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PREFACE

The last decade has seen an enormous increase in the use of QM/MM
methods and the trend for the coming years is certainly to have an even
larger increase. QM/MM is now the general name given for methods that
combine quantum mechanics and molecular mechanics. Originally devised
for dealing with the complex problem of proteins and enzymes, it is now
used in a wide variety of physicochemical problems. For the study of a
chemical reaction in an active site of an enzyme, it is conceivable that the
amino acids located far from the active site will have considerable less
importance. But QM/MM methods are also very important in the study of
the spectroscopy of liquid systems. QM is needed to study the quantization
of the energy levels and MM can be used to generate the liquid structure at
nonzero temperatures. QM/MM methods have seen an extraordinary
development allowing quantum chemistry to enter real everyday activity
in most laboratories in chemistry and biochemistry. The necessity for a QM
treatment (needed in spectroscopy and reactions, for instance) together with
the difficulties of treating the entire system by QM imposes some compro-
mising. This compromising comes by adding classical mechanics in a
partition of the system. It is used in biomolecular structure and reactivity
and in studying solvent effects. It is also considered in excited state
dynamics, where the fate of the excitation energy depends on the environ-
ment around the chromophore. The development of QM/MM methods is a
very active research area with different nuances. This gave the idea of
editing a special issue of the Advances in Quantum Chemistry dedicated
to the subject. This issue focuses on some of the recent progresses in
QM/MM methods. Some leading research groups around the world have
joined this project to give a review of their contribution to the field, includ-
ing applications. In total, this issue is composed of 10 different chapters.
The first chapter, by Tu and Laaksonen, shows the partition of the system
into QM and MM parts; discusses the boundary and the coupling of these
two parts. Computational aspects are then considered. In Chapter 2,
Barone, Biczysko, and Brancato extend the range of computational spectro-
scopy by using QM/MM approaches using both time-dependent and time-
independent routes. Applications in this case consider electronic spectra
and magnetic properties and vibrational dynamics beyond the harmonic
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approximation. An important computational strategy for dealing with the
large number of explicit solvent molecules and a multitude of configura-
tions is the use of a mean field approximation. This has been successfully
conducted by Aguilar and coworkers who replaced the configuration aver-
age of a given property by an average solvent perturbation. This is the
subject treated in Chapter 3 where special attention is devoted to a combi-
nation of the mean field approximation with molecular dynamics. One of
the most important aspects of the solvent interaction with a reference solute
molecule is the understanding of the role played by the hydrogen bonds
formed between the solute and the solvent and among the solvent. This
specific interaction is at the heart of the proper existence of liquid water in
room conditions. Attention to this is devoted byMata and Cabral in Chapter 4,
where the combined and sequential use of MM and QM is used to unravel the
electronic properties of hydrogen bonded liquid systems, including water and
ammonia. Further, water is responsible for easing chemical reactions that are
important in biochemical and environmental processes. Water is in very
important in host–guest chemistry and as such there is an increasing need
for understanding the properties of the inclusion compounds. In Chapter 5
Lima, Heine, and Duarte present, discuss, and explore the simulation of
polypeptide and their inclusion compounds with b-cyclodextrin. The theore-
tical tool used in this endeavor is the recent and successful dispersion-
corrected–self-consistent charge–density functional tight binding model. Of
course, biomolecular processes and properties are natural candidates for the
application of the QM/MM methodology. Thus in Chapter 6, Groenhof,
Boggio-Pasqua, Schäfer, and Robb discuss the computer simulation of the
effect of the protein environment on photobiological processes. The theoretical
concepts of photochemical reactions together with a practical simulation
scheme for photochemical reactions in biomolecular systems are reviewed.
This provides not only experimentally accessible information but also quan-
tities that are more difficult to measure. Applications include photoactive
yellow protein and reversible switchable fluorescent proteins. Molecular
dynamics based on first-principle methods would be the ideal choice if it
were not computationally very demanding for liquid systems of chemical
interest. QM/MM methods are alternatives to a full QM dynamics. But
simplified and efficient ab initio dynamics can still be performed for systems
of interest. In this direction an ab initio quantum mechanics charge field
molecular dynamics has been developed by Rode and collaborators. In Chap-
ter 7 Hofer, Pribil, Randolf, and Rode present this methodology that over-
comes the necessity of solute–solvent potentials. Comparison with other
molecular dynamics simulation approaches are made and applications are
shown for difficult cases of anions and cations in solution. Chapter 8 by
Pierdominici-Sottile, Alberti, and Palma is dedicated to one very important
aspect of chemical reaction that is the nuclear quantum effects. They discuss
and use mixed-quantum/classical trajectories to study the effects of the
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nuclear quantum effects in chemical reactions and vibrational relaxation
processes. Hence they study proton transfer in gas and condensed phases
and vibrational relaxation processes. In chemical reactions in solution the
essential quantity is the variation of the free energy along the process. A
recent theory has been developed by the Osaka and Kyoto groups, where
they use an energy representation for the hybrid QM/MM method. In this,
the distribution function of the solute–solvent interaction is a fundamental
quantity to obtain the solvation free energy. This is described in Chapter 9 by
Takahashi, Matubayasi, and Nakano where they review this QM/MM-ER
and describe important applications making also comparison with more
traditional procedures. Interesting, they also introduce a novel implementa-
tion for redox reactions in biological molecules. Chapter 10 closes this issue
with a review by Zhang, Lev, Cuervo, Noskov, and Salahub, that is also some
guide to QM/MM methods. Essential and basic concepts with the related
techniques are introduced, applications are discussed, and some possible
answers to the utilization of QM/MM techniques in different studies taking
place in condensed phase are provided.

Altogether this issue involves some of the recent progresses including
different and complementary aspects of the QM/MM methodology for
different applications in biochemistry and in solution chemistry.

I take this opportunity to thank the editors of the Advances in Quantum
Chemistry for support and for the invitation to carry on this project. I
specially thank all contributors for accepting my invitation. It is my hope
that this issue will be useful to both the beginners and the experienced
scientists, and thus contribute and stimulate further developments in this
exciting and fast expanding research topic.

Sylvio Canuto
Sa~o Paulo, Brazil
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Área de Quı́mica Fı́sica, Universidad de Extremadura, Avda. de Elvas s/n,
06071 Badajoz, Spain

Ricardo A. Mata (99)
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Örebro University, 701 82 Örebro, Sweden. E-mail: yaoquan.tu@oru.se

Rui Zhang (353)
Department of Chemistry; Institute for BioComplexity and Informatics—
University of Calgary, Calgary, Alberta, Canada

xvi Contributors



CHAPTER 1
Implementing Quantum
Mechanics into Molecular
Mechanics—Combined QM/MM
Modeling Methods

Yaoquan Tua and Aatto Laaksonenb
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1. INTRODUCTION

Quantum chemistry is a very powerful tool to study the properties of molecules
and their reactions. The recent years’ development in quantum chemistrymeth-
ods, especially that of density functional theory (DFT) methods [1], has made it
possible for quantum chemistry calculations to reach accuracies comparable to
those obtained in experiments for molecules of moderate sizes. The rapid

a Biophysical and Theoretical Chemistry, School of Science and Technology, Örebro University, 701 82 Örebro,
Sweden

bDivision of Physical Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
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development of computer technologies has greatly encouraged chemists to use
quantumchemistry tounderstand,model, andpredictmolecular properties and
their reactions, properties of nanometer materials, and reactions and processes
taking place in biological systems [2�4].

To develop quantum chemistry methods, capable of treating large or
complicated systems, has been one of the important subjects in quantum
chemistry. In the early days, quantum chemists developed mostly semi-
empirical molecular orbital methods for the study of large systems [5�7].
These methods often involve many empirical parameters that are opti-
mized by reproducing the properties of some reference molecules.
Usually, the parameters are accurate for the systems they are parameter-
ized for. For many properties, such as the relative energies of different
conformations of a large molecule, the bonding energy, and structure of a
hydrogen-bonded system, the results from semiempirical calculations are
not reliable. This limits their applications to large systems, especially
those where hydrogen bonds are important. In recent years, many first-
principles quantum chemistry methods aimed for large molecular systems
have been introduced [8�11].

For large systems, pure ab initio calculations are still very expensive. In
many practical applications, we are only interested in the properties of a few
molecules of a system or part of a large molecule. Many calculations are
therefore only limited to these molecules or part of a large molecule. These
studies can provide us with very useful information, but there are often
cases where the effects from the surrounding molecules or the remaining
part of a large molecule cannot be neglected. Typical examples involve the
properties of a solute molecule in a solvent. If we use quantum chemistry to
calculate the properties of the solute molecule and neglect the effects from
the solvent molecules, the properties obtained correspond only to those of
the isolated solute molecule. Another example is the enzymatic reactions
occurring in biological systems. Usually, the active center of an enzyme
consists typically of about 100 atoms or more, which already reaches the
computational limit of many high-level quantum chemistry methods. Using
a smaller cluster to represent an active center and studying it carefully with
high-level quantum chemistry methods is the standard way usually carried
out. However, such an approach may not be adequate since the surrounding
atoms could obviously affect the barriers obtained [12,13]. Usually, the
surrounding atoms can often stabilize the reactants and products and
lower the barrier of a reaction. Without the surrounding atoms, the barrier
calculated according to a smaller cluster becomes often overestimated.

In conventional quantum chemistry calculations, the effects from the
surrounding atoms of a molecule or cluster are often recovered by using
the polarizable continuum model (PCM) [14] in which the surrounding
atoms are represented by a dielectric continuum with dielectric constant ".
In PCM, the microscopic structure of the surrounding atoms of a molecule is

2 Y. Tu and A. Laaksonen



not considered, thus it is not adequate in cases where the structure of the
surrounding atoms is important.

Combined quantum mechanical and molecular mechanical (QM/MM)
methods, pioneered by Warshel and Levitt [15], can be considered as a
compromise between the full QM calculation of a system and the QM
treatment of part of the system with the surroundings being modeled by
the PCM. In combined QM/MM methods [15�17], the surroundings of a
molecule or cluster are explicitly represented as atoms, but their effects are
modeled by an MM force field. Because all the atoms are explicitly repre-
sented and the interactions between the atoms are considered, the results
obtained from a combined QM/MM calculation could be more accurate
than those from a QM calculation with the PCM. Compared with the full
QM treatment of a system, a combined QM/MM calculation is much faster
since only a small part of the system is treated quantum mechanically.
Therefore, combined QM/MM methods have the potentials of studying
the properties and processes happening at the electronic scale in very
large systems.

In the last decade, much effort has been made in developing reliable and
accurate combined QM/MM methods, especially in the treatment of the
boundary and interactions between the QM and MM parts [18�33]. There are
increasing publications each year in applying the QM/MMmethods to larger
andmore complicated systems. The purpose of this chapter is to introduce the
reader to the area of combined QM/MM methods. We will not, however,
consider different applications, but rather consider methodological aspects in
the area,with the focus on theprogressmade in the last decade in the treatment
of the QM/MM boundary and the QM/MM coupling.

2. PARTITION OF A SYSTEM INTO QM AND MM PARTS

In a combined QM/MMmethod, the system to be studied is partitioned into
two parts; a QM part and an MM part (see Figure 1.1) [17]. The QM part has
small number of atoms. It may be a molecule (such as a solute molecule in a
solution) or several molecules, a fragment (or part) of a large molecule or a
molecular complex (such as the active center of an enzymatic catalyzed
reaction). The QM part corresponds to what we need to study in detail.
Atoms in this part are explicitly expressed as electrons and nuclei and are
described quantum mechanically. When a combined QM/MM method is
used to study a system involving charge transfer, electron excitations, or
chemical reactions, the corresponding region is always treated quantum
mechanically. That is, the region is always included in the QM part.

The MM part is the “environment” to the QM part. Usually, it has much
larger number of atoms than the QM part. This part is most often
“nonreactive” and is treated by using a classical MM force field.

Implementing Quantum Mechanics into Molecular Mechanics 3



“Nonreactive” also means that there is no charge transfer or other
“chemical” exchange between the QM and MM parts.

For a large molecule, it becomes necessary to divide it into a QM part
and an MM part. This division is often quite natural, especially for a large
biomolecule where the main interest may be in the active site or a reaction
center. In such a case, there are chemical bonds connecting the QM and the
MM parts. Because the MM part is treated by a classical force field, the
properties and electron densities of the QM atoms bonded to the MM atoms
may change drastically. Therefore, the intermediate region between the two
parts should be treated so that the effects from partitioning the QM and the
MM parts across the bonds on the QM atoms are minimized. In practice,
well-localized single bonds are terminated and the valences are satisfied on
the QM atoms. The reason to choose well-localized single bonds is to make
the theoretical treatment easier. Saturation of the valences on the QM atoms
is done to keep the chemical properties of these atoms unchanged.

The choice of the QM/MM boundary can affect greatly the accuracy of a
combined QM/MM calculation, such as the charge distribution of the QM
part and the overall energy of the system, especially when the QM/MM
boundary is within a molecule. It has been found that MM atoms with large
magnitudes of charges close to the QM/MM boundary can lead to signifi-
cant errors in energy [34]. Therefore, care must be taken when choosing a
QM/MM boundary.

3. TREATMENT OF THE QM/MM BOUNDARY

There are several ways to treat the QM/MMboundary when a large molecule
is divided into a QM part and an MM part [20�33]. Among the widely used
ways are those using a hybrid orbital or a link atom to satisfy the valence

QM

MM

Figure 1.1 The combined QM/MM model.
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of the QM atom on a QM/MM bond. In the early work of Warshel and
Levitt [15], one single hybrid atomic orbital was placed on each MM atom,
originally connected to a QM atom. These hybrid atomic orbitals are then
involved in the calculation of the QM part to satisfy the valences. Rivail and
coworkers [20,35�37] also used hybrid atomic orbitals in their localized self-
consistent field (LSCF) method to treat the QM part. They assumed that the
bond connecting a QM atom and an MM atom could be described by a
“strictly localized bond orbital (SLBO),” considered to be one of the mole-
cular orbitals of the QM part. However, the orbital is assumed to be “frozen”
and therefore is not involved in the QM calculation. This is implemented by
letting all the molecular orbitals (MOs), appearing in the QM calculation, to
be orthogonal to the SLBO. The SLBOs are obtained by separate QM calcu-
lations of some small model molecules. They used the semiempirical neglect
of the diatomic differential overlap (NDDO) QM method. Therefore, the
orthogonalization can be easily implemented by using the hybrid atomic
orbitals of the corresponding QM atom as a basis set and letting them to be
orthogonal to the hybrid atomic orbital participating in the SLBO. The LSCF
method has later been generalized to ab initio Hartree�Fock (HF), post HF,
and DFT [36,37].

An approach similar to the LSCF method is the generalized hybrid
orbital (GHO) method [21,38�40]. In this approach, a set of four atomic
orbitals is assigned to each boundary MM atom (denoted by B), which
was originally connected to a QM atom. The MM boundary atom B is
usually chosen to be an SP3 carbon. The hybrid orbitals on atom B are
obtained by the local geometry of four atoms, the atom B and the other
three MM atoms bonded to it. Among the four hybrid orbitals on the MM
atom B, the orbital pointing to the boundary QM atom is called active orbital
and is optimized through being involved in the self-consistent-field (SCF)
procedure of the QM part. The other three orbitals do not participate in the
SCF optimization procedure, but their effects are involved in the calculation
of the effective Hamiltonian matrix. The GHO method was first incorpo-
rated into the QM calculations in the semiempirical NDDO method [21,38]
and is later incorporated into those at the ab initio HF and DFT levels
[39,40].

The hybrid orbital scheme can be improved by incorporating point
charges distributed at the middle point of a QM/MM bond and at the QM
and MM atoms on the bond. Through extensive optimization of the para-
meters used, such as the quantities of the point charges, accurate results,
such as deprotonation energies and relative conformational energies, are
obtained [41].

In the combined QM/MM calculations of large molecules, perhaps the
most widely used approach is to use the so-called “link” or “dummy”
atoms to satisfy the valences of the QM atoms binding to the MM atoms,
as originally proposed in Refs. [16,17]. The most commonly used link atom
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is hydrogen, but in some other implementations, other types of atoms,
such as halogen atoms are also used [42]. The use of halogen atoms as link
atoms is in fact to mimic the methyl groups conventionally used in termi-
nating the QM/MM bonds. The link atoms have the following character-
istics: (i) A link atom is placed in the direction of the QM/MM bond and
replaces the corresponding MM atom in the QM calculation. Link atoms
are explicitly represented by electrons and nuclei. That is, they are exactly
treated quantum mechanically. (ii) Link atoms are “invisible” to the MM
atoms. In other words, there is no interaction between the link atoms and
MM atoms. The interactions within the MM part are treated as if there
were no link atoms. In ideal cases, link atoms and other MM atoms should
simulate the effects of the fragments that are removed from the QM
treatment.

The link atom scheme can be improved in several aspects. One of the
improvements is to optimize the position of the link atom placed along a
QM/MM bond. For example, through an appropriate choice of the
position of the hydrogen link-atom along a specific QM/MM bond and
using a Gaussian distributed charge, in instead of a point charge, to
represent the corresponding MM atom in the QM calculation, results of
comparable accuracy to other methods are obtained [28]. Using a
one-free-valence atom with an effective core potential (ECP) can also
improve the link atom scheme. For example, in the work of Zhang et al.
[22], each boundary MM C atom is represented by a pseudo-atom F but
with an optimized ECP. The pseudo-atom F can form a pseudo bond
with the boundary QM C atom. The ECP is parameterized to mimic the
normal C�C bond energetics. Compared with a normal C atom, the
pseudo-atom F has three extra valence electrons which are used to
satisfy the open valences. The ECP scheme has later been further
extended. DiLabio et al. [26] used a one-electron effective potential for
C to represent the boundary MM C atom used in the QM calculation.
The boundary MM C atom has only one valence electron and the
QM calculation time can be saved. Slavı́ček and Martı́nez [32] intro-
duced multicentered valence electron effective potentials (MC-VEEPs)
to represent the MM functional groups in a QM/MM boundary. The
MC-VEEPs are parameterized by demanding that both occupied
and virtual orbitals are described correctly, leading to the combined
QM/MM calculations to be able to describe correctly the excitations in
the QM regions.

The major effect from the treatment of a QM/MM boundary is on the
electronic structure of the QM part. The aim of using hybrid orbitals or link
atoms is to satisfy the valences on the QM atoms on the QM/MM bonds.
From this point of view, hybrid orbitals would be physically more appro-
priate because a QM/MM bond was originally formed by hybrid orbitals.
For example, a saturate C�C bond is known to be formed by two SP3 hybrid
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orbitals, with one on each carbon atom. Indeed, through extensive optimi-
zation of the parameters involved in the hybrid orbital approaches, good
results from the combined QM/MM calculations, as those from the purely
QM calculations, are obtained. However, hybrid orbital approaches are not
easy to implement in many practical applications, especially for many
widely used quantum chemistry calculation packages, as some additional
coding to the programs is required.

Using link atoms to satisfy the valences on the QM atoms at a QM/MM
boundary is easier to implement in many practical calculations as link atoms
are often normal hydrogen or halogen atoms so that coding a QM program
is not required. It’s difficult for link atoms to provide the same hybrid
orbitals as those on the boundary MM atoms. Link atoms can also result
in some additional undesirable energy that may affect the accurate descrip-
tion of a potential energy surface. However, the link atom scheme can be
improved by various optimizations of parameters. The above-mentioned
approaches, such as using pseudo-atom F with an optimized ECP and
optimizing the position of the link atom along a QM/MM bond, are just
two examples. The flexibility of the link atom scheme also makes it easy to
use extended basis sets. After extensive optimization of the parameters
involved, results of comparable good accuracy from both schemes can be
obtained.

4. INTERACTIONS IN THE QM/MM COUPLING

In the combined QM/MM methods, the total energy of a system can be
expressed as follows:

Etotal ¼ EQM þ EMM þ EQM=MM; ð1Þ

where EQM represents the QM energy of the QM part, EMM is the energy of
the MM part calculated by an MM force field, and EQM/MM is the interaction
between the QM and MM parts. EQM/MM usually consists of three types of
interactions: electrostatic interaction EES(QM/MM), van der Waals interac-
tion EvdW(QM/MM), and the MM-bonded interaction Ebonded(QM/MM).
Therefore, we can express EQM/MM as follows:

EQM=MM ¼ EESðQM=MMÞ þ EvdWðQM=MMÞ þ EbondedðQM=MMÞ; ð2Þ

where the term Ebonded(QM/MM) is calculated only when there are chemi-
cal bonds between the QM and MM parts. It involves the conventional
bonded terms, such as bond stretching, angle bending, and rotational
motion terms, with at least one atom from the QM part and at least one
atom from the MM part. Ebonded(QM/MM) is calculated with the same force
field as for EMM.
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In combined QM/MM calculations, the QM calculations are often not
carried out for the energy of the QM part, EQM, but are performed for the
sum of EQM and EES(QM/MM), that is,

EQM þ EESðQM=MMÞ ¼ �
CjĤeffjC

�
: ð3Þ

The effective Hamiltonian Ĥeff in the above equation can be expressed as

Ĥeff ¼ ĤQM þ ĤESðQM=MMÞ; ð4Þ
where ĤQM is the Hamiltonian for the QM part and ĤESðQM=MMÞ is the
Hamiltonian representing the interactions of electrons and nuclei in the QM
part with the point charges of MM parts.

When there are chemical bonds between the QM and MM parts, the
effective Hamiltonian ĤQM is different from that for the isolated QM part
since the Hamiltonian should also involve those terms used for treating the
QM/MM boundary, such as those using a hybrid orbital or a link atom to
satisfy the valence of the QM atom on a QM/MM bond. This makes the QM
energy different from that for the isolated system where the QM/MM
boundary is not treated. The treatment of a QM/MM boundary will also
affect the electrostatic interaction between the QM and MM parts because
the hybrid orbitals or link atoms introduced to satisfy the valences of the
QM atoms at the QM/MM boundary can interact with the charges in the
MM part during the QM calculation. However, this undesirable effect of
hybrid orbitals or link atoms on the QM/MM electrostatic interaction is
usually rather small.

The QM/MM coupling can influence the properties from QM/MM
calculations, especially the interaction energies between the QM and MM
parts. The coupling is important when properties related to the energy, such
as free energies, are studied. Thus care must be taken in considering the
QM/MM coupling. In QM/MM calculations, there are two types of inter-
actions between the QM and MM parts. One type is the van der Waals
interaction that represents the dispersion interactions and the other is the
short-range repulsive interactions between the QM and MM atoms. It is
often expressed as the Lennard-Jones potential with

EvdWðQM=MMÞ ¼
X
i2QM

X
j2MM

4"ij
�ij

Rij

� �12

� �ij

Rij

� �6
" #

; ð5Þ

where Rij is the distance between a QM atom i and an MM atom j . "ij and �ij
are the standard Lennard-Jones parameters. Usually, the Lennard-Jones
parameters are taken directly from a force field. When a QM/MM method
is used to study a reaction in the QM region, the Lennard-Jones parameters
used to represent the van der Waals interaction between the QM atoms and
the MM atoms may change significantly and the Lennard-Jones parameters
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on the QM atoms are thus not clearly defined. It has also been found [43]
that through the MD simulations of liquid water, where only one water
molecule in the simulation box is treated quantum mechanically and the
remaining water molecules are represented by the TIP3P force field model,
the Lennard-Jones parameters can greatly affect the water structure and the
potential energy. In principle, the effects of the Lennard-Jones parameters
on the QM part can be diminished by just increasing the size of the QM part
as the van der Waals interaction is of short range.

Another type of interaction in the QM/MM coupling is the electro-
static interaction, ĤESðQM=MMÞ, between the QM and MM atoms. This
interaction originates from the interaction of the electrons and nuclei in
the QM part with the point charges in the MM part and is involved in
the SCF calculations of the QM part. Thus, MM charges can also affect
directly the charge distribution in the QM part. In many QM/MM
calculations, the MM charges are taken directly from an MM force
field. Such charges are used in a force field to model the nonbonded
Coulomb interaction between the MM atoms and are often optimized for
simulations in condensed phases. Electrostatic interaction can affect
greatly the QM/MM coupling. Whether such type of MM charges can
be used directly in a combined QM/MM calculation is still not clear. It
has been found that in combined QM/MM calculations of large mole-
cules, the MM charges should be different from those from a force field
as the MM charges from a force field also involve the polarization
effects of the surroundings on the molecule [34]. In combined HF QM/
MM simulations of water at ambient and supercritical conditions, it is
also found that scaling down the MM charges can give reasonably good
results [44]. This means that it may not be a good idea to use directly
the MM charges from a force field in a combined QM/MM calculation.
In fact, the QM/MM electrostatic interactions can also depend on
the QM method used in the QM/MM calculations. For example, the
HF/6-31G� calculations can often give larger dipole moments for
small organic molecules. Thus, it can be expected that in a combined
HF/6-31G� QM/MM calculation, the electrostatic interaction between
the QM/MM coupling is overestimated.

A natural improvement on the QM/MM electrostatic coupling is to
involve the polarization effects from the QM part to the MM part as well.
A simple way can be found in the work by Singh and Kollman [16]. In their
scheme, the coupling Hamiltonian between the QM part and the MM part
remains the same as that used in the usual QM/MM calculations, whereas
the polarization effects of the MM atoms by the QM atoms act only as a
“compensation” to the total energy of the system and is obtained after the
convergence of the QM calculation. This simple implementation improves
the interaction energy between the two parts. However, because this energy
is calculated classically, the electronic structure of the QM part has still not
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been improved. Some studies have shown that this type of “environmental
polarization” may have significant effects on the electronic spectra of the
QM part [45].

The effects of the MM polarization to the QM part were already included
in the work by Warshel and Levitt [15]. Later, Luzhkov and Warshel [46,47]
refined the model for both the ground and excited states. A detailed descrip-
tion of possible polarization schemes is given by Thompson et al. [48,49].
Since the charge distribution of the QM part can be polarized by the
potential from the point charges and the induced dipole moments in the
MM part and it can in turn polarize the MM part, the induced dipole
moments in the MM part are calculated iteratively. Warshel and coworkers
[15,47] introduced a simplified approach to calculate the induced dipole
moments, where the iteration could be avoided.

Fluctuating charge (FC) model [50] provides an alternative way to treat
the polarization problem. In the FC model, the central concept is the atomic
charges. These charges can fluctuate with the environment to satisfy the
principle of “electronegativity equalization.” Therefore, the charge distribu-
tion also reflects the polarization of the environment to that atom and it is a
natural concept to introduce the FC model into the combined QM/MM
calculation.

5. COMPUTATIONAL ASPECTS

Recall that in the combined QM/MM methods, the QM calculations
are performed according to the following Hamiltonian,

Ĥeff ¼ ĤQM þ ĤESðQM=MMÞ: ð4Þ
Because Ĥeff involves the interactions of the electrons in the QM part

with the point charges in the MM part, some additional integral calculations
are needed. Usually, these integrals correspond to those of QM calculations
of a molecular system in the presence of point charges. They are of the
following form:

I�� ¼
Z

�� � Qm

rim

� �
��d

*ri; ð6Þ

where Qm is the point charge on the MM atom m. *ri is the position
of electron i in the QM region. �� and �� are basis functions. In ab initio
calculations, the basis functions are Gaussian type of functions, whereas in
semiempirical calculations (e.g., MNDO [5], AM1 [6], PM3 [7]), the basis
functions are canonical valence atomic orbitals and are usually represented
by Slater type of functions. The above type of integrals is added to the
one-electron Hamiltonian matrixes during the SCF calculations of the QM
part.
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Under a given Gaussian basis set, the integrals given by Eq. (6) can be
calculated accurately. There exist very efficient ways to calculate the inte-
grals by using the recurrence relationship [51]. This is the case in many
ab initio programs. Most ab initio programs (such as GAUSSIAN03 [52] and
GAMESS [53]) involve the calculations of such type of integrals. Semiempi-
rical MO methods (such as MNDO, AM1, and PM3) use the “frozen core”
approximation and all the integrals (except for the overlap integrals) related
to the valence electrons are calculated approximately. Therefore, the cou-
pling Hamiltonian ĤESðQM=MMÞ should be reformulated to conform to the
“frozen core” approximation in the semiempirical QM calculations and the
additional integrals [Eq. (6)] are also calculated approximately. For details,
the reader may consult the papers [17,47,54].

To make practical use of the models discussed above may seem fairly
complicated, requiring some knowledge in coding both quantum chemical
software and MM software. Most molecular dynamics (MD) simulation
programs use MM force fields to describe the interactions between the
atoms, the easiest way to implement a combined QM/MM calculation is
therefore to couple together an existing MD simulation code with a standard
quantum chemistry program including the force calculation on the QM
atoms and electric field calculation on the MM charge sites. The combined
QM/MM calculations can be implemented by using a link program to
combine a QM calculation program with an MD program with MM force
field calculations. The link program is the interface between the QM calcu-
lation and the MM calculation. It takes care of the data transfer between the
QM and the MM programs. The QM program calculates the properties
related to the QM part. Sometimes, if a special treatment of a QM/MM
boundary is required, most probably one has to modify the relevant quan-
tum chemistry code. When a combined QM/MM calculation is required in
an MD simulation, the MM program usually conducts the MD simulation
as well.

As far as the QM programs are concerned, they can be divided into
two types according to the level of approximation they use: there are ab
initio packages, such as GAUSSIAN03 [52] and GAMESS [53]; DFT
programs, such as deMon [55]; and at least about 20 other packages; there
are also semiempirical calculation packages, such as AMPAC [56] and
MOPAC [57].

There are several MM force fields available, such as OPLS [58],
CHARMM [59], AMBER [60], GROMOS [61], MMFF [62], and CVFF [63],
to mention a few. Most of them have been combined with the QM calcula-
tion programs and used in the combined QM/MM MD simulations. In our
own work, we have combined either GAUSSIAN94 [52] or GAMESS [53]
with our own simulation software which is the modified version of
McMOLDYN package [64] to study solvation phenomena and radical
systems [43,44,65,66].
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There are also some special programs that are optimized for the QM/
MM calculations [41,67]. In these programs, the QM/MM boundaries are
usually treated more elegantly, with the parameters optimized according to
small model molecules. Therefore, the QM/MM calculation results obtained
from such programs are often more accurate. Also, these programs are often
easy to use for the combined QM/MM calculations.

6. FUTURE PROSPECTS

In this chapter, we give a general outline of the combined QM/MMmethods.
Comparing with the full QM calculations of a system, combined QM/MM
calculations are much faster because only limited number of atoms are treated
quantum mechanically. Therefore, they can be used to study very large
systems where limited QM calculations are required. This would greatly
extend the application area of quantum chemistry. When combined with
MD simulation techniques, combined QM/MM calculations can also be
used to study the properties of condensed phases under certain temperatures
and pressures. We believe that the methods will increasingly gain popularity
in the future as feasible, good compromises to carry out QM calculations for
systems where electron excitations, charge transfers, and chemical reactions
take place. The applications may be found in the following fields:

(1) Solvent effects: This area covers the properties of solutes or chemical
reactions in a solution and is particularly suitable to be studied using the
combinedQM/MMmethods incorporatedwithMDsimulation techniques.

(2) Reactions in biosystems: This area includes, for example, enzyme-
catalyzed reactions and proton and electron transfer processes. The
active center of such a reaction usually involves more than 100 atoms
and the surroundings are important in determining the reaction
barriers. Sometimes, even the free energies need to be calculated. In
recent years, there are many combined QM/MM studies in this area.
Combined QM/MM methods in combination with MD simulation
techniques seem to be a very powerful tool.

(3) The properties and reactions related to clusters and nanomaterials:
Theoretical study of these systems usually requires QM calculations,
but the systems are often beyond the limit of full QM calculations. With
combined QM/MM methods, many properties that need QM
calculations can be studied.

As far as the combined QM/MM methods are concerned, the following
aspects need to be considered:

(1) The QM/MM boundary: When a molecule is partitioned into a QM
region and an MM region, the treatment of the QM/MM boundary is of
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great importance. In principle, by increasing the size of the QM region,
the effects from the QM/MM boundary can be reduced. However, this
would greatly increase the computational time because most of the time
in a combined QM/MM calculation is spend on the QM calculations.
In the last decade, one has witnessed many ways to treat the QM/MM
boundaries. But more accurate ways for the treatment of various
QM/MM boundaries are still greatly desirable.

(2) The parameters used in the QM/MM couplings: Currently, the
parameters used in a combined QM/MM calculation are taken
directly from the MM force field used in it. Whether these parameters
are appropriate for use in the combined QM/MM calculations needs to
be investigated. The parameters could influence greatly the interactions
between a QM molecule and MM molecules when a combined
QM/MM calculation is used to study the interactions between the
molecules. Therefore, more accurate ways to treat the QM/MM
coupling or better parameterization are required in order to improve
the interactions between the QM and MM parts.
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J. Chem. Phys. 117 (2002) 10534.
[28] P. Amara, M.J. Field, Theor. Chem. Acc. 109 (2003) 43.
[29] F. Bessac, F. Alary, Y. Carissan, J. Heully, J. Daudey, R. Poteau, J. Mol. Struct. (THEOCHEM)

632 (2003) 43.
[30] K. Yasuda, D. Yamaki, J. Chem. Phys. 121 (2004) 3964.
[31] H. Lin, D.G. Truhlar, J. Phys. Chem. A 109 (2005) 3991.
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1. INTRODUCTION

Nowadays, the characterization of complex biological systems or nanoma-
terials of direct technological interest relies more and more on computa-
tional approaches, for example, for the evaluation and rationalization of
structural, energetic, electronic, and dynamic features [1�4]. On the experi-
mental side accurate information can be gained, in principle, by a number of
spectroscopic techniques, vibrational, magnetic as well as optical. Never-
theless, up to very recently direct comparisons between experimental and
computed spectroscopic data have been rather scarce. Integrated
approaches, capable of accurately simulating spectra, but at the same time
easily accessible to nonspecialists, are highly desirable. Such tools would
allow for the exploitation of the recent and ongoing developments that are
taking place in the field of computational spectroscopy [5�13] resulting in
easy and, ideally, automatic vis-à-vis comparison between experimental
and theoretical results. In the present chapter, we discuss computational
approaches in line with such a demand. In general, the accuracy of a
simulated spectrum depends on the quality and a proper choice of a
computational model: a reliable description of equilibrium structures, vibra-
tional properties, and electronic structure is necessary. In case of macromo-
lecular systems this task is not trivial and in this respect, the quantum
mechanics/molecular mechanics (QM/MM) schemes are particularly well
suited for systems where the most important spectroscopic features have a
local character. In this spirit, it is possible to combine various computational
schemes to create user-defined and/or problem-tailored approaches. This is
particularly straightforward for solute�solvent systems, and a theoretical
approach that seems, at the same time, more reliable from a physical point
of view and computationally very effective consists in using hybrid
QM/MM methods with nonperiodic boundary conditions and localized
basis sets. Additional extension of such schemes toward discrete/
continuum models allows conveniently reduce the number of degrees of
freedom, while keeping all the important interactions with the bulk, mod-
eled as a continuum. Specific intermolecular interactions between the solute
and the solvent (e.g., hydrogen bonds) can be also retained, especially if
they play a crucial role in determining the solute structural, dynamic, or
spectroscopic properties, by including solvent molecules in the explicit
treatment. Further, such conditions avoid the appearance of possible corre-
lation effects [14�22] and other problems with charged systems [23,24] that
may affect molecular calculations and simulations using periodic boundary
conditions (PBCs). Being the quantum region, generally a small portion of
the whole system, it is a natural choice to describe the electronic density in
terms of atomic basis functions. In recent years, our group has developed
several computational strategies aiming at the spectroscopic studies of
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macrosystems as (1) a discrete/continuum approach that can be nicely inte-
grated with the hybrid scheme offered by own N-layered integrated molecular
orbital and molecular mechanics (ONIOM) to perform QM/MM molecular
dynamics (MD) simulations of complex systems in solution and (2) effective
schemes to include vibrational effects within the time-independent framework.

2. THE QM/MM FRAMEWORK FOR SPECTROSCOPIC STUDIES

Hybrid QM/MM methodologies allow to combine two or more computa-
tional methods to effectively treat a complex molecular system with a large
number of atoms (>100). Among others, the ONIOM [25�27] scheme has
shown a great flexibility, as well as numerical stability, with a variety of
quantum mechanical, semiempirical, and molecular mechanics methods,
providing an accurate and well-defined Hamiltonian, energy gradient,
and Hessian matrix. Also, in this framework, a quite general partitioning
scheme can be used, in which the so-called layers, corresponding to parts of
the system treated at the same level of theory, do not have to be inclusive.
Accordingly, various physical and chemical properties can be evaluated,
including those related to the derivative of the energy with respect to the
electric field vector, such as vibrational frequencies and infrared (IR)
intensities. As an example, in a simple two-layer system, where the region
of interest is treated at QM level and the remaining system at MM level,
each energy evaluation requires three different calculations according to the
following expression:

EQM=MM ¼ EQM
model þ EMM

real �EMM
model; ð1Þ

where the real system is the entire molecular system under consideration
and the model is the core region to be modeled at the highest level of theory
(e.g., a solute or part of it) plus the point charges located at the same
positions of the remaining explicit MM atoms (e.g., the set of the partial
atomic charges of a nonpolarizable force field). Such a decomposition, not
derived straightforwardly, provides a well-defined, single-valued, and
differentiable potential well suited to perform QM/MM calculations.

The standard QM/MM scheme briefly sketched above can be directly
applied to spectroscopic studies performed within the time-independent
framework. Such an approach is suitable for large and semirigid molecules,
when nonadiabatic couplings are negligible, harmonic approximation reli-
able, and spectroscopic properties can be evaluated considering only small
conformational region close to the equilibrium. Apart from their effective-
ness, time-independent methods have the remarkable advantage to operate
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directly in the frequency domain, naturally allowing the determination of
stick bands and their assignments.

However, large-amplitude motions and solvent librations cannot be
described by computations based on a harmonic approximation or even
when the perturbative anharmonic corrections are included (vide infra).
Moreover, eigenstate-free time-dependent methods are the main (when
not the only) route to deal with systems affected by significant nonadia-
batic interactions for which eigenstate calculations are unfeasible, as is the
case of conical intersections [28], or for systems propagating on highly
anharmonic potential energy surfaces (PESs) [29,30]. In the former case,
quantum dynamics (QD) treatments are necessary to take into account
nonadiabatic effects. However, when the Born�Oppenheimer approxima-
tion remains valid dynamic effects can be properly described by the
classical MD approaches. Then, appropriately tailored QM/MM schemes
can be effectively explored to perform MD simulations and sample the
general features of the configurational space with one or more trajectories.
In this respect, we have recently developed the general liquid optimized
boundary (GLOB) model [31,32], which can be successfully applied to
perform QM/MM MD simulations of complex molecular systems in
solution. Then, spectroscopic observables may be computed on the fly
or in a second step by averaging over the corresponding estimators and
suitable number of snapshots. In the general case of solute�solvent sys-
tem, it is customary to carry out the same steps also for the molecules in
the gas phase, just to have a comparison term for quantifying solvent
effects. The a posteriori calculation of spectroscopic properties, compared
to other on-the-fly approaches, allows us to exploit different QM/MM
schemes for the MD simulations and the calculation of physical�chemical
properties. In this way, a more accurate treatment for the more demand-
ing molecular parameters, of both first [e.g., hyperfine coupling constants
(hcc’s)] and second (e.g., electronic g-tensor shifts) order, could be
achieved independently of structural sampling methods provided the
accuracy in reproducing reliable structures and statistics is proven for
the latter.

2.1. Time-dependent approaches for QM/MM study of complex
systems in solution: the GLOB model

In the framework of formally monoelectronic QM methods (e.g., Hartree–
Fock or Kohn–Sham models), if EQM/MM(P0, x) is the QM/MM gas-phase
energy of the explicit system expressed as a function of the nuclear
coordinates, x, and the unpolarized (no solvent effects) one-electron density
matrix, P0, then the solvation free energy, DAsol(x), at a specific molecular
configuration can be written in analogy to Ref. [33] as the sum of the internal
energy plus the so-called “mean field” (or potential of mean force)
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contribution that accounts for the interactions with the environment (sol-
vent) minus the gas-phase energy:

DAsolðxÞ ¼ ðEQM=MMðP; xÞ þW ðP; xÞÞ�EQM=MMðP0; xÞ; ð2Þ
where DAsol(x) is the free energy of the system at a given molecular config-
uration and W(P, x) is the mean field term. Note that P is explicitly present in
the first two terms on the r.h.s. to imply that they are mutually polarized, that
is, the mean field response is always considered at equilibrium and the
electronic charge distribution is determined by a self-consistent calculation.
In particular, we have integrated the mean field contributions as a modifica-
tion of the ONIOM [25–27] scheme for the isolated systems as described in
Refs. [31,32]. The mean field, W, is the potential experienced by the explicitly
treated molecules in a given configuration {x} due to the average interactions
with the environment. A number of discrete/continuum models have been
proposed in the literature that differ in the way W is approximated. Here,
according to the Ben–Naim’s definition of the solvation process [34], we can
conveniently assume that the mean field potential is composed of concep-
tually simple terms: a long-range electrostatic contribution due to the linear
response of the polarizable dielectric continuum, and a short-range dispersion–
repulsion contribution, which accounts effectively for the interactions in proxi-
mity of the cavity boundary, W=WelecþWdisp�rep. In the following, we
describe the essential features of the GLOB model (see Figure 2.1), a sophisti-
cated and integrated method that allows to study efficiently solvent effects

Figure 2.1 Graphical representation of a solute–solvent system simulated using the GLOB

model: the explicit system is embedded into a spherical cavity of a dielectric continuum.
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on generic solute molecules. According to the GLOBmodel, the explicit system
is composed of the solute alongwith a few solvent molecules set up at different
levels of theory, from computationally inexpensive, but less accurate, MM
methods to more realistic hybrid QM/MM or full QM methods (see Refs.
[31,33,35] for more details). Then, the explicit system (soluteþ solvent) is
embedded intoa suitable cavityof adielectric continuumpossiblywitha regular
and smooth shape, such as a sphere, an ellipsoid, or a spherocylinder. In
combinationwithMDtechniques, suchacavity couldbekept fixed, correspond-
ing toNVTensemble conditions, or allowed to change volume, according toNpT
ensemble simulations (vide infra).

2.1.1. Electrostatic contributions
The long-range electrostatic interactions between the system and the dielec-
tric continuum are modeled by means of the conductor-like version [36–38] of
the polarizable continuummodel (PCM) [39], which is one of the most refined
boundary element methods successfully used in many applications ranging
from structure and thermodynamics to spectroscopy in both isotropic and
anisotropic environments [39–41]. The continuummedium, whichmimics the
response of liquid bulk, is completely specified by a few parameters, for
example, the dielectric permittivity (�r), and depends on the nature of the
solvent and the physical conditions, such as density and temperature. To be
specific, the reaction field, FRF, that is, the electrostatic potential due to the
induced polarization of the dielectric, is described in terms of apparent sur-
face charges (qasc) centered on small tiles, called tesserae, which are the results
of a finely subdivision of the cavity surface into triangular area elements of
about equal size, and computed by a self-consistent calculation with respect
to the solute electronic density [42]. The computation of qasc requires the
solution of a system of Ntes linear equations, with Ntes the number of tesserae:

D � qasc ¼ �FI; ð3Þ

where qasc is the array of the “apparent surface charges,” FI is the electro-
static potential evaluated at the center of each tessera due to only the charge
distribution of the system, and D is a matrix that depends only on the
surface topology and on the dielectric constant [37,38],

Dii ¼ �

ð�� 1Þ 1:0694
ffiffiffiffiffiffi
4�

ai

s
; ð4Þ

Dij ¼ �

ð�� 1Þ
1

jsi � sjj ; ð5Þ

where si and ai are, respectively, the position vector and the area of the ith
tessera and � is the continuum dielectric constant. Hence, for a given
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molecular configuration of the explicit system, x, the qasc’s are determined
from Eq. (3) and the electrostatic potential, FRF(r), and the corresponding
free energy, Welec, are given by

Welec ¼ � 1

2
FþD� 1F: ð6Þ

Note that, when neglecting any cavity deformations as in the present model,
the energy derivatives with respect to a generic coordinate assume a quite
simple form with respect to the general case [37]. The cavity surface enclos-
ing the molecular system has been partitioned using an improved GEPOL
procedure [43,44], which is well suited for treating cavities of general shape,
and Eq. (3) can be solved by matrix inversion, computing and storing D�1

only once at the beginning of the simulation.

2.1.2. Nonelectrostatic contributions
The dispersion–repulsion contribution, Wdisp�rep, which is related to
short-range solvent (explicit)–solvent (implicit) interactions, has been
introduced to remove any possible source of physical anisotropy in proxi-
mity to the cavity surface, that is, deviation from bulk behavior. According
to several other methodologies [45–52] developed in the framework of QM
continuummodels, we have also treatedWdisp�rep as a classical mean force
potential not perturbing the system electronic density. In particular,
Wdisp�rep is obtained from an effective empirical procedure parametrized
on structural and thermodynamic properties originally presented in Ref.
[33] and further developed in Ref. [32] (see also Refs. [35 and 31] for
applications in the context of MM and QM/MM MD simulations, respec-
tively). Briefly, we have assumed that Wdisp�rep can be represented by an
effective potential acting on each explicit solvent molecule irrespective of
the others, depending on only the molecule distance and, possibly, orien-
tation with respect to the cavity surface. Further, Wdisp�rep is expanded in
a series of terms corresponding to increasing levels of approximation, as
Wdisp� rep ¼ W 0

disp� rep þW 1
disp� rep þ . . . : As an example, the first term,

W 0
disp� rep; which depends only on the distance of the center of mass of

the solvent molecule from the cavity surface, does ensure an isotropic
density distribution of the liquid at the interface with the continuum, so
avoiding artifacts in the simulations due to the presence of a physical
boundary as observed in other continuum-based methodologies [53–55].
Analogously, higher order terms are introduced, if needed, to prevent
other possible physical deviations arising from liquid bulk, as the solvent
polarization effect may appear by using discrete/continuum models.
Hence, Wdisp�rep can be expressed in a simple general form as

Wdisp� rep ¼
XN
i

�ðriÞ; ð7Þ
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where l(ri) is the potential acting on the ith molecule and the sum is
extended over the total number of explicit solvent molecules. The basic
idea that has been followed to derive the dispersion–repulsion free energy
term consists in building up such a potential “on the fly” from a test
simulation of a neat liquid by discretizing the distance from the cavity
boundary with a set of equally spaced Gaussian functions, whose heights
are adjusted after a certain time interval on the basis of the local density [33].
It is worth noting that the so obtained Wdisp�rep term is parameterized for a
given solvent at specific physical conditions (e.g., density and temperature),
but we can reasonably assume that it is constant for any solution of the same
solvent irrespective of the cavity size and shape, provided the boundary
surface is smooth and the number of explicit solvent molecules are suffi-
ciently large (see, e.g., Refs. [32 and 35]). As an example, in Figure 2.2 the
profile of W 0

disp� respðrÞ is shown for water and chloroform at normal condi-
tions (T= 300K; �H2O = 55.3mol/l, �CHCl

3
= 12.4mol/l) along with the

corresponding density distribution evaluated locally at increasing distance
from a spherical cavity surface: note that the average local density is always
close to the overall density of the system.

2.1.3. Extension to the constant presssure/flexible volume (NpT) ensemble
In order to reproduce more closely usual experimental conditions,
especially in the molecular simulations of complex and flexible systems
in solution, we have recently extended the GLOB model to allow con-
stant pressure simulation by defining an estimator of the instantaneous
pressure on the basis of a microscopic partition function. At this point, it
is noteworthy that while the statistical mechanics theory of macroscopic
systems is well defined and widely accepted, there is not yet a similar
consensus on a theory of microscopic systems. Here, we will consider
specifically a microscopic system that is part of a more extended or, at
limit, infinite system, for example, a small portion of a molecular liquid
contained in a spherical region. For consistency with our previous defi-
nition of the GLOB model and starting from the assumption that a
physical boundary does separate the microscopic and the remaining
molecular systems, we prefer to derive a microscopic partition function
according to the minimum energy principle of the Helmholtz free
energy. The resulting expression of the instantaneous pressure to be
used in NpT ensemble molecular simulations can be written as

p ¼ NkT

V
� @U

@V
þ @Welec

@V
þ @Wdisp� rep

@V

� �
; ð8Þ

where N is the number of atoms, V the microscopic system volume, U the
potential energy due to only the explicit inter- and intramolecular interac-
tions, k the Boltzmann’s constant, and T the absolute temperature. Note that
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(@U/@V) can be cast into the usual form of the virial equation ð��N
i ri � fi=3V;

with fi the force acting on the ith atom due to all other atoms). The deriva-
tives of the mean field terms become quite simple in the case of a volume
with a spherical symmetry and assuming that both the short-range potential
and the external dielectric constant included in the D matrix do not change
for small fluctuations of the microscopic system volume. Hence, we have
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Figure 2.2 (a)W0
disp�resp(r) (b) local density distribution for water (solid line) and chloroform

(dashed line) at normal conditions (T= 300 K; �H2O
= 55.3 mol/l, �CHCl3= 12.4mol/l) evaluated

at increasing distance from the cavity boundary along a radial direction (at the boundary

surface, r= 0\AA). In (b), dotted lines represent average densities. Adapted from Ref. [32].
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@Wdisp� rep

@V
¼
XN
i

@�i
@ri

ri
3V

; ð9Þ

@Welec

@V
¼ � 1

2

@F†

@V
D� 1F� 1

2
F† @D

� 1

@V
F� 1

2
F†D� 1 @F

@V
: ð10Þ

Note that the D�1 matrix can be computed by direct inversion at the
beginning of the MD simulation and simply rescaled at each step, since
the elements of the matrix are proportional to the cavity radius. Further,
the pressure coupling can be efficiently introduced according to an
extended phase-space scheme based on the Martyna–Tobias–Klein
algorithm [56].

2.2. Time-independent approaches

2.2.1. Dynamic (Vibrational) effects beyond harmonic approximation
Within the time-independent framework nuclear dynamic effects can be
included by computation of vibrationally averaged properties beyond
harmonic approximation. In reality, the molecular structure is never
fixed (in the space) and varies by small displacements, defined by mole-
cular vibrations at the anharmonic zero point vibrational (ZPVE) energy
level. To take into account these effects, which are able to tune molecular
properties, it is necessary to perform vibrational computations beyond the
harmonic approximation. However, full-dimensional anharmonic vibra-
tional calculations still represent a complicated task, even for
medium-size molecular systems. Although successful approaches for var-
iational computations of vibrational energy levels within the vibrational
self-consistent field methodology have been already reported [8,9,57–60]
(including the treatment of molecules in electronic excited states [61,62]
and the computation of Franck–Condon (FC) factors [63]), significant
problems remain, especially in relation to the dimensionality of the PES.
As the size of the molecular system increases, the number of calculations
needed to describe the anharmonic PES becomes so large that accurate
full-dimensional vibrational variational approaches will not be practical at
least in the near future. On the other hand, in many cases the effect of
anharmonicity can be accounted for by a second-order perturbative (PT2)
inclusion of principal anharmonicities which provide much improved
results at a reasonable cost [64–67].

In the framework of the Born–Oppenheimer approximation, we can
speak of a PES and of a “property surface,” which, can be obtained from
QM/MM computations at different nuclear configurations. In this
scheme, expectation values of observables are obtained by averaging the
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different properties on the nuclear wave functions. In the perturbative
model, the vibrational energy (in wave numbers) of asymmetric tops is
given by

En ¼ �0 þ
X
i

!i ni þ 1

2

� �
þ
X
i

X
j<i

�ij ni þ 1

2

� �
nj þ 1

2

� �
; ð11Þ

where the !’s are the harmonic wave numbers and the �’s are simple
functions of third (Fijk) and semidiagonal fourth (Fiijj) energy derivatives
with respect to normal modes Q [64]. Both Fijk and Fiijj can be evaluated
from numerical differentiation of analytical hessian matrices at geometries
displaced by small increments, as described in Ref. [64]. In this context,
availability of analytical second derivatives within the QM/MM scheme
paves the route to the studies of vibrational properties beyond harmonic
approximation for significantly larger molecular systems. We refer inter-
ested readers to Ref. [64] on the details of PT2 implementation. Here we
only recall that, in the absence of resonances, fundamental vibrational
frequencies (�i), first overtones [2�i], combination bands [�i�j], and ZPVE
(E0) are given by

�i ¼ !i þ 2�i þ
1

2

X
j6¼i

�ij; ð12Þ

½2�i� ¼ 2!i þ 6�ii þ
X
j6¼i

�ij ¼ 2�i þ 2�ii; ð13Þ

½�i�j� ¼ !i þ !j þ 2�ii þ 2�jj þ 2�ij þ
1

2

X
l 6¼i;j

ð�il þ �jlÞ ¼ �i þ �j þ �ij; ð14Þ

E0 ¼ �0 þ
1

2

X
i

!i þ 1

2
�ii þ

X
j>i

1

2
�ij

0
@

1
A; ð15Þ

To the first order, the vibrationally averaged value of a property � is
expressed as

h�in ¼ �e þ
X
i

Ai ni þ 1

2

� �
; ð16Þ

where �e is the value at the equilibrium geometry and

Ai ¼ �ii
!i

�
X
j

	jFiij
!i!

2
j

ð17Þ
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where 	i and �ii are the first and second derivatives of the property with
respect to the ith normal mode. The first term on the r.h.s. of Eq. (17) will be
referred to in the following as harmonic and the second one as anharmonic.

It should be noted that PT2 computations for macromolecular systems
with large number of normal modes are particularly sensitive to the proper
treatment of Fermi resonances, which are known to plague the PT2 compu-
tations. It is therefore crucial to automatically neglect nearly singular con-
tributions (deperturbed computations), effectively removing interactions in
the second-order treatment, which are more properly treated in the first
order. Our specific PT2 implementation uses criteria proposed by Boese and
Martin [68] and such an automated scheme has been shown to provide
accurate results at least for fundamental bands [69].

2.2.2. Vibrationally resolved electronic spectra
In the framework of the FC principle [70–72], time-independent ab initio
approaches to simulate vibronic spectra are based on the computation of over-
lap integrals (known as FC integrals), between the vibrationalwave functions of
the electronic states involved in the transition. The computation of FC integrals
requires a detailed knowledge of the multidimensional PESs of both electronic
states or, within the harmonic approximation, at least computation of equili-
brium geometry structures and vibrational properties. Till recently, computa-
tions of vibronic spectra have been limited to small systems or approximated
approaches, but within QM/MM scheme simulations of spectra for signifi-
cantly larger systems are possible. When treating such large systems, the inclu-
sion of vibrational contributions becomes very challenging, since the number of
vibrational states to be taken into account increases steeply with the dimension
of the molecule and the spectral width. Nonetheless, most of the possible
vibronic transitions do not contribute significantly to the spectrum. Therefore,
the availability of effective selection criteria to individuate a priori the most
relevant vibronic transitions within the dense bath of possible final states can
make feasible the calculation of spectrum lineshapes also for macromolecular
systems. In our approach an a priori method, called FC classes [73,74], which
provides very accurate vibrationally resolved spectra of medium and large
molecular systems with limited computational resources has been applied. In
this frame, thevibrationally resolvedone-photonabsorbtion (OPA), one-photon
emission, and electronic circular dichroism (ECD) spectra can be simulated.
Let us start from a brief summary of the general mathematical frame for the
spectra computations. The absorption spectrum, defined as the rate of
energy absorption by a single molecule per unit radiant energy density, is
given by the expression [6]


absð!Þ ¼ 4�2!

3

X
f

��h CijmjCfi
��2�ðEf �Ei þ �h!Þ: ð18Þ
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On similar lines, the emission spectrum in photon counting experiments,
defined as the rate of photon emission due to a single molecule is [6]


emð!Þ ¼ 4!3

3�hc3
X
f

��hCijmjCfi
��2�ðEf �Ei � �h!Þ: ð19Þ

The stick spectra computed from Eqs. (18 and 19) are usually convoluted
with a Lorentzian or a Gaussian function to simulate homogeneous or
inhomogeneous broadening, respectively. In the following, we will discuss
the simplest case of absorbtion or emission where the intensity of a spec-
trum line depends on the transition dipole moment integral (Ci|m|Cf),
where Ci and Cf are the molecular wave functions and m is the electric
dipole moment. However, our approach is general and can be applied to
any case of two interacting transition dipole moments as, for example, m
and m in case of the ECD spectra. The ECD stick spectrum is obtained from
the anisotropy of molar absorptivity "(!), which can be computed by the
equation analogous to Eq. (18) where the square of the norm of the electric
transition dipole moment integral is replaced by the imaginary part of the
product of the electronic transition dipole moment with the magnetic tran-
sition dipole moment (m)(see Ref. [75] for details).

Our approach is set up in the Born–Oppenheimer approximation; thus
the wave function of each state can be expressed as a product of a nuclear  n

and an electronic  e wave functions:

hCijmjCfi ¼ h n ej m j 0
e 

0
ni: ð20Þ

The electric dipole moment can be separated into an electronic part me and a
nuclear part mn. Replacing the electric dipole moment by these two compo-
nents, the transition dipole moment integral can be divided into two terms:

hCijmjCf i ¼ h n ej me j 0
e 

0
ni þ h n ej mn j 0

e 
0
ni: ð21Þ

Because of the orthogonality of the electronic wavefunctions of different
electronic states, the second term on the r.h.s. in Eq. (21) vanishes. As a
consequence, the transition dipole moment integral depends on the nuclear
wave functions and on the electronic transition moment mif ¼ h ejmej 0

ei.
Equation (21) can then be written as

hCij m jCf i ¼ h nj mif j 0
ni: ð22Þ

Application of the Eckart conditions [76] allows to minimize the coupling
between the rotational and vibrational motions of the nuclei in a molecule,
and as much as possible separate the nuclear wave function into rotational
and vibrational contributions. However, another problem remains since no
general analytical expression exists for the electronic transition dipole
moment: hence this integral must be approximated. This can be done by
expanding the transition dipole moment in a Taylor series of the normal
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coordinates (either the setQ’ of the final state or the setQ of the initial state).
In our approach the expansion on Q’ has been chosen

�if ðQ0Þ ’ �if ðQ0
0Þ þ

XN
k¼1

@�if

@Q0
k

Q0
k þ

1

2

XN
k¼1

XN
l¼1

@2mif

@Q0
k@Q

0
l

 !
0

Q0
kQ

0
l þ . . . ; ð23Þ

where Q0
0 refers to the equilibrium geometry of the final electronic state,

while N is the number of normal modes.
Then, switching to the Dirac notation, replacing mif by its Taylor expan-

sion given in Eq. (23) and assuming that the harmonic approximation can be
used to represent the vibrational wave function of the initial and final states
as eigenstates of the N-dimensional harmonic oscillator, that is, by defining
j
ii ¼ jni and j
f i ¼ jn 0i, it is possible to write Eq. (22) as

hCij m jCf i ¼ mif ðQ0
0Þ hnjn 0i þ

XN
k¼1

@mif

@Q0
k

� �
0

hnj Q0
k jn 0i

þ 1

2

XN
k¼1

XN
l¼1

@2mif

@Q0
k@Q

0
l

 !
0

hnj Q0
kQ

0
l jn 0i: ð24Þ

The current version of our approach allows to take into account the Taylor
expansion up to diagonal second derivatives. The zero order, assuming that
the transition dipole moment is unchanged during the transition is the FC
[70–72] approximation, which is based on the assumption that molecular
geometry does not change significantly during the transition, and therefore
the electronic transition dipole moment can be treated as a constant. While
this approximation is known to lead to very good results in many cases, it
becomes not satisfactory for the dipole-forbidden [mif ðQ0

0Þ ¼ 0] or weakly
allowed transitions. In these cases, one needs to improve the model and to
add the second term [Herzberg–Teller (HT) term]. Then, a limited change in
the structure during the transition is taken into account. For many studied
systems, the FC and HT approximations are sufficient to correctly describe
both absorption and emission spectra, but for symmetry-forbidden transi-
tions a correct reproduction of intensity of weak bands may require the
inclusion of higher order terms [77].

Computation of the overlap integrals between initial and final vibra-
tional states requires the use of a common coordinates set. Duschinsky
proposed a solution to this problem by considering a linear transformation
between the normal modes of the initial and the final states [78]:

Q0 ¼ JQþK0: ð25Þ
The Duschinsky matrix J describes the projection of the normal coordinate
basis vectors of the final state on those of the initial state and represents the
rotation of the normal modes upon the transition. The displacement vector
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K’ represents the displacements of the normal modes between the initial
and the final state structures.

Since J in principle is not diagonal, the calculation of the vibrational
overlap integrals is not straightforward. In our case, both analytical [79,80]
and recursive [81] approaches have been applied to compute terms on the
r.h.s. of Eq. (24). Analytical methods can quickly and accurately compute
the transition dipole moment integrals through ad hoc formulae, but the
latter need to be generated beforehand. On the other side, recursive
approaches provide methods to compute the overlap between given initial
and final states through formulae that express it in terms of sums of inte-
grals involving states with lower vibrational quantum numbers. Once the
overlap between ground vibrational states has been calculated directly, that
of any other transition can be obtained by recursively applying these for-
mulae. More details on the recursion formulae applied in the presented
approach can be found in Refs. [73,74,82].

The recursive approach can be in principle successfully applied to the
computation of spectra of large molecular systems. However, in many
cases the number of overlap integrals that must be taken into account can
become extremely large, with a consequent increase in the required com-
putational times and memory usage. Efficient computational strategies
must be able to individuate in advance the relevant transitions among the
infinite number of possible final states. Here, we use an a priori method
called FC classes [73,74], which provides very accurate vibrationally
resolved spectra of medium and large molecular systems with limited
computational resources. According to this method, transitions are parti-
tioned into classes Cn, depending on the number n of simultaneously excited
normal modes of the final electronic state of the transition. The overlap
integrals for single vibrations (class C1) and combination of two normal
modes (class C2), are computed up to a chosen limit (it can be also very
large, since computation is cheap; therefore, any loss of accuracy in this
step can be avoided). The probabilities of all these transitions are then used
in the computation of FC integrals for higher order classes, to obtain a priori
estimates of the maximum quantum number that needs to be considered
for each normal mode. To that end, for each class the allowed transitions
are chosen iteratively, on the ground of a minimum threshold for C1 and C2

probabilities, so that the number of overlap integrals to be computed stays
approximately below a user-defined limit (Nmax

I ), which rules the calcula-
tion accuracy (see Ref. [73] for further details).

However, when using an a priori method to selectively compute transi-
tions, the convergence of the calculations and hence the reliability of their
outcome needs to be evaluated. In the calculation of vibrationally resolved
spectra, this can be easily done on the ground of analytical sum rules, by
comparing the actual computed spectrum intensity Intot to the exact analy-
tical limit Iatot. In the current approach spectrum convergence is always
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improved by increasing the limit for the number of integrals computed for
each class of transitions: Nmax

I . A higher number of allowed transitions
obviously yields a better spectrum convergence but also directly increases
the required computational time and memory usage.

Skipping prefactors and the dependence on the frequency, the intensity
of a given transition is equal to Iðn; n 0Þ ¼ jhnjmif ðQ0Þjn 0ij2 and summing over
all the possible final states one gets

Iatot ¼
X
�0
jh n j mif ðQ0Þ jn 0ij2 ¼

X
R¼x;y;z

hnj�2if RðQ0Þ j ni; ð26Þ

where the superscript a indicates that the sum has been carried out analy-
tically by exploiting the closure relation. In the limit of a complete inclusion
of all the possible final states the numerical sum of the state-to-state inten-
sities Intot ¼ ��0Iðn; n 0Þ must approach Iatot and the ratio C ¼ Intot=I

a
tot can be

used to control the convergence, which is complete when C ¼ 1 (see Refs.
[74,82] for the more complex formulae required in case of HT computa-
tions). However, for large systems, a great number of transitions has to be
considered to reach convergence of the spectrum intensity, and calculations
although feasible can become computationally demanding. On the other
side, usually the main scope is to correctly reproduce the spectrum line-
shape and assign the most important vibronic transitions. It has been shown
[73,74,83] that the spectrum lineshape usually converges much faster than C.
The lineshape convergence can be easily checked by comparison of results
calculated with two different thresholds for Nmax

I .
It should be mentioned that while the presented approach is developed

within harmonic approximation, it can be further extended to take into
account anharmonic effects. As a first step in this direction a correction
scheme to derive excited state’s anharmonic frequencies from ground state
data has been implemented [84]. Briefly, excited state mode-specific scaling
factors can be derived from the ground state ones. These latter can be
obtained theoretically, for example, from perturbative anharmonic fre-
quency calculations [64], or from easily accessible ground state experimental
data. Then, for each particular normal modeQk, the frequency scaling vector
a is computed first, using the formula 	ðkÞ ¼ �ðkÞ=!ðkÞ where � is the
anharmonic frequency and ! is the harmonic frequency. To proceed further,
we shall assume that, if there is a one-to-one relation between the normal
modes Qk and Q

0
k of the initial and final states, the scaling factors 	k and 	

0
k

are equal. However, the normal modes are in general not coincident (J 6¼ I),
and a cannot be transferred directly to scale the frequencies of the final
state. In other words, the scaling vector must be adapted to the excited state
frequencies. In the case of small-amplitude vibrations, this can be obtained
by expressing the normal modes of the excited state as linear combinations
of the normal modes of the initial state, by means of the Duschinsky
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transformation. The Jkl coefficients can now be applied to derive the relation
between the initial (k) and final (l) state mode-specific anharmonicity scaling
factors:

	
0
l ¼

XN
k

J 2
lk 	k ð27Þ

and then excited state anharmonic frequencies are simply computed as
�0ðlÞ ¼ 	0ðlÞ!0ðlÞ:

2.3. Calculation of spectroscopic properties

2.3.1. Vibrational properties and infrared spectra
The theoretical solution of the vibrational problem for polyatomic molecules
and the determination of the IR spectra are among the most important
applications in computational chemistry. In practice, the most common
way to evaluate molecular properties is still their computation at the
“bottom of the well” corresponding to the global minimum. This approach
assumes an ideal case of perfectly symmetric harmonic representation of the
true shape of PES, as only then vibrationally averaged properties and those
calculated at the “bottom of the well” are exactly coincident. But in reality
the PES is always “anharmonic,” leading to dissociation of molecules. The
harmonic frequency calculations and computation of molecular properties
at the “bottom of the well” do not take into account the anharmonic char-
acter of PES, but such approximations are still useful and allow determina-
tion of molecular properties in a simple manner. However, in many cases it
is crucial to take into account the effects of nuclear motions beyond harmo-
nic approximation. In particular, the electron spin resonance (ESR) para-
meters often show a strong dependence on the molecular geometry and it
has been shown that the vibrational effects can change their values up to
25% [85]. It is important to recall that dynamic effects can be nonnegligible
even at very low temperatures and for semirigid systems.

As sketched in Section 2.2.1 recently developed methods based on a
quantum mechanical/stationary-state picture of the system, such as varia-
tional [86–88], self-consistent [9,57–60], and perturbative [64–67] treatments,
provide accurate energy levels in terms of the ro-vibrational Hamiltonian by
taking into account also anharmonic effects. In the challenging case of large
systems in condensed phases, the use of effective QM/MM schemes com-
bined with implicit solvent methods represents a viable choice to reduce the
computational cost of otherwise prohibitively expensive anharmonic fre-
quency analysis. Additionally, it is also possible to restrict the anharmonic
treatment to the small part of the total system, directly related to the spectro-
scopic observable, for example, the most intense bands in the IR spectrum,
or the selected large-amplitude motions, without losing the benefits of a
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unified and comprehensive picture. However, there are still cases in which
the underlying assumptions of such static calculations pose severe limita-
tions to a complete vibrational analysis by the so-called “Hessian-based”
methods, especially when the vibrational modes involve a complex confor-
mational rearrangement and/or coupling with solvent motions. A possible
alternative route is represented by time-dependent approaches based on a
classical or quantum treatment of the nuclear dynamics. Indeed, IR spectro-
scopic data can be obtained by a statistical mechanics formalism that relies
on the Fourier transform analysis of the time correlation of atomic velocities
or dipole moment. In principle, such approaches can provide a complete
description of the experimental spectra, that is, the characterization of the
real molecular motion consisting of many degrees of freedom activated at
finite temperature, often strongly coupled to each other. In particular, ab-
initio and hybrid QM/MM MD make feasible the vibrational analysis of
complex system in the condensed phase allowing also a reliable estimate of
the possibly induced solvent shifts of fundamental vibrational frequencies
[89]. In this case, an important issue concerns the introduction of appro-
priate quantum corrections to the classical time-correlation functions.
Recently, different quantum corrections have been compared on a theore-
tical basis and with respect to the performance on different kinds of intra-
molecular and intermolecular motions [90]. However, all the proposed
corrections only affect the width and the shape of the IR bands, while the
accuracy of the calculated frequencies still relies on the ability of the classi-
cal approach to describe the fundamental vibrations. In this regard, it is
worth noting that hybrid density functional theory (DFT) functionals do
perform reasonably well for a variety of molecular systems and represent
the method of choice for large biological systems. Eventually, more sophis-
ticated post-Hartree–Fock methods can be employed to correct the absolute
frequencies of specific vibrational modes, while DFT-based approaches can
be still used to obtain accurately solvent shifts.

2.3.2. Electronic spectra
To a first approximation level, electronic spectra (UV–vis, photoelectron,
X-ray, etc.) can be simulated by computing vertical excitation energies on
the geometrical structures optimized for the ground state, with the resulting
stick spectra subsequently convoluted by Gaussian or Lorentzian functions,
corresponding to inhomogeneous and homogeneous broadening, respec-
tively. Such a treatment completely neglects any dynamic effects on the
spectrum shape, but in many cases qualitatively reproduces experimental
findings. The simplified scheme is particularly justified for the studies of
very large macromolecular systems, for which excited state geometry opti-
mizations and/or frequency computations are still prohibitively expensive.
However, for such large systems even computations of reliable vertical
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excitation energies, particularly when many excited electronic states need to
be considered, might be a nontrivial task. In this respect, the QM/MM
schemes pave a viable route for studies of large systems where the electronic
excitation has a well-defined relatively localized character, and the QM
approach can be fully employed for the region of the system relevant to
the electronic excitation. Recent developments allow to compute the QM
part at the time-dependent DFT (TD-DFT) level and the resulting TD-DFT/
MM schemes greatly improves the reliability of the results over the
semiempirical approaches. However, in many cases, a more accurate repro-
duction of bandshapes conveys important insight into structural and elec-
tronic features; at this level, the vibrational structure of the electronic band
must be taken into account. Within the simplest zero-order harmonic
approximation it can be assumed that the PES of the initial and final states
do not differ in shape, so that the vibrational levels are identical. Obviously,
such an approach can only provide a very rough estimation of the real
spectrum, and in general most vibrational transitions are actually missed.
A significant improvement is represented by the linear coupling method
(LCM) [91]. Here the multidimensional coupling constants are obtained
from the ground state frequencies and normal modes, and the excited
state energy gradients evaluated at the ground state geometry. Thus, the
approach does not require computation of the excited state equilibrium
geometry, frequencies and normal modes, which have only recently become
feasible for large systems. However, the LCM does not take into account
changes in vibrational frequencies and/or in normal modes between the
excited and ground state. New models have been recently presented to
further improve the quality of the approximation, based on a linear trans-
formation between the normal modes of the initial and final states, as first
described by Duschinsky [78]. These models have proven capable to pro-
duce very accurate emission and absorption spectra [92–96] in cases where
reliable geometries and force fields have been computed for both electronic
states. Considering first-principles simulations of vibronic spectrum line-
shapes for large systems, the inclusion of vibrational contributions becomes
very challenging, since the number of vibrational states to be taken into
account increases steeply with the dimension of the molecule and the
spectral width. Nonetheless, most of the possible vibronic transitions do
not contribute significantly to the spectrum. Thus a crucial aspect is the
adoption of effective selection criteria to individuate a priori the most
relevant vibronic transitions within the dense bath of possible final states.
Several schemes have been proposed [73,83,97–100] ranging from the sim-
plest approach, based solely on the energy window of the spectrum [97,98]
up to rigorous prescreening techniques based on analytically derived sum
rules [100]. However, in our opinion the fast and effective a priori selection
scheme presented in Section 2.2.2 has proven its general applicability for a
variety of different systems.
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2.3.3. Magnetic properties: electron spin resonance spectroscopy
ESR spectroscopy is widely used to characterize properties of macromole-
cular systems of biological interest giving access to important information
on structural and dynamical properties. As an example we shall recall
nitroxide radicals, which are often used as a “spin probes” or “spin labels”
[101]. However, the interpretation of ESR spectra is not a trivial task and
quantum mechanical computations of magnetic parameters greatly support
the analysis of experimental results. In the case of isotropic hcc’s of protons,
reliable estimates can be obtained from semiempirical relationships, but
quantitative evaluation of hcc’s for heavier atoms usually requires rather
sophisticated computational treatments not accessible for large systems.
This is related to the fact that the computation of accurate hcc’s requires
good description of spin density at the nucleus. Hence, having in mind the
computational support of ESR for studying biological systems, it seems
reasonable to adopt an efficient QM/MM scheme, where the molecular
region surrounding the radical center is described at a high level of theory
and with a large basis set. Such an approach allows to define QM/MM
schemes well suited for the study of ESR properties of radicals embedded in
complex and nonstandard media as proteins, micelles, or cellular
membranes.

Here, we briefly sketch the theoretical framework used to compute
magnetic properties, invariant with respect to the applied electronic struc-
ture method [102]. The interaction between the electron spin (S) of a radical
containing magnetic nucleus of spin I with an external magnetic field (B)
can be approximated by the spin Hamiltonian Hs:

Hs ¼ �BS � g � Bþ S �A � I þ � � �; ð28Þ

where the first term is the Zeeman interaction between the electron spin and
the external magnetic field through the Bohr magneton, �B, and the g-tensor;
the second term is the hyperfine interaction between S and the nuclear spin,
I, described through the hyperfine coupling tensor A. The latter, which is
defined for each nucleus X (AX), can be split into three terms:
AX ¼ aX13 þ TX þ LX, where 13 is the 3� 3 unit matrix. The first term (aX),
usually referred to as the Fermi contact interaction, is an isotropic contribu-
tion and is related to the spin density at the corresponding nucleus X. The
second contribution (TX) is anisotropic and can be derived from the classical
expression of interacting dipoles. The last term, �X, is due to second-order
spin–orbit coupling (SOC) and can be determined by methods similar to
those described for the g-tensor. In cases with a strong localization of spin
density on first-row atoms and of small SOC constants, the last contribution
can be safely neglected and will not be discussed in the following. Because
both aX and TX are ruled by one-electron operators, their evaluation is, in
principle, quite straightforward. However, hyperfine coupling constants
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have been among the most challenging quantities for conventional QM
approaches for two main reasons [102]. On the one hand, conventional
Gaussian basis sets are ill adapted to describe nuclear cusps; on the other
hand, the overall result derives from the difference between large quantities
of opposite sign. However, the past few years have shown that coupling of
some hybrid functionals to specifically tailored basis sets performs a
remarkable job for both isotropic and dipolar terms.

The gyromagnetic tensor can be written as follows: g= ge13 +
D gRM þ DgG þ DgOZ=SOC, where ge is the free-electron value (ge = 2.0023193).
Computation of the relativistic mass (RM) and gauge (G) corrections is quite
straightforward because they are first-order contributions [103]. The last term
arises from the coupling of the orbital Zeeman (OZ) and the SOC operator. The
OZcontribution is computedusing thegauge-includingatomicorbital approach
[103,104],whereas for light atoms, the two-electron SOCoperator can be reliably
approximated by a one-electron operator involving adjusted effective nuclear
charges [105]. Although those charges were optimized for wave function based
methods, a number of test computations showed that they are nearly optimal for
DFT computations too. Upon complete averaging by rotational motions, only
the isotropic part of the g-tensor survives, which is given by giso = 1/3 Tr(g).
Of course, the corresponding shift from the free electron value is
Dgiso ¼ giso � ge. For both hcc’s and gyromagnetic tensor calculations, it has
been recently shown that B3LYP [106] and EPR-III [107] or N07D [108–110]
basis sets provide reliable results [103,111,112].

3. APPLICATIONS

As anticipated in the Introduction, the methodological machinery pre-
sented in the above sections can be successfully applied to many computa-
tional spectroscopy studies ranging from ESR, IR/Raman, low-resolution
UV�Vis up to rovibronic spectra, and to a large variety of systems from
small molecules in solution to macrosystems. The examples given below
include the UV spectrum of acrolein in the gas phase and aqueous solu-
tion, the vibrationally resolved photoelectron spectra of adenine adsorbed
on the Si(100) surface, along with computation of ESR magnetic tensors
and vibrational frequencies beyond harmonic approximation, and are cho-
sen to illustrate the broad range of computational spectroscopy
approaches.

3.1. UV spectra of acrolein in gas phase and in aqueous solution

The UV absorption spectrum of acrolein has attracted significant attention
since this molecule exhibits two conjugated chromophores C¼C and C¼O,
a common feature for many natural systems [113]. The spectrum was
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studied experimentally in different solvents [114–121], as well as in gas
phase [121–124], and a solvatochromic blueshift of 0.20–0.25 eV was
observed, as a result of water solvation. A simple explanation of such a
blueshift is that the electronic ground state has a larger dipole moment with
respect to the first excited state and, as a consequence, it is more stabilized in
polar solvents, such as water. However, the actual extent of the observed
blueshift is the result of subtle and opposite effects, not only polar ones
(see, e.g., Ref. [125]). Here, we present a comparative study where time-
dependent and time-independent approaches, described in Sections 2.1 and
2.2.2, have been applied to simulate the UV absorption spectrum of acrolein
both in gas phase and in aqueous solution aiming at a deeper understanding
of the subtle interplay of several different, not easily dissectable and evalu-
able effects hidden behind the observed blueshift.

Within the time-dependent approach the study of dynamical and
solvent effects on acrolein structure and electronic properties has been
performed with GLOB model [113]. In particular, an NVT QM/MM simula-
tion of acrolein þ 134 TIP3P water molecules and a full QM simulation of
acrolein in vacuo were performed for 24 ps, including 4ps of equilibration,
using the GLOB/ADMP methodology [126–128] (see Ref. [113] for details).
Then the vertical excitation energies and oscillator strengths have been
computed within the TD-DFT formalism employing the B3LYP functional
and the 6-311þþG(2d,2p) basis set. The consistency of such basis set in
spectroscopic calculations was validated in a previous work [129]. For the
time-independent approach the full geometry optimization, and frequency
calculations have been performed for both electronic states in the gas phase
and in aqueous solution. For consistency, the DFT/TD-DFT model with
B3LYP density functional and 6-311þþG(2d,2p) basis set has been applied.
In this case, solvent effects have been included implicitly by means of the
conductor-like polarizable continuum model (CPCM) [38] within the non-
equilibrium limit where only its fast (electronic) degrees of freedom have
been equilibrated with the excited state charge density while the slow
(nuclear) degrees of freedom remain equilibrated with the ground state.
Such an assumption is sufficient to describe the absorption spectrum in
solution, due to the different timescales of the electronic and nuclear
response components of the solvent reaction field [73].

First we will discuss the nature of the solvent (water) effects on the UV
n!p� transition energy of acrolein in terms of the relative contributions due
to direct (solvent polarization and H-bonding) and indirect (solute struc-
tural rearrangements) effects. The computed blueshift of the n!p� vertical
transition of acrolein, issuing from the gas- and condensed-phase MD
simulations at room temperature, are reported in Table 2.1 while the
lower panel of Figure 2.3 shows the corresponding spectra. The overall
computed blueshift is 0.26+ 0.01 eV (last line in Table 2.1), in good agree-
ment with experiments (0.20–0.25 eV). Such a result has been obtained by
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the aqueous solution model with the acrolein molecule and the two closest
to the C�O group water molecules treated at QM level (acro-
leinþ2H2O

QMþ132H2O
MMþPCM). Besides, when all water molecules are

treated as point charges (acroleinþall H2O
MMþPCM), the blueshift remains

unchanged within the statistical noise, 0.25+ 0.01 eV, in line with a recent
study for the case of acetone [130]. This means that solvent effects on the

Table 2.1 UV n!p� transition energies of acrolein in the gas phase and in aqueous

solution, computed at the TD-B3LYP/6-311þþG(2d,2p) level of theory

Energy Shift

Gas phase 3.58
Solution
Acrolein 3.49 �0.08
Acrolein þ 2H2O

QM 3.68 þ0.10
Acrolein þ 2H2O

QM þ132 H2O
QM þ PCM 3.84 þ0.26

Note: Values are in eV, standard error is 0.01 eV.
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Figure 2.3 UV spectra of n!p� electronic transition of acrolein. Upper panel, time-

independent approach, spectra computed with FC–HT approximation, gas phase (solid

line), and water solution described by the CPCM model (dashed line). Lower panel, time-

dependent approach: spectra obtained from MD simulations with the GLOB model, gas-

phase spectrum (solid line), and aqueous solution (dashed line). Please refer online version

for color image.
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n!p� vertical transition are essentially of electrostatic nature. However, we
have also evaluated the separate contributions to the blueshift coming solely
from the solute structural changes (second line in Table 2.1) and from the
first solvation shell of the C¼O group (acroleinþ2H2O

QM), that is including
the two water molecules closest to the carbonyl oxygen. Remarkably, solute
geometry distortions lead to a nonnegligible redshift (�0.08 eV) and, hence,
the direct solvent effects on the spectroscopic property, once the solute
geometry has changed, are of about 0.34 eV. Additionally, more than half
of such shift is provided by the first two water molecules surrounding the
C¼O group (0.18 eV), which means that H-bonding and bulk effects are
nearly equal.

The time-independent approach takes into account only the electrostatic
part of solute–solvent interaction underlying the solvent shift, but allows a
straightforward and relatively inexpensive computation of both the gas-
phase and aqueous solution absorption spectra of acrolein. Moreover its
advantage stems from the fact that working directly in the frequency
domain gives access to the detailed analysis of vibronic contributions. In
case of n!p� electronic transition of acrolein assignment of the most intense
bands (from stick spectrum, see Figure 2.4) shows that the spectrum is
dominated by the progressions into the normal modes, which can be
described as a combinations of C¼O, C¼C, C�C stretching, and
C�C�O bending vibrations. To simulate the spectrum lineshape within
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Figure 2.4 OPA spectra of n!p� electronic transition of acrolein computed by time-

independent approach. Gas-phase spectra computed with FC approximation (dashed line)

and the FC–HT approximation (solid line), convoluted by homogeneous broadening with

FWHM of 400 cm�1. The FC–HT stick spectrum is also shown. Please refer online version

for color image.
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the time-independent framework, it is necessary to convolute the stick
spectrum with arbitrarily chosen function and full-width at half-maximum
(FWHM). For acrolein in the gas phase, the best comparison with the
experiment [121] has been obtained by applying the homogeneous broad-
ening (Lorenzian function) and the FWHM of 400 cm�1, while the inhomo-
geneous broadening (Gaussian function) with FWHM= 1500 cm�1

reproduces well the broad band of the experimental spectrum in solution.
The time-independent approach to compute vibrationally resolved electro-
nic spectra presented in Section 2.2.2 allows to go beyond the FC approx-
imation by considering changes of the transition dipole moment with the
geometry. It is worth mentioning that such an improvement does not
require any additional quantum mechanical computation, since the TD-
DFT frequencies are calculated numerically giving direct access to the
necessary derivatives of the transition dipole moment with respect to the
normal coordinates of the excited electronic state. Inclusion of the HT term
is particularly important for the dipole-forbidden or weakly allowed transi-
tions where the FC approximation is less reliable. This is the case of the
weakly dipole allowed n!p� transition of acrolein (�= 0.0463 a.u.), where
the HT contribution indeed influences significantly the spectrum lineshape,
as shown by the comparison of the gas-phase FC and Franck–Condon–
Herzberg–Teller (FC–HT) spectra in Figure 2.4. For consistency, the FC–
HT approximation has been also applied to simulate the spectrum in aqu-
eous solution, which is compared to its gas-phase counterpart in Figure 2.3.
It is quite apparent that the solvent shift is well reproduced by the theory,
and also changes in the band shapes agree well with the experimental
observations [121].

It is interesting to compare results obtained with the time-dependent
and time-independent approaches, and both simulated spectra are shown in
Figure 2.3. It is immediately visible that indeed both methodologies accu-
rately predict the absolute position of absorbtion maximum in the gas phase
as well as in the aqueous solution. In both cases it is possible to compute
solvent shift. However, the time-dependent approach gives direct access to
the spectrum lineshape and the band maximum position; thus the solvent
shift can be obtained by the comparison of band maximum. In variance, the
arbitrary choice of FWHM applied to obtain spectrum shape in case of time-
independent approaches influences the position of absorbtion maximum.
Thus, in this case, solvent shift has been derived by comparison of electronic
transition origins. Nevertheless, the respective solvent shifts of 0.24 and
0.26 eV in case of time-independent and time-dependent approaches,
respectively, agree both very well with the experimental value (0.25 eV).
Such a good agreement, achieved also for the implicit solvent model, high-
lights essentially the electrostatic nature of the solute–solvent interaction,
which causes a blue shift of the n!p� transition. It is worth noting that both
the presented approaches allows to study in detail different effects
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influencing solvent shift and electronic bandshape. From this point of view
a combined study applying both time-dependent and time-independent
approaches permits to take into account specific and bulk solute–solvent
interaction as well as to analyze individual vibronic contributions. Summar-
izing, we conclude that combined studies which take advantage of both
time-dependent and time-independent approaches pave the route toward a
better understanding of experimentally observed spectra in condensed
phases.

3.2. ESR magnetic tensors of complex radicals in aqueous solution

The combined use of ESR spectroscopy and high-level ab initio calculations
represents a very effective tool to probe complex molecular structures and
dynamics, due to the high sensitivity of the magnetic tensors to stereoelec-
tronic, dynamical, and environmental effects. In particular, the accurate
reproduction of ESR experimental data by sophisticated molecular models
allows to unambiguously identify molecular structures that may exist, for
example, in a different protonation state or tautomeric form. A very relevant
application field for such a combined theoretical/experimental approach is
represented by the study of radical species of biological molecules, such as
amino acids and nuclear acid bases, which are involved in a variety of
important chemical processes, such as enzymatic catalysis, electron transfer,
and DNA radiation damage. Among others, two clear examples are pro-
vided by glycine and uracil radicals in aqueous solutions. In both cases, all
short-time dynamical effects have been taken into account by QM/MM
simulations according to the GLOB model, with the radical described at
full QM level and the rest of the solvent treated by MM approach. All the
simulations and QM calculations of spectroscopic parameters have been
performed with a locally modified version of the Gaussian package, accord-
ing to the methods described in Sections 2.1 and 2.3.3.

Recently, it has been well established that glycine radical prefers a
neutral structure in aqueous solution [131,132] (i.e., NH2�CH�COOH in
place of NH3

þ�CH�COO�), whereas the cationic and anionic forms play a
negligible role at physiological pH values. However, some of its isotropic
hyperfine splittings (especially H	) show values quite far from those
expected for similar radicals or observed for the zwitterionic form of the
glycine radical in the solid state [133]. This stimulated a number of theoretical
studies, with a satisfactory explanation of the ESR parameters obtained only
when intramolecular vibrational averaging and solvent effects were taken
into account by an integrated computational procedure [112,134]. The opti-
mized gas-phase structure of the glycine radical (see Figure 2.5), computed at
the B3LYP/N07D level, shows that the aminic group is to some degree
pyramidal, with �(H1NC	C)=�9.5� and �(H2NC	C)=�165.0�, whereas
H	 is almost on the same plane of the N�C	�C group (�(NH	CC	)= 1.6�).
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On the other hand, in aqueous solution the glycine radical is, on average,
approximately planar: the fluctuations of the above dihedral angles are
symmetrically distributed around the planar conformation and the aminic
hydrogens show an equal and broader distribution than H	 (see Figure. 2.6).

H2
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Figure 2.5 Optimized structure of the glycine radical computed at B3LYP/N07D and

C-PCM level of theory.
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Figure 2.6 Normalized probability distributions of the �(H1NC	C), �(H2NC	C), and
�(NH	CC	) dihedral angles of glycine radical in aqueous solution resulting from a QM/MM

MD simulation.
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The isotropic hyperfine couplings computed by different models of the
glycine radical are compared in Table 2.2 with the results averaged over the
QM/MM trajectory. On the one hand, the remarkable agreement between
the computed values resulting, from QM/MM simulation and from experi-
ment for all the available hyperfine splittings points out the reliability of
the computational approach. On the other hand, the nonnegligible differ-
ence between the results of the simulation and those obtained for the
isolated glycine radical or the optimized cluster including the whole first
solvation shell points out the role of solvent effects both from a static and a
dynamic point of view. Starting from the quite disappointing results
obtained for the isolated radical, inclusion of the first solvation shell leads
to nearly equivalent H1 and H2 atoms, but the quantitative values remain
quite far from experiment. Next, inclusion of bulk solvent effects by the
PCM [42] has a negligible effect, and only dynamical averaging (both intra-
and intermolecular) restores agreement with experiment. Thus, none of the
static models is sufficient to provide even semiquantitative results and a
dynamical treatment is needed to obtain a coherent picture. While the good
results obtained in Ref. [134] suggest that in this case intrasolute dynamics
plays a dominant role, in general this is not always the case and more
sophisticated theoretical approaches including all the short-time dynamical
effects are required (i.e., solute large-amplitude vibrations and solvent
librations).

Another significant problem concerning the identifications and charac-
terization of the most stable anionic tautomer of the uracil radical in aqu-
eous solution has been addressed by reviewing recent ESR experimental
data [135] in light of the state-of-the-art first-principle calculations. To this
end, we have considered five uracil tautomers able to form rather stable
valence anions in the gas phase [136]: the canonical tautomer (1) and other
tautomers (2–5) obtained by a proton transfer from a nitrogen to a carbon

Table 2.2 ESR hyperfine coupling constants calculated at B3LYP/EPR-III level of theory

for the glycine radical (GlyR) in the gas phase, solvated with four water molecules

(GlyRþ4H2O) and by PCM, and in QM/MM aqueous solution simulation (see Figure 2.5

for atom labels)

GlyR GlyRþ 4H2O GlyRþ 4H2OþPCM GLOB MD Exp.

a(N) 5.45 4.07 4.19 5.58 6.38
a(H1) �5.77 �8.95 �9.10 �5.70 �5.59
a(H2) �3.73 �9.23 �9.39 �5.42 �5.59
a(C	) 11.85 6.70 6.22 10.90
a(H	) �14.54 �12.00 �11.74 �12.12 11.77

Note: Values are in Gauss.
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atom. Optimized geometries computed at B3LYP/6-31þG(2d,2p) level,
including solvent effects via the effective conductor-like version [137] of
the PCM [138–141], are depicted in Figure 2.7, along with the corresponding
single-occupied molecular orbitals (SOMOs). All isomers, with the exclu-
sion of 4, show a significant distortion of the molecular framework resulting
from the stabilization of the valence p� state, in line with the gas-phase
results. The relative energies span a range of about 7 kcal/mol, with a
stability order of the tautomers given by 2 > 3 > 1 > 5 > 4, thus predicting
one of such rare tautomers, not the canonical form, as the most stable in
solution. Similarly, a recent theoretical study [142] on the relative free
energy of the same uracil radicals reported the following stability:
3 > 5 > 2 > 1 > 4. However, a thorough comparison of the available ESR
isotropic values of the hyperfine coupling tensors of N and H atoms with
those computed at quantum mechanical level, provides additional insights
for an interpretation of experimental results. In Table 2.3, we report the hcc’s
parameters as resulting from experiments and theoretical calculations at
B3LYP/C-PCM level with specifically tailored EPR-III basis set. It is appar-
ent that the only computed hcc’s compatible with experimental data are
represented by those belonging to tautomer 1, whereas very significant
deviations are observed in all other cases especially considering a(HC5)
and a(HC6). Also, we have tested the contributions of both the direct solvent
effect and the solvent-mediated intramolecular motions to the magnetic
tensors in aqueous solution. Hence, we have performed a hybrid
QM/MM MD simulation of tautomer 1 in water and we have computed
the same ESR parameters from a posteriori calculations on the sampled

C4

C5

C6
N1

1 2 3 4 5

C2

N3

Figure 2.7 Optimized structures and corresponding single occupied molecular orbitals of

five tautomers of the uracil radical anion, including the canonical form, obtained at B3LYP/

N07D and C-PCM level.
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Table 2.3 ESR hyperfine coupling constants calculated at B3LYP/EPR-III and C-PCM level of theory of the five tautomers of the uracil radical

as reported in Figure 2.7—Values resulting from a QM/MM MD simulation of tautomer 1 are given in parentheses

1 2 3 4 5 Exp.

a(N1) �0.14 (0.21) �1.03 0.32 0.54 0.21 0.00
a(N3) 0.89 (1.28) �0.75 �0.04 1.50 1.53 1.46
a(H1) �1.61 (�0.64) � �3.35 � �0.89 0.84
a(H3) �1.68 (1.00) �0.07 � �3.32 � 0.82
a(H5) �0.96 (0.18) 15.31, 46.99 �15.20, 50.56 �17.70 �19.20 0.89
a(H6) �8.17 (10.17) �16.77 �15.41 57.45, 56.74 43.89, 51.03 12.52

Note: Values are in Gauss.
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trajectory. As shown in the first column of Table 2.3 (results in parentheses),
small changes of the N and H hcc’s are observed (<2G), with an overall
better agreement with experiments. Thus, the overall comparison of com-
putational and experimental data provides a very consistent and clear
solution: the canonical form (1) is the anionic tautomer of the uracil radical
observed in aqueous solution.

3.3. Vibrational properties beyond harmonic approximation

In this section we will discuss time-independent vibrational computations
beyond harmonic approximation. We have chosen in particular the compu-
tation of anharmonic frequencies for adenine molecule adsorbed on a
Si(100) surface, modeled by Si cluster, and vibrationally averaged nitrogen
hyperfine coupling constants of 4-amino-2,2,6,6-tetramethylpiperidine-1-
oxyl-4-carboxylic acid (TOAC from now on) in its chair and twisted tauto-
meric forms.

Recent studies on infrared spectra of isolated adenine molecule have
shown excellent agreement between available experimental data [143,144]
and anharmonic vibrational frequencies [145,146] computed by perturbative
approach [64] with the well-known B3LYP [106] functional and the
6-311þþG(df,dp) basis set. Moreover, detailed analysis of the potential
energy distribution (PED) from Ref. [145] allowed some revision of the
assignment of the experimental results [143,144]. The good accuracy of the
results (mean unsigned error lower than 10 cm�1) paves the route toward
detailed studies of the IR spectrum changes upon absorbtion on the Si(100)
surface. The total system composed of the adenine molecule adsorbed on a
Si cluster has been modeled by the ONIOMQM/MM scheme, with QM part
corresponding to the adenine molecule calculated at the B3LYP/6-311þþG
(2df,2pd) level, and the Si28 cluster represented at the MM level by the
universal force field (UFF) [147]. The total system has 195 normal modes,
thus the full-dimensional PT2 anharmonic treatment would require 391
Hessian computations. While such computations are feasible within a
QM/MM scheme, they can be still considered rather computationally
demanding. On the other hand, it is possible to study anharmonic effects
for some selected modes only, for example corresponding to the most
intense bands in the IR spectrum. The IR spectrum of adenine can be
characterized by two sets of bands in the regions around 1700 and
3500 cm�1 (see Figure 2.8), so we have chosen to compute anharmonic
frequencies only for the five modes related to the most distinct bands. It is
worth recalling that such an approach still takes into account effects of all
other vibrations on the computed anharmonic frequencies. Table 2.4 com-
pares results obtained for adenine adsorbed on Si(100) with those from the
studies of isolated molecule [146]. The most pronounced blue shift of
20 cm�1 is observed for the most intense band related to the NH group
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scissor vibration, but also other frequencies change slightly upon absorb-
tion. Environmental effects of such an order of magnitude have been
observed, for example, comparing results from the gas-phase experiments
with those from low-temperature matrix or aprotic solution. This is in line
with the parallel orientation of the adenine molecule with respect to the
surface plane. In variance, much more pronounced frequency shifts would
be expected in case of perpendicular orientation due to specific adsorbant–
surface interactions. It should be noted that the presented approach makes
anharmonic frequency computations for macrosystems feasible, which
should greatly improve the understanding of observed experimentally fre-
quency shifts related to environmental effects, absorbtion on a surface, or
biomolecule embedding.
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Figure 2.8 IR spectrum of adenine@Si28 with five most intense bands included in

anharmonic computation.

Table 2.4 Computed PT2 anharmonic frequencies of the five most intense bands in IR

spectrum (See Figure 2.8) of isolated adenine molecule and adenine@Si(100), and their shift

related to the absorbtion

Mode Adenine Adenine@Si(100) Shift

�(NH2)asym 3539 3541 þ2
�(N – H)stretch 3497 3491 �6
�(NH2)sym 3432 3441 þ9
�(NH2)sciss 1616 1636 þ20
�(N – C)stretch 1591 1597 þ6

Note: all values in cm�1.
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Besides frequency computations, the anharmonic analysis gives also
insights about vibrational averaging of molecular properties. As already
mentioned in Section 2.2.1, vibrational motions often influence strongly
the ESR parameters. TOAC is a nitroxide radical which has been largely
exploited as a magnetic probe in the studies of macromolecular systems by
means of ESR spectroscopy. Its magnetic properties have been evaluated at
fully QM level; thus it can stand as a benchmark for less expensive
approaches, which would be necessary for studies of large biologically
relevant systems. In this respect, we have chosen to compute vibrationally
averaged nitrogen hcc’s for the chair and twisted forms of TOAC by the
QM/MM model. The QM and MM parts are shown as balls and sticks, or
tubes, respectively, in Figure 2.9. In QM/MM computations the standard
ONIOM model has been applied with QM part computed by the PBE0
functional with the recently developed N07D [108–110] basis set, tailored
for accurate studies of radical systems, and the MM part modeled by the
UFF force field.

In case of computations of vibrationally averaged properties it is rele-
vant to check the reliability of reduced dimensionality anharmonic models.
In fact, at variance with the direct computation of vibrational frequencies
one might expect that it is important to include effects of several vibrations,
which sum up. In the case of TOAC, we have tested a reduced dimension-
ality model by taking into account only 11 modes directly coupled with the
vibrations of the N�O group, but in this case only about 10% of the total
vibrational contribution has been recovered. On the contrary, a full vibra-
tional anharmonic treatment, including all 123 normal modes, led to good
agreement with previous QM studies [148]. Table 2.5 shows that also in case
of QM/MM study the vibrational contributions are negligible for chair

Figure 2.9 The chair (a) and twisted (b) structures of TOAC. The QM part is presented as

balls and sticks, while the tubes correspond to the MM part.
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structure, but become quite significant for the twist structure, especially if
temperature effects are also included.

It should be noted that some normal modes have given almost negligible
vibronic contribution, so the reduced dimensional anharmonic treatment
can be in principle applied also to the computations of vibrationally aver-
aged properties, but in this case the choice of normal modes which must be
included is not straightforward. Thus, similar to the TOAC example it might
be suggested to apply the QM/MM schemes to evaluate vibrationally
averaged properties rather than to reduce the dimensionality of vibrational
treatment in order to facilitate computations.

The two examples gathered in the current section in fact highlight two
different aspects of approximations to facilitate vibrational property compu-
tations beyond the harmonic approximation. In this respect we can distin-
guish the direct evaluation of some experimentally observable frequencies,
which can be most likely performed reducing computational efforts by
applying both simplified QM/MM schemes and reduced dimensionality
vibrational treatment, from evaluation of frequency-dependent properties
like ZPVE or vibrationally averaged hcc’s, where it might be important to
sum up effects of all vibrations. Summarizing, we have shown that computa-
tions of vibrational properties beyond the harmonic approximation within
the QM/MM scheme can be successfully applied to rather large systems, and
in some cases the computational cost can be further reduced by application
of reduced dimensionality anharmonic treatments.

3.4. Photoelectron spectrum of adenine adsorbed on Si(100)

Reliable computational studies of optical properties for large nanosystems
in condensed phases can support the design of new materials relevant for
optics, photonics, and sensoristics. The approach to compute one-photon
electronic spectra presented in Section 2.2.2 is in line with such a demand.
The accuracy and effectiveness of our a priori procedure for the selection of

Table 2.5 Nitrogen isotropic hyperfine coupling constants (hcc’s in Gauss)

Temperature (K) Equilibrium Harmonic Anharmonic Total

Chair
0 16.206 �0.003 0.004 16.207
298 �0.332 0.195 16.069

Twist
0 14.326 0.106 0.423 14.856
298 �0.061 0.879 15.145

Note: Equilibrium values, harmonic, and anharmonic contributions and the total hcc’s computed at 0 and 298K.
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the relevant transitions to be computed is of particular relevance to the
studies of large macromolecular systems. As an example we compare the
photoelectron spectra simulations performed for isolated adenine and for
adenine adsorbed on the silicon (100) surface [82]. The full valence photo-
electron spectrum of adenine is composed from several overlapping excita-
tions [149], but to show the feasibility of spectra computations for
nanosystems we have chosen to study only the ionization from the highest
occupied molecular orbital.

Si(100) surface has been modeled by a cluster of 119 silicon atoms, as
shown in Figure 2.10, resulting in a total system with 636 normal modes. For
computation of geometry structures and frequencies the ONIOM QM/MM
scheme has been adopted, with QM part corresponding to the adenine
molecule calculated at the B3LYP/6-31þG(d,p) level, and the Si119 cluster
treated at MM level using the UFF force field [147]. The photoelectron
spectra have been calculated for both isolated adenine molecule and adeni-
ne@Si(100), implying that the spectrum changes upon adsorption. In Figure
2.10 both spectra are plotted in the range of 8.0–8.7 eV roughly correspond-
ing to the first band of valence shell photoelectron spectrum. It can be

8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7
Energy (eV)

Figure 2.10 Comparison between the theoretical photoionization spectra in gas phase of

isolated adenine (upper panel) and adenine adsorbed on a Si(100) surface (lower panel).

The spectra in an energy range from 8.0 to 8.7 eV are calculated with FC approximation and

with FWHM= 100 cm�1; the stick bands show the most important transitions. Please refer

online version for color image.
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observed that our model predicts a small red shift of the excitation origin
upon adsorption on Si surface, and that new vibronic transitions corre-
sponding to intermolecular vibrations modulate the spectrum lineshape.
The analysis of both spectra give insights into the underlying adsorbate–
surface interactions, allowing to interpret the rich indirect information
provided by the experimental spectra. It can be recalled that the time-
independent simulation of spectra works directly in the frequency domain,
thus allowing to determine single vibronic contributions even in difficult
cases involving relatively broad bands. In a more general context, compar-
ison of experimental and simulated lineshapes supports dissecting and
evaluating the role of different effects (environmental, hydrogen bonding,
adsorbate–solute interaction, etc.) in determining spectral properties.

The accuracy and effectiveness of our a priori strategy to select only the
relevant transitions and discard the less probable ones should be under-
lined. This will be discussed analyzing the number of combinations for each
class Cn for both systems, which is directly related (see Ref. [82] for details)
to the number of transitions which stands as an initial pool from which only
the relevant ones are chosen to be computed.

Table 2.6 lists NCn for isolated adenine and adenine@Si(100) along with
the spectrum convergence achieved withNmax

I set to the default value of 108.
Increase of Nmax

I limit always yields better spectrum convergence, but also
increases computational time and memory requirements. However, all
computations with the same Nmax

I are equivalent, despite the system size.
It is worth noting that in both cases, either an isolated molecule with 39
normal modes or a macrosystem with over 600 modes, almost all spectrum
intensity (about 98%), has been recovered at an equivalent computational
cost, even if for the cluster, the applied value of Nmax

I is not sufficient to
consider the whole initial pool even for only three simultaneously excited
modes (C3 class). This particular case shows the ability of the a priori

Table 2.6 Convergence of spectra computations for adenine and adenine@Si(100)

Adenine Adenine@Si(100)

Class (n) NCn Convergence (%) NCn Convergence (%)

3 9.14Eþ 03 84.54 4.27Eþ 07 87.31
4 8.23Eþ 04 93.57 6.75Eþ 09 94.82
5 5.76Eþ 05 97.48 8.54Eþ 11 97.37
6 3.26Eþ 06 98.32 8.98Eþ 13 97.88
7 1.54Eþ 07 98.39 8.08Eþ 15 97.93

Note: For each classs Cn the number of combinations of the n excited oscillators NCn and convergence are listed.
The C1 and C2 transitions have been computed by analytical formulae allowing a maximum quantum number
vi= 30, and v1= v2= 20, respectively. For the classes Cn, n� 3, the transitions to be computed have been
selected setting the parameter NMax

I to 108 (the default value).
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strategy to select only the relevant transitions and to discard the less prob-
able ones. The efficiency of the procedure can be easily explained by the fact
that despite significant difference in the systems size, in both cases, the
electronic transition is localized on the adenine molecule. This example
confirms the effectiveness of spectra computations within the QM/MM
scheme, for systems where electronic transitions are localized on a relatively
small QM part.

4. FINAL REMARKS AND CONCLUSIONS

It has been shown that modern computational spectroscopy can be success-
fully exploited in the study of macromolecular systems and strengths and
limitations of the available computational methodologies has been presented.

The time-dependent route is particularly well suited for flexible systems
propagating on highly anharmonic PES with large-amplitude motions or
solvent librations. In such cases it is necessary to sample larger regions of
configurational space and to take into account all its important features.
Such computations might be computationally demanding, but it is worth
recalling that MD studies can be performed at a relatively lower level of
theory which is able to reliably reproduce the overall character of the PES. It
is also worth remarking, that one MD simulation stands as a base for a wide
range of spectroscopic studies. Then a posteriori computation of spectro-
scopic properties can be performed by more refined theoretical approaches
which can be also appropriately tailored for each property of the interest.

For the semirigid systems accurate results can be obtained by time-
independent computations of spectroscopic properties. In such cases it is
possible to take into account vibrational effects on the molecular properties
or electronic spectra, and to compute vibrational frequencies beyond har-
monic approximation. Advantage of time-independent approaches, besides
their relatively lower computational cost, stem from the fact that working
directly in the frequency domain gives access to the detailed analysis of
vibrational contributions. Moreover, time-independent computations allow
the reduced dimensionality treatment of the vibrational problem, which
paves the route into the better understanding of spectroscopic properties
of macromolecular systems.

Moreover both approaches allow to compare directly experimental and
theoretical spectra, as well as to evaluate and dissect both dynamic and
environmental effects determining spectral properties. Overall, the compu-
tational strategies presented here, together with their integration into a
computational chemistry package, allow a straightforward but at the same
time detailed and accurate computational studies of ESR, IR/Raman, and
UV�vis spectra, for macrosystems of direct biological and/or technological
interest.
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1. INTRODUCTION

In the last decades the search for environmentally friendlier solvents [1] has
been accompanied on the theoretical side by a renewed interest in the
development of methods oriented to understanding and predicting how
the structure, properties, and reactivity of molecules are affected by the
presence of a surrounding medium [2], with the hope that this knowledge
will serve as a guide in the development of new solvents. In contrast to the
pioneering works of Born [3], Kirkwood [4], Onsager [5], and so on, which
were based on a classical description of the solute, the new methods use
quantum mechanics (QM), which permits a more detailed description of the
changes that the solute molecule suffers during the solvation process. The
high level of calculation and accuracy that has been achieved in the quan-
tum description of molecules and processes in vacuo is widely known;
consequently, an additional objective of current solvent theories is to
achieve a similar level for molecules and processes in solution. From a
practical point of view, the ultimate goal is to have available effective
methods that permit to calculate the geometry and energy of minima,
saddle points, conical intersections (CIs), and so on, of molecules in solution
and that include the contribution of dynamical electron correlation or the
possible multiconfigurational character of the solute wave function.

The medium that surrounds the solute can be of diverse natures: a solid,
a liquid, a glassy solid, a liquid drop, a membrane, or even an enzyme;
however, the vast majority of biological or chemical transformations takes
place in the presence of a solvent. Because of this, most of the examples
presented here are referred to systems and processes in the presence of a
liquid solvent, even if many of the ideas developed could be easily applied
to other media.

The solvent can have very different effects on the solute molecules [6],
it can modify the frequency and intensity of the solute spectral bands, the
thermodynamics and kinetics of chemical reactions, the strength of mole-
cular interactions or the fate of solute excited states. A change of solvent can
drastically alter the behavior of a chemical system, and the choice of a
proper solvent is one of the first decisions that a chemist must take when
facing a spectroscopic, kinetic, or thermodynamic problem. For all these
reasons, it is very interesting to have theoretical methods that can guide
chemists in their choices. Unfortunately, the theoretical study of solvent
effects is quite complicated, since the presence of the solvent introduces
additional difficulties with respect to the study of analogous problems in
gas phase. Among these difficulties, we can remark the following:

(1) Firstly, the great number of molecules involved in the description of
bulk solvent polarization effects. Molecules placed at long distances
have a nonnegligible effect on the solute properties. In general, in the
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study of solvent effects, and depending on the type of solute�solvent
interactions involved, it is necessary to include several solvent shells in
the calculations.

(2) Secondly, the possible presence of specific interactions, mainly
hydrogen bonds (HBs), between the solute and the solvent molecules
located in the first solvation shell. The correct description of these
interactions makes the use of microscopic solvent models compulsory.

(3) Finally, in solution there are a great number of solute�solvent
configurations that are thermally accessible. Different solute molecules
will have different environments and, consequently, slightly different
properties. To obtain statistically significant results, it is necessary to
include hundreds or thousands of solute�solvent configurations.

An additional complication comes from the fact that, in solution, the rele-
vant energy to consider is the free energy and we must hence have at our
disposal methods that permit the calculation of this quantity in an effective
and computationally feasible way.

All these complications, large number of solvent molecules, possible
existence of specific interactions, great number of solvent configurations,
the necessity of determining free energy differences, and so on, have as a
consequence a very large computational cost associated to the calculation of
solvent effects. Along the years, researchers have developed different stra-
tegies to reduce the computational cost while trying to keep the accuracy of
the calculations at an acceptable level. One of the most successful strategies
has been the introduction of the mean field approximation (MFA) [7,8] that
permits to replace the configurational average of a given solute property
with the value obtained for this property when the solute is affected by an
average solvent perturbation. In the next sections, we treat different aspects
of the practical implementation of the MFA, paying especial attention to a
method developed in our laboratory and that combines the MFA with
molecular dynamics (MD) simulations.

2. THE MEAN FIELD APPROXIMATION

Whereas the increase of computational power in the last decades has
permitted to tackle the study of certain solvent effects using a brute force
strategy, as in ab initio dynamics, its application to most chemical and
biological problems is far from being routine. In ab initio dynamics [9],
one combines the quantum mechanical description of both the solute and
the solvent electron distributions with the classical or quantum description
of the nuclei movements. Consequently, it becomes necessary to solve the
Schrödinger equation of several hundreds of molecules for several
thousands of configurations. The computational cost of this strategy is so
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high that in almost all the studies performed to date, it has been compulsory
to reduce the description level of the wave functions, the number of
molecules, or the number of solvent configurations.

In the search for theoretical methods that facilitate the study of solvent
effects, two main strategies have been followed:

(1) Focused methods. The computational cost associated to the large
number of solvent molecules can be reduced using focused methods;
here, we center our attention on a small part of the system, in general,
the solute or the solute and a reduced number of solvent molecules,
which is described using high-level quantum mechanical methods. The
description of the rest of the system, generally the solvent, is simplified
using for instance dielectric continuum models, Langevin dipoles,
molecular mechanics (MM) force fields, or a combination of them.
Focused methods are valid when there is a clear separation between
the solute and solvent wave functions and they fail when charge
transfer between the solute and the solvent is not negligible. In this
case, the solvent molecules closer to the solute should be included in the
quantum part.

(2) MFA. The computational cost associated to the large number of
thermally accessible solvent configurations, and hence of quantum
calculations to perform, can be reduced using the MFA. In this
approximation, one does not consider the effect of specific
configurations, instead, the solvent perturbation enters into the solute
molecular Hamiltonian in an averaged way.

These two approximations can be used independently or jointly. Thus,
QM/MM [10] or ONIOM-type methods [11] are examples of focused
methods, whereas dielectric continuum [12�14], reference interaction site
model (RISM)�self-consistent field (SCF) [15�17], or averaged solvent elec-
trostatic potential (ASEP)/MD [18�21] methods use simultaneously both
strategies. To our knowledge there are no methods that use exclusively
the MFA.

A measure of the success of the MFA is the great number of solvent
theories where it is explicitly or implicitly used. Table 3.1 displays a classi-
fication of some solvent theories where this approximation is applied.
The various theories differ in the description of the solvent. Thus, if
the solvent is described as a dielectric, we get different continuum theories.
They can, in turn, be classified according to the representation of the solvent
perturbation: monocentric multipole [14], multicentric monopole [13,22,23],
effective charges [12,24], and so on. Other descriptions of the solvent are
also possible: as a conductor [25,26], using Langevin dipoles [27], or MM
force fields. In the latter case, the solvent structure can be obtained using
RISM theory [15�17], MD [18�21,28,29], or Monte Carlo simulations [30]. In
the model proposed in our laboratory, named ASEP/MD, the solvent
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structure is obtained from MD simulations and the solvent perturbation is
described using potential fitted charges.

The great advantage of the MFA, and what partly explains its success,
is that it permits to reduce the number of quantum calculations from
several thousands to a single quantum calculation. The price that one
must pay is the complete neglect of the correlation energy associated
with the response of the solute charge distribution to the instantaneous
changes in the solvent structure as a consequence of thermal agitation.
Obviously, the MFA will be valid only if the contribution of this energy,
known as Stark component [31,32], to the total solute�solvent interaction
energy remains negligible. It has been shown, both theoretically [20] and
experimentally [33], that this is usually the case. A recent study [34] of the
errors introduced by the MFA in the calculation of free energy profiles of
SN2 Menshutkin reactions has concluded that these are lower than
0.5 kcal/mol.

3. THE ASEP/MD METHOD

Any theoretical method devoted to the study of solvent effects and intend-
ing to be of application to chemical problems of general interest must
provide solution to, at least, the following problems: (1) the description of
the mutual polarization of the solute and the solvent, (2) the location of
critical points on free energy surfaces, and (3) the calculation of free energy
differences between different solute�solvent geometries. In the following,
we will show how ASEP/MD solves each one of these problems.

Table 3.1 Classification of some of the most commonly used solvent theories that use the

mean field approximation

Conductor Dielectric Langevin
dipoles

Molecular
mechanics

RISM MD

Monopole
multicentric

SMx RISM–SCF

Multipole
monocentric

Rivail, Mikkelsen

No multipole COSMO PCM Warshel
3D-RISM–
SCF

ASEP/
MD
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3.1. The mutual solute–solvent polarization

The ASEP/MDmethod is a focusedmethod that makes use of the MFA. Since
the solute is described quantum mechanically and the solvent by using MM
force fields, it could also be classified into the QM/MM methods, more
specifically, as a sequential QM/MM method [35] where QM and MD calcu-
lations are performed alternately and not simultaneously. As usual in focused
methods [24], the ASEP/MD Hamiltonian is partitioned into three terms

Ĥ ¼ ĤQM þ Ĥclass þ Ĥint; ð1Þ
corresponding to the quantum part, ĤQM, the classical part, Ĥclass, and the
interaction between them, Ĥint.

The energy and the wave function of the solvated solute molecule are
obtained by solving the effective Schrödinger equation:�

ĤQM þ Ĥint

�
jC� ¼ EjC�

: ð2Þ

In general, in QM/MM methods this equation is solved for each solute–
solvent configuration, which means several hundreds or thousands of
times. The final value of the energy (or any other property) is calculated
by averaging over all considered configurations.

From a computational point of view, it is convenient to split the interac-
tion term into two components associated to the electrostatic and van der
Waals contributions:

Ĥint ¼ Ĥ
elect

int þ Ĥ
vdw

int : ð3Þ

In many cases, it is supposed that Ĥ
vdw

int has little effect on the solute wave
function and therefore it is usual to represent it through a classical potential
that depends only on the solute–solvent nuclear coordinates. Obviously, it
will contribute to the final value of the energy, and energy derivatives.

In this point the MFA is introduced. So, we define the MFA electrostatic

interaction term,
D
Ĥ

elect

int

E
, as follows [7,8,18]:

D
Ĥ

elect

int

E
¼

Z
dr � �̂ � �VSðrÞ

�
; ð4Þ

where �̂ is the solute charge density operator, and
�
VS(r)

�
, named ASEP, is

the average electrostatic potential generated by the solvent at the position
r. The brackets denote a statistical average over configurations in
equilibrium.

The MFA energy is obtained by solving the following equation:

�
ĤQM þ �

Ĥint

��jC� ¼ �EjC�
: ð5Þ
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Note, that in the MFA we replace the average value of the energies obtained
from Eq. (2) with the energy obtained in presence of the average solvent
perturbation, that is,

�
E
�� Ē.

Different solvation methods can be obtained depending on the way the
term

�
VS(r)

�
is calculated. For instance, in dielectric continuum models�

VS(r)
�
is a function of the solvent dielectric constant and of the geometric

parameters that define the molecular cavity where the solute molecule is
placed [12]. In ASEP/MD, the information necessary to calculate

�
VS(r)

�
is

obtained from MD simulations. In this way,
�
VS(r)

�
incorporates informa-

tion about the microscopic structure of the solvent around the solute,
furthermore, specific solute–solvent interactions can be properly accounted
for.

The basic scheme of the ASEP/MDmethod is very simple, see Figure 3.1.
One begins by performing a quantum calculation of the solute molecule in
gas phase. From this one can obtain the solute charge distribution that is
introduced as input into an MD simulation. The rest of the simulation
parameters can be obtained from suitable force fields. From the MD calcula-
tion, one gets the solvent structure, which permits to calculate the ASEP by
averaging over the solvent configurations, the ASEP is then introduced into
the solute molecular Hamiltonian. By solving the associated Schrödinger
equation (5), we get the solute wave function but now perturbed by the
solvent. The new solute charge distribution is again introduced into another
MD simulation. The procedure is repeated until convergence is attained,

H0Ψ0
 = EΨ0

{q0}

Molecular dynamics

{q} Averaged potential, V

[H + V]Ψ = EΨ

Energy and
solute properties

Figure 3.1 Flow chart of the ASEP/MD method.
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something that occurs in a few cycles (less than ten, in general). Given that
in our method quantum calculations and MD simulations are not simulta-
neous, there is a certain freedom to decide which configurations to include
in the calculation of the ASEP. So, to decrease the statistical correlation
between the selected configurations, we include only configurations sepa-
rated by 0.05 ps or more. It is also important to remember that only the
electrostatic term enters into the electron Hamiltonian.

The information that we get at the end of the ASEP/MD cycle is the
energy, geometry, and wave function of the solute molecule polarized by
the solvent and the solvent structure around it. Figure 3.2 displays how the
solute charge distribution, which is represented by its dipole moment, and
the solvent structure become mutually equilibrated during the ASEP/MD
procedure. At the same time, the free energy of the system decreases until
the system reaches the equilibrium and then it begins to fluctuate. The size
of the fluctuations is a consequence of the finite size of the simulations.

One important point to clarify is the way in which the ASEP is calculated
and introduced into the solute molecular Hamiltonian. We have checked
several possibilities. The electrostatic solvent perturbation can be described
through multipole expansions or using a set of point charges. In this last
case, the charges can be determined in several ways. In general, especially
when solute–solvent HBs are present, a representation using point charges
is more adequate because the use of multipole expansions can introduce
appreciable errors in the solute–solvent interaction energy. The simplest
way to get the charges is to use for them the same values and positions
used during the MD and then to divide the value of each charge by the
number of solvent configurations included in the ASEP. The problem then is
that the number of charges increases very quickly as the number of solvent
molecules or system configurations gets higher. This approximation has
been used, for instance, by Coutinho et al. [36]. To keep the number of
charges tractable, we follow a somewhat more elaborated procedure: we
consider explicitly only those charges associated to molecules that belong to
the first solvation shell, the effect of the remaining solvent molecules is
described by using potential-fitted charges.

The set of charges {qi} is obtained in three steps. The details are as follows
[21]:

(1) Each selected configuration is translated and rotated in such a way that
all of the solvent coordinates can be referred to a reference system
centered on the center of mass of the solute with the coordinate axes
parallel to its principal axes of inertia. This procedure is needed to get
all the charges’ coordinates referring to the same coordinate system.

(2) Next, one explicitly includes in the ASEP the charges belonging to
solvent molecules that, in any of the MD configurations selected, lie
inside a sphere of a given radius and that includes at least the first
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solvation shell. The value of every charge is then divided by the
number of solvent configurations included in the determination of the
ASEP. Next, to reduce the number of charges, one adds together all the
charges lying less than a certain distance from each other, this distance
is generally taken as 0.5 a0.

(3) Finally, one includes a second set of charges representing the effect of
the solvent molecules lying outside the first solvation shell. These
charges are obtained by a least squares fit to the values of the ASEP
originated by the outer solvent molecules in a three-dimensional grid
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defined inside the volume occupied by the solute molecule. The solute
volume is defined through a set of interlocking spheres of radius f�Rvdw,
where f is a numerical factor close to one, and Rvdw are the Bondi radii of
the solute atoms. These charges are obtained in such a way that they
reproduce the electrostatic potential generated by the outer solvent
molecules in the volume occupied by the solute.

The total number of charges introduced into the perturbation Hamiltonian
varies generally between 25 000 and 35 000 depending on the size of the
system.

3.2. Location of critical points on free energy surfaces

ASEP/MD uses a variant of the free energy gradient method [37–40] for
the calculation of the gradients that drive the optimization process.
In this method, the average force,

�
F
�
, and Hessian,

�
G
�
, felt by the

solute atoms are used to optimize the geometry. The average force is
defined as the derivative of the free energy (with a minus sign), and
can be calculated as the average value of the potential energy deriva-
tive. The average Hessian takes a more complicated form, see below. In
the original proposal of Okuyama-Yoshida et al. [37], these average
values were obtained from QM/MM calculations where the solute
molecule had a fixed geometry. The main advantage of this method is
that it permits to obtain both stable and transition states. The main
drawback is that the computational cost of calculating

�
F
�
and

�
G
�
is

usually high. However, as we will show below, it is possible to reduce
this cost by using again the MFA in the calculation of the gradient and
Hessian.

The basis of the free energy gradient method is the following: Let
G=�kT ln ZNVT be the Helmholtz free energy of a system formed by one
solute molecule and N–1 solvent molecules and ZNVT the quasi-classical
canonical partition function. The force on the free energy surface (the force
felt by the solute molecule) is

�
FðRÞ� ¼ � @GðRÞ

@R
¼ �

D @E

@R

E
¼ �

D @EQM

@R

E
�
D @Eint

@R

E
; ð6Þ

R being the nuclear coordinates of the solute, E the energy obtained as
the solution of the Schrödinger equation (2), and where we have
assumed that Eclass does not explicitly depend on the solute nuclear
coordinates R. As before, the brackets denote a configurational average.
Note that E incorporates both intra-, EQM, and intermolecular, Eint,
contributions.
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In the same way the Hessian reads

�
GðR;R0Þ� ¼ D @2E

@R@R0
E
� �

D @E

@R

@Et

@R0
E
þ �

D @E

@R

ED @E

@R

E
t

¼
D @2E

@R@R0
E
� �

h�
F2
�� �

�
F
�2i

;

ð7Þ

where the superscript t denotes the transposition and � = 1/kT. The last
term in Eq. (7) is related to the thermal fluctuations of the force.

As for the energy, it is convenient to split the interaction term into
two components associated to the electrostatic and van der Waals
contributions:

�
FðRÞ� ¼ �

D @EQM

@R

E
�
D @Eelect

int

@R

E
�
D @Evdw

int

@R

E
: ð8Þ

Next, we use the MFA to simplify the gradient and Hessian expres-
sions. Given that our final aim is to reduce the number of quantum
calculations, this approximation is used for the two first terms of the
R.H.S. of Eq. (8), but not for the van der Waals term that does not
depend on the electron coordinates. Thus, we replace the configurational
average of the derivatives with the derivative of the MFA energies
obtained with Eq. (5), furthermore we neglect the force fluctuation
term in Eq. (7) (since the Hessian is used only to accelerate the optimi-
zation procedure, this approximation has no effect on the optimized
geometries but it can affect the harmonic frequencies evaluation). The
validity of these approximations has been checked elsewhere [41]. The
force now reads as follows:

�
FðRÞ� ¼ � @�EQM

@R
� @�E

elect
int

@R
�
D @E vdw

int

@R

E
; ð9Þ

with an analogous expression for the Hessian:

�
GðR;R0Þ� ¼ � @2�EQM

@R@R0 �
@2�E

elect
int

@R@R0
�
D @2E vdw

int

@R@R0
E
: ð10Þ

The advantages of the introduction of the MFA in the calculation of
gradients and Hessians are evident, it permits to reduce the computational
cost of these quantities in solution; in fact, the cost is similar to that of an
isolated molecule.
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3.3. Calculation of free energy differences

For most practical applications, one is interested in the free energy (FE)
difference between different structures, states, or species, such as the
ground and excited state in a photophysical process, and reactants, pro-
ducts, and transition state in a chemical reaction. Within the ASEP/MD
methodology, the free energy difference in solution between two given
states is approximated as follows [42]:

DGs ¼ DEsolute þ DGint þ DZPEsolute; ð11Þ
where DEsolute is the internal energy difference between the two solute states
at QM level, DGint is the difference in the solute–solvent interaction free
energy, and DZPEsolute includes the difference in zero-point energy as well
as entropy and thermal contributions to the solute QM free energy.
Although formally this equation takes the same form as in the QM-FE
approach of Jorgensen [43], the meaning of the DE term is different. First,
because the geometry of the two species involved are optimized in solution.
Second, because the internal energy and charge distribution of the solute are
determined in the presence of the solvent.

In Eq. (11), the internal energy difference between the two QM states is
defined as

DEsolute ¼ EB �EA ¼ �
CBjĤ0

BjCB

�� �
CAjĤ0

AjCA

�
; ð12Þ

where, Ĥ
0

X is the in vacuo Hamiltonian for the state X, and CX is the
electronic wave function of the state X in solution, that is, calculated in the
presence of the perturbation caused by the solvent. CX is obtained by
solving the effective Schrödinger equation, Eq. (5). EB and EA are calculated
using the geometries optimized in solution and do not include the solute–
solvent interaction energy.

The DGint term is calculated with the free energy perturbation (FEP)
method [44], and takes into account the ensemble of thermally accessible
solute–solvent configurations. To obtain DGint, the solute geometry, charges,
and Lennard-Jones parameters are considered as a function of the perturba-
tion parameter �: when � = 0 they correspond to the initial state and when
� = 1 to the final state. A series of intermediate arbitrary states are defined
by linear interpolation of the solute properties and for each of them a fully
classical MD simulation is performed. The free energy difference is
calculated from these simulations in the usual FEP way. It must be noted
that, although geometries and charges for the initial and final states of the
solute are calculated quantum mechanically with the ASEP/MD method,
the DGint term is obtained through classical simulations. This approximation
does not introduce significant errors if a sufficiently good solute charge
distribution is used and it permits an important saving in computational
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effort. A more detailed discussion of this point can be found in Ref. [45]. For
a comparison of several strategies based on the MFA for the calculation of
solvation free energies in solution and protein environment, see Ref. [46].

Finally, the DZPEsolute term is calculated in the same way as usually done
for in vacuo calculations, using the harmonic approximation for vibrational
modes. The only specific consideration in solution is that the molecular
geometry and vibrational frequencies of the solute are obtained in solution,
using the approximate in solution Hessian matrix. Rotational and transla-
tional degrees of freedom are transformed into low-frequency vibrational
modes in solution, and must be treated accordingly.

4. VALIDITY OF THE MEAN FIELD APPROXIMATION

The main source of error associated to the use of the MFA is the complete
neglect of the Stark component of the solute�solvent interaction energy. In
this section, we present some results that permit to estimate the magnitude
of this error in several quantities. More specifically, we discuss three types
of errors: errors on the energy and dipole moment of molecules in the
ground state, errors on the solvent shift in electron transitions, and errors
on the energy gradients.

In Table 3.2, the values for the energy and dipole moment of several
alcohols and carbonyl compounds in water solution calculated with the
MFA or as an average of QM calculations are compared [20].

�
A
�
represents

the value of the A property calculated as the mean value of 100 quantum
calculations; AMFA represents the value obtained when the MFA is used,
and has been obtained by calculating the ASEP with the same 100 solvent
configurations and performing only one quantum calculation. WStark is the

Table 3.2 Interaction energy, solvent Stark component (in kcal/mol), and dipole

moments (in debyes) in the liquid state calculated as a mean value
�
E
�
or with the mean

field approximation EMFA

�
E
�

EMFA WStark

�
�
�

�MFA

�
�
�
–�MFA

CASSCF
Formaldehyde –9.2 –8.8 0.4 (4.3%) 2.99 2.99 0.00 (0.0%)
Acetaldehyde –8.9 –8.5 0.4 (4.5%) 3.46 3.46 0.00 (0.0%)
Acetone –21.9 –21.1 0.8 (3.6 %) 4.48 4.47 0.01 (0.2%)

MP2
Methanol –18.3 –17.9 0.4 (2.2%) 2.46 2.45 0.01 (0.4%)
Ethanol –15.8 –15.4 0.4 (2.5%) 2.27 2.25 0.02 (0.9%)
Propanol –13.7 –13.5 0.2 (1.5%) 2.15 2.13 0.02 (0.9%)
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difference between these two quantities for the energy. As we can seeWStark

is in all cases lower than 5% and the errors introduced by the MFA in the
dipole moments are lower than 1%. Percentually, the errors are very similar
along each series of molecules. The errors are somewhat higher in the
carbonyls because of their larger polarizabilities.

For the determination of the error introduced by the MFA in the
calculation of the solvent shift of electron transitions, we must compare
the transition energy when the MFA is used and when it is not. In
Table 3.3, we compared the errors introduced by the MFA in the calcula-
tion of the transition energy in several chromophores and different sol-
vents: water, methanol, and cyclohexane. In this study electronic
transitions to the first (n�p�) excited state were studied for acrolein and
formaldehyde, whereas (p�p�) transitions were studied for p-difluoroben-
zene (p-DFB) and trans-difluoroethene (trans-DFE). A practical coincidence
is observed between the in solution transition energies obtained using
the MFA and those achieved as the average of the transition energies
resulting from 100 quantum calculations corresponding to as many solvent
configurations. A similar trend can be noted in solvent shift values,

Table 3.3 Transition energies in vacuo, DE0, and in solution calculated as a mean value�
DEd

�
or with the mean field approximation DEdMFA. � stands for the solvent shift. WStarrk is

the solvent Stark component of the solute–solvent interaction energy. All the quantities in

kcal/mol

DE0
�
DEd

�
DEd

MFA

�
�
�

�MFA WStark(�)

Water
Acroleine;
CASPT2(6,5)//CASSCF(6,5)

83.08 88.26 88.60 5.18 5.51 0.34

Formaldehyde;
CASPT2(4,2)//CASSCF(4,2)

92.30 95.79 95.73 3.49 3.43 –0.06

p-DFB;
CASPT2(6,6)//MP2

110.02 111.18 111.17 1.16 1.14 –0.02

trans-DFE;
CASPT2(2,2)//MP2

190.62 192.34 189.68 1.72 1.67 –0.05

Methanol
p-DFB;
CASPT2(6,6)//MP2

110.02 110.66 110.75 0.64 0.72 0.08

trans-DFE;
CASPT2(2,2)//MP2

190.62 191.60 191.42 0.98 0.80 –0.18

Cyclohexane
p-DFB; CASPT2(6,6)//MP2 110.02 110.22 110.18 0.16 0.19 –0.03
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calculated as the difference of electronic transition energies obtained in
vacuo and in solution. Consequently, and as a first conclusion, we can state
the absence of solvent Stark effect and the validity of the MFA in the study
of the solvent effect on the position of the absorption bands in electronic
spectra.

Finally, in Table 3.4 we compare the values of the different components
of the free energy gradient for a molecule of formamide in aqueous solution
[41]. The error introduced by the MFA in the gradient root mean square
(RMS) is close to 1%, very similar to the errors introduced in the energy or in
dipole moment. This implies that the MFA can provide good optimized
geometries of molecules in solution. In the gradient we have included only
the electrostatic component of the solute�solvent interaction energy because
the MFA affects only this component, the contribution of the van der Waals
component to the gradient is evaluated directly from the MD simulations
(vide supra).

Table 3.4 Cartesian gradient of the free energy (in 10–3 Eh/a0) of a molecule of forma-

mide in aqueous solution. Only the electrostatic contribution is included

Mean of 1000
configurations

Average
configuration

Difference

N1 x 12.914 12.827 0.087
y 3.858 3.831 0.027
z 0.084 0.085 –0.001

H2 x –3.365 –3.132 –0.233
y 3.049 2.928 0.121
z 0.053 0.049 0.004

H3 x –1.116 –1.081 –0.035
y –5.347 –5.081 –0.266
z –0.006 –0.004 –0.002

C4 x –26.864 –26.816 –0.048
y 5.473 5.487 –0.014
z –0.002 –0.010 0.008

O5 x 18.255 17.862 0.393
y –10.052 –9.788 –0.264
z –0.041 –0.026 –0.015

H6 x 1.567 1.571 –0.004
y –2.136 –2.240 0.104

z –0.004 0.002 –0.006

r.m.s. 8.898 8.807 0.091
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5. EXAMPLES OF APPLICATIONS

In this section we present some examples of application of ASEP/MD. These
examples comprise solvent effects on conformational and configurational
equilibria, chemical kinetics, UV/Vis spectra and nonradiative de-excitation
of excited states. In all of them, the use of the MFA permits to reduce the
computational cost associated to the great number of thermally accessible
solvent configurations; this makes it possible to increase the description level
of the solute and the use of quantum methods similar to those commonly
used in gas-phase calculations: density functional theory (DFT), Møller-
Plesset perturbation theory (MP2), complete active space self consistent
field (CASSCF), complete active space perturbation theory (CASPT2), and
so on. Along this discussion, the results obtained with ASEP/MD will be
compared with those obtained with other methods. The final aim is to estab-
lish the validity of the MFA and to determine the possible importance of
solute�solvent specific interactions on the calculated properties.

5.1. Conformational and configurational equilibria

5.1.1. Anomeric effect in xylopyranose and glucopyranose
The anomeric effect describes the axial preference for an electronegative
substituent on the pyranose ring adjacent to the ring oxygen. This effect
makes the b-anomer—with all the hydroxyl groups in the equatorial
orientation with respect to the ring (in D-glucopyranose)—less stable than
the a-anomer—which differs from the b-anomer in the axial orientation of
the hydroxyl group on C1—in vacuo. However, the reverse behavior has
been observed in aqueous solution. So, for instance, in D-glucopyranose in
water solution, the ratio between a- and b-anomers is 36:64. A similar
behavior has been observed in xylopyranose.

In the study of D-xylopyranose [47], the energy and wave functions were
calculated using DFT with the Becke three-parameter Lee–Yang–Parr
(B3LYP) functional [48] and the 6-311GþþG(2d,2p) basis set [49]. For each
anomer, there are several possible arrangements of the hydroxyl groups. In
general, for the isolated molecule, the hydroxyl groups prefer to orient in
such a way as to yield a cooperative hydrogen bonding as efficiently as
possible. The two preferred arrangements of the intramolecular hydrogen
bonds (IHBs) are clockwise or counterclockwise, the counterclockwise
orientation being somewhat more stable. The main results obtained are
displayed in Figure 3.3. For comparison, we also give the results obtained
with the polarizable continuum model (PCM) [12] as implemented in Gaus-
sian 98 [50] and with a scale factor for the radius of each atomic sphere of
1.2. The continuum model erroneously predicts that solvation favors the
a-anomer; in fact, the solvation free energy is 1.1 kcal/mol larger in the
a-anomer than in the b. On the contrary, ASEP/MD, which includes specific
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solute–solvent interactions, predicts the correct trend: in solution the more
stable form is the b-anomer. Given that in vacuo the anomeric effect favors
the a-anomer, the greater stability in solution of the b-anomer must be due
to a more favorable solvent interaction term. The relative stability predicted
by ASEP/MD, 0.6 kcal/mol, agrees very well with the experimental value,
0.4 kcal/mol [51].

The study of the D-glucopyranose molecule [52] is somewhat more
complicated because the hydroxymethyl group can adopt different orienta-
tions (see Figure 3.4) with different values of the dihedral angle

β-D-Xylopyranose

α-D-Xylopyranose

4.46

2.20

0.87

0.0 0.0

SolutionVacuum

2.03 PCM

–0.4

–0.7

Exp.

Figure 3.3 Relative free energies (with counterclockwise a-D-xylopyranose as the

reference) of a- and b-D-xylopyranose, in vacuo and in solution.

αG+ αG– αT

βG+ βG– βT

Figure 3.4 Structures of the different rotamers of a- and b-D-glucopyranose.
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OR�C5�C6�O6. In our study we considered the three most important
rotamers (T, Gþ, G–) of counterclockwise D-glucopyranose, which were
studied in vacuo and in water solution at the B3LYP/6-31þG(d,p) level
and with the ASEP/MD method.

Figure 3.5 shows the relative energies of the six studied conformers of
D-glucopyranose in vacuo and in aqueous solution. The energy of the most
stable conformer in vacuo, aT, is arbitrarily taken as the reference value. The
most significant effect of the solvation of D-glucopyranose is the larger
stabilization of the b-conformers relative to the a ones. As a result,
we found that while in vacuo the a-conformers are more stable than their
b counterparts; in aqueous solution any of the b-conformers is preferred to
any of the a-conformers. The difference in energy in solution between the
most stable b-conformer, bGþ, and the most stable a-conformer, aT, is
0.9 kcal/mol. Experimental evidence [53,54] suggest that the difference in
free energy between a- and b-conformers of D-glucopyranose in aqueous
solution is around 0.4 kcal/mol (a ratio between a- and b-abundances of
36:64). Our results slightly overestimate these differences in energy (we
obtain a ratio between a and b of 20:80), but, given the approximations
made in our study, this result is very encouraging.

In order to gain a deeper insight into the solvation effects, in Figure 3.6
we plot the radial distribution function (RDF) for the distances between the
anomeric oxygen, O1, and the water solvent oxygen, Ow, for the six
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Figure 3.5 Relative free energies (with aT as the reference) of the different rotamers of

a- and b-D-glucopyranose, in vacuo and in solution.
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conformers. Figure 3.6a shows the RDF for the a conformers and Figure 3.6b
for the b-conformers. The main conclusion is that, as we noted above,
solvation is more effective for the b-conformers, which shows a peak (at
around 3.1 Å) that is higher than for the a-conformers. One can therefore
expect the b-conformers to be more stabilized by solvation than the a-
conformers, the solvent molecules being more tightly bonded to the anome-
ric oxygen in the b-conformers. The solvation of the rest of the OH groups of
the pyranose ring hardly depends at all on the type of conformer, and hence
has no influence on the relative stability of the a- and b-forms.

In sum, the most significant effect of the solvation of D-xylopyranose and
D-glucopyranose is the greater stabilization of the b-conformers relative to
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Figure 3.6 O(anomeric)�O(water) RDFs of the different rotamers of a- and
b-D-glucopyranose.
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the a-conformers. The explanation is that the anomeric effect, which makes
a-conformers more stable in the gas phase, is not powerful enough to
compete with the effect of a stronger interaction between the solvent and
the free electron pairs of the anomeric oxygen in the b-conformers than in
the a-conformers, where this interaction is hindered by the rest of the
pyranose ring.

5.1.2. Conformational equilibrium in a tripeptide
In recent years, small peptides have been used as model systems for the
study of the conformational behavior of more complex biomolecules. In an
effort to gain insight on the solvent influence on the structure and stability
of peptides, we undertook the study of the electronic structure, the geo-
metric parameters, and the physicochemical properties of the tripeptide
Cys-Asn-Ser (Figure 3.7) both in gaseous and in acidic aqueous solutions
[55]. The study was performed with ASEP/MD and at the B3LYP/6-311þG
(d) level. The Cys-Asn-Ser tripeptide can form several IHBs that involve
groups of very different nature [56]. It is hence a good model to check the
solvent influence on the geometry and energy of the different groups. We
are especially interested in the study of the IHB formed by the oxygen (O25)
of the side chain of Asn with the two hydrogens (H2 and H19) bonded to the

Figure 3.7 Structure and labeling of the Cys-Asn-Ser tripeptide.
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nitrogens (N1 and N15) of the peptide bonds, because they can provide
stiffness to the main chain of the tripeptide. We named these IHBs as HB1a
(N1�H2�O25) and HB1b (N15�H19�O25), respectively.

In gas phase we found three minima, see Figure 3.8. The two more stable
structures are Vac-2 and Vac-3, the free energy difference between these two
structures is only 0.3 kcal/mol. In both structures, O25 is involved in the
formation of an IHB. Somewhat higher in energy (2 kcal/mol), we find
Vac-1, in this structure the O25 IHB is missing.

Next, we analyzed the in solution results. Figure 3.9 displays the six
more stable structures, for the sake of simplicity other structures at higher
energies have not been included. The structures of Sol-1–Sol-3 conformers
are equivalent to those obtained in vacuo (Vac-1–Vac-3), in the sense that
they are characterized by the same number of IHBs and display a similar
orientation of the side groups. Sol-4–Sol-6 are extended structures without
IHB. The first conclusion is that the number of local minima is greater in
solution than in vacuo. The solvent stabilizes extended structures without
IHB that are not stable in vacuo. These results confirm previous studies on
the relative stability of amino acids and peptides, where it was found that

Vac-1 Vac-2

Vac-3

Figure 3.8 Stable conformations of the tripeptide in vacuo.
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some structures that do not exist in gas phase become stable in solution
because of their ability to form strong intermolecular HBs with water. So, for
instance, in solution, the most stable structures are Sol-1, Sol-5, and Sol-6; in
these three conformers, O25 forms an intermolecular HB with the water
molecules. Higher in energy are Sol-2 and Sol-3, characterized by the pre-
sence of HB1b and HB1a, respectively. Consequently, in solution there is an
equilibrium between several structures, with the structures where O25
forms intermolecular HBs strongly favored.

Another fact to emphasize is that, in solution, the stability order is
reversed with respect to the situation found in vacuo, here the order is
Vac-3> Vac-2> Vac-1 whereas in solution the stability order of the equiva-
lent structures is Sol-1> Sol-2> Sol-3. The study of the different

Sol-1 Sol-2

Sol-3 Sol-4

Sol-5 Sol-6

Figure 3.9 Stable conformations of the tripeptide in solution.
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contributions to the free energy, Table 3.5, permits us to clarify the origin of
the inversion in the differential stability of the conformers when we pass
from gas phase to solution. DG is the sum of two contributions: the internal
energy, DEsolute, and the solvation energy, DGint, as indicated in Eq. (11)
neglecting the DZPEsolute term. It is interesting to note that there exists a
strong negative correlation between the internal energy and the solvation
energy: the less stable the internal structure of the conformer, the greater the
solvation energy. The internal energy is stabilized by the presence of IHBs,
consequently, the most negative values of the internal energy correspond to
those structures with the larger number of IHB (Sol-2 and Sol-3). On the
contrary, the solvation energy is larger in those structures where there is a
better exposure of the polar groups of the peptide to the water molecules,
that is, in those structures in which the tripeptide adopts a more extended
conformation without IHB (Sol-5 and Sol-6). The stability order results from
the interplay of these two factors: internal energy and solvation that, in turn,
are determined by the competition between intra- and intermolecular HBs.

The study of the shape of RDF and of the coordination numbers
also reveals the competition between IHBs and intermolecular HBs, see
Figure 3.10. If one fixes the attention on the O25(tripeptide)�H(water)
RDF, it can be noted that the height of the RDF and the coordination number
decreases as we pass from a conformation with intermolecular HB to one
with intramolecular HB. So, for instance, the O25 coordination number
decreases from 2.5 to 2.2 when one passes from Sol-1 to Sol-2, and to 1.8
in Sol-3. However, the most dramatic effects are displayed by H2 and H19.
In Sol-1, both hydrogen atoms show well-defined peaks at 2 Å in the
H(tripeptide)�O(water) RDFs. In the two cases, the coordination numbers
are close to 1. In Sol-2, H2 displays also a very well-defined peak but the RDF
associated to H19 has completely lost its structure, evidencing the existence
of an IHB between O25 and H19. Something similar is found in Sol-3, in this
case the H19�O(water) RDF displays a very well-defined peak but the
H2�O(water) RDF loses its structure as a consequence of the H2�O25 IHB.

Table 3.5 Free energy difference and its components, in kcal/mol, for the six most stable

minima found in solution

DEsolute DGint DG

Sol-1 –8.0 3.1 –4.9
Sol-2 –11.0 7.4 –3.6
Sol-3 –11.8 9.8 –2.0
Sol-4 0.0 0.0 0.0
Sol-5 4.1 –8.8 –4.7
Sol-6 8.2 –13.0 –4.8
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5.2. Chemical reactions

An example of application of the ASEP/MD methodology to chemical
reactions was the study of the 1,3-proton shift in triazene (N3H3) [57]. The
ASEP/MD method was used to optimize the geometries of the triazene
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Figure 3.10 O25�H, H2�O, and H19�O RDFs for the tripeptide in solution. Solid: Sol-1.
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molecule in water, as well as the transition states of two possible reaction
mechanisms: a unimolecular shift (TS1) and a bimolecular reaction aided by
a water molecule (TS2, see Figure 3.11) in aqueous solution. A DFT method
with a BP86 functional [58,59] was used for the quantum calculations with a
triple-zeta basis set. Concerning the structure of the transition states, it was
found that TS2 in solution resembles a N3H4

þ þ OH– ionic pair in solution
more than in gas phase, which accounts for a part of the stabilization of this
transition state in solution (see Table 3.6). While the activation energy for the
unimolecular reaction increases from 32.0 kcal/mol in gas phase to
34.9 kcal/mol in solution, for the bimolecular reaction it decreases from
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Figure 3.11 Scheme of 1,3 proton shift of triazene. Top: unimolecular reaction. Bottom:

bimolecular reaction with the aid of a water molecule.

Table 3.6 Energy barriers (in kcal/mol) of the two activation processes for the 1,3 proton

shift in triazene. See Figure 3.11 for the structures

In vacuo In solution

N3H3 ! TS1 32.03 34.91
N3H3 þ H2O ! TS2 10.07 5.46
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10.1 kcal/mol to 5.5 kcal/mol. Not only the bimolecular path is preferred,
but the preference is much stronger in solution.

As a complementary application, the optimized TS2 structure obtained
in water with the ASEP/MDmethod was used as the initial solute geometry
for trajectory calculations with a standard QM/MM method (DFMM)
[60–62], using the “rare event” approach for the dynamical study of the
bimolecular reaction. Starting with the transition state, 50 different QM/
MM trajectories, with Boltzmann-distributed initial velocities, were run
both forward and backward in time. This allowed us to observe the beha-
vior of the transition state structure in solution and the course of the
reaction. The main conclusions were (1) the hydrogen-bonded complex
(CMP) is maintained before and after the reaction takes place; (2) a transition-
state-like structure, which resembles an ionic pair, is relatively long-lived
(an average life of 85 fs); (3) the calculated transmission coefficient was
0.73, indicative of a good initial representation of the transition state,
which was the aim of the ASEP/MD method, and at the same time of a
nonnegligible influence of dynamical effects and recrossings, as suggested
by the long-lived TS2-like structure.

5.2.1. Electron transitions
In the study of solvent effects on electron spectra, it is very usual to consider
two time scales: a fast one, associated with the motion of the electrons, and a
slow one, related to the nuclear motion. During an electron transition, the
Franck–Condon (FC) principle establishes that the nuclear geometries of the
solute and solvent remain fixed. That means that for an absorption process
the solvent structure will be in equilibrium with the ground-state solute
charge distribution, but not with the solute charge distribution of the excited
state (the contrary is valid for the emission process). However, the response
of the electron distribution of the solvent is in general fast enough to adapt
to the change in the solute charge distribution during the transition. In our
group we have developed a polarizable solvent version [63,64] of the ASEP/
MD method that permits the electronic degrees of freedom of the solvent to
respond instantaneously to the change in the solute charge distribution
during the transition, that is, the electron solvent polarization is always in
equilibrium with the solute charge distribution. To this end an additional
self-consistent process is performed. Using the solvent structure and solute
geometry obtained in the first self-consistent ASEP/MD process, we couple
the quantum mechanical solute and the electron polarization of the solvent.
We assign a molecular polarizability to every solvent molecule, and simul-
taneously, we replace the effective solvent charge distribution used in
the MD simulation with the gas-phase values for the solvent molecule.
The induced dipole moment on each solvent molecule is a function of the
induced dipole moments on the rest of the molecules and of the solute
charge distribution, and hence the electrostatic equation has to be solved
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self-consistently. The process finishes when convergence in the solute and
solvent charge distributions is achieved.

In our method, the solvatochromic or solvent shift of an electron transi-
tion is the sum of several contributions [65] corresponding to the change in
the internal energy of the solute when polarized, the distortion energy of the
solvent, that is, the energy spent in the reorganization of the solvent during
the excitation, and several terms associated to the interactions between the
solute charge distribution, Q, and the permanent, q, and induced, p, charges
in the solvent.

� ¼ Uex �Ug ¼ 1

2
�pq þ �Qq þ 1

2
�Qp þ � solute

dist þ � solvent
dist : ð13Þ

The last term of Eq. (13), the distortion energy of the solvent, vanishes in a
vertical transition where the solvent structure is kept fixed but takes a
nonnull value in adiabatic transitions.

As an example of application of the method, the transition energy of
dimethylaniline (DMA) in several solvents is presented [66]. The geometry
of DMA was optimized at CASSCF(8,7)/6-311G�� level, and the transition
energies calculated with second-order perturbation theory (CASPT2) as
implemented in MOLCAS-6 [67]. The solvents, water, cyclohexane, and
tetrahydrofuran, were represented as rigid molecules with the OPLS-AA
force field. In vacuo, the ground-state dipole moment is 1.33D and 1.66D in
the excited state. When the molecule is introduced into a solvent, it is
expected that the excited state will be more stabilized than the ground
state, consequently the transition energy will decrease and we will have a
red solvent shift. In Figure 3.12 white circles represent the experimental
values. As one can see, the decrease of the transition energy becomes larger
when the solvent polarity increases. Water, however, presents an anoma-
lous behavior. In water, the transition energy increases. We will try to
explain the reasons of this anomalous behavior later. First, we will describe
the prediction of continuum models, blue circles. As we can see, PCM
reproduces the experimental trend in nonprotic solvents, but fails in the
water case. On the contrary, ASEP/MD, red circles, reproduces correctly the
experimental trend, both in protic and nonprotic solvents. The systematic
deviation of our results from the experimental values is due to the neglect of
the contribution of the dispersion component. This component is a function
of the refraction index of the solvent and hence it hardly depends on the
solvent nature (the refraction index varies very little among the different
solvents studied) and its contribution can be eliminated by considering the
differences between solvents instead of the absolute transition energy, see
Figure 3.13. The agreement with the experiment is very good.

Turning to the motives of the anomalous behavior of water, in Figure 3.14
we represent the occupancy map of water oxygen atoms. Because of the
formation of HBs, most of the water molecules concentrate close to the free
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electron pair of the nitrogen atom. There are also high concentrations above
and below the aromatic ring.When themolecule is excited, part of the charge is
transferred from the nitrogen atom to the ring, and the HBs are broken, as a
consequence the solvation energy decreases in the excited state. In reality, this
is only a partial view of the problem. When the solute molecule is placed in
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water, the wagging angle between the dimethylamino and phenyl moieties
increases, see Table 3.7, something that does not occur with the other solvents.
Almost half of the solvent shift comes from this distortion of the geometry, the
rest is explained by the breaking of the HBs mentioned before.
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0.80

Figure 3.14 Occupancy map of oxygen atoms around the ground state of DMA. Solid

isosurface at a density value of 0.64.

Table 3.7 Twisting angle (in degrees) for optimized geome-

tries of DMA in several solvents

Angle

Gas 28.4
Cyclohexane 28.7
CH/THF (0.5) 28.5
Tetrahydrofuran 28.5
Water 34.0
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Another interesting case is the study of the solvent effects on the electron
transitions in retinal [68,69]. Retinal is a very interesting molecule because it
is the chromophore of rhodopsin, the visual pigment in vertebrates. The
(p–p�) electron transitions to the first two excited states of 11-cis-retinal
protonated Schiff base (PSB) and several simplified models that have been
profusely used in the bibliography (see Figure 3.15) were calculated in
vacuo and in methanol solutions. The ASEP/MD method was employed
for the in solution calculations. Full ground-state geometry optimizations
were performed in both conditions, allowing the total relaxation of all the
degrees of freedom at MP2 and/or CASSCF level of calculation with the
split-valence 6-31G� basis set. Nevertheless, the transition energies were
always obtained at CASSCF/6-31G� level of calculation using in each case
the complete active p space (10e, 10o), or (12e, 12o) depending on the model
used. To improve the energy results, the dynamic electron correlation
energy was included with second-order perturbation theory (CASPT2).

In vacuo, the first transition gives rise to a very strong band, while the
transition to the second state is almost forbidden. In the ground and second
excited states, the positive charge is localized close to the nitrogen atom
(covalent states); however, in the first excited state the charge is spread out
on the entire molecule (ionic state), see Figure 3.16. Consequently, the
second excited state will solvate better than the first and one expects that
the energy gap between the two states decreases. In fact, we find that in
methanol solution, both states become almost degenerate. Furthermore, the
oscillator strength of the transition to the second state increases. This beha-
vior agrees with the experimental spectra [70–72], where, in gas-phase
conditions two bands are found, one weak and the other strong but only a
single very broad band appears in methanol solution.

Table 3.8 collects vertical transition energies in solution and the corre-
sponding solvent shifts obtained for different models of retinal. At first
sight, the interaction with the solvent seems to produce the inversion in
the relative position of the first two excited states, the covalent state becom-
ing lower in energy with respect to the ionic one. The nature of the different
states was corroborated by the dominant configuration participating in
each state, that is, doubly excited for the covalent and a highest occupied
molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO)
transition for the ionic. Oscillator strengths were also calculated, being the
transition to the upper excited state the optically allowed transition (f value
close to 1). The energy difference between the covalent and ionic states
varies between 0.7 eV and 0.3 eV at CASSCF//MP2 level of calculation.
The scene changes substantially when dynamic correlation is taken into
account. Under these conditions, both states become practically degenerate,
and we find an energy gap between them of about 0.1 eV. The proximity
between these electron transitions gives rise to the fact that, contrary to the
in vacuo conditions, the in solution theoretical absorption spectrum shows
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Table 3.8 Calculated vertical transition energies (eV), oscillator strengths, and solvent

shifts values (eV) for the M1, M2, M3, and CC-PSB models

S0!Ionic S0!Covalent

Vacuo Solution � Vacuo Solution

M1
CASSCF/CASSCF 3.55 5.22 1.67 4.61 4.62
CASPT2/CASSCF 2.56 3.82 1.26 3.58 3.78
CASPT2/MP2 2.40 3.51 1.11 3.16 3.61
Oscillator strength 1.15 1.00 0.09 0.01

M2
CASSCF/CASSCF 3.34 4.93 1.59 4.34 4.44
CASPT2/CASSCF 2.56 3.68 1.12 3.64 3.45
Oscillator strength 0.97 0.87 0.21 0.23

M3
CASSCF/MP2 3.03 4.08 1.05 4.05 3.78
CASPT2/MP2 2.28 2.99 0.71 3.27 2.88
Oscillator strength 0.95 0.91 0.22 0.21

CC-PSB
CASSCF/MP2 2.54 4.19 1.65 3.42 3.87
CASPT2/MP2 1.93 3.00 1.07 2.77 2.95
Oscillator strength 1.20 0.93 0.06 0.15

Experimental 2.03 2.79 3.18
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two poorly resolved bands. Our results confirm the recent experimental study
published by Nielsen et al. [72]. In this study, the authors provide the in vacuo
and the in solution electronic absorption spectra of the all-trans n-butyl PSB in
methanol solution and also the in vacuo spectrum for the 11-cis dimethyl
Schiff base. The in solution registered spectra for the two isomers are said to
be identical. The experimental gas-phase spectrum shows a band at 390nm
corresponding to the S2 absorption band maximum and another at 610nm
corresponding to the transition to the S1 state. When the spectrum is recorded
in methanol solution, the S1 band maximum is blue-shifted by more than
150nm and what is more important, no resolved S1 and S2 bands were
found. The spectrum shows only a broad band centered at around 450nm
(2.76eV). Independently of the model used in the calculations, our theoretical
results completely reproduce the appearance of the experimental spectra.

Another interesting quantity to evaluate is the predicted solvent shift.
These values are also collected in Table 3.8 and were calculated as the shift
suffered by the ionic band as a consequence of the solvent effect. Surprisingly,
CASPT2 calculations supply practically the same solvent shift (around 1.1 eV)
value independently of the system complexity, except for the M3 model where
the value is slightly lower. In all cases the calculated value is larger than the
experimental one, estimated in 0.72 eV (2.76 eV, the electronic transition energy
in methanol solution, minus 2.03 eV, in vacuo). The fact that the complete
chromophore (CC)-PSB system shows the same solvent shift overestimation
as most simplified models (M1 or M2) is due to a structural characteristic of the
system shared by all of them. Most of the solvation energy comes from the
interaction between the iminium group and the methanol molecules. In all the
systems here considered, the N atom is bonded to two hydrogen atoms;
however, the experiments have been performed with molecules where the N
is bonded to methyl or bulkier groups. In order to get more details, new
calculations were performed. In particular a new model (M4) was built repla-
cing the hydrogen atoms linked to the N atom in M1 with two methyl groups.
Both CASSCF and MP2 geometry optimizations were performed in vacuo and
in methanol solution keeping the same conditions as in previous calculations.
The solvent shift obtained for this model was 0.84 eV and 0.64 eV at
CASPT2//CASSCF and CASPT2//MP2 level of calculation, respectively.
Comparison with the equivalent results for M1 shows that the methyl groups’
incorporation decreases the solvent shift value in around 0.45 eV. If this
decrease is directly applied to the CC-PSB solvent shift, the final value becomes
0.65 eV, in very good agreement with experimental data (0.72 eV).

5.3. Nonradiative de-excitations in retinal

Even if the very first step of the visual process can be considered the light-
induced promotion of one electron from a p-type orbital to a p� one in the
chromophore of the protein rhodopsin, its biological activity starts with the
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cis–trans isomerization that this chromophore suffers in the excited state.
This conformational inversion causes in turn a conformational change in the
protein and starts the rest of the reactions taking place in the visual process.
Inside the protein pocket, this isomerization step is very fast, taking only
200 fs, and no significant fluorescence is usually observed. These properties
are characteristic of nonradiative processes involving crossings between
potential energy surfaces. These crossings can take place through CIs or
singlet–triplet crossings (STC) depending on the identical of different spin
symmetry of the involved states, respectively.

In the last decade, there have been quite exhaustive studies on the
isomerization of the rhodopsin chromophore through a CI between its
covalent ground state and the ionic first excited state in vacuo conditions.
Different models for the chromophore representation and more and more
accurate methods have been used in these studies. It has been only in the
last years when the development of the computational resources has per-
mitted the study of this process in a more realistic way, that is, considering
the possible effect of the environment. In our case, we have used an
extended version of the ASEP/MD method that allows the location of CIs
and STCs of systems in solution. The algorithm implemented in the method
is due to Bearpark et al. [73] and simultaneously minimizes the in solution
energy difference between the two intersecting states and the energy of the
crossing seam between the two potential energy surfaces. See Ref. [74] for
more details.

We started our study with the location of the in vacuo minimum energy
conical intersection (MECI) structure for the simplest model used in the
previous study devoted to the solvent effect on the UV absorption spectrum.
The main structural characteristic of this CI is a twist of �90� showed by the
central original double bond. In order to permit this change in the dihedral
angle, it is necessary the inversion in the nature of the single and double
bonds with respect to the FC structure, which is clearly observed in Table 3.9.
Next, our objective was the study of the solvent influence (methanol, in
particular) on the structure and position of the MECI. In this point, two
strategies were followed depending on whether the solvent is considered as
a frozen solvent or it is allowed to equilibrate with the solute electronic
distribution. The first corresponds to an infinitely slow solvent response
and the second to an infinitely fast solvent reorganization.

In the equilibrium case, it is possible to locate the MECI in solution, and
from a structural viewpoint, the solvent modifies bond distances and
slightly the twist of the dihedral angle. What is worth noting is that the
solvent suffers an important restructuring around the solute molecule to
respond to the torsion of almost 90� of its central dihedral angle from the FC
structure. Figure 3.17 displays the occupancy maps of methanol oxygen
atoms around the FC and MECI structures. As it can be seen, at the FC
point the solvent is mainly concentrated around the iminium end, where the
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Table 3.9 Optimized geometries of a retinal model at the Franck–Condon point and at

the conical intersection. Bond lengths in ångström, angles in degrees

FC MECI S0/S1

Vacuo Methanol Vacuo Methanol

C1C2 1.35 1.34 1.36 1.36
C2C3 1.46 1.47 1.42 1.40
C3C4 1.35 1.36 1.41 1.41
C4C5 1.45 1.45 1.38 1.36
C5C6 1.36 1.36 1.47 1.46
C6C7 1.45 1.46 1.37 1.41
C7C8 1.35 1.36 1.42 1.39
C8C9 1.44 1.43 1.39 1.44
C9¼N 1.28 1.28 1.32 1.30
Dihedral Planar Planar 91.0 85.9

Figure 3.17 Maximum occupancy regions of oxygen atoms around the ground state (top)

and the MECI (bottom) of the M1 retinal model.
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molecular charge is predominantly located, as at the FC the solvent is in
equilibrium with the ground state covalent electronic distribution. At the
MECI, one finds solvent molecules around the iminium end but also around
the carbon skeleton along which at the excited state the charge is spread out.
It can be concluded that in the equilibrium situation solvent molecules
stabilize the delocalization of the charge in the excited state and the two
states involved in the CI can cross. In frozen solvent conditions, the location
of the MECI has been impossible. If the solvation shells are considered fixed
and in equilibrium with the ground-state electronic distribution, when the
central dihedral angle rotates, part of the solute molecule will overlap with
the solvent. In addition, if the solvent can in some way equilibrate with the
solute, the great restructuring that it should suffer must take several
picoseconds and the isomerization in solution should be slower than in
vacuo or inside the protein pocket. This fact agrees with somewhat more
persistent fluorescence found for the rhodopsin chromophore in methanol
solution [75].

6. SUMMARY

The theoretical study of solvent effects is, in general, very demanding
because it requires extensive sampling of the configurational space of the
solute�solvent system. The MFA provides a practical and effective approach
that opens the possibility of studying chemical equilibria, spectroscopic
transitions, kinetic problems, and so on, using computational levels similar
to those used for gas-phase systems. The study of different systems and
processes in solution has permitted us to conclude that the MFA works very
well, even in those cases where the solvent is represented in a simplified
way, a dielectric for instance. Obviously, in this case, we must restrict
ourselves to systems where specific solute�solvent interactions are not pre-
sent. If these interactions are present, it is compulsory the use of more
sophisticated solvent descriptions that allow accounting for the effect
of bulk and specific interactions. ASEP/MD is a method that permits to
combine a high-level quantum mechanical description of the solute with a
detailed, microscopic, description of the solvent.

The following are the main characteristics of ASEP/MD: (1) A reduced
number of quantum calculations that permits to increase the description
level of the solute molecule which, in fact, can be described at the same level
as in isolated conditions. (2) Since the solvent is described through MM
force fields, there exists a great flexibility to include both bulk and specific
interactions into the calculations. (3) At the end of the procedure, the solute
wave function and the solvent structure become mutually equilibrated, that
is, the solute is polarized by the solvent and the solvent structure is in
equilibrium with the polarized solute charge distribution. (4) Finally, the
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method permits to find in an efficient way the geometry of critical points.
With critical points we refer to minima, transition states, CIs, and so on.

In the last section of this chapter, we have presented an overview of
applications of the ASEP/MDmethod to different systems and phenomena.
The approximations and methodology used have been validated through
comparisons with other studies and accepted methods and, in general, it has
been shown that ASEP/MD is a powerful and efficient method that does not
introduce significant errors but, in contrast, makes it possible to consistently
introduce the solvent influence on high-level quantum calculations.
Conformational equilibria, chemical reactivity, and electron transitions are
just three areas where solvent effects play an important role and where
ASEP/MD has proved to be a valuable tool.
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1. INTRODUCTION

Important methodological developments for investigating the structure, ther-
modynamics, and electronic properties of many-body interacting systems in
condensed phase have been accomplished in the last decades [1�4]. Several
sophisticated approaches including first-principles molecular dynamics [2],
combined quantum mechanics/molecular mechanics (QM/MM) [5�9], and
sequential statistical mechanics/quantum mechanical (SM/QM) [10,11],
became fundamental tools for studying condensed phase properties. On the
other hand, it is of general acceptance that a deeper knowledge of the
molecular mechanisms controlling the energetic and dynamics of complex
chemical and biochemical processes in solution relies on the understanding of
their electronic properties [12]. However, it is also recognized that this funda-
mental aspect is not very well understood. Specifically, although chemical
reactions in solution are considered as dynamic processes assisted by the
solvent [13,14] the relationship between the electronic properties of the
solvent and its role for assisting chemical reactions remains unclear. The
reasons that, at least partially, explain the theoretical difficulties for accurate
predictions of electronic properties in condensed phases are well known and
are basically related to the complex nature of many-body interactions in
disordered media. Thus, although first-principles molecular dynamics
based on density functional theory (DFT) represents a fundamental tool for
investigating condensed phase properties, some limitations of DFT for pre-
dicting the structure and dynamics of liquids, particularly those of liquid
water, have been extensively discussed in the literature [15�17]. It should be
stressed, however, that many recent improvements of DFT, with specific
implications on its adequacy for investigating hydrogen-bonding (HB) sys-
tems have been reported and are extremely promising [18,19]. Moreover,
DFT-based first-principles simulations are of fundamental importance for
studying bond forming and breaking in solution and has opened the way
for relevant theoretical studies of chemical reactions in condensed phases [2].
Another classical route for describing complex processes in solution is com-
bined QM/MM [9]. This method relies on the definition of a quantum system
(QM) for which the dynamics is coupled to the dynamics of an environment
(MM) usually treated by a simplified theoretical approach. Some methodolo-
gical issues inherent to this approach, which introduces a QM/MM interface,
are the correct representation of the interactions between the quantum system
and the environment and the treatment of the dynamics for particles close to
the QM/MM interface.

In close relationship with the QM/MM formulation is the sequential SM/
QMmethodology [10,11]. In this approach, a set of configurations generated by
Monte Carlo (MC) or Molecular Dynamics (MD) is selected for a posteriori
analysis of its electronic properties. The QM calculations are performed by
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defining a quantum system (QM) with a few molecules. The most common
procedure in sequential QM/MMfor describing the interactions between quan-
tum system and the environment takes into account, essentially, Coulombic
interactions. Therefore, a simple representation of the environment as an
embedding background is usually adopted. On the other hand, there is no
coupling between the dynamics and the a posteriori QMcalculations.However,
the definition of a quantum systemwith a significant number of molecules and
the application of high-level ab initiomethods for the accurate calculation of the
electronic properties make this approach very convenient in many cases of
interest.

Although the application of high-level ab initio procedures to systems
with a large number of molecules is still not possible, some recent
approaches based on energy-partitioning schemes have been proposed
[20�24] and represent an attractive possibility for investigating the electronic
properties of complex molecular systems in condensed phase [25]. In this
chapter we present an overview of recent developments and applications of
sequential SM/QM to the study of electronic spectra of hydrogen bond
liquids and anionic species in solution with particular emphasis on the
connections between QM/MM methodologies and some recently proposed
many-body partitioning expansions [23].

2. THEORETICAL METHODS

2.1. Statistical mechanics sampling for many-body interacting
systems in condensed phases

Monte Carlo and molecular dynamics simulations of liquids and solutions
are standard techniques for the study of condensed phase properties [26,27].
Both techniques depend on the calculation of the energy for a many-body
interacting system. This system can be defined by a Hamiltonian operator
Ĥ, a set of nuclear coordinates [RA, A= 1,. . ., a,. . ., M], and a wavefunction
[|C(ri; RA; X)> , i= 1,N]. N is the number of electrons and [X] represents an
additional set of coupling variables. Let P= (P1,. . ., Pa,. . ., PM) and
p̂ ¼ ðp̂1; . . . ; p̂i; . . . ; p̂NÞ the set of momenta corresponding, respectively, to
the (classical) nuclear and electronic coordinates. The Hamiltonian of the
system is

Ĥ ¼
XM
a¼1

P 2
a

2ma
þ
XN
i¼1

p̂2i
2mi

þ Vðri;RA;XÞ; ð1Þ

where V(ri; RA; X) defines the interactions between the different degrees of
freedom. The expectation value for the energy is given by

EðRA;XÞ ¼ hCðri;RA;XÞjĤjCðri;RA;XÞi: ð2Þ
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The Monte Carlo method generates a Markov chain over the config-
urational space that can be sampled according to an arbitrary distribution
�(RA;X). Specifically, Metropolis Monte Carlo with Boltzmann sampling
relies on the acceptance of a new configuration ½R�

A;X� over the chain with
a probability � ¼ Min½1; �ðR�

A;XÞ=�ðRA;XÞ�, where

�ðR�
A;XÞ

�ðRA;XÞ ¼
exp½ � �EðR�

A;XÞ�
exp½ � �EðRA;XÞ� ; ð3Þ

� ¼ 1=kBT, kB is the Boltzmann’s constant and T the temperature.
Phase space sampling through Born–Oppenheimer molecular

dynamics [2,3] is carried out by the numerical integration of the equations
of motion

dRa

dt
¼ @Ĥ

@Pa
; ð4Þ

dPa

dt
¼ �HRaEðRA;XÞ ¼ Fa: ð5Þ

For wavefunctions that are eigenstates of the Hamiltonian operator Ĥ,
the forces can be calculated by the Hellman–Feynman theorem [28–30] and
are given by

Fa ¼ �hCðri;RA;XÞjHRaĤjCðri;RA;XÞi: ð6Þ

Two main reasons make extremely difficult the general application of
statistical sampling methods for a many-body interacting system
through the ab initio calculation of the energy given by expression (2).
Firstly, the computational cost of correlated post-Hartree–Fock (HF)
methods scales at best as N5 (e.g., MP2), where N is a measure of the
system size. Although several recent developments have been reported
in order to significantly reduce the scaling of ab initio methods with N,
including density fitting or local approximation procedures, full ab initio
calculations for large systems demand enormous computational costs,
and are in many cases of interest, simply not affordable. Therefore, the
most widely used methods for first principles statistical mechanics sam-
pling in condensed phases relies on the application of Hartree–Fock [31]
or DFT methods [32], which scales as �N4 or better (down to linear
scaling). However, it is well known that the presently available DFT
methods are not adequate for dealing with dispersion interactions or for
accurate predictions of conformational energetics. The second reason is
related to the statistical convergence of the samplings that depends on
the generation of a very large Markov chain or of a molecular dynamics
trajectory during several picoseconds.
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2.2. Electronic spectra in QM/MM

Alternative approaches allowing the application of accurate ab initio proce-
dures for energy calculation and statistical mechanics sampling in con-
densed phases rely on QM/MM partitioning. The dynamics of the QM
sub-system is in general coupled to the MM environment. However, in
some cases, a QM/MM approach can be defined through the analysis of
the configurations generated by Markovian or dynamic sampling, using HF
or DFT energy calculations for a whole QM system, or even by adopting a
simplified force-field representation between the interactions of a complete
MM system. This alternative approach corresponds to a sequential metho-
dology, where all QM calculations are carried out a posteriori and it is
usually known as sequential SM/QM method. Actually, (SM/QM) can be
seen as a particular case of QM/MM. However, in contrast with the classical
QM/MM methodology, there is no coupling between the QM and the MM
subsystems in the sampling procedure. The adequacy of a sequential meth-
odology is strongly dependent on the reliability of sophisticated force-field
representations for the interactions of many-body systems. Moreover, the
MC or MD generation of a large number of configurations by using a force
field allows for a careful convergence analysis of the electronic properties a
posteriori calculated with high-level ab initio methods.

A fundamental aspect in the application of QM/MM procedures for
investigating electronic properties concerns the dependence of the results
on the size of the quantum system, the force-field representation of the MM
environment, and the coupling protocol between the QM and the MM
partitions. The following sections discuss all these aspects under the specific
subject of electronic spectra. Some of these discussions will be later recov-
ered in the applications featured in Section 3.

2.2.1. The QM/MM coupling schemes
From the various models available today for the QM/MM partitioning of a
system, we will restrict our discussion to the additive scheme. In this
approach, the QM and MM calculations are performed on (mostly)
nonoverlapping sections of the system, with the interaction between the
two regions added through coupling terms. In this work, we will be focus-
ing on the QM/MM energy for a system composed of a QM solute M,
embedded in a large number of MM solvent molecules {I}. There are no
covalent bonds connecting the two regions. The additive QM/MM energy
can be split down into three terms

EQM=MM½M� ¼ E½M� ¼ EQMðMÞ þ EMMðfIgÞ þ Eint; ð7Þ

where the first term is the QM energy of the solute

EQMðMÞ ¼ hCðri;RA;XÞjĤjCðri;RA;XÞi: ð8Þ
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The QM wavefunction C depends on the solute electron coordinates ri,
the solute nuclei coordinates RA, and additional parameters X, which
depend on the coupling method used. The second term in Eq. (7) represents
the molecular mechanics energy of the solvent molecules and the last term
gives the interaction energy between both regions. The interaction term is
also often given in the form of an added Hamiltonian. However, we prefer
referring to it as an extra energy contribution. This is more in line with the
structure of a program, where Eq. (8) and the interaction contributions are
computed at different steps. The notation E[X] (using square brackets) will
be used throughout this chapter to denote a QM/MM energy, with X being
the region represented in the QM section. We will now concentrate our
discussion in explicit forms for the coupling and its influence on the solute
excitation energies.

Since we are splitting the system into two regions without covalent
bonding, the coupling should strictly include nonbonded interactions.
Although simplistic, one commonly considers two main effects: electrostatic
and dispersion. The latter is most commonly computed by taking the atom
positions of both regions, and computing an energy contribution with
parameterized van der Waals (vdW) potentials, for both solute and solvent.
Such an approach seems to be generally reasonable since these are short-
range forces, and therefore there is no large error accumulation. The elec-
trostatic effects, on the other hand, are of vital importance, and several
different approaches have been used in the literature to compute them.

The most basic form of coupling in QM/MM methods is known as
mechanical coupling. In the case at hand, the Eint term will only include
electrostatic interaction terms given by a molecular mechanics parameter-
ization of the solute, just as the vdW forces

EintðelÞ ¼
X
A�

qAq�
rA�

: ð9Þ

The A and � indices stand for nuclei in the QM and MM regions, respec-
tively. The charges of each center are given by q and distances by r.
Although such a form will account for steric effects, the MM system does
not influence the solute wavefunction (X= 0). When calculating a QM/MM
vertical excitation energy, the coupling term will be the same for both
ground and excited states. As a result, one simply obtains the gas value
[the first term in Eq. (7) will be the only equation to change]. One could,
however, change the charge of the QM atoms for the excited state. One
possibility would be to compute these charges by a population analysis
scheme applied to the densities of both states. This type of approach poses
several problems, since there is no univocal method to translate an electron
density to atom-centered point charges. The Mulliken scheme, for example,
has several shortcomings [33,34]. We refer the reader to the discussion in the
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literature about this subject, which is out of the scope of this chapter. In
short, mechanical coupling is of very limited interest in the study of electro-
nic spectra in solution.

If one is interested in describing the excitation energy of a solute in a
polar medium such as water, the polarization effect of the surrounding
molecules should be taken into account. The next step is, therefore, to create
a dependence of the QM wavefunction on the surrounding charges of the
MM atoms. If we consider an all-atommolecular mechanics potential for the
solvent, QM polarization can be included by using

EintðelÞ ¼ hCðri;RA;q�Þj
X
�

q�
ri�

jCðri;RA;q�Þi þ
X
A�

ZAq�
rA�

; ð10Þ

where the first term is the MM charge–QM electron interaction and the
second is the MM charge–QM nucleus interaction. In Eq. (10), the wavefunc-
tion bears a dependence on the MM point charges. This is commonly
referred to as electrostatic coupling. The QM calculation on the solute is
performed with additional Coulomb operators, and as a result, there is an
interaction between the solute electrons and the electrostatic field of the
environment. In this coupling, only the “pure” MM energy of the solvent is
kept when changing the electronic state of the solute. This is by far the most
popular coupling scheme in QM/MM applications to date. It is quite
straightforward to use and to implement. In a QM code, one only needs to
add the environment charges in the zeroth-order Hamiltonian, which are in
practice the same as atomic centers without basis functions. The changes are
equivalent for an HF or DFT implementation, and all post-HF code is kept
unchanged (the only difference in the calculation is that the wavefunction is
polarized, and there are no additional terms). The most commonly used QM
codes to date have the possibility of adding a lattice of point charges and are
therefore elegible to be used in QM/MM applications with electrostatic
coupling.

The next step in improving the QM/MM coupling is to allow for a “back-
polarization” of the solvent. This is commonly referred to as polarization
coupling [35]. A change in the QMwavefunction could, for instance, induce a
dipole on the MM atoms. This is, of course, only possible when the MM
force field in use is itself polarizable. The extra energy terms can be con-
sidered as part of Eint(el) [36], or by defining an extra term, exclusively for
polarization, such as in Ref. [37]. For clarity, we will introduce an extra
Eint(pol) term, which gives the interaction energy of the electronic density
with the induced dipoles.

The fact that the solvent electrostatic field is influenced by the QM
wavefunction leads to several technical complications. Usually, two main
schemes are available to include this “back-polarization” effect [36]. One
possibility is to change the MM charge distribution, but without
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propagating the effect back to the QM region. This has the drawback of
defining an inconsistent polarization. The second scheme mends the pro-
blem by solving self-consistently the QM wavefunction and the MM charge
distribution. This can be done in several ways, either by taking effect
between QM self-consistent field (SCF) cycles or by updating the MM
field after each SCF run. Things become even more elaborate in the case of
post-HF calculations, since one needs to extract the electric field generated
by a correlated wavefunction. The polarization coupling can, therefore, lead
to significantly added computational effort. This is one of the reasons why
this coupling form has not found more widespread use. The other reason
has already been mentioned above, the fact that the MM potential has to be
polarizable. There is a rather limited number of force fields available for
these types of calculations. Most applications of this coupling scheme have
been found in hydration studies [38–46].

A short summary of the above discussed coupling schemes is presented
in Table 4.1. The vdW contribution is not included since it has little weight
in spectra calculation and also because the same formulation is used for all
of the three approaches.

2.2.2. Choosing the QM system
The choice of the QM system is determining for the success of a QM/MM
calculation. In the study of a solute electronic spectra, the obvious choice
would be to take the solute molecule, and represent the remaining solvent
environment with MM. Even if this setup is adequate for many cases, the
underlying assumptions should be reviewed. For the specific case of elec-
tronic spectra, these can be summarized as follows:

• The density difference between the states under study is significant only
in the strict vicinity of the QM region.

• The influence of the environment is fundamentally electrostatic and can
be well approximated by the MM potential chosen.

The first item depends strongly on the type of excitation one is interested in.
In Rydberg-type excitations the excited electron is promoted to a diffuse
orbital, and the final state will therefore be much more delocalized than the
one of reference. Choosing a small quantum system can lead to an

Table 4.1 Common-use QM/MM coupling methods

Coupling scheme Eint(el) Eint(pol) X

Mechanical Charge–charge 0 0
Electrostatic Density–charge 0 q�
Polarization Density–charge density-induced dipole q�;��(C)
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unbalanced description (the reference state being more accurately
described). Some studies, however, have shown that even more important
than expanding the QM system in itself, the basis space should be flexible,
and that a small system can reproduce rather well the excitation energies as
long as the AO basis is carefully chosen [47]. Charge-transfer excitations, on
the other hand, will necessarily require an expanded QM system, including
the molecule to which the excited electron is transferred. This is a particu-
larly hard task when dealing with molecules in solution, since there is no
straightforward way of distinguishing a priori which solvent molecules will
take part in the excitation. This is a topic discussed in further detail in
Section 3.3.

The second item is a rather general problem of QM/MM studies. Even if
the MM field is adequate to describe the average electrostatic influence of the
environment, effects such as Pauli repulsion and electron correlation are left
out. Fortunately, all of these effects are more short ranged than Coulombic
interactions and, therefore, defining a large QM system where the regions of
transferred density are far away from the QM/MM frontier should guarantee
well-converged results. If this is not feasible, the states should be treated as
much as possible in an equal footing to guarantee some error compensation.
Among the most complicated cases we again find the Rydberg-type excita-
tions since they can span large regions of space, significantly overlapping
with the multipoles used to describe the MM environment.

2.2.3. Truncating the MM system
Although the cost of a single-point QM/MM calculation is not significantly
affected by the size of the MM system, large MM regions still present serious
problems. In order to obtain an accurate explicit solvent description, the
sampling must consider all degrees of freedom in the total system. This
conformational space search will scale at least linearly with the system size.
This can become an obstacle, since more conformations have to be com-
puted and/or the simulation time preceding the quantum chemical calcula-
tions will have to be increased. It is therefore necessary to make decisions
based on the nature of the problem and to adjust the size of the environment
around the chromophore of interest.

In this chapter we are concerned with electronic excitation (or ionization)
phenomena and the influence of the environment will be of electrostatic
nature. In the following, we restrict ourselves to the electrostatic coupling
approach. However, we would like to note that on increasing the MM
system size, the effect of the outer fringes will be similar in the electrostatic
or in the polarization embedding case. The electric field generated by the
QM system will decay with r�2 or faster, due to charge shielding, and the
outer MM atoms will stop feeling its influence after a given distance. In fact,
based on this observation, a recently developed polarized coupling scheme
only accounts for polarization in the vicinity of the QM region [48,49].

QM/MM Approaches to the Electronic Spectra of HB Systems 107



It is a nontrivial task to converge the energy of a QM molecule
embedded in the polarization field of an explicit solvent. One needs to
resort to periodic boundary conditions [26], which are also available in the
context of QM/MM [50]. This is due to the non-convergent behavior of the
Coulombic interaction. However, one is rarely interested in the total energy,
and rather in an energy difference, which only needs to be computed up to a
given accuracy. It is therefore reasonable to truncate the embedding envir-
onment, as long as the effect on the energy difference is kept at a minimum.
Let us consider an electronic excitation on a given solute molecule. We are
interested in computing the QM/MM energy difference between the excited
and the ground state of the solute. To better understand the effect of the
environment, we extend the excitation energy expression on the basis of
perturbation theory. The perturbation will be the MM environment, through
the Eint term. In the case of electrostatic embedding, this corresponds to the
effect of the MM point charges (X= q�). The reference Hamiltonian is the
gas-phase Hamiltonian of the solute (X= 0). The wavefunctions for both
ground and excited states are given by the expansion

C0 ¼ F0
ð0Þ þF0

ð1Þ þF0
ð2Þ þ � � � ; ð11Þ

C� ¼ F�
ð0Þ þF�

ð1Þ þF�
ð2Þ þ � � � : ð12Þ

Excited states will be denoted with the “�” superscript, while for reference
states the “0” will be used. The zeroth-order value for the excitation energy
!(0) will be given by the QM value in the gas phase

!ð0Þ ¼
D
F�

ð0ÞjĤjF�
ð0Þ
E
�
D
F0

ð0ÞjĤjF0
ð0Þ
E
: ð13Þ

The corrections to the QM expectation value due to the environment will be
given by

!ð1Þ ¼
�
F�

ð0Þj
X
�

q�
ri�

jF�
ð0Þ

�
�
�
F0

ð0Þj
X
�

q�
ri�

jF0
ð0Þ

�
;

!ð2Þ ¼
�
F�

ð0Þj
X
�

q�
ri�

jF�
ð1Þ

�
�
�
F0

ð0Þj
X
�

q�
ri�

jF0
ð1Þ

�
;

..

.

ð14Þ

!ðnÞ ¼
�
F�

ð0Þj
X
�

q�
ri�

jF�
ðn� 1Þ

�
�
�
F0

ð0Þj
X
�

q�
ri�

jF0
ðn� 1Þ

�
: ð15Þ

The first-order correction is then the differential interaction of the QM
wavefunctions with the perturbing electrostatic field. Higher-order terms
[given by Eq. (15) for any general value of n] include corrections due to the
relaxation of the wavefunction in the perturbing field.
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The effect of adding MM atoms far away from the chromophore
should be particularly dominated by !(1). Even in polar solvents, the
solute wavefunction is only significantly affected by the first and second
solvation shells. Therefore, the effect of solvent molecules beyond the first
shells will be of a rather simple electrostatic nature. If we consider
an electronic excitation within the solute, the only difference between
F�

ð0Þ and F0
ð0Þ will be the QM charge distribution. The !(1) term can be

approximated as a dipole interacting with the MM electrostatic field,
which holds (at most) a r�2 distance dependence (but mostly r�3, since
the solvent is usually not charged). The number of necessary solvent
molecules will then be drastically smaller than the ones needed to con-
verge the total energy of each isolated system. This also explains why
many microsolvation studies of electronic excitations tend to converge
rather quickly to the bulk value [51,52]. One should note that the conver-
gence pattern actually depends on the excitation under study. If the
charge is significantly moved (raising a higher dipole), the number of
MM atoms needed to obtain a converged electrostatic environment will
have to be necessarily larger.

We now turn to the case of ionization. This is rather different from
the previous example. Since the total charge of the QM system changes, the
differential stabilization of excited and ground states is now closer to the
case of a charge interacting with the surrounding environment. This is
slow converging (although not as serious as the total energy) and the
size of the MM system will have to be significantly larger. This is again
observable in cluster studies, where the ionization potential is hardly
attainable [52].

2.2.4. Beyond QM/MM: many-body expansions
A way to improve over the classical QM/MM energy expression is to write
the total energy of the system as a many-body expansion. The original QM/
MM expression presented in Eq. (7) with electrostatic coupling can be
rewritten as

EQM=MM ¼ �
CjĤ þ

X
�

q�
rir�

jC�þ EMMðsolventÞ þ EintðvdWÞ; ð16Þ

where the electrostatic interaction term has been joined with the solute QM
Hamiltonian, and the wavefunction dependence has been dropped for
clarity.

Let us now look at the full system, including solvent molecules. One can
expand the total energy by a many-body expansion of the form

E ¼
X
A

EðAÞ þ
X
A>B

DEðABÞ þ
X

A>B>C

DEðABCÞ þ � � � ; ð17Þ
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with

DEðABÞ ¼ EðABÞ�EðAÞ�EðBÞ
DEðABCÞ ¼ EðABCÞ�DEðABÞ�DEðACÞ�DEðBCÞ�EðAÞ�EðBÞ�EðCÞ

..

.

We have made no distinction between the species being computed. The
energy terms stand for the energy of the given molecules A, B, and/or C
in vacuo. The series can be expanded up to level N, where N stands for the
number of molecules present in the system.

The problem with such an expansion, for the electronic energy of a
system, is that the series is known to converge rather slowly. As an
example, we have divided the total energy of an eight-water molecule
cluster into the constituting many-body contributions. The results at the
HF/cc-pVDZ level of theory are shown in Figure 4.1. It is seen that
even with three-body terms, the energy is far from being converged.
One should be critical of the error, since it is particularly sensible to
the conformation under study. One would have to go even beyond
four-body terms to reach chemical accuracy (1 kcal/mol). This has
two sources. One is a basis set superposition effect (BSSE), which is
actually desireable to leave out of the calculation. Higher-body
terms of the expansion are known to be contaminated with BSSE
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Figure 4.1 Error in the total energy (in milliHartree) of a N-body expansion of a water

octamer. The results are given for HF/cc-pVDZ calculations.
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[23,53]. However, it is also due to the underestimation of cooperative
effects, in which case the expansion will be biased against aggregation.
This will be the major effect in the case of water, the lack of higher-
order polarization effects. The interaction energy of a water dimer
embedded in a cluster is influenced by the hydrogen bonding network;
neglecting this effect leads to a slow convergence. Since a many-body
approach scales with OðNXÞ, where X is the level at which the series is
truncated, it becomes impractical to use high orders (X> 2) for larger
systems.

A possible solution around the problem would be to compute each of
the energy terms in Eq. (17) not as a molecule in vacuo, but to already
include some approximate higher-order terms. On the basis of our pre-
vious discussion, one could perform a QM/MM calculation for each
monomer, dimer, trimer, etc. defining the given molecules as the QM
system and the remaining species as the MM environment. If we truncate
the series up to two-body terms, and make a distinction between the solute
M and the solvent molecules {I}, the total system energy expression is
given by

E ¼ E½M� þ
X
I 6¼M

E½I� þ
X
I 6¼M

ðE½MI� �E½M� �E½I�Þ

þ
X
I<J

I;J 6¼M

ðE½IJ� �E½I� �E½J�Þ; ð18Þ

where we have purposefully separated terms involving the solute mole-
cule from those involving exclusively solvent molecules. The use of
square brackets highlights the fact that we are no longer working with
monomers in the gas phase, but instead computing a QM/MM energy
for each term. The first term of the expansion is defined with the use of
Eqs. (7 and 10). Since each term already includes the energy of the other
particles, as well as interaction contributions, there could be a double-
counting problem. However, if one expands Eq. (18), all extra terms do
cancel out [20,23]. This would also be the case if the expansion would be
performed to a higher-order, but not for the one-body truncation. For
ease of discussion, we will in the following text only consider the first
term of the r.h.s. of Eq. (16). That is, we will no longer discuss the MM
“pure” energy terms or the vdW interactions, since these are kept con-
stant. We are interested in the vertical excitation energies, so the quan-
tity to compute will be the energy difference between the system where
the solute is found in the electronic ground state, and the one after
excitation. Equation (18) can be generally used for any given electronic
state of the solute. By computing the difference between the ground and
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a specific excited state, one arrives at the following result for the vertical
excitation energy:

DE ¼ E½M�� �E½M0� þ
X
I 6¼M

DE½I� þ
X
I 6¼M

ðE½M�I� �E½M0I� �E½M�� þ E½M0� �DE½I�Þ

þ
X
I<J

I;J 6¼M

ðDE½IJ� �DE½I� �DE½J�Þ; ð19Þ

where

DE½I� ¼ E½I�ðM�Þ �E½I�ðM0Þ

represents the energy difference between the solvent molecule I in a point
charge field where the solute is found in the excited state (M�), or in the
ground state (M0). All other terms are self-explanatory.

A further change which one could operate would be to leave out all
terms describing the polarization change in the solvent due to the excitation
in the solute. This simplifies Eq. (19) to

DE ¼ ðN� 1ÞðE½M� �E½M��Þ þ
X
I 6¼M

ðE½M�I� �E½MI�Þ: ð20Þ

The formulation above only requires a monomer calculation, and a dimer
calculation for each solvent molecule present in the system. The one-body
result is the QM/MM value with electrostatic embedding. The two-body
terms will give further contributions, although it might not be quite clear at
this time which. However, it should be noted that since the solute is always
present in the QM region there is no need to define potential parameters for
the solute molecule.

Let us return to the question of solvent polarization. As the solute
wavefunction changes, it is expectable to observe a change in the energy
of the solvent molecules. In fact, this is the motivation behind the polariza-
tion coupling which we presented in Section 2.2.1. If we expand the polar-
ization effect also in a many-body formulation, we obtain

DEðfIgÞ ¼
X
I 6¼M

DE½I� þ
X
I<J

I;J 6¼M

ðDE½IJ� �DE½I� �DE½J�Þ þ . . . ; ð21Þ

which can be taken up to order N. One can see that the difference between
Eqs. (20,19) is the two-body polarization energy. The one-body polarization
energy, which is represented by the first sum, is already included through
the E[M�I ]�E[M0I] difference. In fact, it is not even obtained by computing
point charges to approximate the density of the solute, the polarization
effect is instead computed fully quantum-mechanically. This holds a defi-
nite advantage over a single QM/MM calculation with polarization
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coupling. Equation (20) has already been previously used for computing the
solvatochromic shift of the n! p� excitation of formaldehyde [54]. It also
holds relation to fragment-based approaches, such as the fragment molecu-
lar orbital (FMO) method [21]. The main difference is in the approximate
treatment of the intermonomer terms. The equation can be seen as a parti-
cular case of the FMO expression.

2.3. QM methods for the calculation of electronic spectra

In any QM/MM or related application, the choice of high-level method is of
utmost importance. In the limit, any of the above-discussed methodologies
will obtain the same result as the QM method chosen and this will, there-
fore, establish the reference accuracy. Due to computational limitations, and
the high-order scaling of some of these methods, a compromise must be
found between cost and accuracy. As such, it is useful to have some
acquaintance with the many approaches available today, and the new
developments being made in QM theory. The following sections give a
superficial overview of the methods which will be later referred to in
Section 3, and is not intended to be a thorough review of the subject. More
detailed information on the methods can be found in the cited works and
references therein.

2.3.1. Wavefunction-based methods
In ab initio wavefunction theory, the reference is commonly defined as the
Hartree–Fock solution, a normalized Slater determinant for the N/2 lowest
energy orbitals of an N-electron system. These orbitals are built as a linear
combination of M atomic orbitals, with optimized coefficients according to
the variational principle. The most straightforward way to compute an
excited state, relative to this configuration, is to build another Slater deter-
minant, replacing one of the occupied orbitals by one of the remaining
M�N/2 virtual orbitals

jFa
i i ¼ êai jF0i ¼ j . . .�i� 1�a�iþ1 . . .i; ð22Þ

where the operator êai is a spin-adapted excitation operator. Since the mole-
cular orbital space is built as orthonormal, the determinant built in this way
is a valid excited state, orthogonal to the reference HF wavefunction.

In order to find the lowest lying excited state, one needs to optimize the
linear combination of all possible single excited determinants

jF�i ¼
X
ia

CiajFa
i i; ð23Þ

where Cia are the optimization coefficients, under the constraint �iaC2
ia ¼ 1.

These are also commonly referred to as CI coefficients. This is the procedure
followed in configuration interaction singles (CIS). Since single excitations

QM/MM Approaches to the Electronic Spectra of HB Systems 113



do not interact directly with the HF wavefunction, the CIS states jF�i are in
equal footing with the HF reference, and excitation energies can be com-
puted by simply calculating the energy difference. In order to include
correlation effects, one needs to go up the CI series, and include in
Eq. (23) higher-order excitations. However, the CI series is slow converging,
and in many cases one would need to build a higher-order series (even
beyond quadruple excitations) to achieve convergence.

The coupled cluster (CC) series, although not variational, is a valuable
alternative to the CI formalism. The CC singles and doubles with perturba-
tive triples [CCSD(T)] method has established itself as a gold standard for
ground-state calculations. Time-dependent formalisms of CC have been
proposed, and are currently the state-of-the-art approach to electronic exci-
tations in small molecular systems. Contrary to CI, the CC formalism does
not build a linear combination of excited configurations [such as the one in
Eq. (23)]. An exponential operator is used, which by acting on the HF
wavefunction gives the correlated CC ground state

jFCCi ¼ expðT̂ÞjFHFi; ð24Þ
where the T̂ operator holds the amplitudes and excitation operators up to a
given order. If we consider the CC singles and doubles model (CCSD), it
will be defined as

T̂ ¼
X
ia

tai ê
a
i þ

X
ijab

tabij ê abij ; ð25Þ

with a new labeling for the coefficients (t), which in the CC theory are most
commonly referred to as amplitudes. The advantage of using an exponential
ansatz is that higher-order excitations are approximately included as pro-
ducts of lower operators. In the CCSD model, for example, quadruple
excitations are also included as products of two double excitation terms.
The eigenvalue equation

expð� T̂ÞHexpðT̂ÞjFHFi ¼ EjFHFi ð26Þ
is valid, and projection from the left with the reference HF wavefunction
yields the CC energy.

Moving from the static to the time-dependent case, there are two possi-
ble formulations, namely linear response (LR-CC) [55] or equation of motion
coupled cluster (EOM-CC) [55–58]. Both approaches give identical excita-
tion energies, the major difference being that the latter approach does not
scale correctly for transition moments and polarizabilities. We now briefly
review both extensions to CC theory.

In LR-CC, the linear response functions are derived for the given CC
model, and the excitation energies are computed as poles for the latter
functions. The main drawback of this approach is that noniterative
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perturbation corrections cannot be included. As an example, the poles
derived from CCSD(T) will be the same as those from CCSD. Therefore, it
can only be successfully applied to fully iterative CC approaches. Due to the
steep increase in computational cost on moving from HF [ OðN4Þ] to CCSD
[OðN6Þ] and CCSDT [OðN8Þ], intermediate models have gained some atten-
tion in the last few years. The second-order approximate CC singles and
doubles model (CC2) is an approximation to the CCSD method proposed by
Christiansen et al. [59] In this model, the doubles equations (obtained by
projecting from the left Eq. (26) with the double excitation manifold) are
approximated, but keeping the singles effect, which are of relevance to the
description of orbital relaxation. A similar model (CC3) has been proposed
as an approximation to CCSDT [60]. This allows to define a more complete
CC series as

CC2<CCSD<CC3<CCSDT< . . .

ordered according to the accuracy and computational cost. Both CC2 and
CC3 have been extensively applied in the last few years to problems of
electronic excitations in solution by Christiansen and coworkers [61–66].
These include calculations using a QM/MM polarized embedding scheme,
whereby the CC equations are solved through a quasienergy Lagrangian
approach. The interested reader should refer to Refs. [55] and [37,67], for the
derivation of the response functions under the influence of a self-consistent
polarized field.

In the EOM-CC theory, one proceeds in a similar fashion as in CI-type
methods. In order to build the excited states, a linear expansion is used,
where the CC ground state is contained

jFEOM�CCi ¼
X
�

C�ê�jFCCi ¼ expðT̂Þ
X
�

C�ê�jFHFi: ð27Þ

In the equation above, the orbital indices have been replaced by a general
index �, since these can refer to single or higher-order excitations. Com-
pared to a CI expansion, the EOM-CC formulation has the advantage of
including both a linear and an exponential expansion. Although the divide
is not so clear, one can think of the C� coefficients as defining the states, and
the CC amplitudes responsible for the dynamical correlation treatment of
each. The drawback is that the amplitudes were optimized for the ground
state, and these are not changed in the EOM-CC treatment (the only varia-
tional parameters are the C�). This would mean that the ground state is
better described, but in fact the linear expansion compensates for this
problem. The excitation energies under the EOM-CC formalism are com-
puted as the energy difference between states. Orthogonality is imposed by
means of a variational principle, and size-extensivity is kept (even though a
linear expansion is used). The most commonly used method is EOM-CCSD,
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which works remarkably well for singly excited states, with errors around
0.2 eV (see Ref. [68] and references therein).

Both linear response and EOM-CC models hold significant promise in
application to QM/MM problems, with new developments such as
improved parallel algorithms bringing the limit of treatable quantum
atoms to already over 30 atoms [69]. Other present developments include
density-fitting approximations [70,71], which reduce the cost of calculation
with increasing basis sets and lower the computational prefactor, as well as
local approximations [72–74], with the LCC2 [75,76], and EOM-LCCSD [68]
methods. Other approaches to reduce the computational cost may work by
limiting the correlation calculation to a specific region of the QM system,
just as in Ref. [77].

2.3.2. Time-dependent density functional theory
Kohn–Sham (KS) density functional theory has established itself as a
standard quantum chemical method for the computation of ground-state
properties. By replacing the high-dimensional wavefunction for the three-
dimensional electronic density, significant savings can be achieved, while
keeping with a reasonable description of both exchange and correlation
effects. Every year, new developments on functional forms have been put
forward, and DFT can nowadays rival with higher-level correlated wave-
function methods in a wide variety of applications.

Owing to the Runge–Gross theorem [78], a time dependent formulation
of DFT (TD-DFT) has also become available. Just as in the time indepen-
dent case [79], a univocal relation between the external potential and the
density (both time dependent) is established, although lacking a varia-
tional principle. We would like to mention the ongoing debate on the
foundations of TD-DFT [80–84], but for practical purposes (and since this
is not the subject of this chapter), the Runge–Gross theorem will be
accepted as is. The interested reader should refer to the above cited
works and references therein.

In the context of TD-DFT, it is possible to investigate electronic transi-
tions by computing the linear response of the system to an external time-
dependent perturbing potential v1(r,t) [85,86]. The total external potential
vext(r, t) can be written as

vextðr; tÞ ¼ v0ðrÞ þ v1ðr; tÞ; ð28Þ

where v0(r) represents the Coulomb potential between electrons and nuclei
in the absence of the perturbation. If the perturbing potential v1(r, t) is small
in comparison with v0(r), the time-dependent density of the perturbed
system �(r, t) can be expanded as

�ðr; tÞ ¼ �ð0ÞðrÞ þ �ð1Þðr; tÞ þ � � � : ð29Þ
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Therefore, the deviation of the time-dependent density from the unper-
turbed density can be written as

�ðr; tÞ� �ð0ÞðrÞ ffi �ð1Þðr; tÞ ¼
Z

dt0
Z

dr0�ðr; t; r0; t0Þv1ðr; tÞ; ð30Þ
where �(r, t, r’, t0) is the linear density–density response function and can be
expressed as a functional derivative

�ðr; t; r0; t0Þ ¼ 	�½vext�ðr; tÞ
	�½vext�ðr0; t0Þ

� �
vext½�0�

; ð31Þ

which is calculated at the time-independent external potential v0= vext[�0]
for the unperturbed ground-state density �0. On the other hand, the den-
sity–density response function for the KS reference system of non-interact-
ing electrons can be written as

�KSðr; t; r0; t0Þ ¼
	�½vKS�ðr; tÞ
	�½vKS�ðr0; t0Þ

� �
vKS½�0�

: ð32Þ

The potential vKS(r, t) of the KS system related to vext(r, t) is given by
vKS(r, t)= vext(r, t)þ vH(r, t)þ vxc(r, t), where vH(r, t) is the time-dependent
Hartree potential and vxc(r, t) is the time-dependent exchange–correlation
(xc) potential. Introduction of a time-dependent xc kernel fxc(r, t, r’, t0)=
vxc[�](r, t)/	�(r’, t0) and application of functional chain rules and derivatives
leads to the following fundamental equation relating density–density
response functions of interacting and noninteracting systems:

�ðr; t; r0; t0Þ ¼�KSðr; t; r0; t0Þ þ
Z

dx
Z

d


Z
dx0

Z
d
 0�KSðr; t; x0; 
Þ

� 	ð
 � 
 0Þ
jx� x0

þ fxc½�0�ðx; 
 ; x0; 
 0Þ
� �

�ðx0; 
 0; r0; t0Þ:
ð33Þ

Further elementary operations then lead to

�ð1Þðr; tÞ ¼
Z

dt0
Z

dr0�KSðr; t; r0; t0Þv1;KSðr0; t0Þ ð34Þ

with

v1;KSðr; tÞ ¼ v1ðr; tÞ þ
Z

dr0
�ð1Þðr0; tÞ
jr� r0

þ
Z

dr0
Z

dt0fxc½�0�ðr; t; r0; t0Þ�ð1Þðr0; t0Þ: ð35Þ

By Fourier transformation with respect to time one arrives at the
frequency-dependent expression

�ð1Þðr; !Þ ¼
Z

dr0�KSðr; r0; !Þ v1ðr0; !Þ þ
Z

dx
1

jr0 � xj þ fxc½�0�ðr0; x; !Þ
� �

�ð1Þðx; !Þ
� �

;

ð36Þ
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where �KS(r, r’;!) is the density–density response function for a KS refer-
ence system of noninteracting electrons and can be calculated in terms of the
unperturbed set {�j(r)} of KS orbitals as

�KSðr; r0;!Þ ¼ limðG!0þÞ
X1
jk

ðnk � njÞ
�jðrÞ��

j ðr0Þ�kðr0Þ��
kðrÞ

!�ð�j � �kÞ þ iG
ð37Þ

and nj is the occupation number of the jth ground-state KS orbital.
From Eq. (30 and 36) we obtain

�ðr; r0;!Þ ¼ �KSðr; r0;!Þ þ
Z

dxdx0�ðr; x;!Þ 1

jx0 � xj þ fxcðx; x0; !Þ
� �

�KSðx0; r0;!Þ:

ð38Þ
The density response function can be determined by a self-consistent

solution of the previous equation [85,86]. One of the main difficulties lies in
the exact definition of the XC kernel, which depends on a time-evolving
density �(r,t).

However, if one considers the density as slowly-varying in time, the
kernel at time t can be defined as depending solely on the density at the
same time, removing the need for any explicit treatment of time dependence
in the kernel itself. This is known as the adiabatic local density approxima-
tion, and allows for the use of any “ground-state” XC functional for TD-DFT
calculations. Although as promising as its static relatives, the TD-DFT
method has its own particular issues which should be cautioned

• Most TD-DFT functionals to date fail to accurately describe nonlocal
excitations, such as Rydberg and charge-transfer states [87].

• Since TD-DFT works as a correction to the orbital energies of the
underlying ground-state calculation, the errors are carried from the
latter to the final result.

• The adiabatic approximation does not allow for the computation of
double excitations, and may also fail if any is found close to the single-
excited state of interest.

The first fault noted above is linked to the local approximations used in
building the XC functionals. It can also to some extent be related to the
second item in the list. A nonlocal potential would have to be used, and a
straightforward correction to the problem is yet to be presented. New
functionals have significantly decreased the problem, such as CAM-B3LYP
[88], where the r� 1

12 operator is split into short- and long-range parts, allow-
ing for a reparameterization and correction of the long-range behavior of the
DFT potential. A general observation is that for hybrid functionals, increas-
ing the amount of exchange reduces the error. A diagnostic tool has also
been recently proposed [89].
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Other problems pertaining to the ground-state description is the incor-
rect asymptotic behavior of the KS potential. The true dependence should be
1/r, while DFT functionals have an exponential decay. This has a destabiliz-
ing effect on the orbital energies, in turn making ionization energies system-
atically too low. This error can be corrected through the use of optimized
effective potential DFT [84].

The problem in describing double excitations is, for the problems at
hand, the least serious, and is also shared by some wavefunction-based
alternatives, as noted above. In the CC case, it is necessary to include up
to triple excitations [90] to obtain reliable results for such states. In short,
although several issues may be raised in the use of TD-DFT, careful valida-
tion and/or correct use of new functional forms may prevent most of these
issues. The new functionals referred above are not a simple reappreciation
of a set of parameters. They introduce new physics directly related to the
shortcomings of the method. Important review works illustrating the impor-
tance of time-dependent density functional response theory for the calcula-
tion of excitation energies and polarizabilities have been published [84,91].

3. APPLICATIONS

3.1. Electronic properties of water

3.1.1. UV spectra of water clusters
Somewhat naturally, the first system under discussion is water, the most
commonly occurring solvent in chemical applications. We start by looking
into water clusters, building up to the liquid. The condensed phase is only
discussed in the next section. By looking at clusters, we will have an oppor-
tunity to evaluate a many-body formalism, as well as to analyze the behavior
of the spectra with increasing cluster sizes. This is a common strategy in the
study of condensed phases, since clusters bridge the gas and liquid phases,
helping to a better understanding of cooperative effects in solution [92].

We examine in this section the first electronic absorption band of water.
Since under several electrostatic environments the energy difference
between the first and the second excited state is known to be kept around
2 eV, a many-body expansion should be viable. By truncating the series at
the one-body terms, one obtains the following expressions for ground and
excited states of a specific water molecule M:

E1BðM�Þ ¼ E½M�� þ
XN� 1

I 6¼M

E½I�M� �C�; ð39Þ

E1BðM0Þ ¼ E½M0� þ
XN� 1

I 6¼M

E½I�M0 �C0; ð40Þ
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where subscripts have been added to remind the fact that the QM/MM
energy of each I is computed in a specific environment, with fragment M in
the excited [Eq. (39)] or ground state [Eq. (40)]. The C� and C0 terms correct
for double counting of the interactions between each fragment. If the crude
approximation E[I]M�=E[I]M0 is made, the excitation energies are simply
the QM/MM electrostatically embedded values !(M0!M�)=E[M0]�E
[M�], since the correction terms also cancel out. This is the same expression
used for the FMO1 excitation energies [21]. It neglects one-body polarization
effects due to the excitation.

In Figure 4.2, three sets of diagrams are shown, depicting the spectra of
four selected water tetramers. The top diagrams depict the results for the
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coupling, and the last graphs are the full results (EOM-CCSD/aug-cc-pVTZ). The connection

between the peaks are given by the eigenvectors of the coupling and/or EOM-CC
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computed excitation values, using the above formulae for the one-body exci-
tation energy. The reference level of theory was EOM-CCSD/aug-cc-pVTZ.
The full results are shown at the bottom. The peaks are all normalized to an
arbitrary scale. Degenerate excited states are shown in the combined height
of all respective peaks. In the case of ring1, for example, there is a single
excitation energy value for the one-body treatment, corresponding to four
degenerate states.

Comparison of the spectra shows marked differences between the two
sets. Although the energy differences are rather small (below 0.1 eV), the
one-body states are highly degenerate. This is understandable, taking into
account the symmetry of the optimized clusters. In the case of ring1, for
example, all four water molecules are identical. By applying a many-body
scheme to the energy of each individual excited state, the same energy will
be obtained, independently of the order up to which the expansion is built.
The degeneracy can only be lifted by allowing the excited states to couple.

We have recently proposed a small modification to this many-body
expansion in which excitonic coupling is explicitly included [25]. One builds
an Hamiltonian for all excitonic states, where the diagonal elements HII are
given by Eq. (39), and the coupling is defined as the transition dipole
moment interaction of the two excitations

HIJ ¼ 1

R3
IJ

½dI
01:d

J
01 � 3ðdI

01:RIJÞðdJ
01:RIJÞ�; ð41Þ

where RIJ is the distance between the centers of mass of the two molecules
I and J. The transition dipoles dI

01 are also placed at the centers of mass. The
same procedure was used by Harvey et al. [93] to introduce excitonic
coupling, but their dipoles were of the analytical form while the ones used
in Eq. (41) are taken as a subproduct from computing the diagonal terms.
The approximation E[I]M�=E[I]M0 can also be used, and in this case, after
diagonalizing the Hamiltonian

H ¼
H11 H12 . . .
H12 H22

..

. . .
. ..

.

. . . HNN

0
BBB@

1
CCCA; ð42Þ

the excitation energies are given by the difference between the eigenvalues
and Eq. (40), which is the ground state energy.

The results computed including excitonic coupling are given in Figure 4.2.
Also in the figure we have depicted with dotted lines the connection
between the decoupled one-body states and the coupled states. The states
have been connected according to the respective eigenvector values. Finally,
we have compared our state decomposition to the information from the full
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calculation. As exemplified in Eq. (23) for the CIS case, an excited state is built
by a combination of determinants weighted by the CI coefficients. In the
EOM-CCSD method, the energy is invariant relative to a unitary transforma-
tion of the occupied space, so one can localize the occupied orbitals, and
thereby identify from which occupied orbital the electron has been excited.
Comparison of the configuration coefficients of our EOM-CCSD results for
the full system compare well to the one-body coupled procedure, and allow
us to establish the lower connection to the full results. It is clear that a simple
one-body expansion with approximate coupling of the excitonic states
already reproduces rather accurately the spectra for these clusters. Calcula-
tions have been performed for three other pentamer structures, with similar
results. The lowest excitation for a set of hexamers was also compared (at this
point we approach the computational limit for the level of theory chosen).
Our results show an average absolute deviation of about 0.03 eV. This is about
an order of magnitude lower than the expected accuracy of EOM-CCSD for
single excitations.

In Figure 4.3, we show averaged results for 100 configurations of (H2O)N
clusters (N= 40, 60, 80). Further details on the cluster structures are found in
Ref. [25]. Two sets of values are available for each system size, one without
coupling (HIJ) and the other with excitonic coupling. The greatest differ-
ences between the two sets are in the higher energy regime, where the
neglect of coupling leads to a sharper peak around 8.6–8.7 eV. The other
sets are somewhat broader, which is expectable due to coupling. The largest

Without coupling
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Figure 4.3 First excited band for water clusters of varying size (N= 40,60,80). The dotted

lines represent the results without coupling between states and the solid line represents

the results diagonalizing the matrix of Eq. (42). Each value has been represented by a

normalized Gaussian (�2= 0.0025 eV�2).
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peak for N= 80 is also shifted to the red, but only by less than 0.1 eV. The size
effect on the spectra is mainly visible on the proportionality of the bands. The
most dominant band at N= 80, which will correspond to the one in the bulk
phase, slowly grows in size with increasing N. A study of the states eigen-
vectors show that the higher excitations are more delocalized and with larger
contributions from core one-particle states [25]. The excitations to the red are
mainly due to localized surface states and, therefore, are not visible in the
liquid phase. The liquid-phase spectra is the subject of the next section.

3.1.2. Absorption spectra of liquid water
Several experimental works on the absorption spectrum of liquid water have
been reported [94–99]. These works also provide some general background
on absorption processes in liquid phase. From the theoretical point-of-view
[100–102], the calculation of the absorption spectrum of liquid water repre-
sents a considerable challenge. Firstly, an adequate description of the liquid
state structure and electronic density fluctuations is needed. Moreover, light
absorption by liquid water in the ultraviolet region leads to some specific
difficulties related with the description of high energy-lying excited states.

A sequential molecular dynamics/QM approach for investigating the
absorption spectrum of liquid water in the 6–15 eV energy range has been
recently reported [103]. For completeness, an overview of the adopted
methodology is described as follows: Initially, a 2 ns molecular dynamics
run using a polarizable model [104] for liquid water was carried out. Then,
100 configurations saved every 20 ps were selected for the calculation of
electronic properties. For each configuration a QM/MM partition was
defined, where the QM system includes explicitly a few water molecules
and the MM environment is represented by a charge distribution of 100
water molecules. Polarization effects lead to a nonuniform charge back-
ground, which is represented by a set of point charges that reproduces the
induced dipole moments of the polarizable model [105]. Some issues are of
particular relevance. The dependence of the results on (1) the basis set
representation of the quantum system for describing higher excitations; (2)
the size of the quantum system (Nw), and (3) the charge background. More-
over, a comparison of the theoretical results with experimental information
on the liquid water absorption spectrum is of crucial interest for assessing
the adequacy of the adopted theoretical procedures.

The water absorption spectrum is related to the complex dynamic dipole
polarizability, �(!)=�1(!)þ�2(!), where �1(!) and �2(!) are, respectively,
the real and imaginary parts of �(!). The dynamic polarizability �(!) can be
calculated through a sum-over-states (SOS), according to:

�ð!Þ ¼
X1
k¼0

fk

(
DE2

k �!2

ðDE2
k �!2Þ2 þ !2G2

k

þ iGk!

ðDE2
k �!2Þ2 þ !2G2

k

)
; ð43Þ
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where DEk’s and fk’s are transition energies and oscillator strengths, respec-
tively, and 1/Gk is a decay time describing the radiative relaxation of
transition k. Gk can be estimated as Gk=�h/
 = 6.582 � 10�16 eV s/
 , where
the decay time is on the femtosecond timescale [106]. For the calculation of
�(!) using the SOS expression Gk has been set to a single arbitrary and small
value.

At high frequencies, the relationship between the dielectric constant
�(!)= �1(!)þ i�2(!) and the dynamic polarizability �(!) is given by the
Lorenz-Lorentz equation [107],

�ð!Þ� 1

�ð!Þ þ 2
¼ 4


3
��ð!Þ; ð44Þ

where the number density �=N/V, N is the number of particles and V its
volume.

The basis set dependence of the imaginary part of the dielectric constant
�2(!) calculated with the Dunning’s hierarchical d-aug-cc-pVxZ (x=D,T,Q)
basis sets [108–110] is illustrated in Figure 4.4. No significant dependence is
observed for excitation energies below 15 eV. However, as expected, for
higher excitation energies, at least a d-aug-cc-pVTZ basis set should be
used. This dependence reflects excitations to a quasi-continuum set of
unoccupied orbitals.
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Figure 4.4 Basis set dependence of the imaginary part of the dielectric constant of liquid

water [�2(!)]. Calculations were carried out with the BH and HLYP functional and a single
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basis sets.
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The dependence of the results on the number of water molecules expli-
citly included in the quantum system is illustrated in Figure 4.5 (bottom
panel). Although some differences can be observed when we compare
results for Nw= 1 and 2, no significant dependence of �2(!) on the number
of water molecules is observed for Nw> 3 [103]. However, we notice that
this can only be verified for statistically converged calculations carried out
with the adequate basis set for the energy range of interest. Therefore, a
significant number of weakly correlated configurations should be included
in the calculation of average properties (100 in the present calculations). As
previously discussed, the convergence of the SOS procedure for calculating
dynamic polarizabilities should also be checked. Although in many cases,
full SOS calculations are possible, they become not affordable for large
quantum systems and basis sets. Therefore, for many cases of interest, the
SOS is truncated. The top panel of Figure 4.5 illustrates the behavior of �2(!)
with the number of states (NStates) included in the SOS. For this particular
case, a weak dependence on NStates is observed, suggesting that calcula-
tions for larger systems are affordable by using a truncated SOS. Another
attractive route for the calculation of polarizabilities and therefore for inves-
tigating absorption properties in condensed phase relies on the polarization
propagator (PP) approach [111]. The PP approach leads to results quite
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Figure 4.5 Bottom: dependence of the imaginary part of the dielectric constant of liquid

water [�2(!)] on the number of water molecules in the quantum system. Results are from

TDDFT BH and HLYP/dapvdz calculations; top: behavior of �2(!) with the number of states

(NStates) included in the SOS for a system with Nw= 1. Reprinted with permission from

J. Chem. Phys. 130 (2009) 014505. Copyright 2009, AIP.
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similar to the SOS calculations [103]. However, in contrast with the SOS
procedure there is no truncation of the number of excited states [111].

A sequential QM/MM partition is usually based on the representation of
environment (the MM part) by a charge background. Therefore, it is of
crucial importance to discuss how the results depend on the choice of the
embedding charge background. In principle, a general procedure based on
the SCF determination of the quantum electronic density and charge back-
ground should be adopted [37]. SCF determination of embedding charges
can be carried out in different ways. One possibility is to define a large
quantum system and to estimate the charges by fitting to the electrostatic
potential at a given theoretical level. Then, a smaller quantum system is
used for the calculation of the electronic properties at the same theoretical
level with the embedding charges previously estimated. The following
procedure has been recently applied to investigate the influence of self-
consistent charge relaxation in the first hydration shell on the calculation
of the water absorption spectrum [103]. A quantum system or QM partition
including explicitly six water molecules was embedded in the frozen charge
distribution of 100 water molecules represented by NCC charges. The
charges of the QM partition were determined by fitting to the electrostatic
potential [112]. Then, calculations of electronic properties at the same theo-
retical level were carried out for one quantum molecule surrounded by the
SCF charges of the nearest five water molecules and this system was
embedded in the background of the remaining water molecules represented
by the nonuniform charge distribution that reproduces the induced dipoles
of the NCC model. On the other hand, a much simpler procedure relies on
the assumption that the charge background that defines the MM system is
frozen. A frozen charge background can be defined by adopting a polariz-
able (NCC) or nonpolarizable (TIP3P) model for the charge distribution of
the surrounding water molecules. The dependence of �2(!) on the choice of
different charge backgrounds is illustrated in Figure 4.6. In agreement with
previous studies [100,101], no significant dependence of the results for the
absorption spectrum on the charge background is observed.

3.1.3. Ionization of liquid water
Electronic properties of water, in particular, electron binding energies in
liquid phase, were investigated by several experimental [12,113,114] and
theoretical [115–117] works. A review on experimental techniques for asses-
sing electron binding energies of liquid and solutions has been recently
reported [114]. In contrast with results for the gas-phase water molecule,
the electronic structure in liquid phase is characterized by electronic and
thermal broadening [115]. Electronic broadening in liquid water is related to
hydrogen bond interactions and are a fingerprint of the electronic density of
states (DOS) of water clusters at low temperatures. Thermal broadening is
associated with the different configurations of the HB network that
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characterizes liquid water at a finite temperature T. Usually, the symmetry
species associated with the ground-state electronic configuration
(1a1)

2(2a1)
2(1b2)

2(3a1)
2(1b1)

2 are used to label the distribution of electron
binding energies and “band” formation in liquid water. Hydrogen bond
interactions lead to orbital mixing and splitting defining orbital energy
ranges that can be associated with a given symmetry species of the water
monomer.

Electronic broadening can be illustrated by the results for electron bind-
ing energies of water clusters [117]. This is shown in Figure 4.7, where pole
strengths versus orbital energies (eV) from Green’s function or electron
propagator theory calculations [118–121] for (H2O)1�8 are reported. Besides
orbital mixing and energy broadening, these results also indicate that the
orbital energy of the highest occupied molecular orbital (HOMO) in small
water clusters is red shifted relative to the HOMO of the water molecule.
This is in trend with experimental data indicating a �1.4 eV red shift of the
1b1 energy from the water monomer to the liquid phase [113].

Although calculations of electron binding energies based on electron
propagator theory can be carried out for small clusters, they are not afford-
able for larger systems. In these cases, an attractive possibility for investi-
gating electronic properties in condensed phases is DFT. However,
applications of DFT for the calculation of EBEs are limited by the self-
interaction error, which is inherent to many approximations for the XC
functional (see Section 2.3.2). Although the meaning of DFT orbital energies
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Figure 4.6 Dependence of the imaginary part of the dielectric constant of liquid water

[�2(!)] on the choice of the charge background. Results for TIP3P, NCC, and SCF charges are

from TDDFT BH and HLYP/dapvdz calculations with Nw= 1.
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remains a controversial issue in the literature [122], several works provided
evidence on the reliability of specific parameterizations of DFT for predict-
ing orbital energies [117,122,123]. The electronic DOS of liquid water based
on a reparameterized MPW1PW91 XC energy [52] is shown in Figure 4.8.

On the other hand, there is a strong interest in the calculation of the first
vertical ionization energy (VIP) and electron affinity (VEA) because these
electronic properties are intimately connected to charge transfer and chemi-
cal reactivity in solution. The average VIP, for example, can be estimated
through the following DE calculation:

VIPNw
¼ 1

N

XN
i¼1

½Eþ
Nw

ðiÞ�ENw
ðiÞ�; ð45Þ

where N is the number of selected configurations, Nw the number of water
molecules in QM system, and ENw

(i) and Eþ
Nw

ðiÞ are the energies of the
ionized and neutral systems, respectively. Sequential QM/MM calculations
of the VIP and VEA of liquid water were recently reported. The set of
configurations for the calculation of the VIP and VEA of liquid water was
generated by molecular dynamics for a polarizable model of the water [105].
The behavior of VIP and VEA with the number of water molecules in the
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quantum system is illustrated in Figure 4.9. A significant dependence of the
results on the size of the quantum system can be observed. Our best
estimate for the first ionization potential of liquid water (9.71+ 0.06 eV) is
based on a MPW1PW91/apvdz calculation with Nw= 20. This prediction is
in good agreement with the experimental result reported by Winter and
Faubel (9.9 eV). The calculated VEA can be compared with minus the con-
duction band edge of water (�V0) [124]. Our best estimate of VEA is
0.44+ 0.05 eV, which is significantly smaller than the typical literature
value for �V0 (1.2+ 0.1 eV) [125]. However, it is in keeping with a more
recent prediction by Coe et al. [124] that points to a value close to zero.

3.2. Electron binding energies of liquid ammonia

In contrast with water, electronic properties of liquid ammonia are much
less known from both the experimental and the theoretical points of view,
despite the fact that several studies on the ammoniated electron [126,127]
have been reported. A sequential QM/MM approach to the electronic
properties of liquid ammonia has been recently reported [128]. The results
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are for liquid ammonia at d= 0.73 g/cm3 and T= 197.2K. A first issue
concerns the analysis of polarization effects in liquid ammonia. This is
important because the attachment of an electron to a molecular structure
or aggregate depends on its multipolar moments [129]. In comparison with
water, in which the dipole moment increases from the gas-phase value of
1.85 to �2.7D in the liquid phase, polarization effects in liquid ammonia are
weaker. The QM/MM calculations predict that the dipole moment of liquid
ammonia is 2.05D, which means an increase of 27% relative to the gas-phase
value. We are not aware of experimental data for the electron binding
energies of liquid ammonia. Recent QM/MM results for the density of states
of liquid ammonia with different number of molecules (n= 5, 8, 10, and 14)
in the quantum system (Figure 4.10) indicate that the edge of the 3a1 band
can be placed at �9.8 eV.

This value can be associated with the ionization energy of liquid ammo-
nia and it is �1.05 eV below the ionization energy of the gas-phase ammonia
molecule. The predicted red shift for the first ionization energy of liquid
ammonia relative to the gas phase is, therefore, smaller than the experi-
mental prediction for liquid water of 1.7 eV. As previously discussed for
liquid water, this red shift can be related to electronic and thermal broad-
ening [115]. The previous QM/MM predictions rely on a reparameterized
XC functional that reproduce Green’s function electron binding energies of
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small ammonia clusters (see Ref. [128] for details). The same approach was
used to estimate the VEA in liquid ammonia. It was found that the VEA
is negative for quantum systems embedded in a charge background repre-
senting the surrounding ammonia molecules. However, as illustrated in
Figure 4.11, VEAs become positive for nonembedded quantum systems.

These results indicate that no vertical electron attachment via internal
states is observed in liquid ammonia, at least for the adopted interac-
tion model and thermodynamic conditions of the QM/MM approach.
Interestingly, positive VEAs for nonembedded quantum systems are
positive for n 	 10. This can be interpreted as an indication on the
stabilization of an excess electron via surface states. In other words,
and in agreement with theoretical predictions of Barnett et al. [130]
small ammonia clusters can stabilize an excess electron by localizing
the extra charge on the surface. Figure 4.11 also indicates that in small
ammonia clusters the VEAs are correlated with the total dipole moment
of the clusters. This correlation is observed for both embedded and
nonembedded clusters.
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3.3. Charge transfer to solvent in halide aqueous solutions

The electronic spectra of halide ions in aqueous solution is a topic of intense
experimental and theoretical work [114,131–133]. A distinguishing trait of
their spectra is the existence of intense absorption bands in the deep ultra-
violet which is otherwise absent in the gas phase. These bound excited states
are, therefore, due to interactions with the surrounding solvent. For this
reason, the computational study of halides is a challenging but likewise
interesting case for QM/MM and related approaches.

The maximum absorption peaks for the halides in solution have been
measured: 7.10 (Cl�), 6.29 (Br�), and 5.47 (I�) [134]. In order to discuss the
trends in these values, one has to take into account the various states in
question. These are namely the ground state (X�, X= F, Cl, Br, I), the excited
state (X��) and the ionized state (X). The stability of the excited state can be
defined relative either to the ground state, in which case the determining
quantity is the excitation energy !, or the ionized state. In the latter case, the
question is whether the excited state is bound, the same is to say, whether
the excited state is lower in energy than the neutral halogen atom. If not, the
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excitation will not be observed. A comment should be made at this point.
The question of whether an excitation is observed or not is only valid in
experiment. In QM calculations, it is possible to compute any given excited
state, even if energetically unstable relative to ionization. This is simply due
to the constraints placed on the wavefunction.

A short diagram has been sketched in Figure 4.12 for three possible
environments. The example is rather general and can be applied to any of
the halogens. On the left side, the energy levels for all states have been
sketched for the halide in vacuo. The energetic ordering is in this case
ground, ionized, and excited states. The latter state is therefore not bound,
since the system will rather lose the electron than to remain on that given
electronic configuration. The electronic spectra of halides will be featureless,
up till the ionization threshold. In the middle diagram, a halide is sur-
rounded by a few water molecules. All states are stabilized, but on different
degrees. The most favored by the solvent environment is the ground state.
Given that water is a polar solvent, this should come as no surprise. This
ground state is negatively charged with a well-localized electron. Electro-
static interactions are, therefore, particularly favorable. The excited state is
also stabilized, but not so significantly, since the excess electron is deloca-
lized in the process, smearing the charge and reducing the electrostatic
interaction with the environment. The relative positions of ionized and
excited states are undetermined, since the crossover between the two will
depend on the specific halide and the number of water molecules. However,
in solution (right-hand side), there will be a bound state for all halides. We
will in the following text refer to as excitation energy (!) the difference
between E[X��]�E[X�] and as excited state vertical detachment energy the
difference E[X]�E[X��].

E

X –*

X –

X
X –*

X –

X

Figure 4.12 Energy diagram for three electronic states of the halide—ground state (X�),
excited state (X��), and ionized state (X). The ordering is given according to the

environment (from left to right, gas, cluster, and aqueous solution).
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Several theoretical studies have focused on small water-halide clusters
[135–137]. These showed, in general, that the excitation values slowly rised
with the number of solvent molecules to the experimental estimates in a
close to scalable manner. Different correlations between environmental
effects and the rise in the excitation energy have been proposed. Serxner
et al. [138] have searched for a semiquantitative correlation between the
dipole of the waters around the halide and the solvatochromic shift. This
has been later contested by Majumdar et al. [135], who considered the
resulting electric field. In our recent study of chloride in aqueous solution
[139], we confirmed a correlation between the electric field generated by the
surrounding solvent and the excitation energy value. For this purpose, we
used 50 configuration from a Born–Oppenheimer MD/DFT simulation of
Cl� in a small periodic water box (64 water molecules). For each of these
configurations, we chose as QM system the anion and the nearest-neighbor
water molecule, representing the remaining waters as SPC/E point charges.
We then reduced the number of MM waters, computing at each step the
excitation energy, as well as the electrostatic field of the solvent at the
chloride site. The two sets of values are given in Figure 4.13. Bradforth
and Jungwirth [140] have also pointed out the importance of including a
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very large electrostatic field around the halide for the description of the
excited state. Their calculations were focused not only on determining
excitation energies but also vertical detachment energies for the ground
and first excited states. The two studies indicate that a modest field is
enough to predict the excitation energy, while the detachment energy has
a very slow convergence. This is in line with the discussion of Section 2.2.3,
as the ionization process requires a very large MM environment.

Perhaps the most relevant question in the study of halides in solution is
the nature of the excitation. The vertical excitation is a precursor to the
charge-transfer-to-solvent (CTTS) state, where a solvated electron is created.
Most cluster studies argue that the excited electron is promoted to a virtual
orbital directed toward the surface of the cluster, in what would be a dipole-
bound electron [141,142]. The solution studies on chloride and iodide,
however, show that upon including a sufficiently large embedding system,
the excited electron is instead delocalized in a solvent cavity and the sur-
rounding waters [139,140].

Just as in the case of the water study, it is relevant to examine the
dependence of the above cited results with the number of quantum water
molecules. Due to the charge-transfer nature of the excitation, a many-body
expansion such as the one used in Eq. (20) is not feasible. In Eq. (20) it is
implied that the same excitation is computed for each of the energy terms.
This will not be the case if CTTS occurs (the one-body term will not be
consistent with the two-body expansion). The only possibility is to compute
brute force with larger QM regions. This has been done in both studies
referenced above. The conclusion is that ! holds a slight dependence on the
number of QM waters. In the case of chloride, up to six water molecules
have been included and the effect is seen to be around 0.8 eV [139]. In the
case of iodide, only a few single point calculations were performed, but
again differences of up to 0.6 eV could be observed [140]. The maximum
quantum size, in this case, included seven water molecules. The other
conclusion, however, is that around three water molecules seem to suffice
for a well-converged result. The number is not related to any of the solvation
shells. Observing the individual values, the reason behind the number is
manifold. First, the electron will not be necessarily transferred to the closest
water molecule. The orientation of the water solvation shell is an issue.
Second, as referred above, the electron is somewhat delocalized over a
number of water molecules and the space around them, so the quantum
region of a single molecule is, in some cases, not a good enough description.
A last issue concerns the basis set effect. Calculations with a small quantum
system show a large basis set dependence, especially diffuse functions,
hinting at the need to include basis functions close to the point charge
water molecules or even in between the solvent. As such, one could to
some extent improve the result by adding diffuse basis functions instead
of augmenting the QM region. However, even if the excitation energy is
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converged, it is questionable whether such a description, where the electro-
nic density is significantly overlapping with MM point charges, would be
physically reasonable. In fact, it should be avoided, since it leads to a large
dependence on the choice of charges describing the embedding field.

3.4. Solvatochromic shifts of small organic molecules

The solvent effect on the excitation energies (or solvatochromic shift) of
organic species is fundamental to the understanding of life mechanisms. A
wide variety of processes have been developed by all kinds of life forms,
from bacteria to the human being, in order to sense and regulate exposure to
light. These processes can only be fully understood by looking at the
molecular level. The study of solvatochromic shifts also gives insight into
specific solute–solvent interactions and opens way to interesting applica-
tions, such as the tailoring of new materials with specific absorption proper-
ties in solution. However, computing this value is far from being a trivial
task.

One of the often cited problems is related to the description of the
molecule itself. Some of the excitations, even in the gas phase, are remark-
ably sensitive to the geometry. A typical example is the n! p� excitation in
carbonyl groups, where the value depends strongly on the C¼O distance
[143]. However, in predicting a shift in solution, the most determining factor
will be the description of the environment, since effects pertaining to the
solute will partly cancel out.

The first excitation energy of formaldehyde in aqueous solution has been
the subject of many theoretical studies. Several have relied on a QM/MM
calculation, including only the chromophore in the QM region. Hirata et al.
[54] have used the same expansion as Eq. (20), but with the embedding
environment described by dipoles centered on the surrounding water mole-
cules. Results for small clusters (formaldehydeþ two water molecules)
showed good agreement with full calculations. In order to predict the
solvatochromic shift, they used large water clusters (up to 81 molecules)
and a variety of QM methods. The EOM-CCSD results indicated a shift of
0.17 eV, in close agreement with the QM(CASSCF)/MM results of Martı́n
et al. [144] (0.18 eV). Even though the two procedures widely differ, this
seems to hint at a very small two-body correction term. The main contribu-
tion would be connected to the electrostatic influence of the water mole-
cules, and their explicit quantum description can be considered
unnecessary. We now turn to other cases where the QM/MM approxima-
tions apparently fail.

In aqueous solution, the p! p� excitation energy of uracil is known to
suffer a red shift. Previous computational studies have shown that a large
number of solvent molecules have to be included explicitly into the quan-
tum system when making use of a QM/MM hybrid scheme. The
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experimental estimate is around �0.3 eV. The results of Ludwig et al. [145],
using a QM/MM scheme with TD-B3LYP and including only the solute
molecule in the quantum region, show almost no change relative to the gas
phase (�0.02 eV). By introducing nine explicit water molecules, the shift
increases to �0.20. However, semiempirical calculations show that the
result for nine water molecules (which make up for the first solvation
shell) is not converged relative to the quantum system size.

A similar observation has been made in the case of acrolein. With the use
of TD-DFT (CAM-B3LYP) as the quantum level of theory, Aidas et al. [66]
identified changes in the solvatochromic shift above 0.2 eV on increasing the
number of water molecules in the quantum system. This is in line with
previous results on the system which made use of continuum solvent
approaches. The experimental estimate in the case of acrolein is of a
�0.52 eV shift. The values obtained by Iwata and Morokuma [146] (QM=
HF: �0.25), do Monte et al. [147] (QM=MR�CISDþQ: �0.40), and Aqui-
lante et al. [148] (QM=MS�CASPT2: �0.10 and QM=PBE0: �0.22) were
all consistently too low, independently of the quantum method used. We
present in Table 4.2 a small review of computed solvatochromic shift values
for the two systems, together with the experimental estimates.

The problem seems more or less analog to both systems. The approx-
imate treatment of the solvent, reducing it to a simple electrostatic effect, is
unable to describe the shift. It should be pointed out that some of these
studies were performed with polarized coupling, including the effect of
back-polarization in the solvent. This seems to give little to no improvement

Table 4.2 Literature values for several QM/MM theoretical studies and experimental

estimates for the p! p� solvatochromic shifts in water of some small organic molecules

Molecule Level of theory nw Shift Ref.

Acrolein SCF/EHP 0 �0.25 [146]
CASPT2/PCM 0 �0.22 [148]
MR-CISDþQ/COSMO 0 �0.40 [147]
LR-CCSD/SPCpol 3 �0.26 [66]
CAM-B3LYP/SPCpol 0 �0.26 [66]
CAM-B3LYP/SPCpol 12 �0.46 [66]
experiment �0.52

Uracil PBE0/PCM 4 �0.10 [149]
B97-1/PCM 0 �0.08 [150]
PBE0(PMM) 0 �0.10 [151]
B3LYP/SPC 0 �0.02 [145]
B3LYP/SPC 9 �0.20 [145]
experiment �0.28/�0.31
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relative to a simple electrostatic embedding. The error seems to stem exclu-
sively from the quantum treatment. As a test system, we opted to use the
acrolein molecule in analyzing the many-body effects responsible for the
slow convergence of this value. The uracil case is somewhat more compli-
cated, since the p! p� excited state is expected to cross below the n! p�

state, on going from the gas to the solution. The problem of state crossing is
a severe limitation to the use of many-body schemes.

In order to compare the gas and the solution spectra, we optimized the
acrolein molecule at the MP2/aug-cc-pVTZ level, with and without the
PCM continuum correction. The MP2(PCM)/aug-cc-pVTZ geometry was
then used in a fixed-body MD simulation immersed in a water (TIP3P) box
with periodic conditions. The intermolecular terms for acrolein were taken
from Ref. [66]. After an equilibration time of 50 ps, 10 snapshots were taken
in 5 ps intervals, and were later used for the calculation of the ground and
the excited states. For the single point calculations, the simulation box was
replicated in all three dimensions, and a sphere was cut, with the acrolein
oxygen as the geometric center, and including all water molecules with a
distance of up to 20 Å from the same atom. A depiction of one of these
snapshots is shown in Figure 4.14. The excitation energies were computed at
the EOM-CCSD/aug-cc-pVDZ level of theory. The solvatochromic shift is
defined as the energy difference between the excitation energy of the MP2
(PCM)/aug-cc-pVTZ optimized structure, dipped in the solvent box, and of
the gas-phase optimized molecule. The EOM-CCSD/aug-cc-pVDZ has been
confirmed as a suitable theoretical level for computing the p! p� excitation
energy. Further details on the system preparation and single point calcula-
tions will be published elsewhere [152].

Figure 4.14 MD snapshot of an acrolein molecule (vdW representation) surrounded by

water molecules. The closest 32 water molecules are depicted as balls and sticks, which is

the largest quantum system considered in the study.
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In order to compute the excitation energy in the case of the solvated
acrolein molecule, we make use of Eq. (20). The excitation energy is calcu-
lated according to the reduced two-body expression, including a variable
number of water molecules into the expansion. As it can be easily gathered
from Figure 4.15, the inclusion of water molecules in the QM region has a
dramatic effect on the solvatochromic shift. The QM/MM estimate, with
only the solute as quantum system (nw= 0), is only �0.24 eV, about 50% of
the experimental value. This is in line with the previous results for the
system (see Table 4.2). Including the first solvation shell (nw= 12), one is
still at �0.45 eV, an error of about 10%. This is only recovered by including
as much as 32 water molecules. Such a quantum system size is computa-
tionally prohibitive, even for lower levels of theory such as TD-DFT. A
remarkable agreement with experiment is obtained, when comparing the
converged result.

Besides the possibility of achieving such large system sizes, one of the
positive aspects of a many-body formulation is the amount of information
available in the decomposition. The values presented in Figure 4.15 are
estimated as a by-product of the two-body calculation with nw= 32. Con-
trary to what was performed in Sections 3.1.2 and 3.3, there is no need to
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Figure 4.15 Solvatochromic shift D! of the p!p� excitation of the acrolein molecule

(in eV), embedded in a solvent sphere with a 20 Å radius. The shift is computed with use of

Eq. (20), and shown as a function of the number of water molecules treated quantum

mechanically (nw).
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repeat the calculation for different sizes in order to check for convergence
of the QM system. The two-body value is obtained in an incremental
fashion and, therefore, has inherent diagnostic capabilities. One can start
by computing the QM/MM value and then add the effect of dimers. If the
two-body effect is found to be small, one can, with some certainty, confirm
the convergence of the calculation. The contrary is, however, not
applicable.

4. FINAL REMARKS AND CONCLUSIONS

The application of sequential QM/MM method for the calculation of the
electronic spectra of hydrogen bond systems was reviewed. In contrast
with the conventional QM/MM approach, there is no coupling between
the QM and the MM partitions in the dynamic or stochastic sampling
procedures for studying many-body interacting systems in condensed
phase. However, the sequential approach can be seen as a particular case
of a more general QM/MM formulation. Particular emphasis was placed
on the possibility of exploiting the coupling between many-body energy
decomposition schemes and the QM/MM partition. In this sense, the
present results for the absorption spectrum of water clusters illustrate
how a simple one-body decomposition scheme for the total energy can
be successfully applied to carry out ab initio calculations for large water
clusters. We have also presented an analysis of the merits and limitations
of an application of the sequential QM/MM approach to study the liquid
water absorption spectrum in the 6�15 eV range. This analysis indicated
that some aspects for assessing the reliability of a QM/MM partition
should be taken into consideration. Specifically, the dependence of the
results on the size of the quantum system and the representation of the
embedding charge background should be investigated. Several other
applications of the sequential QM/MM approach were also reviewed
and include ionization of liquid water and ammonia, charge transfer to
solvent in halide aqueous solutions, and solvatochromic shifts of small
organic molecules. The last application, namely, the calculation of the
excitation energy of the acrolein molecule in liquid water, clearly illus-
trates how the coupling of a many-body decomposition scheme to a QM/
MM partition makes possible an accurate ab initio approach to the solva-
tochromic shift for a system where a strong dependence of the results on
the number of solvent molecules explicitly included in the QM system has
been observed. In conclusion, the application of a many-body decomposi-
tion scheme to the energy representation of a QM/MM partition leads to a
new and powerful formulation that is beyond the conventional QM/MM
methodology.
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1. INTRODUCTION

Water plays an important role for most chemical processes that are rele-
vant for the environment, biology, and technology. Water-assisted reac-
tions in catalysis [1,2] and biochemistry [3], chemical speciation [4,5],
mineralogy [6�8], supramolecular chemistry [9�11], and nanoreactors
[12,13] are some of the areas for which water is an active medium creating
the environment necessary for the favorableness of chemical processes.
Understanding the role of water in the chemical phenomena is the crucial
point for bringing up new breakthroughs in many frontier fields of chem-
istry and physics. Many sophisticated techniques such as nuclear magnetic
resonance (NMR) spectroscopy and nuclear overhauser effects (NOE) [14],
spectroscopic and ultrafast electronic excitation techniques [15] are now
used to acquire fundamental knowledge about the influence of water in
different phenomena providing new perspectives on a wide range of
reactions and processes [16].

The intermolecular interactions leading to association species and inclu-
sion compounds in aqueous solution are of particular interest. Computer
simulation of such challenging systems is very important to understand the
intrinsic interactions involved, the dynamics, and the driving forces that
govern the phenomena. An example of such system is the polypeptides in
aqueous solution and their interaction with macromolecules forming
inclusion and association compounds.

The heptapeptide Angiotensin-(1�7) [17]—(Ang-(1�7)—in aqueous
solution has attracted our attention because of its great potential to treat
cardiovascular diseases due to its activity in the rennin�angiotensin
systems (RAS) [17,18]. NMR technique has been applied and a majority
of the resonances were accomplished by rotating frame overhauser
enhancement spectroscopy (ROESY), total correlation spectroscopy
(TOCSY), and correlation spectroscopy (COSY) peak coordinates, and
have permitted a detailed analysis of the conformation and their inclusion
to b-Cyd [14]. Bradykinin potentiating peptides (BPPs) [19] have also
attracted our attention, as these compounds were the first naturally
occurring angiotensin-converting enzyme (ACE) inhibitors described in
the literature [19]. The BPPs activity is related to the potentiation of the
hypotensive effects of Bradykinin, and also by inhibition of the conversion
of Angiotensin-I into Angiotensin-II [20]. These classes of peptides were
essential for the development of the Captopril

�
, the first commercial ACE

inhibitor, used nowadays clinically for cardiovascular dysfunction treat-
ment [21�23]. Particularly, the inclusion compound of Ang-(1�7):b-Cyd is
of great interest because of its technological importance.

The self-consistent charge�density functional tight-binding
(SCC�DFTB) method has been extensively used with remarkable success
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to describe large organic molecules such as those found in the biological
field. Elstner and collaborators [24] were the first to propose the strategy
of using SCC�DFTB combined with molecular mechanics to treat large
biologically relevant molecules [24,25]. Rhodopsin, relative pKa’s of pro-
teins, enzymes, proton transfer, ATP hydrolysis in myosin, and dizinc b-
lactamase are some of the systems that have been successfully treated
using the SCC�DFTB/MM method [26�33]. In most of these systems, part
of the protein was treated quantum mechanically, whereas the remaining
structure was described by an appropriate force field. Water molecules
were included in some of these systems, and they have usually been
treated classically.

In the present work, we explore the simulation of polypeptides and their
inclusion compounds with the b-cyclodextrin (b-Cyd) in aqueous solution
using the combined QM/MM method where the QM is the SCC�DFTB
method including empirical London dispersion correction (DC), and MM
is described by the universal force field (UFF), augmented by Coulomb
interactions which are in-line with the quantum method. This is a good
compromise between a first-principle method and an empirical force field.
The aim is to establish the method which is able to describe systems of
larger complexity such as those involved in self-assembly and nanoreactors.
Cyclodextrins have been extensively studied because of their technological
and biological importance that is used as drug delivery device and, more
recently, as nanoreactors [34]. In the last decade, many reviews [34�45] have
been dedicated to the dynamics and thermodynamics of cyclodextrins in
aqueous solution and their inclusion compounds with biologically relevant
molecules.

2. THEORETICAL APPROACH

This section is organized as follows. A brief review of the SCC�DFTB
method will be given. A posteriori treatment of London dispersion interac-
tions will be discussed followed by the presentation of QM/MM implemen-
tation with mechanical and with electrostatic embedding will be discussed.
All methods are implemented in an experimental version of the deMon
computer code [46].

2.1. Density functional tight-binding method

DFTB uses density functional theory (DFT) as basis for the establishment of
a tight-binding method. Many reviews about DFTB and its extensions are
now available [47–49]. We will limit ourselves to the practical part of the
SCC–DFTB method and its implementation.
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In the Kohn–Sham (KS) formalism, the total energy can be calculated as
follows:

E½�� ¼
X
i

ni"i � 1

2

Z
�ð r!Þ�ð r!0Þ
jr! � r!0j d3rd3r 0 þ Exc½�� �

Z
�xcð r!Þ�ð r!Þd3r: ð1Þ

ni denotes the occupation number of the orbital. The basic idea of DFTB is to
write the electronic density as a reference density �0 plus a small fluctuation
�� [50],

�ð r!0Þ ¼ �0ð r
!Þ þ ��ð r!Þ: ð2Þ

Inserting Eq. (2) in (1), and after some arrangements, we write the total
energy equation according to Eq. (3):

E ¼
X
i

ni
D
 i

���Ĥ0
��� i

E
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ebnd

þErep½�0� þ E2nd½��; �0�: ð3Þ

The first term contains a reference Hamiltonian Ĥ
0
that depends only on the

reference density �0:

Ĥ
0 ¼ � 1

2
H2 þ vextð r!Þ þ

Z
�00

jr! � r!0 jdr
!0 þ vxc½�0�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

vKS½�o�

: ð4Þ

The sum in the first term of Eq. (3), Ebnd, is the sum over the energies of
all occupied orbitals. The second term of Eq. (3) defines the repulsive
contribution,

Erep½�0� ¼ � 1

2

ZZ
�00�0

jr! � r!
0jdr

!
dr
!0 þ Exc½�0� �

Z
vxc½�0��0dr

! þ Enn: ð5Þ

Note that Erep, as defined in Eq. (5), includes the nucleus–nucleus repulsion
energy, a quantity of similar magnitude than the first term, the electron–
electron repulsion, but with different sign. Finally, the last term in Eq. (3)
includes the corrections related to the fluctuations in the electronic density.
This term is defined as

E2nd½�0; ��� ¼
1

2

ZZ
1

jr! � r!
0j þ

�2Exc

����0

�����
�0

0
@

1
Adr

!
dr
!0
: ð6Þ

In order to obtain a good estimate of the reference, electronic density, �0, is
written as a superposition of atom-like densities, centered on the nuclei �,

�0ð r
!Þ ¼

XN
�

��0 ð r
!
�Þ; r

!
�¼ r

! �R
!
�: ð7Þ
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With this approximation, it is assured that Erep does not depend on the
electronic-density fluctuations. Furthermore, because of the neutrality of ��0 ;
the Coulomb contributions become negligible for long distances. Therefore,
Erep can be expanded, and because of the screening of terms of more than
two centers, one can assume the two-center contributions to be short ranged.
However, the repulsion energy does not decay to 0 for long interatomic
distances. Instead, it decays to a constant value given by the atomic
contributions:

lim
R��!1

Erep½�0� ¼
XN
�

Erep½��0 �: ð8Þ

Thus, �N
�Erep½��0 � ¼ 0 is assumed in order to make Erep dependent only on

two-center contributions:

Erep½�0� �
1

2

XN
�;�

U½��0 ; ��0 �: ð9Þ

Although it would be possible to calculate Erep for known values of ��0 ; it is
more convenient to adjust Erep to ab initio reference calculations. This is in
particular motivated by the imbalance in the terms of Eq. (5), where the
electron–electron repulsion is approximated and large in magnitude, and is
to be compensated by the exact nucleus–nucleus repulsion energy. Thus,
Erep is fitted to the difference between the DFT energy and Ebnd, as a
function of the interatomic distance R�� using a suitable reference structure,
that is,

Erep½�0� � ErepðR��Þ ¼ fEDFTðR��Þ�EbndðR��Þgjref: struct:: ð10Þ

In DFTB, the KS orbitals are represented by a linear combination of atomic
orbitals (LCAO) centered on the nuclei. Denoting the basis functions by ��
and the expansion coefficients by Ci�, one can write the KS orbitals in the
form

 ið r
!Þ ¼

XN
�

Ci���ð r
! �R

!
�Þ: ð11Þ

From this LCAO model, one obtains the secular problem

XN
�

Ci�

�
H0
	� � "iS	�

�
¼ 0; 8	; �; ð12Þ

where the elements H0
	� of the Hamiltonian matrix and S	� of the overlap

matrix are defined as follows:

H0
	� ¼

D
�	

���Ĥ0
�����E;

S	� ¼
D
�	

�����E; 8	 2 �; � 2 �: ð13Þ
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The second term of Eq. (3) can be transformed, with Eq. (11), into

X
i

ni

�
 i

����Ĥ0
���� i

�
¼
X
i

XN
	;�

niCi	Ci�

�
�	

����� 1

2
H2 þ vKS½�0�

������
�
¼ trðP �H0Þ; ð14Þ

in which the elements of the density matrix P are defined as

P	� ¼
X
i

niCi	Ci�: ð15Þ

In 1998, Elstner and coworkers [51] presented an approach to derive the DFTB
equations through a second-order expansion of the DFT total energy with
respect to the electron density. As a result, the Hamiltonian matrix elements
are calculated as density superpositions, according to the following equation:

H0
	� ¼ �	

������ 1

2
H2 þ vKS½��0 þ ��0 �

�������
 !

; 	 2 f�g; � 2 f�g: ð16Þ

This approach is extensively used for SCC–DFTB. It is, however, also
possible to superpose atomic potentials in the Hamiltonian elements, fol-
lowing closer the original tight-binding concept. For more details, the inter-
ested reader is referred to reference [49].

The �� basis functions and the reference atom-like densities ��0 are
obtained by solving the Schrödinger equation

� 1

2
H2 þ vKS½��0 � þ

r

r0

� 	2
" #

��ð r
! Þ ¼ "���ð r

! Þ; ð17Þ

for the free atomwithin a self-consistentDFTmethod. The contraction potential
(r/r0)

2 in Eq. (17) confines the atomic orbitals and hence their densities, and
results in better basis sets for the study of condensed-phase systems and free
molecules as well. The value for the parameter r0 is normally chosen as
approximately 2rcov, with rcov being the atomic covalent radius [52]. In some
cases, rcov has been treated asparameter to improve the accuracy of themethod.

In practice, the Hamiltonian matrix elements are calculated as follows:
For the diagonal elements, the energy level of the free atom is chosen, which
ensures correct dissociation limits. Because of the orthogonality of the basis
functions, the off-diagonal elements of the intra-atomic blocks are 0. The
interatomic blocks are computed as given in Eq. (16), depending on the
choice of potential generation. Within the density superposition approach,
the Hamiltonian matrix elements unfold as follows:

H0
	� ¼

( "free atom
	 ; 	¼ �;D
�	

���T̂ þ vKS½��0 þ ��0 �
�����E; 	 2 f�g; � 2 f�g; � 6¼ �;

0; otherwise:

ð18Þ
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It should be noted that the Hamiltonian elementsH0
	� depend only on atoms

� and � and, therefore, only the two-center matrix elements are explicitly
calculated, as well as two-center elements of the overlap matrix. According
to Eq. (18), the free atom eigenvalues form the diagonal of the Hamiltonian
matrix, which assure the correct limit for free atoms.

By using �� and �
�
0 , the Hamiltonian and overlap matrix elements can be

calculated and tabulated as a function of the distance between atomic pairs.
Thus, it is not necessary to recalculate any integrals during, for example, a
geometry optimization or molecular dynamics simulation.

2.2. Self-consistent charge–density functional tight-binding

It is well known that the accuracy of the DFTB method decreases when the
chemical bonds in the system are controlled by a more delicate charge balance
between atoms, especially in the case of heteronuclear molecules and polar
semiconductors [51]. It is, therefore, natural to correct the electronic density
through inclusion of the second-order contributions E2nd of Eq. (3), which are
neglected in DFTB. The SCC–DFTB is an extension of DFTB that improves the
description of electronic systems and the transferability of DFTB in the cases
where long-range Coulomb interactions are significant.

In order to include the density fluctuations in a simple, yet efficient, way
according to a tight-binding approach, �� is written as the superposition of
atom-like contributions ���, which fast decays along the distance from the
corresponding atomic center,

�� ¼
XN
�

���; ð19Þ

where the atom-like contributions can be simplified with the monopole
approximation:

���� q�F
�
00Y00: ð20Þ

Here q� is the Mulliken charge, the difference between the atomic Mulliken
population p�[53] and the number of valence electrons of the neutral free atom
p0� ( q� ¼ p�� p0�); F

�
00 denotes the normalized radial dependence of the density

fluctuation in atom �, approximated to spherical by the angular function Y00.
In other words, the effects of charge transfer are included, but changes in the
shape of the electronic density are neglected. Equation (6) then becomes

E2nd � 1

2

XN
�;�

q�q�

ZZ
1

jr! � r!0j þ
�2Exc

����0

�����
�0

0
@

1
AF�00F

�
00Y

2
00dr

!dr!0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

��

; ð21Þ

in which the notation 
�� was introduced merely for convenience.
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In order to solve Eq. (21), 
�� must be analyzed. In the limit case where

the interatomic separation is very large ( jR
!
��R

!
�j ¼ j r!�r

!0j ! 1), one

finds, by GGA-DFT, that the exchange-correlation term goes to 0 and 
��
describes the interaction of two normalized spherical electronic densities,

basically reducing to 1=jR
!
��R

!
�j; thus,

E2nd �
XN
�;�

q�q�

jR!��R
!
�j
: ð22Þ

In the opposite case, for which the interatomic distance tends to 0
(jR
!
��R

!
�j= j r! � r

!0j ! 0), 
�� describes the electron–electron interaction
within the atom � and can be related with the chemical hardness �� [54],
or Hubbard parameter 
�� ¼ 2�� ¼ U�. Within the monopole approxima-
tion, U� can be calculated—using a DFT procedure—as the second deriva-
tive of the total atomic energy of atom � with respect to its atomic
population:

E2nd � 1

2

@2E�½�0�
@p2�

q2� ¼ 1

2
U�q

2
�: ð23Þ

In order to obtain a well-defined and useful expression for systems in all
scales, and still keep consistence with the aforementioned approximations,
an analytical expression was developed [51] to approximate the density
fluctuations with spherical electronic densities.

Then, the total energy within SCC–DFTB is written as

ESCC ¼
X
i

ni
D
 i

���Ĥ0
��� i

E
þ 1

2

XN
�;�


��q�q� þ Erep; ð24Þ

with 
�� ¼ 
��ðU�;U�; jR
!
��R

!
�jÞ: Here, the contribution owing to the

Hamiltonian Ĥ
0
is exactly the same as in standard DFTB scheme. Note that

the first term in Eq. (24) does only simplify to the sum of molecular orbitals
(MO) energies—the convenient notation for DFTB—if all charges are 0. Like
in the non-self-consistent method, the wave functions  i are expanded in an
LCAO model—Eq. (11)—and Eq. (24) gives Eq. (25) as follows:

ESCC ¼ trðP �H0Þ þ 1

2

XN
�;�


��q�q� þ Erep: ð25Þ

The charge fluctuations are calculated by Mulliken population analysis [53]:

p� ¼ 1

2

X
i

ni
X
	2�

X
�

ðCi	Ci�S	� þ Ci�Ci	S�	Þ; ð26Þ
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and secular equations similar to those in Eq. (12) can be obtained, with
modified elements in the Hamiltonian matrix:

H	� ¼
D
�	

���Ĥ0
�����Eþ 1

2
S	�
XN
�

ð
�� þ 
��Þq� ¼ H0
	� þH1

	�;

8	 2 �; � 2 �:

ð27Þ

The matrix elements H0
	� and S	� are identical to those defined in the

standard DFTB method, in Eq. (13). Since the atomic charges depend on
the monatomic wave functions  i; it is necessary to use a self-consistent
procedure. Once the elements S	� extend to some neighboring atoms, multi-
particle interactions are introduced. The second-order correction is achieved
by introducing the elements H1

	� , which depend on the Mulliken charges.
Identically to the standard DFTB, the repulsive potential is fitted accord-

ing to Eq. (10), using a suitable reference system.
As the SCC correction allows for the explicit treatment of charge–transfer

effects, the transferability of Erep is considerably better, in comparison to the
non-self-consistent scheme.

As in standard DFTB, a simple analytic expression for the atomic forces
can be derived accordingly:
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2.3. A posteriori treatment for London dispersion in SCC–DFTB

Despite their weak nature, London interactions—also called dispersion
interactions—affect many fundamental processes in chemistry, physics,
and biology. They influence, for example, the formation of molecular crys-
tals, the structure of biological molecules such as proteins and DNA,
adsorption processes, and p–p stacking interactions.

However, DFTB and also SCC–DFTB treat only short-range atomic poten-
tials, resulting in a short-range Hamiltonian H0

	� . Moreover, long-range elec-
tronic interactions, only accounted for in SCC–DFTB, are multiplied with the
overlap matrix and hence also effectively short-ranged. Indeed, the matrix
elements approach 0 usually at distances closer than the van der Waals
minimum.Hence, DFTB completely disregards London dispersion forces [55].

Two treatments meant to include dispersion interactions a posteriori have
been proposed [55,56]. In both cases, the dispersion energy Edisp is calculated
separately using empirical potentials, and then added to theDFTB total energy
expression. Since London dispersion forces are totally absent in DFTB, the
addition of Edisp does not introduce any double-counting errors to the energy.
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Since both treatments are somewhat similar, we describe the one we have
used in the present work [55]. This correction was implemented in an experi-
mental version of the deMon code [46] and makes use of the UFF force field
[57], already available in deMon. The dispersion interaction U�� between
atoms � and � at a distance R is given in Lennard-Jones-type form, which
includes two parameters: van der Waals distance (R��) and well depth (d��):

U��ðRÞ ¼ d�� � 2
R��
R

� 	6

þ R��
R

� 	12
" #

: ð29Þ

The R�� and d�� parameters are reported in the original UFF paper [57] and
are available from H to Lw in the periodic table of elements. In UFF, the
diverging short-range part of the van der Waals term is set to 0 according to
an adjacency criterion: the calculation of van der Waals interactions are
omitted between the atoms and their first and second neighbors according
to the bonding map. This imposes an inflexible topology of the system,
which is not desirable in a quantum mechanical method. To overcome this
problem, Eq. (29) is used only when U�� is attractive (London interactions
are never repulsive), that is, R < 2� 1=6R��: In addition, a short-range
potential is derived using the polynomial

Ushort�range
�� ðRÞ ¼ U0 �U1R

n �U2R
2n; ð30Þ

where U0; U1; and U2 are calculated to make the interaction energy and their
first and second derivatives match Eq. (29) at R ¼ 2� 1=6R��: The best value
suggested for n is 5, which gives the followingU0;U1; andU2 parameters [55]:

U0 ¼ 396

25
d��; ð31Þ

U1 ¼ 25=6
672

25

d��
R5
��

; ð32Þ

U2 ¼ � 22=3
552

25

d��
R10
��

: ð33Þ

Therefore, the dispersion potential for the DFTB method can be written as

U��ðRÞ ¼
d��
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and the dispersion energy is given by

Edisp ¼ 1

2

XN
�;�

U��ðRÞ: ð35Þ

This term is then added to the total DFTB energy calculated using standard
DC–SCC–DFTB.

2.4. Universal force field implemented in deMon

The implementation of the UFF follows closely the original work of
Rappé and coworkers [57]. As noted in Rappé’s seminal paper, it is
important to provide some additional information of the system to
achieve a reasonable performance of the method. In particular, these
are bond orders and atomic charges. For the simulation of water, we
apply TIP3P charges (QO ¼ � 0:842 and QH ¼ 0:421). This way, the
description of water is very similar to the TIP3P force field [58], but
physically more rigorous in several ways: (i) the water molecules are not
restricted in their motion, that is, also the three internal degrees of
freedom are unconstrained; and (ii) the London dispersion interactions
include O�O, O�H, and H�H terms, in contrast to only O�O terms in
original TIP3P. With these minor modifications, the water diffusion
constant is somewhat lower than that of TIP3P and therefore closer to
the experimental value [59].

The UFF implementation in deMon works both for periodic and for
finite systems. This way, it is straightforward to control temperature and
pressure using adequate thermo- and barostats.

2.5. QM/MM approach

The strategy of using the DC–SCC–DFTB/UFF hybrid method is particu-
larly interesting because of its practical implementation and for the accuracy
of SCC–DFTB to treat systems of biological interest. The modified version of
deMon contains a QM/MM scheme [60] with mechanical and with electro-
static embedding.

For mechanical embedding, we apply a straightforward subtraction
scheme. The system (S) is separated into a core region (C) and its
environment (E). The aim of a QM/MM treatment is to describe the
core region using QM, while the environment is described at the MM
level. Total energy and gradients are then calculated by calculating the
full system S at the MM level, and then computing the core area once at
the MM and at the QM level. The MM contribution of region C is then
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subtracted from the quantity describing the full system, while the QM
contribution is added to it:

E ¼ EMMðSÞ�EMMðCÞ þ EQMðCÞ
F
! ¼ F

!
MMðSÞ þ F

!
MMðCÞ þ F

!
QMðCÞ: ð36Þ

The interaction between environment and core region is obviously
described by MM and includes both electrostatic and London dispersion
interactions. In order to allow a reasonable electrostatic interaction, the
charges in the MM region need to be well balanced. In SCC–DFTB/UFF,
we use SCC–DFTB Mulliken charges for the UFF Coulomb interactions.

The treatment of electrostatic embedding is a little bit more involved.
Here, also the electrostatic polarization of the core region by the environ-
ment is respected. To achieve this, the quantum mechanical calculation has
to be carried out in the electrostatic field of the environment, which is given
by the distribution of point charges present in the MM region. It has to be
noted that the total energy of the QM calculation includes the electrostatic
interaction with external point charges. As the subtraction scheme used for
mechanical embedding already includes the Coulomb interaction between
charges in regions S and E, the term needs to be omitted in the energy and
gradient contribution of the QM region in Eq. (36). The resulting equations
are equivalent to those of Ref [24], but leave the general appearance of the
mechanical embedding subtraction scheme untouched.

2.6. Periodic boundary conditions

It is desirable to carry out molecular dynamics simulations in a simulation
box. A first reason is the fact that there are no artificial phase boundaries
which are found in a finite “drop” model of a solvated biological molecule.
Such boundaries usually imply undesirable technical consequences, such
as the “evaporation” of water molecules from the “drop” to “vacuum.”
A further advantage of a simulation box is the accessibility of thermodyna-
mically important quantities like volume, mass density, and pressure. How-
ever, the implementation of periodic boundary conditions (PBC) also comes
with potential pitfalls, in particular in the computation of long-range
interactions.

Our implementation of PBC is aiming at large structures, as various
things simplify in this case. First of all, for large unit cell it is not necessary
to calculate the band structure, we can work in the G point approximation.
Furthermore, we will choose unit cells that have translation vectors always
exceeding the maximum range of electronic interactions between the atoms
of the QM region. Within DFTB, this is easily achieved, as overlap- and
Kohn–Sham matrix elements approach 0 usually at a distance of about 5 Å.
Our box size shall therefore always exceed 10 Å, and in this case it is
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justified to use the minimum image convention (for details, see, e.g., Ref.
[61]). The minimum image convention is applied to all short-range interac-
tions, which include the electronic interaction in the QM region as well as
the bonded interactions in the MM region.

The long-range treatments, that are the London dispersion and electro-
static contributions, require special treatment. The electrostatic contributions
are conveniently calculated using the Ewald summation technique. Several
implementations are available in the literature and we have decided for a
straightforward implementation of the physical equations as given in Ref.
[62], which contribute significantly (~25%) to the total computer time, but do
not dominate. More sophisticated approaches, for example, the particle mesh
Ewald summation [63], are also common in modern computer codes. The
London dispersion relation is, if cohesion energies are concerned, surpris-
ingly long-ranged. Indeed, as the long-range tail is always attractive, and as it
dies off with R–4 (if the increase of particles in a growing sphere is respected),
interaction radii of up to 100 Å need to be respected if the total energy shall be
computed with a final accuracy on the kJ/mol scale. Obviously, the London
dispersion influences of such large systems are usually not contributing to
any physical effect. They are, however, important if energetics of simulations
in unit cells of different size have to be compared. We have therefore
approximated the London-dispersion interactions in the long range in order
to achieve a size-consistent treatment: One may use the minimum image
representation, which is computationally cheap and robust and gives accu-
rate gradients for large enough super cells. For a more accurate treatment, we
add a “productive zero” to the Lennard-Jones interaction potential that
describes the London dispersion interaction:

U��ðRÞ ¼ max d��
R��
R

� 	12

� "; 0

 !
�min � 2d��

R��
R

� 	6

þ "; 0

 !
; ð37Þ

with a reasonable choice of ", for example, about 0.05 kJ/mol. Here, the
minimum of the potential is not touched, and the potential is continuous
until it dies off at much shorter distance. Consequently, a much shorter
interaction range has to be considered, and the results are size-consistent.

3. POLYPEPTIDES AND THEIR INCLUSION COMPOUNDS WITH
b-CYCLODEXTRIN IN AQUEOUS SOLUTION

3.1. b-Cyclodextrin in aqueous solution

Cyclodextrins are probably among the most studied molecules in the last
decades because of their large range of technological applications, mainly in
the multibillionaire dollar pharmaceutical industries. Many formulations
are now available with cyclodextrins working as a drug delivery system
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enhancing the bioavailability of drugs or providing a way for oral admin-
istration [64,65] by increasing its solubility. The chemical properties and
their cyclic structures called attention of many researchers which tried to
probe their macrocycle properties and the ability to protect hydrophobic
molecules or groups in their cavities. The task to assess that an inclusion
compound, and not only an association compound, has actually been
formed seems to be quite difficult. NMR, neutron scattering diffraction,
ultrafast laser microscopy, circular dichroism, and isothermal calorimetry
titration [15,16,66–69] have been applied to try to understand the mechan-
ism of inclusion formation.

Notwithstanding, computational chemistry has been applied intensively
trying to verify the favorableness of the inclusion compound formation from
the thermodynamic point of view. We advance that the use of oversimpli-
fied gas-phase models cannot give such information. The water has an
important role, which cannot be neglected in any approximation. For
instance, in gas phase, any reasonable model will predict that two molecules
which can make hydrogen bonds (HBs) and local dipole interactions remain
bounded. Understanding and predicting the inclusion compound formation
means, invariably, that the model has to take into account explicitly the
solvent effects and the dynamics. The entropy is probably the most impor-
tant contribution and cannot be neglected. We present here the progress
of taking into account the solvent effects explicitly for investigating the
chemical behavior of b-Cyd in aqueous solution.

b-Cyds are starch-derived cyclic oligomers with seven glucose units.
b-Cyd has the shape of a truncated cone enclosing a hydrophobic cavity
(Figure 5.1) . The “top” and “bottom” orifice diameters of, respectively, 6.0 Å
and 6.5 Å, and a depth of 7.9 Å make the cavity large enough for hosting
many biologically active molecules. About seven water molecules are
included in the b-Cyd, which have been assessed by X-ray diffraction [70]
and neutron diffraction [66,67,71].

Molecular dynamics of b-Cyd in aqueous solution has been performed
using the DC–SCC–DFTB/UFF method in our laboratories [59]. The simula-
tion used a 34.9 Å cubic box, containing 1385 water molecules. The trajec-
tories were initially heated up, followed by 20 ps equilibration run using
Berendsen thermostat [72] with a coupling parameter of 
 = 0.1, . . ., 1.0 ps.
For the microcanonical NVE (constant number of particles, volume, and
energy) production run of 0.16 ns, a time step of 0.5 fs was chosen. The total
energy remained constant within 0.001 Hartree during the whole simula-
tion. The average temperature during the production run was 303+ 3 K.

The optimized gas phase geometry calculated using DC–SCC–DFTB and
PBE/DZVP method [73] has been compared. The results are in very good
agreement with the X-ray diffraction results. The maximum deviation is
about 6�. The structural parameters presented in Table 5.1 are related to the
distortion of b-Cyd out-of-plane and in-plane with respect to the plan that
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crosses the cone. As it is expected, the results of the molecular dynamics
show larger deviations. The standard deviation is taken over all equivalent
sites and over several snapshots of the trajectory in the case of molecular
dynamics (MD).

The O4O40O40O4000 dihedral angle provides information about the defor-
mation of the cavity. It has a minimum at 0�. At gas-phase molecular
dynamics, the temperature effect on the geometry can be inferred. It is
observed that this dihedral angle is about 27+ 16� and 14+ 9� at the
DC–SCC–DFTB and UFF levels, respectively. It turns out to be important

Table 5.1 Structural parameters calculated for b-Cyd at DC–SCC–DFTB and PBE/DZVP

levels of theory

Anglesa DC–SCC–
DFTB

PBE/DZVP DC–SCC–
DFTB/UFF MD

Expb

C2C3C4C5 53� 1 54� 2 36� 11 55� 3
O4O40O40O4000 –0.2� 14 0� 5 4.6� 19 0.2� 9
C1O40C40 123� 17 116.9� 0.9 114� 3 118� 1
O4O40O40 128� 3 129� 3 126� 9 128� 2

a See Figure 5.1 for the definitions of structural parameters.
b Refs. [70,71].

O

HO
HO

OH

O

O

HO

HO

OH

O

OHO

HO

OHO

O

OH
HO

HO

O

O

OH

OH

HO

O

O

OH

O

OHHO

O

OH

OH

OH

O

15

5

6

4
3

2 4′

4′
6′

5′

3′

5′

2′ 1′

4′′

4′′′

4′

7.9 Å

6.5  Å

6.0 Å

Figure 5.1 Structure of the b-Cyd including the numbering scheme used to define the

structural parameters.

Molecular Dynamics of Polypeptides 159



to note that UFF predicts a much harder structure compared to the quantum
mechanical DC–SCC–DFTB calculations. The increase of the standard devia-
tions in the case of MD indicates larger degree of fluxionality.

The solvent-induced changes in the b-Cyd structure can be quantified by
the root-mean-square deviations (RMSD) of the coordinates between two
snapshots of a MD trajectory, as proposed by Lawtrakul et al. [74].

�
RMSD


 ¼ 1

NfC;Og

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k2fC;Og

D
j r!kðtÞ� r

!
kð0Þj2

Es
: ð38Þ

In Eq. (38), N denotes the number of nonhydrogen atoms of b-Cyd.
Figure 5.2 shows that RMSD of the coordinates between two snapshots of a

MD trajectory (in angstrom) at gas phase and aqueous phase.While for the gas-
phase molecular dynamics at 300 K, the RMSD converged to 2 Å, the b-Cyd in
solution converged to the RMSD about 1.2 Å. The water surrounding the b-
Cyd acts as a cushion, decreasing its free motion. Interestingly, this effect
cannot be seen in pure MM calculations using the UFF force field. Obviously,
the low energy region of the potential energy surface (PES) for this force field is
restricted to the area close to the experimental structure of the sugar, resulting
in an excessively rigid sugar framework. As a result, UFF is not able to describe
structures that change with temperature or environment, such as b-Cyd,
at high precision. This highlights the potential of quantum mechanical meth-
ods to describe molecules of biological interest, even if no chemical reaction
takes place, as QM methods tend to show a much better transferability than
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, see Eq. (38), of the coordinates between

two snapshots of an MD trajectory (in Å) (gas phase in dashed line) against simulation time t

(in ps). The simulation in solution is given as black solid line, the DFTB and MM gas phase
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an MM method. A similar increase in flexibility could be expected from
a classical force field which is more specialized for biological applica-
tions. The average values of dihedrals, angles, and distances are very
similar to those of optimized structures. However, the standard devia-
tions are much larger because of the flexibility of the molecule at high
temperature. The intramolecular HBs are well described; however, it has
observed an increase of the O�O and OH�O distances for the b-Cyd in
solution.

The radial distribution function (RDF) of the centers of mass of water
with respect to the center of mass of b-Cyd (see Figure 5.3) shows clearly
the features because of the water inside and outside of the molecule. The
first minimum about 4 Å corresponds to the encapsulated water mole-
cules. The two outer minima, at 10.9 Å and 13.8 Å, arise from the first and
second solvation shells of b-Cyd, respectively. The integration of the RDF
shows that on average seven water molecules are inside the cavity, in
good agreement with X-ray [70] and neutron diffraction [66,67,71]. The
features of the RDF between 4.0 Å and 7.3 Å are related to water
molecules that are weakly bonded to the primary and secondary OH
groups at the rim of the cavity. The 7.0 water molecules inside of the
cavity are interacting mostly with the glycosidic oxygens. Figure 5.4
illustrates the motion of the water molecules inside of the cavity and of
the b-Cyd structure during the dynamics.
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Certainly if one wants to understand the chemical behavior of b-Cyd in
solution, it is necessary to investigate the role of the hydrogen bonding
of the water molecules with b-Cyd. Following Lawtrakul et al. [74], we define
the criterion for the existence of a HB between donor (D) and acceptor
(A) that (1) the D�A distance is less than the value corresponding to the
first minimum of the respective D–A distance RDF, and (2) the DH�A
distance is less than 2.8 Å. The proton acceptor or donor sites are those related
to the oxygen sites, namely the primary alcohol O6, secondary alcohols O2
and O3, pyranoids O5, and the glycosidic oxygens O4. About 83 and 27% of
the HBs of the glycosidic (O4) and pyranoid (O5) oxygens, respectively, are
formed with the encapsulated waters. More than 92% of the HBs of the
primary and secondary hydroxyls are formed with water molecules of
the outer solvent. About 36% of the seven encapsulated waters form HBs
with the glycosidic oxygens, and 25% with the pyranoid oxygens. It is
important to note that 8% of HBs of the primary and secondary hydroxyls
be formed with the encapsulated water molecules, this is only possible
because the solvated b-Cyd at ambient conditions is extremely flexible, allow-
ing the pyranoid rings to undergo major distortions which are needed to form
these HBs. The results are in qualitative agreement with the findings based on
a quasi-elastic neutron scattering study of b-Cyd, which showed that at room
temperature the inner water molecules undergo an extensive positional
disorder with only three water positions fully occupied.

The dwell time distribution of the water molecules in the cavity has
strong peak at 70 ps with a very wide distribution, indicating that many
water molecules remain in the cavity much longer about a few hundreds of
picoseconds. It is important to highlight that, roughly, 64% of the water

Figure 5.4 Configurational space taken by the water molecules encapsulated in b-Cyd. For
sake of clarity, only the initial structure of b-Cyd is shown.
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molecules enter the cavity through the 17% larger bottom opening. This
effect may arise due to synergy of two factors: (1) approximately one-third
of the HBs in solvated b-Cyd is formed by the primary hydroxyl groups
at O6 and these HBs are involved in an interlocked network, reducing
water mobility at the “top” (smaller) aperture; (2) the flexible sugar back-
bone allows the “bottom” orifice to distort, accommodating solvent
dynamics and increasing water mobility in this area. These factors lead
to a more pronounced difference in water dynamics than one might
expect from the purely geometrical difference of the bottom and top
apertures.

3.2. BPP7a

The BPP7a presents a primary sequence with seven amino acid residues,
similar to other BPPs (Figure 5.5), which hold similar features as a high
content of proline residues and the tripeptide Ile-Pro-Pro at the C-terminus
portion [20]. Numerous challenges must be addressed before peptides and
proteins can be fully implemented successfully in pharmaceutical formula-
tions. The challenges include poor bioavailability after oral administration
and intestinal membrane permeability, solubility and principally its chemi-
cal and enzimatic instability, in function of their degradation by the
stomach, and the intestine digestive enzymes [75]. The inclusion compound

HN

Ψ1

Ψ2 Ψ3

Ψ4

Ψ5

Ψ6

Φ6

Φ5Φ4

Φ3
Φ2

Φ1
O

C
H
N

H
N

H
N CH

CH CH3

CH2

CH3

C N

C

C OH

O

N

CH C CH C N

O O

O

O

C

CH2

C O

OH

H

O

O

Figure 5.5 The chemical structure of BPP7a, [p-Glu1Asp2Gly3Pro4Ile5Pro6Pro7]. For clarity,

dihedral angles and intramolecular HBs are indicated.

Molecular Dynamics of Polypeptides 163



of the polypeptide with b-Cyd has been envisaged to overcome the problem
of solubility and bioavailability. However, recent investigations showed
that the b-Cyd and BPP7a interacts forming association compounds [76].
The encapsulation of the BPP7a or one of the residues has not been
observed.

The behavior of BPP7a in aqueous solution has been investigated
through molecular dynamics using DC–SCC–DFTB/UFF method in our
laboratory. The simulation used a 36 Å cubic box, containing 1300 water
molecules. The trajectories were initially heated up, followed by 20 ps
equilibration run using Berendsen thermostat [72] with a coupling para-
meter of t= 0.1, . . ., 1.0 ps. For the microcanonical NVE production run of
0.1 ns, a time step of 0.5 fs was chosen. The total energy remained constant
within 0.05 Hartree during the whole simulation. The average temperature
during the production run was 300.3+ 2.7 K.

Figure 5.6 shows
�
RMSD



, plotted against simulation time for BPP7a in

gas phase and in solution. In solution,
�
RMSD



converges to an asymptotic

value of approximately 1.9 Å. The
�
RMSD



was also estimated for the

BPP7a in gas phase at the DC–SCC–DFTB and UFF levels of theory, for
comparison. At DC–SCC–DFTB, the

�
RMSD



converges to 1.1 Å, indicating

a less flexible molecule. In fact, BPP7a yarns maximizing the intramolecular
HBs and decreasing its flexibility. It is important to highlight that, using
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the force field UFF to describe the BPP7a, the molecule is much more
flexible, increasing the

�
RMSD



to 2.20 Å. This highlights the limitations of

the force fields for describing correctly the whole potential energy surface.
In spite of the predominant presence of hydrophobic proline and isoleucine
residues in BPP7a, the intermolecular HBs of the backbone, the p-glutamic
and aspartate residues with the water solvent weak the intramolecular HBs
enhancing its flexibility in aqueous solution.

In Table 5.2, structural parameters of the optimized BPP7a are compared
with those in aqueous solution. The latter ones are the time averages of the
mean values, as discussed above. The differences with the gas phase
DC–SCC–DFTB results are not larger than 30�. The exception is for F2

(asp-gly), C3 (gly-pro), and F4 (pro-ile) dihedral angles that are larger
than 70� difference from the gas-phase result. This is probably due to the
lack of steric hindrance of glycine and isoleucine residues. The backbone of
the polypeptide is relatively rigid and the residues are flipping around the
equilibrium geometry. The configurational space taken by BPP7a in aqu-
eous solution is shown in Figure 5.7. Because of the steric hindrance, proline
is not a good candidate to be included in b-Cyd. On the other side, the
isoleucine and aspartate residues can be good candidates. However, the
DC–SCC–DFTB/UFF simulation in aqueous solution shows that these
residues are much flexible with large standard deviations of the dihedral

Table 5.2 Structural parameters calculated for BPP7a at the DC–SCC–DFTB and DFT/PBE

levels of theory

Angle B3LYP/6-31þG(d) DC–SCC–DFTB DC–SCC–DFTB/
UFF MD

C1 (glu-asp) 27.0 46.4 29+ 22
F1 (glu-asp) –118.6 –73.2 –56+ 89
C2 (asp-gly) 27.9 38.0 43+ 29
F2 (asp-gly) –176.7 130.4 59+ 134
C3 (gly-pro) 166.6 –148.2 13+ 169
F3 (gly-pro) –86.7 –80.6 –47+ 70
C4 (pro-ile) 61.5 80.5 60+ 17
F4 (pro-ile) –114.1 –134.3 –70+ 113
C5 (ile-pro) 96.3 133.8 130+ 44
F5 (ile-pro) –71.2 –66.1 –39+ 64
C6 (pro-pro) 127.0 129.9 130+ 60
F6 (pro-pro) –83.3 –75.2 –38+ 61

Note: Angles are given in degrees (�). HB distances are in Angstrom (Å). See Figure 5.5 for the definitions of
structural parameters.
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angles (see Table 5.2). This reinforces the unfavorableness of the isoleucine
and aspartate residues to form guest:host inclusion compound since it
would be accompanied by a decrease of entropy due to the loss of flexibility.
Therefore, the formation of association through intermolecular HBs
between b-Cyd and BPP7a is more plausible as it was observed experimen-
tally [76].

As a final structural property, we analyze the formation of HBs
between BPP7a and water. The terminal GLU residue has about 3.9+ 1.3
HB’s and ASP residue with its carboxylic group presents about 4.8+ 1.1
HB’s. The terminal carboxylic group has an average number of HB’s about
4.8+ 1.5. Figure 5.5 shows that the most prominent intramolecular HB’s in
the BPP7a, which are mostly involved with the ASP residue and the
peptide backbone.

The RDFs of the water surrounding the different residue for the
BPP7a have been calculated and the number of water molecules in the
first solvation shell estimated. The RDFs are related to the distances of
the residue center of mass and the water. On average, the first solvation
shell around the residues is about 6 Å from its center of mass with about
16 water molecules in good agreement with the results for the residues
of Ang-(1–7) in aqueous solution using the same methodology [14]. The
proline residues have in its first solvation sphere about 19 water mole-
cules with the exception of pro2, that have only 14 water molecules,
probably due to its proximity to the nonpolar ILE residue. ASP, GLU,
and ILE residues have about 16, 14, and 12 water molecules, respec-
tively, and the small GLY residue only 6 water molecules in the first
solvation shell. The terminal group�COOH has 14 water molecules in
the first solvation shell.

p-GLU
PRO-COOH

PRO

PRO

ILE
ASP

Figure 5.7 Configurational space spawned by BPP7a based on DC–SCC–DFTB/UFF

molecular dynamics simulation.
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3.3. Angiotensin-(1–7) in aqueous solution

The biologically active heptapeptide Ang-(1–7), with the amino acid
sequence AspArgValTyrIleHisPro, Ang-(1–7) (Figure 5.8) inhibits vascular
smooth muscle cell growth and contributes to the regulation of blood
pressure. Ang-(1–7) belongs to the angiotensin family of peptides, and
evidence suggests that it could be used to treat cardiovascular diseases
[77,78].

Recently, inclusion compounds of Ang-(1–7) and b-Cyd (CD) have been
proposed as a formulation to overcome the problem of degradation of the
drug due to the digestive enzymes of the stomach [14]. It has been studied
recently the heptapeptide Ang-(1–7) with the amino acid sequence AspArg-
ValTyrIleHisPro and its b-Cyd inclusion compound by using different
physical–chemical techniques and the complete attribution of their NMR
signal [14].

The flexibility of the backbone and the different residues of the hepta-
peptide Ang-(1–7) is important for the understanding the chemical
behavior of this molecule in solution and its interaction with cyclodextrins.
The solvent water has an important role in stabilizing the different
conformations.

The structure and the dynamics of Ang-(1–7) at aqueous solution using
the DC–SCC–DFTB/UFF method have been analyzed. For Ang-(1–7), the
simulation box is cubic with an adequate lattice vector length of 55.15 Å,
including 5564 water molecules and solute. All trajectories have been care-
fully heated up and finally equilibrated for 90 ps using the Berendsen
thermostat [72] with a coupling parameter of 
 = 0.1, . . . , 1 ps. For the
production run of 80 ps, a time step of 0.5 fs was chosen. The microcanonical

CH CH CH C CH C CH C CH C

C

OH
O

N

O

CH3

N

NH

O

CH CH3

CH2

CH3

O

CH2

O

CH

OH

CH3

CH3

C

O

CH2

CH2

CH2

NH

C

C
H
N

H
N

H
N

H
N

H
N

O
Ψ1 Φ2 Φ3 Φ4 Φ5 Φ6

Φ7

Ψ2 Ψ3 Ψ4 Ψ5 Ψ6

CH2

OHO

+NH2H2N

C

H3N+

Figure 5.8 The chemical structure of angiotensin-(1–7), [AspArgValTyrIleHisPro]. Dashed

lines show the intramolecular HBs present during the simulation of Ang-(1–7) in aqueous

solution. See text for detail.
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NVE ensemble was used during the production run. The total energy
remained constant within 0.001 Hartree during the whole simulation and
did not show a drift. The average temperature during the production run
was 300.4+ 1.3 K.

The Ang-(1–7) was firstly optimized in the gas phase as a benchmark for
the DC–SCC–DFTB method. The optimized parameters of the Ang-(1–7)
gas-phase structure are compared to a PBE/DFT calculation and the results
are shown in Table 5.3. The backbone dihedral angles are well described
compared to the PBE/DFT results. The largest difference is for C3, which is
related to the valine residue. The differences in the backbone dihedral
angles are not larger than 30�.

Structural parameters of the optimized Ang-(1–7) have been compared
with those of Ang-(1–7) in aqueous solution. The differences with the gas
phase DC–SCC–DFTB results are not larger than 80�. The exceptions are the
F2 (arg-val) and C4 (tyr-ile) dihedral angle, which are about 100� difference
from the gas-phase result. This is probably due to the tradeoff between
the intra- and intermolecular HBs. The backbone of the polypeptide is
relatively rigid and the residues are flipping around the equilibrium
geometry.

Figure 5.9 shows
�
RMSD



, plotted against simulation time for Ang-(1–7)

in gas phase and in solution. In solution,
�
RMSD



converges to an

Table 5.3 Structural parameters calculated for Ang-(1–7) at the DC–SCC–DFTB and DFT/

PBE levels of theory

Angle DC–SCC–DFTB PBE/DZVP DC–SCC–DFTB/UFF MD

Ang-(1–7) Ang-(1–7) Ang-(1–7) Ang-(1–7):b-Cyd

C1 (asp-arg) 76.0 65.0 137+ 57 –60+ 115
C2 (arg-val) 28.9 38.3 70+ 29 –71+ 129
F2 (arg-val) –132.4 –148.0 –34+ 151 94+ 139
C3 (val-tyr) 109.5 72.4 143+ 38 130+ 22
F3 (val-tyr) –67.5 –80.7 –67+ 109 –34+ 60
C4 (tyr-ile) –42.5 –45.3 60+ 36 –35+ 67
F4 (tyr-ile) –60.9 –64.5 –56+ 85 –74+ 135
C5 (ile-his) 63.6 40.3 144+ 28 –8+ 38
F5 (ile-his) 27.3 53.2 –53+ 94 –66+ 97
C6 (his-pro) 156.1 167.5 61+ 25 –22+ 52
F6 (his-pro) 60.1 65.2 47+ 15 –62+ 106
F7 (pro) –89.3 –93.4 –43+ 62 –34+ 59

Note: Angles are given in degrees (�). HB distances are in Angstrom (Å). See Figure 5.8 for the definitions of
structural parameters.
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asymptotic value of approximately 1.8 Å. In gas phase, the molecule com-
pletely changes its geometry during the simulation at 300 K, converging to
the value around 4.5 Å at the DC–SCC–DFTB level of theory. Actually, the
water surrounding the Ang-(1–7) acts as a cushion, decreasing its free
motion. As it has been pointed out elsewhere [14], this effect cannot be
seen in pure MM calculations using the UFF force field.

The configurational space taken by Ang-(1–7) in aqueous solution is
shown at Figure 5.10. The peptide dihedral angles—C’s and F’s—have
averages with large standard deviations of about 80�. The C3 and C4

dihedral angles that are related to the tyrosine motion present the smallest
standard deviations of about 37�. Tyrosine is relatively rigid in comparison
to the other residues along the simulation. This can have important con-
sequences for the inclusion compound. Decrease of entropy is normally
accompanied by the interaction of the guest:host inclusion compound due
to the loss of flexibility. However, if the tyrosine is included, the loss of
entropy is minimized. This is in agreement with the NMR-based structure
that shows small flexibility of the tyrosine and arginine residues [14].

As a final structural property, we analyze the formation of HBs
between Ang-(1–7) and water. Table 5.4 shows the average number
of water molecules forming HBs with the proton acceptor sites in each
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, see Eq. (38), of the coordinates between

two snapshots of an MD trajectory (in Å) against simulation time t (in ps). The Ang-(1–7) and

Ang-(1–7):b-Cyd in solution simulations are given as solid and dashed-dotted lines,

respectively. The DC–SCC–DFTB and UFF Ang-(1–7) gas-phase simulations are given as

dotted and dashed lines, respectively. Please refer online version for color image.
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of the Ang-(1–7) residues. The average A–D bond distances are also
shown. Arginine with its three proton acceptor sites has the largest
average number of HBs, about 5.3+ 0.9. Aspartate with its carboxyl
group has about 4.8+ 1.3 HBs, followed by histidine and tyrosine with
5.5+ 1.0 and 3.0+ 1.2 HBs, respectively. The terminal carboxylic and
amine groups have an average number of HBs about 5.6+ 1.1 and
2.6+ 0.8, respectively. The intramolecular HBs have also been estimated.
The intramolecular HBs correspond about 25% of the total number of
HBs. Figure 5.8 shows that most prominent intramolecular HBs in the
Ang-(1–7), which are mostly involved with the aspartate and valine
residues. It has also been observed intramolecular HBs in the peptide
backbone.

RDFs related to the distances of the residue center of mass and the H2O
have been calculated. On average, the first solvation shell around the resi-
dues is about 6 Å from its center of mass with about 16 water molecules. The
bulky tyrosine residue has in its first solvation sphere about 20 water
molecules. The histidine residue has about 18 water molecules. The residues
lacking of proton acceptor sites—Val, Ile, Pro—have less water molecules in
the first solvation shell, as it is expected. The terminal groups�NH3

þ and
�COOH have about 7 and 14 water molecules in the first solvation shell,
respectively.

TYR

ARG

ASPVAL

ILE

HIS

PRO

Figure 5.10 Configurational space taken by Ang-(1–7) in aqueous solution.
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Table 5.4 Average number of HBs and corresponding donor–acceptor distances between water and Ang-(1–7) residues

Residue Average number of HBs Bond distance (Å) First sphere radii
(Å)

Number of water
molecules

With solvent Intramolecular

Asp 4.8+ 1.3 1.65+ 0.70 3.14+ 0.24 5.5 16
Arg 5.3+ 0.9 5.05+ 0.37 3.14+ 0.33 5.2 15
Val – – 5.9 15
Tyr 3.0+ 1.2 0.0+ 0.0 3.15+ 0.17 6.0 20
Ile – – 5.9 16
His 5.5+ 1.0 0.29+ 0.63 3.34+ 0.31 5.8 18
Pro – – 5.6 12
Backbonea 17.7+ 1.6 4.5+ 1.4 3.30+ 0.20 – –
NH3

þ 2.6+ 0.8 0.87+ 0.45 3.03+ 0.18 4.1 7
COOH 5.6+ 1.1 0.0+ 0.0 3.13+ 0.23 5.2 14

a The terminal groups�NH3
þ and�COOH have not been taken into account.

Note: The first solvation sphere radii and the corresponding number of water molecules are also given.
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Finally, it is important to note that the residues are flipping around the
minimum energy and the tyrosine presents the smallest flexibility in good
agreement with the NMR results [14]. The tyrosine residue also presents the
largest number of water molecules in its first solvation shell. These results
are coherent with the observation that tyrosine is the preferred residue to be
included by b-Cyd [14].

3.4. Angiotensin-(1–7):b-Cyclodextrin inclusion compound

Recently, inclusion compounds of Ang-(1–7) and b-Cyd have been pro-
posed as a formulation to overcome the problem of degradation of the
drug because of the digestive enzymes of the stomach [14]. Ang-(1–7) and
its b-Cyd inclusion compounds have been investigated employing different
physical–chemical techniques and the complete attribution of their NMR
signals [14]. According to the NOE effects, the b-Cyd prefers to make
inclusion compound with the tyrosine residue of Ang(1–7).

For Ang-(1–7): b-Cyd inclusion compound, the simulation box is also
cubic with lattice vector length of 61.0 Å, including 7381 water molecules
and solute. All trajectories have been carefully heated up and finally equili-
brated for 20 ps using the Berendsen thermostat [72] with a coupling para-
meter of 
 = 0.1, . . ., 1 ps. In the microcanonical NVE (i.e., no energy transfer
from or to the medium) production run of 90 ps, a time step of 0.5 ps was
chosen. The total energy remained constant within 0.001 Hartree during the
whole simulation and did not show a drift. The average temperature during
the production run was 300.4+ 1.2 K.

At Figure 5.11, the view of the box with the whole molecule is shown and
the inclusion compound is highlighted. In Table 5.3, the structural para-
meters of Ang-(1–7) in the Ang-(1–7):b-Cyd inclusion compound in aqueous
solution are also shown. The backbone dihedral angles can be compared
with those of the Ang-(1–7) in aqueous solution and in gas phase. The
complex formation leads to substantial changes in the backbone of the
Ang-(1–7) probably because of the changes in the HBs network with the
presence of b-Cyd.

The
�
RMSD



of the Ang-(1–7) fragment in the Ang-(1–7):b-Cyd com-

plex is also plotted against the simulation time in aqueous solution at
Figure 5.9. In solution,

�
RMSD



converges to an asymptotic value of

approximately 1.5 Å. This value must be compared with the Ang-(1–7)
in aqueous solution which is about 1.8 Å. Comparison of the

�
RMSD



curves of Ang-(1–7) alone and in the inclusion compound with b-Cyd
shows clearly that this polypeptide is much more rigid, decreasing its
flexibility. The configurational space taken by Ang-(1–7):b-Cyd in aqueous
solution is shown at Figure 5.12.
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Table 5.5 shows the average number of water molecules forming HBs
with the proton acceptor sites in each of the residues present in Ang-(1–7):
b-Cyd. These values can be compared directly to those estimated for Ang-
(1–7). Arginine is still the proton acceptor site with largest average number
of HBs, about 3.1+ 1.4, which must be compared to the value of 5.3+ 0.9 of
Ang-(1–7) in aqueous solution. Aspartate and histidine have about 2.0+ 1.2
and 2.36+ 1.2 HBs, respectively. These values must be compared with
4.8+ 1.3 and 5.5+ 1.0 HBs for aspartate and histidine in the Ang-(1–7)
structure in solution, respectively. It is clear that the number of HBs
decreased with the formation of inclusion compound with b-Cyd through
the tyrosine residue. For the tyrosine residue, the number of HBs decreased
from 3.0+ 1.2 to 0.08+ 0.40 HBs because of hindrance caused by the b-Cyd.
Isoleucine and valine residues present hydrophobic tails and, consequently,

Figure 5.11 Box of water used to simulate Ang-(1–7):b-Cyd in solution.
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rather large first sphere radii. In fact, the proximity of b-Cyd results in a
distortion of the solvent structure. Actually, a solvation shell cannot be
identified for isoleucine residue. The proline residue presented similar
number of HBs and number of water molecules in the first solvation shell
compared to the Ang-(1–7), probably due to the fact that b-Cyd is included
far from this site. For the backbone, the intermolecular HBs decreased with
the inclusion compounds formation. However, the number of intramolecu-
lar HBs increased in the same extent leading to a less flexible Ang-(1–7)
when included in the b-Cyd.

The RDFs of the water surrounding the tyrosine residue for the
Ang-(1–7) and its inclusion compound with the b-Cyd are shown in
Figure 5.13. The first solvation shell around the tyrosine is about 6 Å
from its center of mass with about 20 water molecules. The RDF for the
Ang-(1–7):b-Cyd shows clearly that the first solvation shell has only one
water molecule mostly surrounding the rim of the b-Cyd and the hydro-
xyl group of the tyrosine residue (see Figure 5.14). The average distances
between the tyrosine H2/H3 and H6 of b-Cyd are about 3.55+ 0.48 Å.
For the tyrosine H3/H5 and H5 of b-Cyd distances, the average is about
2.74+ 0.35 Å corroborating with the NMR results that revealed NOE
effect for those interactions [14].

ASP

β-Cyd+TYR

ILE
HIS

PRO

VAL

ARG

Figure 5.12 Configurational space taken by Ang-(1–7):b-Cyd in aqueous solution.
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Table 5.5 Average number of HBs and corresponding donor–acceptor distances between water and Ang-(1–7) residues

for the Ang-(1–7):b-Cyd inclusion compound

Residue Average number of HB’s Bond distance
(Å)

First sphere radii
(Å)

Number of water
molecules

With solvent Intramolecular

Asp 2.0+ 1.2 0.51+ 0.81 3.20+ 0.50 5.92 18
Arg 3.1+ 1.4 0.44+ 0.92 2.97+ 0.30 6.48 21
Val – – – 7.92 43
Tyr 0.08+ 0.40 0.02+ 0.17 3.47+ 0.19 3.68 1
Ile – – – – –
His 2.36+ 1.2 1.06+ 1.1 3.17+ 0.25 5.52 11
Pro – – – 5.36 9
Backbonea 12.9+ 2.9 8.7+ 2.2 3.12+ 0.21 – –
NH3

þ 0.14+ 0.57 0.04+ 0.30 3.26+ 0.30 3.44 1
COOH 3.05+ 1.5 0.8+ 1.0 3.12+ 0.21 3.84 3

a The terminal groups�NH3
þ and�COOH have not been taken into account.

Note: The first solvation sphere radii and the corresponding number of water molecules are also given.
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Figure 5.13 Radial distribution functions of the water around the tyrosine residue in the

Ang-(1–7).
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It is important to note that the inclusion of Ang-(1–7) in the b-Cyd
leads to more rigid structure. The intermolecular HBs with water solvent
decrease upon the inclusion formation due to the hindrance caused by the
b-Cyd. Consequently, intramolecular HBs are increased including
between Ang-(1–7) and b-Cyd. In spite of the presence of b-Cyd in
the tyrosine, one water molecule still remains in the vicinity of this
residue.

4. FINAL REMARKS

The strategy of using DC�SCC�DFTB and UFF in a QM/MM approach to
investigate polypeptides in solution has been successful. It is a good
compromise between computational cost and precision. This approach
can be easily extended to investigate complex systems such as those
related to enzymatic catalysis and self-assembly systems. The posteriori
treatment for London dispersion has demonstrated to be important for
studying such systems in which weak interactions are present. b-Cyd in
solution and its inclusion compounds with polypeptides have been inves-
tigated through Born�Oppenheimer molecular dynamics. The results
show clearly the phenomena of the inclusion are not only guided by
geometrical aspects, but they are much affected by the solvent. The water
acts creating a cushion in which the molecules with high fluxionality
decreases its motion. Furthermore, water molecules are involved in the
complex intermolecular hydrogen bonding network that competes with
the intramolecular HBs. This HB network can favor or prevent the inclu-
sion compound to form. It correlates with the balance of enthalpy and
entropy in the process. As it was pointed out elsewhere [16], the entropy
change due to the water rearrangement surrounding the b-Cyd and the
guest molecule is very important and must be taken into account in a
suitable model. For instance, many calculations have been performed
using gas-phase models to justify the inclusion compound formation
from thermodynamic analysis [69,79]. We understand that these models
lack information of the solvent that has to be taken explicitly. Weak inter-
action between the host and guest inclusion compounds will always make
the gas-phase calculations to predict its formation. Special attention
should be done when molecular dynamics are carried out at gas phase.
Most of the force fields predict more rigid structure as it has been shown in
the present work.

The correct description of the inclusion compound in solution is the first
step to model more complex processes such as those related to self-assembly
and nanoreactors. The DC�SCC�DFTB/UFF, as it was presented here, is
very attractive for such endeavor due to its simplicity, easy implementation,
and low computational cost and precision.
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1. INTRODUCTION

Interaction between biology, physics, and chemistry is presently providing
a window into an exciting new era of bioinspired nanotechnology. In
particular, photobiological processes, like vision or photosynthesis, in
which sunlight is used as the source of energy to bring about a chemical
reaction, provide valuable templates to create tools for biomolecular ima-
ging, information technology, and renewable energy. Mimicking photobio-
logical processes requires a complete understanding of the underlying
molecular dynamics (MD). As the relevant time and spatial resolution are
notoriously hard to access experimentally, computer simulations are the
methods of choice to deepen our understanding of how proteins have
evolved to mediate photochemical reactions and to use these insights to
create devices that mimic biological functions. In this chapter, we present
the approach we use to perform excited state MD simulations of photo-
induced processes in biological systems. We start by reviewing the theore-
tical concepts of photochemical reactions. We then discuss how we have
used these concepts to create a practical simulation methodology. We con-
clude this chapter with a short review of selected applications on photo-
biological systems. These simulations not only reveal the detailed sequence
of events that follow photon absorption, but also demonstrate how the
biological environment controls the excited state dynamics.

2. THEORY

The size and complexity of a typical photobiological system, together with
the timescales that must be reached, necessitate the use of classical MD for
the nuclear degrees of freedom. In MD simulations Newton’s equations of
motion are solved numerically to obtain a trajectory of the dynamics of a
molecule over a period of time. To model the electronic rearrangement upon
excitation, a quantum mechanical (QM) description is required for those
parts of the system that are involved in photon absorption. For the remain-
der, a simple molecular mechanics (MM) forcefield model suffices. The
interactions in the systems are thus computed within a hybrid QM/MM
framework.

To model the dynamics of a photoactivated process, the ground and
excited state potential energy surfaces must be described accurately. As we
show schematically in Figure 6.1, a photochemical reaction starts in the
excited state (S1) but ends in the ground state (S0) after radiationless decay
via the conical intersection seam. To model the deactivation process, we use
a diabatic surface-hopping algorithm in our MD simulations that allows the
trajectory to hop between the surfaces when the intersection seam is
reached.
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2.1. Born–Oppenheimer approximation

The aim in computational chemistry is to find and interpret the solution for
the many-body Schrödinger equation of chemical systems:

HC ¼ EC; ð1Þ
with H the system’s Hamilton operator, or Hamiltonian, that returns the
total energy E of the system when operating on the many-body wavefunc-
tion C. As in classical mechanics, the Hamiltonian is defined as the sum of
the kinetic T and potential energy V:

H ¼ T þ V: ð2Þ
From the wavefunction C, all static properties of the system can be derived.

Dynamic information is obtained by integrating the time-dependent
Schrödinger equation:

i �h
@

@t
C ¼ HC; ð3Þ

with �h the Planck constant divided by 2�. Unfortunately, an exact solution
exists only if there are at most two interacting particles in the system.
Solving the equations for any larger system requires approximations.

Since biological molecules are mainly composed of first and second row
elements, the electronic velocities are sufficiently low for relativistic effects
to be ignored. Within this approximation, the nonrelativistic Hamiltonian is
given by

H ¼ TN þ Te þUðr;RÞ; ð4Þ
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Figure 6.1 Schematic overview of a photochemical reaction pathway (dashed line). After

photon absorption, evolution takes place on the excited state potential energy surface

(red) until the system hits the S1/S0 intersection seam. At the intersection, a radiationless

transition to the ground state occurs (blue). After the decay, the system continues evolving

in the ground state. Please refer online version for color image.

Computer Simulations of Photobiological Processes 183



where Te and TN are the operators of the kinetic energy of the electrons and
the nuclei, respectively, and U(r,R) is the total potential energy of the
electrons and nuclei together. The vector r denotes the set of electronic
coordinates and the vector R stands for the nuclear coordinates.

The next step in reducing the complexity is to assume that the dynamics
of the electrons on the one hand and nuclei on the other are decoupled. This
approximation, proposed by Born and Oppenheimer, is based on the large
mass difference between electrons and nuclei. As a consequence, the much
lighter electrons adapt instantaneously to displacements of the nuclei. Elec-
trons “see” nuclei standing still, whereas nuclei move on potential energy
landscapes created instantly by the faster electrons. Within the Born–
Oppenheimer approximation, the electronic and nuclear degrees of freedom
can thus be treated independently.

First, the Schrödinger equation is solved for electrons moving in a frame-
work of fixed nuclei. Thus, the nuclear kinetic energy operator (TN) is
omitted from the full Hamiltonian [Eq. (4)] to yield

He ¼ Te þUðr;RÞ; ð5Þ
where the superscript e indicates the electronic Hamiltonian. The electronic
wavefunctions are the eigenfunctions of this Hamiltonian

He iðr;RÞ ¼ ViðRÞ iðr;RÞ; ð6Þ

with  i(r;R) and Vi(R) as the electronic wavefunctions and their electronic
energies, respectively, that both depend parametrically on the nuclear coor-
dinates. The wavefunctions are the adiabatic electronic states, representing
the electronic ground state (i= 0), excited state (i= 1), second excited state
(i= 2), and so on. How these wavefunctions are obtained in practical com-
putations is the subject of modern quantum chemistry [1] and is briefly
discussed below in Section 2.5.

The adiabatic wavefunctions can be made orthonormal, that is,

h ij ji ¼
Z 1

�1
 iðr;RÞ� jðr;RÞdr ¼ �ij; ð7Þ

where the Dirac bracket notation ðhjiÞ has been introduced that will be used
throughout the text and where �ij is the Kronecker delta function, which is 1
if i= j and 0 otherwise.

Within the Born–Oppenheimer approximation, the adiabatic electronic
states provide a complete basis to expand the molecular wavefunction in

Cðr;RÞ ¼
X
n

�nðRÞ nðr;RÞ; ð8Þ
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where the expansion coefficients �n(R) are the nuclear wavefunctions.
Substituting the expression for the molecular wavefunction in the time-
independent Schrödinger equation [Eq. (1)] and multiplying by the adia-
batic electronic wavefunction  �

i ðr;RÞ from the left, followed by integration
over the electronic coordinates r leads to the following set of coupled
equations: X

j

HijðRÞ�jðRÞ ¼ EðRÞ�iðRÞ; ð9Þ

with

HijðRÞ ¼ h iðr;RÞjHj jðr;RÞi ¼ h iðr;RÞjTNj jðr;RÞi þ ViðRÞ�ij: ð10Þ
The nuclear kinetic energy operator is defined as

TN ¼ �
X
k

�h2

2Mk
H2
Rk
; ð11Þ

in whichMk is the mass of nucleus k and the sum runs over all nuclei. Using
this relation, Eq. (10) can be rewritten as follows [2]:

HijðRÞ ¼ ½TN þ ViðRÞ��ij �LijðR ). ð12Þ
The nonadiabatic operator elements Lij(R) are defined as

LijðRÞ ¼
X
k

Fk
ijðRÞHRk þ GijðRÞ; ð13Þ

Fk
ijðRÞ ¼

�h2

Mk
h iðr;RÞjHRk j jðr;RÞi; ð14Þ

GijðRÞ ¼
X
k

�h2

2Mk
h iðr;RÞjH2

Rk
j jðr;RÞi: ð15Þ

In contrast to He [Eq. (5)], in which TN was omitted, Hij is not diagonal
on the basis of the adiabatic electronic wavefunctions ( i). The individual
electronic states are thus coupled via nuclear motions. Nonadiabatic
coupling is the key player in a photochemical reaction, as we will show
below.

In the limit that the electronic wavefunctions vary very slowly with
the nuclear dynamics, the nonadiabatic operators Fk

ijðRÞ and Gij(R) are
vanishingly small and can be safely neglected. Thus, the crux of the Born–
Oppenheimer approximation is that Hij is assumed to be diagonal:

HijðRÞ ¼ ½TN þ ViðRÞ��ij: ð16Þ
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Under this assumption, the total molecular wavefunction becomes a pro-
duct of a single nuclear and a single electronic wavefunction:

C tot
i ðR; rÞ ¼ �iðRÞ iðr;RÞ; ð17Þ

which implies that the nuclei move on a single electronic potential energy
surface Vi(R) of a given electronic state i, and the electronic wavefunction
remains in that state. The Born–Oppenheimer approximation not only
reduces the computational complexity of the equations that have to be
solved, but also provides a conceptually intuitive picture of molecular
structure and dynamics.

2.2. Conical intersections

The Born–Oppenheimer is valid as long as the separation between the
electronic energy levels is large compared to the separation between the
vibrational energy levels. Since this is true for almost all ground state
chemical processes, the Born–Oppenheimer provides the basis for modern
quantum chemistry. For photochemical processes, however, this is usually
not true.

During a photochemical reaction, the system samples regions of config-
uration space, where the energy gaps between electronic states are of the
same magnitude as the energy gaps between the vibrational states of the
nuclei. Under such conditions, resonance will occur between nuclear vibra-
tions and electronic transitions. The populations of the adiabatic wavefunc-
tions become strongly dependent on the nuclear dynamics and the
nonadiabatic coupling operator [L, Eq. (13)] can no longer be ignored.
Thus, in regions of strong non-adiabatic coupling the Born–Oppenheimer
approximation breaks down. Nuclear dynamics induces population transfer
between different electronic states. Furthermore, if the coupling is strong
enough, the adiabatic potential energy surfaces can even intersect. These
surface crossings provide efficient funnels for radiationless deactivation of
the excited state and therefore play a crucial role in photochemistry.

In theory, all electronic states  i(r;R) are involved in the nonadiabatic
coupling. In practice, however, there is only significant coupling between
electronic states that have comparable energies. Therefore, only a small
number of states needs to be included in the nonadiabatic coupling matrix
L, which considerably reduces its dimensionality.

The nonadiabatic coupling operators Lij are nonlocal derivative opera-
tors that depend inversely on the energy gap between the coupled adiabatic
states [3]:

Fk
ijðRÞ ¼

�h2

Mk
h iðr;RÞjHRk j jðr;RÞi ¼

�h2

Mk

h iðr;RÞjHRkH
ej jðr;RÞi

Vj �Vi
: ð18Þ
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When the gap (Vj�Vi) gets smaller, the coupling increases, and the nuclear
wavefunction that is initially on one surface will spread to the other surface
without losing energy. The coupling thus induces a radiationless transition
between the electronic states.

If the gap vanishes, that is, Vj�Vi= 0, the coupling becomes infinite.
Due to the nonlocal nature of the coupling matrix elements in the adiabatic
representation, it is more convenient to switch to a diabatic representation,
in which the nonadiabatic coupling operator is a local, potential-like
operator. The switch to the diabatic wavefunctions ’ is achieved by a
unitary transformation of the adiabatic wavefunctions  at each point in
space [3]:

’ ¼ SðRÞ : ð19Þ

In the diabatic representation the complete Hamiltonian [Eq. (12)] becomes

HijðRÞ ¼ TN�ij þWijðRÞ; ð20Þ

and the molecular Schrödinger equation [Eq. (12)] can be written in matrix
notation as

Hc ¼ ½TN1þWðRÞ�c ¼ Ec; ð21Þ
in which 1 is the identity matrix and W(R) is the diabatic potential energy
matrix, which, in contrast to the adiabatic potential matrix V(R), contains
only local terms.

To illustrate the concept of the surface crossing, we consider a molecule
in which there is coupling between two diabatic states A and B, but not to
any other state. We can expand the potential matrix elements in a Taylor
series around an arbitrary point R0:

WðR�R0Þ ¼ Wð0Þ þWð1Þ þWð2Þ þ � � � ; ð22Þ

At R0, we can choose the diabatic and adiabatic states to be equal. Then,
the zeroth-order matrix, W(0), is a diagonal matrix in which the elements
correspond to the energies EA and EB of the diabatic states  A and  B at R0,
which, by our choice of origin, are identical to the adiabatic energies V1

and V2:

Wð0Þ ¼ EA þ EB

2
1þ

� EB �EA

2
0

0
EB �EA

2

0
BBB@

1
CCCA ¼ VðR0Þ: ð23Þ
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For very small displacements DR around R0, the Taylor expansion in
Eq. (22) can be truncated after the first-order term

Wð1Þ ¼ � � DR
2

1þ
� 1

2
dk � DR kAB � DR

kAB � DR 1

2
dk � DR

0
BBB@

1
CCCA; ð24Þ

in which we have introduced linear potential constants that are defined as

dk � HRðEB �EAÞjR0;

kAB � HRh’AjHej’BijR0
;

� � HRðEA þ EBÞjR0
:

ð25Þ

We can choose R0 to be the point of degeneracy, so that EA and EB are equal
at R0 and W(0) is 0. The adiabatic potential energy surfaces V1 and V2 are
obtained by diagonalizing the diabatic potential matrix W. Thus, for the
two-state system considered here,

V1;2 ¼ 1

2
� � DR –

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dk � DR�2 þ 4½kAB � DR�

q
: ð26Þ

The necessary condition for a crossing between the two potential energy
surfaces at R0 is that the two electronic energies are identical. Therefore, two
conditions need to be fulfilled simultaneously:

dk � DR ¼ 0;
kAB � DR ¼ 0:

ð27Þ

Thus, to first order, the degeneracy is lifted in the two-dimensional
space spanned by the vectors �k and kAB, which are the gradient
difference vector and derivative coupling vector, respectively. The
space spanned by these two vectors is often referred to as the branching
space, or g–h plane. Furthermore, as is evident from Eq. (26) and illu-
strated in Figure 6.2, the topology of the surfaces is that of a double
cone, with the point of degeneracy at the apex. Orthogonal to the two-
dimensional branching space exists the so-called intersection space (or
seam space), in which the energies of the two states remain degenerate
to first order. In a molecule with N internal degrees of freedom, the
intersection space thus forms an N� 2-dimensional seam, each point of
which is a conical intersection. If a molecule has less than two degrees
of freedom, the two conditions for degeneracy [Eq. (27)] cannot be
simultaneously fulfilled. In diatomic molecules, for example, electronic
states of same symmetry cannot cross, which led Von Neumann and
Wigner to propose their famous noncrossing rule [4].

188 G. Groenhof et al.



The concept of the intersection seam is illustrated in Figure 6.3 for a
hypothetical triatomic molecule. In this molecule there are three internal
degrees of freedom: two bond lengths (x1 and x2) and one angle (�). Since
two degrees of freedom are required to span the branching space, there is
only one degree of freedom available for the intersection seam. For the sake
of simplicity, we let the branching space coordinates (i.e., the gradient
difference and derivative coupling vectors) coincide with the two bond
length variables x1 and x2 in our molecule. Note that in real triatomic
molecules, the branching space coordinates can be linear combinations of
the three internal degrees of freedom.

x1

x1

x2

α

S1

V V V

S0

Conical intersection Intersection seam Intersection seam

S1 S1

S0
S0

x2 x2

x1α

α

Figure 6.3 Surface crossing between two potential energy surfaces S1 and S0 in a

hypothetical triatomic molecule (left). We let x1 and x2 be parallel to the gradient

difference vector and the derivative coupling vector, respectively, and � be the remaining

degree of freedom. When projected onto the branching space spanned by x1 and x2, the

surfaces of S0 and S1 intersect in a single point, the conical intersection. In the two other

subspaces, spanned by either x2 and �, or by x1 and �, there is an intersection line between

the surfaces. In the second plot x1 and in the third x2 are assumed to be at their conical

intersection coordinates.

g

S0

S1

V

h

Figure 6.2 A conical intersection plotted in the two-dimensional branching space that is

spanned by the gradient difference vector (g) and the derivative coupling vector (h).

Motion away from the intersection in the g–h plane lifts the degeneracy between the two

electronic states S1 and S0. The dotted line shows a path of a nuclear trajectory passing

from one electronic state (S1) to another (S0) through the intersection funnel.
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In the first plot of Figure 6.3 the two adiabatic potential energy surfaces
(denoted S0 and S1) are projected onto the branching space. The surfaces
adopt a double cone shape with a single intersection point at the apex. Any
displacement away from the apex in either the x1 or x2 coordinate lifts the
degeneracy.

The second plot shows the two surfaces in the subspace spanned by the
derivative coupling vector x2 and the third independent degree of freedom,
the bond angle �. The gradient difference vector x1 is kept fixed at the
conical intersection. Therefore, the only coordinate left to lift the degeneracy
is x2. If the latter is at the conical intersection as well, the surfaces intersect
irrespective of the value of the angle variable (�). The intersection seam is
thus a one-dimensional line that is parallel to �.

The third plot shows the projection of the two surfaces onto the subspace
spanned by the gradient difference vector x1 and the bond angle variable �.
Now the derivative coupling vector x2 is constrained to be at the conical
intersection. Under this condition, only x1 can lift the degeneracy and the
surfaces intersect along a seam parallel to �.

The conical intersection has a number of peculiar characteristics. For
instance, if we consider a small displacement q away from the cone tip in
the branching plane, the diabatic energy matrix UA,B becomes

UA;BðqÞ ¼
 
HAAðqÞ HABðqÞ
HABðqÞ HBBðqÞ

!
¼ SðqÞ1þ

 �DHðqÞ HABðqÞ
HABðqÞ DHðqÞ

!
; ð28Þ

with [see Eq. (24)]

DHðqÞ ¼ HBBðqÞ�HAAðqÞ
2

¼ dk � q;

HABðqÞ ¼ kAB � q;

SðqÞ ¼ HBBðqÞ þHAAðqÞ:
2

ð29Þ

The matrix UA,B(q) is the two-state Hamiltonian matrix defined on the basis
of the eigenvectors at the reference point R0, at which the diabatic and
adiabatic bases are identical. The diabatic potential matrix UA,B(q) can
be diagonalized by the rotation matrix T(q) [5], to obtain the adiabatic
energies V1,2
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TðqÞ ¼ cos½�ðqÞ� � sin½�ðqÞ�
sin½�ðqÞ� cos½�ðqÞ�

 !
: ð30Þ

From Eq. (29), the rotation angle �(q) is defined as [5–10]:

�ðqÞ ¼ 1

2
arctan

�
2HABðqÞ
DHðqÞ

�

¼ 1

2
arctan

�
2kAB � q
�k � q

�

¼ 1

2
arctan

�
y

x

�
;

ð31Þ
where we have introduced the scaled coordinates x and y. Replacing these
scaled coordinates by polar coordinates r and �

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
;

� ¼ arctan

�
2y

x

�
;

ð32Þ

yields the following expression for the rotation angle:

�ðHAB; DHÞ ¼ �

2
: ð33Þ

Thus, a simple relationship exists between the polar angle (�), which
defines a rotation around the apex of the cone in the branching space,
and the mixing angle (�) for the diabatic states (’A,’B). Since the extent
of mixing depends only on the polar angle � and not on the radius r, it is
constant along any straight line that starts from the apex of the double
cone.

Because of this relationship, the adiabatic wavefunction changes sign
upon a complete rotation around the apex of the cone in the branching
space. This is demonstrated by comparing the wavefunctions at �=�0 and
�0þ 2�. Substituting Eq. (33) into the rotation matrix [Eq. (30)] gives the
following expression for the adiabatic states:

 1 ¼ cos
�0
2

� �
’A � sin

�0
2

� �
’B ð34Þ
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and

 2 ¼ sin
�0
2

� �
’A þ cos

�0
2

� �
’B: ð35Þ

If we substitute �=�0þ 2�, we see that the adiabatic wavefunction has
indeed changed sign after the 360� rotation:

 1 ¼ cos

�
�0 þ 2�

2

�
’A � sin

�
�0 þ 2�

2

�
’B

¼ sin

�
�0
2

�
’A � cos

�
�0
2

�
’B

¼ � 1:

ð36Þ

Because single valuedness of the wavefunction is one of the basic postulates
of quantum mechanics, this result implies that the conical intersection is a
singularity. This singularity is a consequence of the separation between
electronic and nuclear degrees of freedom, which, as we have seen, is not
valid near a surface crossing. Thus, the singularity only exists for the
adiabatic electronic wavefunction and must be remedied by the nuclear
wavefunction, so that the total molecular wavefunction is a single-valued
function. Furthermore, as illustrated schematically in Figure 6.4, rotation

g

h

S0

V

S1

ψ1

ψ2ψ1

φ+π

φ

r

Figure 6.4 In the branching space (x,y), points lying on a circle centered at the apex of the

double cone and with a small radius r are diabatically related. If we select a point on one of

the surfaces and move it to the opposite side of the circle (�!�þ �), its wavefunction
becomes equal to the wavefunction of the other surface at the original position. If we

complete the circle, the point is back at its original position, but its wavefunction has

changed sign (not shown, see text).
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by 90� permutes the order of the electronic states, as is demonstrated by
substituting �þ � into Eq. (33):

 1 ¼ cos

�
�0 þ �

2

�
’A � sin

�
�0 þ �

2

�
’B

¼ sin

�
�0
2

�
’A � cos

�
�0
2

�
’B

¼ � 2:

ð37Þ

As we will show in Section 2.3, this characteristic of the conical intersection
can be used to detect the time step at which the seam is passed in a classical
MD simulation of a photochemical reaction.

The conical intersection seam is the central mechanistic feature in a
photochemical reaction. The conical intersection provides a funnel for
efficient radiationless decay between electronic states (Figure 6.2). To
illustrate the relationship between the surface crossing and photochemical
reactivity, we draw a parallel with the transition state in ground state
chemistry. The transition state forms the bottleneck through which the
reaction must pass on its way from reactants to products. A transition
state separates the reactant and product energy minima along the reaction
path. A conical intersection also forms a bottleneck that separates the
excited state branch of the reaction path from the ground state branch.
The crucial difference between conical intersections and transition states is
that, while the transition state must connect the reactant minimum to a
single product minimum via a single reaction path, an intersection is a
spike on the ground state energy surface and thus connects the excited
state reactant to two or more products on the ground state via several
reaction paths.

2.3. Excited state molecular dynamics

Photochemical reactions start in the excited state (S1) but end in the ground
state (S0, Figure 6.1). To model the dynamics of such processes, we need a
method to accurately compute the ground and excited state potential energy
surfaces. In addition, we need an algorithm that models the radiationless
transitions between the surfaces in a manner that is consistent with quan-
tum mechanics.

If a sufficiently accurate description of the adiabatic Born–Oppenheimer
potential energy surfaces is available, nuclear dynamics can be computed by
numerically integrating either the time-dependent Schrödinger equation
[Eq. (3)] or Newton’s equations of motion. In the first case, quantum
mechanics is used to follow the dynamics of nuclear wavepackets [�n(R),
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Eq. (9)], evolving on the electronic potential energy surfaces. With this
approach transitions between surfaces near or at conical intersections can
be described correctly. A wavepacket traveling through or near an intersec-
tion spawns new packets on both surfaces. The transfer probability is con-
trolled by the nonadiabatic coupling elements. At the conical intersection,
the coupling has its maximal strength, resulting in an efficient transfer of the
complete wavepacket to the lower surface.

A requirement for wavepacket dynamics is that the relevant potential
energy surfaces have been computed beforehand. As the computational
costs associated with precomputing these surfaces increases rapidly with
the number of coordinates in the system, wavepacket dynamics is restricted
to small isolated molecules. Alternatively, the multidimensional configura-
tion space can be reduced to a lower dimensional subspace in which quan-
tum dynamics is possible [11]. However, choosing suitable coordinates is
difficult and requires averaging over the remaining degrees of freedom.
Furthermore, the choice of the coordinates can strongly bias the outcome
of a simulation. Therefore, for photobiological problems, the size and
complexity of the systems involved severely limit the applicability of wave-
packet simulations.

Alternatively, we can decide to ignore the QM character of the nuclei
altogether and use Newton’s equations of motion to compute MD trajec-
tories. In terms of computational effort, classical MD is orders of magnitude
more efficient than wavepacket dynamics and is therefore routinely used for
computing the time evolution of large biomolecular systems. Classical
mechanics has the additional advantage that the potential energy surface
can be computed on the fly. Forces are evaluated for the geometry at time
step t and used to compute the geometry at the next time step tþDt. Thus,
only at the configurations sampled by the classical trajectory, electronic
structure calculations are required. For systems with many degrees of
freedom, for which computing potential energy surfaces beforehand is not
possible, the on-the-fly strategy is the only option for performing MD
simulations.

Classical mechanics provides a computationally cheap alternative to
wavepacket dynamics. However, because quantum effects are ignored,
population transfer cannot occur and classical trajectories are restricted to
a single potential energy surface. Therefore, in contrast to wavepacket
dynamics, radiationless transitions do not take place spontaneously.
Instead, a binary decision to jump to a different electronic surface must be
made at every time step in a single trajectory. The criterion for switching
between electronic states must result in a distribution of state populations
over very many trajectories that reflects the populations of a full QM treat-
ment. Furthermore, in contrast to wavepacket dynamics, classical trajec-
tories do not capture coherence effects. When a nuclear wavepacket
originally traveling on a single adiabatic potential energy surface
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encounters a crossing, it typically produces two subpackets, or offsprings,
one on each surface [12]. After such spawning event, the new wavepackets
will still interfere with each other. However, as these subpackets travel on
different surfaces and often have different initial velocities on their respec-
tive surfaces, they are well separated in phase space and it is highly unlikely
that they will encounter each other again, especially in high-dimensional
systems, such as solvated biomolecules. Therefore, the spawned wavepack-
ets are effectively incoherent [12,13], and the classical trajectory approxima-
tion is justified in most situations.

2.4. Diabatic surface hopping

The interest in understanding photochemical processes has prompted the
development of methods for the treatment of nonadiabatic effects in classi-
cal MD. Most, if not all of these methods are based on surface hopping:
nuclei move on a single potential energy surface and nonadiabatic transi-
tions are included by allowing the trajectory to hop from one surface to
another. The size and complexity of biomolecular systems necessitate the
use of computationally cheap surface-hopping algorithms. In this section we
present the hopping procedure that we use in our simulations of photo-
chemical processes in biological systems.

Our so-called diabatic hopping algorithm is based on the one-
dimensional Landau and Zener equation, which relates the probability of
a transition between two electronic states  2 and  1, to the nonadiabatic
coupling, via:

P2!1 ¼ exp � 1

4
�	

� �
: ð38Þ

In this equation 	 is the Massey parameter defined as [14]

	 ¼ DE
�h @Q@t � gðQÞ ; ð39Þ

where DE is the energy gap between the adiabatic states,Q represents a one-
dimensional nuclear reaction coordinate, and

gðQÞ ¼ h 1jHQ 2i: ð40Þ
If we differentiate  2 with respect to t via @

@t ðQ), we can rewrite 	 as

	 ¼ DE

�h
D
 1j @ 2

@t

E : ð41Þ

To decide when to undergo a transition to a different potential energy
surface, one would in principle need to compute h 1j @@t 2i at every time
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step of the simulation. In practice, however, it is possible to approximate
h 1j @@t 2i as follows.

If we integrate the classical equations of motion for the nuclei with a
small time step Dt, we have at t:

 1ðtÞ ¼ ’A;
 2ðtÞ ¼ ’B;

ð42Þ

where the ’A,B are the diabatic electronic states. At tþDt, the states will
have become mixed due to the nonadiabatic coupling. In the limit of an
infinitesimally small time step, the change in the wavefunctions can be
approximated by

 1ðtþ DtÞ ¼ ’A þ 
’B;
 2ðtþ DtÞ ¼ � 
’A þ ’B;

ð43Þ

where 
 is a mixing coefficient. Numerical differentiation (finite differences)
of the wavefunction gives

@

@t
 2 ¼ � 


’A

Dt
; ð44Þ

and yields the following expression:*
 1

���� @@t 2

+
� � 


Dt
: ð45Þ

Since

h 1ðtÞj 2ðtþ DtÞi ¼ � 
; ð46Þ
we can compute h 1ðtÞj 2ðtþ DtÞi as a numerical approximation for
h 1j @@t 2i in the Massey parameter [Eq. (41)].

Calculating the energy gap DE and h 1ðtÞj 2ðtþ DtÞi at every time step is
straightforward, and we can use the Landau–Zener formula [Eq. (38)] to
calculate the probability of a transition to the other surface. In principle, the
transition probability can be used to spawn a new trajectory on the other
surface. However, since this procedure would lead to multiple trajectories
that have to be computed simultaneously, spawning is too demanding in
practice. We therefore restrict hopping to situations where the transition
probability approaches unity. This happens at the conical intersection seam,
where DE� 0 and kh 1ðtÞj 2ðtþ DtÞik�1. The former is trivially true by the
definition of an intersection. The latter follows from Eq. (37) and is illu-
strated in the branching space projection of Figure 6.4: passing through the
intersection during a single time step (Dt), leads to geometries at t and tþDt
that are opposite to each other with respect to the apex. Thus, crossing the
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seam is equivalent to rotating the wavefunction by a half of a circle in the
branching space (Figure 6.4):

h 1ðtÞj 2ðtþ DtÞi ¼ h 1ð�Þj 2ð�þ �Þi

¼ � h 1ð�Þj 1ð�Þi

¼ � h 1ðtÞj 1ðtÞi

¼ � 1: ð47Þ
Because we allow hopping only at the conical intersection seam, our classi-
cal trajectories never leave the diabatic surface. Therefore, energy and
momentum are obviously conserved. In principle, this strict diabatic hop-
ping criterion could lead to an underestimation of the population transfer
probability, because a surface hop in regions with strong nonadiabatic
coupling far from the intersection is prohibited. In practice, however, the
high dimensionality of the seam ensures that all trajectories encounter such
regions of high transfer probability. The Landau–Zener model is clearly an
approximation but helps one to keep a proper physical insight, which is
crucial in understanding complex systems.

2.5. Excited state quantum chemistry

Although highly accurate methods for computing excited state electronic
wavefunctions have become available over the past years, they are usually
too time-consuming for systems larger than a few atoms. Therefore, most of
these methods are not yet applicable in on-the-fly MD simulations of large
biomolecular systems. Alternatively, simple forcefields or existing semi
empirical methods that are computationally efficient may be used, but their
applicability is limited, unless properly reparameterized [15,16]. Therefore,
for on-the-fly MD, a compromise between cost and accuracy has to be made.

A computationally feasible approach to describe excited state electronic
structure is the equation of motion coupled cluster (EOM-CCSD) method
and ab initio dynamics simulations of small isolated molecules have been
performed at the EOM-CCSD level [17]. However, EOM-CCSD can only
work well if the underlying CCSD method provides a good description of
the ground electronic state. This can cause problems when bonds are being
broken or formed and the ground electronic state has a significant multi-
configurational character. The description of electronic states with a strong
double excitation character also causes problems [18].

Time-dependent density functional theory (TD-DFT) also offers a
computationally very efficient approach to describe excited states and con-
sequently has been used in excited state MD simulations [19]. Similar to
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EOM-CCSD, TD-DFT suffers from the deficiencies of the underlying mono-
configurational DFT description of the ground state in regions of bond
breaking and bond formation. Moreover, TD-DFT is known to encounter
severe problems in describing valence states of molecules exhibiting
extended � systems, doubly excited states, and charge transfer excited
states [20].

The problems associated with methods that are based on a single refer-
ence configuration, such as EOM-CCSD and TD-DFT, demonstrate that for
computing excited states, multiconfigurational methods are required to
provide wavefunctions that are sufficiently flexible to describe bond rear-
rangements, electronic state mixing, and electronic reorganizations. In addi-
tion, to calculate MD trajectories, analytical energy gradients are necessary.
Since the complete active space self-consistent field (CASSCF) method ful-
fills these requirements, it has often been used in the framework of excited
state dynamics simulations [21–25]. In CASSCF, a judicious set of occupied
and virtual orbitals is chosen, the so-called active space orbitals. In this
active space, a full configuration interaction calculation is performed,
while the other orbitals are being kept doubly occupied or empty in all
configurations. The active orbitals are optimized such that the electronic
energy of the state considered is minimal. Alternatively, the average energy
of the states under study is minimized (state-averaged approach), if state
bias or root-flipping problems [26] have to be avoided that occur near
surface crossing regions [27].

The CASSCF method captures to a large extent so-called static electron
correlation. However, due to the necessary truncation of the active space, it
does not recover dynamic electron correlation completely. Dynamic correla-
tion is known to play a key role in the quantitative description of barrier
heights and excitation energies. Thus, a higher level treatment that includes
dynamic electron correlation effects is desirable. Unfortunately, methods
that resolve both static and dynamic correlations tend to be computationally
too demanding and furthermore often lack the required analytical energy
gradients. Because in most cases CASSCF describes the topology of the
potential energy surfaces of the involved states sufficiently accurate, it is
widely used for mechanistic studies of photochemical reactions [28].

Dynamic correlation is accounted for in multireference perturbation
theory approaches, such as CASPT2 [29]. CASPT2 provides a means of
including dynamic correlation, while simultaneously describing static cor-
relation. Recently, analytical CASPT2 energy gradients [30] have become
available, which has opened the way for MD simulations. Coe et al. have
already used these gradients to perform an ab initio MD simulation on
the excited state proton transfer reaction in methyl salicylate [31]. However,
the computational cost of this method still prevents its use for larger
biomolecular systems, in which the number of correlated electrons is too
large.
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Alternatively, dynamic electron correlation is included to some extent in
the restricted active space self-consistent field (RASSCF) method [29].
RASSCF allows larger active spaces and thus provides more flexibility in
the choice of the active orbitals than CASSCF [32]. The larger active space is
subdivided into three classes: orbitals with a limited number of valences, a
fully active orbital set, and orbitals with a limited number of electrons. By
eliminating the redundant configurations, the size of the configuration
interaction problem can be greatly reduced in RASSCF compared to
CASSCF without compromising accuracy. Because analytical gradients are
available, the RASSCF method can be expected to be used in excited state
dynamics simulations in the future. Unfortunately, however, it remains a
difficult task even in RASSCF to select the correct orbital set for a given
photochemical problem.

A promising alternative that circumvents the choice of active orbitals lies
in the use of semi empirical configuration interaction methods. These meth-
ods offer a lower cost alternative, while still taking into account the correla-
tion effects necessary to describe excited states. For example, the recently
developed semi empirical OM2 method has been shown to describe accu-
rately the well-known conical intersections of small molecules [33]. Thus,
the use of new semiempirical methods, such as OM2, could hold great
promise for nonadiabatic MD simulations of very large molecular systems
in the near future.

Due to inaccuracy of approaches that are based on a single reference
configuration, lack of validation of the semi empirical alternatives, and
prohibitive computational demands of multireference perturbation meth-
ods, CASSCF is at present the most attractive option for excited state MD
simulations. However, even at the CASSCF level of theory, the calculation of
energies and gradients at every step of the simulation places a severe
demand on computational resources. We are therefore forced to use mini-
mal active spaces. These minimal spaces have to be calibrated against higher
level methods before the simulations can be performed. Validation is
usually done by comparing the energies of stationary points on the CASSCF
potential energy surfaces to the single-point CASPT2 energies at these
geometries.

2.6. Mixed quantum classical molecular dynamics

MD computer simulations of biological systems have come of age. Since the
first application of MD on a small protein in vacuum more than three
decades ago [34], advances in computer power, algorithmic developments,
and improvements in the accuracy of the used interaction functions have
established MD as an important and predictive technique to study dynamic
processes at atomic resolution [35]. In the interaction functions, the so-called
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MM forcefield, simple chemical concepts are used to describe the potential
energy of the system [36]:

VMM ¼
XNbonds

i

Vbond
i þ

XNangles

j

Vangle
j þ

XNtorsions

l

Vtorsion
l

XNMM

i

XNMM

j>i

VCoul
ij þ

XNMM

i

XNMM

j>i

VLJ
ij ; ð48Þ

where NMM is the number of atoms in the system. Bonds and angles (Vbond,
Vangle) are normally modeled by harmonic functions, and torsions by peri-
odic functions (Vtorsion). The pairwise electrostatic interaction between
atoms with a partial charge (Qi) is given by Coulomb’s law:

VCoul
ij ¼ e2QiQj

4��0Rij
; ð49Þ

in which Rij denotes the interatomic distance, e the unit charge, and �0 the
electric constant. Short-range Pauli repulsion and long-range dispersion
attraction are most often described by a single Lennard-Jones potential:

VLJ
ij ¼ Cij

12

Rij

 !12

� Cij
6

Rij

 !6

; ð50Þ

with Cij
12 and Cij

6 a repulsion and attraction parameter, respectively, that
depend on the atom types involved.

Electrons are thus ignored in molecular mechanics forcefields. Their
influence is expressed by empirical parameters that are valid for the ground
state of a given covalent structure. Therefore, processes that involve electro-
nic rearrangements, such as photochemical reactions, cannot be described at
the MM level. Instead, these processes require a quantum mechanics
description. As we have discussed above, the computational effort asso-
ciated with computing excited state electronic structure puts severe con-
straints on the size of the system that can be studied. To overcome this
limitation for biological systems, which are typically orders of magnitude
too large for a complete quantum chemical treatment, methods have been
developed that treat a small part of the system at an appropriate QM level,
while retaining the computationally cheaper forcefield (MM) for the remain-
der. This hybrid QM/MM strategy was originally introduced by Warshel
and Levitt [37] and is illustrated in Figure 6.5.

The justification for dividing a system into regions that are described at
different levels of theory is the local character of chemical reactions in
condensed phases. A distinction can usually be made between a “reaction
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center” with atoms that are directly involved in the reaction and a
“spectator” region, in which the atoms do not directly participate in the
reaction. For example, most reactions in solution involve the reactants and
the first few solvation shells. The bulk solvent is hardly affected by the
reaction, but can influence the reaction via long-range interactions. The same
is true for most enzymes, in which the catalytic process is restricted to an
active site. The rest of the protein provides an electrostatic background that
may or may not facilitate the reaction.

The hybrid QM/MM Hamiltonian contains three classes of interactions:
interactions between atoms in the QM region, between atoms in the MM
region, and interactions between QM and MM atoms

Hhybrid ¼ HQM þHMM þHQM=MM: ð51Þ
The interactions within the QM and MM regions are relatively straightfor-
ward to describe, that is, at the QM and MM level, respectively. The inter-
actions between the two subsystems are more difficult to describe and
several approaches have been proposed.

In the most simple approach, the QM subsystem is mechanically
embedded in the MM system and kept in place by forcefield interactions,
that is, bonds, angles, torsions, and Lennard-Jones. With the exception of
these interactions, the two systems are treated independently. Thus a quan-
tum chemistry calculation is performed on an isolated QM subsystem, while
a forcefield calculation is performed on the MM region. An improvement of
the model is to use the isolated electronic wavefunction to derive partial
atomic charges for the QM atoms and use these charges to compute the
electrostatic QM/MM interactions with the MM atoms.

Figure 6.5 The QM/MM partitioning scheme used in recent simulations of a photoactive

yellow protein chromophore analog in water. The atoms of the QM subsystem are shown

in ball-and-stick representation and MM atoms are shown as thick sticks. The CASSCF

method was employed to model the electronic structure of the chromophore, while the

SPCE model [38] was used for the water molecules.
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In the more popular electronic embedding scheme of Field and
coworkers [39], the MM atoms enter the electronic Hamiltonian, as if they
were QM nuclei:

He
QM=MM ¼ He þ

Xne
i

XNMM

K

Qi

4��0riK

¼ � h2

2me

Xne
i

H2
i þ

Xne
i

Xne
j>i

e2

4��0rij

�
Xne
i

XNQM

A

e2ZA

4��0riA
þ
XNMM

K

e2QK

4��0riK
;

ð52Þ
where He is the original electronic Hamiltonian for the isolated QM system,
defined in Eq. (5); ne is the number of electrons, NQM the number of QM
nuclei and NMM the number of MM atoms; ZA and QK are the nuclear and
partial charges of QM nucleus A and MM atom K, respectively; and me

denotes the electron mass. Because the MM atoms enter the Hamiltonian,
the electronic wavefunction is polarized by the environment. Simulta-
neously, the electrons are exerting electrostatic forces on both QM nuclei
and MM atoms. Problems may arise if the MM atoms near the QM region
have high partial charges. In this case, the electrons are strongly attracted by
such MM atoms, and the wavefunction can become overpolarized. Penetra-
tion of electron density into the MM region is an artefact of ignoring the
electrons of the MM atoms. A remedy for this spill-out effect is to use
Gaussian-shaped charge densities rather than point charges to represent
partially charged MM atoms [40].

Interactions between the nuclei in the QM region, and between QM
nuclei and MM atoms are described by Coulomb’s law:

Hnuc
QM=MM ¼

XNQM

A

XNQM

B>A

ZAZB

4��0RAB
þ
XNQM

A

XNMM

K

ZAQK

4��0RAK
: ð53Þ

In addition to electrostatics, there are also van der Waals interactions
between the subsystems that are handled at the forcefield level [Eq. (50)],
as if the QM nuclei were MM atoms. Similar to the previous model, bonded
interactions, such as bonds, angles, and torsions involving both QM and
MM atoms, are described by the respective forcefield functions.

If the QM and MM subsystems are connected by chemical bonds, care
has to be taken when evaluating the QM wavefunction. Cutting the
QM/MM bond creates one or more unpaired electrons in the QM subsys-
tem. In reality, these electrons are paired in a bonding orbital with electrons
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belonging to the atoms on the MM side. A number of approaches to remedy
the artifact of such open valences have been proposed. The most easy
solution is to introduce a monovalent link atom at an appropriate position
along the bond vector between the QM and MM atoms. Hydrogen is most
often used, but there is no restriction on the type of the link atom and even
complete fragments, such as methyl groups, can be used to cap the QM
subsystem. The link atoms are present only in the QM calculation and are
invisible for the MM atoms. Alternative approaches for capping the QM
region are the frozen orbital approach [41] and the generalized hybrid
orbital method [42]. In all of our simulation studies to date, we have used
hydrogen link atoms for capping the QM subsystem.

The QM/MM scheme of Field and coworkers provides a conceptually
intuitive way of including the effect of an environment on a chemical
reaction. However, unless polarization is treated explicitly at the forcefield
level, this QM/MM model is not internally consistent. In most forcefields
polarization is not explicitly included, but is implicitly accounted for via the
parameters in the other terms, most notably, in the nonbonded interactions.
Thus, although the MM region can induce polarization of the QM subsys-
tem, the latter cannot back-polarize the MM region. A related problem arises
from the use of standard Lennard-Jones and charge parameters, which
implicitly contain polarization. When using these parameters without mod-
ification, there is both explicit and implicit polarization of the QM region.
Therefore, the total polarization can be overestimated. To avoid such possi-
ble artifact, the nonbonded parameters in principle should be reparameter-
ized for use in QM/MM simulations. However, this procedure requires the
optimization of very many parameters that also depend on the level of
theory employed for the QM subsystem and is most often skipped in
practice.

3. APPLICATIONS

In this section we discuss some of our recent applications of excited state
dynamics simulations on photobiological systems. We will show that in
these systems, the protein environment controls the photochemical proper-
ties of the chromophore and steers the excited state dynamics.

3.1. Photoactive yellow protein

Photoactive yellow protein (PYP) is believed to be the primary photorecep-
tor for the photoavoidance response of the salt-tolerant bacterium Halorho-
dospira halophila [43]. PYP contains a deprotonated 4-hydroxy-cinnamic acid
(or p-coumaric acid, pca) chromophore linked covalently to the g-sulfur of
Cys69 via a thioester bond (Figure 6.6). Upon absorbing a blue-light photon,
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PYP enters a fully reversible photocycle involving several intermediates on
timescales ranging from a few hundred femtoseconds to seconds [43].

To understand the intrinsic photochemical properties of the PYP chro-
mophore, we have performed geometry optimizations of an isolated chro-
mophore analog [44]. In these optimizations, the complete p system of the
chromophore was included in the active space, which thus consisted of 12
electrons in 11 p orbitals. In addition to optimizing the local minima on the
S1 potential energy surface and the barriers that separate them, we also
located conical intersections in the vicinity of these mimima. The optimiza-
tions revealed that there are two minima on S1: the single bond twisted
minimum, in which the bond adjacent to the phenol ring is rotated by 90�;
and the double bond twisted minimum, in which the ethylenic bond is
twisted at 90� (Figure 6.7). In the isolated chromophore, there is almost no
barrier for reaching the single bond twisted S1 minimum from the Franck–
Condon region, whereas there is a significant barrier to double bond

(a) Single bond twisted S1 minimum (b) Double bond twisted S1 minimum

Ring Tail Ring Tail

q ≈ 0

ΔES0−S1
 = 171.1 kJ/mol ΔES0−S1

 = 91.2 kJ/mol

q ≈ −1 q ≈ −0.26q ≈ −0.74

Figure 6.7 Excited state minimum energy configurations of a chromophore analog. In both

the single bond twisted S1 minimum (a) and the double bond twisted S1 minimum (b), there

is a substantial energy gap between the ground and excited states. The distribution of the

negative charge in these minima is opposite.

Cis-conformation

S0

0°

h! Radiationless
transition

90°

S1/S0
30%70%

Trans-conformation

S0

180°

Torsion b

Torsion a

Figure 6.6 Snapshots from excited state trajectories of wild-type PYP showing the

chromophore (pca) in the active site pocket. The first snapshot is at the excitation. The

second shows the configuration at the radiationless transition from S1 to S0. The third

snapshot shows the photoproduct, in which the carbonyl oxygen of the thioester linkage

has flipped and is no longer hydrogen bonded to the backbone of Cys69.
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rotation. Thus, after photon absorption in vacuum, the main relaxation
channel on S1 involves rotation of the single bond to 90�. We furthermore
found that the S1/S0 intersection seam lies very far away from this mini-
mum. As a consequence, radiationless decay is not very likely to occur in
vacuum. In subsequent QM/MM simulations, we have probed the effect of
different environments on the photochemistry of the chromophore.

To examine the effect of an aqueous environment, we have performed 91
QM/MM excited state dynamics simulations of a chromophore analog in
water [44]. The chromophore was described at the CASSCF(6,6)/3-21G level
of theory, while the water molecules were modeled by the SPCE forcefield
[38]. The results of these simulations demonstrate that in water radiationless
decay is very efficient [44]. The predominant excited state decay channel
involves twisting of the single bond (88%) rather than the double bond
(12%). In contrast to vacuum, decay takes place very near these minima.
Inspection of the trajectories revealed that decay is mediated by specific
hydrogen bond interactions with water molecules. These hydrogen bonds
are different for the single and double twisted S1 minima, which reflects the
difference in charge distribution between these minima [45]. In the single
bond twisted S1 minimum, the negative charge resides on the alkene moiety
of the chromophore (Figure 6.7). Three strong hydrogen bonds to the car-
bonyl oxygen stabilize this charge distribution to such an extent that the
seam almost coincides with the single bond twisted S1 minimum (Figure 6.8).
In the double bond twisted S1 minimum, the negative charge is localized
on the phenolate ring (Figure 6.7). Transient stabilization of this charge
distribution by two or more strong hydrogen bonds to the phenolate oxygen
brings the seam very close to this S1 minimum (Figure 6.8). Thus, in water the
ultrafast excited state decay is mediated by hydrogen bonds.

Single bond twisted S1 minimum

Double bond twisted S1 minimum

Decay to S0

Decay to S0

PYP chromophore in water

88%
hν

12%

Figure 6.8 In water the chromophore undergoes both single and double bond

isomerization. Excited state decay from these minima is very efficient due to stabilization

of the chromophore’s S1 charge distribution by specific hydrogen bond interactions.
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To find out how the protein mediates the photochemical process, we also
carried out a series of QM/MM simulations of wild-type PYP. Figure 6.6
shows the primary events after photoexcitation in the simulation. The
chromophore rapidly decays to the ground state via a 90� rotation of the
double bond (Figure 6.6), rather than the single bond. During this photo-
isomerization process, the hydrogen bonds between the chromophore’s
phenolate oxygen atom and the side chains of the highly conserved Tyr42
and Glu46 residues remain intact. Just as in water, these hydrogen bonds
enhance excited state decay from the double bond twisted minimum.

Upon returning to the ground state, the chromophore either relaxes back
to the original trans conformation (180�), or it continues isomerizing to a cis
conformation (0�). In the latter case, the relaxation also involves a flip of the
thioester linkage, which causes the carbonyl group to rotate 180�. During
this rotation, the hydrogen bond between the carbonyl oxygen and the
Cys69 backbone amino group is broken (Figure 6.6). In total, 14 MD simula-
tions were carried out, initiated from different snapshots from a classical
ground state trajectory. The fluorescence lifetime (200 fs) and isomerization
quantum yield (30%) in the simulations agree well with experiments (400 fs
[46] and 35% [43], respectively).

In the wild-type protein no single bond isomerization was observed.
Thus, the protein not only provides the hydrogen bonds required for ultra-
fast decay, but also controls which of the chromophore’s bond isomerizes
upon photoexcitation. We identified the positive guanidinium moiety of
Arg52 located just above the chromophore ring, as the “catalytic” residue
that enforces double bond isomerization. The preferential electrostatic sta-
bilization of the double bond twisted S1 minimum by the positive Arg52
strongly favors double bond isomerization over single bond isomerization.

To elucidate the role of this arginine in the activation process in more
detail, we performed excited state dynamics simulations on the Arg52Gln
mutant of PYP [47]. This mutant can still enter the photocycle, albeit with a
lower rate and quantum yield [48,49]. Without the positive Arg52, the
predominant excited state reaction in the mutant involves isomerization of
a single bond in the chromophore, rather than the double bond (Figure 6.9)
[50]. This observation confirms that the role of Arg52 is to steer the initial
events after photoabsorption to ensure rotation of the double bond rather
than the single bond in the chromophore.

During rotationof the single bond, thehydrogenbondbetween the carbonyl
oxygen and Cys69 backbone amino group is broken. As shown in Figure 6.10,
new hydrogen bonds are rapidly formed between the carbonyl oxygen atom
and the backbone amino groups of Tyr98 and Asp97. A water molecule from
outside enters the chromophore pocket to donate a third hydrogen bond. With
these three hydrogen bonds stabilizing the negative charge on the alkene
moiety, the chromophore rapidly decays to S0. Thus, the decay mechanism in
the Arg52Gln mutant and in water are essentially the same.
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Although single bond isomerization does not result in the formation of
the cis chromophore, a 180� flip of the thioester group and a rupture of the
hydrogen bond to Cys69 was observed with a 20% quantum yield (Figure
6.9). Together with the experimental observation that the mutant has a
photoactivation quantum yield of about 21% [49], this suggests that the
key step to enter the photocycle is the oxygen flip rather than the double
bond isomerization.

To summarize, the simulations are consistent with experimental obser-
vations and have provided detailed structural and dynamic information at a
resolution well beyond that achievable by other means. From the simula-
tions, key amino acids have been identified as well as the mechanism by
which they control the primary events in the photocycle of PYP. These are (1)
double bond photoisomerization and (2) the break of a hydrogen bond

80%
Cys69

Glu46

Tyr42

pca

20%S1/S0S0

h ν

S0

Figure 6.9 Snapshots from an excited state trajectory of the Arg52Gln mutant of PYP,

showing the chromophore (pca) in the active site pocket. The first snapshot is at the

excitation. The second shows the configuration at the radiationless transition from S1 to S0.

The third snapshot shows the photoproduct. In the mutant isomerization takes place

around the single bond. Like in the wild-type protein, the carbonyl oxygen of the thioester

linkage flips, causing the break of the hydrogen bond to the backbone of Cys69.

Tyr98

Asp97

Glu46

Cys69

S1

(a) (b) (c)

S1 S1/S0

water

pca

Tyr42

t = 0 fs t = 1000 fs t = 1372 fs

Figure 6.10 Snapshots from an excited state trajectory of the Arg52Gln mutant of PYP,

demonstrating that three hydrogen bonds to the carbonyl moiety are essential for S1 decay

at the single bond twisted minimum. The first snapshot is at the excitation to S1. The

second snapshot shows the twisted configuration without hydrogen bonds to the carbonyl.

The gap between S1 and S0 is far too high for decay at this configuration. However, as the

third snapshot shows two backbone amino groups and a bulk water, that has moved into

the chromophore pocket during the excited state dynamics, donate the three hydrogen

bonds that are required for efficient decay from the S1 minimum.
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between the chromophore and the protein backbone. These events trigger a
proton transfer from the protein to the chromophore, which ultimately leads
to the signaling state of PYP [51].

3.2. Reversibly switchable fluorescent proteins

Photochromic, or reversibly switchable fluorescent proteins (RSFPs) that
can be photoswitched between a fluorescent and a nonfluorescent state
have proven to be crucial for new innovative microscopy schemes. How-
ever, despite the availability of X-ray structures of fluorescent and nonfluor-
escent states of several RSFPs, there is as yet no consensus about how these
protein achieve the switching. To reveal the molecular basis of the switching
process we have carried out a two-step QM/MM study of asFP595, a natural
occurring RSFP from the sea anemone Anemonia sulcata (Figure 6.11).

The first step was to locate the protons in the chromophore binding
pocket, because these protons were not resolved in the available X-ray
structures. For this purpose, simulated UV/Vis spectra were compared to
the available experimental data. This comparison was backed up by con-
tinuum electrostatics calculations, and enabled to unambiguously deter-
mine the protonation of the on and off states of asFP595 [52]. These
calculations ascertained that the neutral chromophore form is dominant in
the cis conformation (on-state), whereas the zwitterionic and the anionic
chromophores predominate in the trans conformation (off-state) (Figure
6.11b). These results reveal that the photoinduced trans–cis isomerization
of the chromophore is accompanied by proton transfer events. As shown in
Figure 6.11a, these proton transfers are mediated by the ionizable residues
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Ser158, His197, and Glu215 in the chromophore pocket. His197 is conne-
cted through an extended hydrogen bonding network to the exterior
interface between the protein and the surrounding solution (not shown in
Figure 6.11).

In the second step of the study, nonadiabatic QM/MM MD simulations
were carried out to elucidate the photochemistry of each of the previously
identified protonation states of the chromophore [53]. In these simulations,
energies and gradients on the ground and excited states were calculated on
the fly at the CASSCF(6,6)/3-21G level of theory. Prior to the dynamics
simulations, minima and conical intersections were characterized in vacuo
at the RASSCF(18,7þ4þ5)[2,2]/6-31G� level of theory, that is, including all p
orbitals of the chromophore in the active space. The final six-electron, six-
orbital active space used in the QM/MM dynamics simulations was
selected from these RASSCF calculations such as to enable the simultaneous
description of the ground state and the first excited state.

The quantum yields and excited state lifetimes from the QM/MM
dynamics simulations agree well with experimental measurements [54]. In
addition, the simulations enable to predict the structures of the hitherto
unknown photochemical intermediates and the irreversibly fluorescent
state. Furthermore, the simulations revealed how the proton distribution
in the active site of the asFP595 controls the photochemical conversion
pathways of the chromophore in the protein matrix. The suggested mechan-
ism in Figure 6.12 shows that changes in the protonation state of the
chromophore and some proximal amino acids lead to different photoche-
mical states, which all turn out to be essential for the photoswitching
mechanism. These photochemical states are (1) a neutral chromophore,
which can photoisomerize back and forth between the trans and cis config-
uration on a subpicosecond timescale, (2) an anionic chromophore, which
rapidly undergoes radiationless decay after excitation in both the cis and
trans configuration, and (3) a long-lived and therefore putatively fluorescent
zwitterionic chromophore. The trans zwitterion can rapidly return to the
ground state through proton transfer to the neighboring Glu215 (Figure
6.11a). This alternative de-excitation pathway is not accessible for the cis
isomer, thus explaining why only the cis form fluoresces. The overall stabi-
lity (and thus the relative population) of the different protonation states is
controlled by the isomeric state of the chromophore.

On the basis of the simulations, it was proposed that radiation-induced
decarboxylation of the glutamic acid Glu215 could block the proton transfer
pathways that enable the deactivation of the zwitterions and thus leads to
irreversible fluorescence (Figure 6.12). Recent experiments on the structu-
rally similar protein Dronpa [55,56] also provide strong support for the
proposed protonation/deprotonation mechanism. The similarity between
the chromophores in a variety of fluoroproteins suggests that during mole-
cular evolution, the (p-hydroxybenzylidene)imidazolinone chromophoric
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moiety served as a template and that the photochromic properties—and
thus the function—was fine-tuned by the protein environment.

4. FINAL REMARKS AND CONCLUSIONS

Understanding light-driven processes is one of the major goals of the bio-
and nanosciences. The underlying molecular mechanisms are typically
governed by subpicosecond atomic motions. Mechanisms on such ultrafast
timescales are very challenging to probe by experiment. Here, MD simula-
tions have become an invaluable tool to understand such processes in
atomic detail.

In this contribution, we have reviewed our approach for excited state
MD simulations. In the applications that we have selected here, the simula-
tions have provided detailed structural and dynamical information of the
photobiological process at a resolution well beyond what is achievable
experimentally. The applications also demonstrate what is feasible today
with on-the-fly MD simulations, and where the limits are. These limits are
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predominantly imposed by the current state of computer technology, which
restricts both system size and timescale of the processes we can study today.
However, the expected increase of computer power, complemented by the
development of more efficient electronic structure methods and new algo-
rithms, will enable the study of larger systems and longer timescales in the
near future. Therefore, excited state MD simulation has the potential to lead
to a better understanding of photobiological reactions. Ultimately, we
expect these simulations to enable accurate predictions of photochemical
properties and to become a standard tool for rational design of new photo-
active systems.
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biol. A 190 (2007) 241.
[46] N. Mataga, H. Chosrowjan, Y. Shibata, Y. Imamoto, F. Tokunaga, J. Phys. Chem. B 104

(2000) 5191.
[47] N. Shimizu, H. Kamikubo, Y. Yamazaki, Y. Imamoto, M. Kataoka, Biochemistry 45 (2006)

3542.
[48] P. Changenet-Barret, P. Plaza, M.M. Martin, H. Chosrowjan, S. Taniguchi, N. Mataga, et al.,

Chem. Phys. Lett. 434 (2007) 320.
[49] K. Takeshita, Y. Imamoto, M. Kataoka, K. Mihara, F. Tokunaga, M. Terazima, Biophys. J. 83

(2002) 1567.
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1. INTRODUCTION

There is no doubt about the dominant importance of the liquid state in
chemistry and also in all biological processes. However, any theoretical
treatment of the liquid state encounters numerous problems, in particular
because of its complexity, as it combines the mobility of molecules encoun-
tered in the gaseous state with the density of solids. Therefore, the number
of interacting particles is large and the nature and strength of these interac-
tions make it difficult to describe them with simple potentials. In particular,
when hydrogen bonding is involved—which is an essential feature of all
aqueous and many nonaqueous solutions—sophisticated interaction poten-
tials have to be developed in order to describe the physical behavior of
liquids. Whenever solutions are considered still other types of interactions
are present, which usually require complicated potential functions to be
taken into account.

The modern theoretical treatment of liquids and solutions started with
statistical methods of Monte Carlo (MC) or molecular dynamics (MD) type
[1] which both were developed in the second half of the 20th century. Based
on potential functions that were derived either from empirical data or from
increasingly accurate ab initio calculations of energy hypersurfaces the
behavior of particles in the liquid systems is evaluated in these methods
by means of classical statistical thermodynamics [2]. The potential functions
were usually assumed to be pairwise additive, but it was soon recognized
that wherever interactions became stronger this approximation is not justi-
fied [3,4]. As a consequence, three- or even four-body interaction potentials
had to be added. The development of such functions based on ab initio
calculated energy hypersurfaces encounters problems both in terms of
accuracy of the energy surface calculations and in finding appropriate
analytical potential functions to be fitted to these three- and four-body
terms. In addition, the classical approach makes it difficult to include
further important features in the interactions, in particular polarization
and charge transfer, and the existence of numerous “polarizable” models
for water, almost none of them sufficiently describing all properties of this
most essential liquid [5], illustrate this difficulty.

The logical consequence for further improvement of these simulation
methods was, therefore, the inclusion of quantum mechanics into the clas-
sical molecular mechanics treatment. The enormous numerical computa-
tional tasks of calculating interaction energies or forces acting on the
molecules by means of quantum mechanics have for a long time made
such an approach nearly impossible. Even nowadays with all the advanced
computational facilities, a treatment of a representative simulation box with
several hundred particles by means of quantum mechanics is beyond the
capabilities of contemporary computational equipment. The solution for
this problem was sought in two ways: first, in the use of simplified density
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functional methods and in the restriction of the system to a number of 30�60
molecules in the quantum mechanical (QM) treatment. This type of treat-
ment is known under the name Car�Parrinello (CP) simulations and it has
presently become a popular way to proceed with the simulation of systems
where a QM treatment seems inevitable in order to achieve a better accuracy
for the description of the liquid systems [6]. The second approach divides
the system within the simulation box into two regions: one containing the
most relevant subsystem, for example, a solvated molecule with its first or
even second solvation layer; and the other one dealing with the remaining
part of the simulation box by means of classical potentials [quantum
mechanical and molecular mechanical (QM/MM) approach]. The latter
methodology also encounters some problems, first of all with respect to
the size of the quantum mechanical region, but also with respect to particle
transitions between QM/MM region.

Both approaches, namely CP and QM/MM approach have not only
technical problems but also a number of inherent methodical error sources
that demand much care in the performance of the simulations and some-
times do not allow an unambiguous interpretation of the results.

The main problems of CP simulations [6] are the size of the system that is
often not representative for a “real” liquid system, in particular if a far-reaching
order is present. In particular, this refers to the need of considering a second or
even third solvation shell of a molecule or ion when interactions are strong. In
this case, the number of solventmolecules considered in typical CP simulations
is insufficient to describe the solvation completely and embedding in bulk is
not considered at all. On the contrary, the use of simple density functionals—
for example, the most commonly used Becke-Lee-Yang-Parr (BLYP) [7] or
Perdew, Burke, Ernzerhof (PBE) [8,9] functionals—includes further error
sources. These functions imply all simplifications of the general gradient
approximation formalism and, besides that, the other problems, common to
virtually all contemporary density functional theory (DFT) methods, namely,
the wrong treatment of kinetic energy, the semiempirical parameterization of
some of the terms [10�13], and the attempt to compensate errors by empirical
formulae, make the interpretation of the results to a certain extent ambiguous.

In the QM/MM formalism, embedding in sufficient bulk is not a pro-
blem [14,15] but the aforementioned question of the transition between QM
andMM region poses some serious problems, in particular if the QM zone is
small and thus the transition occurs within a region of strong interactions.
As an example for this problem, any ion can serve [16�19], which forms a
distinct second or even third hydration shell in water, and where the
structure of the second shell is still strongly determined by quantum effects,
but due to the size of the QM region this shell is not included in the
quantum mechanical treatment. This problem can be overcome by increas-
ing the size of the QM region, which is of course connected to a drastic
increase in the computational effort of the method. Another problem is the
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choice of the MM model for the solvent. Only flexible solvent models can be
accepted in such simulations; otherwise, a molecule with full flexibility in
the QM region would suddenly “freeze” to a rigid (and often very different)
configuration upon entering into the MM region, with all the energetic
inconsistencies related to such a process.

The other problem of conventional QM/MM methods is the need of
describing the QM region also by classical molecular mechanics, in order to
work out the quantum effects in this region and obtain the differences to the
classical treatment. This means that despite of the quantum mechanical
treatment of the forces or energies in the QM region one still has to know
or construct all the interaction potentials between solute and solvent species
by means of classical potential functions. In particular, for composite solutes
with no symmetry, this causes serious problems in the development of
suitable analytical potential functions. The related evaluation of a highly
asymmetric energy surface is a tedious and sometimes almost unmanage-
able process. For many systems almost unsurmountable difficulties will be
encountered in the construction of appropriate analytical potential func-
tions, making thus the QM/MM approach a very difficult and sometimes
ambiguous procedure.

While it still seems very difficult—despite some promising approaches
to improve the density functional procedure toward an ab initio approach
[11�13,20]—to overcome DFT-inherent problems, the QM/MM methodol-
ogy could be recently improved to an extent that overcomes most of the
aforementioned methodical difficulties and eventual error sources. In the
next chapter, this new approach named quantum mechanical charge field
molecular dynamics (QMCF MD) [21�22] will be outlined in detail and it
will be shown how this method improves the QM/MM formalism, avoiding
the major technical and physical problems associated with it.

2. METHODOLOGY

2.1. Definition of subregions and the respective forces

The basic approach of conventional QM/MM methodologies [23–27], the
separation of the system into a quantummechanical (QM) region containing
the most relevant part and an MM region, is retained in the QMCF frame-
work [21,22]. The forces in the subregions are treated according to the
respective methodologies, that is, on the quantum mechanical level and
via application of the respective potential model.

For coupling purposes, the QM particles are separated into two
groups—those located close to the QM/MM border and those which are
near the QM center. For the latter the intermolecular distances to MM
particles are large, typically beyond the non-Coulombic cutoff distances.
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Therefore, these species only require a Coulombic interaction term (includ-
ing a correction compensating for the Coulombic cutoff such as an Ewald
summation or a reaction field) to account for the coupling between the QM
and the MM particles. For QM atoms close to the region interface, the
intermolecular distances are small and in addition to the Coulombic forces
the non-Coulombic interactions have to be included to achieve a proper
coupling. Following these consideration, the system is divided into three
subregions as depicted in Figure 7.1. The inner part of the QM region is
termed the QM core zone, whereas the outer part is referred to as the QM
layer region. Solutes located in the QM core region do not require the
application of potential functions, thus composite species which would
require complex potentials for classical and conventional QM/MM simula-
tions can be treated in a straightforward way. The interaction of the solute
with solvent molecules at close range is treated by quantum mechanics
(automatically including polarization, charge transfer, as well as many-
body interactions), whereas the interaction with the solvent beyond the
QM region is treated by Coulombics.

This approach requires all atoms of the solute to remain near the QM
center—whenever a solute particle moves too close to the QM/MM interface,
non-Coulombic potentials would be required and the advantage of this
approach is lost. This consideration also implies that only those species for
which non-Coulombic potentials have been supplied are allowed to be
located in the “QM layer” region. The second QM zone is referred to as the
“solvation layer” as only particles of the solvent are allowed in this region.

Figure 7.1 Scheme of a QMCF simulation: the chemical most relevant region is treated

by quantum mechanics (QM), the remaining part by molecular mechanics (MM). For

coupling purposes the QM region is again separated into two zones, namely, the

“QM core” and the “solvation layer.”
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Besides solvent molecules this also applies to other species such as ions
assuming that non-Coulombics are implemented for these species as well.

The size assigned to the individual regions is a crucial setting for such
simulations. The minimum size of the “core region” is determined by the
solute, but it is often necessary to include also the first layer of hydration, for
example, in the case of hydrated ions. The distance of all “core” particles to
the QM border should exceed the non-Coulombic cutoffs of all involved
species. For aqueous systems, the critical minimum size of the layer region
is about 2.5–3.0 Å. In that case, the entire QM region should contain at least
two layers of hydration. For composite solutes, this condition leads to an
enormous computational effort. However, as these species are in general
less polarizing than ions, the size of the core zone is chosen to include the
solute and eventually a part of the first hydration layer only.

As an additional improvement of the interaction between QM and MM
particles, quantum mechanically derived point charges are assigned to all
QM atoms by population analysis performed in every step of the simula-
tion. This treatment reflects the influence of polarization, charge-transfer
and many-body effects as well as all geometrical changes and incorporates
this information into the QM/MM coupling. In various comparative stu-
dies, this procedure was found to be advantageous over the assignment of
fixed partial charges. For example, the effective charge of an Al(III) ion was
found to be in the order of þ2.0 to þ2.5 instead of the formal þ3.0 charge, as
a consequence of the polarization and charge-transfer effects between the
ion and the solvent. QM/MM simulations utilizing the fixed formal charge
lead to a too strong interaction between the ion and the MM solute mole-
cules resulting in artifacts near the QM/MM interface. As a consequence,
the MM region contracted and exerted a “stress” on the QM region. The QM
particles had to adapt to this contraction and deformations in the ligands’
arrangement around the solute occurred. Application of quantum mechani-
cally derived charges as realized in the QMCF framework significantly
reduced these shortcomings. As the re-evaluation of the charges in every
subsequent step takes into account all changes in the electron density in the
course of a simulation, this procedure is considered superior over the
assignment of fixed charges and, hence, is the standard mode in QMCF
MD simulations.

According to this discussion the forces in the respective regions are
defined as follows:

Fcore
J ¼ FQM

J þ
XM
I¼1

qQM
J � qMM

I

r2IJ
� 1þ 2 � "þ 1

2"� 1
� rIJ

rc

� �3
" #

: ð1Þ

Fcore
J , the force acting on the particle J in the core region, is composed of the

force resulting from the quantum mechanical treatment FQM
J plus the Cou-

lombic interactions between particle J and all MM atoms (M) according to
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their respective partial charges. The charges of the QM atoms are derived by
means of a population analysis as discussed earlier, whereas the partial
charges of the MM particles are defined by the respective MM model. In
this formulation, a reaction field [1] was used to correct the error resulting
from the limited box size and the associated Coulombic cutoff is given as rc.
" corresponds to the dielectric constant of the surrounding medium beyond
the cutoff distance. Ewald summation techniques [28] could be applied as
an alternative approach instead.

The force acting on a particle J in the layer region Flayer
J is obtained in a

similar way. In addition to the contributions derived for core particles non-
Coulombic interactions FnC

IJ between the target particle J and all MM atoms
have to be considered because of the short internuclear distances as dis-
cussed earlier.

Flayer
J ¼ FQM

J þ
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I¼1

qQM
J � qMM

I

r2IJ
� 1þ 2 � "þ 1

2"� 1
� rIJ

rc

� �3
" #

þ FnC
IJ

( )
: ð2Þ

The force of a particle J situated in the MM region is composed of the
interactions with the remaining (M� 1) MM atoms plus the QM/MM cou-
pling contributions. The force associated to MM interactions is in general
composed of a Coulombic term (plus an appropriate long-range correction),
non-Coulombic contributions (a simple example are Lennard-Jones 6–12
type potentials), and intramolecular force field contributions. The QM/
MM coupling terms consist of the Coulombic interactions with all core
(N1) and layer (N2) atoms and the non-Coulombic forces with all layer
atoms (N2). The latter contributions are consistent with the coupling terms
in the core and layer regions and no violation of force consistency and
momentum conservation occurs.

FMM
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I 6¼J
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The force contributions between the core zone and the MM region are
composed of Coulombic interactions only. As the partial charges of the
quantum mechanical region vary according to the geometrical changes,
these contributions are considered as a fluctuating field of charges, which
determined the name of the methodology “QMCF” in order to distinguish
the framework from other QM/MM approaches.

2.2. Electrostatic embedding and the periodic box

The difficulties observed in the Coulombic coupling between the QM and
MM region discussed above are not the only source of QM/MM transition
artifacts—the quantum mechanical description itself leads to an artificial
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behavior close to the QM/MM interface. According to the assignment of the
molecules to the respective regions, the QM region is “unaware” of its
surrounding. This virtual vacuum environment leads to an extension of
the molecular orbitals and thus the electron density into this empty region
of space [22]. This description is a bad representation of the system within
the bulk of a liquid, as the electron density should be confined within the
QM region, and modifies its shape according to the surrounding charge
distribution. As the arrangement of these charges results in an inhomoge-
neous electric field, simplistic approaches like implicit solvation models [29]
[e.g., polarizable continuum model (PCM)] mimicking the surrounding
solvent by a homogeneous potential are not expected to yield a satisfactory
consideration of all effects.

A common way to tackle this problem is the electrostatic embedding
technique [23,30–32]. Effective atomic point charges representing the MM
particles are included in the Hamiltonian as a perturbation potential, which
influence the formation of the molecular orbitals. Negative point charges
lead to a repulsion of the electron density, whereas positive charges result in
an attraction. This approach leads to a significant improvement of the
quantum mechanical treatment in the context of the QM/MM framework
and at the same time does not increase the computational effort signifi-
cantly, as the point charge interactions are included in the less demanding
one-electron contributions.

A typical example for the improved description is the hydrogen bonds
crossing the QM/MM interface—the electron density is modified according
to the surrounding point charges, which leads to variations of the partial
charges of respective atoms. The partial charges reflecting the shift of the
electron density are utilized in the QM/MM coupling as discussed earlier.
Hence, a significant improvement of the QM/MM coupling can be achieved
with a modest increase of the computational effort.

Although the execution of quantum chemical computations utilizing
electrostatic embedding technique is straightforward and implementations
of this method are included in numerous quantum chemistry packages,
the application of this framework in QM/MM approaches creates some
difficulties [22]. The problems arise in the derivation of forces in connec-
tion with the periodic environment, which is utilized to ensure that the
system corresponds to the bulk of a liquid/crystal/gaseous state. The
application of the periodic boundary condition assumes the system to
extend periodically in selected (in the majority of cases all) directions of
space. Particles leaving the system on one side re-enter the simulation box
through the opposite side. To avoid artifacts resulting from double
counting, interactions are computed utilizing the closest image, that is,
either the original particle or a respective image in an adjacent
box. This condition is known as the minimum image convention
(cf., Figure 7.2a) [1].
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Figure 7.2b depicts a typical situation arising in the course of a quantum
mechanical treatment utilizing electrostatic embedding. While the interac-
tion of QM particle A with point charge 1 does not pose any problems, the
minimum image convention is violated for QM particle B, as it should
interact with the periodic image 1’. This wrong inclusion of the interaction
leads to three errors of increasing significance. First, the distance between
particle 1 and B is too large. Second, the resulting force is pointing in the
wrong direction. The third error arises when particle 1 is imaged through
the box boundary in the course of an MD simulation. Suddenly all forces are
pointing in another direction and sudden changes are observed in the
interparticle distances. These discontinuities in the forces result from a
violation of the minimum image convention and pose severe problems in
simulation studies. Therefore, this embedding scheme cannot be utilized to
derive forces in a periodic system.

However, there exists the possibility to include the point charges during
the energy calculation and to discard the embedding during the force com-
putation [22]. This leads to a modification of the molecular orbitals associated
to the external field of charges, which results in different forces between the
QM atoms and the modified QM partial charges. The coupling between the
QM and MM region is then realized via application of Coulomb’s law as
discussed in the previous chapter. All requirements connected to the correct
periodic treatment such as Coulombic cutoffs, long-range corrections, and the
minimum image convention can be satisfied by this procedure.

Consequently, the QM energy does not reflect the correct energy of the
QM region, as it contains nuclei–point charge and electron–point charge
interactions. These contributions have to be subtracted to obtain the proper

A

(a) (b)
1

B

1�

rB1�

rB1

Figure 7.2 (a) Periodic images surrounding the simulation box. Interactions are computed

with respect to the nearest image that is indicated by the circle. (b) Violation of the

minimum image convention resulting from the interaction of QM particle B with point

charge 1.
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result. As some quantum chemical packages do not explicitly output the
latter contributions, it is sometimes necessary to evaluate the energy via a
separate computation. The molecular orbitals derived during the energy
calculation with embedding have to be read in as initial orbitals. The
so-called “guess-only” run enables the computation of the energy without
embedding, but at the same time does not modify the electron density
according to the virtual vacuum environment resulting from the absence
of the MM point charges. Afterward, the QM forces and atomic populations
can be computed in the normal way.

This methodology has been successfully applied in QMCF MD simula-
tion of various hydrated systems [33–38]. The embedding technique and the
improvements of the QM/MM coupling lead to some significant improve-
ments of the description of the systems compared to a conventional QM/
MM MD procedure. This framework is compatible with any affordable
quantum chemical level, thus enabling the application of correlated ab initio
methods such as MP/2 or better in the near future.

2.3. Smoothing of particle migrations between the QM and MM
region

Whenever particles are to be exchanged between the QM and MM region, a
special treatment is required to avoid discontinuities. As molecular vibra-
tions are accessible in the QM region, the force field model describing the
solute in the MM region has to account for molecular flexibility as well.
Rigid models are, therefore, not acceptable as molecules could freeze in
unfavorable geometries upon migration from the QM to the MM region.

A small layer with a typical thickness of 0.2 Å is defined at the QM/MM
interface region. The forces of particles located in this region are computed
twice, first according to the normal definition of the region (Flayer) and a
second time assuming that the respective particles were already in the MM
region (FMM

J ). Based on the center of mass of a respective molecule, a
smoothing factor S(r) is derived, which is utilized to compute the resulting
force FSmooth

J .

F Smooth
J ¼ SðrÞ � ðF layer

J � FMM
J Þ þ FMM

J : ð4Þ
The smoothing factor S(r) is defined by a continuous function gradually
increasing from 0 to 1:

SðrÞ ¼ 1; for r�r1;

SðrÞ ¼ ðr20 � r2Þ2ðr20 þ 2r2 � 3r21Þ
ðr20 � r21Þ3

; for r1<r � r0;

SðrÞ ¼ 0; for r> r0:

ð5Þ
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r defines the distance of a molecule’s center of mass from the QM center, r0
and r1 define the upper and lower limits of the smoothing region. Usually a
thickness of 0.2 Å is employed. This value was found to be the optimal
choice ensuring smooth transitions of molecules and at the same time
avoiding the occurrence of significant transition artifacts. It should be men-
tioned that although the forces of the exchanging particles are continuously
changed from the QM to the MM force, a slight violation of momentum
conservation can be observed. It has been shown that long simulation
trajectories (a few nanoseconds) will lead to artificial diffusion effects [39].
Considering the high computational demand of the quantum mechanical
evaluation of energy and forces and thus, the limited time span achievable
within a QMCF MD simulation study, the deviations are too small to have a
noticeable effect. Very large smoothing areas such as a thickness of 0.5 Å [39]
result in a significant violation of momentum conservation, however.

More advanced smoothing procedures have been designed [39,40], but
the strongly increased demand of the computational effort (up to N2 energy
and force evaluations per step with N being the number of molecules in the
smoothing regions) makes those schemes unfeasible for investigations uti-
lizing hybrid QM/MM approaches. While the calculation time is dramati-
cally increased, a noticeable improvement of the accuracy is not achieved, as
long as the simulation time is significantly below the nanosecond scale.
These approaches appear useful, however, for hybrid MM/MM approaches
such as the combination of reactive and nonreactive force fields [41].

2.4. Computational effort and accuracy considerations

In MD studies, different elements influence the computational effort. The
system size specifying the number of particles N, which is one of the most
crucial factors, as the number of intermolecular interactions typically
increases with N2. If quantum chemical methods are applied such as in CP
simulations, the dependence of the computational effort on the system size is
even more pronounced. In the context of hybrid QM/MM studies for
hydrated systems up to 40 quantum mechanically treated solvent molecules
are embedded in 500–1000MM solvent molecules in order to ensure a proper
description of the solution with a sufficient number of bulk molecules. In CP-
type simulations, the number of particles typically employed ranges between
30 and 60 water molecules, which are all treated by the DFT formalism.

The simulation time required to study all relevant processes is another
important factor that influences the computational effort linearly. As expli-
cit hydrogen movements are accessible in QMCF MD simulations, the time
step is determined by the fast-moving hydrogens. The period of an O�H
vibration in water is in the order of 10 fs and hence, time steps on the sub-
femtosecond scale are compulsory: in order to achieve about 50 energy and
force evaluations per vibrational cycle, a time step of 0.2 fs is required.
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The minimum simulation time to study hydration structures of solvated
ions is 10 ps plus 2 ps for equilibration purposes if the system is properly
pre-equilibrated (e.g., by classical simulations). In cases of complex solute
species, the equilibration time needs to be extended, thus leading to a
further increase of the required number of steps. Utilizing a time step of
0.2 fs, the total number of energy and force computations amount to at least
60 000. Longer trajectories are required if the solvate is labile and if ligand
exchange reactions are to be evaluated. In these cases, the typical range of
the required simulation time is between 20 and 50 ps, corresponding to
110 000 and 250 000 steps, respectively.

The most influential choice, however, is the level of accuracy of the
energy and force evaluation, which strongly correlates with the computa-
tional effort. Force field methods utilizing parameterized potential functions
are less demanding—simulations of a few thousand molecules can be easily
carried out within a few hours, reaching one million steps or more.

Whenever hybrid quantum mechanical methods are used, considera-
tions regarding the computational level, the basis sets, and the size of the
QM region are crucial. These choices strongly determine the accuracy of
results and the computational effort. The treatment of an entire simulation
box with several hundred molecules by ab initio methods is far beyond the
present computational capability. In the CP framework, the compromise
between accuracy and computational effort is achieved by a reduction of the
system size and the usage of simple density functionals of the generalized
gradient approximation type. Such simulations have been widely employed
in numerous computational studies, but various error sources such as the
fictive electron mass, usage of plane wave functions, or the inherent meth-
odical problems associated with DFT (unphysical self-interaction, wrong
kinetic energy, dependence on parameterizations) [11–13] require empirical
corrections of the framework in order to obtain results in agreement with
experiment.

In hybrid QM/MM simulations, the size of the high-level region as well
as the employed methodology in that region is crucial for their quality.
Methods with lower accuracy enable the usage of larger regions and vice
versa. In most cases the quantum mechanical region should be chosen as
large as possible, thereby restricting the applicable theoretical level to the
single determinantal level, that is, DFT or ab initio Hartree–Fock (HF)
method. Density functional methods have become increasingly popular
within the last decade, although they imply several methodical limitations.
One of the most significant findings associated with DFT is the need for a
calibration source which is discussed in detail in recent literature [11].
Therefore, a cautious evaluation of the method of choice has to be carried
out prior to a simulation in order to assess whether the functional’s para-
meterization is appropriate for the specific system of interest. Solvated ions
are strongly dominated by Coulombic interactions and a significant
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polarization of the surrounding solvent results from the presence of the
charged solute. For these cases, the unphysical self-interaction inherent to
DFT is a striking disadvantage. Furthermore, the parameterization of the
functionals is aimed at molecular systems instead of charged atomic systems.
Comparative optimization studies of ion–water clusters utilizing DFT and
correlated ab initio methods have confirmed these conclusions [18,42–48].

The other alternative, the HF level, suffers from the error resulting from the
neglect of electron correlation. This methodical shortcoming can lead to con-
siderable errors in some applications, mostly when dealing with weak interac-
tions, whereas it is less important for strongly interacting systems as, for
example, ion–water interactions. Again, studies of cation–water clusters utiliz-
ing various levels of theory demonstrate the magnitude of this error [18,42–48].
Anextremecase is the stronglypolarizing ionAl(III) [18]. Theaverage ion–water
bond lengths and energies of [Al(H2O)n]

3þ (n= 1–4, 6, 8) clusters predicted by
theHFmethod are inmuch better agreementwith correlatedmethods (Moeller
Plesset 4th order single double quadrupel (MP/4 SDQ), coupled cluster double
substitution (CCD), quadratic configuration interaction calculation including
single and double substitution (QCISD)) than those from popular density
functionals such as Becke, three-parameter, Lee-Yang-Parr (B3LYP). For less
polarizing systems, the differences are less pronounced but still significant.

The application of DFT methods in a QM/MM MD simulation of pure
water, whose intermolecular interaction is considered moderate [49], demon-
strated that DFT methods are not very suitable to describe the forces of this
system.Although they seem todescribe thewater–water interaction energyand
H-bonddistancesmore reliably, they fail with respect to the dynamical aspects.
A comparative QM/MM MD study [50,51] demonstrated that DFT predicts a
too rigid structure forwater. TheHFmethodyields too longandweakH-bonds,
but thedynamicaldataare inbetter agreementwith experiments.QM/MMMD
simulation studies at correlated MP/2 level are presently restricted to a one-
shell treatment because of the strongly increased computational effort, which
does not produce experimental data satisfactorily. It has been concluded that
the treatment of a larger region at lower quantum mechanical level is more
important than the partial correction of electron correlation in a smaller region.

For these reasons, the ab initio HF level presently seems the best com-
promise between computational effort and accuracy for solvated ionic sys-
tems. Despite the general weakness related to the single determinantal
treatment, the inclusion of many-body, polarization, and charge-transfer
effects near the solute and the possibility to provide systems containing
hundreds of solvent molecules are important features for a reliable repre-
sentation of the solution. However, the technological improvements of soft-
ware and hardware resources will enable the application of more advanced
quantum chemical methodologies in the near future. One example for
improvements in theoretical approaches is the “resolution of identity” (RI)
approximation [52], which has gained increasing interest in recent years.
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Utilizing balanced auxiliary functions, quantum chemical methods such as
MP/2 can be significantly accelerated, but the respective methodical accu-
racy is retained in the majority of cases.

Further considerations related to accuracy and computational effort
involve the inclusion of relativistic effects, which are important in the case
of heavy atoms. Core electrons reach high velocities and effects resulting
from special relativity become significant, leading to a contraction of bond
lengths and shifts of energy levels. Effective core potentials (ECP) resem-
bling a preset number of core electrons are efficient tools to include a large
fraction of relativistic effects and at the same time to reduce the computa-
tional effort. A full relativistic treatment utilizing advanced quantum che-
mical methodologies is still too time consuming for hybrid QM/MM
approaches.

The chosen basis set has also a strong influence on the accuracy/effort
relation—minimum basis sets have been shown to yield significantly wrong
data [53], while double-zeta plus polarization basis sets have been shown to
be a reasonable compromise leading in many cases to data comparable with
experimental results. For correlated methods, larger basis sets have to be
utilized to capture an appropriate fraction of the electron correlation. Thus,
the application of these methods implies not only the inherently higher
computational demand but an additional increase of this demand due to
the requirement of larger basis sets.

All these aspects need to be balanced considering the available compu-
tational equipment. Although it is possible to execute quantum chemical
computations in parallel by distribution of parts of the computation to
several processors, parallelization is limited depending on the architecture
of the computational equipment and the efficiency of QM programs. Highly
optimized programs reach this limit at about 8–20 processors depending on
the level of theory and the system size. The time required for the evaluation
of the classical potentials as well as the routines for thermostatization,
integration of the equations of motions, and so on are negligible in these
considerations. Assuming a computation time of 5 minutes for energy,
force, and charge evaluation, the minimum of 60 000 steps amounts to a
total net computation time of 5000 h corresponding to 7 months. These
dimensions of computation time make an application of correlated methods
still prohibitive. As the comparison of ion–water clusters treated at different
levels of theory has shown that the computational effort for correlated
treatment leads only to marginal improvements in energies and geometries,
the treatment of charged systems in polar solvents at the HF level appears
justified. However, systems with weak interactions as, for example, hydro-
phobic solutes in aqueous solution or apolar solvents will require the inclu-
sion of electron correlation for a proper description. For them DFT methods
could provide an alternative, as the common parameterization of the func-
tionals appears more suitable for this class of molecules.
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3. APPLICATION OF THE QMCF MD METHODOLOGY

In the following a few selected examples are presented demonstrating the
advanced capabilities of the QMCF framework. It was of special interest to
investigate systems where previous QM/MM data are available in order to
perform a detailed comparison of the different approaches. Other applica-
tions focus on systems posing difficulties for solute�solvent potential-based
QM/MM studies.

In particular, the hydration of monoatomic ions in solution could be
utilized to compare methodologies due to numerous existing data [14,15]. In
these examples the ions and their first and second hydration shells were
included in the QM region, the respective “core region” defined in the
QMCF framework included the ion and the first hydration layer, and the
layer region the second shell. Because of the formulation of the QMCF
framework, no ion�water potentials were required, which is one particular
benefit of this methodology, as the construction of these potentials is a
tedious and time-consuming task. Especially in the case of strongly polariz-
ing systems such as Al(III) [18], this construction process encounters numer-
ous obstacles, for example, unphysical charge transfer and the accuracy of
the resulting potentials is limited even if three-body correction terms are
included.

Figures 7.3a and b depict the ion�oxygen radial distribution functions
(RDFs) of Na(I) and Al(III) in aqueous solution obtained from a QMCF and a
conventional QM/MM MD simulation. The main difference in the RDFs of
Na(I) is visible near the weak second shell in the region between 4.0 and
5.0 Å and in the bulk region between 6.0 Å and 7.0 Å. The first shell peak’s
location and intensity as well as its integration corresponding to the coordi-
nation number are similar.
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Figure 7.3 Comparison of the ion–water radial distribution function for (a) Na(I) and

(b) Al(III) in aqueous solution obtained from a QMCF (solid line) and a conventional

QM/MM (dashed line) MD simulation.
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In the case of Al(III), the differences are much more pronounced. The
first shell peak’s intensity is significantly decreased, whereas its location
and the first shell coordination number remain unchanged. The second shell
is significantly shifted to a larger distance when the QMCF framework is
utilized, but the coordination numbers are nearly identical. A closer look at
the second shell peak obtained from the conventional QM/MMMD simula-
tion reveals a pronounced asymmetry of the peak. The slope pointing
toward the third shell is steeper than the slope pointing toward the ion,
whereas the second shell peak is more symmetric when the QMCF scheme
is applied. The third shell also shows significant differences, although the
maxima of both plots are coinciding. A higher population can be identified,
which is clearly shifted toward lower distances when the conventional QM/
MM scheme is applied. A plateau is found in the region from 5.8 Å to 6.4 Å
rather than a distinct peak maximum. In contrast to that, a well-defined
third shell results from the QMCF MD treatment. As in the case of Na(I), the
most pronounced differences are found near the QM/MM interface that
was set to 5.0 Å.

The explanation of the observed differences in the structural description
of the system is related to the improved QM/MM coupling realized in the
QMCF framework. In the “classical” QM/MM approach, the interactions
between QM and MM particles are evaluated utilizing empirical MM poten-
tials. Thus, even for Al(III) that is located in the QM region, such a potential
is applied. These potentials consist of Coulombic and non-Coulombic terms
and are in most cases constructed by scanning the energy surface of the
interaction via ab initio calculations. The MM partial charge of a single
atomic species such as an ion corresponds to the formal charge, that is, to
þ3 for an Al(III) ion. Hence, all MM particles experience the formal charge
of the ion, although it should be reduced due to charge transfer resulting
from the binding of the surrounding ligands. The QM treatment on the
other hand does account for all polarization and charge transfer as well as
many-body effects, and hence all QM atoms are subject to interactions
including these influences. MM solvent particles on the other hand experi-
ence too strong interactions, which in many cases result in a contraction of
the MM hydration sphere toward the ion, explaining the increased intensi-
ties in the RDFs observed for the MM region near the QM/MM interface.
This contraction exerts a “stress” on all QM molecules, forcing them to
migrate closer to the QM center. In the case of Na(I), the first shell is
unaffected as polarization effects are rather small, but they are pronounced
in the case of the strongly polarizing ion Al(III), where the artificial
“pressure” is so strong that even the first shell is affected. As a further
contraction is not possible, the motion of the first shell ligands is hindered
leading to an increase of the first shell peak intensity.

Application of the QMCF framework does reduce these artifacts by
utilizing quantum mechanically derived point charges for the QM/MM
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coupling. As these partial charges are re-evaluated in every step, any change
of the electron density resulting from geometrical changes is taken into
account. The average partial charges for Na(I) and Al(III) were found to be
þ0.75 and þ2.5 unit charges, respectively, employing Mulliken population
analysis [54]. Despite some known shortcomings, this population scheme
yields partial charges compatible with the charges defined in the BJH-CF2
water model [55,56], which was employed to describe the solvent in the MM
region. This criterion of compatibility of charges is the central consideration
when choosing the method to derive the QM charges.

Electrostatic embedding further improves the description of the system.
As discussed earlier, the embedded point charges prevent the electron
density to expand into a virtual vacuum environment but confine it to the
QM region. This leads to an improved representation of the system that
results in more reliable forces acting on the QM atoms.

These (and other [21,22]) examples demonstrate the advantages of the
QMCF procedure: first, a substantial improvement of the accuracy of results
is achieved with a modest increase of the computational effort of the quan-
tum mechanical treatment related to the electrostatic embedding method
and the employment of the population analysis. Second, the QMCF
approach does not rely on solute�solvent potential parameters as non-
Coulombics are not required due to the large distances, and the Coulombic
interactions are based on quantum mechanically derived partial charges.
This gives the opportunity to study systems that are difficult to represent by
empirical or ab initio generated force fields.

The construction of potential functions for polarizing systems such as
Mg(II) or Al(III) is a highly delicate task [57]. All of these ions require at least
a three-body correction term. Difficulties arise in the ab initio scanning of
the hypersurface, that is, the evaluation of the binding energy utilizing
different geometrical arrangements. Artificial charge transfer is likely to
occur and as basis sets are typically constructed for non-charged species, a
reoptimization is in many cases mandatory to provide a better description
of the ionic species. The resulting data set is afterwards fitted to an analy-
tical representation. For these extreme cases, the formulation of the potential
functions as well as the fitting procedure itself is difficult and time consum-
ing, sometimes ambiguous. For some systems, the procedure does not lead
to an appropriate representation of the entire energy hypersurface. One
particular example is the U(IV) ion for which all problems encountered
with polarizing systems are present to an extreme extent. Besides difficulties
occurring in the scanning of the energy hypersurface, the definition of a
suitable potential form is by no means trivial. The treatment of this system is
straightforward, however, when the QMCF MD method is applied.
Figure 7.4 depicts the U(IV)�water RDFs and a snapshot of the first shell
structure. The U(IV)�oxygen RDF indicates a rigid first shell structure
located at 2.45 Å, which is composed of nine water molecules. This value
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coincides well with experimentally determined data—the ion�oxygen dis-
tance was measured as 2.42 Å [X-ray scattering (XS] [58] and 2.44 Å
[extended X-ray absorption fine structure (EXAFS)] [59], the coordination
numbers were determined as 8 and 10+ 1 by XS and EXAFS, respectively.
Computational studies of U(IV)�water clusters have also suggested nine as
the first shell coordination number [60]. The average spatial arrangement of
the first shell ligands was identified as a capped square antiprism (also
known as gyroelongated square pyramid). The agreement of the simulation
results with experimental data is an encouraging verification of the relia-
bility of the QMCF MD framework. No exchange of the first shell ligands
was observed during the simulation time of 10 ps. The second shell contains
in average �19 ligands and still shows a considerable rigidity—coordina-
tion number 19 has an occurrence of about 40%, the distribution of the
second shell coordination ranges from 17 to 21 only. The corresponding
mean ligand residence time was determined as 8.1 ps.

Although highly polarizing systems like Al(III) and U(IV) pose serious
difficulties in the construction of empirical potentials, these systems are still
considered simple, due to the fact that the potentials are spherically sym-
metric. There are, however, systems which show, in addition to the radial,
an angular dependence of the potential. Thus, ligands approaching the ion
from different directions experience different intermolecular forces and
consequently, different ion�ligand bonds are observed. Two prominent
examples are the Pd(II) and Pt(II) ions. For a long time, the hydration of
these ions was assumed to be square planar, but the interpretation of kinetic
data suggested the participation of axial ligands in exchange reactions [61].
Recent theoretical and experimental data observed the existence of these
axial ligands [35,62,63]. Figure 7.5a�b depicts the ion�water RDFs of Pd(II)
and Pt(II), respectively, obtained from QMCF MD simulations. After the
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main peak found at 2.0 Å and 2.1 Å, resulting from the four ligands located
in a square-planar arrangement, a broad peak can be identified at about
2.7�2.75 Å, which shows an average coordination number of 1.6 and 1.5 for
Pd(II) and Pt(II), respectively. The snapshot of the simulation (cf., Figure
7.5c) clearly indicates that these ligands are located in axial positions above
and below the plane formed by the four first shell ligands. The term
“mesoshell”was proposed to classify this peak [63], as it is found in between
the first and second shell. However, as this peak is not situated exactly
halfway in between these shells and the respective molecules clearly belong
to the first layer of ligands directly bound to the ion, the term “extended first
shell” appears more appropriate. Recent EXAFS investigations of Pd(II) and
Pt(II) in aqueous solution have confirmed the predictions obtained from the
simulation [35,64].

The low peak intensity and the noninteger coordination number of this
extended first shell peak indicate that these ligands are weakly bound and
ligand exchange reactions occur along the simulation. Evaluation of the mean
ligand residence times yielded values of 2.8 and 3.9 ps for Pd(II) and Pt(II),
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respectively. The experimental determined exchange rates of first shell
ligands [61] given as 5.6� 102 [Pd(II)] and 3.9� 10�4 s�1 [Pt(II)] do not corre-
spond to these values, but to exchanges of the equatorial ligands. However,
the experimental exchange rates as well as the mean ligand residence times
deduced from the simulation indicate that the Pt(II) hydrate is more stable
than that of Pd(II) with respect to both axial and equatorial ligands.

A potential function representing the ion�water interactions of these ions
exhibits several difficulties, not only in the construction but also in its
application in a simulation environment. The first problem is the sampling
of the energy hypersurface: an ion�water pair-scan does not reproduce any
angular dependence, hence the axial scanning has to include the in-plane
ligands. Any functional formulation of the potential has, thus, to account for
the relative position of the ligands with respect to a predefined plane
typically evaluating the angle between its associated normal vector and
the ion�ligand vector. This reference plane must not be fixed in space,
however, but should be connected to the plane defined by the four equator-
ial ligands. Otherwise, a rotation of the entire hydrate would be prevented,
which would lead to wrong results. Hence, the average plane defined by the
four oxygens and the ion needs to be defined, but the out-of-plane vibra-
tions of the planar ligands are likely to impose perturbations which lead to
fluctuations of the plane’s normal vector.

An alternative approach employing the hydrated-ion model [63] has
been utilized, treating the axial and equatorial ligands by different potential
functions, thus “biasing” the result. This approach leads to an appropriate
description of the hydrate’s structure in classical simulations [63], but it
imposes restraints on the flexibility of the equatorial ligands. In particular
cases of Pd(II) and Pt(II) this might not be relevant, but other systems
showing faster interconversion and exchange rates cannot be treated in
this way. An example is the distorted octahedral hydration of the Cu(II)
ion [65,66]. Similar to the structure of Pd(II) and Pt(II) ligands in axial
positions are found at longer bond distances than the remaining four
ligands arranged in a plane. However, this structure is not persistent but
highly dynamic as depicted in Figure 7.5d. The initially elongated molecules
move closer to the ion while other ligands move to larger distances. These
dynamic Jahn�Teller distortions were found to occur on the picosecond
scale and involve not only ligand pairs in opposite positions but also
molecules in cis-position. The formulation of empirical potential functions
to properly reflect the ion�water interaction in this case encounters almost
unsurmountable difficulties. Even a conventional QM/MM simulation
including the ion and its first hydration shell only yielded a quite inaccurate
description of the system [65]. Only after the ion and its first plus second
hydration shell were treated quantum mechanically a proper description
could be obtained [66], and a further improvement was obtained upon
application of the QMCF MD framework [21].
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Despite the complications and peculiarities observed in these examples
of monoatomic ionic species, these systems have to be considered simple
compared to solvates composed of multiple atoms. A simulation study of
Hg2

2þ in aqueous solution serves as example [34] of the QMCF MD cap-
abilities. Figure 7.6 depicts the Hg(I)�water RDFs and the spatial density of
the first shell oxygens. It can be clearly seen that the first shell ligands are
located in distinct hemispheres whereas no ligands are found near the
Hg(I)�Hg(I) bond, as the electron density repels the oxygen atoms while
the positive charge of the ion repels the hydrogen atoms of the solvent. The
Hg(I)�Hg(I) and Hg(I)�O distances obtained from the simulation as 2.6
and 2.4 Å are in good agreement with the experimental values [67] given as
2.24�2.53 Å, respectively. Considering the methodical error bars as well as
the different conditions of experiment [0.5M Hg2(ClO4)2 in 30% perchloric
acid] and theory (dilute environment), some deviations are to be expected.
The high amount of acid utilized in the experimental structure determina-
tion is required to suppress hydrolysis of the Hg(I) dimer [67], but it is
expected to considerably influence the properties of the hydrate. The num-
ber of water molecules freely available at this concentration is too low to
enable the formation of a distinct second hydration shell, and the associated
change of the dielectric properties of the solution will also influence the
characteristics of the hydration.

Classical simulations of this particular hydrated Hg2
2þ system applying

standard Coulombic plus Lennard-Jones 6�12 potentials would yield an
erroneous description of this system. In this case the global minimum
forms a ring surrounding the Hg(I)�Hg(I) bond (cf., Figure 7.7) leading to
a stable coordination of ligands at that site. In order to prevent the binding
of solvent molecules, an artificial interaction site would be required located
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at the center of the Hg(I)�Hg(I) bond. Alternatively, in addition to the radial
dependence the angle between the Hg(I)�Hg(I) and the ion�ligand vectors
could be incorporated in the potential function. However, it is still ques-
tionable whether these corrections could achieve an appropriate description
of the system, as further complications arise from charge shifts within
the ion.

Figure 7.8 depicts the charges of the individual mercury atoms and their
sum. While the total charge displays only minor oscillations with a mean
value of 1.45, the individual charges of the Hg(I) atoms fluctuate widely
with minimum and maximum charges of 0.3 and 1.1, respectively. Electro-
nic structure calculations are capable to cover these effects as all shifts of the
electron density due to polarization and charge transfer are taken into
account. The accuracy is only determined by the applied level of theory,
that is, the chosen quantum chemical method and the size of the basis sets.
Classical models on the contrary do not appropriately account for such
effects even if the effects of polarization are incorporated into the potential
functions. Various methods for an approximate treatment of polarization
and charge transfer have been developed, with different strengths and
weaknesses [68], but the incorporation of all relevant contributions is an
almost impossible task. In the case of the Hg2

2þ ion, the possibility of
disproportionation to Hg2þ and Hg0 further complicates this situation, as
the majority of classical models are not capable to describe the formation
and cleavage of chemical bonds. Quantum chemical methods do account for
bond formation and breaking and as disproportionation and hydrolysis
occurring in aqueous medium are not expected to change the spin state of

Emin

rmin rmin

rmin

Figure 7.7 Application of standard MM potentials (e.g., Lennard-Jones 6–12 plus Coulomb

potential) to Hg2
2þ predicts the favored ligand position at the intersection of the

spheres with a radius rmin. Data obtained from experiments and the QMCF simulation

indicate that these positions are unfavored, however.
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the systems, the treatment of such processes can be realized with standard
quantum chemical methods. Recent developments of reactive force field
approaches [69,70] have demonstrated that some limitations of classical
models can be overcome, but the construction of these models is a very
sophisticated and time-consuming task, and the computing time is consid-
erably increased compared to nonreactive force field methods.

A detailed analysis of the topology of the Hg(I) dimer reveals some
ambiguities. It is seen from the spatial distribution depicted in Figure 7.6
that the first shell water molecules are arranged in the respective hemi-
spheres of the Hg(I) atoms. The RDFs take spherical volume elements into
account, thereby considering also the unpopulated region near the Hg(I)�
Hg(I) bond. The corresponding volume is utilized in the normalization of
the RDF and it can be concluded that the first shell peak appears too low
and does not properly reflect the bond strength of the first shell ligands. For
larger regions such as the second shell, it is apparent from Figure 7.9 that the
distance to the first shell ligands of the opposite mercury atom B is within
the same range as the second shell ligands of mercury atom A. Hence, the
second shell peak in the RDF includes the entire first shell and part of the
second shell of the opposite mercury atom. Bond distances, peak heights,
and also the coordination numbers are thus wrongly predicted by this full
sphere treatment and do not properly reflect the arrangement of molecules.

To obtain a more reliable representation of the hydration, the system was
cut into two halves by defining a plane perpendicular to the Hg(I)�Hg(I)
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bond. The center of mass of the Hg2
2þ ion defined the center of this plane.

This treatment enables the investigation of RDFs between Hg(I) and ligands
located on either side of the plane. The resulting Hg�O RDFs are depicted
in Figure 7.9. The intensity of the first shell peak has increased, whereas the
Hg�O distance and the coordination number remained unchanged. The
second shell obtained via the hemisphere analysis differs significantly from
the result of the full sphere RDF. The peak is located at a slightly larger
distance of 4.85 Å with reduced height and the coordination number has
become significantly lower.

Simulation data can also be utilized to investigate the distribution of
microspecies. Figure 7.10 depicts the first shell coordination number dis-
tributions as well as the associated exchange plots for both Hg(I) atoms
obtained from the simulation. It can be seen that a distinct coordination
number is not determinable, as a large number of exchanges of first shell
ligands are observed for both atoms, but the obtained picture of the prob-
ability of various microspecies being formed is a valuable information
hardly obtainable by experimental measurement.

In addition to the structural information, dynamical data can be obtained
from MD trajectories. The time evolution of the Hg�O distances depicted in
Figure 10 indicates that a large number of exchanges occur at both Hg atoms,
and a distinct exchange mechanism (such as an “associative” or “dissociative”
mechanism) cannot be deduced. The mean ligand residence time of the first
shell ligands was determined as 3.0 ps by the direct method [71], reflecting
the weak ion�ligand bond strength. The ion�oxygen stretching frequency was
calculated as 160 cm�1 (165 cm�1 at the halfwidth). These values are only
insignificantly lower than the experimental one of 171 cm�1 [67].
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The experimental hydration energy of �1148 kJ/mol based on the tetra-
phenylarsonium tetraphenylborate (TATB) assumption [72] is reproduced
in excellent agreement by the QMCF MD simulation yielding a value of
�1137 kJ/mol. The good agreement of the simulation results with various
experimental data gives confidence that the QMCF MD approach is an
adequate tool for the description of the solvation of composite species as
well.

As another example of a composite ion the triatomic UO2
2þ ion in

aqueous solution is discussed. Similar as in the case of the Hg(I) dimer
atom�centered spherical potentials are not capable of representing the
energy hypersurface for hydration, whereas the treatment is straightfor-
ward when the QMCF method is applied.

Figure 7.11 depicts the U�water and OU�water RDFs obtained from the
QMCF MD simulation. A tall first shell peak located at 2.5 Å indicates a
rigid first hydration layer composed of five water molecules surrounding
the U(VI) atom. As the RDF reaches zero after the first shell, no exchange
events between first and second hydration layer took place during the
simulation. The corresponding peak in the U�H RDF is found at a distance
of 3.1 Å. Both first shell peaks are not overlapping indicating a strong dipole
orientation as expected.
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The broad second shell peak in the U�O RDF found at 4.75 Å shows a
significant tailing. The overlap between this peak and the second shell peak
of the U�H RDF located at 5.3 Å is a result of different solute�solvent
interactions: While the uranium ion is attractive for water oxygens, the
uranyl�oxygens attract the hydrogen atoms of the solvent. A continuous
reorientation of the dipole of the ligands occurs when moving along the
UO2

2þ ion. A spherical analysis of a common RDF does not account for this
behavior. Therefore, as in the case of the previous examples, a plane is
defined including the positions of the uranium atom and the oxygen
atoms of its five first shell ligands. According to the respective normal
vector, conical regions are defined enabling a selective analysis of the radial
distributions within selected spatial regions.

Typical settings for the cones are 30�, 60�, and the remaining part of the
system (cf., Figure 7.12). The corresponding RDFs are depicted in Figure
7.12. An increase of the first shell peak intensity accompanied by a broad-
ening of the peak’s halfwidth is noticed when moving from the equatorial
(30�) to the axial cone (60��90�). Consequently, the axial ligands show an
increased mobility compared to the first and second shell molecules in
equatorial positions. A strong dipole orientation is observed in the region
perpendicular to the cone vectors, while the dipole character is reduced for
the axial ligands.

The analysis of segmented RDFs provides detailed data on the hydration
of solvates with lower symmetry. Longer simulation trajectories enable the
reduction of the angle regions leading to smaller cones and thus a more
refined picture of the surrounding of a composite solute system. Figure 7.13
depicts a combined radial�angular density distribution surrounding the
UO2

2þ ion. This plot has been generated by probing the uranyl hydrate in
terms of overlapping cones with an aperture of 22.5�. The hydration is
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dominated by the peaks of the first shell ligands which had to be truncated
in order to observe the structure of less strongly bound ligands. This plot,
therefore, allows to quantify the second shell ligands of the uranium atoms
as well as the first shell ligands of the oxo atoms combining radial and
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angular dependencies. The second shell ligands are found at an average
distance of 4.3 Å and an angle of 60�with respect to the average cone vector.
The ligands bound to the oxygen atoms are located at a distance of 4.7 Å
from the uranium atom at an angle of 27�. This results in an average OU�O
distance of 3.3 Å. The corresponding value obtained from the spherical
OU�O RDF is 3.0 Å. This difference is another example for the difficulties
encountered when analyzing hydrated composite species and demonstrates
that geometrically adopted analysis schemes have to be applied in order to
obtain an appropriate structural description of solvation.

Anions mostly bind to the water molecules through hydrogen bonds, but
the strength of these hydrogen bonds can vary considerably, thus leading to
specific characteristics of different anions. Table 7.1 lists the data for two
halogenide ions, namely, chloride and fluoride [73,74] and the three pre-
viously mentioned oxo anions, phosphate [75], sulfate [37], and perchlorate
[76], in water with respect to their structural details and coordination
number distributions. The corresponding RDFs evaluated between the cen-
ter atom and all water oxygens are depicted in Figure 7.14. The distance of
the ion to the nearest oxygen is a function of the strength of the hydrogen
bond and one can see, therefore, already from the r1 value that the strength
of hydrogen bonds varies considerably within this series. A distinct second
hydration shell is not well defined in all cases and will, therefore, not be
discussed in detail.

Concerning the first shell coordination number distribution, one
observes a remarkable variation, in particular in the case of chloride and
even more in the case of the oxo anions, for which one can specifically
compare ions with identical structure but different charge. A good measure
for this comparison is the number of water ligands per coordination site
being in average 2.2 for phosphate, 1.7 for sulfate, and 1.5 for perchlorate,
respectively. It is quite evident that the number of stable hydrogen bonds
depends on the charge of the anion. The structure-breaking activity of the
anions can be estimated from the H-bond distance, which is larger than the

Table 7.1 Ion–oxygen distance r1 and r2 in angstrom, distribution of coordination number

CND1, CND2, and average first shell coordination number CN1,av of hydrated cations

obtained from QM/MM MD or QMCF MD simulations

Ion r1 r2 CND1 CN1,av CND2 Refs.

Cl� 3.24 – 4–7 5.6 – [73,74]
F� 2.68 – 4–6 4.6 – [73,74]
PO4

3� 3.7 5.7 11–16 13 23–33 [75,76]
SO4

2� 3.8 5.5 8–14 11 – [37]
ClO4

� 4.2 5.5 4–16 10 – [76]
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value for pure water for all anions except fluoride, and hence one could
consider fluoride as the only structure forming anion among our examples.

Table 7.2 lists the values for the RDF halfwidth and the mean residence
time of water molecules in the first shell as well as its normalized value
based on the average coordination number of the first shell. Also the Rex

values are listed which refer to the number of required attempts to achieve
one persistent (i.e., longer than 0.5 ps) ligand exchange. Considering the
halfwidth of the first shell peak, only perchlorate [76] shows a value con-
siderably larger than that of water, sulfate [37] a slightly higher value, and
chloride [73,74] and phosphate [75] a halfwidth that is smaller but not too

Table 7.2 Halfwidth b1/2 in angstrom, intensity and respective ration of the first shell

peak of the ion–oxygen RDF, mean ligand residence time � 1 (t
�= 0.5 ps) in picoseconds of

the first shell, ratio between � 1 and the CN1,av, and the ratio of exchange of ligands of

hydrated ions obtained from QM/MM MD or QMCF MD simulations

Ion b1/2 h1 h
b1=2

�1
�1

CN1;av
Rex Refs.

H2O 0.68 2.0 2.9 1.5 0.36 11.2 [51,77]
Cl� 0.57 2.4 4.2 2.0 0.36 9.4 [73,74]
F� 0.38 3.4 8.9 2.5 0.53 6.2 [73,74]
PO4

3� 0.60 2.9 4.8 3.9 0.34 3.1 [75]
SO4

2� 0.70 2.3 3.3 2.5 0.22 7.4 [37]
ClO4

� �1.1 1.3 1.2 1.5 0.15 5.2 [76]
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different from that of water. On the contrary, the fluoride [73,74] RDF has a
much shorter halfwidth of its first peak and thus confirms this ion’s classi-
fication as a structure-making ion. The mean residence times again give a
value identical to that of water in the case of perchlorate, and for all other
anions they are slightly higher. In this aspect the trivalent phosphate deli-
vers a larger mean residence time than any other of these ions following a
clear charge-dependent order (PO4

3�> SO4
2�> ClO4

�).
Once the normalized values are considered, the picture changes and in

this case fluoride [73,74] results again as the strongest structure former
whereas all other ions are similar or even less stable with respect to their
exchange time compared to pure water. These data are of particular
interest, as all ligands are coordinated via hydrogen bonds, and thus
the normalized mean residence times correspond to the average lifetime
of these hydrogen bonds. This lifetime, which exceeds that of water only
in the case of fluoride, is almost identical with that of water for chloride
[73,74] and the triply charged phosphate [75], but considerably shorter
for the divalent and monovalent oxo anions sulfate [37] and perchlorate
[76].

The discussed values reflect different aspects of the structure-breaking
or structure-forming property and any consideration of these properties
of the ions would have to take into account not only the cavity needed to
be formed in the solvent in order to place the ions but also various other
data such as the structure and composition of the ion. A simple compar-
ison as in the case of the cations seems only possible for the comparison
of the monoatomic ions fluoride and chloride. The Rex values display a
quite unexpected order at the first glance, not showing any systematic
trends, even for the oxo anions. What is observed, however, is that in
general they are much higher than the values for the cations and that the
charge seems to have only a secondary influence on the number of
attempts needed to produce a ligand exchange event. This different
behavior can be attributed to the lack of a second hydration shell even
in the case of higher charged anions, and to a different exchange mechan-
ism compared to the cations, mostly related to hydrogen bond formation
and breaking, both between anion and solvent and between solvent
molecules in their surrounding.

4. OUTLOOK

The methodical discussion and the application examples presented so far
enable an outlook toward possible and desirable future developments of the
simulation framework presented here. This refers to two major topics,
namely, the further methodical development and the extensions of applica-
tions in chemistry.
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4.1. Methodical developments

It is clear that a methodical improvement would refer first of all to the
inclusion of effects neglected in the HF ab initio calculations. Numerous
tests of the methodology in general, that is, the application of DFT–QM/
MM schemes and CP simulations to liquid systems have made it clear
that the inclusion of correlation in a semiempirical way as in common
density functional methods is not the solution for this purpose. None of
the generalised gradient approxiamation (GGA) and hybrid density func-
tionals implemented in presently used techniques appear suitable to
describe with sufficient accuracy the liquid state, in particular of hydro-
gen-bonded systems, and hence will not offer an appropriate way to
improve the simulation by (partial) inclusion of electron correlation
effects. However, recent developments toward ab initio density functional
methods that would finally allow to include both the exchange and the
correlation term in an exact way into a one-determinant description could
lead to an economic and favorable solution of this problem [11–13].
At present, however, one cannot yet foresee when such methods will
become available for general implementation.

Among the conventional multideterminantal approaches for the inclu-
sion of electron correlation, MP/2 does not seem to be a satisfactory way
either. Based on a perturbational calculation of electron correlation effects,
MP/2 can easily overestimate these effects and thus also lead to erroneous
results. The desirable extension to correlated methods is to be seen in
coupled-cluster methods, at least at CCSD(T) level. However, it is obvious
that such an expansion of the methodical framework is extremely costly and
hence not feasible for larger systems in the near future, especially as this
would also imply the usage of larger basis sets.

Another methodical development refers to the treatment of larger
solutes and solvent molecules. This will eventually require cutting through
covalent bonds which is not necessary in the case of small solutes embedded
in layers consisting of small solvent molecules. This cutting through bonds
will lead to the same problems as already encountered and partially solved
in the case of numerous QM/MM simulations of biomolecules [78,79].
However, the method of embedding and of taking into account Coulombic
forces in the QMCF MD method could lead to new promising approaches
also in this topic.

Last but not least, improvement of the solvent models for the MM
region of the simulations is an important task that should not be
neglected. This refers not only to water, where such improvements have
been achieved recently [80,81], but to all kinds of relevant solvents in
chemistry. Further search for suitable classical models for these solvents is
essential for a very general applicability of any simulation framework in
solution chemistry.

Ab Initio Quantum Mechanical Charge Field 243



4.2. Applications

With the present method any extension of the framework to larger solutes is
straightforward. These will be on the one hand complexes of metal ions with
larger ligands or a number of different ligands, where the construction of
potential functions is almost not feasible. On the other hand, this will refer
to biomolecules and biological complexes as encountered in a number of
enzymes and many other biochemically reactive species. Besides the afore-
mentioned problem of cutting through covalent bonds in such molecules,
the treatment of complexes will also create further methodical problems, in
particular when one deals with fast-migrating ligands. Once these ligands
move from the core zone into the layer zone, the problem of considering
non-Coulombic forces between these ligands and the solvent in the MM
region arises. The straightforward way to avoid this problem is to extend
the layer zone further or to add a third QM zone to the system. The
extension of the core zone as well as the related increase of the layer zone
will inevitably lead to an exponentially increasing computational effort.

It is obvious that all of these developments will mainly depend on the
availability of computational power. So far the development of computa-
tional facilities in the past decades allows a quite optimistic view of this
aspect, computations becoming increasingly cheaper and processors
increasingly faster. Parallelization is not a general remedy for this pro-
blem, as parts of the quantum mechanical framework cannot be arbitra-
rily parallelized. The scalar speed of the processors is, therefore, the most
relevant parameter for the future development of such simulations. One
can expect that also in the years to come advances in computer technol-
ogy will grant a continuously increasing applicability of accurate simula-
tion methods based on quantum mechanics and hence provide a deeper
insight into reactivity and properties of solutions at molecular level. The
inclusion of counterions and the treatment of larger ligands will further
expand the range of such studies far beyond present limits. In general,
these theoretical methods will provide a flexible and universal tool to
analyze and understand chemical processes, often at much less cost than
experimental work, and in several aspects exceeding the capabilities of
experimental methods. Therefore, computational chemistry is on the way
to become a front-runner in solution chemistry and related chemical and
biological processes.
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1. INTRODUCTION

The description of many processes which are relevant to Chemistry and
Biology, such as proton and electron transfer, photodissociation, and vibra-
tional energy relaxation, requires the use of quantum mechanics. However,

a Universidad Nacional de Quilmes, Sáenz Peña 352, Bernal, B1876BXD, Bs. As., Argentina

Advances in Quantum Chemistry, Vol. 59 � 2010 Elsevier Inc.
ISSN: 0065-3276, DOI: 10.1016/S0065-3276(10)59008-7 All rights reserved

247



in many cases, these processes take place within large and complex systems,
where a full-quantum description cannot be afforded. To cope with such
situations, several approximate methods have been developed, each of them
having its own strengths and weaknesses. Among them, methods combin-
ing quantum and classical mechanics stand out because of their conceptual
simplicity and relatively low computational cost.

In this chapter we will concentrate on methods that make explicit use of
mixed-quantum/classical (mixed-Q/C) trajectories, designed to analyze
processes in real time. Thus, very valuable and highly used approaches
such as semiclassical dynamics, Gaussian wave packet propagation
(WPP), and path integral will not be reviewed here. Instead, the reader is
referred to Refs. [1�4], and the references cited there, for discussions about
their characteristics, scope, and applications. Furthermore, this chapter is
restricted to electronically adiabatic processes requiring a Q/C treatment
because of the presence of nuclear quantum effects, such as the effect of
tunneling on a rate constant, or the effect of having discrete energy levels on
energy transfer processes. Some of these methods, however, can also be
adapted to analyze electronically nonadiabatic processes.

By mixed-Q/C trajectories we mean trajectories in which the evolution of
the system is determined through the joint application of the time-dependent
Schrödinger equation to some selected degrees of freedom, and the Newton
equations to the others. In order to make possible the flow of energy between
the two partitions, while maintaining the total energy of the combined
system, both quantum and classical equations need to be properly modified.
As there is not a single way to do this, different procedures have been
proposed which can be distinguished by the strategy used to connect the
quantum and the classical subsystems.

One of the most useful features of the methods based on mixed-Q/C
trajectories is that they allow observing processes in real time. Thus, a clear
picture of their dynamics can be readily appreciated. This is particularly
helpful in studies of vibrational energy relaxation and intramolecular
energy redistribution. Besides, statistical results such as reaction probabil-
ities or canonical rate constants can also be obtained through averaging over
a large number of trajectories.

In the following section we briefly present the basic equations of the
most used mixed-Q/C propagation schemes. This is mainly done to intro-
duce the terminology and equations employed in the discussions given in
the rest of the chapter. For more detailed descriptions, as well as compar-
isons between the different schemes, the reader is referred to Refs. [5�7].
Then, we discuss the application of mixed-Q/C trajectories to the study of
three different kinds of processes, selected among the large variety that can
be analyzed with this methodology. These processes are (1) hydrogen
transfer reactions in gas phase; (2) hydride/proton transfer reactions in
condensed phase; and (3) vibrational energy relaxation of small solutes in
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van der Waals clusters and condensed phase. We believe that, by discussing
the applications of mixed-Q/C trajectories to these selected cases, the cap-
abilities and limitations of the approach will be clearly exemplified. We
conclude this chapter with a discussion on prospective implementations of
this methodology.

2. MIXED-Q/C PROPAGATIONS SCHEMES

For the sake of simplicity we will consider a 2D Hamiltonian in the form,

Ĥ ¼ � �h2

2m

@2

@r2
� �h2

2M

@2

@R2
þ Vðr;RÞ; ð1Þ

as this greatly simplifies the notation. Nevertheless, the equations derived
with this Hamiltonian can be easily extended to treat systems with
more degrees of freedom, for which some kind of approximation is
actually needed. Without loss of generality, the potential V(r,R) can be
partitioned as

Vðr;RÞ ¼ VrðrÞ þ VRðRÞ þ Vintðr;RÞ;
where Vint(r, R) gives the interaction between the quantum and the classical
subsystems and renders the Hamiltonian of Eq. (1) nonseparable. It is
assumed that m<<M. Therefore, the coordinate r requires a quantum treat-
ment, while R behaves classically.

In Q/C-trajectories, the state of the quantum subsystem is usually
described by a wave function in the coordinate representation,  (r,t),
while the state of the classical subsystem is given by its coordinate and
momentum [R(t),P(t)]. Accordingly, the evolution of the quantum system
is calculated from the time-dependent Schrödinger equation, while the
classical subsystem evolves according to the Hamilton equations. In both
cases, effective Hamiltonians must be defined in order to allow the
coupling between the subsystems. Thus, the differential equations to be
solved are

i �h _ ¼ Ĥ
eff

r  ; ð2Þ

_R ¼ @H
eff
R

@P
; ð3Þ

_P ¼ � @Heff
R

@R
; ð4Þ
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with Ĥ
eff

r and Heff
R defined as

Ĥ
eff

r ¼ �
�h2

2m

@2

@r2
þ VrðrÞ þ Vintðr;RÞ; ð5Þ

Heff
R ¼

P2

2M
þ VRðRÞ þ h ðr; tÞjVintðr;RÞj ðr; tÞir: ð6Þ

The symbol h ir, in Eq. (6) denotes integration over the full range of the
quantum coordinate, r.

One possibility to differentiate the various Q/C-propagation schemes is
by the way in which they represent the wave function that indicates the
state of the quantum subsystem. In some methods, the focus is on the spatial
characteristics of  (r, t). Therefore, the information to be obtained from
a trajectory is how the position and the shape of the initial wave packet
evolve with time. In such cases, it is customary to expand  (r, t) on a grid
representation. In some other cases, a basis set representation is employed,
through the use of the eigenfunctions of an appropriate zero-order Hamil-
tonian, or the adiabatic Hamiltonian. In this instance, the information to be
obtained from the trajectories is how the coefficients of the expansion evolve
with time. In principle, the two representations are equivalent and the use of
one or the other is just a matter of computational advantage. However, each
of them leads to rather different propagation schemes when the basic
algorithms are modified in order to improve the performance of the
mixed-Q/C method.

In approaches dealing with a grid representation,  and R are both
independent dynamical variables. Therefore, in Eq. (5), Vint(r, R) is a fluctu-
ating potential that depends on time through the motion of the classical
coordinate. Accordingly, R is not an adiabatic parameter for  (r, t) and there
should be no ambiguity in the application of Eq. (4):

_P ¼ � @VR

@R
� @

@R
h ðr; tÞjVintðr;RÞj ðr; tÞir;

_P ¼ � @VR

@R
�
*
 ðr; tÞ

����� @Vintðr;RÞ
R

����� ðr; tÞ
+

r

:

The second term on the right-hand side of these equations is the
Hellman�Feynman force [8]. It accounts for the effect of the quantum
subsystem on the classical trajectory. The following alternate expression
can also be obtained invoking the same reason:

_P ¼ � @VR

@R
� @

@R

�
 ðr; tÞ

���Ĥeff

r

��� ðr; tÞ�
r

: ð7Þ
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It has been shown [8,9] that the propagation scheme described by
Eqs. (2�6) can be derived from the full time-dependent Schrödinger equa-
tion using

Cðr;R; tÞ ¼  ðr; tÞ ’ðR; tÞ; ð8Þ
with

’ðR; tÞ ¼ aðR; tÞ eiSðR;tÞ=�h; ð9Þ
where a(R,t) and S(R,t) are real-valued functions. Bornemann et al. [8]
proved that, if the mass of the classical particle is large enough and
j’ðR; t ¼ 0Þj2 can be approximated by a � function of variance "2, the product
given in Eq. (8) approximates the full-quantum wave function with an error
of order "/L, where L is a characteristic length of the system. Similarly, the
error in the classical trajectories computed by Eqs. (3 and 4) is of order
ð"=LÞ2 þ ffiffiffiffiffiffiffiffiffiffiffi

m=M
p

. Finally, a subtle but important remark is that the proce-
dure remains valid as long as the propagation time does not exceed a
maximum time tmax, at which the system gets to a focal point (i.e., a point
where two nearby trajectories intersect). A nice example of this problem is
discussed in Ref. [8] for a model representing the collision of a heavy
particle with a harmonic oscillator. Unfortunately, for larger and more
complex systems it is not easy to establish, a priori, where the focal points
are. Among the methods that typically employ a grid representation of the
wave function we can mention the Q/C-time dependent self-consistent field
(Q/C-TDSCF) approach [9] used in simulations of inelastic and reactive
collisions in gas phase, and the quantum classical molecular dynamics
(QCMD) algorithm [8] used in studies of proton transfer in condensed
phase.

Several numerical algorithms have been proposed to integrate the equa-
tions of motion corresponding to a grid representation of the wave function.
The simplest one, usually called the hybrid method, combines a classical
MD integrator, such as Verlet, with a quantum wave packet propagator,
such as the split operator. However more sophisticated algorithms which
employ symplectic and nonsymplectic integrators [10,11], as well as others
involving multiple timescales, have been proposed [12]. They have proven
to conserve the energy of the whole system with higher accuracy than the
hybrid approach. For details about this specialized topic the reader is
referred to Refs. [10�12].

Alternatively, other propagation schemes can be derived from Eqs. (2�4)
by using a basis set expansion for  (r,t),

 ðr; tÞ ¼
XN
j¼1

cjðtÞFjðr;RÞ: ð10Þ
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Here the coefficients, cj (t), are complex variables that do not depend on R.
Inserting this expansion into Eq. (2), the following set of differential equa-
tions is obtained for the coefficients:

i �h_cj ¼
XN
k¼1

ck
�D

Ĥ
eff

r ðr;RÞ
E
jk
� i �h _Rdjk

�
; ð11Þ

where D
Ĥ

eff

r ðr;RÞ
E
jk
¼

D
Fj

���Ĥeff

r ðr;RÞjFk

E
r

and

djk ¼
*
Fj

����� @Fk

@R

+
r

:

It is important to note that introducing the expansion of Eq. (10) into the
propagation equations is equivalent to make a variable change. The dyna-
mical variables are now the coefficients cj, R, and P (instead of  , R, and P).
Accordingly, the time evolution of the system is obtained by integrating the
set of coupled differential equations [Eq. (11)], along with the classical
equations [Eqs. (3,4)].

Equation (11) shows that the rate of change of cj (t) depends on two terms:

the potential couplings,
�
Ĥ

eff

r ðr;RÞ
	
jk, and the kinetics couplings, _Rdjk. The

first of these terms vanishes for j 6¼ k if  (r,t) is expanded in the adiabatic
basis set fFa

j ðr;RÞg, which is composed of the orthonormal eigenfunctions of

Ĥ
eff

r for the given value of R,

Ĥ
eff

r ðr;RÞ Fa
j ðr;RÞ ¼ �jðRÞFa

j ðr;RÞ: ð12Þ

In this case, the set of differential equations for the coefficients is

i �h_cj ¼ cj�jðRÞ� i �h _R
XN
k¼1

djkck; ð13Þ

and _Rdjk measures the strength of the nonadiabatic coupling between the
adiabatic states j and k. Using the nondiagonal Hellman�Feynman theorem,
djk can be calculated as

djk ¼
D
Fa

j

���@Ĥeff

r =@R
���Fa

k

E
ð�k� �jÞ : ð14Þ
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On the contrary, the kinetic couplings vanish when  (r, t) is expressed in
a diabatic basis set fFd

j ðrÞg, which is formed by a set of orthonormal
eigenfunctions calculated as

ĤrðrÞFd
j ðrÞ ¼ �jFd

j ðrÞ;

with

Ĥr ¼ � �h2

2m

@2

@r2
þ VrðrÞ:

The functions of this basis set do not depend on the position of the classical
particle. Therefore Eq. (11) reduces to

i �h_cj ¼
XN
k¼1

ck
D
Ĥ

eff

r ðr;RÞ
E
jk
: ð15Þ

Even after deciding by the use of an adiabatic or a diabatic basis set,
multiple possibilities exist for carrying out the propagation. A relatively
simple algorithm is obtained if the propagation is performed employing just
a single function of the adiabatic basis set. In so doing, the system is forced
to remain in the same state and the propagation is said to be adiabatic.
Equation (13) shows that this procedure can be justified if the motion of the
classical degrees of freedom is slow (i.e., in the limit of _R! 0). Besides, as
implied by Eq. (14), the energy gap between quantum states must remain
large during the whole propagation.

The application of the adiabatic algorithm is relatively simple. First,
Eq. (12) is solved for the appropriate initial values of the classical variables.
Then, using the wave function corresponding to the selected adiabatic state,
the effective force on the classical system is calculated as

_P ¼ � @VR

@R
� @

@R

D
Fjðr;RÞ

���Ĥeff

r

���Fjðr;RÞ
E
r
:

Afterward, Eqs. (3 and 4) are employed to update the classical coordinate
and momentum, respectively. The new coordinate is then used to update
the adiabatic wave function, starting a new cycle. As, by assumption, cj= 1
and ck 6¼j= 0, there is no need to propagate Eq. (13) and the nonadiabatic
couplings do not have to be calculated. This greatly reduces the computa-
tional cost of the approach. However, in many studies of nuclear quantum
effects, the conditions required to have an adiabatic process are not fulfilled,
or rather, it is not known whether they are fulfilled or not. Therefore, the
use of more than one function should be preferred, whenever it is
affordable. Anyhow, if the process is actually adiabatic, the algorithm will
tell by itself that the coefficients associated to other states remain close
to zero.
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Two different propagation schemes are possible when more than one
function is used in the expansion of  (r,t). In the “mean field” or Ehrenfest
approach, the effective force on the classical subsystem is obtained through
direct application of Eqs. (7 and 10) to give

_P ¼ � @VR

@R
� @

@R

XN
j¼1
jcjj2�jðRÞ:

Alternatively, the Hellman�Feynman theorem affords the more operative
expression,

_P ¼ � @VR

@R
�
XN
j¼1
jcjj2

*
Fj

����� @H
eff
r

@R

�����Fj

+
: ð16Þ

The last equation clearly shows that the force exerted by the quantum sub-
system on the classical subsystem is an average of those generated by each
individual quantum state. As a result, problems arise when these individual
forces are significantly disparate to each other. In this case, the average of the
second term of Eq. (16) does not resemble any actual force experienced by the
classical system when it interacts with a single quantum state.

Surface hopping methods have been designed to cope with situations
like this. In this approach, the quantum system is prepared into a single
state j by initially setting cj ¼ 1; fck ¼ 0gk 6¼j. Moreover, it is assumed that the
system remains in the same state until a sudden transition occurs. Accord-
ingly, the forces on the classical subsystem are evaluated as in the adiabatic
approximation. At the same time, Eq. (13) is propagated to monitor the
evolution of the coefficients cj(t), which are used to evaluate the transition
probability between the current quantum state and the others. Different
procedures have been proposed to decide when and how a quantum transi-
tion should be made.

A widely used procedure to do this is given by Tully’s “Fewest Switches”
method. This algorithm distributes trajectories among quantum states in
proportion to their probabilities jcjj2, using the minimum required number
of quantum transitions. Lets ajk ¼ cjc�k be the elements of a Hermitian matrix
whose diagonal elements give the occupation probabilities of the states
included in the expansion of  (r, t). Then, _ajj measures the rate of change of
the occupation probability of state j. Using Eq. (13) it is found that

_ajj ¼ �
XN
k 6¼j

bjk:

Here,

bjk ¼ 2 _RdjkRe ða�jkÞ
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measures the rate of change in the occupation probability for state j due to
its coupling with state k. So, a value of bjk greater than zero indicates an
increase in the occupation probability of state k at the expense of the
occupation of state j. Consequently, if for a short time interval �t, ajj and
bjk can be considered as constants, the relative change in the occupation
probability of state j due to its coupling to state k is given by bjk�t/ajj. This
relative change is assumed to measure the probability of transitions between
the current state j and the new state k. If this value is positive, random
numbers are used to allow transitions in accordance with their probabilities;
if it is negative, the transition is not performed.

When the algorithm indicates that a transition between states j and k
must take place, but �j 6¼ �k, the classical velocities are adjusted in order to
conserve the total energy of the composed system. This adjustment is
performed as if the classical coordinates were subjected to a force in the
direction of the coupling, as explained in Ref. [13]. However, it may occur
that there is no enough energy in the direction of the nonadiabatic coupling
to maintain the energy. These events are called “classically forbidden tran-
sitions.” When they occur, it is assumed that the system remains in the
original quantum state and the direction of the classical velocities is
reversed [14]. The existence of classically forbidden transitions leads to a
disagreement between jcjj2 and the fraction of trajectories at state j. For that
reason, improvements to the basic algorithm have been proposed in order to
eliminate these kind of events [15,16]. The surface hopping with fewest
switching approach has been extensively used in studies of nuclear quan-
tum effects in vibrational relaxation and proton transfer processes, usually
under the name of molecular dynamics with quantum transitions (MDQT).

Basis sets different than the adiabatic and diabatic ones can also be used
to expand  (r, t). In this way, propagation schemes slightly different than
the ones discussed above are obtained. Nevertheless, they involve the same
principles. For example, when simulating the transference of a light particle
between the wells of a bistable system, vibrational functions centered on
each well can be used, as well as distributed Gaussians. In these cases,
additional computations must be done because the basis set is not ortho-
normal [17].

3. HYDROGEN TRANSFER IN GAS PHASE

The application of mixed-Q/C trajectories to the study of gas-phase
reactions is commonly referred to as Q/C-TDSCF. However, Billing
and his coworkers, who extensively contributed to the growth of this
field, used the name of “semiclassical approach.” In most of the early
applications, the processes studied were three atomic reactions of the type
AþBC!ABþC/ACþB. Moreover, in many instances, further
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simplifications were made in order to allow the computation of exact full-
quantum magnitudes so that meaningful comparisons, intended to assess
the accuracy of the mixed approach, could be done. Among these, we can
mention the use of collinear, planar, and zero total angular momentum
approximations. In general, the quality of mixed-Q/C approaches improves
by increasing the size of the system. Therefore, these small, low-dimension-
ality systems represented a rather stringent test. Thus several limitations
were readily noticed, which provided useful insights into the very nature of
the approach. More importantly, they stimulated new developments aimed
to improve its reliability.

Neuhauser and Judson [18] studied the collinear TþHT!THþT
reaction in two different ways. In the “particle-based” approximation the
Hamiltonian was expressed in atomic Cartesian coordinates. The coordi-
nates corresponding to the T atoms were treated classically while the one
corresponding to the H atom was treated quantally. In the second method,
labeled as “bond-based,” the Hamiltonian was expressed in Jacobi coordi-
nates. One of these coordinates describes the vibration of the initial H�T
bond while the other one accounts for the relative motion between T and the
center of mass of the HT molecule. In this case, the H�T bond was treated
quantally while the relative motion was treated classically. By using absorb-
ing potentials placed at the exit of the products channel, Neuhauser mana-
ged to evaluate reaction probabilities as a function of the kinetic energy. He
found that the two Q/C approaches performed significantly better than a
full classical calculation, both being able to predict tunneling. However,
differences between full quantum (full-QM) and mixed-Q/C results were
important at the whole energy range.

The “particle-based” approximation is usually employed in the study of
reactions that occur in condensed phases. However, as discussed by New-
hauser, it produces some ambiguities at the time of initializing the Q/C
trajectories. This is because one of the atoms that form the bond being
broken belongs to the classical subsystem, while the other one belongs to
the quantum subsystem. The “bond-based” approach, on the other hand, is
of choice in studies of inelastic and reactive scattering involving a handful of
atoms. This is due to the fact that the approach relies on the use of Jacobi
coordinates which allow for an accurate treatment of the vibrational states
of the bonds being broken/formed. Besides, the Jacobi coordinates mini-
mize the number of degrees of freedom that need to be propagated. Never-
theless, this advantage is not so critical in mixed-Q/C applications as it is in
full-quantum calculations.

The collinear ClþHCl!ClHþCl [19] and O(3P)þHCl!OHþCl [20]
reactions, which are prototypes of heavy�light�heavy systems, were studied
with the “bond-based” approach. For the ClþHCl reaction, two different
Q/C-propagation schemes were evaluated. One of them was the standard
single-trajectory Q/C-TDSCF approach. The second one involved multiple

256 G. Pierdominici-Sottile et al.



Q/C trajectories in which the initial classical coordinate and momentum
were selected according to a Wigner distribution function. In this case the
final results were obtained by averaging the outcomes over several indivi-
dual trajectories. Reasonable agreement was found between both the Q/C
approaches and the full-quantum results, except for energies close to reso-
nances. The results obtained with multiple trajectories were closer to the
quantum ones than those obtained with a single trajectory, but the improve-
ment was just moderate.

The most serious limitation of the Q/C-TDSCF method becomes evident
when the wave packet, that is initially concentrated in a small region of the
configurational space, splits into two or more parts. In this case, the force
corresponding to the second term of Eq. (7) (which is a mean field force),
does not correspond to the actual forces exerted by each part of the wave
packet, but to an average of them. To solve this problem, Wang and Clary
proposed the “Quenching”method based on physical intuition [21,22]. Later
on, Wang demonstrated that the method could be derived from the time-
dependent Schrödinger equation by using a Q/C-multiconfiguration time-
dependent self-consistent field approach (MC-TDSCF) [23].

Several, slightly different implementations of the MC-TDSCF method
have been proposed, but all of them are based on the same idea. The
simulations start with a single Q/C-trajectory which is propagated until
the wave packet shows a clear bifurcation. After that, two different trajec-
tories are propagated, each of them representing the interaction of the
classical subsystem with a single part of the wave packet. The main differ-
ence between alternative procedures is the criterion used to detect the
bifurcation and the way in which the wave function is decomposed to
produce the independent trajectories.

The MC-TDSCF approach was applied to the collinear O(3P)þHCl [20]
reaction, on two different potential energy surfaces. Standard single config-
uration computations (SC-TDSCF) and full-QM computations were also per-
formed. It was found that the SC-TDSCF algorithm afforded reasonably
accurate results for one of the surfaces but not for the other. More importantly,
it was shown that for both surfaces, the accuracy of the results could be
significantly improved by introducing just a second configuration into the
Q/C simulation. The conclusion was that the MC-TDSCF approach was able
to produce fairly accurate results except at very high energieswhere, probably,
more than just two configurations should be used. The drawbacks of the
SC-TDSCF algorithm were attributed to the asymmetry of the surface at the
strong interaction region, since the derivative @V/@R taken at the reactants’
channel bears significant differenceswith the derivative taken at the products’
one. This leads to an artificial correlationbetween thedynamics of the reactants
and the products channels [20]. On the other hand, when the surface is highly
symmetrical, the derivative @V/@R is similar in both channels and there is no
harm in taking the average implied by the Hellman�Feynman forces.
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Later on, the MC-TDSCF approach was used to describe the collisions
between O(3P) and the van der Waals complex Ar�HCl [24]. The study of
the O(3P)þAr�HCl system is a good example of the possibilities offered by
this method that allows observing individual reactive events. Thus, the
analysis of the Q/C trajectories revealed that the rare gas atom was able to
focus the wave packet on a small part of the configurational space, produ-
cing a more thorough sampling of the transition state (TS) region. This leads
to an increase in the reaction probability, in comparison with the simple O
(3P)þHCl reaction, in agreement with the experimental results [25].

Billing and coworkers performed Q/C studies of gas-phase reactions not
restricted to the collinear geometry. The theory to treat three atomic reac-
tions was introduced [26] and employed to investigate the DþH2!DHþ
H reaction [27�29], as well as other nonadiabatic reactions [30], with a
planar approximation [27] and also in 3D [28,29]. One interesting feature
of Billing’s approach is that he formulated the reactive scattering problem in
hyperspherical coordinates, which consider all the reactive channels on the
same footing [31]. In the first model, the Euler angles that describe the
rotation of the whole system and the hyperradious that describes the rela-
tive motion of the colliding fragments were treated classically. The vibra-
tional and rotational degrees of freedom of the diatomic were treated
quantally [29]. In a second study, the hyperradious was also included in
the quantum subsystem just leaving the classical treatment for the degrees
of freedom associated with the rotational motion [28]. It was found that only
the latest model compared well with the available exact quantum results,
giving reasonable accurate vibrationally resolved cross sections over a large
range of translational energy. It was concluded that a quantum treatment of
the hyperradious was needed in order to obtain a fairly good description of
the dynamics. Billing and coworkers also studied the OHþH2!H2OþH
reaction [32,33]. In the first of these studies [33], the quantum subsystem
was composed by the vibrational degrees of freedom of the diatomic mole-
cules, while all the rotations plus the translational motion were part of the
classical subsystem. The comparison between full-QM and mixed-Q/C rate
constants was satisfactory at temperatures above 400K, but not good below
that temperature where the Q/C results underestimated the full-QM values.
In a second paper, the translational motion was also included in the quan-
tum subsystem and the comparison with full-QM computations improved
significantly.

An important step forward in the application of the mixed Q/C-TDSCF
approximation to more complex systems was given by Zhang and
coworkers, who analyzed a series of reactions that involve methane as a
reactant. In particular, they implemented a Q/C version of the reduced
dimensionality semirigid vibrating rotor target (SVRT) model [34]. When
applied to the study of reactions of a single atom with methane (XþCH4!
XHþCH3), the basic version of the SVRT model has four degrees of
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freedom. Two of them are the radial Jacobi coordinates for the reactants
channel: one describes the vibration of the bond being broken and the other
one describes the translational motion. The other two degrees of freedom
are angles. One of them is associated with the orbital motion of the colliding
atom, the other one with the rotation of the CH3 moiety.

In the Q/C version of the model, the translation is treated classically
while the rest of the Hamiltonian is treated quantally. This procedure is
justified for collisions in which the reduced mass for the translational
motion is large, as in the case of the O(3P)þCH4!OHþCH3 reaction.
Fortunately, it is just in these cases where a classical treatment becomes
convenient, or needed, because of the large number of basis set functions
required by the full-quantum calculation. Thus, for the O(3P)þCH4!OH
CH3 reaction, the comparison of results obtained with the Q/C-SVRT
approach and the full-quantum version of the model gave encouraging
results [35].

A more thorough evaluation of the approximation was given in a later
study in which the comparison between quantum and Q/C computations
was performed for the isotopic reactions H(D,T)þCH4!HH(D,T)þCH3

[36]. For the three cases, the full-quantum reaction probabilities presented
oscillations which were attributed to dynamical resonances. In accordance
with the previous conclusions of Wang and Mc Coy, it was found that Q/C
computations were unable to reproduce this effect. As these resonances
were more pronounced for the reaction with H than with T, the agreement
was worst in the former case. A second important trend detected in this
work appeared in the analysis of the reaction probabilities out of the ground
vibrational state of CH4. The results showed that the threshold of the Q/C-
probabilities was smaller than the one corresponding to full-QM ones. This
was explained in terms of the vibrationally adiabatic barriers for the mixed-
Q/C and full-QM computations.

The translational motion, which has no frequency when the reactants are
far apart to each other, becomes a vibration at the TS. In the full-QM
computations there is a zero point energy associated with this TS-vibration
while in the mixed-Q/C computations there are no restrictions on the
amount of energy associated with this mode. Accordingly, the vibrationally
adiabatic barrier observed in the full-QM computations is higher than the
one observed in the mixed approach. This effect is well known from the
comparisons between the results of full-quantum and quasi-classical trajec-
tory calculations [37]. As the zero point energy associated with the lacking
vibration is larger for the HþCH4 reaction than for the TþCH4 one, the
disagreement in the thresholds is larger in the former case.

More disturbing results were obtained from the analysis of reaction
probabilities out of the first excited vibrational state of the C�H bond. In
this case, significant differences in the thresholds to reaction were observed
for the three isotopes. The problem was attributed to the fact that all the
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computations used just a single configuration, instead of the minimum
number of two required to account for the splitting of the wave packet. As
the results of MC-TDSCF computations have not been reported yet, this
must be considered just as a putative explanation. The Q/C version of the
SVRT model was also used to study the collisions between a molecule of
methane and a Ni surface [38].

In the discussion so far we have just included time-dependent calcula-
tions for which, at t= 0, the reactants are well separated to each other, as
correspond to the initial conditions of the scattering problems. However, the
mixed-Q/C approach can also be used in direct computations of rate con-
stants by using the flux�flux correlation function formalism [39]. In this case
the propagation is initiated at the TS, and the trajectory is followed for a
short interval until the flux�flux correlation function goes to zero. Although
the method has been mainly used to study reactions in condensed phases, a
recent study on model systems indicates that it could work fairly well for
gas-phase reactions [40].

Before leaving this section we summarize the main conclusions. First, the
SC-TDSCF approach can give reasonably accurate results in the case of
symmetric potentials. In all the cases, however, it is preferable to introduce
at least a second configuration (MC-TDSCF), to take into account the
splitting of the wave packet after getting to the strong interaction region.
The MC-TDSCF method is always needed in the case of asymmetric poten-
tials. Second, when the mass associated with the translational motion is
small, a quantum treatment of this motion is required in order to get the
correct threshold to reaction. This is an important issue in the calculation of
rate constants.

4. PROTON AND HYDRIDE TRANSFER IN CONDENSED PHASE

Proton transfer is an important class of reaction in Chemistry, Biochemistry,
and Biology [41�45]. In particular, it is an essential and ubiquitous step in
enzyme catalysis [46�52], where the role of nuclear quantum effects is
currently a matter of intense debate [53�55]. Classical MD has been used
to analyze some aspects of proton transfer in condensed phases [56]. How-
ever, due to the light mass of the hydrogen atom, tunneling and zero point
energies are significant and the use of quantum mechanics becomes man-
datory [57]. The number of methods that have been designed and applied to
describe Hþ/H� transfer in condensed phases is huge. Among them, the
“ensemble averaged-variational transition state theory” (EA-VTST) stands
up because of the large number of processes studied with it (see Ref. [58]).
The algorithm is an extension of the VTST method widely used to calculate
rate constants in the gas phase. The EA-VTST approach takes into account
the participation of the environment in the reaction coordinate and allows a
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sampling of the TS region without a previous knowledge of the stationary
points. However, a thorough discussion of EA-VTST is beyond the scope of
this chapter, so the interested reader is referred to Ref. [58] and the refer-
ences cited there. In the following section, as in the rest of this chapter, we
restrict ourselves to the description of approaches based on a separation of
the whole system into a quantum and a classical part, followed by the
joint propagation of the equations of motion for each part (as discussed in
Section 2).

An example that nicely illustrates the ability of mixed-Q/C trajectories to
describe the real-time dynamics of reactions in complex environments is
given in a series of works on phospholipase A2 by Bala et al. [59�61]. This
enzyme, that hydrolyzes phospholipids, consists of three connected
a-helices. The active site, located between two parallel a-helices, is com-
posed of a histidine residue and a water molecule. According to the
accepted mechanism, the catalyzed reaction starts with a proton transfer
from the water molecule to the histidine residue, forming the OH� group
that performs the nucleophilic attack on the carbonyl carbon of the sub-
strate. The most complete of these studies [60], in which the proton was
treated as a 3D Gaussian wave packet, was able to demonstrate that the
transfer takes place only when it is accompanied by the nucleophilic attack
on the substrate. In other words, the simulation indicated that the mechan-
ism is not sequential, but concerted.

The effect of fluctuations of the protein environment was revealed by
analyzing the time evolution of the formal charges of the atoms in the active
site. It was noted that the transfer is triggered by an increase in the charge of
the carbon atom that suffers the nucleophilic attack. At the same time, this
atom changes its hybridization from sp2 to sp3, as indicated by a variation in
its geometry from planar to tetrahedral. Interestingly, it was observed that
the transfer is associated with a slight increase in the donor�acceptor
distance. This is contrary to the common belief that the shortening of this
distance promotes the transfer [62]. By comparing mixed-Q/C and full-
classical simulations it was noted that the effective barriers were signifi-
cantly smaller when the proton was treated quantum-dynamically. This
phenomenon was attributed to the zero point energy and to the delocaliza-
tion of the quantum particle. A similar behavior was also observed in
comparisons between quantum (path integrals) and classical simulations
of the proton shared in a hydrogen bond [63].

Other lesson tobegained fromthese studies ishowsensitiveare the results to
thepotentialused to run the computations.Thus, the simulationsofRefs. [59and
60] used valence bond parameterizations, similar to the empirical valence bond
(EVB)method [64], to calculate the potential that describes the transfer. The first
of these studies [59] included eight valence bond structures in the parameteri-
zation while the last one used fourteen [60]. In the first work, the transference
of the proton was observed only in mixed-Q/C simulations, but not in
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the full-classical ones. However, in the most complete study, the transfer
was observed in both instances. Also, the simultaneous proton transfer/
nucleophilic attack mechanism was only detected in the latter case.

Another approach used to calculate the rate of proton transfer in con-
densed phases is the density matrix evolution (DME) method of Mavri et al.
[65]. The method combines the Liouville�von Neumann equation for the
quantum subsystem, with the Hamilton equations for the classical one.
Numerical tests on the approach were done with nonreactive systems
such as the collision between a quantum harmonic oscillator and a classical
particle or a quantum harmonic oscillator embedded in a classical noble gas
bath [66,67].

In the DME method, the wave function of the proton is expanded in a
basis set,

 ¼
XN
i¼1

ci�i;

and then an N � N density matrix is defined as �ij ¼ cic�j . Note that this
matrix is not an average over an ensemble but an instantaneous property of
an individual quantum subsystem. The density matrix is propagated in time
according to

_� ¼ i

�h
½�;H�;

where

Hij ¼
D
�i

���Ĥeff

r

����jE:
The DME method was applied to calculate the rate of proton tunneling

in hydrogen malonate in aqueous solution. In a first work [66], the proton
wave function was expanded in a basis set consisting of two orthonorma-
lized Gaussian functions, one centered at the reactants well and the other at
the products well. In this representation, �11 indicates the population of the
reactants. Accordingly, the rate constant was obtained from the time depen-
dence of �11 evaluated with a coarse-grained timescale,

k ¼ hD�11i
Dt

;

where Dt is small in the timescale of the reaction but large in a molecular
time scale. Here the symbol < > denotes average over a canonical ensemble
of initial conditions, which were taken from MD simulations in which the
proton was located at the reactant well. It should be noted that, with this
procedure, the solvent is organized to stabilize the reactant state. Therefore,
configurations for which the energies of reactants and products are nearly
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the same, occur scarcely. Since these configurations are the most important
ones (the transfer is more likely in these cases), the sampling cannot be
appropriate unless long-enough MD simulations are performed. To analyze
the effect of the sampling on the results, a biased sampling was then
introduced in the DME procedure [65]. In this case, the initial configurations
were taken from a MD simulation in which the proton was fixed at the
middle point between the donor and the acceptor. Accordingly, the solvent
accommodates so as to stabilize the TS and the potential for the instanta-
neous proton transfer becomes (nearly) symmetric. By using these poten-
tials in the DME propagation, and analyzing the average population decay
of the reactants, a rate constant about 20 times larger than the previous one
was obtained. However this is not the final value of k(T), as it has to be
multiplied by a Boltzman factor that takes into account the energy required
to reorganize the solvent. When this factor is introduced, the values of the
rates determined with the two procedures were found to be approximately
the same.

In a latter study, a more flexible basis set consisting of five displaced
Gaussians was employed. This set is computationally convenient to evalu-
ate the integrals needed to propagate the DME equations of motion. How-
ever, it was not the basis set used to define the density matrix. Instead, �was
written in terms of the eigenfunctions of a reference Hamiltonian, Ĥ0, which
was defined as the one associated with the average proton potential. One
important difference between the two basis sets is that the eigenfunctions of
Ĥ0 are orthogonal, while the displaced Gaussians are not. Besides, the
eigenfunctions of Ĥ0 have a clearer physical meaning. The initial state of
the proton in all the propagations was taken as the ground state of Ĥ0. The
DME equations of motion were propagated using the orthogonal basis,
but calculating the required integrals with the nonorthogonal one. The
algorithm used to do this is described in detail in Ref. [17]. The rate constant
was calculated from the initial population increase of the products state,
giving a value of k(T) about 30 times larger than that obtained using only
two basis set functions. These results remark the importance of employing a
large-enough basis set to describe the state of the quantum system.

In amore recent article, Mavri et al. applied theWPP approach to calculate
the kinetic isotope effect in the proton transfer step that determines the rate of
the reaction catalyzed by soybean lipoxygenase-1 [68]. The WPP approach is
closely related to the DME method. The main difference between them is
that theWPP procedure uses a grid representation of the state of the proton,
which is initially considered to be a Gaussian wave packet located at the
reactant well, with a width given by the ground vibrational state. Good
agreement was found between the results obtained with the WPP method
and other more established approaches, such as the quantized classical path
(QCP) method of Olsson et al. [69]. Lately, the WPP approach was applied
to study the proton transfer step that determines the rate of oxidation of
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methylamine, catalyzed by enzyme methylamine dehydrogenase [70].
A rather good agreement was found between the calculated kinetic isotope
effect and the experimental value. Altogether, these results suggest that the
WPP is a valid alternative to analyze nuclear quantum effect in enzymes.

A different insight into the dynamics of the transfer can be obtained if
the state of the proton is expressed in terms of the eigenfunctions of the
adiabatic Hamiltonian. As explained in Section 2, two options are available
in this case. In the simplest one, the proton is assumed to remain in the
ground vibrational state during the whole process. This assumption is valid
when the energy gap between the ground and the first excited states is
larger than kBT, a feature that is characteristic of strong hydrogen bonds.
The second and more involved option requires the application of a surface-
hopping algorithm, in order to allow for nonadiabatic transitions.

The first mixed-Q/C computational simulations of realistic proton trans-
fer models, in the adiabatic regime, were presented by Borgis et al. [71,72]
and Ları́a et al. [73] in 1992. The model used by Borgis et al. consisted of a
collinear complex AHþ�A, with a fixed A�A distance, immersed in an
ensemble of 255 polar aprotic molecules. The coordinate that describes the
position of the proton along the donor�acceptor segment was treated by
quantum mechanics while the solvent and the other coordinates of the
complex were treated classically. Ları́a et al. [73] modeled a system com-
posed of a proton, two fixed ions of charge �e, and 342 molecules of a polar
aprotic solvent. The three Cartesian coordinates of the proton were treated
by quantum mechanics while the rest of the system was considered classi-
cally. In both cases, the bare proton potential (i.e., the potential for the
proton motion in the absence of the solvent) was designed to give a rela-
tively low barrier and an energy gap between the first two states higher than
kBT. In both cases, too, the solvent�solvent and solvent�solute interactions
were modeled by the sum of Lennard-Jones and Coulomb interactions.

A distinctive aspect of the model introduced by Borgis et al. is that the
charge distribution within the complex was dependent on the proton posi-
tion. Because of this feature, the change in the dipole moment D� associated
with the transfer could be made larger than the one corresponding to the
mere displacement of a single charge. Ab initio computations have demon-
strated that this effect, known as Zundel polarization [74], is indeed
observed in hydrogen-bonded complexes. In this way, models with
D�= 2.4, 5.2, and 7.0 D could be analyzed.

The two computations used the flux�flux correlation function formula
[75�77] to calculate the rate constant. This formulation requires the defini-
tion of an appropriate reaction coordinate. Ları́a et al. discussed the use of
the mean value of the proton position along the internuclear axis
�zP ¼ h jzPj i, as well as the difference of solvent electrical potential, DE,
between the two points located at the global minima of the total proton-ion
potential. They verified that the two magnitudes evolve in phase so that
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they should produce similar results. Nevertheless, they decided to employ
DE because it is an analytical function of the solvent coordinates and this
facilitates the application of the holonomic constraints needed to initiate the
trajectories at the transition state. Borgis et al., on the other hand, initiated
their trajectories at the reactant well. Therefore, they could use �zP as the
reaction coordinate. They also tested the use of a slightly different DE, which
was defined as the instantaneous energy splitting between the protonic
diabatic states associated with the product and reactant configurations.
Finally, they used an expression for the rate constant in terms of the expec-
tation value of the product population [78,79].

A rate constant could not be defined for the models of Borgis et al. with
D�= 2.4, and 5.2 D. In these cases, as the free energy barrier for the transfer
is small, the proton does not get trapped in either well for long enough.
Instead, it moves forward and backward and therefore k(T), as a function of
time, does not show the required plateau. However, for the model with
D�= 7.0D the rate constant could be calculated and the values obtained
with the three definitions of the reaction coordinate produced similar
results. Ları́a et al. were also able to evaluate k(T). In both cases the value
of k(T) determined with the flux�flux correlation function was compared
against the TST one, detecting important deviations in the TST results.
Moreover, by evaluating the transmission coefficients, the computations of
Ları́a et al. also highlighted the shortcomings of the two-level approxima-
tion, which is commonly used to discuss quantum dynamics in condensed
phases. In addition to these quantitative results, the two calculations pre-
sented a clear qualitative picture of the proton transfer in the adiabatic
regime, illustrating how the transference is driven by the fluctuations of
the environment. They also had the very important role of demonstrating
the feasibility of rate constants computations for proton transfer in con-
densed phases, using multidimensional realistic models.

More recently, Thompson used mixed-Q/C trajectories in the adiabatic
regime to reveal the mechanism for proton transfer in polar solvents con-
fined within nanocavities [80]. Although the models analyzed in this work
did not explicitly represent any particular experimental system, they pro-
vided important insights on the chemistry occurring in a diverse range of
nanoscale confining frameworks. Previously, Monte Carlo (MC) simulations
on the same models had determined that the reactants were preferentially
located near the walls of the cavity while the products were in the interior.
However, the MC simulations could not indicate if the movement from the
walls to the interior occurred before or after the solvent reorganization that
triggers the proton transfer. By analyzing mixed-Q/C trajectories in real
time Thompson noted that the dominant mechanism involved a solvent
reorganization followed by the diffusion of the nascent products into the
cavity interior. Nevertheless, the opposite sequence was also observed.
Moreover, the ratio between the two mechanisms was found to depend on
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the size of the cavity. Rate constants were evaluated from the average
population decay of the reactants, while the equilibrium constants and
free energy changes were computed from the values of the forward and
backward rates. All these values were found to depend on the size of the
cavity.

When the barrier for the transference is relatively large, the energy gap
between the two lowest states is small and quantum transitions between
them become feasible. Moreover, since the tunneling rate depends on this
energy difference, including at least the first two states is crucial to properly
account for tunneling. The application of the adiabatic approach in situa-
tions like these severely overestimates the rate constants. This is because any
fluctuation of the solvent that stabilizes the products state over the reactants
state induces an instantaneous transition. To address the study of systems
with these characteristics, Hammes�Schiffer and Tully adapted the surface-
hopping method known as molecular dynamics with electronic transitions
[13], in which the quantum degrees of freedom are electronic while the nuclei
move classically, so that it could be used to simulate the quantum nature of
the proton. The new approach was named as molecular dynamics with
quantum transitions (MDQT). In the application of MDQT to proton transfer
processes, the Born�Oppenheimer approximation is assumed to be valid for
the electrons, a few nuclear degrees of freedom are treated by Quantum
Mechanics and the rest of the system is modeled classically. The basic propa-
gation equations for MDQT have been presented and discussed in Section 2.

The first application of MDQT to proton transfer processes in condensed
phase [14] used a model previously developed by Azzouz and Borgis [81].
The model corresponds to an intramolecular reaction of the type AH�B!
A��HþB in liquid methyl chloride, whose parameters were set to represent
a typical OH�N asymmetrical hydrogen-bonded complex. The rates of
proton and deuterium transfer were calculated in the adiabatic and non-
adiabatic regimes. In order to do so, the system was considered to be a
reactant if the classical coordinates stabilize the reactants and the H atom is
in the ground state. Similarly, it was considered to be a product if the
classical coordinates stabilize the products and the H atom is in the ground
state. A reactive event was defined as one in which the system starts as a
reactant and ends as a product. In order to perform meaningful compar-
isons, adiabatic and nonadiabatic trajectories were initiated from the same
configurations. Finally, the rate constants were calculated by adding up the
number of reactive events and dividing this sum by the total time of the
trajectories. It was found that, in the adiabatic limit, the rate constants for H
and D were nearly the same, and that the inclusion of quantum transitions
decreased k(T) in both cases. However, the reduction was larger for D than
for H, giving a kinetic isotope effect of 3.85 in the nonadiabatic regime. This
is consistent with the fact that tunneling, which is taken into account by the
nonadiabatic simulations, is larger for H than for D.
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The necessity of using different timescales for the integration of the
quantum and classical equations of motion was also discussed, as well as
the possibility of doing this only in the region of strong nonadiabatic
coupling. Finally, the advantages of the MDQT methodology were high-
lighted. Among these we have: the possibility of analyzing the transfer by
doing full-MD simulations, the self-consistent treatment given to the quan-
tum and classical degrees of freedom and the absence of ad hoc tunneling
corrections. Probably more important is the fact that the method can be used
either in the adiabatic and nondiabatic limits, or in the intermediate regime,
with no previous assumptions about which of them should be applied. This
is very valuable in the study of proton transfer in solution and enzymes
because the barrier height depends on the donor�acceptor distance. There-
fore, the same system can be in any of either limit depending on the value of
this distance.

In a subsequent work, the effect of the excitation of the proton vibration
on the transfer probabilities was investigated [82]. Thus, the MDQT meth-
odology was applied to the same model system, but the trajectories were
initiated with the reactants at the first excited state. The mechanisms of
vibrational relaxation and assisted tunneling were discussed, establishing
that MDQT is a valuable method to analyze photoinduced and photoas-
sisted reactions. Finally, a more involved MDQT treatment, called 2D-
MDQT, was given to the same system by also treating quantum-mechani-
cally the donor�acceptor distance [83]. The results showed that the quantum
treatment of this vibration was not critical in this case, as the rate constants
obtained with 2D-MDQT were the same, within the statistical uncertainty,
as the ones calculated previously with 1D-MDQT. This behavior was
explained by comparing the characteristics of the 1D and 2D dynamics. It
was detected that the two approaches only presented differences outside the
strong coupling region, where the first excited state of the 2D-MDQT corre-
sponds to a donor�acceptor vibration, while it corresponds to a proton
vibration in 1D-MDQT. Accordingly, the energy splitting between the two
lowest vibrational states is smaller in 2D-MDQT. However, as the nonadia-
batic couplings are negligible in this region, the difference has no relevance.
On the other hand, in the strong coupling region, the first excited state
corresponds to a proton vibration in both calculations. Therefore, the energy
splitting and nonadiabatic couplings are similar and this leads to a similar
number of nonadiabatic transitions. Nevertheless, the fact that the quantum
treatment of the donor�acceptor vibration was found to be irrelevant in
this case does not preclude the possibility that it could be important for
other systems.

Subsequently, MDQT was used to analyze dynamical quantum effects in
liver alcohol dehydrogenase [84] and dihydrofolate reductase [85]. These
two enzymes catalyze reactions that involve a hydride transfer. In both
cases, too, the experimental evidence suggests that the transferences occur
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by tunneling. Rate constants were calculated as the product of a quantum
adiabatic TST constant and a transmission factor that was estimated using a
MDQT version of the reactive flux method [86]. In the study of liver alcohol
dehydrogenase, it was found that the recrossings did not affect significantly
the rate constant. However, they showed a high degree of correlation with
the donor�acceptor distance. As this distance decreases, the number of
recrossings grows and the transmission coefficient diminishes. However,
the activation free energy also decreases. Since this effect generally dom-
inates, the result is that the rate constant gets higher as the donor�acceptor
distance decreases. On the other hand, in the case of the dihydrofolate
reductase, the transmission coefficient showed considerable deviations
from unity indicating that dynamical effects are significant.

Multiple proton transfer reactions play a critical role in many important
biological processes like the double proton transfer that takes place in DNA
base pairs [87] and the ones that occur in enzymes such as serine proteases
[74], alcohol dehydrogenases [88], and carbonic anhydrases [89]. In order to
allow the study of this sort of processes, Hammes�Schiffer combined the
MDQT algorithm with a multiconfigurational self-consistent field evalua-
tion of the adiabatic states of the protons. The methodology received the
name of MC-MDQT [90]. In this approach, the quantum subsystem is
composed of several protons, and its adiabatic states are expanded as linear
combinations of single configuration wave functions. In turn, these func-
tions are obtained as the product of the one-particle adiabatic states for each
particle. Since the one-particle states and the multiconfigurational states are
dependent on each other, the equations must be solved iteratively until a
self-consistent result is obtained. For a detailed description of the MC-SCF
algorithm the reader is referred to Ref. [91]. The methodology was applied
to simulate multiple proton transfer reactions along water chains of three
and four molecules in an electric field [92]. Finally, the versatile MDQT
algorithm was extended to treat processes that involve transitions between
nuclear states and electronic states [93,94].

A decade ago, Kapral and Ciccotti derived the mixed-Q/C equations of
motion for a quantum subsystem composed of light particles, which evolves
coupled to a classical bath of heavy particles [95]. The derivation started
with a partial Wigner transformation of the Liouville equation over the bath
degrees of freedom, followed by an expansion in the small parameter
� ¼ ðm=MÞ1=2. By retaining only the linear terms, the mixed-Q/C Liouville
equation was obtained [96],
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Here ĤW ¼ ĤWðR; rÞ and �̂W ¼ �̂WðR; rÞ are the partial Wigner transforms of
the full Hamiltonian and the density matrix, respectively. This formalism
provided a framework to simulate nonadiabatic dynamics [97] and allowed
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the investigation of the statistical mechanics of mixed-quantum/classical
systems [98]. Besides, an expression for the rate constant, based on the
reactive flux formalism, was derived by invoking the linear response
approximation [99]. This development afforded algorithms which can be
used to calculate Q/C-rate constants in terms of an ensemble of surface-
hopping trajectories [100].

These algorithms were employed to calculate the rate constant for proton
transfer in a model system designed by Azzouz and Borgis [81]. The first
two adiabatic states of the proton were included in the propagation, because
the energy gap between the first and the second excited states was found to
be large. The reaction coordinate was defined as the energy difference DE,
already used in the adiabatic computations of Ları́a et al. In order to
calculate k(T), the time evolution of the product species operator,

N̂BðR;P; tÞ ¼ �ðDE#�DEðRÞÞ

was determined from its Q/C Liouville equation by simulating an ensemble
of surface-hopping trajectories. These trajectories differ in character from
those used in the standard surface-hopping methods (such as MDQT). In
this case, each single stochastic trajectory evolves by classical segments, in
which the potential is calculated as the mean of two adiabatic surfaces.
These segments are interspersed with quantum transitions that change
one of the quantum states of the pair and induce momentum changes in
the bath. If the two states of the pair are the same, the classical evolution
takes place on a single adiabatic surface. On the other hand, if the classical
evolution occurs on the mean surface between two states, a phase factor is
introduced to account for coherent coupling between the two surfaces.

It was found that the rate constant for proton transfer, calculated with the
mixed-Q/C Liouville equation, agreed rather well with the MDQT ones
reported byHammes�Schiffer and coworkers. The value of the kinetic isotope
effect (KIE) was also close to the MDQT one. It is interesting to note, however,
that many other approximate methods have been implemented on the model
of Azzouz and Borgis with disparate results. The rate constants obtained with
different methodologies vary by two orders of magnitude, while the KIE
ranges from 3.9 to 47. As discussed in Ref. [101], it is difficult to identify the
source of these discrepancies because the approaches applied have rather
disparate theoretical origins. Having these differences in mind, it is worth
noting that the results obtained with algorithms based on mixed-Q/C trajec-
tories agree with each other. Unfortunately, exact computations for this
model system have not been reported yet, so the accuracy of the individual
approaches cannot be evaluated.

Numerically exact results have been obtained for a model in which
the proton transfer is represented as a symmetric double-well coupled
to a bath of harmonic oscillators. This model has been extensively used
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to evaluate approximate methods intended to treat reactions in con-
densed phase. Among them, the MDQT approach was used to calculate
the transmission coefficients giving good agreement with the exact
results for high values of the friction parameter (but not for low values).
Wang et al. [39] also applied a mixed-Q/C approach to evaluate the
transmission coefficients, but they used a mean field approximation to
compute the flux�flux correlation function. It was found that, at 300K,
the Q/C-transmission coefficients differed from the exact ones by a
factor between 0.6 and 1.8 approximately. The comparison deteriorated
at lower temperatures.

At any rate, discrepancies between the results computed with different
approximate methods, or between approximate and numerically exact
results, clearly indicate that there is a great deal to be learned about the
simulation of proton/hydride transfer in condensed phase. Certainly, in this
regard, approaches based on mixed-Q/C trajectories, such as MDQT or the
mixed-Q/C Liouville methods, will pave the road to get the required
knowledge.

5. VIBRATIONAL ENERGY RELAXATION

The correct simulation of the vibrational energy relaxation of small solutes,
in van der Waals clusters and condensed phases, requires the consideration
of quantum effects such as the existence of discrete energy levels in the
solute, as well as their zero point energies [7,102�105]. These features
become especially important when the spacing between levels is signifi-
cantly larger than kBT. As with other cases already discussed in this chapter,
a full quantum description is usually prohibitive due to the large number of
particles involved. Fortunately, a particular characteristic of vibrational
energy relaxation processes is that the degrees of freedom that require a
quantum description are suitably localized on the solute molecule. There-
fore, the definition of the quantum and classical subsystem presents no
ambiguities and the use of Q/C trajectories turns out to be a highly intuitive
tool for their study. By simultaneously analyzing the quantum state of the
solute, and the trajectory of the solvent, a deep understanding on the
molecular mechanism of the relaxation can be obtained. In this way, for
example, solvent motions that couple to the quantum states of the solute can
be identified.

Both surface-hopping and mean field methods have been applied to the
study of vibrational relaxation and intramolecular vibrational-energy redis-
tribution in van der Waals clusters and condensed phases with dissimilar
results. In general, it has been found that the accuracy of the two approaches
strongly depends on the system being considered [2,106,107]. Therefore,
whenever possible, it is advisable to check both methods against accurate
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quantum results using simplified models that retain the basic characteristics
of the system of interest [108]. Comparisons against experiments are also
extremely valuable. In this regard, the contribution of recent developments
on ultrafast infrared and Raman spectroscopies must be remarked, as these
techniques have produced a large amount of experimental information on
the vibrational dynamics of solutes in clusters and condensed phases.

5.1. van der Waals clusters

The MDQT method was adapted to study vibrational energy relaxation
processes receiving the name of vibrational MDQT. In particular, the
method has been used to analyze vibrational predissociation, intramolecu-
lar vibrational energy redistribution, and fragmentation dynamics of van
der Waals clusters consisting of a dihalogen molecule and a varying number
of rare gas atoms [109–113]. Lifetimes and final state distributions, as well as
their dependence on the size of the cluster, were calculated and analyzed in
terms of kinetic schemes. The vibration of the diatomics was treated by
quantum mechanics, while a classical treatment was given to the other
variables. The quantum degree of freedom was represented in the diabatic
basis set corresponding to the isolated diatomic molecule. The functions of
this set describe the state of the molecule once all the rare gas atoms have
been ejected, a feature that is useful at the time of analyzing new kinetic
mechanisms for vibrational predissociation. Furthermore, the diabatic or
potential couplings decrease as the rare gas atoms sequentially leave the
cluster. This is not the case for the adiabatic or kinetic couplings which are
influenced by the velocities of the ejected atoms.

The success of the vibrational MDQT method applied to the predissocia-
tion of van der Waals clusters was remarkable, as it predicted final vibra-
tional state distributions in close agreement with the experimental results.
In particular, the highly specific and nonstatistical character of these dis-
tributions, as well as the strong contribution of dissociation channels that
involve large amounts of vibrational energy transfer, were accurately repro-
duced. The improvements achieved by giving a quantum treatment to the
vibrational motion of the dihalogen molecule are readily noted by analyzing
the results of intramolecular vibrational-energy redistribution and fragmen-
tation dynamics of I2(B,�= 21,22) � � � Nen clusters. For the smallest cluster,
I2 . . . Ne, the product state distribution shows a very strong propensity to
the ejection of the Ne atom accompanied by the loss of one quantum of the I2
vibration. For the following cluster in the series, I2 . . . Ne2, the transference
of two quanta would be enough to eject the two Ne atoms. However, it is
observed that the dissociation channel that corresponds to the loss of three
quanta accounts for more than 40% of the final state distribution. For higher
clusters, the channels in which the I2 loses more quanta than what would be
necessary become predominant [109,111]. It has been found that a classical
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treatment of the I2 vibration cannot account for these facts. On the contrary,
in classical simulations the Ne atoms are ejected by taking the minimum
fraction of the I2 vibrational quantum required to conserve the total energy
of the system. As a consequence, the main channel predicted by classical
trajectories corresponds to D� ¼ Ediss=�h!I2 in strong disagreement with the
experimental results.

Another example is given by the dissociation of the Br2(�)� � �Ne complex
[112]. In this case, vibrational MDQT results were compared against
accurate quantum calculations and experimental measurements. Very
good agreement was found for the decay lifetimes and for the final rovibra-
tional-state distributions. The only important differences occurred for
the D�=�2 channel of �= 27. In this case, a significant intramolecular
vibrational-energy redistribution takes place after the transfer of the first
quantum of Br2 vibration. In the quantum mechanical computations a
highly structured rotational distribution was observed. This was attributed
to interferences between the direct dissociation and the dissociation via a
long-lived state in the v-1 continuum. This structure was not observed in the
vibrational MDQT simulations since the rotation of the Br2 was treated
classically.

5.2. Condensed phase

The mean field method produces rather accurate results when applied to
nearly harmonic systems [107,114]. However, one of its limitations when
applied to the description of vibrational dynamics in condensed phases is
that it does not provide the correct equilibrium Boltzmann quantum state
populations [114–125]. In particular, in ergodic systems, the method over-
estimates the energy of the quantum subsystem [117,119,121]. Tully and
coworkers derived an analytical expression for the equilibrium mean
energy attained by a two-level quantum system connected to an infinite
number of classical particles, using both the mean field and the MDQT
methods [121]. Their analysis indicated that, when the energy gap between
vibrational states, DE, is larger than kBT, the mean field equilibrium quan-
tum populations deviate dramatically from the Boltzman distribution. This
failure was attributed to the partial neglect of correlation between the
classical and the quantum subsystems. Specifically, in the mean field
approach, the motion of the classical subsystem is not determined by the
full density matrix of the quantum subsystem but only by an expectation
value calculated from this matrix [i.e., the Hellman–Feynman forces of
Eq. (16)]. Therefore, the method is not suitable for systems with large
couplings and strong dependence of the classical forces on the quantum state.

In order to clarify the shortcomings of the mean field approach, when
applied to the simulation of vibrational energy transfer in liquids, Günter
Käb analyzed its performance under different initial conditions of the
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quantum subsystem, which were varied from coherent to delocalized wave-
packets [119]. The coherent states are well localized. Therefore, they are
classical-like quantum states that properly relax toward thermal equilibrium.
On the contrary, delocalized wavepackets, such as the eigenfunctions of the
harmonic oscillator, experience an unphysical heating. The author suggested
that further improvements in the method could be achieved by increasing the
correlation between the classical and the quantum parts.

The surface-hopping method addresses this problem by using state-spe-
cific forces on the classical degrees of freedom. Therefore, even though in
general the approach does not exactly reproduce the equilibrium Boltzman
distributions, the deviations observed are not large [126]. Actually, the
method gives the correct equilibrium Boltzman populations in the limit of
small adiabatic splitting and in the limit of large nonadiabatic couplings.
These conditions are fulfilled by electronically nonadiabatic processes,
which typically present a well-localized region of strong nonadiabatic cou-
pling. However, in the analysis of vibrational energy relaxation of small
molecules in condensed phase, the couplings are not localized in a small
region of the classical phase space and their strength oscillates in time
throughout the course of the simulation [124,127,128]. These conditions are
not the most convenient ones for the application of the MDQT approach
[5,107,114,129]. The accuracy of surface-hopping methods applied to pro-
blems involving long interaction times or with repeated entrances into the
interaction region was tested using a model consisting of harmonic oscillators
for both, the quantum and the classical subsystems, with a bilinear coupling
between them [107]. The results showed damped oscillations in the popula-
tions which were attributed to the independent trajectory approximation.
After a significant time, a loss of the correct phase coherence was observed.

At this point, it is interesting to analyze the way in which quantum
decoherence is treated by the different mixed-Q/C methods. The times for
quantum decoherence are in the order of a few femtoseconds for condensed
phase chemical systems, and they play a direct role in determining non-
adiabatic transition rates [130]. In the MDQT method [13,131], the phases of
the quantum coefficients are retained at all time steps, so that the dynamics
of the individual trajectories is completely coherent. Decoherence can be
taken into account by running a swarm of trajectories with the same initial
condition. These trajectories differ on the sequences of random number
used to decide transitions between the adiabatic states. Therefore, quantum
hops occur at different times and the trajectories differentiate from one
another. The interference between all of them, when summed up together,
provides the quantum decoherence for the mixed-Q/C trajectory associated
with the initial state considered. Finally, the results of different initial states
must be added in order to obtain the ensemble averages. Thus, the proce-
dure requires a double summation which produces an important increase in
the computational costs of the algorithm.
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The stationary phase surface-hopping (SPSH) method, originally pro-
posed by Webster et al. [132–135], represents an alternative to the calcula-
tion of the swarm of trajectories needed by the MDQT approach. The SPSH
method combines surface hoppings with the stationary phase semiclassical
force devised by Pechukas [136]. The classical dynamics is propagated
under the influence of a mixed-quantum state, avoiding the restriction of
MDQT that propagates it adiabatically. This represents a more accurate
choice in the regions of strong nonadiabatic couplings. Furthermore, com-
plete quantum coherence is provided by the selection of a single adiabatic
eigenstate at the end of each step. The SPSH transition probabilities com-
puted over a given time step are equivalent to those produced by the swarm
of trajectories with the MDQT approach. However, an iterative procedure is
required to calculate the nonlocal-in-time quantum forces. This can repre-
sent a too high computational cost and convergence problems may arise. If
nonadiabatic transitions are not highly localized, as in the case of vibrational
relaxation in condensed phase, SPSH becomes equivalent to MDQT [137].

A more drastic procedure consists of systematically removing the coher-
ence of the quantum amplitudes during the MDQT trajectories. This proce-
dure, which has been applied using different recipes [15,130,138],
contributes to eliminate the internal inconsistency between the quantum
and the classical populations observed in many systems [15,114]. Never-
theless, changing the decoherence time can lead to dramatic differences in
nonadiabatic rate constants and the overall population dynamics of the
system [130,139]. Therefore, extensions to MDQT that provide a smooth
decay of quantum coherence have been proposed [139]. Other methods,
like the “mean field molecular dynamics with surface hopping” [140] and
the “mean field approximation to the stochastic Schrödinger equation”
[137], were also developed to improve the treatment of decoherence in the
quantum subsystem.

Another promising tool in the treatment of decoherence is given by the
hybrid-Q/C propagation scheme based on Bohmian quantum trajectories
[141,142]. The method was successfully applied to the description of the
vibrational revivals of I2 in rare gas environments and its damping by
decoherence induced by atomic collisions. In this case, a grid representation
is used for the quantum degrees of freedom. In spite of this, the method
does not present problems derived from the delocalization produced by the
anharmonicities of the potential energy surface. Therefore, it can be applied
in studies of the coherence properties of the wave packets for long times.

The performance of MDQT to simulate the vibrational relaxation of an I2
molecule in xenon fluid was tested by comparisons against the conventional
perturbation theory approach and nonequilibrium classical MD [143]. Dif-
ferences in the relaxation time T1 and in the state-to-state vibrational-transi-
tion rate constants k0 1, calculated by the three methods, were between 10
and 50%. The relaxation times were found to be 10 times shorter than the
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experimental values. Later on, this discrepancy was solved by changing the
potential used in the classical simulations [144]. However, the validity of the
classical approach to describe the vibrational motion of the solute should be
questioned, since the molecule is allowed to transfer amounts of energy
which are smaller than its vibrational quantum. The solvent, whose transla-
tional frequencies are <120 cm–1, can accommodate these smaller amounts
of energy more easily than the �200 cm–1 associated with the I2 vibration.
Therefore, the relaxation becomes artificially more efficient.

A different algorithm for surface-hopping calculations, proposed by
Bastida et al. [145] was also used to analyze the vibrational relaxation of I2
in liquid Xenon [138]. These simulations showed a slower I2 vibrational
energy decay than the classical MD simulations, in agreement with experi-
mental measurements performed at different solvent densities and tempera-
tures. The algorithm, called the collective probabilities algorithm, assures
the identity between the quantum populations of the vibrational states and
the fraction of trajectories occupying those states (the so-called classical
populations).

The lack of coincidence between the classical and the quantum popula-
tions in the MDQT method has been recognized by different authors
[15,114,146–148]. Two features of the MDQT algorithm can explain these
differences. First, in order to conserve the energy, classically forbidden
transitions are not allowed. Modifications on the MDQT procedure have
been proposed in order to overcome this problem [15,16,147]. Nevertheless,
in the vibrational relaxation of I2 in liquid xenon, classically forbidden
transitions are expected to be infrequent because the energy transferred to
the solvent is quickly dissipated through atomic collisions in the solvent.
The second feature is the assumption that the quantum populations for
different trajectories are the same [13]. The collective probabilites algorithm
overcomes this problem by assuming the dependence of the transition
probabilities on the average populations corresponding to the whole set of
trajectories.

Beyond the quantitative differences, all the surface-hopping algorithms
agree in the qualitative description of the mechanism observed for the
vibrational relaxation of I2 in liquid xenon [138,143]. The collisions of the
I2 molecule with a single or two xenon atoms, mainly aligned with the I�I
bond, are responsible for the highest changes in the quantum populations.
According to this, Liu and Guo [149] proposed a more realistic Q/C model
that included the symmetric vibration of the two nearest rare gas atoms in
the quantum subsystem. The model was tested on the ultrafast photodisso-
ciation/recombination dynamics of I2(A) in rare gas matrices, a process that
involves two adiabatic electronic surfaces corresponding to the X and A
states of the I2 molecule. A coupled wave packet was propagated using a
2D spatial grid representation and the mean field approximation. It was
noted that the validity of the approach deteriorated with time. Therefore,
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the long-time dynamics required for the study of vibrational relaxation
was unreliable. In spite of this limitation, the comparison with the model
that only considers the I�I distance as the quantum coordinate revealed
a feature that should be taken into account in future implementations of Q/
C-trajectories. While both models showed coherent wave packet motion
after the energy transfer, the model with a 2D quantum subsystem showed
a much faster dephasing. Accordingly, the study suggested that the mean
field treatment of the quantum coherence could be systematically improved
by including in the quantum subsystem bath modes that are strongly
coupled to the solute vibrational motion. In this regard, we note that a
model with a classical bath coupled to a multidimensional quantum sub-
system, has been proposed to simulate photodynamical process of triatomic
molecules in condensed phase [150]

The quantum treatment of the solvent vibrational modes was introduced
in the simulation of the relaxation of the cyanide ion in water [151]. The
propagation was performed using the “mean-field method with quantum
transitions.” The state of the quantum subsystem was expanded in a diabatic
basis set, whose terms were products of a vibrational wave function for
the isolated CN– molecule and harmonic wave functions for the normal
modes of the water molecules. The frequency of the bending mode of
the water molecule (!b= 1643 cm–1) is lower than the CN� vibrational fre-
quency (!CN–= 2080 cm–1), but significantly higher than the thermal energy
(kbT� 210 cm–1 at room temperature). Accordingly, the bending of water can
be excited by energy transfer from the cyanide ion and the quantum treatment
of this mode can lead to different relaxation pathways than those observed
with a classical treatment. In fact, it was found that the pathway that involved
the participation of the bending mode of water molecules was the fastest and
most important one, accounting for more than 80% of the relaxation process.

In another study of the vibrational relaxation of the cyanide ion in liquid
water [152], deviations of the mean field method from the Boltzman quan-
tum distributions were observed. This was attributed to the time evolution
of the nonadiabatic couplings which causes strong oscillations on the popu-
lations for each trajectory. These shortcomings can be partially solved by
considering a unique quantum subsystem interacting with a bundle of
trajectories at the same time. In the mixed-Q/C algorithms discussed so
far, the state of the quantum subsystem is propagated along with a single
trajectory for the classical system [125]. An alternative procedure consists on
propagating the state of the quantum subsystem interacting with an ensem-
ble of classical trajectories. When using this alternative, the effective Hamil-
tonian for the quantum part becomes [9,153]:

Ĥ
eff

r ¼ �
�h2

2m

@2

@r2
þ VrðrÞ þ Vint

�
r; fRðiÞgNi¼1

�
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Vint

�
r;
�
RðiÞ


N

i¼1
�
¼ 1

N

XN
i¼1

V
�
r;RðiÞðtÞ

�
:

Simulations of CN– in liquid water [152] proved that this procedure greatly
decreases the magnitude of the oscillations of the nonadiabatic couplings.
Consequently, an improvement is observed in the equilibrium quantum
populations. Nevertheless, at high temperatures, the “bundle of trajectories”
approach does not strictly reproduce the Boltzman distribution.

A modification of the mean field method that definitely guarantees the
achievement of the Boltzmann quantum state population was proposed by
Bastida et al. [115]. Based on strategies previously developed in the pertur-
bative hybrid-Q/C method, quantum corrections were introduced into the
matrix elements that couple the quantum states of the solute. The final
quantum corrected nonadiabatic coupling matrix elements, dqcjk , are calcu-
lated as

dqcjk ¼
2

1þ e� �h!jk=kBT


 �1=2

djk:

This approach, named “Ehrenfest method with quantum corrections”,
not only allows the achievement of the equilibrium Boltzmann quantum
state populations in the long time limit, but also makes the magnitudes of

the dqcjk couplings to decrease in time, particularly when it is used in combi-

nation with the “bundle of trajectories” approach.
A final aspect to discuss about the implementation of Q/C trajectories to

deal with vibrational relaxation processes in condensed phase is the choice
of the quantum representation. Typically, the differences between the dia-
batic and the adiabatic vibrational states of a molecule in solution are small.
Therefore, the two representations usually lead to very similar equilibrium
populations at room temperatures. These similarities have been observed in
systems as different as I2 in liquid xenon and CN– in water [115,124,152].
Moreover, in the latter case, it was found that the potential energy that
governs the movement of the solvent had little dependence on the vibra-
tional quantum state of the solute [124]. Thus, the difference,

jh 1jVintj 1i� h 0jVintj 0ij
is more than one order of magnitude smaller than the thermal energy.
Furthermore, the classical degrees of freedom lose their structural
memory before the changes on the quantum state of the solute can
significantly affect their trajectories. Therefore, the choice of the diabatic
or the adiabatic representations does not significantly alter the timescale
of the relaxation.
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Summarizing, a significant experience has been gained during the last
years on the application of mixed-Q/C trajectories to the analysis of vibra-
tional relaxation processes. The vibrational MDQT method, in which the
quantum degrees of freedom are represented in the diabatic spectral basis
set, has shown to be very convenient and accurate in studies of vibrational
predissociation processes in van der Waals clusters. On the other hand,
some shortcomings were detected in the application of both mean field
and MDQT methods to the study of vibrational relaxation in condensed
phase. A variety of modifications on the two techniques are now available to
overcome these shortcomings.

6. CONCLUDING REMARKS

During the last two decades enormous progresses have been made in the
implementation of techniques based on mixed-Q/C trajectories. Studies
with small or relatively simple models were used to evaluate the accuracy
of the approach, establishing the conditions in which mixed-Q/C trajec-
tories produce reliable results. Also, these evaluations served to stimulate
new developments aimed to overcome the drawbacks detected in the early
applications. Now, a variety of techniques are available. They have already
proven to be useful to include nuclear quantum effects in simulations of
chemical reactions and energy relaxation processes occurring in large
systems.

Mixed-Q/C trajectories provide a detailed description of processes at a
molecular level. Besides, the computational cost of the approach is usually
not an impediment to its implementation. Therefore, it is to be expected that
mixed-Q/C trajectories will be increasingly used to analyze processes rele-
vant in Chemistry and Biology, which take place within large and complex
molecular environments.
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Phys. 111 (1999) 239.
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[145] A. Bastida, C. Cruz, J. Zúñiga, A. Requena, J. Chem. Phys. 119 (2003) 6489.
[146] M.D. Hack, D.G. Truhlar, J. Chem. Phys. 114 (2001) 9305.
[147] A.W. Jasper, S.N. Stechmann, D.G. Truhlar, J. Chem. Phys. 116 (2002) 5424.
[148] M. Thachuk, M.Y. Ivanov, D.M. Wardlaw, J. Chem. Phys. 109 (1998) 5747.
[149] L. Liu, H. Guo, J. Chem. Phys. 104 (1996) 528.
[150] S.F. Alberti, J. Echave, V. Engel, N. Halberstadt, J.A. Beswick, J. Chem. Phys. 113 (2000)

1027.
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[152] A. Bastida, C. Cruz, J. Zúñiga, A. Requena, B. Miguel, J. Chem. Phys. 126 (2007) 014503.
[153] R.B. Gerber, M.A. Ratner, in: I. Prigogine, S.A. Rice (Eds.), Advances in Chemical Physics,

Vol. 70, John Wiley & sons inc, New York, 1998, p. 97.

282 G. Pierdominici-Sottile et al.



CHAPTER 9
Development of a Quantum
Chemical Method Combined with
a Theory of Solutions—Free-
Energy Calculation for Chemical
Reactions by Condensed Phase
Simulations

Hideaki Takahashia, Nobuyuki Matubayasib and Masayoshi
Nakanoc

Contents 1. Introduction 284

2. Quantum Chemical Approach 289

2.1. Kohn�Sham density functional theory 289

2.2. Real-space grids approach 291

2.3. Hybrid quantum mechanical/molecular mechanical method 299

3. Theory of Solutions 301

3.1. Free-energy perturbation and thermodynamic integration
methods 302

3.2. Distribution function theory 305

3.3. Kirkwood charging formula and density functional theory 308

3.4. Site�site radial distribution function and reference
interaction site model 311

3.5. Method of energy representation 315

3.6. Application to molecular binding into micelle and
lipid-membrane systems 322

a Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of
Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

b Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
cDepartment of Materials Engineering Science, Graduate School of Engineering Science, Osaka University,
Toyonaka, Osaka 560-8531, Japan

E-mail addresses: takahasi@cheng.es.osaka-u.ac.jp (H. Takahashi), nobuyuki@scl.kyoto-u.ac.jp (N. Matubayasi)

Advances in Quantum Chemistry, Vol. 59 � 2010 Elsevier Inc.
ISSN: 0065-3276, DOI: 10.1016/S0065-3276(10)59009-9 All rights reserved

283



4. Combination of Quantum Chemical Method with Theory of
Solutions 326

4.1. Polarizable continuum model method 326

4.2. Reference interaction site model combined with the
self-consistent field calculation 329

4.3. Quantum mechanical/molecular mechanical method
combined with the theory of energy representation 332

4.4. Calculation of solvation free energy by QM/MM-ER approach 337

4.5. Calculation of reduction free energy by QM/MM-ER
approach 340

5. Conclusions and Perspectives 347

References 349

1. INTRODUCTION

It is one of the major subjects in theoretical and computational chemistry to
predict the dominant reaction path for reactants under a given thermody-
namic condition. In 1935 by Evans and Polanyi [1] and by Eyring [2], great
strides were made for such a problem by formulating the absolute reaction
rate for small molecules with the assumption that the activated complex is
being in equilibrium with the reactant. The theory, termed as the transition-
state theory (TST), is described in terms of the molecular partition functions
as well as the energy difference between the transition state and the reac-
tant. The efficiency and the robustness of the theory have, so far, been well
established by a number of successful applications. However, it should be
reminded that it is only several decades ago that the TST became a practical
tool to predict the reaction rate. The book of Fueno [3] states in its Opening
Remarks that the researchers in 1960s were still less optimistic about the
accurate prediction of the rates even of the simplest reactions besides the
usefulness of the concept of the transition state in understanding complex
reactions. Such a situation was, of course, due to the lack of capability at that
time to locate the TS geometries. Indeed, it is also noted in the above book
[3] that one cannot find even single example of explicit geometry of TS in the
volume of proceedings entitled “The Transition State” published for a
symposium held in 1962 [4].

In the field of quantum chemistry [5], substantial efforts have been
devoted to the development of efficient methodologies to construct the
electronic structures of molecules in terms of the molecular orbitals (MO).
The concept of MO provides us with a useful picture for understanding the
complicated many-electron systems on the basis of the approximation that
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constituent electrons are independent. In the Hartree�Fock (HF) method in
the MO theory, the wave function is constructed on the basis of the mean-
field approximation and the electron correlations because of the repulsive
Coulomb interactions are completely neglected. With more sophisticated
approaches such as configuration interaction (CI), it is possible to take into
account the electron correlation by involving the electronically excited
configurations generated from the HF reference state. Such a procedure
allows systematic improvements on the wave functions, however, the com-
putational cost increases drastically as the number of electrons being corre-
lated increases. Hence, the application of the MO theories has been limited
to relatively small-sized systems. During the past several decades,
a breakthrough was made in the methods of constructing electronic
ground states. The density functional theory (DFT) [6], more specifically
the Kohn�Sham (KS)-DFT [7,8], enables one to perform accurate calculations
with much less computational costs as compared with the MO approaches.
It achieved a great success in describing the total energy as well as the
electron density of the electronic ground state by projecting the nonlocal
exchange and correlation potential onto a local potential as a functional of
the electron density. There have been a lot of theoretical developments to
refine the exchange-correlation functionals that dominate the quality of the
DFT calculations. Mainly because of the success in the MO and DFT
approaches, supported by the rapid growth in the computer technologies,
the TST is now a powerful tool to predict the absolute reaction rates, which
deserve for the direct comparisons with experimental data. Nowadays even
experimental chemists find almost no difficulties in determining the TS
geometries in the gas phase and their statistical mechanical properties by
utilizing (non) commercial program packages equipped with sophisticated
algorithms to search TSs.

It is a matter of course that general interests of theoretical chemists move
from the gas-phase reactions to the studies of the chemical events occurring
in more realistic systems such as solutions or biological molecules. There
are, however, two major difficulties in determining the reaction pathway
in many-particle systems. The theoretical investigation of the chemical
reaction essentially necessitates the use of the quantum chemical approach
and it gives rise to a serious problem because of the computational cost,
which scales N3�N4 with respect to the number N of electrons involved in
the system even when we rely on the lowest levels of theories [5]. Another
obstacle is related to the computation of a statistical mechanical property.
For a system of which structure undergoes serious fluctuation under a given
temperature, it is essential to consider the free-energy change associated
with the chemical event of interest for the discussions on the quantitative
basis. Unfortunately, the free-energy calculation with the method of mole-
cular simulation is also known as a heavy task [9,10]. The difficulty arises
mainly from the fact that a huge number of configuration samplings are
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needed for many intermediate points along an arbitrary path connecting the
reactant and the product. In the following, we make a review for the
methodologies relevant to these problems for the purpose to clarify the
position in this field of our work introduced later.

The ab initio molecular dynamics simulation developed by Car and
Parrinello (CP) [11] opened a way to the study of chemical reactions
involving many atoms or molecules. In the CP approach, it circumvents
the explicit diagonalization of the electronic Hamiltonian, which is the most
time-consuming part at each time step of molecular dynamics, by propagat-
ing the KS wave functions in the same time step with the nuclear motion,
for which a fictitious mass is introduced for electrons. Then, the electronic
wave function is being loosely bound to the solution given by the
Born�Oppenheimer approximation during the CP molecular dynamics.
Although the CP method is a robust technique, it necessitates rather small
time step in the numerical propagation as compared with the classical
molecular dynamics simulation. Hence, its execution for a practical applica-
tion is still rather difficult at least under ordinary computational environ-
ments. The order-N approach [12] provides an effective framework for
computing electronic states of which computational costs scale linearly
with respect to the size of the system. The underlying concept for such a
method is the “near-sightedness principle” postulated by Prodan and Kohn
[13] and it seems to constitute the common basis of the order-N approaches.
The principle states that the element in the density matrix in real space
decays rapidly as the distance of the two sites increases, which practically
ensures the order-N scaling in the electronic structure calculations with DFT
or tight-binding Hamiltonians. Directly along this line, Yang proposed a
method referred to as “divide and conquer” [14], where the whole system is
divided into overlapping regions and the norm conservation for the total
electron density is imposed by introducing a common chemical potential for
the domains. Then, the total energy is obtained as the sum of the eigenva-
lues of the Hamiltonians of the constituent domains. Substantial efforts have
been made to develop efficient and rigorous algorithms of the order-N
scaling. However, it seems there is no outstanding method that can be
generally used in practical applications with satisfying reliability.

An alternative route to reduce the computational cost is to take a hybrid
approach. It is often the case that only the small part of the whole system
participates in the chemical event and the rest of the system serves as a static
environment. The quantum mechanical/molecular mechanical (QM/MM)
approach provides us with a promising framework to handle such a system
by dividing the whole system into two subsystems [15,16]. The chemically
active site is described by the method of quantum chemistry, while the
electronically static region is represented by a classical force field. The
notable advantage of the method is that the effect of the electrostatic field
constructed by the fractional charges in the MM subsystem on the reaction is
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efficiently taken into consideration by putting the electrostatic field in the
Hamiltonian of the QM subsystem. So far the QM/MM method has been
widely applied to various systems and its efficiency has been well estab-
lished. Recently, we originally developed a QM/MM code [17�23] that
utilizes the real-space grids to represent the one-electron wave functions
in the QM region described by the KS-DFT. The advantage of the use of
the real-space grids approach resides in its efficiency in the parallel
computation due to the fact that the Hamiltonian matrix in the real-space
representation is almost diagonal within the framework of the KS-DFT.

The quantity that plays an essential role in determining the reaction path
in a condensed system is the free-energy change associated with the path.
Hence, the free-energy calculation is an issue of crucial importance for the
study of the chemical reactions in many-particle system. However, the
evaluation of the free energy on the basis of the molecular theory is compu-
tationally very demanding [9,10]. The free-energy perturbation (FEP) or
thermodynamic integration (TI) method is based on the Kirkwood’s char-
ging formula and it introduces a set of intermediate points on an arbitrary
path that connects the initial and final states of the chemical reaction of
interest. Then, the free-energy changes between the adjacent points are
accumulated along the path to compute total free-energy change. The FEP
or TI is numerically rigorous, however, it should be noted that a sufficient
number of intermediate points, which are physically of no importance, must
be prepared to avoid being ill-sampled for the molecular configurations. It is
also required for the convergence in the free energy to sample a large
number of molecular configurations at each intermediate point. Therefore,
the free-energy calculation by the FEP or TI approach along with the
quantum chemical calculation becomes almost intractable since the number
of the intermediate states typically amounts to several tens. The quest is,
thus, required for the development of an efficient methodology to compute
free energy in combination with the quantum chemical calculations.

Based on above discussions, we focus our interest in this chapter on the
combination of the method of quantum chemistry and the theory of
solutions majorly described in terms of the statistical mechanics. First, we
present an overview of prevailing approaches. The polarizable continuum
model (PCM) [24,25] approximates the solvent, an aggregate consisting of
molecules, by a continuum with a uniform dielectric constant. Due mainly
to the numerical convenience the PCM approach has, so far, been exten-
sively utilized in the field of quantum chemistry by combining it with the
self-consistent field (SCF) calculation. The deficiency of the approach is that
it completely neglects the explicit structure of the constituent molecules of
the solvent, and hence, it cannot realize the short-range interactions such as
hydrogen bonds. It is, then, desirable to incorporate the solvation structure
on the molecular level through a quantum�classical-coupled calculation.
Within the framework of the DFT of solutions, the solvation free energy
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can be described in terms of the spatial distribution function of the solvent
molecules around the solute. In general, the configuration of a solvent
molecule with respect to the solute is specified by the multidimensional
coordinate. In practice, the reference interaction site model (RISM) [26,27] is
often used, where the distribution function is reduced to a set of site�site
radial distribution functions (RDFs). Then, an approximate set of integral
equations are introduced to solve the site�site RDFs by adopting the closure
relations such as Percus�Yevick (PY) or hypernetted-chain (HNC) approx-
imation [28]. A remarkable advance, referred to as RISM-SCF method [29],
was made by combining the SCF procedure in quantum chemical calcula-
tion with the RISM equations. An important aspect of the RISM-SCF is that
it soundly incorporates the effect of the solvent as a structured environment
into the quantum chemical calculation. This is definitely more advantageous
than the PCM approach. On the other hand, the RISM-SCF has a drawback
that the electron density of the solute molecule is reduced to a set of point
charges placed on the nuclei in the procedure to construct the RDFs. This
indicates that the spatial diffuseness of the electron density, inherent nature
of the QM object, is spoiled in the evaluation of the free energy.

In this literature, we review our recent approach to compute efficiently
the free-energy change [30]. Our strategy to overcome the difficulties is to
employ the hybrid quantum mechanical/molecular mechanical (QM/MM)
approach in combination with a novel theory of solutions [31�33], termed as
the theory of energy representation (QM/MM-ER) [30]. Within the frame-
work of the ER, the solvent distribution function is constructed with respect
to the solute�solvent interaction potential instead of the spatial distribution
and it serves as a fundamental variable to describe the free energy. We
emphasize that the concept of the interaction site is no longer needed in the
construction of the distribution functions, and therefore, diffuseness of the
electron density as well as its fluctuation can be straightforwardly taken into
consideration without introducing special devices for it. In the previous
works [34�41], we applied the method to various chemical events in aqu-
eous solutions to examine the efficiency and reliability of the method and
found that it reproduces the free-energy changes in excellent agreement
with experimental results. The extension of the method is now in progress
to construct an integrated methodology to compute free energies for various
sorts of chemical reactions in biological systems, such as ligand bindings,
redox reactions in cofactor, proton affinities of the amino acid residues, and
chemical bond rearrangements.

The organization of this chapter is as follows. In Sections 2 and 3, we will
make reviews, respectively, for the QM/MM approach and the theory of ER
along with their related issues. Section 4 will be devoted to describe several
methodologies that combine the quantum chemical approach with some
solution theories, where an emphasis will be placed on the development of
QM/MM-ER. Sections 3 and 4 will include the descriptions for applications
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utilizing the theory of ER as well as QM/MM-ER. In Section 4, we also
describe a novel implementation of QM/MM-ER to compute reduction
free energy of a cofactor immersed in water, where the excess charge to be
attached on the cofactor is regarded as a single solute [40,41]. We give
conclusions and perspectives in Section 5.

2. QUANTUM CHEMICAL APPROACH

As described in Introduction, DFT played a crucial role in the recent
advances in quantum chemistry especially for the electronic structure
calculations for large systems. In Subsection 2.1, we shall survey the frame-
work of the KS-DFT, the workhorse in the methods categorized as DFT. We
introduce, in Subsection 2.2, the real-space grids used as a basis to express
the one-electron wave functions in the KS-DFT for the purpose to achieve
high efficiencies in parallel computations. Methodological details will be
presented with a particular emphasis on the parallel implementations. Sub-
section 2.3 will be devoted to describe the hybrid QM/MM approach, a
simple and efficient quantum chemical approach to handle the reaction in
the presence of environment.

2.1. Kohn–Sham density functional theory

In this section we present a concise review for the KS-DFT [6–8], which have
made a large contribution to the today’s great success in the theoretical and
computational molecular science. The start was given by the Hohenberg–
Kohn (HK) [7] theorem which proved that there exists one-to-one corre-
spondence between the set of external potentials and that of the electron
densities of the nondegenerate ground states. The HK theorem ensures that
all physical properties of the system can be described in terms of the
electron density instead of the wave function. In the framework of HK,
however, we have to remind that the variational search of the electron
density is constrained within the set of the v-representable electron densities
by its construction. This is obviously an unpleasant situation since we
cannot specify the explicit boundary of the set of v-representable densities.
The Levy’s constraint search [6,42,43] successfully circumvents this short-
coming inherent in the HK theorem. In the Levy’s approach, the universal
functional is introduced for an N-representable electron density, which is
defined as

F½nN� ¼ min
C!nN

hCjT þ VeejCi: ð1Þ

The functional F is universal in the sense that it is independent of the
external potential v in the system of interest. The superscript N in Eq. (1)
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is to place an emphasis that only N-representability is required for the
density as an argument of the functional. In Eq. (1) T and Vee express,
respectively, the electron kinetic energy operator and sum of the repulsive
potentials between electrons. And C is the antisymmetric total wave func-
tion for N electrons of which density becomes nN. By using this functional,
we can formulate the DFT for the ground-state energy Eg as the variational
search within the set of the N-representable densities, thus,

Eg ¼ min
C

hCjHjCi;
¼ min

nN

�
min
C!nN

hCjTþ VeejCi þ
Z
drvðrÞnNðrÞ

�
;

¼ min
nN

½F½nN� þ
Z
drvðrÞnNðrÞ�:

ð2Þ

v stands for the external potential and its expectation value is dependent
only on the electron density. Importantly, the explicit criterion is available to
distinguish the N-representable density. Hence, Eq. (2) makes sense as a
formulation for the density functional. Here, we note that the variational
search in the method proposed by Kohn and Sham is also outlined by Eq.
(2). The KS-DFT is based on the fundamental assumption that the ground-
state electron density of a system can be constructed by that of a noninter-
acting reference system, and then the search of the electron density is
carried out by the variation of the Slater determinant of one electron wave
functions. It should be kept in mind, however, that in some cases the
electron densities corresponding to the ground states of the noninteracting
systems constitute merely a subset of the v-representable densities [6]. In
such a case, the KS procedure possibly cannot achieve the ground state
energy or density even if the explicit form of the universal functional F[n] is
known. In the following, we take a closer look for the KS-DFT.

The notable feature of the KS approach is that most of the electronic
kinetic energy T[n] in the functional F[n] is to be explicitly evaluated by sum
of the one-electron kinetic energies Ts[n] of the non-interacting system. Ts[n]
is simply given as

Ts½n� ¼ min
f’ig!n

XN
i

�
’i

����� 1

2
H2

����’i

�
; ð3Þ

where {’i} is a set of one-electron wave functions giving the density n and it
minimizes the value of Ts. By subtracting Ts[n] as well as the classical
electron repulsion energy J[n] from F[n] of Eq. (1), we define the
exchange-correlation energy functional Exc[n] as follows,

Exc½n� ¼ F½n� �Ts½n� � J½n�
¼ ðT½n� �Ts½n�Þ þ ðVee½n� � J½n�).

ð4Þ
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Here we note that the kinetic correlation energy T[n]–Ts[n] can be naturally
incorporated into the functional by the adiabatic connection method [6]. It
is, then, possible to derive the variational equation by supposing the varia-
tion of the total energy with respect to the density is equal to 0 at the
stationary point, thus,

� Ts½n� þ
Z

drdr0
nðrÞnðr0Þ
jr� r0j þ Exc½n� þ

Z
dr�ðrÞnðrÞ��

�Z
drnðrÞ�N

�� �
¼ 0;

ð5Þ
where � is the Lagrange’s multiplier introduced to impose the norm con-
servation for electron density. It is easy to see that Eq. (5) leads to an Euler
equation,

�Ts½n�
�nðrÞ þ veffðrÞ ¼ �; ð6Þ

with the definition of

veffðrÞ ¼
Z

dr0
nðr0Þ
jr� r0j þ

�Exc½n�
�n

þ Vðr ). ð7Þ

Furthermore, the functional derivative of Ts[n] in Eq. (6) can be reformu-
lated in terms of one-electron orbitals {’i} by virtue of Eq. (3), thus,

� 1

2
H2 þ veffðrÞ

	 

’iðrÞ ¼ "i’iðrÞ ði¼1; . . . ;N ). ð8Þ

Equation (8) is called the KS equation and it plays a central role in the
KS-DFT.

2.2. Real-space grids approach

In the field of quantum chemistry, of which major targets are atoms or
molecules, the linear combination of atomic orbitals (LCAO) method [5]
has been extensively utilized to expand the one-electron wave function in
the numerical implementation of the MO and the DFT. It is known that the
Slater-type orbital is more appropriate than the Gaussian orbital as a com-
ponent atomic orbital to reproduce the realistic behaviors of MO near the
atomic core regions and in the outer regions of molecules. However, the
Gaussian-type orbitals are commonly used instead of Slater-type ones
because of the numerical convenience. In practice, a basis function used in
the LCAO approach is constructed from a linear combination of primitive
Gaussians with fixed contraction coefficients so that it mimics the whole
behavior of a Slater-type orbital. As a result, a huge number of two-electron
integrals with respect to primitive basis functions are to be computed and
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stored in preparation for the SCF calculations. The adequacy of the LCAO
approach is well established by a number of numerical applications. A
critical drawback in the LCAO approach is that the effective Hamiltonian
represented by atomic orbitals has nonzero elements in its off-diagonal part,
which gives rise to a large amount of data communications among the
processors in the parallel computations. In the study for the electronic
structures of infinite systems such as crystals, on the other hand, plane
wave basis set is often employed to make use of its periodicity. The matrix
for the kinetic energy operator in the effective Hamiltonian is completely
diagonal in the plane wave representation, which is obviously advanta-
geous for the parallel computation. However, other operators in the Hamil-
tonian are not diagonal in the momentum space. Moreover, the approximate
exchange-correlation potential which appears in the KS equation can be
evaluated only after the total electron density is obtained in the real space.
It means that the transformations are necessitated for one-electron wave
functions from the momentum space to the real space and vice versa, where
the fast Fourier transformation (FFT) algorithm is often utilized to expedite
the transformations. The computational cost of FFT for each orbital scale as
N log2N where N is the number of discrete points taken in the momentum
(real) space and FFT is the most time-consuming part in the method of the
plane wave basis. It should also be noted that FFT is never suitable for the
parallel computing especially at least when one uses a parallel computer
with a distributed memory architecture.

In a recent development, Chelikowsky et al. proposed to express a one-
electron wave function by means of the real-space grids [44–46]. Since
most of the operators in the KS equation are local in the real-space repre-
sentation, it is quite natural to express the one-electron orbitals by a set of
probability amplitudes defined on the discrete grid points that are
uniformly distributed over a real-space cell. In the parallel implementa-
tion, we divide the real-space cell into subdomains and allocate each
subdomain to a processor, for which we give an illustration in Figure 9.1.
Then, the values of the wave functions on the subdomain are distributed to
the processor. The Hamiltonian matrix has nonzero elements only in the
vicinity of diagonal part, and hence, the data communication among the
processors can be suppressed minimally, which benefits the high perfor-
mance in the parallel computation. Moreover, the real-space grids
approach has several advantages as follows [47,48]. At first the local
augmentation of the basis can be done straightforwardly by introducing
dense grids around atomic cores for instance. Second, the periodic and the
nonperiodic boundary conditions are available without serious modifica-
tions of the code. Third, the overlap matrix of the real-space grids basis
becomes an identity matrix and no additional procedure is needed for
orthogonalization of the basis set. It should be noted, however, that the
drawbacks also exist in the real-space approach. It is well recognized that

292 H. Takahashi et al.



the electronic energy of an atom varies seriously for the shift of the relative
position of the atom with respect to the grid points. Such an erroneous
situation can be substantially alleviated by the use of the dense grids near
the atomic core regions. Furthermore, the numerical integration in the real-
space approach is less accurate as compared to the atomic orbital basis.
The major difficulty in the real-space approach arises from the evaluation
of the nonlocal operator such as HF exchange operator. Actually, one may
find a difficulty in computing integrals associated with a nonlocal operator
when its nonlocality is serious in the real space. Fortunately, most of the
operators in KS-DFT are local or semilocal except for the hybrid-type
functional that includes the HF exchange. In the following paragraphs,
we describe the real-space approach for the implementation of the KS-
DFT. An emphasis will be placed on the efficiency in the parallel
computations.

A notable feature of the real-space grids approach is that the kinetic
energy operator in Eq. (8) is expressed by the finite-difference method. Here,
we formulate the matrix elements for the wave function on a one-

A subdomain in
the real-space cell

rank i – 1
rank i

Figure 9.1 Illustration of the division of the real-space cell in the parallel implementation.

Each core processor (rank) is charged with the computation for a subdomain. The area of

which data must be communicated is colored in the figure. The line with arrows at both

ends represents the data exchange between neighboring cores [rank i and rank (i – 1)].
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dimensional coordinate x for the sake of simplicity. The Taylor series expan-
sions of the wave function ’ at a grid point i lead to

’ðiþ 1Þ ¼ ’ðiÞ þ 1

1!
’0ðiÞ � Dxþ 1

2!
’0ðiÞ � Dx2 þ 1

3!
’0ðiÞ � Dx3þOðDx4Þ;

’ði� 1Þ ¼ ’ðiÞ� 1

1!
’0ðiÞ � Dxþ 1

2!
’0ðiÞ � Dx2 � 1

3!
’0ðiÞ � Dx3þOðDx4Þ;

ð9Þ

where Dx is the width of the grid. We obtain the first-order finite-difference
expression for the second derivative ’0(i) by the sum of above two
equations as

’0ðiÞ ¼ 1

Dx2
f’ðiþ 1Þ� 2’ðiÞ þ ’ði� 1Þg þOðDx4Þ: ð10Þ

It is worth noting that the numerical error can be suppressed to fourth
power of the grid spacing even for the first-order finite-difference. The
higher order expression can also be formulated by considering the higher
order terms in the Taylor series expansion. Equation (10) can be generalized
to the Lth-order finite-difference representation for the grids in three-dimen-
sional space, thus,

� 1

2
H2’ði; j; kÞ ¼ � 1

2h2

" XL
l1¼�L

Cl1’ðiþ l1; j; kÞ

þ
XL

l2¼�L

Cl2’ði; jþ l2; kÞ

þ
XL

l3¼�L

Cl3’ði; j; kþ l3Þ
#
þOðh2Nþ2Þ;

ð11Þ

where C are the expansion coefficients of which values are presented for
L= 1�6 in Ref. [45]. h is the grid spacing that is common to all directions. By
performing the preliminary calculations, we found that L= 4 is sufficient
enough to achieve the desired accuracy for usual purposes. Let us consider
here the parallel efficiency for a CPU that is assigned to a subdomain
yielded by the division of the real-space cell. In the case of L= 4, evaluation
of the kinetic energy at a grid point necessitates the values of the wave
functions on the neighboring eight grid points for each axis. It suggests that
the wave functions at a boundary with the thickness of four grids in the
subdomain must be exported to another CPU that corresponds to the
neighboring subdomain. In Figure 9.1 such a part is colored. It is recognized
in Figure 9.1 that the amount of the data communication is confined within
a small region of space.

The use of the uniform grids necessitates the employment of the pseu-
dopotentials [49] Vps for the nuclei to realize the smooth behaviors of the
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wave functions for valence electrons. For clarity, we rewrite the effective
potential veff of Eq. (7) for the noninteracting electrons as

veffðrÞ ¼
Z

dr0
nðr0Þ
jr� r0j þ

�Exc½n�
�n

þ Vpsðr ). ð12Þ

Our purpose here is to describe the outline to compute each term in Eq. (12).
The first term in the right-hand side of Eq. (12) is usually termed as Hartree
potential VH(r) and it represents the classical Coulomb potential provided
by the electron density n(r). As for the periodic system, we compute the
Hartree potential VH(g) in the momentum space, which can be easily
evaluated in the reciprocal space, thus,

VHðgÞ ¼ 4�

jgj2 nðgÞ; ð13Þ

where n(g) is the electron density in momentum space and constructed from
n(r) by an FFT transformation. VH(r) is, then, obtained by the backward
transformation of VH(g). In the nonperiodic system, on the other hand, VH(r)
can be determined by performing the integration in Eq. (12) directly. How-
ever, it is computationally very demanding because it requires two-fold
loops for the coordinates r and r0. Instead, we adopt a method to solve the
Poisson equation for the Hartree potential VH(r) [48],

H2VHðrÞ ¼ � 4�nðr ). ð14Þ
It is critically important to determine the values of VH(r) at the boundary of
the cell for the solution of the Poisson equation. For this purpose we deter-
mine the fractional charge at each nucleus from the electron density n(r).
Then, we approximate the electrostatic potential due to n(r) at the boundary
by the Coulomb interaction formed by these fractional charges. The fractional
charges are determined by the fuzzy cellular partitioning of the electron
density [50]. We employ the conjugate gradient (CG) algorithm [51] synchro-
nized with the steepest descent procedure to solve Eq. (14) iteratively. The
Laplacian is evaluated by the same method adopted in the kinetic energy
operator, which is higher order finite-difference approach. The amount of
data communication is much less than that required in the kinetic energy
term since only a single function VH(r) must be communicated among the
processors instead of the set of one-electron wave functions.

The second term of Eq. (12) is the exchange-correlation potential, the
derivative of Exc with respect to density. The first step to estimate the energy
Exc is usually based on the local density approximation (LDA), which
assumes that Exc can be expressed as [6]

ELDA
xc ½n�; n�� ¼

X
�

Z
drn�ðrÞ"xc½n�ðrÞ�; ð15Þ
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where the suffix � stands for the electron spins � and �. "xc in Eq. (15) is the
exchange correlation energy per electron in a uniform electron gas. Then, it
is easy to see that the exchange-correlation potential is completely local in
the real-space representation. Hence, no communication is needed in the
parallel computation within the framework of LDA. For the generalized
gradient approximation (GGA) functional, the energy Exc is formally written
in terms of the gradient Hn�(r) besides the electron density itself, thus,

EGGA
xc

�
n�; n�

� ¼X
�

Z
drF


n�ðrÞ; jHn�ðrÞj

�
ð16Þ

The gradient can also be approximated by the finite-difference method,
hence, the communication cost in the parallel computation to evaluate the
exchange-correlation potential with GGA correction is comparable to that
for the Hartree potential.

The last term Vps in Eq. (12) is the pseudopotentials for nuclei and we
employ the norm-conserving separable form proposed by Kleinman and
Bylander [52] throughout this chapter. For a nucleus it is expressed as,

VKB
ps ðrÞ ¼ VlocðrÞ þ

X
l;m

jDVl	l;mih	l;mDVlj
h	l;mjDVlj	l;mi

: ð17Þ

In Eq. (17) Vloc(r) is the local pseudopotential and it depends only on the
radial distance r between r and the nucleus. Integers l and m stand for the
angular momentum quantum number and the magnetic quantum number,
respectively. DVl(r) is the l-dependent local potential Vl(r) subtracted by
Vloc(r) and is short range. 	l,m is the atomic pseudo wave function. The
second term of the left-hand side of Eq. (17) involves the projection operator,
and hence, it is nonlocal. However, the nonlocality does not make a matter
in the parallel computation since 	l,m as well as DVl(r) is confined within a
small region around the atomic core. Thus, it is demonstrated that the
real-space representation is advantageous to the parallel computation of
the KS-DFT due to the locality of the operators in the real space.

Here, we introduce a key technique to attain substantial accuracy in the
calculations with the real-space grids. As mentioned above, the energy
profile of an atom for the variation of the relative position of the atom
with respect to a grid shows an erroneous behavior that the energy depends
seriously on the relative position. This is a well-known deficiency in the
real-space grids method. A promising way to improve this situation is to
employ the double-grid technique around the atomic core to refine the
resolution of the wave functions. However, it inevitably leads to the unde-
sirable increase in the computational costs. Ono and Hirose proposed a
unique approach [53] to solve this problem by taking advantage of the
smooth nature of the pseudo wave function. According to their method,
the computational overhead associated with the introduction of the double
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grids can be substantially reduced. In the following we illustrate the
method. The major quantity we want to improve its accuracy by using the
double grids is the inner product between h	l,mDVl| in Eq. (17) and wave
function |’ii. For simplicity we restrict the problem to one-dimensional
integration and simplify the notations, thus,Z

W
vðxÞ’ðxÞdx; ð18Þ

where W is the atomic core region which contains the dense grids. The
approximate evaluation of Eq. (18) by the double-grid approach can be
expressed as Z

W
vðxÞ’ðxÞdx ffi

X
i2W

vðiÞ’ðiÞ�x; ð19Þ

where i denotes the index for the dense grids of which width is taken as �x.
The point of their approach is to estimate the values of the wave function on
the dense grids by interpolating those on the coarse (original) grids by
virtue of the fact that the pseudo wave function varies smoothly even in
the atomic core regions. With the simplest interpolation method such as
linear interpolation, the value of ’(i) can be expressed in terms of the wave
functions ’(I) and ’(I þ 1) on the neighboring coarse grids I and I þ 1, thus,

’ðiÞ ¼ Dx�ðxi �XIÞ
Dx

’ðIÞ þ Dx�ðXIþ1 � xiÞ
Dx

’ðI þ 1
� ð20Þ

In Eq. (20) Dx is the width of the coarse grid and xi and XI denote the
coordinates of the grids i and I, respectively. By substituting Eq. (20) to Eq.
(19), we obtain the approximate expression for the integration by the dis-
crete sum over the coarse grids I,Z

W
vðxÞ’ðxÞdx ffi

X
I2W

!I’ðIÞDx; ð21Þ

where the weight factor !I specific for the grid I is given as

!I ¼
Xn
s¼�n

Dx� jxnIþs �XIj
nDx

vðnI þ s
� ð22Þ

In Eq. (22) n is an integer that satisfies Dx ¼ n� �x, and hence nI corre-
sponds to the index assigned for the coarse grid I in the indexing of the
dense grids. For the help of understanding, we present an illustration for the
wave function ’ and pseudopotential v on the double grids in Figure 9.2.
Since the pseudopotential is to be given from the outset, evaluation of the
values of v on the dense grids does not accompany additional costs. From
Eq. (22), it is easy to see that the weight factors !I do not change unless the
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position of the atom is updated. Hence, the same set of !I for each atom can
be used during an SCF cycle. It is also advantageous that no memory space
should be newly allocated for wave functions on the dense grids by virtue of
Eq. (21) in contrast to the conventional double-grid approach. We note that
we utilize the Lagrange interpolations with n= 5 in our usual applications.
We discuss here the parallel efficiency in the time-saving Ono–Hirose
approach. It is apparent that no data communication is needed for the
integration of Eq. (21). Thus, what is necessitated for the high efficiency is
that the atoms in the system are uniformly distributed over the subdomains
to achieve the good load balance among the processors for the computation
of the weight factors of Eq. (22) for atoms.

In closing this subsection, we present the results of the preliminary
calculations to examine the parallel efficiency in the real-space grids
approach [54]. The test system is the pair of aspartic acids embedded in
HIV-1pr and a model substrate, which contains 98 valence electrons; 80
grids points were prepared for each axis of the real-space cell. We carried
out the KS-DFT calculations that employed 1, 2, 4, and 8 CPUs. The parallel
efficiency Pn is defined as the percentage of the rate of the speedup divided
by the number n of CPUs used, thus,

Pn ¼ Timeð1CPUÞ
TimeðnCPUÞ �

100

n
: ð23Þ

x0

X0 X1

v (x)

ϕ (x)

Ω

X2

x1 x2 x3 x4 x5 x6 x7 x8
. . .

Figure 9.2 Schematic for the one-dimensional double grids in the atomic core region �.
’(x) and v(x) are the wave function and the nonlocal pseudopotential, respectively. Arrays

{Xi} and {xi} denote the coarse and dense grids, respectively. The values on the black points

are to be evaluated explicitly, while those on the white ones are obtained by an

interpolation.
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The notation of “Time” in Eq. (23) expresses the wall clock time spent to
accomplish an SCF step. We obtained P2, P4, and P8 as 90.0, 88.5, and 80.5%,
respectively. Thus, we achieved a good performance in parallelization,
however, it was also found that the efficiency P is decreasing as the increase
in the number of CPUs. This is mainly attributed to the increase in the
amount of the communication relative to the net computational cost for
each domain. The amount of the communication at the boundaries of the
domains scales in the square of the cell size, while the net computational
cost scales in the cube of it. Hence, it is possible that the parallel efficiency is
recovered when one computes a larger system. Anyway the parallel effi-
ciency P around 80–90% is quite satisfying in the quantum chemical calcula-
tions. The present approach can be straightforwardly extended to the
massively parallel computations without serious loss of efficiency as far as
the computational cost is well balanced with the amount of communica-
tions. We note that these calculations were performed on an ordinary cluster
system with distributed memory architecture consisting of Pentium 4/3.2
GHz processors connected by a gigabit switch. The data communication
was commanded by invoking the standard message-passing interface (MPI)
libraries [55]. Lastly let us make an overview of the parallelization in the
LCAO approach. A crucial step that should be parallelized in the LCAO
calculation is the evaluation of two-electron integrals for a large number of
sets of four-centered atomic orbitals. The basic strategy for the paralleliza-
tion is, then, to divide all sets of four atomic orbitals and to distribute them
to CPUs. Each processor may compute corresponding two-electron integrals
and construct individual Hamiltonian matrix in terms of the partial sets of
the two-electron integrals. The incomplete Hamiltonian held in each pro-
cessor will be summed up in the master node to form complete one, for
which the transfer of the whole matrix with full size to the master processor
is necessitated. Importantly, the size of the Hamiltonian is square of the
number of atomic basis and it increases rapidly as the number of atoms
involved in the system increases. It is, thus, apparent that LCAO approach is
disadvantageous for efficient parallelization as compared with the real-
space grids, though it may be recovered to a certain extent by making
some devices. Since the recent trend in the supercomputer is toward the
massively parallel architecture connecting multicore processors, it is desir-
able to introduce parallel-oriented methodologies in the quantum chemical
calculation.

2.3. Hybrid quantum mechanical/molecular mechanical method

It is often the case that only a small part in the whole system takes part in a
chemical event in condensed system. The hybrid QM/MM approach pro-
vides a reliable computational framework to describe such a situation,
where the chemically active part is described by a method of quantum
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chemistry, while the rest of the system is approximated by a certain coarse
model. The PCM combined with the SCF calculation as well as RISM-SCF, of
which outlines were given in Introduction, are along the line of the QM/
MM method in a broad sense. In the ONIOM approach [56], multiple
intermediate layers are introduced to adopt various levels of description
according to the importance of the layer for the reaction and it is considered
to be the generalization of the concept of QM/MM.

By taking the advantage of the classical molecular simulations, we can
explicitly treat the environmental part of the system within the QM/MM
scheme. In this case, the total energy of the system Etot can be expressed as

Etot ¼ EQM þ EQM=MM þ EMM: ð24Þ
The first term in the right side of Eq. (24) is the electronic energy of the QM
subsystem including the nuclear repulsion energy and the third one is the
energy of the MM subsystem represented by a classical force field. The term
EQM/MM denotes the interaction between the QM and MM subsystems. The
electronic wave function C with an eigenvalue E under an instantaneous
solvent configuration can be defined by the following Schrödinger equation,


H0 þVESðXÞ
�
C ¼ EC; ð25Þ

where H0 is the electronic Hamiltonian of the isolated QM subsystem
including the nuclear repulsion energies while VES is the electrostatic poten-
tial formed by the point charges placed on the interaction sites of the MM
molecules of which coordinates are collectively denoted by X. Then, we can
define the energy EQM in Eq. (24) as

EQM ¼ hCjH0jCi: ð26Þ
Here, we introduce the energy termed as distortion energy Edist of the QM
subsystem, thus,

Edist ¼ hCjH0jCi�E0 ¼ hCjH0jCi� hC0jH0jC0i; ð27Þ
where E0 and C are the energy and the wave function of the isolated solute
in the ground state, respectively. The interaction energy EQM/MM in Eq. (24)
consists of three terms, thus,

EQM=MM ¼ EES þ Ens þ EvdW; ð28Þ

where EES is the expectation value of VES(X) for the wave function C in Eq.
(25), Ens is the Coulomb interaction between the nuclei in the QM molecule
and the fractional charges on the MM molecules, and EvdW is the van der
Waals interaction between the QM and MM subsystems. The last term EMM

of Eq. (24) stands for the potential energy of the MM subsystem and it is
usually given by the sum of contributions from electrostatic and van der
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Waals energies, which are, respectively, expressed by the point charge
representations and Lennard-Jones (LJ) interactions [9,10] as follows,

EMM ¼ Epc þ EvdW

¼
X
i<j

qiqj
rij

þ
X
k<l

4"kl

		
�kl
rkl


12

�
	
�kl
rkl


6

: ð29Þ

In Eq. (29), qi is the point charge assigned to site i and rij is the site–site
distance. "ij and �ij are the empirical parameters in the LJ potential, which
are, respectively, related to the interaction energy and the size between
two LJ sites. We note that EvdW in Eq. (28) is also given by the LJ form in
Eq. (29).

3. THEORY OF SOLUTIONS

The chemical potential is the free-energy change corresponding to the
insertion of a unit number of solute molecules in solution. It is actually the
most fundamental quantity in the theory of solutions. Indeed, the free-
energy change for a physical or chemical process of interest can be readily
evaluated once the chemical potentials are known for the species present in
the initial and final states of the process. Part of the chemical potential
quantifying the solvent effect is the solvation free energy. It is the free-
energy change for turning on the solute�solvent interaction. Since the sol-
vent effect is the main focus of solution studies, it is of primary importance
in statistical mechanics of solutions to establish a scheme to determine the
solvation free energy of a solute in solution.

The purpose of this section is to describe schemes of computing the
solvation free energy. The free energy in solution is notorious for its heavy
computational demand. We approach this difficulty by combining the
molecular simulation and statistical�mechanical theory of solutions.
Since the target of solution chemistry expands and now includes quan-
tum�classical-coupled (QM/MM) system, nano-organized systems such
micelle, lipid membrane, and protein, and environmentally benign reac-
tion media such as ionic liquid and supercritical fluid, the theory of solu-
tions also needs to be (re-)formulated to treat these frontline subjects. The
goal of this section is to introduce a new theory of solutions that is amen-
able to diverse areas of applications. We first describe the standard scheme
of free-energy calculation. We then present the concept of distribution
function and the DFT connecting the distribution function and free energy.
Finally, we formulate a new method of solutions, the method of ER, and
show its application to molecular binding into micelle and lipid
membrane.
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3.1. Free-energy perturbation and thermodynamic integration
methods

Let H0 and H1 be, respectively, the Hamiltonians at the initial and final
states of a process in solution. When the solvation process is concerned, the
initial and final states are typically the pure solvent and solution systems of
interest. The corresponding free-energy change DF is given by

expð��DFÞ ¼

Z
dG expð��H1ÞZ
dG expð��H0Þ

; ð30Þ

where � is the inverse of the product of the Boltzmann constant kB and the
temperature T and G is the (collective) coordinate for the phase space. When
the classical statistical mechanics is adopted and the Hamiltonian change
between the initial and final states does not involve the kinetic part, Eq. (30)
reduces to

expð��DFÞ ¼

Z
dX expð��U1ÞZ
dX expð��U0Þ

; ð31Þ

where X is the (collective) coordinate for the configuration and U0 and U1

are the potential energies of the system at the initial and final states, respec-
tively. Equation (31) is the starting point of our development. It should be
noted that Eq. (31) cannot be used when a quantum fluid is to be treated.

When U1 – U0 is denoted by DU, Eq. (31) is rewritten as

expð��DFÞ ¼ hexpð��DUÞi0; ð32Þ
where < . . .> 0 is the ensemble average taken at the initial state whose
configuration is sampled according to the potential energy U0. Equation
(32) shows that the free-energy change DF can be calculated, in principle, by
performing only the simulation for the initial state and averaging the Boltz-
mann factor of the relevant energy change DU. Indeed, Eq. (32) is the basis of
the particle insertion method for evaluating the solvation free energy (chemi-
cal potential) of a solute in solution [9,10,28]. In the particle insertion method,
the pure solvent is simulated and the solute molecule of interest is inserted
randomly into the pure solvent. The chemical potential is then obtained from

expð��DFÞ ¼
Z

dðDUÞexpð��DUÞf ðDUÞ; ð33Þ

where f(DU) is the probability distribution function of DU in the pure solvent
system. The particle insertion method is convenient and fast since only the
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pure solvent configurations need to be prepared and the free energy is
calculated from a one-step insertion process of the solute. As it is well
documented, however, the particle insertion method is applicable only for
a small and weakly interacting solute [9,10,28]. When the solute is large
and/or interacts strongly with the solvent, the formally exact form of Eq.
(33) exhibits a numerical difficulty. See Figure 9.3. When the solute is not
small, it almost always overlaps with solvent molecules upon insertion.
When the solute does not interact weakly with the solvent, the attractive
solute–solvent effect needs to be properly taken into account. The problem
is that f(DU) is well sampled only toward large (repulsive) value of DU.
Although the Boltzmann factor exp (–�DU) increases steeply toward small
(attractive) DU, the small DU region, which makes a significant contribution
in Eq. (33), is usually ill sampled in the computation of f(DU). Thus, Eq. (33)
is not computationally useful and the particle insertion method cannot be
used for most of “interesting” systems. Actually, the calculation of the
average of the exponential of the energy change is often prohibitive unless
the energy change is small in magnitude.

The standard and often used methods to circumvent the difficulty asso-
ciated with the form of Eq. (33) are the FEP and TI methods [9,10,28]. These
methods are generally applicable to free-energy evaluation. In this review,
we restrict our development to the solvation process; the initial state is the
pure solvent and the final state is the solution system of interest.

The FEP method utilizes the intermediate states connecting the initial
and final states of the process of interest. Let Vi (i= 0, . . ., n) be a sequence of
potential energies where the initial and final ones V0 and Vn are taken to the

ΔU

exp(–βΔU )

f(ΔU )Steeply increasing
toward small ΔU Ill sampled

at small ΔU

Figure 9.3 A schematic distribution of DU value in the particle insertion method.
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potential functionsU0 andU1 for the initial and final states, respectively. For
an arbitrary (set of) Vi, Eq. (31) can be expressed as

expð��DFÞ ¼
Yn� 1

i¼0

D
exp



��ðViþ1 �ViÞ

�E
i
; ð34Þ

where < . . .> i is the ensemble average taken with respect to the potential
function Vi. Equation (34) shows that DF is given as the sum of the free-
energy change accompanying the energy change from Vi to Viþ1 (i= 0, . . .,
n�1). The states corresponding to Vi (i= 1, . . ., N�1) are called intermediate
states. The free energy is a state function and does not depend on the choice
of the intermediate states in principle. From the computational viewpoint,
the point is to “select” the set of Vi so that the change from Vi to Viþ1 is
“small” in magnitude. When Vi and Viþ1 are “similar” and the energy
change is small, the difficulty encountered in the particle insertion method
can be circumvented and the calculation of the free-energy change becomes
feasible. The drawback is that a number of intermediate states need to be
prepared and that the computational cost is enhanced accordingly.

In the TI method, the intermediate states are introduced with respect to
the coupling parameter 
 ( 0 � 
 � 1). The potential function at the coupling
parameter of 
 is denoted as U
 and satisfies U
=U0 and U
=U1 at the
initial and final states (
= 0 and 1), respectively. The intermediate states
correspond to 0 < 
 < 1. The form of averaging-the-exponential is then
avoided by rewriting Eq. (31) as

DF ¼
Z 1

0

d


*
@U


@


+



; ð35Þ

where < . . . >
 is the ensemble average when the potential energy is U
. As
is the case of the FEP method, DF value calculated by Eq. (35) is independent
of the choice of the intermediate states in principle. The integrand of Eq. (35)
is a preferable average from the computational viewpoint. The exponential
average is not involved any more. In practice, the integral of Eq. (35) is
replaced by a discretized sum and a finite number of intermediate states are
to be treated explicitly. Since a systematic error is introduced by the dis-
cretization, a large number of intermediate states need to be prepared and
the computational demand increases correspondingly.

In both the FEP and TI methods, the key to the computational accuracy
and efficiency is the choice of the intermediate states as a function of the
coupling parameter 
. Note that the intermediate states adopted in the FEP
method can be considered a finite subset of the intermediate states intro-
duced continuously over 0 < 
 < 1. A straightforward implementation of
the intermediate states is possible by varying the system potential energy
linearly. When the solvation is concerned and the solute–solvent interaction
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is expressed as the sum of LJ and Coulombic terms, the linear variation is
realized by the intermediate solute–solvent interaction given by



X
i;j

4"ij
�ij

rij

	 
12

� �ij

rij

	 
6
( )

þ qiqj
rij

 !
; ð36Þ

where i and j refer to solute and solvent interaction sites, respectively. The
first term in the sum expresses the LJ interaction at the distance rij between
the solute and solvent sites, and "i and �i are the energy and length para-
meters, respectively. The second term in the sum corresponds to the Cou-
lombic interaction, and qi and qj are the charges on the solute and solvent
sites, respectively. The linear scaling of the solute–solvent interaction with
Eq. (36) is often ill-behaved numerically around 
= 0. This is related to the
appearance of r= 0 singularity at 
= 0. To alleviate the problem, a nonlinear
scaling, which is obtained by replacing 
 with 
n (n 	 2) in Eq. (36), can be
used [57,58]. The calculation becomes more stable near 
= 0. The r= 0
singularity is still present in the nonlinear scaling, however, and careful
analysis is necessary to determine the 
 values actually sampled. Another
choice of the intermediate states is provided by

4
"
�2

r2 þ ð1�
Þ�
	 
6
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r2 þ ð1�
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3

 !
; ð37Þ

or similar expressions for the LJ part [58,59]. The r= 0 singularity is then
removed and the free-energy calculation on the basis of Eq. (37) is numeri-
cally stable.

Although the FEP and TI methods are exact in principle under a given
set of potential functions, they are not free from systematic errors in prac-
tice. The systematic error most often encountered in the FEP method is the
noncoincidence of the free-energy changes DF calculated from the forward
variation of the coupling parameter 
 from 0 to 1 and the backward varia-
tion from 1 to 0. The common practice is to average the DF from the forward
and backward calculations. It is pointed out, however, that the simple
averaging is itself a source of systematic error [60]. To achieve the accuracy,
the use of Bennett’s weighting function is recommended [60,61]. In the TI
method, a systematic error is inevitable when the integral over 
 in Eq. (35)
is discretized. A careful examination of discretization is necessary, espe-
cially when the integrand of Eq. (35) exhibits a nonmonotonic dependence
on 
 and/or varies steeply over some range of 
.

3.2. Distribution function theory

A molecular picture of solutions is established through distribution (corre-
lation) functions. Correspondingly, a molecular description of the solvation
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free energy can be implemented by formulating a functional which
expresses the solvation free energy in terms only of distribution functions
in the solution and pure solvent systems of interest. An approximate
functional needs to be constructed in practice, however, since the exact
functional involves an infinite series of many-body distribution functions
[62]. The theories introduced in Subsections 3.4 and 3.5 are formulated to
provide the solvation free energy with simple distribution functions in
closed form. In this section, a general description of distribution function
is provided.

The system of our interest is a dilute solution containing a single solute
molecule. Even when the solute concentration is finite, our development is
valid by viewing one of the solute molecules as the “solute” and the others
as part of mixed solvent. To describe completely the solute–solvent config-
uration, the position and orientation need to be specified simultaneously.
The complete set of the position and orientation is called the full coordinate
and is denoted collectively as x for the solvent molecule. If the solvent
molecule is flexible, its intramolecular degrees of freedom are also incorpo-
rated into x. Similarly, the full coordinate of the solute molecule is denoted
as c. In the full coordinate representation, the instantaneous distribution �̂f

at an arbitrarily given snapshot configuration is introduced as

�̂f ðc; xÞ ¼ �ðc� ĉÞ
X
i

�ðx� x̂iÞ; ð38Þ

where x̂i and  ̂ are the full coordinate of the ith solvent molecule and the
solute molecule at the snapshot configuration, respectively, and the sum is
taken over all the solvent molecules. The superscript f is attached to empha-
size that Eq. (38) is in the full coordinate representation. The distribution
functions are generated from the averages of products of �̂f in the system of
interest.

When the distribution function is generated from �̂f , a multidimensional
description is inevitable. Indeed, the full coordinate x is six-dimensional
(5 for linear molecule) for rigid species and involves more for flexible
species. To implement the full coordinate representation, the expansion in
terms of spherical harmonics can be employed [28]. However, the calcula-
tion of multidimensional distribution functions is often slow in molecular
simulation and the numerical realization is not straightforward. When the
coordinate has too “fine” information content, the corresponding distribu-
tion function needs additional methodology for handling. Too much
information is not desirable both from the computational viewpoint (large
memory and slow convergence) and the conceptual viewpoint (unclear
perception in mind).

It is then useful to reduce the information content by introducing a
“projected” coordinate. With projection, some information of (c,x) is
retained, while the others are disregarded. When the projection is
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implemented with respect to a function P(c,x), the corresponding distribu-
tion functions are generated from the instantaneous distribution given byX

i

�


p�Pðc; xiÞ

�
; ð39Þ

where p is the value of P(c,x) and serves as the coordinate for the distribu-
tion function.

A typical choice of P(c,x) is the radial distance between the atomic sites
(interaction sites) of the molecule. When a pair of atomic sites in the solute
and solvent molecules is picked up, the histogram of its radial distance is
averaged with an appropriate normalization to give the site–site RDF. For
example, when the solute and solvent is both H2O (when one of the mole-
cules in pure water is viewed as the “solute” and the others as the “solvent”),
the O�O, O�H, and H�H RDFs are generated by the projections onto
O�O, O�H, and H�H distances, respectively. It should be noted that the
RDFs do not represent a simultaneous distribution of a set of site–site radial
distances. In the case of water, the O�O RDF specifies only the O�O
distance and the other distance information such as those for O�H and
H�H is disregarded. Similarly, the O�H RDF does not contain explicit
information about the O�O and H�H distances. In Figure 9.4, we show
the O�O and O�H RDFs of water at 1 g/cm3 and 25 �C. It is seen from
the O�O RDF that the neighboring water molecules stay in the distance of
�2.8 Å. The O�H RDF shows that the intermolecular hydrogen-bonding
distance is�2 Å. The second peak of the O�O RDF is characteristic of water.
In simple liquid, the second peak appears at about twice the distance for the
first peak. In water, the second-peak position is �1.6 times of the first-peak
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Figure 9.4 O�O and O�H radial distribution functions of water at 1 g/cm3 and 25 �C.
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position. This provides a view that the ice-like structure persists even in
liquid water.

Another useful distribution function is for the interaction pair energy.
An example is shown in Figure 9.5 for water at 1 g/cm3 and 25 �C. The peak
at �–6 kcal/mol corresponds to the intermolecular hydrogen bonding of
water in the liquid state. In the high-energy regime, the distribution function
vanishes. This reflects the excluded volume effect and is consistent with the
fact the RDFs vanish at short distances.

Of course, the choice of the projecting function P(c,x) of Eq. (39) is not
unique. The choice depends on the purpose. For example, when the angle of
the hydrogen bonding is of interest, it is most useful to adopt the hydrogen-
bonding angle itself as P(c,x) [63]. In general, no a priori criterion is present
for preferable projection. The desirable form of projection can be based only
upon the target quantity to be investigated.

3.3. Kirkwood charging formula and density functional theory

A connection between the solvation free energy D� and distribution func-
tion is provided by the Kirkwood charging formula [9,10,28]. In the present
section, we describe the Kirkwood charging formula for a pairwise additive
solute–solvent interaction. The Kirkwood formula is then transformed into a
density functional form through partial integration. We briefly describe the
DFT in the full coordinate representation.

The target quantity of the development is the solvation free energy. The
solvation free energy D� is the free-energy change corresponding to the
gradual insertion process of the solute molecule. In the classical
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Figure 9.5 The distribution function of the pair interaction energy " of water at 1 g/cm3
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(nonquantum) treatment of D�, only the contribution from the potential
energy is involved and the ideal (kinetic) contribution is excluded. Let c
and x be the full coordinates of the solute and solvent molecules, respec-
tively. We suppose that the solute–solvent intermolecular interaction of
interest is pairwise additive and is written as v(c,x). When the one-body
energy of the solute including the intramolecular component isC(c) and the
total solvent–solvent interaction energy is U(X), D� is expressed as

expð��D�Þ ¼

Z
dcdXexp



���CðcÞ þ

X
i
vðc; xiÞ þUðXÞ��Z

dcdX exp


���CðcÞ þUðXÞ�� ; ð40Þ

where X represents the solvent configuration collectively and � is the
inverse of the product of the Boltzmann constant kB and the temperature
T. A restriction of attention to a certain set of solute intramolecular state can
be made simply by the corresponding alteration of the domain of integra-
tion over c.

To formulate the Kirkwood charging formula, we introduce a set of
intermediate states involving pairwise additive solute–solvent interaction.
Let 
 be the coupling parameter identifying the state and u
(c,x) be the
solute–solvent interaction potential at the coupling parameter 
. When

= 0, the system is the pure solvent system and u0(c,x)= 0 (no solute–
solvent interaction). When 
= 1, the solute interacts with the solvent at
full coupling and u1(c,x)= v(c,x). The form of u
(c,x) at 0<
< 1 is arbi-
trary. The Kirkwood charging formula is an integration over the coupling
parameter and is expressed as

D� ¼
Z 1

0

d


Z
dcdx

@u
ðc; xÞ
@


�f ðc; x;u
Þ; ð41Þ

where �f(c,x;u
) is the ensemble average of Eq. (38) in the presence of the
solute–solvent interaction u
. The superscript f means that the function is
represented over the full coordinate (c,x).

The solvation free energy can be evaluated using the Kirkwood charging
formula [9,10,28]. It introduces a set of intermediate states connecting
the initial and final states of the gradual insertion process of the solute;
the initial and final states correspond to the pure solvent system without the
solute and the solution system of interest, respectively. In principle,
the Kirkwood charging formula provides the “exact” solvation free energy
under a given set of potential functions. Its implementation is expensive in
practice, however, since a number of intermediate states need to be intro-
duced. For the purpose of analyzing the solvation free energy on the mole-
cular level, furthermore, it is necessary to express the solvation free energy
in terms only of distribution functions in the solution and pure solvent
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systems of interest. Within the framework of the Kirkwood charging for-
mula, the intermediate states are actually arbitrary and are employed for the
convenience of formulation and computation. They are not of physical
significance since the free energy is a state function.

A molecular description of the solvation free energy can be implemented
by formulating a functional which expresses the solvation free energy in
terms of distribution functions in the solution and pure solvent systems of
interest. Distribution functions in the other systems should not be involved
in the functional in order to assure that the free energy is given as a state
function. The exact functional is not useful, however, since it is an infinite
series of many-body distribution functions [62]. In practice, an approximate
but accurate functional needs to be constructed which is expressed with
few-body distribution functions in closed form. When such a functional is
formulated and the distribution functions constituting the approximate
functional are readily obtained by computer simulation, the solvation free
energy can be determined and analyzed with reasonable computational
load in terms of exact microscopic information of the systems of interest.

It is a statistical–mechanical theory of solutions to express the solvation
free energy as a functional of distribution functions. Traditionally, the
theory of solutions is formulated with a diagrammatic approach [28], in
which an approximation is provided through a two-step procedure. In the
first step, the free energy and/or distribution function is expanded with
respect to the solute–solvent interaction potential function or its related
function as an infinite, perturbation series. In the second step, a renormali-
zation scheme is applied; a set of functions are defined through partial
summation of the series and are employed for substitution to make the
infinite series more tractable. An approximation is typically introduced
simply by neglecting nontractable diagrams.

We adopt an alternative route to the distribution function theory. The
approach is based upon the DFT. In this approach, the change of variables is
conducted through Legendre transform from the solute–solvent interaction
potential function to the solute–solvent distribution function or the solvent
density around the solute. The (solvation) free energy is then expressed
approximately by expanding the corresponding Legendre-transformed
function with respect to the distribution function to some low order.

The starting point of the density functional treatment is the Kirkwood
charging formula. The partial integration of the Kirkwood formula given by
Eq. (41) provides

D� ¼
Z

dcdxvðc; xÞ�f ðc; x; vÞ�
Z 1

0

d


Z
dcdxu
ðc; xÞ @�

f ðc; x; u
Þ
@




Z

dcdxvðc; xÞ�f ðc; xÞ� F f
h
�f ðc; xÞ

i
;

ð42Þ
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where the density functional Ff is defined in the second line of Eq. (42) and
�f(c,x;v) at the potential v of interest is simply denotes as � f(c,x). D� and F f

are related to each other with Legendre transform since the map is proved to
be one-to-one from the solute–solvent interaction potential to the distribu-
tion function [28]. An approximation can be devised by introducing the
indirect part !f of the potential of mean force as

�
f

ðc; xÞ ¼ �

f
0ðc; xÞexp



��


u


c; x; �f


�
þ ! f



c; x; �f


���
; ð43Þ

where � f

(c,x) is the distribution function at the coupling parameter 
. In

Eq. (43), the dependence is written in terms of the distribution function �f
,
instead of the potential u
. This is possible due to the property of one-to-one
correspondence. When the solvent–solvent correlation is absent (low-
density limit), ! f is zero. In other words, all the “complicated” solvent–
solvent correlations are put into !. Equations (42) and (43) lead exactly to

Ff ½�f ðc; xÞ� ¼ kBT
Z

dcdx


�f ðc; xÞ� �

f
0ðc; xÞ

�
� �f ðc; xÞlog �f ðc; xÞ

�
f
0ðc; xÞ

0
@

1
A

2
4

� �


�f ðc; xÞ� �

f
0ðc; xÞ

�Z 1

0

d
!f ðc; x; �f
Þ
#
;

ð44Þ

where u
 is taken so that �f
 varies linearly against 
, and �f(c,x) and �f(c,x)
denote the distribution functions at the coupling parameter 
= 0 and 1,
respectively. Equation (44) is exact, and an approximation is introduced to
the 
 integral of !f. When !f is taken to vary linearly with 
, the HNC
approximation is obtained. When exp (–�!f)-1 is set to be linear, it is the PY
approximation.

The above is the brief introduction to the DFT of solutions. The mathe-
matical development is quite straightforward. The numerical implementa-
tion is difficult, however, in the full coordinate representation. As noted in
Subsection 3.2, the full coordinate is multidimensional; the solute–solvent
distribution is a function over high-dimensional configuration space and
cannot be implemented in practice. To overcome the problem of dimension-
ality, it is necessary to introduce a projected coordinate. In Subsection 3.5,
we introduce the ER and formulate the DFT in the ER.

3.4. Site–site radial distribution function and reference
interaction site model

The method of RISM is based on the site–site RDFs. It introduces the “direct
correlation functions” through the inverses of the correlation matrices for
the site–site distance and formulates an approximate set of integral equation
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for the site–site RDFs by adopting “closure” relationships between the RDFs
and direct correlation functions [26–28,64,65]. Compared to the molecular
simulation method, the method of integral equation is much faster. The
speed is achieved by restricting the attention only to the RDFs and adopting
approximate closures. Furthermore, the solvation free energy is expressed in
closed form for some types of closure relationships [64,65]. In this case, no
reference to the intermediate states of the solute insertion process is required
and the solvation free energy can be evaluated directly from the RDFs
obtained from the integral equation. When a closed-form functional for the
solvation free energy is given in terms of distribution functions, the functional
not only provides an efficient route of computation, but also sets a basis for
the molecular understanding with respect to the distribution functions.

A basic quantity in the RISM approach is the intermolecular site–site
RDF g��(r), where � and � denotes interaction sites and r is the radial
distance between the sites � and �. An example is provided in Figure 9.4.
Another basic quantity in RISM is the intramolecular correlation function
!��(r). This carries information of the molecular structure, and its Fourier-
transformed form is expressed over the reciprocal coordinate k as

!��ðkÞ ¼ ��� þ ð1� ���ÞsinðkL��Þ
kL��

; ð45Þ

where L�� is the intramolecular distance between the sites � and �. It should
be noted that the set of g��(r) is not a simultaneous distribution of the radial
distances for various pairs of sites � and �. Instead, they are a set of
independent distributions over distinct site-site pairs. A similar remark
also applies to !��(r). g��(r) is provided by projecting the full-coordinate
distribution function generated from Eq. (38) onto the site–site radial dis-
tance between � and � with appropriate normalization. Similarly, !��(r) is a
projection of the one-body distribution function in the full coordinate
representation onto the radial distance between a pair of sites � and �.

The RISM integral equation is formulated in terms of the site–site total
correlation function h��(r) and the site–site direct correlation function c��(r).
h��(r) is defined from the site–site RDF g��(r) as

h��ðrÞ ¼ g��ðrÞ� 1; ð46Þ
and c��(r) is introduced through the site–site Ornstein–Zernike (SSOZ, also
called RISM) equation written as

h��ðjr�RjÞ ¼
X
�;


Z
dxdy!��ðjr� xjÞc�
ðjx� yjÞ½!
�ðjy�RjÞ þ �h
�ðjy�RjÞ�;

ð47Þ
where the system is supposed to be a one-component, homogeneous fluid
for simplicity and r is the density of the fluid. Equation (47) was first derived
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from the Ornstein–Zernike equation in the full coordinate representation by
adopting the assumption that the direct correlation function in the full
coordinate representation is given as a sum of the site–site direct correlation
functions. Instead, Eq. (47) can be viewed as a definition of the site–site
direct correlation functions [66,67]. In any case, another set of equations,
called “closure” relationship, is necessary to obtain h��(r) and c��(r) with
Eq. (47). In the original formulation [26], the PY-type form was adopted as

c��ðrÞ ¼ ½h��ðrÞ þ 1�
h
1� exp



�v��ðrÞ

�i
; ð48Þ

where v��(r) is the interaction potential between the sites � and � and � is
the inverse of the product of the Boltzmann constant and the temperature.
In the extended version [27], the HNC-type approximation was employed
with

h��ðrÞ þ 1 ¼ exp


��v��ðrÞ þ h��ðrÞ� c��ðrÞ

�
: ð49Þ

Equation (47) with Eq. (48) or (49) constitutes a self-consistent set of integral
equations for h��(r) and c��(r). With the site–site potential v��(r) and the
intramolecular correlation function !��(r) as inputs, the correlation func-
tions h��(r) and c��(r) are given as outputs in the RISM treatment. Further-
more, the solvation free energy is expressed in closed form for certain types
of closure relationships [64,65]. In this case, the integral equation provides
not only the structural information h��(r) but also the solvation free energy
in an efficient manner. The RISM integral equation with PY-type or HNC-
type closure can be solved with a variational procedure [26,27], though it is
not of sound character from the standpoint of the DFT [67].

A drawback is present, of course, in any approximate method of solu-
tions. Under a given set of potential functions, the molecular simulation
gives the exact distribution functions when it is done long enough. In
contrast, since the closure relationship is approximate, the RDF obtained
from the integral equation method is approximate. The solvation free
energy calculated from the integral equation theory has two sources of
errors. One is due to the approximate nature of the potential functions
(force field), and the other comes from the approximation involved in the
integral equation.

The drawbacks characteristic of RISM and its variants are related to the
fact that they do not treat the whole molecule as a single unit and view a
molecule as a collection of interaction sites. The method is thus applicable
only when the potential function is of site–site form. Indeed, Eqs. (47)–(49)
require a set of potentials in the site–site form as inputs. As a consequence,
the electronic distribution cannot be treated in the cloud-like form as imple-
mented in quantum theories, but needs to be contracted into a set of point
charges. In addition, the integral equation is ill-behaved unless all of the
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interaction sites carry the repulsive core explicitly. For example, many of
potential functions of H2O do not assign a repulsive core at the H-site. This
is simply because the repulsive core for the O-site is large enough that other
molecules cannot come too close to the H-site. The repulsive core of the
H-site is buried within the O-site core and is not necessary to be treated
explicitly at the level of potential functions. In RISM, however, a core
parameter needs to be assigned to the H-site, too. The core parameter
actually dictates the resulting solvation free energy sensitively and acts as
an adjustable parameter in the method. Another, related problem is
so-called the “problem of auxiliary site.” The solution to the RISM integral
equations exhibits unphysical dependence on the presence of auxiliary sites
which simply label points in a molecule and make no contribution to the
intermolecular interaction. This type of difficulty is absent when the whole
molecule is treated as a single unit. The difficulty arises when a molecule is
treated as a collection of sites. In RISM, the correlation between a pair of
sites is described at the two-body level for both the intramolecular and
intermolecular ones. Since the sites in a molecule are tightly bound with
one another, a partial incorporation of the intramolecular correlation is not
desirable. This point is exemplified when the density is low. The RISM
integral equations are not exact in the limit of zero solvent density and are
not suitable to evaluate the solvation free energy in a low-density fluid. It is
well-known in this instance, too, that the low-density limit is given exactly
when the whole molecule is treated as a single unit in the full coordinate
representation [28]. Finally, since the molecular structure is an input in the
RISM approach, an additional scheme needs to be devised to deal with
flexible molecules. Equations (47)–(49) take the intramolecular correlation
functions !��(r) (or the intramolecular distance L��) as inputs, and the
variation of !��(r) in response to intermolecular interaction can be incorpo-
rated by formulating another set of (approximate) equations.

In the commonly used RISM approach, the solvation free energy is often
expressed in closed form in terms of site–site RDFs. An improvement of the
approach may then be possible through combination with the molecular
simulation; the RDFs are exact under the used set of potential functions
when they are calculated from the molecular simulation, instead of the
integral equation. This line of approach is developed by Kast and Truong
[68–70], and the computational efficiency is achieved compared to the FEP
and TI methods. A special procedure is needed, however, to handle the
intramolecular correlation matrices in the range of small reciprocal vector
(large distance). When the reciprocal vector approaches zero, the intramo-
lecular correlation matrices becomes ill-conditioned and the calculation
procedure suffers from numerical instability.

The above drawbacks of RISM and its variants are well documented
since their first formulations [26,28,66,67]. They are all related to the point
that a molecule is treated as a collection of sites. In the method of ER
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introduced in Subsection 3.5, each of the solute and solvent molecules is
taken to be a single unit as a whole, and those drawbacks vanish.

3.5. Method of energy representation

In the method of energy representation (ER) [31], the projecting function P
(c,x) of Eq. (39) is taken to be the solute–solvent pair interaction energy.
Figure 9.5 is an example of the distribution function in the ER. To introduce
the ER, it is necessary to specify the solute–solvent interaction potential v of
interest. Of course, v is a function of the solute configuration c and the
solvent configuration x. The instantaneous distribution �̂e is defined as

�̂eð"Þ ¼
X
i

�½vðc; xiÞ� "�; ð50Þ

where the sum is taken over the solvent molecules and a superscript e is
attached to emphasize that a function is represented over the energy coor-
dinate. The distribution functions in the ER are generated from the averages
of products of �̂e in the system of interest.

In the ER, the DFT can be formulated by restricting the set of solute–
solvent interaction potentials u
(c,x) to those which are constant over an
equienergy surface of v(c,x). In this case, when the value of v(c,x) is denoted
as ", the intermediate states can be written as u
("). At the end points (
= 0
and 1), u0(")= 0 and u1(")= " since v(c,x) itself is the potential function in
the solution system of interest. It is then possible to show that the Kirkwood
charging formula is given by

D� ¼
Z 1

0

d


Z
d"
@u
ð"Þ
@


�eð";u
Þ; ð51Þ

where �e(";u
) is the ensemble average of Eq. (50) in the presence of the solute–
solvent interaction u
. The superscript e is attached tomean the representation
over the energy coordinate e. The Legendre transform is also possible as

D� ¼
Z

d"u1ð"Þ�eð"; vÞ�
Z 1

0

d


Z
d"u
ð"Þ @�

eð"; u
Þ
@




Z

d""�eð"Þ� Fe½�eð"Þ�;
ð52Þ

and the indirect part !e of the potential of mean force in the ER can be
introduced correspondingly simply by rewriting x of Eq. (43) with " as

�e
ð"Þ ¼ �e0ð"Þexp


��


uð"; �e
Þ þ !eð"; �e
Þ

��
; ð53Þ

where �e
(") is the distribution function at the coupling parameter 
 and � is
the inverse of the product of the Boltzmann constant kB and the temperature
T. The density functional is then expressed exactly as
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Fe½�eð"Þ� ¼ kBT
Z

d"


�eð"Þ� �e0ð"Þ

�
� �eð"Þlog

	
�eð"Þ
�e0ð"Þ


2
4

� �


�eð"Þ� �e0ð"Þ

�Z 1

0

d
!eð"; �e
Þ
#
; ð54Þ

when u
 is taken so that �e
 varies linearly against 
. Note the parallelism of
Eqs. (51)–(54) to Eqs. (41)–(44). In Eqs. (53) and (54), u and ! are written to
depend on the distribution function �e
, instead of the potential u
, by virtue
of the property of one-to-one correspondence [31]. In the ER, the HNC-type
and PY-type approximations are obtained by assuming the linear depen-
dencies of !e and exp(–�!e)-1 on 
, respectively. Although Eq. (44) is hard to
implement due to the high-dimensionality of (c,x), Eq. (54) is straightfor-
ward to handle since " is one-dimensional.

In the currently used version of the method of ER [30,32,33], the solva-
tion free energy D� is approximately expressed in terms of distribution
functions constructed from �̂e in the solution and reference solvent systems.
In our treatments, the solution system refers to the system in which the
solute molecule interacts with the solvent under the solute–solvent
interaction v of interest at full coupling. In the solution, the average dis-
tribution �e of the v value is relevant in the approximate construction of D�
and is given by

�eð"Þ ¼ ��̂eð"Þ�; ð55Þ

where h� � �i represents the ensemble average in the solution system of
interest. On the other hand, the reference solvent system denotes the
system in which the solute does not interact with the solvent and the
solvent configuration is generated only by the solvent–solvent interac-
tion. At an instantaneous configuration of the reference solvent system,
�̂e is constructed by placing the solute molecule in the system as a test
particle. The average distribution �e0 and the correlation matrix �e

0 then
appear in the approximate functional for D� and are expressed, respec-
tively, as

�e0ð"Þ ¼
�
�̂eð"Þ�

0
; ð56Þ

and

�e
0ð"; �Þ ¼

D
�̂eð"Þ�̂eð�Þ

E
0
�h�̂eð"Þi0h�̂eð�Þi0; ð57Þ

where h� � �i0 represents the ensemble average in the reference solvent
system. In the sampling corresponding to h� � �i0, the solute and solvent
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degrees of freedom are uncoupled from each other in the probability
distribution.

An approximate functional for D� is derived in Ref. [32]. The functional
is constructed by adopting the PY-type approximation in the unfavorable
region of the solute–solvent interaction and the HNC-type approximation in
the favorable region. D� is then given by a set of definitions and equations
listed as

weð"Þ ¼ � kBT log
�eð"Þ
�e0ð"Þ
	 


� "; ð58Þ

we
0ð"Þ ¼ � kBT

Z
d�

�ð"� �Þ
�e0ð"Þ

� ð�e
0Þ� 1ð"; �Þ

	 


�eð�Þ� �e0ð�Þ

�
; ð59Þ
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When Eqs. (58)–(63) are used to evaluate the solvation free energy,
the inputs are the three energy distribution functions �e, �e0, �

e
0 given by

Eqs. (55)–(57), respectively. �e is obtained from a simulation of the solution
system of interest, and �e0 and �e

0 are constructed with a simulation of
the reference solvent system. The approximate scheme provided by
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Eqs. (55)–(63) does not require simulations at the intermediate states of
solute insertion. This leads to substantial reduction in free-energy calcula-
tion. On the other hand, when Eqs. (58)–(63) are used with �e, �e0, �

e
0 obtained

from molecular simulation, a possible artifact in simulation arising, for
example, from the use of periodic boundary condition and/or the handling
scheme of long-range electrostatic interaction is generally retained.

It should be noted that when the solute molecule is inserted into the
reference solvent system, it often overlaps with solvent molecules. The
overlapping configurations contribute to �e0 and �e

0 at large energy coordi-
nates and accounts for the excluded volume effect in the solvation free
energy. In addition, Eqs. (58)–(63) show that the " value itself acts only as
an index for the distribution functions �e0 and �

e
0 when " is large enough and

the corresponding �e is (essentially) zero. The " value in the excluded
volume region is not used in the calculation of D�, except in the construction
of �e0 and �

e
0; D� calculation in the large " region is not affected by the change

of the " value as far as " corresponds to the excluded volume. To see the
origin of this property, we consider a family of solute–solvent interactions u
("), as done around Eq. (50), which are constant over an equienergy surface
of the potential v(c,x) of interest. It is possible to show through a line
parallel to the blip-function method [28] that

�ðD�Þ
�exp



��uð"Þ

� ¼ � kBT exp


�uð"Þ

�
�eð"; uÞ; ð64Þ

where �e(";u) is the ensemble average of Eq. (50) in the presence of the
solute–solvent interaction u("). Here we restrict our attention only to the "
region corresponding to the excluded volume and the set of u(") which are
prohibitively large in that " region. Then, the Boltzmann factor exp(–�u("))
is exponentially small in this region. Further, for a change of u(") within the
set, the corresponding variation of exp(–�u(")) is also vanishingly small. It
then follows that such variations of u(") do not change the D� value. This is
shown by the fact that the right-hand side of Eq. (64) remains to be finite
even when u(") is large as is generally proven in Ref. [28]. Thus, the choice of
the u(") form has no effect on the D� calculation in the excluded-volume
region.

In Figure 9.6, the approximate values of the solvation free energy D� for
typical solute molecules in solvent water are compared to the corresponding
exact values obtained from the FEP method. The (solvent) density of 1.0 g/
cm3 and the temperature of 25 �C is an ambient state, and the densities of
1.0, 0.6, and 0.2 g/cm3 at 400�C correspond to high-, medium-, and low-
density supercritical states. The good agreement is observed between the
approximate and exact values. The agreement is particularly notable at the
medium- and low-density states of 0.6 and 0.2 g/cm3 and 400�C. When the
solute is ionic, the density at the state of 0.2 g/cm3 and 400�C is not yet low
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in the sense, for example, that the hydration number at that state is compar-
able to the numbers at ambient states [71,72]. Even in this case, our approx-
imate procedure is effective in determining the solvation free energy. The
solvation free energies of water at 1.0 g/cm3 and 400�C and of methanol and
ethanol at 0.6 g/cm3 and 400�C are rather small in magnitude. These beha-
viors are caused by the balance between the favorable and unfavorable
contributions of the solute–solvent interactions, and are well reproduced
by our approximate method. Therefore, the single functional given by
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Figure 9.6 The solvation free energy D� calculated by the approximate method of energy

representation and the exact, free-energy perturbation method. The thermodynamic state

is specified by the solvent density and temperature.
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Eqs. (55)–(63) provides an accurate and efficient route to the solvation free
energy for various types of solutes over a wide range of thermodynamic
conditions.

By virtue of Eq. (40), the average sum <u> of the solute–solvent inter-
action energy in the solution system of interest is smaller than or equal to
D�. This means that the density functional Fe is always nonpositive for any
solute–solvent distribution function. Actually, the density functional is a
measure of the “difference” between �e in solution and �e0 in the reference
solvent. It is zero only when �e= �e0. The density functional is expected to be
more negative when �e and �e0 appear more differently. On the other hand,
the first term of Eq. (52) is equal to <u>, and is more negative when �e is
more populated in the low-energy region of ". A typical behavior is that �e0
reduces monotonically toward the low-energy tail. Thus, the first term of
Eq. (52) is more negative when �e and �e0 are more different. This indicates
that the first and second terms of Eq. (52) fluctuate to the same direction
through the variation of re. It is then expected that D� of Eq. (52) converges
faster in molecular simulation than its components expressed as the first
and second terms of Eq. (52). Indeed, usual experience is that when (an
approximate form of) Eq. (54) is employed, the solvation free energy D�
converges faster than the average sum <u> of the solute–solvent interac-
tion energy in solution.

In the ER, the interaction energy between the solute and solvent is
adopted for the one-dimensional coordinate of the distribution func-
tions, and a functional for the solvation free energy is constructed
from energy distribution functions in the solution and reference solvent
systems of interest. The introduction of the energy coordinate for dis-
tribution functions is a kind of coarse-graining procedure for reducing
the information content of the solute–solvent configuration. Since the set
of configurations (structures) with the equal solute–solvent interaction
energies are grouped into a unit in the ER, any approximate functional
built in terms of energy distribution functions cannot violate the statis-
tical-mechanical principle that the configurations with the same solute–
solvent interaction energies contribute to the solvation free energy with
the equal weights.

As seen in Eq. (50), each of the solute and solvent molecules is taken as
a single unit in the ER. The molecule is treated as a whole, while the
coordinate for the distribution functions is one-dimensional. No explicit
reference is made to the detail of the molecular structure by focusing on
the interaction energy. The following advantages then emerge in the
method of ER.

First, the method is straightforwardly applicable to molecules with
intramolecular flexibility. The implementation is indifferent whether the
molecule is rigid or flexible. The information of structural fluctuation of
the molecule is adsorbed when the energy coordinate is introduced by
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Eq. (50). For large molecules constituting micellar, membrane, and protein
systems, it is not allowed to neglect the molecular flexibility. In the method
of ER, an additional and/or separate scheme is not necessary to be formu-
lated for large, flexible species.

Second, the treatment of inhomogeneous system and clusters is straight-
forward. So far, the formulation does not assume the system homogeneity
and the thermodynamic limit. The application to inhomogeneous and/or
finite systems is then possible without modification. The binding of a
molecule to such nanoscale structures as micelle, membrane, and protein
can be viewed as a solvation in an inhomogeneous and finite, mixed solvent
[73,74]. The method of ER can thus be a useful approach to intermolecular
correlation and association important in biological and interface sciences.
Example applications to micellar and membrane systems are presented in
Subsection 3.6.

Third, an accurate treatment is possible for supercritical fluid. In super-
critical fluid, the solvent density and temperature can varied over wide
range and the solvent effect may act as a key to control a chemical process.
It is well-known that supercritical fluid can be described accurately when
the whole molecule is treated as a single unit [28]. A multidimensional
representation is necessary, however, in the usual coordinate space. By
introducing the energy as the coordinate for distribution functions, the
whole molecule can be taken as a single unit with keeping the description
one-dimensional. The approximate functional given by Eqs. (55)–(63) incor-
porates the intermolecular correlation at the two-body level. The solvation
free energy obtained is then exact to second order in the solvent density.
Since the method is exact in the low-density regime, a formulation of a good
approximation in the high-density regime leads to an accurate description
over a wide range of solvent density.

Finally, the combination with the QM/MM methodology can be
performed. In QM/MM calculation, the many-body effect is introduced
for the solute–solvent interaction and is beyond the applicability of
conventional theories of solutions. In the method of ER, the fluctuation
of the electronic state in response to the environment is viewed as a
fluctuation of intramolecular degrees of freedom of the QM solute. The
evaluation becomes feasible for the free energy for the many-body effect
of the electronic fluctuation. In addition, Eq. (50) makes no reference to
the functional form of the potential function. It refers only to the value
of the potential energy, and there is no need for deterioration or
modification of the electronic-state calculation. Thus, the treatment is
possible for an arbitrary distribution of charges. The contraction to a set
of point charges is not necessary, and the effect of the diffuse (cloud-
like) nature of electronic distribution can now be determined. The detail
of the combination with the QM/MM methodology is given in
Subsection 4.3.
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3.6. Application to molecular binding into micelle and
lipid-membrane systems

Micelle is a self-assembled aggregate of amphiphilic surfactants in water. It
involves a hydrophobic core and provides a favorable environment for
organic compounds. Upon formation of a micelle, the solubility is often
enhanced for an organic compound which is insoluble or sparingly soluble
in water. This phenomenon is called solubilization, and is a most important
function of a micelle.

Membrane is a soft, self-organizing aggregate of amphiphilic lipids in
aqueous solution. It distinguishes one side of the solution from the other,
and plays important roles in distribution and transport of a molecule. The
key process toward the membrane function is the binding of a molecule into
membrane.

On the microscopic level, the solubilization and membrane-binding are
common in that they correspond to the transfer of a molecule from bulk
water to the inside (or surface) of a nanoscale, self-organizing structure in
solution. In both cases, the process is quantified by the (standard) free
energy of binding. The binding free energy is determined by the cooperation
and/or competition of the interactions among the surfactant or lipid, the
solute molecule to be bound, and the solvent (water and cosolvents if
present). A unified framework for the free-energy analysis at atomic resolu-
tion is thus desirable to be developed for the molecular understanding and
control of the binding in micelle and membrane.

The basic idea of our scheme is to view a micellar or membrane solution
as a mixed solvent. The surfactant or lipid molecules are treated not as
solute species, but as part of the mixed solvent system. The molecule to be
bound into the micelle or membrane is the only species regarded as the
solute. In this view, the solvation free energy of the solute molecule in a
micellar or membrane solution denotes the free-energy change for turning
on the interactions of the solute with the solvent water, surfactants or lipids,
and counterions if present. The binding is described by the difference in the
solvation free energy between the micellar or membrane system and the
neat solvent (pure water) system. When the host (micelle or membrane) is
dilute, in particular, it is natural to set the origin of the solution at (or near)
the center of the host. The mixed solvent system then consists of the surfac-
tant or lipid molecules forming the host, water, and distributed counterions
(when the surfactant or lipid is ionic). Water is deficient in the interior of the
host, and the surfactant or lipid molecules belonging to the host are loca-
lized around the origin. The mixed solvent is thus inhomogeneous even
before the solute insertion. When the host is micelle, furthermore, the
number of surfactants is finite since the aggregation number is typically
102–104. The micellar solution is partially finite in the sense that the number
is finite for the surfactant (and counterion) involved as solvent species in the
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dilute micellar solution. The point of our scheme is to evaluate the solvation
free energy of a solute in an inhomogeneous and partially finite, mixed
solvent system.

Even when the system is inhomogeneous and partially finite, a formally
exact free-energy calculation is possible by the standard FEP and TI meth-
ods [9,10,28]. These methods are notorious for the heavy computational
demand, however, since an explicit reference needs to be made to the
intermediate states of the gradual variation process of the system. We
combine the large-scale molecular simulation with the method of ER to
evaluate the binding free energy.

The surfactant employed is sodium dodecyl sulfate (SDS) and the lipid is
1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). Their structures
are illustrated in Figure 9.7. The solute molecule is methane, benzene, and
ethylbenzene in the micelle simulation, and is CO, benzene, and ethylben-
zene in the membrane simulation. The computational procedures are fully
described in Refs. [73,74].

In Figure 9.8, we show the density profile of SDS micelle and DMPC
bilayer. Figure 9.8a gives the densities of the hydrophobic tail, the head-
group, and water as functions of the distance r from the micellar center
identified as the center of mass of the dodecyl sulfate anions. Since the
eccentricity of the SDS micelle is small, it is natural to divide the micellar
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Figure 9.7 (a) The structure of the dodecyl sulfate anion. (b) The structure of DMPC. The

molecule is divided into three portions of the hydrophobic tail, glycerol backbone, and

hydrophilic headgroup. In the present work, the division is done as denoted in the figure,

though the diving scheme is always of some ambiguity.
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system into a set of regions on the basis of Figure 9.8a. We introduce six
regions in terms of the center-of-mass distance r of the solute from the
micellar center by concentrically dividing the domain of r < 30 Å with an
equal interval of 5 Å. In the following, the regions are numbered I . . . VI
from the micelle inside to outside. According to Figure 9.8a, the regions I–III
corresponds to the hydrophobic core, where water is scarcely present. The
region IV refers to the headgroup region in contact with water, and is the
transition region from the hydrophobic core to the aqueous region outside
the micelle represented by the regions V and VI.

In the membrane system simulated, the z-axis is taken to be normal to
the plane of the DMPC bilayer and z= 0 is set to the z-coordinate of the
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Figure 9.8 (a) The densities of the hydrophobic tail, the headgroup, and water in the SDS

micellar system as functions of the distance r from the center of mass of the dodecyl

sulfate anions forming the micelle. The density of the hydrophobic tail refers to the sum of

the (number) densities of the methyl and methylene groups of the dodecyl sulfate anion,

and the density of the headgroup is the sum (number) density of the sulfur and oxygen

atoms. The water density is expressed with respect to the center of mass of the water

molecule. Six regions are introduced by dividing the domain of r < 30 Å with an interval of

5 Å, and are numbered I . . . VI from the micelle inside to outside. (b) The densities of the

hydrophobic tail, the glycerol backbone, the hydrophilic headgroup, and water in the

DMPC membrane system as functions of the separation z along the z-axis from the center

of mass of the DMPC molecules. The densities obtained over the positive and negative

z-domains are averaged, and the averaged density is shown against the positive z-abscissa.

The densities of the tail and glycerol refer to the sums of the (number) densities of the

carbons and oxygens contained in the tail and glycerol portions of Figure 9.7b, respectively,

and the density of the headgroup is the sum of the (number) densities of the carbons,

oxygens, nitrogen, and phosphorus in the corresponding portion. The water density is

expressed with respect to the center of mass of the water molecule. Six regions are

introduced by dividing the domain of z < 30 Å with an interval of 5 Å, and are

numbered I . . . VI from the membrane inside to outside.
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center of mass of the DMPCmolecules. In Figure 9.8b, we show the densities
of the hydrophobic tail, the glycerol backbone, the hydrophilic headgroup,
and water obtained from the simulation of DMPC and water without solute.
Since the (converged) distribution of particles is symmetric against the
reflection at z= 0, the density averaged over the positive and negative
z–domains is displayed only against the positive z -abscissa. As done for
the SDS micelle, we introduce six regions of z by dividing the domain of |z|
<30 Å with an equal interval of 5 Å. The regions are numbered I . . . VI from
the membrane inside to outside. According to Figure 9.8b, the regions I and
II correspond to the hydrophobic interior, where water is scarcely present.
The glycerol and headgroup are mainly located in the regions III–V, where
the water density gradually varies. The density profile recovers the bulk
behavior in the region VI, and the thickness of (one leaflet of) the DMPC
layer is �20 Å.

In Figure 9.9, we show the solvation free energy D� of the solute in the
regions I–VI and in the bulk water. The bulk denotes the region far from the
host (micelle or membrane), and D� in the bulk is the solvation free energy
in neat water. Evidently, each hydrophobic solute is free-energetically sta-
bilized in the inside of the host.

When the host is micelle, the distribution within the hydrophobic inter-
ior (regions I–III) is rather diffuse. For benzene and ethylbenzene in the
micelle, the D� difference between the regions IV and I–III shows that these
solutes are localized in the hydrophobic core of the micelle. When the solute
is methane and is bound into the SDS micelle, in contrast, the D� difference
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is small and the probability of finding the solute is appreciable also in the
headgroup region. Thus, the solubilization of benzene and ethylbenzene is
more sharply characterized as a transfer from the aqueous to hydrophobic
environment. For all the solutes examined, the distribution is negligible in
the aqueous regions V–VI outside the micelle. This is a support to the
pseudophase model, and the support is stronger for benzene and
ethylbenzene.

When the host is membrane, Figure 9.9b shows that D� varies by �kBT
within the regions I–IV. A strong tendency of localization is not observed,
and the hydrophilic portion of DMPC also interacts with the hydrophobic
solute. In the SDS micelle, benzene and ethylbenzene are more strongly
localized in the hydrophobic interior. This contrast corresponds, as evi-
denced in the molecular structure of Figure 9.7, to the fact that DMPC
involves methylene and methyl groups in the hydrophilic segment unlike
SDS.

4. COMBINATION OF QUANTUM CHEMICAL METHOD WITH
THEORY OF SOLUTIONS

We have described in Section 2 the techniques related to the quantum
chemical simulations of many-particle systems, while Section 3 has been
devoted to describe methodologies to compute free energy on the basis of
the DFT of solutions. As discussed in Introduction, determination of the
dominant reaction path in a condensed system necessitates the large-scale
simulations based on the quantum chemistry and also a statistical mechan-
ical approach to evaluate the free-energy change associated with the reac-
tion. From this point of view in this section we shall introduce our recent
development termed QM/MM-ER which combines a method of the quan-
tum chemistry and a novel theory of solutions. The several preceding sec-
tions will serve to give concise reviews for other established approaches,
namely PCM [24,25] and RISM-SCF [29], to reveal the characteristics of these
methods.

4.1. Polarizable continuum model method

At present, the PCM is the most popular approach to take into account the
solvation effects in quantum chemical calculations because of its practical
efficiency. In the PCM scheme a solvent is approximated by a continuum
with uniform dielectric constant "which characterizes the solvent of interest
and, then a QM solute enclosed in a void cavity is immersed in the con-
tinuum. The cavity is a fundamental concept in the continuum model, and
its shape and size are crucial to the evaluation of the free energy of solva-
tion. The PCM cavity is constructed by the superposition of atomic spheres
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with radii determined based on the van der Waals values. Several sets of
van der Waals radii are available in the Gaussian package [75]. With the
method of apparent surface charge (ASC) in the framework of PCM the
solvent effects on the QM solute is given by the electrostatic potential due to
the charge distribution induced on the cavity surface.

We illustrate here the procedure to determine the polarization charge of
the continuum in the vicinity of the cavity surface according to the funda-
mental electromagnetism. Suppose that P(r) is a polarization vector at a
point r near the surface, the surface charge � at r is simply expressed as

�ðrÞ ¼ �PðrÞ � nðrÞ; ð65Þ
where n is the normal vector on the cavity surface. The polarization vector P
can be related to the electrostatic field E(r), thus,

PðrÞ ¼ "� 1

4�
EðrÞ ¼ � "� 1

4�
H


FQMðrÞ þF�ðrÞ

�
; ð66Þ

where FQM and F� are the electrostatic potentials due to the QM solute and
the surface charge, respectively. Specifically, F� is written as,

F�ðrÞ ¼
Z
W
ds

�ðsÞ
jr� sj ; ð67Þ

where W represents the cavity surface. From Eqs. (65), (66), and (67) we have
an implicit equation for � as,

�ðrÞ ¼ � "� 1

4�

@

@n
FQMðrÞ þ

Z
W
ds

�ðsÞ
jr� sj

	 

; ð68Þ

where we note that the operator @=@n represents the projection of the
gradient onto the normal vector n. For the numerical convenience in solving
Eq. (68) the cavity surface is divided into an appropriate number of ele-
ments called tesserae. Then, the integral in Eq. (67) is to be approximated by
the discrete summation over the surface elements,

F�ðrÞ ffi
X
k

�k
jr� skj : ð69Þ

�k and sk in Eq. (69) are the charge and position of the kth element, respec-
tively. Owing to the division of the surface, Eq. (68) can be solved by an
iterative procedure. At first we put the potential F�= 0, which means that
the initial guess for �k is taken to be zero for all k. This immediately yields a
new set of {�k} through Eq. (68). The charges thus improved are substituted
to Eq. (69) to generate a renewed electrostatic potential F�. According to Ref.
[24] three or four cycles of the above procedure are usually sufficient to
reach convergence even in the first version of PCM.
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It should be reminded, however, that surface charges {�k} are dependent
on the electron density of the QM solute embedded in the cavity as explicitly
shown in Eq. (68). Importantly, the solute electron density is also to be
polarized in response to the PCM solvent effects represented by Eq. (69).
This mutual polarization between the continuum and the QM solute gives
rise to a nonlinear problem. An intuitive approach to solve this problem is
again to rely on a self-consistent iterative procedure. First, we compute the
QM electron density for the Hamiltonian H0 without solvent effects and,
then optimize the set of surface charges for the density obtained with the
method noted above. The electron density is renewed under the effect of the
surface potential F�. This procedure is iterated until we achieve conver-
gences both in the electron density and the charge set. To be specific for the
quantum chemical calculation, the electronic Hamiltonian with the PCM
effective potential at ith step during the iteration is written as

Hi
PCM ¼ H0 þFi

�ðrÞ; ð70Þ
where potential Fi

� arises from the surface charge {�k
i }. In terms of the

electron density ni(r) derived from the eigenfunction Ci of Eq. (70), we
have the electrostatic potential Fi

QMðrÞ due to the QM solute affected by
the reaction field as

Fi
QMðrÞ ¼

Z
niðr0Þ
jr� r0jdr

0 �
X
�2QM

Z�
jR�� rj ; ð71Þ

where Z� and R� are the charge and position vector of the nucleus � in the
QM solute, respectively.

Let us consider here how to evaluate the free-energy contribution due to
the solute–solvent electrostatic interaction within the framework of PCM.
The interaction energy EQM–� between the solute and the continuum can be
expressed as

EQM�� ¼ �
Z

nðrÞF�ðrÞdr þ
X
�2QM

Z�F�ðR�Þ; ð72Þ

The electrostatic contribution D�el to the solvation free energy is
the work necessary to build up the charge distribution of the solute inside
the polarized cavity. Assuming the linear response in the polarization, we
have

D�el ¼ hCjH0jCi� hC0jH0jC0i þ 1

2
EQM��; ð73Þ

where C0 is the electronic eigenfunction of the solute in the absence of the
continuum. In the construction of Eq. (73) we note that the electronic
distortion energy Edist of Eq. (27) in response to the reaction field is also
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included. The total solvation free energy D�sol can be given by the sum of
D�el and other nonelectrostatic contributions;

D�sol ¼ D�el þ D�cav þ D�dis� rep: ð74Þ
In Eq. (74) D�cav is the cavitation free energy spent in making a void to

embed the solute in the solvent, and D�dis–rep denotes the sum of the
dispersion and repulsion free energies. These contributions are being eval-
uated in the PCM calculations by the equations with empirical basis, for
which we refer the readers to Ref. [24].

We mentioned in Subsection 2.3 that PCM approach can be regarded as a
sort of QM/MM method in a broad sense. It should be emphasized in the
PCM procedure that the polarization of the solute is reasonably coupled
with that of the continuum which serves as a reaction field as illustrated
above. However, there is a serious deficiency that a solvent, that is an
aggregate of the constituent molecules, is to be represented merely by a
continuum with a uniform dielectric constant. Therefore, it is possible that
the solvation effects arising from short-range interactions such as hydrogen
bonds may not be realized adequately within the PCM description. In the
following subsections we will address the alternative routes to overcome the
problem.

4.2. Reference interaction site model combined with the
self-consistent field calculation

A promising approach to recover the proper description of the solvent is to
resort to the DFT of solutions. As described in Subsection 3.3 the solvation
free energy of a solute can be exactly formulated in terms of the distribution
function of the solvent molecules with full coordinate specifying their
orientations and positions. In practice, the distribution function with the
full coordinate is often approximated by a set of site–site RDFs on the basis
of the RISM. It is, then, possible to make sophistication for the solvent effects
in quantum chemical calculation by combining it with the RISM integral
equations in place of the polarizable continuum. We present an outline for
the RISM-SCF approach [29] in the following paragraphs.

The crucial step in the realization of the RISM-SCF scheme resides in the
construction of the effective potential in the electronic Hamiltonian due to
the solvent described by the site–site RDFs. The effective potential of the
solvent at the solute interaction site 
 is given as

V
 ¼ C
X
i

qi

Z 1

0

4�r2
g
iðrÞ
r

dr; ð75Þ

where g
i(r) is the RDF around the QM site 
 for the ith site placed in the
solvent molecule. qi denotes the fractional charge of the solvent site i and C
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is the number density of the solvent. Throughout this Section it is assumed
that the interaction sites are placed on the positions of the nuclei in the
solute. V
 can be considered as the averaged electrostatic potential acting on
the solute site 
 which comes from the solvent fractional charges by its
construction. In terms of the potentials V
 in Eq. (75) the electronic Hamil-
tonian within the framework of RISM-SCF is given in an analogous form
with Eq. (70), thus,

HRISM� SCF ¼ H0 þ
X



b
V
; ð76Þ

where b
 is the population operator for the QM site 
 and it divide the total
electron density into the sites. Of course, there will be several ways for the
population operator. Usually the populations are determined so that they
reproduce the electrostatic potential generated by the electron density
through the least-square fitting (LSF) procedure. By using the population
operator b
 and the potential V
 we obtain the electrostatic potential Ees

induced by the solvent described by the RISM approach as follows,

Ees ¼
X



V
hCjb
jCi;

¼
X



V


Z
n
ðrÞdr;

¼
X



V
Q
:

ð77Þ

where C is the wave function obtained by solving the Schrödinger equation
with the Hamiltonian of Eq. (76) and n
(r) is the electron distribution
assigned to site 
. It is worth noting in Eq. (77) that Ees is simply given as
the summation over 
 of the potentials V
 multiplied by the partial charges
Q
 derived from the population operator b
. Further, we can evaluate the
fractional charge q
 for the solute site 
, thus,

q
 ¼ Z
�Q
: ð78Þ
Once the fractional charges for the solute sites are given, one can introduce
the two-body interaction potential Vuv between the solute and solvent,

Vuv ¼
X

2u

X
i2v

q
qi
r
i

þULJ

i ðr
iÞ

	 

: ð79Þ

In Eq. (79) u and v stand for the solute and solvent molecules, respectively.
ULJ

i is the LJ interaction term of which explicit form is given in Eq. (29). For

the given interaction potential Vuv, the total and direct site–site correlation
functions h
i and c
i for the solute–solvent pairs can be obtained by solving a
set of RISM integral equations as presented in Eq. (47) with the help of a
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closure relation such as the HNC approximation [Eq. (49)]. The total corre-
lation function h
i is related to g
i by Eq. (46). Importantly, the functions g
i
serve to construct the effective potential in the Hamiltonian as shown in Eq.
(75) and the resultant partial charges q
 of the solute affect these correlation
functions through the interaction of Eq. (79). Thus, the QM calculation
should be coupled by the solution of the RISM integral equations in the
self-consistent manner. The numerical procedure to attain the convergence
is parallel to that used in the PCM approach.

After the convergences in the electronic wave function C as well as the
correlation functions g
i the solvation free energy D�sol of the QM solute
within the RISM-SCF method is thus described,

D�sol ¼ hCjH0jCi� hC0jH0jC0i þ D�: ð80Þ
C0 in Eq. (80) is the electronic eigenfunction of the solute and the first two
terms in the right hand represent the electronic distortion energy of the
solute polarized by the solvent. D� is the free-energy contribution due to the
solute–solvent interaction of Eq. (79). It will be valuable to note that the form
of Eq. (80) is essentially identical to that of Eq. (73), which is the free-energy
expression in the PCM method. Specifically, within the HNC approxima-
tion, the free energy D� in Eq. (80) is described in terms of the total and
direct correlation functions h and c as,

D�HNC ¼ � n kBT
X



X
i

Z 1

0

c
iðrÞ� 1

2
h
i

2ðrÞ þ 1

2
h
iðrÞc
iðrÞ

	 

dr; ð81Þ

where kB and T are the Boltzmann constant and the temperature,
respectively.

The notable advantage of RISM-SCF in relative to PCM lies in the fact
that it incorporates the solvent structure into the effective potential by
means of the reduced form of the solvent distribution function, that is the
set of site–site RDFs. However, it should be reminded that RISM itself
suffers from several difficulties arising from the basic strategy that a mole-
cule is treated as a collection of interaction sites as described in Subsection
3.4. In addition, we should pay particular attention on several issues in
RISM-SCF. In obtaining the solute–solvent interaction potential Vuv of Eq.
(79) the solute electron density is being reduced to a set of point charges on
the interaction sites by the population operator. Hence, the spatially diffuse
nature of the electron density of the QM object is completely spoiled. It may
results in serious overestimation of the solute–solvent interactions for an
anionic solute or anionic site of a solute in particular. Concerning this point,
a promising improvement [76] was recently proposed by employing aux-
iliary Gaussian basis set instead of the point charges. Spatial diffuseness of
the solute electron density can be realized by putting the Gaussian functions
at the interaction sites. However, only the s-type functions may contribute to
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the expansion of the density, since the site–site interaction is dependent only
on the radial distance. The second point to be considered is the electrostatic
potential V
 felt by electrons that is formed by the surrounding solvent. As a
consequence of the fact that the full-coordinate solvent distribution is
reduced to a set of site–site forms in the RISM approach, the electrostatic
potential having a certain spatial structure is necessarily confined to the
sites as shown in the integration of Eq. (75). The adequacy of such a reduced
potential should be examined carefully whether it can reproduce the
realistic solute polarization or not.

We now summarize the characteristics of the methods, PCM and RISM-
SCF. The solvation effect by PCM has an obvious limitation arising from its
basis that the solvent is being expressed by a continuum. However, the
electronic Hamiltonian undergoes no limitations in the representation of the
given electrostatic potential. In RISM-SCF, on the other hand, the QM Hamil-
tonian suffers from the constraint in the description of the electrostatic poten-
tial because of the site–site coupling scheme in the RISM approach, even
though the solvation structure can be treated in atomic details.

In the next subsection we will introduce our recent development to com-
pute solvation free energy by combining the QM/MM approach and the
theory of ER of which surveys are, respectively, presented in Subsections 2.3
and 3.5. The feature of the method, namely QM/MM-ER, is that the solute
polarization is realized by the robust description for the solvent molecules,
while the free energy is evaluated by a new distribution function theorywhich
treats a solvent molecule as a single object in contrast to the RISM approach.

4.3. Quantum mechanical/molecular mechanical method
combined with the theory of energy representation

Within the theory of ER, the solvation free energy is exactly formulated in
terms of the distribution functions of the solute–solvent interaction poten-
tial. A notable feature of the new method is that it no longer needs the
concept of the interaction sites as a consequence that a molecule is treated as
a single object. Hence, the diffuse nature of the electron density in a quan-
tum chemical molecule can be naturally incorporated into the free-energy
calculation without any special treatment for it. A simplified description for
the procedure to accomplish the QM/MM-ER calculation [30] is illustrated
as follows. First, a set of QM/MM simulations are carried out to construct
the energy distribution functions for the solute–solvent interaction energy.
These distribution functions are, then, substituted to the approximate func-
tional in the ER to yield the value of the solvation free energy. The strategy is
thus very simple, however, it should be reminded that the standard version
of the theory of ER assumes the solute–solvent interaction to be pairwise
additive, hence a certain treatment must be made in combining the method
with the QM/MM approach that involves many-body interactions.
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To overcome the difficulty we resort to a two-step approach, that is, the
free-energy contribution due to the two-body interaction is evaluated with the
standardmethod of the ER and the remainingminor contribution arising from
many-body interaction is computed separately. The key of this approach is to
construct an intermediate state of theQMsolutewith the electron density fixed
at some distribution. Given that the electron density is frozen and no longer
polarizes in response to the solvent motion, the solute–solvent interaction is
pairwise, and therefore, the method of ER can be applied straightforwardly.
The choice of the intermediate state is somewhat arbitrary, but we adopt the
average distribution of the electron density in solution for the numerical and
conceptual convenience.We formulate in the following the free-energydecom-
position associated with the introduction of the intermediate state.

Within the framework of the QM/MM approach the solvation free
energy D� of a QM solute can be expressed as

expð� �D�Þ ¼

Z
dXexpf� �½Edist þ EQM=MMðn;XÞ þ EMMðXÞ�gZ

dX expð� �EMMðXÞÞ
: ð82Þ

where � is the inverse of the product of the Boltzmann constant kB and
temperature T, and n is the instantaneous electron density of the QM solute
under a given solvent configuration denoted collectively as X. Explicitly, n(r)
is derived from the eigenfunction of the Schrödinger equation of Eq. (25). We
refer the readers to Subsection 2.3 for the details of the terms appearing in
Eq. (82). We decompose the free energy D� into three terms, thus,

D� ¼ �Eþ D��þ ��; ð83Þ

where �E is the average distortion energy Edist, D�� is the solvation free energy
of a QM solute with the average electron density ~nðrÞ in solution, and �� is
the free energy due to the electron density fluctuation around its average
distribution ~nðrÞ. �E and ~nðrÞ are simply the statistical averages which are,
respectively, given by

�E ¼

Z
dXEdist expf� �½Edist þ EQM=MMðn;XÞ þ EMMðXÞ�gZ
dX expf� �½Edist þ EQM=MMðn;XÞ þ EMMðXÞ�g

; ð84Þ

~nðrÞ ¼

Z
dXnðrÞexpf� �½Edist þ EQM=MMðn;XÞ þ EMMðXÞ�gZ
dXexpf� �½Edist þ EQM=MMðn;XÞ þ EMMðXÞ�g

: ð85Þ
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Note that Eqs. (84) and (85) are simultaneously obtained through an ordin-
ary QM/MM simulation. The solvation free energy D�� can be regarded as a
contribution due to the two-body interaction between the QM solute and the
solvent and is expressed by

expð� �D��Þ ¼

Z
dX expf� �½EQM=MMð~n;XÞ þ EMMðXÞ�gZ

dX exp½ � �EMMðXÞ�
; ð86Þ

while the remaining minor contribution �� due to the many body effect of
the QM object can be given by

expð� ���Þ ¼

Z
dX expf� �½ðEdist � �EÞ þ EQM=MMðn;XÞ þ EMMðXÞ�gZ

dX expf� �½EQM=MMð~n;XÞ þ EMMðXÞ�g
: ð87Þ

It can be readily verified that Eq. (82) is exactly reproduced by substituting
Eqs. (86), and (87) to Eq. (83). It should also be noted that Eq. (83) holds
independently of the choice of �E and ~nðrÞ under the definitions of Eqs. (86)
and (87).

Since the solute–solvent interaction is pairwise when the solute elec-
tron density is fixed at a distribution, it is straightforward to construct the
energy distribution functions of Eqs. (55) and (56) as well as the correlation
matrix defined by Eqs. (57) for the solution and pure solvent systems.
Then, the free energy D�� can be readily evaluated by Eq. (60) in terms of
these energy distribution functions. Fortunately, it is expected that the
free-energy contribution D�� due to the two-body interaction will occupy
the major part of the total solvation free energy. The remaining contribu-
tion �� due to the electron density fluctuation around the average distri-
bution ~nðrÞ can also be computed with the method of ER by introducing a
new energy coordinate of � ¼ vðn; xiÞ� vð~n; xiÞ. For the computation of ��
we shall perform additional QM/MM simulations to produce the energy
distribution functions with respect to the energy coordinate �. The details
of the formulation is presented in Refs. [30] and [33]. Here we only list the
relevant equations necessary to evaluate ��. First, we consider the quantity
	 defined as

	 ¼ Edist � �E: ð88Þ

Then, we construct the distribution functions P(	) and P0(	) for the solution
and the pure solvent systems, respectively. Here, the solution system means
the realistic QM/MM system where the electron density of the solute
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fluctuates in response to the solvent motion, while the pure solvent refers to
the system where the electron density is fixed at the distribution ~nðrÞ. Then,
the free energy �� can be exactly written as

�� ¼ �~� þ kBT
Z

d	Pð	Þln Pð	Þ
P0ð	Þ

0
@

1
A

��~¼
Z

d	Pð	Þ�vð	Þ;
ð89Þ

where ��(	) is the conditional free-energy change associated with
the variation from the pure solvent to solution system where the
relation 	 ¼ EdistðnÞ� �E is imposed. The second term of Eq. (89) can
be directly computed by performing the QM/MM simulations. An
approximate expression for �~� can be given by a set of equations
listed as

�~� ¼ � kBT
Z

d�f½�ð�Þ� ~�0ð�Þ� þ �~!ð�Þ�ð�Þ� ~Fð�Þ½�ð�Þ� ~�0ð�Þ�g; ð90Þ

where �: � is the distribution function of the energy � in the solution system
and

~�0ð�Þ ¼
Z

d	Pð	Þ~�0ð�;	Þ; ð91Þ

~!ð�Þ ¼ � kBT ln
�ð�Þ
~�0

ð�Þ
	 


� �; ð92Þ

~�0ð�;	Þ ¼

Z
dX�



	� ½EdistðnÞ� �E�

�X
i
�


�� ½�ðn; xiÞ� �ð~n; xiÞ�

�
�expf� �½EQM=MMð~n;XÞ þ EMMðXÞ�gZ

dX�


	� ½EdistðnÞ� �E�

�
� expf� �½EQM=MMð~n;XÞ þ EMMðXÞ�g

;

ð93Þ

~Fð�Þ ¼
�~! ð�Þ þ 1þ �~!ð�Þ

exp½ � �~!ð�Þ� � 1
½when ~!ð�Þ�0�

8>>>><
>>>>: 1

2
�~!ð�Þ ½when ~!ð�Þ 	 0�: ð94Þ
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In the construction of Eq. (94) the weight factor � in Eq. (63) is simply set to
unity here. This is possible because the “excluded volume region,” where �
is very large, is absent in the present calculation. As a result, the correlation
matrix over the energy coordinate � can be omitted. Thus, the simulation for
the pure solvent system can be shortened considerably. Equations (89)–(93)
are actually not affected by the constant shift of the variable 	. Thus,
although Eq. (88) states that �E is set to the ensemble average of the stochastic
variable Edist, the computation of �� with Eqs. (89)–(94) can be carried out
simply by regarding 	 as the Edist(n) value.

The computational procedure to accomplish the evaluation of the total
free energy D� is summarized by the following three steps.

(Step 1) An ordinary QM/MM simulation is carried out to obtain the
average distortion energy �E and ~nðrÞ which are defined by Eqs.
(84) and (85), respectively.

(Step 2) The energy distribution functions �0("), �0(": �) and �(") for pure
solvent and solution systems are computed for the QM solute with
the electron density fixed at the distribution of ~nðrÞ. These
distribution functions are used as inputs to Eq. (60) to yield free
energy D��.

(Step 3) For the computation of the free-energy contribution �� due to the
electron density fluctuation, the energy distribution functions
~�0ð�Þ, ~�0ð�; 	Þ and �(�) for pure solvent and solution systems are
computed with respect to the energy coordinate �. The distribution
functions P(	) and P0(	) with respect to the electronic distortion
energy 	 are also computed. These functions are used to evaluate
Eq. (89) through Eq. (90). The above procedure is illustrated in
Figure 9.3 for later references.

In closing this subsection, we examine the computational cost of the
present approach by making comparisons with other methods. The QM/
MM simulation is often utilized along with the FEP method or TI for the
free-energy calculations. As described in Subsection 3.1 the approach of FEP
or TI is the numerical realization of the Kirkwood charging formula and it
introduces a number of intermediate states along an arbitrary path connect-
ing the initial and final states of the chemical event of interest. Hence, it
requires numerous configuration samplings to achieve the free-energy con-
vergence along the intermediate points which are physically of no impor-
tance. On the other hand, in the QM/MM-ER method, the ensemble average
is needed only at the initial and final states of the event by the help of an
approximate functional based on the DFT. This substantially benefits the
QM/MM simulation since the quantum chemical calculation requires a
large computational costs in general. In addition, we also note that the
convergences of the energy distribution functions are very rapid by virtue
of the method of ER which treats the solvent molecules as identical objects
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given that they have the same energy coordinate. In contrast, as compared
to RISM-SCF or PCM, the QM/MM-ER approach is more demanding
because the electrostatic potential due to the solvent and the distribution
functions used to compute free energy are to be constructed by means of the
QM/MM simulations. In the next subsections, we present several examples
of the applications of QM/MM-ER and discuss the efficiency and accuracy
of the method.

4.4. Calculation of solvation free energy by QM/MM-ER approach

The major purpose of this subsection is to examine the accuracy of the QM/
MM-ER method by computing the solvation free energy of a QM water
molecule into MM water solvent [30]. The computational details for the
QM/MM simulations are as follows. Two thermodynamic conditions of
water solutions were considered; ambient water (AW: T= 300 K, �= 1.0 g/
cm3) and supercritical water (SCW: T= 600 K, �= 0.3 g/cm3), where the
solvent was described by 255 TIP4P water molecules [77]. We note that
the reduced temperature of 600K for TIP4P model is estimated as
Tr= 1.07. The electronic structure of the QM water molecule is obtained by
KS-DFT that utilizes the real-space grid and the BLYP functional [78,79]. The
Hartree potential in Eq. (12) was computed by utilizing the FFT. The peri-
odicity of the Hartree potential was eliminated by the method of Ref. [80].
The geometry of the QM water molecule used in the QM/MM simulation
was optimized by the Gaussian package with the BLYP functional and the
aug-cc-pVDZ basis set [81]. The obtained geometrical parameters are
OH= 0.975 Å, and HOH= 104.2�. The QM solute was placed at the center
of the cubic QM cell in which each axis was discretized by 32 grids with
equi-intervals. The grid spacing h of the QM cell was set at 0.287 a.u. (0.152
Å), which corresponds to a cutoff energy of 60 a.u. The atomic core regions
were reinforced by the double grids of which spacing was set at 0.2h. Such a
QM cell was embedded in the center of an cubic MM simulation cell with
periodic boundary conditions. The molecular configurations for the solvent
were sampled in NVT ensemble through molecular dynamics simulations
where Newtonian equations of motion for the particles were solved by the
leap-frog algorithm with a time step 1.0 fs and the velocity rescaling was
used for the temperature control [9,10]. The long-range interaction between
MM charges was calculated by the Ewald method [82] and a cutoff distance
of the LJ potential was set at half of the box length.

Next, we present the details for the construction of the energy distribu-
tion functions. The average electronic distortion energy �E and the electron
density ~nðrÞ in Step 1 of Figure 9.10 were obtained by a 50-ps QM/MM
simulation after 5-ps equilibration. Subsequently, the QM/MM simulation
for the solute with the electron density fixed at ~nðrÞ were performed to
construct the energy distribution functions �("), �0("), and �0": �: (Step 2 in
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Figure 9.10). Typically, 100-ps and 200-ps simulations were carried out for
the solution and the pure solvent systems, respectively. To see the effect of
the electron density polarization, we also made the energy distribution
functions for the solute with nonpolarized electron density (electron density
at the isolation). We note that the energy distribution functions were con-
structed for the solvent molecules of which oxygen atoms were within a
spherical cavity with a radius of 9 Å. The center of the cavity was taken at
the oxygen of the QM water molecule. These distribution functions were
substituted to Eq. (60) to compute free-energy contribution D�� originating
from pairwise interaction in the solute–solvent interaction [Eq. (86)]. The
additional QM/MM simulations (Step 3 in Figure 9.10) were also performed
to compute free energy �� described in Eq. (87) due to the many-body
effects in the QM object. To compute free energy �� a set of the energy
distribution functions was constructed with respect to the energy coordinate
� ¼ �ðn; xiÞ� �ð~n; xiÞ as described in the previous subsection.

We summarize the results of the QM/MM-ER simulations in Table 9.1.
D��np denotes the free-energy change due to the solvation of the nonpolar-
ized solute. It can be readily recognized that the free energies D��np make the
major contributions both in the AW and SCW. On the contrary, it turned out
the net contributions of the electron polarizations, which may be given by
D��pol � �E, are much smaller than the free energy D��np. The free-energy
changes �� due to the electron density fluctuation of the QM solutes in the
solutions of AW and SCWwere estimated as –1.2 and –0.9 kcal/mol, respec-
tively. It is worth noting that the free energy �� in the SCW amounts to

1. QM/MM
Output

Energy distribution functions

E and ñ(r) [Eqs. (84) and (85)]

[Eq. (60)]

[Eq. (89)]

[Eq. (83)]

ρ(ε), ρ0(ε),
and χ0(ε,η)

Output

Output
3. QM/MM

2. QM/MM with ñ(r)

–

– –

Δμ–

Δμ = E + Δμ + δμ

δμ
ρ(ζ), ρ0(ζ),
and σ0(ζ,φ)

~
~

Figure 9.10 Flow chart for the procedure to compute solvation free energy by means of

the QM/MM-ER approach. See the text for the detailed description for the energy

distribution functions.
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almost 40% of the total solvation free energy of –2.5 kcal/mol and is com-
parable to that in the AW although the average distortion energy �E in the
SCW (1.0 kcal/mol) is smaller than that in the AW (3.5 kcal/mol). This result
implies the frequent occurrence in the SCW of the asymmetric hydration to
the solute because absolute of �� becomes larger when the instantaneous
electron density n(r) in the solution deviates largely from the symmetric
distribution ~nðrÞ. Thus, it was revealed that the electron density fluctuation
also plays a role in the solvation especially in the SCW. As a sum of these
contributions, the total excess chemical potentials of the QM water mole-
cules in the AW and SCW were obtained as –7.0 and –2.5 kcal/mol, respec-
tively. These values are in excellent agreement with those determined by
experiments as shown in Table 9.1, suggesting the adequacy of the QM/
MM-ER method for the computation of the solvation free energy.

In a strict sense, the accuracy of the method should be examined by
comparing the results with that obtained by a certain numerically exact
method such as QM/MM combined with FEP. Of course, the same levels
of theory in quantum chemistry must be used in the computation. Such a
calculation is, however, very much costly to perform. QM/MM-FEP may
require two orders of magnitude more computational cost than the QM/
MM-ER to achieve the free-energy convergence. We circumvent the explicit
evaluation of the QM/MM interaction by reducing the electron density ~nðrÞ
to a set of point charges placed on the nuclei of the solute. The point charges
were optimized by the least square fittings so that they reproduce the
electrostatic potentials due to ~nðrÞ at the sample points. We obtained the
charges –0.90 and þ0.45 at oxygen and hydrogen, respectively. Given that
the set of point charges adequately reproduce the electrostatic field formed
by ~nðrÞ, the FEP calculation using these charges may yield the free-energy
change that deserves for the comparison with the value D��np þ D��pol
obtained by the QM/MM-ER method. The value computed by FEP

Table 9.1 Solvation free energies of QM water molecules in MM water solvents and their

components in AW and SCW

D��

�E D��np D��pol �� D� D�expa

AW 3.5 –4.5 –4.8 –1.2 –7.0 –6.3
SCW 1.0 –2.0 –0.6 –0.9 –2.5 –2.2b

Note: The units are in kcal/mol.
a The international association for the properties of water and steam, 1997, IAPWS Industrial Formulation 1997 for
the Thermodynamic Properties of Water and Steam, Erlangen, Germany.

b The experimental value is taken at the same reduced temperature as the TIP4P value.
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(–8.8 kcal/mol) for the AW showed excellent agreement with that given by
QM/MM-ER ( D��np þ D��pol = –9.3 kcal/mol).

Before closing this subsection, we also describe other several applica-
tions performed in our previous works. The free-energy change associated
with the isomerization of glycine from neutral (NT) to zwitterionic (ZW)
form in water was computed as –7.8 kcal/mol by the present method [35],
which is in good agreement with the reported experimental value, –7.3 or
–7.7 kcal/mol. According to the PCM calculations by the Gaussian package
[75], the free energy was estimated to be 1.4 kcal/mol which indicates that
the NT glycine is more stable than the ZW one even in water as opposed
to the experimental observation. Thus, we found that explicit consideration
of the solvent structure is crucial for the correct description of the relative
stability of glycines. By the analysis using the RDFs, it was also revealed that
the point charge representation for the anionic site in the ZW glycine gives
rise to the serious overestimation of the solute–solvent interaction in con-
trast to the cationic site. This suggests that the neglect of the diffuse nature
of the electron density may lead to erroneous results in some cases. In Ref.
[36] it was shown that the QM/MM-ER approach is adequate to predict the
even the slight difference in the free energy associated with the anti/syn
conformation change for acetic acid in aqueous solution. Further, in Ref. [38]
the relative acidity of acetic acid with respect to water was determined in
good agreement with the experimental value. We refer the readers to these
chapters for more details.

4.5. Calculation of reduction free energy by QM/MM-ER
approach

The chemical reaction in biological system is undoubtedly one of the most
attracting subjects for the applications of the QM/MM-ER approach. How-
ever, we may encounter some difficulty in extending the method to a
chemical event in a protein immersed in water. Since the solvation free
energy of a protein amounts to a large negative value, in general, it is
numerically problematic to evaluate the reaction free energy in terms of
the solvation free energies of the proteins in the initial and final states of the
reaction. In this subsection we will propose a methodology to compute free-
energy change for an electron transfer (i.e., oxidation and reduction) reac-
tion in solutions or proteins [40,41]. To circumvent the problem noted above
we take a novel approach within the framework of QM/MM-ER, where
only the excess charge involved in the redox reaction is regarded as a solute.
We shall introduce a redox system [flavin adenine dinucleotide (FAD)] for a
test calculation. Then, the free-energy change associated with the one-electron
reduction of FAD will be computed by extending the QM/MM-ER approach.
The validity of the novel method will be examined by performing a
conventional method.
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It is known that coenzyme FAD plays a key role in the redox reaction
under the influence of various apoproteins and the isoalloxazine ring in
FAD acts as an electronically active site. Hereafter, we refer the isoalloxazine
ring to flavin ring for simplicity. In the present work, we focus our attention
on the reaction of one-electron reduction. The ball and stick illustration for
the FAD as well as the flavin ring are shown in Figure 9.11. In the previous
elaborate work [83] Q. Cui carried out the QM/MM FEP calculations for
the reduction free energy of the same system. A notable feature of
their approach is that they employed a coupling scheme termed as the
dual-topology-single-coordinates scheme, in which the initial (oxidized) and
the final (reduced) states of the solute are forced to adopt the same molecular
geometry during the perturbation simulation. They circumvented the pro-
blem associated with the QM object with fractional electrons appearing in
the intermediate points between the oxidized and reduced states by intro-
ducing separate copies of the two chemical states in the total energy. Their
approach is numerically rigorous, however, the computational effort is
twice as large as the conventional QM/MM FEP scheme. In the QM/MM
simulations, they resorted to the self-consistent-charge–density functional
tight-binding (SCC–DFTB) method [84] in which approximations are made to
the two-electron integrals to expedite the quantum chemical calculations.
In contrast to their approach, our present method requires the QM/MM
simulations only for the initial and final states of the reduction process and,

FAD Adenosine

Ribitol

7,8-Dimethyl
isoalloxazine ring

Flavin ring

Ribitol

(b)(a)

Figure 9.11 Ball and stick illustrations for the (a) flavin adenine dinucleotide (FAD) and the

(b) flavin ring. The two methyl groups in the 7,8-dimethyl isoalloxazine ring in FAD are

replaced by hydrogen atoms in the construction of the flavin ring to reduce the

computational cost in the present calculation.
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hence, the computational cost is much more modest. In the following, we
present an outline of the methodology with some formulations on the basis
of the QM/MM-ER approach.

To avoid the unnecessary complications, we consider here the system
where the flavin ring is immersed in water. We note that the computational
procedure as well as the formulation are essentially the same with those for
the protein system. In applying the QM/MM-ER approach to the reduction
process in water, the flavin ring is described quantum chemically, while the
solvent water molecule is represented by a classical model. Then, the reduc-
tion free energy D�red can be expressed in terms of the energy components
in Eq. (24), thus,

expð� �D�redÞ ¼

Z
dX exp



� �


ENþ1
QM þ ENþ1

QM=MMðnNþ1;XÞ þ EMMðXÞ
��

Z
dX exp



� �


EN
QM þ EN

QM=MMðnN;XÞ þ EMMðXÞ
�� :

ð95Þ
where the notations of Nþ1 and N specify the systems in the reduced and
oxidized states, respectively. In Eq. (95) the electron density of the isoallox-
azine ring is denoted by n and the instantaneous molecular configuration of
the MM subsystem is collectively expressed as X. To adopt the method of
the ER for the computation of D�red, only the excess charge is treated as a
solute and the flavin ring and water molecules are regarded as a mixed
solvent. Here, we introduce the energy coordinates for these two kinds of
solvent with respect to the solute, that is, excess charge. The energy coordi-
nate for the QM object (flavin ring) can be introduced by defining the
interaction potential vQM between the excess charge and flavin ring as

vQM ¼ hCNþ1jHNþ1
0 jCNþ1i� hCNjHN

0 jCNi; ð96Þ
where C stands for the electronic wave function and H0 represents the
electronic Hamiltonian including the nuclear repulsion energies in the
absence of the electrostatic potential of the surrounding water solvent.
Note that CN: 1 is obtained as the eigenfunction for the following Schrödin-
ger equation, 


HNþ1
0 þVESðXÞ

�
jCNþ1i ¼ ENþ1jCNþ1i: ð97Þ

In Eq. (97) VES is the electrostatic potential formed by the point charges
placed on the interaction sites of the water molecules of which full coordi-
nates are collectively represented by X. The equality also holds for the
equation obtained by replacing the notations Nþ1 in Eq. (97) by N. The
interaction potential vQM in Eq. (96) is interpreted as the energy difference
between the electronic states for the reduced and the oxidized solutes
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excluding the stabilization energies due to the hydrations. Next we intro-
duce the energy coordinate for a water molecule. The interaction potential
viMM between the excess charge and ith water molecule is given by

viMM ¼
X
�

qi;�

Z
dr

nexcessðrÞ
jr�ri;�j ; ð98Þ

where qi,� denotes the point charge in the unit of elementary charge of �th
site placed on ith water molecule and ri,m is the position vector of the site.
nexcess(r) in Eq. (98) is the electron density of the excess charge attached on
the flavin ring and is defined as the difference between the electron densi-
ties derived from the wave functions CN: 1 and CN. The energy distribution
functions defined by Eqs. (55) and (56) are constructed for both the interac-
tion energies vQM and viMM given by Eqs. (96) and (98), respectively.

Here we describe in detail the reference and the solution systems for
which the energy distribution functions are constructed. In the novel
approach where the excess charge itself is being treated as a solute, the
reference system consists of the oxidized flavin ring and the surrounding
solvent water molecules, while the solution system is composed of the
reduced ring and the water molecules. In the reference system, solvent
configurations are sampled under the condition that the excess charge is
absent in the computation of the forces between the flavin ring and water
molecules. On the other hand, the interaction between the water molecules
and the excess charge is taken into consideration in generating the config-
urations of the water molecules in the solution system. The individual
energy distribution functions �QM(") and �MM(") for the QM and MM
molecules are separately being constructed during a QM/MM simulation.
The total energy distribution function �(") for the mixed solvent system can
be given as the sum of these distributions, thus, �(")= �QM(") þ �MM("). The
same is true for the energy distribution �0(") in the reference system. Then,
the reduction free energy D�red can be evaluated by substituting these
distribution functions into Eq. (60). Of course, the individual free-energy
contributions from the QM or the MM solvents can also be obtained for-
mally by using the corresponding energy distribution functions for these
solvent molecules. It should also be noted that the correlation matrix of Eq.
(57) used in the approximate functional to evaluate the integral of !(";
) in
Eq. (54) is no longer necessitated since the excess charge does not possess
the effective exclusion volume. This leads to the fast convergence in the free
energy since the one-dimensional distribution is much faster in convergence
than the two-dimensional correlation matrix.

Computational setup for the QM/MM-ER simulation is as follows. The
molecular geometries for the QM molecules, that is, the reduced and the
oxidized flavin rings, were optimized by the Gaussian package [75] with
the hybrid UB3LYP functional [79,85] and the aug-cc-pVDZ basis set [81].
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The mass center of QM molecule was adjusted to the center of a water
droplet that was confined within a spherical cavity by a van der Waals
wall. The solvent consists of 676 TIP3P water molecules [77]. In the real-
space grids QM/MM simulations the grid spacing was set at 0.314 a.u. The
exchange and correlation energy of electrons were approximately evaluated
by the BLYP functional. Molecular configurations of the oxidized and
reduced flavin rings were kept fixed during the QM/MM simulations.
The LJ parameters in CHARMM 22 force field [86] were assigned to the
atoms in the QM molecule to compute the LJ interactions between the QM
and MM subsystems. The molecular configurations of the water solvent
were sampled by performing the molecular dynamics simulations where
the Newtonian equations of motions for the water molecules are solved
numerically by using the Verlet algorithm [9,10]. To obtain ensemble
averages for the energy distribution functions, 55-ps QM/MM simulations
were performed for the solution and the reference systems where the first
5-ps simulations were discarded as equilibration. The energy distribution
functions for water solvent were constructed for the water molecules within
a sphere of radius of 15 Å of which center was adjusted to the mass center of
the flavin ring. The thermodynamic condition of water solution was set at
T= 300K and �= 1.0 g/cm3. In the next paragraphs we present the results
for the QM/MM-ER simulations performed in the water solution.

The one-electron reduction energy D�red of flavin ring in the gas phase
was obtained as –49.3 kcal/mol at the UB3LYP/aug-cc-pVDZ level, while it
has been computed as –45.7 kcal/mol at the UBLYP/aug-cc-pVDZ level by
adopting the same molecular geometries. Thus, it was found that a GGA
functional that includes no exact exchange underestimates the absolute of
the reduction energy D�red as compared with the hybrid functional. Our
code using the real-space grids provided D�red= –45.1 kcal/mol with
UBLYP functional, which agrees well with the value given by a Gaussian
basis set. The energy distribution functions �QM("), and �QM(") for the QM
object in the solution and the reference systems are drawn in Figure 9.12a. It
is shown that the energy distribution in the solution system locates on the
lower region of the energy coordinate as compared with the reference
system. It suggests that the electron affinity of the flavin ring is enhanced
by the hydration. The free-energy contribution D�red(QM) from the flavin
ring has been estimated to be –39.5 kcal/mol. In Figure 9.12b the energy
distribution functions �MM("), and �MM(") for the interactions between the
excess charge and the water solvent are presented, in which the distribu-
tions �QM("), and �QM(") are also shown for comparisons. As expected the
interaction between the excess charge and the water solvent is enhanced in
the solution system as compared with the reference system. This is simply
because the water molecules behave in the presence of the excess charge on
the flavin ring in the solution system as opposed to the reference system. It
should be stressed here that there exists a positive correlation between the

344 H. Takahashi et al.



two kinds of solute–solvent interactions. In other words, the increase in the
stabilization between the solute (excess charge) and water molecules results
in the increase in the electron affinity of the flavin ring. This may be
attributed to the electron drawing effects of the water molecules which are
oriented to the two oxygen atoms in the flavin ring. It would be valuable to
note that the same effect can be expected for the flavin ring bound to an
apoprotein cholesterol oxidase (PDB: 1b4v) for instance. As shown in
Figure 9.13 two amino acid residues in the 1b4v, Met122 and Phe487, are
found to form distinctive hydrogen bonds at the two oxygen atoms. The
reduction free energy D�red(MM) due to the hydration has been computed
as –40.6 kcal/mol which includes the free-energy contribution of –10.9 kcal/
mol estimated by the Born’s equation [87] from bulk water outside the
spherical cavity. Thus, the total reduction free energy D�red has been
obtained as –80.1 kcal/mol by the sum of these contributions.

The adequacy of the novel approach which treats the excess charge as a
solute was examined by performing the conventional approach. To clarify
the difference between the novel and conventional approaches, we present
schematics in Figure 9.14. In the conventional approach, the oxidized or
reduced flavin ring itself is regarded as a solute. Then, the reduction free
energy D�red in solution can be described in terms of the solvation free
energies of the individual solute molecules with the help of the
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thermodynamic cycle. The solvation free energies are, of course, computed
by QM/MM-ER with the scheme presented in the preceding subsection.
The computational setup to compute free energy is identical to that used in
the calculation of novel approach described above. The solvation free ener-
gies for the oxidized and reduced flavin rings are obtained as –19.1 and
–55.0 kcal/mol, respectively. Then, the free energy D�red becomes
–81.0 kcal/mol by adopting the value of D�= –45.1 kcal/mol. Thus, we
found that the reduction free energy of –80.1 kcal/mol given by the novel
approach agrees well with the value of –81.0 kcal/mol by the conventional
one. This clearly demonstrates that the novel method is adequate enough to
compute the reduction free energies in solution.

It is quite straightforward to extend the method to the computation of
reduction free energy D�red for FAD embedded, for instance, in the choles-
terol oxidase 1b4v. The major difference arising in the extension to the
protein system is only that the number of kinds of solvents increases from
two to four. The solvents in the protein system are, specifically, apoprotein
that encloses the FAD, water molecules surrounding the protein, the flavin
ring to be described by quantum chemistry, and the part of FAD excluding
the flavin ring. Correspondingly, we shall construct the energy distribution

Met122

1.983

1.873

1.912

Ribitol

Phe487

Figure 9.13 Illustration for the 7,8-dimethyl isoalloxazine ring and the neighboring amino

acid residues, Met122 and Phe487, that are embedded in the apoprotein of cholesterol

oxidase 1b4v. The molecular configuration is obtained by adding the hydrogen atoms on

the molecules with the PDB structures. The shaded region in the figure represents the

ribitol part of FAD. The hydrogen bonds between the amino acid residues and the

isoalloxazine ring are drawn by blue broken lines. The lengths of the hydrogen bonds are in

the units of angstroms.
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functions for the excess charge, �PRO("), �W("), �QM("), and �FAD("). The total
energy distribution function �(") is simply given by the sum of these dis-
tributions in analogous to the above application. Owing to the fact that the
energy distribution function can be divided into the components, the reduc-
tion free energy can also be decomposed formally into contributions from
various solvents. As noted in the preceding paragraph, the solution system
is regarded as the system in which the configurations of the solvent mole-
cules are sampled under the influence of the excess charge located on the
flavin ring. In the reference system, on the contrary, solute–solvent interac-
tion is being switched off in the molecular simulations to construct the
energy distribution functions.

5. CONCLUSIONS AND PERSPECTIVES

The free energy change plays an essential role in the study of the reaction
mechanism in a condensed system since it governs the reaction pathway. It
is, therefore, desirable to develop an efficient algorithm of quantum chem-
istry in combination with a statistical mechanical theory. Our recent devel-
opment for the solution to this problem is to combine the hybrid QM/MM-
ER. A notable feature of our method in the description of the QM subsystem
is that the real-space grid approach is utilized to achieve high performance

Present approach Conventional approach

free electron

Aqueous solution Aqueous solution

e–

e–

e–

Δμ red

Δμ 0, red

Δμ sol(Ox.) Δμ sol(Red.)

Δμ red

Figure 9.14 Schematics to illustrate the concepts of the two different approaches to

compute reduction free energy D�red of flavin ring immersed in aqueous solution. D�red is
directly evaluated in the present approach by treating the excess charge as a solute in the

QM/MM-ER simulation, while in the conventional approach it is computed with the help

of the thermodynamic cycle.
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in the parallel computations of the KS-DFT. By virtue of the local nature of
the operators in the effective Hamiltonian, the real-space grids method
affords us a high parallel efficiency even on a cheap work station cluster
with distributed memory architectures. The QM/MM method has so far
been applied to various chemical reactions in solutions or biological systems
and the efficiency and the adequacy has been well established. In the theory
of ER, the distribution functions of the solute�solvent interaction energy
serve as fundamental variables to describe the solvation free energy within
the rigorous framework of the DFT of solutions. The major obstacle in
combining QM/MM and the method of ER arises from the treatment of
the many-body effects inherent in the QM/MM interactions. Our strategy is
to introduce an intermediate state where the electron density is fixed at its
average distribution in solution to make the solute�solvent interaction pair-
wise additive. Then, the contribution due to the two-body interaction to the
solvation free energy can be computed straightforwardly with the standard
method of the ER. The remaining minor contribution can also be computed
separately by constructing energy distribution functions on another energy
coordinate. The efficiency and accuracy of QM/MM-ER were demonstrated
by performing the computations for solvation free energies as well as free-
energy change associated with chemical reactions in solutions. Furthermore,
in this chapter we presented the novel approach to compute reduction free
energy of a molecule in solution by treating the excess charge to be attached
on the molecule as a solute in the framework of the method of ER. Such a
treatment is advantageous when it is applied to protein system because it
enables ones to circumvent the direct evaluation of the protein’s solvation
free energy which may amount to a large negative value. The adequacy of
the method were examined for the reaction in aqueous solution by perform-
ing the conventional simulation based on the thermodynamic cycle. The
reduction free energy of the active site of FAD, that is flavin ring, immersed
in AW was computed as �80.1 kcal/mol by the novel approach, while the
conventional approach provided the value of �81.0 kcal/mol. Such a good
agreement suggests the accuracy of the novel approach. The extension of the
method to a protein system with the redox cofactor is straightforward.

We emphasize that the idea treating an excess electron as a solute can be
introduced only upon the concept of energy coordinate. The encouraging
results thus obtained indicate the possibility that our approach can be
extended systematically to a variety of biological reactions. We are now
going to construct a unified methodology for reactions of significant impor-
tance. Our next subject to be studied is the proton affinity of an amino acid
residue embedded in a protein. pKa of the amino acid residue is obviously
an important information which plays an essential role in determining the
reaction mechanism and the protein structure as well. The binding free
energy at the active site is considered to be one of the most important
quantities in the rational drag design. It is obvious that development of an

348 H. Takahashi et al.



efficient algorithm to determine the substrate-protein binding free energy
will make a great impact in the field of computational drag design. The
present approach can also be applied to the computation of the ligand-
binding free energy. Thus, it is expected that the application of the QM/
MM-ER approach will give substantial contributions to wide variety of
fundamental chemistry and also to the biological science.
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1. INTRODUCTION

Atomistic simulations and molecular modeling of complex biomolecular
phenomena remain challenging, despite recent advances in computational
capacity. Molecular mechanical (MM) methods have enabled us to perform
molecular dynamics (MD) simulations of enormous chemical as well as
biological systems, up to a few hundred thousand atoms. However, the
molecular mechanical force fields are unable to describe the changes in the
electronic structure of a system undergoing a chemical reaction. To meet
this need, quantum mechanical (QM) methods need to be employed to
account for bond breaking and bond forming, charge transfer, and electro-
nic excitation. Unfortunately, QM methods are only applicable to relatively
small systems, up to several hundred atoms, due to their prohibitive
expense for large systems of, say, thousands of atoms.

A natural solution to this dilemma is to combine QM and MM together
as a powerful hybrid entity. The combination of QM andMM, often denoted
as QM/MM, allows us to investigate large and complicated systems at a
reasonable cost while still yielding necessary accuracy. Seminal contribu-
tions to the QM/MM methods, pioneered by Warshel and Levitt [1] and
Singh and Kollman [2], have blazed the trail for the efforts that followed.
Their early work was improved on by Field et al. [3] through the introduc-
tion of electrostatic embedding into the QM region. Since then, development
of QM/MM methodology has become a red-hot subject [4�26] and its rapid
growth and successful applications have greatly facilitated insightful under-
standing of the chemical properties of solutes in solution [27�37], chemical
catalysts [38�45], and biological molecules [46�104].

Besides its wide use in the study of inorganic and organic chemical
reactions, QM/MM has proven to be extremely successful in the study of
biochemical, especially enzymatic, reactions and therefore has been widely
applied in this field. Numerous reviews have been devoted to overviews of
QM/MM studies of biochemical reactions over the last 20 years
[44,105�117]. In view of QM/MM’s remarkable importance in theoretical
studies of biological systems, the present review chapter is primarily dedi-
cated to QM/MM methodology and applications pertaining to biorelevant
processes.

In this chapter, essential concepts and related techniques are first intro-
duced as the basis of QM/MM methods. Following the introduction of
methodology, a brief review of QM/MM applications is provided, high-
lighting a state-of-the-art application in enzymatic catalysis. Methodologi-
cally, this chapter is loosely split into three parts. The first deals with
standard definitions of different terms in the effective Hamiltonian, with
approaches to the decomposition of the system into classical, coupled, and
quantum terms. The second part deals with innovations in techniques for
optimizing geometries, for defining reaction paths and for locating
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transition states (TSs). The content of this part fits well into the rich tradition
of quantum chemistry and its application to studies of chemical kinetics.
The third part focuses on approaches that have to deal with a large number
of degrees of freedom and yet have to treat at least part of the system
quantum-mechanically. The methodology arises from the classical
approaches of statistical mechanics (ensembles, collective variables and
the projector�operator formalism) or quantum statistical mechanics (path
integral (PI) methods and quantum Monte Carlo (MC) approaches). To
include effects of the environment on different chemical processes ranging
from chemical reaction paths to ion solvation, one has to evaluate the free
energy of the process. Collective variables and their averages are evaluated
for a particular statistical ensemble and the QM treatment for part of the
system provides the desired level of detail. The need for a good statistical
description of the most relevant ensemble properties gives rise to different
enhanced sampling techniques. One of the goals for this chapter is to
provide the reader with answers to “Frequently Asked Questions” regard-
ing the utilization of QM/MM techniques in studies of chemical reactions
taking place in the condensed phase based on numerous examples found in
enzymology, ion channels and transporters, and theoretical and physical
chemistry.

2. BASIC CONCEPTS OF QM/MM METHODOLOGY

Before going any further, it is useful to introduce an effective Hamiltonian
that can be used for the description of the system’s energetics and dynamics.

In a typical QM/MM scheme, a system is usually divided into two
subsystems: the QM subsystem treated by “high-level” QM methods and
the MM subsystem treated by “low-level” force field-based methods. The
boundary between these two subsystems distinguishes the QM region from
the MM region. Ideally, partition of the system should not cut any covalent
bonds to ensure the completeness of the QM subsystem. However, crossing
covalent bonds is often unavoidable for large molecules, such as polymers
and proteins. Here we will use the link atom (LA) method to illustrate the
general features, returning to some issues arising from the boundary after
the Hamiltonian is introduced.

In order for a QM/MM calculation to mimic the real system the QM
chemical structure has to be complete, that is, no dangling bonds are
permitted. An intuitive way to remedy a dangling bond is to cap it with
an artificial atom, which gives rise to the so-called LA approach
[2,3,13,17,53,118]. In this approach, an additional atom, as a link between
the QM and MM regions, is added to saturate the QM frontier atom at one
end of the cut covalent bond. The LA scheme is illustrated in Figure 10.1.
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This LA in most cases is a hydrogen atom because of its simplicity and
practicality.

2.1. Energy expression

Two general schemes have been proposed in order to eliminate the artificial
interaction between the LA and the other QM atoms and that among
LAs—an additive scheme and a subtractive scheme.

2.1.1. Subtractive scheme
In the subtractive scheme, the QM subsystem with the LA (QMþL) is
calculated on both QM and MM levels and the entire system (S) without
the LA is treated on the MM level. The energy expression is then

EðSÞ ¼ EMMðSÞ þ EQMðQMSþ LÞ�EMMðQMSþ LÞ: ð1Þ

Since EMM(S) is the summation of the QM subsystem without the LA
(QMS), the MM subsystem (MMS) and the interaction between the two
(QMS–MMS),

EMMðSÞ ¼ EMMðQMSÞ þ EMMðMMSÞ þ EMMðQMS�MMSÞ: ð2Þ

In the same fashion, we also have

EMMðQMSþ LÞ ¼ EMMðQMSÞ þ EMMðLÞ þ EMMðQMS�LÞ: ð3Þ

Substituting Eqs. (2 and 3) into Eq. (1), EMM(QMS) is canceled and this gives

EðSÞ ¼ EMMðMMSÞ þ EMMðQMS�MMSÞ þ EQMðQMSþ LÞ
� ½EMMðLÞ þ EMMðQMS�LÞ�: ð4Þ

OH
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H

Figure 10.1 Illustration of the LA scheme using ethanol as an example, in which the methyl

group is treated as the MM subsystem and the rest is QM.
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Now it is evident that the correction comes from the last subtractive term in
Eq. (4), which is expected to cancel the LA contribution in EQM(QMSþL).
The foregoing derivation has been clearly shown in the work of Bakowies
and Thiel [9]. This subtractive scheme was implemented by Morokuma and
coworkers in their IMOMM [12] and ONIOM [17,119] protocols.

The upside of this scheme lies in its simple and implicit cancellation of
the unwanted artifacts of the LA. Nevertheless, its downside also resides in
this cancellation, as it is controversial whether the LA contribution at the
QM level can be balanced by that at the MM level. Another drawback is
the implied QM–MM interaction calculated at the MM level as indicated
by the second term in Eq. (4).

2.1.2. Additive scheme
To explicitly calculate the QMS–MMS interaction on the QM level, an
additive scheme has been reported. It is formulated as

EðSÞ ¼ EMMðMMSÞ þ EQMðQMSþ LÞ þ EQM½ðQMSþ LÞ�MMS�: ð5Þ
The last term in Eq. (5) accounts for the coupling between QM and MM
subsystems. It consists of electrostatic, van der Waals, (vdW) and bonded
interactions between QM and MM atoms, all of which will be detailed in
following sections. This additive scheme is employed in the majority of
QM/MM implementations [1–4,6,9,13,20,53,120].

Comparing Eq. (4) with Eq. (5), one can see two obvious differences. First,
the subtractive term in Eq. (4) is omitted in Eq. (5), because EMM(L) is
generally considered very small and thus makes little contribution to the
total energy. And EMM(QMS�L) is usually regarded as a constant as its
distance from the QM boundary atom is fixed in most boundary schemes
[115]. Therefore, when calculating the energy difference instead of the abso-
lute energy, the LA’s contribution should be mostly canceled out. Second, the
QMS–MMS coupling may be calculated at the QM level, as indicated by the
last term of Eq. (5). This term can either include or exclude the interaction
between the LA and MM atoms, but its inclusion proves to give better results
as mentioned below in Section 2.1.4.1. Although lacking physical cancellation
for the LA, the additive scheme turns out to perform well in practice.

However, when using the additive scheme for the LA, one needs to take
special care of the bonded QMS–MMS interaction at the boundary. The
bending term QMA–QBA (QM boundary atom)–MBA (MM boundary
atom) and torsional term QMA–QMA0–QBA–MBA (QMA or QMA0 means
anyQMatom bonded to the QBA) should be eliminated since they are already
accounted for by the LA. The stretching term QBA–MMA should be retained
to maintain the connection between QM and MM subsystems. On the other
hand, one need not worry about these terms in the subtractive scheme as they
are corrected by calculating the QM subsystem at the MM level.
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2.2. Electrostatic interactions

Both the energy expressions above contain an explicit term describing the
QMS–MMS interaction. This interaction consists of the bonded interaction at
the boundary (mentioned above) and also the electrostatic and vdW inter-
actions. Two approaches describing electrostatic interactions are introduced
here according to how the MM charges are embedded in the QM
calculation.

2.2.1. Mechanical embedding
As implied in the subtractive formulation (4), EMM(QMS–MMS) accounts for
the QMS–MMS interaction at the MM level. Therefore, the QM atoms are
represented as point charges, bond dipoles, or higher multipoles. In most
cases, the point-charge model is adopted. However, this treatment is viewed
as problematic because the charge density of the QM region is not actually
polarized by the MM part.

Hagiwara and coworkers [121] compared mechanical embedding in the
subtractive scheme with electrical embedding (explained below) in the
additive scheme by a QM/MM study of a protein–DNA complex. They
found the highest occupied molecular orbital (HOMO) energies differed by
23.7 kcal/mol as calculated by the two schemes. This supports the view-
point that the QM region has to be polarized.

2.2.2. Electrical embedding
To ensure the QM subsystem is polarized by MM charges, this charge–
charge interaction has to enter into the QM Hamiltonian:

ĤQM�QM ¼ �
X
i;m

qm
rm

þ
X
A;m

ZAqm
RAm

; ð6Þ

where qm are the charges of MM atoms, ZA the atomic number of QM atoms,
i runs over all QM electrons, A over all QM atoms including LAs, and m
over all MM atoms. The first term is a one-electron operator and the second
accounts for the nuclei–MM charge interaction. When acting on the QM
wave function, Eq. (6) results in the electrostatic interaction between QM
and MM subsystems as a portion of EQM[(QMSþL)–MMS] [13].

As a matter of fact, electrical embedding can be implemented not only
with the additive scheme but also with the subtractive scheme. Lin et al.
[122] demonstrated the formulation of a subtractive scheme with electrical
embedding in their QM/MM manual. They showed

EðSÞ ¼ ½EbondðSÞ�EbondðQMSþ LÞ� þ ½EvdWðSÞ�EvdWðQMSþ LÞ�
þEelðMMSÞ þ EQMðQMSþ LÞ; ð7Þ
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where subscripts bond stands for bonded interactions, vdW for van der
Waals interactions, and el for electrostatic interactions. The last term of
Eq. (7) includes Eq. (6) in the entire QM Hamiltonian. For a detailed deriva-
tion, readers may refer to Section 4G of Ref. [122]. By constructing electrical
embedding into the subtractive scheme, the LA artifacts are corrected at the
MM level and thus should lead to a relatively better result than the additive
scheme.

2.2.3. Electrical embedding with explicit treatment of MM region
polarization

Since the QM region is polarized by MM atoms, it would be unbalanced if
the MM region were not affected reciprocally. A straightforward treatment
based on the MM point-charge model is to include induced dipoles as a
polarization effect. An early effort was conducted by Bakowies and Thiel
[9], which is formulated as

EindðMMÞ ¼ 1

2

X
m

�ahFai; ð8Þ

where the energy of induced MM dipoles is the summation of the m dipole
moments �� of the MM subsystem multiplied by the electrical field F� from
the QM subsystem. �� depends on the polarizability tensor and the QM
electrical field, while the interactions between the dipoles are determined by
the dipole moments and the dipole–dipole interaction tensor. Since the
dipoles interact with each other, an iterative procedure must be applied to
generate a self-consistent polarization.

Another polarizable force field, namely SIBFA (Sum of Interactions
Between Fragments Ab initio computed), incorporates multipoles up to
quadrupoles. It divides a macromolecule into elementary fragments com-
prising multipoles and having different polarizabilities, among which inter-
actions are summed to obtain the total energy. A general energy expression
for multipole–multipole interactions is

Emultipole ¼Emono�mono þ Emono�dip þ Emono�quad þ Edip�dip

þ Edip�quad þ Equad�quad:
ð9Þ

It is worth mentioning here that the monopole–monopole interaction is
calculated by splitting the atom into core and valence electrons with a
special parameterization, which, as a result, is different from the classical
expression E ¼ qi � qj=rij. The same treatment is made for the monopole–
dipole interaction. Details are in a recent review [123]. Linking SIBFA with
QM engines is currently in progress [124].

A simpler approach to modeling electronic polarization is based on the
Drude-oscillator model, in which a fictitious Drude particle with opposite
sign is attached to a point charge by a harmonic spring thus introducing
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dipole induction in classical simulations [125]. The resulting electrostatic
potential (ESP) for a system containing Drude particles can be expressed as

Eelec ¼
X
i

X
i>j

qiqj
rij

þ
 X

i

X
j0

qiqj0

ri;j0
þ
X
i0

X
i0>j0

qi0qj0

rij

!
þ 1

2

X
a0

ka0d2a0 ð10Þ

where the prime denotes Drude particles. The last term represents the
oscillator self-energy expressed in familiar form with the force constant k�
related to the site’s polarizability (�) as � ¼ q02=k�.

Higher-order multipoles are avoided by using the simple Drude model
and the only difference with a nonpolarizable function is the introduction of
a new atom type—Drude. Parameterization of the Drude model in
CHARMM [126,127] for various systems has been undertaken by Lamour-
eux and coworkers [128–131]. It has been implemented recently in the QM/
MM interface between CHARMM and deMon2k. Lev et al. [53] performed
an analysis of the importance of the explicit treatment of the parameteriza-
tion for the interaction energy in the water dimer. The interaction energies
show little improvement with the inclusion of explicit polarization as both
the polarizable and the classic model are parameterized to reproduce the
energetics and geometry. However, MD simulations with explicit inclusion
of dipole induction indicate that there is a significant component missing in
the description of solvent dynamics around highly polarizable solutes. For
the polarizable water around a sodium or potassium ion, the magnitude of
the induced dipole can be higher than 0.1D, which can be very important in
cases where electronic effects play a significant role.

2.2.4. First-principles electrostatic potential
Though polarized embedding includes the effect of electron polarization in
the force field, its reliance on the point-charge model is nonetheless proble-
matic as atomic charges in reality should be more distributed than simple
monopoles. To mediate the point-charge model with overconcentrated
charges, Darden and coworkers [132–134] have proposed the Gaussian
electrostatic model (GEM) to represent the charge density. In this model,
the wave function of the system is first calculated with ab initio methods
and the obtained electron density is then fitted with a set of Gaussian basis
functions according to the variational principle [133]. The coefficients
obtained from this procedure together with the basis set (currently s-type
Gaussian functions) forms the frozen core to reproduce the Coulomb and
exchange interactions. Polarization effects are described by parameterized
dipoles at specific sites. Recently, they have extended this model to higher-
order multipoles and sped it up using reciprocal space methods to calculate
long-range electrostatic interactions [134]. The GEM method has been tested
with water dimers [132], the benzene dimer, and water–metal complexes
[134] and proved to perform consistently better than conventional

360 R. Zhang et al.



point-charge models. It remains to be seen how useful it will be for large or
very large systems, perhaps in conjunction with fragment-based approaches.

As a brief summary, electrostatic interactions have been demonstrated to
be crucial to enzymatic reactions [135]. Therefore, an accurate calculation of
these interactions is required. More elaborate models are expected to recon-
cile accuracy and efficiency.

2.3. van der Waals interactions

Besides the bonded and electrostatic interactions, the QMS–MMS coupling
also includes vdW interactions. The vdW interaction is usually described by
a Lennard-Jones 12-6 potential:

Eij ¼
X
i;j

 
Aij

r12ij
� Bij

r6ij

!
; ð11Þ

where i runs over QM atoms and j over MM atoms, and A and B are
constants pertaining to atom types. This contributes as a component of the
last term in Eq. (5).

In a typical force field, the bonded, electrostatic, and vdW parameters
are optimized together using high-level calculations or experimental
results. Using parameters of a certain term separately from others may
sometimes cause trouble. In the case of QM/MM calculations, when
electrical embedding is used, the vdW interaction of QMS–MMS could
be incorrect as the corresponding electrostatic interaction is not the para-
meterized point-charge–point-charge interaction any more. To alleviate
this issue, Friesner and coworkers [16] have reoptimized the vdW para-
meters for amino acids in their QM/MM implementation. It should be
noted that they also included a hydrogen bond correction term in their
scheme and thus the vdW parameters were parameterized accordingly.
In their work, only the vdW radii were reparameterized but not the
well depth.

Recently, Mulholland and coworkers [136] reoptimized vdW parameters
from CHARMM 27 for nucleic acids with respect to the B3LYP density
functional theory (DFT) method. Their results indicated that, for QM/MM
investigations of nucleic acids, the standard force field vdW parameters
might not be appropriate for atoms treated by QM. QM/MM interaction
energies calculated with standard CHARMM27 parameters are found to be
too large, by around 3 kcal/mol. They reasoned that this was because of an
overestimation of electrostatic interactions and therefore reparameterized
the vdW parameters to compensate for that.

However, Cui and coworkers [137] have tested three sets of vdW para-
meters and concluded that the QM/MM energetics were not sensitive to the
vdW parameters and efforts to improve the QM/MM accuracy should focus
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elsewhere. With self-consistent charge tight binding (SCC-DFTB) as the QM
method, they calculated a proton transfer process for a solvated enediolate
and a solvated fused-ring molecule (flavin adenine dinucleotide), respec-
tively. They found similar thermodynamic quantities (the reduction poten-
tial deviated by 0.2 kcal/mol) for different vdW parameters although there
were noticeable differences regarding solvent distribution functions around
the solute.

An important difference between the modeled systems in Refs. [136] and
[137] is solvation. While the former included only one water molecule for
each base pair, and is thus essentially a gas-phase model, the latter
employed a fully solvated system with explicit water. It was found in
Ref. [137] that hydrogen bond lengths and energies deviated more for
different parameters in the gas phase than in the condensed phase. On the
other hand, the optimized vdW parameters from Ref. [136] were not tested
in the condensed phase. Nonetheless, the choice of vdW parameters should
be carefully considered as short-range vdW interactions could greatly affect
the configuration of the QM region.

2.4. Boundary treatment

2.4.1. Link atom
When a covalent bond between the QM and MM subsystems is crossed by
the boundary, and an LA is introduced, it generates more problems for the
QM part than for the MM part. A cascade of artificial effects is brought in by
the LA. First, it introduces unwanted interactions with the QM atoms and
other LAs, as discussed above. Second, an LA bears three extra degrees of
freedom that should not be present in the real system. Third, it is spatially
too close to the MM frontier atom as it sits on the bond between the QM and
MM frontier atoms. When the MM frontier atom is charged, this unrealistic
closeness will cause an overestimated interaction between the MM frontier
atom and the LA, and hence an overpolarization of the QM subsystem.

To circumvent the second issue, the position of the LA should be fixed in
order to avoid the excess degrees of freedom. A straightforward way to
achieve this goal is to relate its coordinates to its adjacent neighbors, that is,
the QM andMM boundary atoms. First proposed by Dapprich et al. [17], the
position of the LA is defined as a function of the positions of the QBA and
the MBA in Cartesian coordinates:

!
RLA¼

!
RQBA þ að!RMBA �!

RQBAÞ; ð12Þ
as is evident from

a ¼
!
RQBA �!

RLA
!
RMBA �!

RQBA

; ð13Þ
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where � can either be held constant as the ratio of the equilibrium bond
lengths of QBA–LA and MBA–LA [17] or be varied as the ratio of the
equilibrium bond lengths of QBA–LA and the distance of QBA–MBA
[138,139].

Moreover, in some works � is more elaborately defined, which involves
the deviation of QBA–LA and that of QBA–MBA from the equilibrium bond
lengths and the bond stretching constants of the QBA–LA bond (kQBA–LA)
and the QBA–MBA bond (kQBA�MBA). In the work of Eichinger et al. [27],

� ¼ ð!RQBA �!
RLAÞ� ð!RQBA0

�!
RLA0

Þ
ð!RMBA �!

RQBAÞ� ð!RMBA0
�!
RQBA0

Þ
¼ kQBA�LA

kMBA�QBA
: ð14Þ

By fixing the location of the LA, elimination of the gradient on the LA
follows. Since the position of the LA is constructed by the positions of the
QBA and the MBA, the gradient of LA should be accordingly projected onto
the QBA and the MBA. Since � is the ratio of QBA–LA to QBA–MBA and the
gradient is formulated as dE/dR, the LA’s gradient portion to be projected
on the QBA should be (1��). When � is held constant, this gives [17]

!
GQBA ¼ !

GQBA0
þ ð1��Þ � !GLA; ð15Þ

!
GMBA ¼ !

GMBA0
þ � � !GLA; ð16Þ

where
!
GQBA0

and
!
GMBA0 are the gradients without the contribution from the

LA. When � varies, one will have to multiply the LA’s gradient by a
transformation matrix, as detailed in Refs. [115,138,139]. Thus the excess
degrees of freedom from the LA are avoided in geometry optimization and
MD.

The third issue regarding the artificial LA is the overpolarization by the
MM boundary atom when it is charged. An easy way to alleviate this draw-
back is to remove the charge of the MBA from the QM and MM subsystem
interaction, which is termed the single LA scheme [140]. However, this will
result in an unrealistic extra charge in the MM subsystem. To eliminate
artificially created charge, the deleted charge from the MBA can be redis-
tributed over the rest of the residue group pertaining to the MBA [141]. In
other schemes, charges of the entire MBA residue group are removed from
theQMandMM subsystem interaction [2] or theMBA charge is redistributed
among the rest of its residue group [142]. As opposed to the conventional
point-charge model, MM partial charges may be represented as Gaussian
charge distributions centered on the respective atoms [15,143,144]. Double LA
[143] and charge shift [21] methods are also proposed to treat the boundary
MM charges. More recently, Lin and Truhlar have developed two schemes to
remedy this overpolarization problem: the redistributed-charge scheme and
the redistributed-charge-and-dipole scheme [23].
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All the approaches mentioned above except the RC and RCD have
been compared by Konig et al. [141], with regard to different systems.
They first calculated deprotonation energies of alcohols and carboxylic
acids, in which the alkyl group was treated with MM and the alkoxyl
group with QM. As a result, the single LA method always underestimated
the energy by an average of 20 kcal/mol compared to high-level calcula-
tions, whereas all the others overestimated the energy and the excluded
group method yielded the closest result. When calculating the deprotona-
tion energies of amino acids, the single LA and excluded charge
approaches produced the largest deviation, whereas the Gaussian distrib-
uted charge and charge shift methods were the closest to the high-level
calculation result. It should be noted here that the Gaussian distributed
charge model greatly depends on the blurred width and noticeable differ-
ences were found when different widths were chosen [141]. When evalu-
ating the deprotonation energies of DNA bases, the single LA method
again deviated the most from high-level calculations while the others gave
comparable results. And the two calculations using the Gaussian distrib-
uted charge model with different blurred widths yielded different ener-
gies. Activation energies and endothermicities were also calculated by
Konig et al. [141] with different treatments of the boundary MM charges.
The comparison showed appreciable deviations among them in one
enzyme (triosephospate isomerase), while the calculation in the methyl
glyoxal synthase enzyme divided them into two groups: the single LA and
excluded group methods with lower energies and the others with higher
energies. In summary, the single LA method tends to underestimate the
energies, while other amended methods can improve the accuracy, which
are case-dependent nonetheless.

2.4.2. Frozen localized orbitals
Even though extensive efforts have been made to eliminate the artificial
effects introduced by the LA, this approach still lacks a solid physical
foundation and it is hence arbitrary and controversial. In order to eliminate
the side effects of the link atom, the dangling bond at the boundary may
be capped by a frozen localized orbital (FLO) instead of an LA. This
method dates back to Warshel and Levitt [1]. Another early attempt
adopting this philosophy is the local self-consistent field (LSCF) approach
as illustrated in Figure 10.2a. An atom with only s and p valence orbitals is
chosen as the QM boundary atom and thus four hybrid orbitals are formed
using one s and three p orbitals. Three of the hybrid orbitals participate in
the normal QM calculation while the one left is strictly localized between
the QM and MM boundary atoms, termed strictly localized bond orbital
(SLBO) [145]. The respective coefficients for the four hybrid orbitals
need to be parameterized and a �1e charge should be taken from
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the MM boundary atom as it donates 1 electron to the SLBO. Therefore,
the total QM energy comprises the energy of regular QM orbitals, the
SLBO, and the coupling between them. The gradient is calculated accord-
ingly. As an update, the SLBO, is then parameterized as a classical poten-
tial for different types of bonds [146].

Based on the LSCF procedure, Friesner and coworkers [15,147] intro-
duced more extensive parameterization in terms of electrostatics, vdW
interactions, and hydrogen bonds at the boundary instead of taking the
parameters directly from the MM force field. Their parameterization is
sensitive to different QM methods and basis sets. Contrary to the LSCF
scheme, the frozen orbital can also be centered on the MM boundary atom
instead of the QM boundary atom, which is termed the generalized hybrid
orbital (GHO) method by Gao and coworkers [5–7,148]. In this approach,
one of the hybrid sp3 orbitals participates in the QM calculation while the
other three are kept frozen as shown in Figure 10.2b. The force field charge
of the MM boundary atom is equally distributed over the four hybrid
orbitals as opposed to the LSCF which has to calculate the charge density
of the frozen orbital for different systems. This advantage ensures the
transferability of the GHO. However, the classical potential parameters
involving the MM boundary atom, especially its bonding parameters,
have to be reoptimized to accommodate the effects introduced by the
three frozen orbitals. Or the interactions between the frozen orbitals and
other normal QM orbitals need to be adjusted by scaling the integrals.

2.4.3. Performance of LA and FLO: summary
The LA scheme is advantageous for its simplicity while the FLOs scheme is
convincing for its solid physical foundation. Their application and perfor-
mance have been the concern of QM/MM investigators, who have made
comparisons between these two methods. Karplus and coworkers [142]
compared the LA with the LSCF with regard to the proton affinity and
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Figure 10.2 Illustration of LSCF and GHO schemes where orbitals are shown in spindles

and those participating in the QM calculations are shadowed. (a) LSCF Scheme and (b) GHO

scheme. Please refer to online version for color image.
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deprotonation enthalpy of propanal. In their test, there were two types of
LA schemes, one that includes the electrostatic interaction between the LA
and the MM charges and the other one without. And the one with LA–MM
charge interaction performed better, especially when a Naþ ion was placed
in the vicinity of the hydroxyl group. Upon calculation of the Mulliken
charge of the LA, they found that without including LA–MM charge inter-
actions, the charge on the LA is significantly greater than usual, hence
biasing the charge density of the rest of the QM orbitals. This finding
indicates that polarization of the link atom by MM charges is important.
The LA scheme with the LA–MM charge interaction was then compared
with the LSCF scheme and they gave similar results. However, when a Naþ

ion is present in the neighborhood of the hydroxyl group, the LA was
consistently better than the LSCF, suggesting that the assumption of a
strictly localized bond orbital is not proper when the QM subsystem is
strongly polarized by charges. As for geometry optimization of a tripeptide,
the LSCF performed better than the LA, as is conceivable because of the
geometry constraint of the LA mentioned above.

Mulholland and coworkers [149] compared the LA with the GHO with
regard to the reaction mechanism of a virus protease. In their LA scheme,
the LA–MM charge interaction was included. With the same boundary, they
found that the free energy barriers and reaction free energy differed by
8 kcal/mol and the locations of the reactant, product, and TS were rather
different as well. The difference was attributed to the rotation of Ca�Cb of
an aspartic residue that can form a hydrogen bond with the adjacent histi-
dine residue and thus stabilize the reaction intermediate. When the LA was
employed, the hydrogen bond was found to be broken, thus significantly
destabilizing the intermediate. On the other hand, this did not occur for the
GHO. This discrepancy is thought to be due to the one extra proton and
more delocalized orbitals introduced by the link hydrogen atom. Be that as
it may, it could also be caused by the improper partitioning of the system.
For instance, if the LA had been placed farther away from the rotational
bond rather than on that bond, the result could have been improved. The
reason why the LA was positioned the same as the GHO was just for the
convenience of the comparison and the GHO is only available for sp3

hybridized carbon. Therefore, the discrimination might have arisen from
the way the system was partitioned as well.

As a matter of fact, the choice of the boundary placement does influence
the result remarkably as verified in Refs. [141,142,149] . Moreover, when the
size of the QM subsystem is enlarged, the result is consistently improved
[141]. So the rule of thumb of partitioning the system is to place the bound-
ary as far from the reaction center as possible and avoid boundary positions
that can directly affect the active space as discussed in Ref. [149]. The
capped bond is preferred to be a C�C bond in order to circumvent the
overpolarization by other, more intensely charged, MM boundary atoms.
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2.4.4. Other boundary schemes
Besides the LA and FLO approaches, a boundary-atom scheme has also
been implemented, in which the MM boundary atom is treated as a special
boundary atom to cap the dangling bond at the QM frontier, thus relying on
elaborate parameterization for different frontiers. Among them, we high-
light Zhang and Yang’s pseudobond approach [150,151], Poteau and
coworkers’ [152,153] effective group potential approach and DiLabio and
coworkers’ [154] quantum capping potential treatment. Notably, the quan-
tum capping potential treatment has been applied by Salahub and
coworkers [18] to study electron paramagnetic resonance (EPR) and
obtained consistently better results than the single LA scheme. For a com-
prehensive review of this class of schemes, one can refer to Senn and Thiel’s
review [115]. Moreover, instead of fixing the boundary, it can also be
adaptive during the calculation [155–157]. This adaptive scheme allows
atoms to change between QM and MM subsystems and in principle should
also allow charge transfer across the boundary once fully developed.

3. QM/MM OPTIMIZATION TECHNIQUES FOR POTENTIAL
ENERGY SURFACES

A potential energy surface (PES) is typically a rugged landscape marked by
various valleys and peaks. Among others, we are most interested in the
stationary points: minima and saddle points. In this section, we will intro-
duce the techniques for finding these points and the paths between them.
We will start with geometry optimization methods to find the minima on
QM/MM PESs.

3.1. Geometry optimization

In general, QM calculations adopt quasi-Newton methods to optimize
geometries. These estimate the Hessian matrix by gradient differences and
then update it in various ways. In the case of MM optimization, the widely
used methods are not only second-order methods but also first-order methods
such as conjugate gradient and steepest descent (SD) methods. In the cur-
rent context of QM/MM optimization, our focus will be on techniques
specific to QM/MM rather than optimization algorithms in general.

In principle, the whole QM/MM system can be simultaneously opti-
mized with a uniform optimizer using the QM/MM potential and gradient.
Convergence, however, will be difficult to reach when the starting geometry
is far from the minimum. Moreover, there are also technical issues if the
subsystems are optimized at the same time. First, as just mentioned, QM
and MM calculations prefer different optimizers. If one optimizer is chosen
for both subsystems, the efficiency of optimizing either subsystem will be
compromised and the same optimization parameters such as the trust
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radius may lead the configuration to an undesired space. Second, QM and
MM optimizations are usually conducted in different coordinate systems.
QM minimization often employs redundant internal coordinates or internal
coordinates because of difficult convergence with strongly coupled Carte-
sian coordinates. Conversely, MM minimization prefers Cartesian coordi-
nates to avoid the laborious transformation between Cartesian and
redundant internal coordinates.

3.1.1. Microiteration
Considering the different natures of QM and MM methods, optimization is
easier to run separately for each subsystem on their respective levels. To this
end, a macro-/microiterative scheme has been proposed. There are two
variants of this scheme: one termed the adiabatic scheme [12,16,158–162]
and the other the alternating scheme [2,4]. In the adiabatic scheme, the
optimization is driven by the QM optimizer. The MM subsystem is opti-
mized to convergence with the QM part frozen, and this is termed a micro-
iteration. Thereafter, the QM region is optimized till convergence with the
MM part frozen, and this is termed a macroiteration. These two iterations
alternate until the whole system is fully optimized. In the alternating
scheme, after the MM region is optimized, only one optimization step is
taken in the QM region and it switches back to MM optimization again, thus
iterating until both are fully optimized. Since the QM region is of principal
interest and thus its optimization serves as the main driver, the adiabatic
scheme is chosen more often. A diagram of both schemes is shown in
Figure 10.3. Following this “divide and conquer” philosophy, the advantage

Step1: Full optimization
of QM region with MM
region frozen

Step1: Full optimization
of MM region with QM
region frozen

Step3: Full optimization
of MM region with QM
region frozen

Step2: One-step
optimization of QM
region with MM region
frozen

Macroiteration Microiteration
Step2: Full optimization
of MM region with QM
region frozen

Step3: Full optimization
of QM region with MM
region frozen

(a) (b)

Figure 10.3 Diagram of the adiabatic scheme (a) and the alternating scheme (b).
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of QM/MM partitioning is thoroughly exploited. First, the number of
expensive QM energy and gradient calculations can be dramatically
reduced. Second, the costly coordinate transformation is avoided in the
MM optimization.

However, it is often harder to unite than to divide. One encounters a
problem when calculating the QM–MM coupling during the optimization.
In the microiteration of optimizing the MM subsystem, even though the QM
part’s geometry is frozen, the electrostatic QM–MM interaction should be
calculated on the QM level for electric embedding. So, ideally, a full QM
SCF calculation should be run at every MM minimization step (termed S1
herein) to obtain the forces on the MM charges exerted by the QM atoms.
This procedure is prohibitively expensive considering the fact that an MM
minimization usually takes thousands of steps. Approximation comes into
play at this point.

Yang and coworkers [4] proposed to use the ESP charges to represent the
QM charge density and approximate the QM–MM electrostatic force on the
classical level during the microiteration. The gradient is calculated as

GelðQMS�MMSÞ ¼ GESP: ð17Þ
This treatment leads to a discrepancy between the gradient and the energy
as the energy for the entire system still retains the electrostatic interaction on
the QM level. To alleviate this double-standard deficiency, Friesner and
coworkers [16] and Thiel and coworkers [162] introduced an ESP-based
QM–MM interaction as a correction to the QM-based electrostatic interac-
tion. Before the MM minimization steps, the ab initio calculated gradient on
MM charges is calculated as G0

QM(QMS–MMS), the ESP-based gradient
G0

ESP and the ESP charges are retained throughout the MM minimization.
At each MM optimization step, the ESP-based gradient GESP is recalculated
(termed S2 herein). Therefore, the electrostatic QM–MM gradient is
formulated as

GelðQMS�MMSÞ ¼ G0
QMðQMS�MMSÞ þ ðGESP �G0

ESPÞ: ð18Þ
The corresponding energy for MM minimization [161] is

EelðQMS�MMSÞ ¼ E0
QMðQMS�MMSÞ þ ðEESP �E0

ESPÞ
þ½ QM0

G ðQMS�MMSÞ�G0
ESP�ðRMM �R0

MMÞ
ð19Þ

where E0
QM(QMS–MMS) is the total energy corresponding to G0

QM(QMS–
MMS), EESP the total energy calculated with the ESP model, and R the
coordinates of the MM atoms.

As Eq. (17) is improved by the perturbation in Eq. (18), the gradient now
becomes consistentwith the energy [Eq. (19)]. TheESP chargeswere then further
improved by a one-SCF procedure by Lluch and coworkers [159]. They
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assumed the QMwave function to be frozen during the MMminimization and
thus only the electron–MM charge and nuclei–MM charge interactions need to
be calculated because the other terms in the QM Hamiltonian stay the same.
Therefore, only one SCF calculation is performed at eachMMminimization step
to evaluate the QM–MM electrostatic coupling (termed S3 herein).

Nonetheless, freezing the QM wave function during the MM minimiza-
tion is not quite convincing as it should be polarized in reality. Morokuma
and coworkers [158] proposed to recalculate the wave function when the
MM subsystem is fully optimized (termed S4 herein). Thereafter, the MM
minimization is started again with the newly polarized QM densities. More-
over, they also suggested using a fast multipole method instead of the ESP
charge model for the QM–MM electrostatic interaction.

To evaluate the different optimization schemes above, Thiel and
coworkers [162] first tested whether the QM wave function should be
recalculated after the MM subsystem is optimized. They tested S2 and
(S2þ S4) with a water cluster and ESP charges and found the optimized
energy by S2 alone was lower and reached with fewer iterations, though at a
slightly different geometry. They then compared S1, (S2þ S4), and (S3þ S4),
and found that (S3þ S4) yielded the lowest optimized energy and second-
fewest QM calculations after S1. It seems that S2 gives the fastest conver-
gence whereas (S3þ S4) produces the best accuracy.

In addition to the schemes above, Moliner and coworkers [160] have
implemented a dual-level scheme for QM/MM optimization. They use
semiempirical methods to calculate the QM–MM electrostatic coupling in
the MM minimization [160]. A similar approach has been proposed by
Warshel and coworkers [8] to introduce a reference potential using the
empirical valence bond (EVB) method.

3.1.2. Macroiteration
So far, we have discussed the QM–MM coupling concerning the MM mini-
mization. A subsequent question would be: Is this coupling a problem in the
QMminimization? In fact, it is not a problem in the gradient calculation, but
it is a disturbing one in the Hessian update. In the widely used adiabatic
scheme, a QM optimization step is taken after the MM region is optimized
and hence the QM Hessian should be updated from the last one. Although
the gradients only relate to the current geometry and wave function, the
Hessians are decided by the gradient difference between the previous step
and the current one. Contributions to the gradient change include the QM
wave function and the MM coordinates as well because the latter are altered
during the MM minimization. Therefore, the gradient change caused by the
MM coordinate changes should be eliminated. To this end, Morokuma and
coworkers [161] have incorporated a quadratic QM–MM coupling in the
macroiteration that is realized by coordinate transformation and Hessian
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manipulation. They managed to demonstrate its moderately improved per-
formance for small molecules and better convergence behavior than
schemes without the quadratic coupling.

3.1.3. Convergence criteria
The adiabatic scheme in principle requires a completely optimized MM
region to obtain a good QM convergence behavior. To ensure this, the
ratio of the QM optimization convergence criterion to that of MM optimiza-
tion should be appreciable, as it was set to 10 in Ref. [162]. Moreover, there is
no presumption in the macroiteration that the forces on the MM atoms are
exactly zero, so less tight convergence criteria can be used in the microitera-
tion [161,162].

3.1.4. Size of QM region and starting geometry
As we have stressed throughout this article, the size of the subsystems
greatly influences the results. As demonstrated in Ref. [159], when using
the S3 scheme, the total CPU time for optimization does not increase mono-
tonically with the size of the QM region, which indicates that there is a
medium QM size leading to a minimum CPU time for optimization. When
the MM environment configuration is complicated and hard to converge, a
larger QM core can be chosen as this leads to less QM–MM coupling and
hence fewer microiterations. However, with the ESP charges, the larger the
QM core, the greater the error caused by the charge screening effects as the
dielectric constant is unknown in the QM region.

Different starting geometries could well result in different minima,
especially for complicated proteins [163]. This indicates the importance of
sufficient sampling and averaging as a single optimized geometry is not
quite meaningful. This is especially important in reaction path calculations.

3.2. Transition state search on the potential energy surface

Having located the minima on the energy surface, we come to a natural
question: How are these minima connected with each other? Chemically
speaking, this question equals: How to find the reaction path between the
reactant and product? According to the transition state theory (TST), there is
always a TS(s) on the path from the reactant to the product. This TS is a first-
order saddle point on the potential energy surface, which has a negative
eigenvalue in only one direction. If we can identify the TS, the reaction rate
can be calculated according to the TS theory. Knowing the TS, an intrinsic
reaction coordinate (IRC) method [164] is usually adopted to draw out the
reaction path to understand the reaction mechanism. However, the TS is
often unknown for complicated reactions, for example, enzymatic reactions.
Hence searching for the TS becomes a principal task for the study of
chemical reactions.
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Ideally, the TS can be found via an eigenvector following approach
based on the first-order saddle point nature of the TS. However, this
procedure requires a good initial guess when starting from the vicinity of
the TS, which is often impractical, especially for high-dimensional systems.
Therefore, the search for the TS is often combined with finding the reaction
path that connects the reactant and product minima. As soon as the reaction
path is found, the TS is evidently identified as the highest point along the
path.

Similar to the philosophy of Ref. [22], del Campo and Köster [165] have
proposed a hierarchical TS search algorithm. They first use the saddle
method similar to reaction coordinate (RC) driving, which sequentially
optimizes to zero the system’s force perpendicular to the path, so as to
bracket the TS between two highest points. The subsequent TS finder adopts
the uphill trust region method, which constrains the step to ascend the
potential energy surface in the direction of the normal mode associated
with the TS vector and to descend in the remaining normal modes. This
hierarchical approach has been effectively implemented in deMon2k [166]
and has proven to work well for TS searches with QM methods. Its further
incorporation of QM/MM methods is of great interest. To obtain an initial
guess in a simple way, instead of the elaborate saddle method, the multi-
coordinate driving scheme is proposed by Berente and Naray-Szabo [167].
Their method differs from the regular reaction coordinate-driven (RCD)
method by including multiple RCs. And it has been tested with a QM
method for hydrolysis by dUTPase [167].

In the following section we discuss the minimum energy path (MEP)
technique. More complex methods, involving more or less extensive
sampling in many coordinates, are described in Section 4. Special treatments
pertaining to QM/MM methods are illustrated.

3.2.1. Minimum energy path (MEP)
Identification of a reaction path relies on the definition of RC(s), which is
often based on one’s chemical intuition. Once the RC is chosen, it only
remains to determine the system configuration along the RC. To this end,
a simple way is to optimize the geometry at different RCs, thus forming an
MEP. Thereupon, all the minimization techniques can be employed in this
approach. And the a foresaid macro-/microiterative optimization scheme
can also be fully utilized for the MEP search on the QM/MM potential
energy surface.

One simple method to find the MEP is the RCD approach [168]. In this
approach, the RC is changed stepwise and the geometry is optimized in
every step with the RC kept frozen. This method has been tested by Frischer
and coworkers [169] with a QM/MM potential for a proton transfer reaction
in an enzyme. The RCD led to a TS with unrealistically high energy and
produced discontinuities along the path. This happened because the frozen
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RC during the optimization overparameterizes the reaction path and drags
the system to higher points than the true TS. Moreover, this method is also
inefficient due to its sequential walk along the RC.

We will return to the RCD method in Section 4.1.3.4 after introducing
sampling techniques.

4. QM/MM APPROACHES TO THE SIMULATION OF KINETICS
AND THERMODYNAMICS IN THE CONDENSED PHASE

The main goal of this part of our review is to provide a comprehensive
description of methods used in molecular simulations for studies of chemi-
cal processes in condensed phases. Similar to classical simulations, one can
use a QM/MM energy function to perform MC and MD simulations. First,
let us focus on the classical propagation of nuclear dynamics. In this case,
one can use QM/MM-derived gradients (forces) as a part of a standard
integration scheme. QM/MM correction to the full Hamiltonian of this
system will provide important information on electronic degrees of freedom
relevant to the problem at hand. Since we can impose a canonical distribu-
tion of states with a known energy function (classical or QM/MM), it is also
possible to perform QM/MMMCwith the Metropolis algorithm. Unlike the
examples in the sections above, a single structure (e.g., minimized) does not
bear substantial significance of its own, and one will have to get an ensem-
ble of structures to get proper averages and then to evaluate thermodynamic
functions. It was shown for many systems that interaction energies evalu-
ated from high-level ab initio computations do not always provide accurate
descriptions for chemical processes that occur in a solvent and at finite
temperature [170].

A good illustration of the need for extensive sampling over the entire
configurational space may be found in studies of ion binding to membrane
proteins. Yu and Roux [171] have examined the distribution of states from
MD simulations in ion binding to membrane proteins with classical and
polarizable forcefields and compared it to high-level ab initio computations.
It was found that, although high-level ab initio structures may represent
“true” local minima, an accurate estimate for ion binding may only be
obtained from the analysis of a distribution of states. They analyzed simpli-
fied toy-model systems consisting of a monovalent ion (Naþ or Kþ) coordi-
nated by eight water or N-methylacetamide molecules. They were able to
show that because the PES for these systems is very complex and multiple
local minima exist, a simple minimization will not provide a reliable esti-
mate for the thermodynamics of ion binding to proteins. The problem gets
much worse if we consider metal binding to proteins and all degrees of
freedom available to the system. It was also found that the harmonic
approximation is insufficient in this case and ensemble averaging is
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required to understand the complex thermodynamics of ion binding to
proteins. This finding underlines the role of thermal fluctuations and overall
protein flexibility in the modulation of ion binding to proteins and complex
compounds. Their findings are in excellent accord with the conclusions of
QM/MM MD simulations reported from the Guidoni and Klein groups
[172,173].

Bucher et al. [174] were able to show the importance of local charge
transfer and electronic polarization effects, thus providing a welcome cor-
rection to the results of classical simulations. In their study of Kþ and Naþ

binding to the KcsA channel, the selectivity filter of the protein was repre-
sented as the QM region and the rest of the system was described with MM
[89,174]. The electronic structure was investigated using the maximally
localized Wannier function centers of charge and Bader’s atoms-in-mole-
cules charge analysis. The results obtained were able to outline polarization
effects on the channel backbone carbonyls and significant charge transfer
from the backbone to the ions.

Detailed technical information on how to run these simulations is out-
side the scope of this chapter but it is worthwhile to provide a short
summary for the interested and engaged reader. Major technical challenges
are well understood, for example, the need for long-range electrostatic
treatment and the introduction of periodic boundary conditions for studies
of processes in condensed phases, the accurate introduction of thermostats
into the system.

The cutoff schemes adopted in standard force-field simulations may or
may not cause problems in QM/MM calculations [175�177]. Hu and Wang
[109] showed that long-range corrections to the electrostatic interactions for
systems with cutoffs larger than 14 Å

´
play no significant role in the

dynamics of the QM part. Nevertheless, a correct account of long-range
corrections to electrostatic interactions may be important, if not critical,
for studies that involve polyelectrolytes such as DNA or RNA molecules.
To address this problem, an extension of the particle-mesh Ewald (PME)
method has been developed by York and coworkers [175] for QM/MM
calculations under periodic boundary conditions. They use conventional
point-charge interactions and a reciprocal space component for the MM
part and a real-space multipole expansion for the QM region. The method
enables the partition of the total Ewald potential into a short-ranged real-
space interaction and a long-range periodic correction. To compute the per-
iodic correction term, one requires only a Mulliken charge representation of
the charge density (or any other method to map the charge density) and
hence it can be used with any efficient linear scaling Ewald method for point-
charge (or multipolar) systems, such as the PME method.

It is evident that the performance of this method relies substantially on
the number of quantum atoms being sufficiently small. The electrostatic
energy has to be efficiently evaluated at each SCF iteration by a Fock matrix
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multiplication with the charge vector. Although very robust approaches to
the problem of PBC simulations with infinite cutoffs exist, this method is
likely to be very expensive for large QM regions. A convenient alternative to
PBC simulations may be found in schemes that further reduce the dimen-
sionality of the system. A good example of such a scheme is the generalized
solvent boundary potential (GSBP), where the system is divided into inner
(explicitly represented) and outer shells (described implicitly by solving the
Poisson�Boltzmann equation for an external field imposed on the inner
shell) [177,178]. In this approach, all atoms within the inner region (usually
a 20 Å sphere) are treated explicitly while the outer environment is repre-
sented as a solvent potential field. This procedure has been successfully
implemented with the SCC-DFTB method and applied to pKa calculations
by Cui and coworkers [176]. More recently, Benighaus and Thiel [179]
extended this method with a semiempirical approach and further proved
its validity. Moreover, they stressed the fact that, despite the success of the
GSBP QM/MM approach, special care needs to be taken as to the physical
parameters of GSBP such as the size of the inner region and the number of
basis functions for the reaction field evaluations (Legendre polynomials),
which might be highly system dependent. Nevertheless, all these correc-
tions are important if one is to study chemical processes in condensed
phases.

Therefore, MD and MC simulations may provide very useful insights
into dynamics and thermodynamics of the system. However, to make an
important step toward linking theory and experiment one has to compute
observable properties. One of the most important thermodynamic proper-
ties to deal with is the free energy or relative free energy underlying
chemical reactions or ion partitioning or any other chemical process. It is
possible to use molecular simulations with QM/MM energy functions to
compute directly the free energy for the process. The methods for evaluating
Gibbs or Helmholtz free energies described above dealt mainly with the
finding of TSs and thus reaction paths with the assumption that only a
relatively small number of degrees of freedom are important. Although
mighty and very successful for small systems where sampling of all impor-
tant degrees of freedom are readily available, direct computations of free
energies encounter significant difficulties if one wants to account explicitly
for collective degrees of freedom due to the environment and its effect on
the reaction path.

4.1. Free energy simulations and the QM/MM formalism

The benefits of direct computations of free energies are evident; they can be
directly compared to measurements of reaction quotients and equilibrium
constants. Before discussion of the QM/MM free energy simulations, it might
be useful to provide a general overview of theoretical foundations for the
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evaluation of the free energy from molecular simulations and its extension to
QM/MM Hamiltonians.

4.1.1. Potential of mean force evaluation with thermodynamic integration
A common ingredient in all free energy simulation techniques is the use of
an effective potentialW that corresponds to reversible thermodynamic work
done by the average force acting on the system. This thermodynamic func-
tion is also commonly referred to as a potential of mean force (PMF). The
PMF can be evaluated along a chosen reaction coordinate providing a
unique metric for the free energy along the chosen transformation path.
The introduction of the PMF as a measure of the free energy change is
significant, since we can start working with forces along the pathway with-
out the requirement for accurate energy computations for each pathway
point. For example, reorganization of water molecules far away from the
reaction center may have a significant impact on the potential energy of the
entire system and yet a minimal impact on the reaction path.

Theoretical foundations for PMF evaluation were initially developed
by Kirkwood for the distribution functions in liquids. In his formalism to
compute PMF, now known as thermodynamic integration (TI), one can
introduce a dimensionless coupling parameter � varying between 0 and 1.
Let us illustrate its application for an ion solvation problem in the classical
approximation. The state with �= 1 is the normal system with all interac-
tions between ion and solvent turned on and the state with �= 0 is a
reference state in which all interactions between ion and solvent
have been turned off. The PMF is a function of collective coordinates
[W(r1,r2,. . .)] and characterizes a difference in free energy for these states
which can be written as the ratio of two respective partition functions
(PFs):

e�Wðr1;r2;...Þ=kBT ¼

Z
dXe�Eðr1;r2;...;�¼1Þ=kBTZ
dXe�Eðr1;r2;...;�¼0Þ=kBT

; ð20Þ

or in the more convenient form of the thermodynamic integral of Kirkwood:

W ðr1; r2; . . .Þ ¼
Z1
0

�
@E

@�

�
d�: ð21Þ

The PMF in the equation above does not contain any mass terms and thus is
an equilibrium thermodynamic function independent of timescale and pro-
vided convergence and quality of the force-field/QM basis-set/functional,
etc. It is clear that these criteria apply to all E(�) averages over the integra-
tion path.
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Free energy simulations have been extensively developed for classical
simulations, but they have also started to appear in QM andQM/MMstudies.
The starting point for calculation of the PMF is the definition of the partition
function for the ensemble. The canonical partition function for a system
described with the QM/MM Hamiltonian can be expressed as follows [180]:

Zo ¼
Z

e�EðrQM;rMMÞ=kBTdrQMdrMM; ð22Þ

where E is the total energy and a function of collective coordinates for atoms
in QM and MM parts (rQM and rMM), respectively. Some degrees of freedom
similar to all states with different � could be effectively averaged out and
the reaction path can be defined for a smaller system subset (often for only
the QM part of the system).

4.1.2. Free energy perturbation techniques
Although powerful, the use of thermodynamic integration (TI) implies a
continuous integration with respect to �, which might be problematic in
many situation. In 1954, Zwanzig [181] introduced a free energy perturba-
tion (FEP), theory that relates the free energy difference between state A and
state B to the potential energy difference between these two states. If we
assume that the perturbation required to transform system A to system B is
small (< 2kT), it can be shown that

DG ðA�>BÞ ¼ � kBT ln

*
exp

�
� EB �EA

kBT

�+
A

; ð23Þ

where the potential energy difference between two states is weighted by the
energy of the initial state. In case of larger perturbations, one can always use
additional windows to connect starting and ending points of this perturba-
tion. The free energy is a path-independent property of the system and can
be evaluated regardless of how “alchemical” the perturbation path may be.

Similar to TI, FEP can easily be extended to accommodate a QM/MM
description of the system since the PF of the system can be specified. Reddy
and Erion [182] provided an intuitively appealing formulation of FEP for
QM/MM simulations of enzymatic reactions and solvation. The Hamilto-
nian describing the system which is changing from state A to state B during
FEP calculations can be rewritten as

Hð�Þ ¼ �EA þ ð1��ÞEB; ð24Þ
where EA and EB represent distributions of states for the two end points of
the perturbation. The dynamics of two replicas of the system each corre-
sponding to end points with �= 0 and 1 is treated explicitly and simulta-
neously and appropriate weighting [see Eq. (21)] is applied to reconstitute
the Hamiltonian for intermediate windows. This method is known as a
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dual-topology FEP method reflecting the simultaneous presence of two end-
point systems. The dual-topology FEP method is especially useful for cal-
culations such as solvation [182], studying the effects of mutation and pKa

values in a protein [176,183], ligand binding [184], or enzymatic reactions
[185]. An interesting area of potential application of QM/MM FEP methods
is the study of ion solvation and potentially mechanisms of selectivity in ion
channels or ion-coupled transporters. Ion selectivity has been extensively
studied at the MM level with both classical and polarizable force fields
[170,186–191]. However, classical simulations may be compromised by
their inability to account for charge transfer and electronic polarization,
thought to be critical for ion binding to proteins. We have extended QM/
MM FEP to studies of Naþ/Kþ solvation and selectivity by water clusters
with variable numbers of ligands [53], results of which are illustrated in
Figure 10.4. In that article, QM/MM FEP calculation have been performed,
for ion–water clusters with different numbers of water molecules, where the
ion was treated as the QM region using B88-LYP with the DZVP basis set
implemented in deMon, and water clusters were represented by the polar-
izable Drude force field implemented in CHARMM. The same approach can
be used for selectivity calculations in more complex biological systems.
Also, the close connection between QM/MM calculations and those with
polarizable force fields developed to account for electronic effects is visible.
Therefore, the polarizable force fields can be sufficient in some cases.
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Figure 10.4 Relative (to the bulk) free energy of selectivity for Naþ/Kþ in water clusters as

a function of cluster size. Experimental information is taken from aRef. [192] and bRef. [193].
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Although QM/MM FEP is significantly more expensive than classical
FEP simulations, the ability to compute free energies (or relative free ener-
gies) provides a unique opportunity for validation of classical potential
functions as well as for relating QM computations at finite temperature to
experimental measurements. Several attempts were made to reduce the
number of degrees of freedom in free energy QM/MM simulations. Yang
and coworkers introduced the QM region into sampling via ESP charges
included in the energy expression used to obtain the forces and to propagate
the system along the reaction coordinate. At the beginning of the sampling,
a full QM/MM calculation is run to obtain the reference potential and the
energy difference caused by the MM configuration change is estimated as
coulombic charge–charge interactions, which are then added to the refer-
ence potential to approximate the system’s potential [4]. This reference
potential approach, as mentioned before, has been employed as well in
QM/MM geometry optimizations [8,160]. Since this reference potential is
sensitive to the MM configuration, it is more reasonable to use an average
electrostatic field over an MM ensemble as done by Yang and coworkers
[180]. The same authors also found that a short MD simulation was usually
enough to obtain a consistent reference potential so that a self-consistent
procedure could be avoided. The PMF profiles have been obtained for all
methods and have been compared. The results have proven to be very close
to each other. A full QM sampling is rather expensive for regular QM/MM
calculations. Yang and coworkers [180,194] have simplified the reaction
path search on the FEP to that on the PMF surface, for example, using
partial derivatives of the PMF along the reaction path with respect to
position. To remove an apparent need for extensive and expensive sampling
of the QM part of their system, they froze the QM part and used the
obtained ESP charges to evolve their system in classical (MM) space. To
render out the minimum free energy path, the QM free energy gradient is
employed as a criterion in the QM geometry optimization. Lastly, the above
steps must be iterated to reach self-consistency.

A similar approach to the study of solvation effects has also been used by
Warshel and coworkers [195]. To reduce the conformational space in FEP
simulations, they kept the QM region frozen. Detailed comparisons between
different schemes for the performance of free energy techniques applied to
studies of enzymatic reactions have been made by Senn and Thiel [19,116].
The major conclusion was that, if appropriate sampling is achieved, esti-
mated activation barriers and reaction thermodynamics may be described
very accurately by either TI, FEP, or umbrella sampling (US) techniques (see
below).

TI, FEP, and other similar techniques imply the existence of a well-
defined reaction coordinate (reaction path, permeation pathway, or confor-
mational pathway). What if we do not have a preconceived idea about the
reaction path? Providing a comprehensive sampling of free energy surface,
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one can find the pathway post factum. Extensive sampling along the reac-
tion coordinate may allow the complete removal of the dependence of the
results on starting configurations. Several simulation techniques have
emerged recently to address the problem of efficient sampling and are
often referred to as “enhanced sampling” techniques.

4.1.3. Enhanced sampling techniques
4.1.3.1. Multiple time-step approaches. The conceptually simplest
approach to enhance sampling in MD simulations would be to introduce
a larger time step. The time step in classical simulations is defined by an
integrator and the apparent need to integrate the fast dynamics of covalent
bonds. It is usually set to 1 or 2 fs. The multiple time-step (MTS) method
was first proposed for MM dynamics to separately treat motions of high
and low frequencies in the same system [196]. The MTS method uses a
smaller time step Dt for the fast motion and nDt for the slow motion. The
fast degrees of freedom are first advanced for n steps at step size Dt with
the slow degrees of freedom fixed and the latter is then updated with a
step size n Dt, for which n was found to be 5–10 to sample effectively [196].
As an analog to the fast motion, the MM region possesses more configura-
tional variability than the QM part, thus demanding an enhanced sam-
pling. Wei and Salahub [11,197] have adopted this MTS approach to study
solvation effects on a QM water molecule, in which a step size of 1 fs was
used for the MM region and 15 fs for the QM water. While this enables
oversampling of the MM region, the conventional MTS is liable to yield
biased sampling due to the frozen slow degrees of freedom when propa-
gating the fast ones. To remedy this drawback, Tuckerman et al. [198]
proposed reversible reference system propagator algorithms and imple-
mented them within the CPMD program package [199]. This methodology
has been adopted by Woo et al. [200] in their QM/MM MD scheme. In
their work, the MM part is first propagated from t0 to (t0þ nDt/2) at the
step size of Dt. The QM part is then evolved from t0 to (t0þ nDt) at the step
size of nDt with the MM force averaged from the forces at (t0 � nDt/2) and
(t0þ nDt/2). Following this, the MM part then moves from (t0þ nDt/2) to
(t0þ nDt) at the step size of Dt with the QM force averaged from the forces
at t0 and (t0þ nDt). Hence, the problem caused by fixed degrees of freedom
is partially solved by force average and smaller propagation steps. More-
over, the MM part is further extensively sampled by assigning smaller
masses to the MM atoms, resulting in faster motion.

4.1.3.2. Umbrella sampling. The US method offers a simple method of
configurational sampling for processes with activation barriers. Instead of
using an order parameter to force the transition between two states in TI and
FEP, US resorts to a biasing (restraining) harmonic potential (Vb) to over-
come the transition barrier and thus enhance the sampling [201]. In the US
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method the ensemble average (EA)hAi of a function A can be expressed
as [202]

hAi ¼ hA=e��Vbib
h1=e� �Vbib

; ð25Þ

where � is the Boltzmann factor, the EA is over the biased non-Boltzmannian
distribution defined by exp[��(HþVb)], that includes the biasing poten-
tial Vb and the system’s Hamiltonian H. It is apparent that one can use
either a classical or a QM/MM expression for the Hamiltonian of the
system.

With the biasing potential, the high-energy and low-probability regions
of the phase space are better sampled. Several different implementations of
this algorithm have been developed. For computing the PMF, a US simula-
tion would ideally lead to a uniform distribution along the reaction coordi-
nate. The difficulty, in practice, is to determine the strength and spacing for
placement of umbrella potentials along the reaction coordinate and the
common practice is to use multiple trial-and-error assessments. This repre-
sents a clear challenge to multidimensional PMFs involving costly compu-
tations such as QM/MM simulations. To overcome this problem, the
classical US scheme was extended to develop an adaptive US algorithm
by early work of Mezei [203] and then was extended by a number of
research groups [202,204]. In the adaptive US algorithm, the biasing poten-
tial is adapted to PMF information extracted from the preceding US window
and the analysis of the reaction pathway is usually carried over with the
weighted histogram method [205]. Rajamani et al. [202] have reported an
application of adaptive US for sampling of multidimensional PMFs for the
proton transfer reaction in [NH3�h�NH3]

þ in water. Aside from its appar-
ent methodological importance, this study reports on the quantitative
assessment of solvent effects on the rate of the proton transfer reaction.
The presence of solvent molecules leads to an increase in the free energy
barrier by �5 kcal/mol. This large adjustment in the barrier height was
related to charge delocalization for the TS as compared to products and
reactants. Furthermore, the explicit account of solvent effects leads to
changes in the shape of the two-dimensional PMF profiles for this reaction
as compared to the gas phase.

4.1.3.3. Replica Exchange. Conventional QMMD simulations are not cap-
able of sampling rare events because of their prohibitive expenditure for
long-time dynamics. This barrier in turn hinders QM/MM dynamics and,
hence, an efficient sampling method is desirable. Parallel tempering, also
known as replica exchange, is originally an MD approach to simulate
replicas of the system simultaneously and exchange their configurations at
different temperatures. One may think about ensembles of replicas as an
example of a Markov chain of states. That is, two conformational states in an
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ensemble can be understood as the state of the ensemble before and after a
pair of replicas (i,j) have exchanged their respective configurations. It is
possible to then use the Metropolis algorithm to determine the exchange
probability and set acceptance criteria [206]. This exchange enables replicas
at low temperatures to access regions that are hard to sample in phase space.
As recently reviewed by Earl and Deem [207], parallel tempering has been
widely used in MM simulations of polymers and proteins and QM simula-
tions of clusters. The temperature-based version of the RE algorithm may
become a double-edged sword, since there is always a possibility that the
free energy landscape is drastically different in the high-temperature region.
There are numerous extensions of RE simulations that are being run at the
same temperature, but contain a gradual perturbation of the potential
energy in replicas similar to that of the FEP method [208,209]. This is a
promising alternative for parallel tempering simulation of a quantum sys-
tem, as the QM SCF calculation is often difficult to converge at high tem-
peratures. Li and Yang [210] have added a QM replica to the MM replicas in
their Hamiltonian parallel tempering simulation with the module in
CHARMM [211]. They formulated the exchange acceptance ratio to satisfy
detailed balance and obtained a more complete sampling at a much shorter
time length than the QM dynamics. As noted by the same authors, the QM
potential can well be replaced by a QM/MM potential to increase the
resolution. Several notable applications of QM/MM REMD are worth men-
tioning and we direct interested readers to the particulars of systems in Refs.
[212–217].

4.1.3.4. Reaction coordinate-driven methods. An extension of enhanced
sampling algorithms and particularly US-based routines may be found in
the recent implementation of a chain-of-replica approach [118] for QM/MM
from the Brooks group to allow for some flexibility along the reaction
coordinate. In this approach, a tentative RC is first defined to connect the
reactant and the product. And then a chain of geometries (replicas) differing
only in their RC values is interpolated between the reactant and the product.
A spring force is exerted between the replicas as a function of their root
mean squared (RMS) distance. Hence, the object function to be minimized is
the actual QM/MM potential plus the spring potential of each replica. An
intrinsic advantage of this replica path scheme is the trivial effort of paral-
lelization as the replicas can be optimized separately from each other.
Another benefit from this approach is its capability of discriminating the
important atoms versus the unimportant ones. Since the RMS distance is
used for adjacent replicas, different weights can be assigned to critical
atoms, which play more important roles than other atoms far from the
reaction center. Furthermore, the RMS distance can be used to calculate
the potential of mean force evaluating forces along a specific path [118].
However, it is noted that the spring force constant should be chosen
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carefully. Since there is also a restraint on the angle between replicas, this
force constant demands a careful choice as well. Yang and coworkers
[218] have further expanded this promising approach with the introduc-
tion of the macro/microiteration scheme into their chain-of-replica
method. The QM core and MM environment forces and energies along
the path points could be computed and optimized separately by alternat-
ing iterations. As pointed out earlier, the coordinate system plays a role in
the QM/MM optimization. Hence redundant and Cartesian coordinates
are employed for QM and MM subsystems respectively, and the calcula-
tion of the distance between the points along the path excludes the MM
degrees of freedom. To avoid the translation and rigid body rotation of
the QM core, Cartesian coordinates of at least three core atoms are
included as redundant internal coordinates. In contrast to this treatment,
a rotation matrix to best fit the adjacent path images is used to ensure the
same coordinate frame in the work mentioned in Refs. [118,219] as only
Cartesian coordinates are used. Another major difference in Ref. [218] is
the application of the TS search scheme by Ayala and Schlegel [219a]. An
explicit TS finder is added to the regular replica path method, in which
the highest point of the path is moved toward the true TS and the replicas
are redistributed afterward in each path relaxation cycle. Since this Hes-
sian update requires gradients of the neighboring replicas, discontinuity
of the environment along the path can seriously bias the updated Hessian.
This problem is remedied to some extent by checking the Hessian after
each update and reinitializing it with an empirical estimate when neces-
sary, which possibly results in slower convergence.

As an alternative to the replica path method, a nudged elastic band
(NEB) method has also been implemented [219]. As a member of the
chain-of-replica methods, the NEB is similar to the replica path scheme in
terms of replicated points along the reaction path to be optimized sepa-
rately. The difference is that in NEB, the force perpendicular to the path is
optimized below threshold instead of the total force. Brooks and coworkers
[220] have tested both NEB and replica path with a QM/MMpotential. They
found both methods converge at nearly the same rate when proper optimi-
zers were chosen. While the replica path method can effectively use the
adopted basis Newton–Raphson (ABNR) optimizer, the NEB requires a
combination of steepest descent and ABNR, as the ABNR alone with the
NEB is unstable owing to the projection of the forces.

A variant of the NEB method for QM/MM calculations has been
proposed by Yang and coworkers [221]. Their approach differs from that
of Ref. [219] in two respects: the optimization method and the definition of
the distance between points along the path. In Ref. [221], the path is
optimized with the projected velocity Verlet algorithm. However, the
convergence efficiency of MD minimization based on quenched Newto-
nian MD has been shown to be inferior to ABNR [219]. Pure minimizers
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should work better for optimization on the potential energy surface and
they significantly reduce the number of expensive QM calculations. To
avoid the floppy degrees of freedom in the MM environment, in Ref. [221]
a transformation was used for a set of interatomic distances concerning all
chemical or hydrogen bonds formed/broken during the reaction. How-
ever, this treatment could cause discontinuity of the environment when
the environmental conformation is adjusted to different reaction coordi-
nates. To alleviate this drawback, Yang and coworkers started from a
reference system with a relatively rigid environment and gradually
decreased the spring force constants for the environment. On the other
hand, the assignment of different weights in Refs. [118,219,220] seems
more straightforward although the weights should be carefully chosen
nonetheless.

4.1.3.5. Transition path sampling. Despite the fact that the above search
methods include temperature effects, they still find only one path and one
TS, which in reality should be an ensemble. To adequately sample the
various possible paths, a transition path sampling (TPS) method has been
proposed [222]. Schwartz and coworkers have applied the TPS in
CHARMM to study lactate dehydrogenase using a QM/MM potential
[62,223,224]. To distinguish the reactant, product, and TS regions, an
order parameter, for example, atomic distances in [62,223,224], is first
defined. Restraining the order parameter, a biased QM/MM MD simula-
tion of time length t [t= 500 fs in Ref. [224]) is run to obtain the initial
trajectory from the reactant to the product. A time slice of the trajectory is
then randomly chosen and its momenta are changed by a small amount
while the total momenta and energy are conserved. Following this, the
dynamics is run both forward and backward to complete a trajectory of t. If
this dynamics arrives at both the reactant and the product regions, it is
considered reactive and the subsequent dynamics starts from a time slice
from it. Otherwise, when it is not reactive, another time slice is chosen
from the old trajectory to continue the dynamics until a reactive one is
obtained. Practically, the acceptance ratio of reactive trajectories depends
on the momenta changes, which is adjusted to get a population of 26.5% in
Ref. [62]. From this transition path ensemble, one can draw out the TS
ensemble by the definition of the order parameter [62,223,224]. Analyzing
the trajectories and the TS ensemble, one can identify important move-
ments of the atoms surrounding the reaction center as detailed in
[62,223,224]. However, while inspiring qualitative conclusions have been
reached [62,223,224], no quantitative result such as reaction rates have
been calculated with QM/MM methods to compare with experimental
observations, although the procedure to calculate the free energy barrier
was already illustrated by Chandler and coworkers for the classical case in
Ref. [222].
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5. BEYOND CONVENTIONAL QM/MM DYNAMICS: EXPLICIT
ACCOUNT OF NUCLEAR QUANTUM EFFECTS

The free energy calculations described in the section above form the corner-
stone of the study of chemical kinetics. Together, TST and reaction coordinate
sampling techniques (US, FEP, etc.) enable computations of approximate rate
constants in the Born�Oppenheimer approximation. A QM treatment is com-
monly used to treat electronic effects and the MM part provides a necessary
account of environmental effects. Examples of the QM/MM molecular simu-
lations are numerous and several excellent reviews were recommended
above. Thus far, our chapter has focused as well on the latest state-of-the-art
methods developed to accurately compute free energies, with emphasis on the
QM nature of the PES used to drive classical nuclear dynamics. However, it is
accepted [225] that nuclear quantum effects, such as tunneling, play an impor-
tant role, in particular, in enzymatic catalysis. Tunneling is important in
reactions that involve the abstraction of hydrogen atoms, protons, or hydrides.
Its importance has been largely shown by the experimental observation of
temperature-independent kinetic isotope effects (KIEs) in different enzymes.
These observations cannot be understood solely on the basis of differences in
the zero-point energy (ZPE) between the isotopes involved [225]. Therefore, to
have a complete description of enzymatic catalysis, it is necessary to bring into
the picture the quantum nature of light nuclei, beyond the calculation of
simple frequency-based ZPE.

Once again, it is desirable to have in place methods with the computa-
tional convenience of MM and the theoretical robustness of QM. Fortu-
nately, a description at the TST level allows one to bypass the problem of
solving the time-dependent Schrödinger equation for the nuclear system.
Similar to full electronic structure calculations for biomolecules, to solve the
nuclear quantum dynamics is a formidable endeavor, possibly intractable
with the current available computational power for systems with thousands
of atoms. However, nuclear quantum effects on equilibrium properties,
barriers height, and free energies could and should be accounted for. In
this arena, several theoretical methodologies have been developed. Herein,
however, we shall focus on the approaches rooted in the path integration
(PI) formulation of quantum statistical mechanics [226]. This twist in our
discussion is motivated by the natural extension of the QM/MM and free
energy techniques to PI methods thanks to the quantum�classical isomorph-
ism provided by Feynman’s alternative formulation of QM.

The central goal of the methodologies described below is to calculate rate
constants. The QM rate constant can be written in terms of the PFs:

k ¼ �
kBTQt

hQr
¼ �

kBT

h
expð��DGtÞ; ð26Þ
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where � is the transmission coefficient, kB is the Boltzmann constant, T is the
temperature, and h is Planck’s constant. Qt and Qr are the PF of the TS and
the reactants, respectively. The largest quantum effects are associated with
the PF. Using PI, one can show that the canonical PF of a quantum particle
(the generalization to many particles is straightforward) under the influence
of a potential V(x) is given by

Q ¼ lim
P!1

 
mP

2�� �h2

!P=2Z
dx1 . . .dxpexp �

XP
i¼1

�
mP

2��h2
ðxiþ1 � xiÞ2 þ �VðxiÞ

�" #
xPþ1¼x1

:

ð27Þ
In the limit of infinite P, this expression is exact. In practice, however, finite
values of P produce converged results [226]. Note the mathematical corre-
spondence of the PF of a single quantum particle with the PF of a classical
“ring polymer.” Herein, P classical particles are connected by harmonic
“springs” and each of them is subject to a fraction V(x)/P of the potential
(� = �/P). This correspondence renders the use of MM sampling techniques
based on MC or canonical MD suitable to evaluate expectation values of
EAs of thermodynamical properties using the PI PF. We should clarify that
the dynamics so obtained are devoid of physical meaning, and serve only as
a configurational sampling of the quantum partition function (QPF).

It is worth pointing out that the correct PIMD implementation is not free
of subtleties, mostly related to temperature control and integration schemes.
These details, however, are outside the scope of this review and for more
specific information we recommend the excellent literature on the topic
found elsewhere [227,228].

An important notion within the PI framework is the centroid variable
[229]. It is defined as the center of mass of the ring polymer and its average
value along the path is given by

xc ¼ 1

�h

Z�h
0

d�xð�Þ: ð28Þ

Hwang and Warshel [230] have developed a method that exploits the fact
that the QPF can be recast in terms of the centroid variable. Using this
formulation, the quantum correction to the classical free energy along the
RC can be written as a double average of the form

Gt
qm �Gt

TST ¼ � 1
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QP
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+
V

; ð29Þ

where DVi=V(xi) �V(xc). The outer average over V is obtained over the
distribution generated by an MD simulation driven by V(xc). The inner aver-
age over FP (free particle), xc is over the so-called free-particle distribution.
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The quantized classical path (QCP) method, developed by Hwang and
Warshel, utilizes the trajectory obtained from classical mechanics simula-
tions to obtain the QM correction by performing free-particle PI averaging
with the centroid constrained to the classical position. This methodology
has been successfully applied in the study of unusual KIE in several enzy-
matic systems [231�234].

More recently Gao and coworkers [235] introduced a bisection-sampling
algorithm extensively used in quantum MC simulations of condensed mat-
ter [236,237] into the QCP approach to sample the free-particle paths. The
bisection QCP (BQCP) method has been used to study KIE in condensed
phase reactions and enzymes [238]. Further development of the BQCP has
been done, aimed at determining analytical expressions for the effective
centroid potential [238]. These methodologies expedite the calculations
and are promising for the study of large systems.

The two methodologies described above have been successfully used in
conjunction with MM force fields, QM/MM, and EVB methods The main
importance of these techniques is their suitability for free energy calcula-
tions using US and FEP methods described in the previous section.

For completeness, we briefly summarize other methodologies developed
to study quantum effects in proton transfer reactions. These methodologies
incorporate at least one of the following: QM/MM, MM forcefields, or PI.

Wang and Hammes-Schiffer [239] have used a mixed quantum/classical
PIMC (QC-PIMC) approach to study proton transfer in the enzyme dihy-
drofolate reductase. In this approach, the classical PMF along a reaction
coordinate is calculated using MD trajectories propagated according to an
EVB-based mapping potential and US. The nuclear quantum correction is
determined separately by standard (without the centroid constraint) PIMC
calculations based on an effective mapping potential. Hammes-Schiffer and
coworkers have developed and refined a hybrid quantum /classical grid
method to study proton transfer reactions [240�242]. In this approach, the
classical PMF for the reaction is obtained using US simulations along a
mapping potential based on EVB or QM/MM techniques. Nuclear quantum
effects are incorporated perturbatively into the PMF by representing the
proton as a multidimensional vibrational wavefunction.

Semiclassical theory can be used together with MM (and, in principle,
with QM/MM) approaches to obtain quantum corrections to rate constants.
Truhlar and coworkers [243] have worked on variational transition state
theories (VTSTs) and semiclassical quantum tunneling (QT) corrections. In
VTST, the position of the TS along the RC is determined variationally, as the
point that minimizes the reactive flux or maximizes the free energy of
activation, that is, minimizes the rate constant [243]. Different semiclassical
flavors of tunneling correction can be used in conjunction with VTST. In
particular, the EA TST/QT has been successfully used to study KIE in a
series of enzymatic reactions [236,244,245].
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Finally, to obtain exact QM rate constants, that is, beyond TST, it is
unavoidable to determine the quantum dynamics of the system. As stated
in the beginning of this section, this is a task that is currently prohibited,
computationally. Be that as it may, greater efforts have been devoted to
develop approximate quantum dynamical methods that rely on the compu-
tational machinery already built for MD simulations. Some of these meth-
ods, such as centroid MD [229,246], ring polymer MD [247], and techniques
based on analytical continuation of imaginary time correlation functions
[248] are based on a PI description. Others, such as the semiclassical initial
value representation, are based on semiclassical ideas [249]. These methods
are currently still in formal development and their applicability and limita-
tions are being scrutinized; however, they soon will reach maturity and
certainly will become another element of the toolbox for studying enzyme
catalysis. A thorough discussion of these techniques is beyond the scope of
this review. Needless to say, the future is bright for these methodologies and
we expect that in the not so distant future applications of these methods in
systems of biological relevance will begin to appear in the literature.

6. SUMMARY OF ALTERNATIVES TO QM/MM METHODOLOGY

QM/MMmethods are known for their high accuracy and efficiency treating
large systems due to the integration of high- and low-level methods. In fact,
this philosophy of integration can also adopt pure high-level methods for
the entire system or even lower-level methods for the outer region.

For the integration of all high-level methods, an example is the “divide
and conquer” approach [250�253]. This approach divides the system into
small fragments, calculates the electron density of each fragment with high-
level QM methods, and then sums up the interactions between fragments,
thus conquering the whole system. While this procedure offers a promising
alternative to QM/MM, it is still quite expensive to calculate each polarized
fragments in a self-consistent way and the boundary treatment could cause
larger errors than in QM/MM because more boundaries are involved.
Moreover, sufficient sampling of the system configuration space is compro-
mised because of high cost. So far, this approach has been mainly applied to
the study of materials with highly repetitive structures. Nonetheless, this
approach is of great significance in that it extraordinarily improves compu-
tational accuracy. Recently, it has been extended with MM methods to save
computational cost and yielded satisfactory results [254].

For the integration of lower-level methods than MM, an example is the
quantum chemical cluster approach whose application in biological systems
was recently reviewed in Ref. [255]. In this scheme, a subsystem is chosen to
be treated with high-level methods and its peripheral atoms are fixed
according to the X-ray structure. Subsequently, this cluster is embedded in
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a polarizable continuum electrostatic field to mimic the environmental
effects. In fact, a similar method, termed quantum mechanical charge field
(QMCF) in Ref. [256], has been used to study the hydration of alkali ions.
Rode and coworkers Ref. [256] demonstrated that the QMCF treatment
performed better than a QM/MM approach with mechanical embedding
as long as the QM system was big enough to include the first hydration
shell. Under this condition, implicit solvent can represent explicit solvent
well, indicating that the configuration of the outer region described is not
very important to the QM region.

But how about biochemical reactions? Sevastik and Himo [257] showed
that when the QM system was enlarged (from 77 atoms to 177 atoms) for a
proton transfer reaction in a protein, the calculated pKa values conformed
better to experimental results. They also made a comparison with previous
studies on the same enzyme using QM/MM methods [258,259] and found
disagreements with their results. However, this finding is conceivable as
there were only 30 atoms in the QM regions of Refs. [258 and 259]. There-
fore, it was a question of the QM system size rather than the different
methodologies. It is also found in Ref. [257] that the energies are quite
different at different dielectric constants when the QM cluster is not big
enough, suggesting the important role of the dielectric constant in this
approach. One should also note that there are two intrinsic problems with
the quantum chemical cluster method: fixed QM boundary atoms and no
vdW interaction between the QM region and the charge field.

By and large, QM/MM methods are still more prevalent compared with
other approaches, because of the accuracy of the QM portion and the
efficient configurational sampling of the MM portion.

7. APPLICATIONS TO BIOCHEMICAL SIMULATION

There have been numerous QM/MM applications in computational
biochemical studies thanks to the rapid development of this methodology.
When combined with experimental studies, the QM/MM methods have
been widely used as a tool to assist the interpretation of biological spectro-
scopy. In EPR spectroscopy, the hyperfine structures of the paramagnetic
active sites in blue copper proteins were examined by Salahub and
coworkers [18]. In nuclear magnetic resonance (NMR) spectroscopy, the
QM/MM calculated chemical shifts have been compared with the experi-
mental data to determine the binding mode of substrate to protein by
Karplus and coworkers [260] and QM/MM calculations have also been
used for sequence-specific NMR assignments by Lula et al. [261]. In X-ray
spectroscopy, QM/MM methods have been employed to refine the crystal
structure of proteins [262] and to include environmental effects in the
determination of the substrate’s electron density in proteins [263]. On the
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theoretical methodology side, QM/MM has also been adopted to parame-
terize MM force fields to include environmental effects [264].

Particularly, QM/MM methods find their most popular application in
enzymatic reaction studieswhich start from experimental structures and arrive
at predictions through computations. To illustrate the power of the QM/MM
approach in biochemical studies, we select a single example to describe here:
QM/MMsimulation of DNApolymerases (DNApols). This choice is based on
our own interest in the related RNA polymerases [265,266]. We believe this
example nicely represents the state of the art and should give the reader a
faithful representation of the excitement in the field. Other examples may be
found in the references (see [111,115,116] for recent reviews).

7.1. DNA polymerases

DNA pols are crucial constituents of the complex cellular machinery for
replicating and repairing DNA. They discriminate the matched deoxynu-
cleoside triphosphate (dNTP) against the mismatched dNTPs and NTPs in
an intricate mechanism. Understanding the origin of DNA pols’ high fide-
lity on the atomic level is important to the full revelation of their exquisite
cellular functions. Mammalian DNA polymerase b (pol �), a small (39 kDa)
member of the X-family, has been extensively studied with computational
tools by many groups. As revealed by X-ray crystallography, to ensure the
high fidelity, this polymerase exhibits closed (inactive) and open (active)
forms, the transition between which is triggered by the correct dNTP and
hampered by the wrong dNTPs. Radhakrishnan and Schlick [267] applied
the TPS method at the MM level to obtain the TSs of the activation process,
employed a QM/MMmethod for the following nucleotidyl transfer reaction
and integrated these results in a kinetic MC model to explain the kinetic
difference between the correct and mismatched dNTPs. To further identify
which step is the rate-limiting one, the prechemistry or chemistry step,
Schlick and coworkers investigated the chemistry step elaborately with
hybrid QM/MM and with the QM method alone.

The nucleotidyl transfer reaction in DNA pols is illustrated in Figure 10.5.
As commonly acknowledged, it involves a nucleophilic attack of the DNA
primer hydroxyl oxygen (O30) on the a-phosphorus (Pa) of the incoming
dNTP and P��O bond breaking, which results in pyrophosphate group
leaving. There are two possibilities for the nucleophilic attack by O30: direct
attack without deprotonation of this oxygen and attack following a prior
deprotonation. The first possibility has been tested by Pedersen and
coworkers [268] and an extremely high energy (47 kcal/mol) was found at
a short O30�Pa distance while the H30�O30 bond was still present. The
second possibility has been scrutinized by Bojin and Schlick [269] with a
pure QM method with respect to different pathway models: direct proton
transfer from O30 to O(Pa), proton transfer to adjacent Asp residues, and to a

390 R. Zhang et al.



water molecule. They simplified the active site by changing all aspartates to
formates and the ribose ring to methyl, resulting in a model of 49 atoms and
an overall charge of �3. To find the TSs, they constrained the reaction
coordinates and performed constrained geometry optimization accordingly,
as similar to the RCD method mentioned above. As a result, the direct
proton hopping from O30 to O(Pa) was found to be most energetically
favorable.

In view of the inability to include environmental effects by QMmethods,
Schlick and coworkers [51,270] also recruited QM/MM methods to study
this reaction and a very different proton transfer pathway was found. They
employed 10 ps QM/MM dynamics in conjunction with US to estimate free
energies of intermediates along the reaction coordinate and discovered the
proton transfer to water molecules instead of O (Pa) [270]. To validate this
finding, they then compared the different proton transfer pathways with
QM/MM methods [51]. A system of more than 40,000 atoms including 65
QM atoms was built where all atoms within 15 Å of any QM atom were free,
atoms within 15–25 Å semiconstrained, and atoms further than 25 Å were
fixed. To find the minimum energy path, harmonic constraints were added
along the reaction coordinate instead of totally constraining it. Results of
this study agreed with their previous QM/MM calculations: the O30 is
deprotonated by a water molecule. It is worth noting here that hierarchical

Figure 10.5 Illustration of the nucleotidyl transfer reaction.
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levels of QM methods were employed in this work, that is, Hartree–Fock/
STO-3G to identify preliminary geometries, B3LYP/3-31G� for geometry
optimizations, and MP2/6-311þG(d,p) for final energy calculations.

While supported by abundant evidence, the water-mediated proton
transfer mechanism has been challenged recently by Pedersen and
coworkers [59,268]. Based on a more recent crystal structure of DNA pol b,
they proposed a two-stage mechanism through their QM/MM calculations,
that is, B3LYP/6-311G��/AMBER ff99. The primer terminal O30 first
replaces one of the water molecules bound to the catalytic Mg ion resulting
in a prechemistry state and thereupon the reaction starts with O30 deproto-
nated by an aspartic residue. The prechemistry state was found to be stable
after 5 ns of unconstrained MD simulation and the proton transfer barrier
6 kcal/mol. A similar study has also been conducted on pol �, another
member of the X-family polymerases by Cisneros et al. [59]. The TS search
was performed using the chain-of-replica method augmented with an expli-
cit TS finder by Yang and coworkers as introduced above. With this
approach, the proton transfer to an aspartic acid was found to be much
more energetically favorable than that to a water molecule.

The question of whether there is similarity across the DNA poly families
has stimulated great interest. DNA pol IV from the Y-family and T7 pol of
phage have been investigated by Zhang and coworkers [271,272]. Both
works utilized the pseudobond approach to cap the QM subsystem, the
micro-/macroiteration scheme to optimize the geometry, the RCD method
for the reaction path search, and the FEP method for free energy calculations
along the path. It was found that the nucleophilic attack was the rate-limit-
ing step and the initial proton transfer was assisted by water.

8. CONCLUSIONS AND PERSPECTIVES

To conclude this review, we look at the QM/MM methods from the view-
point of multiscale methodology. QM/MM is actually a combination of
methods on two scales which divides a system into two levels and treats
them accordingly. However, we will have to march on along the scales as the
size of the systems and time length of the events grow. When investigating
systems such as multiple unit proteins, coarse-grained methods would have
to be adopted to sufficiently sample their configuration space. When studying
events such as protein folding in milliseconds, kinetic simulations instead of
regular dynamics simulation will probably have to be used. Nevertheless,
QM/MM methods are indispensible, since they can be used as benchmark
calculations for coarse-grained models and to obtain rate constants for kinetic
models, especially when chemical reactions are concerned.

Our groups have been applying the QM/MM-based multiscale metho-
dology to the study of the RNA elongation process catalyzed by RNA
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polymerase II. Since this event occurs on a second timescale, we have
adopted a kinetic MC method to simulate this process [273]. The whole
process was divided into four steps: Diffusion of the substrates, substrate
moving from the entry site to the addition site, nucleotidyl transfer reaction
in the addition site, and the release of the pyrophosphate group. Although
our tentative kinetic model based on empirical rate constants in general
agreed with the experimental results, the rate constants had to be obtained
through many trials, which lacks a solid physical basis. Therefore, rate
constants from first-principles are still desired. The rate constant of the
nucleotidyl transfer reaction is being pursued using a QM/MM method
which combines CHARMM and deMon2k [53].

Our review has focused on two classes of problems. In the first, exem-
plified by DNA and RNA polymerases, the QM region is the initial point of
focus—getting the quantum mechanics right is essential to a correct descrip-
tion of the reaction. Environmental and solvent effects are then brought in to
gain quantitative, and sometimes qualitative, insight.

In the second class of problems, the solvent or protein�solvent dynamics
are essential to the very existence of the phenomena investigated, ion
solvation, and transport providing the prototypical example. We hope that
the “creative tension” between these two perspectives will lead to even more
powerful simulation methodologies that will be able to provide better
treatments of environmental sampling for the former and the incorporation
of larger and more complex quantum regions for the latter.

In summary, while QM/MM methods are important in their own right,
they will also contribute to a multiscale systems approach as a powerful
component.
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INDEX

A
Absorption spectra of liquid water

basis set dependence on dielectric constant
of liquid water, 124f

Lorenz-Lorentz equation
dynamic polarizability/dielectric

constant, relation, 124
polarizable model, issues, 123
PP approach, 125–126
SCF determination of embedding charges
NCC/TIP3P model, use of, 126

SOS approach, 123–125
Absorption spectrum, definition, 28
Active orbital, 5, 198, 199
Adiabatic surface crossing, 186–187
Alternatives toQM/MMmethodology, 388–389
Anemonia sulcata, 208
Angiotensin

angiotensine-(1�7), �-cyclodextrin
inclusion compound, 172–177

configurational space of Ang-(1–7):b�Cyd
in aqueous solution, 174f

HBs and corresponding donor-acceptor
distances, 175t

RDF computation, 174
chemical structure of, 167f
configurational space of Ang-(1–7) in

aqueous solution, 170f
HB formation, 169–170
and corresponding donor–acceptor

distances between water/Ang-(1–7)
residues, 171t

RMSD plot, 169f
structural parameters computation, 168t

Angiotensin-converting enzyme (ACE)
inhibitors, See Bradykinin potentiating
peptides (BPPs)

Application of QMCF MD methodology,
treatment of liquids

future outlook

applications, 244
methodical developments, 243

hydration of monoatomic ions in solution
BJH-CF2 water model, 229
hydrated-ion model, 232
ion�water interactions, problems, 232
Pd(II) and Pt(II) ions, example,

230–232, 231f
QMCF procedure, advantages, 229
RDFs of Na(I)/Al(III) in aqueous

solution, QMCF and QM/MM MD
approach, 227–229, 227f

U(IV)�water RDFs, 229–230, 230f
hydration of multiple atoms in solution

Hg2
2þ, example, 233–237

UO2
2þ, example, 237–240

See also Multiple ions in solution,
hydration of

Applications, hydrogen- bonding systems
charge transfer in halide aqueous solutions

ground/excited/ionized states, energy
diagram, 133f

study of chloride in aqueous solution,
134, 134f

electron binding energies of liquid
ammonia, 129–132

electronic properties of water
absorption spectra of liquid water,

123–126
ionization of liquid water, 126–129
UV spectra of water clusters, 119–123

organic molecules, solvatochromic shifts
of, 136–140, 137t

acrolein molecule (vdW representation),
138f

Applications of computational spectroscopy
study

acrolein in gas phase/in aqueous solution,
UV spectra of

experimental study indifferent solvents, 38
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Applications of computational spectroscopy
study (Continued)
time-dependent approach, use of GLOB

model, 38–39
time-independent approach, 40–41
UV n!p� electronic transition of

acrolein, 40f
UV n!p� transition energies, TD-B3LYP/

6-311þþG(2d,2p) level of theory, 39t
adenine adsorbed on Si(100), photoelectron

spectrum
adenine/adenine@Si(100),

photoionization spectra, 51f
adenine/adenine@Si(100), spectra

computations, 52t
ESR magnetic tensors of complex radicals

in aqueous solution
glycine and uracil radicals, examples, See

Glycine radicals in aqueous
solution, ESR magnetic tensors of;
Uracil radicals in aqueous solution,
ESR magnetic tensors of

vibrational properties beyond harmonic
approximation

chair/twisted structures of TOAC, QM/
MM approach, 49, 49f

IR spectrum of adenine@Si28, 48f
nitrogen isotropic hyperfine coupling

constants, 50t
PT2 anharmonic frequencies,

computations, 48t
reduced computational cost treatments, 50

Applications, study of solvent effects
chemical reactions

electron transitions, 84–91
conformationalandconfigurationalequilibria

anomeric effect in xylopyranose/
glucopyranose, See
D-glucopyranose, anomeric effects;
D-xylopyranose, anomeric effects

in a tripeptide, See Tripeptides
nonradiative de-excitations in retinal, 91–94

isomerization of rhodopsin
chromophore, study, See Rhodopsin

Applications to biochemical simulation, QM/
MM methodology

DNA polymerases
B3LYP/6-311G��/AMBER ff99, 392
nucleotidyl transfer reaction,

390–391, 391f
proton transfer pathway, QM/MM

method, 391–392

TPS method (Radhakrishnan and
Schlick), 390

water-mediated proton transfer
mechanism, 392

ASED/MD method applied to chemical
reactions

electron transitions
DMA, study of transition energy in, See

Dimethylaniline (DMA)
Franck–Condon (FC) principle

application, 84
structures of 11-cis-retinal PSB, 89f

1,3 proton shift of triazene, scheme, 83f
bimolecular reaction study, ‘‘rare event’’

approach, 84
energy barriers of, 83t
quantum calculations, DFT method, 83
reaction mechanisms, 83

ASEP/MD methods, See Averaged solvent
electrostatic potential (ASEP/MD)
methods

Averaged solvent electrostatic potential
(ASEP/MD) methods, 63–71, 63t, 65f,
74–76, 78, 82, 84, 85, 86f, 88, 92, 94, 95

B
‘‘Back polarization,’’ See Polarization coupling
Back-polarization effect, schemes, 105–106
Barostats, 155
Basic concepts, QM/MM methodology
boundary treatment

FLO, 364–365
link atom, 362–364
performance of LA and FLO, 365–366

electrostatic interactions
electrical embedding, 358–359
electrical embedding with explicit

treatment of MM region
polarization, 359–360

first-principles electrostatic potential,
360–361

mechanical embedding, 358
energy expression

additive scheme, 357
subtractive scheme, 356–357

van der Waals interactions, 361–362
Basis set superposition effect (BSSE), 110–111
Becke three-parameter Lee-Yang-Parr

(B3LYP) functional, 37, 38, 43f, 44t, 45,
45f, 46t, 47, 51, 74, 76, 118, 137, 137t, 165,
225, 361, 392
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Beyond conventional QM/MM dynamics,
nuclear quantum effects, 385–388

BJH-CF2 water model, 229
Blueshift, 38, 39, 41
B3LYP functional, See Becke three-parameter

Lee-Yang-Parr (B3LYP) functional
B3LYP functional/6-311þþG(2d,2p) basis

sets, 38
B3LYP/6-311G��/AMBER ff99 mechanism,

392
Boltzmann constant (k), 24, 102, 302, 309, 313,

315, 331, 333, 386
Boltzmann factor, 302, 303, 318, 381
‘‘Bond based’’ approximation, example

ClþHCl reaction, Q/C-propagation
schemes

multiple Q/C trajectories, 256–257
single-trajectory Q/C-TDSCF approach,

256
BPP7a

chemical structure of, 163f
configurational space spawned by,

DC–SCC–DFTB/UFF theory, 166f
DC–SCC–DFTB/UFF method, MD of, 164
RDF calculation, 166
RMSD plot in gas phase/in solution,

164–165, 164f
structural parameters computation, 165t

BPPs, See Bradykinin potentiating peptides
(BPPs)

Bradykinin potentiating peptides (BPPs), 146
BSSE, See Basis set superposition effect (BSSE)

C
Captopril�, 146
Cardiovascular diseases, treatment of, 146,

167
Car�Parrinello (CP) simulations, 215, 223,

243, 286
CASPT2, See Second-order perturbation

theory (CASPT2)
CASSCF method, See Complete active space

self-consistent field (CASSCF) method
CC, See Coupled cluster (CC)
CCSD, See CC singles and doubles model

(CCSD)
CCSD(T) method, See CC singles and doubles

with perturbative triples [CCSD(T)]
method

CC singles and doubles model (CCSD), 114,
115, 120f, 121, 122, 134f, 136, 138, 197

CC singles and doubles with perturbative
triples [CCSD(T)] method, 114, 115, 243

CC theories
EOM-CC theory, 115–116
LR-CC theory, 114–115

Charge-transfer excitations, 107
CI coefficients, 113, 122
CIS, See Configuration interaction singles

(CIS)
Combined quantum mechanical and

molecular mechanical (QM/MM)
methods

future prospects, application fields
properties/reactions related to clusters

and nanomaterials, 12
reactions in biosystems, 12
solvent effects, 12

future prospects, aspects of concern
QM/MM boundary, 12–13
QM/MM couplings, parameters used, 13

Complete active space self-consistent field
(CASSCF) method, 71t, 72t, 74, 85, 88,
90t, 91, 136, 198, 199, 201f, 205, 209

Computational effort/accuracy
in hybrid QM methods, case, 224
in hybrid QM/MM methods, case, 224–225

DFT methods, application of, 225
HF level, shortcomings, 225
MP/2 method, 226
RI approximation, 225

influencing factors
basis sets, choice of, 226
computational equipment design/

efficiency of QM programs, 226
ECP, relativistic effects, 226
simulation time, 223–224
system size, 223

Computational spectroscopy study, QM/
MM approaches

applications
acrolein in gas phase/in aqueous

solution, UV spectra of, 37–42
adenine adsorbed on Si(100),

photoelectron spectrum of, 50–53
ESR magnetic tensors of complex

radicals in aqueous solution, 42–47
vibrational properties beyond harmonic

approximation, 47–50
See also Applications of computational

spectroscopy study
computational strategies, aims, 18–19
framework for spectroscopic study
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Computational spectroscopy study, QM/
MM approaches (Continued)
GLOB model, 20
hybrid QM/MM methodologies, 19
ONIOM scheme, 19
spectroscopic properties, calculation of,

33–37
time-dependent approach, 20–26
time-independent approach, 26–33
two-layer system, energy evaluation

expression, 19
Conductor-like polarizable continuum model

(CPCM), 38, 40f
Configuration interaction singles (CIS),

113–114
Conjugated chromophores, acrolein, 37
Correlation spectroscopy (COSY), 146
COSY, See Correlation spectroscopy (COSY)
Coulombic interaction, 101, 107, 108, 217,

218–219, 224–225, 229, 305
Coupled cluster (CC), 114
CPCM, See Conductor-like polarizable

continuum model (CPCM)
CP simulations, See Car�Parrinello (CP)

simulations
Cyclodextrins, 147, 157–158, 167
nanoreactors, use as, 147

b-cyclodextrins (b�Cyds)
chemical behavior of

hydrogen bond existence, criterion, 162
DC–SCC–DFTB/UFFmethod,MDstudy,158
O4O4’O4’’O4’’’ dihedral angle, 159
RDF between b�Cyds and water

molecules, 161, 161f
RMSD, solvent-induced changes, 160, 160f
shape/structure, 158, 159f
structural parameters computation, 159t
X-ray/neutron diffraction, water molecules

assessment, 158
Cys-Asn-Ser, structure/labeling of, 78f

D
DC–SCC–DFTB/UFF hybrid method, 145–177
DeMon, computer code, 11, 147, 154, 155, 378
Density functional theory (DFT), 1, 34, 74,

100, 147, 215, 285, 308–311, 361
See also Kohn–Sham (KS) DFT; Time-

dependent DFT (TD-DFT)
Density functional tight-binding method

(DFTB), 147–151

Density matrix evolution (DME) method,
262–263

Deoxynucleoside triphosphate (dNTP), 390
DFT, See Density functional theory (DFT)
DFTB, See Density functional tight-binding

method (DFTB)
D-glucopyranose
anomeric effects

O(anomeric)�O(water) RDFs, 77f
relative free energies of a/b-D-

glucopyranose, in vacuo/in
solution, 76f

structures of different rotamers of a/
b-D-glucopyranose, 75f

structures of different rotamers of, 75f
Diabatic surface hopping, 182, 195–197
Dielectric continuum models, 62, 65
Dihydrofolate reductase, 267, 268, 387
Dimethylaniline (DMA)
study of transition energy in

absorption energies of DMA in solvents
of different polarity, 86f

localization of molecular charges in
vacuo/in solution, 90f

occupancy map of O atoms at ground
state of DMA, 87f

twisting angle for optimized geometries
in several solvents, 87t

vertical transition energies/solvent
shifts, retinal models, 88, 90t

1,2-dimyristoyl-sn-glycero-3-
phosphatidylcholine (DMPC), 323

DMA, See Dimethylaniline (DMA)
1D-MDQT, 267
2D-MDQT, 267
DME method, See Density matrix evolution

(DME) method
DMPC, See 1,2-dimyristoyl-sn-glycero-3-

phosphatidylcholine (DMPC)
DNTP, See Deoxynucleoside triphosphate

(dNTP)
Dronpa, protein, 209
Drude-oscillator model, 359–360
Duschinsky method, 30
D-xylopyranose, anomeric effects
energy/wave functions calculation, DFT/

PCM, 74–75
relative free energies of a/b-D-

xylopyranose, in vacuo/in solution,
75f

Dynamic electron correlation, 88, 198, 199
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E
EA-VTST, See Ensemble averaged-variational

transition state theory (EA-VTST)
ECD, See Electronic circular dichroism (ECD)
ECP, See Effective core potential (ECP)
Effective core potential (ECP), 6, 7, 226
Electronic circular dichroism (ECD), 28
Electronic spectra in QM/MM

beyond QM/MM, many-body expansions
BSSE, 110
FMO method, 113
HF/cc-pVDZcalculations, results, 110, 110f

QM/MM coupling methods, 106t
‘‘back-polarization’’ effect, schemes,

105–106
electrostatic coupling, 105
electrostatic/dispersion interactions,

computation, 104
mechanical coupling, 104
polarization coupling, 105

QM system, choosing
assumptions, 106
charge-transfer excitations, 107
Rydberg-type excitations, 106

Electronic spectra of hydrogen- bonding
systems, QM/MM approach

applications
charge transfer to solvent in halide

aqueous solutions, 132–136
electron binding energies of liquid

ammonia, 129–132
electronic properties of water, 119–129
solvatochromic shifts of small organic

molecules, 136–140
condensed phase systems, study
DFT, 10
QM/MM method, 10
SM/QM method, 10

theoretical methods
electronic spectra in QM/MM, 103–113
many-body interacting systems in

condensed phases, statistical
mechanics sampling for, 101–102

QM methods, calculation of electronic
spectra, 113–119

See also Theoretical methods, condensed
phase systems study

Electron propagator theory, 127
Electrostatic coupling, 105
Electrostatic embedding technique, 108, 112,

155–156, 219–222, 229, 354
Emission spectrum, definition, 29

Ensemble averaged-variational transition
state theory (EA-VTST), 260

EOM-CC, See Equation of motion coupled
cluster (EOM-CC)

Equation of motion coupled cluster
(EOM-CC), 114, 115, 116, 120f, 197

ESR spectroscopy, 36–37, 42, 49
Ewald summation technique, 157, 217, 219
EXAFS, See Extended X-ray absorption fine

structure (EXAFS)
‘‘Extended first shell,’’ 231
Extended X-ray absorption fine structure

(EXAFS), 230, 231

F
FAD, See Flavin adenine dinucleotide (FAD)
Fast Fourier transformation (FFT), 292,

295, 337
FEP method, See Free-energy perturbation

(FEP) method
FEP/thermodynamic integration methods

chemical potential, expression for, 302
choice of intermediate states, key to

accuracy, 304
errors in, 305
particle insertion method

distribution of free energy value in, 303f
drawback, 304

Fermi contact interaction, 36
FFT, See Fast Fourier transformation (FFT)
Finite-difference method, 293, 296
Flavin adenine dinucleotide (FAD), 340,

341f, 362
role in redox reactions

ball and stick illustrations, 341, 341f
FLO, See Frozen localized orbitals (FLO)
Fluctuating charge (FC) model, 10
Focused methods, study of solvent effects

high-level quantummechanical methods, 62
Langevin dipoles, 62
MM force fields, 62
ONIOM-type methods, 62

Force field methods, 224, 235
FP595, photoswitching mechanism, 209, 210f
Franck–Condon–Herzberg–Teller (FC–HT)

spectra, 41
Free-energy calculation for chemical

reactions, condensed phase simulations
combination ofQCMwith theory of solutions

polarizable continuum model method,
326–329
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Free-energy calculation for chemical reactions,
condensedphase simulations (Continued)
QM/MM method combined with theory

of ER, 332–337
reduction free energy calculation, QM/

MM-ER approach, 340–347
RISM/SCF calculation, 329–332
solvation free energy calculation, QM/

MM-ER approach, 337–340
molecular orbitals, study

configuration interaction (CI), 285
Hartree�Fock (HF) method, 285
KS-DFT, 285

QCM approach
hybrid QM/MM method, 299–301
KS-DFT, 289–291
real-space grids approach, 291–299

theory of solutions
application to molecular binding into

micelle/lipid-membrane systems,
322–326

DFT, 305–308
FEP/thermodynamic integration

methods, 302–305
Kirkwood charging formula and DFT,

308–311
method of energy representation, 315–321
site�site RDFs/RISM, 311–315

Free energy gradient method
advantage/drawback, 68
average force, defined, 68
gradient and Hessian expressions, 68–69

MFA application, advantages, 69
Free-energy perturbation (FEP) method, 70,

287, 302–305, 314, 318, 319f, 323, 336,
339, 341, 377–382, 385, 387, 392

‘‘Frozen core’’ approximation, 11
Frozen localized orbitals (FLO), 364–365
LSCF and GHO schemes, 365f
SLBO, 364

G
GAMESS, 11
GAUSSIAN03, 11
GAUSSIAN94, 11
Gaussian electrostatic model (GEM), 360–361
GEM, SeeGaussian electrostatic model (GEM)
Generalized hybrid orbital (GHO) method, 5,

203, 365, 365f, 366
General liquid optimized boundary (GLOB)

model, 20

Geometry optimization, PES
macroiteration, 370–371
microiteration

adiabatic/alternating scheme, 368, 368f
QM/MM partitioning, advantages, 369

GHO method, See Generalized hybrid orbital
(GHO) method

GLOB model, See General liquid optimized
boundary (GLOB) model

magnetic tensors of
computation at B3LYP/N07D/C-PCM

level of theory, 43f
isotropic hyperfine couplings

computations, 43, 44t
normalized probability distributions, QM/

MM approach, 44f

H
Halorhodospira halophila, 203
Hartree–Fock method, 34, 102, 224
See also Density functional theory (DFT)

Hartree–Fock solution, 113
Hartree potential, 295, 296, 337
Hellman�Feynman theorem, 102
Helmholtz free energy principle, 24
Heptapeptide angiotensine-(1�7) [17]—(Ang

(1�7)—in aqueous solution
treatment of cardiovascular diseases in

RAS, 146
Herzberg–Teller (HT) term, 30
‘‘Hessian-based’’ methods, 34
Highest occupied molecular orbital (HOMO),

51, 127
HK theorem, See Hohenberg�Kohn (HK)

theorem
Hohenberg�Kohn (HK) theorem, 289
HOMO, See Highest occupied molecular

orbital (HOMO)
HT term, See Herzberg-Teller (HT) term
Hubbard parameter, 152
Hybrid orbitals, 4–8, 364–365
in LSCF method (Rivail)

ab initio Hartree�Fock (HF), 5
NDDO QM method, 5
SLBO, 5

Hybrid orbital method, 203
Hydrated-ion model, 232
Hydrogen-bonding systems, 99–140
Hydrogen transfer in gas phase
collinear type reaction (Neuhauser and

Judson)
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Hydrogen transfer in gas phase (Continued)
‘‘bond based’’ approximation, 256
‘‘particle-based’’ approximation, 256

complex systems study
isotopic reactions, quantum and Q/C

computations, 259
SVRTmodel,methane as reactant, 258–259

flux�flux correlation function formalism, 260
MC-TDSCF approach, O(3P)þHCl reaction,

257, 258
planar/3D approximation
Billing’s models, 258
OHþH2!H2OþH, example, 258

SC-TDSCF approach, drawbacks, 257
Hyperfine interaction, 36

I
IHBs,See Intramolecularhydrogenbonds(IHBs)
Implementing QM into MM

computational aspects, 10–12
ab initio programs, 11
McMOLDYN, solvation phenomena/

radical systems study, 11
MD simulation programs, 11
QM programs, types, 11
semiempirical MO methods, 11

DFT methods, 1
emerging computer technologies, impact, 2
future prospects, 12–13
See also Combined quantum mechanical

and molecular mechanical (QM/
MM) methods

interactions in the QM/MM coupling
electrostatic interaction, 9
FC model, 10
HF/6-31G� calculations, 9
Lennard-Jones potential, equation, 8
short-range repulsive interactions, 8
Singh and Kollman’s scheme, 9
van der Waals interaction, 8

study of large systems
PCM application, 2–3
pure ab initio calculations, 2
QM/MMmethods (Warshel and Levitt), 3
quantumchemistrymethods, limitations, 2
semiempiricalmolecularorbitalmethods, 2

system partition into QM/MM parts
chemical bond connections, 4
choice of QM/MM boundary,

importance, 4
combined QM/MM model, 3–4, 4f

MM, ‘‘nonreactive’’ part, 3–4
treatment of QM/MM boundary

GHO method, 5
‘‘link’’ or ‘‘dummy’’ atoms, use of, See

‘‘Link’’/‘‘dummy’’ atoms
use of hybrid orbital in LSCF method

(Rivail), 5
use of hybrid orbital (Warshel and

Levitt), 4–5
Intersection space (seam space), 188
Intramolecular hydrogen bonds (IHBs), 74,

78, 79, 81, 161, 163f, 164–165, 170
Intrinsic reaction coordinate (IRC)method, 371
Ionization of liquid water, 126–129

‘‘band’’ formation, 127
electronic broadening, 127, 128f
electron propagator theory, 127
VIP/VEAcalculation/behavior, 128–129,130f

IRC method, See Intrinsic reaction coordinate
(IRC) method

J
Jahn�Teller distortions, 232

K
Kinetics/thermodynamics simulation in

condensed phases
free energy simulations and the QM/MM

formalism
enhanced sampling techniques, See

Sampling techniques, enhanced
FEP techniques, 377–380
PMF evaluation with thermodynamic

integration, 378–387
Kirkwood’s charging formula, 287, 308–311,

315, 336
Kohn–Sham (KS) DFT

free-energy calculations
electronic kinetic energy, evaluation, 290
Euler equation, 291
HK theorem, 289
KS equation in terms of one-electron

orbitals, 291
Levy’s approach, 289

L
LA method, See Link atom (LA) method
Landau and Zener equation, 195
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Langevin dipoles, 62
LCAO method, See Linear combination of

atomic orbitals (LCAO) method
LCC2/EOM-LCCSD methods, 116
LCM, See Linear coupling method (LCM)
Linear combination of atomic orbitals

(LCAO) method, 149, 152, 291–292, 299
Linear coupling method (LCM), 35
Linear response coupled cluster (LR-CC),

114–115
Link atom (LA) method, 355, 355f
‘‘Link’’/‘‘dummy’’ atoms, 5–6
characteristics, 6
hydrogen/halogen atoms, 6, 7
link atom scheme, improvisation

ECP scheme, 6
MC-VEEPs, 6

Liquid ammonia
electron binding energies of, 130–132

average VEA (in eV) vs. average total
dipole moment of ammonia
clusters, 132f

electronic DOS of ammonia clusters, 131f
Liquid water
absorption spectra of, 123–126
‘‘band’’ formation in, 127
electronic broadening in, 126
ionization of, 126–129

Liver alcohol dehydrogenase, 267–268
Localized self consistent field (LSCF) method,

5, 364, 365–366, 365f
London dispersion and electrostatic

contributions, 157
Ewald summation technique, 157

London interactions (dispersion interactions),
153

Lorenz-Lorentz equation, 124
LR-CC, See Linear response coupled cluster

(LR-CC)
LSCF method, See Localized self consistent

field (LSCF) method

M
Magnetic properties, ESR spectroscopy
electron spin interaction with magnetic

field, expression
gyromagnetic tensor, expression, 37
hyperfine interaction, 37
Zeeman interaction, 37

Markov chain, 102, 381
Martyna–Tobias–Klein algorithm, 26

Massey parameter, 195, 196
McMOLDYN, solvation phenomena/radical

systems study, 11
MC-TDSCF, See Q/C-multiconfiguration

timedependent self-consistent field
approach (MC-TDSCF)

MC-VEEPs, SeeMulticentered valence electron
effective potentials (MC-VEEPs)

MD, See Molecular dynamics (MD)
MD of polypeptides, DC–SCC–DFTB/UFF

approach
and �-cyclodextrin in aqueous solution

angiotensine-(1�7), �-cyclodextrin
inclusion compound, 172–177

angiotensine-(1�7) in aqueous solution,
167–172

BPP7a, See BPP7a
inclusion compound formation,

mechanisms, 158
See also b-cyclodextrin (b-Cyds)

intermolecular interactions study, example
BPPs, 146
heptapeptide angiotensine-(1�7)

[17]—(Ang(1�7)—in aqueous
solution, 146

polypeptides in aqueous solution, 146
theoretical approach

DFTB, 147–151
Londondispersion in SCC�DFTB, 153–155
periodic boundary conditions, 156–157
QM/MM approach, 155–156
SCC�DFTB, 151–153
UFF implemented in deMon, 155

water, importance in chemical processes
NMR/NOE/electronic excitation

techniques, 146
MDQT, See Molecular dynamics with

quantum transitions (MDQT)
Mean field approximation (MFA), 61–63,

71–73, 270, 274
Mechanical coupling, 104
MECI, See Minimum energy conical

intersection (MECI)
Membrane, 322
Menshutkin reactions, 63
MEP, See Minimum energy path (MEP)
‘‘Mesoshell,’’ 231
Message-passing interface (MPI), 299
Methodology, treatment of liquids and

solutions
computational effort/accuracy, See

Computational effort/accuracy
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Methodology, treatment of liquids and
solutions (Continued)

electrostatic embedding
‘‘guess-only’’ run, energy computation

without embedding (QMCFMD), 222
minimum image convention violation,

220–221, 221f
periodic treatments via point chrges, 221
QM/MM coupling improvisation,

example, 220
technique in QM/MM approach,

problems, 220
particle migrations between QM/MM

region, smoothing of
0.2Å, optimal thickness, 222, 223
hybrid MM/MM approaches, 223
smoothing factor, derivation, 222–223

QMCF simulation scheme, 217f
subregions, definition
forces in respective regions, defined,

218–219
introductionofQMpoint charges, aim, 218
QM core/QM layer/MM region, 217, 217f
sizes assigned to the regions,

importance, 218
MFA, See Mean field approximation (MFA)
Micelle, 322

SDS micelle/DMPC bilayer
density profile, 323–325, 323f
solvation free energy for, 325–326, 325f

solubilization, function of, 322
Minimum energy conical intersection

(MECI), 92
Minimum energy path (MEP), 372–373
Minimum image convention, 220–221, 221f

violation of, errors caused, 221
Mixed-Q/C Liouville equation, 268
Mixed-Q/C methods, See Mixed-quantum/

classical (mixed-Q/C) methods
Mixed-Q/C propagations schemes

adiabatic/diabatic basis set, use of
Hellman�Feynman theorem, approach,

254
‘‘mean field’’ or Ehrenfest approach, 254

grid representation
hybrid methods, 251
QCMD algorithm, study of proton

transfer in condensed phase, 251
Q/C-TDSCF approach, inelastic/reactive

collisions in gas phase study, 251
surface hopping methods, 254
Tully’s ‘‘Fewest Switches’’ method

classically forbidden transitions, 255
MDQT study, surface hopping with

fewest switching approach, 255
use of basis set expansion for c(r,t), 251–253

kinetics couplings, 252
potential couplings, 252

Mixed-quantum/classical (mixed-Q/C)
methods, 247–278

Molecular dynamics (MD), 11
Molecular dynamics with quantum

transitions (MDQT), 255, 266–270, 271,
272, 273, 274, 275, 278

Molecular mechanics (MM) force fields, 62
Molecular orbital methods, semiempirical, 2
Monte Carlo or Molecular Dynamics, 100
MPI, See Message-passing interface (MPI)
Mulliken scheme, 104
Multicentered valence electron effective

potentials (MC-VEEPs), 6
Multiple ions in solution, hydration of

halogenide ions
ion–oxygen distance/distribution of

coordination numbers, 240t
RDF halfwidth/mean residence time of

water molecules, 241–242, 241t
RDFs of, 241f
structure-breaking/forming property, 242

Hg22þ, example
distribution of microspecies,

determination, 236
Hgatoms, exchangemechanisms, 236, 237f
Hg2

2þ, classical simulations of, 233–234,
234f

Hg(I)�water RDFs, 233–234, 233f
partial charges of the Hg(I) atoms and

the respective sum, 234, 235f
TATB assumption, experimental

computation, 237
UO2

2þ, example
scheme depicting angular regions, 239f
two-dimensional U(VI)�O pair

correlation plot, 239f
U�water and OU�water RDFs, 237–238,

238f
Multiple proton transfer reactions, 268

N
Nanoreactors, 146, 147, 177
NDDO QM method, See Neglect of the

diatomic differential overlap (NDDO)
QM method
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Neglect of the diatomic differential overlap
(NDDO) QM method, 5

NMR, See Nuclear magnetic resonance
(NMR)

NOE, See Nuclear overhauser effects (NOE)
Noncrossing rule (Von Neumann and

Wigner), 188
‘‘Nonreactive’’ parts, 4
Nuclear kinetic energy operator, 185
Nuclear magnetic resonance (NMR), 146, 389
Nuclear overhauser effects (NOE), 146
Nuclear quantum effects, study
hydrogen transfer

collinear/planar/and zero total angular
momentum approximations, 256

MC-TDSCF method, 257
Q/C-TDSCF method, 255
‘semiclassical approach’ (Billing and

coworkers), 255
See also Hydrogen transfer in gas phase

mixed-Q/C propagations schemes, 249–255
grid representation, approaches, 250–251
Hamilton/Schrödinger equations, 249–250

proton and hydride transfer in condensed
phase, 260–270

vibrational energy relaxation
condensed phase, 272–278
van der Waals clusters, 271–272

O
One-photon absorbtion (OPA), 28
O4O4’O4’’O4’’’ dihedral angle, 159
OPA, See One-photon absorbtion (OPA)
Ornstein–Zernike equation, 312, 313
Overlap integrals (FC integrals), 28

P
Parallel efficiency, definition, 298
‘‘Particle-based’’ approximation, 258
‘‘Particle-based’’ vs. bond-based approach, 258
Particle insertion method, 302–303, 303f
Pauli repulsion, 107
PBC, See Periodic boundary conditions (PBC)
PCM, See Polarizable continuummodel (PCM)
Periodic boundary conditions (PBC), 156–157
Phospholipase A2, 261
Photoactive yellow protein (PYP)
in aqueous environment, effects

amino acids identification and role in
photocycle of PYP, 207–208

QM/MM simulations, 205
single and double bond isomerization,

205, 205f
chromophore activity upon protein

mediation, 206
Arg52, ‘‘catalytic’’ residue, 206
arginine, role in activation process, 206
excited state trajectory of the Arg52Gln

mutant of PYP, 207f
excited state minimum energy

configurations of chromophore
analog, 204f

excited state trajectories of, 204f
geometry optimizations of, 204

Photobiological processes, computer
simulations of

applications
PYP, See Photoactive yellow protein (PYP)
RSFPs, See Reversibly switchable

fluorescent proteins (RSFPs)
theory

Born–Oppenheimer approximation,
183–186

conical intersections, 186–193
diabatic surface hopping, 195–197
excited statemolecular dynamics, 193–195
excited state quantum chemistry, 197–199
mixed quantum classical molecular

dynamics, 199–203
photochemical reactionpathway, 182, 183f
See also Theory of photobiological

processes
Poisson�Boltzmann equation, 375
Polarizable continuum model (PCM), 2, 22,

74, 220, 287, 326–329
Polarization coupling, 105, 106, 112
Polarization propagator (PP), 125–126
PP, See Polarization propagator (PP)
Protonandhydride transfer in condensedphase
DME method, 262–263
dynamics of the transfer, study of, 264
EA-VTST, 260
fluctuations in protein environment

quantum/classical simulations, 261
MDQT, application of, 266–267

liver alcohol dehydrogenase/
dihydrofolate reductase, quantum
effects study, 267–268

MC-MDQT, double proton transfer
study in enzymes, 268

mixed-Q/C Liouville equation, 268
rate constant calculation, 269
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Proton and hydride transfer in condensed
phase (Continued)

transmission coefficients,
evaluation, 270

mixed-Q/C computational simulations
(Borgis)

proton position, computation methods,
264–265

Zundel polarization, 264
mixed-Q/C computational simulations

(Thompson), 265–266
multiple proton transfer reactions
DNA base pairs, role in, 268

phospholipase A2 study
proton treated as 3D Gaussian wave

packet, 261
valence bond parameterizations, 261–262
WPP approach
rate of oxidation of methylamine,

determination, 263–264
Protonated Schiff base (PSB), 88, 89f
1,3 proton shift of triazene, scheme, 83f
PSB, See Protonated Schiff base (PSB)
PT2, See Second-order perturbative (PT2)
PYP, See Photoactive yellow protein (PYP)

Q
QCMD, See Quantum classical molecular

dynamics (QCMD)
Q/C-multiconfiguration timedependent self-

consistent field approach (MC-TDSCF),
257, 258, 260

Q/C-TDSCF method, See Q/C-time
dependent self-consistent field
(Q/C-TDSCF) method

Q/C-time dependent self-consistent field
(Q/C-TDSCF) method, 251, 254, 255, 258

limitations, 257
QMCF MD, See Quantum mechanical charge

field molecular dynamics (QMCF MD)
QMCF simulation

subregions
MM, 217
QM core zone, 217
QM layer region, 217

QMmethods, calculation of electronic spectra
time-dependent DFT
adiabatic local density approximation,

118
issues to be

cautioned, 118

Kohn–Sham (KS) density functional
theory, 116

Runge–Gross theorem, TD-DFT, 116
wavefunction-based methods

CC2/CC3 model, 115
CCSD(T) method, 114
EOM-CC theory, 115–116
LCC2/EOM-LCCSD methods, 115
LR-CC theory, 114–115

QM/MM bond, 6
QM/MM methodology and applications

alternatives to QM/MM methodology,
388–389

applications to biochemical simulation
DNA polymerases, 390–392

basic concepts
boundary treatment, 362–367
electrostatic interactions, 358–361
energy expression, 356–357
LA method, 355, 355f
van der Waals interactions, 361–362

beyond conventional QM/MM dynamics,
nuclear quantum effects, 385–388

optimization techniques for potential
energy surfaces

geometry optimization, 367–371
transition state search on the potential

energy surface, 371–373
simulation of kinetics and thermodynamics

in condensed phases
free energy simulations and the QM/

MM formalism, 375–384
QM/MM methods, See Combined quantum

mechanical and molecular mechanical
(QM/MM) methods

QM/MM optimization techniques for PES
geometry optimization

convergence criteria, 371
macroiteration, 370–371
microiteration, 368–370
size of QM region and starting geometry,

371
transition state search on PES

MEP, 372–373
Quantum classical molecular dynamics

(QCMD), 251
Quantum mechanical charge field molecular

dynamics (QMCF MD), 213–244
‘‘Quenching’’ method, 257

See also Q/C-multiconfiguration
timedependent self-consistent field
approach (MC-TDSCF)
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R
Radial distribution function (RDF), 76, 161,

161f, 176f, 227, 227f, 230f, 233f, 238f,
239f, 241f, 288, 307f, 311–315

RAS, See Rennin�angiotensine systems (RAS)
RASSCF method, See Restricted active space

self-consistent field (RASSCF) method
RCD method, See Reaction coordinate-driven

(RCD) method
RDF, See Radial distribution function (RDF)
Reaction coordinate-driven (RCD) method,

372, 382–384
Real-space grids approach, free-energy

calculations
advantages, 292
drawbacks, 293
FFT algorithm, one-electron

transformation, 292
kinetic energy operator, finite-difference

method
exchange-correlation potential,

expression, 295
Hartree potential, expression, 295
pseudopotentials for nuclei, 296

LCAO approach, 291–292
drawbacks, 292
Gaussian-type orbitals, commonly used,

291
parallelization of, 299

real-spacecell inparallel implementation,293f
technique to attain accuracy

double-grid technique, 296–297
KS-DFT calculations, parallel efficiency

defined, 298
one-dimensional double grids in the

atomic core region, 298f
Ono–Hirose approach, 296–298

use of the uniform grids, 294–295
Redshift, 40
Reduction free energy calculation, QM/MM-

ER approach
computational setup, 343–344
dual-topology-single-coordinates scheme,

341
energy distribution functions of excess

electron and flavin ring, 345f
FAD, role in redox reactions, 341

ball and stick illustration, 341f
novel and conventional approaches, 347f
SCC-DFTB method, 341

Reference interaction site model (RISM), 62,
63t, 288, 311–315, 329–332, 337

Rennin�angiotensine systems (RAS), 146
Resolution of identity (RI) approximation, 225
Restricted active space self-consistent field

(RASSCF) method, 199, 209
Reversibly switchable fluorescent proteins

(RSFPs)
Dronpa, protonation/deprotonation

mechanism, 209
FP595, QM/MM study of, 208–209

active sites, showing the asFP595
chromophore, 208f

photoswitching mechanism, 209, 210f
Rhodopsin, 91
cis–trans isomerization of, 91–92
MECI structure, study

bond lenghts with respect to FC
structure, 92, 93t

and occupancy of O atoms at ground
state, 93f

strategies, frozen/equilibrium solvent
conditions, 92, 94

STC in, 92
RI approximation, See Resolution of identity

(RI) approximation
RISM, See Reference interaction site model

(RISM)
RMSD, See Root-mean-square deviations

(RMSD)
ROESY, See Rotating frame overhauser

enhancement spectroscopy (ROESY)
Root-mean-square deviations (RMSD), 160
Rotating frame overhauser enhancement

spectroscopy (ROESY), 146
Runge–Gross theorem, 116
Rydberg-type excitations, 106

S
Sampling techniques, enhanced
multiple time-step approaches, 380
RCD methods, 382–384
replica exchange, 381–382
transition path sampling, 384
umbrella sampling, 380–381

SCC�DFTB method, See Self-consistent
charge�density functional tight-
binding (SCC�DFTB) method

SCF, See Self-consistent-field (SCF)
Schrödinger equation, 61, 64
SDS, See Sodium dodecyl sulfate (SDS)
Second-order perturbation theory

(CASPT2), 88
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Self-consistent charge�density functional
tight-binding (SCC�DFTB) method,
146–147, 341

Self-consistent-field (SCF), 5
Semiempirical molecular orbital methods, 2
Semi-empirical OM2 method, 199
Sequential SM/QM method, 103
SIBFA, See Sum of Interactions Between

Fragments Ab initio computed (SIBFA)
Single-occupiedmolecular orbitals (SOMOs), 45
Singlet–triplet crossings (STC), 92
Site–site Ornstein–Zernike (SSOZ), See

Reference interaction site model (RISM)
SLBO, See Strictly localized bond orbital

(SLBO)
SM/QM, See Statistical mechanics/quantum

mechanical (SM/QM)
SOC, See Spin-orbit coupling (SOC)
Sodium dodecyl sulfate (SDS), 323
Solubilization, 322
Solute–solventpolarization,ASEP/MDmethod

electrostatic solvent charges,
determination, 66–68

flow chart of ASEP/MD method, 6566, 65f
formamide in water, equilibration curve of,

67f
QM and MD calculations
energy/wave function computation,

Schrödinger equation, 64
MFA energy equation, 64–65

Solvation free energy calculation, QM/
MM-ER approach

flow chart showing procedure, 338f
of QM water molecules in MM water

solvents, 339t
‘‘Solvation layer,’’ 217f
SOMOs, See Single-occupied molecular

orbitals (SOMOs)
SOS, See Sum-over-states (SOS)
Spectroscopic properties, calculation of

electronic spectra
LCM, 35
TD-DFT MM/QM schemes, 35

magnetic properties, ESR spectroscopy
electron spin interaction with magnetic

field, expression, 36
gyromagnetic tensor, expression, 37
hyperfine coupling tensor, expression,

36–37
isotropic hcc’s of protons, computation

of, 36

nitroxide radicals as ‘spin probes’/‘spin
labels,’ example, 36

vibrational properties and infrared spectra
‘‘bottom of the well’’ approach, 33
DFT, large biological systems, 34
‘‘Hessian-based’’ methods, 34
quantum corrections, impact on IR band

width/shape, 34
Spin-orbit coupling (SOC), 36
Split operator, 251
SPSH method, See Stationary phase surface-

hopping (SPSH) method
Stark component, 63
Static electron correlation, 198
Stationary phase surface-hopping (SPSH)

method, 274
Statistical mechanics/quantum mechanical

(SM/QM), 100
STC, See Singlet-triplet crossings (STC)
Strictly localized bond orbital (SLBO), 5,

364–365
Study of solvent effects, average solvent

potential approach
applications, examples of

chemical reactions, 82–91
conformational and configurational

equilibria, 74–82
nonradiativede-excitations inretinal, 91–94

ASEP/MD method
aim/goals to solve chemical problems, 63
critical points located on free energy

surfaces, See Free energy gradient
method

flow chart of, 65–66, 65f
free energy differences, calculation of,

70–71
solute–solvent polarization, See

Solute–solvent polarization, ASEP/
MD method

difficulties/complications, 60–61
forms of surrounding medium, 60
MFA

advantages, 63
common solvent theories, classification

of, 62, 63t
focused methods/MFA, main strategies,

62
validity of MFA

calculation of solvent transition energies,
error determination, 72t

errors, types, 71
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Study of solvent effects, average solvent
potential approach (Continued)
free energy gradient values of

formamide in aqueous solution,
MFA errors, 73t

interaction energy/solvent Stark
component/dipole moments,
calculations, 71t

Sum of Interactions Between Fragments ab
initio computed (SIBFA), 359

Sum-over-states (SOS), 123–124
Surface crossings, 186–187, 189f, 192, 193

T
TATB, See Tetraphenylarsonium

tetraphenylborate (TATB)
TD-B3LYP/6-311þþG(2d,2p) level of theory, 39t
TD-DFT, See Time-dependent DFT (TD-DFT)
Tesserae, 22
Tetraphenylarsonium tetraphenylborate

(TATB), 237
Theoretical approach, MD of polypeptides
DFTB

Hamiltonian matrix elements,
calculation, 149–150

KS formalism, energy equations, 148–151
KS orbitals representation, LCAOmodel,

149
London dispersion in SCC�DFTB

DC/UFF, posteriori treatments for,
153–155

dispersion energy expression, 153–155
periodic boundary conditions

London dispersion and electrostatic
contributions, treatments, 157

use of simulation box, advantages, 156
QM/MM approach

DC–SCC–DFTB/UFF hybrid method, 155
mechanical/electrostatic embedding,

treatments, 155–156
SCC�DFTB

expression for atomic forces, 153
Mulliken population analysis, 151–153
total energy expression, 153

UFF implemented in deMon
adequate thermo- and barostats,

temperature/pressure control, 155
TIP3P charges, water simulation, 155

Theoretical methods, condensed phase
systems study

electronic spectra in QM/MM

beyond QM/MM, many-body
expansions, 109–113

QM/MM coupling schemes, 103–106
QM system, choosing, 106–107

many-body interacting systems, statistical
sampling for

Born–Oppenheimer molecular
dynamics, phase space sampling
by, 102

difficulties/drawbacks, 102
Hamiltonian equation, 101
Monte Carlo method, 101–102

QM methods, calculation of electronic
spectra

time-dependent DFT, 116–119
wavefunction-based methods, 113–116

Theory of photobiological processes
Born–Oppenheimer approximation

adiabatic wavefunctions, expression, 184
Hamiltonian terms, 183–184
nonadiabatic coupling, key to

photochemical reactions, 185
conical intersections

adiabatic surface crossings, role/
conditions, 186

adiabatic wavefunctions, equations,
191–192

characteristics, 190–193
energy gaps, impact on nonadiabatic

coupling, 186–187
noncrossing rule (Von Neumann and

Wigner), 188
plotted in two-dimensional branching

space, 189f
rotation angle, derived expression, 191
surface crossing in a hypothetical

triatomic molecule, 189, 189f
vs. transition states, 193

diabatic surface hopping, 153–197
Landau and Zener equation, 195
surface-hopping algorithms, 195

excited state molecular dynamics
classical mechanics, 194–195
wavepacket dynamics, 194–195

excited state quantum chemistry, 197–199
CASPT2 approach, 198
CASSCF method, static/dynamic

electron correlation, 198
EOM-CCSD method, 197
RASSCF method, 199
semi-empirical OM2 method, choice of

active orbitals, 199
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Theory of photobiological processes (Continued)
mixed quantum classical molecular

dynamics, 199–203
electrostatic interaction expression,

Coulomb’s law, 200
hybrid QM/MM strategy, 200, 201
reaction center/spectator region, 201

Theory of solutions
application to molecular binding into

micelle/lipid-membrane systems,
322–326

binding free energy evaluation,
methods/surfactants used, 323, 323f

free-energy analysis at atomic resolution,
322–323

See also Micelle
DFT
interaction pair energy, 308, 308f
site–site RDFs, example, 307, 307f

FEP/thermodynamic integration methods,
See FEP/thermodynamic integration
methods

Kirkwood charging formula and DFT,
308–311

solvation free energy, molecular
description, 310

solvation free energy, statistical–
mechanical theory of solutions, 310

method of energy representation, 315–321
advantages, 320–321
solvation free energy, calculation, 319f

site�site RDFs/RISM, 311–315
drawbacks, 313
HNC-type approximation, 313
Kast and Truong’s approach, 314
Ornstein–Zernike equation, 312–313
‘‘problem of auxiliary site,’’ 314

Thermostats, 158
‘‘The Transition State’’, 284
Thioester bond, 203
Time-dependent approach, spectroscopic study

electrostatic contributions
GEPOL procedure, cavity treatment, 23
PCM, applications, 22

extension to constant presssure/flexible
volume (NpT) ensemble, 24–25

nonelectrostatic contributions
dispersion-repulsion free energy

expression (Wdis-rep), 23
solute–solvent system simulated using

GLOB model, 21f

See also General liquid optimized boundary
(GLOB) model

Time-dependent DFT (TD-DFT), 35, 38, 116,
118, 119, 137, 139, 197–198

Time-independent approach, spectroscopic
study

dynamic(vibrational) effects beyond
harmonic approximation

anharmonic vibrational calculations,
criteria, 26

PT2 anharmonicity effect/computations,
26, 27

vibrational energy equation by Born–
Oppenheimer approximation, 26

vibrationally resolved electronic spectra
absorption spectrum, expression, 30
Duschinsky method, overlap integrals

computation, 30
ECD stick spectrum, computations, 29
emission spectrum, expression, 29
FC and HT approximations, 30
FC classes method, 28, 31
initial/final mode-specific

anharmonicity scaling factors,
relation, 33

TOAC, nitroxide radical, 49
TOCSY, See Total correlation spectroscopy

(TOCSY)
Total correlation spectroscopy (TOCSY), 146
Transition path sampling method, 384
Transition-state theory (TST), 284
Treatment of liquids and solutions

classical approach, difficulties, 214
CP simulations, 215

problems incurred, 215
methodology

computational effort and accuracy
considerations

electrostatic embedding and the periodic
box

QMCF simulation scheme, 217f
smoothing of particle migrations

between QM/MM region
subregions and the respective forces,

definition of
QMCF MD methodology, application of,

See Application of QMCF MD
methodology, treatment of liquids

QM treatment
choice of the MM model, 216
transition problems, 215
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Tripeptides
conformational/configurational

equilibria in
Cys-Asn-Ser, stable conformations in

vacuo/in solution, 79f, 80f
Cys-Asn-Ser, structure and labeling

of, 78f
free energy difference and its

components, 81t
IHBs (HB1a/HB1b) formation, 79–80
O25—H, H2—O, and H19—O RDFs of

tripeptides in solution, 82f
TST, See Transition-state theory (TST)
Tully’s ‘‘Fewest Switches’’

method, 254

U
UFF, See Universal force field (UFF)
Umbrella sampling, 379–380
Universal force field (UFF), 147, 155
Uracil radicals in aqueous solution, ESR

magnetic tensors of
ESR hyperfine coupling computations, 46t
optimized structures/SOMOs at B3LYP/

N07D and C-PCM level, 45f
UV spectra of water clusters
many-body excitation energy, computation

coupling equation, 121
one-body excitation energy, computation

EOM-CCSD/aug-ccpVTZ theory, 121
water clusters of varying size,

results, 122f
water tetramers, computed spectra for

excitonic coupling, results, 120f

V
VEA, See Vertical electron affinity (VEA)
Verlet, classical MD integrator, 251
Vertical electron affinity (VEA), 128
Vertical ionization energy (VIP), 128
Vibrational energy relaxation
condensed phase

classical/quantum methods over MDQT
method, 275

Ehrenfest method with quantum
corrections, 277

photodynamical process of triatomic
molecules, simulations, 276

quantum treatment of the solvent
vibrational modes, method, 276

SPSH method, 274
surface-hopping method, 273
treatment of decoherence in quantum

subsystem, methods, 274
van der Waals clusters, 271–272

VIP, See Vertical ionization energy (VIP)

X
X-ray scattering (XS), 230
XS, See X-ray scattering (XS)

Z
Zeeman interaction, 36
Zero point vibrational (ZPVE) energy level,

26
ZPVE, See Zero point vibrational (ZPVE)

energy level
Zundel polarization, 264
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