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The last decade has seen an enormous increase in the use of QM/MM
methods and the trend for the coming years is certainly to have an even
larger increase. QM /MM is now the general name given for methods that
combine quantum mechanics and molecular mechanics. Originally devised
for dealing with the complex problem of proteins and enzymes, it is now
used in a wide variety of physicochemical problems. For the study of a
chemical reaction in an active site of an enzyme, it is conceivable that the
amino acids located far from the active site will have considerable less
importance. But QM /MM methods are also very important in the study of
the spectroscopy of liquid systems. QM is needed to study the quantization
of the energy levels and MM can be used to generate the liquid structure at
nonzero temperatures. QM/MM methods have seen an extraordinary
development allowing quantum chemistry to enter real everyday activity
in most laboratories in chemistry and biochemistry. The necessity for a QM
treatment (needed in spectroscopy and reactions, for instance) together with
the difficulties of treating the entire system by QM imposes some compro-
mising. This compromising comes by adding classical mechanics in a
partition of the system. It is used in biomolecular structure and reactivity
and in studying solvent effects. It is also considered in excited state
dynamics, where the fate of the excitation energy depends on the environ-
ment around the chromophore. The development of QM /MM methods is a
very active research area with different nuances. This gave the idea of
editing a special issue of the Advances in Quantum Chemistry dedicated
to the subject. This issue focuses on some of the recent progresses in
QM/MM methods. Some leading research groups around the world have
joined this project to give a review of their contribution to the field, includ-
ing applications. In total, this issue is composed of 10 different chapters.
The first chapter, by Tu and Laaksonen, shows the partition of the system
into QM and MM parts; discusses the boundary and the coupling of these
two parts. Computational aspects are then considered. In Chapter 2,
Barone, Biczysko, and Brancato extend the range of computational spectro-
scopy by using QM /MM approaches using both time-dependent and time-
independent routes. Applications in this case consider electronic spectra
and magnetic properties and vibrational dynamics beyond the harmonic
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approximation. An important computational strategy for dealing with the
large number of explicit solvent molecules and a multitude of configura-
tions is the use of a mean field approximation. This has been successfully
conducted by Aguilar and coworkers who replaced the configuration aver-
age of a given property by an average solvent perturbation. This is the
subject treated in Chapter 3 where special attention is devoted to a combi-
nation of the mean field approximation with molecular dynamics. One of
the most important aspects of the solvent interaction with a reference solute
molecule is the understanding of the role played by the hydrogen bonds
formed between the solute and the solvent and among the solvent. This
specific interaction is at the heart of the proper existence of liquid water in
room conditions. Attention to this is devoted by Mata and Cabral in Chapter 4,
where the combined and sequential use of MM and QM is used to unravel the
electronic properties of hydrogen bonded liquid systems, including water and
ammonia. Further, water is responsible for easing chemical reactions that are
important in biochemical and environmental processes. Water is in very
important in host-guest chemistry and as such there is an increasing need
for understanding the properties of the inclusion compounds. In Chapter 5
Lima, Heine, and Duarte present, discuss, and explore the simulation of
polypeptide and their inclusion compounds with B-cyclodextrin. The theore-
tical tool used in this endeavor is the recent and successful dispersion-
corrected-self-consistent charge—density functional tight binding model. Of
course, biomolecular processes and properties are natural candidates for the
application of the QM/MM methodology. Thus in Chapter 6, Groenhof,
Boggio-Pasqua, Schifer, and Robb discuss the computer simulation of the
effect of the protein environment on photobiological processes. The theoretical
concepts of photochemical reactions together with a practical simulation
scheme for photochemical reactions in biomolecular systems are reviewed.
This provides not only experimentally accessible information but also quan-
tities that are more difficult to measure. Applications include photoactive
yellow protein and reversible switchable fluorescent proteins. Molecular
dynamics based on first-principle methods would be the ideal choice if it
were not computationally very demanding for liquid systems of chemical
interest. QM/MM methods are alternatives to a full QM dynamics. But
simplified and efficient ab initio dynamics can still be performed for systems
of interest. In this direction an ab initio quantum mechanics charge field
molecular dynamics has been developed by Rode and collaborators. In Chap-
ter 7 Hofer, Pribil, Randolf, and Rode present this methodology that over-
comes the necessity of solute-solvent potentials. Comparison with other
molecular dynamics simulation approaches are made and applications are
shown for difficult cases of anions and cations in solution. Chapter 8 by
Pierdominici-Sottile, Alberti, and Palma is dedicated to one very important
aspect of chemical reaction that is the nuclear quantum effects. They discuss
and use mixed-quantum/classical trajectories to study the effects of the
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nuclear quantum effects in chemical reactions and vibrational relaxation
processes. Hence they study proton transfer in gas and condensed phases
and vibrational relaxation processes. In chemical reactions in solution the
essential quantity is the variation of the free energy along the process. A
recent theory has been developed by the Osaka and Kyoto groups, where
they use an energy representation for the hybrid QM/MM method. In this,
the distribution function of the solute—solvent interaction is a fundamental
quantity to obtain the solvation free energy. This is described in Chapter 9 by
Takahashi, Matubayasi, and Nakano where they review this QM/MM-ER
and describe important applications making also comparison with more
traditional procedures. Interesting, they also introduce a novel implementa-
tion for redox reactions in biological molecules. Chapter 10 closes this issue
with a review by Zhang, Lev, Cuervo, Noskov, and Salahub, that is also some
guide to QM/MM methods. Essential and basic concepts with the related
techniques are introduced, applications are discussed, and some possible
answers to the utilization of QM /MM techniques in different studies taking
place in condensed phase are provided.

Altogether this issue involves some of the recent progresses including
different and complementary aspects of the QM/MM methodology for
different applications in biochemistry and in solution chemistry.

I take this opportunity to thank the editors of the Advances in Quantum
Chemistry for support and for the invitation to carry on this project. I
specially thank all contributors for accepting my invitation. It is my hope
that this issue will be useful to both the beginners and the experienced
scientists, and thus contribute and stimulate further developments in this
exciting and fast expanding research topic.

Sylvio Canuto
Sao Paulo, Brazil
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1. INTRODUCTION

Quantum chemistry is a very powerful tool to study the properties of molecules
and their reactions. The recent years’ development in quantum chemistry meth-
ods, especially that of density functional theory (DFT) methods [1], has made it
possible for quantum chemistry calculations to reach accuracies comparable to
those obtained in experiments for molecules of moderate sizes. The rapid
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2 Y. Tu and A. Laaksonen

development of computer technologies has greatly encouraged chemists to use
quantum chemistry to understand, model, and predict molecular properties and
their reactions, properties of nanometer materials, and reactions and processes
taking place in biological systems [2—4].

To develop quantum chemistry methods, capable of treating large or
complicated systems, has been one of the important subjects in quantum
chemistry. In the early days, quantum chemists developed mostly semi-
empirical molecular orbital methods for the study of large systems [5-7].
These methods often involve many empirical parameters that are opti-
mized by reproducing the properties of some reference molecules.
Usually, the parameters are accurate for the systems they are parameter-
ized for. For many properties, such as the relative energies of different
conformations of a large molecule, the bonding energy, and structure of a
hydrogen-bonded system, the results from semiempirical calculations are
not reliable. This limits their applications to large systems, especially
those where hydrogen bonds are important. In recent years, many first-
principles quantum chemistry methods aimed for large molecular systems
have been introduced [8-11].

For large systems, pure ab initio calculations are still very expensive. In
many practical applications, we are only interested in the properties of a few
molecules of a system or part of a large molecule. Many calculations are
therefore only limited to these molecules or part of a large molecule. These
studies can provide us with very useful information, but there are often
cases where the effects from the surrounding molecules or the remaining
part of a large molecule cannot be neglected. Typical examples involve the
properties of a solute molecule in a solvent. If we use quantum chemistry to
calculate the properties of the solute molecule and neglect the effects from
the solvent molecules, the properties obtained correspond only to those of
the isolated solute molecule. Another example is the enzymatic reactions
occurring in biological systems. Usually, the active center of an enzyme
consists typically of about 100 atoms or more, which already reaches the
computational limit of many high-level quantum chemistry methods. Using
a smaller cluster to represent an active center and studying it carefully with
high-level quantum chemistry methods is the standard way usually carried
out. However, such an approach may not be adequate since the surrounding
atoms could obviously affect the barriers obtained [12,13]. Usually, the
surrounding atoms can often stabilize the reactants and products and
lower the barrier of a reaction. Without the surrounding atoms, the barrier
calculated according to a smaller cluster becomes often overestimated.

In conventional quantum chemistry calculations, the effects from the
surrounding atoms of a molecule or cluster are often recovered by using
the polarizable continuum model (PCM) [14] in which the surrounding
atoms are represented by a dielectric continuum with dielectric constant e.
In PCM, the microscopic structure of the surrounding atoms of a molecule is



Implementing Quantum Mechanics into Molecular Mechanics 3

not considered, thus it is not adequate in cases where the structure of the
surrounding atoms is important.

Combined quantum mechanical and molecular mechanical (QM/MM)
methods, pioneered by Warshel and Levitt [15], can be considered as a
compromise between the full QM calculation of a system and the QM
treatment of part of the system with the surroundings being modeled by
the PCM. In combined QM/MM methods [15-17], the surroundings of a
molecule or cluster are explicitly represented as atoms, but their effects are
modeled by an MM force field. Because all the atoms are explicitly repre-
sented and the interactions between the atoms are considered, the results
obtained from a combined QM/MM calculation could be more accurate
than those from a QM calculation with the PCM. Compared with the full
QM treatment of a system, a combined QM /MM calculation is much faster
since only a small part of the system is treated quantum mechanically.
Therefore, combined QM/MM methods have the potentials of studying
the properties and processes happening at the electronic scale in very
large systems.

In the last decade, much effort has been made in developing reliable and
accurate combined QM/MM methods, especially in the treatment of the
boundary and interactions between the QM and MM parts [18-33]. There are
increasing publications each year in applying the QM /MM methods to larger
and more complicated systems. The purpose of this chapter is to introduce the
reader to the area of combined QM/MM methods. We will not, however,
consider different applications, but rather consider methodological aspects in
the area, with the focus on the progress made in the last decade in the treatment
of the QM /MM boundary and the QM /MM coupling.

2. PARTITION OF A SYSTEM INTO QM AND MM PARTS

In a combined QM /MM method, the system to be studied is partitioned into
two parts; a QM part and an MM part (see Figure 1.1) [17]. The QM part has
small number of atoms. It may be a molecule (such as a solute molecule in a
solution) or several molecules, a fragment (or part) of a large molecule or a
molecular complex (such as the active center of an enzymatic catalyzed
reaction). The QM part corresponds to what we need to study in detail
Atoms in this part are explicitly expressed as electrons and nuclei and are
described quantum mechanically. When a combined QM/MM method is
used to study a system involving charge transfer, electron excitations, or
chemical reactions, the corresponding region is always treated quantum
mechanically. That is, the region is always included in the QM part.

The MM part is the “environment” to the QM part. Usually, it has much
larger number of atoms than the QM part. This part is most often
“nonreactive” and is treated by using a classical MM force field.
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MM

Figure 11 The combined QM/MM model.

“Nonreactive” also means that there is no charge transfer or other
“chemical” exchange between the QM and MM parts.

For a large molecule, it becomes necessary to divide it into a QM part
and an MM part. This division is often quite natural, especially for a large
biomolecule where the main interest may be in the active site or a reaction
center. In such a case, there are chemical bonds connecting the QM and the
MM parts. Because the MM part is treated by a classical force field, the
properties and electron densities of the QM atoms bonded to the MM atoms
may change drastically. Therefore, the intermediate region between the two
parts should be treated so that the effects from partitioning the QM and the
MM parts across the bonds on the QM atoms are minimized. In practice,
well-localized single bonds are terminated and the valences are satisfied on
the QM atoms. The reason to choose well-localized single bonds is to make
the theoretical treatment easier. Saturation of the valences on the QM atoms
is done to keep the chemical properties of these atoms unchanged.

The choice of the QM /MM boundary can affect greatly the accuracy of a
combined QM /MM calculation, such as the charge distribution of the QM
part and the overall energy of the system, especially when the QM/MM
boundary is within a molecule. It has been found that MM atoms with large
magnitudes of charges close to the QM /MM boundary can lead to signifi-
cant errors in energy [34]. Therefore, care must be taken when choosing a
QOM/MM boundary.

3. TREATMENT OF THE QM/MM BOUNDARY

There are several ways to treat the QM /MM boundary when a large molecule
is divided into a QM part and an MM part [20-33]. Among the widely used
ways are those using a hybrid orbital or a link atom to satisfy the valence
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of the QM atom on a QM/MM bond. In the early work of Warshel and
Levitt [15], one single hybrid atomic orbital was placed on each MM atom,
originally connected to a QM atom. These hybrid atomic orbitals are then
involved in the calculation of the QM part to satisfy the valences. Rivail and
coworkers [20,35-37] also used hybrid atomic orbitals in their localized self-
consistent field (LSCF) method to treat the QM part. They assumed that the
bond connecting a QM atom and an MM atom could be described by a
“strictly localized bond orbital (SLBO),” considered to be one of the mole-
cular orbitals of the QM part. However, the orbital is assumed to be “frozen”
and therefore is not involved in the QM calculation. This is implemented by
letting all the molecular orbitals (MOs), appearing in the QM calculation, to
be orthogonal to the SLBO. The SLBOs are obtained by separate QM calcu-
lations of some small model molecules. They used the semiempirical neglect
of the diatomic differential overlap (NDDO) QM method. Therefore, the
orthogonalization can be easily implemented by using the hybrid atomic
orbitals of the corresponding QM atom as a basis set and letting them to be
orthogonal to the hybrid atomic orbital participating in the SLBO. The LSCF
method has later been generalized to ab initio Hartree-Fock (HF), post HF,
and DFT [36,37].

An approach similar to the LSCF method is the generalized hybrid
orbital (GHO) method [21,38—40]. In this approach, a set of four atomic
orbitals is assigned to each boundary MM atom (denoted by B), which
was originally connected to a QM atom. The MM boundary atom B is
usually chosen to be an SP® carbon. The hybrid orbitals on atom B are
obtained by the local geometry of four atoms, the atom B and the other
three MM atoms bonded to it. Among the four hybrid orbitals on the MM
atom B, the orbital pointing to the boundary QM atom is called active orbital
and is optimized through being involved in the self-consistent-field (SCF)
procedure of the QM part. The other three orbitals do not participate in the
SCF optimization procedure, but their effects are involved in the calculation
of the effective Hamiltonian matrix. The GHO method was first incorpo-
rated into the QM calculations in the semiempirical NDDO method [21,38]
and is later incorporated into those at the ab initio HF and DFT levels
[39,40].

The hybrid orbital scheme can be improved by incorporating point
charges distributed at the middle point of a QM /MM bond and at the QM
and MM atoms on the bond. Through extensive optimization of the para-
meters used, such as the quantities of the point charges, accurate results,
such as deprotonation energies and relative conformational energies, are
obtained [41].

In the combined QM /MM calculations of large molecules, perhaps the
most widely used approach is to use the so-called “link” or “dummy”
atoms to satisfy the valences of the QM atoms binding to the MM atoms,
as originally proposed in Refs. [16,17]. The most commonly used link atom
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is hydrogen, but in some other implementations, other types of atoms,
such as halogen atoms are also used [42]. The use of halogen atoms as link
atoms is in fact to mimic the methyl groups conventionally used in termi-
nating the QM /MM bonds. The link atoms have the following character-
istics: (i) A link atom is placed in the direction of the QM /MM bond and
replaces the corresponding MM atom in the QM calculation. Link atoms
are explicitly represented by electrons and nuclei. That is, they are exactly
treated quantum mechanically. (ii) Link atoms are “invisible” to the MM
atoms. In other words, there is no interaction between the link atoms and
MM atoms. The interactions within the MM part are treated as if there
were no link atoms. In ideal cases, link atoms and other MM atoms should
simulate the effects of the fragments that are removed from the QM
treatment.

The link atom scheme can be improved in several aspects. One of the
improvements is to optimize the position of the link atom placed along a
QOM/MM bond. For example, through an appropriate choice of the
position of the hydrogen link-atom along a specific QM /MM bond and
using a Gaussian distributed charge, in instead of a point charge, to
represent the corresponding MM atom in the QM calculation, results of
comparable accuracy to other methods are obtained [28]. Using a
one-free-valence atom with an effective core potential (ECP) can also
improve the link atom scheme. For example, in the work of Zhang et al.
[22], each boundary MM C atom is represented by a pseudo-atom F but
with an optimized ECP. The pseudo-atom F can form a pseudo bond
with the boundary QM C atom. The ECP is parameterized to mimic the
normal C-C bond energetics. Compared with a normal C atom, the
pseudo-atom F has three extra valence electrons which are used to
satisfy the open valences. The ECP scheme has later been further
extended. DiLabio et al. [26] used a one-electron effective potential for
C to represent the boundary MM C atom used in the QM calculation.
The boundary MM C atom has only one valence electron and the
QM calculation time can be saved. Slavicek and Martinez [32] intro-
duced multicentered valence electron effective potentials (MC-VEEPs)
to represent the MM functional groups in a QM/MM boundary. The
MC-VEEPs are parameterized by demanding that both occupied
and virtual orbitals are described correctly, leading to the combined
QM/MM calculations to be able to describe correctly the excitations in
the QM regions.

The major effect from the treatment of a QM/MM boundary is on the
electronic structure of the QM part. The aim of using hybrid orbitals or link
atoms is to satisfy the valences on the QM atoms on the QM/MM bonds.
From this point of view, hybrid orbitals would be physically more appro-
priate because a QM /MM bond was originally formed by hybrid orbitals.
For example, a saturate C-C bond is known to be formed by two SP* hybrid
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orbitals, with one on each carbon atom. Indeed, through extensive optimi-
zation of the parameters involved in the hybrid orbital approaches, good
results from the combined QM /MM calculations, as those from the purely
QM calculations, are obtained. However, hybrid orbital approaches are not
easy to implement in many practical applications, especially for many
widely used quantum chemistry calculation packages, as some additional
coding to the programs is required.

Using link atoms to satisfy the valences on the QM atoms at a QM /MM
boundary is easier to implement in many practical calculations as link atoms
are often normal hydrogen or halogen atoms so that coding a QM program
is not required. It’s difficult for link atoms to provide the same hybrid
orbitals as those on the boundary MM atoms. Link atoms can also result
in some additional undesirable energy that may affect the accurate descrip-
tion of a potential energy surface. However, the link atom scheme can be
improved by various optimizations of parameters. The above-mentioned
approaches, such as using pseudo-atom F with an optimized ECP and
optimizing the position of the link atom along a QM/MM bond, are just
two examples. The flexibility of the link atom scheme also makes it easy to
use extended basis sets. After extensive optimization of the parameters
involved, results of comparable good accuracy from both schemes can be
obtained.

4. INTERACTIONS IN THE QM/MM COUPLING

In the combined QM/MM methods, the total energy of a system can be
expressed as follows:

Etotat = Eqm + Emm + EQvymm; (1)

where Eqy represents the QM energy of the QM part, Eyy is the energy of
the MM part calculated by an MM force field, and Eqni/nvia is the interaction
between the QM and MM parts. Eqn/mm usually consists of three types of
interactions: electrostatic interaction Egs(QM/MM), van der Waals interac-
tion E,qgw(QOM/MM), and the MM-bonded interaction Epongeda(QOM/MM).
Therefore, we can express Eqnm,/nm as follows:

Egm/mm = Egs(QM/MM) + Eyqw (QM/MM) + Eponded (QM/MM),  (2)

where the term Eponded(QM/MM) is calculated only when there are chemi-
cal bonds between the QM and MM parts. It involves the conventional
bonded terms, such as bond stretching, angle bending, and rotational
motion terms, with at least one atom from the QM part and at least one
atom from the MM part. Epondedom/mmy is calculated with the same force
field as for Enpu.
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In combined QM /MM calculations, the QM calculations are often not
carried out for the energy of the QM part, Eqy, but are performed for the
sum of Eqy and Egs(QM/MM), that is,

Equ + Egs(QM/MM) = (¥ |He| ). 3)
The effective Hamiltonian He in the above equation can be expressed as
Hett = Hom + Hes(QM/MM), (4)

where Fgy is the Hamiltonian for the QM part and Hgs(QM/MM) is the
Hamiltonian representing the interactions of electrons and nuclei in the QM
part with the point charges of MM parts.

When there are chemical bonds between the QM and MM parts, the
effective Hamiltonian Hqy is different from that for the isolated QM part
since the Hamiltonian should also involve those terms used for treating the
QM/MM boundary, such as those using a hybrid orbital or a link atom to
satisfy the valence of the QM atom on a QM /MM bond. This makes the QM
energy different from that for the isolated system where the QM/MM
boundary is not treated. The treatment of a QM /MM boundary will also
affect the electrostatic interaction between the QM and MM parts because
the hybrid orbitals or link atoms introduced to satisfy the valences of the
QM atoms at the QM /MM boundary can interact with the charges in the
MM part during the QM calculation. However, this undesirable effect of
hybrid orbitals or link atoms on the QM/MM electrostatic interaction is
usually rather small.

The QM/MM coupling can influence the properties from QM/MM
calculations, especially the interaction energies between the QM and MM
parts. The coupling is important when properties related to the energy, such
as free energies, are studied. Thus care must be taken in considering the
OM/MM coupling. In QM/MM calculations, there are two types of inter-
actions between the QM and MM parts. One type is the van der Waals
interaction that represents the dispersion interactions and the other is the
short-range repulsive interactions between the QM and MM atoms. It is
often expressed as the Lennard-Jones potential with

6
AN ) 5
< > <Rif ] 7 ®
where R;; is the distance between a QM atom i and an MM atom j . ¢;; and o;;
are the standard Lennard-Jones parameters. Usually, the Lennard-Jones
parameters are taken directly from a force field. When a QM /MM method
is used to study a reaction in the QM region, the Lennard-Jones parameters

used to represent the van der Waals interaction between the QM atoms and
the MM atoms may change significantly and the Lennard-Jones parameters

Evaw(QM/MM) Z Z 4eji

icQM jeMM
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on the QM atoms are thus not clearly defined. It has also been found [43]
that through the MD simulations of liquid water, where only one water
molecule in the simulation box is treated quantum mechanically and the
remaining water molecules are represented by the TIP3P force field model,
the Lennard-Jones parameters can greatly affect the water structure and the
potential energy. In principle, the effects of the Lennard-Jones parameters
on the QM part can be diminished by just increasing the size of the QM part
as the van der Waals interaction is of short range.

Another type of interaction in the QM /MM coupling is the electro-
static interaction, Hgs(QM/MM), between the QM and MM atoms. This
interaction originates from the interaction of the electrons and nuclei in
the QM part with the point charges in the MM part and is involved in
the SCF calculations of the QM part. Thus, MM charges can also affect
directly the charge distribution in the QM part. In many QM/MM
calculations, the MM charges are taken directly from an MM force
field. Such charges are used in a force field to model the nonbonded
Coulomb interaction between the MM atoms and are often optimized for
simulations in condensed phases. Electrostatic interaction can affect
greatly the QM/MM coupling. Whether such type of MM charges can
be used directly in a combined QM/MM calculation is still not clear. It
has been found that in combined QM/MM calculations of large mole-
cules, the MM charges should be different from those from a force field
as the MM charges from a force field also involve the polarization
effects of the surroundings on the molecule [34]. In combined HF QM/
MM simulations of water at ambient and supercritical conditions, it is
also found that scaling down the MM charges can give reasonably good
results [44]. This means that it may not be a good idea to use directly
the MM charges from a force field in a combined QM/MM calculation.
In fact, the QM/MM electrostatic interactions can also depend on
the QM method used in the QM/MM calculations. For example, the
HF/6-31G* calculations can often give larger dipole moments for
small organic molecules. Thus, it can be expected that in a combined
HF/6-31G* QM/MM calculation, the electrostatic interaction between
the QM /MM coupling is overestimated.

A natural improvement on the QM/MM electrostatic coupling is to
involve the polarization effects from the QM part to the MM part as well.
A simple way can be found in the work by Singh and Kollman [16]. In their
scheme, the coupling Hamiltonian between the QM part and the MM part
remains the same as that used in the usual QM /MM calculations, whereas
the polarization effects of the MM atoms by the QM atoms act only as a
“compensation” to the total energy of the system and is obtained after the
convergence of the QM calculation. This simple implementation improves
the interaction energy between the two parts. However, because this energy
is calculated classically, the electronic structure of the QM part has still not
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been improved. Some studies have shown that this type of “environmental
polarization” may have significant effects on the electronic spectra of the
QM part [45].

The effects of the MM polarization to the QM part were already included
in the work by Warshel and Levitt [15]. Later, Luzhkov and Warshel [46,47]
refined the model for both the ground and excited states. A detailed descrip-
tion of possible polarization schemes is given by Thompson et al. [48,49].
Since the charge distribution of the QM part can be polarized by the
potential from the point charges and the induced dipole moments in the
MM part and it can in turn polarize the MM part, the induced dipole
moments in the MM part are calculated iteratively. Warshel and coworkers
[15,47] introduced a simplified approach to calculate the induced dipole
moments, where the iteration could be avoided.

Fluctuating charge (FC) model [50] provides an alternative way to treat
the polarization problem. In the FC model, the central concept is the atomic
charges. These charges can fluctuate with the environment to satisfy the
principle of “electronegativity equalization.” Therefore, the charge distribu-
tion also reflects the polarization of the environment to that atom and it is a
natural concept to introduce the FC model into the combined QM /MM
calculation.

5. COMPUTATIONAL ASPECTS

Recall that in the combined QM/MM methods, the QM calculations
are performed according to the following Hamiltonian,

Hess = Hom + Hes(QM/MM). (4)

Because Heff involves the interactions of the electrons in the QM part
with the point charges in the MM part, some additional integral calculations
are needed. Usually, these integrals correspond to those of QM calculations
of a molecular system in the presence of point charges. They are of the

following form:
Qi‘ﬂ —
I#V = /Xu < - 7’_> Xlldri7 (6)

where Q,, is the point charge on the MM atom m. 7; is the position
of electron 7 in the QM region. x,, and x, are basis functions. In ab initio
calculations, the basis functions are Gaussian type of functions, whereas in
semiempirical calculations (e.g., MNDO [5], AM1 [6], PM3 [7]), the basis
functions are canonical valence atomic orbitals and are usually represented
by Slater type of functions. The above type of integrals is added to the
one-electron Hamiltonian matrixes during the SCF calculations of the QM
part.
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Under a given Gaussian basis set, the integrals given by Eq. (6) can be
calculated accurately. There exist very efficient ways to calculate the inte-
grals by using the recurrence relationship [51]. This is the case in many
ab initio programs. Most ab initio programs (such as GAUSSIANO3 [52] and
GAMESS [53]) involve the calculations of such type of integrals. Semiempi-
rical MO methods (such as MNDO, AM1, and PM3) use the “frozen core”
approximation and all the integrals (except for the overlap integrals) related
to the valence electrons are calculated approximately. Therefore, the cou-
pling Hamiltonian Hgs(QM/MM) should be reformulated to conform to the
“frozen core” approximation in the semiempirical QM calculations and the
additional integrals [Eq. (6)] are also calculated approximately. For details,
the reader may consult the papers [17,47,54].

To make practical use of the models discussed above may seem fairly
complicated, requiring some knowledge in coding both quantum chemical
software and MM software. Most molecular dynamics (MD) simulation
programs use MM force fields to describe the interactions between the
atoms, the easiest way to implement a combined QM/MM calculation is
therefore to couple together an existing MD simulation code with a standard
quantum chemistry program including the force calculation on the QM
atoms and electric field calculation on the MM charge sites. The combined
QM/MM calculations can be implemented by using a link program to
combine a QM calculation program with an MD program with MM force
field calculations. The link program is the interface between the QM calcu-
lation and the MM calculation. It takes care of the data transfer between the
QM and the MM programs. The QM program calculates the properties
related to the QM part. Sometimes, if a special treatment of a QM/MM
boundary is required, most probably one has to modify the relevant quan-
tum chemistry code. When a combined QM /MM calculation is required in
an MD simulation, the MM program usually conducts the MD simulation
as well.

As far as the QM programs are concerned, they can be divided into
two types according to the level of approximation they use: there are ab
initio packages, such as GAUSSIANO3 [52] and GAMESS [53]; DFT
programs, such as deMon [55]; and at least about 20 other packages; there
are also semiempirical calculation packages, such as AMPAC [56] and
MOPAC [57].

There are several MM force fields available, such as OPLS [58],
CHARMM [59], AMBER [60], GROMOS [61], MMFF [62], and CVFF [63],
to mention a few. Most of them have been combined with the QM calcula-
tion programs and used in the combined QM /MM MD simulations. In our
own work, we have combined either GAUSSIAN94 [52] or GAMESS [53]
with our own simulation software which is the modified version of
McMOLDYN package [64] to study solvation phenomena and radical
systems [43,44,65,66].
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There are also some special programs that are optimized for the QM/
MM calculations [41,67]. In these programs, the QM /MM boundaries are
usually treated more elegantly, with the parameters optimized according to
small model molecules. Therefore, the QM /MM calculation results obtained
from such programs are often more accurate. Also, these programs are often
easy to use for the combined QM /MM calculations.

6. FUTURE PROSPECTS

In this chapter, we give a general outline of the combined QM /MM methods.
Comparing with the full QM calculations of a system, combined QM/MM
calculations are much faster because only limited number of atoms are treated
quantum mechanically. Therefore, they can be used to study very large
systems where limited QM calculations are required. This would greatly
extend the application area of quantum chemistry. When combined with
MD simulation techniques, combined QM/MM calculations can also be
used to study the properties of condensed phases under certain temperatures
and pressures. We believe that the methods will increasingly gain popularity
in the future as feasible, good compromises to carry out QM calculations for
systems where electron excitations, charge transfers, and chemical reactions
take place. The applications may be found in the following fields:

(1) Solvent effects: This area covers the properties of solutes or chemical
reactions in a solution and is particularly suitable to be studied using the
combined QM /MM methods incorporated with MD simulation techniques.

(2) Reactions in biosystems: This area includes, for example, enzyme-
catalyzed reactions and proton and electron transfer processes. The
active center of such a reaction usually involves more than 100 atoms
and the surroundings are important in determining the reaction
barriers. Sometimes, even the free energies need to be calculated. In
recent years, there are many combined QM/MM studies in this area.
Combined QM/MM methods in combination with MD simulation
techniques seem to be a very powerful tool.

(3) The properties and reactions related to clusters and nanomaterials:
Theoretical study of these systems usually requires QM calculations,
but the systems are often beyond the limit of full QM calculations. With
combined QM/MM methods, many properties that need QM
calculations can be studied.

As far as the combined QM/MM methods are concerned, the following
aspects need to be considered:

(1) The QM/MM boundary: When a molecule is partitioned into a QM
region and an MM region, the treatment of the QM /MM boundary is of
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great importance. In principle, by increasing the size of the QM region,
the effects from the QM /MM boundary can be reduced. However, this
would greatly increase the computational time because most of the time
in a combined QM/MM calculation is spend on the QM calculations.
In the last decade, one has witnessed many ways to treat the QM /MM
boundaries. But more accurate ways for the treatment of various
QM/MM boundaries are still greatly desirable.

(2) The parameters used in the QM/MM couplings: Currently, the
parameters used in a combined QM/MM calculation are taken
directly from the MM force field used in it. Whether these parameters
are appropriate for use in the combined QM /MM calculations needs to
be investigated. The parameters could influence greatly the interactions
between a QM molecule and MM molecules when a combined
QM/MM calculation is used to study the interactions between the
molecules. Therefore, more accurate ways to treat the QM/MM
coupling or better parameterization are required in order to improve
the interactions between the QM and MM parts.
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1. INTRODUCTION

Nowadays, the characterization of complex biological systems or nanoma-
terials of direct technological interest relies more and more on computa-
tional approaches, for example, for the evaluation and rationalization of
structural, energetic, electronic, and dynamic features [1-4]. On the experi-
mental side accurate information can be gained, in principle, by a number of
spectroscopic techniques, vibrational, magnetic as well as optical. Never-
theless, up to very recently direct comparisons between experimental and
computed spectroscopic data have been rather scarce. Integrated
approaches, capable of accurately simulating spectra, but at the same time
easily accessible to nonspecialists, are highly desirable. Such tools would
allow for the exploitation of the recent and ongoing developments that are
taking place in the field of computational spectroscopy [5-13] resulting in
easy and, ideally, automatic vis-a-vis comparison between experimental
and theoretical results. In the present chapter, we discuss computational
approaches in line with such a demand. In general, the accuracy of a
simulated spectrum depends on the quality and a proper choice of a
computational model: a reliable description of equilibrium structures, vibra-
tional properties, and electronic structure is necessary. In case of macromo-
lecular systems this task is not trivial and in this respect, the quantum
mechanics/molecular mechanics (QM/MM) schemes are particularly well
suited for systems where the most important spectroscopic features have a
local character. In this spirit, it is possible to combine various computational
schemes to create user-defined and/or problem-tailored approaches. This is
particularly straightforward for solute-solvent systems, and a theoretical
approach that seems, at the same time, more reliable from a physical point
of view and computationally very effective consists in using hybrid
QOM/MM methods with nonperiodic boundary conditions and localized
basis sets. Additional extension of such schemes toward discrete/
continuum models allows conveniently reduce the number of degrees of
freedom, while keeping all the important interactions with the bulk, mod-
eled as a continuum. Specific intermolecular interactions between the solute
and the solvent (e.g., hydrogen bonds) can be also retained, especially if
they play a crucial role in determining the solute structural, dynamic, or
spectroscopic properties, by including solvent molecules in the explicit
treatment. Further, such conditions avoid the appearance of possible corre-
lation effects [14—22] and other problems with charged systems [23,24] that
may affect molecular calculations and simulations using periodic boundary
conditions (PBCs). Being the quantum region, generally a small portion of
the whole system, it is a natural choice to describe the electronic density in
terms of atomic basis functions. In recent years, our group has developed
several computational strategies aiming at the spectroscopic studies of
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macrosystems as (1) a discrete/continuum approach that can be nicely inte-
grated with the hybrid scheme offered by own N-layered integrated molecular
orbital and molecular mechanics (ONIOM) to perform QM/MM molecular
dynamics (MD) simulations of complex systems in solution and (2) effective
schemes to include vibrational effects within the time-independent framework.

2. THE QM/MM FRAMEWORK FOR SPECTROSCOPIC STUDIES

Hybrid QM /MM methodologies allow to combine two or more computa-
tional methods to effectively treat a complex molecular system with a large
number of atoms (>100). Among others, the ONIOM [25-27] scheme has
shown a great flexibility, as well as numerical stability, with a variety of
quantum mechanical, semiempirical, and molecular mechanics methods,
providing an accurate and well-defined Hamiltonian, energy gradient,
and Hessian matrix. Also, in this framework, a quite general partitioning
scheme can be used, in which the so-called layers, corresponding to parts of
the system treated at the same level of theory, do not have to be inclusive.
Accordingly, various physical and chemical properties can be evaluated,
including those related to the derivative of the energy with respect to the
electric field vector, such as vibrational frequencies and infrared (IR)
intensities. As an example, in a simple two-layer system, where the region
of interest is treated at QM level and the remaining system at MM level,
each energy evaluation requires three different calculations according to the
following expression:

model real model’

where the real system is the entire molecular system under consideration
and the model is the core region to be modeled at the highest level of theory
(e.g., a solute or part of it) plus the point charges located at the same
positions of the remaining explicit MM atoms (e.g., the set of the partial
atomic charges of a nonpolarizable force field). Such a decomposition, not
derived straightforwardly, provides a well-defined, single-valued, and
differentiable potential well suited to perform QM/MM calculations.

The standard QM/MM scheme briefly sketched above can be directly
applied to spectroscopic studies performed within the time-independent
framework. Such an approach is suitable for large and semirigid molecules,
when nonadiabatic couplings are negligible, harmonic approximation reli-
able, and spectroscopic properties can be evaluated considering only small
conformational region close to the equilibrium. Apart from their effective-
ness, time-independent methods have the remarkable advantage to operate
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directly in the frequency domain, naturally allowing the determination of
stick bands and their assignments.

However, large-amplitude motions and solvent librations cannot be
described by computations based on a harmonic approximation or even
when the perturbative anharmonic corrections are included (vide infra).
Moreover, eigenstate-free time-dependent methods are the main (when
not the only) route to deal with systems affected by significant nonadia-
batic interactions for which eigenstate calculations are unfeasible, as is the
case of conical intersections [28], or for systems propagating on highly
anharmonic potential energy surfaces (PESs) [29,30]. In the former case,
quantum dynamics (QD) treatments are necessary to take into account
nonadiabatic effects. However, when the Born—-Oppenheimer approxima-
tion remains valid dynamic effects can be properly described by the
classical MD approaches. Then, appropriately tailored QM/MM schemes
can be effectively explored to perform MD simulations and sample the
general features of the configurational space with one or more trajectories.
In this respect, we have recently developed the general liquid optimized
boundary (GLOB) model [31,32], which can be successfully applied to
perform QM/MM MD simulations of complex molecular systems in
solution. Then, spectroscopic observables may be computed on the fly
or in a second step by averaging over the corresponding estimators and
suitable number of snapshots. In the general case of solute-solvent sys-
tem, it is customary to carry out the same steps also for the molecules in
the gas phase, just to have a comparison term for quantifying solvent
effects. The a posteriori calculation of spectroscopic properties, compared
to other on-the-fly approaches, allows us to exploit different QM/MM
schemes for the MD simulations and the calculation of physical-chemical
properties. In this way, a more accurate treatment for the more demand-
ing molecular parameters, of both first [e.g., hyperfine coupling constants
(hce’s)] and second (e.g., electronic g-tensor shifts) order, could be
achieved independently of structural sampling methods provided the
accuracy in reproducing reliable structures and statistics is proven for
the latter.

2.1. Time-dependent approaches for QM/MM study of complex
systems in solution: the GLOB model

In the framework of formally monoelectronic QM methods (e.g., Hartree—
Fock or Kohn-Sham models), if E?MMM(P, x) is the QM/MM gas-phase
energy of the explicit system expressed as a function of the nuclear
coordinates, x, and the unpolarized (no solvent effects) one-electron density
matrix, Py, then the solvation free energy, AA.q(x), at a specific molecular
configuration can be written in analogy to Ref. [33] as the sum of the internal
energy plus the so-called “mean field” (or potential of mean force)
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contribution that accounts for the interactions with the environment (sol-
vent) minus the gas-phase energy:

AAgoi(x) = (EVMM(P x) + W(P,x)) — EM/MM (P x), (2)

where AAg(x) is the free energy of the system at a given molecular config-
uration and W(P, x) is the mean field term. Note that P is explicitly present in
the first two terms on the r.h.s. to imply that they are mutually polarized, that
is, the mean field response is always considered at equilibrium and the
electronic charge distribution is determined by a self-consistent calculation.
In particular, we have integrated the mean field contributions as a modifica-
tion of the ONIOM [25-27] scheme for the isolated systems as described in
Refs. [31,32]. The mean field, IV, is the potential experienced by the explicitly
treated molecules in a given configuration {x} due to the average interactions
with the environment. A number of discrete/continuum models have been
proposed in the literature that differ in the way W is approximated. Here,
according to the Ben—Naim'’s definition of the solvation process [34], we can
conveniently assume that the mean field potential is composed of concep-
tually simple terms: a long-range electrostatic contribution due to the linear
response of the polarizable dielectric continuum, and a short-range dispersion—
repulsion contribution, which accounts effectively for the interactions in proxi-
mity of the cavity boundary, W=Wiec + Waisp—rep- In the following, we
describe the essential features of the GLOB model (see Figure 2.1), a sophisti-
cated and integrated method that allows to study efficiently solvent effects

Figure 2.1 Graphical representation of a solute—solvent system simulated using the GLOB
model: the explicit system is embedded into a spherical cavity of a dielectric continuum.
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on generic solute molecules. According to the GLOB model, the explicit system
is composed of the solute along with a few solvent molecules set up at different
levels of theory, from computationally inexpensive, but less accurate, MM
methods to more realistic hybrid QM/MM or full QM methods (see Refs.
[31,33,35] for more details). Then, the explicit system (solute+ solvent) is
embedded into a suitable cavity of a dielectric continuum possibly with a regular
and smooth shape, such as a sphere, an ellipsoid, or a spherocylinder. In
combination with MD techniques, such a cavity could be kept fixed, correspond-
ing to NVTensemble conditions, or allowed to change volume, according to NpT
ensemble simulations (vide infra).

2.1.1. Electrostatic contributions

The long-range electrostatic interactions between the system and the dielec-
tric continuum are modeled by means of the conductor-like version [36-38] of
the polarizable continuum model (PCM) [39], which is one of the most refined
boundary element methods successfully used in many applications ranging
from structure and thermodynamics to spectroscopy in both isotropic and
anisotropic environments [39-41]. The continuum medium, which mimics the
response of liquid bulk, is completely specified by a few parameters, for
example, the dielectric permittivity (e,), and depends on the nature of the
solvent and the physical conditions, such as density and temperature. To be
specific, the reaction field, ®gy, that is, the electrostatic potential due to the
induced polarization of the dielectric, is described in terms of apparent sur-
face charges (gasc) centered on small tiles, called tesserae, which are the results
of a finely subdivision of the cavity surface into triangular area elements of
about equal size, and computed by a self-consistent calculation with respect
to the solute electronic density [42]. The computation of g, requires the
solution of a system of N linear equations, with Ni.s the number of tesserae:

D- Qasc = — @y, (3)

where q,q is the array of the “apparent surface charges,” ®; is the electro-
static potential evaluated at the center of each tessera due to only the charge
distribution of the system, and D is a matrix that depends only on the
surface topology and on the dielectric constant [37,38],

¢ 1.0694 41, (4)

D'- =
" (6—1) a;

€ 1
Di=——r— 5
ey § (5)

where s; and a; are, respectively, the position vector and the area of the ith
tessera and € is the continuum dielectric constant. Hence, for a given
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molecular configuration of the explicit system, x, the g,s.'s are determined
from Eq. (3) and the electrostatic potential, ®rg(r), and the corresponding
free energy, Weie, are given by

1
Welee = — Ecb*D*laI). (6)

Note that, when neglecting any cavity deformations as in the present model,
the energy derivatives with respect to a generic coordinate assume a quite
simple form with respect to the general case [37]. The cavity surface enclos-
ing the molecular system has been partitioned using an improved GEPOL
procedure [43,44], which is well suited for treating cavities of general shape,
and Egq. (3) can be solved by matrix inversion, computing and storing D™
only once at the beginning of the simulation.

2.1.2. Nonelectrostatic contributions

The dispersion-repulsion contribution, Wayisp_rep, Which is related to
short-range solvent (explicit)-solvent (implicit) interactions, has been
introduced to remove any possible source of physical anisotropy in proxi-
mity to the cavity surface, that is, deviation from bulk behavior. According
to several other methodologies [45-52] developed in the framework of QM
continuum models, we have also treated Wiysp _rep as a classical mean force
potential not perturbing the system electronic density. In particular,
Waisp—rep is Obtained from an effective empirical procedure parametrized
on structural and thermodynamic properties originally presented in Ref.
[33] and further developed in Ref. [32] (see also Refs. [35 and 31] for
applications in the context of MM and QM/MM MD simulations, respec-
tively). Briefly, we have assumed that Wiysp_rep can be represented by an
effective potential acting on each explicit solvent molecule irrespective of
the others, depending on only the molecule distance and, possibly, orien-
tation with respect to the cavity surface. Further, Waisp_rep is expanded in
a series of terms corresponding to increasing levels of approximation, as

Watisp —rep = Wiiep —rep T Wiisp —rep T **+ AS an example, the first term,
ngspirew which depends only on the distance of the center of mass of

the solvent molecule from the cavity surface, does ensure an isotropic
density distribution of the liquid at the interface with the continuum, so
avoiding artifacts in the simulations due to the presence of a physical
boundary as observed in other continuum-based methodologies [53-55].
Analogously, higher order terms are introduced, if needed, to prevent
other possible physical deviations arising from liquid bulk, as the solvent
polarization effect may appear by using discrete/continuum models.
Hence, Waisp—rep can be expressed in a simple general form as

N
Wdispfrep = ZA(ri)v (7)
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where A(r;) is the potential acting on the ith molecule and the sum is
extended over the total number of explicit solvent molecules. The basic
idea that has been followed to derive the dispersion-repulsion free energy
term consists in building up such a potential “on the fly” from a test
simulation of a neat liquid by discretizing the distance from the cavity
boundary with a set of equally spaced Gaussian functions, whose heights
are adjusted after a certain time interval on the basis of the local density [33].
It is worth noting that the so obtained Wisp_rep term is parameterized for a
given solvent at specific physical conditions (e.g., density and temperature),
but we can reasonably assume that it is constant for any solution of the same
solvent irrespective of the cavity size and shape, provided the boundary
surface is smooth and the number of explicit solvent molecules are suffi-
ciently large (see, e.g., Refs. [32 and 35]). As an example, in Figure 2.2 the
profile of ngsp _ resp () is shown for water and chloroform at normal condi-
tions (T=300K; p,0=55.3mol/l, pcyc, =12.4mol/l) along with the
corresponding density distribution evaluated locally at increasing distance
from a spherical cavity surface: note that the average local density is always
close to the overall density of the system.

2.13. Extension to the constant presssure/flexible volume (NpT) ensemble
In order to reproduce more closely usual experimental conditions,
especially in the molecular simulations of complex and flexible systems
in solution, we have recently extended the GLOB model to allow con-
stant pressure simulation by defining an estimator of the instantaneous
pressure on the basis of a microscopic partition function. At this point, it
is noteworthy that while the statistical mechanics theory of macroscopic
systems is well defined and widely accepted, there is not yet a similar
consensus on a theory of microscopic systems. Here, we will consider
specifically a microscopic system that is part of a more extended or, at
limit, infinite system, for example, a small portion of a molecular liquid
contained in a spherical region. For consistency with our previous defi-
nition of the GLOB model and starting from the assumption that a
physical boundary does separate the microscopic and the remaining
molecular systems, we prefer to derive a microscopic partition function
according to the minimum energy principle of the Helmholtz free
energy. The resulting expression of the instantaneous pressure to be
used in NpT ensemble molecular simulations can be written as

_ NkT (au OMWelec 8Wdisprep>

P=v "\av ' v av ®)
where N is the number of atoms, V the microscopic system volume, U the
potential energy due to only the explicit inter- and intramolecular interac-

tions, k the Boltzmann'’s constant, and T the absolute temperature. Note that
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Figure 2.2 (a) ngsp_resp(r) (b) local density distribution for water (solid line) and chloroform
(dashed line) at normal conditions (T = 300 K; py.0 = 55.3 mol/, pcrici, = 12.4 mol/1) evaluated
at increasing distance from the cavity boundary along a radial direction (at the boundary
surface, r = O\AA). In (b), dotted lines represent average densities. Adapted from Ref. [32].

(0U/0V) can be cast into the usual form of the virial equation (—XNr; - f;/3V,
with f; the force acting on the ith atom due to all other atoms). The deriva-
tives of the mean field terms become quite simple in the case of a volume
with a spherical symmetry and assuming that both the short-range potential
and the external dielectric constant included in the D matrix do not change
for small fluctuations of the microscopic system volume. Hence, we have
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N . .
=2 %53V )

OMWelec 1007 | 1 _,0D! 1 4 0D

ov. 28VD ® 2q> ov ® 2<I)D v’
Note that the D™' matrix can be computed by direct inversion at the
beginning of the MD simulation and simply rescaled at each step, since
the elements of the matrix are proportional to the cavity radius. Further,
the pressure coupling can be efficiently introduced according to an
extended phase-space scheme based on the Martyna-Tobias-Klein
algorithm [56].

(10)

2.2. Time-independent approaches

2.2.1. Dynamic (Vibrational) effects beyond harmonic approximation
Within the time-independent framework nuclear dynamic effects can be
included by computation of vibrationally averaged properties beyond
harmonic approximation. In reality, the molecular structure is never
fixed (in the space) and varies by small displacements, defined by mole-
cular vibrations at the anharmonic zero point vibrational (ZPVE) energy
level. To take into account these effects, which are able to tune molecular
properties, it is necessary to perform vibrational computations beyond the
harmonic approximation. However, full-dimensional anharmonic vibra-
tional calculations still represent a complicated task, even for
medium-size molecular systems. Although successful approaches for var-
iational computations of vibrational energy levels within the vibrational
self-consistent field methodology have been already reported [8,9,57-60]
(including the treatment of molecules in electronic excited states [61,62]
and the computation of Franck—-Condon (FC) factors [63]), significant
problems remain, especially in relation to the dimensionality of the PES.
As the size of the molecular system increases, the number of calculations
needed to describe the anharmonic PES becomes so large that accurate
full-dimensional vibrational variational approaches will not be practical at
least in the near future. On the other hand, in many cases the effect of
anharmonicity can be accounted for by a second-order perturbative (PT2)
inclusion of principal anharmonicities which provide much improved
results at a reasonable cost [64-67].

In the framework of the Born-Oppenheimer approximation, we can
speak of a PES and of a “property surface,” which, can be obtained from
OM/MM computations at different nuclear configurations. In this
scheme, expectation values of observables are obtained by averaging the



Extending the Range of Computational Spectroscopy by QM/MM 27

different properties on the nuclear wave functions. In the perturbative
model, the vibrational energy (in wave numbers) of asymmetric tops is
given by

E,=&+ Zwi (ni + ;) )8 (ni + ;) (m + ;) (11)

i j<i

where the w’s are the harmonic wave numbers and the {’s are simple
functions of third (F;;) and semidiagonal fourth (F;;;) energy derivatives
with respect to normal modes Q [64]. Both F;; and F;;j; can be evaluated
from numerical differentiation of analytical hessian matrices at geometries
displaced by small increments, as described in Ref. [64]. In this context,
availability of analytical second derivatives within the QM/MM scheme
paves the route to the studies of vibrational properties beyond harmonic
approximation for significantly larger molecular systems. We refer inter-
ested readers to Ref. [64] on the details of PT2 implementation. Here we
only recall that, in the absence of resonances, fundamental vibrational
frequencies (v;), first overtones [21;], combination bands [v;v;], and ZPVE

(Eo) are given by 1
vi=wi+28+5 Zfip (12)
i#i
[2vi) = 2wi + 685+ Y &5 = 2vi + 285, (13)
Jj#i

1 .
[vivj] = wi + wj + 2&; + 265 + 2&; + E;(ﬁﬂ +éh) =vitvi+&, (14
ij

1 1 1
Eo=§o+§Z Wi+§£ii+2§€ij ; (15)
i =

To the first order, the vibrationally averaged value of a property Q is
expressed as

(@), = Qe + ZA,- (ni + %) (16)

where (), is the value at the equilibrium geometry and

Bii ajFij
A =i 17
A Y (17)
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where «; and §;; are the first and second derivatives of the property with
respect to the ith normal mode. The first term on the r.h.s. of Eq. (17) will be
referred to in the following as harmonic and the second one as anharmonic.

It should be noted that PT2 computations for macromolecular systems
with large number of normal modes are particularly sensitive to the proper
treatment of Fermi resonances, which are known to plague the PT2 compu-
tations. It is therefore crucial to automatically neglect nearly singular con-
tributions (deperturbed computations), effectively removing interactions in
the second-order treatment, which are more properly treated in the first
order. Our specific PT2 implementation uses criteria proposed by Boese and
Martin [68] and such an automated scheme has been shown to provide
accurate results at least for fundamental bands [69].

2.2.2. Vibrationally resolved electronic spectra

In the framework of the FC principle [70-72], time-independent ab initio
approaches to simulate vibronic spectra are based on the computation of over-
lap integrals (known as FC integrals), between the vibrational wave functions of
the electronic states involved in the transition. The computation of FC integrals
requires a detailed knowledge of the multidimensional PESs of both electronic
states or, within the harmonic approximation, at least computation of equili-
brium geometry structures and vibrational properties. Till recently, computa-
tions of vibronic spectra have been limited to small systems or approximated
approaches, but within QM/MM scheme simulations of spectra for signifi-
cantly larger systems are possible. When treating such large systems, the inclu-
sion of vibrational contributions becomes very challenging, since the number of
vibrational states to be taken into account increases steeply with the dimension
of the molecule and the spectral width. Nonetheless, most of the possible
vibronic transitions do not contribute significantly to the spectrum. Therefore,
the availability of effective selection criteria to individuate a priori the most
relevant vibronic transitions within the dense bath of possible final states can
make feasible the calculation of spectrum lineshapes also for macromolecular
systems. In our approach an a priori method, called FC classes [73,74], which
provides very accurate vibrationally resolved spectra of medium and large
molecular systems with limited computational resources has been applied. In
this frame, the vibrationally resolved one-photon absorbtion (OPA), one-photon
emission, and electronic circular dichroism (ECD) spectra can be simulated.
Let us start from a brief summary of the general mathematical frame for the
spectra computations. The absorption spectrum, defined as the rate of
energy absorption by a single molecule per unit radiant energy density, is
given by the expression [6]

Tabs (W) = WT“’ZK Wiy [28(Es — E; + hw). (18)
7
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On similar lines, the emission spectrum in photon counting experiments,
defined as the rate of photon emission due to a single molecule is [6]

Oem(w) = 3h32|qf|u|wfl6Ef Ei — w). (19)

The stick spectra computed from Egs. (18 and 19) are usually convoluted
with a Lorentzian or a Gaussian function to simulate homogeneous or
inhomogeneous broadening, respectively. In the following, we will discuss
the simplest case of absorbtion or emission where the intensity of a spec-
trum line depends on the transition dipole moment integral (W¥;|ul¥y),
where V; and V¥, are the molecular wave functions and g is the electric
dipole moment. However, our approach is general and can be applied to
any case of two interacting transition dipole moments as, for example, m
and u in case of the ECD spectra. The ECD stick spectrum is obtained from
the anisotropy of molar absorptivity e(w), which can be computed by the
equation analogous to Eq. (18) where the square of the norm of the electric
transition dipole moment integral is replaced by the imaginary part of the
product of the electronic transition dipole moment with the magnetic tran-
sition dipole moment (m)(see Ref. [75] for details).

Our approach is set up in the Born-Oppenheimer approximation; thus
the wave function of each state can be expressed as a product of a nuclear v,
and an electronic v, wave functions:

(Wilp[Wp) = (Unthe| o [10))- (20)

The electric dipole moment can be separated into an electronic part . and a
nuclear part u,. Replacing the electric dipole moment by these two compo-
nents, the transition dipole moment integral can be divided into two terms:

<\I’1|‘U|\I’f> = <wn'¢)e‘ H, WW:J —+ <wnwe| M, |¢2¢;> (21)

Because of the orthogonality of the electronic wavefunctions of different
electronic states, the second term on the r.h.s. in Eq. (21) vanishes. As a
consequence, the transition dipole moment integral depends on the nuclear
wave functions and on the electronic transition moment g = (Y|t |V})-
Equation (21) can then be written as

(Wil i [ W) = (Ul ptig [¥7)- (22)

Application of the Eckart conditions [76] allows to minimize the coupling
between the rotational and vibrational motions of the nuclei in a molecule,
and as much as possible separate the nuclear wave function into rotational
and vibrational contributions. However, another problem remains since no
general analytical expression exists for the electronic transition dipole
moment: hence this integral must be approximated. This can be done by
expanding the transition dipole moment in a Taylor series of the normal
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coordinates (either the set Q' of the final state or the set Q of the initial state).
In our approach the expansion on Q" has been chosen

N 8/~Lif 1 N N( zluif )
ir(Q') = 1 (Qp) + FQ+5 QQ+-- (23
Hif Hif\&o ;5 ' k 2;2 anaQ k<1

=1

where Qj refers to the equilibrium geometry of the final electronic state,
while N is the number of normal modes.

Then, switching to the Dirac notation, replacing ;s by its Taylor expan-
sion given in Eq. (23) and assuming that the harmonic approximation can be
used to represent the vibrational wave function of the initial and final states
as eigenstates of the N-dimensional harmonic oscillator, that is, by defining
Ix;) = |[v) and |x;) = |[V'), it is possible to write Eq. (22) as

(Wi 1 ) = () VIV +Z(8Qk) viQLIV)

1 N N BZIUU(
+§ZZ aQ/ 8Q/ 0<V| Qle |V> (24)

The current version of our approach allows to take into account the Taylor
expansion up to diagonal second derivatives. The zero order, assuming that
the transition dipole moment is unchanged during the transition is the FC
[70-72] approximation, which is based on the assumption that molecular
geometry does not change significantly during the transition, and therefore
the electronic transition dipole moment can be treated as a constant. While
this approximation is known to lead to very good results in many cases, it
becomes not satisfactory for the dipole-forbidden [;tif(QE)) = 0] or weakly
allowed transitions. In these cases, one needs to improve the model and to
add the second term [Herzberg-Teller (HT) term]. Then, a limited change in
the structure during the transition is taken into account. For many studied
systems, the FC and HT approximations are sufficient to correctly describe
both absorption and emission spectra, but for symmetry-forbidden transi-
tions a correct reproduction of intensity of weak bands may require the
inclusion of higher order terms [77].

Computation of the overlap integrals between initial and final vibra-
tional states requires the use of a common coordinates set. Duschinsky
proposed a solution to this problem by considering a linear transformation
between the normal modes of the initial and the final states [78]:

Q =JQ+K. (25)

The Duschinsky matrix J describes the projection of the normal coordinate
basis vectors of the final state on those of the initial state and represents the
rotation of the normal modes upon the transition. The displacement vector
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K’ represents the displacements of the normal modes between the initial
and the final state structures.

Since J in principle is not diagonal, the calculation of the vibrational
overlap integrals is not straightforward. In our case, both analytical [79,80]
and recursive [81] approaches have been applied to compute terms on the
r.h.s. of Eq. (24). Analytical methods can quickly and accurately compute
the transition dipole moment integrals through ad hoc formulae, but the
latter need to be generated beforehand. On the other side, recursive
approaches provide methods to compute the overlap between given initial
and final states through formulae that express it in terms of sums of inte-
grals involving states with lower vibrational quantum numbers. Once the
overlap between ground vibrational states has been calculated directly, that
of any other transition can be obtained by recursively applying these for-
mulae. More details on the recursion formulae applied in the presented
approach can be found in Refs. [73,74,82].

The recursive approach can be in principle successfully applied to the
computation of spectra of large molecular systems. However, in many
cases the number of overlap integrals that must be taken into account can
become extremely large, with a consequent increase in the required com-
putational times and memory usage. Efficient computational strategies
must be able to individuate in advance the relevant transitions among the
infinite number of possible final states. Here, we use an a priori method
called FC classes [73,74], which provides very accurate vibrationally
resolved spectra of medium and large molecular systems with limited
computational resources. According to this method, transitions are parti-
tioned into classes C,,, depending on the number # of simultaneously excited
normal modes of the final electronic state of the transition. The overlap
integrals for single vibrations (class C;) and combination of two normal
modes (class C;), are computed up to a chosen limit (it can be also very
large, since computation is cheap; therefore, any loss of accuracy in this
step can be avoided). The probabilities of all these transitions are then used
in the computation of FC integrals for higher order classes, to obtain a priori
estimates of the maximum quantum number that needs to be considered
for each normal mode. To that end, for each class the allowed transitions
are chosen iteratively, on the ground of a minimum threshold for C; and C,
probabilities, so that the number of overlap integrals to be computed stays
approximately below a user-defined limit (N["*), which rules the calcula-
tion accuracy (see Ref. [73] for further details).

However, when using an a priori method to selectively compute transi-
tions, the convergence of the calculations and hence the reliability of their
outcome needs to be evaluated. In the calculation of vibrationally resolved
spectra, this can be easily done on the ground of analytical sum rules, by
comparing the actual computed spectrum intensity If}, to the exact analy-
tical limit I},. In the current approach spectrum convergence is always
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improved by increasing the limit for the number of integrals computed for
each class of transitions: NJ"*. A higher number of allowed transitions
obviously yields a better spectrum convergence but also directly increases
the required computational time and memory usage.

Skipping prefactors and the dependence on the freciuency, the intensity
of a given transition is equal to I(v, V') = [(v|u;(Q ")|v')|” and summing over
all the possible final states one gets

[ior = ZI | Q) V)P = D ki, (Q) | v), (26)

0=¢0

where the superscript a indicates that the sum has been carried out analy-
tically by exploiting the closure relation. In the limit of a complete inclusion
of all the possible final states the numerical sum of the state-to-state inten-
sities Ijy, = ¥,I(v,v') must approach I}, and the ratio C = I, /I, can be
used to control the convergence, which is complete when C =1 (see Refs.
[74,82] for the more complex formulae required in case of HT computa-
tions). However, for large systems, a great number of transitions has to be
considered to reach convergence of the spectrum intensity, and calculations
although feasible can become computationally demanding. On the other
side, usually the main scope is to correctly reproduce the spectrum line-
shape and assign the most important vibronic transitions. It has been shown
[73,74,83] that the spectrum lineshape usually converges much faster than C.
The lineshape convergence can be easily checked by comparison of results
calculated with two different thresholds for N,

It should be mentioned that while the presented approach is developed
within harmonic approximation, it can be further extended to take into
account anharmonic effects. As a first step in this direction a correction
scheme to derive excited state’s anharmonic frequencies from ground state
data has been implemented [84]. Briefly, excited state mode-specific scaling
factors can be derived from the ground state ones. These latter can be
obtained theoretically, for example, from perturbative anharmonic fre-
quency calculations [64], or from easily accessible ground state experimental
data. Then, for each particular normal mode Qj, the frequency scaling vector
o is computed first, using the formula a(k) = v(k)/w(k) where v is the
anharmonic frequency and w is the harmonic frequency. To proceed further,
we shall assume that, if there is a one-to-one relation between the normal
modes Qy and Q; of the initial and final states, the scaling factors oy and oy
are equal. However, the normal modes are in general not coincident (J #1I),
and a cannot be transferred directly to scale the frequencies of the final
state. In other words, the scaling vector must be adapted to the excited state
frequencies. In the case of small-amplitude vibrations, this can be obtained
by expressing the normal modes of the excited state as linear combinations
of the normal modes of the initial state, by means of the Duschinsky
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transformation. The Jy coefficients can now be applied to derive the relation
between the initial (k) and final (/) state mode-specific anharmonicity scaling
factors:

N
= Tl (27)
r

and then excited state anharmonic frequencies are simply computed as

V(1) = o/ () ().

23. Calculation of spectroscopic properties

23.1. Vibrational properties and infrared spectra

The theoretical solution of the vibrational problem for polyatomic molecules
and the determination of the IR spectra are among the most important
applications in computational chemistry. In practice, the most common
way to evaluate molecular properties is still their computation at the
“bottom of the well” corresponding to the global minimum. This approach
assumes an ideal case of perfectly symmetric harmonic representation of the
true shape of PES, as only then vibrationally averaged properties and those
calculated at the “bottom of the well” are exactly coincident. But in reality
the PES is always “anharmonic,” leading to dissociation of molecules. The
harmonic frequency calculations and computation of molecular properties
at the “bottom of the well” do not take into account the anharmonic char-
acter of PES, but such approximations are still useful and allow determina-
tion of molecular properties in a simple manner. However, in many cases it
is crucial to take into account the effects of nuclear motions beyond harmo-
nic approximation. In particular, the electron spin resonance (ESR) para-
meters often show a strong dependence on the molecular geometry and it
has been shown that the vibrational effects can change their values up to
25% [85]. It is important to recall that dynamic effects can be nonnegligible
even at very low temperatures and for semirigid systems.

As sketched in Section 2.2.1 recently developed methods based on a
quantum mechanical/stationary-state picture of the system, such as varia-
tional [86-88], self-consistent [9,57-60], and perturbative [64-67] treatments,
provide accurate energy levels in terms of the ro-vibrational Hamiltonian by
taking into account also anharmonic effects. In the challenging case of large
systems in condensed phases, the use of effective QM/MM schemes com-
bined with implicit solvent methods represents a viable choice to reduce the
computational cost of otherwise prohibitively expensive anharmonic fre-
quency analysis. Additionally, it is also possible to restrict the anharmonic
treatment to the small part of the total system, directly related to the spectro-
scopic observable, for example, the most intense bands in the IR spectrum,
or the selected large-amplitude motions, without losing the benefits of a
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unified and comprehensive picture. However, there are still cases in which
the underlying assumptions of such static calculations pose severe limita-
tions to a complete vibrational analysis by the so-called “Hessian-based”
methods, especially when the vibrational modes involve a complex confor-
mational rearrangement and/or coupling with solvent motions. A possible
alternative route is represented by time-dependent approaches based on a
classical or quantum treatment of the nuclear dynamics. Indeed, IR spectro-
scopic data can be obtained by a statistical mechanics formalism that relies
on the Fourier transform analysis of the time correlation of atomic velocities
or dipole moment. In principle, such approaches can provide a complete
description of the experimental spectra, that is, the characterization of the
real molecular motion consisting of many degrees of freedom activated at
finite temperature, often strongly coupled to each other. In particular, ab-
initio and hybrid QM/MM MD make feasible the vibrational analysis of
complex system in the condensed phase allowing also a reliable estimate of
the possibly induced solvent shifts of fundamental vibrational frequencies
[89]. In this case, an important issue concerns the introduction of appro-
priate quantum corrections to the classical time-correlation functions.
Recently, different quantum corrections have been compared on a theore-
tical basis and with respect to the performance on different kinds of intra-
molecular and intermolecular motions [90]. However, all the proposed
corrections only affect the width and the shape of the IR bands, while the
accuracy of the calculated frequencies still relies on the ability of the classi-
cal approach to describe the fundamental vibrations. In this regard, it is
worth noting that hybrid density functional theory (DFT) functionals do
perform reasonably well for a variety of molecular systems and represent
the method of choice for large biological systems. Eventually, more sophis-
ticated post-Hartree-Fock methods can be employed to correct the absolute
frequencies of specific vibrational modes, while DFT-based approaches can
be still used to obtain accurately solvent shifts.

23.2. Electronic spectra

To a first approximation level, electronic spectra (UV-vis, photoelectron,
X-ray, etc.) can be simulated by computing vertical excitation energies on
the geometrical structures optimized for the ground state, with the resulting
stick spectra subsequently convoluted by Gaussian or Lorentzian functions,
corresponding to inhomogeneous and homogeneous broadening, respec-
tively. Such a treatment completely neglects any dynamic effects on the
spectrum shape, but in many cases qualitatively reproduces experimental
findings. The simplified scheme is particularly justified for the studies of
very large macromolecular systems, for which excited state geometry opti-
mizations and/or frequency computations are still prohibitively expensive.
However, for such large systems even computations of reliable vertical
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excitation energies, particularly when many excited electronic states need to
be considered, might be a nontrivial task. In this respect, the QM/MM
schemes pave a viable route for studies of large systems where the electronic
excitation has a well-defined relatively localized character, and the QM
approach can be fully employed for the region of the system relevant to
the electronic excitation. Recent developments allow to compute the QM
part at the time-dependent DFT (TD-DFT) level and the resulting TD-DFT/
MM schemes greatly improves the reliability of the results over the
semiempirical approaches. However, in many cases, a more accurate repro-
duction of bandshapes conveys important insight into structural and elec-
tronic features; at this level, the vibrational structure of the electronic band
must be taken into account. Within the simplest zero-order harmonic
approximation it can be assumed that the PES of the initial and final states
do not differ in shape, so that the vibrational levels are identical. Obviously,
such an approach can only provide a very rough estimation of the real
spectrum, and in general most vibrational transitions are actually missed.
A significant improvement is represented by the linear coupling method
(LCM) [91]. Here the multidimensional coupling constants are obtained
from the ground state frequencies and normal modes, and the excited
state energy gradients evaluated at the ground state geometry. Thus, the
approach does not require computation of the excited state equilibrium
geometry, frequencies and normal modes, which have only recently become
feasible for large systems. However, the LCM does not take into account
changes in vibrational frequencies and/or in normal modes between the
excited and ground state. New models have been recently presented to
further improve the quality of the approximation, based on a linear trans-
formation between the normal modes of the initial and final states, as first
described by Duschinsky [78]. These models have proven capable to pro-
duce very accurate emission and absorption spectra [92-96] in cases where
reliable geometries and force fields have been computed for both electronic
states. Considering first-principles simulations of vibronic spectrum line-
shapes for large systems, the inclusion of vibrational contributions becomes
very challenging, since the number of vibrational states to be taken into
account increases steeply with the dimension of the molecule and the
spectral width. Nonetheless, most of the possible vibronic transitions do
not contribute significantly to the spectrum. Thus a crucial aspect is the
adoption of effective selection criteria to individuate a priori the most
relevant vibronic transitions within the dense bath of possible final states.
Several schemes have been proposed [73,83,97-100] ranging from the sim-
plest approach, based solely on the energy window of the spectrum [97,98]
up to rigorous prescreening techniques based on analytically derived sum
rules [100]. However, in our opinion the fast and effective a priori selection
scheme presented in Section 2.2.2 has proven its general applicability for a
variety of different systems.
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2.3.3. Magnetic properties: electron spin resonance spectroscopy

ESR spectroscopy is widely used to characterize properties of macromole-
cular systems of biological interest giving access to important information
on structural and dynamical properties. As an example we shall recall
nitroxide radicals, which are often used as a “spin probes” or “spin labels”
[101]. However, the interpretation of ESR spectra is not a trivial task and
quantum mechanical computations of magnetic parameters greatly support
the analysis of experimental results. In the case of isotropic hcc’s of protons,
reliable estimates can be obtained from semiempirical relationships, but
quantitative evaluation of hcc’s for heavier atoms usually requires rather
sophisticated computational treatments not accessible for large systems.
This is related to the fact that the computation of accurate hcc’s requires
good description of spin density at the nucleus. Hence, having in mind the
computational support of ESR for studying biological systems, it seems
reasonable to adopt an efficient QM/MM scheme, where the molecular
region surrounding the radical center is described at a high level of theory
and with a large basis set. Such an approach allows to define QM/MM
schemes well suited for the study of ESR properties of radicals embedded in
complex and nonstandard media as proteins, micelles, or cellular
membranes.

Here, we briefly sketch the theoretical framework used to compute
magnetic properties, invariant with respect to the applied electronic struc-
ture method [102]. The interaction between the electron spin (S) of a radical
containing magnetic nucleus of spin I with an external magnetic field (B)
can be approximated by the spin Hamiltonian H:

Ho=pS-g-B+S-A-T+---, (28)

where the first term is the Zeeman interaction between the electron spin and
the external magnetic field through the Bohr magneton, ug, and the g-tensor;
the second term is the hyperfine interaction between S and the nuclear spin,
I, described through the hyperfine coupling tensor A. The latter, which is
defined for each nucleus X (Ax), can be split into three terms:
Ax = ax13 + Tx + Ax, where 13 is the 3 x 3 unit matrix. The first term (ay),
usually referred to as the Fermi contact interaction, is an isotropic contribu-
tion and is related to the spin density at the corresponding nucleus X. The
second contribution (Tx) is anisotropic and can be derived from the classical
expression of interacting dipoles. The last term, Ay, is due to second-order
spin-orbit coupling (SOC) and can be determined by methods similar to
those described for the g-tensor. In cases with a strong localization of spin
density on first-row atoms and of small SOC constants, the last contribution
can be safely neglected and will not be discussed in the following. Because
both ax and Tx are ruled by one-electron operators, their evaluation is, in
principle, quite straightforward. However, hyperfine coupling constants
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have been among the most challenging quantities for conventional QM
approaches for two main reasons [102]. On the one hand, conventional
Gaussian basis sets are ill adapted to describe nuclear cusps; on the other
hand, the overall result derives from the difference between large quantities
of opposite sign. However, the past few years have shown that coupling of
some hybrid functionals to specifically tailored basis sets performs a
remarkable job for both isotropic and dipolar terms.

The gyromagnetic tensor can be written as follows: g=gJd; +
A gru + A8 + ABoyz/soc, Where ge is the free-electron value (ge = 2.0023193).
Computation of the relativistic mass (RM) and gauge (G) corrections is quite
straightforward because they are first-order contributions [103]. The last term
arises from the coupling of the orbital Zeeman (OZ) and the SOC operator. The
OZ contribution is computed using the gauge-including atomic orbital approach
[103,104], whereas for light atoms, the two-electron SOC operator can be reliably
approximated by a one-electron operator involving adjusted effective nuclear
charges [105]. Although those charges were optimized for wave function based
methods, a number of test computations showed that they are nearly optimal for
DFT computations too. Upon complete averaging by rotational motions, only
the isotropic part of the g-tensor survives, which is given by gi, = 1/3 Tr(g).
Of course, the corresponding shift from the free electron value is
Agiso = iso — e- For both hcc’s and gyromagnetic tensor calculations, it has
been recently shown that B3LYP [106] and EPR-III [107] or NO7D [108-110]
basis sets provide reliable results [103,111,112].

3. APPLICATIONS

As anticipated in the Introduction, the methodological machinery pre-
sented in the above sections can be successfully applied to many computa-
tional spectroscopy studies ranging from ESR, IR/Raman, low-resolution
UV-Vis up to rovibronic spectra, and to a large variety of systems from
small molecules in solution to macrosystems. The examples given below
include the UV spectrum of acrolein in the gas phase and aqueous solu-
tion, the vibrationally resolved photoelectron spectra of adenine adsorbed
on the 5i(100) surface, along with computation of ESR magnetic tensors
and vibrational frequencies beyond harmonic approximation, and are cho-
sen to illustrate the broad range of computational spectroscopy
approaches.

3.1. UV spectra of acrolein in gas phase and in aqueous solution

The UV absorption spectrum of acrolein has attracted significant attention
since this molecule exhibits two conjugated chromophores C=C and C=0,
a common feature for many natural systems [113]. The spectrum was
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studied experimentally in different solvents [114-121], as well as in gas
phase [121-124], and a solvatochromic blueshift of 0.20-0.25eV was
observed, as a result of water solvation. A simple explanation of such a
blueshift is that the electronic ground state has a larger dipole moment with
respect to the first excited state and, as a consequence, it is more stabilized in
polar solvents, such as water. However, the actual extent of the observed
blueshift is the result of subtle and opposite effects, not only polar ones
(see, e.g., Ref. [125]). Here, we present a comparative study where time-
dependent and time-independent approaches, described in Sections 2.1 and
2.2.2, have been applied to simulate the UV absorption spectrum of acrolein
both in gas phase and in aqueous solution aiming at a deeper understanding
of the subtle interplay of several different, not easily dissectable and evalu-
able effects hidden behind the observed blueshift.

Within the time-dependent approach the study of dynamical and
solvent effects on acrolein structure and electronic properties has been
performed with GLOB model [113]. In particular, an NVT QM/MM simula-
tion of acrolein + 134 TIP3P water molecules and a full QM simulation of
acrolein in vacuo were performed for 24 ps, including 4 ps of equilibration,
using the GLOB/ADMP methodology [126-128] (see Ref. [113] for details).
Then the vertical excitation energies and oscillator strengths have been
computed within the TD-DFT formalism employing the B3LYP functional
and the 6-311+4G(2d,2p) basis set. The consistency of such basis set in
spectroscopic calculations was validated in a previous work [129]. For the
time-independent approach the full geometry optimization, and frequency
calculations have been performed for both electronic states in the gas phase
and in aqueous solution. For consistency, the DFT/TD-DFT model with
B3LYP density functional and 6-3114++G(2d,2p) basis set has been applied.
In this case, solvent effects have been included implicitly by means of the
conductor-like polarizable continuum model (CPCM) [38] within the non-
equilibrium limit where only its fast (electronic) degrees of freedom have
been equilibrated with the excited state charge density while the slow
(nuclear) degrees of freedom remain equilibrated with the ground state.
Such an assumption is sufficient to describe the absorption spectrum in
solution, due to the different timescales of the electronic and nuclear
response components of the solvent reaction field [73].

First we will discuss the nature of the solvent (water) effects on the UV
n—7" transition energy of acrolein in terms of the relative contributions due
to direct (solvent polarization and H-bonding) and indirect (solute struc-
tural rearrangements) effects. The computed blueshift of the n—n" vertical
transition of acrolein, issuing from the gas- and condensed-phase MD
simulations at room temperature, are reported in Table 2.1 while the
lower panel of Figure 2.3 shows the corresponding spectra. The overall
computed blueshift is 0.26 + 0.01 eV (last line in Table 2.1), in good agree-
ment with experiments (0.20-0.25eV). Such a result has been obtained by
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Table 21 UV n—7" transition energies of acrolein in the gas phase and in aqueous
solution, computed at the TD-B3LYP/6-311++G(2d,2p) level of theory

Energy Shift
Gas phase 3.58
Solution
Acrolein 3.49 —0.08
Acrolein 4 2H,0%M 3.68 +0.10
Acrolein + 2H,0?M +132 H,OM + PCM 3.84 1+0.26
Note: Values are in eV, standard error is 0.01 eV.
— FCHT gas
L - == FCHT water
\ — GLOB gas
E --- GLOB water

Intensity (arbitrary units)

24000 26000 28000 30000 32000 34000 36000
Energy (cm™)

Figure 2.3 UV spectra of n—n" electronic transition of acrolein. Upper panel, time-
independent approach, spectra computed with FC—HT approximation, gas phase (solid
line), and water solution described by the CPCM model (dashed line). Lower panel, time-
dependent approach: spectra obtained from MD simulations with the GLOB model, gas-
phase spectrum (solid line), and aqueous solution (dashed line). Please refer online version
for color image.

the aqueous solution model with the acrolein molecule and the two closest
to the C—O group water molecules treated at QM level (acro-
lein+2H,0™+132H,OM™M4+PCM). Besides, when all water molecules are
treated as point charges (acrolein+-all H,OM+PCM), the blueshift remains
unchanged within the statistical noise, 0.25 + 0.01 €V, in line with a recent
study for the case of acetone [130]. This means that solvent effects on the
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n—m" vertical transition are essentially of electrostatic nature. However, we
have also evaluated the separate contributions to the blueshift coming solely
from the solute structural changes (second line in Table 2.1) and from the
first solvation shell of the C=0O group (acrolein4+2H,0%™), that is including
the two water molecules closest to the carbonyl oxygen. Remarkably, solute
geometry distortions lead to a nonnegligible redshift (—0.08 eV) and, hence,
the direct solvent effects on the spectroscopic property, once the solute
geometry has changed, are of about 0.34eV. Additionally, more than half
of such shift is provided by the first two water molecules surrounding the
C=0 group (0.18eV), which means that H-bonding and bulk effects are
nearly equal.

The time-independent approach takes into account only the electrostatic
part of solute—solvent interaction underlying the solvent shift, but allows a
straightforward and relatively inexpensive computation of both the gas-
phase and aqueous solution absorption spectra of acrolein. Moreover its
advantage stems from the fact that working directly in the frequency
domain gives access to the detailed analysis of vibronic contributions. In
case of n—n" electronic transition of acrolein assignment of the most intense
bands (from stick spectrum, see Figure 2.4) shows that the spectrum is
dominated by the progressions into the normal modes, which can be
described as a combinations of C=0, C=C, C—C stretching, and
C—C—O bending vibrations. To simulate the spectrum lineshape within

——————— FC gas phase
FCHT gas phase
Stick spectrum

Intensity (arbitrary units)

24000 26000 28000 30000 32000 34000 36000 38000
Energy (cm™)

Figure 2.4 OPA spectra of n—m" electronic transition of acrolein computed by time-
independent approach. Gas-phase spectra computed with FC approximation (dashed line)
and the FC—HT approximation (solid line), convoluted by homogeneous broadening with
FWHM of 400 cm . The FC—HT stick spectrum is also shown. Please refer online version
for color image.
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the time-independent framework, it is necessary to convolute the stick
spectrum with arbitrarily chosen function and full-width at half-maximum
(FWHM). For acrolein in the gas phase, the best comparison with the
experiment [121] has been obtained by applying the homogeneous broad-
ening (Lorenzian function) and the FWHM of 400 cm !, while the inhomo-
geneous broadening (Gaussian function) with FWHM= 1500 cm ™!
reproduces well the broad band of the experimental spectrum in solution.
The time-independent approach to compute vibrationally resolved electro-
nic spectra presented in Section 2.2.2 allows to go beyond the FC approx-
imation by considering changes of the transition dipole moment with the
geometry. It is worth mentioning that such an improvement does not
require any additional quantum mechanical computation, since the TD-
DFT frequencies are calculated numerically giving direct access to the
necessary derivatives of the transition dipole moment with respect to the
normal coordinates of the excited electronic state. Inclusion of the HT term
is particularly important for the dipole-forbidden or weakly allowed transi-
tions where the FC approximation is less reliable. This is the case of the
weakly dipole allowed n—n" transition of acrolein (¢ =0.0463 a.u.), where
the HT contribution indeed influences significantly the spectrum lineshape,
as shown by the comparison of the gas-phase FC and Franck-Condon-
Herzberg—Teller (FC-HT) spectra in Figure 2.4. For consistency, the FC-
HT approximation has been also applied to simulate the spectrum in aqu-
eous solution, which is compared to its gas-phase counterpart in Figure 2.3.
It is quite apparent that the solvent shift is well reproduced by the theory,
and also changes in the band shapes agree well with the experimental
observations [121].

It is interesting to compare results obtained with the time-dependent
and time-independent approaches, and both simulated spectra are shown in
Figure 2.3. It is immediately visible that indeed both methodologies accu-
rately predict the absolute position of absorbtion maximum in the gas phase
as well as in the aqueous solution. In both cases it is possible to compute
solvent shift. However, the time-dependent approach gives direct access to
the spectrum lineshape and the band maximum position; thus the solvent
shift can be obtained by the comparison of band maximum. In variance, the
arbitrary choice of FWHM applied to obtain spectrum shape in case of time-
independent approaches influences the position of absorbtion maximum.
Thus, in this case, solvent shift has been derived by comparison of electronic
transition origins. Nevertheless, the respective solvent shifts of 0.24 and
0.26eV in case of time-independent and time-dependent approaches,
respectively, agree both very well with the experimental value (0.25eV).
Such a good agreement, achieved also for the implicit solvent model, high-
lights essentially the electrostatic nature of the solute—solvent interaction,
which causes a blue shift of the n—n" transition. It is worth noting that both
the presented approaches allows to study in detail different effects
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influencing solvent shift and electronic bandshape. From this point of view
a combined study applying both time-dependent and time-independent
approaches permits to take into account specific and bulk solute-solvent
interaction as well as to analyze individual vibronic contributions. Summar-
izing, we conclude that combined studies which take advantage of both
time-dependent and time-independent approaches pave the route toward a
better understanding of experimentally observed spectra in condensed
phases.

3.2. ESR magnetic tensors of complex radicals in aqueous solution

The combined use of ESR spectroscopy and high-level ab initio calculations
represents a very effective tool to probe complex molecular structures and
dynamics, due to the high sensitivity of the magnetic tensors to stereoelec-
tronic, dynamical, and environmental effects. In particular, the accurate
reproduction of ESR experimental data by sophisticated molecular models
allows to unambiguously identify molecular structures that may exist, for
example, in a different protonation state or tautomeric form. A very relevant
application field for such a combined theoretical/experimental approach is
represented by the study of radical species of biological molecules, such as
amino acids and nuclear acid bases, which are involved in a variety of
important chemical processes, such as enzymatic catalysis, electron transfer,
and DNA radiation damage. Among others, two clear examples are pro-
vided by glycine and uracil radicals in aqueous solutions. In both cases, all
short-time dynamical effects have been taken into account by QM/MM
simulations according to the GLOB model, with the radical described at
full QM level and the rest of the solvent treated by MM approach. All the
simulations and QM calculations of spectroscopic parameters have been
performed with a locally modified version of the Gaussian package, accord-
ing to the methods described in Sections 2.1 and 2.3.3.

Recently, it has been well established that glycine radical prefers a
neutral structure in aqueous solution [131,132] (i.e., NH,—CH—COOH in
place of NH;"—CH—COO—), whereas the cationic and anionic forms play a
negligible role at physiological pH values. However, some of its isotropic
hyperfine splittings (especially H®) show values quite far from those
expected for similar radicals or observed for the zwitterionic form of the
glycine radical in the solid state [133]. This stimulated a number of theoretical
studies, with a satisfactory explanation of the ESR parameters obtained only
when intramolecular vibrational averaging and solvent effects were taken
into account by an integrated computational procedure [112,134]. The opti-
mized gas-phase structure of the glycine radical (see Figure 2.5), computed at
the B3BLYP/NO7D level, shows that the aminic group is to some degree
pyramidal, with ¢(HINC"C)=-9.5° and ¢(H2NC"C) = —165.0°, whereas
H“ is almost on the same plane of the N—C"—C group (¢(NH*CC*) =1.6°).
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O1

Figure 2.5 Optimized structure of the glycine radical computed at B3LYP/NO7D and
C-PCM level of theory.

On the other hand, in aqueous solution the glycine radical is, on average,
approximately planar: the fluctuations of the above dihedral angles are
symmetrically distributed around the planar conformation and the aminic
hydrogens show an equal and broader distribution than H” (see Figure. 2.6).
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Figure 2.6 Normalized probability distributions of the $(HINC“C), (H2NCC), and
G(NHCC") dihedral angles of glycine radical in aqueous solution resulting from a QM/MM
MD simulation.
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Table 2.2 ESR hyperfine coupling constants calculated at B3LYP/EPR-III level of theory
for the glycine radical (GlyR) in the gas phase, solvated with four water molecules
(GlyR+4H,0) and by PCM, and in QM/MM aqueous solution simulation (see Figure 2.5
for atom labels)

GlyR GlyR+4H,0O GIlyR+4H,0+PCM GLOBMD  Exp.

a(N) 545 407 419 5.58 6.38
a(Hl) -577 —895 -9.10 —5.70 ~5.59
a(H2) -373 -9.23 ~9.39 —5.42 —5.59
aC% 1185 670 6.22 10.90

a(H®) —14.54 —12.00 ~11.74 ~12.12 11.77

Note: Values are in Gauss.

The isotropic hyperfine couplings computed by different models of the
glycine radical are compared in Table 2.2 with the results averaged over the
QM/MM trajectory. On the one hand, the remarkable agreement between
the computed values resulting, from QM /MM simulation and from experi-
ment for all the available hyperfine splittings points out the reliability of
the computational approach. On the other hand, the nonnegligible differ-
ence between the results of the simulation and those obtained for the
isolated glycine radical or the optimized cluster including the whole first
solvation shell points out the role of solvent effects both from a static and a
dynamic point of view. Starting from the quite disappointing results
obtained for the isolated radical, inclusion of the first solvation shell leads
to nearly equivalent H1 and H2 atoms, but the quantitative values remain
quite far from experiment. Next, inclusion of bulk solvent effects by the
PCM [42] has a negligible effect, and only dynamical averaging (both intra-
and intermolecular) restores agreement with experiment. Thus, none of the
static models is sufficient to provide even semiquantitative results and a
dynamical treatment is needed to obtain a coherent picture. While the good
results obtained in Ref. [134] suggest that in this case intrasolute dynamics
plays a dominant role, in general this is not always the case and more
sophisticated theoretical approaches including all the short-time dynamical
effects are required (i.e., solute large-amplitude vibrations and solvent
librations).

Another significant problem concerning the identifications and charac-
terization of the most stable anionic tautomer of the uracil radical in aqu-
eous solution has been addressed by reviewing recent ESR experimental
data [135] in light of the state-of-the-art first-principle calculations. To this
end, we have considered five uracil tautomers able to form rather stable
valence anions in the gas phase [136]: the canonical tautomer (1) and other
tautomers (2-5) obtained by a proton transfer from a nitrogen to a carbon
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Figure 2.7 Optimized structures and corresponding single occupied molecular orbitals of
five tautomers of the uracil radical anion, including the canonical form, obtained at B3LYP/
NO7D and C-PCM level.

atom. Optimized geometries computed at B3LYP/6-31+G(2d,2p) level,
including solvent effects via the effective conductor-like version [137] of
the PCM [138-141], are depicted in Figure 2.7, along with the corresponding
single-occupied molecular orbitals (SOMOs). All isomers, with the exclu-
sion of 4, show a significant distortion of the molecular framework resulting
from the stabilization of the valence ©" state, in line with the gas-phase
results. The relative energies span a range of about 7kcal/mol, with a
stability order of the tautomers given by 2 > 3 > 1 > 5 > 4, thus predicting
one of such rare tautomers, not the canonical form, as the most stable in
solution. Similarly, a recent theoretical study [142] on the relative free
energy of the same wuracil radicals reported the following stability:
3>5>2>1>4 However, a thorough comparison of the available ESR
isotropic values of the hyperfine coupling tensors of N and H atoms with
those computed at quantum mechanical level, provides additional insights
for an interpretation of experimental results. In Table 2.3, we report the hec’s
parameters as resulting from experiments and theoretical calculations at
B3LYP/C-PCM level with specifically tailored EPR-III basis set. It is appar-
ent that the only computed hcc’s compatible with experimental data are
represented by those belonging to tautomer 1, whereas very significant
deviations are observed in all other cases especially considering a(HC5)
and a(HC6). Also, we have tested the contributions of both the direct solvent
effect and the solvent-mediated intramolecular motions to the magnetic
tensors in aqueous solution. Hence, we have performed a hybrid
QOM/MM MD simulation of tautomer 1 in water and we have computed
the same ESR parameters from a posteriori calculations on the sampled



Table 2.3 ESR hyperfine coupling constants calculated at B3LYP/EPR-IIl and C-PCM level of theory of the five tautomers of the uracil radical
as reported in Figure 2.7—Values resulting from a QM/MM MD simulation of tautomer 1 are given in parentheses

1 2 3 4 5 Exp.
a(N1) —0.14 (0.21) —-1.03 0.32 0.54 0.21 0.00
a(N3) 0.89 (1.28) —0.75 —0.04 1.50 1.53 1.46
a(H1) —1.61 (—0.64) — —-3.35 — —0.89 0.84
a(H3) —1.68 (1.00) -0.07 - -3.32 - 0.82
a(H5) —0.96 (0.18) 15.31, 46.99 —15.20, 50.56 -17.70 —-19.20 0.89
a(H6) —8.17 (10.17) -16.77 —-15.41 57.45, 56.74 43.89, 51.03 12.52

Note: Values are in Gauss.
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trajectory. As shown in the first column of Table 2.3 (results in parentheses),
small changes of the N and H hcc’s are observed (<2G), with an overall
better agreement with experiments. Thus, the overall comparison of com-
putational and experimental data provides a very consistent and clear
solution: the canonical form (1) is the anionic tautomer of the uracil radical
observed in aqueous solution.

3.3. Vibrational properties beyond harmonic approximation

In this section we will discuss time-independent vibrational computations
beyond harmonic approximation. We have chosen in particular the compu-
tation of anharmonic frequencies for adenine molecule adsorbed on a
5i(100) surface, modeled by Si cluster, and vibrationally averaged nitrogen
hyperfine coupling constants of 4-amino-2,2,6,6-tetramethylpiperidine-1-
oxyl-4-carboxylic acid (TOAC from now on) in its chair and twisted tauto-
meric forms.

Recent studies on infrared spectra of isolated adenine molecule have
shown excellent agreement between available experimental data [143,144]
and anharmonic vibrational frequencies [145,146] computed by perturbative
approach [64] with the well-known B3LYP [106] functional and the
6-311++G(df,dp) basis set. Moreover, detailed analysis of the potential
energy distribution (PED) from Ref. [145] allowed some revision of the
assignment of the experimental results [143,144]. The good accuracy of the
results (mean unsigned error lower than 10cm ') paves the route toward
detailed studies of the IR spectrum changes upon absorbtion on the Si(100)
surface. The total system composed of the adenine molecule adsorbed on a
Si cluster has been modeled by the ONIOM QM /MM scheme, with QM part
corresponding to the adenine molecule calculated at the B3LYP/6-311+4+G
(2df,2pd) level, and the Siyg cluster represented at the MM level by the
universal force field (UFF) [147]. The total system has 195 normal modes,
thus the full-dimensional PT2 anharmonic treatment would require 391
Hessian computations. While such computations are feasible within a
QOM/MM scheme, they can be still considered rather computationally
demanding. On the other hand, it is possible to study anharmonic effects
for some selected modes only, for example corresponding to the most
intense bands in the IR spectrum. The IR spectrum of adenine can be
characterized by two sets of bands in the regions around 1700 and
3500cm ! (see Figure 2.8), so we have chosen to compute anharmonic
frequencies only for the five modes related to the most distinct bands. It is
worth recalling that such an approach still takes into account effects of all
other vibrations on the computed anharmonic frequencies. Table 2.4 com-
pares results obtained for adenine adsorbed on Si(100) with those from the
studies of isolated molecule [146]. The most pronounced blue shift of
20cm ' is observed for the most intense band related to the NH group
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Figure 2.8 IR spectrum of adenine@Si,g with five most intense bands included in
anharmonic computation.

Table 24 Computed PT2 anharmonic frequencies of the five most intense bands in IR
spectrum (See Figure 2.8) of isolated adenine molecule and adenine@Si(100), and their shift
related to the absorbtion

Mode Adenine Adenine@Si(100) Shift
Y(NH2)asym 3539 3541 +2
V(N - H)stretch 3497 3491 —6
V(NHz)sym 3432 3441 +9
V(NHZ)sciss 1616 1636 +20
VN = O)stretch 1591 1597 +6

Note: all values in cm™".

scissor vibration, but also other frequencies change slightly upon absorb-
tion. Environmental effects of such an order of magnitude have been
observed, for example, comparing results from the gas-phase experiments
with those from low-temperature matrix or aprotic solution. This is in line
with the parallel orientation of the adenine molecule with respect to the
surface plane. In variance, much more pronounced frequency shifts would
be expected in case of perpendicular orientation due to specific adsorbant-
surface interactions. It should be noted that the presented approach makes
anharmonic frequency computations for macrosystems feasible, which
should greatly improve the understanding of observed experimentally fre-
quency shifts related to environmental effects, absorbtion on a surface, or
biomolecule embedding.



Extending the Range of Computational Spectroscopy by QM/MM 49

Besides frequency computations, the anharmonic analysis gives also
insights about vibrational averaging of molecular properties. As already
mentioned in Section 2.2.1, vibrational motions often influence strongly
the ESR parameters. TOAC is a nitroxide radical which has been largely
exploited as a magnetic probe in the studies of macromolecular systems by
means of ESR spectroscopy. Its magnetic properties have been evaluated at
fully QM level; thus it can stand as a benchmark for less expensive
approaches, which would be necessary for studies of large biologically
relevant systems. In this respect, we have chosen to compute vibrationally
averaged nitrogen hcc’s for the chair and twisted forms of TOAC by the
QM/MM model. The QM and MM parts are shown as balls and sticks, or
tubes, respectively, in Figure 2.9. In QM/MM computations the standard
ONIOM model has been applied with QM part computed by the PBEO
functional with the recently developed NO07D [108-110] basis set, tailored
for accurate studies of radical systems, and the MM part modeled by the
UFF force field.

In case of computations of vibrationally averaged properties it is rele-
vant to check the reliability of reduced dimensionality anharmonic models.
In fact, at variance with the direct computation of vibrational frequencies
one might expect that it is important to include effects of several vibrations,
which sum up. In the case of TOAC, we have tested a reduced dimension-
ality model by taking into account only 11 modes directly coupled with the
vibrations of the N—O group, but in this case only about 10% of the total
vibrational contribution has been recovered. On the contrary, a full vibra-
tional anharmonic treatment, including all 123 normal modes, led to good
agreement with previous QM studies [148]. Table 2.5 shows that also in case
of QM/MM study the vibrational contributions are negligible for chair

Figure 2.9 The chair (a) and twisted (b) structures of TOAC. The QM part is presented as
balls and sticks, while the tubes correspond to the MM part.
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Table 2.5 Nitrogen isotropic hyperfine coupling constants (hcc’s in Gauss)

Temperature (K) Equilibrium Harmonic Anharmonic Total
Chair

0 16.206 —0.003 0.004 16.207

298 —0.332 0.195 16.069
Twist

0 14.326 0.106 0.423 14.856

298 —0.061 0.879 15.145

Note: Equilibrium values, harmonic, and anharmonic contributions and the total hec’s computed at 0 and 298 K.

structure, but become quite significant for the twist structure, especially if
temperature effects are also included.

It should be noted that some normal modes have given almost negligible
vibronic contribution, so the reduced dimensional anharmonic treatment
can be in principle applied also to the computations of vibrationally aver-
aged properties, but in this case the choice of normal modes which must be
included is not straightforward. Thus, similar to the TOAC example it might
be suggested to apply the QM/MM schemes to evaluate vibrationally
averaged properties rather than to reduce the dimensionality of vibrational
treatment in order to facilitate computations.

The two examples gathered in the current section in fact highlight two
different aspects of approximations to facilitate vibrational property compu-
tations beyond the harmonic approximation. In this respect we can distin-
guish the direct evaluation of some experimentally observable frequencies,
which can be most likely performed reducing computational efforts by
applying both simplified QM/MM schemes and reduced dimensionality
vibrational treatment, from evaluation of frequency-dependent properties
like ZPVE or vibrationally averaged hcc’s, where it might be important to
sum up effects of all vibrations. Summarizing, we have shown that computa-
tions of vibrational properties beyond the harmonic approximation within
the QM /MM scheme can be successfully applied to rather large systems, and
in some cases the computational cost can be further reduced by application
of reduced dimensionality anharmonic treatments.

3.4. Photoelectron spectrum of adenine adsorbed on Si(100)

Reliable computational studies of optical properties for large nanosystems
in condensed phases can support the design of new materials relevant for
optics, photonics, and sensoristics. The approach to compute one-photon
electronic spectra presented in Section 2.2.2 is in line with such a demand.
The accuracy and effectiveness of our a priori procedure for the selection of



Extending the Range of Computational Spectroscopy by QM/MM 51

the relevant transitions to be computed is of particular relevance to the
studies of large macromolecular systems. As an example we compare the
photoelectron spectra simulations performed for isolated adenine and for
adenine adsorbed on the silicon (100) surface [82]. The full valence photo-
electron spectrum of adenine is composed from several overlapping excita-
tions [149], but to show the feasibility of spectra computations for
nanosystems we have chosen to study only the ionization from the highest
occupied molecular orbital.

5i(100) surface has been modeled by a cluster of 119 silicon atoms, as
shown in Figure 2.10, resulting in a total system with 636 normal modes. For
computation of geometry structures and frequencies the ONIOM QM /MM
scheme has been adopted, with QM part corresponding to the adenine
molecule calculated at the B3LYP/6-31+G(d,p) level, and the Siq19 cluster
treated at MM level using the UFF force field [147]. The photoelectron
spectra have been calculated for both isolated adenine molecule and adeni-
ne@Si(100), implying that the spectrum changes upon adsorption. In Figure
2.10 both spectra are plotted in the range of 8.0-8.7 eV roughly correspond-
ing to the first band of valence shell photoelectron spectrum. It can be

8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7
Energy (eV)

Figure 210 Comparison between the theoretical photoionization spectra in gas phase of
isolated adenine (upper panel) and adenine adsorbed on a Si(100) surface (lower panel).
The spectra in an energy range from 8.0 to 8.7 eV are calculated with FC approximation and
with FWHM =100 cm™"; the stick bands show the most important transitions. Please refer
online version for color image.
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observed that our model predicts a small red shift of the excitation origin
upon adsorption on Si surface, and that new vibronic transitions corre-
sponding to intermolecular vibrations modulate the spectrum lineshape.
The analysis of both spectra give insights into the underlying adsorbate—
surface interactions, allowing to interpret the rich indirect information
provided by the experimental spectra. It can be recalled that the time-
independent simulation of spectra works directly in the frequency domain,
thus allowing to determine single vibronic contributions even in difficult
cases involving relatively broad bands. In a more general context, compar-
ison of experimental and simulated lineshapes supports dissecting and
evaluating the role of different effects (environmental, hydrogen bonding,
adsorbate—solute interaction, etc.) in determining spectral properties.

The accuracy and effectiveness of our a priori strategy to select only the
relevant transitions and discard the less probable ones should be under-
lined. This will be discussed analyzing the number of combinations for each
class C, for both systems, which is directly related (see Ref. [82] for details)
to the number of transitions which stands as an initial pool from which only
the relevant ones are chosen to be computed.

Table 2.6 lists yC, for isolated adenine and adenine@Si(100) along with
the spectrum convergence achieved with N[ ¥ set to the default value of 10°.
Increase of N{"** limit always yields better spectrum convergence, but also
increases computational time and memory requirements. However, all
computations with the same N{™®* are equivalent, despite the system size.
It is worth noting that in both cases, either an isolated molecule with 39
normal modes or a macrosystem with over 600 modes, almost all spectrum
intensity (about 98%), has been recovered at an equivalent computational
cost, even if for the cluster, the applied value of N{"®* is not sufficient to
consider the whole initial pool even for only three simultaneously excited
modes (C; class). This particular case shows the ability of the a priori

Table 2.6 Convergence of spectra computations for adenine and adenine@Si(100)

Adenine Adenine@Si(100)
Class (n) NG, Convergence (%) nC, Convergence (%)
3 9.14E+4+03 84.54 427E+07 87.31
4 823E+04  93.57 6.75E+09 94.82
5 576E+05 97.48 854E+11 97.37
6 326E+06  98.32 898E+13 97.88
7 1.54E+07  98.39 8.08E+15 9793

Note: For each classs C, the number of combinations of the n excited oscillators yC,, and convergence are listed.
The C; and C, transitions have been computed by analytical formulae allowing a maximum quantum number
v;=30, and v; =v,=20, respectively. For the classes C,, n>3, the transitions to be computed have been
selected setting the parameter NM> to 10° (the default value).
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strategy to select only the relevant transitions and to discard the less prob-
able ones. The efficiency of the procedure can be easily explained by the fact
that despite significant difference in the systems size, in both cases, the
electronic transition is localized on the adenine molecule. This example
confirms the effectiveness of spectra computations within the QM/MM
scheme, for systems where electronic transitions are localized on a relatively
small QM part.

4. FINAL REMARKS AND CONCLUSIONS

It has been shown that modern computational spectroscopy can be success-
fully exploited in the study of macromolecular systems and strengths and
limitations of the available computational methodologies has been presented.

The time-dependent route is particularly well suited for flexible systems
propagating on highly anharmonic PES with large-amplitude motions or
solvent librations. In such cases it is necessary to sample larger regions of
configurational space and to take into account all its important features.
Such computations might be computationally demanding, but it is worth
recalling that MD studies can be performed at a relatively lower level of
theory which is able to reliably reproduce the overall character of the PES. It
is also worth remarking, that one MD simulation stands as a base for a wide
range of spectroscopic studies. Then a posteriori computation of spectro-
scopic properties can be performed by more refined theoretical approaches
which can be also appropriately tailored for each property of the interest.

For the semirigid systems accurate results can be obtained by time-
independent computations of spectroscopic properties. In such cases it is
possible to take into account vibrational effects on the molecular properties
or electronic spectra, and to compute vibrational frequencies beyond har-
monic approximation. Advantage of time-independent approaches, besides
their relatively lower computational cost, stem from the fact that working
directly in the frequency domain gives access to the detailed analysis of
vibrational contributions. Moreover, time-independent computations allow
the reduced dimensionality treatment of the vibrational problem, which
paves the route into the better understanding of spectroscopic properties
of macromolecular systems.

Moreover both approaches allow to compare directly experimental and
theoretical spectra, as well as to evaluate and dissect both dynamic and
environmental effects determining spectral properties. Overall, the compu-
tational strategies presented here, together with their integration into a
computational chemistry package, allow a straightforward but at the same
time detailed and accurate computational studies of ESR, IR/Raman, and
UV-vis spectra, for macrosystems of direct biological and/or technological
interest.
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1. INTRODUCTION

In the last decades the search for environmentally friendlier solvents [1] has
been accompanied on the theoretical side by a renewed interest in the
development of methods oriented to understanding and predicting how
the structure, properties, and reactivity of molecules are affected by the
presence of a surrounding medium [2], with the hope that this knowledge
will serve as a guide in the development of new solvents. In contrast to the
pioneering works of Born [3], Kirkwood [4], Onsager [5], and so on, which
were based on a classical description of the solute, the new methods use
quantum mechanics (QM), which permits a more detailed description of the
changes that the solute molecule suffers during the solvation process. The
high level of calculation and accuracy that has been achieved in the quan-
tum description of molecules and processes in vacuo is widely known;
consequently, an additional objective of current solvent theories is to
achieve a similar level for molecules and processes in solution. From a
practical point of view, the ultimate goal is to have available effective
methods that permit to calculate the geometry and energy of minima,
saddle points, conical intersections (Cls), and so on, of molecules in solution
and that include the contribution of dynamical electron correlation or the
possible multiconfigurational character of the solute wave function.

The medium that surrounds the solute can be of diverse natures: a solid,
a liquid, a glassy solid, a liquid drop, a membrane, or even an enzyme;
however, the vast majority of biological or chemical transformations takes
place in the presence of a solvent. Because of this, most of the examples
presented here are referred to systems and processes in the presence of a
liquid solvent, even if many of the ideas developed could be easily applied
to other media.

The solvent can have very different effects on the solute molecules [6],
it can modify the frequency and intensity of the solute spectral bands, the
thermodynamics and kinetics of chemical reactions, the strength of mole-
cular interactions or the fate of solute excited states. A change of solvent can
drastically alter the behavior of a chemical system, and the choice of a
proper solvent is one of the first decisions that a chemist must take when
facing a spectroscopic, kinetic, or thermodynamic problem. For all these
reasons, it is very interesting to have theoretical methods that can guide
chemists in their choices. Unfortunately, the theoretical study of solvent
effects is quite complicated, since the presence of the solvent introduces
additional difficulties with respect to the study of analogous problems in
gas phase. Among these difficulties, we can remark the following:

(1) Firstly, the great number of molecules involved in the description of
bulk solvent polarization effects. Molecules placed at long distances
have a nonnegligible effect on the solute properties. In general, in the
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study of solvent effects, and depending on the type of solute-solvent
interactions involved, it is necessary to include several solvent shells in
the calculations.

(2) Secondly, the possible presence of specific interactions, mainly
hydrogen bonds (HBs), between the solute and the solvent molecules
located in the first solvation shell. The correct description of these
interactions makes the use of microscopic solvent models compulsory.

(3) Finally, in solution there are a great number of solute-solvent
configurations that are thermally accessible. Different solute molecules
will have different environments and, consequently, slightly different
properties. To obtain statistically significant results, it is necessary to
include hundreds or thousands of solute-solvent configurations.

An additional complication comes from the fact that, in solution, the rele-
vant energy to consider is the free energy and we must hence have at our
disposal methods that permit the calculation of this quantity in an effective
and computationally feasible way.

All these complications, large number of solvent molecules, possible
existence of specific interactions, great number of solvent configurations,
the necessity of determining free energy differences, and so on, have as a
consequence a very large computational cost associated to the calculation of
solvent effects. Along the years, researchers have developed different stra-
tegies to reduce the computational cost while trying to keep the accuracy of
the calculations at an acceptable level. One of the most successful strategies
has been the introduction of the mean field approximation (MFA) [7,8] that
permits to replace the configurational average of a given solute property
with the value obtained for this property when the solute is affected by an
average solvent perturbation. In the next sections, we treat different aspects
of the practical implementation of the MFA, paying especial attention to a
method developed in our laboratory and that combines the MFA with
molecular dynamics (MD) simulations.

2. THE MEAN FIELD APPROXIMATION

Whereas the increase of computational power in the last decades has
permitted to tackle the study of certain solvent effects using a brute force
strategy, as in ab initio dynamics, its application to most chemical and
biological problems is far from being routine. In ab initio dynamics [9],
one combines the quantum mechanical description of both the solute and
the solvent electron distributions with the classical or quantum description
of the nuclei movements. Consequently, it becomes necessary to solve the
Schrédinger equation of several hundreds of molecules for several
thousands of configurations. The computational cost of this strategy is so
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high that in almost all the studies performed to date, it has been compulsory
to reduce the description level of the wave functions, the number of
molecules, or the number of solvent configurations.

In the search for theoretical methods that facilitate the study of solvent
effects, two main strategies have been followed:

(1) Focused methods. The computational cost associated to the large
number of solvent molecules can be reduced using focused methods;
here, we center our attention on a small part of the system, in general,
the solute or the solute and a reduced number of solvent molecules,
which is described using high-level quantum mechanical methods. The
description of the rest of the system, generally the solvent, is simplified
using for instance dielectric continuum models, Langevin dipoles,
molecular mechanics (MM) force fields, or a combination of them.
Focused methods are valid when there is a clear separation between
the solute and solvent wave functions and they fail when charge
transfer between the solute and the solvent is not negligible. In this
case, the solvent molecules closer to the solute should be included in the
quantum part.

(2) MFA. The computational cost associated to the large number of
thermally accessible solvent configurations, and hence of quantum
calculations to perform, can be reduced using the MFA. In this
approximation, one does mnot consider the effect of specific
configurations, instead, the solvent perturbation enters into the solute
molecular Hamiltonian in an averaged way.

These two approximations can be used independently or jointly. Thus,
OM/MM [10] or ONIOM-type methods [11] are examples of focused
methods, whereas dielectric continuum [12-14], reference interaction site
model (RISM)-self-consistent field (SCF) [15-17], or averaged solvent elec-
trostatic potential (ASEP)/MD [18-21] methods use simultaneously both
strategies. To our knowledge there are no methods that use exclusively
the MFA.

A measure of the success of the MFA is the great number of solvent
theories where it is explicitly or implicitly used. Table 3.1 displays a classi-
fication of some solvent theories where this approximation is applied.
The various theories differ in the description of the solvent. Thus, if
the solvent is described as a dielectric, we get different continuum theories.
They can, in turn, be classified according to the representation of the solvent
perturbation: monocentric multipole [14], multicentric monopole [13,22,23],
effective charges [12,24], and so on. Other descriptions of the solvent are
also possible: as a conductor [25,26], using Langevin dipoles [27], or MM
force fields. In the latter case, the solvent structure can be obtained using
RISM theory [15-17], MD [18-21,28,29], or Monte Carlo simulations [30]. In
the model proposed in our laboratory, named ASEP/MD, the solvent
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Table 3.1 Classification of some of the most commonly used solvent theories that use the
mean field approximation

Conductor Dielectric Langevin Molecular
dipoles  mechanics

RISM MD
Monopole SMx RISM-SCF
multicentric
Multipole . Rivail, Mikkelsen
monocentric
No multipole COSMO PCM Warshel 3D-RISM- ASEP/

SCF MD

structure is obtained from MD simulations and the solvent perturbation is
described using potential fitted charges.

The great advantage of the MFA, and what partly explains its success,
is that it permits to reduce the number of quantum calculations from
several thousands to a single quantum calculation. The price that one
must pay is the complete neglect of the correlation energy associated
with the response of the solute charge distribution to the instantaneous
changes in the solvent structure as a consequence of thermal agitation.
Obviously, the MFA will be valid only if the contribution of this energy,
known as Stark component [31,32], to the total solute-solvent interaction
energy remains negligible. It has been shown, both theoretically [20] and
experimentally [33], that this is usually the case. A recent study [34] of the
errors introduced by the MFA in the calculation of free energy profiles of
Sn2 Menshutkin reactions has concluded that these are lower than
0.5 kcal/mol.

3. THE ASEP/MD METHOD

Any theoretical method devoted to the study of solvent effects and intend-
ing to be of application to chemical problems of general interest must
provide solution to, at least, the following problems: (1) the description of
the mutual polarization of the solute and the solvent, (2) the location of
critical points on free energy surfaces, and (3) the calculation of free energy
differences between different solute-solvent geometries. In the following,
we will show how ASEP/MD solves each one of these problems.
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3.1. The mutual solute—solvent polarization

The ASEP/MD method is a focused method that makes use of the MFA. Since
the solute is described quantum mechanically and the solvent by using MM
force fields, it could also be classified into the QM /MM methods, more
specifically, as a sequential QM /MM method [35] where QM and MD calcu-
lations are performed alternately and not simultaneously. As usual in focused
methods [24], the ASEP/MD Hamiltonian is partitioned into three terms

H = HQM + Hclass + Hint, (1)

corresponding to the quantum part, Hoyy, the classical part, He,es, and the
interaction between them, Hi,;.

The energy and the wave function of the solvated solute molecule are
obtained by solving the effective Schrédinger equation:

<HQM + Hint) W) = E|¥). (2)

In general, in QM /MM methods this equation is solved for each solute—
solvent configuration, which means several hundreds or thousands of
times. The final value of the energy (or any other property) is calculated
by averaging over all considered configurations.

From a computational point of view, it is convenient to split the interac-
tion term into two components associated to the electrostatic and van der
Waals contributions:

~ ~ elect ~ vdw

Hine =H; +Hyy - (3)

int

In many cases, it is supposed that IA{ivniw has little effect on the solute wave
function and therefore it is usual to represent it through a classical potential
that depends only on the solute-solvent nuclear coordinates. Obviously, it
will contribute to the final value of the energy, and energy derivatives.

In this point the MFA is introduced. So, we define the MFA electrostatic
: 81m>, as follows [7,8,18]:

interaction term, <H
()= [ar-p- (vsio), @)

where p is the solute charge density operator, and (Vs(r)), named ASEP, is
the average electrostatic potential generated by the solvent at the position
r. The brackets denote a statistical average over configurations in
equilibrium.

The MFA energy is obtained by solving the following equation:

int

(Flow+ (Fine) ) W) = EW). (5)
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Note, that in the MFA we replace the average value of the energies obtained
from Eq. (2) with the energy obtained in presence of the average solvent
perturbation, that is, (E) ~E.

Different solvation methods can be obtained depending on the way the
term (Vs(r)) is calculated. For instance, in dielectric continuum models
<V5(r)> is a function of the solvent dielectric constant and of the geometric
parameters that define the molecular cavity where the solute molecule is
placed [12]. In ASEP/MD, the information necessary to calculate <V5(r)> is
obtained from MD simulations. In this way, (Vs(r)) incorporates informa-
tion about the microscopic structure of the solvent around the solute,
furthermore, specific solute-solvent interactions can be properly accounted
for.

The basic scheme of the ASEP/MD method is very simple, see Figure 3.1.
One begins by performing a quantum calculation of the solute molecule in
gas phase. From this one can obtain the solute charge distribution that is
introduced as input into an MD simulation. The rest of the simulation
parameters can be obtained from suitable force fields. From the MD calcula-
tion, one gets the solvent structure, which permits to calculate the ASEP by
averaging over the solvent configurations, the ASEP is then introduced into
the solute molecular Hamiltonian. By solving the associated Schrodinger
equation (5), we get the solute wave function but now perturbed by the
solvent. The new solute charge distribution is again introduced into another
MD simulation. The procedure is repeated until convergence is attained,

HOWO = B0

{q%

Molecular dynamics |

{a} Averaged potential, V

4| [H+V]¥=E¥ |

v

Energy and
solute properties

Figure 3.1 Flow chart of the ASEP/MD method.
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something that occurs in a few cycles (less than ten, in general). Given that
in our method quantum calculations and MD simulations are not simulta-
neous, there is a certain freedom to decide which configurations to include
in the calculation of the ASEP. So, to decrease the statistical correlation
between the selected configurations, we include only configurations sepa-
rated by 0.05ps or more. It is also important to remember that only the
electrostatic term enters into the electron Hamiltonian.

The information that we get at the end of the ASEP/MD cycle is the
energy, geometry, and wave function of the solute molecule polarized by
the solvent and the solvent structure around it. Figure 3.2 displays how the
solute charge distribution, which is represented by its dipole moment, and
the solvent structure become mutually equilibrated during the ASEP/MD
procedure. At the same time, the free energy of the system decreases until
the system reaches the equilibrium and then it begins to fluctuate. The size
of the fluctuations is a consequence of the finite size of the simulations.

One important point to clarify is the way in which the ASEP is calculated
and introduced into the solute molecular Hamiltonian. We have checked
several possibilities. The electrostatic solvent perturbation can be described
through multipole expansions or using a set of point charges. In this last
case, the charges can be determined in several ways. In general, especially
when solute-solvent HBs are present, a representation using point charges
is more adequate because the use of multipole expansions can introduce
appreciable errors in the solute-solvent interaction energy. The simplest
way to get the charges is to use for them the same values and positions
used during the MD and then to divide the value of each charge by the
number of solvent configurations included in the ASEP. The problem then is
that the number of charges increases very quickly as the number of solvent
molecules or system configurations gets higher. This approximation has
been used, for instance, by Coutinho et al. [36]. To keep the number of
charges tractable, we follow a somewhat more elaborated procedure: we
consider explicitly only those charges associated to molecules that belong to
the first solvation shell, the effect of the remaining solvent molecules is
described by using potential-fitted charges.

The set of charges {g;} is obtained in three steps. The details are as follows
[21]:

(1) Each selected configuration is translated and rotated in such a way that
all of the solvent coordinates can be referred to a reference system
centered on the center of mass of the solute with the coordinate axes
parallel to its principal axes of inertia. This procedure is needed to get
all the charges’ coordinates referring to the same coordinate system.

(2) Next, one explicitly includes in the ASEP the charges belonging to
solvent molecules that, in any of the MD configurations selected, lie
inside a sphere of a given radius and that includes at least the first
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solvation shell. The value of every charge is then divided by the
number of solvent configurations included in the determination of the
ASEP. Next, to reduce the number of charges, one adds together all the
charges lying less than a certain distance from each other, this distance
is generally taken as 0.5 ay.

Finally, one includes a second set of charges representing the effect of
the solvent molecules lying outside the first solvation shell. These
charges are obtained by a least squares fit to the values of the ASEP
originated by the outer solvent molecules in a three-dimensional grid
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defined inside the volume occupied by the solute molecule. The solute
volume is defined through a set of interlocking spheres of radius f-Ryqw,
where fis a numerical factor close to one, and R4, are the Bondi radii of
the solute atoms. These charges are obtained in such a way that they
reproduce the electrostatic potential generated by the outer solvent
molecules in the volume occupied by the solute.

The total number of charges introduced into the perturbation Hamiltonian
varies generally between 25000 and 35000 depending on the size of the
system.

3.2. Location of critical points on free energy surfaces

ASEP/MD uses a variant of the free energy gradient method [37-40] for
the calculation of the gradients that drive the optimization process.
In this method, the average force, (F), and Hessian, (G), felt by the
solute atoms are used to optimize the geometry. The average force is
defined as the derivative of the free energy (with a minus sign), and
can be calculated as the average value of the potential energy deriva-
tive. The average Hessian takes a more complicated form, see below. In
the original proposal of Okuyama-Yoshida et al. [37], these average
values were obtained from QM/MM calculations where the solute
molecule had a fixed geometry. The main advantage of this method is
that it permits to obtain both stable and transition states. The main
drawback is that the computational cost of calculating (F) and (G) is
usually high. However, as we will show below, it is possible to reduce
this cost by using again the MFA in the calculation of the gradient and
Hessian.

The basis of the free energy gradient method is the following: Let
G=—kT In Znvt be the Helmholtz free energy of a system formed by one
solute molecule and N-1 solvent molecules and Zyvyt the quasi-classical
canonical partition function. The force on the free energy surface (the force
felt by the solute molecule) is

- - 250 (28 - - (%) (%),

R being the nuclear coordinates of the solute, E the energy obtained as
the solution of the Schrodinger equation (2), and where we have
assumed that E.,ss does not explicitly depend on the solute nuclear
coordinates R. As before, the brackets denote a configurational average.
Note that E incorporates both intra-, Eqy, and intermolecular, Ejn,
contributions.
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In the same way the Hessian reads
(@) = () =G+ 5 )
_ < O’E

rore )~ P = A(EY)

(7)

where the superscript t denotes the transposition and 5 = 1/kT. The last
term in Eq. (7) is related to the thermal fluctuations of the force.

As for the energy, it is convenient to split the interaction term into
two components associated to the electrostatic and van der Waals
contributions:

(URRC ORGSR SR

Next, we use the MFA to simplify the gradient and Hessian expres-
sions. Given that our final aim is to reduce the number of quantum
calculations, this approximation is used for the two first terms of the
R.H.S. of Eq. (8), but not for the van der Waals term that does not
depend on the electron coordinates. Thus, we replace the configurational
average of the derivatives with the derivative of the MFA energies
obtained with Eq. (5), furthermore we neglect the force fluctuation
term in Eq. (7) (since the Hessian is used only to accelerate the optimi-
zation procedure, this approximation has no effect on the optimized
geometries but it can affect the harmonic frequencies evaluation). The
validity of these approximations has been checked elsewhere [41]. The
force now reads as follows:

o aEQM B aEfrllect B aEYndtw
(F(R)) = TR <TR > ©)

with an analogous expression for the Hessian:

n 82EQM B 82Ef1116d B 82Ei\g:1tw
(GRR)) = = ooR ~ s S (10)

The advantages of the introduction of the MFA in the calculation of
gradients and Hessians are evident, it permits to reduce the computational
cost of these quantities in solution; in fact, the cost is similar to that of an
isolated molecule.
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3.3. Calculation of free energy differences

For most practical applications, one is interested in the free energy (FE)
difference between different structures, states, or species, such as the
ground and excited state in a photophysical process, and reactants, pro-
ducts, and transition state in a chemical reaction. Within the ASEP/MD
methodology, the free energy difference in solution between two given
states is approximated as follows [42]:

AGs = AEsolute + AGint + AZPEsoll1te7 (11)

where AE 1 is the internal energy difference between the two solute states
at QM level, AGj,, is the difference in the solute-solvent interaction free
energy, and AZPE . includes the difference in zero-point energy as well
as entropy and thermal contributions to the solute QM free energy.
Although formally this equation takes the same form as in the QM-FE
approach of Jorgensen [43], the meaning of the AE term is different. First,
because the geometry of the two species involved are optimized in solution.
Second, because the internal energy and charge distribution of the solute are
determined in the presence of the solvent.

In Eq. (11), the internal energy difference between the two QM states is
defined as

AEgoiute = Ep —Ea = <\IIB|H[])3‘\I,B> - <‘I,A|HOA|\I,A>> (12)

where, H?( is the in vacuo Hamiltonian for the state X, and Wy is the
electronic wave function of the state X in solution, that is, calculated in the
presence of the perturbation caused by the solvent. Wx is obtained by
solving the effective Schrodinger equation, Eq. (5). Eg and E, are calculated
using the geometries optimized in solution and do not include the solute—
solvent interaction energy.

The AGjn: term is calculated with the free energy perturbation (FEP)
method [44], and takes into account the ensemble of thermally accessible
solute-solvent configurations. To obtain AG;, the solute geometry, charges,
and Lennard-Jones parameters are considered as a function of the perturba-
tion parameter A: when \ = 0 they correspond to the initial state and when
A =1 to the final state. A series of intermediate arbitrary states are defined
by linear interpolation of the solute properties and for each of them a fully
classical MD simulation is performed. The free energy difference is
calculated from these simulations in the usual FEP way. It must be noted
that, although geometries and charges for the initial and final states of the
solute are calculated quantum mechanically with the ASEP/MD method,
the AG;,,; term is obtained through classical simulations. This approximation
does not introduce significant errors if a sufficiently good solute charge
distribution is used and it permits an important saving in computational
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effort. A more detailed discussion of this point can be found in Ref. [45]. For
a comparison of several strategies based on the MFA for the calculation of
solvation free energies in solution and protein environment, see Ref. [46].

Finally, the AZPEojute term is calculated in the same way as usually done
for in vacuo calculations, using the harmonic approximation for vibrational
modes. The only specific consideration in solution is that the molecular
geometry and vibrational frequencies of the solute are obtained in solution,
using the approximate in solution Hessian matrix. Rotational and transla-
tional degrees of freedom are transformed into low-frequency vibrational
modes in solution, and must be treated accordingly.

4. VALIDITY OF THE MEAN FIELD APPROXIMATION

The main source of error associated to the use of the MFA is the complete
neglect of the Stark component of the solute-solvent interaction energy. In
this section, we present some results that permit to estimate the magnitude
of this error in several quantities. More specifically, we discuss three types
of errors: errors on the energy and dipole moment of molecules in the
ground state, errors on the solvent shift in electron transitions, and errors
on the energy gradients.

In Table 3.2, the values for the energy and dipole moment of several
alcohols and carbonyl compounds in water solution calculated with the
MFA or as an average of QM calculations are compared [20]. (A) represents
the value of the A property calculated as the mean value of 100 quantum
calculations; Appa represents the value obtained when the MFA is used,
and has been obtained by calculating the ASEP with the same 100 solvent
configurations and performing only one quantum calculation. Wsi,,x is the

Table 3.2 Interaction energy, solvent Stark component (in kcal/mol), and dipole
moments (in debyes) in the liquid state calculated as a mean value <E> or with the mean
field approximation Epea

(E) Emra Wstark (B)  pvra (p)—pnra

CASSCF
Formaldehyde 92 -88 04 (43%) 299 299  0.00 (0.0%)
Acetaldehyde -89 -85 04 (45%) 346 346  0.00 (0.0%)

Acetone 219 211 08((3.6%) 448 447  0.01(0.2%)
MP2

Methanol -183 -179 04 (22%) 246 245  0.01 (0.4%)

Ethanol -158 -154 04 (25%) 227 225  0.02(0.9%)

Propanol -137 135 02(15%) 215 213  0.02(0.9%)
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difference between these two quantities for the energy. As we can see Waiark
is in all cases lower than 5% and the errors introduced by the MFA in the
dipole moments are lower than 1%. Percentually, the errors are very similar
along each series of molecules. The errors are somewhat higher in the
carbonyls because of their larger polarizabilities.

For the determination of the error introduced by the MFA in the
calculation of the solvent shift of electron transitions, we must compare
the transition energy when the MFA is used and when it is not. In
Table 3.3, we compared the errors introduced by the MFA in the calcula-
tion of the transition energy in several chromophores and different sol-
vents: water, methanol, and cyclohexane. In this study electronic
transitions to the first (n-n") excited state were studied for acrolein and
formaldehyde, whereas (n—n") transitions were studied for p-difluoroben-
zene (p-DFB) and trans-difluoroethene (trans-DFE). A practical coincidence
is observed between the in solution transition energies obtained using
the MFA and those achieved as the average of the transition energies
resulting from 100 quantum calculations corresponding to as many solvent
configurations. A similar trend can be noted in solvent shift values,

Table 3.3 Transition energies in vacuo, AE®, and in solution calculated as a mean value
<AEd> or with the mean field approximation AEfAFA. 6 stands for the solvent shift. W, is
the solvent Stark component of the solute—solvent interaction energy. All the quantities in
kcal/mol

AEO <AEd> AEi/IFA <6> 6MFA WStark((s)

Water

Acroleine; 83.08 88.26 88.60 5.18 551 0.34
CASPT2(6,5)/ /CASSCE(6,5)

Formaldehyde; 9230 95.79 95.73 349 343 -0.06
CASPT2(4,2)/ /CASSCFE(4,2)

p-DFB; 110.02 111.18 111.17 1.16 1.14 -0.02
CASPT2(6,6)/ /MP2

trans-DFE; 190.62 192.34 189.68 1.72 1.67 -0.05
CASPT2(2,2)/ /MP2

Methanol

p-DFB; 110.02 110.66 110.75 0.64 0.72  0.08
CASPT2(6,6)/ /MP2

trans-DFE; 190.62 191.60 191.42 0.98 0.80 -0.18

CASPT2(2,2)/ /MP2

Cyclohexane
p-DEB; CASPT2(6,6)//MP2  110.02 110.22 110.18 0.16 0.19 -0.03
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calculated as the difference of electronic transition energies obtained in
vacuo and in solution. Consequently, and as a first conclusion, we can state
the absence of solvent Stark effect and the validity of the MFA in the study
of the solvent effect on the position of the absorption bands in electronic
spectra.

Finally, in Table 3.4 we compare the values of the different components
of the free energy gradient for a molecule of formamide in aqueous solution
[41]. The error introduced by the MFA in the gradient root mean square
(RMS) is close to 1%, very similar to the errors introduced in the energy or in
dipole moment. This implies that the MFA can provide good optimized
geometries of molecules in solution. In the gradient we have included only
the electrostatic component of the solute-solvent interaction energy because
the MFA affects only this component, the contribution of the van der Waals
component to the gradient is evaluated directly from the MD simulations
(vide supra).

Table 3.4 Cartesian gradient of the free energy (in 107> E,,/ag) of a molecule of forma-
mide in aqueous solution. Only the electrostatic contribution is included

Mean of 1000 Average

. . . . Difference
configurations configuration
N1 x 12.914 12.827 0.087
y 3.858 3.831 0.027
z 0.084 0.085 -0.001
H2 x -3.365 -3.132 -0.233
y 3.049 2.928 0.121
z 0.053 0.049 0.004
H3 x -1.116 -1.081 -0.035
y -5.347 -5.081 -0.266
z -0.006 -0.004 -0.002
C4 x —26.864 -26.816 -0.048
y 5.473 5.487 -0.014
z -0.002 -0.010 0.008
05 x 18.255 17.862 0.393
Y -10.052 -9.788 -0.264
z -0.041 -0.026 -0.015
He x 1.567 1.571 -0.004
y -2.136 -2.240 0.104
z -0.004 0.002 -0.006

r.m.s. 8.898 8.807 0.091
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5. EXAMPLES OF APPLICATIONS

In this section we present some examples of application of ASEP/MD. These
examples comprise solvent effects on conformational and configurational
equilibria, chemical kinetics, UV/Vis spectra and nonradiative de-excitation
of excited states. In all of them, the use of the MFA permits to reduce the
computational cost associated to the great number of thermally accessible
solvent configurations; this makes it possible to increase the description level
of the solute and the use of quantum methods similar to those commonly
used in gas-phase calculations: density functional theory (DFT), Meller-
Plesset perturbation theory (MP2), complete active space self consistent
field (CASSCF), complete active space perturbation theory (CASPT2), and
so on. Along this discussion, the results obtained with ASEP/MD will be
compared with those obtained with other methods. The final aim is to estab-
lish the validity of the MFA and to determine the possible importance of
solute-solvent specific interactions on the calculated properties.

5.1. Conformational and configurational equilibria

5.1.1. Anomeric effect in xylopyranose and glucopyranose

The anomeric effect describes the axial preference for an electronegative
substituent on the pyranose ring adjacent to the ring oxygen. This effect
makes the B-anomer—with all the hydroxyl groups in the equatorial
orientation with respect to the ring (in p-glucopyranose)—less stable than
the o-anomer—which differs from the B-anomer in the axial orientation of
the hydroxyl group on C;—in vacuo. However, the reverse behavior has
been observed in aqueous solution. So, for instance, in D-glucopyranose in
water solution, the ratio between o- and B-anomers is 36:64. A similar
behavior has been observed in xylopyranose.

In the study of p-xylopyranose [47], the energy and wave functions were
calculated using DFT with the Becke three-parameter Lee-Yang—Parr
(B3LYP) functional [48] and the 6-311G++G(2d,2p) basis set [49]. For each
anomer, there are several possible arrangements of the hydroxyl groups. In
general, for the isolated molecule, the hydroxyl groups prefer to orient in
such a way as to yield a cooperative hydrogen bonding as efficiently as
possible. The two preferred arrangements of the intramolecular hydrogen
bonds (IHBs) are clockwise or counterclockwise, the counterclockwise
orientation being somewhat more stable. The main results obtained are
displayed in Figure 3.3. For comparison, we also give the results obtained
with the polarizable continuum model (PCM) [12] as implemented in Gaus-
sian 98 [50] and with a scale factor for the radius of each atomic sphere of
1.2. The continuum model erroneously predicts that solvation favors the
o-anomer; in fact, the solvation free energy is 1.1kcal/mol larger in the
o-anomer than in the 8. On the contrary, ASEP/MD, which includes specific
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Vacuum Solution
4.46

2.20 —— 2.03 =—— PCM

B-D-Xylopyranose 0.87 = ¢

o-D-Xylopyranose 0.0 — 4 0.0
“< -0.4 —————————— Exp.

Figure 3.3 Relative free energies (with counterclockwise o-p-xylopyranose as the
reference) of o.- and B-p-xylopyranose, in vacuo and in solution.

solute—solvent interactions, predicts the correct trend: in solution the more
stable form is the B-anomer. Given that in vacuo the anomeric effect favors
the o-anomer, the greater stability in solution of the B-anomer must be due
to a more favorable solvent interaction term. The relative stability predicted
by ASEP/MD, 0.6 kcal/mol, agrees very well with the experimental value,
0.4 kcal/mol [51].

The study of the p-glucopyranose molecule [52] is somewhat more
complicated because the hydroxymethyl group can adopt different orienta-
tions (see Figure 3.4) with different values of the dihedral angle

aG+ oG- oT

BG+ pG- pT

Figure 3.4 Structures of the different rotamers of - and -po-glucopyranose.
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Or—C5—Cs—0Og. In our study we considered the three most important
rotamers (T, G+, G-) of counterclockwise D-glucopyranose, which were
studied in vacuo and in water solution at the B3LYP/6-314+G(d,p) level
and with the ASEP/MD method.

Figure 3.5 shows the relative energies of the six studied conformers of
D-glucopyranose in vacuo and in aqueous solution. The energy of the most
stable conformer in vacuo, oT, is arbitrarily taken as the reference value. The
most significant effect of the solvation of D-glucopyranose is the larger
stabilization of the P-conformers relative to the o ones. As a result,
we found that while in vacuo the o-conformers are more stable than their
B counterparts; in aqueous solution any of the B-conformers is preferred to
any of the o-conformers. The difference in energy in solution between the
most stable B-conformer, G+, and the most stable o-conformer, oT, is
0.9 kcal/mol. Experimental evidence [53,54] suggest that the difference in
free energy between o- and B-conformers of pD-glucopyranose in aqueous
solution is around 0.4 kcal/mol (a ratio between o~ and B-abundances of
36:64). Our results slightly overestimate these differences in energy (we
obtain a ratio between o and B of 20:80), but, given the approximations
made in our study, this result is very encouraging.

In order to gain a deeper insight into the solvation effects, in Figure 3.6
we plot the radial distribution function (RDF) for the distances between the
anomeric oxygen, O, and the water solvent oxygen, O,, for the six

4.0 e
* 3G+
3.0
oG-
— oG+
]
£ 20
©
3
>
>
o 1.0 .
< T
w g 00 G-
aT oG+
0.0 eaT
.ﬂG—
-ﬂT
10 o 5G+

Vacuum  Solution

Figure 3.5 Relative free energies (with oT as the reference) of the different rotamers of
o- and B-p-glucopyranose, in vacuo and in solution.
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Figure 3.6 O(anomeric}—O(water) RDFs of the different rotamers of o- and
[-p-glucopyranose.

conformers. Figure 3.6a shows the RDF for the o conformers and Figure 3.6b
for the B-conformers. The main conclusion is that, as we noted above,
solvation is more effective for the f-conformers, which shows a peak (at
around 3.1 A) that is higher than for the o-conformers. One can therefore
expect the B-conformers to be more stabilized by solvation than the a-
conformers, the solvent molecules being more tightly bonded to the anome-
ric oxygen in the B-conformers. The solvation of the rest of the OH groups of
the pyranose ring hardly depends at all on the type of conformer, and hence
has no influence on the relative stability of the - and B-forms.

In sum, the most significant effect of the solvation of b-xylopyranose and
D-glucopyranose is the greater stabilization of the B-conformers relative to
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the a-conformers. The explanation is that the anomeric effect, which makes
o-conformers more stable in the gas phase, is not powerful enough to
compete with the effect of a stronger interaction between the solvent and
the free electron pairs of the anomeric oxygen in the B-conformers than in
the o-conformers, where this interaction is hindered by the rest of the
pyranose ring.

5.1.2. Conformational equilibrium in a tripeptide

In recent years, small peptides have been used as model systems for the
study of the conformational behavior of more complex biomolecules. In an
effort to gain insight on the solvent influence on the structure and stability
of peptides, we undertook the study of the electronic structure, the geo-
metric parameters, and the physicochemical properties of the tripeptide
Cys-Asn-Ser (Figure 3.7) both in gaseous and in acidic aqueous solutions
[55]. The study was performed with ASEP/MD and at the B3LYP/6-311+G
(d) level. The Cys-Asn-Ser tripeptide can form several IHBs that involve
groups of very different nature [56]. It is hence a good model to check the
solvent influence on the geometry and energy of the different groups. We
are especially interested in the study of the IHB formed by the oxygen (O25)
of the side chain of Asn with the two hydrogens (H2 and H19) bonded to the

Figure 3.7 Structure and labeling of the Cys-Asn-Ser tripeptide.
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nitrogens (N1 and N15) of the peptide bonds, because they can provide
stiffness to the main chain of the tripeptide. We named these IHBs as HBla
(N1—H2—025) and HB1b (N15—H19—025), respectively.

In gas phase we found three minima, see Figure 3.8. The two more stable
structures are Vac-2 and Vac-3, the free energy difference between these two
structures is only 0.3 kcal/mol. In both structures, O25 is involved in the
formation of an IHB. Somewhat higher in energy (2kcal/mol), we find
Vac-1, in this structure the O25 IHB is missing.

Next, we analyzed the in solution results. Figure 3.9 displays the six
more stable structures, for the sake of simplicity other structures at higher
energies have not been included. The structures of Sol-1-S0l-3 conformers
are equivalent to those obtained in vacuo (Vac-1-Vac-3), in the sense that
they are characterized by the same number of IHBs and display a similar
orientation of the side groups. Sol-4-Sol-6 are extended structures without
IHB. The first conclusion is that the number of local minima is greater in
solution than in vacuo. The solvent stabilizes extended structures without
IHB that are not stable in vacuo. These results confirm previous studies on
the relative stability of amino acids and peptides, where it was found that

Vac-1 o Vac-2

Vac-3
[

Figure 3.8 Stable conformations of the tripeptide in vacuo.



80 |. Fdez. Galvan et al.

Sol-4

L

Figure 3.9 Stable conformations of the tripeptide in solution.

some structures that do not exist in gas phase become stable in solution
because of their ability to form strong intermolecular HBs with water. So, for
instance, in solution, the most stable structures are Sol-1, Sol-5, and Sol-6; in
these three conformers, O25 forms an intermolecular HB with the water
molecules. Higher in energy are Sol-2 and Sol-3, characterized by the pre-
sence of HB1b and HB1a, respectively. Consequently, in solution there is an
equilibrium between several structures, with the structures where 025
forms intermolecular HBs strongly favored.

Another fact to emphasize is that, in solution, the stability order is
reversed with respect to the situation found in vacuo, here the order is
Vac-3 > Vac-2 > Vac-1 whereas in solution the stability order of the equiva-
lent structures is Sol-1> Sol-2> Sol-3. The study of the different



Use of the Average Solvent Potential Approach 81

Table 3.5 Free energy difference and its components, in kcal/mol, for the six most stable
minima found in solution

AEsolu‘ce AC’int AG
Sol-1 -8.0 3.1 —4.9
Sol-2 -11.0 74 -3.6
Sol-3 -11.8 9.8 -2.0
Sol-4 0.0 0.0 0.0
Sol-5 4.1 -8.8 —4.7
Sol-6 8.2 -13.0 -4.8

contributions to the free energy, Table 3.5, permits us to clarify the origin of
the inversion in the differential stability of the conformers when we pass
from gas phase to solution. AG is the sum of two contributions: the internal
energy, AEgute, and the solvation energy, AGiy, as indicated in Eq. (11)
neglecting the AZPEg, e term. It is interesting to note that there exists a
strong negative correlation between the internal energy and the solvation
energy: the less stable the internal structure of the conformer, the greater the
solvation energy. The internal energy is stabilized by the presence of IHBs,
consequently, the most negative values of the internal energy correspond to
those structures with the larger number of IHB (Sol-2 and Sol-3). On the
contrary, the solvation energy is larger in those structures where there is a
better exposure of the polar groups of the peptide to the water molecules,
that is, in those structures in which the tripeptide adopts a more extended
conformation without IHB (Sol-5 and Sol-6). The stability order results from
the interplay of these two factors: internal energy and solvation that, in turn,
are determined by the competition between intra- and intermolecular HBs.

The study of the shape of RDF and of the coordination numbers
also reveals the competition between IHBs and intermolecular HBs, see
Figure 3.10. If one fixes the attention on the O25(tripeptide)—H(water)
RDF, it can be noted that the height of the RDF and the coordination number
decreases as we pass from a conformation with intermolecular HB to one
with intramolecular HB. So, for instance, the O25 coordination number
decreases from 2.5 to 2.2 when one passes from Sol-1 to Sol-2, and to 1.8
in Sol-3. However, the most dramatic effects are displayed by H2 and H19.
In Sol-1, both hydrogen atoms show well-defined peaks at 2A in the
H(tripeptide)—O(water) RDFs. In the two cases, the coordination numbers
are close to 1. In Sol-2, H2 displays also a very well-defined peak but the RDF
associated to H19 has completely lost its structure, evidencing the existence
of an IHB between 025 and H19. Something similar is found in Sol-3, in this
case the H19—O(water) RDF displays a very well-defined peak but the
H2—O(water) RDF loses its structure as a consequence of the H2—025 IHB.
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Figure 310 O25—H, H2—O, and H19—O RDFs for the tripeptide in solution. Solid: Sol-1.
Dashed: Sol-2. Dotted: Sol-3.

5.2. Chemical reactions

An example of application of the ASEP/MD methodology to chemical
reactions was the study of the 1,3-proton shift in triazene (N3H3) [57]. The
ASEP/MD method was used to optimize the geometries of the triazene
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Figure 3.11 Scheme of 1,3 proton shift of triazene. Top: unimolecular reaction. Bottom:
bimolecular reaction with the aid of a water molecule.

molecule in water, as well as the transition states of two possible reaction
mechanisms: a unimolecular shift (TS1) and a bimolecular reaction aided by
a water molecule (TS2, see Figure 3.11) in aqueous solution. A DFT method
with a BP86 functional [58,59] was used for the quantum calculations with a
triple-zeta basis set. Concerning the structure of the transition states, it was
found that TS2 in solution resembles a N;H, " + OH™ ionic pair in solution
more than in gas phase, which accounts for a part of the stabilization of this
transition state in solution (see Table 3.6). While the activation energy for the
unimolecular reaction increases from 32.0kcal/mol in gas phase to
34.9 kcal/mol in solution, for the bimolecular reaction it decreases from

Table 3.6 Energy barriers (in kcal/mol) of the two activation processes for the 1,3 proton
shift in triazene. See Figure 3.1 for the structures

In vacuo In solution

NzH; — TS1 32.03 3491
N;H; + H,O — TS2 10.07 5.46
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10.1kcal/mol to 5.5 kcal/mol. Not only the bimolecular path is preferred,
but the preference is much stronger in solution.

As a complementary application, the optimized TS2 structure obtained
in water with the ASEP/MD method was used as the initial solute geometry
for trajectory calculations with a standard QM/MM method (DFMM)
[60-62], using the “rare event” approach for the dynamical study of the
bimolecular reaction. Starting with the transition state, 50 different QM/
MM trajectories, with Boltzmann-distributed initial velocities, were run
both forward and backward in time. This allowed us to observe the beha-
vior of the transition state structure in solution and the course of the
reaction. The main conclusions were (1) the hydrogen-bonded complex
(CMP) is maintained before and after the reaction takes place; (2) a transition-
state-like structure, which resembles an ionic pair, is relatively long-lived
(an average life of 85fs); (3) the calculated transmission coefficient was
0.73, indicative of a good initial representation of the transition state,
which was the aim of the ASEP/MD method, and at the same time of a
nonnegligible influence of dynamical effects and recrossings, as suggested
by the long-lived TS2-like structure.

5.2.1. Electron transitions

In the study of solvent effects on electron spectra, it is very usual to consider
two time scales: a fast one, associated with the motion of the electrons, and a
slow one, related to the nuclear motion. During an electron transition, the
Franck-Condon (FC) principle establishes that the nuclear geometries of the
solute and solvent remain fixed. That means that for an absorption process
the solvent structure will be in equilibrium with the ground-state solute
charge distribution, but not with the solute charge distribution of the excited
state (the contrary is valid for the emission process). However, the response
of the electron distribution of the solvent is in general fast enough to adapt
to the change in the solute charge distribution during the transition. In our
group we have developed a polarizable solvent version [63,64] of the ASEP/
MD method that permits the electronic degrees of freedom of the solvent to
respond instantaneously to the change in the solute charge distribution
during the transition, that is, the electron solvent polarization is always in
equilibrium with the solute charge distribution. To this end an additional
self-consistent process is performed. Using the solvent structure and solute
geometry obtained in the first self-consistent ASEP/MD process, we couple
the quantum mechanical solute and the electron polarization of the solvent.
We assign a molecular polarizability to every solvent molecule, and simul-
taneously, we replace the effective solvent charge distribution used in
the MD simulation with the gas-phase values for the solvent molecule.
The induced dipole moment on each solvent molecule is a function of the
induced dipole moments on the rest of the molecules and of the solute
charge distribution, and hence the electrostatic equation has to be solved
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self-consistently. The process finishes when convergence in the solute and
solvent charge distributions is achieved.

In our method, the solvatochromic or solvent shift of an electron transi-
tion is the sum of several contributions [65] corresponding to the change in
the internal energy of the solute when polarized, the distortion energy of the
solvent, that is, the energy spent in the reorganization of the solvent during
the excitation, and several terms associated to the interactions between the
solute charge distribution, Q, and the permanent, g, and induced, p, charges
in the solvent.

1 1
6 = Uex — ug = Etsl’q + 6Qq + E(SQP + 63?51:1&3 + (SS?SIEIQM' (13)

The last term of Eq. (13), the distortion energy of the solvent, vanishes in a
vertical transition where the solvent structure is kept fixed but takes a
nonnull value in adiabatic transitions.

As an example of application of the method, the transition energy of
dimethylaniline (DMA) in several solvents is presented [66]. The geometry
of DMA was optimized at CASSCE(8,7)/6-311G"" level, and the transition
energies calculated with second-order perturbation theory (CASPT2) as
implemented in MOLCAS-6 [67]. The solvents, water, cyclohexane, and
tetrahydrofuran, were represented as rigid molecules with the OPLS-AA
force field. In vacuo, the ground-state dipole moment is 1.33 D and 1.66 D in
the excited state. When the molecule is introduced into a solvent, it is
expected that the excited state will be more stabilized than the ground
state, consequently the transition energy will decrease and we will have a
red solvent shift. In Figure 3.12 white circles represent the experimental
values. As one can see, the decrease of the transition energy becomes larger
when the solvent polarity increases. Water, however, presents an anoma-
lous behavior. In water, the transition energy increases. We will try to
explain the reasons of this anomalous behavior later. First, we will describe
the prediction of continuum models, blue circles. As we can see, PCM
reproduces the experimental trend in nonprotic solvents, but fails in the
water case. On the contrary, ASEP/MD, red circles, reproduces correctly the
experimental trend, both in protic and nonprotic solvents. The systematic
deviation of our results from the experimental values is due to the neglect of
the contribution of the dispersion component. This component is a function
of the refraction index of the solvent and hence it hardly depends on the
solvent nature (the refraction index varies very little among the different
solvents studied) and its contribution can be eliminated by considering the
differences between solvents instead of the absolute transition energy, see
Figure 3.13. The agreement with the experiment is very good.

Turning to the motives of the anomalous behavior of water, in Figure 3.14
we represent the occupancy map of water oxygen atoms. Because of the
formation of HBs, most of the water molecules concentrate close to the free
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Figure 3.12 Absorption energies of DMA in solvents of different polarity.

electron pair of the nitrogen atom. There are also high concentrations above
and below the aromatic ring. When the molecule is excited, part of the charge is
transferred from the nitrogen atom to the ring, and the HBs are broken, as a
consequence the solvation energy decreases in the excited state. In reality, this
is only a partial view of the problem. When the solute molecule is placed in
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Figure 3.13 Relative absorption energies of DMA in solvents of different polarity, with
cyclohexane as the reference.
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Figure 3.14 Occupancy map of oxygen atoms around the ground state of DMA. Solid
isosurface at a density value of 0.64.

water, the wagging angle between the dimethylamino and phenyl moieties
increases, see Table 3.7, something that does not occur with the other solvents.
Almost half of the solvent shift comes from this distortion of the geometry, the
rest is explained by the breaking of the HBs mentioned before.

Table 3.7 Twisting angle (in degrees) for optimized geome-
tries of DMA in several solvents

Angle
Gas 28.4
Cyclohexane 28.7
CH/THEF (0.5) 28.5
Tetrahydrofuran 28.5

Water 34.0
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Another interesting case is the study of the solvent effects on the electron
transitions in retinal [68,69]. Retinal is a very interesting molecule because it
is the chromophore of rhodopsin, the visual pigment in vertebrates. The
(m—mt*) electron transitions to the first two excited states of 11-cis-retinal
protonated Schiff base (PSB) and several simplified models that have been
profusely used in the bibliography (see Figure 3.15) were calculated in
vacuo and in methanol solutions. The ASEP/MD method was employed
for the in solution calculations. Full ground-state geometry optimizations
were performed in both conditions, allowing the total relaxation of all the
degrees of freedom at MP2 and/or CASSCF level of calculation with the
split-valence 6-31G* basis set. Nevertheless, the transition energies were
always obtained at CASSCF/6-31G" level of calculation using in each case
the complete active ©t space (10e, 100), or (12e, 120) depending on the model
used. To improve the energy results, the dynamic electron correlation
energy was included with second-order perturbation theory (CASPT?2).

In vacuo, the first transition gives rise to a very strong band, while the
transition to the second state is almost forbidden. In the ground and second
excited states, the positive charge is localized close to the nitrogen atom
(covalent states); however, in the first excited state the charge is spread out
on the entire molecule (ionic state), see Figure 3.16. Consequently, the
second excited state will solvate better than the first and one expects that
the energy gap between the two states decreases. In fact, we find that in
methanol solution, both states become almost degenerate. Furthermore, the
oscillator strength of the transition to the second state increases. This beha-
vior agrees with the experimental spectra [70-72], where, in gas-phase
conditions two bands are found, one weak and the other strong but only a
single very broad band appears in methanol solution.

Table 3.8 collects vertical transition energies in solution and the corre-
sponding solvent shifts obtained for different models of retinal. At first
sight, the interaction with the solvent seems to produce the inversion in
the relative position of the first two excited states, the covalent state becom-
ing lower in energy with respect to the ionic one. The nature of the different
states was corroborated by the dominant configuration participating in
each state, that is, doubly excited for the covalent and a highest occupied
molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO)
transition for the ionic. Oscillator strengths were also calculated, being the
transition to the upper excited state the optically allowed transition (f value
close to 1). The energy difference between the covalent and ionic states
varies between 0.7eV and 0.3eV at CASSCF//MP2 level of calculation.
The scene changes substantially when dynamic correlation is taken into
account. Under these conditions, both states become practically degenerate,
and we find an energy gap between them of about 0.1eV. The proximity
between these electron transitions gives rise to the fact that, contrary to the
in vacuo conditions, the in solution theoretical absorption spectrum shows
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Figure 3.16 Localization of the molecular charge on the iminium half of the retinal
molecule (M1 model) in vacuo and in solution, for the three lower electronic states.

Table 3.8 Calculated vertical transition energies (eV), oscillator strengths, and solvent
shifts values (eV) for the M1, M2, M3, and CC-PSB models

So—Ionic So—Covalent
Vacuo Solution o Vacuo Solution
M1
CASSCF/CASSCF 3.55 5.22 1.67 4.61 4.62
CASPT2/CASSCF 2.56 3.82 1.26 3.58 3.78
CASPT2/MP2 2.40 3.51 1.11 3.16 3.61
Oscillator strength 1.15 1.00 0.09 0.01
M2
CASSCF/CASSCF 3.34 4.93 1.59 4.34 4.44
CASPT2/CASSCF 2.56 3.68 1.12 3.64 3.45
Oscillator strength 0.97 0.87 0.21 0.23
M3
CASSCE/MP2 3.03 4.08 1.05 4.05 3.78
CASPT2/MP2 2.28 2.99 0.71 3.27 2.88
Oscillator strength 0.95 091 0.22 0.21
CC-PSB
CASSCEF/MP2 2.54 4.19 1.65 3.42 3.87
CASPT2/MP2 1.93 3.00 1.07 2.77 2.95
Oscillator strength 1.20 0.93 0.06 0.15
Experimental 2.03 2.79 3.18
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two poorly resolved bands. Our results confirm the recent experimental study
published by Nielsen et al. [72]. In this study, the authors provide the in vacuo
and the in solution electronic absorption spectra of the all-trans n-butyl PSB in
methanol solution and also the in vacuo spectrum for the 11-cis dimethyl
Schiff base. The in solution registered spectra for the two isomers are said to
be identical. The experimental gas-phase spectrum shows a band at 390 nm
corresponding to the S, absorption band maximum and another at 610nm
corresponding to the transition to the S; state. When the spectrum is recorded
in methanol solution, the S; band maximum is blue-shifted by more than
150nm and what is more important, no resolved S; and S, bands were
found. The spectrum shows only a broad band centered at around 450 nm
(2.76eV). Independently of the model used in the calculations, our theoretical
results completely reproduce the appearance of the experimental spectra.

Another interesting quantity to evaluate is the predicted solvent shift.
These values are also collected in Table 3.8 and were calculated as the shift
suffered by the ionic band as a consequence of the solvent effect. Surprisingly,
CASPT?2 calculations supply practically the same solvent shift (around 1.1eV)
value independently of the system complexity, except for the M3 model where
the value is slightly lower. In all cases the calculated value is larger than the
experimental one, estimated in 0.72eV (2.76 eV, the electronic transition energy
in methanol solution, minus 2.03eV, in vacuo). The fact that the complete
chromophore (CC)-PSB system shows the same solvent shift overestimation
as most simplified models (M1 or M2) is due to a structural characteristic of the
system shared by all of them. Most of the solvation energy comes from the
interaction between the iminium group and the methanol molecules. In all the
systems here considered, the N atom is bonded to two hydrogen atoms;
however, the experiments have been performed with molecules where the N
is bonded to methyl or bulkier groups. In order to get more details, new
calculations were performed. In particular a new model (M4) was built repla-
cing the hydrogen atoms linked to the N atom in M1 with two methyl groups.
Both CASSCF and MP2 geometry optimizations were performed in vacuo and
in methanol solution keeping the same conditions as in previous calculations.
The solvent shift obtained for this model was 0.84eV and 0.64eV at
CASPT2//CASSCF and CASPT2//MP2 level of calculation, respectively.
Comparison with the equivalent results for M1 shows that the methyl groups’
incorporation decreases the solvent shift value in around 0.45eV. If this
decrease is directly applied to the CC-PSB solvent shift, the final value becomes
0.65eV, in very good agreement with experimental data (0.72eV).

5.3. Nonradiative de-excitations in retinal

Even if the very first step of the visual process can be considered the light-
induced promotion of one electron from a n-type orbital to a n* one in the
chromophore of the protein rhodopsin, its biological activity starts with the
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cis—trans isomerization that this chromophore suffers in the excited state.
This conformational inversion causes in turn a conformational change in the
protein and starts the rest of the reactions taking place in the visual process.
Inside the protein pocket, this isomerization step is very fast, taking only
200fs, and no significant fluorescence is usually observed. These properties
are characteristic of nonradiative processes involving crossings between
potential energy surfaces. These crossings can take place through Cls or
singlet-triplet crossings (STC) depending on the identical of different spin
symmetry of the involved states, respectively.

In the last decade, there have been quite exhaustive studies on the
isomerization of the rhodopsin chromophore through a CI between its
covalent ground state and the ionic first excited state in vacuo conditions.
Different models for the chromophore representation and more and more
accurate methods have been used in these studies. It has been only in the
last years when the development of the computational resources has per-
mitted the study of this process in a more realistic way, that is, considering
the possible effect of the environment. In our case, we have used an
extended version of the ASEP/MD method that allows the location of Cls
and STCs of systems in solution. The algorithm implemented in the method
is due to Bearpark et al. [73] and simultaneously minimizes the in solution
energy difference between the two intersecting states and the energy of the
crossing seam between the two potential energy surfaces. See Ref. [74] for
more details.

We started our study with the location of the in vacuo minimum energy
conical intersection (MECI) structure for the simplest model used in the
previous study devoted to the solvent effect on the UV absorption spectrum.
The main structural characteristic of this Cl is a twist of ~90° showed by the
central original double bond. In order to permit this change in the dihedral
angle, it is necessary the inversion in the nature of the single and double
bonds with respect to the FC structure, which is clearly observed in Table 3.9.
Next, our objective was the study of the solvent influence (methanol, in
particular) on the structure and position of the MECL In this point, two
strategies were followed depending on whether the solvent is considered as
a frozen solvent or it is allowed to equilibrate with the solute electronic
distribution. The first corresponds to an infinitely slow solvent response
and the second to an infinitely fast solvent reorganization.

In the equilibrium case, it is possible to locate the MECI in solution, and
from a structural viewpoint, the solvent modifies bond distances and
slightly the twist of the dihedral angle. What is worth noting is that the
solvent suffers an important restructuring around the solute molecule to
respond to the torsion of almost 90° of its central dihedral angle from the FC
structure. Figure 3.17 displays the occupancy maps of methanol oxygen
atoms around the FC and MECI structures. As it can be seen, at the FC
point the solvent is mainly concentrated around the iminium end, where the
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Table 3.9 Optimized geometries of a retinal model at the Franck—Condon point and at
the conical intersection. Bond lengths in angstrém, angles in degrees

FC MECI Sy/Sq

Vacuo Methanol Vacuo Methanol
G, 1.35 1.34 1.36 1.36
C,Cs 1.46 1.47 1.42 1.40
C3Cy 1.35 1.36 141 1.41
C4Cs 1.45 1.45 1.38 1.36
C5Cs 1.36 1.36 1.47 1.46
CeCy 1.45 1.46 1.37 1.41
C,Cg 1.35 1.36 1.42 1.39
CgCo 1.44 1.43 1.39 1.44
C9=N 1.28 1.28 1.32 1.30
Dihedral Planar Planar 91.0 85.9

_{

Figure 3.17 Maximum occupancy regions of oxygen atoms around the ground state (top)
and the MECI (bottom) of the M1 retinal model.
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molecular charge is predominantly located, as at the FC the solvent is in
equilibrium with the ground state covalent electronic distribution. At the
MEC]I, one finds solvent molecules around the iminium end but also around
the carbon skeleton along which at the excited state the charge is spread out.
It can be concluded that in the equilibrium situation solvent molecules
stabilize the delocalization of the charge in the excited state and the two
states involved in the CI can cross. In frozen solvent conditions, the location
of the MECI has been impossible. If the solvation shells are considered fixed
and in equilibrium with the ground-state electronic distribution, when the
central dihedral angle rotates, part of the solute molecule will overlap with
the solvent. In addition, if the solvent can in some way equilibrate with the
solute, the great restructuring that it should suffer must take several
picoseconds and the isomerization in solution should be slower than in
vacuo or inside the protein pocket. This fact agrees with somewhat more
persistent fluorescence found for the rhodopsin chromophore in methanol
solution [75].

6. SUMMARY

The theoretical study of solvent effects is, in general, very demanding
because it requires extensive sampling of the configurational space of the
solute-solvent system. The MFA provides a practical and effective approach
that opens the possibility of studying chemical equilibria, spectroscopic
transitions, kinetic problems, and so on, using computational levels similar
to those used for gas-phase systems. The study of different systems and
processes in solution has permitted us to conclude that the MFA works very
well, even in those cases where the solvent is represented in a simplified
way, a dielectric for instance. Obviously, in this case, we must restrict
ourselves to systems where specific solute—solvent interactions are not pre-
sent. If these interactions are present, it is compulsory the use of more
sophisticated solvent descriptions that allow accounting for the effect
of bulk and specific interactions. ASEP/MD is a method that permits to
combine a high-level quantum mechanical description of the solute with a
detailed, microscopic, description of the solvent.

The following are the main characteristics of ASEP/MD: (1) A reduced
number of quantum calculations that permits to increase the description
level of the solute molecule which, in fact, can be described at the same level
as in isolated conditions. (2) Since the solvent is described through MM
force fields, there exists a great flexibility to include both bulk and specific
interactions into the calculations. (3) At the end of the procedure, the solute
wave function and the solvent structure become mutually equilibrated, that
is, the solute is polarized by the solvent and the solvent structure is in
equilibrium with the polarized solute charge distribution. (4) Finally, the
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method permits to find in an efficient way the geometry of critical points.
With critical points we refer to minima, transition states, Cls, and so on.

In the last section of this chapter, we have presented an overview of
applications of the ASEP/MD method to different systems and phenomena.
The approximations and methodology used have been validated through
comparisons with other studies and accepted methods and, in general, it has
been shown that ASEP/MD is a powerful and efficient method that does not
introduce significant errors but, in contrast, makes it possible to consistently
introduce the solvent influence on high-level quantum calculations.
Conformational equilibria, chemical reactivity, and electron transitions are
just three areas where solvent effects play an important role and where
ASEP/MD has proved to be a valuable tool.
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1. INTRODUCTION

Important methodological developments for investigating the structure, ther-
modynamics, and electronic properties of many-body interacting systems in
condensed phase have been accomplished in the last decades [1-4]. Several
sophisticated approaches including first-principles molecular dynamics [2],
combined quantum mechanics/molecular mechanics (QM/MM) [5-9], and
sequential statistical mechanics/quantum mechanical (SM/QM) [10,11],
became fundamental tools for studying condensed phase properties. On the
other hand, it is of general acceptance that a deeper knowledge of the
molecular mechanisms controlling the energetic and dynamics of complex
chemical and biochemical processes in solution relies on the understanding of
their electronic properties [12]. However, it is also recognized that this funda-
mental aspect is not very well understood. Specifically, although chemical
reactions in solution are considered as dynamic processes assisted by the
solvent [13,14] the relationship between the electronic properties of the
solvent and its role for assisting chemical reactions remains unclear. The
reasons that, at least partially, explain the theoretical difficulties for accurate
predictions of electronic properties in condensed phases are well known and
are basically related to the complex nature of many-body interactions in
disordered media. Thus, although first-principles molecular dynamics
based on density functional theory (DFT) represents a fundamental tool for
investigating condensed phase properties, some limitations of DFT for pre-
dicting the structure and dynamics of liquids, particularly those of liquid
water, have been extensively discussed in the literature [15-17]. It should be
stressed, however, that many recent improvements of DFT, with specific
implications on its adequacy for investigating hydrogen-bonding (HB) sys-
tems have been reported and are extremely promising [18,19]. Moreover,
DFT-based first-principles simulations are of fundamental importance for
studying bond forming and breaking in solution and has opened the way
for relevant theoretical studies of chemical reactions in condensed phases [2].
Another classical route for describing complex processes in solution is com-
bined QM/MM [9]. This method relies on the definition of a quantum system
(QM) for which the dynamics is coupled to the dynamics of an environment
(MM) usually treated by a simplified theoretical approach. Some methodolo-
gical issues inherent to this approach, which introduces a QM /MM interface,
are the correct representation of the interactions between the quantum system
and the environment and the treatment of the dynamics for particles close to
the QM /MM interface.

In close relationship with the QM/MM formulation is the sequential SM/
QM methodology [10,11]. In this approach, a set of configurations generated by
Monte Carlo (MC) or Molecular Dynamics (MD) is selected for a posteriori
analysis of its electronic properties. The QM calculations are performed by
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defining a quantum system (QM) with a few molecules. The most common
procedure in sequential QM /MM for describing the interactions between quan-
tum system and the environment takes into account, essentially, Coulombic
interactions. Therefore, a simple representation of the environment as an
embedding background is usually adopted. On the other hand, there is no
coupling between the dynamics and the a posteriori QM calculations. However,
the definition of a quantum system with a significant number of molecules and
the application of high-level ab initio methods for the accurate calculation of the
electronic properties make this approach very convenient in many cases of
interest.

Although the application of high-level ab initio procedures to systems
with a large number of molecules is still not possible, some recent
approaches based on energy-partitioning schemes have been proposed
[20-24] and represent an attractive possibility for investigating the electronic
properties of complex molecular systems in condensed phase [25]. In this
chapter we present an overview of recent developments and applications of
sequential SM/QM to the study of electronic spectra of hydrogen bond
liquids and anionic species in solution with particular emphasis on the
connections between QM /MM methodologies and some recently proposed
many-body partitioning expansions [23].

2. THEORETICAL METHODS

2.1. Statistical mechanics sampling for many-body interacting
systems in condensed phases

Monte Carlo and molecular dynamics simulations of liquids and solutions
are standard techniques for the study of condensed phase properties [26,27].
Both techniques depend on the calculation of the energy for a many-body
interacting system. This system can be defined by a Hamiltonian operator
H, a set of nuclear coordinates [Rp, A=1,..., a,..., M], and a wavefunction
[1W(r; Ra; X) >, i=1,N]. N is the number of electrons and [X] represents an
additional set of coupling variables. Let P=(Py,..., P,..., Pv) and
p=(py,---,Pi»---,Py) the set of momenta corresponding, respectively, to
the (classical) nuclear and electronic coordinates. The Hamiltonian of the
system is

X p Noop?
H= 1 : V(ri; Ra; X 1
gzmu—i_; 2m1+ (rh A, )a ()

where V(r; Ra; X) defines the interactions between the different degrees of
freedom. The expectation value for the energy is given by

E(Ra;X) = (W(ri; Ra; X)|H|W(ri; Ra; X)) 2)
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The Monte Carlo method generates a Markov chain over the config-
urational space that can be sampled according to an arbitrary distribution
p(Ra;X). Specifically, Metropolis Monte Carlo with Boltzmann sampling
relies on the acceptance of a new configuration [R}; X] over the chain with
a probability n = Min[1, p(R}; X)/p(Ra; X)], where

p(R%; X) _ exp[ — BE(R}; X)]
p(Ra;X)  exp[— BE(Ra; X)]’

3)

B =1/kgT, kg is the Boltzmann’s constant and T the temperature.

Phase space sampling through Born-Oppenheimer molecular
dynamics [2,3] is carried out by the numerical integration of the equations
of motion

drR, 0oH
W_CP)‘—P,Z’ (4)

dP,
T — VR, E(Ra;X) =F,. (5)

For wavefunctions that are eigenstates of the Hamiltonian operator H,
the forces can be calculated by the Hellman-Feynman theorem [28-30] and
are given by

F, = — (W(r;; Ra; X)|Vr H|W(r;; Ra; X)). (6)

Two main reasons make extremely difficult the general application of
statistical sampling methods for a many-body interacting system
through the ab initio calculation of the energy given by expression (2).
Firstly, the computational cost of correlated post-Hartree-Fock (HF)
methods scales at best as N° (e.g., MP2), where N is a measure of the
system size. Although several recent developments have been reported
in order to significantly reduce the scaling of ab initio methods with N,
including density fitting or local approximation procedures, full ab initio
calculations for large systems demand enormous computational costs,
and are in many cases of interest, simply not affordable. Therefore, the
most widely used methods for first principles statistical mechanics sam-
pling in condensed phases relies on the application of Hartree-Fock [31]
or DFT methods [32], which scales as ~N* or better (down to linear
scaling). However, it is well known that the presently available DFT
methods are not adequate for dealing with dispersion interactions or for
accurate predictions of conformational energetics. The second reason is
related to the statistical convergence of the samplings that depends on
the generation of a very large Markov chain or of a molecular dynamics
trajectory during several picoseconds.
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2.2. Electronic spectra in QM/MM

Alternative approaches allowing the application of accurate ab initio proce-
dures for energy calculation and statistical mechanics sampling in con-
densed phases rely on QM/MM partitioning. The dynamics of the QM
sub-system is in general coupled to the MM environment. However, in
some cases, a QM /MM approach can be defined through the analysis of
the configurations generated by Markovian or dynamic sampling, using HF
or DFT energy calculations for a whole QM system, or even by adopting a
simplified force-field representation between the interactions of a complete
MM system. This alternative approach corresponds to a sequential metho-
dology, where all QM calculations are carried out a posteriori and it is
usually known as sequential SM/QM method. Actually, (SM/QM) can be
seen as a particular case of QM /MM. However, in contrast with the classical
QM/MM methodology, there is no coupling between the QM and the MM
subsystems in the sampling procedure. The adequacy of a sequential meth-
odology is strongly dependent on the reliability of sophisticated force-field
representations for the interactions of many-body systems. Moreover, the
MC or MD generation of a large number of configurations by using a force
field allows for a careful convergence analysis of the electronic properties a
posteriori calculated with high-level ab initio methods.

A fundamental aspect in the application of QM/MM procedures for
investigating electronic properties concerns the dependence of the results
on the size of the quantum system, the force-field representation of the MM
environment, and the coupling protocol between the QM and the MM
partitions. The following sections discuss all these aspects under the specific
subject of electronic spectra. Some of these discussions will be later recov-
ered in the applications featured in Section 3.

2.2.1. The QM/MM coupling schemes

From the various models available today for the QM /MM partitioning of a
system, we will restrict our discussion to the additive scheme. In this
approach, the QM and MM calculations are performed on (mostly)
nonoverlapping sections of the system, with the interaction between the
two regions added through coupling terms. In this work, we will be focus-
ing on the QM/MM energy for a system composed of a QM solute M,
embedded in a large number of MM solvent molecules {I}. There are no
covalent bonds connecting the two regions. The additive QM /MM energy
can be split down into three terms

Equmm([M] = E[M] = Equ(M) + Enm({1}) + Eint, (7)
where the first term is the QM energy of the solute
Equ(M) = (¥(x;; Ra; X)|H|W (r;; Ra; X)). (8)
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The QM wavefunction ¥ depends on the solute electron coordinates r;,
the solute nuclei coordinates R,, and additional parameters X, which
depend on the coupling method used. The second term in Eq. (7) represents
the molecular mechanics energy of the solvent molecules and the last term
gives the interaction energy between both regions. The interaction term is
also often given in the form of an added Hamiltonian. However, we prefer
referring to it as an extra energy contribution. This is more in line with the
structure of a program, where Eq. (8) and the interaction contributions are
computed at different steps. The notation E[X] (using square brackets) will
be used throughout this chapter to denote a QM /MM energy, with X being
the region represented in the QM section. We will now concentrate our
discussion in explicit forms for the coupling and its influence on the solute
excitation energies.

Since we are splitting the system into two regions without covalent
bonding, the coupling should strictly include nonbonded interactions.
Although simplistic, one commonly considers two main effects: electrostatic
and dispersion. The latter is most commonly computed by taking the atom
positions of both regions, and computing an energy contribution with
parameterized van der Waals (vdW) potentials, for both solute and solvent.
Such an approach seems to be generally reasonable since these are short-
range forces, and therefore there is no large error accumulation. The elec-
trostatic effects, on the other hand, are of vital importance, and several
different approaches have been used in the literature to compute them.

The most basic form of coupling in QM/MM methods is known as
mechanical coupling. In the case at hand, the E;,; term will only include
electrostatic interaction terms given by a molecular mechanics parameter-
ization of the solute, just as the vdW forces

Evi(el) = Y402, 9)
Aa Aa

The A and « indices stand for nuclei in the QM and MM regions, respec-
tively. The charges of each center are given by g and distances by r.
Although such a form will account for steric effects, the MM system does
not influence the solute wavefunction (X =0). When calculating a QM /MM
vertical excitation energy, the coupling term will be the same for both
ground and excited states. As a result, one simply obtains the gas value
[the first term in Eq. (7) will be the only equation to change]. One could,
however, change the charge of the QM atoms for the excited state. One
possibility would be to compute these charges by a population analysis
scheme applied to the densities of both states. This type of approach poses
several problems, since there is no univocal method to translate an electron
density to atom-centered point charges. The Mulliken scheme, for example,
has several shortcomings [33,34]. We refer the reader to the discussion in the
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literature about this subject, which is out of the scope of this chapter. In
short, mechanical coupling is of very limited interest in the study of electro-
nic spectra in solution.

If one is interested in describing the excitation energy of a solute in a
polar medium such as water, the polarization effect of the surrounding
molecules should be taken into account. The next step is, therefore, to create
a dependence of the QM wavefunction on the surrounding charges of the
MM atoms. If we consider an all-atom molecular mechanics potential for the
solvent, QM polarization can be included by using

Eini(el) = (¥(ri;Raiq,) |Z [ ¥(5:Raiq,) +Z ff“ (10)

where the first term is the MM charge-QOM electron interaction and the
second is the MM charge-QM nucleus interaction. In Eq. (10), the wavefunc-
tion bears a dependence on the MM point charges. This is commonly
referred to as electrostatic coupling. The QM calculation on the solute is
performed with additional Coulomb operators, and as a result, there is an
interaction between the solute electrons and the electrostatic field of the
environment. In this coupling, only the “pure” MM energy of the solvent is
kept when changing the electronic state of the solute. This is by far the most
popular coupling scheme in QM/MM applications to date. It is quite
straightforward to use and to implement. In a QM code, one only needs to
add the environment charges in the zeroth-order Hamiltonian, which are in
practice the same as atomic centers without basis functions. The changes are
equivalent for an HF or DFT implementation, and all post-HF code is kept
unchanged (the only difference in the calculation is that the wavefunction is
polarized, and there are no additional terms). The most commonly used QM
codes to date have the possibility of adding a lattice of point charges and are
therefore elegible to be used in QM/MM applications with electrostatic
coupling.

The next step in improving the QM /MM coupling is to allow for a “back-
polarization” of the solvent. This is commonly referred to as polarization
coupling [35]. A change in the QM wavefunction could, for instance, induce a
dipole on the MM atoms. This is, of course, only possible when the MM
force field in use is itself polarizable. The extra energy terms can be con-
sidered as part of Ein(el) [36], or by defining an extra term, exclusively for
polarization, such as in Ref. [37]. For clarity, we will introduce an extra
Eini(pol) term, which gives the interaction energy of the electronic density
with the induced dipoles.

The fact that the solvent electrostatic field is influenced by the QM
wavefunction leads to several technical complications. Usually, two main
schemes are available to include this “back-polarization” effect [36]. One
possibility is to change the MM charge distribution, but without
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propagating the effect back to the QM region. This has the drawback of
defining an inconsistent polarization. The second scheme mends the pro-
blem by solving self-consistently the QM wavefunction and the MM charge
distribution. This can be done in several ways, either by taking effect
between QM self-consistent field (SCF) cycles or by updating the MM
field after each SCF run. Things become even more elaborate in the case of
post-HF calculations, since one needs to extract the electric field generated
by a correlated wavefunction. The polarization coupling can, therefore, lead
to significantly added computational effort. This is one of the reasons why
this coupling form has not found more widespread use. The other reason
has already been mentioned above, the fact that the MM potential has to be
polarizable. There is a rather limited number of force fields available for
these types of calculations. Most applications of this coupling scheme have
been found in hydration studies [38-46].

A short summary of the above discussed coupling schemes is presented
in Table 4.1. The vdW contribution is not included since it has little weight
in spectra calculation and also because the same formulation is used for all
of the three approaches.

2.2.2. Choosing the QM system

The choice of the QM system is determining for the success of a QM /MM
calculation. In the study of a solute electronic spectra, the obvious choice
would be to take the solute molecule, and represent the remaining solvent
environment with MM. Even if this setup is adequate for many cases, the
underlying assumptions should be reviewed. For the specific case of elec-
tronic spectra, these can be summarized as follows:

* The density difference between the states under study is significant only
in the strict vicinity of the QM region.

* The influence of the environment is fundamentally electrostatic and can
be well approximated by the MM potential chosen.

The first item depends strongly on the type of excitation one is interested in.
In Rydberg-type excitations the excited electron is promoted to a diffuse
orbital, and the final state will therefore be much more delocalized than the
one of reference. Choosing a small quantum system can lead to an

Table 41 Common-use QM/MM coupling methods

Coupling scheme  Ej(el) Eini(pol) X
Mechanical Charge—charge 0 0
Electrostatic Density—charge 0

da
Polarization Density—charge  density-induced dipole  g,;1t.(¥)
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unbalanced description (the reference state being more accurately
described). Some studies, however, have shown that even more important
than expanding the QM system in itself, the basis space should be flexible,
and that a small system can reproduce rather well the excitation energies as
long as the AO basis is carefully chosen [47]. Charge-transfer excitations, on
the other hand, will necessarily require an expanded QM system, including
the molecule to which the excited electron is transferred. This is a particu-
larly hard task when dealing with molecules in solution, since there is no
straightforward way of distinguishing a priori which solvent molecules will
take part in the excitation. This is a topic discussed in further detail in
Section 3.3.

The second item is a rather general problem of QM/MM studies. Even if
the MM field is adequate to describe the average electrostatic influence of the
environment, effects such as Pauli repulsion and electron correlation are left
out. Fortunately, all of these effects are more short ranged than Coulombic
interactions and, therefore, defining a large QM system where the regions of
transferred density are far away from the QM /MM frontier should guarantee
well-converged results. If this is not feasible, the states should be treated as
much as possible in an equal footing to guarantee some error compensation.
Among the most complicated cases we again find the Rydberg-type excita-
tions since they can span large regions of space, significantly overlapping
with the multipoles used to describe the MM environment.

2.2.3. Truncating the MM system

Although the cost of a single-point QM /MM calculation is not significantly
affected by the size of the MM system, large MM regions still present serious
problems. In order to obtain an accurate explicit solvent description, the
sampling must consider all degrees of freedom in the total system. This
conformational space search will scale at least linearly with the system size.
This can become an obstacle, since more conformations have to be com-
puted and/or the simulation time preceding the quantum chemical calcula-
tions will have to be increased. It is therefore necessary to make decisions
based on the nature of the problem and to adjust the size of the environment
around the chromophore of interest.

In this chapter we are concerned with electronic excitation (or ionization)
phenomena and the influence of the environment will be of electrostatic
nature. In the following, we restrict ourselves to the electrostatic coupling
approach. However, we would like to note that on increasing the MM
system size, the effect of the outer fringes will be similar in the electrostatic
or in the polarization embedding case. The electric field generated by the
QM system will decay with 7~ or faster, due to charge shielding, and the
outer MM atoms will stop feeling its influence after a given distance. In fact,
based on this observation, a recently developed polarized coupling scheme
only accounts for polarization in the vicinity of the QM region [48,49].



108 R.A. Mata and BJ. Costa Cabral

It is a nontrivial task to converge the energy of a QM molecule
embedded in the polarization field of an explicit solvent. One needs to
resort to periodic boundary conditions [26], which are also available in the
context of QM /MM [50]. This is due to the non-convergent behavior of the
Coulombic interaction. However, one is rarely interested in the total energy,
and rather in an energy difference, which only needs to be computed up to a
given accuracy. It is therefore reasonable to truncate the embedding envir-
onment, as long as the effect on the energy difference is kept at a minimum.
Let us consider an electronic excitation on a given solute molecule. We are
interested in computing the QM /MM energy difference between the excited
and the ground state of the solute. To better understand the effect of the
environment, we extend the excitation energy expression on the basis of
perturbation theory. The perturbation will be the MM environment, through
the Ei,¢ term. In the case of electrostatic embedding, this corresponds to the
effect of the MM point charges (X=¢,). The reference Hamiltonian is the
gas-phase Hamiltonian of the solute (X=0). The wavefunctions for both
ground and excited states are given by the expansion

0 _ 50 0 0

Excited states will be denoted with the “x” superscript, while for reference
states the “0” will be used. The zeroth-order value for the excitation energy
w(0) will be given by the QM value in the gas phase

W) = <®?0)‘H|q)fo)> - <q)(()0)|111‘q)(()0)>~ (13)

The corrections to the QM expectation value due to the environment will be
given by

_ " o |y 0 Ga ) 4,0
way = <‘I’<0>|Zg q’<0>> - <‘D<0>Za |<I>(0>>,
o % th * 0 qa 0 14
W) = <‘D<o>|Zaq’<1>> - <‘1’<0>Za|‘1’<1>>7 (14)
« o

* qa * 0 qa 0
Wn) = <(D(O>|Zrm |‘D(n—1)> - <¢(0)|Zm cD(n—l)>' (15)
[e% «

The first-order correction is then the differential interaction of the QM
wavefunctions with the perturbing electrostatic field. Higher-order terms
[given by Eq. (15) for any general value of #] include corrections due to the
relaxation of the wavefunction in the perturbing field.
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The effect of adding MM atoms far away from the chromophore
should be particularly dominated by wg). Even in polar solvents, the
solute wavefunction is only significantly affected by the first and second
solvation shells. Therefore, the effect of solvent molecules beyond the first
shells will be of a rather simple electrostatic nature. If we consider
an electronic excitation within the solute, the only difference between
@y, and @?0) will be the QM charge distribution. The wy term can be
approximated as a dipole interacting with the MM electrostatic field,
which holds (at most) a » 2 distance dependence (but mostly r—2, since
the solvent is usually not charged). The number of necessary solvent
molecules will then be drastically smaller than the ones needed to con-
verge the total energy of each isolated system. This also explains why
many microsolvation studies of electronic excitations tend to converge
rather quickly to the bulk value [51,52]. One should note that the conver-
gence pattern actually depends on the excitation under study. If the
charge is significantly moved (raising a higher dipole), the number of
MM atoms needed to obtain a converged electrostatic environment will
have to be necessarily larger.

We now turn to the case of ionization. This is rather different from
the previous example. Since the total charge of the QM system changes, the
differential stabilization of excited and ground states is now closer to the
case of a charge interacting with the surrounding environment. This is
slow converging (although not as serious as the total energy) and the
size of the MM system will have to be significantly larger. This is again
observable in cluster studies, where the ionization potential is hardly
attainable [52].

2.2.4. Beyond QM/MM: many-body expansions

A way to improve over the classical QM /MM energy expression is to write
the total energy of the system as a many-body expansion. The original QM/
MM expression presented in Eq. (7) with electrostatic coupling can be
rewritten as

Equnam = (P|H + qu% |¥) + Emm(solvent) + Eine(vdW),  (16)

where the electrostatic interaction term has been joined with the solute QM
Hamiltonian, and the wavefunction dependence has been dropped for
clarity.

Let us now look at the full system, including solvent molecules. One can
expand the total energy by a many-body expansion of the form

E=>E(A)+> AE(AB)+ Y AE(ABC)+---, (17)
A

A>B A>B>C
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with

AE(AB) = E(AB) — E(A) — E(B)
AE(ABC) = E(ABC) — AE(AB) — AE(AC) — AE(BC) — E(A) — E(B) — E(C)

We have made no distinction between the species being computed. The
energy terms stand for the energy of the given molecules A, B, and/or C
in vacuo. The series can be expanded up to level N, where N stands for the
number of molecules present in the system.

The problem with such an expansion, for the electronic energy of a
system, is that the series is known to converge rather slowly. As an
example, we have divided the total energy of an eight-water molecule
cluster into the constituting many-body contributions. The results at the
HF/cc-pVDZ level of theory are shown in Figure 4.1. It is seen that
even with three-body terms, the energy is far from being converged.
One should be critical of the error, since it is particularly sensible to
the conformation under study. One would have to go even beyond
four-body terms to reach chemical accuracy (1kcal/mol). This has
two sources. One is a basis set superposition effect (BSSE), which is
actually desireable to leave out of the calculation. Higher-body
terms of the expansion are known to be contaminated with BSSE

120 T T T

100 L 0—o N-body expansion |
--- Chemical accuracy
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Figure 4.1 Error in the total energy (in milliHartree) of a N-body expansion of a water
octamer. The results are given for HF/cc-pVDZ calculations.
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[23,53]. However, it is also due to the underestimation of cooperative
effects, in which case the expansion will be biased against aggregation.
This will be the major effect in the case of water, the lack of higher-
order polarization effects. The interaction energy of a water dimer
embedded in a cluster is influenced by the hydrogen bonding network;
neglecting this effect leads to a slow convergence. Since a many-body
approach scales with O(N*), where X is the level at which the series is
truncated, it becomes impractical to use high orders (X > 2) for larger
systems.

A possible solution around the problem would be to compute each of
the energy terms in Eq. (17) not as a molecule in vacuo, but to already
include some approximate higher-order terms. On the basis of our pre-
vious discussion, one could perform a QM/MM calculation for each
monomer, dimer, trimer, etc. defining the given molecules as the QM
system and the remaining species as the MM environment. If we truncate
the series up to two-body terms, and make a distinction between the solute
M and the solvent molecules {I}, the total system energy expression is
given by

E=EM]+ Y E[+ > (EMI] - E[M] - E[l)

I#M I#M
+ 37 (ElIy) - El - EI)), (18)
I<
IJ;;\/I

where we have purposefully separated terms involving the solute mole-
cule from those involving exclusively solvent molecules. The use of
square brackets highlights the fact that we are no longer working with
monomers in the gas phase, but instead computing a QM/MM energy
for each term. The first term of the expansion is defined with the use of
Egs. (7 and 10). Since each term already includes the energy of the other
particles, as well as interaction contributions, there could be a double-
counting problem. However, if one expands Eq. (18), all extra terms do
cancel out [20,23]. This would also be the case if the expansion would be
performed to a higher-order, but not for the one-body truncation. For
ease of discussion, we will in the following text only consider the first
term of the r.h.s. of Eq. (16). That is, we will no longer discuss the MM
“pure” energy terms or the vdW interactions, since these are kept con-
stant. We are interested in the vertical excitation energies, so the quan-
tity to compute will be the energy difference between the system where
the solute is found in the electronic ground state, and the one after
excitation. Equation (18) can be generally used for any given electronic
state of the solute. By computing the difference between the ground and
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a specific excited state, one arrives at the following result for the vertical
excitation energy:

AE = E[M] - E[M°] + Y _AE[I] + 3" (E[M*I] — E[M°I] - E[M*] + E[M°] — AE[I])

I#M I#M
+ " (AE[I]) - AE[T] - AE[])), (19)
I<]
IJAM

where

AE[I] = E[l) o) — EM )

represents the energy difference between the solvent molecule I in a point
charge field where the solute is found in the excited state (M"), or in the
ground state (M°). All other terms are self-explanatory.

A further change which one could operate would be to leave out all
terms describing the polarization change in the solvent due to the excitation
in the solute. This simplifies Eq. (19) to

AE = (N—l)(E[M]—E[M*})+Z(E[M*I]—E[M]). (20)
#M

The formulation above only requires a monomer calculation, and a dimer
calculation for each solvent molecule present in the system. The one-body
result is the QM/MM value with electrostatic embedding. The two-body
terms will give further contributions, although it might not be quite clear at
this time which. However, it should be noted that since the solute is always
present in the QM region there is no need to define potential parameters for
the solute molecule.

Let us return to the question of solvent polarization. As the solute
wavefunction changes, it is expectable to observe a change in the energy
of the solvent molecules. In fact, this is the motivation behind the polariza-
tion coupling which we presented in Section 2.2.1. If we expand the polar-
ization effect also in a many-body formulation, we obtain

AE({I}) = Y AE[I + > (AE[[]] — AE[I) - AE[]) + ..., (21)
[#M I<]
LJ#M

which can be taken up to order N. One can see that the difference between
Egs. (20,19) is the two-body polarization energy. The one-body polarization
energy, which is represented by the first sum, is already included through
the E[M*I] — E[M"]] difference. In fact, it is not even obtained by computing
point charges to approximate the density of the solute, the polarization
effect is instead computed fully quantum-mechanically. This holds a defi-
nite advantage over a single QM/MM calculation with polarization
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coupling. Equation (20) has already been previously used for computing the
solvatochromic shift of the n — " excitation of formaldehyde [54]. It also
holds relation to fragment-based approaches, such as the fragment molecu-
lar orbital (FMO) method [21]. The main difference is in the approximate
treatment of the intermonomer terms. The equation can be seen as a parti-
cular case of the FMO expression.

2.3. QM methods for the calculation of electronic spectra

In any QM/MM or related application, the choice of high-level method is of
utmost importance. In the limit, any of the above-discussed methodologies
will obtain the same result as the QM method chosen and this will, there-
fore, establish the reference accuracy. Due to computational limitations, and
the high-order scaling of some of these methods, a compromise must be
found between cost and accuracy. As such, it is useful to have some
acquaintance with the many approaches available today, and the new
developments being made in QM theory. The following sections give a
superficial overview of the methods which will be later referred to in
Section 3, and is not intended to be a thorough review of the subject. More
detailed information on the methods can be found in the cited works and
references therein.

23.1. Wavefunction-based methods

In ab initio wavefunction theory, the reference is commonly defined as the
Hartree—Fock solution, a normalized Slater determinant for the N/2 lowest
energy orbitals of an N-electron system. These orbitals are built as a linear
combination of M atomic orbitals, with optimized coefficients according to
the variational principle. The most straightforward way to compute an
excited state, relative to this configuration, is to build another Slater deter-
minant, replacing one of the occupied orbitals by one of the remaining
M — N/2 virtual orbitals

|®f) = &10%) = ... ¢ 160111 ---), (22)

where the operator ¢/ is a spin-adapted excitation operator. Since the mole-
cular orbital space is built as orthonormal, the determinant built in this way
is a valid excited state, orthogonal to the reference HF wavefunction.

In order to find the lowest lying excited state, one needs to optimize the
linear combination of all possible single excited determinants

) = > Calaf), (23)

where C;, are the optimization coefficients, under the constraint ZmCiZa =1.
These are also commonly referred to as CI coefficients. This is the procedure
followed in configuration interaction singles (CIS). Since single excitations
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do not interact directly with the HF wavefunction, the CIS states |®*) are in
equal footing with the HF reference, and excitation energies can be com-
puted by simply calculating the energy difference. In order to include
correlation effects, one needs to go up the CI series, and include in
Eq. (23) higher-order excitations. However, the CI series is slow converging,
and in many cases one would need to build a higher-order series (even
beyond quadruple excitations) to achieve convergence.

The coupled cluster (CC) series, although not variational, is a valuable
alternative to the CI formalism. The CC singles and doubles with perturba-
tive triples [CCSD(T)] method has established itself as a gold standard for
ground-state calculations. Time-dependent formalisms of CC have been
proposed, and are currently the state-of-the-art approach to electronic exci-
tations in small molecular systems. Contrary to CI, the CC formalism does
not build a linear combination of excited configurations [such as the one in
Eq. (23)]. An exponential operator is used, which by acting on the HF
wavefunction gives the correlated CC ground state

D) = exp(T)[@"F), (24)

where the T operator holds the amplitudes and excitation operators up to a
given order. If we consider the CC singles and doubles model (CCSD), it

will be defined as
T b ab
T:Et?eJrEtf] e (25)

with a new labeling for the coefficients (t), which in the CC theory are most
commonly referred to as amplitudes. The advantage of using an exponential
ansatz is that higher-order excitations are approximately included as pro-
ducts of lower operators. In the CCSD model, for example, quadruple
excitations are also included as products of two double excitation terms.
The eigenvalue equation

exp(— T)Hexp(T)|@") = E[0™™) (26)

is valid, and projection from the left with the reference HF wavefunction
yields the CC energy.

Moving from the static to the time-dependent case, there are two possi-
ble formulations, namely linear response (LR-CC) [55] or equation of motion
coupled cluster (EOM-CC) [55-58]. Both approaches give identical excita-
tion energies, the major difference being that the latter approach does not
scale correctly for transition moments and polarizabilities. We now briefly
review both extensions to CC theory.

In LR-CC, the linear response functions are derived for the given CC
model, and the excitation energies are computed as poles for the latter
functions. The main drawback of this approach is that noniterative
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perturbation corrections cannot be included. As an example, the poles
derived from CCSD(T) will be the same as those from CCSD. Therefore, it
can only be successfully applied to fully iterative CC approaches. Due to the
steep increase in computational cost on moving from HF [ O(N*)] to CCSD
[O(N®)] and CCSDT [O(N?)], intermediate models have gained some atten-
tion in the last few years. The second-order approximate CC singles and
doubles model (CC2) is an approximation to the CCSD method proposed by
Christiansen et al. [59] In this model, the doubles equations (obtained by
projecting from the left Eq. (26) with the double excitation manifold) are
approximated, but keeping the singles effect, which are of relevance to the
description of orbital relaxation. A similar model (CC3) has been proposed
as an approximation to CCSDT [60]. This allows to define a more complete
CC series as

CC2<CCSD<CC3<CCSDT«<...

ordered according to the accuracy and computational cost. Both CC2 and
CC3 have been extensively applied in the last few years to problems of
electronic excitations in solution by Christiansen and coworkers [61-66].
These include calculations using a QM /MM polarized embedding scheme,
whereby the CC equations are solved through a quasienergy Lagrangian
approach. The interested reader should refer to Refs. [55] and [37,67], for the
derivation of the response functions under the influence of a self-consistent
polarized field.

In the EOM-CC theory, one proceeds in a similar fashion as in Cl-type
methods. In order to build the excited states, a linear expansion is used,
where the CC ground state is contained

|EOM -~ CCy ZC 8,|®C) = exp(T)ZC,léuld)HF>. (27)
1

In the equation above, the orbital indices have been replaced by a general
index p, since these can refer to single or higher-order excitations. Com-
pared to a CI expansion, the EOM-CC formulation has the advantage of
including both a linear and an exponential expansion. Although the divide
is not so clear, one can think of the C,, coefficients as defining the states, and
the CC amplitudes responsible for the dynamical correlation treatment of
each. The drawback is that the amplitudes were optimized for the ground
state, and these are not changed in the EOM-CC treatment (the only varia-
tional parameters are the C,). This would mean that the ground state is
better described, but in fact the linear expansion compensates for this
problem. The excitation energies under the EOM-CC formalism are com-
puted as the energy difference between states. Orthogonality is imposed by
means of a variational principle, and size-extensivity is kept (even though a
linear expansion is used). The most commonly used method is EOM-CCSD,
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which works remarkably well for singly excited states, with errors around
0.2eV (see Ref. [68] and references therein).

Both linear response and EOM-CC models hold significant promise in
application to QM/MM problems, with new developments such as
improved parallel algorithms bringing the limit of treatable quantum
atoms to already over 30 atoms [69]. Other present developments include
density-fitting approximations [70,71], which reduce the cost of calculation
with increasing basis sets and lower the computational prefactor, as well as
local approximations [72-74], with the LCC2 [75,76], and EOM-LCCSD [68]
methods. Other approaches to reduce the computational cost may work by
limiting the correlation calculation to a specific region of the QM system,
just as in Ref. [77].

23.2. Time-dependent density functional theory

Kohn-Sham (KS) density functional theory has established itself as a
standard quantum chemical method for the computation of ground-state
properties. By replacing the high-dimensional wavefunction for the three-
dimensional electronic density, significant savings can be achieved, while
keeping with a reasonable description of both exchange and correlation
effects. Every year, new developments on functional forms have been put
forward, and DFT can nowadays rival with higher-level correlated wave-
function methods in a wide variety of applications.

Owing to the Runge-Gross theorem [78], a time dependent formulation
of DFT (TD-DFT) has also become available. Just as in the time indepen-
dent case [79], a univocal relation between the external potential and the
density (both time dependent) is established, although lacking a varia-
tional principle. We would like to mention the ongoing debate on the
foundations of TD-DFT [80-84], but for practical purposes (and since this
is not the subject of this chapter), the Runge-Gross theorem will be
accepted as is. The interested reader should refer to the above cited
works and references therein.

In the context of TD-DFT, it is possible to investigate electronic transi-
tions by computing the linear response of the system to an external time-
dependent perturbing potential v4(r,t) [85,86]. The total external potential
Vext(T, t) can be written as

Vext(T, ) = 0o () + 01 (1, 1), (28)

where vy(r) represents the Coulomb potential between electrons and nuclei
in the absence of the perturbation. If the perturbing potential v(r, t) is small
in comparison with vy(r), the time-dependent density of the perturbed
system p(r, t) can be expanded as

p(x,t) = pO) + p I (k1) + . (29)
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Therefore, the deviation of the time-dependent density from the unper-
turbed density can be written as

o, ) — pO(r) = 0 (x, £) = / dr / dry(n b, Do), (30)

where x(r,t,1', ') is the linear density—density response function and can be
expressed as a functional derivative

x(r,t,v,f) = { 6p[vext](x, )

- ) 31
6P[Uext](r/7 t/):| ext[Po) ( )

which is calculated at the time-independent external potential vp= Vex[p0]
for the unperturbed ground-state density py. On the other hand, the den-
sity—density response function for the KS reference system of non-interact-
ing electrons can be written as
Sploks|(r, £)
Xks(T, 6,1, 1) = { : (32)
€ op[oks] (' ) ] il

The potential vks(r,t) of the KS system related to ve(r,t) is given by
Uks(T, 1) = Vexi(T, 1) + vn(r, £) + 0xe(1, t), Where vy(r, t) is the time-dependent
Hartree potential and v,(r, f) is the time-dependent exchange—correlation
(xc) potential. Introduction of a time-dependent xc kernel fi(x,t, 1, )=
Uxclpl(x, 1)/ 6p(r', ') and application of functional chain rules and derivatives
leads to the following fundamental equation relating density—density
response functions of interacting and noninteracting systems:

x(r, 51 ) = xgs(x, 8,1 F) + /dx/dT/dx’/dT’sz(r, t,x', 1)

(33)

X [(ST:—T) + frelpo) (X, 7, X', T )]X(x',r',r', t).
Further elementary operations then lead to
= /dt’/dr’sz(r, t, v, )orks(¥, ) (34)
with
v1xs(1, 1) = 01 (T /dr’p /dr /dtfxC po)(r, 1,7, ) pV (¥, ¥). (35)

By Fourier transformation with respect to time one arrives at the
frequency-dependent expression

(r,w) /dr Xks (1,1, w [vl r,w) /dx[ +fxc[p0](r X w)} PV (x, w)],
(36)
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where xks(r,1’;w) is the density—density response function for a KS refer-
ence system of noninteracting electrons and can be calculated in terms of the
unperturbed set {¢;(r)} of KS orbitals as

") (1)o7 (') 1 (') (1) (37)

o) = i . —_
Xis (1,73 w) = imrg > (e w— (¢ —e&) +il’

jk

and n; is the occupation number of the jth ground-state KS orbital.
From Eq. (30 and 36) we obtain

1
x(r, 15w) = xgs(r, r';w) + /dXdX/X(l‘, X; w) {m + fre (%, X, W) | xxs (X, 15 w).
(38)

The density response function can be determined by a self-consistent
solution of the previous equation [85,86]. One of the main difficulties lies in
the exact definition of the XC kernel, which depends on a time-evolving
density p(r,t).

However, if one considers the density as slowly-varying in time, the
kernel at time ¢ can be defined as depending solely on the density at the
same time, removing the need for any explicit treatment of time dependence
in the kernel itself. This is known as the adiabatic local density approxima-
tion, and allows for the use of any “ground-state” XC functional for TD-DFT
calculations. Although as promising as its static relatives, the TD-DFT
method has its own particular issues which should be cautioned

* Most TD-DFT functionals to date fail to accurately describe nonlocal
excitations, such as Rydberg and charge-transfer states [87].

» Since TD-DFT works as a correction to the orbital energies of the
underlying ground-state calculation, the errors are carried from the
latter to the final result.

* The adiabatic approximation does not allow for the computation of
double excitations, and may also fail if any is found close to the single-
excited state of interest.

The first fault noted above is linked to the local approximations used in
building the XC functionals. It can also to some extent be related to the
second item in the list. A nonlocal potential would have to be used, and a
straightforward correction to the problem is yet to be presented. New
functionals have significantly decreased the problem, such as CAM-B3LYP
[88], where the r;,! operator is split into short- and long-range parts, allow-
ing for a reparameterization and correction of the long-range behavior of the
DFT potential. A general observation is that for hybrid functionals, increas-
ing the amount of exchange reduces the error. A diagnostic tool has also
been recently proposed [89].
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Other problems pertaining to the ground-state description is the incor-
rect asymptotic behavior of the KS potential. The true dependence should be
1/, while DFT functionals have an exponential decay. This has a destabiliz-
ing effect on the orbital energies, in turn making ionization energies system-
atically too low. This error can be corrected through the use of optimized
effective potential DFT [84].

The problem in describing double excitations is, for the problems at
hand, the least serious, and is also shared by some wavefunction-based
alternatives, as noted above. In the CC case, it is necessary to include up
to triple excitations [90] to obtain reliable results for such states. In short,
although several issues may be raised in the use of TD-DFT, careful valida-
tion and/or correct use of new functional forms may prevent most of these
issues. The new functionals referred above are not a simple reappreciation
of a set of parameters. They introduce new physics directly related to the
shortcomings of the method. Important review works illustrating the impor-
tance of time-dependent density functional response theory for the calcula-
tion of excitation energies and polarizabilities have been published [84,91].

3. APPLICATIONS

3.1. Electronic properties of water

3.1.1. UV spectra of water clusters

Somewhat naturally, the first system under discussion is water, the most
commonly occurring solvent in chemical applications. We start by looking
into water clusters, building up to the liquid. The condensed phase is only
discussed in the next section. By looking at clusters, we will have an oppor-
tunity to evaluate a many-body formalism, as well as to analyze the behavior
of the spectra with increasing cluster sizes. This is a common strategy in the
study of condensed phases, since clusters bridge the gas and liquid phases,
helping to a better understanding of cooperative effects in solution [92].

We examine in this section the first electronic absorption band of water.
Since under several electrostatic environments the energy difference
between the first and the second excited state is known to be kept around
2eV, a many-body expansion should be viable. By truncating the series at
the one-body terms, one obtains the following expressions for ground and
excited states of a specific water molecule M:

E(M*) = E]M*] + I\ilE[I]M* -, (39)
I#M
N-1

E(M®) = EM°] + ) "E[l]yp — C, (40)

M
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where subscripts have been added to remind the fact that the QM /MM
energy of each I is computed in a specific environment, with fragment M in
the excited [Eq. (39)] or ground state [Eq. (40)]. The C* and C° terms correct
for double counting of the interactions between each fragment. If the crude
approximation E[I]y;+ = E[I]p0 is made, the excitation energies are simply
the QM/MM electrostatically embedded values wM’— M*)=E[M°] — E
[M"], since the correction terms also cancel out. This is the same expression
used for the FMO1 excitation energies [21]. It neglects one-body polarization
effects due to the excitation.

In Figure 4.2, three sets of diagrams are shown, depicting the spectra of
four selected water tetramers. The top diagrams depict the results for the
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Figure 42 Computed spectra for selected water tetramers. The top graphs have been
computed with a one-body approach without excitonic coupling, the second set includes
coupling, and the last graphs are the full results (EOM-CCSD./aug-cc-pVTZ). The connection
between the peaks are given by the eigenvectors of the coupling and/or EOM-CC
coefficients.
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computed excitation values, using the above formulae for the one-body exci-
tation energy. The reference level of theory was EOM-CCSD/aug-cc-pVTZ.
The full results are shown at the bottom. The peaks are all normalized to an
arbitrary scale. Degenerate excited states are shown in the combined height
of all respective peaks. In the case of ringl, for example, there is a single
excitation energy value for the one-body treatment, corresponding to four
degenerate states.

Comparison of the spectra shows marked differences between the two
sets. Although the energy differences are rather small (below 0.1eV), the
one-body states are highly degenerate. This is understandable, taking into
account the symmetry of the optimized clusters. In the case of ringl, for
example, all four water molecules are identical. By applying a many-body
scheme to the energy of each individual excited state, the same energy will
be obtained, independently of the order up to which the expansion is built.
The degeneracy can only be lifted by allowing the excited states to couple.

We have recently proposed a small modification to this many-body
expansion in which excitonic coupling is explicitly included [25]. One builds
an Hamiltonian for all excitonic states, where the diagonal elements Hy; are
given by Eq. (39), and the coupling is defined as the transition dipole
moment interaction of the two excitations

1
Hy = e [dél 'dél — S(dél‘RU) (dél.RU)], (41)
Ul

where Ry is the distance between the centers of mass of the two molecules
I and J. The transition dipoles dj, are also placed at the centers of mass. The
same procedure was used by Harvey et al. [93] to introduce excitonic
coupling, but their dipoles were of the analytical form while the ones used
in Eq. (41) are taken as a subproduct from computing the diagonal terms.
The approximation E[I]ps+ = E[I[p0 can also be used, and in this case, after
diagonalizing the Hamiltonian

Hi1 Hp

Hi, Hpy
H=| . . N (42)

Hnn

the excitation energies are given by the difference between the eigenvalues
and Eq. (40), which is the ground state energy.

The results computed including excitonic coupling are given in Figure 4.2.
Also in the figure we have depicted with dotted lines the connection
between the decoupled one-body states and the coupled states. The states
have been connected according to the respective eigenvector values. Finally,
we have compared our state decomposition to the information from the full



122 RA. Mata and B)J. Costa Cabral

calculation. As exemplified in Eq. (23) for the CIS case, an excited state is built
by a combination of determinants weighted by the CI coefficients. In the
EOM-CCSD method, the energy is invariant relative to a unitary transforma-
tion of the occupied space, so one can localize the occupied orbitals, and
thereby identify from which occupied orbital the electron has been excited.
Comparison of the configuration coefficients of our EOM-CCSD results for
the full system compare well to the one-body coupled procedure, and allow
us to establish the lower connection to the full results. It is clear that a simple
one-body expansion with approximate coupling of the excitonic states
already reproduces rather accurately the spectra for these clusters. Calcula-
tions have been performed for three other pentamer structures, with similar
results. The lowest excitation for a set of hexamers was also compared (at this
point we approach the computational limit for the level of theory chosen).
Our results show an average absolute deviation of about 0.03 eV. This is about
an order of magnitude lower than the expected accuracy of EOM-CCSD for
single excitations.

In Figure 4.3, we show averaged results for 100 configurations of (HO)n
clusters (N =40, 60, 80). Further details on the cluster structures are found in
Ref. [25]. Two sets of values are available for each system size, one without
coupling (Hj)) and the other with excitonic coupling. The greatest differ-
ences between the two sets are in the higher energy regime, where the
neglect of coupling leads to a sharper peak around 8.6-8.7eV. The other
sets are somewhat broader, which is expectable due to coupling. The largest
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Figure 4.3 First excited band for water clusters of varying size (N =40,60,80). The dotted
lines represent the results without coupling between states and the solid line represents
the results diagonalizing the matrix of Eq. (42). Each value has been represented by a
normalized Gaussian (0% = 0.0025 eV ).
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peak for N =80 is also shifted to the red, but only by less than 0.1 eV. The size
effect on the spectra is mainly visible on the proportionality of the bands. The
most dominant band at N =80, which will correspond to the one in the bulk
phase, slowly grows in size with increasing N. A study of the states eigen-
vectors show that the higher excitations are more delocalized and with larger
contributions from core one-particle states [25]. The excitations to the red are
mainly due to localized surface states and, therefore, are not visible in the
liquid phase. The liquid-phase spectra is the subject of the next section.

3.1.2. Absorption spectra of liquid water

Several experimental works on the absorption spectrum of liquid water have
been reported [94-99]. These works also provide some general background
on absorption processes in liquid phase. From the theoretical point-of-view
[100-102], the calculation of the absorption spectrum of liquid water repre-
sents a considerable challenge. Firstly, an adequate description of the liquid
state structure and electronic density fluctuations is needed. Moreover, light
absorption by liquid water in the ultraviolet region leads to some specific
difficulties related with the description of high energy-lying excited states.

A sequential molecular dynamics/QM approach for investigating the
absorption spectrum of liquid water in the 6-15eV energy range has been
recently reported [103]. For completeness, an overview of the adopted
methodology is described as follows: Initially, a 2ns molecular dynamics
run using a polarizable model [104] for liquid water was carried out. Then,
100 configurations saved every 20ps were selected for the calculation of
electronic properties. For each configuration a QM/MM partition was
defined, where the QM system includes explicitly a few water molecules
and the MM environment is represented by a charge distribution of 100
water molecules. Polarization effects lead to a nonuniform charge back-
ground, which is represented by a set of point charges that reproduces the
induced dipole moments of the polarizable model [105]. Some issues are of
particular relevance. The dependence of the results on (1) the basis set
representation of the quantum system for describing higher excitations; (2)
the size of the quantum system (N,,), and (3) the charge background. More-
over, a comparison of the theoretical results with experimental information
on the liquid water absorption spectrum is of crucial interest for assessing
the adequacy of the adopted theoretical procedures.

The water absorption spectrum is related to the complex dynamic dipole
polarizability, o(w) =a1(w) + az(w), where oq(w) and a,(w) are, respectively,
the real and imaginary parts of a(w). The dynamic polarizability o(w) can be
calculated through a sum-over-states (SOS), according to:

o AE%—WZ il"kw
a(w) = % + , 43
) ;f { (AE2 —w?)? + W2T7  (AEZ —u?)? + 2T} )
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where AE’s and f;’s are transition energies and oscillator strengths, respec-
tively, and 1/T% is a decay time describing the radiative relaxation of
transition k. T, can be estimated as [y =h/7=6.582 x 107 '®eVs/7, where
the decay time is on the femtosecond timescale [106]. For the calculation of
a(w) using the SOS expression I', has been set to a single arbitrary and small
value.

At high frequencies, the relationship between the dielectric constant
€(w) =€1(w) +iex(w) and the dynamic polarizability a(w) is given by the
Lorenz-Lorentz equation [107],

e

where the number density p=N/V, N is the number of particles and V its
volume.

The basis set dependence of the imaginary part of the dielectric constant
€2(w) calculated with the Dunning’s hierarchical d-aug-cc-pVxZ (x=D,T,Q)
basis sets [108-110] is illustrated in Figure 4.4. No significant dependence is
observed for excitation energies below 15eV. However, as expected, for
higher excitation energies, at least a d-aug-cc-pVTZ basis set should be
used. This dependence reflects excitations to a quasi-continuum set of
unoccupied orbitals.

2
| -- dapvdz " a
— dapvtz ! \\
- [
150 dapvgz ) \\
1
3 af
()
0.5
0
4

w (eV)

Figure 44 Basis set dependence of the imaginary part of the dielectric constant of liquid
water [e;(w)]. Calculations were carried out with the BH and HLYP functional and a single
water molecule in the quantum system. Results are shown for dapvdz, dapvtz, and dapvqz
basis sets.
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The dependence of the results on the number of water molecules expli-
citly included in the quantum system is illustrated in Figure 4.5 (bottom
panel). Although some differences can be observed when we compare
results for Ny, =1 and 2, no significant dependence of ¢,(w) on the number
of water molecules is observed for N,, > 3 [103]. However, we notice that
this can only be verified for statistically converged calculations carried out
with the adequate basis set for the energy range of interest. Therefore, a
significant number of weakly correlated configurations should be included
in the calculation of average properties (100 in the present calculations). As
previously discussed, the convergence of the SOS procedure for calculating
dynamic polarizabilities should also be checked. Although in many cases,
full SOS calculations are possible, they become not affordable for large
quantum systems and basis sets. Therefore, for many cases of interest, the
SOS is truncated. The top panel of Figure 4.5 illustrates the behavior of e;(w)
with the number of states (NStates) included in the SOS. For this particular
case, a weak dependence on NStates is observed, suggesting that calcula-
tions for larger systems are affordable by using a truncated SOS. Another
attractive route for the calculation of polarizabilities and therefore for inves-
tigating absorption properties in condensed phase relies on the polarization
propagator (PP) approach [111]. The PP approach leads to results quite
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Figure 4.5 Bottom: dependence of the imaginary part of the dielectric constant of liquid
water [e;(w)] on the number of water molecules in the quantum system. Results are from
TDDFT BH and HLYP/dapvdz calculations; top: behavior of €,(w) with the number of states
(NStates) included in the SOS for a system with N,, =1. Reprinted with permission from
J. Chem. Phys. 130 (2009) 014505. Copyright 2009, AIP.
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similar to the SOS calculations [103]. However, in contrast with the SOS
procedure there is no truncation of the number of excited states [111].

A sequential QM /MM partition is usually based on the representation of
environment (the MM part) by a charge background. Therefore, it is of
crucial importance to discuss how the results depend on the choice of the
embedding charge background. In principle, a general procedure based on
the SCF determination of the quantum electronic density and charge back-
ground should be adopted [37]. SCF determination of embedding charges
can be carried out in different ways. One possibility is to define a large
quantum system and to estimate the charges by fitting to the electrostatic
potential at a given theoretical level. Then, a smaller quantum system is
used for the calculation of the electronic properties at the same theoretical
level with the embedding charges previously estimated. The following
procedure has been recently applied to investigate the influence of self-
consistent charge relaxation in the first hydration shell on the calculation
of the water absorption spectrum [103]. A quantum system or QM partition
including explicitly six water molecules was embedded in the frozen charge
distribution of 100 water molecules represented by NCC charges. The
charges of the QM partition were determined by fitting to the electrostatic
potential [112]. Then, calculations of electronic properties at the same theo-
retical level were carried out for one quantum molecule surrounded by the
SCF charges of the nearest five water molecules and this system was
embedded in the background of the remaining water molecules represented
by the nonuniform charge distribution that reproduces the induced dipoles
of the NCC model. On the other hand, a much simpler procedure relies on
the assumption that the charge background that defines the MM system is
frozen. A frozen charge background can be defined by adopting a polariz-
able (NCC) or nonpolarizable (TIP3P) model for the charge distribution of
the surrounding water molecules. The dependence of €;(w) on the choice of
different charge backgrounds is illustrated in Figure 4.6. In agreement with
previous studies [100,101], no significant dependence of the results for the
absorption spectrum on the charge background is observed.

3.13. lonization of liquid water

Electronic properties of water, in particular, electron binding energies in
liquid phase, were investigated by several experimental [12,113,114] and
theoretical [115-117] works. A review on experimental techniques for asses-
sing electron binding energies of liquid and solutions has been recently
reported [114]. In contrast with results for the gas-phase water molecule,
the electronic structure in liquid phase is characterized by electronic and
thermal broadening [115]. Electronic broadening in liquid water is related to
hydrogen bond interactions and are a fingerprint of the electronic density of
states (DOS) of water clusters at low temperatures. Thermal broadening is
associated with the different configurations of the HB network that
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Figure 4.6 Dependence of the imaginary part of the dielectric constant of liquid water
[€2(w)] on the choice of the charge background. Results for TIP3P, NCC, and SCF charges are
from TDDFT BH and HLYP/dapvdz calculations with N,, =1.

characterizes liquid water at a finite temperature T. Usually, the symmetry
species associated with the ground-state electronic configuration
(1a1)*(2a1)*(1b,)*(3a1)*(1by)* are used to label the distribution of electron
binding energies and “band” formation in liquid water. Hydrogen bond
interactions lead to orbital mixing and splitting defining orbital energy
ranges that can be associated with a given symmetry species of the water
monomer.

Electronic broadening can be illustrated by the results for electron bind-
ing energies of water clusters [117]. This is shown in Figure 4.7, where pole
strengths versus orbital energies (eV) from Green’s function or electron
propagator theory calculations [118-121] for (H,O);_g are reported. Besides
orbital mixing and energy broadening, these results also indicate that the
orbital energy of the highest occupied molecular orbital (HOMO) in small
water clusters is red shifted relative to the HOMO of the water molecule.
This is in trend with experimental data indicating a ~1.4 eV red shift of the
1b; energy from the water monomer to the liquid phase [113].

Although calculations of electron binding energies based on electron
propagator theory can be carried out for small clusters, they are not afford-
able for larger systems. In these cases, an attractive possibility for investi-
gating electronic properties in condensed phases is DFT. However,
applications of DFT for the calculation of EBEs are limited by the self-
interaction error, which is inherent to many approximations for the XC
functional (see Section 2.3.2). Although the meaning of DFT orbital energies
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Figure 4.7 Outer valence orbital energies (eV) for water clusters from Green’s function
calculations with the dapvdz basis set. Results are for (H,O), g clusters. Reprinted from
Chem. Phys. Lett. 429 (2006) 129-135, P.C. do Couto, B.J.C. Cabral, S. Canuto, Electron
binding energies of water clusters: Implications for the electronic properties of liquid
water, Copyright 2006, with permission from Elsevier.

remains a controversial issue in the literature [122], several works provided
evidence on the reliability of specific parameterizations of DFT for predict-
ing orbital energies [117,122,123]. The electronic DOS of liquid water based
on a reparameterized MPW1PW91 XC energy [52] is shown in Figure 4.8.

On the other hand, there is a strong interest in the calculation of the first
vertical ionization energy (VIP) and electron affinity (VEA) because these
electronic properties are intimately connected to charge transfer and chemi-
cal reactivity in solution. The average VIP, for example, can be estimated
through the following AE calculation:

N
VIPy, =S [EG, ()~ En, () (45)
i=1

where N is the number of selected configurations, N, the number of water
molecules in QM system, and Ey, (i) and Ej (i) are the energies of the
ionized and neutral systems, respectively. Sequential QM /MM calculations
of the VIP and VEA of liquid water were recently reported. The set of
configurations for the calculation of the VIP and VEA of liquid water was
generated by molecular dynamics for a polarizable model of the water [105].
The behavior of VIP and VEA with the number of water molecules in the
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Figure 4.8 Average electronic DOS of liquid water at T=298K from sequential Monte
Carlo/DFT calculations. The average DOS was calculated over 50 configurations. The QM
system includes 30 water molecules. The surrounding water molecules (200) are
represented by TIP5P charges. Results for a nonembedded QM system are also shown
(dashed lines). Reprinted with permission from J. Chem. Phys. 123 (2005), 054510, Copyright
2005, AIP.

quantum system is illustrated in Figure 4.9. A significant dependence of the
results on the size of the quantum system can be observed. Our best
estimate for the first ionization potential of liquid water (9.71 + 0.06eV) is
based on a MPW1PW91/apvdz calculation with N;, =20. This prediction is
in good agreement with the experimental result reported by Winter and
Faubel (9.9 eV). The calculated VEA can be compared with minus the con-
duction band edge of water (—V;) [124]. Our best estimate of VEA is
0.44 + 0.05eV, which is significantly smaller than the typical literature
value for —V, (1.2 + 0.1eV) [125]. However, it is in keeping with a more
recent prediction by Coe et al. [124] that points to a value close to zero.

3.2. Electron binding energies of liquid ammonia

In contrast with water, electronic properties of liquid ammonia are much
less known from both the experimental and the theoretical points of view,
despite the fact that several studies on the ammoniated electron [126,127]
have been reported. A sequential QM/MM approach to the electronic
properties of liquid ammonia has been recently reported [128]. The results
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Figure 4.9 Behavior of the VIP and VEA with the number of water molecules (N,,) in the
quantum system. Squares represent experimental values.

are for liquid ammonia at d=0.73g/cm>® and T=197.2K. A first issue
concerns the analysis of polarization effects in liquid ammonia. This is
important because the attachment of an electron to a molecular structure
or aggregate depends on its multipolar moments [129]. In comparison with
water, in which the dipole moment increases from the gas-phase value of
1.85 to ~2.7 D in the liquid phase, polarization effects in liquid ammonia are
weaker. The QM /MM calculations predict that the dipole moment of liquid
ammonia is 2.05 D, which means an increase of 27% relative to the gas-phase
value. We are not aware of experimental data for the electron binding
energies of liquid ammonia. Recent QM /MM results for the density of states
of liquid ammonia with different number of molecules (n =5, 8, 10, and 14)
in the quantum system (Figure 4.10) indicate that the edge of the 3a; band
can be placed at ~9.8eV.

This value can be associated with the ionization energy of liquid ammo-
nia and it is ~1.05 eV below the ionization energy of the gas-phase ammonia
molecule. The predicted red shift for the first ionization energy of liquid
ammonia relative to the gas phase is, therefore, smaller than the experi-
mental prediction for liquid water of 1.7eV. As previously discussed for
liquid water, this red shift can be related to electronic and thermal broad-
ening [115]. The previous QM/MM predictions rely on a reparameterized
XC functional that reproduce Green’s function electron binding energies of
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Figure 410 Electronic DOS of ammonia clusters (n =15, 8, 10, and 14) in the presence (solid
line) and absence (dashed line) of an embedding background. Reprinted with permission
from J. Chem. Phys. 128 (2008) 014506, Copyright 2008, AIP.

small ammonia clusters (see Ref. [128] for details). The same approach was
used to estimate the VEA in liquid ammonia. It was found that the VEA
is negative for quantum systems embedded in a charge background repre-
senting the surrounding ammonia molecules. However, as illustrated in
Figure 4.11, VEAs become positive for nonembedded quantum systems.

These results indicate that no vertical electron attachment via internal
states is observed in liquid ammonia, at least for the adopted interac-
tion model and thermodynamic conditions of the QM/MM approach.
Interestingly, positive VEAs for nonembedded quantum systems are
positive for n > 10. This can be interpreted as an indication on the
stabilization of an excess electron via surface states. In other words,
and in agreement with theoretical predictions of Barnett et al. [130]
small ammonia clusters can stabilize an excess electron by localizing
the extra charge on the surface. Figure 4.11 also indicates that in small
ammonia clusters the VEAs are correlated with the total dipole moment
of the clusters. This correlation is observed for both embedded and
nonembedded clusters.
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Figure 411 Average VEA (in eV) versus average total dipole moment (7 in D) of ammonia
clusters. Dashed lines are fitting to raw data with correlation coefficients r =0.977
(nonembedded) and r = 0.983 (embedded clusters). Reprinted with permission from

J. Chem. Phys. 128 (2008) 014506, Copyright 2008, AIP.

3.3. Charge transfer to solvent in halide aqueous solutions

The electronic spectra of halide ions in aqueous solution is a topic of intense
experimental and theoretical work [114,131-133]. A distinguishing trait of
their spectra is the existence of intense absorption bands in the deep ultra-
violet which is otherwise absent in the gas phase. These bound excited states
are, therefore, due to interactions with the surrounding solvent. For this
reason, the computational study of halides is a challenging but likewise
interesting case for QM /MM and related approaches.

The maximum absorption peaks for the halides in solution have been
measured: 7.10 (C17), 6.29 (Br™), and 5.47 (I") [134]. In order to discuss the
trends in these values, one has to take into account the various states in
question. These are namely the ground state (X~, X =F, Cl, Br, I), the excited
state (X~ ") and the ionized state (X). The stability of the excited state can be
defined relative either to the ground state, in which case the determining
quantity is the excitation energy w, or the ionized state. In the latter case, the
question is whether the excited state is bound, the same is to say, whether
the excited state is lower in energy than the neutral halogen atom. If not, the
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excitation will not be observed. A comment should be made at this point.
The question of whether an excitation is observed or not is only valid in
experiment. In QM calculations, it is possible to compute any given excited
state, even if energetically unstable relative to ionization. This is simply due
to the constraints placed on the wavefunction.

A short diagram has been sketched in Figure 4.12 for three possible
environments. The example is rather general and can be applied to any of
the halogens. On the left side, the energy levels for all states have been
sketched for the halide in vacuo. The energetic ordering is in this case
ground, ionized, and excited states. The latter state is therefore not bound,
since the system will rather lose the electron than to remain on that given
electronic configuration. The electronic spectra of halides will be featureless,
up till the ionization threshold. In the middle diagram, a halide is sur-
rounded by a few water molecules. All states are stabilized, but on different
degrees. The most favored by the solvent environment is the ground state.
Given that water is a polar solvent, this should come as no surprise. This
ground state is negatively charged with a well-localized electron. Electro-
static interactions are, therefore, particularly favorable. The excited state is
also stabilized, but not so significantly, since the excess electron is deloca-
lized in the process, smearing the charge and reducing the electrostatic
interaction with the environment. The relative positions of ionized and
excited states are undetermined, since the crossover between the two will
depend on the specific halide and the number of water molecules. However,
in solution (right-hand side), there will be a bound state for all halides. We
will in the following text refer to as excitation energy (w) the difference
between E[X "] — E[X "] and as excited state vertical detachment energy the
difference E[X] — E[X].
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Figure 4.12 Energy diagram for three electronic states of the halide—ground state (X),
excited state (X~ *), and ionized state (X). The ordering is given according to the
environment (from left to right, gas, cluster, and aqueous solution).
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Several theoretical studies have focused on small water-halide clusters
[135-137]. These showed, in general, that the excitation values slowly rised
with the number of solvent molecules to the experimental estimates in a
close to scalable manner. Different correlations between environmental
effects and the rise in the excitation energy have been proposed. Serxner
et al. [138] have searched for a semiquantitative correlation between the
dipole of the waters around the halide and the solvatochromic shift. This
has been later contested by Majumdar et al. [135], who considered the
resulting electric field. In our recent study of chloride in aqueous solution
[139], we confirmed a correlation between the electric field generated by the
surrounding solvent and the excitation energy value. For this purpose, we
used 50 configuration from a Born-Oppenheimer MD/DFT simulation of
Cl” in a small periodic water box (64 water molecules). For each of these
configurations, we chose as QM system the anion and the nearest-neighbor
water molecule, representing the remaining waters as SPC/E point charges.
We then reduced the number of MM waters, computing at each step the
excitation energy, as well as the electrostatic field of the solvent at the
chloride site. The two sets of values are given in Figure 4.13. Bradforth
and Jungwirth [140] have also pointed out the importance of including a
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Figure 4.13 Average excitation energies (in eV) and solvent electrostatic field (in a.u.) for
50 configurations of Cl~ immersed in a simulation box with 64 water molecules (EOM-
CCSD/aug-cc-pVDZ values). The QM system includes the anion and the nearest water
molecule. Both values are given as a function of the embedding water molecules (n,,).
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very large electrostatic field around the halide for the description of the
excited state. Their calculations were focused not only on determining
excitation energies but also vertical detachment energies for the ground
and first excited states. The two studies indicate that a modest field is
enough to predict the excitation energy, while the detachment energy has
a very slow convergence. This is in line with the discussion of Section 2.2.3,
as the ionization process requires a very large MM environment.

Perhaps the most relevant question in the study of halides in solution is
the nature of the excitation. The vertical excitation is a precursor to the
charge-transfer-to-solvent (CTTS) state, where a solvated electron is created.
Most cluster studies argue that the excited electron is promoted to a virtual
orbital directed toward the surface of the cluster, in what would be a dipole-
bound electron [141,142]. The solution studies on chloride and iodide,
however, show that upon including a sufficiently large embedding system,
the excited electron is instead delocalized in a solvent cavity and the sur-
rounding waters [139,140].

Just as in the case of the water study, it is relevant to examine the
dependence of the above cited results with the number of quantum water
molecules. Due to the charge-transfer nature of the excitation, a many-body
expansion such as the one used in Eq. (20) is not feasible. In Eq. (20) it is
implied that the same excitation is computed for each of the energy terms.
This will not be the case if CTTS occurs (the one-body term will not be
consistent with the two-body expansion). The only possibility is to compute
brute force with larger QM regions. This has been done in both studies
referenced above. The conclusion is that w holds a slight dependence on the
number of QM waters. In the case of chloride, up to six water molecules
have been included and the effect is seen to be around 0.8eV [139]. In the
case of iodide, only a few single point calculations were performed, but
again differences of up to 0.6eV could be observed [140]. The maximum
quantum size, in this case, included seven water molecules. The other
conclusion, however, is that around three water molecules seem to suffice
for a well-converged result. The number is not related to any of the solvation
shells. Observing the individual values, the reason behind the number is
manifold. First, the electron will not be necessarily transferred to the closest
water molecule. The orientation of the water solvation shell is an issue.
Second, as referred above, the electron is somewhat delocalized over a
number of water molecules and the space around them, so the quantum
region of a single molecule is, in some cases, not a good enough description.
A last issue concerns the basis set effect. Calculations with a small quantum
system show a large basis set dependence, especially diffuse functions,
hinting at the need to include basis functions close to the point charge
water molecules or even in between the solvent. As such, one could to
some extent improve the result by adding diffuse basis functions instead
of augmenting the QM region. However, even if the excitation energy is
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converged, it is questionable whether such a description, where the electro-
nic density is significantly overlapping with MM point charges, would be
physically reasonable. In fact, it should be avoided, since it leads to a large
dependence on the choice of charges describing the embedding field.

3.4. Solvatochromic shifts of small organic molecules

The solvent effect on the excitation energies (or solvatochromic shift) of
organic species is fundamental to the understanding of life mechanisms. A
wide variety of processes have been developed by all kinds of life forms,
from bacteria to the human being, in order to sense and regulate exposure to
light. These processes can only be fully understood by looking at the
molecular level. The study of solvatochromic shifts also gives insight into
specific solute-solvent interactions and opens way to interesting applica-
tions, such as the tailoring of new materials with specific absorption proper-
ties in solution. However, computing this value is far from being a trivial
task.

One of the often cited problems is related to the description of the
molecule itself. Some of the excitations, even in the gas phase, are remark-
ably sensitive to the geometry. A typical example is the n — n* excitation in
carbonyl groups, where the value depends strongly on the C=O distance
[143]. However, in predicting a shift in solution, the most determining factor
will be the description of the environment, since effects pertaining to the
solute will partly cancel out.

The first excitation energy of formaldehyde in aqueous solution has been
the subject of many theoretical studies. Several have relied on a QM/MM
calculation, including only the chromophore in the QM region. Hirata et al.
[54] have used the same expansion as Eq. (20), but with the embedding
environment described by dipoles centered on the surrounding water mole-
cules. Results for small clusters (formaldehyde +two water molecules)
showed good agreement with full calculations. In order to predict the
solvatochromic shift, they used large water clusters (up to 81 molecules)
and a variety of QM methods. The EOM-CCSD results indicated a shift of
0.17eV, in close agreement with the QM(CASSCF)/MM results of Martin
et al. [144] (0.18eV). Even though the two procedures widely differ, this
seems to hint at a very small two-body correction term. The main contribu-
tion would be connected to the electrostatic influence of the water mole-
cules, and their explicit quantum description can be considered
unnecessary. We now turn to other cases where the QM/MM approxima-
tions apparently fail.

In aqueous solution, the T — 1" excitation energy of uracil is known to
suffer a red shift. Previous computational studies have shown that a large
number of solvent molecules have to be included explicitly into the quan-
tum system when making use of a QM/MM hybrid scheme. The
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experimental estimate is around —0.3 eV. The results of Ludwig et al. [145],
using a QM /MM scheme with TD-B3LYP and including only the solute
molecule in the quantum region, show almost no change relative to the gas
phase (—0.02eV). By introducing nine explicit water molecules, the shift
increases to —0.20. However, semiempirical calculations show that the
result for nine water molecules (which make up for the first solvation
shell) is not converged relative to the quantum system size.

A similar observation has been made in the case of acrolein. With the use
of TD-DFT (CAM-B3LYP) as the quantum level of theory, Aidas et al. [66]
identified changes in the solvatochromic shift above 0.2 eV on increasing the
number of water molecules in the quantum system. This is in line with
previous results on the system which made use of continuum solvent
approaches. The experimental estimate in the case of acrolein is of a
—0.52 eV shift. The values obtained by Iwata and Morokuma [146] (QM =
HF: —0.25), do Monte et al. [147] (QM =MR — CISD + Q: —0.40), and Aqui-
lante et al. [148] (QM =MS — CASPT2: —0.10 and QM = PBEOQ: —0.22) were
all consistently too low, independently of the quantum method used. We
present in Table 4.2 a small review of computed solvatochromic shift values
for the two systems, together with the experimental estimates.

The problem seems more or less analog to both systems. The approx-
imate treatment of the solvent, reducing it to a simple electrostatic effect, is
unable to describe the shift. It should be pointed out that some of these
studies were performed with polarized coupling, including the effect of
back-polarization in the solvent. This seems to give little to no improvement

Table 4.2 Literature values for several QM/MM theoretical studies and experimental
estimates for the T — " solvatochromic shifts in water of some small organic molecules

Molecule Level of theory My Shift Ref.

Acrolein SCF/EHP 0 —0.25 [146]
CASPT2/PCM 0 -0.22 [148]
MR-CISD +Q/COSMO 0 —0.40 [147]
LR-CCSD/SPCpol 3 —0.26 [66]
CAM-B3LYP/SPCpol 0 —0.26 [66]
CAM-B3LYP/SPCpol 12 —0.46 [66]
experiment —0.52

Uracil PBEO/PCM 4 —-0.10 [149]
B97-1/PCM 0 —0.08 [150]
PBEO(PMM) 0 —-0.10 [151]
B3LYP/SPC 0 —0.02 [145]
B3LYP/SPC 9 -0.20 [145]

experiment —0.28/-0.31
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relative to a simple electrostatic embedding. The error seems to stem exclu-
sively from the quantum treatment. As a test system, we opted to use the
acrolein molecule in analyzing the many-body effects responsible for the
slow convergence of this value. The uracil case is somewhat more compli-
cated, since the m— 1" excited state is expected to cross below the n — n*
state, on going from the gas to the solution. The problem of state crossing is
a severe limitation to the use of many-body schemes.

In order to compare the gas and the solution spectra, we optimized the
acrolein molecule at the MP2/aug-cc-pVTZ level, with and without the
PCM continuum correction. The MP2(PCM)/aug-cc-pVTZ geometry was
then used in a fixed-body MD simulation immersed in a water (TIP3P) box
with periodic conditions. The intermolecular terms for acrolein were taken
from Ref. [66]. After an equilibration time of 50 ps, 10 snapshots were taken
in 5ps intervals, and were later used for the calculation of the ground and
the excited states. For the single point calculations, the simulation box was
replicated in all three dimensions, and a sphere was cut, with the acrolein
oxygen as the geometric center, and including all water molecules with a
distance of up to 20 A from the same atom. A depiction of one of these
snapshots is shown in Figure 4.14. The excitation energies were computed at
the EOM-CCSD/aug-cc-pVDZ level of theory. The solvatochromic shift is
defined as the energy difference between the excitation energy of the MP2
(PCM)/aug-cc-pVTZ optimized structure, dipped in the solvent box, and of
the gas-phase optimized molecule. The EOM-CCSD/aug-cc-pVDZ has been
confirmed as a suitable theoretical level for computing the © — 1™ excitation
energy. Further details on the system preparation and single point calcula-
tions will be published elsewhere [152].

Figure 414 MD snapshot of an acrolein molecule (vdW representation) surrounded by
water molecules. The closest 32 water molecules are depicted as balls and sticks, which is
the largest quantum system considered in the study.
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In order to compute the excitation energy in the case of the solvated
acrolein molecule, we make use of Eq. (20). The excitation energy is calcu-
lated according to the reduced two-body expression, including a variable
number of water molecules into the expansion. As it can be easily gathered
from Figure 4.15, the inclusion of water molecules in the QM region has a
dramatic effect on the solvatochromic shift. The QM /MM estimate, with
only the solute as quantum system (n,, =0), is only —0.24 eV, about 50% of
the experimental value. This is in line with the previous results for the
system (see Table 4.2). Including the first solvation shell (n,, =12), one is
still at —0.45eV, an error of about 10%. This is only recovered by including
as much as 32 water molecules. Such a quantum system size is computa-
tionally prohibitive, even for lower levels of theory such as TD-DFT. A
remarkable agreement with experiment is obtained, when comparing the
converged result.

Besides the possibility of achieving such large system sizes, one of the
positive aspects of a many-body formulation is the amount of information
available in the decomposition. The values presented in Figure 4.15 are
estimated as a by-product of the two-body calculation with n,, =32. Con-
trary to what was performed in Sections 3.1.2 and 3.3, there is no need to

Aw (eV)

Figure 4.15 Solvatochromic shift Aw of the m — 1" excitation of the acrolein molecule
(in eV), embedded in a solvent sphere with a 20 A radius. The shift is computed with use of
Eq. (20), and shown as a function of the number of water molecules treated quantum
mechanically (ny,).
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repeat the calculation for different sizes in order to check for convergence
of the QM system. The two-body value is obtained in an incremental
fashion and, therefore, has inherent diagnostic capabilities. One can start
by computing the QM /MM value and then add the effect of dimers. If the
two-body effect is found to be small, one can, with some certainty, confirm
the convergence of the calculation. The contrary is, however, not
applicable.

4. FINAL REMARKS AND CONCLUSIONS

The application of sequential QM/MM method for the calculation of the
electronic spectra of hydrogen bond systems was reviewed. In contrast
with the conventional QM /MM approach, there is no coupling between
the QM and the MM partitions in the dynamic or stochastic sampling
procedures for studying many-body interacting systems in condensed
phase. However, the sequential approach can be seen as a particular case
of a more general QM /MM formulation. Particular emphasis was placed
on the possibility of exploiting the coupling between many-body energy
decomposition schemes and the QM/MM partition. In this sense, the
present results for the absorption spectrum of water clusters illustrate
how a simple one-body decomposition scheme for the total energy can
be successfully applied to carry out ab initio calculations for large water
clusters. We have also presented an analysis of the merits and limitations
of an application of the sequential QM /MM approach to study the liquid
water absorption spectrum in the 6-15eV range. This analysis indicated
that some aspects for assessing the reliability of a QM/MM partition
should be taken into consideration. Specifically, the dependence of the
results on the size of the quantum system and the representation of the
embedding charge background should be investigated. Several other
applications of the sequential QM/MM approach were also reviewed
and include ionization of liquid water and ammonia, charge transfer to
solvent in halide aqueous solutions, and solvatochromic shifts of small
organic molecules. The last application, namely, the calculation of the
excitation energy of the acrolein molecule in liquid water, clearly illus-
trates how the coupling of a many-body decomposition scheme to a QM/
MM partition makes possible an accurate ab initio approach to the solva-
tochromic shift for a system where a strong dependence of the results on
the number of solvent molecules explicitly included in the QM system has
been observed. In conclusion, the application of a many-body decomposi-
tion scheme to the energy representation of a QM /MM partition leads to a
new and powerful formulation that is beyond the conventional QM /MM
methodology.
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1. INTRODUCTION

Water plays an important role for most chemical processes that are rele-
vant for the environment, biology, and technology. Water-assisted reac-
tions in catalysis [1,2] and biochemistry [3], chemical speciation [4,5],
mineralogy [6-8], supramolecular chemistry [9-11], and nanoreactors
[12,13] are some of the areas for which water is an active medium creating
the environment necessary for the favorableness of chemical processes.
Understanding the role of water in the chemical phenomena is the crucial
point for bringing up new breakthroughs in many frontier fields of chem-
istry and physics. Many sophisticated techniques such as nuclear magnetic
resonance (NMR) spectroscopy and nuclear overhauser effects (NOE) [14],
spectroscopic and ultrafast electronic excitation techniques [15] are now
used to acquire fundamental knowledge about the influence of water in
different phenomena providing new perspectives on a wide range of
reactions and processes [16].

The intermolecular interactions leading to association species and inclu-
sion compounds in aqueous solution are of particular interest. Computer
simulation of such challenging systems is very important to understand the
intrinsic interactions involved, the dynamics, and the driving forces that
govern the phenomena. An example of such system is the polypeptides in
aqueous solution and their interaction with macromolecules forming
inclusion and association compounds.

The heptapeptide Angiotensin-(1-7) [17]—(Ang-(1-7)—in aqueous
solution has attracted our attention because of its great potential to treat
cardiovascular diseases due to its activity in the rennin-angiotensin
systems (RAS) [17,18]. NMR technique has been applied and a majority
of the resonances were accomplished by rotating frame overhauser
enhancement spectroscopy (ROESY), total correlation spectroscopy
(TOCSY), and correlation spectroscopy (COSY) peak coordinates, and
have permitted a detailed analysis of the conformation and their inclusion
to B-Cyd [14]. Bradykinin potentiating peptides (BPPs) [19] have also
attracted our attention, as these compounds were the first naturally
occurring angiotensin-converting enzyme (ACE) inhibitors described in
the literature [19]. The BPPs activity is related to the potentiation of the
hypotensive effects of Bradykinin, and also by inhibition of the conversion
of Angiotensin-I into Angiotensin-II [20]. These classes of peptides were
essential for the development of the Captopril, the first commercial ACE
inhibitor, used nowadays clinically for cardiovascular dysfunction treat-
ment [21-23]. Particularly, the inclusion compound of Ang-(1-7):B-Cyd is
of great interest because of its technological importance.

The  self-consistent  charge-density = functional tight-binding
(SCC-DFTB) method has been extensively used with remarkable success
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to describe large organic molecules such as those found in the biological
field. Elstner and collaborators [24] were the first to propose the strategy
of using SCC-DFTB combined with molecular mechanics to treat large
biologically relevant molecules [24,25]. Rhodopsin, relative pKa’s of pro-
teins, enzymes, proton transfer, ATP hydrolysis in myosin, and dizinc B-
lactamase are some of the systems that have been successfully treated
using the SCC-DFTB/MM method [26-33]. In most of these systems, part
of the protein was treated quantum mechanically, whereas the remaining
structure was described by an appropriate force field. Water molecules
were included in some of these systems, and they have usually been
treated classically.

In the present work, we explore the simulation of polypeptides and their
inclusion compounds with the B-cyclodextrin (B-Cyd) in aqueous solution
using the combined QM/MM method where the QM is the SCC-DFTB
method including empirical London dispersion correction (DC), and MM
is described by the universal force field (UFF), augmented by Coulomb
interactions which are in-line with the quantum method. This is a good
compromise between a first-principle method and an empirical force field.
The aim is to establish the method which is able to describe systems of
larger complexity such as those involved in self-assembly and nanoreactors.
Cyclodextrins have been extensively studied because of their technological
and biological importance that is used as drug delivery device and, more
recently, as nanoreactors [34]. In the last decade, many reviews [34—45] have
been dedicated to the dynamics and thermodynamics of cyclodextrins in
aqueous solution and their inclusion compounds with biologically relevant
molecules.

2. THEORETICAL APPROACH

This section is organized as follows. A brief review of the SCC-DFTB
method will be given. A posteriori treatment of London dispersion interac-
tions will be discussed followed by the presentation of QM /MM implemen-
tation with mechanical and with electrostatic embedding will be discussed.
All methods are implemented in an experimental version of the deMon
computer code [46].

2.1. Density functional tight-binding method

DFTB uses density functional theory (DFT) as basis for the establishment of
a tight-binding method. Many reviews about DFTB and its extensions are
now available [47-49]. We will limit ourselves to the practical part of the
SCC-DFTB method and its implementation.
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In the Kohn-Sham (KS) formalism, the total energy can be calculated as
follows:

=>me; [t o d3rd3r+ExcH e )

n; denotes the occupation number of the orbital. The basic idea of DFTB is to
write the electronic density as a reference density py plus a small fluctuation

6p [50],
p(r") = po(r) +6p(7). (2)

Inserting Eq. (2) in (1), and after some arrangements, we write the total
energy equation according to Eq. (3):

E= Zni<¢i

Ebnd

H0’¢i> + Erep [po] + Ean [5P, pO}' (3)

. . S |
The first term contains a reference Hamiltonian H that depends only on the
reference density py:

1 _>
H = —-V? + Vext (1) / dr + Uxe[po] - 4)

2 |

ks [p,)

The sum in the first term of Eq. (3), Epna, is the sum over the energies of
all occupied orbitals. The second term of Eq. (3) defines the repulsive
contribution,

Ereplpo] = // ‘rp ipi ‘ drdr” + Exc [P0l /ch [po]pod7 +Em.  (5)

Note that E.p, as defined in Eq. (5), includes the nucleus-nucleus repulsion
energy, a quantity of similar magnitude than the first term, the electron—
electron repulsion, but with different sign. Finally, the last term in Eq. (3)
includes the corrections related to the fluctuations in the electronic density.
This term is defined as

62Exc
Eondlpo,
Po

In order to obtain a good estimate of the reference, electronic density, po, is
written as a superposition of atom-like densities, centered on the nuclei o,

) drdr”. (6)

N —
po(r) =3 _r(ra),  To=7 =R, (7)



Molecular Dynamics of Polypeptides 149

With this approximation, it is assured that E.., does not depend on the
electronic-density fluctuations. Furthermore, because of the neutrality of pf,
the Coulomb contributions become negligible for long distances. Therefore,
E.ep can be expanded, and because of the screening of terms of more than
two centers, one can assume the two-center contributions to be short ranged.
However, the repulsion energy does not decay to 0 for long interatomic
distances. Instead, it decays to a constant value given by the atomic
contributions:

R}jm Erep Po Z Erep (8)

Thus, N Erep[pg] = 0 is assumed in order to make E,, dependent only on
two-center contributions:

1 ,
Erep [IOO] ~ E Z u[pga Pg] (9)
o,

Although it would be possible to calculate E.ep, for known values of pf, it is
more convenient to adjust E..p, to ab initio reference calculations. This is in
particular motivated by the imbalance in the terms of Eq. (5), where the
electron—electron repulsion is approximated and large in magnitude, and is
to be compensated by the exact nucleus—nucleus repulsion energy. Thus,
E.p is fitted to the difference between the DFT energy and Epng, as a
function of the interatomic distance R, ; using a suitable reference structure,
that is,

Erep [PO] = Erep (Raﬂ) = {Eprr(Rap) — Ebnd (Raﬁ)}‘ref. struct. - (10)

In DFTB, the KS orbitals are represented by a linear combination of atomic
orbitals (LCAO) centered on the nuclei. Denoting the basis functions by ¢,
and the expansion coefficients by C;,, one can write the KS orbitals in the
form

N —
- Zciu¢u(7 _Ra)' (11)

From this LCAO model, one obtains the secular problem

Zc( 0 —&iS )_0 Vi, v, (12)

where the elements H?“, of the Hamiltonian matrix and S, of the overlap
matrix are defined as follows:
6,);

HY, = (o,|H’
S = (94|80 );

Yu € a,v € f. (13)
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The second term of Eq. (3) can be transformed, with Eq. (11), into

N
Zni<¢i 1/)i> = Zznicmcw<¢#

1 i

~0 1
H — EVZ + vks[po)

¢V>:tr<P~H0>; (14)

in which the elements of the density matrix P are defined as
le = ZniCmCiv. (15)
i

In 1998, Elstner and coworkers [51] presented an approach to derive the DFTB
equations through a second-order expansion of the DFT total energy with
respect to the electron density. As a result, the Hamiltonian matrix elements
are calculated as density superpositions, according to the following equation:

Hgv = <¢#

This approach is extensively used for SCC-DFTB. It is, however, also
possible to superpose atomic potentials in the Hamiltonian elements, fol-
lowing closer the original tight-binding concept. For more details, the inter-
ested reader is referred to reference [49].

The ¢, basis functions and the reference atom-like densities pf are
obtained by solving the Schrédinger equation

1
- §V2 +vks[f + o]

<b,,>, pe{at,ve{f} (16)

2
- %VZ + vs[pp] + (%) ]%(7) =e,0,(7), (17)

for the free atom within a self-consistent DFT method. The contraction potential
(r/10)* in Eq. (17) confines the atomic orbitals and hence their densities, and
results in better basis sets for the study of condensed-phase systems and free
molecules as well. The value for the parameter 7, is normally chosen as
approximately 27.,y, with 7., being the atomic covalent radius [52]. In some
cases, .oy has been treated as parameter to improve the accuracy of the method.

In practice, the Hamiltonian matrix elements are calculated as follows:
For the diagonal elements, the energy level of the free atom is chosen, which
ensures correct dissociation limits. Because of the orthogonality of the basis
functions, the off-diagonal elements of the intra-atomic blocks are 0. The
interatomic blocks are computed as given in Eq. (16), depending on the
choice of potential generation. Within the density superposition approach,
the Hamiltonian matrix elements unfold as follows:

free atom _
€ ) /’I’ =V Y

I
Hg,, = <¢#’T+UK5[p8 +p‘g} gzﬁl,>, e {a},ve{l},a#p, (18)

0, otherwise.




Molecular Dynamics of Polypeptides 151

It should be noted that the Hamiltonian elements Hgy depend only on atoms
a and [ and, therefore, only the two-center matrix elements are explicitly
calculated, as well as two-center elements of the overlap matrix. According
to Eq. (18), the free atom eigenvalues form the diagonal of the Hamiltonian
matrix, which assure the correct limit for free atoms.

By using ¢, and p§, the Hamiltonian and overlap matrix elements can be
calculated and tabulated as a function of the distance between atomic pairs.
Thus, it is not necessary to recalculate any integrals during, for example, a
geometry optimization or molecular dynamics simulation.

2.2. Self-consistent charge—density functional tight-binding

It is well known that the accuracy of the DFTB method decreases when the
chemical bonds in the system are controlled by a more delicate charge balance
between atoms, especially in the case of heteronuclear molecules and polar
semiconductors [51]. It is, therefore, natural to correct the electronic density
through inclusion of the second-order contributions E,ng of Eq. (3), which are
neglected in DFTB. The SCC-DFTB is an extension of DFTB that improves the
description of electronic systems and the transferability of DFIB in the cases
where long-range Coulomb interactions are significant.

In order to include the density fluctuations in a simple, yet efficient, way
according to a tight-binding approach, ép is written as the superposition of
atom-like contributions ép,, which fast decays along the distance from the
corresponding atomic center,

N
5p="_6p,, (19)

where the atom-like contributions can be simplified with the monopole
approximation:
6/0a ~ q(thOY00~ (20)

Here gq,, is the Mulliken charge, the difference between the atomic Mulliken
population p,[53] and the number of valence electrons of the neutral free atom
P2 (9o = pa — PL); Fy, denotes the normalized radial dependence of the density
fluctuation in atom «, approximated to spherical by the angular function Y.
In other words, the effects of charge transfer are included, but changes in the
shape of the electronic density are neglected. Equation (6) then becomes

EXC
EanN 22"]&‘13// |T — 6p(5 ;

Yap

F§ En Y2, drd7, (1)

0

in which the notation 7,5 was introduced merely for convenience.
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In order to solve Eq. (21), 7,5 must be analyzed. In the limit case where

the interatomic separation is very large (|R,—R;| = | 7—r" | = o0), one
finds, by GGA-DFT, that the exchange-correlation term goes to 0 and 7,z
describes the interaction of two normalized spherical electronic densities,

basically reducing to 1/|R, — R;], thus,

N
Eznd Z q“q‘l’{ : (22)
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In, the opposite case, for which the interatomic distance tends to 0
(|Ra —Rﬁ| = |r —7 | = 0), 743 describes the electron—electron interaction
within the atom « and can be related with the chemical hardness 7, [54],
or Hubbard parameter v,, = 27, = U,. Within the monopole approxima-
tion, U, can be calculated—using a DFT procedure—as the second deriva-
tive of the total atomic energy of atom o with respect to its atomic
population:

182E[ o)
2 9p?

2na S = % Und, (23)
In order to obtain a well-defined and useful expression for systems in all
scales, and still keep