rU? It is egregious to insist that these two universes are really different, and then let
that insistence drive us to accept either Absolute Space or primitive left-handedness. But in this universeU = rU itself,
how are hands A and B different? Each has the property that it exists in a universe where there is another hand that
‘would not fit the same glove’, so to say. Indeed, anything we can say truly about A we can also say about B. Now it
appears that we are in trouble with the Principle of Identity of Indiscernibles (PII). That is a curious tangle: the
predicate

. . . exists in a universe containing only one other object

can be true of an object only if it is not the only one in the universe. But in addition, it is true of an object only if it is
equally true of a different object. So why should we think that the two objects must be different from each other in any
respect?

3.3.Quine: To Be Is to Be the Value of a Variable
Returning to universe U which contains only the congruent left and right hand, we notice now a difficulty with our
description. In our universe, I can designate as left whichever hand is closest to the heart. But the symmetries of U
prevent us from attaching the word ‘left’—or any other label—determinately to one hand on the basis of a description.
This is not just the point that the labelling ‘left’ and ‘right’ is conventional. Let them be called
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‘left’ and ‘right’ by convention; now describe to me which of them is called ‘left’ by your convention! Obviously you
cannot do that. Similarly for: let them be called A and B.

We should however not jump to an unforced conclusion. Suppose I begin a geometric proof with ‘Given a pair of
enantiomorphs of type H, call them A and B, . . . ’: will I be reasoning invalidly? Not at all. For the mathematical
assertion that there are two, when explicated set-theoretically, becomes equivalent to there exists a function which maps this
collection of enantiomorphs one-to-one onto the class {‘A’, ‘B’}. The point of the preceding paragraph is therefore not that
labelling is impossible, but only that the different possible labellings cannot be distinguished by description.

W. V. O. Quine made famous in philosophy the slogan ‘to be is to be the value of a variable’. By this he meant the
following. Suppose I say ‘Some Greeks believe that Zeus exists.’ Here we see the name ‘Zeus’, but the sentence does
not carry the implication that there is such an entity as Zeus. But if we write this in logical language, it becomes ‘There
is some entity x such that x is Greek and x believes that Zeus exists’, and this does carry the implication that there
exists at least one Greek. The appearances of the bound variable x, and not the name, carries the ‘ontic commitment’.

Quine added to this the thesis that names are entirely eliminable. We can first rewrite anything with a name using the
identity relation as follows:8

‘Z is thus and so’ is equivalent to ‘Every entity x such that x = Z, is also such that x is thus and so’,

then introduce a single predicate Z* which will henceforth take the place of the complex phrase ‘= Z’. When Z is the
name ‘Zorba’ then Z* is ‘Zorba-izes’ and is true of an entity if and only if that entity is Zorba.

Now we have a logically designed language which has, it seems, lost no powers of expression, but by the systematic use
of variables carries its existential—or rather, ontic—commitments on its face.

An interpretation of this language uses the above insight that a labelling consists in the existence of a function—which
need not be descriptively specifiable in order to exist. We call f an
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interpretation if it maps each variable x, y, z, . . . to an entity in the world. Then

‘x is happy’ is true under f exactly if f(x) is happy. ‘There is an entity x such that x is sad’ is true under f exactly
if there is some interpretation f′ which is like f for all variables other than ‘x’, and such that ‘x is sad’ is true
under f′.

We can see now that the universe U can be described in this language which is indeed a regimented version of the
description we gave. The curious features of U, which contains just two objects which are exactly alike and yet distinct,
do not prevent such description.

But we must also note that what we called here an interpretation—i.e. an arbitrary labelling—corresponds to what in
the discussion of relativity we called a coordinatization. For that too was an arbitrary labelling which consisted in
choosing an X-axis, a positive direction, and so forth. And now Quine's idea of ontological commitment, written on
the face of a perfect language, begins to suffer. For descriptions in terms of a given chosen coordinatization may be
convenient—but they can also be turned into coordinate-free descriptions.

To put it another way: Quine's elimination of names can be carried further; we can also eliminate the variables! Quine
himself eventually noticed and discussed this. An elegant and precise reformulation of Quine's perfect language in
variable-free (coordinate-free) form was given by Svenonius (1960). I will sketch this here, though only just enough to
show the relevant conclusions to be drawn. Take a sentence of form

1. Everybody loves somebody who admires him or her.
2. Every entity x is such that there is some entity y such that x loves y and y admires x.

The regimentation leaves out a few details of humanity and gender, of course. Sentences like ‘x loves y’ and ‘x admires
y’ we assign the form Rxy. Now we introduce the following devices (not a complete list but sufficient for our example):
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Converse Rxyz . . . if and only if Conv (R)yxz . . .
Conjunction [Rxyz . . . and Sxyz . . . ] if and only if K(R, S)xyz . . .
Universalization [Every entity x is such that Rxyz . . . ] if and only if

U(R)yz . . .
Existentialization [Some entity x is such that Rxyz . . . ] if and only if

E(R)yz . . .

Using these devices, we now rewrite sentence 2 as

3. UEK (Loves, Conv (Admires))

during which rewriting both variables dropped out.

Now how shall we read this logically coordinate-free language? A sentence like 3 says of certain complex predicates
that they are or are not instantiated. Thus, if F is a one-place predicate like ‘is red’, then EF says that F is instantiated and
UF says that the negation of F is not instantiated. Moreover, we can introduce counting into this language (see
Svenonius for details) and so we will also get sentences that say that certain complex predicates are multiply (2-fold, 3-
fold, . . . ) instantiated.

We are now only a little step away from terminology familiar from physics. Let us say ‘cell’ rather than ‘complex
predicate’ and ‘occupied’ rather than ‘instantiated’. Then we conclude: the logically coordinate-free statements do
exactly one thing: they specify occupation numbers of cells.

Does the use of one language rather than another, when we know that each can be translated perfectly into the other,
carry any ontological implications? Of course not. Quine's programme, to deduce ontology from syntax, was just a
mistake.

4. The Identity of Indiscernibles
So far I have argued that quantum mechanics, including its formulation in the field formalism, is properly interpretable
as a theory about particles. Now I shall argue that this sort of interpretation need not bring along a conception of
particle which makes quantum statistics one whit less intelligible. Indeed, the ‘loss of identity’ is not a new feature of
the quantum world, and does not yield a presumption in favour of any particular statistics. The only way we will be
able to see that is by looking at identity in a purely classical context, and asking
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whether the situation was really different then, in this respect, from what it is now.

The notions of individual, individuality, individuation, and qualitative and numerical identity form a traditional subject
cluster in philosophy. If I am right, we are still bedevilled by certain metaphysical concepts of substance which were
actually already surpassed in philosophy centuries ago. I shall argue specifically that:

1. The principle of the identity of indiscernibles is not a matter of logic;
2. nor is the identity of indiscernibles inherent in the conception of an individual;
3. nor does individuation force us into a dilemma between identity of indiscernibles and metaphysical realism;9
4. nor does the completeness of physics require that its language be less than purely general.

It is equally important to realize what these conclusions do not imply. They do not say that physics is or even can be
complete, or that real individuals do not always differ in some characteristics, or that all singular propositions can be
translated without loss into purely general ones. They just open up a manifold of possible interpretations, in principle
all equally tenable and capable of doing justice to physics.

4.1.Leibniz and the Aristotelian Knot
Central to the philosophical discussions of identity is Leibniz's Principle of the Identity of Indiscernibles. We must
distinguish numerical identity from qualitative identity, or indiscernibility. The latter means, roughly or intuitively,
having all properties in common. Two bosons of the same type, forming a compound system in a state of motion of
form x ⊗ x, are certainly indiscernible as far as quantum-mechanical description goes. Leibniz's Principle appears to
entail then that either this case cannot arise, or quantum-mechanical description is incomplete. In the latter case, what
is left out is some distinguishing characteristic of the bosons that ‘individuates’ them. This position is indeed found in
the foundational literature.10 But so is
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the position that Leibniz's Principle has been violated and indeed proved false.11 In this section I shall explain the
principle's rationale, its vulnerability, and the prospects for a semantics without it.

Would it be a logical mistake to violate Leibniz's Principle? Although of venerable history in philosophy, it has certainly
been disputed. Leibniz used it polemically in his disputes with Newton (via Clarke) over absolute space and time. Later
writers have sometimes tried to save at least the conceptual admissibility of absolute space either by trivializing
Leibniz's Principle or by denying it (see van Fraassen 1985b). What is inconsistent, even by the strictest classical
standards of logic, in the idea of a world consisting simply of two spheres alike in every respect; or, more strikingly,
with the universe U, which we examined above, consisting of two congruent enantiomorphs?

There is not much profit in putting a question in this way. In logical analysis you can shift to ever higher levels of
abstraction, and for any assertion which appears a priori on one level there will be another level on which it does not.
Consider for example the assertion that nothing can be warmer than itself. Surely this is a priori; you have to assent to
it if you understand ‘warmer’. But taken a little more abstractly, the assertion has the form ‘Nothing can bear relation R
to itself ’—and no statement is true by virtue of having that form. Similarly, if we treat identity in the abstract, as an
arbitrary relational predicate, none of the principles peculiar to identity will look a priori. Logic, in all its purity, will also
never single out a particular level of abstraction as privileged or appropriate. It simply does not deign to settle such
disputes. Reflection on logic does not therefore answer the above question; it does not yield the answer that there is
something inconsistent in that supposition, nor that it is consistent. Instead, it leads us to correct the question:
‘consistent’ is an elliptical term, and logic does not remove the ellipsis.

To understand PII we must return to the philosophical context in which it emerged. That was the problématique of
seventeenth-century metaphysics, in the historically conscious form it took in Leibniz. Unlike scornful contemporaries,
Leibniz reflected on the Aristotelian–Scholastic tradition which had, in historical fact, and in many ways, shaped the
philosophies that emerged from its ruins.
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The reasons Leibniz had for PII go back to an essay he wrote at the age of sixteen, concerning the medieval problem
of individuation. This problem was originally encountered in Aristotle: there can be many men, but there cannot be
many Socrates. What accounts for this? What gives Socrates his uniqueness? There are two questions here, and we
should not be too hasty to conflate them. It is a logical principle—before PII is accepted—that each individual is
identical with only one thing, namely itself. Is that not enough to answer the first question? But the Aristotelian
tradition searched for an individuating principle, something which by its presence would identify Socrates and
individuate him, separate him out uniquely.

The same question may be more perspicuous for us with respect to the universe U, which contains only two hands
(enantiomorphs), which are congruent but not related geometrically by a proper motion. We may imagine them also
structurally and qualitatively entirely alike, in the sense of the correspondence by geometric reflection. If this universe is
indeed a possible one, we must ask (if we follow Aristotle): what distinguishes the one hand from the other?

Aristotle said that a material substance is individuated by its matter; it could have its form (its properties) in common
with another material substance, but its matter is peculiar to it (Metaphysics, vii, 1034d. 5–8). Socrates has this flesh and
these bones; Callias has not. Each bone, when taken out of the skeleton, is in turn individuated by its matter, and not by
its properties, each of which another bone could share. But how is the matter of the bone individuated? Have we
landed in a regress? Aristotle blocks any such regress because for him there will come a level at which the entity's
matter is not a separate or separable substance. Then the question of individuation does not arise for that matter. But
this way of closing the regress has to raise eyebrows. How could Socrates and Callias be individuated by each
possessing something for which the question of individuation cannot even arise? Both have matter—that fact does not
distinguish them. What do we do when we say, but Socrates has this matter? How can we designate something
specifically, or even speak about it, refer to it and not to another thing, when it is not a separable individual at all?
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That Aristotle's relatively short discussion had not laid the questions to rest is clear from medieval writings. Some
introduce special properties which only one individual can have—notably the ubi, something like absolute spatial
position—or discuss the haecceity (this-ness) as if it were such a property. Aquinas, in De Ente et Essentia, carries on this
discussion and brings in the problem examples natural to his Christian Aristotelianism.12 There are two especially:
Socrates and Callias after death, and immaterial intelligences, such as angels. (Reader, stay with me: this is crucial to the
genesis of Leibniz's PII, and we will see important similarities to e.g. Reichenbach's discussion of bosons!)

Aquinas took the soul to be what Aristotle called the form, and this is the same in all humans; it comprises the essential
properties which delimit the infima species of humanity. Socrates' soul is, you might say, his humanity or his personhood.
But now, after death, Socrates' soul still exists and his matter does not. The same is true for Callias. If matter is what
individuates, how are Socrates and Callias distinct after death? The answer according to Aquinas shows how he has
changed Aristotle's notion of form—for he says that Socrates' soul is distinguished by its history, in which it was
erstwhile received in this flesh and these bones. Two souls after death are qualitatively entirely alike, and are not then
distinguished by being received in distinct designated matter—but are still distinguished, namely by having different
histories behind them. Having a past is counted as a real property and distinguishing mark, even if not present today in
any sort of material trace or record.

Angels are immaterial intelligences, and never were received in matter. So they cannot be distinguished by past material
individuation. Therefore, Aquinas concludes, there are as many species of angels as there are angels: any two of them
have a different form, different essential properties. Their individuation is not by matter but by form.

Why could this not have been asserted for men and trees as well? Surely any two men or trees are distinguished by
some property? However, the two men share all essential properties and differ only in their accidental ones. An
essential property of Socrates, such as his ability to laugh, is inalienable; any accidental property, such as his snubnose,
he might have shared or
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lacked without imperilling his identity. Callias might have had a snubnose.

Leibniz very clearly perceived the chink in this tightly woven chainmail. It is true for any accidental property of
Socrates' that Socrates could have shared it with Callias. But it does not follow that Socrates and Callias could have
shared all of them. It can be asserted that the individual is individuated by the totality of all his properties. On this view,
Leibniz later says with a little exaggeration, it is for all things the way Aquinas says it is for angels.13 (Yes, it is—if you
ignore the essential/accidental distinction.)

But this assertion is exactly the Principle of Identity of Indiscernibles. It allows us to say: Socrates has a snubnose and
Callias does not, and it is not necessary that Socrates have a snubnose, nor that Callias lack one. However, it is not
possible that Socrates and Callias have all properties in common. Thus, in any possible situation in which both exist,
one has a property that the other lacks. As corollary, if entities A and B have all properties in common, then A = B.

I have dwelt on this history in order to make two points. Leibniz's PII was not simply an arbitrary addition to the logic
of identity. It solved a problem in a certain philosophical tradition. On the other hand, the principle definitely was an
addition to the logic of identity. It was surely the simplest and cleanest way to capture the sense that, if individuals are
distinct, there must be something about them that makes them distinct. But the historical perspective shows that it is
less than incontrovertible even if it was not capricious.

Let us now see how these reflections should guide us in modal semantics. I will argue here that they should not make
us wary of referring to entities in possible worlds, even when we have no uniquely identifying descriptions handy. It is
necessary only to insist that the family of worlds is closed under permutations of individuals—and that any significant
proposition is truly general, i.e. is also true exactly in such a closed set.14 In the next subsection I shall discuss this in
detail. Later I shall also show how different conditions of individuation can be used to define the various statistics in an
interesting way.

In recent literature there has been considerable worry about whether the indistinguishability of identical particles does
not
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undermine any usual form of reference.15 There are very interesting suggestions to revise semantics, quantum logic,
and even set theory so as to eliminate assumptions about the very applicability of the identity predicate.16 I will try to
show that a much more conservative approach can also be satisfactory.

4.2. Permutation Invariance in Semantics
Almost every puzzle in metaphysics corresponds to a problem in the philosophy of language. The question ‘What
distinguishes one individual from another?’ (What is it that individuates?) has as correspondent the question, ‘In virtue
of what does a term refer to one specific individual and not to another?’ Given Leibniz's PII, we could answer the
latter with: for every individual, there is (in a sufficiently rich language) a description which is satisfied by that
individual alone, so all reference can proceed via description. Alternatively, not being metaphysicians in the Aristotelian
tradition, we could dismiss the ‘problem’ of individuation—but if we reject the PII, we would then still have to
produce a new answer to the question about reference.

If our language has no simple (primitive) singular terms, i.e. none which purport to refer to a specific individual alone,
that question about language does not arise for us any more either. In that case, however, we must defend the assertion
that everything, the world, can be completely described by entirely general propositions. All the puzzles we have looked
at so far then come back to haunt us—for how can we say that the sort of description we offer is complete, when it
allows for two individuals which are numerically distinct and yet are alike in all respects accessible to our sort of
description?

‘Complete’ is not univocal. Perhaps (a) all factual description can be completely given in entirely general propositions,
and yet (b) our language would not be adequate if its only function were to express those propositions. Let us give the
position that (a) is correct the name semantic universalism. Let us add to it the understanding that completeness in the
sense intended requires at least that the whole body of physics can consist of such propositions. What exactly the word
‘general’ means here is to be explained below. That something may be left out in
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some way even if (a) is correct appears when we reflect on our own concern to be able to apply science.

We shall not be able to apply science unless we can refer to specific things in the world. So we need, even qua scientists,
something more than the body of physical theory. This is the simple point that you need to know who you are, where,
and what time it is if an ordinary factual statement (such as ‘The bomb in 1879 Hall will explode at 3 pm local time on
1 January 1999’) is to be a guide for action. You might know a complete description of the situation in the language of
physics, and not know that. The objective descriptions furnished by physics do not coordinatize the world
automatically with you at the centre. (For note: you and I can both know of all the same objective descriptions, whether
they are true or false; see further Lewis 1979.)

Semantic universalism can be maintained if we add that our language needs more than completeness with respect to
factual description. The ‘view from nowhere’ (to adapt Thomas Nagel's phrase) leaves out no fact, but we—persons,
agents—need an enriched language, in which (to adapt another philosopher's insight) the ‘I think’ can accompany
every thought. This means indexical language, whose characterization is not possible within semantics, but only within
pragmatics: The utterance of ‘I am --- now’ by person X at time t expresses the proposition that X is --- at t. Note that
this principle does not use, but only mentions, the indexical words ‘I’ and ‘now’, so that knowledge of this principle
does not suffice to give a person the ability to use and understand indexical language, either. The incompleteness of
semantics as a study of language consists in part in the fact that we language users do know how to use such indexical
language nevertheless. This knowing how is irreducible to (factually descriptive) knowledge that. Having made this point,
we leave pragmatics, and return to semantics again.

How does the position of semantic universalism enter into semantics? To put it briefly, the requirement that all
propositions be general imposes a symmetry principle—Permutation Invariance—on semantic representation. These
representations, the models of the phenomena of inference which are constructed in semantics, can take many forms.
In the typical form, such a model comprises a domain of individuals and a universe
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of possible worlds. That is because semantic study is typically focused on the sort of syntax in which variables
(individual coordinates) do appear. Knowing the translation into variable-free (coordinate-free) syntax discussed above,
it is easy to see that we could shift to models in which the domain of individuals is replaced by a set of properties and
relations. That point has been settled. For the sake of familiarity, let us look at the usual formulation. To quicken our
interest, consider the following assertion:

(P) There are two entities, call them x and y, such that x and y are entirely alike in every qualitative respect in
actuality, but for x it is possible to be G, and for y it is not possible.

Will the models proper to semantic universalism allow for the possible truth of this assertion? Note that at least one
version of the PII is violated. A weaker version is not violated if we allow factual description to contain modal
elements irreducibly. But does not the removal of haecceity from semantics entail that what is possible for any individual
must be possible for all? How could (P) be true unless there is a description-independent identification of individuals
across the boundaries between alternative possible worlds? And if (P) cannot be true, does that mean that all modal
features and differences supervene on actual, qualitative features and differences?

To construct our semantic models, we need first of all a set H of cells to represent qualitative distinctions. A
philosopher passionately interested in language can think of these cells as bits of language—predicates. You could
however also think of these cells as the members of a partition of a ‘logical space’ or the subspaces of a state-space,
whatever you like. Next, we need a domain of individuals; call this set D. Now a particular world is specified by a
mapping w of all of D into those cells. (The ones which intuitively do not exist in that world may be mapped into a
special cell, the trash heap of the universe.) Finally, a universe W (on H and D) is a set of these worlds. At this point we
may add global structure to the universe, say an access relation R between worlds.17

A proposition is characterized if we specify in which worlds it is true. So it may be identified with the set of those worlds.
We
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add more global structure if we like by designating a special class of significant propositions. These propositions are
closed under Boolean operations, finitary and infinitary:

correspond to negation (complementation) and conjunction (meet). Moreover, there are special modal operations which
relate to the global structure:

Absolute necessity □A = W if A = W
= ∧ otherwise

Absolute possibility ◊A = W otherwise
Relative necessity A = {u ∈ W : w ∈ A for all w such that uRw}
Relative possibility A = {u ∈ W : w ∈ A for some w such that uRw}

Such an operation is significant if it maps the family of significant propositions into itself. Since a world inW has been
identified with a map of D into H, we can introduce a defined relationship as well:

A permutation of D is a one-to-one mapping of D onto D.

If g is a permutation of D and w a world, then g(w) is the world defined as g(w)(x) = w(g(x)) for all x in D,

and such a world g(w) may then be called a permutation of w, of course. Consider now as intuitive examples:

A x is brave and y is cowardly.
B x is brave or not brave and y is cowardly or not cowardly.

Syntactically, A and B are similar, in that they mention the same two individuals. But there is no problem of reference
for B, because it is true regardless of which individual x and y really are. This is not so for A, and indeed the
permutation which interchanges x with y would turn A into a falsehood, if it were true to begin with. So A is indeed
about specific individuals.
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Call A peculiarly about x in D (about subset E of D) exactly if there is some world w and a permutation g which
permutes x with y ≠ x (which is not the identity on E) such that A is true in w but not in g(w)—while no
permutation has that effect if it leaves x (the members of E) fixed.

Now this is still a notion which concerns individual reference. But notice how it affects propositions which look
general. Let F and G be cells, and −F, −G their complements in H, and suppose that universe W is a set of three
worlds with the following character:

F −F G −G
w1 x y x, y
w2 y x x, y
w3 x, y x y

Consider now the following proposition:

C There is an entity, call it z, such that z is F and □ (z is G)

Worlds w1 and w2 are permutations of each other, but w3 is different from them in another way. It is easy to see that in
w1 the proposition C is true (the entity in question is x), but in the permutation w2C is not true—and that is due to the
presence of world w3 in the same universe.

So proposition C looks general, for it has only a bound variable in it. Indeed, it could be written:

(C′) Cell F has at least one occupant which is necessarily in cell G.

But by our previous definition, it is peculiarly about the individual x (and also about y) and so is not purely general.
Recall that a proposition is a set of worlds:

A proposition is purely general in universe W if its truth-value is invariant under permutation.

Such a proposition need not be necessary. For example, cell F has exactly 17 occupants is purely general by this definition,
but it need certainly not be necessary. The family of purely general
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propositions is closed under operations −, ∩, □, ◊. What is required for this family to be closed under , Suppose
that A is a purely general proposition, and let us identify it as usual with the set of worlds in which it is true. So A
contains all the permutations of all its members. Now we also have:

w is in A iff, for all w′, if wRw′ then w′ is in A.
w is in A iff, for some w′, both wRw′ and w′ is in A.

So in order for A to be purely general, what we need is that, if w is in (A), then any permutation g(w) of w must
have the same status with respect to (A):

If w is in A, then, for all w′, if g(w)Rw′ then also w′ is in A.

We can guarantee that by requiring that the set of worlds accessible by R from g(w) is determined exactly by the three
elements R, g, and w, as follows:

(PERM) If wRw′, then g(w) Rg(w′).

Once stated, it is obvious that semantic universalism requires that, since nothing can be significant unless it is
permutation-invariant. This condition (which implies its own converse as well) does indeed suffice to ensure that A
and A are purely general if A is. (See Proofs and illustrations.)

It is very important to recognize what (PERM) does not imply. It does not say that R(w) is closed under permutations.
If w is our world, and u is possible relative to us, it does not follow that g(u) is also possible relative to us. Let us look
very carefully at what permutation invariance does and does not require.

Let M =〈 H, D, W, R 〉 be called a full model if H, D, W, R are as described above and both W and R are closed
under permutation. This means thatW contains all permutations of all its members, and R satisfies condition (PERM)
above. Semantic universalism clearly demands that all models be full; if a sub-family of propositions is singled out as
significant, they must all be purely general. I will let F, G, . . . stand for disjoint cells of the space H, and examine three
propositions. The first will be a version of (P) and the other two, variants thereof:
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(P1) There are two individuals a, b such that both are in F and (a is in G) and not (b is in G).
(P2) There are two individuals a, b such that both are in F and (a is in G and b is not in G).
(P3) There are two individuals a, b such that both are in F and yet not (both a and b are in G) although (a is

in G) and (b is in G).

Readers familiar with this sort of discussion will notice at once that all three ‘quantify into’ the modal contexts
governed by R. Since being in the same cell—in logical terms, satisfying all the same primitive predicates—is the
nearest we come, in precise terms, to complete actual qualitative sameness, each of these appears to imply that
qualitatively similar individuals can be modally different. Are any or all of these ruled out by semantic universalism?

The first answer is: (P1)—and hence our original (P) is definitely ruled out. We can prove this by Fig. 12.1. There the
initial supposition is that wRw′. To begin to satisfy (P1) we must depict w so that individuals a, b are both in cell F in
world w, but only b is there in w′. That way we have represented the information that ‘a and b are both in cell F, but
(a is in cell G)’ is true in w. Now we look at a permutation g which exchanges a and b. The effect of g is represented by
the broken arrows downward. Principle (PERM) requires us to close the diagram, that is to draw the double arrow,
indicating that g(w) bears R to g(w′).

But now, let g do nothing except exchange a and b, leaving other individuals fixed; then w and g(w) are one and the same
world. So then wRg(w′), and hence (b is in G) is also true in w. This shows that (P1) is false in w. Since our argument
must apply to any model, that proposition is not satisfiable in a full model.

Below I shall argue that (P2) and (P3), on the other hand, are satisfiable. Despite their ‘de re’ look, they are not
peculiarly about any two individuals. They really describe ‘global’ properties of a world, which are permutation-
invariant. Before showing this, however, we must wonder a little whether (PERM) is not too weak. To rule out (P1),
we only needed (PERM), but now let us consider
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Fig. 12.1 Concerning (P1)

(PERM*?) For any world w, the set of worlds accessible to w via R is permutation invariant.

In other words, if w bears R to w′, then w must also bear R to g(w′), regardless of what g does to w. Does semantic
universalism require this? That question reduces to: does (PERM*?) rule out anything which we must retain, if we are
to do justice to science?

The answer is that (PERM*?) is indeed too strong. It rules out as unsatisfiable the further proposition:

(P4) There are individuals a, b such that a and b are in distinct cells F and G and (a is in cellH) and not (b is
in cell H).

It is immediately clear that (PERM*?) rules this out. A relatively possible world, accessible via R, in which a is inH will
spawn another world, by permutation of a and b, in which b is in cellH. By (PERM*?) that permuted world would also
be so accessible.

Now I add that (P4) should not be ruled out. To show my
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reasons, let me now exhibit the quantum-theoretical analogues of these propositions. (They are analogues, of course,
on the modal interpretation of quantum mechanics.)18 There the actual properties of an individual in a given world are
values of observables, while its quantum-mechanical state is reflected not only in those actual values but also in what is
and is not possible. In addition, impossibility implies, and can generally be equated with, zero probability (for discrete
observables), while possibility divides into all the positive degrees of probability. We get four sorts of analogues, but the
first three start in the same way. Note that we can construct such analogues in two ways, by replacing ‘possible’ either
with ‘has positive probability’, or with ‘has probability x’, for some positive number x < 1.

(QP1–3) There are systems X and Y which are in the same quantum-mechanical state and are such that:
(P1*) the probability that a measurement of B will yield value r is positive (or, for example, = 0.5) if

performed on system X and zero (or, for example, ≠ 0.5) if performed on system Y;
(P2*) the probability that measurements of B performed onX and on Y will yield value r and value s ≠ r

is positive (or, for example, = 0.5);
(P3*) the probability that measurements of B performed on X and on Y will both yield the same value r

is zero (or, for example, ≠ 0.5), although the probability that such a measurement will yield value r
if performed on X is positive (or, for example, = 0.5), and is also positive if the measurement is
performed on Y.

(QP4) There are systems X and Y which are in distinct quantum-mechanical states, and the probability
that a measurement of B will yield value r is positive (or, for example, = 0.5) if performed on X
while it is zero (or, for example ≠ 0.5) if performed on Y.

There is no doubt that (QP1) runs counter to quantum theory, while (QP2)–(QP4) are correct in certain situations. In
the case of (QP3), one such possibility is the typical one of perfect anti-correlation in EPR–Bell situations.
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Reflecting on the possibility of (QP4), and the consequent need to reject (PERM*?), however, we see that any
plausibility it has concerns the special case of indiscernibility with respect to modal as well as actual qualitative
properties. That is an equivalence relationship which we can define as follows:

Definition: Individuals a, b, c, . . . are modally indiscernible in world w if and only if R(w) is closed under
permutations which affect at most these individuals.

In quantum-theoretical analogue, this concerns sameness of state.

Finally, then, I shall show the satisfiability of (P2) and (P3) in a full model. In addition, I shall use a model construction
which shows that (P2) and (P3) can still hold even if the individuals are modally indiscernible.

Consider the following full model. We need not specify everything about it, but say that D contains distinct entities a
and b; H contains the three cells F, G, G′; and W contains worlds w1, w2, w3:

F G G′
w1 a, b
w2 a b
w3 b a

If g is the permutation which interchanges a and b (and leaves any other individual fixed), we can take it without loss of
generality that w3 = g(w2) and w2 = g(w3), while w1 = g(w1). Let the relation R be such that each world bears R to itself, and
in addition

which implies via (PERM) that not-w3Rw2. Given this information, we can consistently add that R satisfies (PERM),
and that w1 does not bear R to any other worlds. Note also that all this is compatible even with (PERM*?), so at the
very least we can specify a and b to be modally indiscernible.

This construction was designed to satisfy (P2) and (P3), for a case in which the relevant individuals are modally
indiscernible. If R is reflexive—as it should always be, if R is worthy of the
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reading ‘Necessarily’—then modal indiscernibility entails qualitative sameness as well.

We can still have a full model, with the above situation in it, without entailing that these propositions are peculiarly
about any given individual. That is so even if there are in the world some entities which are modally discernible from
them. For {w1, w2, w3} can be one cluster of worlds, not related by R to any worlds outside that cluster, while
somewhere else in the model we will see another cluster {h(w1), h(w2), h(w3)} where h exchanges a and/or b with certain
other entities c and d. There, in that new cluster, c and b or d play the role which we depicted for a and b above, while a
plays an entirely different role. All this may sound rather strange, for it sounds as if I'm saying, for example, that it
would have been possible for all the things which are electrons (actually, in our world) to have been photons instead. In
one sense of ‘possible’, yes, but not in the sense of ‘physically possible’, which is represented by —only in the more
outré ultimate sense of verbal possibility.19

This has been a lengthy discussion, but it was needed to show how far semantic universalism does and does not go.
The cells of our language can carry information both about modal properties (the dynamic states) and about qualitative
differences (the value states). This requires that, in one sense, all modal features supervene on qualitative characteristics;
that is, (P) or (P1) is ruled out. But that does not imply that these modal distinctions are lost, not even all those that
have often been classified as de re because they are stated with quantifiers reaching into modal contexts.

And now, we return finally to the question of worlds with and without individuals. The models required by semantic
universalism are exactly those which can be described equally on either view. So far we have described them in terms of
individuals. But each worlda mapping of individuals into the cells of a logical space—can be characterized simply as a
set of occupation numbers for the cells. Closure under permutation of the access relation R entails that the R-
modalities operate on fully general propositions without losing the generalities. Therefore every significant proposition
can be restated entirely in terms of occupation numbers. This means that we can ‘abstract’ an individual-free model:
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A world is a mapping of cells into natural numbers,

and this abstracted model corresponds to many models of the more ordinary sort, but (up to isomorphism) to a unique
full model among them.20

Now not even the ontology can be ‘read off ’ the semantics, let alone the syntax. Ontology can find no purchase.

Proofs and illustrations. We prove first that (PERM) implies its own stronger version:

and is therefore equivalent to (PERM+). For assume (PERM) and suppose that g(w) bears R to g(w′). Each permutation
has an inverse, so by (PERM) itself we argue

We wish to prove now that the set of purely general propositions is closed under operations and :

So suppose g(w) is not in A. Then we have some world u such that g(w) Ru, and u is not in A. But u = g(v) for a
certain v, so g(w) Rg(v), and hence wRv. But if v were in A then u would be too, so v is not in A. Therefore w is not in

A. This proves condition (*). Similarly, if w is in A, let wRz and z in A. Then g(w) Rg(z); since z is in A and A is
purely general, g(z) is in A too. Therefore g(w) is in A. This proves condition (**).

The non-diagrammatic argument that (P1) is ruled out by (PERM) is as follows. Suppose x, y are in F in world w and
that x is in G in world w′ while wRw′. Now let g(x) = y and g(y) = x, and g leaves all other individuals fixed. Then
g(w)Rg(w′), which means wRg(w′). But g(w′) is in the model since it is full, and so y is in G in g(w′).

4.3. Classical Statistics in Possible Worlds
Now let us revisit statistics. Here is a proposal which may be
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suggested (perversely?) by the relative success and relative failure of the classical reconstruction via De Finetti's
theorem which we examined in the preceding chapter. Let us follow Carnap in taking the measure m* described in the
preceding chapter as the basic probability function. For a metaphysician this could only be the proposal that Carnap's
m* is objective chance, and he or she must immediately face the question: what makes it so?21 But as a proposal for
interpretation, it raises only the question: if we adopt this as basic probability function, can the systems of possible
worlds be so fashioned as to represent one way things could be, which is still in accordance with science?22 Our main
problem then becomes: under what special conditions will m* reduce to (make the same assignments as) m+ and mF?
Intuitively, the answer should be: respectively, when the entities are distinguishable, and when an Exclusion Principle is
in effect. Upon proper precise construal, that is indeed correct.

Recall that for Carnap the cells are characterized by families of predicates; thus, in the study of an urn-problem, the
predicate might be cubical or red, the cells being cubical–red, cubical–nonred, noncubical–red, and noncubical–nonred.
The four complex predicates representing the cells are called Q-predicates (logically strongest consistent predicates in the
language). Let us say that a family of predicates individuates a set of individuals if no two of them can be alike with
respect to all these predicates (i.e. if no Q-predicate formed from this family can characterize more than one such
individual). We now have three and only three possible situations:

1. The family does not individuate the individuals. (Every logically possible state-description can be true.)
2. The family as a whole individuates. (Only those state-descriptions in which each individual satisfies a different

Q-predicate can be true.)
3. A proper subfamily individuates. (Each individual satisfies a different Q-predicate of that subfamily, in each state-

description that can be true.)

Cases 2 and 3 can hold only relative to some postulates, on which the ur-probability is to be conditionalized; for logically
speaking, of course, every state-description could be true. In
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fact, it is easy to formulate the relevant postulates. Let a1, . . . , an be individual constants and let {F1, . . . , Fk,
G1, . . . , Gm} be the total family of predicates. Let {Q1, . . . , Qq} with q = 2k + m be the set of Q-predicates for the whole
family, and let {Q′1, . . . , Q′r} with r = 2m be the set of Q-predicates for {G1, . . . , Gm} alone. Then those postulates are
as follows:

in both cases for each i ≠ j from 1 to n. Here [is the logical symbol of material implication: A [B is false if A is true
while B is false; and otherwise A [B is true.

In Section 5 it was already illustrated that mF is m* conditionalized on the situation 2 postulate. That is, with H, T as the
two Q-predicates, we have

This is easily checked by noting that the odds between the remaining state-descriptions are the same in both cases
(1/6 ÷ 1/6, 1/2 ÷ 1/2). This is a trivial case but the argument is general: the situation 2 postulates rule out all structure-
descriptions exhibiting multiple occupancy of cells. The remaining structure-descriptions each contain the same
number of state-descriptions, so all remaining state-descriptions (as well as, separately considered, all remaining
structure-descriptions) are treated as equiprobable by m*—just as by mF.

To illustrate the effect of the situation which 3 postulates, we need a bigger table (Table 12.1). Let k = m = 1, so we
have only four cells (and G1, ∼ G1 are the Q-predicates of the relevant subfamily), and let n = 2. Here cases 1–4 are
mutually non-isomorphic; case i is isomorphic to case 4 + i (for i = 1, 2, 3, 4). All other cases are non-isomorphic to
these and are ruled out by the situation 3 postulates. So we have here four of the original structure-descriptions, in fact.
By m* all structure-descriptions are equiprobable, and conditionalization leaves the ‘internal odds’ the same, so the
remaining four are now still equiprobable (1/4 each). Now we notice that state-descriptions in the other subfamily {F1}
correspond to those remaining structure-descriptions
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Table 12.1

F1 ∼ F1 G1 ∼ G1

Case 1 a1, a2 — a1 a2 1/8
Case 2 a1 a2 a1 a2 1/8
Case 3 a2 a1 a1 a2 1/8
Case 4 a1, a2 a1 a2 1/8
Case 5 a1, a2 — a2 a1 1/8
Case 6 a2 a1 a2 a1 1/8
Case 7 a1 a2 a2 a1 1/8
Case 8 — a1, a2 a2 a1 1/8

in the whole family {F1, G1}, and hence are equiprobable. But that means that m*, so conditionalized, coincides with m+on
the other subfamily (on the remainder of the overall family, after we remove the subfamily which individuates—in this
case just {G1}). An example is: we have two coins (a1, a2), one of which is scratched (G1) and the other not; each can be
heads (F1) or tails (∼ F1) independently of the other. If we now look at heads ν tails alone, m* conditionalized on the
relevant postulate (G1a1 ⊃ ∼ G1a2) gives us the effect of m+.

To sum this up, then, we can see the three statistics as special cases of the same principle (prior equiprobability for
structure descriptions) for situations of different extents of individuation by the predicates considered. Again we see
here the relevance of completeness and PII. A claim of individuation is a completeness claim for a family of predicates;
PII entails that there must always be some family of predicates which individuate. Thus, in this perspective, situation 1,
the boson case, provides the challenge to PII.

However, one could also take the following point of view. Certain characteristics are empirically significant; their
presence or absence affects the observable phenomena. Others are empirically superfluous. The proposal that m* is
basic is meant to apply to the family of all empirically significant properties. It may be therefore that PII is satisfied by
distinguishing characteristics outside the family which defines the domain of m* in our system of possible worlds.
Being outside the domain, m* cannot
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be conditionalized on them, and so the argument relating to case 3 does not apply. The question that can be answered
definitively is therefore not whether science entails a violation of PII, but only whether its description can be regarded not
only as complete of all that is empirically significant in its domain, but also sufficient to individuate. Our present guess,
before looking more closely at quantum mechanics in this light, is that the answer is yes for fermions and no for bosons.
The case of the classical particles may be regarded as one in which individuation is by empirically significant
characteristics that could only be temporarily omitted from the scientific description for some limited purpose.

5. Conclusion: Good-Bye to Metaphysics
What I used to find seductive about metaphysical realism is the idea that the way to solve philosophical problems is to
construct a better scientific picture of the world.
Hilary Putnam (1988, 107)

Why should Putnam have found this seductive? Because a philosopher, feeling that he or she has come to understand
the structure of science, and admiring its intellectual reach, will then be naturally inclined to engage in activity similar to
what he or she admires. But then, what results? Descartes's or Leibniz's attempt to add ‘more basic’ principles to
science, on which it can ‘rest’ or ‘be supported’, is one result. This yields a larger body of science, a larger theory of the
world. But if there are philosophical questions about science as such, they will equally arise no matter how it is enlarged,
or in what direction, if the enlargement is still science. Carnap's and Ayer's conclusion that those metaphysical forays
were mistaken in intent, and that there really are no meaningful questions outside science and mathematics, is another
result. That implies that there are no questions about science as such, only e.g. scientific sociological questions about
parts of science not identical with present sociology.

There is something right in both reactions, and also something very wrong. What is right about the first is that
philosophical
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puzzles about science tend to involve hidden scientific questions—we must carefully disentangle conceptual difficulties
from questions about what the theory itself implies. What is right about the second reaction is that none of this can
lead to an extra-scientific foundation for science. The philosopher qua philosopher is not contributing to science.
Separating out scientific questions entangled in the philosophical puzzles is for the philosopher only brush-clearing,
removal of impediments. And—here is perhaps the main point—when all those factual, theoretical, and conceptual
questions have been disentangled and the impediments removed, we are in a position to understand; we are free.

What then is the seductive temptation of metaphysical realism? It consists in the idea that removing those impediments
leaves a residue of factual questions of a different order, which the philosopher can answer speculatively by postulating
abstract, unobservable, or modal realities. Strangely enough, when that idea exercises its lure, it tempts us also to stop
disentangling scientific and metaphysical issues and instead to start ‘identifying’ those supposed residual factual
questions at once, and to postulate the answers. To be fair, we must admit that many philosophers explicitly engaged in
metaphysics have given us valuable insights as well. But it is possible to re-evaluate these as insights into the manifold
of tenable interpretations, and not at all to take them as clues to ‘the’ uniquely right interpretation.

The phenomena underdetermine the theory. There are in principle alternative developments of science, branching off
from ours at every point in history with equal adequacy as models of the phenomena. Only angels could know these
alternative sciences, though sometimes we dimly perceive their possibility. The theory in turn underdetermines the
interpretation. Each scientific theory, caught in the amber at one definite historical stage of development and
formalization, admits many different tenable interpretations. What is the world depicted by science? That is exactly the
question we answer with an interpretation, and the answer is not unique. Perhaps no interpretation ever finishes the
task of answering all questions about the depicted world it displays as the theory's content. To have even a sketch of
one interpretation is valuable and brings understanding. To appreciate, however dimly, its horizon of alternative
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possible interpretations brings more insight. There cannot be in principle, but only as historical accident, convergence
to a single story about our world.
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Notes

Chapter 1
1. There are also philosophical views, not discussed here, which disagree with some of that, e.g. logical positivism and

the ‘non-statement’ or ‘structuralist’ view of theories due to Sneed, Stegmüller, and Moulines.
2. See Suppes (1967). The impact of Suppes's innovation is lost if models are defined, as in many standard logic texts,

to be partially linguistic entities, each yoked to a particular syntax. Here the models are mathematical structures,
called models of a given theory only by virtue of belonging to the class defined to be the models of that theory.

3. For the history see Suppe (1974, 1989); see also van Fraassen (1970), Suppe (1972), and Suppes (1967, 1974).
4. This problem was raised by Jill Sigman.
5. As an (aspirant) empiricist, I should say that I take only the second question seriously (since the first appears to

assume uniqueness of correct interpretation). By the same token, I envisage rational life as not necessarily
committed to a world-picture yet vitally concerned with what world-pictures might be tenable for us, and what
forms of life each might open to us.

6. I draw here on Sigman (1989).
7. See further van Fraassen (1989, 257–8).
8. For a summary and references for these different treatments of mass, see van Fraassen (1980b, ch. 3, sect. 8).
9. See Eco (1979), especially the chapters ‘The Poetics of the Open Work’ and ‘Lector in Fabula’.
10. Giere (1988, ch. 5) is to be recommended here, though written in the service of another debate. Recent history of

science has some beautiful studies, such as Peter Gallison's (1987); sociology of science, though always in
philosophical hot water, is very helpful to enrich our view of actual scientific practice (Knorr-Cetina 1981; Latour
1986). For further reflection see also Hughes (1989, 79–82).

11. Cartwright maintains that real science is not concerned to produce theories which have that feature, or to maintain
any claim as far-reaching as that. I do not wish to dispute this here; I think it



affects not the form we attribute to the theory, but the aim we ascribe to science (in the context of an account of
theories).

Chapter 2
1. I am indebted here to A. F. Chalmers's instructive article (1970), which also analyses possible applications of the

principle in physics.
2. See van Fraassen (1989), in which this tactic, its uses, successes, and limits, are treated at greater length.
3. See the characterization of what propositions are about in van Fraassen (1978a), in terms of the permutation

group; and see further Ch. 12 below. The metaphysics I have in mind here is the anti-nominalism which posits an
objective distinction between ‘natural’ classes (‘natural kinds’) and arbitrary classes.

4. See also the analysis of this sort of reasoning by Mach (1974, 516–20, 549, 456–9). See further Redhead (1975).
5. This is a point of view defended in van Fraassen (1989), but denied by philosophers who espouse realism with

respect to laws and/or modalities.
6. This subsection draws especially on Lloyd (1988, ch. 2; ch. 3, sect. 3.2; ch. 8).
7. See e.g. Blumenthal (1961, ch. VII) for this view of geometry.
8. As general sources, see Martin (1982), Weyl (1952), Yale (1968). See also van Fraassen (1985b, ch. IV).
9. Compare this to Butterfield (1987, 1989) on definitions of determinism for space–time theories.
10. Would it make sense to say that a system became deterministic at a certain time? Only in the derivative sense that its

possible trajectories from then on are just the final segments, starting at an arbitrary time, of the possible
trajectories of a deterministic system.

11. This has an interesting and welcome corollary, which we should in any case require in a state-space model. There is
no criterion of simultaneity for merely possible events; accordingly, we should allow clocks and calendars to be
reset however we like. That means: If s is a possible trajectory, and s′ is definable by the equation s′(t) = s(t + b),
where b is any real number, then s′ is a possible trajectory also. Of course we can call s and s′ equivalent descriptions
of what happens, in terms of a different clock.

12. Wilson (1989), a review of Earman (1986), suggests that we should perhaps understand classical mechanics this
way, in view of the possibility of unstable equilibria, where the theory does not predict what will happen if a certain
kind of force is applied, and the possibility of spatial paths which are not everywhere differentiable.

484 QUESTIONS OF INTERPRETATION



13. See Reichenbach's collection of early articles (1959).
14. For extensive discussion of classical mechanical systems along these lines, see Lefschetz (1977).
15. More generally, a Borel set. I restrict the discussion here to intervals because the notion of Borel set is to be

discussed in the next Chapter.

Chapter 3
1. It does have the troubling feature of separating past from future in a way that after Einstein we take to be relative.

There are indeed conceptual obstacles to the combination of indeterminism and relativity, though they are not
disabling. See van Fraassen (1978).

2. In van Fraassen (1979a; 1980b, ch. 6) I have defended the modal frequency interpretation of probability in physics;
in van Fraassen (1989, chs. 8, 12, 13), I have argued for an empiricist view of how our own probabilities
(expressing our opinion) are to be related to the probabilities found in the scientific theories we accept. Cassinelli
and Lahti (1989a) have shown how the modal frequency interpretation can be used to illuminate certain issues in
the foundations of quantum mechanics.

3. For further details see Moore (1982).
4. There is a large literature on the shift from the classical account of probability, summarized in, and thereafter

dominated by, Laplace's Théorie analytique des probabilités (1814), to the new conception for which probability cannot
be determined a priori. See Krueger et al. (1987) and especially Kamlah (1987); see also van Fraassen (1989,
ch. 12).

5. See Jaynes (1973, 477–92), which has references to preceding discussions.
6. Jaynes (1973) uses this form of reasoning to disarm Bertrand's chord paradox.
7. Rosenkrantz (1981, 4.2-2). See also sect. 3.5 of Perey (1982), which develops this approach to data reduction in

general form. Note that the numerical tables discussed here are e.g. entries for subjects arranged alphabetically. In
the case of a table of logarithms, or entries generated by any continuous function, Poincaré proved that the even
digits in the nth place are as frequent as the odd digits. See Poincaré (1905, 193–4).

8. See the concise, perspicuous exposition in Dawid (1983). The main figures in the search for ‘invariant priors’
besides Jaynes were Jeffreys (1939) and Fraser (e.g. 1961).

9. Cf. Dawid (1983, 235): the programme ‘produces a whole range of
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choices in some problems, and no prior free from all objections in others’.
10. See Jaynes (1968); Villegas (1971, 1977, 1981). I want to thank Dr F. G. Perey, of the Oak Ridge National

Laboratory, for letting me have a copy of his excellent and insightful presentation (1982) of this approach.
11. Required are certain topological properties for the group. If it is locally compact and transitive (for any y and z in

the domain there is a group element g such that g(y) = z), then the left Haar measure is unique up to a constant.
However, the left and right Haar measures need also to be the same; this is so if the group is compact.

12. See De Finetti (1964) and the exposition in Jeffrey (1983, ch. 12). For an insightful discussion, see Zabell (1988).
For both a survey of how this subject relates to classical and quantum-statistical mechanics and important new
results, see Bach (1987, 1988, 1989).

13. A criterion for extensibility was proved already by De Finetti; see Diaconis (1977) and Bach (1989, sect. 3.2), who
connects this with correlation in the sequence of random variables and with Fermi statistics.

14. For a philosophical introduction to ergodic theory see von Plato (1988).
15. A transformation which satisfies the Basic Condition is called an endomorphism.
16. Birkhoff's theorem, as well as Poincaré's, is proved in almost every book on ergodic theory; see e.g. Halmos (1956,

10–11 and 18–21), or Parry (1981, 19 and 25). Birkhoff's theorem itself, rather than its corollary for ergodic
systems, is usually called his ergodic theorem.

Chapter 4
1. See note 4 below about the word ‘causal’. If this term is rejected, the main point of this chapter remains intact: no

model with certain features (which have often been associated with demands for causal explanation) can fit these
phenomena. This shows why quantum theory must lack those features, and must take its peculiar form, if it is to
accommodate such phenomena.

2. Approximately: the most stable isotope has a half-life of 1620 years. The immediate disintegration product is
radon; its most stable isotope has a half-life of 3.825 days.

3. The most complete exposition of this point of view appeared in his posthumous work (Reichenbach 1956). As a
logical empiricist,
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however, he presented this mainly as a methodological rule, which we could settle on by decision to guide theory
construction, rather than as an insight into the structure of the world.

4. Reichenbach's statistical relationships are not sufficient to establish a causal relationship; to that extent ‘causal’ is a
misnomer. That will not obstruct our discussion, provided only that a truly causal account must at least have the
features here used to define ‘causal model’. For the claim at issue will be the negative one that certain phenomena
admit no causal model (and hence no truly causal account a fortiori). But various writers have also proposed
amendments to Reichenbach's criterion, which do not allow his original one to capture even necessary conditions
for causality. The result, and perhaps the point, of these amendments is so to weaken the empirical import of the
criterion that even quantum mechanics can no longer be said to violate causality. See the discussion of Salmon's
later theory of explanation in van Fraassen (1980b, 1985c); see further Cartwright (1988). The latter begins with a
generalized notion of causal model based on a set of linear equations, and then introduces special variables which
reflect whether a true singular cause is present or not in a given individual event. Unfortunately, there exists no
generally accepted pretheoretical analysis of the concept of cause to legislate such proposals, and it is not clear what
is to be preserved beyond the pleasing sound of the word ‘cause’.

5. The remainder of this section follows van Fraassen (1982).
6. Principle III is also called Factorizability (A. Fine), Completeness (J. Jarrett), and Outcome Independence (A. Shimony).
7. Principle IV is also called Locality (J. Jarrett) and Parameter Independence (A. Shimony).
8. Thanks to my student Ned Hall for showing this. Since independence is symmetric, V entails

P(Li & Rj|Aq) = P(Li & Rj), and this can be used to remove the factor Aq from IV to yield II.
9. That I and III entail determinism in some respects became clear in Wigner's (1970) reformulation of Bell's

argument. For a rigorous and general treatment, see Suppes and Zanotti (1980).
10. The early experiments, such as by Clauser and Holt, are described and discussed at length in Belinfante (1973). For

the later experiments, see Aspect, Dalibard, and Roger (1982); Aspect, Grangier, and Roger (1982); Aspect and
Grangier (1985).

11. Both parts of the assumption are crucial. In the discussions of the quantum-logical ‘revolution’ below we shall note
the importance, and dubitability, of the assumption that the quantities must always have some value (belonging to
the set of possible measurement outcomes). Jon Dorling (1981) has constructed a striking illustration
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of how, if that assumption holds, systematic but indeterministic discrepancies between actual and apparently
revealed values can operate.

12. What I have called here simple models are what Accardi calls Kolmogorov models (for references see next
chapter), which suggests—misleadingly, in my opinion—that these are the only sort allowed by classical probability
in its standard formulation.

13. This is one way of summing up Bell's Inequalities in a general form. There are other elegant ways to do that; see e.
g. Itamar Pitowsky's description of what he calls the Bell—Wigner and Clauser—Horne polytopes of probability
functions, in ch. 2 of Pitowsky (1989).

14. See for example De Muynck (1986a, esp. 998). See further Dieks's (1986) discussion of this argument; Dieks and
Hoekzema (1984); Rastall (1983); and the discussion between Stapp and Rastall in Stapp (1985) and Rastall (1985).

15. The many operative senses of locality, contextuality, and separability, as well as the logical relationships between
them, are explored in Redhead (1987). See also D'Espagnat (1976, 1984).

Chapter 5
1. In Chapter 10 we shall briefly consider such a ploy, the ‘de-occamization’ of observables via a pertinent theorem of

Stanley Gudder.
2. To see this consider the simple case P (A|B or not B) = P(A) = P(A and B) + P(A and not B) = P(B) P(A|B) +

P(not B) P(A|not B) = some average of P(A|B) and P(A|not B).
3. The above discussion was arrived at in response to the 1986 lectures at Princeton by Professor Luigi Accardi of the

University of Rome. Despite our disagreement, I thankfully acknowledge my debt to Professor Accardi's writings
and lectures; this debt will be apparent in the remainder of this chapter.

4. I think here especially of the programme of Jauch and Piron, and the more recent programme of Ludwig. See
Jauch (1968), Piron (1972, 1976), Varadarajan (1968), Ludwig (1967, 1983/5, 1985/6), Mittelstaedt (1978, 1981).
See also work of Marlow (1978b, 1978c).

5. .
6. See also Beltrametti and Cassinelli (1981a, 204–7).
7. On the modal interpretation (Copenhagen variant) that I shall advocate below, only the statistical distribution of

outcomes in a class of measurements gives information about the state of the system.
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8. A similar, entertaining discussion in terms of pupils passing exams is found in D'Espagnat (1983), sect. 4.7).
9. See also Harper et al. (1981) and Hajek (1989) for the recent history of this subject.
10. The critique in this section is mainly that of van Fraassen (1981b). The subject has been thoroughly treated since in

Hellman (1982) and Skyrms (1982). See also D'Espagnat (1983, ch. 12).
11. See the discussion of non-historical propositions and chance in van Fraassen (1980c, sects. 1.2, 2.4, and 3.2).
12. The easiest way this pair of equations could be consistent is perhaps this: there is a certain observable nY such that

nY has a certain value υ(y, nY) when Y is in state y—and Y(E) is just the set {y ∈ SY: υ(nY, y) ∈ E}. In that case nY is the
‘pointer observable’ whose values are the outcomes of the measurement, and equivalently the sets Y(E) are the
characters of states of Y that could equivalently be called outcomes of the measurement. As I said, that is the easiest
way in which this story could be consistently elaborated, but perhaps not the only one.

13. For the later development I refer to here, see Dalla Chiara (1983).
14. The set must be a Borel set, to ensure that the function is defined.
15. See Jauch (1968, sect. 5.8); for further discussion see Ch. 9, Sect. 7 below.
16. This is a variant of Desargues's theorem, and was first formulated by Alan Day; see Greechie (1981).
17. For a complete exposition of these results see Varadarajan (1968, ch. VII, sect. 5).
18. For the quantum-logical interpretation of quantum mechanics (implicitly contested here), see the bibliography

entries for Bub, Bub and Demopoulos, Demopoulos, Friedman and Putnam, Putnam, and Stairs.

Chapter 6
1. J. van Aken (1985, 1986) has correctly emphasized the limits of this assumption.
2. In quantum logic and its associated approaches to foundations of quantum mechanics (QM), such notions are

conceptually distinguished, and assumptions introduced one by one in order to explore exactly how much each
contributes to the structure of QM models; see van Fraassen (1981a, sect. 1–6); Mittelstaedt (1981).

3. In the next Section (see especially its Proofs and illustrations and the cited work by Lahti and Cassinelli) it will become
clear that eigenvalues and possible values are not to be equated in general.
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The restriction to discrete spectra allows us to ignore this complication.
4. For a clear account of the whole subject, see Jordan (1969). A philosophical discussion of observables with

continuous spectra is found in Teller (1979). Recent work has brought out further qualifications concerning non-
discrete observables, which I do not discuss here: see Ozawa (1984) and Lahti (1988).

5. See Cassinelli and Lahti (1989a), where this issue is coupled with the connection between observables and their
discretizations, and the modal frequency interpretation of probability.

6. As a geometric illustration of the case in which the condition is not satisfied, think of the z-axis in space and two
lines m and n through the origin, in the x–y plane. The projection on either line commutes with the projection on
the z-axis, because doing one after the other turns a vector into the null vector. But if those two lines are not
orthogonal to each other, the projections on them do not commute. Take a vector in the x–z plane which is
orthogonal to m but not to n; if we first project it on n we obtain a vector of positive length, and we turn this into
another vector of positive length by projection on m.

7. The representation of mixed states by means of statistical operators is clearly presented in von Neumann (1955);
the seminal paper for more recent practice was Fano (1957). For a general discussion which covers also continuous
mixtures and some questions of interpretation, see Ochs (1981). Mixed states are also referred to as incoherent
superpositions.

8. It follows at once that Tr is linear. That it is order-independent is not equally obvious; see e.g. Jordan (1969, ch. V,
sect. 22).

9. Note that by my definition a statistical operator has necessarily a pure point spectrum. We could have proceeded
conversely with the more usual definition of a statistical operator as a positive self-adjoint operator with trace 1,
and then the proof that these have a discrete spectrum (Jordan 1969, ch. 5, sect. 22). Hence there is here no loss of
generality in our discussion.

10. This is a subject with a history, starting with an inspired guess by Schroedinger (1935a; 1936) and ending with the
fully general results of Hadjisavvas (1981). The result for the finite-dimensional case was already proved in Jaynes
(1957).

11. Remember that our discussion is restricted to separable Hilbert spaces; the dimension of a subspace is always less
than or equal to that of the whole space.

12. There is an exposition in Appendix 2 of Hughes (1989).
13. Bub (1977) draws the connection between conditionalization and Lueders's rule explicitly; see further Beltrametti

and Cassinelli
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(1981a, sects. 25–6), and Hughes (1989, sects. 8.2, 8.4, 8.8.)
14. For ‘learns’ we may read ‘finds out by measurement’.
15. Lueders (1951). This rule is discussed in Furry (1966), and its connection with conditionalization is very clearly

exhibited in Bub (1977). For a recent discussion see also Martinez (1989).
16. See also Beltrametti and Cassinelli (1981a, ch. 26).
17. For this theorem, see Herbut (1969, 291).
18. There are no other cases; see Wigner's Theorem, discussed in Jordan (1969, sect. 29).
19. For a discussion of its exact meaning, see Jordan (1969, ch. III, sect. 15). See also Beltrametti and Cassinelli (1981a,

sects. 6.1, 6.2 and further 6.4, 7.5, 23.1, 23.2).
20. This is the usual assumption, but see n. 21 and Ch. 8, Sect. 8 below for complications.
21. This reasoning rests on an assumption, namely that H does represent an observable. At the moment, I am

assuming that all Hermitean operators do. When this assumption is discarded, as in the presence of superselection
rules (see below), we must say more carefully: by definition,H represents the energy, if it represents an observable
at all.

22. The simplest Hilbert space of this sort uses one spatial dimension and its vectors are the square integrable,
complex-valued functions of a real variable. That means: functions f(x) = c such that x is real and c complex,
with ∫ |f(x)|2 dx finite, and with the inner product defined by (f· g) = ∫ f(x)* g(x) dx.

23. The term was introduced in Wick et al. (1952, esp. 103).
24. A simple example is given by Beltrametti and Cassinelli (1981a, sect. 6.4, exercise 7).

Chapter 7
1. For a more abstract treatment, see Beltrametti and Cassinelli (1981a) and the references therein especially to the

work of Aerts. The locus classicus is von Neumann (1955, ch. VI, sect. 2).
2. I shall ignore superselection rules in this section; see Beltrametti and Cassinelli (1981a, sect. 7.6).
3. See Finkelstein (1962/3, esp. 630) and Bub (1976, esp. 7–9). Cf. also Lahti (1988).
4. Communicated by J. Bub.
5. This fact, which follows from the more general Polar Decomposition Theorem, has been playing a significant role

in some recent interpretations of quantum mechanics.
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6. For the abstract see Beltrametti and Cassinelli (1981a, ch. 24 and references, esp. to Aerts); for the recipe see
Beltrametti and Cassinelli (1981a, ch. 7, sect. 2) and van Fraassen (1972, app.).

7. For general discussions of the interpretation of mixed states, see Ochs (1981); Hellwig (1981); D'Espagnat (1976);
and Peres (1978).

8. For discussion see especially Hooker (1972); see also Grossman (1974); Ochs (1981); Helwig (1981); Hadjisvvas
(1981); Mittelstaedt and Stachow (1983).

9. See Cartwright (1974a); see also Beltrametti and Cassinelli (1981a, sects. 2.3, 2.4, and 4.3).
10. It may be that the process cannot be initiated except under favourable circumstances, which constrain S. For

example, its temperature should not be such that the apparatus melts. In that case we should speak of an apparatus
that is an A-measurement apparatus only under those conditions, which is a derivative notion of measurement. I
shall leave this qualification aside here.

11. These will be essentially what Lahti et al. call pre-measurements. But I cannot use the same term, for they
characterize the distinction between pre-measurement and measurements quite differently, in terms of
‘objectification’, so a different contrast is connoted.

12. The word ‘calculable’ can be inserted so as not to include arbitrary Borel functions, directly accessible only to
inhabitants of Cantor's Paradise. The metatheorem will remain provable; see Ch. 6, sect. 3.3.

13. As is indicated by the title ‘Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?’
I shall recount his discussion without the assumption that there is any real collapse of the wave packet (which I
shall discuss in the next Chapter).

14. To see that (1) allows U to be unitary, consider the simple example of the tensor product of two Euclidean spaces
with orthonormal bases {x0, x1, x2} and {y0, y1, y2} respectively. Then (1) says that U(x0 ⊗ y1) simply acts on the first
component, rotating x0 around axis xk into xi, where k is a value which is neither 0 nor i (unique if i ≠ 0; indifferent
when i = 0). To define U entirely, let it act on the other basis vectors by means of a similar rotation on the second
component instead. This means that for j ≠ 0, U(xj, ⊗ yi) = (xj ⊗ Rjyi) where Rj is the rotation around axis yj which
sends yi into yk, when i ≠ j, with k being the third remaining value. It is clear that U preserves length and is one-to-
one on the basis vectors; therefore, it is indeed an isometry. See Sects. 4.5 and 4.6 below for general results.

15. This difficulty was brought to my attention by Jon Dorling; see van Fraassen (1974a).
16. I want to thank David Albert and Barry Loewer for making me
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think about this. See Albert and Loewer (1990).
17. See van Fraassen (1989, ch. 8, sects. 4–5) for a fuller empiricist account of acceptance of irreducibly statistical

scientific theories.

Chapter 8
1. There is an insightful survey of such answers in Earman (1986, ch. XI), with pessimistic conclusions. He omits

however, inter alia, what I call the modal alternative. Most of the historically important papers on the subject have
been reprinted in Wheeler and Zurek (1983).

2. More precisely, the observable A such that all and only the observables f(A) : f a Borel function are effectively
measurable by this process.

3. A good deal more could be said here; the subject is clearly linked to the voluminous philosophical literature on
whether any or all attributions of qualities can amount to statements about what (normal) observers would
experience under (standard) conditions.

4. The crucial role of the Projection Postulate was pointed out by Henry Margenau (1936), who I believe coined the
name.

5. For recent philosophical analyses see Sneed (1966), van Fraassen (1974a), Teller (1981, 1983a, 1984).
6. The weakest form of acausal transition appears in the superselection account of measurement (see Sect. 8 below),

in which the initial state evolves in a determinate manner, but into a mixture only one (unspecified) component of
which represents the actual new state. As I shall try to show, this is the most promising way to try and make the
Projection Postulate intelligible, but we shall see that it too is subject to serious difficulties.

7. My critique of the Projection Postulate (van Fraassen 1974a) essentially followed Margenau; here I am indebted
also to De Muynck's discussion of the postulate (1986b), and the discussion note by De Muynck and J. van
Stekelenborg (1986).

8. See the discussion at the end of this section of the point made by David Albert; see also Redhead (1987, 53–5).
9. Albert made this point at a workshop on the philosophy of quantum mechanics at Princeton University, 1988.
10. As noted in the preceding chapter, caution is required in the discussion of repeatable measurement: the measured

quantities cannot be continuous. However, they have arbitrarily fine discretized counterparts which do admit of
repeatable measurement.

11. In addition to the references below, see the text by Gottfried (1966); Cartwright (1974a); and Belinfante (1976,
ch. 1).
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12. Beltrametti and Cassinelli (1981a, ch. 8); see also the exposition above, Ch. 6, Sect. 8.
13. Furry (1936a, 1936b); cf. the analysis in Hooker (1972, esp. 114–20).
14. See also the discussion in Hughes (1989, sect. 9.8).
15. See Hepp (1972) and Bub (1989b); this point is emphasized in Bub (1989d, 143).

Chapter 9
1. The first version of the modal interpretation which I presented (van Fraassen 1972a) was rightly criticized by

Nancy Cartwright (1974c). The version developed in this chapter is an elaboration of what I called the Copenhagen
variant of the modal interpretation in van Fraassen (1973b), which I developed further in van Fraassen (1974a,
1981c). For discussion see Hardegree (1976, 1979); McKinnon (1979, 1981); Healey (1979), and my reply (1979b);
Burghardt (1984a, 1984b); Redhead (1987, 135–7). Some of these discussions relate to the anti-Copenhagen
variant, to which I shall turn only very briefly, in Ch. 10.

2. See Wheeler's (1957) comments on Everett's initial paper.
3. There are several versions, as I shall note below; only one (the ‘Copenhagen variant’) will be developed here. In

comparison with the first two options listed above, it allows for isolated systems in the scope of quantum theory,
but classifies the indeterminism as reality and not mere appearance.

4. It is important to emphasize this, for the imagery of the Projection Postulate tends to suggest a much more direct
revelation of the initial state in the measurement outcome. Within the general quantum theory of measurement, we
can pose the question: how can the initial state of the object system be inferred from measurement outcomes? The
answer is then that it can be inferred uniquely only from information about incompatible observables. Of course,
measurements to obtain such information cannot be performed on a single system without mutual interference,
but only on different samples from a relevant ensemble. There is a fascinating discussion of this topic already in
Reichenbach (1944). For a contemporary general account see Lahti (1988, sect. 6); Busch and Lahti (1989).

5. There is more to this than I can spell out at once. We shall look at its implications again in Sect. 4, and at more
basic reasons for it in the quantum-logical development of the modal interpretation below.
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6. Kochen's use of the Polar Decomposition Theorem could be adapted here; and it leads to a general and
comparatively simple rule of this sort. I described this essentially, though without appeal to that theorem, in the last
section of van Fraassen (1981c), but did not make it part of the interpretation. See further Sect. 7.5 and n. 19 below.

7. Although it is not necessary for our little discussion here, there will be more general constraints on value states for
N-body systems with N > 2. See Sect. 8 and 9 below.

8. It may be an interesting project to explore what additions can be made consistently to the modal interpretation to
guarantee that certain values of observables remain the same during a given time interval. The first condition is
clearly that a measurement designed to check such agreement over time gives a positive outcome with certainty. A
further condition that could be used is Zurek's (see Ch. 7 above), which concerns the interaction Hamiltonian for
apparatus and environment. A third item of use may be the Polar Decomposition Theorem, along the lines of
Kochen's interpretation. Whatever additions are made will certainly be such as to apply to some set of compatible
observables only. Personally, I feel that such additions would only be aesthetic, for the explication of what the Born
Rule says is complete without them.

9. We might put it this way: the many-worlds interpretation ‘modalizes’ the collapse of the wave packet, while the
modal interpretation ‘modalizes’ the ignorance interpretation of mixtures.

10. See the discussion of the ‘canonical’ description in the Proofs and illustrations of Ch. 7, Sect. 2. In the earliest variant I
made up of the modal interpretation (van Fraassen 1972a), I followed Everett in this; I eliminated that because of
those asymmetries pointed out by Cartwright (1974c).

11. This section and the next follow van Fraassen (1981a, 1981c).
12. For expositions by some main contributors themselves, see Piron (1972, 1976), Jauch (1968), and Varadarajan

(1968). For a retrospective that covers a number of alternative approaches, see Beltrametti and Cassinelli (1981a).
For the severe theoretical limits on the project see Goldblatt (1984); for philosophical discussion see e.g. Hardegree
(1981), McKinnon (1981). See also the recent thorough discussion of major developments and their significance in
Hughes (1989, ch. 7).

13. See also Hardegree (1981), Hardegree and Fraser (1981), Kalmbach (1984).
14. See Jauch (1968), Varadarajan (1968), Piron (1972, 1976).
15. See Ch. 6, Sect. 4. (See also the discussion there of the amendment needed for the infinite-dimensional case.)
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16. Several of the papers in Beltrametti and van Fraassen (1981) deal with that topic, specifically Aerts (1981) and
Zecca (1981).

17. I give this postulate here in its strongest form; appropriate weakenings introduce the set of superselection rules by
adding a clause of form ‘and if P commutes with every operator in set SSR’.

18. See Ch. 6, Sect. 5; reference is to Gleason (1957).
19. The discussion of the possible addition of PQ4 was prompted by Kochen's use of the Polar Decomposition

Theorem in his interpretation; see Kochen (1979, 1985a, 1985b). Unlike in the modal interpretation, probabilities
are assigned by Kochen also outside measurement situations. Similar attempts, along somewhat similar lines, have
been made more recently in interpretations proposed by Healey and Dieks.

20. As James Cushing has pointed out to me, the ignorance interpretation would have to meet still one more criterion.
For if the system to which we assign a mixed state is really in one of the component pure states, then that pure state
must be developing in time in accordance with quantum mechanics. Nothing in what follows establishes that this
further criterion can be met (or even exactly how it should be explicated). The modal interpretation, however, is
not subject to this further criterion: only the dynamic state, and not the value state, is directly subject to dynamic
principles about evolution in time. On the contrary, the changes over time in the value state (as allowed by the
dynamic state, via criteria (a) and (b) above), constitute the ineliminable element of indeterminism in the quantum
world, according to this interpretation.

21. I want to thank Wm. De Muynck for substantial help with the proof. Leslie Ballentine independently sent me
essentially the same proof shortly after.

22. There will be some judicious confusion of use and mention; the proof consists in the construction of a consistent
notation for the sought states.

23. Suppose we started with a particular basis {xi ⊗ yj ⊗ zk} and vector ϕ is not orthogonal to e.g. x2 ⊗ y3 ⊗ z5. Then
choose three new bases for the component Hilbert spaces {x′i}, {y′j}, and {z′k} such that x2, y3, and z5 are
respectively non-orthogonal to all members of those bases. It follows that φ is not orthogonal to any member of
the basis {x′i ⊗ y′j ⊗ z′k}.

24. I apologize to my logician friends who may be driven wild by the way I ride roughshod over the use/mention
distinction in this paragraph (with a bow to those perspicacious authors who once began a paper with the footnote:
‘with respect to use and mention we follow the conventions of Principia Mathematica’).

Chapter 10
1. This chapter is an expanded version of my paper by this name (van Fraassen 1985d), presented at Joensuu, June

1985. For subsequent discussion see Kronz (1988), Halpin (1987). Compare also the paper by A. Fine in Cushing
and McMullin (1989), and, for views contrary to mine and to Fine's, the papers by e.g. Shimony, Teller, and
Wessels in that volume.

2. I am indebted here to various analyses of the argument, notably those of McGrath (1977) and Wessels (1981).
3. Considerable ingenuity has been spent, for example by James McGrath and Linda Wessels, to uncover exactly and

precisely what those premisses might be; see McGrath (1977) and Wessels (1981, 1989).
4. I want to thank Professor Erhard Scheibe for bringing this question forcefully to my attention, and for our

subsequent correspondence in which he showed in detail that the divergence from the classical case cannot be
shown using only two pairs of variables. His results are reported in Scheibe (1991). I also want to thank my student
Ned Hall for his help with the proofs in this section.

5. Although I shall not pursue this point here, I conjecture that it has been the lure of this ‘perfect’ solution that
initiated and maintains the so-called quantum-logical interpretation of quantum mechanics; see e.g. Bub (1973,
1974, 1976, 1989a), Glymour and Friedman (1972), Friedman and Putnam (1978), Stairs (1983a, 1983b, 1984).

6. For the quantum-logical interpretation, see Putnam (1969), Bub (1973, 1974), Friedman and Putnam (1978), Stairs
(1983a, 1983b, 1984). My two conjectures, about this motive as lying behind the quantum-logical interpretation and
also behind Bohr's reply to EPR, support each other in Bub's (1989d).
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7. As pointed out in Ch. 9, the Copenhagen variant of the modal interpretation presented there implies (K–S), in the
form of the Identity of Observables principle. I have also described (but definitely not advocated) a variant of the
modal interpretation (‘anti-Copenhagen’ variant) which rejects (K–S) and consistently assigns sharp values to all
observables (see van Fraassen 1973b, 1979b). There is an illuminating discussion of this alternative in Redhead
(1987, 135–7; also 139–52).

8. There is a good deal of literature on this topic, and I can only list a selection. See Jordan (1983); De Muynck and
van den Eijnde (1984); De Muynck (1986b); Redhead (1987, ch. 4, sect. 6). I am furthermore indebted to the
discussions of K. Kraus in Lahti and Mittelstaedt (1985), Rastal (1985), and Dieks (1982). For a recent discussion
and review of some of the literature see K. Kraus (1989). Concerning apparent conflicts with relativity theory, see
the next subsection.
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9. See e.g. Mittelstaedt and Stachow (1983), Dieks (1986), Smith and Weingard (1987); for a recent survey and
diagnosis, see Eberhard and Ross (1989). This literature differs from most of what I cited earlier in being directed
specifically to relativistic formulations of quantum mechanics.

10. See e.g. Eberhard (1978); Ghirardi et al. (1980); Jordan (1983); Redhead (1987, ch. 4).
11. Despite all this, the topic remains alive. See Krauss (1985) and Stapp (1985); also Kronz (1988, 1990), and the reply

by Halpin (1987).
12. For an illuminating history of the attempted forms of explanation of distant action in connection with Newtonian

physics, see McMullin (1989).

Chapter 11
1. For this chapter I want to express grateful debt especially to Simon Kochen, and also to the lectures and articles of

Peter Mittelstaedt, Maria Luisa Dalla Chiara, Giuliano Toraldo di Francia, and Willem De Muynck.
Correspondence and discussion with Dennis Dieks has been of significant help. Specific debts to each of these
are indicated below.

2. At least in the general form here given; Dennis Dieks (1990c) argues that there is a natural equivalence relation
which is needed to integrate dynamics and statistics.

3. This point has been clearly made by Redhead (1983), and also by Kochen (1985a).
4. I shall discuss the similar arguments by Kaplan (1976) and Sarry (1979) below. For critique see Messiah and

Greenberg (1964), De Muynck and van Liempd (1986).
5. Cf. Jauch (1968), sect. 15-4 and problems, especially problem 6, which deduces the dichotomy for a system with

abelian superselection rules.
6. There is a recent, startlingly ingenious, proof of Dichotomy by Simon Kochen, on the basis of his interpretation of

quantum mechanics. In his formalism, subaggregates are assigned states relative to the remainder, and the
Permutation Invariance is required for all the relative (‘witnessed’) states. I do not know whether his assumptions
could be rephrased as concerning the family of observables.
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7. I want to thank Robert Weingard for the details.
8. Recalling Ch. 2, we note of course that the choice is not logically informationless, for the choice of a Hilbert space

model is presupposed.
9. This is disputed by Dieks (1990).
10. See also the sequel (Bach 1985), and see further the quantum generalization of De Finetti's Theorem by Hudson

(1981), and the recent work by Costantini and Garibaldi (1988, 1989).
11. I have tried to write Postulate II as perspicuously as I could; it must be kept in mind that the cells are disjoint, so

the description must be understood to assign a particle to only one cell.
12. Compare this to the Maxwell–Boltzmann function which results from Postulates I–III. For a special ordering it

gives (1/M)N; but because the particles are not required, by proposition X, to be ordered in any specific way, P(X)
is then (N!/N(1)! . . . N(M)!)(1/M)N. I want to thank John Paulos and John Collins for carrying out the detailed
calculations for these cases, for my seminar at Princeton.

13. Which I did not appreciate when I wrote my 1969 article.
14. It does not follow from Permutation Invariance alone. Recall the discussion of Kaplan's argument, which derived

Dichotomy from Permutation Invariance, via an assumption about the reduced states.
15. This implies that, for any two particles, some observable has different values. It does not imply that there is a single

observable with a different value in each particle.
16. Each index letter a, b, . . . , n is assigned a constant numerical term K(a), K(b), . . . , K(n). When I use specific

numerals, they are chosen by way of example.

Chapter 12
1. In my thinking on this topic I have been especially indebted to the articles by Redhead, Teller, De Muynck, and

Ginsberg in quantum field theory, by Dieks on identity and individuality of identical particles, by Costantini,
Galavotti, and Garibaldi on classical indistinguishability, and finally by David Kaplan and Robert Stalnaker on
modal semantics. Work presently in progress by Teller and Redhead will undoubtedly give new impetus to the
questions addressed here.

2. For critical discussions see Costantini (1987); Costantini and Garibaldi (1988); Costantini et al. (1989); Bach (1987,
1988, 1989); Dieks (1990).
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3. In this section I am much indebted to De Muynck (1975). See also Redhead (1983, 1988).
4. Ginsberg (1984) misstates the result as ‘particles of half-integer spin must be Fermions, particles of integer spin

must be Bosons’ (Ginsberg, 1984, 335). See the discussion in Ch. 11, Sect. 2, Proofs and illustrations.
5. See Robertson (1973) and De Muynck (1975, sect. 4–5).
6. See the discussion in van Fraassen (1985b), Nerlich (1976), and Weyl (1952).
7. The idea of an ontological telescope is of course an impossible fiction, for many reasons. Here the story of its use

implies that looking through it at the universe does not introduce an orientation, does not introduce one perspective
(the observer's) into the universe. A less metaphysical discussion could replace this ontological ‘view from
nowhere’ with a complete description of the universe by means of entirely general propositions. See further below.

8. I'm riding roughshod over the use/mention distinction, but it would be too pedantic to do otherwise.
9. Specifically, notions of individuating essence or of haecceity, to be explained below.
10. See Aerts (1981, esp. 402: ‘They can be distinguished, but the observer does not see the interest in distinguishing

them’); also Aerts and Piron (1981).
11. There is an extensive literature on this subject. In chronological order, see Margenau (1944), Reichenbach (1956),

van Fraassen (1969), Salmon (1969), Cortes (1976), Barnette (1978), Teller (1983b), van Fraassen (1984b, 1985e).
12. See Aquinas, Being and Essence, esp. ii. 32–3; iv. 44–5; v. 52; also Summa Theologicae, I, q. 11, a.3c.
13. Discourse on Metaphysics, IX; see also his New Essays, II–xxvii.
14. For a more technical treatment see van Fraassen (1978a). The view about significance requiring permutation

closure is one form of anti-haecceitism in modal semantics, and is not uncontroversial. See also Stalnaker (1979).
15. Very helpful discussions of the language of physics in this connection are provided by De Muynck (1975); also De

Muynck and van Liempd (1986).
16. Cf. esp. Mittelstaedt (1985), Dalla Chiara (1985), Dalla Chiara and Toraldo di Francia (1983).
17. The cells correspond to monadic predicates; so what about relations? I omit them to keep the discussion

perspicuous. However, the formal treatment is not curtailed. The simplest formal treatment
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of relations is to treat them as properties of infinite sequences of individuals—see van Fraassen (1973a). See also,
for this section, the discussion of modal semantics in van Fraassen (1978a) and Stalnaker (1979).

18. But it is only an analogue still, since we are here discussing classical modal semantics in which the non-classical
complexities of quantum theory may not be reflected. I wish to infuse our enterprise with ideas from modal
semantics, not to reduce it.

19. To this I add the assertion elsewhere that all modalities are indeed reducible to verbal modalities, but only on the
level of pragmatics; see van Fraassen (1977).

20. See van Fraassen (1978a), which also compares this treatment with other approaches to de dicto and de re modalities.
21. He or she might find comfort in the reflection that if there is no primitive this-ness, and numerical identity reduces

via PII to qualitative identity, then there is indeed no real difference in the world if two entities are permuted. But
does that mean then that there can be no permutation? Hence no more than one entity?

22. Of course, there is no question of reducing quantum-statistical mechanics as a whole to a classical probabilistic
theory—this we saw clearly in the preceding chapter—but only of a way of looking at Bose–Einstein and
Fermi–Dirac statistics.
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