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A primeval representation of the hydrogen atom

This beautiful mandala is displayed at the temple court of Paro Dzong, the
monumental fortress of Western Bhutan [1]. It may be a primeval representa-
tion of the hydrogen atom: the outer red circle conveys a meaning of strength,
which may correspond to the electron binding energy. The inner and spheri-
cal nucleus is surrounded by large, osculating circle that represent the motion
of the electron: the circles do not only occupy a finite region of space (as in
Fig. 6.4), but are also associated with trajectories of different energies (colours)
and/or with radiation transitions of different colours (wavelengths). At the
center, within the nucleus, there are three quarks.



Foreword

Quantum mechanics is undergoing a revolution. Not that its substance is
changing, but two major developments are placing it in the focus of renewed
attention, both within the physics community and among the scientifically
interested public. First, wonderfully clever table-top experiments involving
the manipulation of single photons, atomic particles, and molecules are reve-
aling in an ever-more convincing manner theoretically predicted facts about
the counterintuitive and sometimes ‘spooky’ behavior of quantum systems.
Second, the prospect of building quantum computers with enormously
increased capacity of information-processing is fast approaching reality. Both
developments demand more and better training in quantum mechanics at the
universities, with emphasis on a clear and solid understanding of the subject.

Cookbook-style learning of quantum mechanics, in which equations and
methods for their solution are memorized rather than understood, may help
the students to solve some standard problems and pass multiple-choice tests,
but it will not enable them to break new ground in real life as physicists.
On the other hand, some ‘Mickey Mouse courses’ on quantum mechanics for
engineers, biologists, and computer analysts may give an idea of what this
discipline is about, but too often the student ends up with an incorrect picture
or, at best, a bunch of uncritical, blind beliefs. The present book represents
a fresh start toward helping achieve a deep understanding of the subject. It
presents the material with utmost rigor and will require from the students
ironclad, old-fashioned discipline in their study.

Too frequently, in today’s universities, we hear the demand that the courses
offered be “entertaining,” in response to which some departmental brochures
declare that “physics is fun”! Studying physics requires many hours of hard
work, deep concentration, long discussions with buddies, periodic consulta-
tion with faculty, and tough self-discipline. But it can, and should, become a
passion: the passion to achieve a deep understanding of how Nature works.
This understanding usually comes in discrete steps, and students will expe-
rience such a step-wise mode of progress as they work diligently through the
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present book. The satisfaction of having successfully mastered each step will
then indeed feel very rewarding!

The “amount of information per unit surface” of text is very high in this
book – its pages cover all the important aspects of present-day quantum
mechanics, from the one-dimensional harmonic oscillator to teleportation.
Starting from a few basic principles and concentrating on the fundamental
behavior of systems (particles) with only a few degrees of freedom (low-
dimension Hilbert space), allows the author to plunge right into the core of
quantum mechanics. It also makes it possible to introduce first the Heisenberg
matrix approach – in my opinion, a pedagogically rewarding method that helps
sharpen the mental and mathematical tools needed in this discipline right at
the beginning. For instance, to solve the quantization of the harmonic oscilla-
tor without the recourse of a differential equation is illuminating and teaches
dexterity in handling the vector and matrix representation of states and
operators, respectively.

Daniel Bes is a child of the Copenhagen school. Honed in one of the cra-
dles of quantum mechanics by Åge Bohr, son of the great master, and by Ben
Mottelson, he developed an unusually acute understanding of the subject,
which after years of maturing has been projected into a book by him. The
emphasis given throughout the text to the fundamental role and meaning of
the measurement process, and its intimate connection to Heisenberg’s prin-
ciple of uncertainty and noncommutativity, will help the student overcome
the initial reaction to the counterintuitive aspects of quantum mechanics and
to better comprehend the physical meaning and properties of Schrödinger’s
wave function. The human brain is an eminently classical system (albeit the
most complex one in the Universe as we know it), whose phylo- and ontoge-
netic evolution were driven by classical physical and informational interactions
between organism and the environment. The neural representations of envi-
ronmental and ontological configurations and events, too, involve eminently
classical entities. It is therefore only natural that when this classical brain
looks into the microscopic domain using human-designed instruments which
must translate quantum happenings into classical, macroscopically observable
effects, strange things with unfamiliar behavior may be seen! And it is only
natural that, thus, the observer’s intentions and his instruments cannot be
left outside the framework of quantum physics! Bes’ book helps to recognize,
understand, and accept quantum “paradoxes” not as such but as the facts of
“Nature under observation.” Once this acceptance has settled in the mind,
the student will have developed a true intuition or, as the author likes to call
it, a “feeling” for quantum mechanics.

Chapter 2 contains the real foundation on which quantum mechanics is
built; it thus deserves, in my opinion, repeated readings – not just at the
beginning, but after each subsequent chapter. With the exception of the dis-
cussion of two additional principles, the rest of the book describes the math-
ematical formulations of quantum mechanics (both the Heisenberg matrix
mechanics, most suitable for the treatment of low-dimension state vectors,
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and Schrödinger’s wave mechanics for continuous variables) as well as many
applications. The examples cover a wide variety of topics, from the simple har-
monic oscillator mentioned above, to subjects in condensed matter physics,
nuclear physics, electrodynamics, and quantum computing. It is interesting to
note, regarding the latter, that the concept of qubit appears in a most natural
way in the middle of the book, almost in passing, well before the essence of
quantum computing is discussed towards the end. Of particular help are the
carefully thought-out problems at the end of each chapter, as well as the occa-
sional listings of “common misconceptions.” A most welcome touch is the in-
clusion of a final chapter on the history of theoretical quantum mechanics
– indeed, it is regrettable that so little attention is given to it in university
physics curricula: much additional understanding can be gained from learning
how ideas have matured (or failed) during the historical development of a
given discipline!

Let me conclude with a personal note. I have known Daniel Bes for over
60 years. As a matter of fact, I had known of him even before we met in
person: our fathers were “commuter-train acquaintances” in Buenos Aires,
and both served in the PTA of the primary school that Daniel and I attended
(in different grades). Daniel and I were physics students at the University of
Buenos Aires (again, at different levels), then on the physics faculty, and years
later, visiting staff members of Los Alamos. We were always friends, but we
never worked together – Daniel was a theoretician almost from the beginning,
whereas I started as a cosmic-ray and elementary-particle experimentalist (see
Fig. 2.5!). It gives me a particular pleasure that now, after so many years and
despite residing at opposite ends of the American continent, we have become
professionally “entangled” through this wonderful textbook!

University of Alaska-Fairbanks, Juan G. Roederer
January 2004 Professor of Physics Emeritus



Preface to the First Edition

This text follows the tradition of starting an exposition of quantum mechanics
with the presentation of the basic principles. This approach is logically
pleasing and it is easy for students to comprehend. Paul Dirac, Richard
Feynman and, more recently, Julian Schwinger, have all written texts which
are epitomes of this approach.

However, up to now, texts adopting this line of presentation cannot be
considered as introductory courses. The aim of the present book is to make
this approach to quantum mechanics available to undergraduate and first year
graduate students, or their equivalent.

A systematic dual presentation of both the Heisenberg and Schrödinger
procedures is made, with the purpose of getting as quickly as possible to
concrete and modern illustrations. As befits an introductory text, the tradi-
tional material on one- and three-dimensional problems, many-body systems,
approximation methods and time-dependence is included. In addition, modern
examples are also presented. For instance, the ever-useful harmonic oscillator
is applied not only to the description of molecules, nuclei, and the radiation
field, but also to recent experimental findings, like Bose–Einstein condensation
and the integer quantum Hall effect.

This approach also pays dividends through the natural appearance of the
most quantum of all operators: the spin. In addition to its intrinsic concep-
tual value, spin allows us to simplify discussions on fundamental quantum
phenomena like interference and entanglement; on time-dependence (as in
nuclear magnetic resonance); and on applications of quantum mechanics in
the field of quantum information.

This text permits two different readings: one is to take the shorter path
to operating with the formalism within some particular branch of physics
(solid state, molecular, atomic, nuclear, etc.) by progressing straightforwardly
from Chaps. 2 to 9. The other option, for computer scientists and for those
readers more interested in applications like cryptography and teleportation,
is to skip Chaps. 4, 6, 7, and 8, in order to get to Chap. 10 as soon as possible,
which starts with a presentation of the concept of entanglement. Chapter 12
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is devoted to a further discussion of measurements and interpretations in
quantum mechanics. A brief history of quantum mechanics is presented in
order to acquaint the newcomer with the development of one of the most
spectacular adventures of the human mind to date (Chap. 13). It intends also
to convey the feeling that, far from being finished, this enterprise is continually
being updated.

Sections labeled by an asterisk include either the mathematical background
of material that has been previously presented, or display a somewhat more
advanced degree of difficulty. These last ones may be left for a second reading.

Any presentation of material from many different branches of physics
requires the assistance of experts in the respective fields. I am most indebted
for corrections and/or suggestions to my colleagues and friends Ben Bayman,
Horacio Ceva, Osvaldo Civitarese, Roberto Liotta, Juan Pablo Paz, Alberto
Pignotti, Juan Roederer, Marcos Saraceno, Norberto Scoccola, and Guillermo
Zemba. However, none of the remaining mistakes can be attributed to them.
Civitarese and Scoccola also helped me a great deal with the manuscript.

Questions (and the dreaded absence of them) from students in courses
given at Universidad Favaloro (UF) and Universidad de Buenos Aires (UBA)
were another source of improvements. Sharing teaching duties with Guido
Berlin, Cecilia López and Daŕıo Mitnik at UBA was a plus. The interest of
Ricardo Pichel (UF) is fully appreciated.

Thanks are due to Peter Willshaw for correcting my English. The help of
Martin Mizrahi and Ruben Weht in drawing the figures is gratefully acknow-
ledged. Raul Bava called my attention to the mandala on p. V.

I like to express my appreciation to Arturo López Dávalos for putting me
in contact with Springer-Verlag and to Angela Lahee and Petra Treiber of
Springer-Verlag for their help.

My training as a physicist owes very much to Åge Bohr and Ben Mottelson
of Niels Bohr Institutet and NORDITA (Copenhagen). During the 1950s Niels
Bohr, in his long-standing tradition of receiving visitors from all over the
world, used his institute as an open place where physicists from East and
West could work together and understand each other. From 1956 to 1959, I was
there as a young representative of the South. My wife and I met Margrethe and
Niels Bohr at their home in Carlsberg. I remember gathering there with other
visitors and listening to Bohr’s profound and humorous conversation. He was
a kind of father figure, complete with a pipe that would go out innumerable
times while he was talking. Years later I became a frequent visitor to the
Danish institute, but after 1962 Bohr was no longer there.

My wife Gladys carried the greatest burden while I was writing this book.
It must have been difficult to be married to a man who was mentally absent
for the better part of almost two years. I owe her much more than a mere
acknowledgment, because she never gave up in her attempts to change this
situation (as she never did on many other occasions in our life together).
My three sons, David, Martin, and Juan have been a permanent source of
strength and help. They were able to convey their encouragement even from
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distant places. This is also true of Leo, Flavia, and Elena, and of our two
granddaughters, Carla and Lara.

My dog Mateo helped me with his demands for a walk whenever I spent
too many hours sitting in front of the monitor. He does not care about
Schrödinger’s cats.

Centro Atómico Constituyentes, Argentina, Daniel R. Bes
January 2004 Senior Research Physicist

Subjects Introduced in the Second Edition

In addition to small additions and/or corrections made throughout the text,
the second edition contains:

• A somewhat more friendly introduction to Hilbert spaces (Sect. 2.2*).
• Practical applications of some theoretical subjects: scanning tunneling

microscope (potential barrier, Sect. 4.5.3); quantum dots (single-particle
states in semiconductors, Sect. 7.4.4†); lasers and masers (induced emis-
sion, Sect. 9.5.6†). Phonons in lattice structures (harmonic oscillators in
many-body physics) are described in Sect. 7.4.3†.

• Some real experiments that have recently provided a qualitative change in
the foundations of quantum physics (Chap. 11).

• An outline of the density matrix formalism (Sect. 12.3†) that is applied to
a simple model of decoherence (Sect. 12.3.1†).

Starting with the second edition, sections including somewhat more advanced
topics are labeled with a dagger. Mathematically oriented sections continue
to carry an asterisk.

It is a pleasure to acknowledge suggestions and corrections from Ceva,
Civitarese and Mitnik (as in the first edition) and from Alejandro Hnilo
and Augusto Roncaglia, who also helped me with figures. The stimulus
from students enroled in Teórica II (2006, UBA) is gratefully recognized.
English corrections of Polly Saraceno are thanked. The support from Adelheid
Duhm (Springer-Verlag) and from K. Venkatasubramanian (SPi, India) is
appreciated.

Buenos Aires, January 2007 Daniel R. Bes
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1

Introduction

The construction of classical physics started at the beginning of the seven-
teenth century. By the end of the nineteenth century, the building appeared to
have been completed. The mechanics of Galileo Galilei and Isaac Newton, the
electromagnetism of Michael Faraday and James Maxwell, and the thermo-
dynamics of Ludwig Boltzmann and Hermann Helmholtz were by then well
established, from both the theoretical and the experimental points of view.
The edifice was truly completed when Albert Einstein developed the special
and the general theories of relativity, in the early twentieth century.

Classical physics deals with the trajectory of particles (falling bodies,
motion of planets around the Sun) or with the propagation of waves (light
waves, sound waves). The construction of this edifice required intuition to be
abandoned in favor of a formalism, i.e., a precise treatment that predicts the
evolution of the world through mathematical equations. Classical physics has
a deterministic character. The existence of a physical reality, independent of
the observer, is an implicitly accepted dogma.

Cracks in this conception appeared around the beginning of the last cen-
tury. Light waves not only appeared to be absorbed and emitted in lumps
(black-body radiation) [2], but turned out to behave completely like particles
(photoelectric and Compton effects [3, 4]). Experiments with electrons dis-
played diffraction patterns that had up to then been seen as characteristic of
waves [5]. However, the most disturbing discovery was that an atom consists of
a positively charged, small, heavy nucleus, surrounded by negatively charged,
light electrons [6]. According to classical physics, matter should collapse in a
fraction of a second! Nor was it understood why atoms emitted light of certain
wavelengths only, similar to an organ pipe that produces sounds at certain
well-defined frequencies [7].

In 1913 Niels Bohr was able to explain both the stability of the hydrogen
atom and the existence of discrete energy levels by means of a partial rejec-
tion of classical mechanics and electromagnetism [8]. However, this model was
largely a patch. Bohr himself assumed the role of leader in the quest for an
adequate formalism. In 1925 Werner Heisenberg alone [9] and, subsequently,
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in collaboration with Max Born and Pascual Jordan [10], developed a quantum
mechanical formalism in which the classical variables of position and momen-
tum were represented by (noncommuting) matrices. Also in 1925, Dirac intro-
duced the idea that physical quantities are represented by operators (of which
Heisenberg’s matrices are just one representation) and physical states by vec-
tors in abstract Hilbert spaces [11]. In 1926 Erwin Schrödinger produced the
differential formalism of quantum mechanics, an alternative approach based
on the differential equations that bear his name [12].

Since the presentation of the Heisenberg and Schrödinger formulations1 is
at least twice as difficult as the introduction of a single one, a relatively large
number of undergraduate quantum mechanics textbooks confine themselves
to a discussion of the Schrödinger realization. The present author contends
that such a presentation of quantum mechanics is conceptually misleading,
since it leads to the impression that quantum mechanics is another branch of
classical wave physics. It is not. Let me quote Schwinger’s opinion [14]

I have never thought that this simple wave approach [de Broglie waves
and the Schrödinger equation] was acceptable as a general basis for
the whole subject.

However, in order to present both formalisms, we must bear in mind that
the precision (π) achieved in the presentation of a given subject, is limited by
the amount of indeterminacy or uncertainty (∆π) inherent in any message.
On the other hand, the simplicity or clarity (σ) of any exposition is restricted
by the amount of detail (∆σ) that must be given in order to make the mes-
sage understandable. The uncertainty of a presentation may be reduced by
increasing the amount of detail, and vice versa. Bohr used to say that ac-
curacy and clarity were complementary concepts (Sect. 13.5.1). Thus a short
and clear statement can never be precise. We may go further and state that
the product of indeterminacy times the amount of detail is always larger than
a constant k (∆π × ∆σ ≥ k). The quality of textbooks should be measured
by how close this product is to k, rather than by their (isolated) clarity or
completeness.

There are several excellent texts of quantum mechanics covering both ma-
trix and differential formulations. Their indeterminacy is very small. However,
their use is practically limited to graduate students, because of the amount
of material included. On the contrary, typical undergraduate courses tend to
go into much less detail, and thereby increase the indeterminacy of their con-
tent. The present introduction to quantum mechanics reduces this common
1 There also exist other formulations of quantum mechanics. All of them yield the

same result for the same problem, but one of them may be easier to apply or may
provide a better insight in a given situation. The list of quantum formalisms in-
cludes the path integral (Feynman), phase space (Wigner), density matrix, second
quantization, variational, pilot wave (Bohm) and the Hamilton–Jacobi formula-
tions [13]. In the present text the density matrix is outlined in Sect. 12.3† and the
second quantization formalism in Sect. 7.8†.
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indeterminacy through the inclusion of both Heisenberg and Schrödinger for-
mulations on an approximately equal footing. We have attempted to keep the
consequent amount of necessary additional information to a minimum, since
these notes are supposed to constitute an introductory course. It is up to the
reader to judge how closely we have been able to approach the value k. If we
have achieved our aim, a more rigorous and sufficiently simple presentation of
quantum mechanics will be available to undergraduate students.

This book should be accessible to students who are reasonably proficient
in linear algebra, calculus, classical mechanics, and electromagnetism. Pre-
vious exposure to other mathematical and/or physics courses constitutes an
advantage, but is by no means a sine qua non.

The reader will be confronted in Chap. 2 with a condensed presentation
of Hilbert spaces and Hermitian and unitary operators. This early presen-
tation implies the risk that he/she might receive the (erroneous) impression
that the book is mathematically oriented, and/or that he/she will be taught
mathematics instead of physics. However, Sects. 2.2*, 2.7*, and 2.8* include
practically all the mathematical tools that are used in the text (outside of el-
ementary linear algebra and calculus, both being prerequisites). Consistently
with this “physics” approach, the results are generally starkly presented, with
few detailed derivations. It is the author’s contention that these derivations do
not significantly contribute to filling the gap between just recognizing quan-
tum mechanical expressions and learning how to “do” and “feel” quantum
mechanics. This last process is greatly facilitated by solving the problems at
the end of each chapter (with answers provided at the end of the book). The
instructor as an “answerer” and “motivator” of students’ questions, and not
merely as a “problem solver on the blackboard,” is an important catalyst in
the process of filling the above-mentioned gap.

The physics behind the problems has been underscored by minimizing
associated mathematical difficulties. Derivatives and 2× 2 matrices will be
sufficient for most cases.
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Principles of Quantum Mechanics

This introduction describes the mathematical tools used in the formulation
of quantum mechanics and the connections between the physical world and
mathematical formalism. Such links constitute the fundamental principles of
quantum mechanics.1 They are valid for every specific realization of these
principles. Subsequently, their most immediate consequences are presented:
the quantum process of measurement and relations of uncertainty. Frequent
shortcomings existing in many introductions can thus be avoided.2

2.1 Classical Physics

If our vision of a moving object is interrupted by a large billboard, and is
resumed after the reappearance of the object, we naturally assume that it
has traveled all the way behind the billboard (Fig. 2.1). This is implied in the
notion of physical reality, one of the postulates in the famous EPR paradox
written by Einstein in collaboration with Boris Podolsky and Nathan Rosen
[16]. “ If, without in any way disturbing a system, we can predict with certainty
the value of a physical quantity, then there is an element of physical reality
corresponding to this physical quantity.”

1 Presentations of quantum mechanics resting upon few basic principles start with
[15], which remains a cornerstone on the subject.

2 In many presentations it is assumed that the solution of any wave equation for
a free particle is the plane wave exp[i(kx − ωt)]. Subsequently, the operators
corresponding to the momentum and energy are manipulated in order to obtain
an equation yielding the plane wave as solution of differential equations. This pro-
cedure is not very satisfactory because: (a) plane waves display some difficulties
as wave functions, not being square integrable; (b) quantum mechanics appears
to be based on arguments that are only valid within a differential formulation;
(c) it leads to the misconception that the position wave function is the only way
to describe quantum states.
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Fig. 2.1. The trajectory of the car behind the billboard as an element of physical
reality

This classical framework relies on the acceptance of some preconceptions,
most notably the existence of the continuous functions of time called tra-
jectories x(t) [or x(t) and p(t), where p is the momentum of the particle].
The concept of trajectory provides an important link between the physical
world and its mathematical description. For instance, it allows us to formulate
Newton’s second law:

F (x) = M
d2x

dt2
. (2.1)

This equation of motion predicts the evolution of the system in a continuous
and deterministic way. Since this is a second order equation, the state of a
system is determined if the position and velocity of each particle are known
at any one time.

Maxwell’s theory of electromagnetism is also part of classical physics. It
is characterized in terms of fields, which must be specified at every point
in space and time. Unlike particles, fields can be made as small as desired.
Electromagnetism is also a deterministic theory.

Essential assumptions in classical physics about both particles and fields
are:

• The possibility of nondisturbing measurements
• There is no limit to the accuracy of values assigned to physical properties

In fact, there is no distinction between physical properties and the numerical
values they assume. Schwinger characterizes classical physics as:

the idealization of nondisturbing measurements and the correspond-
ing foundations of the mathematical representation, the consequent
identification of physical properties with numbers, because nothing
stands in the way of the continual assignment of numerical values to
these physical properties ([14], p. 11).

Such “obvious” assumptions are no longer valid in quantum mechanics.
Therefore, other links have to be created between the physical world and the
mathematical formalism.

2.2* Mathematical Framework of Quantum Mechanics

According to classical electromagnetism, an inhomogeneous magnetic field B
directed along an axis (for instance, the z-axis) should bend the trajectory
of particles perpendicular to this axis. The amount of bending of these tiny
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magnets will be proportional to the projection µz of their magnetic moment
µ. Therefore, if the beam is unpolarized (all values −|µ| ≤ µz ≤ |µ| are
present), particles are classically expected to impact over a continuous region
of a screen. However, it was shown in 1921 by Otto Stern and Walther Gerlach
that silver atoms distribute themselves over each of two lines. Since the mag-
netic moment is proportional to an intrinsic angular momentum called spin
(µ∝ S), it is apparent that only two projections of the spin are allowed by
nature [17]. The values of these projections are

±1
2

h̄ ; h̄ ≡ h

2π
, (2.2)

where h is the Planck constant. It has the dimensions of classical action
(energy × time). (See Table 14.1 and Sect. 5.2.1 for more details.)

Note, however, the fact that a physical quantity may have only two values
does not require by itself the abandonment of classical physics. For instance,
your PC works upon bits, i.e., classical systems that may be in one of two
states.3 As befits classical systems, their state is not altered upon measure-
ment (thus contributing to the stability of classical computers).

A different description is provided by vectors on a plane. While the sum
of the two states of a bit does not make sense, the addition of two vectors on
a plane is always another vector. Any vector Ψ may be written as a linear
combination (Fig. 2.2a)

Ψ = cxϕx + cyϕy, (2.3)

where cx, cy are amplitudes and ϕx, ϕy, two perpendicular vectors of module
one. This last property is expressed by the relation 〈ϕi |ϕj〉 = δij , which is a
particular case of the scalar product

〈Ψ |Ψ′〉 = c∗xc′x + c∗yc′y. (2.4)

ϕy

cy

ϕ
(a)

ψ
ψ

ηy

ηx

ϕxcx

by

bx

(b)

Fig. 2.2. Representation of a vector in two-dimensions. The same vector Ψ can be
expressed as the sum of two different systems of basis vectors

3 Although the bits in your PC function on the basis of quantum processes (for
instance, semiconductivity) they are not in themselves quantum systems.
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In quantum mechanics we allow complex values of the amplitudes.
Another crucial property of the vector space is that the same vector Ψ may

be expressed as a combination of other sets of perpendicular vectors ηx, ηy

along rotated axis (Fig. 2.2b)

Ψ = bxηx + byηy. (2.5)

This two-dimensional space may be easily generalized to spaces with any
number of dimensions, called Hilbert spaces. Here we outline some properties
that are specially relevant from the point of view of quantum mechanics. This
overview is expanded in Sect. 2.7*:

• Any vector Ψ may be expressed as a linear combination of orthonormal
basis states ϕi [as in (2.3)]

Ψ =
∑

i ciϕi ; ci = 〈ϕi|Ψ〉 ≡ 〈i|Ψ〉, (2.6)
〈ϕi |ϕj〉 = δij . (2.7)

• Linear operators Q̂ act on vectors belonging to a Hilbert space, transform-
ing one vector into another

Φ = Q̂Ψ. (2.8)

These operators obey a noncommutative algebra, as shown in Sect. 2.7*
for the case of rotations in three-dimensions. We define the commutation
operation through the symbol

[Q̂, R̂] ≡ Q̂ R̂ − R̂ Q̂, (2.9)

where the order of application of the operators is from right to left [Q̂R̂ Ψ =
Q̂ (R̂Ψ)].

• If the vector Q̂ ϕi is proportional to ϕi, then ϕi is said to be an eigen-
vector of the operator Q̂. The constant of proportionality qi is called the
eigenvalue

Q̂ ϕi = qi ϕi. (2.10)

• The scalar product between a vector Φa = Q̂ Ψa and another vector Ψb is
called the matrix element of the operator Q̂ between the vectors Ψa and
Ψb, and it is symbolically represented as4

〈Ψb|Q|Ψa〉 ≡ 〈b|Q|a〉 ≡ 〈Ψb |Φa〉. (2.11)

The matrix elements of the unit operator are the scalar products
〈Ψa |Ψb〉 ≡ 〈a | b〉 = 〈Ψb |Ψa〉∗. The norm 〈Ψ |Ψ〉1/2 is a real, positive
number.

4 Dirac called the symbols 〈a| and |a〉 the bra and ket, respectively [15].
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• The Hermitian conjugate Q̂+ of an operator Q̂ is defined through the
relation

〈b|Q+|a〉 = 〈a|Q|b〉∗. (2.12)

The operator is said to be Hermitian if

Q̂+ = Q̂. (2.13)

The eigenvalues qi of a Hermitian operator are real numbers and the cor-
responding eigenvectors ϕi constitute a basis set of orthogonal vectors.

• The matrix U with matrix elements Uab is said to be unitary if the matrix
elements of its inverse are given by

(
U−1

)
ab

≡ U∗
ba. (2.14)

Unitary transformations preserve the norm of the vectors and relate two
sets of basis states (see Fig. 2.2)

ηa =
∑

i

Uai ϕi (2.15)

These abstract mathematical tools (vectors, Hermitian operators and
unitary transformations) may be represented through concrete, well-known
mathematical objects, such as column vectors and matrices (Chap. 3), or by
means of functions of the coordinate and differential operators (Chap. 4).

2.3 Basic Principles of Quantum Mechanics

In this section we present the quantum mechanical relation between the phys-
ical world and the mathematical tools that have been outlined in Sect. 2.2*.
This relation requires the representation of states, observables, measurements,
correlations between particles and dynamical evolution. It is formulated
through the quantum principles:

Principle 1. The state of the system is completely described by a vector Ψ –
the state vector or state function – belonging to a Hilbert space.

The state vector Ψ constitutes an unprecedented way of describing physical
systems. It is an abstract entity that carries information about the results
of possible measurements. It replaces the classical concepts of position and
momentum.

The fact that the sum of two-state vectors is another state vector belonging
to the same Hilbert space, i.e., describing another state of the system, is
usually called the superposition principle. The sum caΨa + cbΨb must not
be interpreted in the sense that we have a conglomerate of systems in which
some of them are in the state Ψa and some in the state Ψb, but rather, that
the system is simultaneously in both component states. This statement is also
valid when the system is reduced to a single particle.
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This superposition is fundamentally different from any property of classical
particles, which are never found as a linear combination of states associated
with different trajectories: a tossed coin may fall as head or tails, but not as
a superposition of both.

By establishing that the state vector completely describes the state of
the system, Principle 1 assumes that there is no way of obtaining information
about the system, unless this information is already present in the state vector.
However, for a given problem, one may be interested only in some of the
degrees of freedom of the system (e.g., magnetic moment, linear momentum,
angular momentum, etc.), not in the complete state vector.

The state vector may be multiplied by an arbitrary complex constant and
still represent the same physical state. However, we require that the state
vector is normalized, i.e., that its norm has the value 1. Even if we enforce
this requirement, an arbitrary overall phase is left, which has no physical
significance. This is not the case for the relative phase of the terms in the sum
caΨa + cbΨb, which encodes important physical information.

The relation between the physical world and states Ψ is more subtle than
the classical relation with position and momenta x,p. It relies on the following
two principles.

Principle 2. To every physical quantity there corresponds a single linear
operator. In particular, the operators x̂ and p̂, corresponding to the coordi-
nate and momentum of a particle, satisfy the commutation relation5

[x̂, p̂] = ih̄. (2.16)

The commutator is defined in (2.9) and the constant h̄ has been already used
in (2.2). Its value (Table 14.1) provides an estimate of the domain in which
quantum mechanics becomes relevant. Classical physics should be applicable
to systems in which the action is much larger than h̄.

This is also fundamentally different from classical physics, for which physi-
cal properties are identified with numbers (Sect. 2.1).

Since any classical physical quantity may be expressed as a function of
coordinate and momentum Q = Q(x, p), the replacement x → x̂ and p → p̂
in the classical expression Q(x, p) yields the operator Q̂ = Q(x̂, p̂). Thus, a
one-to-one correspondence between operators Q̂ and physical quantities or ob-
servables Q is established. However, there are also purely quantum operators,
such as the spin operators, that cannot be obtained through such substitution.

The operator corresponding to the classical Hamilton function H(p, x) is
called the Hamiltonian. For a conservative system,

Ĥ =
1

2M
p̂2 + V (x̂), (2.17)

where M is the mass of the particle and V the potential.
5 This commutation relation has been derived from relativistic invariance [18], using

the fact that spatial translations [generated by p̂, see (4.9)] do not commute with
Lorentz transformations even in the limit c → ∞. See also (12.5).
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Principle 3. The eigenvalues qi of an operator Q̂ constitute the possible
results of measurements of the physical quantity Q. The probability6 of obtain-
ing the eigenvalue qi is the modulus squared |ci|2 of the amplitude of the eigen-
vector ϕi, if the state vector Ψ =

∑
i ciϕi is expanded in terms of eigenstates

of the operator Q̂.

Since the results of measurements are real numbers, the operators
representing observables are restricted to be Hermitian (2.13). In particular,
the possible values of the energy Ei are obtained by solving the eigenvalue
equation

Ĥϕi = Eiϕi. (2.18)

The above three principles are sufficient for the treatment of static situa-
tions involving a single particle. A number of simple, typical, well-known prob-
lems of a particle moving in one-dimensional space are discussed in Chaps. 3
and 4. The extension to three-dimensional space is made in Chaps. 5 and 6.

Two more principles, concerning many particle systems and the time-
evolution of states, are presented in Chaps. 7 and 9, respectively.

2.3.1 Some Comments on the Basic Principles

As in the case of classical mechanics, quantum mechanics may be applied
to very different systems, from single-particle to many-body systems to fields.
Thus quantum mechanics constitutes a framework in which to develop physical
theories, rather than a physical theory by itself.

In the present text we adopt the interpretation that the vector state rep-
resents our knowledge about reality, rather than reality itself. This knowledge
includes the formulation of the possible tests (measurements) to which the
system can be submitted and the probabilities of their outcomes.7

We have postulated the existence of new links between the physical world
and mathematics: physical quantities are related to (noncommuting) oper-
ators; state vectors are constructed through operations with these mathe-
matical entities; the feedback to the physical world is made by predicting
as possible results of measurements the eigenvalues of the corresponding
operators and the probabilities of obtaining them. This two-way relation bet-
ween physical world and formalism is not an easy relation. Following David
Mermin [19]:

The most difficult part of learning quantum mechanics is to get a good
feeling for how the abstract formalism can be applied to actual phe-
nomena in the laboratory. Such applications almost invariably involve
formulating oversimplified abstract models of the real phenomena, to

6 Notions of probability theory are given in Sect. 2.8*.
7 Therefore, we have accepted the reduction interpretation of the measurement

process. Historically, this was the path followed by most physicists. However, we
present one more discussion of the measurement problem in Chap. 12.
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which the quantum formalism can effectively be applied. The best
physicists have an extraordinary intuition for what features of the
actual phenomena are essential and must be represented in the
abstract model, and what features are inessential and can be ignored.

It is almost as useful to state what the principles do not mean, as to say
what they do mean. In the following we quote some common misconceptions
regarding quantum states [20].

• “The state vector is similar to other fields used in the description of the
physical world.” It is fundamentally different from the electric or magnetic
fields in electromagnetic waves, which carry momentum, energy, etc., and
in which any externally caused change propagates at a finite, medium-
dependent speed.

• “Energy eigenstates are the only allowed ones.” This misconception prob-
ably arises from the generalized emphasis on the solution of the eigenvalue
equation (2.18) and from its similarity to the correct statement: “Energy
eigenvalues are the only allowed energies.”

• “A state vector describes an ensemble of classical systems.” In the standard
Copenhagen interpretation, the state vector describes a single system. In
none of the acceptable statistical interpretations is the ensemble classical.

• “A state vector describes a single system averaged over some amount of
time.” The state vector describes a single system at a single instant.

2.4 Measurement Process

In this section we specify some basic concepts involved in the process of
measurement.8

2.4.1 The Concept of Measurement

Two or more systems are in interaction if the presence of one leads to changes
in the other, and vice versa. Different initial conditions generally lead to
different changes, although this may not always be the case.

A measurement is a process in which a system is put in interaction with
a piece of apparatus. The apparatus determines the physical quantity or
observable to be measured (length, weight, etc.).

There are two important steps in a measurement. The first is the prepa-
ration of the system to be measured, i.e., the determination of the initial
state. Bohr’s definition of the word “phenomenon” refers to “an observation
obtained under specified circumstances, including an account of the whole ex-
perimental arrangement” [22], p. 64. This should be contrasted with the EPR
definition of physical reality (Sect. 2.1).

8 See also [21], specially Sects. 1.2, 2.1, and 3.6.
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The second important step, also crucial in the case of quantum systems,
is a (macroscopic) change in the apparatus that should be perceptible by a
cognitive system. In many cases this change is produced by a detector at one
end of the apparatus. The magnitude of the physical quantity has a value if
the change can be represented in numerical form.

2.4.2 Quantum Measurements

The most fundamental difference between a classical and a quantum system
is that the latter cannot be measured without being irrevocably altered, no
matter how refined the measuring instruments are.9 This is a consequence of
the principles presented in Sect. 2.3.

Assume that a measurement of the physical quantity Q, performed on a
system in the state Ψ expanded as in (2.6), yields the result qj . If the same
measurement could be repeated immediately afterwards, the same value qj

should be obtained with certainty. Thus, the measurement has changed the
previous value of the coefficients ci → δij . In other words, as a result of
the measurement, the system jumps to an eigenstate of the physical quantity
that is being measured (the reduction of the state vector) (Fig. 2.3). The only
exceptions occur when the initial state is already represented by one of the
eigenvectors.

Given an initial state vector Ψ, we do not know in general to which eigen-
state the system will jump. Only the probabilities, represented by |ci|2, are

ϕy

ϕy

ϕx

ϕx

ψ

cy

cx

ψ = cx ϕx + cy ϕy

|cy|
2

|cx|
2

ϕyψ

ϕxψ

Fig. 2.3. The reduction of the state vector as a result of a measurement

9 Although classical systems may also be disturbed by measurements, there is
always the assumption that the disturbance can be made as small as required, or
that it may be predicted by a calculation.
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determined. This identification of the probabilities is consistent with the
following facts:

• Their value is always positive
• Their sum is 1 (if the state Ψ is normalized)
• The orthogonality requirement (2.7) ensures that the probability of

obtaining any eigenvalue qj �= qi vanishes if the initial state of the
system is the eigenstate ϕi (see Table 2.1).

The fact that, given a state vector Ψ, we can only predict the probabil-
ity |ci|2 of obtaining eigenvalues qi constitutes an indeterminacy inherent in
quantum mechanics. Our knowledge about the system cannot be improved,
for instance, through a second measurement, since the state Ψ has been trans-
formed into ϕi.

According to the interpretation adopted in Sect. 2.3.1, it is our knowledge
of the system that jumps when we perform a measurement, rather than the
physics of the system.

If in the expansion (2.6) there is a subset of basis states ϕk with the same
eigenvalue qk = q, the probability of obtaining this eigenvalue is

∑
k |ck|2. The

system is projected after the measurement into the (normalized) state

Ψ′ =
1

√∑
k |ck|2

∑

k

ckϕk. (2.19)

The concept of probability implies that we must consider a large number
of measurements performed on identical systems, all of them prepared in the
same initial state Ψ.

The diagonal matrix element10 is given by the sum of the eigenvalues
weighted by the probability of obtaining them:

〈Ψ|Q|Ψ〉 =
∑

i

qi|ci|2. (2.20)

It is also called the expectation value or mean value of the operator Q̂. The
mean value does not need to be the result qi of any single measurement, but
it is the average value of all the results obtained through the measurement of
identical systems.

The uncertainty or standard deviation ∆Q in a given measurement is
defined as the square root of the average of the quadratic deviation:

∆Q = 〈Ψ| (Q − 〈Ψ|Q|Ψ〉)2 |Ψ〉1/2

=
(
〈Ψ|Q2|Ψ〉 − 〈Ψ|Q|Ψ〉2

)1/2
, (2.21)

10 The matrix element is said to be diagonal if the same vector appears on both
sides of the matrix element.
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where
〈Ψ|Q2|Ψ〉 =

∑

i

q2
i |ci|2. (2.22)

2.5 Some Consequences of the Basic Principles

This section displays some consequences of quantum principles in the form of
thought experiments. Alternatively, one may obtain the quantum principles
as a generalization of the results of such thought experiments (see [23]).

Let us consider a Hilbert space consisting of only two independent states
ϕ±. We also assume that these states are eigenstates of an operator Ŝ cor-
responding to the eigenvalues ±1, respectively. Thus the eigenvalue equation
Ŝϕ± = ±ϕ± is satisfied. The scalar products 〈ϕ+ |ϕ+〉 = 〈ϕ− |ϕ−〉 = 1 and
〈ϕ+ |ϕ−〉 = 0 are verified. There are many examples of physical observables
that may be represented by such operator. For instance, the z-component
of the spin11 is frequently used in this book (Sects. 2.2*, 3.1.3, 5.2, 9.2,
etc.).

We start by constructing a filter, i.e., an apparatus such that the exiting
particles are in a definite eigenstate. In the first part of the apparatus, a beam
of particles is split into the two separate ϕ± beams, as in the experiment
of Stern and Gerlach (Sect. 5.2.1). In the second part, each beam is pushed
toward the original direction. Each separate beam may be masked off at the
half-way point. Such an apparatus is sketched in Fig. 2.4a, with the ϕ− beam
masked off. It will be called a ϕ-filter. It is enclosed within a box drawn with
continuous lines.

Any experiment requires first the preparation of the system in some
definite initial state (Sect. 2.4.1). Particles leave the oven in unknown linear
combinations Ψ of ϕ± states

Ψ = 〈ϕ+ |Ψ〉ϕ+ + 〈ϕ− |Ψ〉ϕ−. (2.23)

They are collimated and move along the y-axis. In the following cases, we
prepare the particles in the filtered state ϕ+, by preventing particles in the
state ϕ− from leaving the first filter (Fig. 2.4b).

In the last stage of the experimental setup we insert another filter as part
of the detector, in order to measure the degree of filtration. The detector
includes also a photographic plate which records the arriving particles and is
observed by an experimentalist (Fig. 2.4c).

In the first experiment, we place the detector immediately after the first
filter (Fig. 2.4d). If the ϕ− channel is also blocked in the detector, every parti-
cle goes through; if the channel ϕ+ is blocked, nothing passes. The amplitudes

11 Another example is given by the polarization states of the photon (see
Sect. 9.5.2†). Most of the two-state experiments are realized by means of such
optical devices.



16 2 Principles of Quantum Mechanics

Fig. 2.4. Quantum mechanical thought experiments illustrating the basic principles
listed in Sect. 2.3: (a) schematic representation of a filter; (b) preparation of the state
of a particle; (c) detector (filter, photoplate, observer); (d–g) experiments (see text).
The vertical bars denote fixed path blocking, while the slanting bars indicate paths
that can be either opened or closed. For each experiment we perform a measurement
in which the upper channel of the detector is open and the down channel blocked,
and another measurement with the opposite features

for these processes are 〈ϕ+ |ϕ+〉 = 1 and 〈ϕ− |ϕ+〉 = 0, respectively.
The corresponding probabilities, |〈ϕ+ |ϕ+〉|2 and |〈ϕ− |ϕ+〉|2, also are 1
and 0.

We now consider another set of basis states η±, thus satisfying the ortho-
normality conditions 〈η+ |η+〉 = 〈η− |η−〉 = 1, 〈η+ |η−〉 = 0 (Fig. 2.2b). It is
easy to verify that an operator R̂, satisfying the eigenvalue equation R̂ η± =
±η±, does not commute with Ŝ. Let us perform the necessary modifications
of the detector filter so that it can block the particles in either of the states
η±. If R̂ corresponds the spin component in the x-direction, the required
modification of the detector amounts to a rotation of its filter by an angle π/2
around the y-axis. Dashed boxes represent filters such that particles exit in
the η± states (η-type filters) (Fig. 2.4e).
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A particle exiting the first filter in the state ϕ+ reorients itself, by chance,
within the second filter. This process is expressed by expanding the states ϕ±
in the new basis

ϕ± = 〈η+ |ϕ±〉η+ + 〈η− |ϕ±〉η−. (2.24)

According to Principle 3, a particle will emerge from the detector filter in
the state η+ with probability |〈η+ |ϕ+〉|2 or in the state η− with probability
|〈η−|ϕ+〉|2. If the η− channel of the second filter is blocked, the particle is
either projected into the state η+ with probability |〈ϕ+ |η+〉|2 or is absorbed
with probability 1 − |〈ϕ+ |η+〉|2 = |〈ϕ+ |η−〉|2. This result sounds classical:
it is the quantum version of the classical Malus law. However, the projection
process is probabilistic. Any information about the previous orientation ϕ+

is lost.
In the experiment of Fig. 2.4e, let us replace the detector with the original

Stern–Gerlach apparatus sketched in Fig. 5.3. Classical waves may simultane-
ously increase their intensities at each of the two spots on the screen. However,
this would lead to a violation of charge conservation in the case of electrons:
quantum mechanics determines probabilities at each spot for just one parti-
cle12. We are not dealing with classical waves.

We now perform two other experiments which yield results that are spec-
tacularly different from classical expectations. Let us restore the detector fil-
ter to the ϕ-type and introduce a filter of the η-type between the first filter
and the detector (Fig. 2.4f). Thus particles prepared in the ϕ+ state exit
the second filter in the η+ state. In the spin example, particles leave the
first filter with the spin pointing in the direction of the positive z-axis, and
the second filter pointing along the positive x-axis. The detector measures
the number of particles exiting in one of the ϕ± states (spin pointing up
or down in the z-direction). We use now the inverse expansion13 of (2.24),
namely

η± = 〈ϕ+ |η±〉ϕ+ + 〈ϕ− |η±〉ϕ−. (2.25)

Thus, the total amplitudes for particles emerging in one of the states
ϕ± are14

〈ϕ+|η+〉〈η+|ϕ+〉 (2.26)

〈ϕ−|η+〉〈η+|ϕ+〉. (2.27)

12 An alternative could be that the electron chooses its path just upon entering
the second filter. However, this interpretation is inconsistent with the results of
experiment 2.4g.

13 The amplitudes in (2.24) and in (2.25) are related by 〈ϕ+ |η±〉 = 〈η± |ϕ+〉∗ and
〈ϕ− |η±〉 = 〈η± |ϕ−〉∗, according to Table 2.1.

14 One reads from right to left.
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Both components ϕ± may emerge from the detector filter, in spite of the
fact that the fraction of the beam in the ϕ− state was annihilated inside the
first filter. There is no way in classical physics to explain the reconstruction
of the beam ϕ−. This example illustrates the quantum rule concerning the
impossibility of determining two observables associated with operators which
do not commute: a precise determination of R destroys the previous informa-
tion concerning S.

The result of this experiment is also consistent with Principle 1 in Sect. 2.3,
since the state vector η+ contains all possible information about the system:
its past history is not relevant for what happens to it next. The information
is lost in the collision with the blocking mask that has been put inside the
second filter.

If we repeat the last experiment, but remove the mask from the second
filter (Fig. 2.4g), the total amplitude is given by the sum of the amplitudes
associated with the two possible intermediate states

〈ϕ+|η+〉〈η+|ϕ+〉 + 〈ϕ+|η−〉〈η−|ϕ+〉 = 〈ϕ+ |ϕ+〉 = 1 (2.28)

〈ϕ−|η+〉〈η+|ϕ+〉 + 〈ϕ− |η−〉〈η−|ϕ+〉 = 〈ϕ− |ϕ+〉 = 0, (2.29)

where the closure property has been applied [See (2.47)]. All the particles get
through in the first case; none in the second case. In going from the amplitude
(2.27) to (2.29) we get fewer particles, despite the fact that more channels are
opened.

The result of this last experiment is equivalent to an interference pattern.
Classically, such patterns are associated with waves. However, unlike the case
of waves, particles here are always detected as lumps of the same size on
a screen placed in front of the exit side of the detector filter. No fractions
of a lump are ever detected, as befits the behavior of indivisible particles.
Therefore, these experiments display wave–particle duality15, which is thus
accounted for by Principles 1–3.

The famous question about which of the two intermediate channels the
particle went through does not make sense in quantum mechanics, because
this path cannot be determined, even in principle. Determination of the path
would restore the intensity in both channels of the detector.

It is important that none of the intermediate beams suffers an additional
disturbance (for example, the influence of an electric field), which may change
the relative phases of the two channels.

Let us again replace the detector in Fig. 2.4f with the original Stern–
Gerlach apparatus. Thus we could also obtain information about the order of
ϕ± states appearing in the detector (provided the counting rate is sufficiently
slow). Consistently with Principle 3, this order turns out to be completely

15 See Sect. 11.1 for a presentation of real two-slit experiments.
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random, since relative probabilities |〈ϕ± |η+〉|2 are the only information that
we can extract from measurements.

2.6 Commutation Relations and the Uncertainty
Principle

In this section, it is shown that the commutation relation between two
Hermitian operators r̂, ŝ determines the precision with which the values of the
corresponding physical quantities may be simultaneously determined. Thus
Heisenberg uncertainty relations between momenta and coordinates become
extended to any pair of observables, and appear as a consequence of their
commutation relation.

One assumes two Hermitian operators, R̂, Ŝ, and defines a third (non-
Hermitian) operator Q̂ such that

Q̂ ≡ R̂ + iλŜ, (2.30)

where λ is a real constant. The minimization with respect to λ of the positively
defined norm [see (2.41)]

0 ≤ 〈Q̂Ψ|Q̂Ψ〉 = 〈Ψ|Q+Q|Ψ〉
= 〈Ψ|R2|Ψ〉 + iλ〈Ψ|[R,S]|Ψ〉 + λ2〈Ψ|S2|Ψ〉, (2.31)

yields the value

λmin = − i
2
〈Ψ|[R,S]|Ψ〉/〈Ψ|S2|Ψ〉

= − i
2
〈Ψ|[R,S]+|Ψ〉∗/〈Ψ|S2|Ψ〉

=
i
2
〈Ψ|[R,S]|Ψ〉∗/〈Ψ|S2|Ψ〉. (2.32)

In the second line we have used the definition (2.12) of the Hermitian conju-
gate. In the last line, the relation [R̂, Ŝ]+ = −[R̂, Ŝ] stems from the Hermitian
character of the operators [see (2.40)]. Substituting the value λmin into (2.31)
yields

0 ≤ 〈Ψ|R2|Ψ〉 − 1
4
|〈Ψ|[R,S]|Ψ〉|2

〈Ψ|S2|Ψ〉 (2.33)

or
〈Ψ|R2|Ψ〉〈Ψ|S2|Ψ〉 ≥ 1

4
|〈Ψ|[R,S]|Ψ〉|2 . (2.34)
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The following two operators r̂, ŝ have zero expectation value:

r̂ ≡ R̂ − 〈Ψ|R|Ψ〉, ŝ ≡ Ŝ − 〈Ψ|S|Ψ〉, (2.35)

and the product of their uncertainties is constrained by [see (2.21)]

∆r∆s ≥ 1
2
|〈Ψ|[r, s]|Ψ〉| . (2.36)

Operators corresponding to observables can always be written in the form
(2.35). If we prepare a large number of quantum systems in the same state
Ψ and then perform some measurements of the observable r in some of the
systems, and of s in the others, then the standard deviation ∆r of the r-results
times the standard deviation ∆s of the s-results, should satisfy the inequality
(2.36).

In the case of coordinate and momentum operators, the relation (2.16)
yields the Heisenberg uncertainty relation

∆x∆p ≥ h̄

2
. (2.37)

We emphasize the fact that this relation stems directly from basic principles
and, in particular, from the commutation relation (2.16). It constitutes a
limitation upon our knowledge that cannot be overcome, for instance, by any
improvement of the experiment.

If the state of the system is an eigenstate of the operator r̂, then a mea-
surement of the observable r yields the corresponding eigenvalue. The value of
the observable s associated with a noncommuting operator ŝ is undetermined.
This is the case of a plane wave describing a particle in free space (Sect. 4.3)
for which the momentum may be determined with complete precision, while
the particle is spread over all space.

Another consequence of the relation (2.36) is that the state vector Ψ
may be simultaneously an eigenstate of r̂ and ŝ only if these two operators
commute, since in this case the product of their uncertainties vanishes. More-
over, if the operators commute and the eigenvalues of ŝ are all different within
a subset of states, then the matrix elements of r̂ are also diagonal within the
same subset of states (see Sect. 2.7.1*).

Heisenberg conceived the uncertainty relations in order to solve the wave-
particle paradox. Pure particle behavior requires localization of the parti-
cle, while clear wave behavior appears only when the particle has a definite
momentum. Heisenberg’s interpretation of this was that each of these extreme
classical descriptions is satisfied only when the other is completely untenable.
Neither picture is valid for intermediate situations. However, quantum me-
chanics has to be compatible with the description of the motion of elementary
particles (not only with the description of the motion of macroscopic bodies) in
terms of trajectories. Heisenberg’s answer is that one may construct states Ψ
that include a certain amount of localization p0(t) and x0(t) in both momen-
tum and coordinate. Thus the motion of a particle has some resemblance to
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Fig. 2.5. Apparent classical trajectory of a pion (Reproduced with permission from
the authors)

classical motion along trajectories. However, there should be a certain spread
in the momentum and in the coordinate, such that the amplitudes 〈p|Ψ〉 and
〈x|Ψ〉 in momentum eigenstates and position eigenstates allow the uncertainty
relations to hold [24].

For an illuminating example, Fig. 2.5 displays the capture of a pion by a
carbon nucleus [25]. One can determine the mass, energy and charge of the
particles, by measuring the length, the grain density, and the scattering direc-
tion of their tracks. Let us assume a pion kinetic energy of 10 MeV. Using the
pion mass (139 MeVc−2), one obtains a momentum of pπ = 53 MeVc−1. The
uncertainty in the direction perpendicular to the track may be estimated from
the width of the track ≈1 µm, which yields ∆p⊥ ≈ 10−7 MeV c−1. The ratio
∆p⊥/pπ ≈10−9 is too small to produce a visible alteration of the apparent
trajectory.

2.7* Hilbert Spaces and Operators

A Hilbert space is a generalization of the Euclidean, three-dimensional space
(see Table 2.1). As in ordinary space, the summation caΨa + cbΨb and the
scalar product 〈Ψb|Ψa〉 = cab between two vectors are well defined opera-
tions.16 While the constants ca, cb, cab are real numbers in everyday space, it
is essential to allow for complex values in quantum mechanics.

Two vectors are orthogonal if their scalar product vanishes. A vector Ψ
is linearly independent of a subset of vectors Ψa,Ψb, . . . Ψd if it cannot be
expressed as a linear combination of them17 (Ψ �= caΨa + cbΨb + · · ·+ cdΨd).

16 Definitions of these fundamental operations is deferred to each realization of
Hilbert spaces [(3.2), (3.4) and (4.1), (4.2)]. In the present chapter we use only
the fact that they exist and that 〈a|b〉 = 〈b|a〉∗, 〈a|a〉 > 0.

17 Although the term “linear combination” usually refers only to finite sums, we
extend its meaning to include also an infinity of terms.
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Table 2.1. Some relevant properties of vectors and operators in Euclidean and
Hilbert spaces

Euclidean space Hilbert space

vectors r Ψ
superposition r = cara + cbrb Ψ = caΨa + cbΨb

scalar product 〈ra|rb〉 = ra·rb = cab 〈Ψa|Ψb〉 = 〈Ψb|Ψa〉∗ = cab

ca, cb, cab real ca, cb, cab complex

basis set 〈vi|vj〉 = δij 〈ϕi|ϕj〉 ≡ 〈i|j〉 = δij

dimension ν 3 2 ≤ ν ≤ ∞
completeness r =

∑
i
xivi Ψ =

∑
i
ciϕi

projection xi = 〈vi|r〉 ci = 〈ϕi|Ψ〉
scalar product 〈ra|rb〉 =

∑
i
x

(a)
i x

(b)
i 〈Ψa|Ψb〉 =

∑
i
(c

(a)
i )∗c

(b)
i

norm 〈r|r〉1/2 =
(∑

i
x2

i

)1/2 〈Ψ|Ψ〉1/2 =
(∑

i
|ci|2
)1/2

operators R̂η(θ) ra = rb Q̂Ψa = Ψb

commutators
[
R̂x(π/2), R̂y(π/2)

]
�= 0 [Q̂, R̂]

eigenvalues D̂ivi = λivi Q̂ϕi = qiϕi

These last two concepts allow us to define sets of basis vectors ϕi satisfying
the requirement of orthonormalization. Moreover, these sets may be complete,
in the sense that any vector Ψ may be expressed as a linear combination of
them18 [see (2.6)]. The scalar product 〈i|Ψ〉 is the projection of Ψ onto ϕi.
The scalar product between two vectors Ψa,Ψb and the square of the norm
of the vector Ψ are also given in terms of the amplitudes ci in Table 2.1.

The number of states in a basis set is the dimension ν of the associated
Hilbert space. It has the value 3 in normal space. In this book, we use Hilbert
spaces with dimensions ranging from two to a denumerable infinity.

In ordinary space, vectors are defined by virtue of their transformation
properties under rotation operations R̂η(θ) (η denoting the axis of rotation
and θ the angle). These operations are generally noncommutative, as the
reader may easily verify by performing two successive rotations of θ = π/2,
first around the x-axis and then around the y-axis, and subsequently compar-
ing the result with the one obtained by reversing the order of these rotations
(Fig. 2.6). Vectors in Hilbert spaces may also be transformed through the ac-
tion of operators Q̂ upon them. The operators Q̂ obey a noncommutative
algebra. We have defined the commutation operation in (2.9).

In ordinary space, a dilation D̂ is an operation yielding the same vector
multiplied by a (real) constant. This operation has been generalized in terms

18 The most familiar case of the expansion of a function in terms of an orthonormal
basis set is the Fourier expansion in terms of the exponentials exp(ikx), which
constitutes the complete set of eigenfunctions corresponding to the free particle
case (see Sect. 4.3).



2.7 Hilbert Spaces and Operators 23

X

Z

Y

X

Y

Z X

Y

Z

RX Ry

Ry Rx

X

Y

Z

Z

Y

X

Z

Y

X

Fig. 2.6. The final orientation of the axes depends on the order of the rotations.
Rν here represents a rotation of π/2 around the ν-axis

of eigenvectors and eigenvalues in (2.10). In general, linear combinations of
eigenvectors do not satisfy the eigenvalue equation.

2.7.1* Some Properties of Hermitian Operators

The Hermitian conjugate operator Q̂+ is defined through (2.12). Similarly, we
may write

〈Ψb|Q|Ψa〉 = 〈Q̂Ψa|Ψb〉∗ = 〈Q̂+Ψb|Ψa〉. (2.38)

The following properties are easy to demonstrate:
(
Q̂ + cR̂

)+

= Q̂+ + c∗R̂+, (2.39)
(
Q̂R̂
)+

= R̂+Q̂+. (2.40)

According to (2.12), the norm of the state Q̂Ψ is obtained from

〈Q̂Ψ|Q̂Ψ〉1/2 = 〈Ψ|Q+Q|Ψ〉1/2. (2.41)

Assume now that the state ϕi is an eigenstate of the Hermitian operator
Q̂ corresponding to the eigenvalue qi. In this case,

〈i|Q|i〉 = qi 〈i | i〉, 〈i|Q|i〉∗ = q∗i 〈i | i〉,
〈i|Q|i〉 = 〈i|Q|i〉∗ → qi = q∗i . (2.42)

Therefore, the eigenvalues of Hermitian operators are real numbers.
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Consider now the nondiagonal terms

〈j|Q|i〉 = qi〈j | i〉, 〈i|Q|j〉∗ = q∗j 〈i | j〉∗ = q∗j 〈j|i〉. (2.43)

Then,
0 = (qi − qj)〈j | i〉, (2.44)

i.e., two eigenstates belonging to different eigenvalues are orthogonal. They
may also be orthonormal, upon multiplication by an appropriate normaliza-
tion constant, which is determined up to a phase.

The eigenvectors of a Hermitian operator constitute a complete set of
states for a given system. This means that any state function Ψ, describing
any state of the same system, may be expressed as a linear combination of
basis states ϕi [see (2.6)].

We define the projection operator (a theoretical filter) |i〉〈i| through the
equation

|i〉〈i|ϕj ≡ 〈i|j〉ϕi = δijϕi, (2.45)

which implies that ∑

i

|i〉〈i |Ψ = Ψ, (2.46)

for any Ψ. Thus unity may be expressed as the operator
∑

i |i〉〈i|. From this
property stems the closure property, according to which the matrix elements
of the product of Hermitian operators may be calculated as the sum over all
possible intermediate states of products of the matrix elements corresponding
to each separate operator:

〈i|QR|j〉 =
∑

k

〈i|Q|k〉〈k|R|j〉. (2.47)

2.7.2* Unitary Transformations

The unitary matrix (Uai) = (〈ϕi|ηa〉) = (〈i|a〉) in (2.15) transforms the basis
set ϕi into the basis set ηa. Such a matrix does not represent a physical
observable and it is not therefore required to be Hermitian.

The inverse transformation to (3.14) is written as

ϕi =
∑

a

〈a | i〉ηa. (2.48)

Therefore, the inverse transformation U−1 is the transposed conjugate:

U−1 = (〈a | i〉) = U+, U+U = UU+ = I, (2.49)

where I is the unit matrix. A matrix satisfying (2.49) is said to be unitary
[see (2.14)]. Equation (2.49) implies that
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∑

i

〈a|i〉〈i|b〉 = 〈a|b〉 = δab,

∑

a

〈i|a〉〈a|j〉 = 〈i|j〉 = δij . (2.50)

If states are transformed according to η = U ϕ, then the state U Q̂ ϕ (Q̂ =
physical operator) may be written as

U Q̂ ϕ = U Q̂U+ U ϕ = R̂ η, (2.51)

which yields the rule for the transformation of operators, namely

R̂ = U Q̂U+. (2.52)

In addition to the norm, unitary transformations preserve the value of the
determinant and the trace:

det(〈a|R|b〉) = det(〈i|Q|j〉),

trace (Q) ≡
∑

i

〈i|Q|i〉 = trace (R) ≡
∑

a

〈a|R|a〉. (2.53)

2.8* Notions of Probability Theory

Probability theory studies the likelihood Pi that the outcome qi of an event
will take place. Probability may be defined as

Pi ≡ lim
N→∞

ni

N
, (2.54)

where ni is the number of outcomes qi of a total of N ≡
∑

i ni outcomes.
Since the limit N → ∞ is never attained, N should in practice be made large
enough to ensure that the fluctuations become sufficiently small.

The limits of Pi are
0 ≤ Pi ≤ 1. (2.55)

If Pi = 0, the outcome qi cannot occur; if Pi = 1, it will take place with
certainty.

If two events (i, j) are statistically independent, the probability that both
i and j take place is given by the product

P(i and j) = PiPj . (2.56)

If two events are mutually exclusive, the probability that one or the other
occur is the sum

P(i or j) = Pi + Pj . (2.57)
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The collection of Pis is called the (discrete) probability distribution. The
concepts of average 〈Q〉, root mean square 〈Q2〉1/2 and standard deviation
∆Q, applied in Sect. 2.4, are given by

〈Q〉 =
∑

i

qi Pi,

〈Q2〉1/2 =

(
∑

i

q2
i Pi

)1/2

, (2.58)

∆Q = 〈(Q − 〈Q〉)2〉1/2 =
(
〈Q2〉 − 〈Q〉2

)1/2
.

In the case of a continuous distribution, the sums
∑

i are replaced by integrals∫
dx. Instead of probabilities Pi, one defines probability densities ρ(x) such

that

1 =
∫ ∞

−∞
ρ(x)dx, 〈Q〉 =

∫ ∞

−∞
q(x)ρ(x)dx. (2.59)

Problems

Problem 1. Assume that the state Ψ is given by the linear combination
Ψ = c1Ψ1 +c2Ψ2, where the amplitudes c1, c2 are arbitrary complex numbers,
and both states Ψ1,Ψ2 are normalized.

1. Normalize the state Ψ, assuming that 〈1|2〉 = 0.
2. Find the probability of the system being in the state Ψ1.

Problem 2. Use the same assumptions as in Problem 1, but 〈1|2〉 = c �= 0.

1. Find a linear combination Ψ3 = λ1Ψ1 + λ2Ψ2 that is orthogonal to Ψ1

and normalized.
2. Express the vector Ψ as a linear combination of Ψ1 and Ψ3.

Problem 3. Prove the equations (2.39) and (2.40). Hint: Apply successively
the definition of Hermitian conjugate to the operators Q̂, R̂. For instance, start
with 〈Ψb|QR|Ψa〉 = 〈R̂Ψa|Q+|Ψb〉∗.

Problem 4. Show that

[Q̂, R̂] = −[R̂, Q̂], [Q̂R̂, Ŝ] = [Q̂, Ŝ]R̂ + Q̂[R̂, Ŝ]. (2.60)

Problem 5. Find the commutation relation between the coordinate operator
x̂ and the one-particle Hamiltonian (2.17). Discuss the result in terms of the
simultaneous determination of energy and position of a particle.
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Problem 6. Find the commutation relations

1. [p̂n, x̂], where n is an integer.
2. [f(p̂), x̂]. Hint: Expand f(p̂) in power series of p̂ and apply 1.

Problem 7. Verify that the commutation relation (2.16) is consistent with
the fact that the operators x̂ and p̂ are Hermitian.

Problem 8. Assume the basis set of states ϕi.

1. Calculate the effect of the operator R̂ ≡
∑

i |i〉〈i| on an arbitrary state Ψ.
2. Repeat for the operator R̂ ≡

∏
i(Q̂ − qi), assuming that the equation

Q̂ϕi = qiϕi is satisfied.

Problem 9. Find the relation between the matrix elements of the operators
p̂ and x̂ in the basis of eigenvectors of the Hamiltonian (2.17).

Problem 10. Consider the eigenvalue equations

F̂ϕ1 = f1ϕ1 ; F̂ϕ2 = f2ϕ2 ; Ĝη1 = g1η1 ; Ĝη2 = g2η2 ,

and the relations

ϕ1 =
1√
5

(2η1 + η2) ; ϕ2 =
1√
5

(η1 − 2η2) .

1. Is it possible to simultaneously measure the observables F and G?
2. Assume that a measurement of F has yielded the eigenvalue f1. Subse-

quently G and F are measured (in this order). Which are the possible
results and their probabilities?

Problem 11. Consider eigenstates ϕp of the momentum operator. Assume
that the system is prepared in the state

Ψ =
1√
6
(ϕ2p + ϕp) +

√
2
3

ϕ−p.

1. What are the possible results of a measurement of the kinetic energy K,
and what are their respective probabilities?

2. Calculate the expectation value and standard deviation of the kinetic
energy.

3. What is the vector state after a measurement of the kinetic energy that
has yielded the eigenvalue kp = p2/2M?

Problem 12. Evaluate in m.k.s. units possible values of the precision to which
the velocity and the position of a car should be measured in order to verify
the uncertainty relation (2.37).
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Problem 13. A 10 MeV proton beam is collimated by means of diaphragms
with a 5 mm aperture.

1. Show that the spread in energy ∆EH associated with the uncertainty
principle is negligible relative to the total spread ∆E ≈ 10−3 MeV.

2. Calculate the distance x that a proton has to travel in order to traverse
5 mm in a perpendicular direction, if the perpendicular momentum is due
only to the uncertainty principle.



3

The Heisenberg Realization
of Quantum Mechanics

In this chapter we present the simplest realization of the basic principles of
quantum mechanics. We employ column vectors as state vectors and square
matrices as operators. This formulation is especially suitable for Hilbert spaces
with finite dimensions. However, we also treat the problem of the harmonic
oscillator within this framework.

3.1 Matrix Formalism

3.1.1 A Realization of the Hilbert Space

The state vector Ψ may be expressed by means of the amplitudes ci filling the
successive rows of a column vector:

Ψ = (ci) ≡

⎛

⎜
⎜
⎜
⎝

ca

cb

...
cν

⎞

⎟
⎟
⎟
⎠

. (3.1)

The dimension of the Hilbert space is given by the number of rows. The sum
of two column vectors is another column vector in which the amplitudes are
added:

αBΨB + αCΨC = (αBbi + αCci) . (3.2)

The scalar product requires the definition of the adjoint vector Ψ+, i.e., a row
vector obtained from Ψ with amplitudes:

Ψ+ = (c∗a, c∗b , . . . , c
∗
ν) . (3.3)
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The scalar product of two vectors ΨB and ΨC is defined as the product of the
adjoint vector Ψ+

B and the vector ΨC , viz.,

〈ΨB |ΨC〉 =
i=ν∑

i=a

b∗i ci ,

〈Ψ|Ψ〉 =
i=ν∑

i=a

|ci|2 = 1 . (3.4)

A useful set of (orthonormal) basis states is given by the vector columns ϕi

with amplitudes cj = δij . In such a basis, the arbitrary vector (3.1) may be
expanded as

Ψ = ca

⎛

⎜
⎜
⎜
⎝

1
0
...
0

⎞

⎟
⎟
⎟
⎠

+ cb

⎛

⎜
⎜
⎜
⎝

0
1
...
0

⎞

⎟
⎟
⎟
⎠

+ · · · + cν

⎛

⎜
⎜
⎜
⎝

0
0
...
1

⎞

⎟
⎟
⎟
⎠

. (3.5)

All the properties listed in Table 2.1 are reproduced within the framework of
column vectors.

Operators are represented by square matrices

Q̂ = (〈i|Q|j〉) ≡

⎛

⎜
⎜
⎜
⎝

〈a|Q|a〉 〈a|Q|b〉 · · · 〈a|Q|ν〉
〈b|Q|a〉 〈b|Q|b〉 · · · 〈b|Q|ν〉

...
...

. . .
...

〈ν|Q|a〉 〈ν|Q|b〉 · · · 〈ν|Q|ν〉

⎞

⎟
⎟
⎟
⎠

. (3.6)

The matrices corresponding to physical observables are Hermitian [see (2.12)].
The initial state j labels the columns, while the final state i labels the
rows. The order a, b, . . . , ν is immaterial, provided it is the same in both
columns and rows (i.e., the matrix elements 〈i|Q|i〉 should lie on the diago-
nal). The matrix elements 〈i|Q|j〉 are constructed as in (2.11). If ϕi belongs
to the basic set

Q̂ ϕi =
∑

j

c
(i)
j ϕj → 〈j|Q|i〉 = c

(i)
j . (3.7)

A matrix multiplying a vector yields another vector, so that

ΨB = Q̂ ΨC ←→ bi =
∑

j

〈i|Q|j〉cj . (3.8)

The product of two matrices is another matrix:

Ŝ = Q̂ R̂ ←→ 〈i|S|j〉 =
∑

k

〈i|Q|k〉〈k|R|j〉 , (3.9)

which is consistent with the closure property (2.47). The multiplication
of matrices is a noncommutative operation, as befits the representation of
quantum operators.
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3.1.2 The Solution of the Eigenvalue Equation

In matrix form, the eigenvalue equation (2.10) reads
⎛

⎜
⎜
⎜
⎝

〈a|Q|a〉 〈a|Q|b〉 · · · 〈a|Q|ν〉
〈b|Q|a〉 〈b|Q|b〉 · · · 〈b|Q|ν〉

...
...

. . .
...

〈ν|Q|a〉 〈ν|Q|b〉 · · · 〈ν|Q|ν〉

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

ca

cb

...
cν

⎞

⎟
⎟
⎟
⎠

= q

⎛

⎜
⎜
⎜
⎝

ca

cb

...
cν

⎞

⎟
⎟
⎟
⎠

, (3.10)

which is equivalent to the ν linear equations (one equation for each value of i)

j=ν∑

j=1

〈i|Q|j〉 cj = q ci . (3.11)

The eigenvalues q and the amplitudes ci are the unknowns to be determined.1

The solution to (3.11) is obtained by casting the original matrix (〈i|Q|j〉)
into a diagonal form. In this case the diagonal matrix elements become the
eigenvalues, 〈i|Q|j〉 = δijqi. The ith eigenvector is given by the amplitudes
cj = δij , as in (3.5). For instance,

⎛

⎜
⎜
⎜
⎝

q1 0 · · · 0
0 q2 · · · 0
...

...
. . .

...
0 0 · · · qν

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

0
1
...
0

⎞

⎟
⎟
⎟
⎠

= q2

⎛

⎜
⎜
⎜
⎝

0
1
...
0

⎞

⎟
⎟
⎟
⎠

. (3.12)

The linear homogeneous equations (3.11) have the trivial solution ci = 0,
to be discarded. The existence of additional, nontrivial solutions requires the
determinant to vanish:

det (〈i|Q|j〉 − qδij) = 0 . (3.13)

This eigenvalue equation is equivalent to a polynomial equation for q. Its ν
roots are the eigenvalues of the operator Q̂.

The vanishing of the determinant (3.13) implies that one of the equations
(3.11) may be expressed as a linear combination of the other ν − 1 equations.
Therefore, by disregarding one of these equations (for instance, the one cor-
responding to the last row) and dividing the remaining equations by ca, one
obtains a set of ν − 1 nonhomogeneous linear equations2 yielding the value
of the ratios cb/ca, cc/ca, . . . , cν/ca, for each eigenvalue q. The normalization

1 This equation may be obtained directly by using the expansion (2.6) on both sides
of the general eigenvalue equation Q̂Ψ = qΨ. One obtains

∑
j
cjQ̂ϕj = q

∑
j
cjϕj .

The scalar product with ϕi of both sides of this last equation yields (3.11).
2 If several roots have the same eigenvalue, more equations should be discarded in

order to get a nonhomogeneous set of equations.
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equation (3.4) determines the value of |ca|2, up to the usual overall arbitrary
phase of the state vector. Note that the relative phases in the linear combi-
nation have physical significance, although the overall phase is unimportant.

Diagonalization yields a new set of eigenstates ηa. Each of them may be
expressed as a linear combination of the old basis states ϕi.

ηa =
∑

i

〈i|a〉ϕi. (3.14)

The amplitudes 〈i|a〉 are the matrix elements of a unitary matrix U = (〈i|a〉)
(2.14). The modulus squared |〈a|i〉|2 is both the probability of measuring the
eigenvalue qi, associated with the eigenstate ϕi, if the system is in the state
ηa, and the probability of measuring the eigenvalue ra, associated with the
eigenstate ηa, when the state of the system is ϕi.

3.1.3 Application to 2×2 Matrices

An example of a diagonal matrix is the matrix representing the z-component
of the spin operator (Sect. 5.2.2):

Ŝz =
h̄

2

(
1 0
0 −1

)

. (3.15)

The eigenvectors corresponding to spin up and spin down are, respectively,

ϕ↑z ≡ ϕ(sz=h̄/2) =
(

1
0

)

, ϕ↓z ≡ ϕ(sz=−h̄/2) =
(

0
1

)

. (3.16)

Let us diagonalize a general Hermitian matrix of order two:
(
〈a|Q|a〉 〈a|Q|b〉
〈b|Q|a〉 〈b|Q|b〉

)

. (3.17)

The resulting eigenvalues are

q± =
1
2

(〈a|Q|a〉 + 〈b|Q|b〉) ± 1
2

√

(〈a|Q|a〉 − 〈b|Q|b〉)2 + 4|〈a|Q|b〉|2 , (3.18)

while the amplitudes of the eigenvectors are given by

cb

ca

∣
∣
∣
∣
±

=
q± − 〈a|Q|a〉

〈a|Q|b〉 , (ca)± =

(

1 +
∣
∣
∣
∣
cb

ca

∣
∣
∣
∣

2

±

)− 1
2

. (3.19)

Figure 3.1 plots the eigenvalues q± and the initial expectation values as a
function of Q ≡ 〈a|Q|a〉, assuming a traceless situation (〈a|Q|a〉 = −〈b|Q|b〉)
and 〈a|Q|b〉 = 2. The eigenvalue q+ is always higher than |Q|, while q− is
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Fig. 3.1. Eigenvalues q± of a 2 × 2 system (continuous curves) as a function of Q,
half of the energy distance between the diagonal matrix elements (dotted lines)

always below −|Q|: the two eigenvalues repel each other and never cross, if
〈a|Q|b〉 �= 0. The distance ∆ =

√
Q2 + |〈a|Q|b〉|2 − Q measures the increase

in the highest eigenvalue of Q, due to the superposition of the states ϕa, ϕb,
and it is maximized at the crossing point Q = 0.

The physical world displays many systems with two states.3 An exam-
ple of this is an electron and two protons. As a reasonable approximation,
we may neglect the motion of the protons, since they are much heavier than
the electron. The two states ϕa, ϕb represent the electron bound to each of the
protons: a hydrogen atom and a separate proton in each case. In this case the
Hamiltonian Ĥ plays the role of Q̂ in (3.17) and (3.18). The extra binding
∆, arising from the superposition of states ϕa, ϕb, allows for the existence
of a bound state: the stability of the ionized hydrogen molecule thus has a
purely quantum mechanical origin. This problem is discussed in more detail
in Sect. 8.4.1.

The calculations (3.18) and (3.19) are quickly made using the matrix
associated with the spin component Ŝx (5.23):

Ŝx =
h̄

2

(
0 1
1 0

)

. (3.20)

3 In fact, any two states sufficiently isolated from the remaining ones may be
approximated as a two-state system, for which the no-crossing rule holds. See
also Sect. 2.5.
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Equation (3.18) yields the eigenvalues sx = ±h̄/2 and the eigenvectors

η↑x =
1√
2

(
1
1

)

=
1√
2

ϕ↑z +
1√
2

ϕ↓z ,

η↓x =
1√
2

(
1
−1

)

=
1√
2

ϕ↑z −
1√
2

ϕ↓z . (3.21)

These equations express the eigenstates of Ŝx as linear combinations of the
eigenstates (3.16) of Ŝz. It is apparent the relevance of the relative sign, in
spite of the fact that the probability of measuring the z component as pointing
up (down) is the same for the two states (3.21).

The unitary transformation

U =
1√
2

(
1 1
1 −1

)

(3.22)

transforms the basis set of eigenvectors of the operator Ŝz into the basis set
of eigenvectors of Ŝx, in accordance with (3.14):

U
(

1
0

)

=
1√
2

(
1
1

)

, U
(

0
1

)

=
1√
2

(
1
−1

)

. (3.23)

Similarly, the operator Ŝz is transformed into the operator Ŝx [see (2.52)]:
(

0 1
1 0

)

= U
(

1 0
0 −1

)

U+ . (3.24)

The trace of the matrix representing the spin operator Sx is invariant (and
equal to 0) under the unitary transformation. In this spin case, it happens
that the eigenvalues of the operators Ŝz and Ŝx are the same. This result is
to be expected for physical reasons: the eigenvalues do indeed have physical
significance, while the orientation of the coordinate system in an isotropic
space does not.

3.2 Harmonic Oscillator

Here we present a solution to the harmonic oscillator problem, a solution that
stems directly from the basic principles listed in Sect. 2.3. The Hamiltonian
corresponding to the one-dimensional harmonic oscillator is

Ĥ =
1

2M
p̂2 +

Mω2

2
x̂2 , (3.25)

where ω is the classical frequency (Fig. 3.2).
The harmonic oscillator potential is probably the most widely used poten-

tial in physics, because of its ability to represent physical potentials in the
vicinity of stable equilibrium [e.g., vibrational motion in molecules (8.28)].
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It is always convenient to start by finding the order of magnitude of the
quantities involved. To do so, we apply the Heisenberg uncertainty principle
(2.37). If the substitutions x̂ → ∆x and p̂ → h̄/2∆x are made in the harmonic
oscillator energy, so that

E ≥ h̄2

8M (∆x)2
+

Mω2 (∆x)2

2
, (3.26)

then minimization with respect to ∆x gives the value at the minimum:

(∆x)min =

√
h̄

2Mω
, (3.27)

which yields the characteristic orders of magnitude

xc =

√
h̄

Mω
, pc =

√
h̄Mω , Ec = h̄ω . (3.28)

3.2.1 Solution of the Eigenvalue Equation

We intend to solve (2.18). The unknowns are the eigenvalues Ei and the
eigenfunctions ϕi. The fundamental tool entering the present solution is the
commutation relation (2.16).

We first define the operators a+, a

a+ ≡
√

Mω

2h̄
x̂ − i√

2Mh̄ω
p̂ , a ≡

√
Mω

2h̄
x̂ +

i√
2Mh̄ω

p̂ . (3.29)

The operators x̂ and p̂ are Hermitian, since they correspond to physical observ-
ables. Therefore the operators a, a+ are Hermitian conjugates of each other,
according to (2.39). They satisfy the commutation relations

[
Ĥ, a+

]
= h̄ωa+ , (3.30)

[
a, a+

]
= 1 . (3.31)

We now construct the matrix elements (2.11) for both sides of (3.30), making
use of two eigenstates ϕi, ϕj :

〈i|[H, a+]|j〉 = (Ei − Ej)〈i|a+|j〉 = h̄ω〈i|a+|j〉 . (3.32)

We conclude that the matrix element 〈i|a+|j〉 vanishes, unless the difference
Ei − Ej between the energies of the two eigenstates is the constant h̄ω. This
fact implies that we may sequentially order the eigenstates connected by a+,
the difference between two consecutive energies being h̄ω. Another conse-
quence is that we may assign an integer number n to each eigenstate.
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Since a, a+ are Hermitian conjugate operators, we may also write

〈n + 1|a+|n〉 = 〈n|a|n + 1〉∗ . (3.33)

Finally, we expand the expectation value of (3.31):

1 = 〈n|[a, a+]|n〉
= 〈n|a|n + 1〉〈n + 1|a+|n〉 − 〈n|a+|n − 1〉〈n − 1|a|n〉
= |〈n + 1|a+|n〉|2 − |〈n|a+|n − 1〉|2 . (3.34)

This is a finite difference equation in yn = |〈n + 1|a+|n〉|2, of the type 1 =
yn − yn−1. Its solutions are

|〈n + 1|a+|n〉|2 = n + c , (3.35)

where c is a constant. Since the left-hand side is positive definite, the quantum
number n must have a lower limit, which we may choose to be n = 0. It cor-
responds to the ground state ϕ0. In such a case, the matrix element 〈0|a+|−1〉
should disappear, which fixes the value of the constant c = 1. Therefore,
according to (3.33), 〈−1|a|0〉 = 0, which is equivalent to

a ϕ0 = 0 , (3.36)

i.e., the ground state is annihilated by the operator a, which is called the
annihilation operator.

The whole set of orthogonal eigenstates may be constructed by repeatedly
applying the operator a+, the creation operator.

ϕn =
1√
n!

(
a+
)n ϕ0 , n = 0, 1, . . . . (3.37)

These states are labeled with the quantum number n. They are eigenstates of
the operator n̂ = a+ a, the number operator, with eigenvalues n :

n̂ ϕn =
1√
n!

a+[a, (a+)n]ϕ0 =
1√
n!

a+n
(
a+
)n−1 ϕ0 = nϕn . (3.38)

The factor 1/
√

n! ensures the normalization of the eigenstates.
In order to find the matrix elements of the operators x̂ and p̂, we invert

the definition in (3.29):

x̂ =

√
h̄

2Mω

(
a+ + a

)
, p̂ = i

√
Mh̄ω

2
(
a+ − a

)
, (3.39)

and obtain the nonvanishing matrix elements

〈n + 1|x|n〉 = 〈n|x|n + 1〉 =

√
h̄

Mω

n + 1
2

, (3.40)

〈n + 1|p|n〉 = 〈n|p|n + 1〉∗ = i

√

Mh̄ω
n + 1

2
. (3.41)
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Fig. 3.2. Harmonic oscillator potential and its eigenvalues. All energies are given
in units of h̄ω. The dimensionless variable u = x/xc has been used

Substitution of (3.39) into the Hamiltonian yields

Ĥ = h̄ω

(

n̂ +
1
2

)

, (3.42)

where the operator n̂ has the quantum number n (=0,1,2,...) as eigenvalues.
The Hamiltonian matrix is thus diagonal, with eigenvalues En represented
in Fig. 3.2

〈n|H|n〉 = En = h̄ω

(

n +
1
2

)

. (3.43)

The creation and annihilation operators are often used in many-body quan-
tum physics (Sects. 7.4.3† and 7.8†). They are also essential tools in quantum
field theory, since they allow us to represent the creation and annihilation of
phonons, photons, mesons, etc. (Sects. 9.5.2† and 9.5.3†).

Quantum mechanics has provided the present derivation through the fun-
damental commutation relation (2.16), yielding the properties of the matrix
elements 〈n|a+|m〉 in a straightforward way. The results are also valid for any
problem involving two operators satisfying (2.16), with a Hamiltonian that is
quadratic in these operators.

3.2.2 Some Properties of the Solution

In the following we use this exact, analytical solution of the harmonic oscil-
lator problem to deduce some relevant features of quantum mechanics.4 The
4 However, the reader is warned against concluding that most quantum problems

are analytically solvable, a conclusion that may be reinforced throughout these
notes by the repeated utilization of exactly soluble examples. Most quantum
problems require insight into physics to approximate the solution and/or sizeable
computing facilities.
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discussion of the spatial dependence of the harmonic oscillator problem is
deferred to Sect. 4.2.

• The classical equilibrium position x = p = 0 is not compatible with the
uncertainty principle, because it implies a simultaneous determination of
coordinate and momentum. The replacement of ∆x in (3.26) with (3.27)
yields the zero-point energy5 (3.43)

E0 =
1
2
h̄ω , (3.44)

i.e., the minimum energy that the harmonic oscillator may have. This
purely quantum effect was observed even before the invention of quantum
mechanics. Roger Mulliken showed in 1924 that the inclusion of (3.44)
leads to a better agreement with data obtained by comparing the vibra-
tional spectra (see Sect. 8.4.2) of two molecules made up from different
isotopes of the same element [26]. Applications of the zero-point energy
concept range from the explanation of the intermolecular Van der Vaals
force (Problem 11, Chap. 8) to speculations about massive effects of the
electromagnetic vacuum represented by the ground state of infinite har-
monic oscillators (Sect. 9.5.2†).

• By using the closure property (2.47) and the matrix elements (3.40) and
(3.41), one obtains the matrix element of the commutator [x̂, p̂]:

〈n|[x, p]|m〉 = 〈n|x|n + 1〉〈n + 1|p|m〉 + 〈n|x|n − 1〉〈n − 1|p|m〉
−〈n|p|n + 1〉〈n + 1|x|m〉 − 〈n|p|n − 1〉〈n − 1|x|m〉

= ih̄δnm . (3.45)

The matrix elements of the operators x̂2 and p̂2 may be constructed in a
similar way:

Mω

h̄
〈n|x2|n〉 =

1
h̄Mω

〈n|p2|n〉 = n +
1
2

, (3.46)

which implies the equality between the kinetic energy and potential
expectation values (virial theorem).
Applying the definition of the root mean square deviation ∆Q given in
(2.21), the product ∆x∆p yields

(∆x)n(∆p)n =
En

ω
= h̄

(

n +
1
2

)

≥ 1
2
h̄ . (3.47)

This inequality expresses the uncertainty principle (Sect. 2.6). We have
thus verified the intimate connection between the commutation relation
of two operators and the uncertainties in the measurement of the corre-
sponding physical quantities.

5 The procedure is only expected to yield correct orders of magnitude. It is a
peculiarity of the harmonic oscillator that the results are exact.
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• The invariance with respect to the parity transformation Π̂ (x → −x)
plays an important role in quantum mechanics. The fact that neither the
kinetic energy, nor the harmonic oscillator potential energy, are altered by
the parity transformation is expressed by the commutation relation

[Ĥ, Π̂] = 0 . (3.48)

As a consequence of this relation, it is possible to know simultaneously
the eigenvalues of the two operators Ĥ, Π̂ (see Sect. 2.6). In this case the
eigenstates of the harmonic oscillator Hamiltonian are also eigenstates of
the parity operator Π̂. The eigenvalues of the operator Π̂ are determined
by the fact that the operator Π̂2 must have the single eigenvalue π2 = 1,
since the system is left unchanged after two applications of the parity
transformation. There are thus two eigenvalues corresponding to the op-
erator Π̂, namely π = ±1. The eigenfunctions are either invariable under
the parity transformation (π = 1, even functions) or change sign (π = −1,
odd functions). This is verified in the case of the harmonic oscillator, since
the operators a+, a change sign under the parity transformation and the
parity of the state labeled by the quantum number n is therefore

Π̂ϕn = (−1)nϕn . (3.49)

Problems

Problem 1. Consider the matrix
⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ .

1. Find the eigenvalues and verify the conservation of the trace after diago-
nalization.

2. Find the eigenvector corresponding to each eigenvalue.
3. Check the orthogonality of states corresponding to different eigenvalues.
4. Construct the unitary transformation from the basic set of states used in

(3.5) to the eigenstates of this matrix.

Problem 2. Consider the matrix
(

a c
c −a

)

.

1. Calculate the eigenvalues as a function of the real numbers a, c.
2. Show that the odd terms in c vanish in an expansion in powers of c

(|c|  |a|).
3. Show that the linear term does not disappear if |c| � |a|.
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Problem 3. Which of the following vector states are linearly independent?

ϕ1 =
(

i
1

)

, ϕ2 =
(
−i
1

)

, ϕ3 =
(

1
i

)

, ϕ4 =
(

1
−i

)

.

Problem 4. Consider the two operators

Q̂ =

⎛

⎝
0.5 0 0
0 0.5 0
0 0 −1

⎞

⎠ and R̂ =

⎛

⎝
0 0.5 0

0.5 0 0
0 0 1

⎞

⎠ .

1. Calculate the eigenvalues.
2. Determine whether or not the operators commute.
3. If so, obtain the simultaneous eigenvectors of both operators.

Problem 5. Consider a unit vector with components cos β and sinβ along
the z- and x-axes, respectively. The matrix representing the spin operator in
this direction is written as Ŝβ = Ŝz cos β + Ŝx sinβ.

1. Find the eigenvalues of Ŝβ using symmetry properties.
2. Diagonalize the matrix.
3. Find the amplitudes of the new eigenstates in a basis for which the oper-

ator Ŝz is diagonal.

Problem 6. If a and a+ are the annihilation and creation operators defined
in (3.29), show that [a, (a+)n] = n(a+)(n−1).

Problem 7.
1. Calculate the energy of a particle subject to the potential V (x) = V0 +

cx̂2/2 if the particle is in the third excited state.
2. Calculate the energy eigenvalues for a particle moving in the potential

V (x) = cx̂2/2 + bx̂.

Problem 8.
1. Express the distance xc as a function of the mass M and the restoring

parameter c used in Problem 7.
2. If c is multiplied by 9, what is the separation between consecutive eigen-

values?
3. Show that xc is the maximum displacement of a classical particle moving

in a harmonic oscillator potential with an energy of h̄ω/2.

Problem 9. Evaluate the matrix elements 〈n + η|x2|n〉 and 〈n + η|p2|n〉 in
the harmonic oscillator basis, for η = 1, 2, 3, 4:

1. Using the closure property and the matrix elements (3.41),
2. Applying the operators x̂2 and p̂2, expressed in terms of the a+, a, on the

eigenstates (3.37).
3. Find the ratio 〈n + ν|K|n〉/〈n + ν|V |n〉 (ν = 0, ± 2) between the kinetic

and the potential energy matrix elements. Justify the differences in sign
on quantum mechanical grounds.
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Problem 10. Calculate the expectation value of the coordinate operator for
a linear combination of harmonic oscillator states with the same parity.

Problem 11.
1. Construct the normalized, linear combination of harmonic oscillator states

Ψ = c0ϕ0 + c1ϕ1 for which the expectation value 〈Ψ|x|Ψ〉 becomes maxi-
mized.

2. Evaluate in such a state the expectation values of the coordinate, the
momentum and the parity operators.
Note: In some chemical bonds, nature takes advantage of the fact that elec-

trons protrude from the atom in a state similar to the linear combination Ψ.
This situation is called hybridization.

Problem 12. Verify the normalization of the states (3.37).





4

The Schrödinger Realization
of Quantum Mechanics

The realization of the basic principles of quantum mechanics by means of
position wave functions is presented in Sect. 4.1. This is where the time-
independent Schrödinger equation is obtained, and where the spatial dimen-
sion in quantum problems appears explicitly.

The harmonic oscillator problem is solved again in Sect. 4.2. The reader will
thus be able to contrast two realizations of quantum mechanics by comparing
the results obtained here with those presented in Sect. 3.2.

Solutions to the Schrödinger equation in the absence of forces are discussed
in Sect. 4.3. Such solutions present normalization problems which are solved by
taking into consideration the limiting case of particles moving either in a large,
infinitely deep square well potential, or along a circumference with a large
radius (Sect. 4.4.1). These solutions are applied to some situations that are
interesting both conceptually and in practical applications: the step potential
(Sect. 4.5.1) and the square barrier (Sect. 4.5.2), which are schematic versions
of scattering experiments. The free-particle solutions are also applied to the
bound-state problem of the finite square well (Sect. 4.4.2), to the periodic
potential (Sect. 4.6†) and to a practical application, the tunneling microscope
(Sect. 4.5.3).

4.1 Time-Independent Schrödinger Equation

In the formulation of quantum mechanics presented in this chapter, the state
vector is a complex function of the coordinate, Ψ = Ψ(x). This type of state
vector is usually known as a wave function. The sum of two wave functions is
another wave function:

Ψ(x) = αBΨB(x) + αCΨC(x) . (4.1)
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The scalar product is defined as

〈ΨB |ΨC〉 =
∫ ∞

−∞
Ψ∗

BΨCdx . (4.2)

As a consequence of this choice of Ψ, the coordinate operator is simply the
coordinate itself:

x̂ = x . (4.3)

A realization of the algebra (2.16) is given by the assignment1

p̂ = −ih̄
d
dx

, (4.4)

since for an arbitrary function f(x),

[x, p̂]f = −ih̄x
df

dx
+ ih̄

d(xf)
dx

= ih̄f . (4.5)

It is simple to verify that the operator x is Hermitian, according to (2.12) and
(2.13). This is also true for the momentum operator, since
∫ ∞

−∞
Φ∗p̂Ψdx = −ih̄Φ∗Ψ|∞−∞ + ih̄

∫ ∞

−∞
Ψ

d
dx

Φ∗ =
(∫ ∞

−∞
Ψ∗p̂Φdx

)∗
, (4.6)

where we have assumed Ψ(±∞) = 0, as is the case for bound systems. The
eigenfunctions of the momentum operator are discussed in Sect. 4.3.

A translation by the amount a can be performed by means of the unitary
operator

U(a) = exp
(

i
h̄

ap̂

)

, (4.7)

since
U(a)Ψ(x) =

∑

n

an

n!
dnΨ
dxn

= Ψ(x + a) . (4.8)

A finite translation may be generated by a series of infinitesimal steps:

U(δa) = 1 +
i
h̄

δa p̂ , (4.9)

and p̂ is referred to as the generator of infinitesimal translations.
The replacement of the operators (4.3) and (4.4) in the classical expression

of any physical observable Q(x, p) yields the corresponding quantum mechan-
ical operator Q̂ = Q(x, p̂) in a differential form.2 Given any complete set of
1 Although any function of x may be added to (4.4) and still satisfy (2.16), such a

term should be dropped because free space is homogeneous.
2 There is an ambiguity if in the classical expression there appears a product of

physical quantities QR corresponding to noncommuting operators. In such cases
one uses the (Hermitian) average operator (1/2)(Q̂R̂ + R̂Q̂) [see (2.40)].
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orthonormal wave functions ϕi(x), the matrix elements associated with the
operator Q̂ are constructed as in (2.11). Therefore this construction provides
the link between the Heisenberg and Schrödinger realizations of quantum
mechanics.

The Hamiltonian (2.17) yields the eigenvalue equation

− h̄2

2M

d2ϕi

dx2
+ V (x)ϕi = Eiϕi , (4.10)

which is called the time-independent Schrödinger equation.

4.1.1 Probabilistic Interpretation of Wave Functions

Information may be extracted from the wave function through the probability
density (2.59) [27]:

ρ(x) = |Ψ(x)|2 . (4.11)

The probability of finding the particle in the interval L1 ≤ x ≤ L2 is given by
the integral

∫ L2

L1

|Ψ(x)|2dx . (4.12)

In particular, the probability of finding the particle anywhere must equal one:

1 = 〈Ψ|Ψ〉 , (4.13)

which implies that the wave function should be normalized.
We now discuss how this probability changes with time t. We therefore

allow for a time dependence of the wave function3 [Ψ = Ψ(x, t)]:

d
dt

∫ L2

L1

|Ψ(x, t)|2dx =
∫ L2

L1

(
Ψ̇∗Ψ + Ψ∗Ψ̇

)
dx

=
i
h̄

∫ L2

L1

[(
ih̄Ψ̇
)∗Ψ − Ψ∗(ih̄Ψ̇

)]
dx . (4.14)

We may replace ih̄Ψ̇ with ĤΨ, according to the time-dependent Schrödinger
equation (9.5). We are left with only the kinetic energy contribution, since
the terms proportional to the potential cancel inside (4.14):

d
dt

∫ L2

L1

|Ψ(x, t)|2dx = − ih̄
2M

∫ L2

L1

(
d2Ψ∗

dx2
Ψ − Ψ∗ d2Ψ

dx2

)

dx

=
ih̄

2M

∫ L2

L1

d
dx

(

−dΨ∗

dx
Ψ + Ψ∗ dΨ

dx

)

dx . (4.15)

3 The time dependence of the wave function is discussed in Chap. 9. We anticipate
the result here because the notion of probability current is needed in the next few
sections.
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We obtain the equation
∂ρ

∂t
+

∂j

∂x
= 0 , (4.16)

where we have defined the probability current

j(x, t) ≡ − ih̄
2M

(

−∂Ψ∗

∂x
Ψ + Ψ∗ ∂Ψ

∂x

)

. (4.17)

Equation (4.16) is a continuity equation, similar to the one used in hydrody-
namics to express conservation of mass. Imagine a long prism along the x-axis,
bounded by two squares of area A at x = L1 and x = L2, respectively. The
variation of the probability of finding the particle inside the prism, i.e.,

− ∂

∂t

∫ L2

L1

ρdx ,

is equal to the difference between the fluxes leaving and entering the prism,
viz., A[j(L2) − j(L1)] (see Fig. 4.1).

The probability density and the probability current give spatial dimensions
to the Schrödinger realization of quantum mechanics. These spatial features
are especially useful in chemistry, where bulges of electron distribution in
atoms are associated with the increases in the chemical affinities of elements
(Fig. 5.2).

The expression for the probability current underscores the need to use
complex state vectors in quantum mechanics, since the current vanishes for
real wave functions.

Here we may continue the list of misconceptions that prevail in quantum
mechanics [20]:

• “The probability current j(x) is related to the speed of that part of the
particle which is located at the position x.” This statement gives the false
impression that, although the particle as a whole has neither a definite
position nor a definite momentum, it is made up of parts that do. In fact,
particles are not made up of parts.

• “For any energy eigenstate, the probability density must have the same
symmetry as the Hamiltonian.” This statement is correct in the case of

j
2

j
1

dρ/dt

Fig. 4.1. Conservation of probability density. The rate of change within a certain
interval is given by the flux differences at the boundaries of the interval
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inversion symmetry, for even states of a parity-invariant Hamiltonian (see
Sect. 4.2). It is not correct for odd states. It is also generally false for a
central potential, since only l = 0 states have probability densities with a
spherical shape (Fig. 5.2).

• “A quantum state Ψ(x) is completely specified by its associated probability
density |Ψ(x)|2.” The probability densities, being real numbers, cannot
give information about all the properties of the state, such as, for example,
those related to momentum.

• “The wave function is dimensionless.” It has the dimensions [length]−dN/2,
where N is the number of particles and d is the dimension of the space.

• “The wave function Ψ(x) is a function of regular three-dimensional space.”
This is true only for one-particle systems. For two-particle systems, the
wave function Ψ(x1, x2) exists in six-dimensional, configuration space.

• “The wave function is similar to other waves appearing in classical
physics.” Unlike electromagnetic or sound waves, the wave function is
an abstract entity. In particular, it does not interact with particles.

Both the probability density and the probability current are defined at
each point in space. Other quantum predictions require integration over the
whole space. For instance, the expectation value of an operator Q̂ is

〈Ψ|Q|Ψ〉 ≡
∫ ∞

−∞
Ψ(x, t)∗Q̂Ψ(x, t)dx . (4.18)

For an operator depending only on the coordinate x, this definition is a direct
consequence of Born’s probability density (4.11). However, for a differential
operator such as p̂, the alternative

∫
Ψ(Q̂Ψ)∗dx is also possible. Nevertheless,

the two definitions are identical for physical (Hermitian) operators.

4.2 The Harmonic Oscillator Revisited

The Schrödinger equation (4.10) corresponding to the harmonic oscillator
Hamiltonian (3.25) reads

− h̄2

2M

d2ϕn(x)
dx2

+
Mω2

2
x2ϕn(x) = Enϕn(x) . (4.19)

4.2.1 Solution of the Schrödinger Equation

It is always useful to rewrite any equation in terms of dimensionless coordi-
nates. Not only does one get rid of unnecessarily cumbersome constants, but
the solution may apply just as well to cases other than the one being consid-
ered. Therefore, in the present problem, the coordinate x and the energy E
are divided by the value of the characteristic length and energy (3.28), namely

u = x/xc , e = E/h̄ω . (4.20)
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The Schrödinger equation thus simplified reads

−1
2

d2ϕn(u)
du2

+
1
2
u2ϕn(u) = enϕn(u) . (4.21)

This equation must be supplemented with the boundary conditions

ϕn(±∞) = 0 . (4.22)

The eigenfunctions and eigenvalues are of the form

ϕn(x) = Nn exp
(

−1
2
u2

)

Hn(u) , en = n +
1
2

. (4.23)

The Hn are Hermite polynomials4 of degree n = 0, 1, 2, . . . . The eigenfunctions
and eigenvalues are also labeled by the quantum number n. Up to a phase,
the constants Nn are obtained from the normalization condition (4.13)

Nn =
(
2n/2π

1
2 n!xc

)− 1
2

. (4.24)

Since the Hamiltonian is a Hermitian operator, the eigenfunctions are orthog-
onal to each other and constitute a complete set of states:

〈n|m〉 =
∫ ∞

−∞
ϕ∗

nϕmdx = δnm , Ψ(x) =
∑

n

cnϕn . (4.25)

The solutions corresponding to the lower quantum numbers are displayed in
Table 4.1 and Fig. 4.2.

Table 4.1. Solutions to the harmonic oscillator problem for small values of n. Pn

is defined in (4.28)

n en Hn Nnπ1/4x
1/2
c Pn (%)

0 1/2 1 1 15.7

1 3/2 2u 1/
√

2 11.2
2 5/2 4u2 − 2 1/2 9.5

5 11/2 32u5 − 160u3 + 120u 1/16
√

15 5.7

4 The reader is encouraged to verify that the few cases listed in Table 4.1 are correct
solutions. Use can be made of the integrals

∫ ∞

−∞
exp(−u2)u2ndu =

(2n − 1)!!

2n
π

1
2 ,

∫ ∞

−∞
exp(−u2)u2n+1du = 0 .
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Fig. 4.2. Quantum mechanical probability densities (continuous lines) and the
classical probability densities (dashed lines) of a harmonic oscillator potential as
a function of the dimensionless distance u, for the quantum numbers n = 0, 1, 2,
and 5. Vertical lines represent the classical amplitudes xn

4.2.2 Spatial Features of the Solutions

The following features arise from the spatial dimension associated with the
Schrödinger formulation:

• Probability density. There are nodes in the probability density (except
for the n = 0 state). The existence of such nodes is incompatible with
the classical notion of a trajectory x(t), according to which the particle
bounces from one side of the potential to the other, while going through
every intermediate point. The fact is that the particle can never be found at
the nodes. The quantum picture reminds us of the stationary wave patterns
obtained, for instance, inside an organ pipe. The role that is played in the
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case of sound by the ends of the pipe, is played in the case of the quantum
harmonic oscillator by the boundary conditions.

• Comparison between the classical and quantum mechanical probability
densities. The classical probability for finding a particle is inversely pro-
portional to its speed [v = (2E/M −ω2x2)1/2 for the harmonic oscillator].
Therefore, we may define a classical probability density Pclas = ω/πv.
The probability of finding the particle in any place, within the classically
allowed interval −xn ≤ x ≤ xn, is one. Here, xn = xc(2n+1)1/2 for a par-
ticle with energy h̄ω(n + 1/2). The classical probability density displays
a minimum around the origin and diverges as the particle approaches the
end points of the allowed interval. The quantum mechanical density distri-
bution for the ground state has exactly the opposite features. However, as
n increases, the quantum mechanical density distribution tends5 toward
the classical limit (Fig. 4.2).

• Tunnel effect. Outside the allowed interval −xc ≤ x ≤ xc, the classi-
cal particle would have a negative kinetic energy and thus an imaginary
momentum. However, this argument does not hold in the quantum case,
because it would imply some simultaneous determination of the particle
location and the momentum, contradicting the uncertainty principle. Let
us suppose that a particle in its ground state has been detected within
the interval xc ≤ x ≤

√
2xc, i.e., within the region following the classically

allowed one. In this interval, the probability density decreases from N2
0 /e

at x = xc to N2
0 /e2 (i.e., by a factor e−1). If we measure the particle within

this interval, and we take it to be a reasonable measure of the uncertainty
in the position of the particle, then

∆x ≈ 0.41xc . (4.26)

According to the Heisenberg principle, the minimum uncertainty in the
determination of the momentum is

∆p ≥ 1.22
√

h̄ωM , (4.27)

which is consistent with an uncertainty in the kinetic energy larger than
(∆p)2 /2M ≥ 3

4 h̄ω. Since the potential energy in the same interval in-
creases from h̄ω/2 to h̄ω, we cannot make any statement about a possible
imaginary value for the momentum, which would rule out the possibility
that the particle penetrates into the classically forbidden region.

• The probability of finding the particle in the classically forbidden region is

Pn =
2n+1

π1/2n!

∫ ∞

√
2n+1

e−u2 |Hn|2du . (4.28)

5 This is a manifestation of the correspondence principle, which was extensively
used by Bohr in the old quantum theory.
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This probability is a finite number, as large as 16% for the ground state. It
decreases as the quantum number n increases, consistent with the tendency
to approach the classical behavior for higher values of the energy (see
Table 4.1).

4.3 Free Particle

If there are no forces acting on the particle, the potential is constant:
V (x) = V0. Let us assume in the first place that the energy E ≥ V0. In such
a case the Schrödinger equation reads

− h̄2

2M

d2ϕk(x)
dx2

= (E − V0)ϕk(x) . (4.29)

There are two independent solutions to this equation, namely

ϕ±k(x) = A exp(±ikx) , k =

√
2M(E − V0)

h̄
. (4.30)

The parameter k labeling the eigenfunction is called the wave number and
has dimensions of a reciprocal length. The eigenvalues of the energy and the
momentum are

E = h̄2k2/2M + V0 , p = ±h̄k . (4.31)

Unlike the case of the harmonic oscillator (a typical bound case), the eigen-
values of both the momentum and the energy belong to a continuous set. The
free-particle solutions satisfy the de Broglie relation [28]

p = h̄k = h/λ , (4.32)

where λ is the particle wave length. The probability density is constant over
the whole space (Fig. 4.3)

ρ±k(x) = ϕ∗
±k(x)ϕ±k(x) = |A|2 , (4.33)

which is consistent with Heisenberg uncertainty relation (2.37): an exact deter-
mination of the momentum (∆p = 0) implies total undeterminacy in position
(∆x = ∞). The probability current reads

j±k(x) = −i
h̄

2M

[

ϕ∗
±k

dϕ±k(x)
dx

− ϕ±k(x)
dϕ∗

±k(x)
dx

]

= ±|A|2h̄k

M
. (4.34)

These results pose normalization problems, which may be:

• Solved by applying more advanced mathematical tools
• Taken care of through the use of tricks, as in Sect. 4.4.1
• Circumvented, by looking only at the ratios of the probabilities of finding

the particle in different regions of space (Sects. 4.5.1 and 4.5.2)
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Fig. 4.3. Real component, imaginary component, and modulus squared of a plane
wave as functions of the dimensionless variable u = kx, where u is measured in
radians

Since there are two degenerate solutions,6 the most general solution for a given
energy E is a linear combination

Ψ(x) = A+ exp(ikx) + A− exp(−ikx) . (4.35)

Let us consider now the case E ≤ V0, which makes no sense from the classical
point of view. However, the solution of the harmonic oscillator problem (third
item in Sect. 4.2.2) has warned us not to reject this situation out of hand in
the quantum case. In fact, the general solution is the linear combination7

Ψ(x) = B+ exp(κx)+B− exp(−κx) , κ = −ik =

√
2M(V0 − E)

h̄
. (4.36)

This general solution diverges at infinity: |Ψ| → ∞ as x → ±∞. Rather than
a total rejection, this feature implies that the solution (4.36) can only be used
if at least one of the extremes cannot be reached. For instance, if V0 > E for
x > a, one imposes B+ = 0.

6 Two or more solutions are called degenerate if they are linearly independent and
have the same energy.

7 The only difference between the two solutions (4.35) and (4.36) is whether k is
real or imaginary.
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4.4 One-Dimensional Bound Problems

4.4.1 Infinite Square Well Potential. Electron Gas

The potential in this case is V (x) = 0 if |x| ≤ a/2 and V (x) = ∞ for |x| ≥ a/2
(Fig. 4.4).

The two infinite discontinuities should be canceled in the Schrödinger equa-
tion by similar discontinuities in the second derivative at the same points. This
is accomplished by requiring the wave function to be a continuous function
and requiring the first derivative to have a finite discontinuity at the bound-
aries of the potential. Since the wave function vanishes outside the classically
allowed interval, the continuity of the wave function requires Ψ(±a/2) = 0.

According to (3.48), we may demand that the eigenfunctions of the Hamil-
tonian carry a definite parity. This is accomplished by using the solutions
(4.35) with A+ = A− for the even-parity states, and A+ = −A− for the odd
ones. The eigenfunctions are written as

ϕeven
n (x) =

√
2
a

cos(knx) , ϕodd
n (x) =

√
2
a

sin(knx) (4.37)

inside the well, and vanish outside the well. As a consequence of the boundary
conditions,

kna

2π
= n′ , n′ =

1
2
, 1,

3
2
, 2, . . . , (4.38)

where the half-integer values correspond to the even solutions and the integer
values to the odd ones. The eigenvalues of the energy are

En =
h̄2k2

n

2M
=

h̄2π2

2Ma2
n2 , (4.39)

with n = 2n′ = 1, 2, . . . .

ϕ
1

ϕ
2

ϕ
3

E
3

E
2

E
1

/2/2−a a0 

Fig. 4.4. Infinite square well potential. The energies En (continuous lines) and wave
functions ϕn(x) (dotted curves) are represented for the quantum numbers n = 1, 2,
and 3
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The reader is recommended to check that the quantum features associ-
ated with the solution of the harmonic oscillator problem (Sects. 3.2.2 and
4.2.2) are reproduced in the case of the infinite square well. The exception is
the one related to the tunnel effect, which is prevented here by the infinite
discontinuity in the potential.

By increasing the size of the box, the infinite potential well may be used to
model the potential binding the electrons in a metal. In the electron gas model
in one-dimension, the (noninteracting) electrons are confined to a (large) seg-
ment a, which is much larger than the size of a given experimental set-up.

However, the standing waves (4.37) are not convenient for discussing
charge and energy transport by electrons. In fact, the probability current
associated with them vanishes. In the theory of metals, it is more convenient
to use running waves exp(±ikx) (4.30). We may use an alternative boundary
condition by imagining that the end point at x = a/2 is joined to the opposite
point at x = −a/2. In this way the segment transforms into a circumference
with the same length a. An electron arriving at the end of the well is not
reflected back in, but leaves the metal and simultaneously re-enters at the
opposite end. The representation of a free particle becomes more adequate as
the radius a/2π gets larger. This procedure results in the boundary condition
Ψ(x) = Ψ(x + a), or

kna

2π
= n , n = 0,±1,±2, . . . . (4.40)

The total number of states is the same as for the standing waves (4.38), since
the presence of half-integer and integer numbers in that case is compensated
for here by the existence of two degenerate states ±n. The eigenfunctions and
energy eigenvalues are

ϕn(x) =
1√
a

exp(iknx) , En =
h̄2k2

n

2M
. (4.41)

As mentioned in Sect. 4.3, these functions are also eigenfunctions of the
momentum operator p̂ with eigenvalues h̄kn. Although the momenta (and
the energies) are discretized, the gap

∆k = 2π/a (4.42)

between two consecutive eigenvalues becomes smaller than any prescribed
interval, if the radius of the circumference is taken to be sufficiently large.

In quantum mechanics, sums over intermediate states often appear. In the
case of wave functions of the type (4.41), this procedure may be simplified by
transforming the sums into integrals, giving the length element in the integrals
by (a/2π)dk, according to (4.42):

∑

k

fk → a

2π

∫

fkdk . (4.43)
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The extension of the model in order to include a periodic crystal structure
is performed in Sect. 4.6†. Calculations with the electron gas model for the
three-dimensional case are carried out in Sect. 7.4.1.

4.4.2 Finite Square Well Potential

The potential reads V (x) = −V0 < 0 if |x| < a/2 and V (x) = 0 for other
values of x. Here we consider only bound states, with a negative energy
(0 ≥ −E ≥ −V0).

As in the harmonic oscillator case, the potential is invariant under the
parity transformation x → −x. Thus we expect the eigenfunctions to be either
even or odd with respect to this transformation. Therefore, the solution (4.35)
applies in the region |x| ≤ a/2, with

A+ = ±A− and k =
1
h̄

[
2M(V0 − E)

]1/2
.

Moreover, invariance under the parity transformation allows one to confine
calculation of the boundary conditions to the position x = a/2. The wave
function to the right of this point is given by (4.36) with B+ = 0 and
κ = (1/h̄)(2ME)1/2.

In order to have a Schrödinger equation valid at every point of space,
the wave function and its first derivative should be continuous everywhere,
including the point at which there is a finite discontinuity in the potential. The
ratio between the continuity condition corresponding to the first derivative
and to the function itself yields the eigenvalue equation

κ

k
= tan

ka

2
. (4.44)

This is as far as we can go analytically in this case. Equation (4.44) must
either be solved numerically or using the following graphical method (see
Fig. 4.5): the equation determining the value of k is equivalent to the equation
E = V0 − h̄2k2/2M . Therefore, we obtain the ratio

κ

k
=

√
2MV0

h̄2k2
− 1 , (4.45)

and (4.44) becomes √
MV0a2

2h̄2θ2
− 1 = tan θ , (4.46)

where θ ≡ ka/2. The function tan θ increases from zero to infinity in the
interval 0 ≤ θ ≤ π/2, while the left-hand side decreases from infinity to a
finite value as θ increases in the same interval. Therefore, there is a value of θ
at which the two curves intersect, corresponding to the lowest eigenvalue. An
analogous argument is made for the successive roots of (4.46). The nth root
is found in the interval (n − 1)π ≤ θ ≤ (n − 1/2)π.
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Fig. 4.5. Graphical determination of the energy eigenvalues of a finite square
well potential. The intersections of the continuous curve

√
(13/θ)2 − 1 with the

dashed curves correspond to even-parity solutions, while those with the dotted curves
correspond to the odd ones. The value MV0a

2/h̄2 = 338 is assumed

Unlike the harmonic oscillator case, the number of roots is limited, since
(4.46) requires θ ≤ θmax, where

θmax =

√
MV0a2

2h̄2 . (4.47)

There is a set of odd solutions that satisfy an equation similar to (4.44),
namely

− cot
ka

2
=

κ

k
. (4.48)

Unlike the classical case, the probability density is not constant in the interval
|x| ≤ a/2. Moreover, there is a finite probability of finding the particle outside
the classically allowed region. However, the solutions tend toward the classical
behavior as n increases.

The spectrum of normalizable (bound) states is always discrete.
Conversely, states that have a finite amplitude at infinity must be part
of a continuous spectrum. This is the case for positive values of the energy
(see Sect. 4.5.2).

4.5 One-Dimensional Unbound Problems

In this section we study problems related to the scattering of a particle by
means of a potential. We assume that the particle impinges from the left and
may be reflected and/or transmitted. There is no incoming wave from the
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right. Therefore the state vector must satisfy the following boundary condi-
tions:

• It includes the term A+ exp(ikx) for x → −∞
• It does not include the term A− exp(−ikx) for x → ∞

4.5.1 One-Step Potential

The one-step potential is written as V (x) = 0 for x < 0 and V (x) = V0 > 0
for x > 0 (Fig. 4.6). It represents an electron moving along a conducting wire
that is interrupted by a short gap. The electron feels a change in the potential
as it crosses the gap.

Ea < V0

Classically, the particle rebounds at x = 0 and cannot penetrate the region
x ≥ 0. Quantum mechanically this is no longer the case. For x ≤ 0 the solution
is given as the superposition of an incoming and a reflected wave (4.35), with
V0 = 0. Equation (4.36) holds for x ≥ 0. This last solution cannot be rejected,
since it does not diverge on the right half-axis if we impose the boundary
condition B+ = 0.

The two continuity requirements imply that

A+ + A− = B− , A+ − A− = i
κ

k
B− . (4.49)

-10 -8 -6 -4 -2 0 2 4 6 8 10

-1
0

1

   

-1
0

1

kx

kx

ImΨ
b
(x)

ReΨ
b
(x)

E
b

  

 

-10 -8 -6 -4 2 0 2 4 6 8 10

-1
0

1
Ψ

a
(x)

 

 

  

0

V
oE

a

   

Fig. 4.6. One-step potential. Subscripts a and b label wave functions corresponding
to energies Ea = 3V0/4 and Eb = 5V0/4, respectively
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Therefore

A+ =
1
2
B−
(
1 + i

κ

k

)
, A− =

1
2
B−
(
1 − i

κ

k

)
. (4.50)

The total wave function is given by

Ψa(x) =
1
2
B−
[(

1 + i
κ

k

)
exp(ikx) +

(
1 − i

κ

k

)
exp(−ikx)

]

= B−
[
cos(kx) − κ

k
sin(kx)

]
(x ≤ 0) ,

Ψa(x) = B− exp(−κx) (x ≥ 0) . (4.51)

The solution for x ≤ 0 represents the superposition of an incident and a
reflected wave. Since both amplitudes have equal module, they generate a
standing wave with the corresponding nodes at positions such that tan(kx) =
k/κ, for x ≤ 0 (see the first item in Sect. 4.2.2). The probability currents
associated with the incident and reflected waves are

jI = −jR =
h̄k

M

|B−|2
4

(

1 +
κ2

k2

)

. (4.52)

The reflection coefficient is defined as the absolute value of the ratio between
reflected and incident currents. In the present case,

R ≡
∣
∣
∣
∣
jR
jI

∣
∣
∣
∣ = 1 . (4.53)

The mutual cancellation between the two probability currents is correlated
with the real character of the wave function (4.51).

There is a tunneling effect for x ≥ 0, since the particle can penetrate into
the forbidden region over a distance of the order of ∆x = 1/κ. This length is
accompanied by an uncertainty in the momentum and in the kinetic energy,
so that

∆p ≈ h̄

∆x
≈
√

2M(V0 − Ea) , ∆E ≈ (∆p)2

2M
≈ V0 − Ea , (4.54)

respectively. The consequences of these uncertainties parallel those discussed
in Sect. 4.2.2.

Eb > V0

The classical solution describes an incident particle which is totally transmit-
ted, but with a smaller velocity. From the quantum mechanical point of view,
the solution for x ≤ 0 is again given by (4.35) with V0 = 0, representing an
incident plus a reflected wave. For x ≥ 0 this same solution is valid, but with
the wave number kb =

√
2M(Eb − V0)/h̄. There is no incident wave from the

right, since there is nothing that may bounce the particle back. Let C denote
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the amplitude of the transmitted wave exp(ikbx). The continuity of the wave
function and its first derivative at x = 0 requires that

A+ + A− = C , A+ − A− =
kb

k
C . (4.55)

Using these equations, we may express the amplitudes of the reflected and
transmitted waves as proportional to the amplitude of the incident wave, so
that

Ψb(x) =

⎧
⎪⎪⎨

⎪⎪⎩

A+

[

exp(ikx) +
k − kb

k + kb
exp(−ikx)

]

(x ≤ 0) ,

A+
2k

k + kb
exp(ikbx) (x ≥ 0) .

(4.56)

The probability currents associated with the incident, reflected, and transmit-
ted waves are

jI =
h̄k

M
|A+|2 ,

jR = − h̄k

M

(
k − kb

k + kb

)2

|A+|2 , (4.57)

jT =
h̄kb

M

(
2k

k + kb

)2

|A+|2 ,

respectively. In this case we also define a transmission coefficient T ≡ jT/jI

R =
(

k − kb

k + kb

)2

, T =
4kkb

(k + kb)2
, (4.58)

and we find that R+T = 1 as expected, since the current should be conserved
in the present case.

What makes the particle bounce? The quantum mechanical situation is
similar to a beam of light crossing the boundary between two media with
different indices of refraction. At least a partial reflection of the beam takes
place.

Note that the wave functions (4.51) and (4.56) may be obtained from each
other through the substitution kb(E) = iκ(E).

4.5.2 Square Barrier

The potential is given by V (x) = 0 (|x| > a/2) and V (x) = V0 (|x| < a/2)
(Fig. 4.7). We only consider explicitly the case E ≤ V0. Classically, the particle
can only be reflected at x = −a/2.

For x ≤ −a/2 and for x ≥ a/2, the solution to the Schrödinger equation
again takes the form (4.35), with the same value of k for both regions (V0 = 0).
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Fig. 4.7. Square barrier and associated wave function. Here E = 3V0/4

However, there is only a transmitted wave, C exp(ikx), for x ≥ a/2. Within the
intermediate region −a/2 ≤ x ≤ a/2, the solution is as in (4.36). We cannot
now reject either of the two components on account of their bad behavior at
infinity. We thus have five amplitudes. The continuity conditions at the two
boundaries provide us with four equations: the four remaining amplitudes may
be expressed in terms of the amplitude of the incident wave A+. We may also
obtain here the currents associated with the incident beam jI, the reflected
beam jR, the transmitted beam jT, and the beam within the barrier jB, and
the reflection and transmission coefficients R, T :

jI =
h̄k

M
|A+|2 , jR = − h̄k

M
|A−|2 ,

jT =
h̄k

M
|C|2 , jB =

2h̄κ

M

[
Re (B+)Im (B−) − Re (B−)Im (B+)

]
,

R =
∣
∣
∣
∣
jR
jI

∣
∣
∣
∣ =

sinh2(κa)
4E

V0

(

1 − E

V0

)

+ sinh2(κa)
,

T =
∣
∣
∣
∣
jT
jI

∣
∣
∣
∣ =
∣
∣
∣
∣
jB
jI

∣
∣
∣
∣ =

4E

V0

(

1 − E

V0

)

4E

V0

(

1 − E

V0

)

+ sinh2(κa)
. (4.59)

For values of κa > 1 the transmission coefficient displays an exponential decay

T ≈ 16E

V0

(

1 − E

V0

)

exp(−2κa) . (4.60)
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Transmission through a potential barrier is another manifestation of the
tunnel effect, which has been discussed both in connection with the harmonic
oscillator (Item 3 in Sect. 4.2.2) and with the one-step potential (Sect. 4.5.1).
The tunnel effect manifests itself in the α-decay of nuclei, the tunneling micro-
scope, etc.

The corresponding analysis for the case of a potential well parallels the one
made for the square barrier. A solution of type (4.35), instead of (4.36), should
also be used for the region inside the well. There will also be incident, reflected,
and transmitted waves, and coefficients of reflection and transmission that sum
to a value of unity.

4.5.3 Scanning Tunneling Microscope

The scanning tunneling microscope (STM) was developed in the 1980s by Gerd
Binnig and Heinrich Rohrer [29]. A conducting probe ending in a very sharp
tip is held close to a metal sample. In a metal, electrons move freely according
to the electron gas model [Sects. (4.4.1) and (7.4.1)], filling all levels up to
the Fermi energy εF. The potential rises at the surface of the metal forming
a barrier, and electrons tunnel through the barrier between tip and surface
sample (Fig. 4.8). The tunneling current8 is proportional to the transmission
coefficient T (4.60). Thus, it exponentially increases as the distance tip–surface
decreases. The tip is mounted on a piezoelectric tube, which allows very small
movements by applying voltage at its electrodes. The tip slowly scans the
surface.

An effective value of κ can be estimated by replacing the difference V0−E in
(4.36) by an average of sample and tip work functions W (the smallest energy
needed to remove an electron from a metal, about 4 eV). Thus κ ≈ 2 Å−1 and,

tip

εFt

W

barrier

Vts

εFs

surface 
sample

Fig. 4.8. Scanning tunneling microscope

8 A small voltage difference Vts between tip and sample must be introduced, in
order to insure the existence of empty electron states in the sample, that should
be occupied by tunneled electrons.
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consequently, the device is sensitive to changes in distance at the subarmstrong
scale (Problem 12).

The STM is used in both industrial and basic research to obtain atomic-
scale images of metal surfaces and of other materials. It is also possible to
achieve tiny tunnel currents if, for instance, biological materials are spread as
thin films over conductive substrates.

4.6† Band Structure of Crystals

A crystal consists of an array of N positive ions displaying a periodic structure
in space and electrons moving in the electric field generated by the ions.
Figure 4.9 sketches the potential V (x + d) = V (x) that an electron feels in
the one-dimensional case. In this section we study the main features of the
single-particle eigenstates in such a potential.

Classically, an electron moving in the potential of Fig. 4.9 may be bound to
a single ion so that it is unable to transfer to another ion. Quantum mechani-
cally, this may be ensured only if the distance d between the ions is very large.
In such a case, the N states in which the electron is bound to one atom of
the array constitute an orthogonal set of states which is N times degenerate.
However, as the distance d is reduced to realistic values, we expect the degen-
eracy to be broken and the energy eigenvalues to be distributed within a band.
In the following, we show how this picture is represented mathematically.

The Bloch theorem states that the wave function of a particle moving in
a periodic potential has the form

ϕk(x) = exp(ikx)uk(x) , (4.61)

where k is real and uk(x + d) = uk(x) is a periodic function [30].

Fig. 4.9. Periodic potential. The upper part of the figure represents a realistic
potential. The lower one mocks this potential as successive square wells
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Since the most relevant property of the potential is its periodicity and not
its detailed shape, we replace the realistic potential with a periodic array of
square well potentials (Fig. 4.9). We have learned by now how to solve square
well problems. Here V (x) = −V0 (0 ≤ x ≤ b) and V (x) = −V1 (b ≤ x ≤ d).
Moreover, V (x + d) = V (x). We denote the energy by −E, with E > 0. We
assume that the electron is bound to the crystal for negative energy values.

4.6.1† Region I: −V0 ≤ −E ≤ −V1

According to Sect. 4.3, the wave functions in the interval nd ≤ x ≤ (n + 1)d
are

Ψ(x) =

{
A+ exp(ikbx) + A− exp(−ikbx) , nd ≤ x ≤ nd + b ,

B+ exp(κbx) + B− exp(−κbx) , nd + b ≤ x ≤ (n + 1)d ,
(4.62)

where
kb =

1
h̄

√
2M(V0 − E) , κb =

1
h̄

√
2M(E − V1) . (4.63)

Thus the periodic function uk(x) is of the form

uk(x) =

⎧
⎨

⎩

A+ exp[i(kb − k)x] + A− exp[−i(kb + k)x] , nd ≤ x ≤ nd + b ,

B+ exp[(κb − ik)x] + B− exp[−(κb + ik)x] ,
nd + b ≤ x ≤ (n + 1)d .

(4.64)
The periodicity of uk requires

uk(x) = A+ exp[i(kb − k)(x − d)] + A− exp[−i(kb + k)(x − d)] , (4.65)

for
(n + 1)d ≤ x ≤ (n + 1)d + b .

The continuity conditions for the wave function, or equivalently for uk,
yield four linear equations for the amplitudes A±, B± (two at x = b and two
at x = d). Therefore the determinant of the coefficients of the amplitudes
should vanish. This condition leads to the equation

f(E) = cos(kd) , (4.66)

where

f(E) =
κ2

b − k2
b

2kbκb
sinh

[
κb(d − b)

]
sin(kbb) + cosh

[
κb(d − b)

]
cos(kbb) . (4.67)
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4.6.2† Region II: −V1 ≤ −E ≤ 0

The procedure is completely parallel to the previous case except for the fact
that the wave function is also of the form (4.35) in the interatomic space
b≤x≤ d, with kc = (1/h̄)

√
2M(E − V1). Equation (4.66) still holds, with

f(E) = −k2
c + k2

b

2kbkc
sin
[
kc(b − d)

]
sin(kbb) + cos

[
kc(d − b)

]
cos(kbb) . (4.68)

The allowed values of E fall into bands satisfying the condition |f(E)| ≤ 1.
Figure 4.10 represents the function f(E), encompassing the two regions
I and II, for the parameters V1 = V0/2, d = 4b and b = h̄

√
2/MV0.

Equation (4.66) remains unchanged if k is increased by a multiple of 2π/d.
We therefore confine k to the interval

−π

d
≤ k ≤ π

d
. (4.69)

We now apply the periodic boundary conditions discussed in Sect. 4.4.1. The
length of the circumference is a = Nd. Therefore,

exp(iknNd) = 1 , kn =
2πn

Nd
, n = 0,±1,±2, . . . ,±1

2
N , (4.70)

where the limits (4.69) have been taken into account. There are as many
possible values of k as there are ions in the array. This result is consistent
with the fact that binding the electron to each ion also constitutes a possible
solution to the problem, as mentioned at the beginning of this section.
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Fig. 4.10. Available intervals of energy (bands), obtained with the periodic square
potential of Fig. 4.9
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Problems

Problem 1. Using Table 4.1, verify that:

1. The operator a (3.29) annihilates the ground state wave function ϕ0

2. The operator a+, applied to ϕ1(x) yields
√

2ϕ2(x)

Hint: Express the operators a, a+ as differential operators.

Problem 2. Assume an infinite square well such that V (x) = 0 in the interval
0 < x < a and V (x) = ∞ for the remaining values of x:

1. Calculate the energies and wave functions.
2. Compare these results with those obtained in the text centering the well

at the origin and explain the agreement on physical grounds.
3. Do the wave functions obtained in the first part have a definite parity?

Problem 3. Relate the minimum energy for a particle moving in a square
well to the Heisenberg uncertainty principle.

Problem 4. Find the eigenvalue equations for a particle moving in a potential
well such that V (x) = ∞ for |x| ≥ a/2, V (x) = V0 ≥ 0 for −a/2 ≤ x ≤ 0, and
V (x) = 0 for 0 < x < a/2. Assume 0 ≤ E ≤ V0.

Problem 5. Estimate the error if we use (4.43) in the calculation of
∑

k Ek.
Hint: Recall that

n=ν∑

n=0

n2 =
ν

6
(ν + 1)(2ν + 1) .

Problem 6. Assume a free electron gas confined to a one-dimensional well of
length a:

1. Obtain the density of states ρ(E) as a function of energy.
2. Calculate ρ for E = 1 eV and a = 1 cm

Problem 7. Consider a square well such that V (x) = ∞ for x < 0, V (x) = 0
for 0 < x < a/2 and V (x) = V0 for x > a/2:

1. Write down the equation for the eigenvalues.
2. Compare this equation with the one obtained for the finite square well in

Sect. 4.4.2.
3. For V0 → ∞, show that the wave function for the finite well satisfies the

condition that it vanishes at x = a/2 and does not penetrate the classically
forbidden region.

Problem 8. Calculate the number of even-parity states (EPS) and odd-parity
states (OPS) for a potential of depth V0 centered at the origin, if the parameter

θ =
a

h̄

√
MV0

2

lies in the intervals: (0, π/2), (0, π), (0, 3π/2), and (0, 2π).
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Problem 9. Calculate the transmission and reflection coefficients for an elec-
tron with a kinetic energy of E = 2 eV coming from the right. The potential
is V (x) = 0 for x ≤ 0 and V (x) = V0 = 1 eV for x ≥ 0.

Problem 10. The highest energy of an electron inside a block of metal is
5 eV (Fermi energy). The additional energy that is necessary to remove the
electron from the metal is 3 eV (work function):

1. Estimate the distance through which the electron penetrates the barrier,
assuming that the width of the (square) barrier is much greater than the
penetration distance.

2. Estimate the transmission coefficient if the width of the barrier is 20 Å.

Problem 11. Obtain the transmission coefficients of a potential barrier in
the limits κa  1 and κa � 1.

Problem 12. Estimate the sensitivity to the distance tip–sample in a STM,
assuming that a relative variation of 1% in the current can be detected and
κ = 2 Å−1.

Problem 13.

1. Show that the eigenfunction of the Hamiltonian of a periodic potential is
not an eigenfunction of the momentum operator.

2. Why is it not a momentum eigenstate?
3. Give an expression for the expectation value of the momentum.

Problem 14. In the presence of interactions, it is sometimes useful to mock
the spectrum by the one of a free particle (4.31) with an effective mass. Obtain
the value of Meff at the extremes of the intervals allowed by (4.66).
Hint: Expand both sides of (4.66) and add the resulting expression ∆E(k2)
to the kinetic energy (4.31).

Problem 15. A linear combination Ψ(x) of momentum eigenstates (4.41)
representing a localized particle is called a wave packet. Choose as amplitudes
cp = η exp[−p2/α2]

1. Obtain the value of η such that the normalization condition
∑

p |cp|2 = 1
is satisfied.

2. Calculate the probability density |Ψ(x)|2.
3. Obtain the matrix elements 〈Ψ|x|Ψ〉 and 〈Ψ|x2|Ψ〉.
4. Obtain the matrix elements 〈Ψ|p|Ψ〉 and 〈Ψ|p2|Ψ〉.
5. Verify Heisenberg uncertainty relation (2.37)

Hint: Replace sums by integrals as in (4.43).∫∞
−∞ exp[−(x + iβ)2/α2]dx = α

√
π;

∫∞
−∞ f(k) exp[ikx]dx = 2π f(0)
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Angular Momenta

This chapter and Chap. 6 are devoted to single-particle problems in three
dimensions. Chapter 5 discusses the problem of quantum angular momenta,
from both matrix and differential equation points of view. The difference in
the corresponding results reveals the existence of the most important quan-
tum observable: the spin. Addition of angular momenta is also treated.

The commutation relation (2.16) is straightforwardly generalized to the
three-dimensional case:

[x̂i, p̂j ] = ih̄δij . (5.1)

In classical physics, angular momentum is a physical, observable vector L
that plays an important role, since it is a conserved quantity in the absence
of external torques τ :

L = r × p ,
dL

dt
= τ . (5.2)

As in the case of the Schrödinger equation, we quantize the problem by
substituting

p̂i → −ih̄
∂

∂xi
(5.3)

into the classical expression (5.2). One obtains the commutation relations

[L̂x, L̂y] = ih̄L̂z , [L̂y, L̂z] = ih̄L̂x , [L̂z, L̂x] = ih̄L̂y , (5.4)

[L̂2, L̂x] = [L̂2, L̂y] = [L̂2, L̂z] = 0 . (5.5)

5.1 Eigenvalues and Eigenstates

5.1.1 Matrix Treatment

In the following, we take the commutation relations (5.4) as the definition of
quantum angular momentum. Therefore, this definition also takes care of the
quantum version of orbital angular momentum (5.2). However, as we shall



68 5 Angular Momenta

see, (5.4) also includes other types of angular momenta of a purely quantum
mechanical origin. From here on we let Ĵi denote operator components that
satisfy the relations

[Ĵi, Ĵj ] = ih̄εijkĴk , (5.6)

where εijk is the Levi–Civita tensor,1 whatever their origin may be. We use
the notation L̂i for angular momentum operators associated with orbital
motion (5.2).

The commutation relations ensure that one can precisely determine the
modulus squared simultaneously with one projection of the angular momen-
tum, but not two projections at the same time. Consequently, one may con-
struct eigenfunctions that are common to the operators Ĵ2 and Ĵz. The choice
of the z-component is arbitrary, since the space is isotropic and, consequently,
there are no preferred directions.

The procedure for solving this problem closely follows the matrix treatment
of the harmonic oscillator (Sect. 3.2.1). It is given in detail in Sect. 5.4*. The
following results are obtained:

• The eigenvalue equations for the operators Ĵ
2

and Ĵz can be written as

Ĵ2ϕjm = h̄2j(j + 1)ϕjm , Ĵzϕjm = h̄mϕjm , (5.7)

where the possible values of the quantum numbers j,m are

−j ≤ m ≤ j , j = 0,
1
2
, 1,

3
2
, . . . , (5.8)

with m increasing in units of one.
• Since the maximum value of m is j, and j2 < j(j + 1), the maximum

projection of the angular momentum is always smaller than the modulus
(except for j = 0). Thus, the angular momentum vector can never be
completely aligned with the z-axis. This fact is consistent with the lack of
commutativity in (5.6): a complete alignment would imply the vanishing
of the components Ĵx, Ĵy and thus the simultaneous determination of the
corresponding physical quantities and of Jz (see Problem 3).

Figure 5.1 represents the possible orientations of the angular momen-
tum vector for the case j = 5/2. It looks as if the angular momentum
precesses around the z-axis. However, this picture is incorrect, since it im-
plies that the end point of the angular momentum vector goes through a
circular trajectory, something that does not make sense from the point of
view of quantum uncertainty relations.

• The operators Ĵx and Ĵy display nondiagonal matrix elements within the
basis (5.7), namely,

1 εijk = 1 if i, j, k are cyclical (as for i = z, j = x, k = y); otherwise εijk = −1 (as
for i = z, j = y, k = x).
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m

5/2

3/2

1/2

−1/2

−3/2

−5/2

Fig. 5.1. Possible orientations of a j = 5/2 angular momentum vector

〈j′m′|Jx|jm〉 = δj′jδm′(m±1)
h̄

2

√
(j ∓ m)(j ± m + 1) ,

〈j′m′|Jy|jm〉 = ∓δj′jδm′(m±1)
ih̄
2

√
(j ∓ m)(j ± m + 1) . (5.9)

• None of the operators Ĵx, Ĵy, Ĵz, Ĵ
2 connect states with different values of

the quantum number j.
• In analogy with (4.7), the unitary operator associated with rotations is

U(α) = exp
(

i
h̄

α · Ĵ
)

. (5.10)

The rotation is specified by the axis of rotation (direction of the vector α)
and the magnitude of the rotation angle α. The operator Ĵi is referred to
as the generator of rotations around the i-axis.

5.1.2 Treatment Using Position Wave Functions

The concept of orbital angular momentum is especially useful in problems
with spherical symmetry (like those involving atoms, nuclei, etc.), for which
it is convenient to use the spherical coordinates:

x = r sin θ cos φ , y = r sin θ sin φ , z = r cos θ ,



70 5 Angular Momenta

dxdy dz = r2 sin θ dr dθ dφ , (5.11)

0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , 0 ≤ r ≤ ∞ .

In these coordinates, the orbital angular momentum operators read

L̂x = ih̄
(

sin φ
∂

∂θ
+ cot θ cos φ

∂

∂φ

)

,

L̂y = ih̄
(

− cos φ
∂

∂θ
+ cot θ sinφ

∂

∂φ

)

,

L̂z = −ih̄
∂

∂φ
,

L̂2 = −h̄2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

)

. (5.12)

The detailed treatment of the orbital angular momentum operator is given in
Sect. 5.5*. The results of such an approach are as follows:

• The simultaneous eigenfunctions of the operators L̂2, L̂z are called spheri-
cal harmonics and denoted by Ylml

(θ, φ). They satisfy the eigenvalue equa-
tions

L̂zYlml
= h̄mlYlml

,

L̂2Ylml
= h̄2l(l + 1)Ylml

, (5.13)

Π̂Ylml
= (−1)lYlml

,

where
−l ≤ ml ≤ l , l = 0, 1, 2, . . . . (5.14)

and Π̂ is the parity operator2 (3.49).
• Using the expressions (5.12), one may construct the matrix elements of

the operators L̂x, L̂y. One obtains the same form as the matrix elements
in (5.9), with the replacement j → l, m → ml.

• The spherical harmonics constitute a complete set of single-valued basis
states on the surface of a sphere of unit radius:

Ψ(θ, φ) =
∑

lml

clml
Ylml

. (5.15)

They can be visualized as vibrational modes of a soap bubble.
• Figure 5.2 displays the projection of some spherical harmonics on the (x, z)

plane. The protruding shapes have important consequences in the con-
struction of chemical bonds.

2 For the three-dimensional case, the parity operation is written as r → −r or
equivalently, r → r, θ → π − θ, φ → π + φ.
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Y00 Y10 Y20 Y30

Fig. 5.2. Projection of the spherical harmonics Yl0 on the (x, z) plane, for the
values l = 0–3. While all the Yl0 are axially symmetric wave functions, l = 0 implies
full spherical symmetry. The distance from the center to the top of the figures is√

(2l + 1)/4π. Full lines denote positive lobules; dotted lines, negative ones

• The rotational Hamiltonian of a molecule is proportional to the operator
L̂

2
. The corresponding energy eigenvalues therefore follow the rule l(l+1)

(see Sect. 8.4.2).

By taking the commutation relations as the definition of the angular mo-
mentum operators, we have obtained operators that are not derived from the
classical orbital angular momentum (see Sects. 5.1.1 and 5.1.2). This statement
is supported by the fact that the quantum numbers j,m associated with these
quantum mechanical angular momenta may take either integer or half-integer
values, in contrast with those labeling the orbital angular momentum, which
can only take integer values. Otherwise we obtain the same matrix elements
for the projections Ĵi (5.9) as for the orbital angular momentum projections
L̂i. On the other hand, the probability densities associated with the orbital
angular momentum display interesting and useful features that are lacking in
the more general derivation (Fig. 5.2).

5.2 Spin

5.2.1 Stern–Gerlach Experiment

A particle with a magnetic moment µ and subject to a magnetic field B
experiences a torque τ . When the particle is rotated through an angle dθ
about the direction of τ , the potential energy U increases:

τ = µ × B , dU = µB sin θdθ , U(θ) = −µB cos θ = −µ · B .
(5.16)

According to classical electromagnetism, an electric current i produces a mag-
netic moment proportional to the area subtended by the current. If this current
is due to a particle with charge e and velocity v moving along a circumference
of radius r, then

µl = iA =
ev

2πr
πr2 =

e

2M
L =

e

|e|
glµB

h̄
L . (5.17)
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Thus the magnetic moment due to the orbital motion is proportional to the
orbital angular momentum. In vector and operator notation,

µ̂l =
e

|e|
glµB

h̄
L̂ , (5.18)

where µB ≡ |e|h̄/2M is called the Bohr magneton (Table 14.1) and gl = 1 is
the orbital gyromagnetic ratio.

Therefore, the presence of a magnetic field displaces the energy of a par-
ticle by an amount proportional to the component of the angular momentum
along the magnetic field (Zeeman effect). Classically, this change is a contin-
uous function of the orientation of the angular momentum but, according to
quantum mechanics, the projections of the angular momentum are discretized
(5.13):

∆Eml
= glµBBml . (5.19)

Therefore, an orbital angular momentum should give rise to an odd number
(2l + 1) of energy eigenstates.

For a uniform magnetic field, there is no net force acting on the magnetic
dipole. However, if the field has a gradient in the z-direction, the net force is

Fz =
∂

∂ z
(µ · B) = µz

∂B

∂z
. (5.20)

Figure 5.3 is a sketch of the experimental set-up used by Stern and Gerlach
[17]. Silver atoms are heated in an oven and escape through a hole. The
beam is collimated and subsequently deflected by a nonuniform magnetic field
perpendicular to its direction. Finally, a visible deposit is allowed to build up
on a glass plate located far from the region of deflection.

We may ignore the nuclear contributions to the magnetic moment on the
grounds that the nuclear magneton is about 2,000 times smaller than the Bohr
magneton. (It includes the proton mass in the denominator, instead of the
electron mass.) Moreover, 46 of the 47 electrons form a spherically symmetric
electron cloud with no net angular momentum (see Sect. 7.3). Therefore, the
total angular momentum of the Ag atom may be ascribed to the last electron.

The Stern–Gerlach result is reproduced in Fig. 5.4. Neither the classical
continuous pattern nor the orbital quantum mechanical results displaying the
separation into an odd number of terms was obtained. The beam was split into
only two other beams, as would befit an angular momentum with j = s = 1/2.

∆

B

Fig. 5.3. Sketch of the Stern–Gerlach experimental arrangement
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Fig. 5.4. Two figures contained in a letter to Bohr from Gerlach, communicating
his experimental results. Gerlach explains that the magnetic field was too weak at
the extremes of the beam. The figure to the left was obtained, for comparison, in the
absence of magnetic field. (Reproduced with permission from Niels Bohr Archive,
Copenhagen)

Spin has become the most important quantum observable, both due to
its conceptual importance and because quantum information is based on two-
state systems (Chap. 10). Consistently with this relevance, modern techniques
for spin detection and manipulation have greatly improved since Stern and
Gerlach’s times. It is now possible to deal with individual spins, rising the
hopes for spintronics – exploiting the spin degree of freedom in electronic
circuits, playing a similar role as the charge degree of freedom (Sect. 7.4.4†).

5.2.2 Spin Formalism

Three years after the publication of the Stern–Gerlach experiment, George
Uhlenbeck and Samuel Goudsmit proposed another quantum number in order
to specify the state of electrons (and of many other fundamental particles)
[31]. It labels the two projections of the spin, by then a new physical entity
representing an intrinsic angular momentum.

Since the spin is a pure quantum observable, only the matrix treatment
formalism is possible. If s = 1/2, then the basis set of states is given by the
two-component vectors (3.16) [32]

ϕ(z)
↑ ≡ ϕ 1

2
1
2
≡
(

1
0

)

, ϕ(z)
↓ ≡ ϕ 1

2 (− 1
2 ) ≡

(
0
1

)

. (5.21)
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The following representation of the spin operators reproduces (5.7) and (5.9)
for j = 1/2:

Ŝi =
h̄

2
σi , (Ŝi)2 =

h̄2

4
I , i = x, y, z , (5.22)

where the σi are called the Pauli matrices:

σx =
(

0 1
1 0

)

, σy =
(

0 −i
i 0

)

, σz =
(

1 0
0 −1

)

, I =
(

1 0
0 1

)

.

(5.23)
They all square to the unit matrix I. The two-component states satisfy the
eigenvalue equation:

(
〈↑ |Q| ↑〉 〈↑ |Q| ↓〉
〈↓ |Q| ↑〉 〈↓ |Q| ↓〉

)(
c↑
c↓

)

= q

(
c↑
c↓

)

, (5.24)

where the Pauli matrices (5.23) are used in the construction of the matrix
(〈i|Q|j〉). The solution to this equation is obtained as in (3.18) and (3.19).

The spin has its own associated magnetic moment:

µ̂s =
gsµν

h̄
Ŝ , (5.25)

with a gyromagnetic ratio of gs = 2.00 for electrons, gs = 5.58 for protons and
gs = −3.82 for neutrons. The constant µν stands for minus the Bohr magneton
µB in the case of electrons, or for the nuclear magneton µp = eph̄/2Mp in
the case of protons and neutrons (Table 14.1), where ep and Mp are the
proton charge and mass, respectively. The total magnetic moment operator is
given by

µ̂ = µ̂s + µ̂l =
µν

h̄

(
gsŜ + glL̂

)
. (5.26)

Obviously, gl = 0 for neutrons. The quantal magnetic moment is not always
proportional to the angular momentum.

The eigenstates of the operator Ŝx have been obtained by means of a
unitary transformation of the eigenvectors of Ŝz (3.21). This is a particular
case of the more general transformation aligning the spin s = 1/2 operator
with a direction of space labeled by the angles β, φ. The operator Ŝβφ may be
written as the scalar product of the spin vector Ŝ times a unit vector along
the chosen direction (see Problem 5 in Chap. 3):

Ŝβφ = sin β cos φŜx + sinβ sin φŜy + cos βŜz

=
h̄

2

(
cos β sinβ exp(−iφ)

sinβ exp(iφ) − cos β

)

. (5.27)

The same two eigenvalues ±h̄/2 are obtained upon diagonalization. As
explained in Sect. 3.1.3, this is a consequence of space isotropy. The diagonal-
ization also yields the state vectors
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ϕ(βφ)
↑ =

⎛

⎜
⎝

cos
β

2
sin

β

2
exp(iφ)

⎞

⎟
⎠

z

, ϕ(βφ)
↓ =

⎛

⎜
⎝

sin
β

2
exp(−iφ)

− cos
β

2

⎞

⎟
⎠

z

, (5.28)

while the rotational unitary transformation acting on states (5.21) is

Uβφ =
(

cos β
2 sin β

2 exp(−iφ)
sin β

2 exp(iφ) − cos β
2

)

. (5.29)

The factor 1/2 multiplying the angle β is characteristic of the effect of
rotations on j = 1/2 objects. It may be verified through the value of the
amplitudes (3.21) in the case of transformation from the z to the x eigenstates.
In that case, β = π/2, φ = 0.

An arbitrary linear combination of spin up and spin down states such as
in (5.28) is called a qubit. The word “qubit” is short for “quantum bit,” a
concept used in quantum computation (Sect. 10.6†).

5.3 Addition of Angular Momenta

Consider two angular momentum vector operators, Ĵ1 and Ĵ2. They are
independent vectors, i.e., [Ĵ1, Ĵ2] = 0. Therefore, the product states are
simultaneous eigenstates of the operators Ĵ2

1 , Ĵz1, Ĵ2
2 , and Ĵz2 :

ϕj1m1j2m2
= ϕj1m1

ϕj2m2
. (5.30)

These (2j1 + 1)(2j2 + 1) eigenstates constitute a complete basis for states
carrying the quantum numbers j1,m1, j2,m2. However, it may not be the
most useful one. We may prefer a basis labeled by the quantum numbers
associated with the total angular momentum Ĵ (see Fig. 5.5):

Ĵ = Ĵ1 + Ĵ2 . (5.31)

Since the components Ĵx, Ĵy, Ĵz also satisfy the commutation relations (5.4)
and (5.6), there must exist another basis set made up from eigenstates of the
operators Ĵ2 and Ĵz. Since the commutation relations

[Ĵ2, Ĵ2
1 ] = [Ĵ2, Ĵ2

2 ] = [Ĵ2, Ĵz] = [Ĵ2
1 , Ĵz] = [Ĵ2

2 , Ĵz] = 0 (5.32)

vanish, the new set of basis states may be labeled by the quantum numbers
j1, j2, j,m

ϕj1j2jm ≡
[
ϕj1

ϕj2

]j
m

(5.33)

The two basis sets (5.30) and (5.33) are equally legitimate. According to
Sect. 2.7.2*, there is a unitary transformation connecting the two basis:

ϕj1j2jm =
∑

m1m2

c(j1m1; j2m2; jm) ϕj1m1j2m2
. (5.34)
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The quantum numbers j1, j2 are valid for both sets and they are not therefore
summed up in (5.34). The sum over m1,m2 is restricted by the addition of
projections

m = m1 + m2. (5.35)

For classical vectors, the modulus of the sum of two vectors lies between
the sum of their moduli and the absolute value of their difference. Something
similar takes place in quantum mechanics:

j1 + j2 ≥ j ≥ |j1 − j2|. (5.36)

The quantum number j is an integer if both j1, j2 are integers or half-integers;
j is a half-integer if only one of the constituents is an integer. The amplitudes
c(j1m1; j2m2; jm) are called Wigner or Clebsch–Gordan coefficients. They are
real numbers satisfying the symmetry relations

c(j1m1; j2m2; jm) = (−1)j1+j2−jc
(
j1(−m1); j2(−m2); j(−m)

)

= (−1)j1+j2−jc
(
j2m2; j1m1; jm

)
(5.37)

= (−1)j1−m1

√
2j + 1
2j2 + 1

c
(
j1m1; j(−m); j2(−m2)

)
.

The inverse transformation is

ϕj1m1
ϕj2m2

=
j=j1+j2∑

j=|j1−j2|
c(j1m1; j2m2; jm)

[
ϕj1

ϕj2

]j
m=m1+m2

. (5.38)

The example of the summation of an angular momentum j1 with the spin
j2 = s2 = 1/2 is given in Sect. 5.6* (see also Fig. 5.5).

0

0.5

1

1.5

2

2.5

m

j1 = 5/2

j1 = 5/2

j = 3

j2 = 1/2

j2 = 1/2

Fig. 5.5. Coupling of two vectors with j1 = 5/2 and j2 = 1/2 may yield a vector
with j = 3, m = 2 (dashed lines). The superposition (5.34) has two components,
with m1 = 3

2
, m2 = 1

2
and m1 = 5

2
, m2 = − 1

2
, respectively
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Since the expansions (5.34) and (5.38) have a pure geometrical origin, they
are valid even if one or both of the state vectors are replaced by operators
carrying angular momentum quantum numbers. As a consequence, we ob-
tain selection rules for the matrix elements 〈jfmf |Oλµ|jimi〉 of any operator
Ôλµ, where λ, µ are angular momentum labels. According to (5.38), the state
Ôλµϕjimi

can be expanded in eigenstates of the total angular momentum op-
erators satisfying (5.36). Therefore, jf ,mf must satisfy the same constraints.
For instance, matrix elements of a spherically symmetric operator vanish un-
less initial and final states are characterized by the same angular momentum
quantum numbers. This is frequently the case of the Hamiltonian. In addition,
the product of parities should be πf πO πi = +1. See also Problem 5.

5.4* Details of Matrix Treatment

We define the operators
Ĵ± = Ĵx ± iĴy . (5.39)

They play a role similar to the creation and destruction operators a+, a in
the harmonic oscillator case (Sect. 3.2.1). Since the operator Ĵ− is Hermitian
conjugate to Ĵ+ (Sect. 2.7.1*),

〈jm|J+|jm′〉 = 〈jm′|J−|jm〉∗ . (5.40)

Applying the commutation relations (5.6), we obtain the relations

[Ĵz, Ĵ+] = h̄Ĵ+ , (5.41)
[Ĵ+, Ĵ−] = 2h̄Ĵz . (5.42)

The matrix elements of (5.41) read

〈jm′|[Jz, J+]|jm〉 = h̄(m′ − m)〈jm′|J+|jm〉 = h̄〈jm′|J+|jm〉 , (5.43)

which implies that 〈jm′|J+|jm〉 are only different from zero if m′ = m + 1.
Therefore the operator Ĵ+ raises the projection of the angular momentum by
one unit of h̄ (and Ĵ− does the opposite).

The expectation value of (5.42) yields

〈jm|[J+, J−]|jm〉 = 〈jm|J+|j(m − 1)〉〈j(m − 1)|J−|jm〉
−〈jm|J−|j(m + 1)〉〈j(m + 1)|J+|jm〉

= |〈jm|J+|j(m − 1)〉|2 − |〈j(m + 1)|J+|jm〉|2

= 2h̄2m , (5.44)

where (5.40) has been used. The solution to this first-order difference equation
in |〈j(m + 1)|J+|jm)〉|2 is

|〈j(m + 1)|J+|jm)〉|2 = h̄2
[
c − m(m + 1)

]
. (5.45)
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Since the left-hand side is positive, only the values of m that make the right-
hand side positive are allowed and the matrix element between the last allowed
eigenstate ϕjmmax

and the first rejected eigenstate ϕj(mmax+1) should therefore
vanish. Here mmax is the positive root of the equation c = m(m + 1). The
assignment of the quantum number j = mmax determines the value of the
constant c = j(j + 1). Therefore,

〈j(m + 1)|J+|jm)〉 = h̄
√

(j − m)(j + m + 1) , (5.46)

where the positive value for the square root is chosen by convention. We verify
the vanishing of the matrix elements connecting admitted and rejected states:

〈j(j + 1)|J+|jj〉 = 〈j(−j)|J+|j(−j − 1)〉 = 0 . (5.47)

Since m increases in steps of one unit between −j and j [see (5.43)], the
possible values of the quantum numbers j,m are those given in (5.8).

The matrix elements (5.9) corresponding to the operators Ĵx and Ĵy can
be obtained from (5.40) and from (5.46). Addition of the squares of these
matrices yields the (diagonal) matrix elements of Ĵ2 (5.7).

5.5* Details of the Treatment of Orbital
Angular Momentum

5.5.1* Eigenvalue Equation for the Operator L̂z

The eigenvalue equation for the operator L̂z is

−ih̄
dΨ(φ)

dφ
= lzΨ(φ) . (5.48)

The solution is proportional to exp(ilzφ/h̄). We may require3 Ψ(φ + 2π) =
Ψ(φ), which implies the existence of discrete values for the eigenvalue
lz = h̄ml (ml = 0,±1,±2, . . .). Thus the orthonormal set of eigenfunctions of
the operator L̂z is given by

ϕml
(φ) =

1√
2π

exp(imlφ) . (5.49)

5.5.2* Eigenvalue Equation for the Operators L̂2, L̂z

We try a function of the form Ψ(θ, φ) = Plml
(θ) exp(imlφ). It follows that, in

the eigenvalue equation for the operator L̂2:

• We can make the replacement d2/dφ2 → −m2
l

• We may drop the exponential exp(imlφ) from both sides of the equation
3 This quantization procedure is similar to the one applied in (4.40).
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We obtain a differential equation depending on the single variable θ :

−h̄2

(
d2

dθ2
+ cot θ

d
dθ

− m2
l

sin2 θ

)

Plml
(θ) = ζPlml

(θ) . (5.50)

The solutions to this equation for ml = 0 may be expressed as polynomials
Pl(cos θ) of order l in cos θ, called Legendre polynomials (l = 0, 1, 2, . . .).
Each Pl gives rise to the 2l + 1 associated Legendre functions Plml

(θ) with
|ml| ≤ l. All of them are eigenfunctions of the operator L̂2 with eigenvalue
ζ = l(l + 1)h̄2.

The simultaneous eigenfunctions of the operators L̂
2

and L̂z are called
spherical harmonics:

Ylml
(θ, φ) = Nlml

Plml
(θ) exp(imlφ) , (5.51)

where Nlml
are constants chosen to satisfy the orthonormalization equation:

〈l′m′
l|lml〉 =

∫ π

0

sin θdθ

∫ 2π

0

dφ Y ∗
l′m′

l
Ylml

= δll′δmlm′
l
. (5.52)

Here

Y ∗
lml

= (−1)mlYl(−ml) . (5.53)

The spherical harmonics corresponding to the lower values of l are given in
Table 5.1. The l values (5.14) are traditionally replaced by symbolic letters in
the literature (Table 5.2). This correspondence has only historical support.

The coupling to angular momentum zero of two spherical harmonics de-
pending on different orientations in space depends on the angle α12 subtended
by the two orientations through the equation:

[
Yl(θ1, φ1)Yl(θ2φ2)

]0
0

=
1√

2l + 1

ml=l∑

ml=−l

(−1)l−mlYlml
(θ1, φ1)Yl(−ml)(θ2, φ2)

= (−1)l

√
2l + 1
4π

Pl(cos α12) . (5.54)

Table 5.1. Spherical harmonics corresponding to the lowest values of l

Y00 =
1√
4π

Y1(±1) = ∓
√

3

8π
sin θ exp(±iφ)

Y10 =

√
3

4π
cos θ Y2(±1) = ∓

√
15

32π
sin(2θ) exp(±iφ)

Y20 =

√
5

16π
(3 cos2 θ − 1) Y2(±2) =

√
15

32π
sin2 θ exp(±i2φ)
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Table 5.2. Equivalence between quantum number l and symbolic letters

l symbol

0 s
1 p
2 d
3 f
4 g

5.6* Coupling with Spin s = 1/2

The use of (5.34) is exemplified in the case where the second angular mo-
mentum is the spin j2 = s = 1/2 (Fig. 5.5). Here the summation consists of
two terms, corresponding to the two values of the spin projection ms = ±1/2.
According to (5.36), there are also two values for the total angular momentum
j = j1 ± 1/2.

ϕ(j1=j+ 1
2 )sjm = −

√
j − m + 1

2j + 2
ϕj1(m− 1

2 )1

(
1
0

)

2

(5.55)

+

√
j + m + 1

2j + 2
ϕj1(m+ 1

2 )1

(
0
1

)

2

,

ϕ(j1=j− 1
2 )sjm =

√
j + m

2j
ϕj1(m− 1

2 )1

(
1
0

)

2

+

√
j − m

2j
ϕj1(m+ 1

2 )1

(
0
1

)

2

.

A particular application of this example is the coupling of orbital motion with
the spin of an electron (Sect. 6.2). In this case the eigenstates ϕj1m1

are the
spherical harmonics Yl1ml1 (5.51). However, (5.55) is valid whatever the nature
of the angular momentum j1 may be.

If j = j1 + 1
2 and |m| = j, there is a single term in (5.55). For the particular

case j1 = 0 this is a physical consequence of the fact that a spherical object
should be uncoupled from the total angular momentum (Fig. 5.2).

Problems

Problem 1. A plastic disk rotates with angular velocity 100 rad s−1. Esti-
mate, in units of h̄, the order of magnitude of the angular momentum.

Problem 2.

1. Construct the matrix for the operator L̂x (5.12) in the basis of spherical
harmonics Y1ml

(Table 5.1).
2. Diagonalize the matrix and compare its eigenvalues with those of the

operator L̂z.
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Problem 3. Verify that the product of the uncertainties ∆Jx
∆Jy

satisfies the
inequality (2.36).

Problem 4. Calculate Ĵ×Ĵ .

Problem 5. Consider the following matrix elements between spherical har-
monic states:

〈00|Y20|00〉 , 〈10|Y20|10〉 , 〈11|Y21|21〉 , 〈00|Y11|11〉 , 〈00|Y11|1(−1)〉 ,

〈00|Π|00〉 , 〈11|Π|11〉 , 〈00|Π|10〉 .

1. Find out which of the above-matrix elements vanishes due to conservation
of orbital angular momentum and/or parity.

2. Calculate those that remain.

Problem 6. Calculate [Ŝ2
x, Ŝz] for spin s = 1/2 particles.

Problem 7.

1. Construct the eigenstates of Ŝx and Ŝy using the eigenstates of Ŝz as basis
states.

2. If the spin Sx is measured when the particle is in an eigenstate of the
operator Ŝy, what are the possible results and their probabilities?

3. Construct the matrix corresponding to Ŝx using the eigenstates of Ŝy

obtained in the first part as basis states.
4. Express the eigenstates ϕ(sx) using the eigenstates ϕ(sy) as basis states.

Problem 8. A particle is in the spin state
(

a
b

)

, with a, b real. Calculate the

probability of obtaining the eigenvalue h̄/2 if:

1. Sx is measured
2. Sy is measured
3. Sz is measured

Problem 9. A particle is in the spin state Ψ =
(

cos(θ/2)
sin(θ/2)

)

.

1. What are the values of Sz that would appear as a result of a measurement
of this observable? What are the associated probabilities?

2. What is the mean value of Sz in this state?

Problem 10.

1. Construct the possible states with m = 1/2 that are obtained by coupling
an orbital angular momentum l = 2 with a spin s = 1/2.

2. Verify the orthonormality of the coupled states.
3. Construct the wave vector corresponding to the state with j = m = l+1/2.

What is the probability that the spin points up?
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Problem 11. Write the two-spin state vectors with s = 1/2 that have a
definite total angular momentum.

Problem 12. Apply the closure property as in (2.50) to the transformations
(5.34) and (5.38).

Problem 13. Relate the coupling between an orbital angular momentum l
and a spin s = 1/2 to the coupling of the spin to the same orbital angular
momentum.
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Three-Dimensional Hamiltonian Problems

In the present chapter, we broaden the quantum mechanical treatment of the
problem of a single particle moving in three-dimensional space in order to
incorporate the Hamiltonian. We only treat central potentials V (r) = V (r).
In particular, we study the Coulomb and the three-dimensional harmonic
oscillator potentials, including a spin–orbit interaction. We also present
elements of scattering theory.

6.1 Central Potentials

The solution to a given problem can be simplified by exploiting the associated
symmetries. We have already shown that this is the case by applying
invariance under the inversion operation (see the bound problems of Sects. 4.2,
4.4.1, and 4.4.2). Since problems involving a central potential V (r) are spheri-
cally symmetric, we shall make use of this symmetry. For this purpose, we
write the kinetic energy Laplacian in spherical coordinates (5.11). The total
Hamiltonian reads

Ĥ =
1

2M

(
p̂2

x + p̂2
y + p̂2

z

)
+ V (r)

=
h̄2

2M

(

− ∂2

∂r2
− 2

r

∂

∂r

)

+
L̂2

2Mr2
+ V (r) , (6.1)

where the operator L̂2 is the square of the orbital angular momentum (5.12).
Since the Hamiltonian (6.1) commutes with operators L̂2 and L̂z, there is a
basis set of eigenfunctions for the three operators. The eigenvalue equation
(4.10) is solved by factorizing the wave function into radial and angular terms,
the latter being represented by the spherical harmonics (5.51):

Ψ(r, θ, φ) = Rnrl(r)Ylml
(θ, φ) . (6.2)

In such a case, the operator L̂2 in the kinetic energy can be replaced by its
eigenvalue h̄2l(l + 1) and moreover, the spherical harmonics cancel on both
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sides of the Schrödinger equation.1 One is left with a differential equation
depending on a single variable: the radius. Thus,
{

h̄2

2M

[

− d2

dr2
− 2

r

d
dr

+
l(l + 1)

r2

]

+ V (r)
}

Rnrl(r) = EnrlRnrl(r) , (6.3)

where the new quantum number nr distinguishes between states with the
same value of l. Since the magnetic quantum number ml does not appear
in this equation, the eigenvalues Enrl are also independent of it. In conse-
quence, the eigenenergies of a central potential are necessarily degenerate,
with degeneracy equal to 2l + 1 (5.14). This result is to be expected since
the quantum number ml depends on the orientation of the coordinate axis.
That is to say, the central potential has spherical symmetry and the resulting
energies (which are physical quantities) should not depend on the orientation
of the coordinate axis (which is an artifact of the calculation).

6.1.1 Coulomb and Harmonic Oscillator Potentials

In this section we discuss the solutions to the eigenvalue equation for two cen-
tral potentials: the Coulomb potential −Ze2/4πε0r and the three-dimensional
harmonic oscillator potential Mω2r2/2.

It is always useful to begin by estimating the orders of magnitude of
the quantities involved. For the linear harmonic oscillator, this has already
been done in (3.28). These orders of magnitude remain valid for the three-
dimensional case, since the harmonic Hamiltonian is separable into three
Cartesian coordinates, and the estimate (3.28) holds for each coordinate. For
the Coulomb potential, we may again use the Heisenberg uncertainty relations

p2 ≈ 3 (∆px)2 ≥ 3h̄2

4
1

(∆x)2
≈ 9h̄2

4
1
r2

. (6.4)

Therefore, the radius rm is obtained by minimizing the lower bound energy

E ≥ 9h̄2

8Mr2
− Ze2

4πε0r
, (6.5)

which yields

rm =
9

4Z
a0 , E ≥ 16Z2

9
EH , (6.6)

where the Bohr radius a0 and the ground state energy of the hydrogen atom
EH are given in Tables 6.1 and 14.1.

The solutions of the Schrödinger equation for the Coulomb and the har-
monic oscillator potentials are shown in Table 6.1. The corresponding details

1 This is another application of the separation of variables method for solving
partial differential equations.
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Table 6.1. Solutions to the Coulomb and harmonic oscillator problems

problem Coulomb harmonic oscillator

characteristic length a0 = 4πε0h̄
2/Me2 xc =

√
h̄/Mω

wave function Rnrl(u)Ylml(θ, φ) Rnrl(u)Ylml(θ, φ)
u = Zr/a0 u = r/xc

radial quantum nr = 0, 1, . . . nr = 0, 1, . . .
numbers

principal quantum n = nr + l + 1 = 1, 2, . . . N = 2nr + l = 0,1,. . .
numbers

energies Z2EH/n2 h̄ω(N + 3/2)
EH = −e2/8πε0a0

degeneracy n2 (N + 1)(N + 2)/2

are outlined in Sect. 6.4*. The following comments stem from the comparison
between the solutions for these two potentials:

• In both cases the radial factor Rnrl(r) may be expressed as a product of
an exponential decay, a power of u, ul, and a polynomial of degree nr

(Coulomb) or 2nr (harmonic oscillator).
• The radial factor ul decreases the radial density |Rnrl|2r2 for small values

of u and increases it for large values. It is a manifestation of centrifugal
effects due to rotation of the particle.

• Both potentials display a higher degree of degeneracy than is required by
spherical invariance.

• All degenerate states in the harmonic oscillator potential have the same
value of (−1)l = (−1)N , where N is the principal quantum number
(Table 6.1), and thus have the same parity. This is not true for the
Coulomb potential, where states with even and odd values of l may be
degenerative [see the last equation of (5.13)].

• The energies of the Coulomb potential are represented in Fig. 6.1, while
those of the harmonic potential have the same pattern as in Fig. 3.2. The
eigenvalues of the former display an accumulation point at E∞=0. They
are equidistant in the harmonic oscillator case.

We have verified the commonly made statement that the Schrödinger
equation is exactly soluble for the two central potentials treated in this section.
In fact the two Schrödinger equations are related by a simple change of
independent variable r → r2, if the energy and the strength of the poten-
tial are swapped and the orbital angular momentum is rescaled (Problem 8)
[33]. Thus, the Schrödinger equations corresponding to the Coulomb and
three-dimensional harmonic oscillator potential constitute only one soluble
quantum mechanical central problem, not two.
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1

Fig. 6.1. Coulomb potential and its eigenvalues. The dimensionless variable
u = r/a0 has been used

The harmonic oscillator potential is also separable in Cartesian coordi-
nates. As an exercise, derive the degeneracies using the Cartesian solution
and check the results against those appearing in the last column of Table 6.1.

While the Coulomb potential is an essential tool for the systematic
description of atomic spectra, the three-dimensional harmonic oscillator plays
a similar role for the nuclear spectra. This similitude is remarkable in view
of the very different constituents and interactions that are present in both
systems (Sect. 7.3).

6.2 Spin–Orbit Interaction

One may incorporate the spin degree of freedom into the present treatment.
The degeneracies displayed in Table 6.1 are thus doubled.

According to the results of Sect. 5.3, there are two complete sets of wave
functions that may take care of the spin s = 1/2:

ϕnlmlsms
= RnrlYlml

ϕsms
, (6.7)

ϕnlsjm = Rnrl

∑

ml+ms=m

c(lml; sms; jm)Ylml
ϕsms

, (6.8)

where the Clebsch–Gordan or Wigner coefficients are given in Sect. 5.6*. As
mentioned in Sect. 5.3, the first set is labeled with the quantum numbers
lmlsms specifying the modulus and the z-projection of the orbital angular
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momentum and the spin. In the second set, the moduli of the orbital angular
momentum and the spin remain as good quantum numbers, to be accompanied
by jm, associated with the modulus and z-projection of the total angular
momentum Ĵ = L̂ + Ŝ.

The Coulomb interaction is the strongest force acting inside an atom,
and yields adequate results for many purposes. However, the experimental
spectrum displays small shifts in energy associated with values of j. An-
other (weaker) force that is present in the atom is provided by the interaction
between the magnetic moment of the spin and the magnetic field produced
by the orbital motion of the electron:2

V̂so = vsoŜ·L̂ , (6.9)

where we have approximated the radial factor by a constant vso.
Suppose we sit on the electron. We see the charged nucleus orbiting

around us. The current associated with this moving charged nucleus produces
a magnetic field at the location of the electron. The Ŝ·L̂ term can be inter-
preted as the interaction between the spin magnetic moment of the electron
and this magnetic field.

There are additional terms, the hyperfine interactions, arising from the
interaction between the nuclear and the electron spins. Although they are even
smaller, they produce a splitting of the ground state of the hydrogen atom with
astrophysical importance [which the interaction (6.9) does not].

The radial term Rnrl may be dropped in the present section, since the spin–
orbit interaction (6.9) does not affect the radial part of the wave function.

The spin–orbit interaction satisfies the commutation relations

[V̂so, L̂
2] = [V̂so, Ŝ

2] = [V̂so, Ĵ
2] = [V̂so, Ĵz] = 0 , (6.10)

while [V̂so, L̂z] �= 0, [V̂so, Ŝz] �= 0. Bearing in mind this property, different
procedures – already developed in these notes – may be applied in order to
incorporate the interaction (6.9).

1. The interaction is not diagonal within the set of eigenstates of the pro-
jections of the angular momenta (6.7). Since V̂so commutes with Ĵz, the
spin–orbit interaction conserves the total projection m = ml+ms and thus
gives rise to matrices of order 2 which may be diagonalized according to
Sect. 3.1.3.

2. The spin–orbit interaction is diagonal within the set of eigenstates (6.8).
This constitutes a significant advantage. The diagonal matrix elements
are the eigenvalues, which may be obtained through calculation.

2 Criteria which are frequently used to construct interactions involving quantum
variables are: (a) simplicity and (b) invariance under rotations, parity and time-
reversal transformations. The interaction (6.9) satisfies all these criteria. More-
over, it may also be obtained in the nonrelativistic limit of the Dirac equation.
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3. Observing that

L̂·Ŝ =
1
2

(
Ĵ2 − L̂2 − Ŝ2

)
, (6.11)

we obtain

〈lsjm|S · L|lsjm〉 =
h̄2

2

[

j(j + 1) − l(l + 1) − 3
4

]

. (6.12)

Due to the spin–orbit interaction, the two states with j± = l ± 1/2
become displaced by an amount proportional to the values appearing on
the right-hand side of (6.12).

6.3 Some Elements of Scattering Theory

6.3.1 Boundary Conditions

We consider an incident particle scattered by a central, finite-sized potential.
The asymptotic boundary condition for this problem requires the asymptotic
wave function to be expressed as a superposition of an incident plane wave
along the z-axis, and an outgoing spherical wave (Fig. 6.2):

lim
r→∞

Ψ(r, θ) = A

[

exp(ikz) +
exp(ikr)

r
fk(θ)

]

, (6.13)

where k =
√

2ME/h̄ is the wave number (4.30) and fk(θ) is the amplitude
of the scattered wave in the polar direction θ. The spherical wave carries a
factor 1/r, since |Ψ(r)|2 must be proportional to 1/r2 in order to conserve
probability (see Problem 11). The azimuth angle φ does not appear, because
the problem displays axial symmetry. Expression (6.13) constitutes a gener-
alization of the boundary conditions discussed at the beginning of Sect. 4.5 to
the three-dimensional case.

Fig. 6.2. Schematic representation of a scattering experiment. After being produced
in a source, the projectile is collimated, accelerated, and collimated again. It collides
with the target in the form of a plane wave. It is subsequently scattered as a spherical
wave, within a solid angle that makes an angle θ with the direction of incidence
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6.3.2 Expansion in Partial Waves

As in the case of a three-dimensional harmonic oscillator, the free particle
problem admits solutions in both Cartesian and polar coordinates. The
solutions to the Hamiltonian (6.1) with V (r) = 0 are, in spherical coordinates,

ϕ(1)
lml

(r, θ, φ) = jl(kr)Ylml
(θ, φ) , ϕ(2)

lml
(r, θ, φ) = nl(kr)Ylml

(θ, φ) , (6.14)

where jl and nl are Bessel and Neumann functions, respectively (see
Sect. 6.5*). The eigenstates (6.14) constitute a complete set. Our immediate
task is to construct the most general linear combination which asymptotically
yields (6.13). We first note that the function exp(ikz) may be expanded as

exp(ikz) =
√

4π
l=∞∑

l=0

il(2l + 1)1/2jlYl0 . (6.15)

Secondly, the second term on the right-hand side of (6.13) can be written in
terms of the Hankel function of the first kind, which behaves asymptotically as
an outgoing spherical wave (6.34). Therefore, the most general and acceptable
linear combination is

Ψ(r, θ) = A
l=∞∑

l=0

[√
4πil(2l + 1)1/2jl + clh

(+)
l (kr)

]
Yl0

= A
√

π
l=∞∑

l=0

il(2l + 1)1/2al (jl cos δl − nl sin δl) Yl0 . (6.16)

Here cl, al are complex amplitudes, which may be expressed in terms of δl,
the (real) phase shift of the l-partial wave:

cl =
√

πil(2l + 1)1/2(a2
l − 1) , al = exp(iδl) . (6.17)

We notice that fk(θ) is provided by the second term in the first line of (6.16).
Replacing the Hankel function by its asymptotic representation one gets

fk(θ) = −i
√

π

k

l=∞∑

l=0

(2l + 1)1/2 [exp(i2δl) − 1] Yl0 . (6.18)

6.3.3 Cross-Sections

According to (6.13), the ratio between the scattered flux in the direction θ and
the incident flux along the polar axis, is given by |f(θ)|2/r2. The differential
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cross-section is defined as the number of particles that emerge per unit incident
flux, per unit solid angle, and per unit time:

σ(θ) = |f(θ)|2 =
π

k2

∣
∣
∣
∣
∣

l=∞∑

l=0

(2l + 1)1/2
[
exp(i2δl) − 1

]
Yl0

∣
∣
∣
∣
∣

2

. (6.19)

The total cross-section is the integral over the whole solid angle

σ = 2π

∫ π

0

σ(θ) sin θdθ =
4π

k2

l=∞∑

l=0

(2l + 1) sin2 δl . (6.20)

The values of δl are determined by applying continuity equations at the border
r = a of the central potential. In the case of scattering by a rigid sphere of
radius a, the phase shifts are given by (6.16) and (6.32):

tan δl =
jl(ka)
nl(ka)

, lim
ka→0

tan δl =
(ka)2l+1

(2l + 1)
[
(2l − 1)!!

]2 . (6.21)

If ka = 0, all the partial wave contributions vanish except for l = 0, due to
the k2 appearing in the denominator of the cross-sections (6.19) and (6.20).
We obtain

σ(θ) = a2 , σ = 4πa2 . (6.22)

The scattering is spherically symmetric and the total cross-section is four times
the area seen by classical particles in a head-on collision. This quantum result
also appears in optics, and is characteristic of long-wavelength scattering. The
fact that σ is the total surface area of the sphere is interpreted by saying that
the waves “feel” all this area.

Some features of scattering theory deserve to be stressed:

• The classical distance of closest approach to the z-axis of a particle with
orbital angular momentum h̄l and energy E is l/k. Therefore, a classical
particle is not scattered if l > ka. A similar feature appears in quantum
mechanics, since the first and largest maximum of jl(kr) lies approximately
at r = l/k. Thus, for l > ka, the maximum occurs where the potential
vanishes: the largest value of l to be included is of order ka.

• The calculation of the probability current (4.17) with wave function
(6.13) should yield interference terms in the whole space. They would be
nonphysical consequences of assuming an infinite plane wave for the inci-
dent beam. In practice, the beam is collimated and, as a consequence, the
incident plane wave and the scattered wave are well separated, except in
the forward direction (Fig. 6.2). On the other hand, in most experimental
arrangements, the opening of the collimator is sufficiently large to ensure
that there are no measurable effects of the uncertainty principle due to
collimation (see Problem 13 of Chap. 2).
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• Interference in the forward direction between the incident plane wave and
the scattered wave gives rise to the important relation

σ =
4π

k
Im
[
fk(0)

]
, (6.23)

by comparing (6.18) and (6.20). The attenuation of the transmitted beam
measured by Im

[
fk(0)

]
is proportional to the total cross-section σ. The

validity of (6.23) (optical theorem) is very general, and is not restricted to
scattering theory.

• The previous description of a scattering experiment is made in the center-
of-mass coordinate system. We must therefore use the projectile–target
reduced mass and the energy for the relative motion in order to determine
the value of k. Moreover, there is a geometrical transformation between
the scattering angles θ and θlab because the two systems of reference move
relative to each other with the velocity of the center of mass.

6.4* Solutions to the Coulomb and Oscillator Potentials

The hydrogen atom constitutes a two-body problem which can be transformed
to a one-body form by changing to the center of mass frame. As a conse-
quence, the reduced mass for relative motion should be used [as will be done in
(8.22)]. However, for the sake of simplicity, we ignore the motion of the nucleus
here, since it is much heavier than the electron.

It is always helpful to work with dimensionless variables, as in (4.21). In the
case of the hydrogen atom, the natural length is the Bohr radius (Table 14.1).
Thus, one may use u = Zr/a0. The solution to the radial equation (6.3) takes
the form

Rnrl(r) = Nnl(Z/na0)3/2 exp(−u/n)ulLnr
(u) , (6.24)

where Lnr
(u) are polynomials of degree nr = 0, 1, 2, . . . (associate Laguerre

polynomials). The Nnl are normalization constants such that
∫ ∞

0

r2RnrlRn′
rldr = δnrn′

r
. (6.25)

The energy Z2|EH|/n2 is the ionization or binding energy, i.e., the amount of
energy that must be given to the Z atom in order to separate an electron in
the n state. Figure 6.3 represents the probability density as a function of the
radial coordinate for the n = 1, 2 states (Table 6.2). The expression for the
probability density includes a factor r2 associated with the volume element
(5.11).

Figure 6.4 combines the angular distribution associated with the spherical
harmonics of Fig. 5.2 with the radial densities appearing in Fig. 6.3.

The Bohr radius a0 may be compared with the expectation value of the
coordinate r in the ground state of the hydrogen atom. According to Table 6.2,
one gets
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Fig. 6.3. Radial probability densities of the Coulomb potential

Table 6.2. Radial dependence of the lowest solutions for the Coulomb potential
and the three-dimensional harmonic oscillator

Coulomb potential

n nr l Nnl Lnr (u)

1 0 0 2 1

2 1 0 2 1 − 1

2
u

2 0 1 1/
√

3 1

3 2 0 2 1 − 2

3
u +

2

27
u2

3 1 1 4
√

2/9 1 − 1

6
u

3 0 2 4/27
√

10 1

three-dimensional harmonic oscillator

N nr l NNl F
(
−nr, l +

3

2
, u2
)

0 0 0 2 1

1 0 1 2
√

2/3 1

2 1 0
√

6 1 − 2

3
u2

2 0 2 4/
√

15 1

3 1 1 2
√

5/3 1 − 2

5
u2

3 0 3 4
√

2/105 1
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1s

3s

2s 2p0

3p0 3d0

Fig. 6.4. Probability density plots of some hydrogen atomic orbitals. The density
of the dots represents the probability of finding the electron in that region [34].
(Reproduced with permission from University Science Books)

〈100|r|100〉 =
∫ ∞

0

∫ π

0

∫ 2π

0

r3 |ϕ100|
2 dr sin θ dθ dφ

=
4
a3
0

∫ ∞

0

r3 exp(−2r/a0)dr =
3
2
a0 . (6.26)

There are also positive energy, unbound solutions to the Coulomb problem.
They are used in the analysis of scattering experiments between charged
particles.

In the harmonic oscillator, the dimensionless length is given by the ratio
u = r/xc, as in (4.20). The radial eigenfunctions are

Rnrl = NNl
1

π1/4x
3/2
c

exp(−u2/2)ulF

(

−nr, l +
3
2
, u2

)

. (6.27)

The confluent hypergeometric function F (−nr, l + 3/2, u2) is a polynomial
of the order nr in u2 (nr = 0, 1, 2, . . .). Some radial probability densities are
displayed in Fig. 6.5. The NNl are normalization constants such that (6.25)
also holds true in this case. The energy eigenvalues are given by

E = h̄ω

(

N +
3
2

)

. (6.28)

Using procedures similar to those applied for the linear harmonic oscillator,
we may calculate the expectation values of the square of the radius and of the
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Fig. 6.5. Radial probability densities of the harmonic oscillator potential

momentum. We thus verify the virial theorem (3.46) once again:

〈Nlml|r2|Nlml〉/x2
c = 〈Nlml|p2|Nlml〉x2

c/h̄2 = N +
3
2

. (6.29)

The lowest energy solutions are given on the right-hand side of Table 6.2.
Useful definite integrals are
∫ ∞

0

un exp(−au)du =
n!

an+1
,

∫ ∞

0

u2n exp(−u2)du =
(2n − 1)!!

√
π

2n+1
,

∫ ∞

0

u2n+1 exp(−u2)du =
n!
2

.

6.5* Some Properties of Spherical Bessel Functions

The spherical Bessel functions jl(kr) [and the Neumann nl(kr)] satisfy the
differential equation

− h̄2

2M

[
d2

dr2
+

2
r

d
dr

− l(l + 1)
r2

]

jl(kr) =
h̄2k2

2M
jl(kr) . (6.30)

Their asymptotic properties for large arguments are

lim
ρ→∞

jl(ρ) =
1
ρ

sin
(

ρ − 1
2
lπ

)

, lim
ρ→∞

nl(ρ) = −1
ρ

cos
(

ρ − 1
2
lπ

)

, (6.31)
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Table 6.3. Lowest spherical Bessel functions

l jl nl

0
1

ρ
sin ρ −1

ρ
cos ρ

1
1

ρ2
sin ρ − 1

ρ
cos ρ − 1

ρ2
cos ρ − 1

ρ
sin ρ

2

(
3

ρ3
− 1

ρ

)

sin ρ − 3

ρ2
cos ρ −

(
3

ρ3
− 1

ρ

)

cos ρ − 3

ρ2
sin ρ

while for small arguments they are

lim
ρ→0

jl(ρ) =
ρl

(2l + 1)!!
, lim

ρ→0
nl(ρ) = − (2l − 1)!!

ρl+1
. (6.32)

The spherical Hankel functions are defined by

h
(+)
l (ρ) = jl(ρ) + inl(ρ) , h

(−)
l (ρ) = jl(ρ) − inl(ρ) . (6.33)

Due to (6.31), these have the asymptotic expressions

lim
ρ→∞

h
(+)
l (ρ) =

(−i)l+1

ρ
exp(iρ) , lim

ρ→∞
h

(−)
l (ρ) =

(i)l+1

ρ
exp(−iρ) . (6.34)

The first three jls and nls are given in Table 6.3.

Problems

Problem 1. Calculate the difference in the excitation energy of n = 2 states
between hydrogen and deuterium atoms.
Hint: Use the reduced mass instead of the electron mass.

Problem 2.

1. Assign the quantum numbers nlj to the eigenstates of the Coulomb
problem with n ≤ 3.

2. Do the same for the three-dimensional harmonic oscillator with N ≤ 3.

Problem 3.

1. Obtain the degeneracy of a harmonic oscillator shell N , inclu-
ding the spin.

2. Obtain the average value 〈|L2|〉N of the operator L̂2 in an N shell.
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3. Calculate the eigenvalues of a harmonic oscillator potential plus the
interaction [see (7.16)]

− ω

16

(
1
h̄

L̂2 − h̄

2
N(N + 3)

)

− ω

4h̄
L̂·Ŝ ,

for N = 0, 1, 2, 3.
4. Give the quantum numbers of the states with minimum energy for a given

shell N .

Problem 4.

1. Find the energy and the wave function for a particle moving in an infinite
spherical well of radius a with l = 0.
Hint: Replace Ψ(r) → f(r)/r.

2. Solve the same problem using the Bessel functions given in Sect. 6.5*.

Problem 5.

1. Find the values of r at which the probability density is at a maximum,
assuming the n = 2 states of a hydrogen atom.

2. Calculate the mean value of the radius for the same states.

Problem 6. Solve the harmonic oscillator problem in Cartesian coordinates.
Calculate the degeneracies and compare them with those listed in Table 6.1.

Problem 7.

1. Find the ratio between the nuclear radius and the average electron radius
in the n = 1 state, for H and for Pb. Use Rnucleus ≈ 1.2A1/3 F, A(H) =
Z(H) = 1, A(Pb) = 208 and Z(Pb) = 82.

2. Do the same for a muon (Mµ = 207Me).
3. Is the picture of a pointlike nucleus reasonable in all these cases?

Problem 8. Replace r2 → s in the radial equation of a harmonic oscillator
potential. Find the changes in the constants l(l + 1), Mω2 and E that yield
the Coulomb radial equation.
Hint: Make the replacement R(r) → s1/4Φ(s) and construct the radial
equation using s ≡ r2 as variable.

Problem 9. The positronium is a bound system of an electron and a positron
(the same particle as an electron but with a positive charge). Their spin–spin
interaction energy may be written as Ĥ = aŜe · Ŝp, where e and p denote the
electron and positron, respectively.

1. Obtain the energies of the resultant eigenstates (see Problem 11 of
Chap. 5).

2. Generalize (6.12) to the product of two arbitrary angular momenta Ĵ1·Ĵ2.
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Problem 10. Calculate the splitting between the 2p states with m = 1/2 of
a hydrogen atom in the presence of spin–orbit coupling and a magnetic field
B in the z-direction:

1. At the limit vso = 0
2. At the limit Bz = 0
3. As a function of the ratio q = 2µBBz/h̄2vso

Problem 11. Calculate the current associated with the spherical wave
A exp(ikr)/r and show that the flux within a solid angle dΩ is constant.

Problem 12. A beam of particles is being scattered from a constant potential
well of radius a and depth V0. Calculate the differential and the total cross-
section in the limit of low energies.
Hint: Consider only the l = 0 partial waves.

1. Obtain the internal logarithmic derivative (times a) for r = a (see Prob-
lem 4).

2. Obtain the external logarithmic derivative (times a) for r = a in the low
energy limit.

3. Calculate tan δ0.
4. Calculate σ(θ).
5. Calculate σ.

Problem 13. Consider a planar motion.

1. What is the analog of spherical symmetry in a two-dimensional space?
Find the corresponding coordinates.

2. Write down the operator for the kinetic energy in these coordinates and
find the degeneracy inherent in potentials with cylindrical symmetry.

3. Find the energies and degeneracies of the two-dimensional harmonic
oscillator problem.

4. Verify that the function

ϕn =
1

xc

√
πn!

exp(−u2/2)un exp(±inφ)

is an eigenstate of the Hamiltonian (u = ρ/xc).
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Many-Body Problems

So far, we have discussed only one-particle problems. We now turn our atten-
tion to cases in which more than one particle is present.

In the first place we stress the fact that if Ĥ = Ĥ(1) + Ĥ(2), where
Ĥ(1) and Ĥ(2) refer to different degrees of freedom (in particular, to different
particles), and if Ĥ(1)ϕa(1) = Eaϕa(1) and Ĥ(2)ϕb(2) = Ebϕb(2), then

ϕab(1, 2) = ϕa(1) ϕb(2)

Ĥ ϕab(1, 2) = (Ea + Eb) ϕab(1, 2) . (7.1)

In the second place we note that the distinction between identical particles
is prevented in quantum physics by Heisenberg indeterminacy (unless they
are wide apart). The quantum treatment of identical particles requires a new
principle – the Pauli Principle – which is presented in Sect. 7.1. Particles can
be either fermions or bosons.

But for the case of two electrons in the He atom, in this chapter we
deal with many-body problems that are amenable to an independent-particle
description. Central potentials in atomic and nuclear physics, electron gas
and periodic potentials in solid state physics are fermion problems to be
treated with methods developed in Chap. 6 and Sects. 4.4.1 and 4.6†. Problems
involving phonons in lattices and condensation of bosons are dealt with
by means of generalizations of the harmonic oscillator solution (Sect. 3.2.1).
Rather than presenting an overview of these many-body fields, we restrict
ourselves to illustrate the quantum formalism with relevant applications.
However, even this restricted framework allows us to introduce some of the
most spectacular discoveries of the last decades, which are based on quantum
mechanics and are (or may become) cornerstones of future technologies: quan-
tum dots, Bose–Einstein condensation and quantum Hall effects.

The concept of creation and annihilation operators is extended to many-
body boson and fermion systems in Sect. 7.8†.
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7.1 The Pauli Principle

Let us now consider the case of two identical particles, 1 and 2. Two particles
are identical if their interchange, in any physical operator, leaves the operator
invariant:

[P̂12, Q̂(1, 2)] = 0 , (7.2)

where P̂12 is the operator corresponding to the interchange process 1 ↔ 2.
As a consequence, the eigenstates of Q̂ may be simultaneous eigenstates
of P̂12 (Sect. 2.6). The operator P̂ 2

12 must have the single eigenvalue 1,
since the system is left invariant by interchanging the particles twice. Thus
the two eigenvalues of the operator P̂12 are ±1. The eigenstates are said to
be symmetric (+1) or antisymmetric (−1) under the interchange of particles
1 ↔ 2.

Consider two orthogonal single-particle states ϕp, ϕq which may in
particular be eigenstates of a Hamiltonian. We construct the four two-body
states by distributing the two particles in the two single-particle states. The
symmetric combinations are

Ψ(+)
pp = ϕp(1)ϕp(2) , (7.3)

Ψ(+)
qq = ϕq(1)ϕq(2) , (7.4)

Ψ(+)
pq =

1√
2

[
ϕp(1)ϕq(2) + ϕq(1)ϕp(2)

]
, (7.5)

while the antisymmetric state is

Ψ(−)
pq =

1√
2

[
ϕp(1)ϕq(2) − ϕq(1)ϕp(2)

]
. (7.6)

The states (7.5) and (7.6) are called entangled states, meaning that they are
not simply written as a component of the tensor product of the state vectors
of particle 1 and particle 2 (see Sect. 10.2).

The average distance between two entangled identical particles is

〈pq|(r1−r2)2|pq〉1/2
(±) =

(
〈p|r2|p〉 + 〈q|r2|q〉 − 2〈p|r|p〉〈q|r|q〉 ∓ 2 |〈p|r|q〉|2

)1/2

,

(7.7)

where the subscripts (±) denote symmetric and antisymmetric states. The first
three terms correspond to the average “classical” distance which is obtained
if state functions of the type ϕp(1)ϕq(2) are used. According to (7.7), this
classical distance may be decreased for entangled particles in symmetric states
and increased if they are in antisymmetric states. Therefore, the symmetry
induces correlations between identical particles, even in the absence of residual
interacting forces.
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We now generalize the construction of symmetric and antisymmetric states
to ν identical particles. Let P̂b denote the operator that performs one of the
ν! possible permutations. It can be shown that this operator may be written
as a product of two-body permutations P̂ij . Although this decomposition is
not unique, the parity of the number ηb of such permutations is. We construct
the operators

Ŝ ≡ 1√
ν!

∑

b

P̂b , Â ≡ 1√
ν!

∑

b

(−1)ηb P̂b . (7.8)

Acting with the operator Ŝ on a state of ν identical particles produces a
symmetric state, whilst acting with Â produces an antisymmetric state.

A new quantum principle has to be added to those listed in Chap. 2:

Principle 4. There are only two kinds of particles in nature:1 bosons descr-
ibed by symmetric state vectors, and fermions described by antisymmetric state
vectors.

As long as the Hamiltonian is totally symmetric in the particle variables, its
eigenstates may be labeled with their properties under the interchange of two
particles (symmetry or antisymmetry). According to Principle 4, many other-
wise possible states are eliminated. For instance, the only two-body fermion
state that can be found in nature is (7.6).

All known particles with half-integer values of spin are fermions (electrons,
muons, protons, neutrons, neutrinos, etc.). All known particles with integer
spin are bosons2 (photons, mesons, etc.).

Moreover, every composite object has a total angular momentum, which
can be viewed as the composite particle spin, and which is obtained according
to the addition rules of Sect. 5.3. If this spin has a half-integer value, the
object behaves like a fermion, whereas a composite system with an integer
value of the spin acts as a boson. For instance, He3 is a fermion (two protons
and one neutron), while He4 is a boson (an α-particle, with two protons and
two neutrons), in spite of the fact that both isotopes have the same chemical
properties.

Let us distribute ν identical bosons into a set of single-particle states
ϕp and denote by np the number of times that the single-particle state p is

1 For the last 20 years it has been understood that, although this postulate holds
true in our three-dimensional world, there is a whole range of intermediate pos-
sibilities – anyons – between bosons and fermions, in two dimensions. In some
cases there are surface layers a few atoms thick in which the concept of anyons is
realized, as in the fractional quantum Hall effect (Sect. 7.6.2†).

2 Pauli produced a demonstration of this relation between spin and statistics which
involved many complications of quantum field theory. Feynman’s challenge that
an elementary proof of the spin–statistics theorem be provided has not yet been
answered.
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repeated. The np are called occupation numbers. In order to construct the
symmetrized ν-body state vector, we start from the product

Ψpq...r(1, 2, . . . , ν)

= ϕp(1)ϕp(2) . . . ϕp(np)ϕq(np + 1)ϕq(np + 2) . . . ϕq(np + nq) . . . ϕr(ν)

= ϕ(np)
p ϕ(nq)

q . . . ϕ(nr)
r , (7.9)

with
∑

i ni = ν. Subsequently the state vector is symmetrized by applying
the operator Ŝ. The final state is

Ψnp,nq,...,nr
(1, 2, . . . , ν) = NŜΨpq...r(1, 2, . . . , ν) , (7.10)

where N is a normalization constant. The occupation numbers label the states.
There are no restrictions on the number of bosons in a given single-boson state.
For instance, in the two-particle case, the possible symmetric state vectors are
(7.3), (7.4), and (7.5).

We may also characterize the state by using the occupation numbers in
the case of fermions. The procedure for constructing the antisymmetric state
is the same, but for the application of the operator Â instead of Ŝ. However,
the results are different in the sense that occupation numbers must be zero or
one. Otherwise the state vector would not change its sign under the exchange
of two particles occupying the same state. The antisymmetrization principle
requires that fermions should obey Pauli’s exclusion principle [35]: “If there is
an electron in the atom for which these [four] quantum numbers have definite
values, then the state is occupied, full, and no more electrons are allowed in.”

The antisymmetric state function for ν fermions may be written as a Slater
determinant

Ψpq...r(1, 2, . . . , ν) =
1√
ν!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ϕp(1) ϕp(2) . . . ϕp(ν)

ϕq(1) ϕq(2) . . . ϕq(ν)
...

...
. . .

...

ϕr(1) ϕr(2) . . . ϕr(ν)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (7.11)

The permutation of two particles is performed by interchanging two columns,
which produces a change of sign. All the single-particle states must be differ-
ent. Otherwise, the two rows are equal and the determinant vanishes.

A widely used representation of the states (7.9) and (7.11), in terms of
creation and annihilation operators, is given in Sect. 7.8†.

The possibility of placing many bosons in a single (symmetric) state gives
rise to phase transitions, with important theoretical and conceptual impli-
cations that are illustrated for the case of the Bose–Einstein condensation
(Sect. 7.5†). Even more spectacular consequences appear in the fermion case.
Some of them will be treated later in this chapter.
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7.2 Two-Electron Problems

Let us consider the case of the He atom. For the moment, we disregard the
interaction between the two electrons. The lowest available single-particle
states for the two electrons are the ϕ100 1

2 ms
, ϕ200 1

2 ms
and ϕ21ml

1
2 ms

states,
where we use the same representation as in (6.7).

This problem involves four angular momenta: the two orbital and the two
spin angular momenta. The two orbital angular momenta and the two spins
may be coupled first3 (L̂ = L̂1 + L̂2 and Ŝ = Ŝ1 + Ŝ2). Subsequently, the
addition of the total orbital and total spin angular momentum yields the total
angular momentum Ĵ = L̂ + Ŝ.

The spin part of the state vector may carry spin 1 or 0. We obtain the corre-
sponding states χs

ms
by using the coupling given in (5.55), with j1 = j2 = 1/2.

The (three) two-spin states with spin 1 are symmetric, while the state with
spin 0 is antisymmetric. Thus,

χ1
1(1, 2) = ϕ↑(1)ϕ↑(2) , χ1

0(1, 2) =
1√
2

[
ϕ↑(1)ϕ↓(2) + ϕ↑(2)ϕ↓(1)

]
,

χ1
−1(1, 2) = ϕ↓(1)ϕ↓(2) , χ0

0(1, 2) =
1√
2

[
ϕ↑(1)ϕ↓(2) − ϕ↑(2)ϕ↓(1)

]
.

(7.12)

We now consider different occupation numbers for the two electrons.

1. The two electrons occupy the lowest orbit ϕ100 1
2 ms

. In this case the spatial
part is the same for both electrons, and thus the state vector is necessarily
spatially symmetric. Therefore the symmetric spin state with spin 1 is
excluded by the exclusion principle. Only the (entangled) state with zero
spin can exist.

2. One electron occupies the lowest level ϕ100 1
2 ms

and the other the next level
ϕ200 1

2 ms
. In this case the difference in the radial wave functions allows us

to construct both a symmetric and an antisymmetric state for the spatial
part of the wave function [(7.5) and (7.6), respectively]. Both spatial states
carry l = 0. Two total states are now allowed by the Pauli principle:
the combination of the symmetric spatial part with the antisymmetric
spin state and vice versa. The (so far neglected) interaction between the
electrons breaks the degeneracy between these two allowed total states:
according to (7.7), two electrons in a spatially antisymmetric state are
further apart than in a symmetric state. They thus feel less Coulomb
repulsion. Their energy decreases relative to the energy of the spatially
symmetric state.

3 There is an alternative coupling scheme in which the orbital and spin angular mo-
menta are first coupled in order to yield the angular momentum of each particle:
Ĵ i = L̂i + Ŝi (i = 1, 2), as in (6.8). Subsequently, the two angular momenta
are coupled together: Ĵ = Ĵ1 + Ĵ2. The two coupling schemes give rise to two
different sets of basis states.
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3. One electron occupies the lowest level ϕ100 1
2 ms

and the other the level
ϕ21ml

1
2 ms

. It is left for the reader to treat this case as an exercise. He/she
may follow the same procedure as in the previous example, bearing in
mind that the orbital angular momentum no longer vanishes.

7.3 Periodic Tables

The attraction exerted by the nuclear center, proportional to Ze2, allows us to
implement a central-field description for atomic systems displaying more than
one electron. However, the Hamiltonian also includes the Coulomb repulsion
between electrons. This interaction is weaker (since it is only proportional to
e2), but an electron experiences Z − 1 such repulsions. We can nonetheless
take them into account to a good approximation by modifying the central
field because:

• Electrons from occupied levels cannot be scattered to other occupied levels
(Pauli principle), and when scattered to empty levels have to overcome the
gap between the energy of the occupied level and the energy of the last
filled state, thus reducing the effectiveness of the residual interaction;

• The electric fields created by electrons lying outside a radius r′ tend to
cancel for radius r < r′, due to the well-known compensation between the
field intensity (∝ 1/r2) and the solid angle (∝ r2).

Although the optimum choice of the single-particle central potential con-
stitutes a difficult problem, it is simple to obtain the behavior at the limits

lim
r→0

V (r) = − Ze2

4πε0r
, lim

r→∞
V (r) = − e2

4πε0r
. (7.13)

Close to the nucleus, the electron feels all the nuclear field. Far away, this field
is screened by the remaining Z − 1 electrons. The potential at intermediate
points may be obtained qualitatively by interpolation.

The energy eigenvalues of this effective potential are also qualitatively
reproduced by adding the term

Ĥl = cL̂2 (7.14)

to the Coulomb potential, since the centrifugal term h̄2l(l+1)/2Mr2 prevents
the electrons occupying levels with large values of l from approaching the
center, and thus feeling the greater attraction of the potential at small radii.

The energies Enl are also labeled by the orbital quantum number, since
the potential is no longer simply proportional to 1/r (Sect. 6.1.1). They are
qualitatively presented in Fig. 7.1, where the nomenclature of Table 5.2 is
used. The set of energy levels which are close to each other is called a shell.
In a closed shell, all magnetic substates are occupied.
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Fig. 7.1. Electron shell structure. The figure gives a rough representation of the
order of single-electron levels. Numbers to the right indicate the number of electrons
in closed shell atoms

The ground state of a given atom is determined by successively filling the
different single-particle states until the Z electrons are exhausted. A closed
shell carries zero orbital and zero spin angular momenta (see Problem 7). A
closed shell displays neither loose electrons nor holes, and thus constitutes a
quite stable system. This fact explains the properties of noble gases in the
Mendeleev chart, for which Z = 2, 10, 18, 36, 54, and 86 (Fig. 7.1). The angu-
lar momenta (including the magnetic momenta), the degree of stability, the
nature of chemical bonds, in fact, all the chemical properties, are determined
by the outer electrons lying in the last, unfilled shell, a spectacular conse-
quence of the Pauli principle.

The electron configuration of an atom with many electrons is specified by
the occupation of the single-particle states of the unfilled shell. For instance,
the lowest configuration in the Mg atom, with Z = 12, is4 (3s)2. Configura-
tions (3s)(3p) and (3p)2 lie close in energy.

In the atomic case the total single-particle angular momentum j is not
usually specified (as it was not in Sect. 7.2), because the strength of the spin–
orbit coupling is small relative to the electron repulsions. However, for heavier
elements and inner shells, the quantum numbers (l, j) become relevant once
again.

Let us now consider the nuclear table. A nucleus has A nucleons, of which
N are neutrons and Z are protons. Nuclei with the same A are called isobars;
with the same N , isotones; and with the same Z, isotopes. In spite of the fact
that there is no ab initio attraction from a nuclear center and the internuclear
force is as complicated as it can be, the Pauli principle is still effective: the
starting point for the description of most nuclear properties is a shell model.
For systems with short range interactions, a realistic central potential follows

4 The first number is the Coulomb principal quantum number; the orbital angular
momentum follows the notation of Table 5.2; the exponent denotes the number
of particles with the previous two quantum numbers.
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the probability density, which in the nuclear case has a Woods–Saxon shape,
w(r). A strong spin–orbit interaction must be included on the surface, with
the sign opposite to the atomic case. A central Coulomb potential also appears
for protons:

V̂ = −v0w(r) − vso
r2
0

r

dw(r)
dr

L̂ · Ŝ + Vcoul

w(r) ≡
(

1 + exp
r − R

a

)−1

. (7.15)

The empirical values of the parameters are [36]

v0 =
(

−51 + 33
N − Z

A

)

MeV and vso = 0.44v0 .

Here a = 0.67 F represents the skin thickness and R = r0A
1/3 is the nuclear

radius, with r0 = 1.20 F. The resulting shell structure is shown in Fig. 7.2.

Fig. 7.2. Nuclear shell structure. This figure is an approximation of the order of
single-nucleon levels. They are labeled with the quantum numbers Nlj. The number
of nucleons for closed shell systems is indicated on the right
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Fig. 7.3. Comparison of the Woods–Saxon and harmonic oscillator potentials [36]

Nucleons moving in a Woods–Saxon potential see a potential similar to
the harmonic oscillator potential (Fig. 7.3). An attractive term of the form
(7.14) should also be included, since the nuclear single-particle states in which
nucleons lie close to the surface are more energetically favored by the Woods–
Saxon potential than by the harmonic oscillator potential (Fig. 7.3). Therefore,
the simpler effective potential

V̂ =
Mpω2

2
r2 − cL̂·Ŝ − d

(
L̂2 − 〈L2〉N

)
(7.16)

may be used instead of (7.15), at least for bound nucleons (see Problem 3
of Chap. 6), where h̄ ω = 41 MeV A−1/3, c = 0.13ω/h̄, and d = 0.038ω/h̄
for protons and d = 0.024ω/h̄ for neutrons [36]. The symbol 〈L2〉N denotes
the average value of L2 in an N -oscillator shell (Problem 3 of Chap. 6). The
eigenstates are labeled with the quantum numbers Nljmτ , where the new
quantum number τ equals 1/2 for neutrons and −1/2 for protons.

The lowest shell N = 0 is filled up with four nucleons, two protons and
two neutrons, giving rise to the very stable α-particle. As in the electron case,
closed shells do not contribute to the properties of low-lying excited states.
Note that both nucleons should fill closed shells in order to obtain the analogy
of noble gases. This occurs in the nuclear systems Z = N = 2; Z = N = 8;
Z = N = 20; Z = 20, N = 28; Z = N = 28; Z = N = 50; Z = 50, N = 82;
and Z = 82, N = 126.

It should be stressed that, unlike the hydrogen case, the description of
heavier atoms/nuclei in terms of a central field is, at best, a semi-quantitative
approximation: one-body terms can never completely replace two-body inter-
actions. The approximation is more reliable for systems that have one more
particle (or hole) than a closed shell.
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7.4 Motion of Electrons in Solids

7.4.1 Electron Gas

In the simplest possible model of a metal, electrons move independently of
each other. The electrostatic attraction of the crystalline lattice prevents them
from escaping when they approach the surface. The electron gas results of
Sect. 4.4.1 may be easily generalized to the three-dimensional case. The wave
states are given as the product of three one-dimensional solutions (4.41):

ϕnxnynz
=

1√
V

exp
[
i(knx

x + kny
y + knz

z)
]
. (7.17)

The volume is V = a3. The allowed k values constitute a cubic lattice in
which two consecutive points are separated by the distance 2π/a (4.40)

kni
=

2π

a
ni , ni = 0,±1,±2, . . . , i = x, y, z . (7.18)

The energy of each level is

εk =
h̄2|k|2
2M

. (7.19)

In order to build the ν-electron ground state, we start by putting two electrons
on the level kx = ky = kz = 0. We successively fill the unoccupied levels as
their energy increases. When there is a large number of electrons, the occu-
pied region will be indistinguishable from a sphere in k-space. The radius of
this sphere is called kF, the Fermi momentum, and its energy εF ≡ h̄2k2

F/2M ,
the Fermi energy. At zero energy, the levels with |k| ≤ kF are occupied pair-
wise and those above are empty. Since we are interested in the large-volume
limit, the levels are very close together and we may replace summations with
integrals that have a volume element similar to (4.43). Thus,

∑

k

fk ≈ V

8π3

∫

fkd3k . (7.20)

An electron gas is characterized by the Fermi temperature TF ≡ εF/kB, where
kB is the Boltzmann constant (Table 14.1). If the temperature T  TF, the
electron gas has properties that are very similar to the T = 0 gas. The number
of levels per unit volume with energy less than ε and the density of states per
unit interval of energy per unit volume are

n(ε) =
2
V

∑

nxnynz

≈ 1
4π3

∫

k≤kε

d3k =
k3

ε

3π2
=

1
3π2

(
2Mε

h̄2

) 3
2

,

ρ(ε) =
∂n

∂ε
=

1
π2h̄3

(
2M3ε

) 1
2 , (7.21)
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respectively. At the Fermi energy, the value of these quantities is

nF =
1

3π2
k3
F , ρF =

3nF

2εF
. (7.22)

For the Na typical case: nF ≈ 2.65×1022 electrons cm−3, kF ≈ 0.92×108 cm−1,
εF ≈ 3.23 eV, and TF ≈ 3.75 × 104 K.

We now explore some thermal properties of an electron gas. If the electrons
would obey classical mechanics, each of them should gain an energy of order
kBT in going from absolute zero to temperature T . The total thermal energy
per unit volume of electron gas would be of the order of

ucl = nFkBT , (7.23)

and the specific heat at a constant temperature would thus be independent
of the temperature:

(CV )cl =
∂ucl

∂T
= nFkB . (7.24)

However, the Pauli principle prevents most of the electrons from gaining
energy. Only those with an initial energy εk such that εF − εk < kBT can
be expected to gain energy. The number of such electrons is given roughly by

ρFkBT =
3nF

2
T

TF
. (7.25)

The total thermal energy and specific heat per unit volume are

u = ρF(kBT )2 , (7.26)

CV = 3nFkB
T

TF
. (7.27)

The specific heat is proportional to the temperature and is reduced by a factor
≈1/100 at room temperature.

The probability of an electron being in a state of energy ε is given by the
Fermi–Dirac distribution η(ε) (7.55). Using this distribution, the expression
for the total energy per unit volume is

u =
1

2π2

∫ ∞

0

ε ρ(ε) η(ε) k2 dk , (7.28)

which is a better approximation than (7.26). Upon integration, one obtains
results similar to (7.27).
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7.4.2† Band Structure of Crystals

Although the electron gas model explains many properties of solids, it fails to
account for electrical conductivity, which can vary by a factor of 1030 between
good insulators and good conductors.

A qualitative understanding of conductors and insulators may be obtained
from a simple generalization of the band model described in Sect. 4.6†. As a
consequence of the motion of single electrons in a periodic array of ions, the
possible individual energies are grouped into allowed bands. Each band con-
tains 2N levels, where N is the number of ions, and the factor 2 is due to spin.

According to the Pauli principle, we obtain the ground state by succes-
sively filling the individual single-particle states of the allowed bands. The last
filled band is called the valence band. If we place the solid within an electric
field, the electrons belonging to a valence band cannot be accelerated by a
small electric field, since they would tend to occupy other states of the same
band, which are already occupied. Much like the case of closed shells in atoms
and nuclei, electrons in a valence band constitute an inert system which do
not contribute to thermal or electrical properties. A solid consisting only of
filled bands is an insulator. The insulation gets better as the distance ∆E
between the upper valence band and the next (empty) band increases.

By contrast, electrons in partially filled bands can easily absorb energy
from an applied electric field. Such a band is called a conduction band.

The previous considerations are valid for T = 0. In solids which are insu-
lators at T = 0, the thermal motion increases the energy of the electrons by
an amount kBT . As the temperature increases, some electrons belonging to
the valence band may jump to the conduction band. This system is a semi-
conductor. The conductivity varies as exp(−∆E/kBT ).

The existence of conductors, semiconductors and insulators is a conse-
quence of the Pauli principle. Another consequence arises from the fact that
the electrons which jump to the conduction band leave empty states called
holes in the valence band. Other electrons of the same valence band may
occupy these holes, leaving other holes behind them. Thus there is a current,
due to the electrons of the valence band, which is produced by the holes.
The holes carry a positive charge, because they represent the absence of an
electron.

Semiconductors have become key parts of electronic circuits and optical
applications in modern electronic industry, due to the fact that their electrical
conductivity can be greatly altered by means of external stimuli (voltage,
photon flux, etc.) and by the introduction of selected impurities (doping).

7.4.3† Phonons in Lattice Structures

Up to now we have treated the ions as fixed in space at positions Ri,
giving rise to the crystal lattice structure. This is a consequence of the much
larger ion mass MI relative to the electron mass M . Subsequently we allow
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for a small fluctuation ui in the coordinate ri = Ri + ui of the i ion
(Born–Oppenheimer approximation). For the sake of simplicity, we make the
following approximations:

• A linear, spinless chain of N ions separated by the distance d;
• Only terms up to quadratic order in ui are kept in the ion–ion potential.

Linear terms in the fluctuations vanish due to the equilibrium condition
and the constant, equilibrium term will be dropped;

• Only interactions between nearest neighbors are considered.

Therefore, the Hamiltonian reads

Ĥ =
1

2MI

∑

i

p̂2
i +

MIω
2

8

∑

i,j

(ûi − ûj)
2

δi(j±1)

=
1

2MI

∑

i

p̂2
i +

MIω
2

2

∑

i

û2
i − MIω

2

2

∑

i

ûiûi+1

= h̄ω
∑

i

(

a+
i ai +

1
2

)

− h̄ω

4

∑

i

(
a+

i + ai

) (
a+

i+1 + ai+1

)
, (7.29)

where the creation and annihilation operators a+
i , ai are defined as in (3.29)

for each site i. Since any number of identical displacements can be made on
each site, these excitations behave as bosons. The parameter ω appearing in
the ion–ion potential may be interpreted as the frequency of each oscillator in
the absence of coupling with other oscillators.

As in classical physics, the coupled oscillators may become uncoupled by
means of a linear transformation

Ĥ =
∑

k

h̄ωk

(

γ+
k γk +

1
2

)

γ+
k =

∑

i

(
λkia

+
i − µkiai

)
; δlk =

∑

i

(λkiλ
∗
li − µkiµ

∗
li) . (7.30)

The uncoupling procedure is described at the end of the section. The resultant
amplitudes λki, µki and new frequencies ωk are

λki =
1
2

(√
ω

ωkN
+
√

ωk

ωN

)

exp[ikri]

µki =
1
2

(√
ω

ωkN
−
√

ωk

ωN

)

exp[ikri]

ωk =
1√
2
ω k d , (7.31)

where the frequencies wk are proportional to the wave number k. If a cyclic
chain is assumed [rN+1 = r1, see (4.4.1)]

k = kn =
2π nk

N d
; nk = 0,±1,±2, . . . . (7.32)
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Thus, there are not only electrons and ions in a crystal but also extended
periodic boson structures called phonons are present as well. According to
(7.1), the phonon states and energies are given by5

Ψ = Πk ϕnk
= Πk

1√
nk!

(
γ+

k

)nk |0〉

E(nk) =
∑

k

h̄wk

(

nk +
1
2

)

. (7.33)

These lattice vibrations have consequences on many properties of crystals.
In particular, on the specific heat: since the linear dependence of frequency
on momentum wk = α k also holds in three-dimensions (sound waves), we can
ignore the occupancy of other, finite frequency modes, if the thermal frequency
kBT/h̄ is sufficiently small. In order to obtain the total phonon energy per
unit volume V , we replace the phonon occupancies nk in (7.33) by the thermal
occupancy ηk given by the Bose–Einstein distribution (7.52)

uphonon =
h̄α

V

∑

k

k

⎡

⎣ 1

exp
(

h̄αk
kBT

)
− 1

+
1
2

⎤

⎦

→ h̄α

2π2

∫ ∞

0

k3dk

exp
(

h̄αk
kBT

)
− 1

+
h̄α

2V

∑

k

k

=
π2 (kBT )4

30(h̄α)3
+

h̄α

2V

∑

k

k . (7.34)

Therefore, the phonon contribution to the specific heat at small T (well below
room temperature) is proportional to T 3.

The Uncoupling of the Hamiltonian

The amplitudes λki, µki and the frequencies wk are determined by solving the
harmonic oscillator equation

[Ĥ, γ+
k ] = h̄ωkγ+

k (7.35)

Using the last line of (7.29) with this equation, one obtains

(h̄ω − h̄wk)
∑

i

λkia
+
i + (h̄ω + h̄wk)

∑

i

µkiai

=
h̄ω

4

∑

i

(λki + µki)
(
a+

i−1 + ai−1 + a+
i+1 + ai+1

)

=
h̄ω

4

∑

i

(
λk(i+1) + µk(i+1) + λk(i−1) + µk(i−1)

) (
a+

i + ai

)
. (7.36)

5 See also Sect. 7.8†.
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Since a+
i , ai represent independent degrees of freedom, their coefficients in

the first line of (7.36) should equal those in the third line. This requirement
yields N sets of two homogeneous linear equations

λki − µki =
wk

ω
(λki + µki) ;

λki + µki = − ω2

2w2
k

(
λk(i+1) + µk(i+1) + λk(i−1) + µk(i−1) − 2λki − 2µki

)

≈ −ω2d2

2w2
k

d2 (λki + µki)
(d ri)2

. (7.37)

The last equation implies the frequencies given in the last line of (7.31) and

λki + µki = N exp[ikri] , (7.38)

where N is a normalization constant. The normalization condition in (7.30)
and the first of equations (7.36) yield the amplitudes (7.31).

This uncoupling method constitutes a particular application of the
random-phase approximation, a standard procedure in many-body physics.

7.4.4† Quantum Dots

Quantum dots, also called artificial atoms, are small regions (from 1 to about
100 nm; 1 nm = 10−9 m) of one semiconductor material buried in another
semiconductor material with a larger energy gap ∆E (Sect. 7.4.2†). They are
made up by roughly 106 atoms. In addition, quantum dots contain a con-
trolled number of free electrons that display atomic-like spectra with very
sharp discrete lines (like natural atoms do). However, unlike natural atoms,
their energies can be strongly influenced by the size of the dot and other
interactions between the free electrons and with the surroundings.

Electrons in a layer of GaAs are sandwiched between two layers of insu-
lating AlGaAs, acting as tunnel barriers. One of these barriers is connected
to the source lead, the other to the drain lead. The entire structure may also
be linked to an insulated metal electrode which fixes the bias potential Vg.

The forces acting on the electrons inside the dot are difficult to estimate.
However, it is possible to apply the concept of a central confining potential
as in Sect. 7.3. When an electron enters or leaves the quantum dot there is
a noticeable change in the capacitance of the dot, which can be measured.
In Fig. 7.4 the capacitance is plotted against the voltage Vg. Each maxima
denotes the loading of an additional electron to the dot. The first two electrons
fill the lowest, spin degenerate states. The next shell displays four equally
spaced maxima, which is consistent with a harmonic oscillator potential in
two dimensions [Problem 13 of Chap. 6 and (7.44)]. Indeed, many properties
of quantum dots can be accounted for by means of a parabolic confinement
in the xy plane and assuming an oblate shape for the dot.
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Fig. 7.4. Capacitance spectroscopy reveals quantum-dot electron occupancy and
ground-state energies. Reproduced with permission from P. Petroff, A. Lorke, and
A. Imamoglu, Physics Today 54 46 (2001). Copyright 2001, American Institute of
Physics
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Fig. 7.5. Discrete energy levels of a quantum dot are detected by varying Vsd. Every
time a new discrete state is accessible there is a peak in d I/d Vsd [37]

Being finite-size systems, quantum dots can display shell effects similar to
those discussed in Sect. 7.3. One can obtain the energy spectrum by measuring
the tunneling current. The Fermi level in the source rises proportionally to
a voltage Vsd relatively to the drain and to the energy levels of the dot.
Additional current flows each time that the Fermi energy of the source rises
above a level of the dot. Thus energy levels are measured by the voltages at
which there are peaks in the curve representing d I/dVsd against Vsd, where
I is the tunneling current (Fig. 7.5).

Energy levels vary also in the presence of a magnetic field perpendicular to
the GaAs layer. Very strong fields may produce Landau levels (Sect. 7.6.1†).



7.5 Bose–Einstein Condensation 115

Quantum dots also display spin filtering capabilities for generating or
detecting spin-polarized currents [38]. In one of such devices the spin state
is mapped into a charge state as follows: the splitting between the energy
levels is made so large that only the ground state can be occupied. Moreover,
Coulomb repulsion insures that at most one electron is allowed. A magnetic
field lifts the degeneracy between the spin-up and spin-down states by an
amount larger than the thermal energy. Initially the Fermi level εF of an
adjacent reservoir lies below the spin-up state and the dot is empty. The
voltage is then adjusted so εF lies in between the two spin states. Thus an
electron with spin up remains in the dot, while an electron with spin down
leaves the dot. Subsequently, the charged state is measured. Once emptied,
the dot can receive another electron from the reservoir.

This device constitutes a modern version of the Stern–Gerlach appa-
ratus. It joins several recent advances in the electrical control of spins,
including electrically controlled coupling between spins in quantum dots,
quasi-one-dimensional quantum dot arrays, etc. Since such devices could be
self-contained in a chip (without the need of lasers and other optical elements)
they could interface naturally with conventional electronic circuits. Thus they
may be essential elements in future instrumentation for quantum information.

Another application is based on the emission frequency sensitivity to the
size and composition of the dot. As a consequence, quantum dots have shown
advantages over traditional organic dyes in modern biological analysis. They
also allow for the use of blue lasers in modern DVD players.

7.5† Bose–Einstein Condensation

In 1924 Einstein realized the validity of the fact that as T increases (and
remains below a critical value Tc), the ground state of a system of bosons
(particles at rest) remains multiply occupied (see Sect. 7.7†) [39]. Any other
single orbital, including the orbital of the second lowest energy, will be occu-
pied by a relatively negligible number of particles. This effect is called Bose–
Einstein condensation.6 Its experimental realization was made possible by the
development of techniques for cooling, trapping and manipulating atoms.7

In Einstein’s original prediction, all bosons were supposed to be slowed
down to zero momentum, which implies a macroscopic space, according to the
uncertainty principle. However, any experimental setup requires some confine-
ment. The confining potential in the available magnetic traps for alkali atoms
can be safely approximated by the quadratic form

6 The sources [40] have been used for this section.
7 Einstein himself suggested H2 and He4 as possible candidates for B–E conden-

sation. Only in 1938 the He4 superfluid transition at 2.4 K was interpreted as a
transition to the B–E condensate. However, this interpretation was marred by
the presence of large residual interactions.
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Vext(r) =
Mω2

2
r2 . (7.39)

Neglecting the interaction between atoms implies that the Hamiltonian eigen-
values have the form (6.28). Thus we are considering a system composed
of a large number ν of noninteracting bosons. The many-body ground state
ϕ(r1, . . . , rν) is obtained by putting all the particles into the lowest single-
particle state ϕ0(r):

ϕ(r1, . . . , rν) =
i=ν∏

i=1

ϕ0(ri) , ϕ0(r) =
(

Mω

πh̄

)3/4

exp(−r2/2x2
c) . (7.40)

The density distribution then becomes ρ(r) = ν |ϕ0(r)|2. While its value grows
with ν, the size of the cloud is independent of ν and is fixed by the harmonic
oscillator length xc (3.28). It is typically of the order of xc ≈ 1µm in today’s
experiments.

At finite temperatures, particles are thermally distributed among the avail-
able states. A rough estimate may be obtained by assuming kBT � h̄ω. In
this limit we may use a classical Boltzmann distribution

n(r) = exp
(
−Mω2r2/2kBT

)
, (7.41)

which displays the much broader width

kBT

Mω2
= xc

kBT

h̄ω
� xc . (7.42)

Therefore, the Bose–Einstein condensation in harmonic traps appears as a
sharp peak in the central region of the density distribution. Figure 7.6 displays
the density for 5,000 noninteracting bosons in a spherical trap at temperature
T = 0.9Tc, where Tc is the critical temperature (see below). The central
peak is the condensate, superimposed on the broader thermal distribution.
The momentum distribution of the condensate is also Gaussian, having a
width h̄/xc (3.46). The momentum distribution of the thermal particles is
broader, of the order of (kBT )1/2. In fact these two momentum distributions
are also represented by the curves in Fig. 7.6, provided the correct units are
substituted.

In 1995, rubidium atoms confined within a magnetic trap were cooled to
the submicrokelvin regime by laser methods and then by evaporation [41].
The trap was suddenly turned off, allowing the atoms to fly away. By taking
pictures of the cloud after various time delays, a two-dimensional momen-
tum distribution of the atoms was constructed. As the temperature was low-
ered, the familiar Gaussian hump of the Maxwell–Boltzmann distribution was
pierced by a rapidly rising sharp peak caused by atoms in the ground state of
the trap, that is, by the condensate.

By allowing the trap to have cylindrical symmetry, the average momentum
along the short axis was double that along the other [see the harmonic oscil-
lator predictions (3.46)]. In contrast, the momentum distribution is always
isotropic for a classical gas, unless it is flowing.
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Fig. 7.6. Comparison between the densities of the condensate and the thermal
particles

The calculation of the critical temperature Tc involves concepts of statis-
tical mechanics that lie beyond the scope of this discussion. The experimental
results for the condensate fraction closely follow the thermodynamic limit [41]:

T

Tc
= 1 −

(ν0

ν

)1/3

.

For 40,000 particles, Tc is approximately 3 × 10−7 K.
The first demonstration of the Bose–Einstein condensation involved 2,000

atoms. Today millions are being condensed.
Bose–Einstein condensation is unique because it is the only pure quantum

mechanical phase transition: it takes place without any interaction between
the particles. This field is presently full of activity: collective motion, con-
densation and damping times of the condensate, its interaction with light,
collision properties, and effects of the residual interactions are just some of
the themes that are currently under very intense theoretical and experimental
study.

7.6† Quantum Hall Effects

A planar sample of conductive material is placed in a magnetic field perpen-
dicular to its surface. An electric current I is made to pass from one end to
the other by means of a potential VL. The longitudinal resistivity is the ratio
RL = VL/I. Because of the Lorentz force, more electrons accumulate on one
side of the sample than on the other, thereby producing a measurable voltage
VH – the Hall voltage – across the sample. The ratio RH = VH/I is called the
Hall resistivity. It increases linearly with the magnetic field.
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Fig. 7.7. The integer quantum Hall effect appears as plateaus in the Hall resistivity
of a sample which coincide with the disappearance of the sample’s electrical resistiv-
ity, as the magnetic field strength is varied [44]. (Reproduced with permission from
Springer-Verlag)

However, in 1980 Klaus von Klitzing found that, for samples cooled to
within one degree kelvin and placed in strong magnetic fields, the Hall resis-
tivity exhibits a series of plateaus, i.e., intervals in which the Hall resistivity
appears not to vary at all with the magnetic field [42]. Figure 7.7 displays
a diagram of the measured inverse Hall resistance h/e2RH as a function of
the density of electrons n times the characteristic area of the problem (7.47).
The longitudinal resistance is sketched as well. Where the Hall resistivity is
constant, the longitudinal resistivity practically vanishes. Moreover, the
resistivity is RH = h/e2n, with an amazing accuracy of order 10−6. Here h
is Planck’s constant, e is the electron charge and n is an integer (Fig. 7.7).
This is even true for samples with different geometries and with different
processing histories, as well as for a variety of materials. It is the integer
quantum Hall effect.

In 1982 Daniel Tsui, Horst Störmer and Arthur Gossard discovered other
plateaus at which n has specific fractional values (1/3, 2/5, and 3/7) [43].
This is the fractional quantum Hall effect.

7.6.1† Integer Quantum Hall Effect

Consider the planar motion of an electron in an external, uniform, magnetic
field perpendicular to the plane.8 For the sake of simplicity we will study
circular geometries, and thus choose the symmetric gauge Ax = yB/2, Ay =
−xB/2. Replacing the momentum p̂ by the effective momentum p̂ − eA [46]
in the free particle Hamiltonian yields

8 The main source of this section is [45].
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Ĥ =
1

2M
p̂2 +

e2B2

8M
ρ2 +

µBB

h̄

(
L̂z + 2Ŝz

)
. (7.43)

The first two terms in (7.43) represent a two-dimensional harmonic
Hamiltonian. The eigenvalues and eigenstates of the two-dimensional
harmonic oscillator are (see Problem 13 in Chap. 6):

En = h̄ω(n + 1) , n = 0, 1, 2, . . . , xc =
√

h̄/Mω

ϕnml
(ρ, φ) = Rnρml

(u)ϕml
(φ) , ρ =

√
x2 + y2 , φ = tan−1 y

x
, u = ρ/xc

ϕml
(φ) =

1√
2π

exp(imlφ) , ml = n, n − 2, . . . ,−n (7.44)

Rnρml
(u) = Nnml

exp(−u2/2)umlfnρml
(u2) , nρ =

1
2
(n − ml) .

The first two terms in (7.43) yield the frequency

ω = − eB

2M
=

µBB

h̄
. (7.45)

The term proportional to L̂z arises from the cross product of the square of
the effective momentum, and the term proportional to Ŝz arises from (5.25).
Since the change in energy produced by increasing n by one unit is exactly
compensated by decreasing the orbital angular momentum by one unit of
h̄, there are sets of degenerate states called Landau levels. In particular, the
lowest Landau level is made up of radial nodeless states and values of ml = −n.
It has zero energy, since the spin term (sz = −h̄/2) compensates exactly for
the zero point energy h̄ω of the harmonic oscillator.

To keep electrons from flying apart, one adds a radial confining potential
which does not alter the symmetry of the problem. Let us assume that all
states of the first Landau level are occupied9 up to and including a minimum
angular momentum −|Ml|. The expectation value of the density,

n=|Ml|∑

n=0

|ϕn(−n)|2 =
2
x2

c

exp
(
−u2

)
n=|Ml|∑

n=0

1
n!

u2n , (7.46)

is practically constant for u ≡ ρ/xc 
√
|Ml| and drops rapidly to zero around√

|Ml|. This configuration is incompressible, since a compression would
require the promotion of an electron to a higher Landau level.

Since the characteristic area of the problem is

πx2
c =

h̄π

Mω
=

h

|e|B , (7.47)

9 The Slater determinant for |Ml| + 1 electrons moving in the first Landau level is
written in (7.49).
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the constant of proportionality between the number of electrons per unit area
and the strength of the magnetic field depends only on Planck’s constant and
the charge of the electron.

However, there are impurities and, consequently, the single energy of a
Landau level is spread out into a band. The states of the band belong to two
classes: states near the bottom or the top of the band are localized states.10

Near the center of each energy band are extended states, each one spreading
out over a large space. They are the only ones that may carry current.

At very low temperatures, only states below the Fermi energy are occupied.
Assume that the Fermi level is at the sub-band of localized states near the top
of some Landau band. Now gradually increase the strength of the magnetic
field, adjusting the current so that the Hall voltage remains constant. Since the
number of states per unit area is proportional to the applied magnetic field [see
(7.47)], the number of levels in each Landau state increases proportionately.

Many of the newly available states will be below the Fermi level, so elec-
trons from higher-energy localized states will drop to fill them. As a result,
the Fermi level descends to a lower position. However, as long as it remains in
the sub-band of high-energy localized states, all the extended states remain
fully occupied. The amount of current flowing therefore remains constant and
so does the Hall resistivity.

As the Fermi level descends through the sub-band of extended states, some
of them are vacated. The amount of current flowing decreases, while the Hall
resistivity increases.

Eventually, the extended states will be emptied and the Fermi level will
enter the sub-band of low-energy localized states. If there is at least one
full Landau band below the Fermi level, the extended states in that band
will be able to carry a constant current. However, because the extended
states in one band have been completely emptied, the number of sub-bands of
extended states has been reduced by one, and the Hall resistance is larger than
it was on the previous plateau. The current is proportional to the number
of occupied sub-bands of extended states, and on each plateau an integral
number of these sub-bands is filled.

The second striking feature of the quantized Hall effect is that current flows
without resistance in the plateau region. Recall that, to dissipate power, an
electron must make a transition to a state of lower energy, the excess energy
being distributed within the lattice as vibrations or heat.

First we examine the regime between two plateaus. The Fermi energy
varies slightly from point to point: the voltage measured at opposite sides of
the sample gauges the difference between the Fermi energies at the two points.
Thus, an electron can find itself in an extended state that is below the local
Fermi energy in one region of space, but which extends into a region where
its energy is above the local Fermi energy. The electron would thus be able to

10 Low (high) energy localized states arise around impurity atoms which have an
excess (dearth) of positive charge.
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drop into a lower level, dissipating some energy into the lattice. This sample
exhibits electrical resistance.

If the Fermi energy is within the region of energy corresponding to localized
states, there may also be empty states of lower energy. These states, however,
are far apart in space, at distances much larger than the localization distance.
Electrons cannot drop to lower states, and thus they cannot dissipate energy.

Within this model, localized states also act as a reservoir of electrons, so
that, for finite ranges of magnetic field strengths, the extended states in each
Landau band are either completely empty or completely filled. Without the
reservoir, the width of the regions displaying an integer quantum Hall effect
would be vanishingly small.

Therefore, a relatively simple model of independent electrons, moving
under the influence of electric and magnetic fields, can account for the main
properties of the integer quantum Hall effect. This model has some features
in common with the band structure of metals that explains the existence of
conductors and insulators (Sect. 7.4.2†).

The quantized Hall effect enables us to calibrate instruments with extreme
accuracy as well as to measure fundamental physical constants more precisely
than ever before.

7.6.2† Fractional Quantum Hall Effect

The fractional quantum Hall effect is seen only when a Landau level is par-
tially filled. For instance, a plateau is seen when the lowest Landau level is
approximately one-third full. In this case the Hall resistivity is equal to one-
third of the square of the electron charge divided by Planck’s constant.

The independent particle model previously used to explain the integer
quantum Hall effect does not show any special stability when a fraction of the
states is filled. To explain the fractional quantum Hall effect, we must consider
the interaction between electrons (like everything associated with open shells).

It is helpful to write the total wave function of particles moving in a Landau
level as a Slater determinant (7.11):

Ψ =

(√
2

xc

)Ml+1
1

√
(Ml + 1)!

(
n=Ml∏

n=0

1√
n!

)

Φ(1, 2, . . . ,Ml + 1) , (7.48)

where

Φ = exp
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(zi − zj) . (7.49)
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Here z ≡ u exp(−iφ).
In 1983, Robert Laughlin modified this wave function as follows [47]:

Φν = exp

(

−1
2

i=Ml+1∑

i=1

|zi|2
)

i>j=Ml−1∏

i>j=0

(zi − zj)ν . (7.50)

These wave states are exact ground states in the limit when electron–electron
repulsions become infinitely short-ranged. The exponent ν measures the
fraction of filled states: the wave functions have the required stability when
ν equals 1/3, 1/5, 1/7, 2/3, 4/5 or 6/7. The denominator in the fraction ν
must be an odd number in order to satisfy the Pauli principle. A mechanism
based on localized and extended states may also be invoked here but, instead
of being applied to independent electrons, it must be used for quasi-particles,
which may be described as fractionally charged anyons (see the footnote on
p. 101). The topic of anyons lies beyond the scope of this text.

7.7† Quantum Statistics

Differences between counting the number of states according to whether the
particles are distinguishable or not and, in the latter case, whether they are
bosons or fermions, have already appeared in the two-body case, as shown in
Sect. 7.1. If three particles have to be distributed into three states, we may
construct:

• One antisymmetric Slater determinant (7.11)
• 10 symmetric states [three states ϕ(3)

a , six states ϕ(2)
a ϕ(1)

b and one state
ϕ(1)

a ϕ(1)
b ϕ(1)

c (7.9)]
• Sixteen states which are neither symmetric nor antisymmetric

Such differences lead to different occupation probabilities n(ε) for the levels
with energy ε. Let us assume that:

1. The equilibrium distribution is the most probable distribution consistent
with a constant number of particles and a constant energy.

2. The particles are identical.
3. The particles are distinguishable.
4. There is no restriction on the number of particles in any state.

Given these assumptions, one derives the classical Maxwell–Boltzmann distri-
bution [Fig. 7.8(M–B)]:

η(ε) = exp
(

−ε − µ

kBT

)

. (7.51)
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Fig. 7.8. Maxwell–Boltzmann (M–B), Bose–Einstein (B–E) and Fermi–Dirac (F–D)
distribution functions. The value n(ε) gives the fraction of levels at a given energy
which are occupied when the system is in thermal equilibrium. The curves corre-
spond to: (a) T = 300K, (b) T = 1, 000K, (c) T = 5, 000K and (d) T = 10, 000 K

where µ is a constant fixing the number of particles. For a system of harmonic
oscillators, µ = −kBT log kBT .

In the quantum mechanical case, this distribution can only hold if the
particles do not overlap. If this is not the case and, consequently, assumption
3 is removed, one obtains the Bose–Einstein distribution [Fig. 7.8(B–E)], which
applies to bosons [48]

η(ε) =
[

exp
(

ε − µ

kBT

)

− 1
]−1

. (7.52)

If we choose zero for the energy of the ground state, the occupancy of the
ground state is

η(0) =
[

exp
(

− µ

kBT

)

− 1
]−1

. (7.53)
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In the limit T → 0, the occupancy of the ground state equals the total number
of particles N

lim
T→0

η(0) = lim
T→0

(

1 − µ

kBT
+ · · · − 1

)−1

≈ −kBT

µ
≈ N , µ = −kBT

N
.

(7.54)

Thus, in a boson system, the constant µ must lie below the ground state
energy, if the occupations are to be nonnegative numbers. In Fig. 7.8(B–E) it
is assumed that kBT  N .

Moreover, if assumption 4 above is replaced by the condition that the
number of particles in each level may be 0 or 1, the Fermi–Dirac distribution
is derived [Fig. 7.8(F–D)] [49,50]

η(ε) =
[

exp
(

ε − µ

kBT

)

+ 1
]−1

. (7.55)

In the case of an electron gas, the parameter µ may be approximated by the
Fermi energy εF for T ≈ 0 (Sect. 7.4.1). Thus µ ≈ 3.23 eV for the Na case.

For small temperatures, the Fermi–Dirac distribution only differs from
a step function within a region of a few kBT around ε = µ. This fact can
be exploited by expanding the integrand g(ε) η(ε) around µ, where g(ε) is a
function of energy, like the density of states. The first terms in the resultant
Sommerfeld expansion are

∫ ∞

−∞
g(ε) η(ε) dε =

∫ µ

−∞
g(ε) dε +

π2

6
(kBT )2

dg

dε

∣
∣
∣
∣
ε=µ

+ O
(

kbT

µ

)4

(7.56)

For values of (ε − µ)/kBT � 1, the three distributions coincide.

7.8† Occupation Number Representation
(Second Quantization)

The representation (3.37) of the harmonic oscillator states may be straight-
forwardly generalized to the case in which ν oscillators are present. The eigen-
states and eigenvalues of the energy are [see (7.1)]

ϕn1,n2,...,nν
=

p=ν∏

p=1

1
√

np!
(a+

p )npϕ0 , apϕ0 = 0 ,

En1,n2,...,nν
=

p=ν∑

p=1

Epnp , (7.57)

where np is an eigenvalue of the operator n̂p = a+
p ap (np = 0, 1, 2, . . .). We

have disregarded the ground state energy.
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The creation and annihilation operators corresponding to different sub-
scripts commute with each other:

[ap, aq] =
[
a+

p , a+
q

]
= 0 ,

[
ap, a

+
q

]
= δpq . (7.58)

The np quanta that occupy the p-state are indistinguishable from each other.
They are therefore bosons, and states ϕn1,n2,...,nν

constitute another repre-
sentation of states (7.10). Note that it is much simpler to construct the vector
state (7.57) than to apply the symmetrization operator Ŝ (7.8). Examples of
the occupation number representation are given by phonons in lattice struc-
tures (Sect. 7.4.3†) and by the quantized radiation field (Sect. 9.5.2†).

One-body operators in many-body systems have been previously expressed
as a sum of individual terms Q̂ =

∑
i Q̂(i). In second quantization we may

write Q̂ =
∑

qp cqpa
+
q ap

〈n1, n2 . . . (nq + 1), (np − 1) . . . nν |Q|n1, n2 . . . nq, np . . . nν〉 (7.59)
= 〈(nq + 1), (np − 1)|Q|nq, np〉

= cqp

√
(nq + 1)np

= cqp if np = 1, nq = 0 .

Therefore cqp = 〈q|Q|p〉 and thus

Q̂ =
∑

qp

〈q|Q|p〉 a+
q ap . (7.60)

This expression makes no explicit reference to individual particles. A similar
equivalence may be obtained for n-body operators. If n = 2,

Q̂ =
∑

µνηζ

=
1
2
〈ϕµ(1)ϕν(2)|v(1, 2)|ϕη(1)ϕζ(2)〉a+

µ a+
ν aζaη . (7.61)

Operators a+
lml

and (−1)l−mlal(−ml) have the same angular momentum
coupling properties as spherical harmonics Ylml

.
Another important advantage of the second quantization formalism

becomes apparent if the number of particles is not conserved. If an atom
is prepared in an excited state, after a finite time the quantum state will be a
superposition of a component representing the initial state plus another com-
ponent with the atom in a lower state and an emitted photon. The number
of photons is not constant.

It is natural to seek a similar formalism which may apply to fermions.
A system of such particles can be described as a many-particle state vector
that changes its sign with the interchange of any two particles. Since the
required linear combination of products of one-particle states [Slater deter-
minant (7.11)] can be uniquely specified by listing the singly occupied states,
the formalism we seek must limit the eigenvalues of n̂p to 0 and 1.
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The desired modification consists in the replacement of commutators [Â, B̂]
by anticommutators

{Â, B̂} ≡ ÂB̂ + B̂Â . (7.62)

The anticommutators of creation and annihilation operators read

{ap, aq} = {a+
p , a+

q } = 0 , {a+
p , aq} = δpq . (7.63)

The eigenvalues of the number operators are obtained by constructing the
operator equation

(n̂p)2 = a+
p apa

+
p ap = a+

p (1 − a+
p ap)ap = a+

p ap = n̂p . (7.64)

Since both operators (n̂p)2 and n̂p are simultaneously diagonal, (7.64) is equiv-
alent to the algebraic equation n2

p = np, which has two roots: 0 and 1. Fermi-
ons thus obey the exclusion principle. Within this limitation, the eigenstates
and energies (7.57) are also valid for the case of fermions. Note that an inter-
change of two fermion creation operators changes the sign of the eigenstate
[as happens for the Slater determinant (7.11)].

A state such a closed shell, in which levels µ are occupied, may be
represented as

ϕ0 = Πµa+
µ ϕvacuum . (7.65)

ϕ0 may be used as a redefined vacuum state. Thus a+
η ϕ0 and a+

η aµ ϕ0 represent
a one-particle state and a particle-hole state, respectively.

Single-body and two-body operators are also constructed as in (7.60) and
(7.61) within the fermion number representation. If acting on products of
fermion states (7.57), care must be taken with the number of permutations be-
tween creation and annihilation operators in order to obtain consistent phases.

Operators a+
jm and (−1)j−maj(−m) have the same angular momentum

coupling properties as states ϕjm.

Problems

Problem 1. Two particles with equal mass M are confined by a one-
dimensional harmonic oscillator potential characterized by the length xc.
Assume that one is in the eigenstate n = 0 and the other in n = 1. Find
the probability density for the relative distance x = xa − xb, the root mean
square value of x, and the probability of finding the two particles within a
distance of xc/5 from each other if they are:

1. Nonidentical particles
2. Identical bosons
3. Identical fermions

Hint: Write the two-particle wave function in terms of the relative coordinate
x and the center of mass coordinate xg = (xa + xb)/2 and integrate the total
probability density with respect to xg.
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Problem 2. Consider a He atom in which one electron is in the state ϕ100 1
2 ms

and the other in the state ϕ21ml
1
2 ms

.

1. Construct the possible two-electron states.
2. Split the energy of the allowed states in a qualitative manner by including

a Coulomb repulsion between the electrons.

Problem 3. Couple two independent bosons, each carrying spin two. What
spin angular momenta are possible? [See the relations (5.37)].

Problem 4. State whether the spatial sector of a two-body vector state is
symmetric or antisymmetric with respect to the interchange of the particles,
if the spin sector is given by [see (5.33)]:

1. [ϕ 1
2
(1) ϕ 1

2
(2)]00,

2. [ϕ 1
2
(1) ϕ 1

2
(2)]1m,

3. [ϕ1(1) ϕ1(2)]00,
4. [ϕ1(1) ϕ1(2)]1m,
5. [ϕ1(1) ϕ1(2)]2m.

Problem 5. What angular momenta are possible for two fermions con-
strained to move in a j-shell? A j-shell is constituted by the set of states
which have the same quantum numbers, including j, with the exception of
the projection m.

1. Apply the usual Heisenberg–Schrödinger formalism.
2. Apply the formalism of second quantification.

Problem 6. Couple the spin states of a deuteron (sd = 1) and a proton
(sp = 1/2). What total spins are possible:

1. If we ignore the Pauli principle?
2. If the three nucleons move within the N = 0 harmonic oscillator shell and

the Pauli principle is taken into account? (This is approximately the He3

ground state.)

Problem 7. Show that a closed fermion j-shell carries zero angular
momentum:

1. Using the Slater determinant (7.11),
2. Using the occupation number representation (7.57) plus the anticommu-

tation relations (7.63).

Problem 8. Obtain the angular momentum j and the parity of nuclei with

1. 1, 3, 7, 9, 21, and 39 protons;
2. 5, 13, and 27 protons;
3. 15 and 29 protons.
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Assume that the Hamiltonian used in Problem 3 of Chap. 6 is valid and that
neutrons occupy closed shells.

Problem 9.

1. Calculate the magnetic moment of nuclei with 3, 7, and 9 protons, for
states with m = j. Disregard the neutron contribution.

2. Do the same for neutrons.

Problem 10. Obtain the ratio v/c for:

1. An electron in the outer shell of the Pb atom (Z = 82);
2. A neutron in the outer shell of the Pb208 nucleus;
3. An electron with the Fermi momentum in metal Na [see (7.22)].

Problem 11. Repeat the calculation of Sect. 7.4.1 for a two-dimensional gas
model.

Problem 12. Obtain the ratio between the average energy per electron and
the Fermi energy for one-, two-, and three-dimensional gas models.

Problem 13. The semiconductor Cu2O displays an energy gap of 2.1 eV. If
a thin sheet of this material is illuminated with white light:

1. What is the shortest wavelength that gets through?
2. What color is it?

Problem 14. Consider the Fermi–Dirac distribution (7.55):

1. Find the temperature dependence of the difference µ − εF

Hint: Impose the conservation of the number of electrons nF

2. Evaluate this difference for Na at room temperature.

Problem 15. Obtain the temperature dependence of the specific heat due to
the phonons for high values of T .

Problem 16. Find the matrix elements 〈ab|Q|ab〉, 〈bc|Q|ab〉 and 〈ac|Q|ab〉
of the operator Q̂ =

∑
pq qpqa

+
p aq, where a+

p , ap are fermion creation and
annihilation operators and p = a, b, c. Assume that qpq = qqp.

Problem 17.

1. Verify that the state ϕ0 representing a filled j-shell is an eigenstate of the
operator [a+

j aj ]00.
2. Find the eigenvalue.
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Approximate Solutions to Quantum Problems

The previous chapters may have left the (erroneous) impression that there
is always an exact (and elegant) mathematical solution for every problem in
quantum mechanics. In most cases there is not. One must resort to makeshift
approximations, numerical solutions, or combinations of both. In this chapter
we discuss three approximate methods that are frequently applied: perturba-
tion theory, variational procedure, and approximate matrix diagonalization.
They are illustrated by means of applications to two-electron atoms, mole-
cules, and periodic potentials. The problem of quantization with constraints
is outlined.

8.1 Perturbation Theory

The procedure is similar to the one used in celestial mechanics, where the tra-
jectory of a comet is first calculated by taking into account only the attraction
of the sun. The (smaller) effect of planets is included in successive orders of
approximation.

We divide the Hamiltonian Ĥ, which we do not know how to solve exactly,
into two terms. The first term, Ĥ0, is the Hamiltonian of a problem whose
solution we know and which is reasonably close to the original problem; the
second term, V̂ , is called the perturbation. Thus

Ĥ = Ĥ0 + λV̂ , (8.1)

Ĥ0ϕ(0)
n = E(0)

n ϕ(0)
n . (8.2)

The perturbation term has been multiplied by a constant λ that is supposed
to be a number less than 1. The constant λ is helpful for keeping track of
the order of magnitude of the different terms of the expansion that underlies
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the theory. Otherwise it has no physical meaning. It is replaced by 1 in the
final expressions. We solve the eigenvalue equation:

ĤΨn = EnΨn (8.3)

by expanding the eigenvalues and the eigenstates in powers of λ and succes-
sively considering all terms corresponding to the same power of λ in (8.3):

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · · ,

Ψn = ϕ(0)
n + λΨ(1)

n + λ2Ψ(2)
n + · · · . (8.4)

The terms independent of λ yield (8.2). The terms proportional to λ give rise
to the equation

(
Ĥ0 − E(0)

n

)
Ψ(1)

n =
(
−V̂ + E(1)

n

)
ϕ(0)

n . (8.5)

First, we take the scalar product of ϕ(0)
n with the states on each side of (8.5).

The left-hand side vanishes because of (8.2). We thus obtain the first-order
correction to the energy:

E(1)
n = 〈ϕ(0)

n |V |ϕ(0)
n 〉 . (8.6)

Therefore, the leading order term correcting the unperturbed energy is the
expectation value of the perturbation.

Next, we take the scalar product with ϕ(0)
p , (p �= n), so that

(
E(0)

p − E(0)
n

)
〈ϕ(0)

p |Ψ(1)
n 〉 = −〈ϕ(0)

p |V |ϕ(0)
n 〉 . (8.7)

Using the states ϕ(0)
p as basis states, we expand

Ψ(1)
n =

∑

p
=n

c(1)
p ϕ(0)

p , c(1)
p =

〈ϕ(0)
p |V |ϕ(0)

n 〉
E

(0)
n − E

(0)
p

. (8.8)

The still missing amplitude c
(1)
n is determined from the normalization con-

dition: since both Ψn and ϕ(0)
n are supposed to be normalized to unity, the

terms linear in λ are

0 = 〈Ψn|Ψn〉−〈ϕ(0)
n |ϕ(0)

n 〉 = λ
[
〈Ψ(1)

n |ϕ(0)
n 〉+ 〈ϕ(0)

n |Ψ(1)
n 〉
]

= 2λRe (c(1)
n ) . (8.9)

Therefore, the first-order coefficient c
(1)
n disappears, since we can make it real

by changing the (arbitrary) phase of ϕ(0)
n .

Equations (8.6) and (8.8) determine the first-order changes in the energies
and state vectors in terms of matrix elements of the perturbation with res-
pect to the basis of zero-order states. The convergence of perturbation theory
requires that |c(1)

p |2  1, i.e., the matrix element of the perturbation between
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two states should be smaller than the unperturbed distance between these
states. In particular, perturbation theory cannot be applied if there are non-
vanishing matrix elements between degenerate states. In these cases, we must
resort to either variational (Sect. 8.2) or diagonalization procedures (Sect. 8.5).

The second-order correction to the energy is given by

E(2)
n =

∑

p
=n

|〈ϕ(0)
p |V |ϕ(0)

n 〉|2

E
(0)
n − E

(0)
p

. (8.10)

This perturbation theory is called the Rayleigh–Schrödinger perturbation the-
ory. Its apparent simplicity disappears in higher orders of perturbation, due
to the increase in the number of contributing terms. A formal simplification
may be achieved by summing up partial series of terms. For instance, in the
Brillouin–Wigner perturbation theory, one replaces the unperturbed energy
E

(0)
n of the state n by the exact energy En in the denominators. For the case

of the energy expansion, one obtains

En = E(0)
n + 〈ϕ(0)

n |V |ϕ(0)
n 〉 +

∑

p
=n

|〈ϕ(0)
p |V |ϕ(0)

n 〉|2

En − E
(0)
p

+ · · ·

= E(0)
n + 〈ϕ(0)

n |V |ϕ(0)
n 〉 +

∑

p
=n

|〈ϕ(0)
p |V |ϕ(0)

n 〉|2

E
(0)
n − E

(0)
p

−
∑

p
=n

|〈ϕ(0)
p |V |ϕ(0)

n 〉|2〈ϕ(0)
n |V |ϕ(0)

n 〉
(
E

(0)
n − E

(0)
p

)2 + · · · . (8.11)

The last term appears as a third-order term in the Rayleigh–Schrödinger per-
turbation theory. It does not exist1 in the Brillouin–Wigner expansion, since
it has been taken into account through the replacement in the denomina-
tor of the second-order term (8.10). However, the advantage of reducing the
number of terms may be compensated by a decrease in the convergence of
the perturbation expansion, associated with the nature of the partial summa-
tions. Moreover, different powers of λ may be present in many terms of the
Brillouin–Wigner series.

There is an elegant and useful formulation of perturbation theory con-
ceived by Feynman. This uses diagrams carrying both a precise mathematical
meaning and a description of the processes involved [51]. The “finest hour” of
perturbation theory is represented by the calculation of the Lamb shift, i.e.,
the energy difference E2p 1

2
− E1s 1

2
in the hydrogen atom, to six significant

figures, using quantum electrodynamics (see [52], p. 358).
The ground state energy of the He atom is calculated using perturbation

theory in Sect. 8.3.

1 One can prove that the Brillouin–Wigner expansion does not contain terms in
which the state ϕ(0)

n appears in the numerator as an intermediate state.
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8.2 Variational Procedure

This approximation may be considered as the inverse of the perturbation
procedure. Instead of working with a fixed set of unperturbed states, one
guesses a trial state Ψ, which may be expanded in terms of the basis set of
eigenstates ϕE of the Hamiltonian (Ψ =

∑
E cEϕE):

〈Ψ|H|Ψ〉 =
∑

E

E|cE |2 ≥ E0

∑

E

|cE |2 = E0 , (8.12)

where E0 is the ground state energy. The state Ψ may depend on some
parameter, and the expectation value of the Hamiltonian is minimized with
respect to this parameter.2 One thus obtains an upper limit for the ground
state energy of the system.

The fact that the energy is an extremum guarantees that if the trial wave
function is wrong by something of the order of δ, the variational estimate of
the energy is off by something of the order δ2. So one can be rewarded with
a good energy estimate, even though the initial wave function may be only a
fair guess.

The ground state energy obtained in first-order perturbation theory
E

(0)
0 + 〈ϕ(0)

0 |V |ϕ(0)
0 〉 is an expectation value of the total Hamiltonian, and is

thus equivalent to a nonoptimized variational calculation.

8.3 Ground State of the He Atom

This three-body problem may be reduced to a two-body problem by again
considering a very massive nucleus. However, even the remaining problem is
difficult to solve because of the presence of the Coulomb repulsion V between
the two electrons. The total Hamiltonian is Ĥ0 + V , where

Ĥ0 = − h̄2

2M

(
∇2

1 + ∇2
2

)
− Ze2

4πε0

(
1
r1

+
1
r2

)

, V =
e2

4πε0r12
. (8.13)

Here r12 = |r1 − r2| is the distance between the electrons.
We know how to solve the problem of two electrons moving independently

of each other in the Coulomb potential of the He nucleus. Because the ground
state energy of a hydrogen-like atom is proportional to Z2 and there are
two electrons, the unperturbed energy is 8EH, where EH is the energy of
the electron in the H atom. The antisymmetrized two-electron state vector of
the ground state in the He atom is discussed in Sect. 7.2. Using this state, the
first-order correction to the energy is (Sect. 8.6*)

E(1)
gs =

〈

ϕgs

∣
∣
∣
∣

e2

4πε0r12

∣
∣
∣
∣ϕgs

〉

= −5
2
EH . (8.14)

2 The requirement of normalization is explicitly satisfied by minimizing
〈Ψ|H|Ψ〉/〈Ψ|Ψ〉.
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Therefore, the total energy becomes 5.50EH, which constitutes an
improved approximation to the experimental result 5.81EH compared with
the unperturbed value 8EH.

As mentioned in Sect. 8.2, one may improve the predictions for the ground
state by a variational calculation. In this case we may write the expectation
value of the kinetic energy, of the potential energy and the Coulomb repulsion
as functions of the parameter Z∗ entering the wave function. The value Z = 2
is kept in the Hamiltonian:

〈ϕgs|H|ϕgs〉Z∗ = −2(Z∗)2EH + 4ZZ∗EH − 5
4
Z∗EH . (8.15)

Minimization with respect to Z∗ yields the effective value Z∗ = 1.69 for He
(instead of 2), which is an indication that the electrons mutually screen the
nuclear attraction. The final result is 〈ϕgs|H|ϕgs〉Z=1.69 = 5.69EH, and this
is in even better agreement with the experimental value than the first-order
perturbation result.

In order to apply the variational procedure to excited states, one must
ensure their orthogonality with lower-energy states, for the resulting value of
the minimization parameter.

8.4 Molecules

Molecules are made up of nuclei and electrons. As in the case of lattice struc-
tures (Sects. 7.4.2† and 7.4.3†), the theoretical description of these many-body
systems is facilitated by the very different masses of the two constituents,
which allows to decouple their respective motions. The procedure is called
the Born–Oppenheimer approximation. In principle, it is possible to begin
by solving the problem of motion of electrons subject to the (static) field of
the nuclei and to the field of other electrons. In this first step, the nuclear
coordinates Ri are treated as parameters. Minimization of the energy W (Ri)
with respect to these parameters yields their equilibrium values. A subsequent
step consists in allowing small departures of the nuclei from their equilibrium
position and using the associated increase in the energy W as the restoring
force for the oscillatory motion. Finally, the molecules may also perform col-
lective rotations without changing the relative positions of the electrons and
the nuclei.

8.4.1 Intrinsic Motion. Covalent Binding

We illustrate the procedure for the case of the molecular hydrogen ion H+
2 .

Figure 8.1 represents the two protons 1 and 2 and the electron. The assump-
tion that the protons are at rest simplifies the Hamiltonian to

Ĥ = − h̄2

2M
∇2 − e2

4πε0|r − R1|
− e2

4πε0|r − R2|
+

e2

4πε0R
, (8.16)
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|R1-r| |R2-r|

R1 2

Fig. 8.1. The hydrogen ion

where R = |R1 − R2|. Although in this particular case exact numerical
solutions may be obtained by solving the Schrödinger equation in elliptical
coordinates, it is more instructive to approximate the solution by means of a
variational procedure.

If the distance R is very large, the two (degenerate) solutions describe a
H atom plus a dissociated proton. The two orbital wave functions are

ϕ1 = ϕ100(|r − R1|) , ϕ2 = ϕ100(|r − R2|) . (8.17)

Note that such wave functions are orthogonal only for very large values of R.
In fact, their overlap is 〈1|2〉 = 1 for R = 0.

The requirement of antisymmetry between the two protons must be taken
into account. As in Sect. 7.2, the spin of the two protons may be coupled to
1 (symmetric spin states) or to 0 (antisymmetric spin states). The corres-
ponding spatial wave functions should thus be antisymmetric or symmetric,
respectively:

ϕ∓ =
ϕ1 ∓ ϕ2√

2(1 ∓ 〈1|2〉)
. (8.18)

The energy to be minimized with respect to the distance R is

E±(R) = 〈±|H|±〉

= E100 +
e2

4πε0R
− e2

4πε0(1 ± 〈1|2〉)

〈

2
∣
∣
∣
∣

1
|r − R1|

∣
∣
∣
∣ 2
〉

∓ e2

4πε0(1 ± 〈1|2〉)

〈

1
∣
∣
∣
∣

1
|r − R1|

∣
∣
∣
∣ 2
〉

, (8.19)

which has the limits

lim
R→0

E± → ∞ , lim
R→∞

E± = E100 . (8.20)

Since the matrix element in the third line of (8.19) is positive, we conclude that
the energy corresponding to the spatially symmetric wave function lies lowest.
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E+

E-
E

100

R

Fig. 8.2. Lowest energies of the hydrogen ion as a function of the distance between
protons

In fact, the two curves are plotted in Fig. 8.2. Only the energy corresponding to
ϕ+ displays a minimum. This may be interpreted as being due to the buildup
of the electron density between the two nuclei, which allows for the screening
of the Coulomb repulsion. This type of binding is called covalent binding. See
also the example in Sect. 3.1.3.

8.4.2 Vibrational and Rotational Motions

We consider here the somewhat more general case of a diatomic molecule with
masses M1 and M2, respectively. First we perform the well-known separation
between the relative and center of mass operators:

R̂ = R̂1 − R̂2 , R̂g =
M1

Mg
R̂1 +

M2

Mg
R̂2 ,

P̂ =
M2

Mg
P̂ 1 −

M1

Mg
P̂ 2 , P̂ g = P̂ 1 + P̂ 2 . (8.21)

The inversion of definitions (8.21) yields the kinetic energy

P̂
2

1

2M1
+

P̂
2

2

2M2
=

P̂
2

g

2Mg
+

P̂
2

2µ
. (8.22)

Here Mg = M1 + M2 is the total mass and µ ≡ M1M2/Mg is the reduced
mass.

If the potential energy V (R) depends only on the distance between the
ions, the center of mass moves as a free particle. This problem has already been
discussed in Sect. 4.3. The kinetic energy associated with the relative motion
may be expressed in spherical coordinates, as in (6.1), with the substitution
M → µ.
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Let us split the relative Hamiltonian into rotational and vibrational
contributions, viz.,

Ĥ = Ĥrot + Ĥvib ,

Ĥrot =
1

2µR2
L̂

2
, (8.23)

Ĥvib = − h̄2

2µ

(
d2

dR2
+

2
R

d
dR

)

+ V (R) . (8.24)

We now assume that the interactions between the ions stabilize the system at
the relative distance R0. The difference y = R−R0 will be such that |y|  R0.

Rotational Motion

The Hamiltonian for the rotational motion may be approximated as (see
Fig. 8.3)

Ĥrot =
1

2µR2
0

L̂2 . (8.25)

The eigenfunctions are labeled by the quantum numbers l,ml (Sect. 5.1.2).
The energies are obtained by replacing the operator L̂

2
in (8.25) by its eigen-

values h̄2l(l + 1). The photon energy corresponding to the transition between
neighboring states increases linearly with l, so that

∆(l → l − 1) =
h̄2

µR2
0

l . (8.26)

Vibrational Motion

If the stabilization at R ≈ R0 is sufficiently good we may extend the domain
of the radial coordinate from 0 to −∞, since the wave function should be
increasingly small for negative values of R. Simultaneously, the R2 factor in
the volume element may be eliminated from the integrals by the substitution
Ψ(R) → Φ(R)/R. In such a case the radial Schrödinger equation transforms
into a linear equation of the type seen in Chap. 4:

− h̄2

2µ

(
d2

dR2
+

2
R

d
dR

)

Ψ + V (R)Ψ = EΨ −→ − h̄2

2µ

d2

dR2
Φ + V (R)Φ = EΦ ,

(8.27)
with the boundary conditions Φ(±∞) = 0.

Finally, the Taylor expansion of the potential around the equilibrium
position R0, and the replacement of the coordinate R by y = R−R0, yield the
harmonic oscillator Hamiltonian discussed in Sects. 3.2 and 4.2 (see Fig. 8.3)

[

− h̄2

2µ

d2

dy2
+

1
2

d2V (R)
dR2

∣
∣
∣
∣
R=R0

y2

]

Φ =
[
E − V (R0)

]
Φ . (8.28)
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G

Fig. 8.3. Vibration (dashed line), rotation (dotted lines) and translation of the
center of mass G (continuous line) in a diatomic molecule

The vibrational states are equidistant from each other (Fig. 3.2). The photon
spectrum displays the single frequency:

∆(N → N − 1) = h̄ω = h̄

√
1
µ

d2V (R)
dR2

∣
∣
∣
∣
R=R0

. (8.29)

8.4.3 Characteristic Energies

The intrinsic motion of electrons and the vibrational and rotational motion
of nuclei are associated with different characteristic energies. The order of
magnitude for intrinsic transitions should be similar to the excitation energies
in atoms

Eintr ≈ −EH =
h̄2

2a2
0M

, (8.30)

since the same Coulomb interaction and similar interparticle distances are
present. Here a0 is the Bohr radius (Table 6.1). The potential energy of the
vibrational motion originates also in the Coulomb potential and thus should
be of the same order of magnitude as Eintr:

Evib = h̄

√
Eintr

2a2
0µ

≈ h̄2

a2
0

√
2Mµ

≈
√

M

Mp
Eintr (8.31)

Rotational energies are given by (8.26)

Erot ≈
h̄2

2a2
0µ

≈ M

Mp
Eintr (8.32)

Since the ratio between the electron and the proton masses M/Mp ≈ 1/2, 000
(see Table 14.1), the transitions between vibrational states occupy an inter-
mediate energy range compared to those corresponding to intrinsic electron
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Fig. 8.4. Vibrational and rotational excitations of a molecule. Dotted lines represent
allowed transitions, according to the definition (9.64)

transitions or to transitions between rotational states. Therefore, the mole-
cular spectrum displays vibrational states on top of each intrinsic excita-
tion, and rotational states on top of each vibrational state (see Fig. 8.4). The
electromagnetic radiation associated with transitions between intrinsic, vibra-
tional, and rotational states appears, successively, in the visible, infrared, and
radiofrequency regions of the optical spectrum.

As the energies of the rotational and vibrational excitations increase, the
approximations become less reliable:

• Terms that are functions of y will appear in the rotational Hamiltonian,
coupling the rotational and vibrational motion

• Higher-order terms in the Taylor expansion of the potential become
relevant

8.5 Approximate Matrix Diagonalizations

If the conditions for applying perturbation theory are not satisfied, we may
resort to a diagonalization procedure. This is obviously necessary if there are
degenerate or close-lying states. This is the case if two or more particles are
added to a closed shell, whether it be atomic or nuclear. The size of the matrix
to be diagonalized may be reduced due to physical considerations, for example,
when we use the symmetries of the Hamiltonian. If we are only interested in
the ground state and neighboring states, we may also simplify the problem by
taking into account only those states which are close in energy to the ground
state.

It is also possible to include those contributions to the matrix elements
of the Hamiltonian to be diagonalized that arise from states not included in
the diagonalization. One may use either the technique of folded diagrams
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(a generalization of Rayleigh–Schrödinger perturbation theory) [53] or
the Bloch–Horowitz procedure (an extension of the Brillouin–Wigner
expansion) [54].

An alternative procedure consists in simplifying the expressions for the
matrix elements. This includes eliminating many of them (see Problem 14).
In such cases, good insight is required in order to avoid distorting the physical
problem.

8.5.1† Approximate Treatment of Periodic Potentials

This example illustrates the interplay between exact diagonalization and per-
turbation theory that can be applied in more complicated situations. We treat
the same problem as in Sect. 4.6†, but in the limit of a small periodic potential
V (x).

We choose the free-particle Hamiltonian H0 = (1/2M) p̂2 as zero-order
Hamiltonian. The unperturbed energies are given in Fig. 8.5a, as a function of
the wave number k. If V (x) = V (x + d), a Fourier transform of the potential
yields

V (x) =
∑

n

Wn ; Wn = vn exp
(

i2πnx

d

)

; n = 0,±1,±2, . . . (8.33)

Therefore the nonvanishing matrix elements of the perturbation are

〈k′|Wn|k〉 = vn if k′ − k =
2πn

d
, (8.34)

Fig. 8.5. Bands in periodic potentials. The unperturbed parabolic energies are given
as a function of k in (a). The eigenvalue E− is plotted in the interval 0 ≤ |k| ≤ π/d
and E+ for π/d ≤ |k| in (b)
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and the Hamiltonian matrix is of the form3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . . . . . . . . . . . . . . . . .

. . . h̄2

2M

(
k − 4π

d

)2
v1 v2 v3 . . .

. . . v1
h̄2

2M

(
k − 2π

d

)2
v1 v2 . . .

. . . v2 v1
h̄2

2M k2 v1 . . .
. . . v3 v2 v1

h̄2

2M

(
k + 2π

d

)2 . . .
. . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8.35)

We concentrate on the nondiagonal terms v1. However small, they cannot
be treated in perturbation theory, because they connect degenerate states:
the state with k = π/d has the same unperturbed energy as the state with
k′ = k−2π/d = −π/d. Thus, we must first proceed to make a diagonalization
between degenerate (or quasidegenerate) states, i.e., we must put to zero the
determinant

∣
∣
∣
∣
∣

h̄2

2M

(
k − 2π

d

)2 − E v1

v1
h̄2

2M k2 − E

∣
∣
∣
∣
∣
= 0. (8.36)

The eigenvalues

E± =
h̄2

2M

⎛

⎝k2 − k
2π

d
+

2π2

d2
±

√
4π2

d2

(
k − π

d

)2

+
(

2Mv1

h̄2

)2
⎞

⎠ (8.37)

are plotted as a function of k in Fig. 8.5b. There are no states in the interval
(1/2M) (h̄π/d)2 − v1 ≤ E ≤ (1/2M) (h̄π/d)2 + v1. A gap of size 2v1 appears
in the spectrum, pointing to the existence of two separate bands.

In the region |k| ≈ π/d, the remaining nondiagonal terms vn may be
treated as a perturbation, if they are sufficiently small. Unfortunately, they
usually are not so in realistic cases.

8.6* Matrix Elements Involving the Inverse
of the Interparticle Distance

Although the integrals involved may be found in tables, we calculate them
explicitly as a quantum mechanical exercise. The inverse of the distance
between two particles may be expanded as

1
r12

=
1
r2

∑

l

(
r1

r2

)l

Pl(cos α12) , r1 < r2 . (8.38)

3 We disregard v0 since only affects the zero-point energy.
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Here Pl is the Legendre polynomial of order l (Sect. 5.5*), a function of the
angle α12 subtended by the two vectors r1, r2. It may be expressed by coupling
two spherical harmonics to zero angular momentum (5.54).

Next, we evaluate matrix elements such as
〈

n1l1m1n2l2m2

∣
∣
∣
∣

1
r12

∣
∣
∣
∣n1l1m1n2l2m2

〉

(8.39)

=
∫ ∞

0

|Rn1l1(1)|2r2
1dr1

∫ ∞

0

|Rn2l2(2)|2r2
2dr2

×
∫ 4π

0

|Yl1m1(1)|2dΩ1

∫ 4π

0

|Yl2m2(2)|2dΩ2/r12

=
∑

l

4π

2l + 1

∫ ∞

0

|Rn1l1(1)|2r2
1dr1

×
[

1
rl+1
1

∫ r1

0

|Rn2l2(2)|2rl+2
2 dr2 + rl

1

∫ ∞

r1

|Rn2l2(2)|2r1−l
2 dr2

]

×〈Yl1m1 |Yl0|Yl1m1〉〈Yl2m2 |Yl0|Yl2m2〉 .

The angular integrals restrict the values of l in the summation (see Problem 5
in Chap. 5). If at least one of the particles is in an s state, only one l term
survives
〈

n100n2l2m2

∣
∣
∣
∣

1
r12

∣
∣
∣
∣n100n2l2m2

〉

= N2
n10N

2
n2l2

∫ ∞

0

|Rn10(1)|2r2
1dr1 (8.40)

×
[

1
r1

∫ r1

0

|Rn2l2(2)|2r2
2dr2 +

∫ ∞

r1

|Rn2l2(2)|2r2dr2

]

,

if both particles are in s states one obtains the value (8.14) for n1 = n2 = 1.

8.7† Quantization with Constraints

Little attention, if any, is paid in quantum textbooks to the problem of quan-
tization with constraints, an area where great progress has been made over
the last 30 years [55]. This subject is not only of paramount importance in
gauge field theories, but it also has applications in quantum mechanics, as
in the description of many-body systems in moving frames of reference [56].
Moreover, the problem is conceptually significant in terms of properties of
Hilbert spaces.

In this presentation we use two-dimensional rotations to exemplify a
description made in terms of an overcomplete set of degrees of freedom. This
overcompletness requires the existence of constraints.
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8.7.1† Constraints

We shall call intrinsic the coordinates of a system that refer to a rotating
frame of reference. The motion of the moving frame relative to the laboratory
is described by means of collective coordinates. Therefore, in this problem:

• There is an overcomplete set of angular variables (intrinsic + collective)
describing transformations (rotations) of the system.

• The rotations of the system are generated (5.10) by the intrinsic angular
momentum L̂. There is also a collective angular momentum Î, the gener-
ator of rotations of the moving frame.

• The classical set of equations defining the momenta in terms of partial
derivatives of the Lagrange function L cannot be solved in this case. This
failure is due to the fact that this function does not contain information
about the frame itself. For instance, in the case of one particle allowed
to move on a circumference of radius r0, the Lagrange function may be
expressed in terms of the angular velocities α̇ and φ̇ (Fig. 8.6):

L =
J
2

(
α̇ + φ̇

)2

. (8.41)

Here α = tan−1(y/x) and J = Mr2
0 is the moment of inertia. From the

equations

L =
∂L
∂α̇

and I =
∂L
∂φ̇

,

one obtains the orbital angular momentum L and the constraint f = 0:

L = J
(
α̇ + φ̇

)
, (8.42)

f ≡ L − I = 0 . (8.43)

Fig. 8.6. Intrinsic (x, y) and laboratory (xlab, ylab) coordinates of a generic point
P . The two sets of coordinates are related by a rotation
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Equation (8.43) expresses the obvious fact that if the particle is rotated
through an angle relative to the moving frame, the corresponding descrip-
tion should be completely equivalent to the one obtained by rotating the
moving frame in the opposite direction. This constitutes a mechanical ana-
log of gauge invariance.

• Our aim is to quantize this classical model. The following commutation
relations hold:

[α̂, L̂] = [φ̂, Î] = ih̄ . (8.44)

Since we have artificially enlarged the vector space, we must expect the
presence of unphysical states and operators, in addition to physical ones.
The constraint (8.43) is equivalent to the quantum mechanical conditions:

f̂ϕph = 0 , f̂ϕunph �= 0 ,

[f̂ , Ôph] = 0 , [f̂ , Ôunph] �= 0 , (8.45)

where the labels ph and unph indicate physical and unphysical states or
operators. Except in simple cases, this separation is by no means a trivial
operation.

• Since the problem displays cylindrical symmetry, there is no restoring force
in the intrinsic angular direction and perturbation theory cannot be ap-
plied.

8.7.2† Outline of the BRST Solution

The most natural thing to do would be to use the constraint in order to
reduce the number of variables to the initial number. However, progress has
been made in the opposite direction, i.e., by enlarging the number of variables
and introducing a more powerful symmetry.

The collective subspace is given by the eigenfunctions of the orbital angular
momentum in two dimensions (5.35):

ϕm(φ) =
1√
2π

exp(imφ) . (8.46)

The collective coordinate φ, which was introduced in Sect. 8.7.1† as an artifact
associated with the existence of the moving frame, has been raised to the
status of a real degree of freedom.

Since this problem has only one real degree of freedom, and since this
role is taken by the collective angle, all others are unphysical. There must
therefore be a trade-off: the intrinsic coordinate α has to be transferred to the
unphysical subspace. In the Becchi–Rouet–Stora–Tyutin (BRST) procedure,
this subspace is also integrated with auxiliary fields [55]. All effects of the
unphysical degrees of freedom on any physical observable cancel out. More-
over, the degree of freedom α acquires a finite frequency through its mixture
with the other spurious fields, and perturbation theory becomes feasible.
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Unfortunately, we cannot go beyond this point here. An elementary
presentation of the quantum mechanical BRST method is given in the second
of references [56].

Problems

Problem 1.

1. Obtain the expression for the second-order correction to the energy in
perturbation theory and show that this correction is always negative for
the ground state.

2. Calculate the second-order correction to the eigenstate.

Problem 2. Assume that the zero-order Hamiltonian and the perturbation
are given by the matrices:

Ĥ0 =

⎛

⎝
5 0 0
0 2 0
0 0 −1

⎞

⎠ , V̂ =

⎛

⎝
0 c 0
c 0 0
0 0 2c

⎞

⎠ .

1. Calculate the first-order perturbation corrections to the energies.
2. Calculate the second-order perturbation corrections to the energies.
3. Obtain the first-order corrections to the vector states.
4. Obtain the second-order corrections to the vector states.
5. Expand the exact energies in powers of c and compare the results with

those obtained in perturbation theory:

(1 + x)1/2 = 1 +
1
2
x − 1

8
x2 +

1
16

x3 − · · · .

Problem 3.

1. Calculate the first- and second-order corrections to the ground state
energy of a linear harmonic oscillator if a perturbation V (x) = kx is
added, and compare with the exact value.

2. Do the same if the perturbation is V (x) = bx2/2.

Problem 4.

1. Calculate the lowest relativistic correction to the ground state energy
of a linear harmonic oscillator. Hint: Expand the relativistic energy√

M2c4 + c2p2 in powers of p/Mc.
2. Obtain the order of magnitude of the ratio between the relativistic correc-

tion and the nonrelativistic value of the ground state energy if M = 2Mp

and h̄ω = 4.0 10−3 eV (a molecular case).

Problem 5. Obtain the vector state up to second order in the Brillouin–
Wigner perturbation theory. Compare with the results (8.8) and Problem 1.
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Problem 6. Show that the Brillouin–Wigner perturbation theory already
yields the exact results (3.18) in second order, for a Hamiltonian of the form
(3.17).
Hint: Use

Ea = 〈a|H|a〉 +
|〈a|H|b〉|2

Ea − 〈b|H|b〉

and include the diagonal term 〈p|V |p〉 in the unperturbed energy E
(0)
p .

Problem 7. Minimize the ground state energy by taking the mass as the
variation in the lowest harmonic oscillator state, and using the harmonic
oscillator potential plus the relativistic kinetic energy as Hamiltonian. Include
as many powers of p2/M2c2 in the latter as are necessary in order to obtain
an improvement over the perturbation results of Problem 4:

1. Write the expectation value of the Hamiltonian as a function of M∗/M .
2. Write the minimization condition.
3. Solve this equation in powers of h̄ω/Mc2.
4. Expand the energies in powers of h̄ω/Mc2.

Problem 8. Calculate the perturbation correction for the two 1s2p electron
states in the He atom. Explain why perturbation theory may be used in spite
of the existing degeneracies.

Problem 9.

1. In units of EH, calculate the first-order perturbative correction for the
ground state energy of the He atom, the ionized Li atom, and the doubly
ionized Be atom.

2. Obtain the variational energies using the effective number of electrons Z∗

as the variational parameter.
3. Compare with the experimental values: −79 eV (He), −197 eV (Li+),

−370 eV (Be2+).

Problem 10. Substitute R → R0 + y in the rotational Hamiltonian (8.23)
and expand the Hamiltonian in powers of y up to quadratic order. Calculate
the correction for the energy in perturbation theory, using the product of the
rotational and vibrational bases as an unperturbed basis:

(1 + a)−2 = 1 − 2a + 3a2 + · · · .

Problem 11. Two He atoms are attracted by a Van der Waals potential
V (R) = 4ε

[
(σ/R)12 − (σ/R)6

]
, with ε = 8.75 × 10−4 eV and σ = 2.56 Å.

Find:

1. The energy ε0 and separation distance R0 at equilibrium.
2. The characteristic vibrational energy h̄ω.
3. The characteristic rotational energy h̄2/2µR2

0.
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Problem 12. Consider the matrix

⎛

⎝
20 1 0
1 21 2
0 2 30

⎞

⎠.

1. Construct a new matrix in the basis obtained by diagonalization between
the two almost degenerate states.

2. Diagonalize this new matrix within perturbation theory. Obtain eigen-
vectors (in terms of the initial basic set of states) and eigenvalues.

3. Compare these results with those of an exact diagonalization of the
original matrix.

Problem 13. A hydrogen atom is subject to a constant electric field in the
z-direction (Stark effect).

1. Construct the matrix of the perturbation for the n = 2 state and diago-
nalize this matrix.

2. Do the same for the N = 2 states of the harmonic oscillator potential.

Problem 14. Consider two fermions moving in a j-shell.

1. Calculate the size of the Hamiltonian matrix if we assume two-particle
states of the form

φmm′ =
1√
2

[
ϕjm(1)ϕjm′(2) − ϕjm(2)ϕjm′(1)

]
.

2. Approximate the matrix elements of the Hamiltonian by the expres-
sion 〈mm′|H|m′′m′′′〉 = −g δm(−m′)δm′′(−m′′′). Calculate the size of the
(reduced) matrix to be diagonalized.

3. Find the eigenvectors and eigenvalues. Hint: Try a solution of the form Ψ =∑
m cmφm(−m): (a) with amplitudes cm = constant, (b) with amplitudes

such that
∑

m cm = 0.

The particles in the resulting extra-bound state [Ea = −g(j + 1/2)] are said
to form Cooper pairs. This extra binding is the basis for the explanation of
the phenomenon of superconductivity [57]. Perturbation theory yields small
corrections for this isolated state if j >> 1 and thus |∆/Ea| << 1, where ∆
measures the difference between realistic matrix elements and their average
value −g. This procedure cannot be applied to the remaining (degenerate)
states.
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Time-Dependence in Quantum Mechanics

9.1 The Time Principle

Up to now we have only considered static situations (except for the reduction
of the state vector when a measurement takes place). We will now discuss time-
dependence of the state vector, which requires a new principle. The resultant
time-dependent Schrödinger equation is solved exactly for simple (spin) cases
and in perturbation theory. The notion of transition probability yields physical
meaning to nondiagonal matrix elements and allows to present the energy–
time uncertainty relation (Sect. 9.4).

In Chap. 1, we stressed the fact that the main reason for the development
of quantum mechanics was the instability of the hydrogen atom under classical
mechanics and electromagnetism. Thus, an exposition of quantum mechanics
cannot be deemed complete without showing that this central problem has
been solved. This task requires an introduction to quantum electrodynamics
(Sect. 9.5†). The concepts of induced and spontaneous emission, laser optics,
selection rules and mean lifetime appear along the exposition.

Assume that the system is represented at time t by the time-dependent
state vector Ψ(t). At time t′ > t, the system will evolve in accordance with

Ψ(t′) = U(t′, t)Ψ(t) , (9.1)

where U(t′, t) is called the evolution operator. This operator satisfies the
conditions of being unitary and

lim
t′→t

U(t′, t) = 1 . (9.2)

Therefore, if t′ = t + ∆t,

Ψ(t + ∆t) = U(t + ∆t, t)Ψ(t)

=
[

1 +
∂

∂t′
U(t′, t)

∣
∣
∣
∣
t′=t

∆t + · · ·
]

Ψ(t) ,
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∂

∂t
Ψ(t) =

∂

∂t′
U(t′, t)|t′=tΨ(t) . (9.3)

A new quantum principle must be added to those stated in Chaps. 2 and 7.

Principle 5. The operator yielding the change of the state vector over time
is proportional to the Hamiltonian

∂

∂t′
U(t′, t)|t′=t = − i

h̄
Ĥ(t) . (9.4)

Note the following consequences:

• The time evolution of the system is determined by the first-order linear
equation

ih̄
∂

∂t
Ψ(t) = ĤΨ(t) . (9.5)

This is called the time-dependent Schrödinger equation. It is valid for a
general state vector, and it is independent of any particular realization of
quantum mechanics.

• The evolution is deterministic, since the state vector is completely
defined once the initial state is fixed (quantum indeterminacy pertains to
measurement processes).

• The evolution is unitary (i.e., the norm of the states is preserved).
• The evolution of the system is reversible.
• If [Ĥ(τ1), Ĥ(τ2)] = 0, the evolution operator is

U(t′, t) = exp

[

− i
h̄

∫ t′

t

Ĥ(τ)dτ

]

. (9.6)

In the case of a time-independent Hamiltonian satisfying the eigenvalue
equation Ĥ ϕi = Eiϕi, the solution to the differential equation (9.5) may be
found using the method for separation of variables. Hence,

ϕi(t) = f(t) ϕi , ih̄
df

dt
= Eif −→ f = exp(−iEit/h̄) (9.7)

and thus,
ϕi(t) = ϕi exp(−iEit/h̄) . (9.8)

We expect the solutions of a time-independent Hamiltonian to be independent
of time. However, as usual, this requirement can only be enforced up to a
phase. This is consistent with the result (9.8).

The constant of proportionality −i/h̄ chosen in (9.4) insures that the time-
dependent wave function for a free particle with energy E = h̄ω is a plane
wave, as expected [see (4.30)].

ϕ±k(x, t) = A exp
[
i(±kx − ωt)

]
. (9.9)
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If the Hamiltonian is time-independent and the state is represented at time
t = 0 by the linear combination (2.6) of its eigenstates,

Ψ(t = 0) =
∑

i

ciϕi , (9.10)

(9.8) implies that at time t the state has evolved into1

Ψ(t) =
∑

i

ciϕi exp(−iEit/h̄) . (9.11)

The relation [Q̂, Ĥ] = 0 implies a conservation law. If the system is initially
in an eigenstate of the operator Q̂ it remains so during its time evolution.

9.2 Time-Dependence of Spin States

9.2.1 Larmor Precession

To begin with we give a simple but nontrivial example of a solution to (9.5).
We use as Hamiltonian the interaction (5.16), with the magnetic field directed
along the z-axis. The evolution operator (9.6) is given by

Uz(t, 0) = exp[−iĤzt/h̄] =
(

exp[iωLt/2] 0
0 exp[−iωLt/2]

)

Ĥz = −ωL Ŝz , (9.12)

where ωL ≡ µν gs B/h̄ is called the Larmor frequency [see (5.25)]. We have
used (5.22) in the expansion of the exponential in (9.12).

The time evolution is given by

Ψ(t) =
(

c↑(t)
c↓(t)

)

= Uz(t, 0)
(

c↑(0)
c↓(0)

)

. (9.13)

If the state of the system is an eigenstate of the operator Ŝz at t = 0, it
remains so forever and (9.13) is just a particular case of (9.8). However, if at
t = 0 the spin points in the positive x-direction [initial values: c↑ = c↓ = 1/

√
2,

see (3.21)], then

Ψ(t) =
1√
2

(
1
1

)

cos
ωLt

2
+ i

1√
2

(
1
−1

)

sin
ωLt

2
. (9.14)

The probability of finding the system with spin aligned with the x-axis (or in
the opposite direction) is cos2(ωLt/2) [or sin2(ωLt/2)].
1 This evolution is valid only for the Hamiltonian basis. Therefore, the expression

Ψ(t) =
∑

i
ciφi exp(−iqit/h̄) makes no sense if φi, qi are not eigenstates and

eigenvalues of the Hamiltonian.
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The expectation values of the spin components are

〈Ψ|Sx|Ψ〉 =
h̄

2
cos(ωLt) , 〈Ψ|Sy|Ψ〉 = − h̄

2
sin(ωLt) , 〈Ψ|Sz|Ψ〉 = 0 .

(9.15)
The spin precesses around the z-axis (the magnetic field axis), with the Larmor
frequency ωL in the negative sense (x → −y). It never aligns itself with the
z-axis. Unlike the case in which a definite projection of the angular momentum
along the z-axis is well defined (see the discussion of Fig. 5.1 in Sect. 5.1.1),
we are describing a true precession here, which is obtained at the expense of
the determination of Sz.

If t  1/ωL, we speak of a transition from the initial state ϕSx=h̄/2 to the
final state ϕSx=−h̄/2 with the probability ω2

Lt2/4. In this case, the probability
per unit time is linear in time.

If the z-direction is substituted by the x-direction in the Hamiltonian
(9.12) we obtain the transformation

Ux(t, 0) =
(

cos ωLt/2 i sin ωLt/2
i sin ωLt/2 cos ωLt/2

)

. (9.16)

9.2.2 Magnetic Resonance

We now add a periodic field along the x- and y-directions, of magnitude B′

and frequency ω, to the constant magnetic field of magnitude B pointing along
the z-axis. The Hamiltonian reads

Ĥ = −µsBŜz − µsB
′
(
cos ωtŜx − sin ωtŜy

)

= −1
2
µsh̄

(
B B′ exp(iωt)

B′ exp(−iωt) −B

)

. (9.17)

Since this Hamiltonian does not commute with itself at different times, we
cannot use the evolution operator (9.6). We must solve instead the differential
equation (9.5) for the amplitudes ci(t). Although the solution may be worked
out analytically for any value of ω, it turns out that the maximum effect
is obtained if this frequency equals the Larmor frequency ωL. We make this
assumption in the derivation below. We also set ω′ ≡ µsB

′.
We try a solution of the form (9.13), but with time-dependent amplitudes.
(

b↑(t)
b↓(t)

)

=
(

exp[iωt/2] c↑(t)
exp[−iωt/2] c↓(t)

)

;
(

ḃ↑
ḃ↓

)

=
i
2
ω′
(

b↓
b↑

)

. (9.18)

The solution to (9.18) is

(
b↑
b↓

)

=

⎛

⎜
⎝

cos
ω′t

2
sin

ω′t

2

i sin
ω′t

2
−i cos

ω′t

2

⎞

⎟
⎠

(
b↑(0)
b↓(0)

)

. (9.19)
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Fig. 9.1. Probability of a spin flip according to (9.21). Values of ω/ωL are rep-
resented on the horizontal axis, while probabilities are indicated on the vertical
axis. The resonant behavior for ω = ωL is apparent. The parameters are: tωL =
4, ω′/ωL = 1/10 (a); tωL = 4, ω′/ωL = 1/2 (b); and tωL = 2, ω′/ωL = 1/2 (c).
The comparison between the last two graphs anticipates the complementary relation
between time and energy [see (9.34) and Sect. 9.4.3]

This result ensures the occurrence of the spin flip: a spin pointing up (down)
will eventually point down (up), i.e., it will be flipped. The probabilities that
the initial spin is maintained or flipped are (Fig. 9.1)

P↑→↑ = P↓→↓ = cos2
(

1
2
ω′t

)

,

P↑→↓ = P↓→↑ = sin2

(
1
2
ω′t

)

. (9.20)

For an arbitrary relation between ω and ωL, the probability of a spin flip is
given by

P↑→↓(t) =
(ω′)2

(ω − ωL)2 + (ω′)2
sin2

[
1
2
t
√

(ω − ωL)2 + (ω′)2
]

. (9.21)
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This equation expresses a typical resonance phenomenon (hence the name
magnetic resonance): if ω ≈ ωL, a very weak field B′ produces large effects
(Fig. 9.1). One cannot treat the interaction with the sinusoidal field as a small
perturbation. This would require |ω′|  |ω − ωL|, a condition violated in the
neighborhood of resonance.

Magnetic resonance is an essential part of processes involving the
alignment of spins. It has applications in many branches of physics, such
as measuring magnetic moments of particles, including elementary particles,
and determining properties of condensed matter. It is also an important tool
in quantum computing, medical diagnosis, etc.

9.3 Sudden Change in the Hamiltonian

We consider a time-dependent Hamiltonian Ĥ such that Ĥ = Ĥ0 for t < 0
and Ĥ = K̂0 for t > 0, where Ĥ0 and K̂0 are time-independent Hamiltonians.
We know how to solve the problem for these two Hamiltonians:

Ĥ0ϕi = Eiϕi , K̂0φi = εiφi . (9.22)

The system is initially in the state ϕi exp(−iEit/h̄). For t > 0, the solution is
given by the superposition

Ψ =
∑

k

ckφk exp(−iεkt/h̄) , (9.23)

where the amplitudes ck are time-independent, as is K̂0.
The solution must be continuous in time in order to satisfy a differential

equation. Therefore, at t = 0,

ϕi =
∑

k

ckφk −→ ck = 〈φk|ϕi〉 . (9.24)

The transition probability is given by

Pϕi→φk
= |ck|2 . (9.25)

9.4 Time-Dependent Perturbation Theory

If the Hamiltonian includes both a time-independent term Ĥ0 and a time-
dependent contribution V̂ (t), one may still use the expansion (9.11), but with
time-dependent amplitudes [ci = ci(t)]. In that case, the Schrödinger equation
for the Hamiltonian Ĥ0 + V̂ is equivalent to the set of coupled equations

ih̄
∑

i

ċiϕi exp(−iEit/h̄) = V̂
∑

i

ciϕi exp(−iEit/h̄) . (9.26)
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The scalar product with ϕk yields

ih̄ċk =
∑

i

ci〈k|V |i〉 exp(iωkit) ; ωki =
Ek − Ei

h̄
, (9.27)

where ωki is the Bohr frequency. This set of coupled equations must be solved
together with boundary conditions, such as the value of the amplitudes ci at
t = 0. The formulation of the time-dependent problem in terms of the coupled
amplitudes ci(t) is attributed to Dirac.

9.4.1 Transition Amplitudes and Probabilities

The set of coupled equations (9.27) is not easier to solve than (9.5). Therefore,
one must resort to a perturbation treatment. As in Section 8.1, we multiply
the perturbation V̂ (t) by the unphysical parameter λ (0 ≤ λ ≤ 1) and expand
the amplitudes

ck(t) = c
(0)
k + λc

(1)
k (t) + λ2c

(2)
k (t) + · · · . (9.28)

We impose the initial condition that the system be in the state ϕ(0)
i (t) at

t = 0. This condition is enforced through the assignment c
(0)
k = δki, which

accounts for terms independent of λ in (9.27).
The perturbation is applied at t = 0. Our aim is to calculate the probability

of finding the system in another unperturbed eigenstate ϕ(0)
k at time t. The

terms linear in λ yield

ċ
(1)
k = − i

h̄
〈k|V |i〉 exp(iωkit) . (9.29)

Therefore, the transition amplitudes are given by

c
(1)
k (t) = − i

h̄

∫ t

0

〈k|V |i〉 exp(iωkiτ)dτ . (9.30)

The transition probability between the initial state i and the final state
k, induced by the Hamiltonian V̂ (t), is given in first-order of perturbation
theory as

P
(1)
i→k(t) =

∣
∣
∣c

(1)
k

∣
∣
∣
2

. (9.31)

9.4.2 Constant-in-Time Perturbation

Consider matrix elements of the perturbation 〈k|V |i〉 which do not depend
on time in the interval (0, t), and otherwise vanish. The first-order amplitude
and transition probabilities (9.30) and (9.31) are given by
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c
(1)
k = −〈k|V |i〉

h̄ωki
[exp(iωkit) − 1] , (9.32)

P
(1)
i→k =

∣
∣
∣
∣
〈k|V |i〉
h̄ωki

∣
∣
∣
∣

2

4 sin2 (ωkit/2) . (9.33)

This result is common to many first-order transition processes. We therefore
discuss it in some detail:

• If the final states ϕk belong to a continuous set, the transition probability is
proportional to the function f(ω) = (4/ω2) sin2 (ωt/2) plotted in Fig. 9.2.
The largest peak at ω = 0 has a height proportional to t2, while the next
highest, at ω ≈ 3π/t, is smaller by a factor of 4/9π2 ≈ 1/20. Therefore,
practically all transitions take place for frequencies lying within the cen-
tral peak, which is characteristic of the phenomenon of resonance. The
secondary peaks are associated with diffraction processes.

• The total probability is obtained by integrating over the frequencies.
Assuming that the matrix element is not changed within the frequency
interval of the main peak, and approximating the surface of the latter by
the area of an isosceles triangle of height t2 and half-base 2π/t, we con-
clude that the total probability increases linearly with time and that the
probability per unit interval of time is constant.

• The energy of an initially excited atomic state may be obtained from
the frequency of the photon resulting from de-excitation of this state
(Sect. 9.5.4†). Therefore, the spread shown in Fig. 9.2 changes the notion
of the eigenvalue in the case of an unstable state. Instead of a sharp

Fig. 9.2. The function f(ω) as a function of the frequency ω
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energy, the existence of the spread is associated with an indeterminacy
in the energy on the order of

∆E ≥ h̄
2π

t
. (9.34)

This inequality is a manifestation of the uncertainty principle as applied
to energy and time variables. There is a similar uncertainty if the energy
of the excited states is obtained via a process of absorption of electromag-
netic radiation. This time-energy relation was anticipated in the caption
of Fig. 9.1.

• Nondiagonal matrix elements 〈k|V |i〉 acquire physical meaning, since they
can be measured through transition rates.

• If there is a continuum of final states, we are interested in summing up
the probabilities over the set K of these final states (k ∈ K):

P
(1)
i→K =

∫ Ei+∆E/2

Ei−∆E/2

P
(1)
i→kρ(Ek)dEk , (9.35)

where ρ(Ek) is the density of the final states.2 Assuming that both
|〈k|V |i〉|2 and ρ(Ek) remain constant during the interval ∆E, and that
most of the transitions take place within this interval, then

P
(1)
i→K ≈ 4

h̄2 |〈k|V |i〉|2ρ(Ek)
∫ ∞

−∞
dEk

sin2 ωkit/2
ω2

ki

=
2πt

h̄
|〈k|V |i〉|2 ρ(Ek) .

(9.36)
The expression for the transition per unit time is called the Fermi golden
rule:

dP
(1)
i→K

dt
=

2π

h̄
|〈k|V |i〉|2 ρ(Ek) . (9.37)

9.4.3 Mean Lifetime and Energy–Time Uncertainty Relation

So far the transition probability dP/dt per unit time has been calculated
for a single system. If there are N similar systems present (for instance, N
atoms), one cannot ascertain when a particular system will decay. If dP/dt is
time–independent (as in (9.37)), the total rate of change is given by

dN
dt

= −N dP

dt
. (9.38)

Therefore,

N = N0 exp
(

−dP

dt
t

)

= N0 exp(−t/τ) , τ =
(

dP

dt

)−1

. (9.39)

2 The density of states is given in (7.21) for the free particle case. A similar proce-
dure is carried out for photons in (9.53).
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The constant τ is called the mean lifetime. It is the time required for the
reduction of the size of the population by a factor of 1/e and thus it is a
measure of the indeterminacy ∆t on the time at which the decay takes place.
In analogy with (2.37), the energy–time uncertainty relation adopts the form

∆E ∆t ≥ h̄

2
. (9.40)

A short mean lifetime implies a broad peak, and vice versa.

9.5† Quantum Electrodynamics for Newcomers

In Chap. 1, we stated that the most important manifestation of the crisis in
physics that took place at the beginning of the twentieth century, was the
(classical) instability of the motion of an electron circling around the nucleus.
In order to show that quantum mechanics does indeed solve this problem
we must use that beautiful extension of quantum mechanics called quantum
electrodynamics. In the following we present a very brief introduction to QED.

We will first consider the electromagnetic field in the absence of charges
(light waves). A quadratic expression for energy will be obtained in terms of
canonical variables. The theory will be quantized by replacing such variables
with operators satisfying relation (2.16) (or an equivalent). In the next step, we
will consider the interaction between particles and the electromagnetic field.
Finally, we will solve the ensuing time-dependent problem in perturbation
theory.

9.5.1† Classical Description of the Radiation Field

In the absence of charges, the classical electromagnetic vector potential A(r, t)
satisfies the equation

∇2A =
1
c2

∂2A

∂t2
. (9.41)

The vector A may be written as the sum of a transverse and a longitudinal
component. The last one can be included within the particle Hamiltonian,
since it is responsible for the Coulomb interaction and does not cause the
radiation field. The transverse component At(r, t) satisfies the equation

divAt = 0 . (9.42)

It may be expanded in terms of a complete, orthonormal set Aλ(r) of functions
of the coordinates:

At =
∑

λ

cλ(t)Aλ , (9.43)

∫

L3
A∗

λAλ′dV = δλ,λ′ , (9.44)
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where we assume a large volume L3 enclosing the field. Inserting (9.43) in
(9.41) and separating variables yields the two equations

d2

dt2
cλ + ω2

λcλ = 0 , (9.45)

∇2Aλ +
ω2

λ

c2
Aλ = 0 , (9.46)

where ωλ is introduced as a separation constant. The solution to the oscillator
equation (9.45) is

cλ = ηλ exp(−iωλt) , (9.47)

with ηλ independent of time. A solution to (9.46) is given by the three-
dimensional generalization (7.17) of (4.41). Periodic boundary conditions are
assumed, so that

Aλ =
1

L3/2
vλ exp(ikλ · r) , kλi = 2πnλi/L . (9.48)

There are two independent directions of polarization vλ, since (9.42) implies
vλ · kλ = 0.

We construct the electric field

E = − ∂

∂t
At = i

∑

λ

ωλcλAλ . (9.49)

The total field energy is expressed as

U =
1
2

∫

L3

(
ε0|E|2 + µ0|B|2

)
dV =

∫

L3
ε0|E|2dV

= ε0
∑

λ

ω2
λc∗λcλ

=
∑

λ

h̄ωλa∗
λaλ , (9.50)

where the substitution

cλ = c

√
h̄

ε0ωλ
aλ

has been made. Note that since the vector field has dimension km s−1 C−1,
the amplitudes cλ have dimension km5/2 s−1 C−1 and the amplitudes aλ have
dimension 1.

9.5.2† Quantization of the Radiation Field

We have obtained an expression for the energy of the radiation field that is
quadratic in the amplitudes a∗

λ, aλ. Quantization is achieved by replacing these
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amplitudes by the creation and annihilation operators a+
λ , aλ, satisfying the

commutation relations (3.31) and (7.58). We thus obtain the Hamiltonian3

Ĥ =
∑

λ

h̄ωλ a+
λ aλ . (9.51)

This Hamiltonian implies that:

• The radiation field is made up of an infinite number of oscillators. The
state of the radiation field is described by all the occupation numbers nλ.

• The oscillators are of the simple, boson, harmonic type introduced in (3.29)
and used in Sects. 7.4.3† and 7.8†, if the quantum radiation field is in a
stationary state without residual interactions.

• In agreement with Einstein’s 1905 hypothesis, each oscillator has an
energy which is a multiple of h̄ωλ. The energy of the field is the sum
of the energies of each oscillator.

• Since the radiation field is a function defined at all points of space and time,
the number of canonical variables needed for its description is necessarily
infinite. However, by enclosing the field within the volume L3, we have
succeeded in transforming this infinity into a denumerable infinity.

• In the absence of any interaction between particles and radiation field,
vector states may be written as products of the two Hilbert subspaces,
and the energy Eb,n1,n2,... is the sum of particle and radiation terms
[see (7.1)]:

Ψb,n1,n2,... = ϕb(particles) × Πλ
1√
nλ!

(a+
λ )nλϕ0 ,

Eb,n1,n2,... = Eb +
∑

λ

h̄ωλnλ . (9.52)

• The number of states up to a certain energy n(Eλ) and per unit interval
of energy ρ(Eλ) for each independent direction of polarization are4

n(Eλ) =
L3k3

λ

6π2
=

L3E3
λ

6π2h̄3c3
, ρ(Eλ) =

∂n

∂Eλ
=

L3ω2
λ

2π2h̄c3
. (9.53)

• The Hermitian, quantized, vector potential reads

Ât =
1
2

∑

λ

√
h̄

ε0L3ωλ

[
aλvλ exp(ikλ · r) + a+

λ vλ exp(−ikλ · r)
]
. (9.54)

3 We ignore the ground state energy of the radiation field.
4 These expressions have been derived using a similar procedure to the one used to

obtain (7.21). A factor of 2, which was included in (7.21) due to spin, is not needed
in (9.53). It reappears in (9.59) below, where the two directions of polarization
are taken into account.
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• We may be only interested in the polarization states of the photon,
ignoring wavelength and direction of motion. A complete description of
this system requires only two basis states, as in the case of spin. The
analogous to the Stern–Gerlach device is a calcite crystal: a beam of mono-
chromatic light passing through this crystal will produce two parallel emer-
gent beams with the same frequency, and polarization axis perpendicular
to each other. Most of the thought quantum experiment have become real
laboratory experiments through the use of polarized photons.

9.5.3† Interaction of Light with Particles

In the presence of an electromagnetic field, the momentum p̂ of the particles5

is replaced in the Hamiltonian by the effective momentum [46]

p̂ −→ p̂ − eÂt , (9.55)

1
2M

p̂2 −→ 1
2M

p̂2 + V̂ + · · · , V̂ =

√
α4πε0h̄c

M2
Ât · p̂ . (9.56)

The various ensuing processes may be classified according to the associated
power of the fine structure constant α. The smallness of α (Table 14.1) ensures
the convergence of perturbation theory. The linear, lowest order processes re-
quire only the perturbation term V̂ . This causes transitions in the unperturbed
system, particle + radiation, by changing the state of the particle and simul-
taneously increasing or decreasing the number of field quanta by one unit
(emission or absorption processes, respectively).

We apply the perturbation theory developed in Sect. 9.4.2. Since the radi-
ation field has a continuous spectrum, a transition probability per unit time
(9.37) is obtained. Energy is conserved for the total system within the time–
energy uncertainty relation.

According to (9.54) and (9.56), the matrix elements of the perturbation
read

〈b(nλ + 1)|V |anλ〉 = Kλ

√
nλ + 1 ,

〈b(nλ − 1)|V |anλ〉 = Kλ
√

nλ , (9.57)

where Kλ is given by

Kλ =
h̄

M

√
απc

L3ωλ
〈b |(vλ · p) exp(±ikλ · r)| a〉

≈ h̄

M

√
απc

L3ωλ
〈b|vλ · p|a〉

= ih̄ωλ

√
απc

L3ωλ
〈b|vλ · r|a〉 . (9.58)

5 [p̂, Ât] = 0 because of (9.42).
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We have neglected the exponential within the matrix element, on the basis of
the estimate: 〈kλr〉 ≈ ωλa0/c = O(10−4), for h̄ωλ ≈ 1 eV. The third line is
derived using the relation p̂ = (iM/h̄)[Ĥ, x̂] (Problem 9 of Chap. 2).

We next work out the product appearing in the golden rule (9.37):

2π

h̄
|Kλ|2 ρ(Eλ) =

α|ωλ|3
c2

|〈b|vλ · r|a〉|2

−→ 2α|ωλ|3
3c2

|〈b|r|a〉|2 , (9.59)

where we have summed over the two final polarization directions and averaged
over them.

9.5.4† Emission and Absorption of Radiation

The transition probabilities per unit time are given by

dP
(1)
anλ→b(nλ−1)

dt
=

2α|ωλ|3
3c2

|〈b|r|a〉|2 n̄λ , (9.60)

dP
(1)
anλ→b(nλ+1)

dt
=

2α|ωλ|3
3c2

|〈b|r|a〉|2 (n̄λ + 1) , (9.61)

for absorption and emission processes, respectively (Fig. 9.3). Here n̄λ is the
average number of photons of a given frequency.

Fundamental consequences can be extracted from these two equations:

• The probability of absorbing a photon is proportional to the intensity of
the radiation field present before the transition. This intensity is repre-
sented by n̄λ. This is to be expected. However, the probability of emission
consists of two terms: the first one also depends on the intensity of the
radiation field (induced emission); the second term, independent of the
field intensity, allows the atom to decay from an excited state in vacuo
(spontaneous emission).

Fig. 9.3. The absorption process (9.60) (left) and the emission process (9.61) (right)
of electromagnetic radiation. Labels a, b denote particle states
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• The mean lifetime of the excited state ϕ210 in the hydrogen atom
(h̄ω = 10.2 eV) may be obtained6 from (9.61) and (9.39). The result
yields τ = 0.34 × 10−9 s. Does this represent a short or a long time? In
fact it is a long time, since this mean lifetime has to be compared with
the period of the emitted radiation T = 2π/ω = 0.41 × 10−15 s. The
mean lifetime is associated with a spread in energy of 1.23 × 10−5 eV,
which is much smaller than the excitation energy. We can now see
how effectively the great crisis of early twentieth century physics was
resolved.

• The ratio (n̄λ+1)/n̄λ is needed to preserve the correct thermal equilibrium
of the radiation with a gas: in a gas at temperature T , the number of
atoms in the states a, b is given by exp(−Ea/kBT ) and exp(−Eb/kBT ),
respectively. The condition for equilibrium is

Pemission exp(−Ea/kBT ) = Pabsorption exp(−Eb/kBT ) , (9.62)

which yields
n̄λ = 1/ [exp(h̄ωab/kBT ) − 1] . (9.63)

From this deduction of Planck’s law, Einstein showed the need for spon-
taneous and induced emission in quantum theory [58].

9.5.5† Selection Rules

We now focus our attention on the particle matrix elements. The transition
probabilities are also proportional to the squared modulus of the matrix ele-
ments |〈b|r|a〉|2. Therefore, transition rates give information about the value
of nondiagonal matrix elements. (Since Chap. 2, we know that diagonal ma-
trix elements represent averages obtained in measurements of the eigenvalues
of physical observables.)

Let lb, πb (la, πa) be the orbital angular momentum and parity quan-
tum numbers of the final (initial) state. Conservation of angular momentum
requires the orbital angular momentum of the final state to equal the vector
sum of the initial angular momentum and that of the radiation (see Sect. 5.3).
The latter manifests itself through the operator r̂ in (9.61), which can be
expressed as a sum of terms proportional to the spherical harmonics Y1ml

.

6 An order of magnitude of τ may be obtained by equating the rate of radiation of
an oscillating classical dipole with the ratio between the emitted energy h̄ω and
the mean lifetime

ω4D0

3c2
=

h̄ω

τ
−→ τ =

3h̄c2

ω3D0
.

The amplitude of the dipole oscillation is approximated by D0 ≈ −ea0. If the
transition energy is assumed to be 10 eV, we obtain an estimated value τ =
O(10−10 s).
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Fig. 9.4. Schematic representation of the levels of a ruby laser

Therefore, the matrix elements must satisfy the selection rule la + 1 ≥ lb ≥
|la − 1| (5.36), or ∆l = 0,±1.

Since the operator r is odd under the parity operation (5.13), the non-
vanishing of this matrix element also requires the initial and final states to
carry a different parity, πaπb = −1. The combination of the conservation rules
associated with orbital angular momentum and parity are condensed in the
selection rule

∆l = ±1 , (9.64)

which defines allowed transitions (see, for instance, Fig. 8.4).
Forbidden (i.e., unallowed) transitions may also occur, but are much

weaker than the allowed ones. Their relative intensity may be estimated on
the base of the expectation value of the neglected terms in (9.58).

9.5.6† Lasers and Masers

The first material used to produce laser light7 was the ruby [59]. The ions
undergoing laser transitions are Cr3+, an impurity in the Al2O3 crystal.

Figure 9.4 schematizes the three relevant levels of Cr. At room temper-
ature the population of state 2 is much smaller than that of the state 1,
since E2 − E1 >> kT (see Sect. 7.7†). A population inversion is achieved by
means of auxiliary radiation (pumping radiation) exciting many atoms into
higher energy states 3 (actually into two excited bands), from which they
spontaneously decay into the state 2 (or back to 1) within 10−7 s. Since the

7 Laser=Light amplification by stimulated emission of radiation; Maser =micro-
wave amplification by stimulated emission of radiation. These two devices differ
in the range of electromagnetic frequency in which they operate.
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spontaneous lifetime of state 2 is rather large (10−3 s), a considerable fraction
of the population of state 1 is transferred to state 2 (≥ 1/2).

Some of the photons spontaneously emitted in the decay of state 2 are
reflected back and forth between a completely reflecting and a partially
reflecting surface of the crystal. Thus a standing electromagnetic wave is
built. Its intensity increases very rapidly through induced emission of further
photons, simultaneously with the depopulation of the state 2. A pulse of laser
light crosses over the partially reflecting surface. The main characteristics of
this emitted light are:

• Extreme monochromaticity.
• Large power per unit area of cross-section (more than 109 times the one

obtained from conventional light sources).
• Extreme coherence. The phase of the light emitted from one atom is

related to that from each other atom. As a consequence, the phase
difference between the laser light beam will stay constant at two different
points (the points may be separated as much as 100 km). On the contrary,
light spontaneously emitted is incoherent.

Laser light is playing an ever increasing role in many scientific and
technological applications, in precise determinations of length and time, in
communications, nonlinear optics, hot fusion, etc.

Problems

Problem 1. At t = 0, a state is given by the linear combination of the two
lowest states of a linear, infinite square well potential of width a:

Ψ(t = 0) =
1√
3

ϕ1 − i

√
2
3

ϕ2 .

1. Write the wave function at time t.
2. Calculate the probability of finding the particle in the second half of the

well.

Problem 2. Use the time-dependent Schrödinger equation to show that
Newton’s second law is obeyed on average in quantum mechanics (Ehrenfest
theorem).
Hint: Calculate

d〈Ψ(t)|p|Ψ(t)〉
dt

,

as in (4.14).

Problem 3. In the state (9.14), calculate the amplitude of the eigenstate of
the operator Ŝy, with spin pointing in the positive direction.
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Problem 4. Write the evolution operator for a Hamiltonian −µ · B if the
magnetic field points to the same direction as vector n (|n| = 1).

Problem 5. A particle is in the ground state of an infinite linear square well
potential. What is the probability of finding it in the n = 1, 2, 3 states when
the wall separation is suddenly doubled by displacing the right wall?

Problem 6. Calculate the probability of a spin flip in the first-order of per-
turbation theory. Assume the Hamiltonian (9.17) and |ω′/(ω − ωL)|  1.
Compare with the exact result (9.21).

Problem 7. A particle in the ground state of a linear harmonic oscillator
interacts with a projectile through an interaction of the form V0δ(u− vt/xc).

1. Express the amplitude for the transition to the first excited state as an
integral over the time interval t1 ≤ t ≤ t2.

2. Calculate the probability of this transition for t1 = −∞, t2 = ∞.

Problem 8. The Hamiltonian

V̂ (t) =
V0

h̄2 Ŝ1·Ŝ2 cos(ωt)

acts on a two-spin system. Find the time-dependent solution if:

1. The system has ms = 0.
Hint: Try Ψ(t) = cos θ exp(iφ)χ1

0 + sin θ exp(−i3φ)χ0
0.

2. The system is in the Bell state ΨB0 = 1√
2

[
ϕ↑(1)ϕ↑(2) + ϕ↓(1)ϕ↓(2)

]
.

Problem 9. What is the probability of exciting a linear harmonic oscillator
from the ground state to the first excited state, assuming that a perturbation
V = Kx, acting for an interval of t, is added to the oscillator Hamiltonian?

Problem 10.

1. Obtain the expression for the second order amplitudes c
(2)
k (t) if the per-

turbation is constant in time.
2. Calculate the probability of a transition to the second excited state for

the same case as in Problem 9.

Problem 11.

1. Interpret the ratio 2∆E ∆t/h̄c, if ∆l is the length of the system.
2. Calculate this ratio for the “giant resonance” (∆E ≈ 4 MeV) and for

a slow neutron resonance (∆E ≈ 0.1 eV) in the case of a nucleus with
A ≈ 100. (See Problem 7, Chap. 6.)

3. Do the same for a meson with a spread of 200 MeV (proton size ≈
10−17 m).
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Problem 12. Calculate the ratio between the populations of the states ϕ210

and ϕ310 if hydrogen atoms in their ground state are illuminated with white
light.

Problem 13.

1. Calculate the ratio between the intensities of photons de-exciting the state
ϕ310 of the hydrogen atom.

2. Calculate the mean lifetime of this state.
3. Calculate the width of this state.
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Entanglement and Quantum Information

It’s not your grandfather’s quantum mechanics. [60]

10.1 Conceptual Framework

Assume for a moment that the Hilbert space is restricted to the pure basis
states.1 For a single qubit, the only available states would thus be the two
states (10.1). For n qubits, there are 2n orthogonal product vectors ϕ(n)

i in a
space of 2n dimensions. Classical computation operates in this space. Linear
combinations of vectors are not allowed. Therefore, the only operations that
can be performed are permutations between the basis states (unless the size
of the space is changed).

Quantum mechanics allows for superpositions Ψ(n) of the basis vectors
ϕ(n)

i with complex amplitudes ci (2.6). Quantum operations are only limited
by the requirement of unitarity, i.e., the norm of the state should be pre-
served. Therefore, classical states and classical operations constitute sets of
vanishingly small size relative to those sets encompassing quantum states and
quantum operations. Thus, quantum information offers a wealth of new pos-
sibilities. All kinds of interference effects may take place in the much larger
space, much faster calculations can be performed if all components of the state
vector work in parallel, and so on. Quite typically, the time for solving a prob-
lem may increase either exponentially or polynomially with its complexity.
By taking advantage of interference and entanglement, a problem with an
exponential increase in a classical computer may be transformed into a
problem with a polynomial increase in the quantum case.

However, this promising picture is limited by the fact that it is very difficult
to extract anything from the state vector Ψ(n), despite the immense amount of
information that it carries. In fact, the only way is to perform a measurement,
which relates Ψ(n) to a single probability |ci|2. Therefore, the strategy consists
of producing transformations that lead to a state (Ψ′)(n), in which very few
amplitudes c′i do not vanish.

1 See also Mermin’s presentation [19].
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A quantum process starts with the preparation of the system in some ini-
tial state ϕ(n)

0 (i.e, with a measurement) and ends with another measurement
in the final state ϕ(n)

f (see Sects. 2.4 and 2.5). Measurements are a class of
transformations that provide classical information but change the state irre-
versibly. Between any two measurement operations, quantum transformations
are unitary operations that change the state of the system in a determin-
istic and reversible way. A quantum algorithm is a unitary operation that
may be represented by successive unitary operations (9.6) – quantum gates
(Sect. 10.7†).

In this chapter we also present some unique features of quantum mechanics.
Among them, the concept of entanglement (Sect. 10.2) is not only fundamental
in the discussions on the validity and interpretation of quantum mechanics
(Chap. 11, Sect. 13.6 and Sect. 12.2†), but it has also become, during the last
20 years, a central tool in the emerging field of quantum information.

Another important feature, also alien to classical physics, is the no-cloning
theorem (Sect. 10.3†).

We will not attempt to give a complete description of the recent develop-
ments on quantum information. Rather, we will use the respectable knowledge
of quantum mechanics which readers should now have in order to illustrate
these new uses with pertinent examples: quantum cryptography (Sect. 10.4);
teleportation (Sect. 10.5) and quantum computation (Sect. 10.6†).

All these applications again make use of two-dimensional Hilbert spaces.
Therefore the considerations on these spaces given in Sect. 5.2.2 will be
assumed here. In particular, a set of basis states for a single qubit is given by
the two-component column vector representation:

ϕ0 =
(

1
0

)

; ϕ1 =
(

0
1

)

. (10.1)

Qubits are realized either by means of particles with spin s = 1/2, the
two states of photon polarization (Sect. 9.5.2†), two isolated levels, etc. It is
yet unclear which is better for computational purposes, although photons are
preferred in the case of communication.

10.2 Entanglement

If the state representing two or more quantum systems cannot be expressed as
a product of separate states for each system, the state is said to be entangled.
Examples of two-particle entangled states appear in (7.5) and (7.6).

Let us perform some thought experiments with the same filters used in
Sect. 2.5. Two particles 1 and 2 are emitted simultaneously, from the same
source, in opposite directions (Fig. 10.1). Each particle enters a filter aligned
with the laboratory z-axis and may be detected by an observer provided with
another filter. The same orientation β, relative to the laboratory frame, holds
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S
ϕ0ϕ0

Fig. 10.1. Thought experiments illustrating the properties of entangled states. Both
particles are filtered by the source filters into the state ϕ0 through a first filter (solid
line box) and are detected by filters oriented at an angle β (dashed box). Trajectories
inside the filters have not been drawn

for both observers’ filters. The down channel is blocked in all four filters. Thus
cos2(β/2) represents the probability that a particle is detected, and sin2(β/2)
the probability that it gets absorbed (5.28).

If two particles are emitted in the entangled state

1√
2

[
ϕ0(1)ϕ0(2) + ϕ1(1)ϕ1(2)

]
,

then:

• A measurement of particle 1 destroys the entangled state. Particle 2
assumes the same state as the one into which particle 1 was projected
by the measurement.

• The correlation is 100%, regardless of the filter orientation β.
• This result is also independent of the initial direction of the z-axis.

Replacing ϕ0, ϕ1 by linear orthonormal combinations η0, η1 generated by
rotations around the y-axis, yields the entangled state:

1√
2

[
η0(1)η0(2) + η1(1)η1(2)

]
.

A measurement of particle 1 would project particle 2 into the same state
as particle 1.

• The correlation takes place regardless of the distance between the two
particles: particle 2 (nonlocally) acquires information about the result of
the measurement of particle 1.

• The comparison with the (nonentangled) product state ϕ0(1)ϕ0(2) is
illuminating: here the probability that the two particles get through is
cos4(β/2), while the probability that both are absorbed is sin4(β/2).
Therefore the probability that both observers find the same result is
1 − (1/2) sin2 β. If β = π/2, this last probability has the value 1/2, the
same classical value as for two independent players tossing coins.

Entanglement constitutes a profound, nonclassical correlation between two
(or more) quantum entities. The constituent parts of entangled systems do not
have their own individual quantum states. Only the total system is in a well-
defined state. This is fundamentally unlike anything in classical physics.
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10.2.1 The Bell States

A complete set of basis states for the two-spin system may be either cons-
tructed as products of the states (10.1), or represented by four-component
column vectors

ϕ(2)
0 = ϕ0ϕ0 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ ; ϕ(2)

1 = ϕ0ϕ1 =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠

ϕ(2)
2 = ϕ1ϕ0 =

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ ; ϕ(2)

3 = ϕ1ϕ1 =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ . (10.2)

It is customary to think of the first qubit in the product representation
as the control qubit, and the second as the target qubit. A general state is
written as the superposition:

Ψ(2)
c =

1
√

|c00|2 + |c01|2 + |c10|2 + |c11|2

⎛

⎜
⎜
⎝

c00

c01

c10

c11

⎞

⎟
⎟
⎠ . (10.3)

The Bell states constitute specific examples of entangled pairs:

ϕB0
≡ 1√

2

⎛

⎜
⎜
⎝

1
0
0
1

⎞

⎟
⎟
⎠ , ϕB1

≡ 1√
2

⎛

⎜
⎜
⎝

1
0
0
−1

⎞

⎟
⎟
⎠ ,

ϕB2
≡ 1√

2

⎛

⎜
⎜
⎝

0
1
1
0

⎞

⎟
⎟
⎠ , ϕB3

≡ 1√
2

⎛

⎜
⎜
⎝

0
1
−1
0

⎞

⎟
⎟
⎠ . (10.4)

• Since Bell states are orthonormal, any two-qubit state may be expressed
as a linear combination of these states.

• The Bell states are eigenstates of the product operators Ŝz(1)Ŝz(2) and
Ŝx(1)Ŝx(2) (see Problem 1). These product operators are included among
the interactions in the controlling Hamiltonian (10.22), used to manipulate
qubits.

• Successive introduction of these product interactions separates any two-
qubit system into the 4 Bell channels, in a similar way as the interaction
with the magnetic field splits the two channels associated with a single
qubit (Sects. 2.5 and 5.2.1).

• The two spins in a product operator must be simultaneously measured,
since detection of a single spin destroys the entanglement.
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10.3† No-Cloning Theorem

This theorem says that the state of a particle cannot be copied onto another
particle, while the original particle remains the same [61]. This is also com-
pletely different from what happens in classical mechanics. Suppose we have
two qubits in pure states

ϕ(1) η(2) , (10.5)

and that some unitary evolution effects the copying process

ϕ(1) ϕ(2) = U ϕ(1) η(2) . (10.6)

Suppose now that this copying procedure also works for another state

φ(1) φ(2) = U φ(1) η(2) . (10.7)

The scalar product between (10.6) and (10.7) yields

〈ϕ|φ〉2 = 〈η ϕ|U+U|φ η〉 = 〈ϕ|φ〉 . (10.8)

Since this equation has two solutions, 0 and 1, either ϕ = φ or they are mu-
tually orthogonal. Therefore, a general quantum cloning device is impossible.

Even if one allows nonunitary cloning devices, the cloning of nonorthogonal
pure states remains impossible unless one is willing to tolerate a finite loss of
fidelity in the cloned states. Similar conclusions also hold for general qubits.

10.4 Quantum Cryptography

Traditional strategies for keeping secrets in the distribution of cryptographic
keys depend on human factors, so their safety is difficult to assess. As a conse-
quence, they have been replaced to a large extent by cryptosystems. A cryp-
tographic key is transmitted through a succession of numbers 0 and 1. Their
present safety is due to the fact that, with classical computers, fast algo-
rithms cannot work out the decomposition of a large number in prime factors.
However this statement may no longer be true with the advent of quantum
computation (see Sect. 10.6†). Hence the continuing interest in exploring safer
systems for transmission of cryptographic keys. In this section, we show that
the quantum key distributions are impossible to break, and that this impos-
sibility arises from fundamental quantum laws.

A well-known protocol is called BB84 [62]. The encoder (usually named
Alice) can send particles that are in an eigenstate of either Ŝz or Ŝx. We
label these states by ϕ0, ϕ1, η0, η1. The decoder (frequently called Bob) is
provided with the Stern–Gerlach apparatus sketched in Fig. 5.3. He may orient
this equipment along either the z- or the x-direction. For instance, if Alice has
sent three qubits that are polarized according to ↑z, ↑x, and ↓x, and if Bob
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aligns his apparatus in the z-direction for the first qubit and the x-direction
for the last two, he will detect the qubit in channels ϕ0, η0, η1 with certainty.
These are the good qubits, i.e., those sent and measured with both pieces of
apparatus along the same orientation. If Alice sends a qubit in the ϕ0 state
while Bob orients his equipment toward the x-direction, he may detect the
intensities η0 or η1 with equal probability. Bad qubits are those in which the
sender and receiver apparatus have different orientations.

For each qubit sent, Alice records the eigenvalue as well as the orientation
of her filter. Bob selects his orientations at random and informs Alice of them.
With this knowledge, Alice can tell Bob which ones are good qubits, the ones
which are kept in order to codify the message. Both messages from Bob and
Alice can even be made over an open phone, since they carry no information
useful for a third party.

Let us assume that there is an eavesdropper, usually called Eve, who is
also provided with a Stern–Gerlach apparatus. Eve cannot clone and resend
the message to Bob (Sect. 10.3†), but she can detect a qubit and resend it
in the same channel. Although she cannot be prevented from eavesdropping,
Alice and Bob will know about it. Let us assume for instance that Alice has
sent a qubit in the ϕ1 state, Eve’s apparatus is in orientation x and Bob’s in
orientation z. Eve’s measurement projects the qubit into one of the η channels,
thus increasing the probability that Bob detects the qubit in the ϕ0 channel
(Problem 2).

Bob chooses a random subset of the good qubits that he has retained, and
communicates the result of his measurements to Alice, also publicly. Alice
may find discrepancies between her notes and Bob’s message. If she does not,
the remaining good qubits constitute a perfect secret between Alice and Bob.

Quantum cryptography applies the rule that quantum states are perturbed
by the act of measurement, unless the observer knows in advance what ob-
servables can be measured without being perturbed (Sect. 2.4). Eve cannot
succeed without knowing the basis common to both Alice and Bob.

Commercial equipment for bank transfers by means of quantum cryptog-
raphy is available, within city boundaries.

10.5 Teleportation

Alice and Bob are at a macroscopic distance from each other. Alice’s particle
is initially in the Ψc state

Ψc = c0ϕ0 + c1ϕ1 . (10.9)
The objective is to put Bob’s particle in the same state, but without trans-

porting the particle or sending any classical information about the amplitudes.
Alice and Bob start by each taking one of the two qubits which have

been prepared, for instance in the Bell state ϕB0
(10.4). Alice now has two

qubits, one in the state Ψc and the other in the Bell state (see Fig. 10.2). The
three-qubit state can be written as
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Bell analyzer

entangled 
pair

2 bits of classical 
information

single qubit 
transformation

Ψc

Ψc
ϕB0

Fig. 10.2. Scheme illustrating the process of teleportation. Dashed lines repre-
sent entangled qubits in the state ϕB0

, while the dotted line indicates that classical
information is transmitted

Ψ(3) = ΨcϕB0

=
1√
2

(c0ϕ0ϕ0ϕ0 + c0ϕ0ϕ1ϕ1 + c1ϕ1ϕ0ϕ0 + c1ϕ1ϕ1ϕ1) (10.10)

=
1
2

[

ϕB0

(
c0

c1

)

+ ϕB1

(
c0

−c1

)

+ ϕB2

(
c1

c0

)

+ ϕB3

(
−c1

c0

)]

,

where the qubit taken by Bob from the Bell state has been explicitely sepa-
rated and the two qubits in Alice’s posesion have been expressed in terms of
Bell states.

Alice now filters her two qubits into a well-defined Bell state. Simultane-
ously, Bob’s qubit is also projected into a well-defined state, but Bob ignores
the relation between this state and the initial state Ψc. Bob needs to know in
which Bell state the system has collapsed in order to reconstruct the original
qubit. This information must be provided by Alice by conventional means,
i.e., at a speed less than or equal to the velocity of light.

Suppose for instance that, instead of going through the previous procedure,
Alice constructs the state Ψc by filtering the spin, and sends the information
about the alignment axis to Bob, who can thus filter the particle in the same
direction. Are there still advantages in teleportation? The answer is affirma-
tive, for the following reasons:

• The teleported state Ψc might not be known by Alice. If she attempts to
measure it, the state of the qubit could be changed.

• Bob receives complete information about Alice’s qubit at the expense of
that qubit. In quantum teleportation the original qubit is destroyed. This
is a manifestation of the no-cloning theorem (Sect. 10.3†).

• The qubit Ψc is determined by the amplitudes c0, c1, for which the trans-
mission time increases with the required precision. Now the results of
the quantum experiments are discrete numbers. Initial entanglement is
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responsible for the transformation of the discrete information about the
Bell state into continuous information on the state of the qubit.

• The information is transmitted no matter how far distant and how long
ago the entanglement took place.

Quantum teleportation was discovered in 1993 [63]. It was observed for the
first time in 1997 with entangled photons [64].

10.6† Quantum Computation

We describe the factorization procedure as a “best typical” example of the still
unharnessed power of quantum computers.2 Note that the security of widely
used encryption codes rests on the present practical impossibility of breaking
a large number N in its prime factors, using classical computers.

The realization of quantum calculations requires the application of a spe-
cific algorithm and universal quantum gates. The factorization algorithm is
discussed in Sect. 10.6.1† while a presentation of frequently employed quantum
gates is made in Sect. 10.7†.

10.6.1† Factorization

Factorization of a number in its prime components makes use of following
property: Let a be coprime with N (no common factors) and define the func-
tion

faN (J) ≡ aJ ,mod N . (10.11)

This function has at least two important properties:

• It is periodic. For instance, if a = 2, N=15, the successive values of the
function f are 1, 2, 4, 8, 1, 2, and so on. Thus, the period P = 4.

• Provided that P is even, the greatest common divisors of the pairs
(aP/2 + 1, N) and (aP/2 − 1, N) are factors of N . In the present exam-
ple, they are 5 and 3, respectively.

The level of complexity in the calculation of the period using a classical com-
puter is as large as any other factorization algorithm. By contrast, there exists
the following quantum algorithm due to Peter Schor [66]:

• A collection of n qubits is called a quantum register of size n. We assume
that information is stored in binary form. Thus an n-register can store the
numbers J = 0, 1, . . . , (2n − 1). For instance, a register of size 2 can store
the numbers 0, 1, 2, and 3. We operate with a control register (left) and a
target register (right). The operation is started with both registers in the

2 The contents of this section have been mainly extracted from [65].
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state with J = 0 [all qubits in the ϕ0 state (10.33)]:

Ψ(n)
1 = ϕ(n)

0 ϕ(n)
0 . (10.12)

• Load the control register with the integer series (10.34):

Ψ(n)
2 = 2−n/2

J=2n−1∑

J=0

ϕ(n)
J ϕ(n)

0 . (10.13)

• Select a value for a (coprime to N) and for each value of J replace ϕ(n)
0 in

the target register by ϕfaN (J), as in (10.35):

Ψ(n)
3 = 2−n/2

J=2n−1∑

J=0

ϕ(n)
J ϕ(n)

faN (J) . (10.14)

For n = 4 and the previous example, Ψ(n)
3 takes the value

1
4

(
ϕ(4)

0 + ϕ(4)
4 + ϕ(4)

8 + ϕ(4)
12

)
ϕ(4)

1 +
1
4

(
ϕ(4)

1 + ϕ(4)
5 + ϕ(4)

9 + ϕ(4)
13

)
ϕ(4)

2

+
1
4

(
ϕ(4)

2 + ϕ(4)
6 + ϕ(4)

10 + ϕ(4)
14

)
ϕ(4)

4 +
1
4

(
ϕ(4)

3 + ϕ(4)
7 + ϕ(4)

11 + ϕ(4)
15

)
ϕ(4)

8 .

(10.15)

• Measure the target register. This information yields one value χ = faN (J)
and destroys the information about the others. According to (2.19) we
retain only the terms ϕ(n)

J in the control register that are multiplied
by ϕ(n)

χ :

Ψ(n)
4 =

√
P

2n

⎛

⎝
r=2n/P−1∑

r=0

ϕ(n)
J=rP+q

⎞

⎠ ϕ(n)
χ , (10.16)

where we have assumed that 2n/P is an integer,3 as in (10.15).
• The residue q must be eliminated in order to find the period. To do so we

perform a Fourier transform on the control register [see (10.36)]:

Ψ(n)
5 = U (ctrl)

FT Ψ(n)
4

=
√

P

2n

⎛

⎝
K=2n−1∑

K=0

r<2n/P∑

r=0

exp[iK(rP + q)π/2(n−1)]ϕ(n)
K

⎞

⎠ ϕ(n)
χ

=

⎛

⎝
r<2n/P∑

r=0

cχ,rP ϕ(n)
rP

⎞

⎠ ϕ(n)
χ . (10.17)

The Fourier transform constitutes a very efficient quantum operation, since
it takes full advantage of quantum parallel processing. The last step in

3 The procedure can be extended if this is not the case.
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(10.17) relies on the vanishing of the factor:
r<2n/P∑

r=0

exp[iK(rP )π/2(n−1)] , (10.18)

unless K is zero or an integer multiple of 2n/P , if P is an integer divisor
of 2n. Accordingly, the Fourier transform of (10.15) yields

(
ci0ϕ(4)

0 + ci4ϕ(4)
4 + ci8ϕ(4)

8 + ci12ϕ(4)
12

)
ϕ(4)

χ , (10.19)

where all subindices in the control register are multiples of the period.
• Measure the control system.
• Repeat the operation until the period becomes established.

The number ν of bit operations required to factor the number N with a
classical computer is expected to increase with N no less rapidly than

ν(N) = exp
[
1.32L1/3 (log2 L)2/3

]
, (10.20)

where L = log2 N is essentially the number of bits required to represent
N . The number νq of universal quantum gates needed to implement Schor’s
algorithm has been estimated to be

νq(N) = L2 (log2 L) (log2 log2 L) . (10.21)

Thus, the factorization is transformed from a problem in which time increases
exponentially, to a problem in which it increases only polynomially. Using a
conservative estimate of 300 µs for each gate operation, the time needed to
factorize a number N with 309 decimal digits4 using Schor’s algorithm is of
the order of weeks. This is also the order of magnitude of the estimated time
for a classical computer by the year 2009, if an extrapolation of the present
rate of improvements on classical computation is made. By contrast, for a
number with 617 decimal digits, the time estimates become a few months for
a quantum computer and about 60 million years for a classical one.

A variety of two-level quantum systems has been considered. Modern
experimental techniques allow us to orient their spins (or equivalent observ-
ables) and to implement the gates. However, the situation becomes drastically
more complicated when operating a large scale computer, combining many
gates. The greatest problem lies on alteration of states due to decoherence,
i.e., the unavoidable coupling with a surrounding medium (Sect. 12.1). Up to
now the successes of quantum computation have been limited to the decom-
position of the number 15 into its prime factors 3 and 5 [67].

It is true that we cannot ignore the example of the path traveled “from
the Pascal machine to the Pentium processor.” There exist new strategies for
partially controlling the effects of decoherence. The fact that this problem

4 This is the presently recommended size for key numbers.
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is linked to defense and financial activities has undoubtedly contributed to
intense endeavors on the subject. But we should bear in mind that the inter-
est in quantum computing is not limited to those applications. The physics
involved in experiments with entangled particles will help us to obtain a better
understanding of fundamental aspects of quantum mechanics.

10.7† Quantum Gates

A quantum gate is a device that performs a unitary transformation on selected
qubits at a certain time. It is the basic unit of a quantum algorithm. A quan-
tum network is a device consisting of quantum gates that are synchronized in
time.

From the engineering point of view, it is practical to restrict the transfor-
mations to those operations that may be expressed as the product of opera-
tions on one- and two-qubit systems. Manipulations of a single qubit may be
performed by controlling a magnetic field at its site (Sect. 9.2). Simultaneous
manipulations of two qubits require an interaction between them. Therefore
we use a controlling Hamiltonian

Ĥctr = −µs

N∑

i

B(i)(t)·Ŝ(i)
+
∑

a,b
i
=j

J
(i,j)
ab (t)Ŝ(i)

a Ŝ
(j)
b , (10.22)

where summation over space indices a, b = x, y, z is understood (see Problem 9
in Chap. 6 and Problem 8 in Chap. 9). This Hamiltonian satisfies the require-
ments for controlling a quantum computer. In fact, it even exceeds them.
However, interactions with the measurement device and with the environment
should also be taken into account.

It can be proved that any unitary operation on an n system of qubits may
be reproduced by a sequence of one- and two-qubit operations. The Hadamard
gate, all the phase gates, and the controlled-NOT gate constitute a universal
set of gates, although this set is not unique. Any transformation between the
n states of a register may be constructed from them.

10.7.1† One-Qubit Systems

Particularly useful gates are the Hadamard gate UH and the phase gate Uφ(β).
The first one transforms the one-qubit states through the operations5:

UH ϕJ =
1√
2

K=1∑

K=0

exp(iJKπ)ϕK , J = 0, 1

UH ϕ0 =
1√
2
(ϕ0 + ϕ1) , UH ϕ1 =

1√
2
(ϕ0 − ϕ1) . (10.23)

5 We keep the quantum mechanical notation previously used in this text. In compu-
tation texts, the Hadamard gate is denoted by H, successive transformations are
read from left to right, and so on. Overall phases will be frequently disregarded.
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It is the same unitary operation (3.22) that transforms the Ŝz basis into the
Ŝx basis and also coincides with the Fourier transform for the one-qubit case.
The phase gate adds a phase to the state ϕ1:

Uφ(β) ϕJ = exp(iJβ)ϕJ . (10.24)

These two operations are sufficient to construct any unitary operation on a
single qubit, since

Uφ(η + π/2)UH Uφ(β)UHϕ0 = ϕ0 cos
β

2
+ ϕ1 exp(iη) sin

β

2
, (10.25)

up to a phase. This expression is the most general form for a qubit.
A single qubit is manipulated by acting with the first term in (10.22).

Switching on the z- or x-component of the magnetic field during a time τ
introduces the transformations Uz(β) and Ux(β). They are given by (9.12)
and (9.16), respectively, with β = ωLt.

The Hadamard gate and the phase gate can be constructed by means of
the following operations:

UH = Uz(π/2)Ux(π/2)Uz(π/2) =
1√
2

(
1 1
1 −1

)

, (10.26)

Uφ(β) = Uz(−β) =
(

1 0
0 exp(iβ)

)

, (10.27)

We obtain expressions (10.23) and (10.24) upon application of matrices (10.26)
and (10.27) to column states (10.1).

10.7.2† Two-Qubit Systems

The two-qubit states can be represented either as products of single qubits
ϕJ(1)ϕK(2) or in the computational basis ϕ(2)

J , with J = 0, 1, 2, 3 [column
vectors (10.2)]. Any effect of the Pauli principle upon them is ignored, since
there are separated in space and thus distinguishable.

Successive application of the Hadamard gate on the state ϕ(2)
0 yields

UH(2)UH(1) ϕ(2)
0 = UH(2)

1√
2

(
ϕ(2)

0 + ϕ(2)
2

)
=

1
2

J=3∑

J=0

ϕ(2)
J . (10.28)

Useful gates acting on two-qubit systems are the controlled-NOT gate
UCNOT and the controlled-phase gate UCB(φ)

UCNOT ϕJ ϕK = ϕJ ϕJ⊕K , UCB(φ) ϕJ ϕK = exp[iJKφ] ϕJ ϕK , (10.29)

where the symbol ⊕ denotes the summation (J + K) modulo 2. These two
gates apply a single-qubit transformation to the target qubit if the control
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qubit is in the state ϕ1, and do nothing if the control qubit is in the state ϕ0.
The control bit remains unchanged, but its states determine the evolution of
the target.

The controlled-NOT and the controlled-phase gates are expressed, in
matrix form

UCNOT =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ ; UCB(φ) =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 exp(iφ)

⎞

⎟
⎟
⎠ (10.30)

The construction of the controlled-NOT and controlled-phase gates starting
from the Hamiltonian (10.22) has been omitted from this presentation.

Combining these operations yields the discrete Fourier transformation

UFT ϕ(2)
J =

1
2

K=3∑

K=0

exp[iJKπ/2] ϕ(2)
K

UFT = USWAP U (tag)
H UCB

(π

2

)
U (ctr)

H

=
1
2

⎛

⎜
⎜
⎝

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞

⎟
⎟
⎠ , (10.31)

where the SWAP transformation interchanges the values of the control and
target bits:

USWAP ϕJ(1) ϕK(2) = ϕK(1) ϕJ(2)
USWAP = UCNOTUctr

H U tag
H UCNOTU tag

H Uctr
H UCNOT

=

⎛

⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎟
⎠ . (10.32)

10.7.3† n-Qubit Systems

As for the one- and two-qubit cases we may use either the product or the
column representation. In most applications the initial state is

ϕ(n)
0 = Πk=n

k=1 ϕ0(k) (10.33)

The transformations (10.28), (10.29), and (10.31) may be generalized to
the case of n-qubits

Πk=n
k=1 UH(k) ϕ(n)

0 =
1√
2n

J=2n−1∑

J=0

ϕ(n)
J . (10.34)
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If the control and target become n-registers, operation (10.29) becomes

Uϕ(n)
J ϕ(n)

K = ϕ(n)
J ϕ(n)

K⊕J , Uf ϕ(n)
J ϕ(n)

K = ϕ(n)
J ϕ(n)

K⊕f(J) , (10.35)

where the symbol ⊕ in the first equation (10.29) denotes summation modulo
2n and a function f(J) is defined mapping the number J into another number
that may be stored by an n-register.

The discrete Fourier transformation (10.31) is generalized as

UFTϕ(n)
J = 2−n/2

K=2n−1∑

K=0

exp[iJKπ/2(n−1)]ϕ(n)
K . (10.36)

All components of the state vector work in parallel using the gates
described above.

Problems

Problem 1. Find the eigenvalues of the product operators Ŝz(1) Ŝz(2) and
Ŝx(1) Ŝx(2) for each Bell state in units of h̄2/4.

Problem 2. Alice and Bob share a good qubit (Sect. 10.4). Assume that Alice
sends the qubit in the state ϕ0. Determine the probabilities that Bob detects
the qubit in the ϕ0 and in the ϕ1 channels

1. If there is no eavesdropper
2. If Eve is active
3. Find the chance that Eve’s eavesdropping remains unnoticed after com-

paring 100 good qubits

Problem 3. Find the generators of rotations that Bob has to perform in order
to obtain the original qubit for each Bell state that Alice may have detected
(Sect. 10.5)

Problem 4.

1. Write the matrix U ′
CNOT with reversed roles of the control and target

qubits.
2. Express U ′

CNOT in terms of universal gates.

Problem 5. Show that Ux(π)Uz(β)Ux(−π) = Uz(−β).

Problem 6. Show that
h̄

2
UCNOT Ŝ(ctrl)

x UCNOT = Ŝ(ctrl)
x Ŝ(targ)

x .

Problem 7. Verify (10.34) for the case n = 3.
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Problem 8. Alice and Bob share two particles in a given Bell state. Alice
performs a unitary transformation on her qubit using either the unit matrix
I or one of the Pauli matrices. Subsequently, she sends her qubit to Bob.

1. Can Bob find which transformation Alice has performed?
2. Can Eve find which transformation Alice has performed?

The information that Bob receives (one of four numbers) can be encoded in
two bits of classical information, in spite of the fact that he receives a single
qubit (from which a single bit is expected to be extracted). This quantum
result is called superdense coding.

Problem 9. Find the value of the amplitudes cir in the Fourier transform
(10.19).

Problem 10. Construct the Bell states by applying quantum gates to the
product of two qubits.
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Experimental Tests of Quantum Mechanics

Thought experiments played a crucial role in the clarification of controversial
aspects of quantum mechanics. The discussions between Bohr and Einstein
are paradigmatic in this respect (Sect. 13.5.2). However, since the end of the
twentieth century, real experiments have replaced thought ones. Not only
have earlier views been confirmed, but also more counterintuitive aspects of
quantum mechanics have been brought into focus. In this presentation we
restrict ourselves to two types of experiments,1 in spite of other fascinating
results that have been or are being obtained:

• Two-slit experiments which, according to Feynman,2 constitute “a
phenomenon which is impossible, absolutely impossible, to explain in
any classical way, and which has in it the heart of quantum mechanics.”

• Experiments that can decide between local realism or quantum mechanics
as the proper tool for describing the physical world.

Entanglement plays a central role in both types of experiments. Present
sources of entangled photons are based on the process of parametric down
conversion: if a nonlinear optical crystal is pumped by a laser beam, a
photon may decay into two entangled photons (with a small probability,
10−12 − 10−10). The energy and momentum of the two photons add up to
their value in the original one. The two photons may have the same or differ-
ent polarizations.

11.1 Two-Slit Experiments

Since Thomas Young established the wave nature of light in 1801 (using
candles as sources of light), two-slit interference experiments have become

1 Intensive use has been made of [68] and [69].
2 [23], p. 1.
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crucial to decide between wave and particle behavior (Fig. 11.1). Matter wave
phenomena were verified for the first time in 1927 [5].

In a more recent version (1988), neutrons of wavelength 2 nm impinge
on two slits 22 µm and 23 µm wide, respectively, separated by a distance of
104 µm. The two main results of this experiment are [70]:

• A diffraction pattern indicating the existence of a wave interference
phenomenon (Fig. 11.2). The observation plane was located at a distance of
5m from the slits in order to insure a resolution of ≈100 µm. The solid line
represents first-principle predictions from quantum mechanics, including
all features of the experimental apparatus.

∆

detector

screen

double 
slit

Fig. 11.1. A double-slit experiment. No intensity is detected at points of the screen
if the difference ∆ between the two paths is an odd multiple of π/k

Fig. 11.2. A double-slit diffraction pattern measured with neutrons. Reprinted from
A. Zeilinger, Rev. Mod. Phys. 71, S288 (1999). Copyright by the American Physical
Society and the Institut für Experimentalphysik, Universität Wien
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• Neutrons were collected one by one at the observation plane, at a
maximum rate of 1 neutron every 2 s. Therefore, while one neutron was
being registered, the next one to arrive was usually still inside the uranium
parent nucleus. The particle nature of neutrons is thus also confirmed.
Moreover, constraints on the validity of quantum physics to statistical
ensembles are ruled out.

Similar interference patterns have been obtained with atoms, molecules and
clusters, including fullerenes. These are composite molecules of 60 carbon
atoms, about 10−9 m in diameter. They interfere with themselves after being
in a superposed state at two slits separated by 10−7 m [71].

The superposition giving rise to interference phenomena,

Ψ =
1√
2

(ϕa + ϕa′) , (11.1)

requires that there is no way to know, even in principle, which path the particle
took, a or a′. Interference is destroyed if this information exists, even if it is
dispersed in the environment.

Two-slit experiments with two entangled particles have been used to verify
even more spectacular and nonintuitive consequences of quantum mechanics.
The experimental display that has been used is sketched in Fig. 11.3. We label
the photons detected behind the two-slit and lens as A and B, respectively.
B can be detected at various distances behind a lens.

Let us consider the entangled state

Ψ =
1√
2

(ϕa(1)ϕb(2) + ϕa′(1)ϕb′(2)) . (11.2)

detector A detector B

double 
slit

source

lens

focal 
plane

image
plane

Fig. 11.3. A double-slit diffraction pattern measured with entangled photons. The
two photons are detected after the double-slit and at the focal plane of the lens,
respectively. Detector B may also be displaced toward the image plane. Parametric
down conversion is used as source of entangled photons and a coincidence circuit
(omitted in the Figure) ensures that the two detected photons belong to the same
entangled pair
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• If B is not registered, the distribution of A on a plane parallel to the double-
slit is incoherent. This is due the fact that we can still obtain information
about the path of A by measuring the state of B.

• If photon B is detected at the focal plane of the lens, information about
its distance from the propagation axis before the lens is lost, and thus
information about which slit A passes by is lost as well. The momentum
of both photons is well defined and an interference pattern appears behind
the two-slit plane (wave feature). Photons are collected one by one, and
the observed count rate implies that the average spatial distance between
photons is at least of the order of 100,000 km.

• One can find at which slit A passes through by detecting B at the image
plane (particle feature), since there is a one-to-one relationship between
positions on this plane and at the double-slit. No interference pattern
appears in this case.

• Interference pattern and path information are mutually exclusive results.
Therefore, Bohr’s complementary (Sect. 13.5.1) appears as a consequence
that it is not possible to position detector B simultaneously at the
focal and at the image plane. Intermediate situations are also possi-
ble, the visibility of the interference pattern being reduced by placing
detector B between the focal and the image plane: the experiment displays
a continuous complementary.

• After detection of A, one can arbitrarily delay detection of B, either at
the focal or at the image plane. Thus the possibility of detecting or not a
diffraction pattern is decided after detection of the diffracted photon. Ac-
cording to this result, it has been claimed that in quantum mechanics the
future can modify the past. However, this interpretation is incorrect, since
the prediction of the outcome requires a total specification of the experi-
mental setup, including the position of all detectors (see Bohr’s definition
of “phenomenon,” Sect. 2.4.1).

• Registration of A behind the double-slit results in a Fraunhofer double-
slit pattern for B at the focal point, although B never passed a double-slit.
This result has been interpreted as a consequence of the fact that the state
incident on the double-slit is a wave packet with appropriate momentum
distribution such that the probability density has a peak at both slits.
By virtue of the strong momentum entanglement at the source, B has a
related momentum distribution (in fact, it is the time reversal of the other
wave packet) and the standard Fraunhofer observation conditions become
realized after the lens [68].

The previous experimental results confirm the quantum principles. This
is apparent if we accept that the vector state is only a representation of
the knowledge that we have. On the contrary, “realistic” pictures about
waves/particles following paths may lead to all kinds of conceptual traps.
See p. 193 for further statements of this point of view.
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11.2 EPR and Bell Inequalities

We consider a source emitting two particles in the Bell state

ϕB0
=

1√
2

[ϕ0(1)ϕ0(2) + ϕ1(1)ϕ1(2)] (11.3)

If each particle is detected by a Stern–Gerlach detector (Fig. 2.4c) and if the
two detectors are oriented along the same direction, particle 2 will be detected
in the same spin state as particle 1, independently of their mutual distance.
Einstein, Podolsky, and Rosen [16] admitted the validity of this quantum
prediction, but concluded about the incompleteness of quantum mechanics
using the following argument.3:

• The state of particles exists independently of observation (the notion of
physical reality stated in Sect. 2.1);

• A measurement of particle 1 cannot affect the state of particle 2 if they
are at sufficient macroscopic distance (notion of locality)

Thus, particle 2 must have carried information about its spin state before
detection of particle 1. Therefore, there must be an underlying mechanism –
called hidden variable – completing quantum mechanics.

In 1964 John Bell realized that local realism, as understood by EPR, was
incompatible with quantum mechanics [74]. He devised a thought experiment
in which the two fundamental world views would yield different results. Thus
physical facts, and not philosophical considerations, could decide between
these points of view.

A double Stern–Gerlach apparatus is improved by allowing each of the two
detectors to rotate around the beam axis (y-axis). They may be oriented along
one of three directions (Fig. 11.4): along the z-axis (orientation a); making an
angle of 2π/3 with it (orientation b); an angle of 4π/3 (orientation c). In the
following, the notation (α1, α2) labels the position of the detectors 1 and 2,
respectively. For instance, (a, c) means that detector 1 points along the z-axis,

source

a

c b

a

c b

2π/3

detector 1
detector 2

Fig. 11.4. Sketch of an experiment testing the Bell inequality described in the text

3 The present argument is the spin version of the EPR original one. The adaptation
is due to David Bohm [73].
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and detector 2 is oriented at an angle 4π/3 relative to this axis. It is assumed
that the orientations of the two detectors are totally uncorrelated. Moreover,
no connections between source and detectors or between detectors are allowed.

In the first place we analyze the problem from the point of view of local
realism.4 The instructions carried by each particle are of the form xaxbxc,
meaning that if the detector is at the jth position, the result of the measure-
ment is xj (xj = 0, 1; j = a, b, c). There are eight possible sets of instructions,
namely: 000, 001, 010, 011, 100, 101, 110, and 111. It is unimportant which
set is valid during a given run. It is important, however, that the two particles
carry the same set, because it is an experimental fact that the same result is
obtained for both particles if the two detectors display the same orientation
(Bohm–EPR experiment).

Let us exclude for the moment the instruction sets 000 and 111. For any
of the remaining six sets, the same results are obtained for both particles in
five cases, and opposite results in four. For instance, if the instruction set is
011, the pairs (aa), (bb), (bc), (cb), (cc) yield the same result, while opposite
results are obtained from (ab), (ac), (ba), (ca).

It is obvious that the two excluded sets of instructions can only increase the
possibility that the two counters yield the same result. Therefore, the proba-
bility of obtaining the same result must always be ≥ 5/9 (Bell inequality).

Let us perform now a quantum analysis of the experiment. According to
(5.28), the expression of state ϕ(a)

0 = ϕ0 in the basis corresponding to the
orientations b, c is

ϕ(a)
0 =

1
2

ϕ(b)
0 −

√
3

2
ϕ(b)

1 = −1
2

ϕ(c)
0 −

√
3

2
ϕ(c)

1 (11.4)

Since only the relative angle between the two detectors matters, we can assume
without loss of generality that particle 1 has been detected in the state ϕ0

with the apparatus in the orientation a. The probabilities of the different
outcomes for particle 2 are given in Table 11.1. The sum of probabilities
for each orientation divided by the number of orientations yields the same
probability for obtaining equal or opposite results, at odds with the prediction
of local realism. An identical argument applies if particle 1 were to be detected
in the state ϕ(a)

1 .
At the time of Bell’s publication it was not possible to perform an experi-

mental test. In the first successful attempt, spin 1/2 particles were replaced by

Table 11.1. Probabilities for the results of particle 2

Detector 2 a b c Total probability

same result as for 1 1 1/4 1/4 50%
opposite result 0 3/4 3/4 50%

4 The Bell inequality described here is taken from [75].
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two photons emitted in a radiative J = 0 → J = 0 cascade using Ca atoms
as sources (1981). As expected for entangled photons, the same polarization
state was verified for both of them. A Bell inequality somewhat different from
the one explained above was used. The experiment contradicted the prediction
of local realism and confirmed the existence of the quantum correlation [76].

The localization aspect was treated by increasing the distance between the
two detectors as far as 13 m, so no signal from one to the other counter could
be transmitted at subluminal velocities before detection.

However, two loopholes remained open.5 One of them consisted of the
possibility that the apparatus settings could be known by the detectors and/or
by the source before registration of the photons. This loophole was closed
by introducing the parametric down conversion, by increasing distances to
355 m and by changing the measurement settings according to a random-
number generator in a time scale much shorter than the photon time of
flight (1/13). The importance of the last feature stresses the relevance of this
experiment [77].

Another logical loophole consisted of the possibility that the detected pho-
tons were not faithful representatives of all photons emitted, most of which
were lost. This possibility was ruled out by observing nearly all entangled
pairs of ions in a cavity [78].

Today it is possible to violate Bell inequalities by many standard deviations
in short times. Moreover, in case of Schrödinger cat states with three and four
photons (see Sect. 12.2†), situations exist in which predictions of quantum
mechanics and local realism are exactly the opposite. Experiments have again
confirmed the quantum prediction.

The fact that particle 2 is instantaneously projected after measurement
of particle 1 (if previously in an entangled state) does not imply a
violation of relativistic invariance. This information is not usable by site 2,
unless transmitted by conventional means. A similar limitation holds in the
case of teleportation (Sect. 10.5). It is remarkable that quantum mechanics
is compatible with relativistic invariance, not being by itself a relativistic
theory.

Experiments concerning cryptography and teleportation have been
reported in Sects. 10.4 and 10.5, respectively.

As for the present outlook, Anton Zeilinger’s opinion is [68]:

...it will be interesting in the future to see more and more quantum
experiments realized with increasingly larger objects. Another very
promising future avenue of development is to realize entanglements
of increasing complexity, either by entangling more and more systems
with each other, or by entangling systems with a larger number of
degrees of freedom. Eventually, all these developments will push the
realm of quantum physics well into the macroscopic world.

5 The two loopholes have not been closed yet in a single experiment.
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Measurements and Alternative
Interpretations of Quantum Mechanics.
Decoherence

The problem of getting the interpretation proved to
be rather more difficult than just working out the
equations. [79]

Although quantum results are unambiguous and so far have not been contra-
dicted by experiments, large amounts of ink and paper have been devoted to
interpret the formalism.

In this chapter we use the language associated with spin, a language the
reader became familiar with in previous chapters. In particular, the time-
dependence of spin states was discussed in Sect. 9.2. Different traits within
the Copenhagen rationale and two alternative interpretations are displayed.

We also discuss the concept of decoherence, which allows for a novel
interpretation of measurements (Sect. 12.2†). For this purpose, we outline the
formalism of the density matrix.

Therefore, by the end of this chapter, the reader will be offered four
different interpretations of quantum mechanics. The list is far from exhaustive.
The coexistence of such variety of interpretations implies that the issues in-
volved are not completely settled yet.1

12.1 Measurements and Alternative Interpretations
of Quantum Mechanics

12.1.1 Measurements and the Copenhagen Interpretation

Let us consider a magnetic field in the z-direction and assume that the
spin points up in the x-direction at time t0. We also include now the time-
dependence of the states, as in (9.14). The state vector of the system is denoted
by Ψ(t0) = ϕ(x)

0 at t = t0. Between t0 and t1, it evolves swiftly and determinis-
tically to the state Ψ(t1), in accordance with the time-dependent Schrödinger
equation. At t1, we measure the spin projection along the positive x-axis by
means of a filter. Using (9.14)

1 A critical discussion on alternative interpretations can be found, for instance,
in [80].
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Ψ(t1) = ϕ(x)
0 cos

1
2
ωL(t1 − t0) + iϕ(x)

1 sin
1
2
ωL(t1 − t0) . (12.1)

In the course of the measurement, each of the two possible results becomes
correlated with different sets of macroscopic degrees of freedom, including
those of the measurement and registration equipment. Let us assume that the
eigenvalue −h̄/2 is obtained at time t1.

Before the first measurement, the linear combination (12.1) allows for
the possible existence of interference effects. The measurement destroys such
effects, even if we do not look at the results.2 What counts is the fact that in
quantum mechanics any measurement involves a physical interaction between
a microscopic system and a macroscopic apparatus that was devised by a
human being for a specific purpose [21].

After the measurement, the component ϕ(x)
1 constitutes the starting point

for a new evolution of the system. A new measurement is carried out at time
t2. The expansion, analogous to (12.1), is written as

Ψ(t2) = iϕ(x)
0 sin

1
2
ωL(t2 − t1) + ϕ(x)

1 cos
1
2
ωL(t2 − t1) . (12.2)

The probability for obtaining the eigenvalues ±h̄/2 at time t2 is given by the
square products:

P+(t2 − t0) =
∣
∣
∣
∣sin

1
2
ωL(t2 − t1) sin

1
2
ωL(t1 − t0)

∣
∣
∣
∣

2

,

P−(t2 − t0) =
∣
∣
∣
∣cos

1
2
ωL(t2 − t1) sin

1
2
ωL(t1 − t0)

∣
∣
∣
∣

2

. (12.3)

If no measurement had been performed at time t1, the probabilities would
have been

P+(t2 − t0) =
∣
∣
∣
∣cos

1
2
ωL(t2 − t0)

∣
∣
∣
∣

2

,

P−(t2 − t0) =
∣
∣
∣
∣sin

1
2
ωL(t2 − t0)

∣
∣
∣
∣

2

. (12.4)

It is consistent to believe that the role of physics is to correlate the construc-
tion of the initial state Ψ(t0) with the results of the two measurements. In
that case, (12.3) or (12.4) is all that is needed. Bohr has warned us not to
transpose our classical experience to microscopic systems. This attitude is the
opposite of that underlying the EPR criticism, where the “objective reality”
of the intermediate steps is emphasized.

The example of the two successive measurements also emphasizes a
problem concerning quantum formalism, namely, the coexistence of two dif-
ferent time-evolutions of the state vector. Normally, it transforms swiftly in a

2 Unless the macroscopic change in the apparatus is erased in such a way that it
becomes impossible to extract information on that change.
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deterministic way in accordance with the Schrödinger equation. However, if
a measurement takes place, it changes suddenly and unpredictably.

When particles are detected, the atoms of the detector become ionized,
producing first a few electrons, and then a cascade of electrons. The
state vector should take these macroscopic effects into account. Because
of the linearity of the Schrödinger evolution, there is no mechanism to stop
the evolution and yield a single result for the measurement. Ultimately
the evolution may involve the observer’s brain, since the disappearance of
macroscopic superpositions is attributed to the existence of the observer.
Some extreme advocates of this interpretation have even argued that this
mechanism may be linked to the property of consciousness in the human
brain. Thus it has been argued that quantum mechanics has an anthropocen-
tric foundation, a concept which disappeared from science after the Middle
Ages.

However, a less extreme version of this last formulation of the Copenhagen
interpretation has become emphasized as a result of recent real experiments
on quantum mechanics (Chap. 11). According to Zeilinger [68]:

If we accept that the quantum state is no more than a represen-
tation of the information we have, then the spontaneous change of
the state upon observation, the so-called collapse or reduction of the
wave packet, is just a very natural consequence of the fact that, upon
observation, our information changes and therefore we have to change
our representation of the information, that is, the quantum state.

Moreover, in collaboration with Gregor Weihs, Thomas Jennewein, and
Markus Aspelmeyer, Zeilinger adds [69]:

The general conceptual problem is that we tend to reify – to take too
realistically – concepts like wave and particle. Indeed, if we consider
the quantum state representing the wave simply as a calculational tool
[to calculate probabilities], problems do not arise. Probabilities of the
photon being somewhere? No, we should be even more cautious and
only talk about probabilities of a photon detector firing if it is placed
somewhere... Whenever we talk about a particle, or more specifically
a photon, we should only mean that which a “click in the detector”
refers to.

12.1.2† Two Alternative Interpretations

The wide spectrum of alternative interpretations of quantum physics will be
illustrated with the two examples described below.

Hugh Everett III proposed that what the physical system does, together
with the observer and the environment, is to constantly split the state vector
into all branches corresponding to each result of a measurement, without ever
selecting one of them [82]. Each component of the observer remains unaware of
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all the other components. In this sense, a quantum measurement never takes
place. The illusion of the emergence of a single result appears as a consequence
of the limitations of the human mind. The anthropocentric element creeps in
again. Everett’s formulation3 cannot be disproved by definition. The many-
worlds interpretation constitutes an extreme attempt to reify the notion of
particles.

At the opposite extreme, Å. Bohr and Mottelson, in collaboration with
Ole Ulfbeck, have developed quantum mechanics as the theory of distribu-
tions of uncaused clicks [84]. Since clicks are defined as fortuitous events,
particles are excluded as intermediaries (and dealt away from the quantum
universe). Transformations in space–time become the quantum “objects.” The
mathematical constraints implied by their noncommutability require matrix
representations and state vectors yielding probability distributions, which
are transferred to the distribution of clicks. Although these symbolic struc-
tures may carry usual quantum numbers, they are not longer associated with
particles. For instance, the notion of operator coordinate x̂ stems from the
invariant point under a relativistic Lorentz rotation on the x, t plane. In the
nonrelativistic limit, the relation

[x̂, k̂] = i , (12.5)

becomes satisfied, where k̂ is the generator of translations. Moreover, as shown
in (12.5), Planck constant has no place in this formulation of quantum physics,
which involves only dimensions of space and time.

12.2† Decoherence

During the last 20 years, progress has been made on the interpretation
problem discussed in Sect. 12.1, based on the realization that the linear, time-
dependent, Schrödinger equation is only valid for closed systems.

All states are supposed to be quantum mechanical, including the much
smaller set of classical states. The possible superpositions in Hilbert space are
potentially expanded through the application of the Schrödinger evolution to
processes inside the detector. However, decoherence (the interaction between
systems and environment) leads to the elimination of quantum superpositions
and to the selection of a small subset of classical, pointer states [85].

In the following, we sketch how this may be accomplished for the measure-
ment of a spin 1/2 system (Fig. 12.1). Assume that the spin is, initially, in the
state

ΨS(0) = c0ϕ0 + c1ϕ1 . (12.6)

We consider a quantum apparatus Z with a Hilbert space spanned by the
two states η1, η0. One can assume that the initial state of the binary spin–
apparatus system is

3 The many-worlds formulation has a beautiful literary precedent [83].
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Fig. 12.1. Sketch of the measurement of a qubit. “Rest” is called “environment” in
the text. One of the two alternatives for the Schrödinger cat occurs at the classical
end. (reproduced from [21], with permission from Springer)

ΨS,Z(0) = (c0ϕ0 + c1ϕ1) η1 . (12.7)

The entanglement of the composite system may be produced by means of the
interaction represented by a controlled-NOT gate [see (10.30)]. Thus,

ΨS,Z
t = c0ϕ0η1 + c1ϕ1η0 . (12.8)

If the detector is in the state η1, the system is guaranteed to be found in the
state ϕ0, and vice versa. A physical realization of this entanglement may be
constructed with a particle with spin s = 1/2 and a Stern–Gerlach appara-
tus. However, there is an ambiguity in a correlated state of the form (12.8),
since we may rotate both the spin and the apparatus without changing ΨS,Z

t

(see p. 169). The ambiguity may be superseded by introducing another
system, the environment E , which is also represented by the two quantum
states ε1, ε0. Proceeding as in the former case,

ΨS,Z,E(0) = ΨS,Z
t ε1 −→ ΨS,Z,E

t = c0ϕ0η1ε1 + c1ϕ1η0ε0 . (12.9)

In general, we cannot control the environment. We are limited to evaluate
expectation values of observables belonging to the (S,Z) subsystems. In the
state (12.9), any such expectation value is

〈Q〉 = |c0|2〈ϕ0η1|Q|ϕ0η1〉 + |c1|2〈ϕ1η0|Q|ϕ1η0〉
+2Re (c0c

∗
1〈ϕ1η0|Q|ϕ0η1〉 〈ε0|ε1〉) . (12.10)

The third term in this equation is responsible for introducing interference.
Interaction with the environment may reduce the interference term by a factor
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determined by the overlap 〈ε0|ε1〉. When this overlap is sufficiently small,
one says that the environment induces decoherence in the system. There-
fore, decoherence is effective when the states of the environment that become
correlated with the two alternatives that are present in the state (12.9) are
sufficiently different from each other. In this case, quantum interference effects
become dynamically suppressed [85].

Not all states of the apparatus are equally susceptible to decoherence. In
particular, states that diagonalize the interaction Hamiltonian between the
system and the apparatus show minimal disturbance. They are the so-called
pointer states of the apparatus and they are the only ones that are able to
persist in a relatively stable way and become classically correlated with the
system being measured. An illustration of the mathematical formalism used
to perform these tasks is shown in Sect. 12.3.1†.

Decoherence therefore explains why we do not see quantum superpositions
in our everyday world. Macroscopic objects are more difficult to keep isolated
than microscopic objects. It also explains why spin ↑ and ↓ states are more
easily preserved than their linear combinations through their interaction with
the environment (Fig. 12.1). “Decoherence produces an effect that looks and
smells like a collapse.” [86].

There is a famous paradox, called “the Schrödinger cat” [87]. A qubit is
prepared in the state (12.6) and the macroscopic change in the apparatus is
such that it kills a cat if the qubit is found to be in the ϕ0 state, and does
nothing if it is in ϕ1. If the original superposition (12.6) would be maintained
during the measuring process, the cat should be left in the superposed state.4

Ψ = c0ϕdead + c1ϕalive . (12.11)

However, an observer would only see the cat either dead or alive, because the
duration of the weird state (12.11) will be incredible short in a system with
so many components. The quantum information encoded in the superposed
state becomes inaccessible through correlations between cat and environment.

Decoherence is currently the subject of a great deal of research. Many
questions have been clarified to a large extent in recent years. These include
the rate of decoherence, the dynamical selection of the pointer states, the
dissipation of energy into the environment, and many others.

12.3† The Density Matrix

Up to now we have considered systems that are in pure states Ψ(t). However,
the spin of silver atoms leaving the furnace in a Stern–Gerlach experiment can
display different orientations (β, φ). The probability of exiting the preparation
filter in Fig. 2.4 is |c↑(β, φ)|2 weighted by a probability density depending on

4 Entangled states representing N spins pointing together in opposite directions
Ψ = 1√

2
(ϕ0ϕ0... ϕ0 + ϕ1ϕ1... ϕ1) are called Schrödinger cat states or GHZ states.
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the orientation. In such cases we have less than complete information on the
system. This situation is dealt with through the formalism of the density
matrix.

We assume a statistical mixture of pure states Ψk =
∑

n c
(k)
n (t) ϕn. Each

one displays an associated probability pk (0 ≤ pk ≤ 1;
∑

k pk = 1). For pure
states pk = δka, the ensuing formalism of the density matrix is equivalent to
the one based on the state vector that we have applied so far.

The density operator is defined as

ρ̂ ≡
∑

k

pk ρ̂k ; ρ̂k = |Ψk〉 〈Ψk| . (12.12)

The probabilities pk play a different role than the square modulus of the
amplitudes in pure states such as (12.6). In this last case

ρ̂ = |c0|2|0〉〈0| + |c1|2|1〉〈1| + c∗0c1|1〉〈0| + c∗1c0|0〉〈1| , (12.13)

while the mixture of states yields

ρ̂ = p0|0〉〈0| + p1|1〉〈1| , (12.14)

where the quantum information over phases is lost. We note the following
properties of the density formalism:

• The traces of ρ̂ and ρ̂2 are given by

trace(ρ) =
∑

n

〈n|ρ|n〉 =
∑

kn

pk |〈n|Ψk〉|2 = 1 ;

trace(ρ2) =
∑

kn

p2
k |〈n|Ψk〉|2 ≤ 1 . (12.15)

The trace of ρ̂ is always unity. However, ρ̂ is a projector only for pure states,

and thus ρ̂2 = ρ̂ in this case. The matrix element 〈n|ρ|n〉 =
∑

k pk

∣
∣
∣c

(k)
n

∣
∣
∣
2

is
called the population of the state ϕn. It represents the average probability
of finding the system in this state.

• The mean value of an operator Q̂ at the instant t is

〈Q〉(t) =
∑

k

pk〈k|Q|k〉 =
∑

mn

〈m|ρ|n〉 〈n|Q|m〉

= trace (ρQ) . (12.16)

The nondiagonal matrix elements 〈m|ρ|n〉 =
∑

k pk

(
c
(k)
n

)∗
c
(k)
m represent

averages of cross terms. They are called coherences, and may vanish even
if none of the individual products

(
c
(k)
n

)∗
c
(k)
m does.

• The (useless) overall phase in front of the state vector disappears from the
formalism.
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Among other useful applications, the density matrix provides an adequate
formalism for the description of observables belonging to subsystems A (or
B) of composite systems A ⊗ B. The reduced density operator is defined as

ρ̂(A) = traceB(ρ(AB)) , (12.17)

where the composite system is described by the density ρ̂(AB) and traceB is
a partial trace over system B.

As an example, assume that a two-qubit system is in one Bell state (10.4):

ρ̂ = |ϕBi
〉〈ϕBi

| . (12.18)

Since it is a pure state, trace
(
ρ2
)
=1. We obtain the reduced density operator

for the first qubit by tracing out the second one

ρ̂(1) = trace2 (ρ) =
1
2

(|0〉〈0| + |1〉〈1|) =
1
2

(
1 0
0 1

)

. (12.19)

This is a mixed state, since trace[(ρ(1))2]=1/2. In a Bell state, we have
less than complete information on the properties of each qubit. Moreover,
information encoded in (12.19) is the same for any of the Bell states.

12.3.1† Application to Decoherence

Consider a qubit coupled to other N−1 qubits representing the environment.5

Let the Hamiltonian be

Ĥ = − 4
h̄

Ŝ(1)
z

k=N∑

k=2

jk Ŝ(k)
z , (12.20)

where any interaction between the qubits of the environment is disregarded.
Assume an initial state of the form

Φ(0) = Ψ(0)
k=N∏

k=2

Ψ(k)(0)

Ψ(0) = c0ϕ0 + c1ϕ1 ; Ψ(k)(0) = c
(k)
0 ϕ(k)

0 + c
(k)
1 ϕ(k)

1 . (12.21)

The evolution of the system yields

Φ(t) = exp(−iĤt/h̄)Φ(0) (12.22)

= c0ϕ0

k=N∏

k=2

[
c
(k)
0 exp (ijkt) ϕ(k)

0 + c
(k)
1 exp (−ijkt) ϕ(k)

1

]

+c1ϕ1

k=N∏

k=2

[
c
(k)
0 exp (−ijkt) ϕ(k)

0 + c
(k)
1 exp (ijkt) ϕ(k)

1

]
.

5 See [85], Sect. 2.5.
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The density operator is

ρ̂(t) = |Φ(t)〉 〈Φ(t)| . (12.23)

Since we are interested in the system consisting of the first qubit, we trace
out the remaining ones

ρ̂(1) = |c0|2 |0〉〈0| + |c1|2 |1〉〈1| + z(t) c0c
∗
1|0〉〈1| + z∗(t) c∗0c1|1〉〈0|

z(t) =
k=N∏

k=2

[
|c(k)

0 |2exp (ijkt) + |c(k)
1 |2exp (−ijkt)

]
. (12.24)

The time-dependence z(t) included in the nondiagonal terms encompasses the
relevant information concerning the coherence of the system. If |z(t)| → 0,
we are in the presence of a nonunitary process with an irreversible loss of
information. This simple model is not quite up to this task, since there is a
recurrence time for the function z to reassume the value 1. Nevertheless there
is an effective loss of coherence, since

〈z(t)〉 = lim
T→∞

1
T

∫ T

0

dt′z(t′) = 0,

〈|z(t)|2〉 =
1

2N−1

k=N∏

k=2

[

1 +
(∣
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(k)
0

∣
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∣
2

−
∣
∣
∣c

(k)
1

∣
∣
∣
2
)2
]

(12.25)

which tell us that the fluctuations of z(t) around the mean value 0 are inversely
proportional to square root of the dimensions of the Hilbert space. Therefore,
for a sufficiently large interval, and if the spins of the environment are initially
oriented on the xy plane, the loss of information becomes irreversible. There
is decoherence.

Problems

Problem 1. Show that the mean value of the density matrix is always
positive.

Problem 2. Show that the density operator is Hermitian.

Problem 3. Consider the pure spin state ϕβφ
↑ (5.28).

1. Construct the density operator.
2. Obtain the averages 〈Sx〉, 〈Sy〉, 〈Sz〉.

Problem 4. Consider the unpolarized mixed spin state (pβφ → dΩ/4π).

1. Construct the density operator and compare the result with (12.19).
2. Obtain the averages 〈Sx〉, 〈Sy〉, 〈Sz〉.
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3. Interpret the difference between these averages and those obtained in
Problem 3.

Problem 5. Calculate the value of ∆x for a particle moving in a harmonic
oscillator potential at temperature T . Assume a Maxwell–Boltzmann distri-
bution (pn = exp[−h̄ω n/kBT ]).∫∞
0

exp[−x]xndx = Γ (n)
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A Brief History of Quantum Mechanics

13.1 Social Context in Central Europe During the 1920s

To continue the building analogy of Chap. 1, the theoretical foundations of
physics were shaken at the beginning of the twentieth century. These tremors
preceded those of society as a whole. The historian Eric Hobsbawm has written
[88]:

The decades from the outbreak of the First World War to the after-
math of the second, were an Age of Catastrophe for this society [. . .]
shaken by two world wars, followed by two waves of global rebelion
and revolution [. . .]. The huge colonial empires, built up before and
during the Age of the Empire, were shaken, and crumbled to dust.
A world economic crisis of unprecedented depth brought even the
strongest capitalistic economies to their knees and seemed to reverse
the creation of a single universal world economy, which had been so
remarkable an achievement of nineteenth-century liberal capitalism.
Even the USA, safe from war and revolution, seemed close to collapse.
While the economy tottered, the institutions of liberal democracy
virtually disappeared between 1917 and 1942 from all but a fringe
of Europe and parts of North America and Australasia, as Fascism
and its satellite authoritarian movements and regimes advanced.

Since quantum mechanics was developed for the most part in Northern and
Central Europe (see Table 13.1), we will devote most of our attention here to
the conditions prevailing at that time in Germany and Denmark.

Hobsbawm’s description applies particularly well to the case of Germany.
While the Anglo-Saxon world and the wartime neutrals more or less succeeded
in stabilizing their economies between 1922 and 1926, Germany was over-
whelmed in 1923 with economic, political, and spiritual crises. Hunger riots
erupted everywhere, as the value of the mark plunged to 10−12 of its pre-1913
value. Additional difficulties arose from a repressed military putsch in North
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Table 13.1. Publications in quantum mechanics. July 1925–March 1927 [90]

Country Papers written Country Papers written

Germany 54 France 12
USA 26 USSR 11
Switzerland 21 Netherlands 5
Britain 18 Sweden 5
Denmark 17 others 7

Germany, a separatist movement in the Rhineland, problems with France on
the Rhur, and radical leftist tendencies in Saxony and Thuringia. In the East,
Soviet Russia did not fare better.

A cultural movement against dogmatic rationalism gained ground in
German society after the war. The most widely read book opposed causality to
life, and assimilated physics into causality [89]. Moreover, a profound division
along political, scientific, and geographic lines started to grow in the German
physics community. Right wing physicists were in general chauvinistic, ultra-
conservative, provincial, anti-Weimar, and anti-Semitic. They were interested
in the results of experiments and dissociated themselves from quantum and
relativity theory. On the opposite side, the Berlin physicists were labeled as
liberal and theoretical. Note, however, that the German physicists of that
time, with the possible exception of Einstein and Born, could only be labeled
as liberal or progressive in comparison with Johannes Stark and Philipp
Lenard. The adjective “theoretical” (appearing also in the name of Bohr’s
Institute in Copenhagen) would be translated today as “fundamental.”
Although the main theoretical center was in Berlin, strong theoretical schools
also flourished in Göttingen and Munich. The start of Nazi persecutions in
the thirties and the exclusion of Jews from the first group had consequences in
the world distribution of physicists devoted to the most fundamental aspects
of physics.

After the First World War (1918) German physicists had been excluded
from international collaborations, and the lack of foreign currency made it
almost impossible to purchase foreign journals and equipment. However, a
new national organization, the Notgemeinschaft der Deutschen Wissenschaft,
created in 1920 under the direction of Max von Laue and Max Planck, was
instrumental in the provision of funds for scientific research. Atomic theorists
in Berlin, Göttingen, and Munich received sufficient funds to support the work
of physicists like Heisenberg and Born. The foreign boycott was not observed
by Scandinavia and the Netherlands. Bohr kept friendly relations with his
German colleagues (see p. 210).

Denmark had been on the decline at least since 1864, when it was defeated
by Prussia and Austria with the resultant loss of about one-third of its
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territory. The years after the war represented a period of unprecedented
turmoil in Denmark as well. For the first time in 400 years, this country
teetered on the brink of revolution, although of a kind that was different
from those experienced in neighboring countries. Disputes over the shift of
the border with Germany, social struggles between town and country, fights
for extensive reforms in employment conditions. All these difficulties added
to the loss of wartime markets, and to trade deficits and inflation. In spite of
such hardships, Bohr’s new institute was inaugurated in 1921.

The scientific and the social crisis during the first part of the twentieth
century were both very profound. However, the first one was over by the end
of the 1920s. The second one continued in crescendo until the aftermath of
the Second World War (1945).

13.2 Prehistory of Quantum Physics (1860 ≤ t ≤ 1900)

Gustav Kirchhoff is at the origin of both radiation and matter branches of
quantum physics.1 In 1860 he showed that the emissive power of a black-
body E(ν) depends only on the frequency ν and on the temperature T and
challenged both experimentalists and theoreticians to find such dependence
[93]. This search proved to be full of difficulties. Only in 1893 Wilhelm Wien
demonstrated his displacement law and in 1896 he proposed the exponential
dependence for the function f(ν/T ) in (13.1) [94]. In 1900 Planck modified
this dependence with an extremely successful guess (13.2), that still holds
today

E(ν) = ν3 f(ν/T ) f(ν/T ) = α exp[−βν/T ] (13.1)

→ hν3

c2

1
exp[hν/kT ] − 1

, (13.2)

where the Planck constant h was introduced [2].
Analytical spectroscopy was also started by Kirchhoff in 1860, in collab-

oration with Robert Bunsen [95]. The Balmer formula fitting the frequencies
of the discrete hydrogen spectrum dates from 1885:

νn = cRH

(
1
4
− 1

n2

)

, n = 3, 4, . . . , (13.3)

where RH is the Rydberg constant [7]. No significant progress was made in
understanding Balmer’s formula for 28 years.

1 The sources [90–92] have been used extensively for this chapter.



204 13 A Brief History of Quantum Mechanics

13.3 Old Quantum Theory (1900 ≤ t ≤ 1925)

13.3.1 Radiation

Planck justified his law by means of an unorthodox way of counting partitions
plus the quantum hypothesis: the (fictitious) oscillators of a black-body have
energy [2]

ε = hν . (13.4)

In 1905, Einstein showed that the expression for the increase of entropy with
volume of a gas composed of noninteracting molecules becomes identical to
the same quantity for monochromatic radiation obeying Wien exponential law
(13.1), if in such expression the number of molecules n is replaced by E/hν,
where E is the total energy. Thus, from purely thermodynamic arguments,
Einstein concluded that “... it seems reasonable to investigate whether the
laws governing the emission and transformation of light are also constructed
as if light consisted of ... energy quanta” [3]. This proposal constituted a
revolution, in view of the so far wholly accepted Maxwell’s wave theory of
light. Moreover, Einstein endowed Planck’s oscillators with physical reality.

On the basis of (13.4), Einstein interpreted the photoelectric effect as the
total transfer of the photon2 energy to the electron, whose energy E is given by

E = hν − W , (13.5)

where W is the work function of the metal. This relation was only confirmed
experimentally in 1914 by Robert Millikan [96], although even then Millikan
did not conclude in favor of Einstein’s “bold, not to say reckless hypothesis.”
In fact, from 1905 to 1923 Einstein was the only physicist seriously considering
the existence of light quanta.

From 1906 to 1911, quantum theory was Einstein’s main concern (even
more than the theory of relativity). He contributed to the specific heat of
solids and to energy fluctuations of black-body radiation. In 1909, he foretold:
“It is my opinion that the next phase of theoretical physics will bring us a
theory of light which can be interpreted as a kind of fusion of the wave and
the emission theory.”

Between 1916 and 1917 Einstein made fundamental contributions to the
theory of radiation [58]. Combining classical thermodynamics and electromag-
netism with Bohr’s first two quantum postulates (Sect. 13.3.2), and assuming
thermal equilibrium between atoms and radiation field, he derived:

• The concepts of spontaneous and induced emission and absortion, from
which he could obtain Planck radiation law (13.2) (see Sect. 9.5.4†).

• The momentum of the light particle hν/c which, together with the energy
(1905), completes the properties of a quantum particle.

2 The term “photon” was only coined during the 1920s.
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• The need of a probabilistic description, inherent to the concept of
spontaneous emission.

Eintein’s 1917 paper carried the seeds of many developments in physics.
However, he did not work by himself two rather inmediate consequences:

1. The scattering of an atom and a light particle. Such experiments made by
Arthur Compton verified both the energy and momentum conservation
in these processes and thus confirmed the validity of the light quantum
hypothesis3 (1923, [4]).

2. Satyendra Bose’s derivation of Planck’s law using symmetric states was
translated and submitted for publication by Einstein in 1924 [48]. The
same year Einstein applied Bose’s ideas to an ideal gas of particles [39]
(see Sect. 7.5† on Bose–Einstein condensation).

However, a last storm over the light quanta was on the way (see
Sect. 13.5.2).

13.3.2 Matter

In 1911, the work of Rutherford’s young colleagues Hans Geiger and Ernest
Mardsen showed conclusively that a hydrogen atom consists of one electron
outside the positively charged nucleus, where almost all the mass is concen-
trated [6]. At that time, electrons were supposed to be just particles. (Electron
wave behavior was experimentally verified in [5].)

Like Einstein in 1905, Bohr was aware that the postulates of his 1913
model [8] were in conflict with classical physics:

• An atom displays stationary states of energy En that do not radiate.
• Transitions between stationary states are accompanied by monochromatic

radiation of frequency ν satisfying the Balmer series

hν = En − Em . (13.6)

This assumption implied a renunciation of causality because of the absence
of any directive for the transition.

• For large values of n, the quantum frequency ν should agree with the
classical frequency of light irradiated by the rotating electron. This
correspondence principle constituted the main link between classical
and quantum theory. (See Fig. 4.2 as an illustration of the survival of the
correspondence principle in quantum mechanics.)

3 However, explanations based on classical electromagnetic fields and quantized
processes of emission and absorption could only be completely ruled out after
experimental evidence that there is no lower limit on the accumulation time of
light energy in the photoelectric effect [97] or on the nonexistence of correlations
of a photon with itself [98].
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The derivation of the Rydberg constant as a function of the mass and
the charge of an electron and of Planck’s constant, and the correct helium
ion/hydrogen ratio to five significant figures, commanded the attention of the
physics community.

By means of his precise determination of X-ray energies, Henry Moseley
gave further support to the Bohr model both through the assignment of a Z
value to all known elements and the prediction of the still missing elements
[100]. James Frank and Heinrich Hertz further confirmed the model by using
the impact of electrons on atoms to excite their atomic spectrum [101]. The
Bohr model appeared to work, in spite of its assumptions. In order to joke
about the situation with the old quantum theory, Bohr used to tell the story
of a visitor to his country home who noticed a horseshoe hanging over the
entrance door. Puzzled, he asked Bohr if he really believed that this brought
luck. The answer was: “Of course not, but I am told it works even if you don’t
believe in it.” [92].

Bohr developed his model during a postdoctoral stay at Rutherford’s
laboratory (Manchester, UK). He was appointed professor of physics at
the University of Copenhagen in 1916 and the Universitetets Institut for
Teoretisk Fysik (today, Niels Bohr Institutet) was inaugurated in 1921.
Unlike Einstein and Dirac, Bohr seldom worked alone. His first collaborator
was Hendrik Kramers (Netherlands), followed by Oscar Klein (Sweden).
During the 1920s, there were 63 visitors to the Institute who stayed more
than one month, including ten Nobel Laureates. The flow of foreign visitors
lasted throughout Bohr’s life. He became both an inspiration and a father
figure.

Arnold Sommerfeld established an important school in Munich. In 1914,
it was found that every line predicted by the Balmer formula is a narrowly
split set of lines. By taking into account the influence of relativity theory,
Sommerfeld showed that the orbits of the electrons are approximate ellipses
displaying a parahelion precession [102]. Sommerfeld’s work was also one of
the first attempts to unite the quantum and relativity theories, a synthesis
still not completely achieved.

In Göttingen, Born did not turn his attention to atomic theory until around
1921. Heisenberg and Jordan were his assistants.

In 1924 Pauli had published 15 papers on topics ranging from relativity
to the old quantum theory, the first one before entering the University of
Munich. In 1922, he went for a year to Copenhagen. Later he held a position
at Hamburg. He made the assumption of two-valuedness for electrons and
stated the exclusion principle [35] (Sect. 7.1) so important for understanding
the properties of atoms, metals, nuclei, baryons, etc.
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The crucial experimental results of Stern and Gerlach were known in 1921
[17]. A proposal concerning spin was made4 by two Dutch students from
the University of Leiden, Uhlenbeck, and Goudsmit, who also suggested the
existence of ms = ±1/2 as a fourth quantum number [31] (Sect. 5.2.2).
They explained the anomalous Zeeman effect by including the factor of two
appearing in (5.25), which was accounted for in [103]. After receiving
objections from Henrik Lorentz, Uhlenbeck, and Goudsmit considered with-
drawing their paper, but it was too late. (Their advisor, Paul Ehrenfest,
also argued that the authors were young enough to be able to afford some
stupidity.) The two-component spin formalism (5.24) was introduced by Pauli
in 1927 [32].

Dirac, and independently Enrico Fermi, developed quantum statistics for
antisymmetric wave functions [49,50].

However, until 1925, there were almost as many setbacks as successes in
the application of the model. For instance, the spectrum of He proved to be
intractable, in spite of heroic efforts by Kramers, Heisenberg and others. The
final blow was the negative result of the BKS proposal (Sect. 13.5.2).

13.4 Quantum Mechanics (1925 ≤ t ≤ 1928)

Periodically, Bohr used to gather his former assistants together at the Institute
in Copenhagen. In 1925, the ongoing crisis in quantum mechanics was exam-
ined by Bohr, Kramers, Heisenberg, and Pauli. A few months later, back at
Göttingen, Heisenberg found a way out of the impasse [9]. He succeeded in
formulating the theory in terms of observable quantities, doing away with
the concepts of orbits and trajectories (see Sect. 2.1). Heisenberg found a
correspondence between the coordinate x(t) and the double array xnm (n,m
labeling quantum states). xnm(t) was interpreted as a sort of transition
coordinate, and hence an allowed observable. In order to represent x2(t), he
made the crucial assumption that (x2)nm =

∑
p xnpxpm. Heisenberg solved

the simple but nontrivial problem of the harmonic oscillator by showing that
the Hamiltonian is given by Hmn = Enδnm, where the En reproduce the
correct eigenvalues (Sect. 3.2).

Born and Jordan realized that the arrays (xnm) were matrices and arrived
at the fundamental commutation relation (2.16) in its matrix form (3.45) [104]
(see Fig. 13.1). Born, Heisenberg, and Jordan wrote a comprehensive text on
quantum mechanics, which included unitary transformations, perturbation

4 The combination of the Pauli principle and of spinning electrons prompted Ralph
Kronig to propose the idea of half-integer spin. However, he was dissuaded from
publishing it by Pauli and others, on the grounds that models for electrons
carrying an intrinsic angular momentum h̄/2 either required the periphery of
the electron to rotate with a velocity much larger than the velocity of light c, or
the electron radius to be much larger than the classical value.
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Fig. 13.1. The 1930 Copenhagen Conference. In the front row: Klein, Bohr,
Heisenberg, Pauli, Gamow, Landau, and Kramers. (Reproduced with permission
from the Niels Bohr Archive, Copenhagen)

theory, the treatment of degenerate systems, and commutation relations for
the angular momentum operators [10].

Many of these results were also obtained by Dirac [11], who introduced
the idea that physical quantities are represented by operators (of which
Heisenberg’s matrices are just one representation), the description of physical
states by vectors in abstract Hilbert spaces, and the connection between the
commutator of two operators with the classical Poisson bracket.

In 1926, Pauli and Dirac independently reproduced the results for the
hydrogen atom of old quantum theory using the new matrix mechanics [105,
106].

Zurich-based Schrödinger did not belong to the Copenhagen–Göttingen–
Munich tradition. In 1925 he came across de Broglie’s suggestion [28] that
the wave–corpuscle duality should also be extended to material particles,
satisfying the momentum–frequency relation (4.32). This relation is repro-
duced if the momentum and the energy are replaced by the differential
operators (4.4) and (9.5) and if such operators act on the plane wave solutions
(4.30) and (9.9). Upon making the same substitution in a general Hamiltonian,
Schrödinger derived the time-independent and the time-dependent equations
that bear his name [12]. Quantization was obtained through the requirement
that the wave function should be single-valued [as in (5.49)]. Schrödinger
presented his derivation as a step towards a continuous theory, the integers
(quantum numbers) originating in the same way as the number of nodes in a



13.4 Quantum Mechanics (1925 ≤ t ≤ 1928) 209

classical vibrating string. Schrödinger’s formulation gained rapid acceptance,
both because of the answers that it produced and because it was built from
mathematical tools that were familiar to the theoretical physicists of the time.
Schrödinger hoped that quantum mechanics would become another branch of
classical physics: waves would be the only reality, particles being produced by
means of wave packets. This expectation turned out to be wrong.

In 1926, Schrödinger also proved that the matrix and the differential
formulation are equivalent. Since physicists understood how to transcribe the
language of wave mechanics into matrix mechanics, both of them were referred
to as quantum mechanics.

The probability interpretation of |Ψ(x, t)|2 soon became apparent
(Sect. 4.1.1), and it is usually considered part of the Copenhagen inter-
pretation. However, Born was the first to write it explicitly [27]. In his paper
on collision theory, he also stated that |ci|2 (2.6) was the probability of finding
the system in the state i. He emphasized that quantum mechanics does not
answer the question: what is the state after a collision? Rather it tells us how
probable a given effect of the collision is. Determinism in the atomic world
was thereby explicitly abandoned.

In 1926 Heisenberg was able to account for the He problem using the
Schrödinger equation plus the Pauli principle plus spin (Sect. 8.3) [107].

The relativistic generalization of the Schrödinger time-dependent, two-
component spin formalism (5.24) encountered some difficulties. In 1928, Dirac
produced an equation, linear in both the coordinates and time derivatives,
with the properties that:

• It is Lorentz invariant
• It satisfies a continuity equation (4.16) with positive density ρ (which

previous attempts at relativistic generalization had failed to do)
• It encompasses spin from the start
• It reproduces the accuracy of the Sommerfeld model for the H atom, which

was more accurate than the (new) quantum mechanics [108].

The price that Dirac had to pay for this most beautiful product of twentieth
century mathematical physics was that it turned out to be a four-component
rather than a two-component theory (5.24). Its interpretation including the
additional two components is beyond the scope of this exposition.

A few comments are in order:

• Quantum mechanics and its traditional interpretation were developed over
only a few years (1925–1928). The rate of publication in this period was
such that many physicists complained about the impossibility of keeping
up to date. Moreover, communication delays certainly hampered the
ability of non-European physicists to contribute.

• Quantum mechanics was developed under a very unfavorable social
context (see Sect. 13.1).
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• Unlike previous scientific cornerstones, quantum mechanics was the result
of the coherent effort of a group of people, mostly in Northern and Central
Europe. Table 13.1 shows the number of papers written in each country
during the period of major activity in the creation of quantum mechanics.
It reflects both the predominance of Germany and the number of visitors,
especially in the case of Denmark. It also reminds us that the scientific
center of gravity was only transferred to the other side of the Atlantic
after the Second World War (1939–1945).

• The Bohr Festspiele took place at Göttingen in 1922. After Bohr’s speech,
the 20-year old Heisenberg stood up and raised objections to Bohr’s
calculations. During a walk in the mountains that same afternoon, Bohr
invited Heisenberg to become his assistant in Copenhagen. This anecdote
points out the extreme youth (and self-confidence) of most of the contrib-
utors to quantum mechanics. In 1925 Dirac was 23 years old, Heisenberg
was 24, Jordan 22, and Pauli 25. The “elders” were Bohr (40), Born (43),
and Schrödinger (38).

13.5 Philosophical Aspects

13.5.1 Complementarity Principle

Neither the Heisenberg nor the Schrödinger formulations improved the
contemporary understanding of wave–particle duality. In 1927, Heisenberg
answered the question: can quantum mechanics represent the fact that an
electron finds itself approximately in a given place and that it moves approx-
imately with a given velocity, and can we make these approximations so close
that they do not cause mathematical difficulties? [24]. The answer was given
in terms of the uncertainty relations (2.37) and (9.34) (see the last paragraph
of Sect. 2.6). Heisenberg’s paper was the beginning of the discussion of the
measurement problem in quantum mechanics (Chap. 12), on which so many
volumes have been written.

As most theoretical physicists would have done, Heisenberg derived his
uncertainty principle from the (matrix) formalism (Sect. 2.6). Bohr had the
opposite attitude. While being duly impressed by the existence of at least
two formulations predicting correct quantum results, he insisted on first
understanding the philosophical implications, rather than the formalisms.
His main tools consisted of words, which he struggled continually to define
precisely. Bohr pointed out that theories – even quantum theories – were
checked by readings from classical instruments. Therefore, all the evidence
has to be expressed within classical language, in which the mutually exclusive
terms “particle” and “wave” are well defined. Either picture may be applied
in experimental situations, but the other is then inapplicable. The idea of
complementarity is that a full understanding of this microscopic world comes
only from the possibility of applying both pictures; neither is complete in itself.
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Both must be present, but when one is applied, the other is excluded. These
ideas were stated for the first time at the Como Conference, September 1927.
Bohr continued to reformulate the presentation of the concept of complemen-
tarity throughout the rest of his life [22]. He defined the term “phenomenon”
to include both the object of study and the mode of observation.

13.5.2 Discussions between Bohr and Einstein

Many histories of science display a sequence of continuous successes, thus
ignoring the many frustrations accompanying creative processes. The discus-
sions between Bohr and Einstein about problems of principle illustrate the
difficulties inherent to changes in the description of the physical world, even
in the case of our greatest forefathers.

The first meeting between Bohr and Einstein took place in 1920, on the
occasion of Bohr’s visit to Berlin. Verification of general relativity through
the bending of light had taken place shortly before. Thus Einstein was on
the zenith, while Bohr was only a rising star. Although they interchanged
affectionate compliments, the subject of their Berlin conversations remains
unclear. As many other physicists, at that time Bohr did not believe in light
quanta, and this disbelief continued even after Compton’s experiment (1923).
In 1924 there appeared a paper signed by Bohr, Kramers and the American
physicist John Slater with the following contents [109]:

• Since the simultaneous validity of the (continuous) wave theory of light,
and the description of matter processes involving (discrete) energy
transitions is incompatible with conservation of energy in individual
events, this principle is given up, as well as conservation of momentum.
They hold only statistically.

• Statistical independence of the processes of emission and absorption in
distant atoms is also assumed.

• The mediation of virtual fields produced by virtual oscillators is proposed.
However, the paper describes neither formal mechanisms governing the
behavior of these entities, nor their interaction with real fields. In fact,
(13.6) is the only mathematical expression included in the paper.

Born, Klein and Schrödinger reacted positively. Einstein and Pauli were
against. However, two experiments on Compton scattering ended the BKS
speculation during the following year. They concerned the time-interval
between the electron recoil and the scattered photon, and momentum
conservation in individual processes. The BKS proposal marked the end
of old quantum mechanics.

Einstein’s initial appraisal of Heisenberg’s and Schrödinger’s quan-
tum mechanics appears to have been positive. However, the approval was
withdrawn after Born’s probabilistic interpretation. Einstein never accepted
limitations to our knowledge arising from first principles of the theory.
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Quantum mechanics was discussed at the V Solvay Conference (1927)
in Brussels, attended by all founders. Einstein expressed his concern over
the extent to which the causal account in space and time had been aban-
doned in quantum mechanics. The discussions centered on whether a fuller
description of phenomena could be obtained through the detailed balance of
energy and momentum in individual processes. For instance, in the case of a
beam of particles passing through a slit in a diaphragm, Einstein would sug-
gest that the indetermination principle could be invalidated by measuring the
momentum of the recoiling slit. During the evenings Bohr would explain how
the inherent uncertainty in the location of the slit due to its recoil restored
Heisenberg’s principle. Bohr systematically emphasized the need to fully spec-
ify the measuring apparatus in any experiment. It was on this occasion that
Einstein asked whether God had recourse to playing dice, to which Bohr
replied by calling for great caution in ascribing attributes to Providence in
everyday language.

At the next Solvay meeting in 1930 (Fig. 13.2), Einstein claimed that a
control of energy and time could be achieved using relativity theory. He pro-
posed the device represented in Fig. 13.3, consisting of a box with a hole on a
wall and a clock inside, such that a single photon might be released at a known
moment. Moreover, it would be possible to measure the energy of the photon
with any prescribed accuracy by weighing the box before and after the event,
and making use of the relativity equation E = mc2. Bewilderment among
quantum physicists lasted until the next day, when Bohr came up with an
answer based on general relativity: since the rate of the clock depends on its
position in a gravitational field, the lack of precision in the box displacement
generates an uncertainty ∆t in the determination of time, while the indetermi-
nacy in the energy ∆E is obtained through the position–momentum relation
(2.37). The product ∆t∆E satisfies the Heisenberg time–energy uncertainty
relation.

Starting then, Einstein did not attack the consistency of quantum
mechanics. However, in 1935 Einstein, Podolsky and Rosen presented a
profound argument pointing to the incompleteness of quantum mechanics
[16]. They considered a system consisting of two entangled but spatially
separated particles. An adaptation of their argument to the case of spin
entanglement is presented in Sect. 11.2. Until his end Einstein believed that,
although quantum results were correct, indeterminacies appeared because
some parameters characterizing the system were unmeasurable. These hidden
variables should be incorporated into the description of physical systems.
A more fundamental theory should bear to quantum mechanics a relation
similar to the one existing between classical and statistical mechanics [110].

Most of the physics community rejected the EPR conclusion because of
Bohr’s reply, which was based on his concept of “phenomenon.” According to
Bohr, the two (mutually exclusive) experimental setups were not specified in
the EPR definition of reality [81].
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Fig. 13.2. Einstein and Bohr leaving the Solvay meeting of 1930. (Reproduced with
permission from the Niels Bohr Archive, Copenhagen)

Fig. 13.3. Sketch of the thought experiment proposed by Einstein in order to reject
the time–energy uncertainty relation. (Reproduced with permission from the Niels
Bohr Archive, Copenhagen)
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Probably the best description of Einstein’s and Bohr’s respective
positions is stated in Bohr’s presentation on the occasion of Einstein’s
seventieth birthday [111] and in Einstein’s answer in the same volume [110].

13.6 Recent History

Rather than dwell on philosophical interpretations of equations, most
physicists proceeded to carry out many exciting applications of quantum
mechanics [86]:

This approach proved stunningly successful. Quantum mechanics was
instrumental in predicting antimatter, understanding radioactivity
(leading to nuclear power), accounting for the behavior of materials
such as semiconductors, explaining superconductivity, and describing
interactions such as those between light and matter (leading to the
invention of the laser) and of radio waves and nuclei (leading to
magnetic resonance imaging). Many successes of quantum mechanics
involve its extension, quantum field theory, which forms the founda-
tions of elementary particle physics . . . .

On the other hand, the controversy over the EPR experiment did not die
down, but the important issue turned out to be the locality of quantum
mechanics, not its completeness. In 1952 Bohm was able to reproduce
the quantum mechanical predictions for systems of the EPR-type using a
deterministic hidden-variable formulation, including nonlocal interactions
between spatially separated particles [112].

In 1964 Bell proved that nonlocality is an inherent characteristic of hidden
variable theories reproducing the results of quantum mechanics [74]. Moreover,
he showed that the correlations between measured properties of any classical,
deterministic, local two-particle theory would obey a mathematical inequality.
On the contrary, the same measurements would violate such an inequality if
the two particles were in an entangled quantum state. Three-particle entangled
states are predicted to display even more spectacular contradictions.

Following instrumental improvements in the production of entangled
photons, Bell’s contribution was followed by many proposals of possible
experiments. They culminated in the results of [76] and [77], which are in
conclusive disagreement with the results of local hidden-variable theories.
The quantum mechanical correlations cannot be reproduced within the realm
of local realism (Sect. 11.2).

However, one may not conclude that these tests have proven the validity
of quantum mechanics. It is worthwhile to remember that experiments can
only prove that a theory is incorrect, if their results contradict the predictions
of the theory. The validity of quantum mechanics should be further tested
by checking consequences of modifications of quantum principles [such as the
linearity of the Schrödinger equation (9.5)] against experiment.
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Solutions to Problems
and Physical Constants

14.1 Solutions to Problems

Chapter 2
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Problem 10.

result probability result probability

g1 4/5 f1 17/25
g2 1/5 f2 8/25

Problem 11.

(1) P (4kp) =
1
6

, P (kp) =
5
6
.

(2) 〈Ψ|K|Ψ〉 =
3
2
kp , ∆K =

√
5

2
kp.

(3)
1√
5

ϕp +
2√
5

ϕ(−p) .

Problem 12. ∆x ≈ 10−19 m, ∆v ≈ 10−19 m s−1.

Problem 13.

(1) ∆EH/∆E = O(10−25) .
(2) x = O(1010) m.

Chapter 3

Problem 1.

(1) 0 , ±
√

2 .

(2) ϕ±
√

2 =
1
2

⎛

⎝
1
0
0

⎞

⎠± 1√
2

⎛

⎝
0
1
0

⎞

⎠+
1
2

⎛

⎝
0
0
1

⎞

⎠ ,

ϕ0 =
1√
2

⎛

⎝
1
0
0

⎞

⎠− 1√
2

⎛

⎝
0
0
1

⎞

⎠ , U =
1
2

⎛

⎝
1

√
2 1√

2 0 −
√

2
1 −

√
2 1

⎞

⎠ .

Problem 2.

(1) ∆± = ±
√

a2 + c2 .

(2) ∆± = ±|a|
(

1 +
c2

2a2
+ · · ·

)

.

(3) ∆± = ±|c|
(

1 +
a2

2c2
+ · · ·

)

.

Problem 3. 〈1|2〉 = 〈1|3〉 = 〈2|4〉 = 〈3|4〉 = 0 .
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Problem 4.

(1) ∆Q = (0.5, 0.5,−1) , ∆R = (0.5,−0.5, 1) .
(2) [Q̂, R̂] = 0 .

(3)

⎛

⎝
1/
√

2
1/
√

2
0

⎞

⎠ ,

⎛

⎝
1/
√

2
−1/

√
2

0

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠ .

Problem 5.

(1) ± h̄

2
.

(3) ϕβ↑ = cos
β

2

(
1
0

)

+ sin
β

2

(
0
1

)

, ϕβ↓ = sin
β

2

(
1
0

)

− cos
β

2

(
0
1

)

.

Problem 7.

(1) E = V0 +
7h̄

2

√
c

M
.

(2) E = − b2

2c
+ h̄

√
c

M

(

n +
1
2

)

.

Problem 8.

(1) xc =
√

h̄/(Mc)1/4 .
(2) 3h̄ω .

Problem 9.

(1) 2Mω

h̄
〈n + 2|x2|n〉 = − 2

h̄Mω
〈n + 2|p2|n〉 =

√
(n + 1)(n + 2) , and 0 otherwise.

(3)
〈n|K|n〉
〈n|V |n〉 = −〈n ± 2|K|n〉

〈n ± 2|V |n〉 = 1 .

Problem 10. Zero.

Problem 11.

(1) Ψ =
1√
2

ϕ0 +
1√
2

ϕ1 .

(2) 〈Ψ|x|Ψ〉 = 1√
2
xc , 〈Ψ|p|Ψ〉 = 〈Ψ|Π|Ψ〉 = 0 .

Chapter 4

Problem 2.

(1) ϕn =

√
2
a

sin(knx) (0 ≤ x ≤ a) and ϕn = 0 otherwise.

kn = nπ/a , En = h̄2k2
n/2M .

(3) No.
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Problem 3. E ≈ (∆p)2/2M ≥ h̄2/8Ma2 .

Problem 4. iκ coth
κa

2
= k cot

ka

2
, κ =

√
2M(V0 − E)/h̄ ,

k =
√

2ME/h̄ .

Problem 5.
∑

k

Ek − a

2π

∫

Ekdk ≈ Ekmax = h̄2k2
max/2M .

Problem 6.

(1) ρ(E) =
a

πh̄

√
M

2E
.

(2) 0.81 × 107 eV.

Problem 7.

(1) − cot
ka

2
=

κ

k
.

Problem 8. 1 eps, 1 eps + 1 ops, 2 eps + 1 ops, 2 eps + 2 ops.

Problem 9. R = 0.030 , T = 0.97 .

Problem 10.

(1) xd ≈ 1/κ = 1.13 Å.
(2) T = 1.7 × 10−15 .

Problem 11. lim
κa1

T =
2E/V0

2E/V0 + MV0a2/h̄2 ,

lim
κa�1

T =
16E

V0

(

1 − E

V0

)

exp
[

−2a

h̄

√
2M(V0 − E)

]

.

Problem 12. 3× 10−3 Å.

Problem 13.

(2) The lattice exerts forces on the electron.

(3) 〈k|p|k〉 = h̄k

∫

|uk|2dx − ih̄
∫

u∗
k

duk

dx
dx .

Problem 14. 1
Meff

= 1
M ∓ d2

h̄2(df/dE)E=E0
, where f(E0) = ±1.

Problem 15.

(1) η =
(

2h̄
√

2π
aα

)1/2

.

(2) |Ψ|2 = α
h̄
√

2π
exp[−x2α2/2h̄2]

(3) 0, h̄2/α2.
(4) 0, α2/4.



14.1 Solutions to Problems 219

Chapter 5

Problem 1. O
(
1031

)
.

Problem 2.
h̄√
2

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ −→ h̄

⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ .

Problem 4. ih̄J .

Problem 5.

(1) 〈00|Y20|00〉 = 〈11|Y21|21〉 = 〈00|Y11|11〉 = 〈00|Π|10〉 = 0 .
(2) 〈10|Y20|10〉 = 0.25 , 〈00|Y11|1(−1)〉=−0.28, 〈00|Π|00〉 = −〈11|Π|11〉 = 1 .

Problem 7.

(1) ϕsx=± 1
2

=
1√
2

(
1
±1

)

, ϕsy=± 1
2

=
1√
2

(
1
±i

)

.

(2) ± h̄

2
,

1
2

.

(3) Ŝx =
h̄

2

(
0 i
−i 0

)

.

(4) ϕsx=± 1
2

=
1 ± i

2
ϕsy= 1

2
+

1 ∓ i
2

ϕsy=− 1
2

.

Problem 8.

(1)
1
2
(a + b)2 .

(2)
1
2
(a2 + b2) .

(3) a2 .

Problem 9.

(1)
h̄

2
, cos2

β

2
, − h̄

2
, sin2 β

2
.

(2)
h̄

2
cos β .

Problem 10.

(1) ϕ 3
2

1
2

= −
√

2
5
Y20

(
1
0

)

+

√
3
5
Y21

(
0
1

)

, ϕ 5
2

1
2
=

√
3
5
Y20

(
1
0

)

+

√
2
5
Y21

(
0
1

)

.

(2) Yll

(
1
0

)

, 1 .

Problem 11. Equation (7.12).

Problem 12.
∑

m1m2
c(j1m1, j2m2, jm)c(j1m1, j2m2, j

′m′) = δjj′δmm′ ,∑
jm c(j1m1, j2m2, jm)c(j1m′

1, j2m
′
2, jm) = δm1m′

1
δm2m′

2
.

Problem 13. ϕ 1
2 ljm = (−1)

1
2+l−j ϕl 1

2 jm.
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Chapter 6

Problem 1. 2.5 × 10−3 eV.

Problem 2.

(1) 1s 1
2

, 2s 1
2

, 2p 1
2

, 2p 3
2

, 3s 1
2

, 3p 1
2

, 3p 3
2

, 3d 3
2

, 3d 5
2

.

(2) 0s 1
2

, 1p 1
2

, 1p 3
2

, 2s 1
2

, 2d 3
2

, 2d 5
2

, 3p 1
2

, 3p 3
2

, 3f 5
2

, 3f 7
2

.

Problem 3.

(1) (N + 1)(N + 2) .

(2)
h̄2

2
N(N + 3) .

(3) ENlj = h̄ω

(
αNlj

16
+

3
2

)

, where αNlj = 0(0s 1
2
) , 10(1p 3

2
) , 20(1p 1

2
) ,

27(2d 5
2
) , 37(2d 3

2
) , 37(2s 1

2
) , 39(3f 7

2
) , 53(3f 5

2
) , 53(3p 3

2
) , 59(3f 1

2
) .

(4) l = N , j = N +
1
2

.

Problem 4. ϕn =
1√
2πa

1
r

sin
nπr

a
, En =

1
2M

(
h̄nπ

a

)2

.

Problem 5. r
(nr=1,l=0)
max = 5.2a0 , 〈200|r|200〉 = 6a0 , r

(nr=0,l=1)
max = 4a0 ,

〈21ml|r|21ml〉 = 5a0 .

Problem 7.

(1)
R

〈100|r|100〉 = 1.5 × 10−5 (H) ,
R

〈100|r|100〉 = 7.3 × 10−3 (Pb) .

(2)
R

〈100|r|100〉 = 3.1 × 10−3 (H) ,
R

〈100|r|100〉 = 1.5 (Pb) .

Problem 8. r2 → s , ϕ(r2) → s1/4φ(s) , l(l + 1) → 1
4
l(l + 1) − 3

16
,

1
4
E → e2/4πε0 ,

1
8
Mω2 → −E .

Problem 9. Es=0 = −3
4
ah̄2 , Es=1 =

1
4
ah̄2 .

Problem 10.

(1) µBBz .
(2) 3

2vsoh̄
2 .

(3) 1
2vsoh̄

2
(
9 + 2q + q2

)1/2
.



14.1 Solutions to Problems 221

Problem 11. jr = |A|2h̄k/r2M , flux(dΩ) = |A|2h̄kdΩ/M .

Problem 12.

(1) β− = −1 + ak− cot ak− ; k− = 1
h̄

√
2MV0.

(2) β+ = sin δ0/(ak cos δ0 + sin δ0) ; k = 1
h̄

√
2ME.

(3) tan δ0 = ka (1 − tan ak−/ak−).
(4) σ(θ) = a2 (1 − tan ak−/ak−)2.
(5) σ = 4π a2 (1 − tan ak−/ak−)2.

Problem 13.

(1) V = V (ρ) , ρ ≡
√

x2 + y2 , φ ≡ tan−1(y/x) .

(2)
1

2M

(
p̂2

x + p̂2
y

)
= − h̄2

2M

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2

)

, Eml
= E−ml

.

(3) En = h̄ω(n + 1) , n + 1 , n = 0, 1, 2, . . . .

Chapter 7

Problem 1.

(1)
1

2xc

√
2π

exp
(

− x2

2x2
c

)(

1 +
x2

x2
c

)

, xc

√
2 , 0.10 .

(2)
1

xc

√
2π

exp
(

− x2

2x2
c

)

, xc , 0.16 .

(3)
1

x3
c

√
2π

exp
(

− x2

2x2
c

)

x2 , xc

√
3 , 0.0021.

Problem 2.

(1) ϕ+ =
1√
2

[
ϕ100(1)ϕ21ml

(2) + ϕ100(2)ϕ21ml
(1)
]
χs=0 ,

ϕ− =
1√
2

[
ϕ100(1)ϕ21ml

(2) − ϕ100(2)ϕ21ml
(1)
]
χs=1,ms

.

(2) E+ > E− .

Problem 3. J = 0, 2, 4 .

Problem 4.

(1) s.
(2) a.
(3) s.
(4) a.
(5) s.

Problem 5. J even.
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Problem 6.

(1) 3/2, 1/2 .
(2) 1/2 .

Problem 8.

(1) 1
2+, 3

2−, 1
2−, 5

2+, 7
2−, 1

2−
(2) 3

2−, 5
2+, 7

2−
(3) 1

2+ or 3
2+, 3

2− or 5
2−.

Problem 9.

(1) 3.8/ − 0.26/4.8 (µp).
(2) −1.9/0.64/ − 1.9 (µp).

Problem 10.

(1) 1 × 10−3.
(2) 2 × 10−1.
(3) 4 × 10−3.

Problem 11. n(ε) =
Mε

πh̄2 , CV = 2nFkB
T

TF
.

Problem 12. 1/3; 1/2; 3/5.

Problem 13.

(1) 5.9 × 103 Å.
(2) Red.

Problem 14.

(1) −π2

12 (kBT )2 /εF .
(2) −1.7× 10−4 eV.

Problem 15. Constant.

Problem 16. qaa + qbb , −qac , qbc .

Problem 17.

(2) −
√

2j + 1.

Chapter 8

Problem 1.

(1) Equation (8.10).
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(2) c
(2)
p
=n =

1

E
(0)
n − E

(0)
p

⎡

⎣
∑

q 
=n

c
(1)
q 〈ϕ(0)

p |V |ϕ(0)
q 〉 − E

(1)
n c

(1)
p

⎤

⎦ , c
(2)
n = −1

2

∑

p
=n

|c(1)p |2.

Problem 2.

(1) E
(1)
1 = E

(1)
2 = 0 , E

(1)
3 = 2c .

(2) E
(2)
1 = −E

(2)
2 =

|c|2
3

, E
(2)
3 = 0 .

(3) ϕ(1)
1 =

c

3
ϕ(0)

2 , ϕ(1)
2 = − c

3
ϕ(0)

1 , ϕ(1)
3 = 0 .

(4) ϕ(2)
1 = −|c|2

18
ϕ(0)

1 , ϕ(2)
2 = −|c|2

18
ϕ(0)

2 , ϕ(2)
3 = 0 .

(5) E± =
7
2
± 3

2

√

1 +
4|c|2

9
≈ 7

2
± 3

2
± |c|2

3
, E3 = −1 + 2c .

Problem 3.

(1) E
(1)
0 = 0 , E

(2)
0 = − k2

2Mω2
.

(2) E
(1)
0 =

bx2
c

4
, E

(2)
0 = − b2x2

c

16Mω2
.

Problem 4.

(1) E
(1)
0 = − 3

32M

(
h̄ω

c

)2

.

(2) 10−8 .

Problem 5. Ψn =

⎡

⎣1 − 1
2

∑

p
=n

|〈ϕ(0)
p |V |ϕ(0)

n 〉|2

(E(0)
n − E

(0)
p )2

⎤

⎦ϕ(0)
n

+
∑

p
=n

〈ϕ(0)
p |V |ϕ(0)

n 〉
E

(0)
n + 〈ϕ(0)

n |V |ϕ(0)
n 〉 − E

(0)
p

ϕ(0)
p +

∑

p,q( 
=n)

〈ϕ(0)
p |V |ϕ(0)

q 〉〈ϕ0
q|V |ϕ(0)

n 〉
(E(0)

n − E
(0)
p )(E(0)

n − E
(0)
q )

ϕ(0)
p .

Problem 7.

(1) 〈H〉 =
h̄ω

4

[
M

M∗ +
M∗

M
− 3

8
h̄ω

Mc2

(
M∗

M

)2

+
15
32

(
h̄ω

Mc2

)2(
M∗

M

)3

+ · · ·
]

.

(2) 1 =
(

M∗

M

)2

− 3
4

h̄ω

Mc2

(
M∗

M

)3

+
45
32

(
h̄ω

Mc2

)2(
M∗

M

)4

+ · · · .
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(3)
M∗

M
= 1 +

3
8

h̄ω

Mc2
− 45

128

(
h̄ω

Mc2

)2

+ · · · .

(4) 〈H〉 =
h̄ω

2

[

1 − 3
16

h̄ω

Mc2
+

3
16

(
h̄ω

Mc2

)2

+ · · ·
]

.

Problem 8.
〈

1s2p ±
∣
∣
∣
∣

e2

4πε0r

∣
∣
∣
∣ 1s2p±

〉

= −(0.98 ± 0.08)EH .

Problem 9.

〈H〉Z Z∗ 〈H〉Z∗ exp

He 5.50 1.69 5.69 5.81
Li+ 14.25 2.69 14.44 14.49
Be++ 27.00 3.69 27.19 27.21

Problem 10. ∆E =
3h̄ω

4

(
xc

R0

)4

l(l + 1) − h̄ω

2

(
xc

R0

)6

l2(l + 1)2 .

Problem 11.

(1) ε0 = −8.75 × 10−4 eV ; R0 = 2.87 Å .
(2) h̄ω = 4.0 × 10−3 eV.
(3) h̄2/2µR2

0 = 1.29 × 10−4 eV.

Problem 12.

(1)

⎛

⎝
19.382 −1.052

21.618 1.702
−1.052 1.702 30

⎞

⎠

(2)

n En c
(n)
1 c

(n)
2 c

(n)
3

1 19.278 0.807 −0.588 0.099
2 21.272 0.596 0.783 −0.203
3 30.449 0.023 0.225 0.975

(3) differences: O
(
10−3

)

Problem 13. E±(m = 0) = E
(0)
n=2 ± 3eEza0 , E(m = ±1) = E

(0)
n=2 .

Problem 14.

(1) j(2j + 1) × j(2j + 1) .

(2)
(

j +
1
2

)

×
(

j +
1
2

)

.

(3) Ea = −g

(

j +
1
2

)

, Eb = 0 .
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Chapter 9

Problem 1. 0.50 − 0.40 sin(3π2h̄t/2Ma2) .

Problem 2.
d〈Ψ|p|Ψ〉

dt
= −

〈

Ψ
∣
∣
∣
∣
dV

dx

∣
∣
∣
∣Ψ
〉

.

Problem 3. cy↑ =
1 − i√

2
cos
(

1
2
ωLt +

π

4

)

.

Problem 4. Un(t, 0) = cos
ωLt

2
I + i sin

ωLt

2
n · σ̂.

Problem 5. 0.36, 0.50, 0.13 .

Problem 6. P
(1)
↑→↓ =

ω′2

(ω − ωL)2
sin2

[
1
2
t(ω − ωL)

]

.

Problem 7.

(1) c0→1 = − ivV0

h̄xc

√
2
π

exp
(

− h̄ω

4Mv2

)∫ t2

t1

t exp

[

−v2

x2
c

(

t − i
h̄

2Mv2

)2
]

dt .

(2) |c0→1|2 =
V 2

0

2M2v4
exp
(

− h̄ω

2Mv2

)

.

Problem 8.

(1) Ψ(t) = cos θ0 exp
[

− iV0 sin(ωt)
4h̄ω

]

χ1
0 + sin θ0 exp

[
i3V0 sin(ωt)

4h̄ω

]

χ0
0 .

(2) Ψ(t) = exp
[

− iV0 sin(ωt)
4h̄ω

]

ϕB0
.

Problem 9. P0→1 = 2
(

Kxc

h̄ω

)2

sin2 ωt

2
.

Problem 10.

(1) c
(2)
k =

1
h̄2

∑

j

〈k|V |j〉〈j|V |i〉
[

1
ωkiωkj

+
exp(iωkit)

ωkiωji
+

exp(iωkjt)
ωkjωij

]

.

(2) P0→2 = 2
(

Kxc

h̄ω

)4

sin4 ωt

2
.

Problem 11.

(2) 0.5 and 0.5 × 10−7 .
(3) 2 × 10−2 .

Problem 12.
∣
∣
∣
∣
〈210|r|100〉
〈310|r|100〉

∣
∣
∣
∣

2

= 6.3 ,
P (100 → 210)
P (100 → 310)

= 3.8 .

Problem 13.

(1)
P (310 → 200)
P (310 → 100)

= 0.13 .

(2) 1.1 × 10−8 s.
(3) 4 × 10−7 eV.
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Chapter 10

Problem 1.

ϕB0
ϕB1

ϕB2
ϕB3

Ŝz(1) Ŝz(2) 1 1 −1 −1
Ŝx(1) Ŝx(2) 1 −1 1 −1

Problem 2.

(1) (1, 0).
(2) (3/4, 1/4).
(3) O

(
10−13

)
.

Problem 3. Ŝz

(
ϕB1

)
, Ŝx

(
ϕB2

)
, Ŝy

(
ϕB3

)
.

Problem 4.

(1)

⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟
⎟
⎠.

(2) Uctr
H U tag

H UCNOTU tag
H Uctr

H .

Problem 8. Each of Alice’s transformations yields a unique Bell state.

Problem 9.

fi ci0 ci4 ci8 ci12

1 1 1 1 1
2 1 i −1 −i
4 1 −1 1 −1
8 1 −i −1 i

Chapter 12

Problem 3.

(1) ρ̂ = 1
2

(
1 + cos β exp[−iφ] sin β

exp[iφ] sinβ 1 − cos β

)

(2) 〈Sx〉 = h̄
2 sin β cos φ; 〈Sy〉 = h̄

2 sin β sinφ; 〈Sz〉 = h̄
2 cos β.

Problem 4.

(1) ρ̂ = 1
2

(
1 0
0 1

)

(2) 〈Sx〉 = 〈Sy〉 = 〈Sz〉 = 0.

Problem 5. ∆x =
√

h̄
Mω

(
1
2 + kBT

h̄ω

)
.
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1
4
.2

P
h
y
si

ca
l
U

n
it

s
a
n
d

C
o
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Bohr, Å., XII, 194
Bohr, N., XII, 1, 2, 12, 73, 192, 202,

206–208, 210–214
Boltzmann constant, 108, 227
Boltzmann, L., 1
Born, M., 2, 202, 206, 207, 209–211
Born–Oppenheimer approximation,

111, 133
Bose, S., 205
Bose–Einstein

condensation, 102, 115–117, 205
distribution, 123, 205

boson, 101, 127
occupation number, 102, 125

boundary conditions, 48, 50, 53, 57, 88,
136

bra, 8
Brillouin–Wigner perturbation theory,

131, 139, 144
BRST, 143

Ca atom, 189
calcite crystal, 159
center of mass, 135, 137
central potentials, 83, 84, 99
classical bit, 7
classical computation, 7, 167



234 Index

classical electromagnetism, 6, 71, 156,
157

classical physics, 5–7, 13, 67, 169
Clebsch–Gordan coefficients, 76, 80
closed shell, 104–107, 110, 127
closure, 18, 24, 30, 38, 40
coherence, 197
collective

coordinate, 142, 143
subspace, 143

column vector, 29
commutation relation, 8, 10, 19, 22
complementarity, 2, 186, 210, 211
complete set of states, 22, 24, 44, 48,

70, 73
completeness of quantum mechanics,

212
Compton effect, 1, 205
Compton, A., 205
conduction band, 110
conductor, 110
confluent hypergeometric functions, 93
constant-in-time perturbation, 153
continuity conditions, 53, 55, 59, 60, 63,

90
continuity equation, 46
control qubit, 170
controlled-NOT gate, 177–179
controlled-phase gate, 178, 179
controlling Hamiltonian, 177
Cooper pairs, 146
Copenhagen interpretation, 12, 193, 209
correspondence principle, 50, 205
Coulomb

potential, 84–87, 91, 92, 95, 104, 106,
132, 137

repulsion, 103, 104, 127, 132, 133, 135
covalent binding, 133
Cr ion, 162
creation and annihilation operators, 35,

36, 102, 111, 125, 126, 128, 158
cross-section

differential, 90
total, 90

cryptographic key, 171
cryptography, XI, 168, 171, 189

de Broglie, L., 2, 208
decay law, 155

decoherence, 176, 191, 194, 196, 199
degenerate states, 52, 54, 62, 84–86,

95–97, 103, 119, 131, 134, 138–140,
145

density matrix, 2, 191, 197
density of states, 108, 155, 158
density operator, 197
detector, 13, 15
determinism, 1, 209
deterministic evolution of the state

vector, 191
deuteron, 127
diagonal matrix element, 14
differential formulation, 2, 44, 209
dilatation, 22
dimensionless coordinates, 47, 49, 86, 91
Dirac equation, 87, 209
Dirac, P.A.M., XI, 2, 8, 153, 206–210
distance of closest approach, 90

effective mass, 66
Ehrenfest theorem, 163
Ehrenfest, P., 207
eigenfunction, 48, 53–55, 66
eigenstate, 12–15, 20, 23, 24
eigenvalue, 8, 9, 11, 12, 14, 20, 23, 31,

32, 48, 51, 53–55, 62
eigenvalue equation, 11, 15, 16, 23, 45,

55, 65
eigenvector, 8, 9, 11, 13, 23, 24, 27
Einstein, A., 1, 5, 115, 158, 161,

204–206, 211–214
electron

charge, 227
diffraction, 1
gas, 54, 108
mass, 227

electron shell structure, 104
emission processes, 160
entangled

photons, 174, 214
states, 100, 103, 168–170, 212, 214

entanglement, XI, 168, 169
environment, 177, 195, 198
EPR, 5, 12, 187, 188, 192, 212, 214
Euclidean space, 22
Everett III, H., 193
evolution operator, 147, 148



Index 235

exclusion principle, 102, 126, 206, 207,
209

expectation value, 14, 20, 27, 32, 36, 41,
47, 66, 130, 132, 133, 145

factorization, 83, 99, 174, 176
Faraday, M., 1
Fermi

energy, 61, 66, 108, 120, 121, 124
golden rule, 155, 160
momentum, 108
temperature, 108

Fermi, E., 207
Fermi–Dirac distribution, 109, 123, 124,

128
fermion, 101, 127, 128

occupation number, 102, 126
Feynman perturbation theory, 131
Feynman, R., XI, 101, 183
filter, 15
final state, 150, 153–155, 161, 162, 168
fine structure constant, 159, 227
finite square well, 43, 55
folded diagrams, 138
forbidden transitions, 162
Fourier expansion, 22
Fourier transformation, 179, 180
fourth quantum number, 73, 207
fractional quantum Hall effect, 121
Frank, J., 206
Fraunhofer pattern, 186
free particle, 20, 22, 51

time-dependent state, 5, 148

GaAs, 113, 114
Galilei, G., 1
Gamow, G., 208
Geiger, H., 205
Gerlach, W., 7, 15, 72, 73, 207
Gossard, A., 118
Goudsmit, S., 73, 207
gyromagnetic ratio, 72, 74

H atom, 84, 85, 87, 91, 96, 97, 131, 132,
146

H ion, 33, 133–135
Hadamard gate, 34, 177, 178
Hall effects, 118, 121
Hamilton–Jacobi formulation, 2

Hamiltonian, 10, 26, 34, 45, 47, 48, 83,
84, 148, 149

Hankel functions, 89, 95
hard sphere scattering, 90
harmonic oscillator, 106

1D, 93, 126, 136, 144, 145
matrix treatment, 34, 36–39, 207
position treatment, 43, 47, 48, 50, 51

2D, 97, 113, 119
3D, 84, 85, 92, 93, 95, 96, 106, 107,

116, 127, 146
He atom, 103, 127, 132, 145, 207, 209
He nuclei, 101
Heisenberg realization of quantum

mechanics, 29, 207, 210
Heisenberg, W., 1, 3, 19, 20, 99, 202,

206–211
Helmholtz, H., 1
Hermite polynomials, 48
Hermitian

conjugate, 9, 19, 23, 26
operator, 9, 11, 19, 23, 24, 48

Hertz, H., 206
hidden variables, 187, 212, 214
Hilbert space, 8, 9, 15, 22, 208
history of quantum mechanics, 201, 207,

214
Hobsbawn, E., 201
hybridization, 41
hyperfine interaction, 87

identical particles, 100
indeterminacy, 2, 3
induced emission, 147, 160, 163, 204
infinite potential well, 43, 53, 54
initial state, 12, 15, 149–154, 161, 168
insulator, 110
integer quantum Hall effect, 118
interaction, 12

of light with particles, 159, 160
interference, 18
intrinsic coordinate, 142, 143
isobar, 105
isotone, 105
isotope, 105

j-shell, 127, 146
Jennewein, T., 193
Jordan, P., 2, 206, 207, 210



236 Index

ket, 8
Kirchhoff, G., 203
Klein, O., 206, 208, 211
Kramers, H., 206–208, 211
Kronig, R., 207

Laguerre polynomial, 91
Lamb shift, 131
Landau levels, 114, 119, 121
Landau, L., 208
Laplacian, 83
laser, 147, 162
Laughlin states, 122
Laughlin, R., 122
Legendre

functions, 79
polynomials, 79, 141

Lenard, P., 202
Levi–Civita tensor, 68
Li atom, 145
linear independence, 21
local realism, 183, 187
locality of quantum mechanics, 214
Lorentz force, 117
Lorentz, H., 207

magnetic
moment, 71
resonance, 150, 152
trap, 115

magnetic moment, 7
Malus law, 17
many-worlds interpretation, 193
Mardsen, E., 205
maser, 162
matrix

2×2, 32
diagonalization, 31, 32, 138
eigenvalue equation, 31
element, 8
elements of 1/r12, 140
formulation, 2, 29, 207, 208
Hermitian, 9
inverse, 9
multiplication, 30
treatment, 37, 67, 73, 77
unitary, 24

Maxwell, J., 1, 204

Maxwell–Boltzmann distribution, 116,
123

mean lifetime, 147, 156, 161
mean value, 14
measurement, 6, 9, 11–13, 15, 16, 168,

191, 192, 210
Mendeleev chart, 105
Mermin, N.D., 11, 167
meson, 101, 164
Millikan, R., 204
molecule, 133–136, 138

intrinsic motion, 133
rotational motion, 136, 145
vibrational motion, 136, 138, 145

momentum
distribution, 116
eigenfunction, 51, 54, 108
eigenvalue, 51, 54, 108
operator, 44

Moseley, H., 206
Mottelson, B., XII, 194
Mulliken, R., 38
muon, 96, 101

n-qubit system, 174
Na electron gas, 109
Neumann functions, 89, 94
neutrino, 101
neutron, 101, 105, 107, 128, 184
Newton’s second law, 6, 163
Newton, I., 1
Niels Bohr Institutet, XII, 206
no-cloning theorem, 168, 171, 173
no-crossing rule, 33
non-commutative algebra, 8, 22
non-diagonal matrix elements, 161
Nordita, XII
norm, 22, 26
normalization, 32, 43, 48, 130
Notgemeinschaft der Deutschen

Wissenschaft, 202
nuclear

magneton, 74, 227
shell structure, 106

nucleon, 105, 107

observable, 10, 12
occupation number, 102, 124



Index 237

one-qubit
gate, 177, 178

one-step potential, 43, 57
operator, 8, 10, 11, 14

in differential form, 44
in matrix form, 30

optical theorem, 91
orthogonal vectors, 21
orthonormalization, 22, 24

parahelion precession, 206
parametric down conversion, 183, 185,

189
parity, 39, 53, 70, 85
path integral formulation, 2
Pauli matrices, 74
Pauli principle, 101, 105, 109, 110
Pauli, W., 99, 102, 206–208, 210, 211
Pb atom, 96
periodic boundary conditions, 54, 64
periodic potential, 43, 62, 99, 110, 139
perturbation theory, 129–131, 144

Feynman, 131
time-dependent, 152–155

phase gate, 177, 178
phase shift, 89
phase space formulation, 2
phase, overall, 10
phonon, 110
phonons, 112
photoelectric effect, 1, 204
photon, 15, 101, 154, 155, 160, 165, 204,

212, 214
photon polarization, 15, 157, 159, 160,

168
physical operators and states, 143
physical quantity, 12, 13
physical reality, 5, 12, 187
pilot wave formulation, 2
pion, 21
Planck constant, 194, 203, 227
Planck radiation law, 158, 161, 203, 204
Planck, M., 202, 204, 205
plane wave, 5, 51, 54, 108, 148, 157
Podolsky, B., 5, 212
pointer states, 194, 196
Poisson bracket, 208
population, 197
positronium, 96

probabilistic interpretation, 11, 13, 17,
45, 209

probability
current, 45, 46
density, 26, 45, 47, 49, 50, 71, 91, 116

projection operator, 24
proton, 28, 101, 105–107, 127, 227
publications per country, 210
pumping radiation, 162
pure state, 196

quantization of the electromagnetic
field, 157, 158

quantum computation, 168, 171, 174,
176

quantum dots, 113–115
quantum electrodynamics, 156
quantum gates, 168, 177, 195
quantum Hall effects, 101, 117–122
quantum information, 167, 168
quantum network, 177
quantum register, 174
qubit, 75, 167, 172, 178

random-phase approximation, 113
Rayleigh–Schrödinger perturbation

theory, 131, 139
Rb atom, 116
reduced density operator, 198
reduced mass, 91, 135
reduction of the state vector, 13, 147
reflection coefficient, 58, 60, 61
relativistic correction, 144
relativistic invariance, 189
Rohrer, H., 61
root mean square deviation, 38
Rosen, N., 5, 212
rotational band, 138
rotations, 22, 69, 136
ruby laser, 162
running waves, 54, 108
Rutherford, E., 205
Rydberg constant, 203, 206, 227

scalar product, 21, 29, 44
scanning tunneling microscope, 61
scattering, 43, 88–91
Schor algorithm, 174, 176
Schor, P.W., 174



238 Index

Schrödinger cat, XIII, 189, 196
Schrödinger equation, 2

time-dependent, 45, 148, 152, 208,
214

time-independent, 43, 45–47, 51, 208,
209, 214

Schrödinger realization of quantum
mechanics, 43, 208, 210

Schrödinger, E., 2, 3, 208–211
Schwinger, J., XI, 2, 6
second quantization, 2, 124
selection rules, 77, 147, 161, 162
semiconductor, 110, 113
separation of variables, 84
shell, 104
Slater determinant, 102, 121, 122, 125,

127
Slater, J., 211
social context, 201
Solvay conferences, 212, 213
Sommerfeld expansion, 124
Sommerfeld, A., 206, 209
specific heat, 109, 112, 128
speed of light, 227
spherical coordinates, 69, 83
spherical harmonics, 70, 79, 83
spherical wave, 88
spin, 7, 32, 34, 67, 73–75, 80, 81, 207,

209
time dependence, 149, 150

spin filtering, 115
spin flip, 151
spin–orbit interaction, 87, 88, 106
spin–statistics theorem, 101
spintronics, 73
spontaneous emission, 147, 160, 162,

204
spread in energy, 155
square barrier, 43, 59
Störmer, H., 118
standard deviation, 14, 20, 26, 27
Stark effect, 146
Stark, J., 202
state function, 9
state vector, 9, 11–14, 18
Stern, O., 7, 15, 72, 73, 207
Stern–Gerlach experiment, 7, 72, 159,

196, 207
sudden change in the Hamiltonian, 152

summation of vectors, 21, 29, 43
superconductivity, 146
superposition principle, 9
symmetric states, 100, 101
symmetry, 34, 39, 44, 47, 53, 55, 65,

69–71, 83, 100, 101, 143

target qubit, 170
Tegmark, M., 196, 214
teleportation, XI, 168, 172, 189
thermal equilibrium of gas and

radiation, 161
thought experiment, 15
time principle, 148
time-evolution of the state vector, 192
trace, 25, 34, 197–199
trajectory, 6, 21
transition probability, 147, 150, 155

per unit of time, 154
translation, 44
transmission coefficient, 59–61
Tsui, D., 118
tunnel effect, 50, 58, 61
two-electron states, 103
two-qubit gate, 178, 179
two-qubit system, 178
two-slit experiments, 183
two-spin states, 96, 103, 170

Uhlenbeck, G., 73, 207
Ulfbeck, O., 194
unbound problems, one-dimension, 56
uncertainty, 2, 14
uncertainty principle, 19–21, 38, 50, 66,

115, 210, 212
uncertainty relation, time–energy, 147,

151, 155, 156, 159, 212
unfilled shell, 105
unit operator, 24, 74
unitary matrix, 9, 24
unitary transformation, 9, 24, 25, 32,

34, 44, 69, 75, 168
Universitetets Institut for Teoretisk

Fysik, 203, 206
unphysical operators and states, 143

valence band, 110
validity of quantum mechanics, 214
Van der Waals potential, 145



Index 239

variational procedure, 131–133, 135
vibrational band, 138
vibrational motion, 34
virial theorem, 38, 94
von Klitzing, K., 118
von Laue, M., 202

wave function, 43, 54, 55, 58, 59, 62, 64
wave number, 51
wave packet, 66
wave–particle duality, 18, 210
Weihs, G., 193

Wheeler, J.A., 196, 214
Wien, W., 203, 204
Wigner coefficients, 76, 80
Woods–Saxon potential, 106, 107
work function, 61, 66, 204

Young, T., 183

Zeeman effect, 72, 97
anomalous, 97, 207

Zeilinger, A., 189, 193
zero-point energy, 38, 84


	Cover Page
	Title Page
	ISBN 3540462155 Springer Berlin Heidelberg New York
	A primeval representation of the hydrogen atom
	Foreword
	Preface to the First Edition
	Subjects Introduced in the Second Edition

	Contents (with page links)
	1 Introduction
	2 Principles of Quantum Mechanics
	2.1 Classical Physics
	2.2 Mathematical Framework of Quantum Mechanics
	2.3 Basic Principles of Quantum Mechanics
	2.4 Measurement Process
	2.5 Some Consequences of the Basic Principles
	2.6 Commutation Relations and the Uncertainty Principle
	2.7 Hilbert Spaces and Operators
	2.8 Notions of Probability Theory
	Problems

	3 The Heisenberg Realization of Quantum Mechanics
	3.1 Matrix Formalism
	3.2 Harmonic Oscillator
	Problems

	4 The Schrödinger Realization of Quantum Mechanics
	4.1 Time-Independent Schrödinger Equation
	4.2 The Harmonic Oscillator Revisited
	4.3 Free Particle
	4.4 One-Dimensional Bound Problems
	4.5 One-Dimensional Unbound Problems
	4.6 Band Structure of Crystals
	Problems

	5 Angular Momenta
	5.1 Eigenvalues and Eigenstates
	5.2 Spin
	5.3 Addition of Angular Momenta
	5.4 Details of Matrix Treatment
	5.5 Details of the Treatment of Orbital Angular Momentum
	5.6 Coupling with Spin s = 1/2
	Problems

	6 Three-Dimensional Hamiltonian Problems
	6.1 Central Potentials
	6.2 Spin–Orbit Interaction
	6.3 Some Elements of Scattering Theory
	6.4 Solutions to the Coulomb and Oscillator Potentials
	6.5 Some Properties of Spherical Bessel Functions
	Problems

	7 Many-Body Problems
	7.1 The Pauli Principle
	7.2 Two-Electron Problems
	7.3 Periodic Tables
	7.4 Motion of Electrons in Solids
	7.5 Bose–Einstein Condensation
	7.6 Quantum Hall Effects
	7.7 Quantum Statistics
	7.8 Occupation Number Representation (Second Quantization)
	Problems

	8 Approximate Solutions to Quantum Problems
	8.1 Perturbation Theory
	8.2 Variational Procedure
	8.3 Ground State of the He Atom
	8.4 Molecules
	8.5 Approximate Matrix Diagonalizations
	8.6 Matrix Elements Involving the Inverse of the Interparticle Distance
	8.7 Quantization with Constraints
	Problems

	9 Time-Dependence in Quantum Mechanics
	9.1 The Time Principle
	9.2 Time-Dependence of Spin States
	9.3 Sudden Change in the Hamiltonian
	9.4 Time-Dependent Perturbation Theory
	9.5 Quantum Electrodynamics for Newcomers
	Problems

	10 Entanglement and Quantum Information
	10.1 Conceptual Framework
	10.2 Entanglement
	10.3 No-Cloning Theorem
	10.4 Quantum Cryptography
	10.5 Teleportation
	10.6 Quantum Computation
	10.7 Quantum Gates
	Problems

	11 Experimental Tests of Quantum Mechanics
	11.1 Two-Slit Experiments
	11.2 EPR and Bell Inequalities

	12 Measurements and Alternative Interpretations of Quantum Mechanics. Decoherence
	12.1 Measurements and Alternative Interpretations of Quantum Mechanics
	12.2 Decoherence
	12.3 The Density Matrix
	Problems

	13 A Brief History of Quantum Mechanics
	13.1 Social Context in Central Europe During the 1920s
	13.2 Prehistory of Quantum Physics (1860 ≤ t ≤ 1900)
	13.3 Old Quantum Theory (1900 ≤ t ≤ 1925)
	13.4 Quantum Mechanics (1925 ≤ t ≤ 1928)
	13.5 Philosophical Aspects
	13.6 Recent History

	14 Solutions to Problems and Physical Constants
	14.1 Solutions to Problems
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 12

	14.2 Physical Units and Constants

	References
	Index (with page links)



