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Preface

The present book — through the topics and the problems approach
— aims at filling a gap, a real need in our literature concerning CFD
(Computational Fluid Dynamics). Our presentation results from a large
documentation and focuses on reviewing the present day most important
numerical and computational methods in CFD.

Many theoreticians and experts in the field have expressed their in-
terest in and need for such an enterprise. This was the motivation for
carrying out our study and writing this book. It contains an important
systematic collection of numerical working instruments in Fluid Dynam-
ics.

Our current approach to CFD started ten years ago when the Univer-
sity of Paris XI suggested a collaboration in the field of spectral methods
for fluid dynamics. Soon after — preeminently studying the numerical
approaches to Navier—Stokes nonlinearities — we completed a number
of research projects which we presented at the most important interna-
tional conferences in the field, to gratifying appreciation.

An important qualitative step in our work was provided by the devel-
opment of a computational basis and by access to a number of expert
softwares. This fact allowed us to generate effective working programs
for most of the problems and examples presented in the book, an as-
pect which was not taken into account in most similar studies that have
already appeared all over the world.

What makes this book special, in comparison with other similar en-
terprises?

This book reviews the main theoretical aspects of the area, emphasizes
various formulations of the involved equations and models (focussing on
optimal methods in CFD) in order to point out systematically the most
utilized numerical methods for fluid dynamics. This kind of analysis —
leaving out the demonstration details — takes notice of the convergence



Xiv

and error aspects which are less prominent in other studies. Logically,
our study goes on with some basic examples of effective applications of
the methods we have presented and implemented (MATLAB).

The book contains examples and practical applications from fluid dy-
namics and hydraulics that were treated numerically and computation-
ally — most of them having attached working programs. The inviscid
and viscous, incompresible fluids are considered; practical applications
have important theoretical outcomes.

Our study is not extended to real compresible fluid dynamics, or to
turbulence phenomena. The attached MATLAB 6 programs are con-
ceived to facilitate understanding of the algorithms, without optimizing
intentions.

Through the above mentioned aspects, our study is intended to be an
invitation to a more complete search: it starts with the formulation and
study of mathematical models of fluid dynamics, continues with analysis
of numerical solving methods and ends with computer simulation of the
mentioned phenomena.

As for the future, we hope to extend our study and to present a new
more complete edition, taking into account constructive suggestions and
observations from interested readers.

We cannot end this short presentation without expressing our grat-
itude to our families who have supported us in creating this work in
such a short time, by offering us peace and by acquitting us from our
everyday duties.

The authors



Chapter 1

INTRODUCTION TO MECHANICS OF
CONTINUA

1. Kinematics of Continua
1.1 The Concept of a Deformable Continuum

The fluids belong to deformable continua. In what follows we will
point out the qualities of a material system to be defined as a deformable
continuum.

Physically, a material system forms a continuum or a continuum sys-
tem if it is “filled” with a continuous matter and every particle of it
(irrespective how small it is) is itself a continuum “filled” with matter.
As the matter is composed of molecules, the continuum hypothesis leads
to the fact that a very small volume will contain a very large number of
molecules. For instance, according to Avogadro’s hypothesis, lem3 of air
contains 2,687 x 10'° molecules (under normal conditions). Obviously,
in the study of continua (fluids, in particular) we will not be interested
in the properties of each molecule at a certain point (the location of the
molecule) but in the average of these properties over a large number
of molecules in the vicinity of the respective point (molecule). In fact
the association of these averaged properties at every point leads to the
concept of continuity, synthesized by the following postulate which is ac-
cepted by us: “Matter is continuously distributed throughout the whole
envisaged region with a large number of molecules even in the smallest
(microscopically) volumes”.

Mathematically, a material system filling a certain region D of the
Euclidean tridimensional space is a continuum if it is a tridimensional
material variety (vs. an inertial frame of reference) endowed with a spe-
cific measure called mass, mass which will be presumed to be absolutely
continuous with regard to the volume of D.
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Axiomatically, the notion of mass is defined by the following axioms:

1) There is always an m : {M} — R, i.e., an application which asso-
ciates to a material system M, from the assembly of all material systems
{My}, areal positive number m(M) (which is also a state quantity joined
to M), called the mass of the system.

Physically, the association of this number m (M) to a material system
M is made by scaling the physical mass of M with the mass of another
material system considered as unit (i. e. by measurement);

2) For any “splitting” of the material system M in two disjoint subsys-
tems M; and Mg (M = M;UM3y and M;NM; = (), the application
m satisfies the additivity property, i.e., m{(M) = m(M;) + m{Ma).

This additivity property attributes to the mass application the quality
of being a measure. Implicitly, the mass of a material system m(M) is
the sum of the masses dm of all the particles (molecules) which belong
to M, what could be written (by using the continuity hypothesis too)
as

m(M) = /dm,
M

the integral being considered in the Lebesgue sense;

3) For any material system M, its mass m(M) does not change during
its evolution, i.e., it is constant and consequently = 0 (the universal
principle of mass conservation).

Concerning the hypothesis of absolute continuity of the mass vis a vis
the volume of the region D occupied by the considered material system
M, this hypothesis obviously implies, besides the unity between the ma-
terial system and the region “filled” by it, that the mass of any material
subsystem P C M could become however small if the volume of the
region D C D, occupied by P, becomes, in its turn, sufficiently small
(but never zero, i.e., the principle of the indestructibility of matter is
observed). More, by accepting that the region D and all its subregions
D, are the closure of certain open sets which contain an infinity of fluid
particles occupying positions defined by the corresponding position vec-
tors r (vs. the inertial frame) and additionally the boundaries of these
sets are surfaces (in a finite number) with continuous normal, then ac-
cording to the Radon—Nycodim theorem, there is a positive numerical
function p (r,t), defined a.e. in D, such that the mass of a part P C M
can be expressed by

m(P) =/p(r,t) dv,

M
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The function p(r,t) is called the density or the specific mass accord-
ing to its physical meaning. By using the above representation for the
introduction of the density we overtake the shortcomings which could
arise by the definition of p (r,t) as a point function through

m(P)
t) =
p(r,2) vol(lDrgl—-)O vol(D)
vol(D)#0

a definition which, from the medium continuity point of view, specifies p
only at a discrete set of points." Obvious, the acceptance of the existence
of the density is a continuity hypothesis.

In the sequel, the region D occupied by the continuum M (and anal-
ogously D occupied by the part P) will be called either the volume
support of D, or the configuration at the respective moment in which
the considered continuum appears.

The regularity conditions imposed on D and on its boundary will
support, in what follows, the use of the tools of the classical calculus (in
particular the Green formulas).

Obviously, the continuum will not be identified with its volume sup-
port or its configuration. We will take for the continuum systems the
topology of the corresponding volume supports (configurations), i.e., the
topology which has been used in classical Newtonian mechanics. In par-
ticular, the distance between two particles of a continuum will be the
Euclidean distance between the corresponding positions of the involved
particles.

In the study of continua, in general, and of fluids, in particular, time
will be considered as an absolute entity, irrespective of the state of the
motion and of the fixed or mobile system of reference. At the same time
the velocities we will deal with are much less than the velocity of light
so that the relativistic effects can be neglected.

In the working space which is the tridimensional Euclidean space —
space without curvature — one can always define a Cartesian inertial
system of coordinates. In this space we can also introduce another sys-
tem of coordinates without changing the basic nature of the space itself.

In the sequel, an infinitesimal volume of a continuum (i.e., with a
sufficiently large number of molecules but with a mass obviously in-
finitesimal) will be associated to a geometrical point making a so-called
continuum particle, a particle which is identified by an ordered triple

!'Since the function p defined by this limit cannot be zero or infinite (corresponding to the
outside or inside molecule location of the point where the density is calculated), Vol(D) can
never be zero.
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of numbers representing, in fact, the coordinates of the point (particle)
within the chosen system. The synonymy between particle and material
point (geometrical point endowed with an infinitesimal mass) is often
used.

An important concept in the mechanics of continua will be that of
a “closed system” or a “material volume”. A material volume is an
arbitrary entity of the continuum of precise identity, “enclosed” by a
surface also formed of continuum particles. All points of such a material
volume, boundary points included, move with a respective local velocity,
the material volume deforming in shape as motion progresses, with an
assumption that there are no mass fluxes (transfers) in or out of the
considered volume, i.e., the volume and its boundary are composed by
the same particles all the time.

Finally, a continuum is said to be deformable if the distances between
its particles (i.e., the Euclidean metric between the positions occupied
by them) are changing during the motion as a reaction to the external
actions. The liquids and gases, the fluids in general, are such deformable
continua.

1.2  Motion of a Continuum.
Lagrangian and Eulerian Coordinates

To define and make precise the motion of a continuum we choose both
a rectangular Cartesian and a general curvilinear reference coordinate
systems, systems which can be supposed inertial.

Let R and r be, respectively, the position vectors of the contin-
uum particles, within the chosen reference frame, at the initial (refer-
ence) moment tp and at any (current) time ¢ respectively. We denote
by (X;) and (z;), respectively, the coordinates of the two vectors in
the rectangular Cartesian system while (X*) and (z*) will represent the
coordinates of the same vectors in the general curvilinear (nonrectan-
gular) system. Thus r referring to a rectangular Cartesian system is
r = x1i; + 22iy + x3i3 = zkig , where any two repeated indices imply
summation, and ix are the unit vectors along the zj axes respectively.
For a general system of coordinates (ml,x2,m3), the same position vec-
tor r will be, in general, a nonlinear function r(z?) of these coordinates.
However its differential dr is expressible linearly in dz® for all coordi-
nates, precisely

dr = a—i%da;m = apdz™,
the vectors a,, being called the covariant base vectors. Obviously if z™
are the Cartesian coordinates 2™ = z,, and, implicitly, a,, = in.
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Let now x; be the mapping which associates to any particle P of the
continuum M, at any time ¢, a certain position r obviously belonging
to the volume support (configuration) D, i.e., P 1:» r. This mapping

is called motion, the equation r = x(P,t) defining the motion of that
particle. Obviously the motion of the whole continuum will be defined
by the ensemble of the motions of all its particles, i.e., by the mapping

xM,t), x : M AN D, which associates to the continuum, at any
moment ¢, its corresponding configuration.

The motion of a continuum appears then as a sequence of configura-
tions at successive moments, even if the continuum cannot be identified
with its configuration D = x (M, t).

The mapping which defines the motion has some properties which
will be made precise in what follows. But first let us identify the most
useful choices of the independent variables in the study (description) of
the continuum motions. They are the Lagrangian coordinates (material
description) and the Eulerian coordinates (spatial description).

Within the material description, the continuum particles are “identi-
fied” with their positions (position vectors) in a suitable reference config-
uration (like, for instance, the configuration at the initial moment to).2
These positions in the reference configuration would provide the “fin-
gerprints” of the continuum particle which at any posterior moment ¢,
will be individualized through this position R belonging to the reference
configuration Dy.

Under these circumstances, due to the mentioned identification, the
equation of the motion is

r = x(R,t), (L.1)

the R coordinates ( X* or X; ), together with ¢, representing the La-
grangian or material coordinates, through which all the other motion
parameters can be expressed. Hence ditx(R, t) and a‘!t—zgx (R,t), with R
scanning the points of the domain Dy, will define the velocity field and
the acceleration field respectively at the moment ¢.}

The equation of motion, for an R fixed and t variable, defines the
trajectory (path) of the particle P which occupied the position R at the
initial moment.

Finally, from the same equation of motion but for ¢ fixed and R vari-
able in the configuration Dy, we will have that the corresponding r is

2In the theory of elasticity one takes as reference configuration that configuration which
corresponds to the natural (undeformed) state of the medium.

e suppose the existence of these fields and their continuity except, possibly, at a finite
number of points (surfaces) of discontinuity.
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“sweeping” the current configuration (at the time ) D = x(Dy, t). In this
respect (1.1) can be also understood as a mapping of the tridimensional
Euclidean space onto itself, a mapping which depends continuously on
t € T and the motion of the continuum in the whole time interval T
will be defined by the vector function x (R, t) considered on Dy x T .

Now, one imposes some additional hypotheses for the above mapping
joined to the equation of motion (1.1). These hypotheses are connected
with the acceptance of some wider classes of real motions which confer
their validity.

Suppose that r is a vectorial function of class C? (Dg) with respect to
the R components. This means that the points which were neighbours
with very closed velocities and accelerations, at the initial moment, will
remain, at any time ¢, neighbours with velocities and accelerations very
closed too. Further, we presume that, at any moment ¢, there is a
bijection between Dy and D except, possibly, of some singular points,
curves and surfaces. Mathematically this could be written through the
condition that, at any time ¢, the mapping Jacobian J = det(gradr)
#0 ae. in D.

This last hypothesis linked to preserving the particles’ identity (they
neither merge nor break) is also known as the smoothness condition or
the continuity axiom. As from the known relation between the elemental
infinitesimal volumes of Dy and D, namely dv = JdV, one deduces,
through J # 0, that any finite part of our continuum cannot have the
volume (measure) of its support zero or infinite, the above hypothesis
also implies the indestructibility of matter principle.

In the previous hypotheses it is obvious that (1.1) has, at any moment
t, an inverse and consequently R = x~(r,t) € C%(D). Summarizing, in
our hypotheses, the mapping (1.1) is a diffeomorphism between Dy and
D.

The topological properties of the mapping (1.1) lead also to the fact
that, during the motion, the material varieties (i.e., the geometrical va-
rieties “filled” with material points) keep their order. In other words,
the material points, curves, surfaces and volumes don’t degenerate via
motion; they remain varieties of the same order. The same topological
properties imply that if Co(Sp) is a material closed curve (surface) in
the reference configuration, then the image curve (surface) C(S), at any
current time £, will be also a closed curve (surface).

Further, if the material curves (surfaces) C’(()l)(Sél)) and 052)(5(()2))
are tangent at a point F,, then, at any posterior moment, their images
will be tangent at the corresponding image point P, etc.

The material description, the adoption of the Lagrangian coordinates,
is advisable for those motion studies when the displacements are small
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and we may watch the whole motion of the individualized (by their
positions in the reference configuration) particles.

In the case of fluids, in general, and of gases, in particular, the
molecules are far enough apart that the cohesive forces are not suffi-
ciently strong (in gases, for instance, an average separation distance
between the molecules is of the order 3,5 x 10~ 7cm). As a consequence
to follow up such particles during their motion becomes a difficult task,
the corresponding displacements being very large (a gas sprayed inside
“fills” immediately the respective room).

That is why for fluids, in general, and for gases, in particular, another
way to express the parameters of the motion, to choose the independent
variable, should be considered. This new type of motion description is
known as the spatial or Eulerian description, the corresponding variables
being the spatial or Eulerian coordinates.

Precisely, as Eulerian coordinates (variables) the components of r ( z;
or z*) and ¢ are to be considered. In other words, in this description, we
focus not on the continuum particles themselves but on their position
in the current configuration and we determine the motion parameters
of those particles (not the same !) which are locating at the respective
positions at that time. Thus to know v = v(r,t), for afixedrat t € T,
means to know the velocities of all the particles which, in the consid-
ered interval of time, pass through the position defined by r. On the
other hand, if we know the velocity field v(r,t) on D x T, by integrating
the differential equation % = v (r,t), with initial conditions (assuming
that the involved velocity field is sufficiently smooth to ensure the exis-
tence and uniqueness of the solution of this Cauchy problem) one gets r
= x(R,t), which is just the equation of motion (1.1) from the material
(Lagrangian) description. Conversely, starting with (1.1) one could im-
mediately set up v(r,t), etc., which establishes the complete equivalence
of the two descriptions.

In what follows we calculate the time derivatives of some (vectorial or
scalar) fields f expressed either in Lagrangian variables ( f(R,t) ) or in
Eulerian variables ( f(r,¢) ).

In the first case f = %JE and this derivative is called a local or material
derivative. Obviously, in this case, v = —‘?—,% (R,t) and a = %;%(R, t).

But, in the second case, we have f = %{ + (v V)f, where V is, in
Cartesian coordinates, the differential operator V = grad = 52—,ii. This
derivative is designed to be the total or spatial or substantive derivative

or the derivative following the motion.  In particular a(r,t) = %‘tl +
(v-V)v.
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Stokes has denoted this total derivative by %, the operator Dllt being
equal to % +v.grad = % + [grad ()] - v, due to the obvious equality
(v - grad) v = (grad v) * v, v * grad or [grad()] *+ v being the so-called
convective part of DDE'

When all the motion parameters, expressed in Eulerian coordinates,
do not depend explicitly on time, the respective motion is called steady
or permanent. Obviously, the steady condition is % = 0O or, equivalently,
T)D_t =v - grad.

Conversely, if time appears explicitly, the motion is unsteady or non-
permanent.

Before closing this section we should make precise the notions of tra-
jectories (pathlines), streamlines and streamsurfaces, vortex lines and
vortex tubes, circulation and the concept of stream function as well.

1.2.1 Trajectories

In general the frajectory (pathline) is the locus described by a material
point (particle) during its motion. The trajectories will be the integral
curves (solutions) of the system

dzx dz dx ) . .
bt et R ek NP (in Cartesian coordinates)
(5] V2 U3

or of the system

dx! _dz?  dd?

=5 =5 =dt (in curvilinear coordinates),

v v v

where v = vy (z;, t )ix = v¥(z,t ) a i, v* being the so-called contravari-
ant components of the velocity v in the covariant base vectors ai of the
considered curvilinear system.

Obviously, at every point of a trajectory the velocity vector is neces-
sarily tangent to the trajectory curve. At the same time we will sup-
pose again the regularity of the velocity field v(r,t), to ensure the exis-
tence of the solution of the above system (in fact the vectorial equation
% = v(r,t ) ). A detailed study of this system, even in the case when
some singular points occur (for instance, the “stagnation points” where

v(r,t) = 0), has been done by Lichtenstein [84].

1.2.2 Streamlines and Streamsurfaces

For a fixed time t , the streamlines and the streamsurfaces are the
curves and, respectively, the surfaces in the motion field on which the
velocity vector is tangent at every point of them. A streamsurface could
be considered as a locus of streamlines.
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The definition of streamlines (tangency condition) implies that the
streamlines should be the integral curves of the differential system

dri dzs dz . . .
ol Ol N (¢n Cartesian coordinates)
U1 V2 V3

or

de!  dz? do® . . .

- =—5 =7 (tn curvilinear coordinates),

v v v
where the time ¢, which appears explicitly in v;(z;,t) or vi(z?,t), has to
be considered as a parameter with a fixed value.

At every fixed moment, the set of the streamlines constitutes the mo-
tion pattern (spectrum). These motion patterns are different at different
times.

When the motion is steady, the motion spectrum (pattern) is fixed
in time and the pathlines and streamlines are the same, the definable
differential system becoming identical. This coincidence could be real-
ized even for an unsteady motion provided that the restrictive condition
v X % = 0 is fulfilled. This result can be got, for instance, from the
so-called Helmholtz—Zorawski® criterion which states that a necessary
and sufficient condition for the lines of a vectorial field ¢(r,t) to become
material curves (i.e., locus of material points) is

¢ % %—5 + rot(c x v) +vdz‘vc} =0,
Identifying ¢ = vwe get the necessary and sufficient condition that
the lines of the v field (i.e., the streamlines) become material curves (i.e.,
trajectories), precisely v x ?,—‘t’ =40.
A stream tube is a particular streamsurface made by streamlines drawn
from every point of a simple closed curve. A stream tube of infinitesimal
cross section is called a stream filament.

1.2.3 Vortex Lines and Vortex Surfaces

By curl or vorticity or rotation we understand the vector w=V xv =
rot v. The rationale for such a definition is the fact that, at every point
of the continuum motion, the particles rotate about an instantaneous
axis and the vector w has the direction of this axis, the value of the

1
rotation being also FW-

“See [33]
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For a fixed time ¢, by a vortex (vorticity, rotation) line (surface) we
understand those curves (surfaces) whose tangents, at every point of
them, are directed along the local vorticity (curl, rotation) vector.

Of course the particles distributed along a vortex line rotate about
the tangents to the vortex line at their respective positions.

A vortex (vorticity, rotation) tube is a vortex surface generated by
vortex lines drawn through each point of an arbitrary simple closed curve
(there is a diffeomorphism between the continuum surface enclosed by
this simple curve and the circular disk).

If the vortex tube has a very small (infinitesimal) sectional area it is
known as a vortex filament.

1.2.4 Circulation

The circulation along an arc AB is the scalar I'(AB) = [ v-dr. The
AB
following result is a direct consequence of the Stokes theorem [110]’:

“The circulation about two closed contours on a vortex tube at a given
instant ¢, — closed contours which lie on the vortex tube and encircle it
once, in the same sense — are the same” (this result of pure kinematic
nature is known as the “first theorem of Helmholtz”).

The invariance of the circulation vis-a-vis the contour C which encir-
cles once the vortex tube supports the introduction of the concept of the
strength of the vortex tube. More precisely, this strength would be the
circulation along the closed simple contour (C) which encircles once, in
a direct sense, the tube.

The constancy of this circulation, which is equal to the rotation flux
through the tube section bounded by the contour (C), leads to the fact
that, within a continuum, both vortex and filament lines cannot “end”
(the vanishing of the area bounded by (C) or of the vortex would imply,
respectively, the unboundedness of the vorticity or the mentioned area,
both cases being contradictions).

That is why the vortex lines and filaments either form rings in our
continuum or extend to infinity or are attached to a solid boundary.
(The smoke rings from a cigarette make such an example).®

3 The circulation of a vector u, from a continuous derivable field, along the simple closed
contour (L), is equal to the flux of rotu through a surface ( £ ) bounded by (L), i.e.
f u-dr = ff rotu-ndo , provided that the reference frame (system), made by the positively
(L) ()

oriented tangent at a point P € (L), the outward normal n to ( £ ) at a point M and the
vector MP, for any points M and P, is a right-handed system.

®For a line vortex (which is distinct from a vortex line and which is a mathematical ideal-
ization of a vortex filament assumed to converge onto its axis, i.e. a vortices locus) the same
assertion, often made, is false (rot v could have zeros within the continuum in motion!)
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Obviously, of great interest is how the circulation along a material
closed simple contour changes while the contour moves with the contin-

B
uum. To analyze this aspect let us evaluate D% [v-dr, ie., the rate
A

of change (in time) of the circulation about a material contour joining
the points A and B as it moves with the medium. Considering then
r =r(s,t),for 0 < s <1, we have

! l
2/ _P_/ ilfd_/D dr .
D D T e \Vas )
0 0

A

BD 7 1
/—5— /v-dv=/a-dr+-2—(v23—v%),
A A

where v = |v|. If A and B coincide so as to form a simple closed curve

(C) in motion, obviously '[% fv.dr= f a-dr,i.e., the rate of change of
C (&
circulation of velocity is equal to the circulation of acceleration along the

same closed contour (C). If the acceleration comes from a potential, i.e.,
a = grad U, then the circulation of the velocity along the closed contour
does not change as the curve moves, the respective motion being called
circulation preserving.

For the fluids, under some additional hypotheses a very important
result connected with the circulation conservation will be given later on
(the Thompson Kelvin theorem).

1.2.5 Stream Function for Plane and Axially Symmetric
(Revolution) Motions

By extending the already given kinematic definition to the dynamics
case, a motion is supposed to be steady (permanent) if all the (kinematic,
kinetic, dynamic) parameters characterizing the medium state and ex-
pressed with Euler variables xj, 2, T3, t, are not (explicitly) dependent
on t.

All the partial time derivatives of the mentioned parameters being zero
( % = 0), we have (from the continuity equation) that div (pv) =0, i.e.,
the vector field pv is conservative (solenoidal).

The above equation allows us to decrease the number of the unknown
functions to be determined; we will show that in the particular, but ex-
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tremely important case, of the plane and axially symmetric (revolution)
motions.

A continuum motion is said to be plane, parallel with a fixed plane
(P), if, at any moment ¢, the velocity vector (together with other vectors
which characterize the motion) is parallel with the plane (P) and all the
mechanical (scalar or vectorial) parameters of the motion are invariant
vs. a translation normal to (P). We denote by z and y the Cartesian
coordinates in (P) so that z; = x, 3 = y, the variable 3 not playing a
role. In the same way, we denote v; = u, vy = v, (v3 = 0), k being the
unit vector normal to (P) and oriented as z3 axis.

One says that a motion is axially symmetric vs. the fixed axis Oz,
if, at any moment £, the velocity vector’s supports (and of supports of
other vectors characterizing the motion) intersect the Oz axis and all the
mechanical parameters associated to the motion are rotation (vs. Ozx)
invariants. We denote by Oz and Oy the orthogonal axes in a merid-
ian half-plane (bounded by Oz), by k the unit vector which is directly
orthogonal to Oz and Oy and by u and v the respective components of
the vectors v obviously located in this half-plane.

Now let be, at a fixed instant ¢, a contour (C) drawn in Oxy and let
(2¢) be the corresponding surface generated by:

a) a translation motion, parallel to k and of unit amplitude, in the
case of plane motions or

b) an Oz-rotation motion of a 2w-amplitude, in the case of revolution
(axially symmetric) motions.

Let m be a number which equals 0, in the case of a plane motion and
equals 1, in the case of a revolution motion. Hence

// pv - ndo = / (2my)™ pv - nds = / (27wy)™ p (udy — vdz) ,

(Ze) (%) @

(with the remark that do = 27yds), the (C) orientation being that
obtained by a rotation from n with +% and ds is the elemental arc
length on (C).

If the motion is steady’ and (C) is a closed curve bounding the area
(o) from Oxy, the above expressions vanish® and, by using the divergence
(Green) theorem, we get

"The result keeps its validity even for unsteady motion provided that the continuum is incom-
pressible; in these hypotheses the function ¢ which will be introduced in the sequel, depends
on the time ¢ too.

8We have an exact total differential due to the condition div (pv)=0.
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// [(’% (py™u) + 6% (pymv)] dzdy = 0
(o)

for any ( ¢ ) of Oxy. Following the fundamental lemma (given by the
end of the next section) we could write

52 () + 5 (™) =0,
a relation which is equivalent with the above continuity equation for the
plane or axially symmetric motions.
As the last relation expresses that py™ (udy — vdz) is an exact total
differential, there is afunction po% (x,y) ( pp being a positive constant),
defined within an arbitrary additive constant, such that

py™ (udy — vdz) = pody,

1.e., we can write

_po B pg O
el ——,'U —_ s
py™ Oy py™ Oz
and hence
k
v = _=h X gradi.
py™

The function ¥(z, y) is, by definition, the stream function of the con-
sidered steady (plane or axially symmetric) motion.

The above formulas show that the unknown functions % and v could be
replaced by the unique unknown function 1. The curves 1 = const are
the streamlines in Oxy. Generally, (C) being an arc joining the points
A and B from the same plane, (2m)™ po [ (B) — v (A)] represents the
mass flow rate through (2X¢), the sense of n along (C) being determined
by the —% rotation of the (C) tangent (oriented from A to B).

1.3 Euler-Lagrange Criterion.
Euler’s and Reynolds’ (Transport) Theorems

Let us consider a material volume (closed system) D(t) whose surface
S(t) is formed of the same particles which move with the local continuum
velocity being thus a material surface. We intend to obtain a necessary
and sufficient condition, for an arbitrary boundary surface S(t) of equa-
tion f(r,t) =0, to be a material surface, i.e., to be, during the motion,
a collection of the same continuum particles of fixed identity.
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Following Kelvin, ifa material point (particle) belonging to S(t) moves
along the unit external normal n = T;Z%%JL“[’ with a velocity uy, then its

infinitesimal displacement dr, in an infinitesimal interval of time (¢,t +
dt), will be ér = nu,dt. As this particle should remain on S(t) (to be a
material surface) we would obviously have f(r -+ dr,t+ ét) = 0. Keeping
only the first two terms of the Taylor’s expansion which is backed by the
infinitesimal character of the displacement ér ( and correspondly of the
time &t ), we get

0
5{— + up(n - gradf) = 0.

But, on the other side, any material point (particle) of the surface S(t)
should move with the continuum velocity at that point, i.e., necessarily,
un = v -n and thus we get the necessary condition

of Df
= cgradf = — =0.
En + v gradf Dt

To prove also the sufficiency of this condition we should point out
that (for instance) if this condition is fulfilled, then there will be at the
initial moment a material surface Sp, such that our surface S = x(Sy, t),
i.e., it is the image of Sp, through the motion mapping at the instant t.
But then, due to the conservation theorem of material surfaces, it comes
out immediately that S(¢) should be a material surface.

Now let us attach to the first order partial differential equation %{; +

Uig{; = ( its characteristic system, i.e., let us consider the differential
system

doy _doy_dy _
U1 V2 V3

It is known that if ¢4 (r,t) = X4, X, being constants ( @ = 1,2,3 ),
is a fundamental system of first integrals of our characteristic differential
system, the general solution of the above partial differential equation is
f = ®(p1,p2,903) = ®(X1, X2, X3),where & is an arbitrary function of
class C'. But, then, the particles of coordinates X, ( @ = 1,2,3 ) which
fulfil the equation ®(Xy, X2, X3) = 0 will also fulfil f = 0, i.e., at the
time ¢, they will be on the material surface of equation f = 0 (in other
words, the surface S(t) is the image, at the moment ¢, of the material
surface (X1, X2, X3) =0 from a reference configuration).

This result, which gives the necessary and sufficient condition for an
(abstract) surface to be material is known as the Euler—Lagrange crite-
rion.
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Obviously a rigid surface % (for instance a wall), which is in contact
with a moving continuum, is a particles locus i.e., it is a material surface.
Using the above criterium we will have, on such a surface of equation

Ig—_r%tf—llg and when the

rigid surface is fixed then, v - n|y; = 0, so that the continuum velocity is
tangent at this surface.

The Euler theorem establishes that the total derivative of the motion
Jacobian J = det(gradr), is given by J = Jdivv.

The proof of this result uses the fact that the derivative of a determi-
nant J is the sum of the determinants J; which are obtained from J by
the replacement of the “:” line with that composed by its derivative vs.
the same variable.

In our case, for instance,

f(r,t) =0, the necessary condition v-n|y = —

Jvy Ovi Oy vy 9z;  Ovi Oz;  Ovy Oz
0X, 0Xy 90X Or; 0X, 0Oz;0X, 0Oz;0X3
7= 83021 Bx22 83:23 _ Oz éxz é:z:z
YT 8x, 06X, 09X X, X, dX3
drs Ox3 Oz3 _B_a_ci Or3 Or3
0X; 00X, 0X3 0X, 90X, 0X;
_ 3’()1 o 31)1
- 8.’13] Jl] - 63:1 J’

because Ji1 = J and Jyg = Ji3 = 0.

Hence, by identical assessments of Jo and J3, we get the result we
were looking for J=Jdivv. Using this result together with the known
relation between the elemental infinitesimal volumes from D and Dy,
i.e., dv = JdV, we can calculate the total derivative of the elemental
infinitesimal volume, at the moment ¢ (that means from D). Precisely
we have

dv = JdV + JdV = Jdiv vdV = dvdivv

(dV being fixed in time).

Reynolds’ (transport) theorem is a quantizing of the rate of change
of an integral of a scalar or vectorial function F(r,t), integral evaluated
on a material volume D(¢). As the commutation of the operators of
total time derivative and of integration will not be valid any more, the
integration domain depending explicitly on time, we have to consider,
first, a change of variables which replaces the integral material volume
D(t), depending on time, by a fixed integral domain Dy and so the
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derivative operator could then commute with that of integration. More
precisely we will perform the change of variables given by the equation
of motion expressed in Lagrangian coordinates, i.e., r = x (R,t), the
new integration domain becoming the fixed domain Dy from the initial
configuration and then we could come back to the current domain D(t).

More exactly, taking into account both Euler’s and Green’s theorems
we have

b|b

D f F(r’t)dv=%[{) F(x(R,t))JdV = :

2 (FJ + FJ)dv
Dt psy Dfo

= [ (F+Fdivv)dv= [ (a—f + vgradF + Fdivv)dv

D(t) D(t) 9
— f [QE +div(Fv)] dv = f Q—E-dv -+ f Fv - ndo,
ply L 9% b O sty

where n is the unit external normal.

This transport formula will be useful in establishing the equations of
motion for continua (under the so-called conservation form).

Analogously, one establishes equivalent formulas for the total deriva-
tives of the curvilinear or surface integrals when the integration domains
depend upon time.

Thus

D OF

= : = = F ; .

D F - ndo / [at + rot(F x v) +vdwF} ndo,
S(t) 0

where C(t) is the contour enclosing the surface [52].

From this formula comes the necessary and sufficient condition for the
flux of a field F, through a material surface S(t), to be constant, which
condition is

OF . . -
5 + rot(F x v) + vdivF = 0 (Zorawski condition).

In the formulation of the general principles of the motion equations
under a differential form (usually nonconservative), an important role is
taken by the following

LEMMA: Let @(r) be a scalar function defined and continuous in a

domain D and let D be an arbitrary subdomain of D. If [ ¢(r)dv =0,
D

Jor every subdomain D C D, then the function ¢(r) =0 in D.
The proof is immediate by using “reductio ad absurdum” and the
continuity of ¢ [110].
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The result is still valid even in the case when instead of the scalar
function ¢, a vectorial function of the same r is considered (it is sufficient
to use the previous assertion on each component). At the same time the
conclusion will remain the same if the above condition takes place only
on a set of subdomains (E) with the property that in any neighborhood
of a point from D, there is at least a subdomain from the set (E).

2. General Principles. The Stress Tensor and
Cauchy’s Fundamental Results

2.1 The Forces Acting on a Continuum

Let us consider a material subsystem P of the continuum M, a subsys-
tem imagined at a given moment in a certain configuration D = x(P, t),
which is enclosed in the volume support D of the whole system M. On
this subsystem P of the continuum M, two types of actions are exerted:

(1) contact (surface) actions, of local (molecular) nature, exerted on
the surface S of the support D of the subsystem P by the “comple-
mentary” system M\P (as the “pressure or pull” of the boundary, the
“pushing” action through friction on the boundary, etc.)

(i1) distance (external) actions, of an extensive character, exerted on
the bulk portions of the continuum P and arising due to some external
cause (such as gravity, electromagnetic, centrifugal actions, etc.)

But the mechanics principles are formulated, all of them, in the lan-
guage of forces and not of actions. To “translate” the above mentioned
actions into a sharp language of forces we will introduce the so-called
Cauchy’s Principle (Postulate) which states:

“Upon the surface S there exists a distribution of contact forces, of
density T, whose resultant and moment resultant are equipollent to the
whole contact action exerted by M\P.

At the same time there is a distribution of external body or volume
forces of density f, exerted on the whole P or D and whose resultant
and moment resultant are completely equivalent (equipollent) with the
whole distance (external) action exerted on P .

The contact forces introduced by this principle are called stresses.
These stresses, of surface density T, at a certain moment £, will de-
pend upon the point where they are evaluated and the orientation of
the surface element on which this point is considered, orientation char-
acterized by the outward normal unit vector n on this surface, such that
T = T(r,n,t).

Concerning the external body or volume forces (the gravity forces are
body forces while the electromagnetic forces are volume forces, etc.), of
density f, at a certain time ¢, they depend only on the position vector r
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of the point of application, i.e., f = f(r,t). To avoid ambiguity we will
suppose, in this sequel, that all the external forces we work with are body
forces (gravity forces being the most important in our considerations).
To postulate the existence of the densities T and f (continuity hypothe-
ses) is synonymous with the acceptance of the absolute continuity of the
whole contact or external (body) actions with respect to the area or the
mass respectively. Then, by using the same Radon—Nycodim theorem,
the total resultant of the stresses and of the external body forces could

be written
RC = /Tda, R¢ = /fdm = /pfdv,

S P D

representations which are important in the general principles formula-
tion.

In the sequel we will formulate the general principles for continua
by expressing successively, in mathematical language, the three basic
physical principles:

(i) mass is never created or destroyed (mass conservation);

(i) the rate of change of the momentum torsor is equal to the torsor
of the direct exerted forces (Newton’s second law);

(ii1) energy is never created or destroyed (energy conservation).

2.2  Principle of Mass Conservation.
The Continuity Equation

Mass conservation, postulated by the third axiom of the definition of
the mass, requires that the mass of every subsystem P C M remains
constant during motion. Evaluating this mass when the subsystem is
located in both the reference configuration (i.e., for ¢ = 0) Dy and the
current configuration at the moment ¢, mass conservation implies that

m(P)= [ m @)V = [ p(e)do = [plx(R,D) IV,

Dgy D Dy

the last equality being obtained by reverting to the current reference
configuration.

In the continuity hypothesis of continuum motion ( p,v € C1), as the
above equalities hold for every subsystem P (and so for every domain
Dy), the fundamental lemma, from the end of sub-section 1.1, leads to

po (R) = p(x (R,1))J
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which represents the equation of continuity in Lagrangian coordinates.
In spatial (Eulerian) coordinates, by making explicit the third axiom
from the mass definition, i.e., = 0, we get

D . .
0= (P)= 1 [ptr,ydv= [ (5-+ pdivw) v,
D D
where the Reynolds transport theorem has been used. Backed by the
same fundamental lemma, the following forms of the continuity equation
can also be obtained:

p+ pdivv =0 (the nonconservative form)
or

Op . .

3 +div (pv) =0 (the conservative form).

We remark that if in the theoretical dynamics of fluids, the use of
nonconservative or conservative form does not make a point, in the ap-
plications of computational fluid dynamics it is crucial which form is
considered and that is why we insist on the difference between them.

2.2.1 Incompressible Continua

A continuum system is said to be incompressible if the volume (mea-
sure) of the support of any subsystem of it remains constant as the
continuum moves.

By expressing the volume (measure) of the arbitrary system P at both
the initial and the current moment, we have

/dV:/dvz/JdV,
Do D Do

i.e., the incompressibility, in Lagrangian coordinates, implies that J = 1
and consequently the equation of continuity becomes

po (R) = p(x (R,1)).

We can arrive at the same result, in Eulerian coordinates, if we write

T Dt

0=— dv=/(i+divv)dv,
D D

which leads to diwv = 0 and, from the continuity equation, to %—’t’ =
0. We conclude that for incompressible continua, the (mass) density
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remains constant as the particles are followed while they move (i.e., on
any pathline), but the value of this constant could be different from
trajectory to trajectory.

If the medium is homogeneous, i.e., p is constant with respect to the
spatial variables, then it is incompressible if and only if p is constant vs.
the time too.

We note that if a continuum is homogeneous at the moment ¢t = 0,
it could become nonhomogeneous later on. In fact a continuum remains
homogeneous if and only if it is incompressible.

Within this book we will deal only with incompressible homogeneous
media (continua).

2.3 Principle of the Momentum Torsor Variation.
The Balance Equations

According to this principle of mechanics, applied within continua for
any material subsystem P C M, at any configuration of it D = x (P, t),
the time derivative of the momentum torsor equals the torsor of the
(direct) acting forces.

As the torsor is the pair of the resultant and the resultant moment,
while the (linear) momentum of the subsystem P is H (P) = [ vdm =

P

J pvdv and the angular (kinetic) momentum is Ko(P) = [r x vdm =

D P
Jr x pvdv (O being an arbitrary point of E3), the stated principle can
D

D
ﬁ/pvdv— /Tda+/pfd'u,

D S D

be written as

respectively

%/rxpvdvz/rXTda%—/rprdv,
D 5 D

the right members containing the direct acting forces resultant (i.e., the
sum of the stresses resultant and of the external body forces), respec-
tively the moment resultant of these direct forces (moment evaluated vs.
the same point O).
But, by using the continuity equation, we remark that % [ pvdv =
D

[ padv. In fact, on components, we have
D
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D
E/pvidv = /(pv,- + pa; + pvdivv)dv = /paidv.

D D D

Under these circumstances, the above equations become

/padvz/Tda+/pfdv
D S D
/rXpadvzfrdea+/rxpfdv,

D S D

and

both equalities being valid for any subsystem P C M and implicitly for
any domain D C D.

A direct application of the momentum variation principle is Cau-
chy’s lemma which establishes that, at any moment and at any point r
from a surface element of orientation given by n, the stress vector T,
supposed continuous in r, satisfies the action and reaction principle, i.e.,
(33] T(r,n,t) =T (r,—n,t).

2.4  The Cauchy Stress Tensor

As the stress vector T, evaluated at a point r, does not depend only
on r and t but also on the orientation of the surface element where the
point is considered (i.e., on n), this vector cannot define the stress state
at the respective point. In fact, at the same point r, but considered
on differently oriented surface elements, the vectors T could also be
different. This inconvenience could be overcome by the introduction,
instead of an unique vector T, of a triplet of stress vectors T; whose
components with respect to the coordinates axes will form a so-called
tensor of order 2. This stress tensor, introduced by Cauchy, is the first
tensor quantity reported by science history.

The triplet of stress vectors thus introduced will be associated, at
every moment, to the same point r but considered on three distinct
surface elements having, respectively, the outward normal parallel with
the unit vectors i; of the reference system, namely T; = T(r,i;,¢) (j =
1,2,3). Let us denote by 7;; (¢ = 1,2,3) the components on the axes
Oxz; of the vector T, ie., T; = 74 i;.

We will show, in what follows, that the stress state at a point r, at
every moment t, will be characterized by the triplet of these vectors
T; or, synonymously, by the set of the nine scalars 7;; (i = 1,2,3;
Jj = 1,2,3) which depend only on r. Precisely, we will show that the
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stress T, evaluated for the considered moment at a point r, situated
on a surface element of normal n(nj), can be expressed by the relation
T(r,n,t) = T;(r,t)n;, known as Cauchy’s theorem.

The proof is backed by the theorem (principle) of momentum applied
to a tetrahedral continuum element with its vertex at r, the lateral
faces being parallel to the planes of coordinates, its base is parallel to
the plane which is tangent to the surface element where the point r is
located. Considering then that the volume of the tetrahedron tends to
zero and using the mean theorem for each of the coordinates, we get
Cauchy’s theorem. The detailed proof can be found, for instance, in
[33].

Let us now consider, for any moment ¢, the linear mapping [T] of the
Euclidean space Ej3 into itself, a mapping defined by the collection of
the nine numbers 7;; (r,t), ie., [T]i; = 7;i;. Such a mapping which,
in general, is called a tensor will be, in our case, just the Cauchy stress
tensor, a second order tensor in E3. We will see that by knowing the
tensor [T] which depends, for any instant £, only on r, we have the
complete determination of the stress state at the point r.

Precisely we have

T(r,n,t) = Tj(r,t)n; = 1yiin; = [T]i;n; = [T](r,t)n.

This fundamental relation shows that T depends linearly on n and,
consequently, it will always be continuous with respect to n.

It is also shown that the tensor [T] is an objective tensor, i.e., at a
change of a spatio-temporal frame, change defined by the mapping [Q]
or by the orthogonal proper matrix Q;; = i}i;, the following relation
holds:

[T] (', ) = [QI®)[T](r, )[Q)",¢' =t + .

(the proof could be found, for instance, in [33]).

It is also proved that [T] is a symmetric tensor, i.e., [T] = [T] [33].
This result, besides the fact that it decreases the number of parameters
which define the stress state (from 9 to 6), will also imply the existence,
at every point, of three orthogonal directions, called principal directions,
and vs. them the normal stresses (T - n) take extreme values which are
also the eigenvalues of the tensor (mapping) [T].

The stress tensor symmetry is also known as “the second Cauchy’s
theorem (law)”.
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2.5 The Cauchy Motion Equations

Cauchy’s theorem allows us to rewrite in a different form the principle
of the momentum torsor variation, that means of the linear momentum
and of the angular momentum variation.

Precisely, it is known that

D
ﬁ/pvdv = /[T]nda+/pfdv
s D

D
and

Dﬂt/rvadv=/r><[T]nda+/rxpfdv.
D S D

Obviously, in the conditions of the continuous motions (which cor-
respond to the parameters field of class C*(D)), by using the exten-
sion of Green’s formulas for tensors of order greater than 1 [Appendix
A] together with the fundamental lemma, from the (linear) momentum
theorem one gets

pa; = Tij; + pfi, (i = 1,2,3),

relations known as Cauchy’s equations or “the first Cauchy’s law (theo-
rem)” .

These equations could be established under different forms too. Thus,
starting with the formulas for the total derivative of both the momentum
DDE (pv) = % (ov) + (v-V)pv and the volume (depending on time)
integral, we have

0
/ [a (pv) + (v - V) pv + pvdiv v] dv = /(div[T] + pf) dv.
D D
As (v V) pv+pvdivv = div (pv @ v) ,the symbol ® designating the

dyadic product [Appendix A], the above equation could be rewritten in
the form

/%(Pv)dv+/(pv®v—-[T])nda=/pfdv,
D s

D

known also as the transport equation of (linear) momentum and which
could be used, in fluid dynamics, for evaluation of the global actions
exerted on the immersed bodies.
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Then, by using the fundamental lemma, one gets the so-called con-
servative form of Cauchy’s equations

gz (pv) + div (pv ® v — [T]) = pf,

which, on components, leads to

0 .
37 (i) + (pvivy = 7ij) ;= pfi(i = 1,2,3).

Concerning the writing of Cauchy’s equations in Lagrangian coordi-
nates this requires the introduction of some new tensors as, for instance,
the Piola—Kirchoff tensor [33].

Concerning the objectivity (frame invariance) of the Cauchy equations
we remark that these equations are nor frame invariants. Really while
the forces which correspond to the contact or distance direct actions are
essentially objective (frame invariants) as well as n = ﬁ%%— and div[T)
(these together with grad f and [T] respectively), the acceleration vector
which obviously depends on the frame of reference, is not objective.

An objective form of these equations obtained by the introduction of
some new vectors but without a physical meaning can be found in [33].

With respect to the mathematical “closure” of the Cauchy system of
equations (3 equations with 10 unknowns), this should be established
by bringing into consideration the specific behaviour, the connection be-
tween stresses and deformations, i.e., the “constitutive law” for the con-
tinuum together with a thermodynamic approach to the motion of this
medium.

2.6 Principle of Energy Variation.
Conservation of Energy

The fact that the energy of a material system does not change while
the system moves, i.e., the so-called “energy conservation”, will lead
to another equation which characterizes the motion of the material
medium.

Obviously, by introduction of some thermodynamic considerations
later on, this energy equation will be rewritten in a more precise form.

Let us assess the elemental work done per unit time (the power) of the
forces exerted on a material subsystem P of the deformable continuum
M and whose configuration is D, i.e.,

oL
E:/v-[T]nda—i—/pf-Vdv-

S D
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Using then the equality v - [T]n = [T]v - n, a consequence of the defi-
nition of the transposed tensor and of the symmetry of the stress tensor,
precisely

v-[Tln = [T)'v-n=[T)v-n [Appendix A],

the first integral of the right side, [ v - [T]nda, becomes
S

/v-[T]nda = /div[T]vdv = /(Tijv,-)’j dv.

5 D D
Since [ pf - vdv = [ (pa;v; — 745 ;i) dv, from the Cauchy equations,
D D

taking into account that the second order tensor [G] = grad v (of compo-
nents v; ;) can be split as a sum of a symmetric tensor [D] of components
Di; = 5 (vi,j + ;) (the rate-of-strain tensor) and a skew-symmetric
tensor (2] of components ;; = %(vi,j — vj;) (the rotation tensor) while
J[G]-[T]dv = [ [D] - [T]dv, we finally have
D D

0L

Et-=/[D]-[T]dv+£—1—/pv2dv=W+E’C,

Dt2
D D

where W is the internal(deformation) energy whose existence is cor-
related with the quality of our continuum to be deformable (for rigid
bodies obviously W = 0) while E¢ is the kinetic energy of the system.
Usually a specific deformation energy w is defined by 2w = [T] - [D] =
tr ([T][D]) and then W = 2 [ wdv.
D

Part of the work done, contained in W, may be recoverable but the
remainder is the lost work, which is destroyed or dissipated as heat due
to the internal friction.

So we have, in the language of deformable continua, the result of en-
ergy conservation which states that the work done by the forces exerted
on the material subsystem P is equal to the rate of change of kinetic
energy E¢ and of internal energy W.

2.7 General Conservation Principle

The integral form of mass conservation, momentum torsor and energy
principle as established in the previous section respectively, can all be
joined together into a unique general conservation principle. Precisely,
for any material subsystem P C M, which occupies the configuration
D C D whose boundary is S, at any moments t; and t, we have the
following common form for these principles:
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/Ad'v— / Adv+//B ndadt = //Cdvdt

tz) D(tl t S t) t; D(t)

Obviously if all considered variables (i.e., the motion) are assumed
continuous in time, the general conservation principle becomes

gt/Adv—i-/B nda = /Cdv

D(t) 5(t) D(t)
where n is the unit outward vector drawn normal to the surface S.

The above relation states that for a volume support D, the rate of
change of what is contained in D, at moment ¢, plus the rate of flux
out of S, is equal to what is furnished to D. The quantities A,B,C are
tensorial quantities, A and C having the same tensorial order. If B # 0,
then it is a tensor whose order is one unity higher than A.

If we use the Reynolds transport theorem for the first integral and the
Gauss divergence theorem for the second integral, we have

0A
/ [-8—{+dwf C] dv =0,
D(t)

where f = Av + B.

Since the above result is valid for any material subsystem P of the
deformable continuum (i.e., for any D) the fundamental lemma and the
same hypothesis on the motion continuity allows us to write

0A
— f=C,
5 + div

which is the unique general differential equation, in conservative form,
associated to the studied principles.

3. Constitutive Laws. Inviscid and real fluids

3.1 Introductory Notions of Thermodynamics.
First and Second Law of Thermodynamics

Thermodynamics is concerned with the behaviour of different mate-
rial systems from the point of view of certain state or thermodynamic
variables parameters. The considered thermodynamic (state) variables
will be the absolute temperature (the fundamental quantity for thermo-
dynamics), the pressure p, the mass density p, the specific (per mass
unity) internal energy e and the specific entropy s. The last two state
variables will be defined in what follows.
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The main aim of thermodynamics is to establish a certain functional
dependence among the state (thermodynamic) variables known as con-
stitutive (behaviour) laws (equations). These constitutive equations will
contribute to the mathematical “closure” of the equations system de-
scribing the deformable continuum motion.

Obviously the deformation of the material systems depends essentially
on the temperature when this deformation takes place. That is why, for
a complete study, a deformable continuum should be considered as a
thermodynamic system, i.e., a closed material system (no matter enters
or leaves the system) which changes energy with its surrounding through
work done or heat (added or taken).

By the thermodynamic state of a system, at a certain instant, we un-
derstand the set of all the values of the state (thermodynamic) variables
(parameters) which characterize the system at that moment.

By a thermodynamic process we understand a change of the thermody-
namic state (i.e., of the values of the state variables) as a consequence of
certain operations or actions or, shorter, when a thermodynamic system
changes from one state to another one.

A system is called in thermodynamic equilibrium if its thermodynamic
state is time invariant.

Suppose now that a thermodynamic system has changed from an ini-
tial state (1) to a new state (2). By producing changes in either the
system or its surrounding, it would be possible to reverse the state from
(2) to (1). If this is possible to be done without any modification in
both system and surrounding, the process is called reversible. On the
contrary it is irreversible.

The reversible processes characterize the ideal media and they imply
infinitesimal changes which have been carried out so slowly that both
the system and the surrounding pass successively through a sequence of
equilibrium states.

The internal energy E;, associated to a material system, is the com-
plementary value of the kinetic energy E¢, vs. the total energy F, i.e.,
E=FE+E..

Depending only on the state of the system at the considered moment
(and not on the way this state has been reached), the internal energy
is an objective quantity (while the kinetic energy, due to the presence
of v, is not objective). If we postulate that the internal energy is an
absolutely continuous function of mass, there will be a function e, called
the specific internal energy, such that

E;(P) = /edm = /pedv.

P D
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In fact the first law of thermodynamics postulates the possibility to
transform the heat (thermal energy) into mechanical energy. More pre-
cisely within a thermodynamical process (when the deformable material
subsystem passes from a thermodynamical state to a “neighboring” one),

the rate of change of the total energy 7 is equal to the elemental power

0L .
I of the direct forces exerted on the system plus the quantity of heat

)
added to or taken out per unit time 765_’ so we have

DE 6L  6Q

Dt dt | dt
If 6Q = 0, i.e., there is not a heat change with the surrounding, the
process (and the motion) are called adiabatic. Generally §Q = 6Q.+0Qq,
where §Q), and §Q are, respectively, “contact actions” (the conduction
heat) and “distance actions” (the radiation heat). By accepting (to
introduce the corresponding densities) that é% and %i are absolutely
continuous functions of surface and, respectively, mass, we will have that

6Qc :/q(v)nat)da” % =/prd(r,t)dv,

dt
s D

D being, at the respective moment, the configuration of the subsystem
P and S its boundary.

Under these circumstances, for any deformable continuum subsystem
P, the first law of thermodynamics can be written

1
% p<e+—2-v2)dv:/(V-T+q)da+/p(f-v+rd)dv.
D s D

On the other side the energy variation principle, stated in the previous
section, is

D (1 , —
Di 5pvdv+/2wdu—/v-Tda+/pf vdu
D D

such that, using also the transport formula and the continuity equation,
the first law of thermodynamics could be written

/pédv = /q(r,n,t) da + /(Zw + pry) dv.

D S D
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By introducing now the heat flux principle (Fourier—Stokes) which
states that there is a vector q(r,t), called heat density vector, so that

Q(r7n7t) :—n-q(r,t)g,

the Gauss divergence theorem leads to

/(pé+divq—— 2w — pry) =0,
D
that is, using the fundamental lemma too,

pé = 2w — div q + pry.

Obviously if we did not “split” dQ into the conduction heat and the
radiation heat, the last two terms of the above relation would be repre-
sented by the unique term p%%, dq being the total heat density per unit
of mass.

To conclude, the energy equation together with the first law of ther-
modynamics could be written both in a nonconservative form

D v2 dq )
P Dy (e + 3) =pg + div[T]v + pf - v,

. . . 10
and in a conservative form or of divergence type

0 v? v? 8q }
3 [p<e+—2—>] +V. [p<e+—2—) v] —p%+dzv[T]v+pf~v,

this last form playing a separate role in CFD.

The second law of thermodynamics, known also as the Kelvin—Planck
or Clausius principle, is a criterion which points out in what sense a
thermodynamic process is irreversible.

It is well known that all the real processes are irreversible, the re-
versibility being an attribute of only ideal media. While the first law of
thermodynamics does not say anything on the reversibility of the pos-
tulated transformations, the second law tries to fill up this gap. More

°For sake of simplicity we consider only the case of the heat added to P and corresponding
“—n” will represent the unit inward normal drawn to S and this is the right unit normal
vector we deal with in our case.

The heat flux principle could be got by applying the above form of the first law of ther-
modynamics to a tetrahedron of Cauchy type (that is a similar tetrahedron with that used
in the proof of the Cauchy theorem)

"“The transformation of the left side could be done by using the derivative of a product and
the equation of continuity.
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precisely, in a simplified form, one postulates that a transformation, a
thermodynamical process, takes place in such a way that the entropy
does not decrease or remain the same.

What is the entropy ? In the case of reversible processes, the spe-
cific entropy (per mass unit) s is defined by the differential relation
ds = QTQ, where dq is the total heat per mass unit while 7 is the abso-
lute temperature — an objective and intensive quantity (i.e., it is not an
absolute continuous function of volume) — whose values are strictly pos-
itive and which is the fundamental quantity of thermodynamics. But,
generally, the entropy S for the material subsystem P will also be a
state quantity which is an absolute continuous function of mass (exten-
sive quantity) and it can be expressed, via Radon—Nycodim’s theorem

as S = [s(r,t)dm, s being the specific entropy. In the case of an
P
irreversible process this entropy changes as a result of both interaction

with surroundings (external action) and inside transformations (internal
actions) such that we have ds = ds. + ds;.
Since ds; > 0 (a result coming from kinetics) and ds, = éqli,we have

that ds > %ﬂl which is the local form of the second law, also known as
the Clausius—Duhem inequality. We remark that the “equality symbols”
would belong to the case ds = ds. and, implicitly, to the reversible
(ideal) processes. Obviously for these reversible processes, using also
the first law of thermodynamics under the form pé = [T - [D] +p%%, one
obtains the so-called Gibbs equation

pé=[T]-[D] +pT 3,

which is fundamental in the study of ideal continua.

Concerning the general (unlocal) formulation for the second law of
thermodynamics, the condition of some real (irreversible) processes, this
could be the following:

For any material subsystem P of the deformable continuum M, which
is seen in the configuration D ofboundary 8D, there is a state quantity
S, called entropy, whose rate of change, when the subsystem is passing
from a state to another (neighboring) one, satisfies

., _ 00 q-n T4
> = = — — ol > 0.
S / 7 da+/pTdv 0
oD D



Introduction to Mechanics of Continua 31

31.1  Specific Heats. Enthalpy

The specific heat is defined as the amount of heat required to increase
by unity the temperature of a mass unit of the considered medium.
Correspondingly, the specific heat is

dq
C’—d—T.

Supposing that the temperature is a function of p and % = v, we have

oT oT
dT == (—a—l')')vdp+ <%)pd’0,

where the subscript denotes the fixed variable for partial differentiation.
Analogously, assuming that the specific internal energy e is also a func-
tion of p and v we have

Oe Oe
de = (ﬁ)vdp-k ((—9;>pdv.

Referring to the case of fluids, as the work done by a unit mass
“against” the pressure forces is dw = pd (%) = pdv, the first law of
thermodynamics can be written

de = dq — pdv,

where dqis the heat added to the unit mass. Because %is an integrating

factor for dq, in the sense that ds. = %ﬁl, we get T'ds, = de + pdv. Obvi-
ously, for reversible processes (ideal media) ds, = ds and the last relation
becomes T'ds = de + pdv, an equation which could be also deduced as a
consequence of Gibbs’ equations (for inviscid fluids).

Generally, for any fluids, by using the above expression for de and the
first law of thermodynamics, we have that

Oe Je
dgq={— ] d — | d du.
Hence the specific heat is

[5) J2l
55)1; dp + (3—5)1, dv + pdv

oo _ |
i (F) do+ (%), dv

From this expression it will be possible to define two “principal” spe-
cific heats: one Cy, for dp = 0 ( p = constant), called the specific heat at
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constant pressure, and the other Cy, for dv = 0 ( v = constant), called

the specific heat at constant volume. Thus
c _<6q) 1 [(ae) +p} (ae) +p(6v)
p = —_ = —— —_— — ——
dT' ) gp—g (%%)p Ov » or » or/,

11
and

Je
() - (%), _ (2)
dT' ) 44—0 (Q£)v or ),
Obviously, for the reversible processes (ideal media) we also have C, =
(#),=7 (), maCu= (), =T (5,
{o)

Concerning thedifference Cp — Cy, this is equal to T’ (g’%)v ( a;")p a
result which can be found, for instance, in [33].

Now, let us introduce a new state variable H called enthalpy or total
heat. The enthalpy h per unit mass or the specific enthalpy is defined
by h = e+ pv.

Differentiating this relation with respect to 7, while keeping p con-

stant, we obtain
(Bh) (6e> +p(av> c
—_— = —_— —_— = P+
or » oT » orT p

In terms of h, the above Gibbs’ equation could also be written as
Tds = dh — vdp,

a form which will be important in the sequel.

3.2 Constitutive (Behaviour,
“Stresses-Deformations’ Relations) Laws

The system of equations for a deformable continuum medium — the
translation of the Newtonian mechanics principles into the appropiate
language of these media — should be closed by some equations of spe-
cific structure characterizing the considered continuum and which in-
fluence its motion. Such equations of specific structure, consequences

"' We have used here some results of the type (—371-)— = (g—;,) etc. which come from the
p

By /p
classical calculus.
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of the motion equations of particles within the microscopic theory and
which, in our phenomenological approach are given by experience as
physical laws, will be designated as constitutive or behaviour laws or
simply “stresses-deformations” relations (in fact they are functional
dependences between the stress tensor and the mecanical and thermo-
dynamical parameters which are associated to the motion, between the
quantities which characterize the deformation and the stresses which
arise as a reaction to this deformation).

Noll has given a set of necessary conditions, in the form of general
principles, which should be fulfilled by any constitutive law. By using the
necessary conditions, some general dependences between the mechanical
and thermodynamical parameters will be “filtered” and thus a screening
of real candidates among different “stresses-deformations” relations is
performed [95].

In what follows we will present, in short, the most important of such
principles (the details could be found in [95]).

The first principle is that of dependence on “the history” of the ma-
terial. According to this principle the stress state at a certain point
of the deformable continuum and at a given moment, depends on the
whole “history” of the evolution (from the initial to the given considered
moment) of the entire material system. In other words, this principle
postulates that the stress at a point of continuum and at a certain mo-
ment is determined by a sequence of all the configurations the continuum
has passed through from the initial moment till the considered moment
(included).

A second principle which is in fact a refinement of the previous prin-
ciple is that of spatial localization. According to this principle, to de-
termine the stress state at a certain point and at a certain moment ¢,
not the whole history of the entire continuum is required but only the
history of a certain neighborhood of the considered point.

Finally, the most powerful (by its consequences) principle would be
that of objectivity or material frame indifference.  According to this
principle a constitutive law should be objective and so frame invariant
which agrees with the intrinsic character of such a law.

An important consequence of this objectivity principle is the impos-
sibility of the time to appear explicitly in such a law.

If in a constitutive law the point where the stress is evaluated does
not appear explicitly, the respective medium is called homogeneous. The
homogeneity is also an intrinsic property of the medium. It can be
shown then if there is a reference configuration where the medium is
homogeneous that it will keep this quality in any other configuration
[150].
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A deformable continuum is called isotropic, if there are not privileged
directions or, in other terms, the (“answering”) functional which defines
the stress tensor is isotropic or frame rotation invariant.

According to the Cauchy—Eriksen—Rivlin theorem [40], a tensor func-
tion f([A]), defined on a set of symmetric tensors of second order from
E3 and whose values are in the same set, is isotropic if and only if it
has the form f ([A]) = @o[I] + ¢1[A] + pa[A]?, where @} are isotropic
scalar functions of the tensor [A] which could always be expressed as
functions of the principal invariants I, I, I3 of the tensors [A], i.e.,
ok = px (11, I3, I3) .

As a corollary any linear isotropic tensor function {([A]) in E3 should
be under the form ! ([A]) = cotr ([A]) [I} + ¢1[A], where ¢o and ¢; are
constants.

3.3 Inviscid (Ideal) Fluids

The simplest of all the mathematical and physical models associated
to a deformable continuum is the model of the inviscid (ideal) fluid.

By an inviscid (ideal) fluid we understand that deformable continuum
which is characterized by the constitutive law [T] = —p[I] (or, on com-
ponents, T;; = —pd;;) where p is a positive scalar depending only on r
and ¢ (and not on mn), physically coinciding with the (thermodynamical)
pressure.

The “hydrostatic” form (characterizing the equilibrium) of the stress
tensor [T] = —p[I] shows that the stress vector T is collinear with the
outward normal n drawn to the surface element (and, obviously, of op-
posite sense) i.e., for an inviscid fluid the tangential stresses (which with-
stand the sliding of neighboring fluid layers) are negligible.

The same structure of the constitutive law for an inviscid fluid points
out that this fluid is always a homogeneous and isotropic medium.

In molecular terms, within an inviscid fluid, the only interactions
between molecules are the random collisions. Air, for instance, can be
treated as an inviscid fluid (gas).

With regard to the flow equations of an inviscid (ideal) fluid, known
as FEuler equations, these could be got from the motion equations of a
deformable continuum (Cauchy equations), i.e., from pa; = pf; + 74j
where we use now the specific structure of the stress tensor 7;; = —pdyj;
hence

pa; = pfi—p;

or, in vector language
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pa = pf — gradp,

a system which should be completed by the equation of continuity.

Of course the Euler equations could be rewritten in a “conservative”
form (by using the continuity equation and the differentiating rule of a
product), namely

Q%%Q + V- (pv®v) = pf — gradp.

If the fluid is incompressible, the Euler equations and the equation
of continuity, together with the necessary boundary (slip) conditions
(characterizing the ideal media) which now become sufficient conditions
too, ensure the coherence of the respective mathematical model, i.e.,
they will allow the determination of all the unknowns of the problem
(the velocity and pressure field). If the fluid is compressible one adds the
unknown p(r, t), which leads to a compulsory thermodynamical study of
the fluid in order to establish the so-called equation of state which closes
the associated mathematical model.

The thermodynamical approach to the inviscid fluid means the use
of the energy equation (together with the first law of thermodynam-
ics) and of Gibbs’ equation which, being valid for any ideal continuum,
synthesizes both laws of thermodynamics.

The energy equation, either under nonconservative form or under con-
servative form, comes directly from the corresponding forms of an arbi-
trary deformable continuum, namely from

D v? dq
= ) =t _ g f.
P (e+2) P div (pv) + pf - v

respectively

0 v? v? dq .
a{p(e-i—-Q—)—}—V-{p(e-i-?)v}}—pa—dw(pv)—i—pf'v.

Concerning the Gibbs’ equation, pé = [T] - [D] + pT'$, in the case of
an inviscid fluid it becomes ([T] = —p[1] so that [T] - [D] = —p[I} - [D] =
—ptr([D]) = —pdivv)

pe = —pdivv + pT's

or, by eliminating div v from the equation of continuity (divv = ——‘g),
we get



36 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

de = Tds — pd (l) .
P

This last differential relation could be the departure point in the ther-
modynamical study of the ideal fluids. If the internal energy e is given
as a function of the independent parameters s and % = v, i.e., if we
know e = € (s,v), then we will immediately have the equations of state
p= —gg (s,v) and T = —g—g (s,v) or, in other words, the function é (s, v),
determining the thermodynamical state of the fluid, is a thermodynami-
cal potential for this fluid. Obviously, this does not occur ife is given as a
function of other parameters when we should consider other appropriate
thermodynamical potentials.

If the inviscid fluid is incompressible, from d (lp) = dv = 0 we have

that T =T (s) or s = 3(T) and hence e = é (T'). More, if in the energy
equation, written under the form

pé = [T] - [D] — divq + pry,

we accept the use of the Fourier law q = — xgradT, where yx is the
thermal conduction coefficient which is supposed to be positive (which
expresses that the heat flux is opposite to the temperature gradient), we
get finally

pé = div (xgradT') + prq.

As e = é(T) and 74 (the radiation heat) is given together with
the external mass forces, the above equation with appropriate initial
and boundary conditions, allows us to determine the temperature 7'
separately from the fluid flow which could be made precise by considering
only the Euler equations and the equation of continuity.

This dissociation will not be possible, in general, within the compress-
ible case. Even the simplest statics (equilibrium) problems for the fluids
testify that.

An important situation for the compressible fluids is that of the perfect
fluids (gases), the air being one of them.

By a perfect gas, we understand an ideal gas which is characterized by
the equation of state (Clapeyron) p = pRT (where R is a characteristic

constant). For such a perfect gas the relation Cp, —C, =T (—gf—:) (%’;)p
v

becomes Cj — €, = R, even if Cp and C, are functions of temperature
(Joule). Since (dq),, = CpdT, (dq), = C,dT, the first law of thermody-
namics under the form dg = de + pdv, leads to
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1
CpdT = de + pd (;) =dh (as p = constant)
and

C,dt = de.

At the same time, from the transcription of Gibbs’ equation Tds =
de + pdv, and from Cp, — C, = R, we have

Tds = CydT — T(C, — C,,)d—;’
or

Tds dp
—=dl -T(y-1)—,
c. (y-1) P

where v = gﬁ > 1.

From C, — C, = R we also get v = £~ (Eucken’s formula), while

p
%1

the state equation, in vy, becomes 1" = FoNCEVE
The relation TC—? =dT - T(y— l)%‘—’ together with the above expres-

sion for T, assuming that C, and C, are constants, lead, by a direct
integration, to

Tp'™7 exp (;—S) = const

v

respectively

pp~ T exp (Civ) = const.

If there is an adiabatic process (which means without any heat change
with the surrounding), from dg = 0 we get ds = 0, i.e., the entropy s
is constant along any trajectory and the respective fluid flow is called
isentropic (if the value of the entropy constant is the same in the whole
fluid, the flow will be called homentropic). In this case the perfect gas is
characterized by the equation of state T = Kop? ™! and p = Kp?, where
Ky and K are constants while we also have

h = CyT, e=C,T.

Obviously in the case of an adiabatic process, the equation of state p =
Kp?, together with the Euler equations and the equation of continuity,
will be sufficient for determining theunknowns (v;, p, p) (the temperature
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T being determined at the same time with p). For the same perfect
gas, under the circumstances of the constancy of the specific principal
heats but in the nonadiabatic case, the first law of thermodynamics (by
neglecting the radiation heat) leads to

ph =p —divq

or, by using the Fourier law, we arrive at

pCpT = p + div (xgradT),

an equation which allows the determination of the temperature not sep-
arately, but together with Euler’s equations, i.e., using the whole system
of six equations with six unknowns (v;, p, p, T).

Generally, the fluid characterized by the equations of state under the
form f(p,p) = Owith fsatisfying the requirements of the implicit func-
tions theorem, are called barotropic. For these fluids, the determination
of the flow comes always to a system of fiveequations with five unknowns,
with given initial and boundary conditions.

3.4 Real Fluids

By definition a deformable continuum is said to be a real fluid if it
satisfies the following postulates (Stokes):

1) The stress tensor [T] is a continuous function of the rate-of-strain
tensor [D], while it is independent of all other kinematic parameters (but
it may depend on thermodynamical parameters such as p and T);

2) The function [T] of [D] does not depend on either a space position
(point) or a privileged direction (i.e., the medium is homogeneous and
isotropic);

3) [T] is a Galilean invariant;

4) At rest ([D] = 0), [T] = —p[I],p > 0.

The scalar p > 0 designates the pressure of the fluid or the static
pressure. A fundamental postulate states that p is identical with the
thermodynamic pressure. We will see later in what circumstances this
pressure is an average of three normal stresses.

Generally the structure of the stress tensor should be [T] = —p{I]+[o],
where the part “at rest” —p[I] is isotropic while the remaining [o] is an
anisotropic part. For the so-called Stokes (“without memory”) fluids,
[6] = ®(v,gradv,[D]), with restriction [o] = 0 for the fluid flows of
“rigid type” (without deformations), while for the fluids “with memory”,
[o] depends upon the time derivatives of [D] too.

The postulate 2) implies, through the medium isotropy, that the func-
tion [T] is also an isotropic function in the sense of the constitutive laws
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principles. At the same time, within the frame of Noll’s axiomatic sys-
tem, the postulate 3), which states the inertial frame invariance of [T],
is a consequence of the objectivity principle.

At last, the necessary and sufficient condition for the isotropy of a
tensorial dependence (the Cauchy—Eriksen—Rivlin theorem) shows that,
in our working space Ej3, the structure of this dependence should be of
the type

[T] = [_p(p7 T) + (Pﬂ(p, T, Il, IZa I3)][I]

+ (pl(pa Ta Ila I27 I3)[D] + (PQ(pv T’ IlaI27I3)[D]27

where g, 1, 2 are isotropic scalar functions depending upon the princi-
pal invariants I1, Iy, I3 of [D], where I = tr[D] = div v, 2I; = (tr[D])%—
tr[D]? and I3 = det[D], and with the obvious restriction ¢g(p,T,0,0,0) =
0 (conditions required by the postulate 4)).

This general form for the constitutive law defines the so-called Reiner—
Rivilin fluids, after the names of the scientists who established it for the
first time.

Those real fluids characterized by a linear dependence between [T]
and [D] are called Newtonian or viscous. By using the corollary which
gives the general form of a linear isotropic tensorial function [([A]),
observing the hydrostatic form at rest, we necessarily have for these
fluids the constitutive law

[T] = [~p (0, T) + A(p, T) tr[D]] [T] + 211 (p, T) [D],

where the scalars ¢ and A are called, respectively, the first and the
second viscosity coefficient. By accepting the Stokes hypothesis 3\ +
2p = 0, which reduces to one the number of the independent viscosity
coefficients and which is rigorously fulfilled by the monoatomic gases
(helium, argon, neon, etc.) and approximately fulfilled by other gases
(provided that divv is not very large) we would have (from tr[T] =
—3p + (3A+2u) tr[D] ), that 731 + 792 + 1733 = —3p, i.e., the above
mentioned result on the equality of pressure with the negative mean of
normal stresses.

Obviously, for a viscous fluid there are also tangential stresses and so
there is a resistance to the fluid layers sliding. The viscosity of fluids is
basically a molecular phenomenon.

For the incompressible viscous fluid from tr[D] = divv = 0 we get
[T] = —p(I] + 2p(D].
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Sutherland, in the hypothesis that the colliding molecules of a perfect
or quasiperfect gas are rigid interacting spheres, got for the viscosity

-1
coefficient 4 the evaluation p = aT'/? (1 + %) , where « and f are

constants [153].

Fluids that do not observe a linear dependence between [T] and [D]
are called non-Newtonian. Many of the non-Newtonian fluids are “with
memory”’, blood being such an example.

In the sequel we will establish the equation for viscous fluid flows
without taking into account the possible transport phenomenon with
mass diffusion or chemical reactions within the fluid.

Writing the stress tensor under the form [T} = —p[I]+[e], the Cauchy
equations for a deformable continuum lead to

p% = pf — gradp + div[o]

or, in conservative form,

d
5 (pv) + V- (pv ® v) = pf — gradp + div[G].

We remark that all the left sides of these equations could be writ-
ten in one of the below forms, each of them being important from a
mathematical or physical point of view:

pa=p [%—:— + (v grad) v] =p [g_‘t, + (gradv) v]

:p[%% +div(v®v)—vdivv] :p[%% +grad(%v2)+wxv}.

Concerning div [o] = div [ (divv) [T} + 2u [D]], which is a vector,
by using the formulas 2[D] = (gradv) + (gradv)T, div (gradv)? =
grad (divv), 2[2]a =wxa ([Q2] being the rotation tensor — the skew-
symmetric part of gradv and a an arbitrary vector), we get for div[o]
a first form

div[o] = (A + p) grad (div v) + pV2v+ (div v) grad A

+ 2gradv (grad u) + (grad ) x w,

where

V2v = div (gradv), gradv(gradu) = (grady - grad) v.
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A second form is obtained by using the additional formulas

div (gradv) = grad (divv) — rotw = Vv, 2div[}] = —rotw ;

more precisely, we have

div[o] = grad[(A + 2u) (div v)] — rot pw+2grad v (grad i)

+2(gradp) x w — 2(divv) grad p.

At last, by introducing some known vectorial-tensorial identities (see
Appendix A), one can get a third form,

divle] = grad (X + 2u) (div v)] — rot pw

+ 2grad [(grad p) - v] — 2div [(grad p) @ v].

With regard to the energy equation, by using the nonconservative,
respectively the conservative form of this equation for an arbitrary de-
formable continuum, in the case of the viscous fluid we get

D p2 oq . .
Py (e + 7) =P divpv +div ([o]v) + pf - v

(the nonconservative form), respectively

2 2
% [p (e + %—)] +V. {p (e + %—) v} = p%—divpv—f—div ([e]v)+pf-v
(the conservative form), where, obviously,
. T T
[olv = A (divv) v+u [(gradv) + (gradv) ] V.

If we are interested in the mathematical nature of these equations we
remark that, firstly, the equation of continuity is a partial differential
equation of first order which could be written, in Lagrangian coordi-
nates, Jp(R,t) = pg, such that Jp = constant is a solution of this
equation which also defines the trajectories (obviously real). As these
trajectories are characteristic curves too, the equation of continuity is
then of hyperbolic type.
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Concerning the equation of flow, if from the first form of div|o] we
take out the second derivative terms (the “dominant” terms), they could
be grouped into

uViv + (A + p) grad (div v) .

According to the classification of the second order partial differential
equations, these equations are elliptic if the eigenvalues g and X + 2y of
the associated quadratic form are positive. Consequently, in the steady
case, if 4 > 0 and A+ 2p > 0 the flow equations are of elliptic type. The
same property belongs to the energy equation if, by accepting for the
conduction heat the Fourier law, the thermal conduction coefficient is
positive. In the unsteady case the previous equations become parabolic.

Globally speaking, the whole system of equations would be elliptic-
hyperbolic in the steady case and parabolic-hyperbolic in the unsteady
case. If u = 0, then the elliptic and parabolic properties will be lost.

Concerning the initial and boundary conditions, the first ones specify
the flow parameters at ¢ = g, being thus compulsory in the unsteady
case. As regards the boundary conditions, they imply some information
about the flow parameters on the boundary of the fluid domain and
they are always compulsory for determining the solution of the involved
partial differential equation in both steady and unsteady cases.

For a viscous fluid which “passes” along the surface of a rigid body, the
fluid particles “wet” the body surface, i.e., they adhere. This molecular
phenomenon has been proved for all the continuous flows as long as the
Knudsen number (K,) < 0,01."

Due to this adherence the relative velocity between the fluid and the
surface of the body is zero or, in other terms, if Vg is the absolute
velocity of the body surface and v the absolute velocity of the fluid, we
should have Vsyurface = Vs. If Vg = 0, that means the body surface is
at rest, then vy = 0 and also vp, = 0, t being a unit tangent vector on
the surface and n is the unit normal vector drawn to the surface.

These conditions are called the adherence or non-slip conditions, in
opposition with the slip conditions v, = 0 and vy # 0 whichcharacterize
the inviscid (ideal) fluid.

Obviously the presence of a supplementary condition (v¢ = 0) for the
viscous fluids equations should not surprise because these are partial
differential equations of second order while the ideal fluids equations are
of first order.

l
’This number is an adimensional parameter defined by K, = T’ where [ is the mean free

path and L a reference length.
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We will see that if the viscosity coefficients tend to zero, the solution
of a viscous fluid problem does not converge to the solution of the same
problem considered for an inviscid fluid. More precisely, we will establish
that this convergence is non-uniform in an immediate vicinity of the
body surface (where the condition vy = 0 is also lost) where another
approximation (than that given by the model of inviscid fluid) should
be considered.

Concerning the boundary conditions they should be completed, in
the case of unbounded domains, with a given behaviour at infinity (far
distance) for the flow parameters.

All these features analyzed above are associated with the physical na-
ture of the fluid flow. Within the CFD we must take care to use the
most appropriate and accurate numerical implementation of the bound-
ary conditions, a problem of great interest in CFD. We will return to
this subject later in this book.

3.5 Shock Waves

In a fluid, besides the surfaces (curves) loci of weak discontinuities
there could also occur some strong discontinuities surfaces (curves) or
shock waves where the unknowns themselves have such discontinuities
in passing from one side to the other side of the surface (curve). To de-
termine the relations which connect the limiting values of the unknowns
from each side of the shock wave (the shock relations), we should use
again the general principles but under the integral form which accepts
lower regularity requirements on these unknowns. Once these relations
are established, we will see that if we know the state of the fluid in
front of the wave (the state “0”) and the discontinuities displacement
velocity d, it will be always possible to determine the state of the fluid
“behind” the shock wave (the state “1”). We will deal only with the

case of perfect gases where the internal specific energy is e = % (;Yi—l)

and the total specific energy is %pvz + pe, the fluid being considered
in adiabatic (isothermic) evolution. This entails total energy conserva-
tion, a requirement which prevails in the equation of state in the form
— v 13
p=kpl.
Now we introduce the concept of “weak” solution which allows the
consideration of unknowns with discontinuities. Let us take, for instance,

B1t is shown that the entropy increase, required by the second law of thermodynamics,
associated with a shock raise, does not agree with an equation of state in the form p = kp?
where k is constant.
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a nonlinear equation written in conservative form, i.e., in a domain D
of the plane (z,t), namely

ur + (f (u))y =0

or

divF =0

where F = (f (u),u) and “div” is the space-time divergence operator.
If ® is a smooth function with compact support in the plane (z,t), then
the above differential equation leads to the fulfilment, for any @ , of the
“orthogonality” relation [ ®divFdzdt = 0 which comes, by integrating

D
by parts, to [ grad® -Fdzdt =0 .
D
If u is a smooth function the last relation is equivalent with the given

differential equation; but if it is not smooth enough, the last equality
keeps its sense while the differential equation does not.
We will say that u is a weak solution of the differential equation if it
satisfies [ grad® - Fdzdt = 0, for any smooth function ® with compact
D

support. Obviously, if we want to join also the initial conditions u(z,0) =
ug, then, integrating on D; (a subdomain of D from the half-plane ¢ > 0)
we get

/grad@ - Fdzdt + / ® (2,0) up (z)dz =0
Dy DNOzx

and if @ has its support far from the real axis, the last term would
disappear again.

So we have both a differential and a weak form for the considered
equation. We will also have an infegral form if we integrate the initial

b
equation along an interval [a,b] of the real axis, precisely % Judz =

a
f @)l

Of course we should ask if a weak solution satisfies necessarily the in-
tegral form of the equation ? Provided that the same quantities, which
showing up in the conservative form of the equation are kept for the in-
tegral form too, the answer is affirmative. That is why the weak solution
will be basically the target of our searches.

Let us now investigate the properties of the weak solutions of the
conservation law wu; + (f (u)), = 0 in the neighborhood of a jump dis-
continuity (i.e., of first order, the only ones with physical sense). Let u
be a weak solution along the smooth curve ¥ in the plane (z,t). Let ®
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be a smooth function vanishing in the closed outside of a domain S, the
curve X dividing the domain § into the disjoint subdomains .S} and So
(S =85,US82). Then

0= /grad@ - Fdxdt = /gmd<I> - Fdzdt + /gmd@ - Fdzdt.
S S1 So

Since w is a regular function in both S; and Sy, if n is the unit nor-
mal vector oriented from S7 to Ss, then by applying Gauss’ divergence
formula and the validity of the relation divF = 0in S; and in Sz we are
led to

/@(Fl—Fg)'nd-S:O,
by

where F; and Fg are the F values for u taking the limiting values from
S1, respectively Sa.

As the above relation takes place for any ® , we will have [F-n] =0
on X where [F-n] =F; -n — Fs - n denotes the “jump” of F + n across
z.

Suppose that X is given by the parametric equation z = z(t), so that
1,—d

the displacement velocity of discontinuity is d = dgf . Further n = i

and F being (f(u),u) , the above relation becomes

—dfu] +[f ()] =0 pe %,

where again [] designates the jump of the quantity which is inside the
parentheses, when the point (z,t) is passing across ¥ (from S; to Ss).

A function u satisfying the differential equation whenever it is possi-
ble (in our case in S; and S3) and the above jump relation across the
discontinuity surface 3., will satisfy both the integral and the weak form
of the equation.

Obviously, all the above comments could be extended to the conserva-
tive laws systems. Let us consider, as a conservative system, the system
of equations for an isentropic gas in a one-dimensional flow, precisely

pt+mz=0,

m2
'mt+ (———i—p) :0,
P z
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where m = pv (the specific momentum), system which is completed by
the state equation

p=kp.

But if instead of the equation of state p = kp” , we consider the energy
equation

e + [(e+p) T] =0,
Plz
with e = %m)? + ;LLl , then some physical reasons show that the ac-
ceptance of the energy conservation is a much more realistic condition
than p = kp7 , k, in general, depending on entropy and so it cannot be
constant.

In fact the above system together with p = kp” does not have the
same weak solution as the same system but is completed with the energy
conservation.

There are special subjects as, for instance, the wave theory in hydro-
dynamics, where the results obtained by considering the equation of
state p = kp? are close to reality. But, generally speaking, the shock
phenomena should be treated with the system completed with the above
energy equation instead of the equation of state.

From the jump relation [F - n] = 0, across the discontinuity surface
3} which moves with velocity d, we get , for any of the equations of the
above system, the jump relations

d[m] = [-TZ—Z +p] ;

dle] = [(e + p) 2],

called the Rankine—Hugoniot jump relations.

If it takes a coordinate system whose displacement with uniform ve-
locity would be, at a moment ¢ = 0 , equal with the displacement velocity
of a discontinuity located at the origin of this system, then within this
new frame of coordinates, the previous relations will be rewritten

Povo = P11,

povs + po = p1v} + p1,
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(€0 + po) vo = (e1 + p1) v1,
where the subscripts identify the state “0” before the jump and the state
“1” after the jump. If m = pyvg = pyv1 = 0, the respective discontinuity
is of contact type because vy = v; = 0 show that these discontinuities
move with the fluid.

If m # 0 the discontinuity will be called a shock wave or, shorter,
a shock. As vg # 0, vy # 0, the fluid is passing through shock or,
equivalently, the shock is moving through fluid.

That part of the gas (fluid) which does not cross the shock is called
the shock front (the state “0”) while the part after the shock is called
the back of the shock (the state “17).

From the Rankine—Hugoniot relations we could get simple algebraic
relations which allow the determination of the parameters after shock
(state “1”) by using their values before shock (state “07).

Ifeg = ’y%% and ¢; = ’y% are the sound speed in front and, respec-

tively, behind the shock, then denoting by My = g:—:g— and M = d%ﬂf—
(v§ and v} being the projections of the fluid velocity on the shock nor-

mal, at the origin of the system) and by 75 = ;13 and 71 = -+, we easily

. Lt
get the relations
71 — T0 _ 2 1 1
T y+1 Mg ’

m—po 2y
Po v+1
which determine 73 and p; with the data before the shock.
Analogously, we have

(Mg - 1),

MZ -1
2 0
1_M1_1+—23—(M2—1)
7+1 0

and from the perfect gases law p = pRT we obtain for the “new” tem-
perature 17 the evaluation

np_ 20y — 1) (YME +1) (M2 - 1)
ToPo (v+1) Mg 7
relation which, together with the above ones, solves completely the pro-
posed problem.

In what follows we will see what type of conditions should be imposed
to ensure the uniqueness of the (weak) physically correct solution.

It is easy to check that through every point of a shock in the (z,t)
plane one can draw two characteristics, one of each side of the shock,

Tn=Tp
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i.e., the shock “separates” the characteristics. These characteristics are
oriented (both of them) towards the “past”, i.e., to the initial data line
t = 1p or towards the “future” i.e., towards larger %.

A shock is said to obey the entropy condition if the two characteristics
which cross at each point of it are oriented backwards to the initial line
t = t9. A shock which does not observe the entropy condition is called a
rarefaction shock. In gas dynamics the rarefaction shocks are excluded
because if such shock exists, the (weak) solutions of the problem will
not be unique and, more, such a solution does not depend continuously
on the initial data (the characteristics cannot be “traced back™ to the
initial line) and the basic thermodynamic principles are violated.

We shall allow only shocks which do obey the entropy condition. This
restriction will make the (weak) solution of the problem unique.

A shock is called compressive if the pressure behind the shock is
greater than the pressure in front of the shock.

One shows that for a fluid with an equation of state under the form
p = kpv? (or, more generally, whose total energy is conserved while the
specific energy is given by e = %pvz + ;"_’—1), the fulfilment of the entropy
condition holds if and only if the shock is compressive.

It has been proved that, for a perfect gas, the so-called Weyl hypothe-
ses are satisfied, which means

Then, besides the fact that the knowledge of the values of the flow pa-
rameters before the shock together with the shock displacement velocity
allows the determination of the flow parameters behind the shock, the
following properties across the shock take place:

1) There is an entropy increase which is of order 3 in 79 — 71 or in
P1 — Ppo;

2) The pressure and the specific mass increase such that the shock is
compressive (p; > po and 11 < 7p);

3) The normal component of the fluid velocity vs. the shock front is
supersonic before the shock, becoming subsonic after shock. Further, the
fluid flow before the shock will obviously be supersonic while after shock
it will be subsonic, the shock waves arising only within the supersonic
flows.

One can show that the Weyl hypotheses are satisfied by other gases
too.
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3.6 The Unique Form of the Fluid Equations

In the sequel we will analyze the conservative form of all the equations
associated with fluid flows — the equations of continuity, of momentum
torsor and of energy within a unique frame. Then we will show which
are the most appropriate forms for CFD. We notice, first, that all the
mentioned equations (even on axes projection if necessary) could be
framed in the same generic form

ou 4 OF " oG N _B_Ii _
a  dxr Oy Oz
where U, F, G, H and J are column vectors given by

p 0
P pfi
U= P2 , J=1¢ pf2 ,
pU3 pfs
p(e—i—%) p(vifi + vafa + vafs) + pf
4
p
pv? +p— o1
F = { PL2U1 — 012 ,
pyv3vL — 013

2
P (C + UT) v +pUL — V1011 — V2012 — V3013

pU2
pU1v2 — 021

G=1{ Pvi+p—oxp ,
pU3V2 — 023

2
P (6 + ”7) Vg + pU2 — V1021 — V2022 — U3023

pPU3

pU1V3 — 031

H = { PU2U3 — 032
pU3V3 + P — 033

2
p (6 + %‘) v3 + pu3 — V1031 — V1031 — V3033

where o;; are the components of the tensor [o], f; of the vector f and v;
of the vector v.

In the above equations the column vectors F, G and H are called
the flux terms while J is a “source” term (which will be zero if the
external forces are negligible). For an unsteady problem U is called
the solution vector because its elements are dependent variables which
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can be numerically evaluated by considering, usually, some time steps.
Therefore using this approach one calculates numerically the elements
of U instead of genuine variables v;,v2,v3 and e. Of course once the
numerical values for the U components are determined, the numerical
values for the genuine 2parameters are immediately obtained by p = p,

v
plte+ — 9
. 9 .
P = P—iﬁ—, e= — E;’ . In the case of the inviscid fluids we
P
will follow the same procedure with the simplification o;; = 0.

In the case of the steady flow, we have %Ltl- = 0. That is why for such

problems one frequently uses numerical techniques of marching type.
For instance if the solution of the problem is obtained via a marching
procedure in the direction of the z axis, then our equation could be
written in the form g—g =J - %—G + %Izi.

Here F becomes the “solution” vector while the dependent variables
are puy, pv% + p, pvivse, pvyvs and [pvl (e + %) +pv1]. From these
variables it would be possible to get again the genuine variables even
if this time the calculations are more complicated than in the previous
case.

Let us notice now that the generic form considered for our equations
contains only the first order derivatives with respect to x; and ¢ and all
these derivatives are on the left side, which makes it a strong conservative
form. This is in opposition with the previous forms of our equations (for
instance the energy equation) where the spatial coordinates derivatives
could occur on the right side too. That is why these last equations are
considered to be in a weak conservative form.

The strong conservative form is the most used in CFD. To understand
“why”, it would be sufficient to make an analysis of the fluid flows which
involve some “shock waves”. We will see later, that such flows imply
discontinuities in variable p, p, u;, T etc. If for determining of such flows
we would use, for instance, the so-called ‘“shock capturing” method,
the strong conservative form leads to such numerical results that the
corresponding fluid is smooth and stable, while the other forms of these
equations lead to unrealistic oscillations, to an incorrect location of the
discontinuities (the shock) and to unstable solutions. The main reason
for this situation consists in the remark that whereas the ‘“genuine”
variables are discontinuous, the dependent variables like pv and p + pv?
are continuous across the shock wave (Rankine—Hugoniot relations).



Chapter 2

DYNAMICS OF INVISCID FLUIDS

The inviscid (ideal) fluids are hypothetical fluids in which the viscosity
is neglected and consequently there is no opposition while the fluid layers
slide “one on another”. Although such fluids don’t occur in nature, their
study offers useful information in the regions far enough from the solid
surfaces embedded in fluids. At the same time the neglect of viscosity
(i.e., all the coefficients of viscosity are zero) simplifies considerably the
flow equations (Euler) which allows a deep approach via the classical
calculus. Nowadays the interest has been renewed in inviscid fluid flows
because up-to-date computers are capable of solving their equations,
without any other simplifications for problems of great practical interest.
It is also interesting to note that for R’ = oo (the inviscid fluid case)
we have accomplished the conditions for a “perfect continuum”, the
Knudsen number K, being zero [153].

The target of this chapter is to set up the main results coming from
the Euler flow equations which allows a global understanding of flow
phenomena in both the incompressible and compressible case. Obvi-
ously, due to the high complexity of the proposed aim, we will select
only the most important results within the context of numerical and
computational methods.

1.  Vorticity and Circulation for Inviscid Fluids.
The Bernoulli Theorems

Suppose that in the equations of vorticity under the hypothesis that
the external forces derive from a potential, which means in
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Dw ; gradp
Br = (w - grad) v w(dzvv)+rot< P +pdz v[o ])

we set [o] = 0, then we get

Dw
Dt

= (w-grad)v —w (divv) + rot (_gmdp) .

For a barotropic fluid (obviously for an incompressible fluid too) be-

cause grad [ ‘—i{fl = 9r—‘;‘19 and taking into account the equation of conti-

nuity, it turns out that div v = ——5’;, so that we obtain

D (w (w ) w
— =) =|—" grad)v=(gradv) —
Dt(n) o7 ( )p

Similarly, from
Dr gradp 1 .
C

we get 2L = —f ﬂ%de - dr such that, for a barotropic fluid, we fi-

nally have %lt: = 0. This result, also known as the Thompson (Lord

Kelvin) theorem, states that the circulation along a simple closed curve,
observed during its motion, is constant whenever the fluid is inviscid
(ideal), barotropic (or incompressible) and the mass (external) forces
are potential.' Correspondingly, in the above conditions, the strength
of a vortex tube is a constant too (Helmholtz).

In the case of the ideal incompressible or barotropic compressible fluid
flows, the vorticity (rotation) equation (obtained by taking the curl of
each term of the Euler equation) could be written as %%—H‘ot (wxv) =0.
On the other hand, if we consider the flux of rotation (vorticity) across
a fluid surface X, that is ® = f [ wndo, as divw = 0 and the formula

2= I g rons] o

holds, we can state the following theorem:

[153],

' The Thompson theorem requires, basically, the existence of a uniform potential of accelera-
tions. Somne recent results, which have also taken into consideration the case of nonuniform
potential of accelerations, should be mentioned [122].
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THEOREM 2.1. The rotation (vorticity) flux across a certain part of
a fluid surface (which is watched during its motion) is constant.

As direct consequences of this theorem we have the following results
which can be proved by “reductio ad absurdum”:

- Afluid surface X, which at a certain instant ¢y is a rotation (vorticity)
surface will preserve this quality all the time, i.e., it will be a rotation
(vorticity) surface during the motion. A similar result could also be
formulated for the vorticity (rotation) lines, these lines being defined as
the intersection of two vorticity (rotation) surfaces;

- If, at a certain moment, the fluid flow is irrotational (potential),
then this quality will be kept at any later moment.

This last result, known as the Lagrange theorem and which is valid in
the above mentioned hypotheses, could be obtained either by reductio ad
absurdum (supposing that the flux of rotation across a certain surface,

with w # 0, would be different from zero which leads obviously to a

contradiction) or by remarking that the equation ED? ( ) (grad v) =

s
has the solution (in Lagrangian coordinates) ¥ = 3'§(ra ‘; , Wwhere wyg (wo)

is the vorticity vector at the moment tp and p = pg is the mass density
at the same moment.

If the fluid flow is irrotational, then there will be a velocity potential
® such that v = grad®. As %‘ti = grad%‘f, from Euler’s equation in
Helmholtz form, in the same hypotheses of a barotropic fluid and of the

conservative character of the external forces, we also get

mm<mw+-+/:——U>=a

In other words, in an irrotational flow of an inviscid barotropic fluid
with external forces coming from a potential U, we have ¢ 5 + C f d_
U = C(t),where C(t) is a function depending only on time (in the steady
case this function becomes a constant, which does not change its value
in the whole fluid domain). This result, known as the second Bernoulli
theorem (integral) could be also extended in the case of a rotational
fluid flow. Precisely, by considering the inner product of both sides of
Euler’s equation with v, we will have that p%y; +pv-gradK = 0, where
K=%+[®_y.

If the flow is steady, then we will have at once v - gradK = %IT‘/ =0,

e., the quantity K = 223 + [ ‘—if — U is constant at any path line, the
value of this constant being different when we change the trajectory.
This last result is known as the first Bernoulli theorem (integral).
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Now we remark that the above quantity K also satisfies, in the steady
state case, the equation w X v = —grad K and, correspondingly, v
-gradK = 0 which could be obtained from the Euler equation in the
Helmholtz form, with the same previous assumptions. Consider the
energy equation for an inviscid fluid with no heat change with its sur-
rounding (6g = 0) and with a time-free potential of the external forces,
that is

D v? . D (p D
pm (e + 5) = —div (pv) + pgradU - v = _pb_t (;) + pﬁU

or 4L =0, where H = Lv2+e+2-U.
The energy equation shows that H = constant on each streamline.
From the expression of H we get, by taking the grad operator and using

the equality grad [ ‘—i;? +pgrad (%) = grad (%) , that

1 d;
grad H = grad (§v2 + / @ _ U) + grade + pgradv,
o
where v = £ is the specific volume.
At the same time the first law of thermodynamics written under the
“gradient” form, i.e., T grads = grade + pgradwv, allows us to write
that grad H = T grad s + grad B or

grad H =T grads — wxv.

The last equality is known as the Crocco—Vazsonyi equation and it
shows that H is constant in the whole domain of the flow provided
that s =constant and w = 0. In other words, for the isentropic steady
potential fluid flows H is constant together with K.

In the absence of the external forces H = hg, where hg is the en-
thalpy at the zero velocity (stagnation) points. In this case the Crocco
— Vazsonyi equation can be written in the simplified form as gradhg =
Tgrads — wxv.

Generally, the values of the constants taken by K and H along a
certain streamline, in the steady case, are different. But in the case of
isentropic flows (s =constant), the constants for K and H will be the
same.

It has been shown that the modification of these constants while the
streamlines are changing (which does not occur in the case of irrotational
flows) is a direct consequence of the existence of the rotational feature
of the whole fluid flow [153].
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2. Some Simple Existence and Uniqueness
Results

In what follows we will present, successively, some existence and
uniqueness results for the solutions of the Euler system (equations). A
special accent is put on the uniqueness results because, in fluid dynam-
ics, there is a large variety of methods, not necessarily direct (i.e., they
could also be inverse, semi-inverse, etc.), which enable us to construct
a solution fulfilling the given requirements and which, if a uniqueness
result already exists, will be the right solution we were looking for.

At the same time we will limit our considerations to the ‘“strong”
solutions, i.e., the solutions associated to the continuous flows, while the
other solutions (weak, etc.) will be considered within a more general
frame, in the next chapter.

We will start by focussing on additional requirements concerning the
associated boundary conditions. The slip-conditions on a rigid wall —
which are necessary conditions for any deformable continuum and which,
in the particular case of the inviscid fluids are proved to be also sufficient
for the mathematical coherence of the joined model — take the known
form v-n = 0 or, when the wall is moving, v, - n = 0 (v, being the
relative velocity of the fluid versus the wall).

If our fluid is in contact with another ideal fluid, the contact surface
(interface) is obviously a material surface whose shape is not “a priori”
known. But we know that across such an interface the stress should
be continuous. As in the case of the ideal fluid the stress comes to
the pressure, we will have that across this contact surface of (unknown)
equation F' = 0, there are both ¥ = 0 (the Euler-Lagrange criterion for
material surfaces) and p; = ps (p; and p2 being the limit values of the
pressure at the same point of the interface, a point which is “approached”
from the fluid (1), and from the fluid (2) respectively). The existence
of two conditions, the kinematic condition (F = 0) and the dynamic
condition (p1 = ps|F=0) does not lead to an over-determined problem
because this time, we should not determine only the solution of the
respective equation but also the shape of the boundary F = 0, the
boundary which carries the last data. In other words, in this case, we
deal with an inverse problem.

If the flow is not adiabatic we will have to know either the temperature
T'(r,t) or the vector q on the boundary of the flow domain.

If the flow is adiabatic, from the energy equation we will have § = 0
and, if the fluid is also perfect s = ¢, ln-’% + sp, the Euler system will
have five equations with five (scalar) unknowns v, p, p. If, additionally,
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the flow is homentropic then (as we have already seen) the fifth equation
will be p = Kp7.

Concerning the initial conditions for the Euler equations, they arise
from the evolution character of these equations. Such initial conditions
imply that we know p, p, T and v at an “initial” moment so that these
conditions, together with the Euler equations, set up a Cauchy problem.
From the classical Cauchy—Kovalevski theorem we can conclude that this
Cauchy problem for the Euler system (with f = 0), the equation of con-
tinuity, the constancy of entropy on each path line (§ = 0, which means
in adiabatic evolution) and the state equation p = p(s, p), together with
the initial conditions v|,_q = v? (r),p|, = p° (r),sl,_q = % (r), r€R,
where infrer p° (r) = p® > 0, is a well-posed problem and for any ini-
tial data and analytical state equations, i.e., there is a unique analytical
solution defined on the domain V = {r € R?, [t| < T (r)} C R*, where
T(r), for any r, is a function depending continuously on initial data in
the metrics of analytical spaces.

Of course the above mentioned result is a locally time existence and
uniqueness theorem which is valid only for continuous functions (data
and solution).

Generally, there are not global (for all time) existence and uniqueness
results, excepting the two-dimensional case due to the vorticity conser-
vation ( %‘7’" = 0)2. Nevertheless the practical applications require certain
sharp global uniqueness conditions for the Cauchy problem or more gen-
erally for the Cauchy mixed problem (with also boundary conditions, at
any time t) associated with the Euler system.

Before presenting such uniqueness results we remark that the “non-
uniqueness” of the Euler system solution would be linked to the “sud-
denness” of the approximation of a viscous and non-adiabatic fluid by
an ideal fluid in adiabatic evolution. R. Zeytonnian® has shown that the
loss of the boundary conditions associated with the mentioned approxi-
mation, in the circumstances of the presence of some bodies of “profile
type”, could be completed by the introduction of some Joukovski type
conditions (to which we will return) while in the case of some bodies
of “non-profile type”, the model should be corrected by introducing a
vortices separation (vortex sheets).

Let now U = (v1,v2,v3, o, s)T be a solution of the Euler system for ¢ >
0, a solution which is defined in a bounded domain  C IR:. We accept
that the boundary of this domain is composed of a three-dimensional
spatial domain wy, enclosed in the hyperplane ¢ = 0, and by a sectionally

’See R. Zeytonnian, Mécanique Fondamentale des Fluides, t.1, pp. 154 — 158 [160].
3See R. Zeytonnian, Mécanique Fondamentale des Fluides, t.1, p. 126 [160].
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smooth hypersurface I' (for ¢ > 0) which has a common border with the
domain wg. Let also € = (&1, &2,€3) be the outward unit normal to T'.
It is proved that the uniqueness of U in 2 is intimately linked with the
hyperbolicity of the Euler equations which requires the fulfilment of the
following complimentary hypothesis: at each point of the hypersurface
I’ the inequality

o +v1&1 + vaba +v3és > a (€3 + €2 +§§)% (2.1)

should be satisfied.

More precisely, one states that ([160]) if the solution U of the Euler
system exists in the class C! (Q2) and this solution satisfies the condition
(2.1), while inf,, p° (r) > 0, then for any other solution U’ € C! (Q) of
the Euler system, one could find a constant ky > 0 such that U = U'-U
fulfils ||6U; t|| < ko }|6U;t = 0]|* for ¢t > 0. Consequently if the equality
U' = U holds on wy (that means in the hyperplane ¢ = 0), then it will be
satisfied at any point-moment (r,t) € € (wg). Obviously € (wp), called
the determination domain for the solution of the Cauchy problem with
the initial data on wy, is the union of all the domains which back on wy
and on whose boundary the inequality (2.1) is satisfied.

It has been also proved that if ' (wp) is a smooth boundary (of C*
class) of the determination domain 2 (wp), then this hypersurface will
be a characteristic surface of the Euler system, the inequality sign of
(2.1) being replaced by that of equality.

We now remark that in the conditions of an Euler system in adiabatic
evolution with a state equation p = p (p, s) of C? class, assuming that the
domain D(t) of the fluid flow has the boundary % (¢), which is composed
of both rigid and “free” parts, and v, is the propagation velocity of the
surface ¥ [33] then, if

(i) v(r,t), p(r,t), s(r,t) are functions of class C* on [0, T] x D,

(ii) the initial conditions v(r, 0), p(r,0), s(r,0) are given together with

(iii) the boundary conditions v,-n = 0 on [0,7] x ¥ and, similarly,
Vv, p, s in the regions where v, <0,
then the Euler system (even with f # 0), in adiabatic evolution, with
the state equation p = p(p, s), has a unique solution’.

The uniqueness is still kept even in the case when there are not bound-
ary conditions at the points of ¥ where v, > ¢, ¢ being the speed of
sound.

“For the definition of the norm we deal with, we should first consider all the cuts w (¢) of 2

by the hyperplane t = constant >> 0. Then by introducing the vectorial function v = {v;}

on £, its norm corresponding to the cut w(t) will be defined by |[v; ¢l = [ff (X v2) dw.
w(t)

5J.Serrin [135].
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In the case of the incompressible inviscid isochrone (%% = 0> or baro-

tropic compressible fluid flows, Dario Graffi has given a uniqueness result
which requires [57]:

(i) the functions v(r,t),p(r,t) and p(r,t) are continuously differen-
tiable with bounded first derivative on [0, 7] x D,

(ii) the initial conditions v(r, 0), p(r,0), the boundary conditions v - n
and the external mass forces f are given, respectively, on ¥ and [0, T|x Z,

(iii) the state equation (in the barotropic evolution) is of the C? class.

We remark that these results keep their validity if D becomes un-
bounded — the most frequent case of fluid mechanics — under the re-
striction of a certain asymptotic behaviour at far distances (infinity) for
the magnitude of velocity, pressure and mass density, namely of the type

V= Upo + O (r‘(%+6)) \P = Poo + O (r_(%+5)) ,P = Poo+ O (r‘(%“)) ,

where € is a positive small parameter.

We conclude this section with a particular existence and uniqueness
result which implies an important consequence about the nonexistence of
the Euler system solution for the incompressible, irrotational and steady
flows.

More precisely, if D is a simply connected and bounded region, whose
boundary 8D moves with the velocity V, it can easily shown that [19]:

(1) there is a unique incompressible, potential, steady flow in D, if and
onlyif [ V-nds=0,

aD
(i1) this flow minimizes the kinetic energy FE;, = % [ pv*dv over all
D

the vectors u with zero divergence and satisfying u-n|y;p = V- nlyp.

We remark that this simple result, through (ii), associates to the prob-
lem of solution determining a minimum problem for a functional, that
is a variation principle. Such principles will be very useful in numerical
approaches to the fluid dynamics equations and we will return to them
them later in this book.

At the same time if our domain D is bounded and with fixed bound-
ary 0D (V = 0), only the trivial solution v = 0 (the rest) corresponds to
a potential incompressible steady flow. Obviously in the case of the un-
bounded domains this result will be not true provided that the boundary
conditions on @D should be completed with the behaviour at infinity.

The same result (the impossibility of an effective flow) happens even
if the domain is the outside of a fixed body or a bodies system, the
fluid flow being supposed incompressible with uniform potential (without
circulation) and at rest at infinity.
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3. Irrotational Flows of Incompressible Inviscid
Fluids. The Plane Case

The Lagrange theorem, stated in the first section of this chapter,
establishes the conservation of the irrotational character of certain fluid
flows. An important application of this theorem is the case when the
fluid starts its flow from an initial rest state (where, obviously, w = 0).

If a fluid flow is irrotational, then from the condition rot v = 0 we
will deduce the existence of a scalar function @ (zy,z9,z3,t), defined
to within an additive function of time, such that v = grad ®. Obvi-
ously, the determination of this function, called the velocity potential, is
synonymous with that of the velocity field. But from the equation of
continuity we also get 0 == divv = div (grad ®) = A®, while the slip
condition on a fixed wall (¥), immersed in the fluid, becomes

0=v-nly=grad®- n|;, = % 2,
that is the determination of ® comes to the solving of a boundary value
problem of Neumann type joined to the Laplace operator.

Obviously, if the domain flow is “unbounded” we need some behaviour
conditions at far distances (infinity) which, in the hypothesis of a fluid
stream ““attacking” with the velocity v an obstacle whose boundary is
(37), implies that

lim grad® = v,
z%+:v%+mg—>oo

So that in this particular case the flow determining comes either to a
Neumann problem for the Laplace operator (the same problem arises in
the tridimensional case too), that means A® = 0 in the fluid domain D
with %' ap = 0, or to a Dirichlet problem for the same Laplace operator
(which is specific only in the 2-dimensional case) when A = 0in D with
Plyp = constant.

In the conditions of an unbounded domain (the case of a flow past a
bounded body being included too), the above two problems should be
completed by information about the velocity (that is about grad ® and
grad i respectively) at far distances (infinity).

Now we will show that in a potential flow past one or more body(ies),
the maximum value for the velocity is taken on the body(ies) boundary.
If M is an arbitrary point in the fluid which is also considered the origin
of a system of axes, the Oz axis being oriented as the velocity at M,
then we have v?2(M) = ®2(M), while for any other point P, we have
v3(P) = (92 + &2 + $3)(P).

If the function ®; is harmonic and consequently it does not have an
extremum inside the domain, then there will always be some points P
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so that ®,(P) > ®,(M), which means v?(P) > v*(M). In other words
the unique possibility for the velocity to get a maximum value is only
on the boundary. Concerning the minimum value of the velocity this
could be reached inside the domain, namely in the so-called stagnation
points (with zero velocity). If the fluid flow is steady and the external
forces can be neglected, from the second Bernoulli theorem (integral)
it comes that, at a such stagnation point, the pressure has a maximum
while at boundary points of maximum velocity, the pressure should have
a minimum.

Let us now consider the case of an incompressible irrotational plane
(2-dimensional) fluid flow.

Let Oxy be the plane where we study the considered fluid flow, u
and v being the velocity vector components on Oz and Oy respectively,
and g the magnitude of this vector. The fluid being incompressible, the
equation of continuity can be written % + g—" = (0, such that udx — vdy
is, for every fixed ¢, an exact total differentiaf in z and y. Consequently,
there is a function v (z,¥,t), defined to within an additive function of
time by the equality udy —vdz = dy, where t is seen as a parameter and
not as an independent variable.

This function % (z,y,t) is the stream function of the flow since the
curves ¥ = constant, at any fixed moment £, define the streamlines
of the flow that has been shown. On the other side, the flow being

irrotational, we also have g—z — g% = 0 which proves the existence of a

second function ® (z,y,t), the velocity potential, defined also to within
an additive function of time, such that udz + vdy = d® where again ¢ is
considered a parameter and not an independent variable. Hence
u_a_@__a_v,ﬁ v_3'1>_ oy
9z 8y’ T By Oz

or, under vectorial form
v = grad® = —k x grad,

k being the unit vector of the axis directly perpendicular on the plane
Oxy.

But these equalities show that the two functions ® and % satisfy
the classical Cauchy-Riemann system and, consequently, the function
f = ® 44 is a monogenic (analytic) function of the complex variable
z = z + 1y which could depend, eventually, on the parameter {. This
function is called the complex potential of the flow and it is obviously
defined to within an additive function of time. The real and imaginary
part of f(z), which means the velocity potential and the stream function
of the flow, are two conjugate harmonic functions; the equipotential lines
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® = constant and the streamlines ¢ = constant form, at any point of
the fluid flow, an orthogonal network, the inner product gradiy - grad ®
being zero. At the same time we also have

ﬁ—@—i-i-a—w—a—w—ia—@ =u— v
dz 8z 0z 0Oy Oy '

The function % = u - fv is also an analytic function of z, called
the complex velocity of the flow and which will be denoted by ¢ ; the
modulus and the argument of ¢ define, respectively, the magnitude g of
the velocity and the angle w, with changed sign, made by the velocity
vector with the axis Oz, as

df . —iw.

C— —u-w:qe

We conclude that the klnematic description, the whole pattern of the
considered flow, could be entirely determined by knowing only the ana-
lytic function f(z;t), the complex potential of this flow at the considered
moment .

In the previous considerations we have seen that, to any incompress-
ible potential plane fluid flow it is possible to associate a complex poten-
tial. It is important to find out if, conversely, any analytic function of
z can be seen as a complex potential, i.e., it determines an incompress-
ible irrotational plane flow of an inviscid (ideal) fluid. To answer this
question we recall that, from the physical point of view, it is necessary
to choose the function f such that its derivative, the complex velocity,
is not only an analytic function but also a uniform function in the con-
sidered domain (D), so that, at any point of (D), { = —i takes only one
value.

Once accomplished this requirement, due to the analyticity of the
function at any point of (D), the conjugate harmonic functions u(z,y)
and —v(z,y) (the real and the imaginary part of {) satisfy the Cauchy—
Riemann system, that is ‘3’; = —g—y , g'y‘ = 8 ; but such a fluid flow
should be an incompressible irrotational plane flow of an inviscid fluid.
On the other hand, if the domain (D) is simply connected, we will also
deduce that f(z) is analytic and uniform too, which means a holomor-
phic function in (D). Really, zg being the affix of a point of (D), we have

Z

f(z) = f(z0) + [ (dz, the integral being taken along an arbitrary arc
20

connecting the points My and M (or 2p and z). The Cauchy—Goursat

theorem proves, ¢ being uniform and (D) simply connected, that the

above expression for f(z) does not depend on the chosen arc and con-

sequently f(z) is uniform. It will not be the same if the domain (D) is
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multiply connected. Let (D), for example, be the domain sketched in
Figure (2.1) where (L;) and {Lg) are two arcsjoining My and M oriented
K4

as it is shown; by calculating the integral [ (dz along L; and then along
20
Ly, we will get distinct values whose difference is equal to the integral,

of function ¢, calculated along the closed contour L = L7 U Ls. On the

Figure 2.1. The case of a multiply connected domain

other hand it is known that the difference is equal to m (I' 4+ iD), where
m is a positive, negative or null integer® while T + 4D is the number
given by

1"+iD=/dez/[ud:chvdy-{—z'(udy—vdm)],
(©) ©)

(C) being a closed contour of (D), encircling once, in the direct sense,
the domain ( A ) of boundary (C;). We remark that I' = [ v.dr is
(©
the circulation of the velocity vector when we contour once, in a direct
sense, the curve (C) and D = [ v-nds is the flux across (C), as we
(©)

have already made precise.

But then the function %‘;}TD log(z —a), where a is the affix of an inside
point A of (A), has exactly the same nonuniformity properties as f(z),

which means, by deplacing along the same (L) the difference between

®The modulus of the integer m is the number which expresses how many times the respective
contour encircles the simply connected domain (A) of boundary (Ci); m is negative if the
contour is encircled, |m| times, in an inverse sense and it is positive if the encircling is in a
direct sense (in the case of Figure 2.1, m = —1).



Dynamics of Inviscid Fluids 63

the initial and the final value is again m (I' +4D). Consequently the
function f(z) — % log(z — a) is uniform, that is holomorphic in (D).

We conclude that a function f(z), in the case of a doubly connected
domain, could be considered a complex potential if it admits the repre-
sentation F;fiD log(z — a) plus a holomorphic function of z.

More generally, the following result holds:

Let (A1), (Ag), ...,(Ap) be the connected components of the com-
plement of a bounded domain (D), and let A4(aq) be a set of internal
points of (Ag), respectively (¢ =1,p). An analytic function f(z) can be
considered a complex potential of a fluid flow in (D), if and only if there

are a set of real numbers I'; and D, (g =1,p) such that

p .
rp+1D
HEEDY _‘1_2_m._’1 log(z — aq)
q=1

is a holomorphic function in (D).

Case of steady flows. If the flow is steady w and v will be free of ¢ (they
do not depend explicitly on time) and consequently we may suppose that
® , 9 and f(z) have the same property.

Concerning the effective determination of the complex potential for a
certain plane flow, it could be done taking into account the boundary
conditions. In the particular case when the fluid past a fixed wall, this
wall, due to the slip condition v - n = 0 = dy, is a streamline of our flow
and consequently, along this curve, % = Im f(z) is constant. Conversely,
if a plane fluid flow is known (given), we could always suppose that a
streamline is a “solid wall”, because the slip condition is automatically

fulfilled(%’sﬂ = % = 0); shortly, we could say that it is possible to so-

lidify (materialize) the streamlines of a given flow (under the above
assumption).

Finally, supposing that f(z) and implicitly the velocity field are deter-
mined, it will always be possible to calculate the pressure at any point
of the fluid flow by using the second Bernoulli theorem which can be
written as K = -‘123 + % — U = constant. To assess this constant it is suf-
ficient to have both the magnitude of the velocity ¢; and the pressure p;
at a point M; belonging to the flow domain. Additionally, if f= 0, we
also have %—;—5—%‘ =1- %%. Each of the two sides of the previous equality

is non-dimensional. The first one, denoted by Cj, is called the pressure
coefficient.

Starting from some analytical functions f(z) satisfying the unifor-
mity properties stated above, it could always build up corresponding
fluid flows. For instance a linear function f (z) = az + b, @ and b being
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constants, will lead to a uniform (constant velocity) flow while the log-
arithmic functions f (z) = 4= logz and f (z) = 2—1;;10g z, defined on the
whole plane without its origin (D and I' being real constants) correspond
respectively to a source (sink) — according to the sign of flow rate D
— and to a point vortex of circulation I', all of them being located at
the origin. For practical applications one considers also the so-called
doublet (dipole) of axis Ox and strength (moment) K, located at the
origin, whose complex potential is f (z) = -5%.

Of course all these singular flows could be shifted to another location
zy of the plane (and even with an axis making an angle « with Oz) by

considering the change of coordinates
z =29 + Ze*™.

Properties of the above elementary flows as well as a set of additional
examples of such simple flows one finds, for instance, in Caius lacob’s
book “Introduction mathématique a la mécanique de fluides”, chapter
VII, page 407 [69].

We now remark that any linear combination of the complex potentials
fi(z) is still a complex potential in the common definition domain where
the analytic functions f;(z) satisfy the uniformity requirements stated
above. Consequently, starting with some given fluid flows, it is always
possible to set up, by superposition, new flows, that means to consider
linear combinations of the respective complex potentials.

For instance by superposition of a uniform flow parallel to the Oz
axis, of complex potential Vpz, and of a doublet placed at the origin of

. R2 . ..
complex potential Vo~ (Vo and R being positive real constants), one
gets the complex potential of the fluid flow past a circular disk (cylinder)
of radius R without circulation. If we superpose on the previous flow a
point vortex located at the origin, which leads to the complex potential

R? r
f(z2)=W (Z+-z-> +—27rgIOgZ,

we obtain the fluid flow past the same disk of radius R but this time
with circulation T'.

Detailed considerations on the steady, plane, potential, incompressible
flows past a circular obstacle can be found, for instance, in the same [69]
orin [52].

4. Conformal Mapping and its Applications
within Plane Hydrodynamics

In the previous section we mentioned the technique to build up fluid
flows by considering elementary analytic functions. But it will be im-
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portant and very useful to have at our disposal more general construc-
tion methods for the fluid flows. The conformal mapping will be such
a method for determining a fluid flow satisfying some “a priori” given
requirements.

Generally, a conformal transformation of a domain (d) from the plane
(2), onto a domain (D) from the plane (Z), is a holomorphic function
h : (d) = (D) which fulfils the condition A’(z) # 0 (the angles preserving
condition). If the conformal mapping is also univalent (injective) this
will be a conformal mapping of the domain (d) onto the domain (D).
Obviously the holomorphicity is preserved by a conformal mapping. The
same thing happens with the connection order of the domain (d). We
know that the determination of the conformal mapping (on a canonical
domain) is synonymous with that of the Green function associated to the
Laplace operator and to the involved domain, that is with the possibility
to solve a boundary value problem of Dirichlet type for the same operator
and domain [69].

Concerning the existence of conformal mapping, in the case of a
simply-connected domain, a classical result known as Riemann—Cara-
theodory’s theorem states that:

For a given simply-connected domain (d) from the plane (z) and
whose boundary contains more than a point, it is always possible to map
it conformally, in a unique manner, onto the circular disk |Z| < 1 from
the plane (Z), such that to a certain point zy € (d) there corresponds an
internal given point Zy from (Z| < 1 and to a certain direction passing
through zy there corresponds a given direction passing through Zg.

We remark that the uniqueness of the conformal mapping holds to
within three arbitrary parameters, so that we deal, basically, with a
class of functions which defines the considered conformal mapping.

Unfortunately the proof of the existence in this theorem is far from
being a constructive one such that, in practical problems, we are faced
with the effective determination of the conformal mapping. There are
few cases when these conformal mappings are explicitly (analytically)
found. That is why the approximative procedures (one of them being
sketched in a next section) are of the greatest interest.

Finally, the above result could also be extended to the doubly-connec-
ted domains (see, for instance, Y. Komatu [75]) and even to the general
multiply-connected domains but, in this last case, it is extremely difficult
to determine and work with the involved functions. As a consequence
the conformal mapping method is not practically used in the case of
domains with a higher order of connection.

Returning to the simply-connected case, the following result is of re-
markable interest in different applications:
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THEOREM 2.2. If (d) is a simply-connected domain from the plane
(z), bounded by a simply closed curve ¢, and if Z = h(z), a holomorphic
function in ( d ), has the additional property that when z isdeplaced
along the contour ¢ in a certain sense, its image Z describes a simply
closed curve C— delimiting a domain (D) from the plane (Z), in such
a way that the correspondence between ¢ and C is a bijection, then the
correspondence between (d) and (D) will also be a bijection and, conse-
quently, the function Z = h{z) will be a conformal mapping of (d) onto
(D).

Let now F(Z) be the complex potential of a given fluid flow defined
in a domain (D) of the plane (Z); we suppose as known the function
Z = h(z) and its inverse z = H(Z) which establish a conformal map-
ping between the domain (D) of the plane (Z) and a domain (d) of the
plane (z). Then the function f(z) = F(h(z)), with the same regularity
properties as F(Z), will be the complex potential of a new fluid flow
defined in (d) and called the associated (transformed) flow of the given
fluid flow by the above mentioned conformal mapping.

Really f(z) could be considered as a complex potential because

df _dFdZ _dF dh
dz  dZ dz ~ dZ dz

and so f'(z) will be a uniform function in (d) together with F'(Z) in
(D),as well as h'(z) is also uniform together with h(z).

We also remark that in two homologous points z and Z of the con-
sidered conformal mapping, we have f(z) = F(Z). But then the values
of the velocity potential and of the stream function are equal at such
homologous points; consequently, the streamlines and the equipotential
lines of the two flows are also homologous within the considered confor-
mal mapping. More, the circulations along two homologous arcs and the
rates of the flow across two homologous arcs are equal. Particularly, if
a fluid flow defined by F(Z) has a singularity at Zy € D (source, point
vortex, etc.), the associated flow will have at the point 2y, the homol-
ogous of Zg, a singularity of the same nature and even strength. Of
course, at two homologous points the fluid velocities are not (in general)
the same, which comes out from the above equalities for the complex
velocities.

Concerning the kinetic energy this will be preserved too, as from
the relation between the surface elements dA = |Z’ |2 da it results that
pvida = pV2d A, v and V being the velocities magnitude in the associ-
ated flows of the same fluid density p.
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4.1 Helmholtz Instability

Now we will study the stability of an inviscid, incompressible, parallel
fluid flow, containing a velocity discontinuity, following [22]. Precisely,
we will suppose that, above the Oz axis, the fluid moves with a uniform
velocity U in the positive sense and, below, it moves with a uniform
velocity of equal magnitude but in the opposite sense. In this case, the
Oz axis represents a discontinuity surface for the velocity and it is the
site of a vortex sheet of uniform circulation 2U per unit of width. We
remember that the circulation is

I‘=/V~ds

where V is the magnitude of the velocity of the fluid and ds is the arc
element along a closed curve encircling the vortex.

Such a vortex sheet is unstable i.e., if a displacement happens the
sheet will go away and will not return to its initial position. This could be
shown by analytical studies, considering small sinusoidal perturbations.
Here we will numerically analyze the time evolution of such perturba-
tions.

We divide the vortex sheet into segments of equal length A on Oz and
each segment will be divided into m equispaced discrete vortices. As
the total circulation per unit length is 2U, each discrete vortex has the
circulation 2UA/m. We will suppose that at the initial moment these
vortices are displaced from their initial positions y, = 0 to the positions

2nTy

yk=asin<- ;) ),k=---—2,—1,0,1,--- (2.2)

Let us consider the row of vortices containing the vortices k, k + m,
k £ 2m,... The complex potential generated by this row is

(e ¢]
22U N U _ 5
wi(2) = Z sy log(z — zx — nA) = zﬁlog [sm——————ﬂ( 5y zk)] .

n=-oo

Thus the complex potential generated by all the m rows which compose
the sheet is

w(z) = Zwk(z) = Zz% log [sin zr—(—é—;—zkl} .
k=1 k=1

Replacing this potential in the relation

dw _
dz

U — 1,
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by differentiating and separating into the real and imaginary parts we
obtain the components u and v of the velocity at the point (z,%). So,
for the vortex § we have

dr; U m sinh [_QW(yJ;\_yk)] (2.3)
dt m i, cosh [27T(y>\z‘—yk)] — cos [27r(z1')‘_33k)]
and . )
(T —Tk
dy; _ Uy [ A ] _ (2.4)
dt m iZ; cosh [27"(29)\1‘“2'%)] — o8 [QW(z/\i‘zk)]
By introducing the dimensionless variables
_Zy Y-t W
X = )\,Y— )\,A— )\,T— X
the relationships (2.2), (2.3) and (2.4) become
Y; = Asin (27 X;),T =0, (2.5)
dX; 1 i sinh [27 (Y} — Y3)] (26)
dT ~ m = cosh [2r (Y} — Yi)] — cos [27 (X; — X))’ '
ay; e sin [27 (X; — X¢)] @7)

1
dr ~ m g cosh [2m (Y} — Yi)] — cos 27 (X; — Xi)]

Due to the symmetry and periodicity of the involved functions, the
computation is needed only for j = 2,...,m/2 within a half of the wave-
length. The greatest part of this computation involves the above Cauchy
problem numerically solving.

The computer result is an animation which shows the evolution of the
perturbation in time (see also Figure 2.2).

An enlarged picture of the interest zone, obtained by cubical interpo-
lation of X and Y, is shown in Figure 2.3.

The MATLAB code is

global m; m=40;A=0.05;

x=0:1/m:1;y=A*sin(2*pi*x); u0=[x;y];

[t,u]l=0de45(@edrol, [0,0.3],u0);

p=plot(x,y,’EraseMode’,’none’) ;axis([0 1 -0.3 0.31);

for j=1:length(t) set(p,’color’,’v');

set(p,’Xdata’,u(j,t:m+1),’vYdata’, ...

u(j,m+2:2*m+2) ,’color’,’k’);
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Figure 2.2. Evolution of a vortex sheet after perturbation
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Figure 2.3. Evolution of a vortex sheet after perturbation, 7 = 0.30

drawnow;end;

The differential system is described by the function M-file edrol.m
function yprime=edrol(x,y);

global m; disp(x); yprime=zeros(2*m+2,1);

for j=1:m for k=1:m if k~ =j

yprime (j)=yprime (j)+1/m*sinh (2*pi* (y(m+1+j)...

-y (m+1+k)))/(cosh(2*pi*(y(m+1+j) -y (m+i+k))) ...
-cos(2*pi*(y(j)-y(k))));

yprime (m+1+j)=yprime(m+1+j)-1/m*sin(2*pi*(y(j)...
-y(k)))/(cosh(2*pi*(y(m+1+j)-y(m+i+k)))...

—cos (2*pi*(y(j)-y(k))));

yprime (m+1)=yprime(1); yprime(2*m+2)=yprime(m+2);
end; end; end;
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S5. Principles of the (Wing) Profiles Theory

5.1 Flow Past a (Wing) Profile for an Incidence
and a Circulation “‘a priori” Given

Let (c¢) be a contour — the right section, in the working plane, of an
arbitrary cylinder; in aerohydrodynamics such a cylinder could be seen
as an airfoil or a wing of a very large (“infinite”) span (to ensure the
plane feature of the flow) and the respective right section (c) is called
wing profile or shorter profile’.

The main problem of the theory of profiles is to study the steady flow
of a fluid past a profile (obstacle), a flow which behaves at infinity (that
means for | z | very large) as a uniform flow of complex velocity

Voe ™ = Vpcosa — iV sina.

By incidence of the profile with respect to Ox, we will understand
the angle @ made by the velocity vector at far field (infinity) with the z
- axis. Besides the incidence of the profile let us also establish precisely
(“a priori”) the circulation T’ of the flow around the profile.

The determination of the complex potential comes then to the search
for an analytic function f(z) such that:

1) f(z) — % log z is an analytic and uniform function in (d);

2) its imaginary part is constant along (c);

3) lim == = Vge™'@.

2|00 d2

Let (D) be the domain of the plane (Z) defined by |Z] > R and let
z = H(Z)or Z = h(z) be the canonical conformal mapping® which maps
(D) onto the domain (d), the exterior of the given profile (c).

The complex potential F(Z) of the associated (transformed) flow will
satisfy the properties 1), 2) and 3) provided that f and z are replaced by
F and Z, while (d) and (c) are replaced, respectively, by (D) and (C).
More precisely, the fulfilment of the conditions 1) and 2) comes from the
already studied parallelism between f(z) and F(Z), while the condition

"With regard to the geometry of profiles, some additional considerations can be found, for

instance, in the Caius Iacob book “Introduction mathématique a la mécanique des fluides”,

pp. 652-654 [69]. In this book, starting with p. 435, some special classes of profiles are

envisaged too.

8We recall the following basic theorem: * There is a unique conformal mapping, called canon-

ical, of the domain (d) — the outside of the closed contour (¢) — onto the outside of a circular

circumference (C) of radius R, centered at the origin, a mapping which in V(oo) admits a
xXa

development in the form z = Z + Y, —%.The radius R of the circumference (C) is an “a
n=0 %

priori” unknown length which depends only on the given contour (c).
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3) is a direct consequence of the equality |leim g% = 1 which is always
—00
valid for a canonical conformal mapping.
But we have already established a function F(Z) answering these
questions; hence, the function f(z) that we seek is given by f(z) =

F(h(z)) where, of course,

2 i i
RZe )—LlogZ.

It is shown that the thus determined function f(z) is, up to an ad-
ditive constant without importance, the unigue’ function satisfying the
conditions 1), 2) and 3). The fundamental problem of the theory of
profiles is thus reduced to the problem of determination of the canonical
conformal mapping of the domain (d) — the exterior of the profile —
onto the outside of the circular disk.

If the fluid flow past a circular disk has some singularities (sources,
point vortices, doublets, etc.) an important result which allows the de-
termination of the corresponding complex potential is the “circle (Milne—
Thompson) theorem” which states the following:

The function f(z) which is analytic in D — the exterior of the cir-
cumference |z| = R — except at finite number of singular points E C D,
whose principal parts with respect to these singularities is fo(z) and

which is continuous on D\E, will satisfy the requirement Im F@) =k =
(R
0 only if f(z) = fo(z) + fo (—E—) + a, a being a real constant.

F(Z) = Vy(Ze ™ +

Some remarkable extensions of the circle (Milne-Thompson) theorem
are given by Caius lacob [69].

The Blasius formulae [52] allow us to evaluate directly the global
efforts exerted on the profile by the fluid flow. We will limit ourselves to
the determination of the general resultant of these efforts, which comes
to the “complexforce” F given by the formula (Blasius—Chaplygin) [52]

ip dr )2 . . . .
F=% ( f) ( dz) dz , (c) being considered in a direct sense.
C

To calculate this integral we remark that it is possible to continuously
deform the integration contour (c) into a circular circumference of an
arbitrarily large radius, centered at the origin, % being analytic and
uniform in the whole outside of (c), that means in (d); on the other

°This result is a consequence of the uniqueness of the solution of the external Dirichlet
problem for a disk with supplementary condition of a given non-zero circulation. See, for
instance, Paul Germain, “Mécanique des millieux continus”, pag. 325, Ed. Masson, 1962
[52].
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w .
hand, for |z| large enough, using z = Z+ 3 %ln and F(Z) = Vy(Ze™**+
n=0

R2ia T
Ze )—;—WlogZ we also have
. -1
d _dFdz _ [, . i1 R2e 1_°° an
dz dZdz ~ ° w7z 72 £zt
—yreie L e UL
= Voe 27rZ+ = Voe 27rz+ ’

the unwritten terms being infinitesimally small of second order in z~!

and Z~!. Hence

dz ™ z

2 N
(ﬁ) _ Y2e 2o _ ilVoe™ 1
such that
: TVe—ia _
F= %‘—’(m) (—Z—Fi‘;rf——) = ip['Vpe i,

So, we can see that the general resultant is acting on a direction which
is perpendicular to the attack (far field) velocity, its algebraic magnitude
being —pI'Vy. This result is known as the Kutta—Joukovski theorem and,
according to it the resultant component on the velocity direction — the
so-called drag —, is zero, which represents D’Alembert’s paradox, while
the normal component vs. the velocity direction, the so-called /ift, would
be zero if the flow is without circulation.

D’ Alembert’s paradox also holds for three-dimensional potential flows.
This “weakness” of the mathematical model could be explained not only
by accepting the inviscid character of fluid and, implicitly, the slip-
condition on rigid walls but also by assuming the potential (irrotational)
character of the entire fluid flow, behind the obstacle too. However ex-
perience shows that, behind the obstacles, there are vortices separations.
That is why we will consider, in the next sections, the case of the almost
(nearly) potential flows — that is with vortices separation — and when
D’ Alembert’s paradox does not show up.

5.2 Profiles with Sharp Trailing Edge.
Joukovski Hypothesis

Many aerodynamics profiles have “behind” an angular point, the plane
trace of the sharp edge of the wing with infinite span. Let zr be the
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affix of this sharp trailing edge of (¢) and Zr = Re' be the affix of its

homologous from (C) (by the canonical conformal mapping considered

before). The function z = H(Z), in the neighborhood of Z = Zr behaves
10

as

z2—zr=AZ - Zp)P +---,

the omitted terms in this expansion being of order higher than p in
Z —Zp. According to the above expansion if a direction, passing through
Zp, is rotated with an angle «, then the homologous direction passing
through zp, will rotate with the angle pa. If we denote by é7 (0 < 6 < 1),
the angle of the semitangents drawn to (c¢), at zgz (that is the “jump”
of a semitangent direction passing through 2zg is 27 — 7, see Figure 2.4
A), one could see that the exponent p in the above expansion should
necessarily be 2 — 4, the “jump” of the homologous direction from the
plane Z, thus being 7 (see Figure 2.4 B).

" (Z)
(2) YA T

()~
S I s
/
2-d)m r| -

(A) (B)

Figure 2.4. Profile with sharp trailing edge

dz

dZ) = A(2—0N(Z - Zp)' 0+

d dF dZ
- and this derivative vanishes at Z = Zp. But then, from —f =
dz _ dZ dz’

one could see that the complex velocity in the neighborhood of the sharp

Consequently, in the vicinity of Zr, (

19See, for instance, C. lacob, * Introduction mathématique a la mécanique des fluides™, p.
645 [69].
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trailing edge of the profile of the affix zp, has, in general, an unbounded
modulus. This situation does not arise when Z = ZF is a zero velocity
(stagnation point) for the envisaged flow; really, Z = Zr being a simple

dF
zero for = and

(E;)p T AQ-6)(Z - Zp)1- +

g’;— will be zero at z = zp if 0 < 8 < 1 or, bounded, if § = O (this last case
corresponds to the presence, at the trailing edge, of a cuspidal point of
(0))-

To avoid the existence of infinite velocities in the neighborhood of
the sharp trailing edge (which does not have any physical support), one
states the following hypothesis, called also the Joukovski—Kutta hypothe-
sis (condition): “The circulation which, for a given incidence, should be
considered for the flow around a profile with sharp trailing edge, is that
which leads to a finite velocity at the trailing edge”.

To determine the effective value of this circulation it would be suffi-
cient to write that Zp = Re* is a stagnation (zero velocity) point for
the transformed (associated) flow around the disk (C).

From the expression of the complex velocity on the circular boundary
in the fluid flow past the disk [69], that is

¢ = 2ie "V, [sin (0 — @) — sin~],

we could see that this implies v = 8 — a and hence
['=47VpRsiny = 4rVyRsin (8 — ) .

So that, taking into account the Joukovski hypothesis, there is only
one flow past a profile when the incidence is “a priori” given. The angle
B defines the so-called zero lift direction because, if 8 = «, I' = 0 and
the lift will be also zero by the above evaluation for T

5.3  Theory of Joukovski Type Profiles

Let us consider the transformation z = —% (Z + %) whose derivative
is g—é = % (1 — 715) This transformation defines a conformal mapping
between the planes (z) and (Z) except the singular points Z = +1 where
the conformal character is lost.

It is shown that if Z = re'® (r # 1), its image in the plane (2) will
be the ellipse
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whose focuses are located at the points A (1,0) and A’(—1,0). In the
case when r = 1 the image in the plane (Z) will be the segment [-1,1]
run in both senses (on the “upper border” and then, in the opposite
sense, on the “lower border”). Obviously, in this case, the considered
transformation would map both the outside and inside of the unit disk
|Z| < 1, onto the whole plane (z) with a cut along the segment [-1,1]
(in accord with the existence of two inverse transformations Z = 2z =+
vz%Z — 1, where, to fix the ideas, the positive determination of the root
at z =z > 1 is considered).

If T is a circumference passing by A and A’, its image will be only a
circular arc joining A and A’ and crossing the center C of I', an arc which
is run in both senses. Let’s now consider acircumference I'y passing only
through the singular point A (and not through A’). Its image will be
a closed curve with a sharp cuspidal point at A where the tangent is
the same with that to the arc AC A’ which is also “the skeleton” of this
contour.

This image contour is called the Joukovski (wing) profile, and the ini-
tial considered transformation is of Joukovski or Kutta—Joukovski type.

\%,
Obviously to a fluid flow around I'y, of —29 velocity at far field, it

could associate a fluid flow of Vy velocity at infinity, past the considered
Joukovski profile, the incidences in both flows being the same.

The Joukovski profiles are technically hard to make and more, they are
not very realistic for practical purposes. That is why their importance
is mainly theoretical.

The above Joukovski type transformation could be generalized by

considering \
1 R

2 . .
oreven z = Z + R7, the last transformation having the advantage of
equal velocities at far field in the associated flows. We remark that the
last form could be rewritten as

z—2R _(Z-R\?

z+2R  \Z+R)’
and it transforms the outside of |Z| = R onto the whole plane (z) with
a cut along the segment [-2R, 2R]. A direct generalization would be

z—kR (Z—-R
z+kR \Z+R

which points out that

k
),1<k<z



76 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

z=kR=(Z-R)"¢(2), ¢(R)#0,
a form which avoids the sharp cuspidal point and which, in the vicinity
of infinity, has the expansion

k(k—1) R?
2 VA

In this case the image of acircumference I' passing through — R and
R will be the union of two circular arcs, symmetrical versus Oz and
passing through —kR and kR.

Finally, if one considers the image of a circumference I'y, passing only
through Z = R and centered on the OX axis, this image will be tangent
to the previous symmetrical contour at kR where it has also a sharp point
with the angle of semitangents equal to 2kw. Such an image is known
as a Karman-Trefftz profile. An application on a dirigible balloon of
Karman-Trefftz type is given in chapter 6, 3.3.

Writing the Joukovski type transformation under the form

d_ (| RY(, R
dz Z zZ/)’

von Mises has considered the generalization

dz R\
= = (1—2) ( —’—‘Zl)...(1—“—z”),1<k<2,uj¢}z.

Again a circumference passing through Z = R is transformed onto a
(wing) profile of von Mises type, with a sharp point at a certain zg and
where the jump of each semitangent is k.

We remark that if the Joukovski type profiles depend on two param-
eters (like the coordinates of the I'; center), the Karman — Trefftz type
profiles depend on three parameters (with the additional k) while the
von Mises type profiles depend on n + 1 parameters.

E. Carafoli has introduced the transformations of the type z = Z +
%2- + (Z~_‘f—5)—5 with p a positive integer (the order of the pole b). For small
a one obtains quasi—Joukovski profiles.

Caius Jacob has considered a class of profiles defined by the conformal
mappings expressed in terms of rational functions [70].

Recently, I. Taposu has emphasized a special class of profiles (“‘dolphin
profiles”) whose use in practice could improve the classical concepts of
aerodynamics [139].

In different laboratories around the world one deals with classes of
profiles (Naca, Gottingen, ONERA, RAE, Tzagy, etc.) which are given,
in general, “by points” and, seldom, by their analytical form.

z2=7Z+
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54  Example

In the sequel we will illustrate a particular transformation (mapping),
2

namely the Joukovski transformation (see section 2.5.3), z = 2’ + 97.
By this transformation the complex potential of a uniform flow becomes
fZYy=U (z’ + %?—) i.e., the potential for a uniform flow past a circular
cylinder of radius a, U being the magnitude of the velocity at far field.

This transformation, 2 = 2’ + %i where b% < a2, allows the conformal
transformation of a circle of radius a centered at P(z’p,yp) from the
second quadrant Oz'y’ onto a so-called Joukovski airfoil (profile) in the
Ozy plane.

Let us now consider a uniform flow of velocity U in the positive Oz
direction past the above Joukovski airfoil. In particular, its sharp trailing
edge at = = 2b, is the image of the point Q at 2’ = b where Oz’ is crossed
by the above circle.

The magnitude V of the velocity in the Ozy plane is related to the
magnitude V' of the velocity in the Oz'y’ plane by the relation

df
dz'
dz
dz'

4
dz

)

ie.,
VI

V=r——m7mm
7]

2!

(2.8)

We remark that if the velocity V' # 0 at Q where 2/ = b, then the
velocity V at the sharp trailing edge z = 2b becomes infinite, which
is a contradiction with the Joukovski—Kutta condition. Thus, we must
impose that the point Q on the circle be a stagnation point; this goal
may be reached if we create a clockwise circulation I' on the circle,
and this circulation is then conserved by the conformal mapping. The
magnitude of this circulation is ' = 4waU siné = 4nypU and the flow
past the circle is then constructed by adding to the uniform stream a
doublet and a point vortex, so that we get the complex potential of the
resultant flow

a? , 2 —zp
f=U z'—z}p+m+22yﬂplog( - )J

Here the constant term —i2ys log a has been added but the values of the
stream function ¥ on the circle do not change after this superposition.
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The variables a,b,z’p, 9y} are related by the relationship a? = y;? +
(b— 2’5)? and they control the shape of the airfoil. For instance, a and
b determine the thickness and the chord length while the ordinate of P
the “camber” of the airfoil.

For our example we will take U = 1m/s, a = Im, b = 0.8m, yp =
1.199m. Using the formula for the uniform motion with circulation past
a circle in the Oz'y' plane, we generate the airfoil profile as a level curve
(streamline) ¥ = 0 in the Oxy plane. Other level curves ¥ = Const
give other streamlines around the airfoil, see Figure 2.5.

Figure 2.5. Uniform flow past a Joukovski airfoil

The pressure on the surface could be calculated using the velocities,
from the formula (2.8)

and then the dimensionless pressure difference (the pressure coefficient)
at every point can be calculated according to Bernoulli’s relation by

p-P V\*
— =1 . 2.
P = T (U) (29)

It is shown in Figure 2.6.
The MATLAB program is
a=1;b=0.8;U=1;yp1=0.189;
xpl=b-sqrt(a“2-yp1~2);zpl=xpl+i*ypl;
=-2.5:0.05:2.5;y=-2.5:0.05:2.5;
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o —

-1 0 1 X

Figure 2.6. The pressure distribution around the airfoil

[X,Y]=meshgrid(x,y) ;Z=X+i*Y;Z2=Z-zp1;
PSI=U*imag(Z2+a"~2./Z2+i*x2xyplxlog(Z2/a));
c=contour(X,Y,PSI, [0 0]);axis('equal’);
z=c(1,:)+i*xc(2,:);

for j=1:length(c) if abs(z(j)-zpl)<a z(j)=0;end;end;
f=2+b"2./2;

for j=1:length(c) if abs(£f(j))>3 £(j)=0;end;end;
plot(f,’r.’);axis(‘equal’) ;hold on;
c=contour(X,Y,PSI,[-1:0.1:-0.1 0.1:0.1:1.51,'f");
axis(‘equal’);

z=c(1,:)+i*c(2,:);

for j=1:length(c) if abs(z(j)-zpl)<a z(j)=0;end;end;
f=2+b"2./2z;

for j=1:length(c) if abs(£(j))>3 £(j)=0;end;end;
plot (f,’k.”) ;axis(‘equal’) ;hold off;pause;
fi=linspace(0,2*pi,200); z2=a*exp(i*fi);

z1=22+zpl; z=z1+b~2./z1;

V=Uxabs ((1-(a./z2) . 2+i*2*ypl./z2)./(1-(b./21)."2));
plot(real(z),1-(V/U)."2);axis(‘equal’);

5.5 An Iterative Method for Numerical
Generation of Conformal Mapping

In the sequel, we will present a method for the approximate construc-
tion of conformal mappings for arbitrary shaped obstacles [87].

It is known that afunction z = H(Z), which maps conformally the
outside of a profile (¢) from the plane (z) onto the outside of a disk (C),
of radius R, from the plane (Z), can be represented as a series
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o R n
z = Z+Po+iq0+;(pn+i%z) <§> .

The main problem is the effective calculation of thecoefficients pg, qo,
<> Pny qn- To do that, we will consider the previous development at the
point Z = Re? | 0 < 0 < 27, of the circumference (C) and then we will
separate the real and the imaginary parts, thus obtaining

oo
z(0) =po+ (R+ p1)cosf + qysinf + Z (pn cosnl + ¢, sinnf),

n=2

o0
y(6) =qo+ (R — p1)sinb + gy cos 6 + Z (gn cos nb — py sinnd).

n=2

Although the coordinates (z,y) of the points of the contour (c) are
known, either in a tabular or in a functional form, the functions z(6)
and y(0) are still unknown. That is why an iterative method to calculate
z(0) and y(#) must use the coefficients pg, qo, -, Pn, Gn-

First, due to the orthogonality conditions for the trigonometric func-
tions, we have

1 2w

= o

Do

1 27 1 2n
R+p = ;/ z(0) cos6df, R —p; = ;/ y(0) sin 8d6,
0 0

27 27
1
b= [y@sinnddo,n>1, a=7 [y(0)cosnas,n >0
0 0

and, from here, we could write that

1 2
=5 [z(8) cos 8 + y(0) sin 6] db,
0
1 2T
P= = [z(0) cos @ — y(8) sin 8] d6.
27T 0

Then we choose for z (6) its “initial” (of order zero) approximation
29 (0) = a + Bcosfwhere o and B are arbitrary. From the expression

of pg and p; + R, we have pgo) = q, p§°) + RO = 3.
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To the above abscissa z(? it is possible to join the corresponding or-
dinate y(®, either from the given tabular or from the functional form,

and then we can also obtain the coefficients R() — ( ), p%l), qul) which
will be calculated via the mentioned integral relations Using these coef-
ficients new abscissas and then new ordinates are calculated and so the
process is continued. For instance, within the iteration of m order (m-th
iteration) we have

™1 (9) = a+f cos 0+q1 ) sin 0+Z ( (m=1) cos nf + g{™~ Y sin ”9)

2
P+ R =g, ROD g = L / y(™)(9) sin 69,

from where

27

/ y(™) (9) sin 6d6.
0

m B
R 2

T or

The iterative method sketched above is easy to use on a computer.
The only additional required subprograms are connected to the interpo-
lation such that in each “sweep” new values of the ordinates, respectively
abscissas, become available. The method converges quite fast.

6. Panel Methods for Incompressible Flow of
Inviscid Fluid

The panel methods in both source and vortex variants, are numerical
methods to approach the incompressible inviscid fluid flow, and which,
since the late 1960s, have become standard tools in the aerospace indus-
try. Even if in the literature the panel methods occur within “computa-
tional aeronautics”, we will consider them as a method of CFD.

In this section we will “sketch” the panel method, separately in the
source variant and then in the vortex variant, by considering only the
“first order” approximation.

6.1 The Source Panel Method for Non-Lifting
Flows Over Arbitrary Two-Dimensional
Bodies

Let us consider a given body (profile) of arbitrary shape in an incom-
pressible inviscid fluid flow with free-stream velocity V. Let a contin-
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uous distribution of sources be along the contour (surface) of the body
and let A (s) be the source strength, per unit length, of this distribu-
tion where s is the natural parameter (the distance measured along this
contour in the edge view). Obviously an infinitesimal portion ds of the
boundary (source sheet) can be treated as a distinct source of strength
Ads. The effect induced by such a source at a point P(z,y), located a
distance r from ds, is a fluid flow with an infinitesimally small velocity
potential d¢ given by

do = Ads Inr,
27

The total velocity potential at the point P, induced by all the sources
from a to b, is obtaining by summing up the above infinitesimal poten-
tials, which means

b
Ad
<I>(:c,y)=/2—7:1nr.
a

Obviously, the fluid velocity induced by the source distribution (sheet)
will be superposed, at any point P, on the free-stream (attack) velocity.
The problem we intend to solve (numerically) is that of the determi-
nation of such a source distribution A(s) which “observes” the surface
(boundary) of the body (profile), i.e., the combined action of the uni-
form flow and the source sheet makes the profile boundary a streamline
of the flow.

To reach this target, let us approximate the profile boundary by a
set of straight panels (segments), the source strength A per unit length
being constant over a panel but possibly varying from one to another
panel.

Thus, if there is a total of n panels and A1, Ag, ... , A, ... , A, are the
constant source strengths over each panel respectively, these “a priori”
unknown A; will be determined by imposing the slip-condition on the
profile boundary. This boundary condition is imposed numerically by
defining the midpoint of each panel to be the control point where the
normal component of the fluid velocity should be zero.

In what follows, for sake of simplicity, we will choose the control points
to be the midpoints of each panel (segment).

Let us denote by rp; the distance from any point (z;,y;) on the j-th
panel to the arbitrary point P(z,y). The velocity potential induced at
P due to the j-th panel of constant source strength A; is
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)\.
(]Dj = Ei—/lnrpjdsj.
J

Obviously, the potential at P due to all the panels is the sum

n n
j=1 J=1 j

Suppose now that P is the control point, that is the midpoint of the
i-th panel. Then we have

n
)\.
o ($i,yi) = Z 2_; /1n7'ijd3j,
j=1 j

while the normal component of the velocity at (z;,y;) is

Up = d-ffil—z.(I) (xhyz) )
n (n;) being the outward unit normal vector to the i-th panel. Because
forj =1, r;; = 0 at the control point and, when the derivative is carried
out, r;; appears in the denominator (thus creating a singular point), it
would be useful to evaluate directly the contribution of the -th panel
to this derivative calculated at (z;,y;). Since it is about a source which
acts only on a half-circumference (the other half-circumference does not
interfere due to the rigid wall), its strength will be 1\21 and this is the
looked for contribution to the normal component of the velocity. Hence

Ni =N [ d
Uy = —2-2— +;ﬁ/gfﬂ (Inri;) ds; .
iAo
Taking into account that the normal component of the free-stream
velocity Vo at the same point (Zj,¥;) 1S Veon = Vool = Voo €08 f;, Bs
being the angle between Vo, and n;, the slip-condition will be v 5 +
v, = 0, which means

Ai =X [ d
—Z+Z—J r———(ln7"i_7-)d:5j-H)oocosﬂi=0.

2 - 2 dni
Jj=1 ;
A 7
Applying this approach to all the panels, the above equalities with
i = 1,2,...,n, represent a linear algebraic system with n unknowns

A1, A2, ..., Ap, which can be solved by conventional numerical methods.
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Certainly this approximation could be made more accurate by in-
creasing the number of panels and, if necessary, by considering panels of
different length (for instance, in the case of a profile shape, one gets a
good accuracy by considering 50 to 100 panels which are either smaller
in the leading edge region of a rapid surface curvature or longer over the
quasi-flat portions of the profile).

Obviously, following the same way, we can also obtain the tangential
components of the velocity at the same point (z;,y;), precisely

n
. Aj d
Vi = Uoo,t + Vp = Voo SINF; + ]‘Z—l 5;]‘.—/ ds (lnrij) ds;.
- J

Hence, the pressure at the same control point is calculated by the

2
Bernoulli theorem while the pressure coefficients are Cp; =1 — (f;—) .

Before ending this section it is important to give a procedure for
testing the accuracy of the above method. If S; is the length of the j-th
panel of source strength A; (per unit length), then the strength of the
entire panel will be, obviously, S;A;. But the mass conservation, in the

n

hypothesis of a closed contour, allows us to write Y, S;A; = 0 which
j=1

provides an independent criterion to test the obtained results.

6.2 The Vortex Panel Method for Lifting Flows
Over Arbitrary Two-Dimensional Bodies

Consider now a continuous distribution of vortices (vortex sheet) over
the surface (contour) of a body (profile) in an incompressible flow with
free-stream velocity V. Let v = v (s) be the strength (circulation)
of the vortex sheet, per unit length along s. Thus the strength of an
infinitesimal portion ds of the boundary (vortex sheet) is yds and this
small section could be treated as a distinct vortex of strength «ds. Intro-
ducing again the point P(z,y) in the flow, located at distance r from ds,
the infinitesimal portion ds of the boundary (vortex sheet) of strength
«ds induces an infinitesimal velocity potential at P, namely

vds
do = ——

27
and, correspondingly, the entire distribution of vortices from s = a and
s = b will generate a velocity potential
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b
1
b =—— [ Ovyds.
2%/73
a

Analogously, the circulation around the vortex sheet from s = a to
s = b is the sum of the strength of the elemental vortices, that is

b
I' = [~ds. Another property of this vortices distribution is that the

a

tangential component of the fluid velocity experiences a discontinuity
across the sheet in the sense that, for every s, v = u; —ug, #1 and us be-
ing the tangential velocities “above” and “below” the sheet respectively.

This last relation is used to demonstrate that, for flow past a wing
profile, the value of y is zero at the trailing edge, which means yr = 0. In
fact this relation is one form of the Joukovski condition which fixes the
values of the circulation around the profile with a sharp trailing edge, the
lift force L being related to this circulation through the Kutta—Joukovski
theorem, that is L = povsI'. The goal of this method is to find 7 (s)
such that the body (profile) surface (boundary) becomes a streamline of
the flow. At the same time we wish to calculate the amount of circulation
and, implicitly, the lift on the body.

As in the case of sources, we will approximate the vortex sheet by
a series of n panels (segments) of constant strength (per unit length)
which form a polygonal contour “inscribed” in the profile contour. Let
us denote by 71, 2, ... , ¥4, - , ¥n the constant vortex strength over each
panel respectively. Our aim is to determine these unknown strengths
such that both the slip-condition along the profile boundary and the
Joukovski condition are satisfied. Again the midpoints of the panels are
the control points at which the normal component of the (total) fluid
velocity is zero.

Let P(z,y) be a point located a distance 5,; from any point of the j-th
panel, the radius rp; making an angle 6; to the Oz axis. The velocity
potential induced at P due to all the panels is

n n
b "Y
P =) Pj=-) /9pjd3j,
i=1 =17

where 6,; = arctg?=% .
If P is the control point of the i-th panel, then

n
@ (zip) =— ), Zj—r / O:jds;, 0 = arctg““”"*yf er
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Hence the normal component of the total fluid flow at the point (2}, y;)
18

Voo €08 3; — Z ?92:]

which, vanishing for every % (the slip-condition), will generate a linear
algebraic system to determine the unknowns 1, ¥2, ... , ¥j, --- , Yo But
this time, in contrast with the source panel method, the system should be
completed with the Joukovski condition yr = 0. In fact, the fulfilment
of this last condition could be performed by considering two small panels
(panels 7 and ¢ — 1), in the neighborhood of the sharp trailing edge, such
that the control points ¢ and 72 — 1 are close enough to the trailing edge,
and imposing that 7y; = —-;_1. This leads to the “a priori” fulfilment
of the Joukovski condition. At the same time, to avoid the approach of
an over-determined system of n unknowns with n 4+ 1 equations we will
ignore the slip-condition at one of the control points and so we get again
a system of n linear algebraic equations with n unknowns, which can be
solved by conventional techniques.

Obviously, the obtained solution, besides the slip-condition, will sat-
isfy the Joukovski condition too. More, the tangential velocities to the
boundary are equal to v which could be seen clearly supposing that, at
every point inside the body (on the “lower” part of the vortex sheet
too) the velocity ug = 0. Hence, the velocity outside the vortex sheet is
v = u1; —uz = u; — 0 = w1 so that the local velocities tangential to the
surface (boundary) are equal to the local values of +.

Concerning the circulation, if S; is the length of the j-th panel, then
the circulation due to the j-th panel is ;S; and the total circulation is

I'= Z ;55 and, correspondingly, the lift L is peo Vo Z Y55;
7=1

Finally, we remark that the accuracy problems have encouraged the
development of some higher-order panel techniques. Thus a “second-
order” panel method assumes a linear variation of v over a given panel
such that, once the values of v are matched at the edges to its neighbors,
the values of v at the boundary points become the unknowns to be
solved. Yet the slip-condition, in terms of the normal velocity at the
control points, is still applied.

There is also a trend to develop panel techniques using a combination
of source panels and vortex panels (source panels to accurately represent
“the thickness” of the profile while vortex panels to effectively provide
the circulation). At the same time, there are many discussions on the
control point to be ignored for “closing” the algebraic system in the case
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of the vortex panels. References can be found, for instance, in the book
of Chow [22].

6.3 Example

Let us consider, for instance, a source panel of length 2L, lying sym-
metrically on the Oy axis [22]. Assume that on it, sources of the strength
A per unit length are distributed. The velocity potential induced at every
point (z,y) by the source contained in the infinitesimal panel element

’ 1
dy' at (0,y') is %?— In [2? + (y — /)] 2 (this expression is obtained by
taking the real part of the source complex potential).
The potential induced by the entire panel is

A L
O(z,y) = 4~ / Lln (22 + (y — v)?] dy’

and the velocity components can be obtained by derivation with respect
to x, respectively vy,

uw(z,y) = Q)Lr [arctg (y:—L) — arctg (Q%L-)]

2 2
_ a2+l
v(z,y) = ElnxQ—i—(y—L)z'

Considering a point (z,y) such that z >0 and y € (—L,L),if z = 0
from the right of the panel we obtain the limit u(+0,y) = $. On the
other hand, by a similar approach from the left, we obtain the limit

u(—0,y) = —%. Thus the panel generates a flow having an outward
normal velocity of magnitude % The tangential velocity v is the same
on both sides of the panel and it is zero at the midpoint and infinite at
the edges of the panel.

If such a panel with sources of strength A = 2U is placed normal
to a uniform flow of speed U, the induced normal velocity cancels the
oncoming flow on the left side and thus the resultant flow is tangent to
the surface. So, the panel becomes coincident with one of the streamlines
of the flow.

If the panel makes an angle 8 with the uniform stream, the generated
flow cancels the normal induced flow if its strength is A = 2U sin 6.

Letnow m be the number of the panels. On each panel are distributed
uniform sources of strength Ay, ..., A, (strength per unit length) respec-
tively. The velocity potential of the resultant flow at every point (zi, y;)
from the flow field, generated by the sources from the j-th panel is, as

above, %Lr [;Inryds; where J is the panel and Ajds; is the strength of
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the source from the element ds; located at (z;,y;) on that panel. Here

rij = \/ (z; — .’E]')2 + (y; — :yj)‘2 is the distance from the control point
(zi,yi) to an arbitrary point (z;,y;) on the j-th panel.

The velocity potential for the flow obtained by superposition of the
given uniform flow and the m source panels is then

m
A.
® (i ys) = Uzi + ) ﬁ/Jlnwde-
j=1

Let now (z;,y;) be the control point on the i-th panel, where the
outward normal n; makes an angle 8; with the uniform stream. At this
point on the surface of the body, the above slip condition becomes

M o= A
¢ J 7. — -
E+ E .ﬂIU =~UcosfB;,i=1,....m (2.10)
J#i
where
I--—/———d Inr;;ds;
E g dn; L

The calculations become easier if we express the integrals I;; in terms
of the geometrical elements of the panels, see Figure 2.7.

(X;+1'Yj+1) ()Ei,Yi)

(X,Y) (Xiyq:Yip)
Figure 2.7. Evaluation of the integrals I;;

The length of each panel is

Si = V(X1 = X)) + (Y - V)2

The angle 6; at (X;,Y;) between the panel and the Oz axis is related
with the similar angle of the normal n; at the control point (z;,y;) by
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the relation

™
Pi=0;i+ 5

from where
sin B; = cos 8;,cos B; = —sinb; .

After derivation with respect to the normal we get

[ = /Sj (z; — z5) cos Bi + (yi — y;) smﬁZ
7o (@i — 25) + (v — 95)?

ds;

where
zj = X;j+s;co88;,y; =Y; + s;sinb; .

By replacement, the integral becomes

/Sf Csj+ D
Ii]’ =
0

s; +2AS]+B
where
A=—(x; — Xj)cos; — (y; — Y;)sinb; ,
B:(xz_X)z‘*'(yz Y)2
C = sin(0; — 6;),

D = —(z; — X;)sin0; + (y; — Y;) cosf; .
But the denominator of the integrand is of the form
(sj+A)? +B—A*=(s;+ A’ + E* >0

where
E = (.’E, - Xj) sinﬂj - (yi - )/J) COoSs 0j
thus, consequently,

2 )
Ii]‘ = %s:‘in (gi — 9]') In [1 + fli;_Af_g_]_]

(2.11)
—cos (6; — 6;) [arctg (S +A) — arctg (]’%)] .

By using the system (2.10), with the introduction of the dimensionless
(undimensional) variables )\ 2?‘TU, we get

m
E Iij)\;~ = sinOi,i = 1,...,m
j=1

where I;; are given by (2.11), excepting I;; = « for every i.
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We remark that for a body of a complicated shape the calculation
of the normals to the panels at control points is not always easily per-
formed. We can modify the above algorithm by choosing the boundary
points (X;,Y;) to be on the surface of the body and the control points
(zs,yi) to be the midpoints of the panels. The panel orientation is given

by v
it1— Y;
0; = Arct M—) ,i=1,...,m
' 9 (XH-l - X;

where Arctg takes its values on [—m, w]. This technique is easier to apply
but it is not as accurate as the previous method. Now the control points
are located near the surface of the body and they will approach the
surface if the number of panels increases.

Other remark is that the panels could be of different sizes. It is useful
to take small panels in a part of the body of large curvature, in order to
increase the accuracy of the method.

After the calculation of the dimensionless strengths )\;-, the velocity
potential ®(z;,y;) may be written. The velocities at the control points
are tangent to the panels and thus at these points

d
—® (z;,y:)

)

where ¢; is a tangent vector to the surface of the i-th panel.
Taking the derivative of @ with respect to n; we also obtain

V(xzvy
— 2 = cos b; +ZIZ’J>‘; .

Here Ij; is given by

I; = —Lcos(6; —0;)In |1+ Ei;l-qs—}

—sin (6; — 6;) [arctg (g%ﬂ) —arctg (%)]

for i # j and Ij; = Ofor every 3.
Finally, the pressure on the surface of the body could be described by
the pressure coefficient (2.9)

e =£:_£=1_ (K)z
P 1pU? U

We will illustrate this method with the following problem. Let us
consider two circular cylinders of radius 1m, placed in a uniform flow of
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velocity 1m/s. The centers of the cylinders are separated by a distance
of d = 2.5m, in a direction perpendicular on the flow. Considering n
panels on each cylinder, let us calculate for every 2n control points the
values of the velocity and the pressure coefficient.

We choose the simplified variant, with the boundary points on the
surface of the cylinders and the control points are the midpoints of the
panels. The variables P of the program will contain all the characteristics
of every panel.

The results are presented in Figure 2.8.

Figure 2.8. The pressure coefficient on the surface of the cylinders

The MATLAB program is

n=32;r=1;d=2.5;U=1;
P=zeros(2#*n,8) ; I=zeros(2*n) ; Ip=zeros (2*n) ;

for i=1:n ui=pi-(i-1)*2%pi/n;

P(i,1)=r*cos(ui) ;P(n+i,1)=P(i,1);
P(i,2)=r*sin(ui)+d/2;P(n+i,2)=P(i,2)-d;
P(i,3)=r*cos(ui-2*pi/n) ;P(n+1i,3)=P(i,3);
P(i,4)=r*sin(ui-2*pi/n)+d/2;P(n+i,4)=P(i,4)-d;
end;

for i=1:2*n

P(i,5)=(P(i,1)+P(i,3))/2;
P(i,6)=(P(i,2)+P(i,4))/2;
P(i,7)=atan2(P(i,4)-P(1,2),P(i,3)-P(i,1));
P(i,8)=sqrt((P(i,3)-P(i,1))"2+(P(i,4)~-P(i,2))°2);
end;
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for i=1:2*n for j=1:2*n

if j =i

A=-(P(i,5)-P(j,1))*cos(P(j,7))-...

(P(1,6)-P(j,2))*sin(P(j,7));

B=(P(i,5)-P(j,1))~2+(P(i,6)-P(j,2))"2;

E=(P(i,5)-P(j,1))*sin(P(j,7))-...

(P(i,6)~P(j,2))*cos(P(j,7));

I(i,j)=1/2*sin(P(i,7)-P(j,7))*...

log(1+(P(j,8) "2+2*A*P(j,8))/B)~...

cos(P(i,7)-P(j,7))*(atan((P(j,8)+A)/E)-atan(A/E));

Ip(i,j)=-1/2*cos(P(i,7)-P(j,T))*...

log(1+(P(j,8) "2+2%A*P(j,8))/B)-...

sin(P(i,7)-P(j,7))*(atan((P(j,8)+A)/E)-atan(A/E));

else I(i,i)=pi;Ip(i,i)=0;

end;

end; end;

Lp=I\ sin(P(:,7));

VPU=cos(P(:,7))+Ip*Lp;V=VPU*U;

cp=1-VPU."2;

for i=1:2#n disp([i cp(i) V(i)]);end;

for i=1:2*n

plot3([P(i,5),P(i,5)+eps], [P(i,6),P(i,6)+eps]l,[0,cp(i)]);

set(gca,’view', [95,20]);

xlabel('x’) ;ylabel('y’) ;zlabel('cp’) ;hold on;

end;

plot3([P(:,5);P(1,5)],[P(:,6);P(1,6)],zeros(2*n+1,1),".");

plot3([P(:,5);P(1,5)],[P(:,6);P(1,6)],...
-10*ones(2+n+1,1),'.");

grid;

hold off;

We remark the low-pressure region between the two cylinders.

7. Almost Potential Fluid Flow

By almost (slightly) potential flows, we understand the flows in which
the vorticity is concentrated in some thin layers of fluid, being zero out-
side these thin layers, and there is a mechanism for producing vorticities
near boundaries.

For such models the Kutta—Joukovski theorem does not apply and
the drag may be different from zero, which means one can avoid the
D’ Alembert paradox.

There are many situations in nature or in engineering where the
viscous flows can be considered, in an acceptable approximation, as
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“nearly potential”. Such situations occur in particular when it con-
siders “streamlined” bodies, that is bodies so shaped as to reduce their
drag.

Now we shall analyze the model of incompressible inviscid fluid flow
due to the presence of N (point) vortices, located at the points ry,rs,

,ry in the plane and of strength I'y,T'2, ... ,T'y, respectively. The
stream function joined to the j-th vortex, ignoring the other vortices for
a moment, is given by

T
U,(r) = —-Q—iln[r — ;.
The vorticity associated to the same vortex will be given by

Wy = ~A¢j = I‘jé (r - rj) ,

where 4 is the Dirac function while the corresponding velocity field (ig-
noring again the influence of the other vortices) is

. Fiy—y; T'jz—x;
Vj=(8y¢ja—c?z¢j): (_‘ly yja“l 2 J)

2r r2 27

with r = |r —r;].

Obviously, due to the interaction of vortices, the points where the
vortices are centered (located) start to move. More precisely, taking
into account the superposed interaction of all the vortices, r; (z;, ;)
move according to the differential equations

dzj _ __}_ZI‘ i(yi—vi) dyj _ LZFi($j~mi)
= =L = LRt BaiT4
dt 27 vy T dt 27 Py i
where Tij = |r,~—rjl .

Then, if we retake the previous way in a reverse sense, we conclude
that:

Let a system of constants I'y , ..., 'y and a system of points (initial
positions) ry (Z1,¥1) .-, In (Zn,Yn) be in the plane. Suppose we allow
these points to move according to the above equations whose solutions
could be written in the form z; = z; (¢) and y; = y; (t). Definethen v; =

N
( —’z—l, o ) and let v(r,t) = ) v;(r,t). This last equality
j=1
provides a solution of Euler’s equations, a solution which preserves the
circulation. Really, if C is a contour encircling & vortices ry,ra, ..., Ik

k
then I'c = ) I'; and I'¢ is flow invariant (constant).
=1
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Of course the relationship between these solutions and the other solu-
tions of the Euler system is not very obvious but it could be established
rigorously under some carefully chosen hypotheses.

Now we remark that the above system forms also a Hamilton system.
Really, by defining H = -—ﬁ >, I In|r;—r;|, the system is equivalent

2
with 7

dryj OH _dy;  OH . ——
T dt —ayj’ Tde 8.’1)j’]—1,N'

Introduce the new variables
x; = VILilzs, y; = V/|Tilsgn (Ti) ys,i = 1, N 5
we get a real Hamilton system

dz; OH dy, OH .

A=, —t=——i=1N
dt ~ oy dt oz,
and, as in classical mechanics we have
dH _ - OHdry | <N OH i
dt & 8z, dt < oy dt

i.e., H is a constant in time along a path line.

A consequence of this property is that if all the vortices have the same
sign for their strength, then they cannot collide during the motion. In
other terms, if {r;—r;| # 0, 7 # j, at £ = 0, then this result remains
valid for all time since if |r;—r;] — 0, H will become infinite.

We remark that the Euler equations themselves form a Hamiltonian
system (see, for instance, [2]) such that the Hamiltonian nature of the
vortex model (approximation) should not surprise. What might be of
great interest is to establish whether or not this system is completely in-
tegrable in the sense of Hamiltonian systems. There are some reasons to
suppose the existence of a certain Lie group that generates the equations
(in some sense) [19].

Let us generalize the previous case and imagine the N vortices moving
in a domain D with boundary @D. Following the same way as before we
must modify the flow of the j-th vortex (its velocity v;) so thatv - n|,p =
0. This could be done by adding a potential flow of velocity u; such that
v;-n = —u;-n. In other words, we choose a stream function ; associated
with the j-th vortex, which satisfies
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Al/)j = —wj = —I‘jd (I‘ — rj)
d_wi — 0 )
dn |gp
that is, equivalently, to choose ¥; (r) = —T';Gy (r,r;) , where Gy (r,r;)
is the Green’s function for the Neumann problem associated with the
Laplace operator (Laplacian) in the domain D.
Retaking again the Euler system in the form

A = 0,0 = Bythyv = ~B, 2 =,

we can write

Y= _2%{/“} (r)In|r —r'|dr,

and then we set u = 0y9, v = —0z1. But these equations seem to be
just the equations established for a system of point vortices, the integral

N
representation for ¢ being replaced by the formula ¢ = Y 4; (r), valid
i=1

in the conditions of a point vortices system analogously as a Riemann
integral is approximated by a Riemann sum. This suggests that an
inviscid incompressible flow can be approximated by the flow induced
by a discrete system of vortices, The convergence of solutions of the
discrete vortex equations to solutions of Euler’s equations as N — oo is
studied in [38] and in [61].

Vortex systems provide both a useful tool in the study of general
properties of Euler’s equations and a good starting point for setting up
effective algorithms for solving these equations in specific situations.

8. Thin Profile Theory

The theory of a wing with an infinite span (i.e., the theory of profiles)
requires knowledge of the conformal mapping of the profile outside, from
the physical plane (z) onto the outside of a disk from the plane (Z).
However, for an arbitrary (wing) profile, it is difficult to get effectively
this mapping; that is why, many times, one prefers the reverse procedure,
that is to construct (wing) profiles as images of some circumferences
through given conformal mappings. The Joukovski, Karman-Trefftz,
von Mises, etc. profiles belong to this category [69].

In the particular case of the thin profiles with weak curvature, the
problem of a flow past such a profile can be directly solved in a quite
simple approximative manner. More precisely, this time it will not be
necessary to determine the above mentioned conformal mapping but
only the solving, in the physical plane, of a boundary value problem of
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Hilbert type that reduces, in an acceptable approximation, to a Dirichlet
problem for the Laplace equation.

8.1 Mathematical Formulation of the Problem

Suppose that our (wing) profile is formed'' by the arcs C; and Cy of
equations

y =g;(z) =¢hj(z),a <z <bj=1,2,

where € > 0is a very small positive parameter; we admit that the
functions hi(z) and ha(z) are continuous and derivable in [a,b] and

hj(a) = hj(b), j = 1,2. Suppose also that ha(z) > hi(z), a <z <b.

This proflle is placed in a uniform fluid free-stream of complex veloc-
ity Woo = Voe ™™, both the magnitude of the physical (attack) velocity
at far field Vi and its angle of incidence «, sufficiently small, being inde-
pendent of time. In what follows we will look for the complex potential
of the fluid flow under the form

f(z) = Wooz + F (2)

or, focussing on the velocity field determination, we set

ﬁ_ +dF_ i
dz % dz—u w
with
dF
dz—U—zV

The unknown function F(z), the corrective complex potential, in-
duced by the presence of the thin profile, is a holomorphic function in
the vicinity of any point at finite field, with a logarithmic smgularlty
at infinity. On the contrary, the derivative of this function, & dz, is holo-
morphic in the entire outside of the profile, vanishing at infinity, that is
(%)oo = 0. More, the above equality (for the velocity field) generates
the representation

u=Vgcosa+U, v=Vgsina+V,

U and V playing the roles of some perturbation (corrective) velocities
due to the presence in the free-stream of the thin profile.

1 Obviously it is about the cross-section of the profile in the plane zQOy.
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Just the regularity of the function % in the whole outside of the
considered profile leads to the idea of determining of this function instead
of the corrective potential F(z). To reach this purpose we need first
to formulate the boundary conditions of the problem in terms of the
functions U and V.
Since the unit normal vector to the contour Cj, of equation g; (x)—y =

0,is n [g}-(m), —1], the slip-condition along the walls C; can be written

v-n-——ug;-(m)—v:O, j=12.

Taking into account the above relationship between (u,v) and (U, V) we
have finally the condition

V = ~Vsina +gj (2) (Voo cosa+U) on Cj, j=12,

such that the velocity field determination comes to the solving of a
Hilbert boundary value problem associated to the Laplace equation.

It is obvious that, additionally, we should observe the Joukovski con-
dition to ensure the boundness of the velocity at sharp trailing edge
(that is, at z = b).

So far we have not formulated, in the mathematical model associated
to the problem, any simplifying hypothesis. Now we assume that |U| is
small enough to be neglected in the presence of Vi cosa which agrees
with the fact that the considered profile is thin and the incidence itself
a is small. On the other hand we may assimilate the profile with the
segment AB of the real axis and designating by C' this segment, by
C} its side corresponding to y = +0 and by C] that corresponding to
y = —0, the above boundary (slip-) condition could be approximated by

V = —Vesina+ Vo cosa - gj (z) = 1 (z)  pe Ci, j=1L12

Thus we are led, in view of the determination of the harmonic function
V(z,y), to a Dirichlet problem for the entire plane Ozy with a cut along
the segment C’ of the real axis.

8.2 Solution Determination

The solving of a Dirichlet problem joined to the Laplace operator for
the whole plane with a cut along the segment AB of the real axis, to
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which the problem of the fluid flow past a profile is reduced, is a classical
issue in the literature'?.

. dF .
The solution of this problem, applied to the function ’LE— =V+iU
z
whose real part is known on the boundary AB, leads to

oL @ - ’ l2(€ +h )
UiV =g | g e VPG [ i e

where k is a real constant, P(z) = (2 — a) (z — b) while the chosen de-

termination for y/P(z) equals to +/P(x) at z = z > b.
Unfortunately, this bounded solution of the proposed Dirichlet prob-

lem does not satisfy yet the condition expressing the rest of fluid at far

dF
distances i.e., T = 0. To satisfy this condition too we will add
[e o]

. . L [z—0b :
to the previous solution a term of the type iAy/ ——, where A is a real
z—a

constant (not chosen yet) and the determination of the squared root is
the same as the previous one (i.e., it is positive at z = z > b)". Since
in the neighborhood of infinity we have

P(z)=z{1—a+b+_1_(...)},%:l(1 §+§E+ )

22 22 -¢& =z

. /Z~b— , a—b 1
A z—d_m{l-'_ 2z +;§()}’

we could write

z=b i [PLO+1L(O)
U—zV+z/\\/z~a— 5;/ E-Wduk

i PO+ uE) [, atbd 1 ~
27rz_/a [P(€)] (6 2 )d§+ 27r2/a (Lo (€) — 11 (&)] d¢

1 , a—b 1
+—Z§("')+'L/\{1+ 22 +’Z—2()}

12 A direct and elegant manner for solving this problem, even in the more general case of a
boundary formed by n distinct segments on Oz, can be found, starting from page 201, in the
book of C. Iacob [69].

Az+p

VP(2)

13Really, by adding to U — iV a term in the form 4 , where A, 4 € IR, the values of V

on AB will not be modified.
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Then, to ensure that at far distances (|z| — oo) the solution of our
problem tends to zero, it is sufficient to choose the real constants A and

k so that Y ) — 1, (&)
_ 208 T MAS) =0.
A= 5 /a 6] d¢ andk=0

Finally we have for the complex velocity the representation

dF Iy (f) z— I (¢ +l1 E—a
dz 27r/ z—¢ \lz—a/ \/b—gdé’

a formula given by L. 1. Sedov, but obtained via other technique [134].
On the other hand, as a complex potential f(z), at far field, has an
expansion under the form

r
f(z )—wooz+2—logz+ao+—+ +-

and implicitly the complex velocity is

df 1 aq 1

—_— =1

dz Poo omiz 22 z_3()’

we get for the circulation T, necessarily”, the value

b —a
Y RCGEAGI =

This value corresponds to that obtained by the Joukovski condition
(rule), the fluid velocity being, obviously, bounded at the sharp trailing
edge. Supported by it we could also calculate the general resultant of
the fluid pressures on the thin profile, namely we have"

b
. . —i —a
Ry — iR, = ipVe "’/ U2 (&) — 14 (8)] i_— 5d§“.
a
Details on the theory of a thin (wing) profile and even some extensions
such as the case of the thin airfoil with jet, can be found in the book
of C. Tacob [69]. The thin profile with jet in the presence of the ground
has been studied in [113].

4In virtue of the uniqueness of such a series development.
5By applying directly the Blasius—Chaplygin formulas.
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9. Unsteady Irrotational Flows Generated by the
Motion of a Body in an Inviscid
Incompressible Fluid

In what follows we will formulate the mathematical problem for deter-
mination of the fluid flow induced by a general displacement (motion) in
the fluid mass of a rigid body, this fluid flow being unsteady (in general).
Before considering separately either the 2-dimensional (plane) or the 3-
dimensional case, we remark that the problem of a uniform displacement
of a body with the velocity —v in a fluid at rest, is completely equiv-
alent with the problem of a uniform free-stream of velocity v, past the
same body but supposed fixed. This fact comes out at once, if one con-
siders also, besides the fixed system of axes, a mobile reference frame
rigidly linked to the body and we express the position vector (radius)
of the same point within these two systems, namely r = r'+rg; then, by
derivation, one deduces a similar relation between the velocity vectors
expressed in the two systems, that is v/ = v+ ve,. Hence, the rest state
at infinity versus the fixed system (v = 0), will be the state of a uniform
motion with the velocity v within the mobile system where the body
could be seen fixed (being rigidly linked to it).

9.1 The 2-Dimensional (Plane) Case

In general, when we deal with the case of unsteady plane flows we
need first to introduce a fixed system of axes OXY. With respect to
this system, at any instant £, the flow will be determined by its complex
potential F'(z,t), defined up to an additive function of time. The uniform
derivative of this complex potential will provide the components U and
V on the axes OX and OY.

The function F(Z,t) in the domain (D), where it is defined at any mo-
ment ¢, is either a uniform function (which means a holomorphic function
of Z) or the sum of a holomorphic function and some logarithmic terms,
the critical points of these last ones being interior to the connected com-
ponents { A, ) of the complement of (D). “A priori”, the coefficients

Ei;,:z—Dl of these logarithmic terms can depend on time but, under our
assumption, I'y are necessary constant. If this does not happen, the
circulation along a fluid contour encircling { A4 ), a contour which is
followed during the motion, will not be constant, in contradiction with
the Thompson theorem.

The determination of F should be done by using both the initial
conditions (a specific feature for the unsteady flows) and the boundary
conditions attached to the problem.
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In particular, along a wall the normal component of the relative veloc-
ity of the fluid (versus the wall) should vanish. Concerning the pressure,
it can be calculated by the Bernoulli theorem which, in this case, states
that

2 b
p+ -’%—pUm+p%—t =C (1),
where the “constant” C(t), depending on time, will be determined with
the initial conditions.

An important case is when there is only one mobile body (obstacle)
in the mass of the fluid, which allows a simple formulation of the initial
and boundary conditions (on the body surface). More precisely, by con-
sidering a mobile reference frame (system of coordinates) Axy, rigidly
linked to the obstacle (body), and by using the linear expression of Z as
function of z (with the coefficients depending on time, in fact a change
of variables, the flow being watched within the fixed frame OXY), we
get first f (z,t) = F (Z,t) which represents the complex potential of the
flow expressed in the variables z and {.

Hence for the components v and v of the velocity vector, we have
uU—1iv = % (here » and v are the components of the absolute fluid velocity
versus the fixed system OXY, these components being expressed in the
variables z and y).

Let us now denote by « (t) and 3 (¢) the components on Az and Ay
respectively, of the vector v 4, the velocity of the point A belonging to
the body, and by €2 (¢) the magnitude of the body rotation; the contour
(surface) of the obstacle being then defined by the time free parametric
equations z = z (s) , y = y (s), the velocity vp of a point P(s), belonging
to this contour, isvp = v4 + 2k x AP whose components are « — 2y,
B+ Qz.

Then, the normal component of the relative velocity at the point P,
belonging to the obstacle contour, is (u — a + Qy) % —(v—=p8-Qx) Z—f;’
such that the slip-condition can be written, for any fixed ¢, in the form

dy dy dz d (22 +4y?
ds ~ “ds ds st( 2 '

This last expression determines, to within an additive function of time,
the value of 9 along the contour, precisely

dp=a®y-BBz- 2 (@ +?).
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9.2 The Determination of the Fluid Flow Induced
by the Motion of an Obstacle in the Fluid.
The Case of the Circular Cylinder

Let us consider an obstacle, bounded by the contour (C), which is
moving in the fluid mass supposed at rest at infinity. We know that the
circulation along the contour (C) is necessarily constant; in the sequel,
we limit ourselves to the case when this constant is zero.

Our aim, using the above notation, is to determine at any instant ¢,
afunction f(z) holomorphic outside (C), whose derivative 3‘2— is zero at
far distances and whose imaginary part along (C), fulfils the condition

p=a®y-B0z- 22 @21y,

Suppose now, for sake of simplicity, that we solve first, the following
particular cases of the initially proposed problem, which are distinct by
the values characterizing the obstacle rototranslation:

Da=1,8=0,0=0;

Da=0,8=1,0=0

3)a=0,=0,0=1

In all these cases we may assume that the corresponding complex
potential f is independent of time (the attached domains having a fixed
in time shape); denote by f((2), £ (z), f®)(z), the complex potentials
which correspond to these three cases respectively.

It is obvious that, in general, a , 8 , £ being supposed arbitrary
continuous functions of time, the function

Ft)=a@® fD @) +8@) P @) +0@) P ()

represents a solution of the initial proposed problem'®. One could prove
that the flow thus determined is unique, according to the uniqueness of
the respective Dirichlet problem. Concerning the effective determination
of the functions f{(z), in the first two cases (when the displacement
of the obstacle is a uniform translation of unit velocity) the fluid flow
watched from Axy, can be identified with a steady flow of the type
already studied in the section devoted to the theory of profiles. The
third case is that of a uniform rotation. This case, as the previous two,
can be explicitly solved if we know the canonical conformal mapping of
the outside of (C) onto the exterior of a circular circumference.

16The solution of the respective Dirichlet problem being a linear functional of the boundary
data.
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Let us consider the simple case when (C) is a circular disk centered
at A. First we remark that, in this case, the function f (3)(2) is constant
and consequently we could eliminate the free of z term Q (t) f©® (2).
This result is obvious because the rotation of the disk with respect to its
center does not influence the ideal fluid flow. The case when @ = 1 and
B = 0 corresponds to the situation when (C) is performing a uniform
translation along the Oz axis; with respect to (C) (the system Axy),
the flow is steady with a velocity at infinity parallel to the Oz axis
and whose algebraic magnitude, versus the same axis, is —1; then the

complex potential associated to this relative flow is — (z + %—2—), R being

the radius of (C) and consequently the absolute flow watched from the
fixed system OXY, has as complex potential

which corresponds to a doublet located at the origin A of the plane
z, and whose axis is collinear with the velocity. From here, we could
deduce, at once, that in the case when the circular cylinder translates
with arbitrary components (a, 8), the corresponding complex potential
is

2

f(z) = —(a+1B)

An important generalization of the above situation is the situation
when the displacement of the obstacle in the fluid mass takes place in
the presence of an unlimited wall (as it is the case of a profile moving
in the proximity of the ground, that is the “ground effect” problem).
At the same time a great interest arises from the fluid flow induced
by a general rototranslation of a system of n arbitrary obstacles in the
mass of the fluid. We will come again to this problem after the next
section, by pointing out a new general method for approaching the plane
hydrodynamics problem [111].

> .

9.3 The 3-Dimensional Case

Consider now the three-dimensional flow induced by the motion of
a rigid spatial body (obstacle) in the mass of fluid at rest at far field,
i.e., it is about a generalization of the previous study made in the plane
case. Let then OX;X9X3 be the three-rectangular fixed system and the
velocity potential of the absolute fluid flow ® (X3, X2, X3,t) be, at any
moment, a harmonic function of X; whose gradient (velocity) is zero at
infinity. Introducing also the mobile system Azjzozs - rigidly linked to
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the obstacle — but watching the absolute flow (that is versus the fixed
system OX)X»X3) we set again

@ (z1, 22, 23,t) = @ (X1, X2, X3,1) .

To determine this function ¢, the velocity potential of the absolute
flow but expressed in the variables of the mobile system Azjzez; (a
function which is also harmonic and with zero gradient at infinity), we
should write the slip-condition on the surface (X) of the obstacle. Let
then v4 and © be the velocity of the point 4, belonging to the obstacle,
and, respectively, the obstacle rotation; these are known vectorial func-
tions of time. At a point P of the contour (%), if n is the unit outward
normal drawn to (X) at P, we have for the function ¢ the condition

U.nzgf=vp-n:(vA+QkxAP)-n,
n

i.e., the projection of the relative velocity U — v, on n is zero.

We denote now by Vi, V4, V3 the components of v4 on the Az, Az,
Azs axes and by Vy, Vs, Vg those of 2 on the same axes; let also ny,ng,n3
be the components of n while n4, ns, ng are those of AP x n on the same
axes of the reference frame Axzixz9x3. With this notation, the above
condition is

dyp 8
%' = z ’I’lp’Up.
p=1

While n, are geometric entities depending only on P from (X) and
not on t, v, are known functions of time, independent of P from ().
Let us admit that there are the functions ©®) (x1,z9,x3) harmonic

outside of (D) so that i‘d"—(:—) = n, on (T) and whose grad ¢®) vanish at
far distances. In fact the existence of these functions comes from the
solving of a Neumann problem for the exterior of the domain (D), with
the additional requirements that the first order partial derivative of ¢
tends to zero when the point P tends to infinity.

It is known that such Neumann problems, in quite general conditions,
admit one unique solution and only one [52].

Setting then

6
@ (z1, T2, z3,1) = Z vp (1) ©P) (z1, 29, 23),
p=1

this function ¢ satisfies all the conditions of the problem and defines the
searched velocity potential for fluid flow outside the obstacle. Once the
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function ¢ is determined, the pressure can be calculated by applying the
Bernoulli theorem.

94 General Method for Determining of the Fluid
Flow Induced by the Displacement of an
Arbitrary System of Profiles Embedded in
the Fluid in the Presence of an ‘“A Priori”’
Given Basic Flow

In what follows we intend to give a brief survey on a new method which
allows us the solving of any direct problem of plane hydrodynamics, i.e.,
to determine the fluid flow induced by a general displacement in the
inviscid fluid mass, of an arbitrary system of profiles, possibly in the
presence of unlimited walls, in the conditions of the pre-existence of an
already given “basic” flow which could present even a (finite) number of
singularities.

The great advantage of this method consists, not only in its general-
ity but also in the fact that it can be easily adapted to the numerical
calculations. A CVBM joined to this general method will be presented
later in this book.

From the mathematical point of view, by avoiding the conformal map-
ping technique, the method solves the proposed problem by using some
appropriate singular integral equations which, under our assumptions,
lead to a system of regular integral Fredholm equations. By imposing
some additional hypotheses on both the profiles and the “a priori” ex-
isting basic flow, one establishes also, together with the solving of the
involved algebraic system, the existence and uniqueness theorems for the
respective integral equations.

94.1 The Mathematical Considerations and the
Presentation of the Method in the Case of Only One
Profile Moving in an Unlimited Fluid

Let us consider'’, as being given, a plane potential inviscid fluid flow
called the basic flow. Let wp(z) be the complex velocity of this basic
fluid flow.

Let us now imagine the fluid flow induced by a general displacement
(roto-translation) of an arbitrary profile in the fluid mass. Of course this
flow will superpose on that basic fluid flow. In what follows, we want

17 For more details and even for the consideration of a general case of "n” profiles, one could
read the paper of T. Petrila [103]. An extension of this method to the case of profiles with
sharp trailing edge and of the influence of some unlimited walls on the flow can also be found
in the papers of T. Petrila [102], [101].
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to present a new method for determining the complex velocity wg(z)
of the fluid flow which results by the just mentioned superposition, a
method which could provide simple numerical algorithms for the whole
flow pattern.

Concerning the curve C, one admits that its parametrical equation
z = B (¢), defined for 9 € E; and referred to a fixed system of rectan-
gular Cartesian coordinates Oxy, fulfils the following conditions (I):

(Di) it is a 27 periodic bounded function in [0, 27);

(Dii) it is a Jordan positively oriented curve for ¥ = {0, 2;

(Diii) it is a twice continuously differentiable function in [0, 27), with

B(¢) # 0 and B(¢) < M, M being a finite constant.

We remark that the restrictions imposed on the profile (C) will lead
to the continuity of its curvature which implies the continuity of the
kernels of the involved Fredholm integral equations.

In regard to the given function wp(z), it belongs to a class (a) of
functions with the following properties:

(a) 1) they are holomorphic functions in the domain D; (the entire
plane), except at a finite number (q) of points zx placed at a finite
distance, and which represent the singular points for these functions;
let D be the domain D; from which one has taken out these singular
points;

(a) 2) they are continuous and bounded functions in Df \ {zk}k:m,
a domain which contains also the point at infinity; let

wp(00) = Izlligloo wp(2);

(a) 3) they are Holderian functions at the points of the curve (O)'8.

q

Let T'p be the circulation of the basic fluid flow which equals ) T,
that is equals the sum of the circulations of all the given singulariktiels of
the fluid flow.

Regarding the unknown function w(z), the complex velocity of the
resultant flow, it will be looked for in a class of functions (b) which
satisfies the requirements:

(b) 1) it is a holomorphic function in the domain D = D; \ {m},
except the same points {zk}kzm which are singular points of the same
nature as for wg(z) (i.e., the corresponding Laurent developments have
the same principal parts);

18 Suppose that, during the displacement of the profile, we have {intC} C D}, which means

the curves C do not intersect the points {zk}k=ﬁ which stay all the time outside of these
curves.
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(b) 2) it is a continuous and bounded function in D* = T)—f\{zk}k:m\

{z'ntC'}, which also contains the point of infinity where | l|im w(z) =
Z|—r00

w(oo) = wp(00);

(b) 3) it is a Holderian function at the points of the contour (C) where
it also satisfies the boundary condition:

There is a real function v(t) such that for any v € [0, 27), we have

B()

WBW@) = v() 2
k

‘+l+zm+zw[ﬁ YY) — 24,

where [ and m are given functions of time corresponding to the compo-
nents of the transport (translation) velocity at the point z4 € {intC}
while w is also a function of time defining the instantaneous rotation'

(b) 4) it satisfies the equality fc z)dz =T, where T is an “a priori”
given function.

Once all these mathematical assumptions have been introduced, the
(unknown) function w(z) is sought among the solutions of the following
singular integral equation with a Cauchy kernel, namely

w(e) = wa(e) - — [ L&)

2mi Jo 2z — €

dz, (2.12)

where £ € D*P.
In order to use the boundary (slip) condition on C, we now let & —
zo = P (¢*) € C and so we get

“y oy L LT w(B() B (%)
w(ﬁ (¢ )) = 2wp (ﬁ ("/) )) i Jq ﬂ(¢) ﬁ(¢*)

19The above representation for the complex velocity introduces a corrective complex potential

(corresponding to the presence of the profile (C)) in the form of a continuous distribution of

point vortices along the curve (C). We would get the same representation using Cauchy’s

formula for the function w(z) — wp(2z) and for the domain Dpg, the cross-section of D with

a disk centered at the point £ € D and of radius R. Setting then R — oo and taking into

account that | l,’i,n (w(z) — wp(z)) = 0, we are necessarily led to the following relation for
z o0

the desired function w(z)
w(z) 1 wpg(z)
w(e) =ws(@) - g [ 2z 4 - [ 220

As regards the last term, it doesn’t play an essential role because the solution of the Fredholm
integral equation (to which we are led), and which satisfies the condition with the “a priori”
given circulation, is independent of it.
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where § is the principal value (in the Cauchy sense) of the involved
integral. Denoting then v (1)) ’ﬁ (¢)l by v (¢) and

¥) {I —im —iw[B (¥) - za]}

by v(%)*°, we could write

1) 1T @)y

B milJo BW)—B{*)

* 2
= 2wg (B (¥")) ﬁ (’l/)* T f ﬁ ﬂ (¢*
that is
W1y 26 (y*)
T gm T s p
‘ 27 ] *
= 2wp (B (V") B (") — v (97) + 5 jg v () ﬁwz%d’”

Separating now the real parts of both sides, we obtain the following
integral equation of Fredholm type with continuous kernel, precisely

1 27
Y0 =g f v Kas (070 (2.13)

— Re {2up 8 (4)1 6 (#) - v (7)) +

27
g bW K (0 ) + T () Lo (0 9)] = £ (07,
where we have denoted
. . - 1C)

20 Withzthis notationzwe could also write
™

" 27
= [~y@)dy+ [v(¥)dy = [ v(¥)dyp +2wS, S being the area bounded by (C).
0 0 0
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We remark that according to the above hypotheses, the right side is a
Holderian function, which implies that the solutions of this equation (if
they exist), are also Holderian functions.

To study the existence of the solution of this integral equation we will
use the Fredholm alternative which is now applicable. According to this
alternative, the existence of the solution is related to the fulfilment of
the condition

2T
/ £ (%) dy* = 0.
0

Actually, the uniformity of the complex function wg(z) in the vicinity
of C leads to

27

[ Re{2un BB @ v} =0
0

meanwhile we also have

. 2 28(v*) T vw) F_28(7)
[ dy [Re%ﬂi [v@) md@b = {dd) Re 5% of s -FH Y

0 0

27
= of Rev (v) dip

which proves that the condition

is satisfied®'.
Consequently the equation (2.13) admits a set of solutions of the form
v = kv’ 47 where k is a real arbitrary constant, 4° is the unique non-zero

solution of the homogeneous equation which also satisfies the condition
27

J 4° (¥) dyp # Owhile 7 is a particular solution of the non-homogeneous
0

equation. It is easy to see that we can always choose one solution (that
is the corresponding k) such that

2 To interchange (commute) the integrals is possible due to the Bertrand—Poincaré formula.
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27

/v(w)d¢+2wS=F,

0

I" being “a priori” given.

The previous results can be concisely formulated in both mathemati-
cal and fluid dynamics language, i.e., we have:

THEOREM 2.3. For any curve C and complex function wg(z) belong-
ing to the class (I) and (a) respectively, and for any continuous system
of four real functions of time (l,m,w,T ), there is only one solution of
the above singular integral equation (2.12) which satisfies the conditions
(b).

Or, in hydrodynamical language,

For any profile C and a basic potential incompressible inviscid fluid

flow with complex velocity wg(z), satisfying the conditions (I) and (a)
respectively, and for any continuous displacement of this profile in the
mass of the fluid, there is only one resultant fluid flow with an “a priori”
given circulation which satisfies also the conditions (b).

10. Notions on the Steady Compressible
Barotropic Flows

Suppose now that the inviscid fluid is compressible but limiting our
interest to the case of the steady irrotational flow of a barotropic fluid.

Further, for sake of simplicity, we will neglect the external mass forces
f(M).

10.1 Immediate Consequences of the Bernoulli
Theorem

Our working hypotheses allow us to use the second Bernoulli theorem
which can be written here in a very simple form, namely h + 923 = hy,
hg being a constant in the whole mass of the fluid and g the velocity
modulus (magnitude). In this relation % is a function of p defined up to
an additive constant, by the differential equality pdh = dp. Introducing
now the equation of state under the form p = g(p) (the fluid being
compressible barotropic) we have also

dp 1ldg c?
dh = — = ——dp = —dp,

p pdp p
c being the speed of sound in the fluid and which is defined as ¢ = %ﬂ
So that it comes out that A will be an increasing function not only of

(see the above definition) but also of p.
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When hg is known the Bernoulli theorem allows, by using also the
equation of state, the calculation of h,p, p as functions of the velocity
modulus g.

Now we shall show that the functions h,p, p,c are always decreasing
functions with respect to g. For h it comes directly from the above
Bernoulli theorem; p and p being also increasing functions of # (as in-
verse functions of increasing ones), they will be decreasing functions of

q too. Finally, from c? = %% and from the hypotheses made on the

state equation p = g (p) (%% > 0 and %f;g > 0), it can deduce that ¢? is
non-decreasing with respect to p and hence the above stated property is
valid for ¢ too.

The Mach number denoted by M, is the ratio g/c; so that M is always
an increasing function of q.

A last entity which plays an important role in the study of these fluid
flows is the mass flux density pg. For this we have

pq g pdp q &

d(pq)zgi_q+d_pgl£_dq+dh_<1 q2>dq

We remark that pq is an increasing function of g (although p is decreasing
with respect to q) if M < 1, that is the flow is subsonic while it is a
decreasing function of ¢ if M > 1, that is the flow is supersonic.

In the current applications we will presume that the barotropic fluid is
an ideal gas in an adiabatic evolution so that p = kp”, k being a positive
constant and 4, the adiabatic index, being also a constant greater than
unity (for air v = 1.4). In this case we have ¢? = k7p7_1§ = 'y-g and,
correspondingly, since pdh = dp, we could take for h the assessment

2

v—1 v—1
hz/kw dp_kvp pP__¥ P_
P (Y=1Dp v-1p ~-1

Denoting by po, po,co the values taken by p, p,c at the point of zero
velocity (¢ = 0), we could also write
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relations which, together with the Bernoulli theorem already written at
2
the beginning of the section (h = hp — %), lead to

(2 = - (7—21)42 =c (1 _ {7—1lq2>

2cq

1

< £ = pPo (1 hd !L;iogﬁ) 7 (214)
.

| p=po(1-0555)77,

€0

i.e., to the formulas which give explicitly the dependences c(q),p (q)
and p(q). The functions (2.14) point out an important property which
is specific only to the compressible fluid flows: the constant ¢y being
known, it will be impossible for the fluid to overtake during its flow, a
certain maximum velocity g, given by

2

Such a restriction does not occur in the case of the incompressible
flow. When ¢ — g, the quantities p, p , ¢ defined by (2.14) tend to
zero and so the Mach number increases indefinitely. On the other hand,
if at a point of the flow domain the fluid velocity is equal to the sound
speed, that is ¢ = ¢ = c*, then, from the same (2.14), we get

0*22 263 :7—1(12,
y+1 y+1"™

The quantity ¢* will be a constant called the critical sound speed in
fluid. In virtue of the already established properties (with regard to the
Mach number, for instance), at a certain point the flow is subsonic or
supersonic as q is inferior or superior of ¢*.

We remark that if our compressible fluid is also perfect, in the sense
of the Clapeyron law acceptance together with the constancy of the
specific heats Cp and Cy, we will also have h = C,T . But then,
in the same conditions of an adiabatic process, we could deduce that

1
;% = (%—;) "' and the previous relations should be completed with
T =1 (1~ 253%)

0 26% '

It is important to understand in which context the incompressible fluid
flow could approximate the compressible fluid flows. If we denote by G
the inverse function of p = g(p), that is p = G(p), the incompressible case
corresponds to G = constant. As %% = ¢? is the inverse of %, we can
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see that an incompressible fluid shows up as a limit case of compressible
barotropic fluid when the sound speed is infinity large, i.e., the Mach
number is zero everywhere.

In the adiabatic case, in a domain where ¢ is sufficiently small to
support the development

- WLl _ 1 ¢
P-PO(l 22+84 -)—‘po_'ipoq (1—4_7)+a

with cg = ’ygg, we can see that, in the case when the velocity g is such

. 2 . .
that the quantity ch'f could be neglected versus the unity, we reobtain
0

the Bernoulli theorem for the incompressible fluid, which means p =
Po — %poq2, so that the compressibility effects don’t arise.

10.2 The Equation of Velocity Potential
(Steichen)

The envisaged flows being irrotational, the velocity vector v depends
on a velocity potential ® (z;,x3,2z3), i.e., there is the representation
v = grad® or v; = ®;. This function, as in the incompressible case,
will satisfy a partial differential equation which could be determined, for
instance, by introducing the above representation into the equation of
continuity. More precisely, the equation of continuity could be written
(the flow being steady) as

pvii+ pivi =0, (div(pv) = pdivv+gradp-v =0).

But, using the Bernoulli theorem already written in the previous sec-

tion (h+ 923 = hg) and the definitions of ¢? and h as well, we have in the
entire fluid mass

d
0 = dh + qdg = dp + pqdq = dp£ + pgdg = *dp + pgdg =0

so that

or

2
Egradp = —-pgmdg .
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Correspondingly, the equation of continuity, after a division by p and
a multiplication by ¢2, becomes

7
Adivv — v - grad (—2—> = 0.
The flow being irrotational we also have v; = ® ; and ¢* = (grad 3)? =
® ;® ;. so that we can write

4 — %@,i (Pr®p), = (o — @@ ) Dk =0,
which represents the looked for equation. This partial differential equa-
tion of second order is obviously nonlinear and contains only the deriva-
tives of ® since we have established that ¢? is a function of ¢, that is
of @ ;@ . In the case of the 2-dimensional flows, by setting z; = =,
z2 =y, (u1 = u, ug = v) we can see that ® (z,y) is the solution of the

equation
. u?\ 0°® 2uv 5%0 1 02) 0%® _0
( *2)5@‘?@% Z) a7 =
The type of this equation, called also the Steichen equation, depends
on the position of the Mach number versus the unity>> which reflects,
from the mathematical (analytical) point of view, the profound difference
that exists between the subsonic and supersonic flows. So, if g < ¢,
the subsonic flows, the equation is of elliptic type while if ¢ > ¢, the
supersonic flows, the equation is of hyperbolic type. In the case when
for certain regions we have g < ¢ and for others g > ¢, the equation is of
mixed type and the associated flow is called transonic; in this situation
the curves along which the transition from a type to another takes place,
that is the curves ¢ = ¢ = ¢y, are called the sonic lines.
As regards the asymptotic behaviour of ¢ at far distances, Finn and
Gilbarg have proved that, in the subsonic case [46]

By

r
LI (502 + B%?) + %arctg?

& =V, (Xcosa+Ysina) + yPy

where Vi, is the constant magnitude of the attack (free-stream) velocity
with the incidence « versus OX, 82 =1—- M2 >0,z = Ze™™® | %‘- is
the flow-rate and I the circulation.

22 The determinant of this equation being
(1-2%)(1-%) -2 =1-2pf o1 =12
ez ry ct c - e T :
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Before focussing on a simple application of this equation we remark
that the Steichen equation is equivalent with the system
_ 0% _pdp 0% pody
_3$~p3y ”“ay‘ p Ox
where 1 (z,y) is the stream function which can be directly introduced
through the continuity equation, a system which is not a Cauchy—Riemann
system any more but a nonlinear one, p being a function of ¢> = (grad <I>)2.
Obviously, in the incompressible case because p = pp, we reobtain the
Cauchy—Riemann system.
Finally, by expressing the Steichen equation through the stream func-
tion 9, we remark the invariance of the form of this equation, which

means
2\ 92 9 2 2\ 42
oW\ 2w o () vNIY
c2 ) 0?2 % 9zrdy c2 ) Oy?
where u and v are now considered as functions of ).

Concerning the boundar (2/ condition attached to these equations, they
come to v-n = ‘f =0="77 2 and so 1 = constant on the fixed obstacle
(wall) while, at far field, supposing that the velocity v is parallel to
the Oz axis, we have

o0y _, ()
ax o - Yooy 6y o - Y%
respectively

0 0
% (%) = Voo, (%) =0, (poo=p (UgO))

We remark that if we accept, instead of barotropy, an equation of
state under the form p = p (p, s) while the fluid flow is now rotationally
steady, the equation for the stream function becomes [153]

Obviously, in the irrotational (w = 0 ) and homentropic (s = constant)
case, we reobtain the above determined equation.

10.3 Prandtl-Meyer (Simple Wave) Flow

Consider now the plane fluid flows whose velocity potential is of the
form ® = ru (), the variables r and @ being the polar coordinates of



116  BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

a current point P of the plane. Let i be the unit vector of OP while
Jj is the unit vector which is obtained by rotating i with +7. Since
d® = udr + ru'df, we can write

v=grad®=u(0)i+u ()]

(r being the Lamé coefficient for the variable 8).

Then the velocity vector will remain equipolent with itself along any
half-straight line emanating from the origin ( 8 = const).

Conversely, it is proved that any irrotational flow with the above
property admits a Velocity potential of the form & = ru (6).%

Remarking that q = u? + u'? and therefore gradgz W Lou+u")j
(because grad ¢* = 1+ - 80 J while 2% BT is obviously zero) together with
divv = divgrad® = A<I> "+“ , the equation c®div v—v grad ( 2) =0

2

which is often written as A<I> - Wgrad‘b - gradg® = 0, becomes (c? —
u'?)(u + ") = 0.

If u + u” = 0, u will be a linear function of sin# and cos # while ® is
a linear function of x and y, the flow being thus uniform. By avoiding
this trivial solution, we keep necessarily u'2 = ¢? so that the modulus
of the normal component to OP of the velocity is equal with the local
speed of sound**. The flow will be thus supersonic.

Denoting by a the angle made by v to OP (0 < a < 7 ), then

sina = '1\17 = (g), M being the Mach number at P. The angle « is, by
definition, the Mach angle at the same point P.

Finally, let us write again the Bernoulli equation &+ 123 = hg. Admit-
ting that the fluid flow is barotropic in adiabatic evolution, this becomes

q2 c? _ u2 4 u'2 u'? _ c%

3+7—1 -2 +7—1 T y-1
which is a differential equation for determining of u(#). To solve this
equation we shall introduce the parametric representations

’U.—/H 'C COS and ’——\’ in
u Cp S1
1 0 X 1 0 X

which finally lead to a representation of the solution in the form

u(O) =gmCOS [k (9 ~0m),

23 The expreeqlon for the Laplacian in polar coordinates, being

_ 8% 1 10
Ae=5F o+ BoE 4152

24 The curves with this property are also called Mach lines.
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gm being the maximum of the fluid velocity while u = ,/%.

A flow of this type is called a simple wave or Prandtl-Meyer flow; it
occurs, for example, in the conditions of a supersonic flow past a sharp
convex corner (dihedron) made by plane walls (see Figure 2.9). The

A
y 4 Mo
— — |
No
\éa —-—
— ———
I 777777777,
X

Figure 2.9. The simple wave flow past a convex dihedron

involved flow is uniform in the region delimitated by the first horizontal
wall and the Mach line OMj of equation @ = @,>°. where oy, is the
Mach angle corresponding to v.; along this Mach line a “matching”
with a simple wave flow takes place, this simple wave flow acting in
the “fan” (OMjy, ONg).® Once the “expansion” is achieved, the flow
becomes again uniform and parallel with the second wall OFE.

For details one can consult [69].

104 Quasi-Uniform Steady Plane Flows

The examples envisaged in the previous sections have shown that the
complete solving of many problems arising from fluid dynamics seems
to be extremely difficult even in the case of an inviscid fluid. The main
difficulty comes from the nonlinear character of the appropriate math-
ematical problem, which is obvious in the case of a compressible flow.

25The existence of such a line is supported by the fact that the perturbation induced by the
dihedron vertex could not be transmited upstream (the sound speed coo being less than the
velocity ¥eo which is downstream oriented) and so it will propagate just along OMp.

26 Along ONp, the radius limiting the fan-expansion, the velocity either takes its maximum
value gm or is parallel with the wall OE, the flow becoming uniform. In the case of a
“cuspidal” dihedron (i.e. with an upstream oriented concavity) instead of a fan-expansion we
will have a “compression”, i.e. a supersonic flow with a shock wave (a velocity discontinuities
line) located in the vecinity of the corresponding half-straight line ONp.



118  BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

If the flow is incompressible and irrotational, the equations are linear
while the boundary conditions could become, sometimes, nonlinear such
that the “superposition” principle does not apply any more. Finally,
even if the problem is entirely linear, it is very often impossible to get
an explicit analytical solution.

Due to all these difficulties, sometimes it is advisable to reasonably
involve “deep” schemas which allow a better approach to such problems.
In this view the linearizing method behaves like a very useful study tool
which allows us, by simplifying the problem formulation, to get explicit
(approximate) solutions in many and various situations. Naturally, we
should always analyze the validity of the obtained results.

10.5 General Formulation of the Linearized
Theory

Suppose that as an “unperturbed” flow, a uniform flow of velocity
Voo (Uso, 0) , parallel to the Oz axis is considered. In this flow, the mass
density and the pressure are denoted by pso and po respectively and,
if the flow is compressible, we denote by cx the sound speed (which
is the same at any point of the flow domain). To simplify the writing
of the below formulas, one could choose U, as a velocity unit and in
this case ¢ is the inverse of the Mach number which is simply denoted
by M. Suppose now that this given uniform flow (stream) is perturbed
by introducing of some disturbance factors®’, thus having for velocity,
pressure and mass density respectively, the representations of the type
U + nu, 00, po + 1P, poc + 1p, defining entities which characterize the
new (perturbed) fluid flow. Here 7 is a small parameter whose mechan-
ical significance should be made precise in every particular problem.

It easy to see that the determination of this new flow comes to pre-
cise these functions u, v, p, p. But the equations connecting the unknown
functions u(z,y), v(z,y), p(z,y), p(z,y) could be obtained by pointing
out that the total derivative of a quantity, which is zero in the unper-
turbed flow, comes now to the operator Um%ZS.

So that the equation of continuity and the Euler equations become,
keeping only the main terms (of first order) in n (which agrees with the
linearizing principles)

27 Such a perturbation could occur when, for instance, the uniform stream meets a profile,
etc.

28 Really, from % = 'aa_t + v - grad , by using both the flow steadiness and the expression
linearizing, we get this result.
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a
Uoo—p+Poo (a‘—u‘*‘?}i) =0,

0z Jdxr Oy
ou 1 0p ov  Op
©5 s 0 Ungy T, =0

assuming obviously that the mass (external) forces f can be neglected™.
If the fluid is incompressible we have p = ps and the above three

equations form a linear system in the three unknown functions u, v, p. If

the fluid is barotropic compressible, from the state equation we have

Poo + 1P = g (pPoo +10) ,

which means, keeping only the principal (main) terms in 7,

_ (% _ 2
p= (dp)oop—‘coopy

an equation which completes the above system of three equations.

In what follows we will focus on the case when the perturbation of the
uniform flowis due to the presence, in this uniform stream, of an obstacle
(profile). Before analyzing the boundary conditions on the obstacle we
will make precise the conditions joined to the fluid behaviour at infinity.

10.6 Far Field (Infinity) Conditions

Obviously, the entities u, v, p, p which characterize the perturbed flow
will tend to zero upstream (in an exact formulation, it is possible to find
an abscissa zg such that for z < g these entities are arbitrarily small).
This condition allows us to simplify the above written system. Thus,
the second equation

Ju Op
pooUoob"‘x‘ + 32 = 0,

shows that p + poUsou is a function only of y; but from the imposed
condition, this function is necessarily zero because it tends to zero when
z — —oo and therefore

P = ~PoolUccll.

If this value of p is introduced in the third equation of the system,
that is in

2 Here, the obvious equalities é%— =0 %‘f =0; Q—gf& = 0 have been used.
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ov _B_p__

PoclUoog+ 5 =0,

we reobtain the irrotational feature of the flow (—g—g — g—% = 0) , so that

there is a potential ¢ (z,y) of the perturbation velocity, i.e., the compo-
nents of the (perturbation) velocity admit the representation

o _e
Cox’ T By’

Inprinciple, ¢ is precise to within an additive constant; we could fix
T

this constant by defining ¢ as ¢ (z,y) = [ u(&,y)dé*® which implies
—o0
that ¢ — 0 when £ — —oo (y being fixed).

We shall also admit that v(z,y) could be expressed by the derivative of
the above integral, the commutation of the derivative and of the integral
being ensured.

At last, the first equation of the system (that of continuity), taking
into account all we have already obtained, leads to the following partial
differential equation for the function ¢!

U

o D%
1-M})—< 4+ -~ =0,
(1-m%) 5+ 2
M being the Mach number of the unperturbed flow. Conversely, any
solution of this equation defines through the above formulas, a perturbed

flow.

10.7 The Slip-Condition on the Obstacle

Let there be, in the fluid mass, an unbounded (of infinite span) cylin-
drical obstacle whose right section in the plane Oxy is (X). To legitimise
the linearization, the tangent drawn at any point of the contour of this
section (¥) must make a very small angle to the Ox axis, the velocity
vector being oriented just along this tangent. More precisely, we suppose
that the section (X) is delimitated by a closed contour, infinitely close
to the segment —% <z < % of the Ox axis and which is defined by the
equations

y=nF"(z),y=nF" (z), (F'(z)>F (),

%1t is assumed that the written integral exists (it has “a sense”); it is a moment hypothesis
which should be checked once the effective solution is obtained.

31 Taking into account that p = &= —P—CZ#E.
oo oo
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where F* and F~ are some given functions defined on —% S T
sufficiently smooth on this interval and taking equal values at the
of it*?

Once these considerations are made, always within the linearized the-
ory, the unknown functions of the problem (of the “perturbed” flow)
will be supposed defined in the whole plane (z,y) except the cut y =0
) _’% <z < %

But then, the slip-condition along the profile surface, expressed on
the two “sides” of the cut, could be written as

l
g“jv
ends

v(z,+0) = U006+ (z),v(z,—0) = Ud™ (2),

where 6% (z) and 87 (z) are the derivatives of F*and F~ with respect
to z¥.

10.8 The Similitude of the Linearized Flows.
The Glauert—Prandtl Rule
Suppose, for instance, that we deal with the subsonic flows.
By setting 8% = 1 — M2, ¢ (x,y) will be the solution of the elliptic
equation

ﬂ2 a2<p 32

T oy

Let us now consider a change of variables and functions, defined by

Z=uz,y =Py, ¢(Z,§) = By (z,y). The function @ (Z,y) is a harmonic
function in the variable Z and ¥, which means

= 0.

Further, we also have

o0

o (z,+0) = 5 (z,+0) = %(e (z,4+0) = v (z,+0)

and, analogously,

o (%, —-0) = v (z, -0).

321t says (in aerodynamics) that y = nF* defines the upperside of the profile while y = nF~
defines its lowerside.

3 Really the slip-condition v - n = 0 expressed, for instance, on the upperside will be written
as (Uso + nu) né+ (z) — nv = 0 what leads, by linearizing, to the above result.
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Thus, if the potential ¢ (z,y) defines a “neighboring” flow versus an-
other one of Mach number M, i.e., the function ¢ satisfying the equation
of the perturbed flow together with the conditions at far field and the slip
condition along the contour of the given profile (X£), then the function
@ (z,7) will define a perturbed flow governed by the harmonic equation
of the incompressible fluid (M = 0), with the same conditions at far
distances and slip-condition along the same contour of the profile (¥).

In this respect the study of a linear subsonic flow could be always
reduced to that of an attached incompressible fluid flow. This result
is of great practical importance, the study being essentially simplified
by reducing the compressible problem to an incompressible one. By
collecting all the formulas which allow the complete determination of the
compressible case using the data of the attached incompressible problem,
we get the so-called Glauert—Prandtl rule (method).

More details on this parallelism of the mentioned flows can be found,
for example, in the book of C. Iacob [69].

Obviously, in the conditions of a supersonic flow with M > 1, if
again % = M? — 1, we will obtain the equations 82®; — ®,, = 0 or
B4 — yy = 0, both of them being hyperbolic. A general solution of
these equations is

b =F; (z— By)+ Fa(z+ By),

with Fj and Fj sufficiently smooth arbitrary functions. The curve £+ =
z + By = constant, the characteristics of our hyperbolic equations (and
which are, generally, weak discontinuities curves) are the Mach lines (or
waves).

We can see that the inclination of these curves is given by g = i% =

+—71—, that is 6 = +arcsin (&) and therefore 6 is the Mach angle.

M2-1)3

(Unde)r these circumstances, the propagation velocity v, joined to the
presence of an obstacle in the fluid mass, satisfies the same equation
such that we have v/ = grad (F1 + F;) while the total velocity is given
by v = V+v' (Vs being the attack velocity).

A simple calculation points out that the projections on the Mach lines
of this total velocity, are constant in the sense that along a Mach line
from a family (of Mach lines), the projection of the velocity on the Mach
lines from another family remains constant.

The linearization of the supersonic flow equations is known as the
method of J. Ackeret, the equivalent of the Glauert—Prandtl method for
the subsonic flows [69].
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11. Mach Lines. Weak Discontinuity Surfaces

Let us reconsider the Steichen equation to which we attach a Cauchy
condition. In the hydrodynamical language this Cauchy problem applies
to the determination of the fluid flow in the proximity of a given ana-
lytical arc C, of equation z = z (a), y = y (@), a € [ap, 3], by knowing
a distribution of velocity along this arc, given by u = u (@), v = v ().

Obviously once u = %f and v = %‘ﬁ on the arc C have been deter-
mined, the velocity potential will be also known on this arc. But for the
effective determination of ¢ (the flow) in a vicinity of the arc C (which
is synonymous with the possibility to envisage a Taylor development for
@) it is important that both the arc C and the data on it satisfy some
regularity requirements.

It is shown [69] that the Steichen equation being of Monge type, the
Cauchy problem is not possible for those arcs and data which satisfy the
differential relation

2

2
(1 - 1;—2) dy? + %dmdy + (1 — Z—2> dz? = 0.

If A (u,v) and Ag (u,v) are the solutions of the associated algebraic
equation in A, which means of the equation (c? — u2) A2 + 2uvA + ¢% —
v? = 0 whose roots are real only if v2 > ¢ (supersonic flows), then the

characteristic strips are given by [69]

do = udz + vdy, dy = udz + vdy,
du+ Az (u,v)dv =0, du+ A1 (u,v)dv =0,
dy — M\ (u,v)dz =0, dy— X2 (u,v)dz =0.

By integrating the equations of the second row we are led to the prime
integrals A{u,v) = C); and B(u,v) = C; which being basically some
partial differential equations of first order, could provide a particular
class of solutions (integral surfaces) for the Steichen equation.

If one considers the projection of the characteristic strip (correspond-
ing to a given solution ¢) on the flow plane Oxy, the respective curves
are (called) the characteristics. One of the family of characteristics, cor-
responding to the above particular solutions, is made by straight lines
along which v(u,v) will be constant. But these are the simple wave
flows already envisaged in the case of the expansion around a dihedron
(Prandtl-Meyer flows), the flows for which the bijectivity between the
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physical plane (z,y) and the hodograph plane (u,v) is absent, which
means gg::z% =0, and which will not be considered in what follows™.

Generally, if ¢ is an arbitrary solution of the Steichen equation, the
projections of the characteristic strips on the plane Ozy will be defined
by the last equation of the two groups or, obviously, by the unique
equation (02 - u2) dy? + 2uvdzdy + (02 - v2) dz? = 0 (where u = %f
and v = %‘5). These projections — the characteristic curves (lines) — are
real only if v > ¢ (or v > ¢*) and they are called Mach lines. From the
theory of differential equations it is known that the locus of the cuspidal
(“returning”) points of the Mach lines is the sonic line v = c.

Therefore through every point of the supersonic flow region ¢* < v <
gmax, a Mach line from each family is passing and along it the fluid
velocity satisfies the equations from the second row. At any point of
a Mach line the projections of the fluid particle velocity on the normal
direction are equal to the local speed of sound. Really, from

(02 - uz) dy? + 2uvdzdy + (02 - v2) dz? =0,

ifds = \/dz? + dy? is the elemental arc along a Mach line we also have
that ¢? = (’u% - “%)2 = (v-m)% This result being valid for both
characteristics at a certain point, leads to the fact that the direction
of the velocity vector (that is the tangent drawn to the streamline at a
point) is the bisecting line of the angle made by the Mach lines at that
point, an angle which is the double of the Mach angle o = Arcsin ¢.

Any surface (curve) of weak discontinuity (that is across it there are no
discontinuities for the velocity field but there are discontinuities for the
first order derivatives of the velocity components) is compulsory among
the characteristic surfaces (curves), an expected result according to the
unsolvability of the Cauchy problem in this case.

Consider now a linear or quasilinear system of first order partial dif-
ferential equations, written under the form A'Ug+ (A -V)U +B =0,

where A = (Al,AQ,...,A"), VvV = ((9671""’292—”>’ the matrix of un-
knowns being U, the matrix (column) of the “free” terms is B while the

34 Considering a hyperbolic system of the type Ut + A(U)U,z = 0 and defining a solution
of the simple wave type as a solution of the form U(r,t) = U[h(r,t)] - which means the
dependence on the Euclidian variables is made by the same function h — Friedrichs has
shown, in a famous theorem, that within the class of continuous solutions only a solution of
the simple wave type could be joined (it is adjacent) to a constant state (corresponding to
the rest or to a uniform flow).
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matrices of the system are AF,

uy b a’fl .o a’fn

Uz by ok, . . . db,
U= , B= , AF = )

Un bn ale o a‘fm

Obviously, either the coefficients afj or the terms b; could depend
on the independent variables zg = ¢,%1,...,z, (a linear system) plus,
possibly, on the unknowns u1, ug, ...., 4 (a quasilinear system). We will
see immediately that the compressible inviscid fluid (Euler) system is of
the above form.

Let us now consider a Cauchy condition associated to the above writ-
ten system, a condition which implies the specification of the solution
U on a hypersurface ¥ of equation

Go(zo, Z1,.--,2Zpn) =0,

that is Uly, = F, F being a given column vector. Similarly, as in the
case of the Steichen equation, the solvability of this problem is connected
with the possibility of the evaluation of the higher order derivatives of
U on the surface ¥ (that is the possibility of a Taylorian expansion)

what is not possible if det (afj %%CQ) = 0 [91], a relation which defines

m
the characteristic hypersurfaces. In other terms, if Pj; = ) afjak and
k=0

P = det (P;;), then P being also a homogeneous polynomial function of
n degrees in oy, @1, ... , Oy, if this is zero only when at ap =y = -+ - =
am, = 0,the system will be elliptic (it does not have real characteristic
hypersurfaces) or if the equation P = 0 (in «g) has n real roots (for any
given values for oy, ... , ap) the system will be completely hyperbolic.

Finally, ahypersurface ¥ is a weak discontinuity surface (when passing
across it u; are continuous while at least one of its derivatives u; has
a discontinuity of first kind), if and only if P = det (P;;) = 0 [33]. As
this represents also the equation of characteristic hypersurfaces we get
the above mentioned result.

The theory of weak discontinuity surfaces is very important in fluid
mechanics since the perturbations propagate along the discontinuity sur-
faces. If we accept, for instance, that a uniform stream of velocity v is
perturbed at a fixed point O, then this perturbation will be transported
by the fluid and then it propagates with the sound speed ¢ following a
direction n. In the subsonic case, v < ¢, this perturbation may reach any
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point from upstream or downstream, there not being real characteris-
tics. In the case v > ¢, the perturbation propagates in a region which is
strictly delimitated by the real characteristics (Mach lines) which pass
through O, thus delimitating a cone with the vertex at O and whose
span is the double of the Mach angle. Outside this cone there is no
perturbation interference linked to the fixed point O.

If we recall the Euler equations, in an adiabatic regime and in the
absence of the mass forces, then considering as independent thermody-
namical variables p and s, from p = p(p, s) we have

o _owdp w00 oo
dr; Opdz; Osdz; ¢ dz;  0sdz;’

such that the Euler equations become

dp Op ov;
o " "ow Pom

o2 (a2 B0,

ot vl@xi op ¢ O0z;  0s Oz
0s Jds

Considering again the matrices Aj, A2, A3 and the vector of the un-
known functions U by

’021 P 0 0 0 7 U9 0 p 0 0
c 10
Al ) m 0 0 EE% \ ?2 v2 0 0 1%2
=10 0 v, 0 O , A®= S 0 v 0 551,
0 0 0 =un 0 0 0 0 v O
| 0 0 0 0 v | 0 0 0 0
Fvg 0 0 p 0 7 p
0 v 0 O 0 vy
A3 = 0 0 w3 O 0 , U= vy |,
% 0 0 V3 %gg V3
( 0 0 0 0 vy | s

the above system can be rewritten as U+ (A - V) U = 0, where A =
(A, A%, A3). Following the result from the above general frame, the
characteristic equation G (z1, 2,3 t) = 0 will be given by P = 0, where
w=G4 a; =G, (a=(a,aza3)) while P is
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[ d o op ayp 0 1
ws d 0 o wud
= 0272 7 Bs
xS 0 0 4 wk
0 o0 0 0 d |

and where d = w + ajv; + asve + azvs. Developing the determinant
using the last row, we have that

P = (w+av)® [(w +av)i- c2a2] =0

which, for any a;, az, a3, has all the roots (in w) real and so the system
of the compressible inviscid fluid equations, in adiabatic evolution, is of
hyperbolic type.

As regards the possibly discontinuity surfaces, which are among the

characteristic surfaces, by denoting the propagation velocity of such a

surface with p (p = —%) from the above equation we get

-p® (p* — %) =0,
that is p = 0 or p = +c. Meanwhile the surface of velocity p = 0 (the
entropy wave) is a material surface (which is moving together with the
fluid) and along which an entropy discontinuity could occur while the
pressure is constant, the surfaces which propagate with the sound speed
(£c) (called the sound waves) will be the loci for pressure discontinuities,
the entropy remaining there constant.

12. Direct and Hodograph Methods for the
Study of the Compressible Inviscid
Fluid Equations
In what follows we will give a brief overview of some of the methods for

approaching the “generalized” Cauchy—Riemann system for the steady
irrotational plane flows, i.e., the system

Op _mdb.  Op _ p ¥
oz pdy OBy  p oz’
with the classical slip-condition on the surface of the embedded bodies
together with the condition at infinity (in the case of the unbounded
domains).
The above system is obviously nonlinear since

() ()
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Concerning the existence of the solution of this system, a system equiv-
alent with the Steichen equation, C. Morawetz and A. Busemann have
proved that, at least in the transonic case, it is ensured provided that
one gives up the usual continuity requirements.

Now we will briefly present either a direct method or some hodograph
methods to approach the above system. For sake of simplicity we will
deal with the subsonic (elliptic) case when any discontinuity surface is
avoided.

12.1 A Direct Method [115]

The direct method we intend to present briefly in the sequel is im-
portant by its possibilities to be used for approaching other nonlinear
systems too.

Suppose, from the beginning, that the functions ¢ and % are in the
form ¢ = f(u) and ¢ = g(v), where u and v represent, respectively,
the velocity potential and the stream function of the same flow but
considered incompressible. Using the Cauchy—Riemann system for
and v, we will get

Jfu Ju
= = Py = —=—
Gv Yoy g
where % =& [f3 (gmdu)z] ,

Now we will get, using this direct method, the classical solutions of
the source and of the (point) vortex in the compressible case.

By imposing that ¢ = g(8) = 5=6 + ¢’ (c and ¢’ are constant), we
would try to determine a ¢ = f(Inr) such that the above system is
fulfilled. Simple calculations show that this ¢ should be of the form

1 2
p=5[v (5):}d,u + ¢" (¢" constant), that is v? = @2 + <p§, = [—f—(—lrn——r)]

P

while p = ﬂ% depends on this v%. But this solution is just the com-
pressible source. Analogously, if i = f(0) = =60 + " is given, then the
corresponding solution v of the obvious structure ¢ = g (ln %), will be

. _ d 3 — (2
necessarily ¢ = o2 [ & + ¢/ andp—b,—(fg—g-—p(v )-

The last triplet (¢, 1, p) corresponds to the compressible point vortex.

35 With respect to the explicit form for & it is, for instance,

®[] = {ﬁﬁ}’ Ki,K2, a > 0 (for adiabatic flows) or &[] = /1+ 4[], A > 0
(Chaplygin fluid), etc. Obviously this functional dependence should fulfil the restrictions
implied by its significance, namely ® > 0, ® (v = 0) =1, :—5— >0, ® < ®(c*?) (c* being the
critical velocity).
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Let us now extend the above procedure by considering either the pair
of functions A(z,y), B(z,y) : D C R? - R, A, B € C? (Dy), %(é”f)) #
0 or the nonholomorphic function g(z) = A(z,y)+iB(z,y), g : D1 = Ds.
If we introduce also the function F : Dy —+C, F = U(A, B) +iV (A, B),
a holomorphic function in Dy, it is obvious that the composed function
F(g(2)) = f(z) = p(z,y) + i(z,y) will be nonholomorphic in Dj.
So we have in our hands a pair of complex functions g and F with
the above mentioned properties, which should be formulated such that
their composition satisfies the focussed system and, more, the functional
dependence p = p (vz) is ensured. Basically all these lead, through the
Cauchy—Riemann system which is satisfied by U and V, to the fulfilment
of the condition

Il g s\t (g2ip2_s¥u)=
A(Az+Bz 5%)_A(Ay+3y i) =,

where A = DD(’:’S and § = AzAy + BBy, each side of this equality

depending on @2 + ©2.

In the particular case of a subsonic stream past a circular obsta-
cle with a velocity at far field (v, 0), by accepting the adiabatic law
p = (1 —kv?)™ and choosing F(A,B) = ~arctg% + ilnVA? + B2,
the above system leads, by an approximate solving, to a solution which
has been already established through the Imai—Lamla method but which
now satisfies exactly the boundary conditions [115].

12.2 Chaplygin Hodograph Method.
Molenbroek—Chaplygin equation

The hodograph (plane) method, as in the incompressible case, leads us
to a study of the flow in the “hodograph” plane (u,v) and, consequently,
the independent variables  and y are replaced by « and v or V and € (the
velocity polar coordinates) while ¢ and 1 should be expressed with these
new coordinates®®. It is also possible to try, conversely, to express z,y, V
and 6 as functions of ¢ and 1, considered now independent variables,
which has the advantage of knowing, in general, the variation domain
for the point (¢,) of the plane Oty while the corresponding domain
from the hodograph plane is not known yet.

We remark that if we make the change of variable defined by v = %f

and v = %55 together with the change of function ® = uzx + vy — ¢,

36 Details on the “hodograph” plane techniques can be found, for instance, in [69].
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the Steichen equation will transform into the following linear partial
differential equation (Prandtl equation)

v?\ 6%® w %@ u?\ 9%®

c¢?) Ou c? Qudv )
to which one could apply the classical methods of integration (Riemann).
The inconvenience of such change of variable and function consists in
the lack of a simple mechanical interpretation for ®, while ¢ and 3 have
several interpretations.

If we keep only the passage to the hodograph plane, by setting z =
z+1iy we havedz = dz +4idy and dy = udz+vdy, dyp = —;%vdaH— ;%udy
and from here, by eliminating dx and dy and replacing u© = V cos# and
v = Vsinf, we get

o0 20
dz = —|dp+i—dy).
14 ( R 1/1)
Imposing that the right side should be a total (exact) differential and
separating then the real and imaginary parts, we obtain the system

W _ _p OV %_V(@_)al
Ao pV Y oV /)y Op

which, by “inversion”, could be written (Chaplygin)

Bp _ poV O 6_w:V<p_o)‘ W (i)
00 p 0V’ oV pvV )y, 80— pV c2 ) 00’

If we manage to solve this system, we will have ¢ (v,8) and 1 (v,0),
defined in a domain of the hodograph plane contained in the disk u? +
v? = V2,.%. From the “connection” formulas dz = % (dcp + z'Edez,l)),
by integrating, we can obtain z(V,6) and y(V,#8), that is z(u,v) and
y(u,v), and therefore, by inversion (the condition %% # 0 making

this possible), one finally gets u(z,y) and v(z,y).

Suppose now that, from the last two equations of the system, we
have eliminated ¢, thus obtaining the so-called Molenbroek—Chaplygin
equation

3 We denote the magnitude of the maximum velocity ¢m = Vmax while the critical velocity

=V
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3 ( pov Oy V2 8%y
3V(p5V>+pV<1 =)o =0

an equation which could be rewritten, in an equivalent form

2 0% 0% O
V(')V2 (1 )892+V(1+ >8V 0.

The last form is a linear elliptic or hyperbolic equation, according to
V < cor V > ¢, and whose characteristics in the hodograph plane
will not depend on ¢ (V,6) or ¥ (V,0). These characteristics called
also hodograph characteristics, will be defined by the equation df? +
& (1-%)av? =0

It is shown that these hodograph characteristics, in fact the char-
acteristics of the Prandtl equation in the coordinates V and 6, have
perpendicular directions (tangents) vis-a-vis the Mach lines of the other
family from the physical plane.

Before ending this last section of Chapter 2, we intend to present,
briefly, other useful forms of the Chaplygin system or of the Molenbroek—
Chaplygin equation.

If, for instance, in the plane of the variable V, we introduce r =
S/ ——Vl{,Mde, we obtain ;956"7 = k(r )%‘f, 5? = —k(r )—19/1 with
k(ry = %0\/1 — M? and the Molenbroek—Chaplygin equation becomes
%i—“g+%%?+(%lnr)%§=0.

1%
If in the place of V, we consider now the variable 0 = — [ £ o dVV , P

being a function of V, then the Molenbroek—Chaplygin equz‘l/tlon gives
us %@ + k(a)%%% =0 with k(o) = (1 — M?) gé, which is used specially
in the transonic flows. The case k(o) = o corresponds to the Tricomi
equation.

Finally, in the adiabatic case, by introducmg the nondlmensmnal vari-
able 7 and the constant 8 so that 7 = 1——”7 = V,% and 8 = TT’ to the
interval of variation 0 < V < Vijax corresponds the interval 0 < 7 <1

*

while to the critical value V* of the velocity corresponds 7* = ﬁ

We also have p = po (1= 7)°, p = po (1 —7)"*', @ = ¢} (1-7) and
the Chaplygin system and the Molenbroek—Chaplygin equation become
respectively,

dp _ 2 Oy Bp_ 1-(2B+1)7T0Y
80  (1-rfor’ or 27 (1 — 7)8+! 80’

and
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o \(i-npor) e -npow

0 2r Oy 1-(28+1)70%
a-npor) "

Using the method of separating variables, Chaplygin has succeeded in
obtaining the exact general solution for the above equations by means
of the hypergeometric series [69].



Chapter 3

VISCOUS INCOMPRESSIBLE FLUID
DYNAMICS

In what follows we will give a short survey on some features related
to the viscous incompressible fluid flows and their equations (Navier—
Stokes), all considered within the context of building of some numerical
algorithms to approach these flows. Thus, after a brief overview of some
uniqueness and existence results, we will focus on different formulations
used for Navier—Stokes equations. A special role will be played by the
so-called integral conditions for the rotation which replaces the non-
existence of a “classical” boundary condition.

Aspects connected with the nondimensionalization of the involved
equations, followed by some approximate models in the case of small,
respectively great, Reynolds number, are then envisaged. From the large
variety of approaches to the important concept of boundary layer, we
will chose the probabilistic way which, apart from a higher rigor, is a
source of efficient numerical algorithms.

Everywhere in this chapter the laminar character of the flow is ac-
cepted.

1. The Equation of Vorticity (Rotation) and the
Circulation Variation

We have seen that for a viscous incompressible fluid, the stress tensor
is given by the constitutive law [T] = —p(I]+ 2u[D], that is [o] = 2u[D].

We suppose, in the sequel, that the viscosity coefficient y is constant
(by accepting the Stokes hypothesis 3A + 2 = 0, A should be constant
as well). Since
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2udiv[D] = p [div (gradv) + div (grad V)T]

= p[div (gradv) + grad (divv)] = uV?v = —purotw,

by introducing also the kinematic viscosity coefficient v = %, the equa-
tions which govern the fluid flow (more precisely, the equations of linear
momentum) could be rewritten, as we have previously seen, in one of
the following equivalent forms:

0 1
Y+ div (Ve v) = ——gradp +vViv +f,
ot 0
or
0
EAAN (v-grad)v = —lgradp + Vv 4+ f,
ot 0
or
1
QX + grad (—v2> 4+ wXxv = ——lgradp + Vv +f.
ot 2 P

These equations of mixed type, are known also as the Navier—Stokes
equations. Obviously, in order to define precisely the whole pattern of
the flow, they should be completed by the equation of continuity and
the equation of energy together with some initial and boundary (adhe-
rence or no-slip conditions) plus, eventually (in the case of unbounded
domains), the behaviour conditions at far field (infinity).

In what follows we will search new formulations for the Navier—Stokes
system or even different “approximations” for it in order to solve some
practical problems.

Before doing that we need some results about the vorticity (rotation)
and circulation.

For a viscous compressible fluid, by applying the operator rot to both
sides of the flow equation under the Helmholtz form, which means to
the equation

0 [88—: + grad (%v2> + wxv] = pf — gradp + div[o],

in the hypothesis that the external forces come from a potential U, that
is f = —gradU, we get

gradp

ow
—— + rot (wxv) =rot (——

1.
T + ;dw[a]) .
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However, according to Appendix A,

rot (wxv) = (v-grad)w — (w - grad) v + w (div v) — v (div w)

and divw = 0, so we will also have

gradp

aa—:’-k(v rgrad) w = (w - grad) v—w (div v)+rot <* + %dz’v[a’]) ’

i.e., the rate of change of vorticity for an observer who is moving with
the fluid is

%’:— = (w - grad) v — w(div v) +rot<

gradp

+ Ldivfor ])

p

div[o] having the expression already formulated within the study of
viscous compressible fluid flows.

On the other hand, we know that the circulation along a closed fluid
contour C, is defined by I' = gv -dr and 2t = ga -dr . But since

a=f— 9&;@ + ﬂ%ﬂ and f comes from the potential U we obtain

DI gradp 1 .
By _/< p +pdzv[a‘]) dr,
c

which provides the rate of change of circulation for the considered fluid
flow.

Obviously, in the conditions of a viscous incompressible flow (div v =
0) and under the same hypothesis on the conservative character of the
external forces (f = —gradU), by applying again the operator rot to
both sides of the Navier—Stokes system, that is to

ov
ot

: +gmd(1 >+w><v=~%gradp+vv2v+f,

we get

d

5% + rot (w x v) = vVw

As rot (w x v) is given this time (div v = 0) by
(v-grad)w — (w - grad) v

and



136 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

(w-grad) v = (gradv) w = ([D] + [?]) w = [D]w,

we finally have

Dw 2
We remark that the vorticity changes due to the term [D]w are related
to either the “stretching” of the vortex line or to the “angular turning”
of the vortex line. In the plane case these aspects of stretching or turning

are completely absent ([D]w = 0) and the vorticity equation is simply

—— = 2
By vViw.

The above equations, which have been established assuming incom-
pressibility, will have the same structure even in the case of barotropic
compressibility when there is a function h{p) such that

gradh = gradp.
p

The same equations anticipate vorticity conservation in the plane case,
which will not be true in the three-dimensional case. This remark would
back support the non-existence of some general uniqueness and exis-
tence results (with the continuous dependence on data) for the three-
dimensional Navier—Stokes equations when only some local results, that
1s for small intervals of time, exist.

2. Some Existence and Uniqueness Results

The Navier—Stokes equations(the equations of viscous incompressible
fluid flows) have had the attention of many mathematicians who have
approached them in their study of the mathematical coherence of the
corresponding model, i.e., the search for the existence and uniqueness of
the solution which depends continuously on data.

In a famous paper published in 1933 [82], J. Leray established the ex-
istence of the steady state solution (but not its uniqueness) in a bounded
domain £2, for the Navier—Stokes system by using an “a priori” assess-
ment of the Dirichlet integral in the form [ (gradv)® < M, where M

Q
depends on {2, the Reynolds number and the data of the problem (the
external mass forces and the transport velocity of the domain bound-
ary). In the same paper Leray investigated also the case when §2 is
an external unbounded domain (the complement of a compact set) by
completing the Navier—Stokes equations with a condition of the type
rli}rgov (r) = v (i.e., a far field condition).
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Although in the three-dimensional case the respective behaviour con-
dition is satisfied (Finn [45]), this will be not always fulfilled in the plane
case so that the problem of the mentioned Leray solutions is still open.

In the particular case when v, # 0 and the Reynolds number is suf-
ficiently small, G.P.Galdi has given an existence and uniqueness result
within some suitable function spaces. The same author has established
an existence and uniqueness result for the Oseen problem [48]. Con-
cerning the Stokes problem for an exterior domain whose boundary is
Lipschitzian, Galdi and Simander have proved, in L%(Q), the existence
and the uniqueness of a solution which depends continuously on data
[50].

As regards the Cauchy problem for the unsteady Navier—Stokes sys-
tem, the existence and the uniqueness of the classical solution has been
established in both plane and axially symmetric cases while in space
the existence has been proved only locally, i.e., for limited time inter-
vals and for sufficiently small Cauchy data (in a suitable topology) [77],
E. Hopf pointing out that this problem is not “well-posed” [66]. The
same E. Hopf has also proved the existence of weak solutions for the
Navier—Stokes equations [67].

An overview of the existence and uniqueness results has been made
by R.K.Zeytonian [159] and more recently by P.L. Lions [85].

In the sequel we will touch upon the some uniqueness results of the
classical solution which, as we have pointed out in the case of the inviscid
fluids, are of the greatest practical interest.

Thus, in the conditions of the domains which are bounded by surfaces
made by a finite number of closed boundaries of rigid bodies (possibly
in motion), a Dirichlet—-Cauchy condition for the Navier—Stokes equa-
tions (i.e., the adherence condition together with an initial condition
for velocity) has a unique (classical) solution in quite non-restrictive hy-
potheses (Foa, [47]). D. Graffi and J.Serrin have extended this result
to the case of the compressible fluids too [57], [135]. At the same time,
following a procedure given by Rionero and Maiellaro for the inviscid
fluids, the uniqueness of the classical solution is also established under
the assumptions of the boundedness at infinity of the velocity gradients
[130].

Concerning the unbounded domains (the exterior of a closed and
bounded surface), a situation which often occurs within practical prob-
lems, Dario Graffi has shown the uniqueness of the solution for a Dirichlet-
Cauchy problem provided that the velocity and pressure fields are con-
tinuous and bounded with respect to the spatial variables and the time,
while the velocity second order derivatives are continuous a.e. with re-
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spect to the same variables and, at far distances, the pressure p behaves
asp—po=o(1).

Some extensions of this result, for the case of compressible fluids, may
be found in D. Graffi [59], S. Rionero and P. Galdi [129].

Obviously if a classical solution initially exists (that is on a small
interval of time, starting from ¢y) and it is steady, then, if this solution
will not be sufficiently smooth at an ulterior moment ¢ (which means,
basically, it will not exist) the uniqueness will collapse.

3. The Stokes System

Let D be a plane or spatial region with a fixed smooth boundary 6D
and w a vectorial field defined on D. It is known that such a vectorial
field w could be uniquely decomposed into the sum u + gradp = w,
where u is a vector satisfying div u = 0 (solenoidal) being also “parallel”
to the boundary 0D, that is u - n|,;, = 0, while p is a scalar (defined up
to an additive constant) [19].

Due to this result we may define the operator P, called the orthogonal
projection operator, which maps every vector w into the vector u, i.e.,
into its part of zero divergence which is also “parallel” to the boundary.
According to the above result this operator P is well-defined.

We notice that P is, by construction, a linear operator satisfying the
equality w = Pw + grad p, whose fixed points are the vectors u fulfilling
divu = 0, u-n|yp = 0 and, of course, Pu = u while its zeros are the
vectors gradp because, obviously, P(grad p) = 0.

Let us consider the Navier—Stokes system, under the assumptions of
the external (mass) forces absence or of their derivation from a potential
U, and let us apply to this system the operator P. As

p <%gmdp) = P (gradU) =0

we have

P (%;) =P (—(v-V)v+vVi).

But if v satisfies the iricompressibility condition (div v = 0) and the
necessary condition on the fixed boundary 8D ( v -n|yp = 0 ) as well,
the same result does hold for %—‘t’ and it does not for V2v (this fulfils
div(V2v) = 0 but, in general, V?v-n|,, # 0). With this remark we
are led to the following equation of evolution type (an important feature
which allows the construction of numerical temporal algorithms)
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%% =P(—(V-V)v—+— %V2v> ,
where % = v, R being the so-called Reynolds number (generally R =
Kﬁ%ﬂ, V. and L. being the characteristic (reference) velocity and length
respectively or, in other terms, it is the ratio between the weight of the
inertial forces and that of the viscosity forces).

The importance of this equation consists first in the pressure elimina-
tion, the pressure being then constructed “a posteriori” as the “gradient”
part of

—(v-V)v+jl%-V2v.

Further, this consequence of the Navier—Stokes equation is of a great
importance in elaborating on a class of numerical algorithms'.

If R is small (the case of the slow flows or the very viscous fluids, etc.)
the right side of the above equation could be approximated by

ov 1,

and hence we have the approximate system

ov

5 +gradp = —IliVQV

divv=20,v -n|;p=0.

This system which represents a good approximation of the Navier—
Stokes equations (in the above mentioned hypotheses) is of parabolic
type and it is called the Stokes system.

The Stokes system is a first (classical) linearized form of the viscous
fluid equations. In fact, to the equations of this system one associates
corresponding adherence (no-slip) conditions v{,;, = 0 and initial con-
ditions under the form v|,_, = h and %‘t—’l t=ty = 9 as well.

Applying the divergence (div) operator to both sides of the previous
system we get Ap = 0 in D, that is, within the Stokes model, the
pressure is a harmonic function. If the flow is steady we will have that

"In fact, except the incompressible case, all the unsteady flow equations for both viscous and
inviscid fluid are of evolution type. Even in the incompressible case, one could restore this
evolution character by introducing an “artificial compressibility” which later tends to zero.
For instance, the equation of continuity becomes 5%‘5 + divv = 0, with € a small parameter
which ultimately is obliged to tend to zero.
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the fluid velocity is a biharmonicfunction ( V4v = 0) while the vorticity
w = rotv is also a harmonic function ( V2w =0 ).

In this book we will come back to the Stokes system within the context
of certain applications to practical problems.

We cannot finalize this section without pointing out what is known as
Stokes paradox. Basically this paradox shows up that, in the conditions
of a plane steady uniform (at far field) flow around a circular cylinder,
the Stokes model fails®.

The failure of the approximation at far distances through the Stokes
model (in fact there is not a valid uniform approximation of the exact
equations), leads to the consideration of some nonlinear effects within
the Stokes equations. Some details on this new approach which leads to
the so-called Oseen model, can be found in the sequel and, for instance,
in [98].

4. Equivalent Formulations for the Navier—Stokes
Equations in Primitive Variables

There are two main distinct ways to proceed in the construction of
some equivalent formulations for the Navier-Stokes equations, both being
of great use in the numerical approach to these equations.

The first is the pressure-velocity or (only) pressure formulation, known
also as the formulation in “primitive” (“genuine”) variables. The sec-
ond is the vorticity-potential or stream function formulation (with its
variants) known as the formulation in “non-primitive” variables. In the
sequel we will give a brief survey on the most important features of
both formulations, focussing on some recent results about the integral
conditions for vorticity which interfere within the formulation in “non-
primitive” variables.

4.1 Pressure Formulation

In what follows we will envisage an equivalent formulation of the
Navier—Stokes system which allows evaluation of the pressure as a func-
tion of velocity field. For this we first consider the Navier—Stokes equa-
tions under the form

0 1

TV 4 div (v®v)=——gradp +vViv +f,

ot o

to which one applies the divergence operator. Using then the formulae

(see Appendix A)

2The first rigourous proof of the Stokes paradox can be found in the first edition of the Kocin,
Kibel, Rose book [74].
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div (v®v) = (gradv) v + v (div v)
and
div ([Alv) = (div[A]T) - v + [A]T - (gradv),
we also have

div [div (v ® v)] = div (grad vT) v + (gradv)T - gradv

+ (divv)? + v - grad (divv) = grad (divv) - v + (gradv)T - (gradv)
+ (div v)? + grad (divv) - v
and consequently
) da 2 T 2 ;
—;V P=7 +a®+2(grada) - v+ (gradv)’ -gradv —vVea — divf,

where a = div v .

Using now the decomposition of the gradient tensor, that is grad v =
(D] + [€2], where [D] is the symmetric rate-of-strain tensor (D;; =
(vij +v;4) ) and [Q] is the skew-symmetric rotation tensor ( Q;; =
(vi,j — vj)), we may check by direct calculations, that

D] - [D] = [D]-grad v

1
2
L
2

and jw? = [Q] - grad v so that (gradv)T - (gradv) = [D] - [D] — tw?,
By introducing now Truesdell’s number for vorticity Mr, defined
1
through Myp = |w|/(2[D]-[D])? (and which is seen as a measure for
the fluid vorticity), the above equation could be also rewritten

1 0

-—;Vzp = —a—(:— +2(grada) - v+ (1 — M%) [D] - [D] - vV?a + o® — divf.
As a = 0 together with the incompressibility assumption, we get the

following equation for the pressure determining

1
p
an equation to which one should join the appropriate boundary condi-

tions. We remark that Mr = 0 for the irrotational flow while M = oo
for the rigid bodies ([D] = 0), so that 0 < M7 < co.

V?p = (1~ M%) D] - [D] - divf,
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4.2 Pressure-Velocity Formulation

The Navier—Stokes equations, in the absence of external (body) forces,
written in the form

ov

1
5 +div(v@v) = —;gmdp +vV3v,

divv =0,
will be completed in what follows by the equation of internal energy

De 2
Po; = &+ xVT
where ¢ = [T]-[D] = 2u[D] - [D] is the so-called dissipation (func-
tion) which measures the rate of work done by the “viscous part” of
the stresses during the deformation process of a unit volume of fluid
in order to increase the internal energy and hence the temperature
of the fluid. Since & should be negative, from its explicit structure
D = ,ug% (g% + g—%) , it turns out that 3A + 2u > 0 and g > 0 which
is obviously satisfied.
On the other side, p being constant for the incompressible fluid, the
thermodynamics equations lead to % = C with C the specific heat.
Hence the internal energy equation becomes

Dr o 9
= - = T
Dt = 20 + kV-eT,
where k = ;Xé is the thermal diffusion.
From the pressure equation (see pressure formulation) where a =
divv = 0, we now have

V2p = —p(gradv)’ - (gradv),
an equation which should be (numerically) solved simultaneously with
the flow and continuity equations of the Navier—Stokes system. The use

of the no-slip condition on a solid fixed surface v|,, = 0 in the flow
equation, yields’

gradplyp = pAv|gp = —protw|yp
or, by taking the dot product with n, the unit outward normal drawn
to 8D we get

3We have used the vector identity V2v = grad (div v) — rotw with w = rotv.
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dp
— = —un- (rotw .
dnlyp pn - ( )ap
Thus we have to solve a Neumann problem for the Poisson equation
of the pressure, a problem which creates much inconvenience due to the
nonlinear character (in velocity derivatives) of the boundary condition.
To overcome most of these shortcomings it is recommended, for instance,
the use of & = 0 everywhere except for the evolution term p—a—%, that is

to replace the above pressure equation by

V2p = —p(gradv)" - (gradv) — %it[
or, equivalently, by
Oa
V’p=—p(1- Mz) D] [D] - —p,

where My is Truesdell’s number.

These equations should be solved (at time steps) simultaneously with
the flow equation, the pressure for &« = 0 being taken as the “right”
pressure.

Chorin has suggested another method which avoids completely the
pressure equation. Replacing the equation of continuity o = divv = 0
by the equation

,3% +divv =0,
where B is an artificial compressibility and p = L is the corresponding
artificial equation of state, Chorin solves only this equation together with
the flow equation, the incompressibility being achieved by a dynamic
relaxation in time so that %‘tl — 0 and the steady state is attained.

S. Equivalent Formulations for the Navier—Stokes
Equations in “Non-Primitive’> Variables

In what follows we intend to present some alternative formulations for
the Navier—Stokes equations which, besides a certain theoretical interest,
will lead to remarkable advantages in the numerical and computational
approach. We will focus on the unsteady cases when we try to “split”
the equations vis-a-vis the involved unknowns while the incompressibility
condition implies the Laplace operator. This approach allows us to avoid
the compatibility condition between the boundary and initial data (a
condition which does not occur in the steady state case) but it requires
the formulation of some integral type conditions for vorticity which will
replace certain adherence conditions on the boundary.



144 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

Let us recall the Navier—Stokes equations in the domain D, of solid
boundary dD (with the unit outward normal n), that is

aa—‘t’-f-(v-V)v: ~Vp + vV,

V-v=0

with the initial conditions v},_, = vp and the boundary conditions vy =
b, b being the displacement velocity of the wall (boundary) which sat-
isfies also (for every t > 0) the global condition [ b-nds = 0.

D

Obviously the initial velocity vg should fulfil the condition V : vy =0
(solenoidal vector) while b and vo should also satisfy the compatibility
conditionn - bl,_y = n - Volsp.

This compatibility condition, due only to the incompressibility, was
used by Kato in 1967 [73] to establish the existence and uniqueness of
the classical solution for the inviscid fluids (Euler equation) in the bidi-
mensional case. At the same time, this compatibility condition together
with the solenoidal character of the initial velocity, allows us to identify
the appropiate linear space of the initial velocities which is finally H*
[140].

In the following, by limiting ourselves to the plane case, we will try
to give a new formulation for the Navier—Stokes equations using other
variables than the “genuine” (“primitive”) ones. At the beginning we
will write the Navier—Stokes system in orthogonal generalized (curvilin-
ear) coordinates, followed by the stream function formulation. Then we
will establish the equivalent equations in vorticity and stream function
(the “¢ — ¥” formulation) which reduces obviously the number of un-
knowns and eliminates the incompressibility condition whose numerical
fulfilment could be extremely difficult. This formulation, the most used
to approach the viscous incompressible fluids, has a weak point by the
lack of the boundary condition for vorticity. We will show how it is
possible to bypass this inconvenience by introducing a so-called integral
type condition for vorticity.

5.1 Navier—Stokes Equations in Orthogonal
Generalized Coordinates. Stream Function
Formulation

The complexity of different practical problems, the diminution of the
computational effort as well, lead to the choice of appropiate systems of
reference (coordinates) which would simplify both the formulation and
the solving of the problems.
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In what follows we will write the Navier—Stokes equations in orthog-
onal curvilinear (generalized) coordinates. (For supplementary details,
the consideration of non-orthogonal coordinates included, see, for in-
stance, [153]). As a direct application, in the same orthogonal coordi-
nates, we will give the transcription of the envisaged equations under
the stream function form (formulation).

Let us now consider the generalized coordinates £1,£2,€3 and, at a
given point r = r(&1,£2,&3), let there be a triplet of unit vectors e; =

T}Tc’?_gi’ ey = ﬁlga—é, e = T}QE%% , which are respectively tangent to

the coordinate curves £1,&2,&3, and where H; = 4(%1 are the so-called

Lamé coefficients. The fact that £1,£2,&3 are generalized orthogonal
coordinates implies automatically that e;-ex = d;%.

We know that the gradient, divergence, rotor (curl) and Laplacian
operators have respectively (in these coordinates) the expressions [153]

1 0 3} 7]
; = — (h1h3A A
div A ihals [65 (hgh3A1)+a£ (h1h3A2) + %, (h1ha 3)}

where A(A1, Az, A3),

0Pe 0De 0% e3

rad® = t ot 51
g BE hy ' By hy | Of3hs

rot A = —Q; (hsAs) — aifg, (thz)]

h2h3 [3§

+

92[8 0

ik |26 A~ g (h‘“*As)}

+e3[8 0

— ho A
hihs |36 (1242 ~ 55,

L[ (g, b (1h 28y, 9 (00
hihohs |08 \ h1 06/ 06 \ he 8f) O0& \ hs O3
where @ is any scalar function while A is an arbitrary vector A =

Ajeq + Asey + Azes.
But then we can rewrite the Navier—Stokes equations as

()|

e

+ hlhlzh,g [6151 (phzhg'llq) + 5%2- (phlhg’lLQ) 58—- (phthU3)]
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p(%+%%+%%+%§%+m%%

_ 3 Ohy | wiug Oy _ U5 Ohg
hihs 0&3 hihz 8¢

= Whors [ai (hihahstee) + o5 (hihaTese,) + o5 (B hzTglga)]

1

ony

_1 L 0Ohg
hZ 0€ T6&1 T Rihs h2 ag, Té262 7 R ks 06, T€abs

p(%z+%18_uz+%zéu+%aéﬁz+wéh
1 2 3

= hlhlglw [EQ— (h2h3T£152) + 352 (hrhahaTee,) + 353 (h h27'§2§3)]

_.1Q_L
2 9&2

1 8h
a6 T R 06 T62ke T Tyhs h3 352 Teats)

Ouz | uj dug | upduz | uzdug | uyug Ohs
,0( o T hy 06 + hy 9&, + hg 0€3 + hihz 061
_ ] Om | wuadhy U3 Ohy
hihs 0¢&3 hahz 0&2 hohs 0&3

= h_—l_hf ['c’)i (h2h3761€3) + ag (h h37-€2§3) + ag (hy h2h3T€3€3):|

D

L Ohy 1 8hy _ 1 0Ohg
" hiha 653 T&161 ™ ok BEs 16262 hZ 0 UFITE

As regards the entities 7¢,¢; they become

1 8u1 U9 (9’2.1 Ui 8h1

Teg, = —P + 24 (hl 7%, ~h1h28_§Q+h1h3 663)+)\(dwv)
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1 8u2 U1 6h2 us 6h2 .
= — 2 ———— _ —_—
Teats p+ u<h2 3§2+h1h2 5 ks ag3)-%—A(dwv),
_ 1 8u1 Ui 8h3 us 8h3 .
Tests = P+ 20 <h1 0&3 * hih3 8§1  hahs 352) +Adivy),

e (L0 100 Ol o)
fgz = H h10& ~ hy ¢  hiho 061 hihg 0&

g L0 10w us Ohy  w O
£163 = M R hy 0fs  hyhs 8§ hihg 883 )’

rere = (L% 10u;  _us Ohy  u %)
0 T\ 1,06 " hs 06 hohs 06 hahs 063 )

and where div v is expressed as above (the writing of the divergence
operator in generalized coordinates). These equations are used when
their conservative form is not wanted.

In the following we will focus on the stream function formulation for
the Navier—Stokes equations, a form used by certain numerical meth-
ods due to the advantage of the automatic fulfilment of the equation of
continuity. At the beginning we deal with the plane and axially sym-
metric flows and then, by using the scalar and vectorial potentials, we
will extend our search to the three-dimensional case.

Let us consider again the fluid velocity v = uje; + ugey + uzes. If
these velocity components are independent on a certain coordinate (as
the other flow parameters), the fluid flow is either plane (bidimensional)
or axially-symmetric (revolution).

For sake of simplicity, suppose that all the parameters associated to
the flow are, for example, independent of &3. In the plane case the flow
will be the same as on the surface &3 = constant, the component uz = 0
and h3 = 1. On the other hand, in the axially-symmetric case, €3 is the
azimuthal angle and the &3 derivatives are zero although the component
ug is or is not zero while hg # 1.

In the axially-symmetric case with the azimuthal angle &3 constant,
the above written (in generalized coordinates) continuity equation will
be identically satisfied by

1 oy 1 oy

—_ Uy = ————.
hy BE 0 hy 8¢,

Denoting hzus = w, we find (from the above expression for rot v) that
the vorticity components are

hauy =
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=y o0 1 0w 1
W T hihy 0&" 0 h3

where the differential operator D? is

p2_ s [_f?_ (_h2__‘?_.) L8 (_ﬁz_.i)]
hihg { 8¢ \ h1hs 06 0& \hah3 882 ) |~

If now we consider the Navier—Stokes equation which corresponds to
&s together with the equation of rotation, we have

ow 1 9w
0t hihghs 0 (&1,&2)

D%y

= vDuw,

9 prgyq 2o Owhy) 1 0(pD%)
ot hihghs 8 (€1,€)  hihghs (€1, 62)

2D% 0 (¢, hs)

= uvD?
il d (e DY

where

(o, B) 0 0B 0Oadp

8(E,m) 0Edny  OnoE

In two dimensions, w = 0, h3 = 1, D? = V? and the previous equa-
tions become

0

R R 1UA )
ot

B "
hihy 0 (¢1,&2) vV

and

V) = —w.

In the tridimensional case, we start with the following representation
for the velocity v, namely v = grad ® + rot A, where V2® = 0 and the
vector A is solenoidal, that is div A = 0. The last requirement could
be satisfied by looking for A under the form S grad N, which means to
fulfil

div A = SAN + (grad S) - (grad N) = 0,

or, in other terms, N should be a harmonic function while the surfaces
S = constant and N = constant have to be orthogonal.
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Obviously, the above representation satisfies implicitly the continuity
equation. Applying the rotor (curl) operator to this representation we
also get

div (grad A) = —w.

In other words, in the three-dimensional case, the writing of the in-
volved equations (using the scalar and vectorial potentials) comes to
the consideration of the last equation together with V2® = 0 and the
equation of vorticity w.

At the same time, by substituting the expression v = Vi x k into the
definition of vorticity, we obtain

—V%p = (.

Concerning the boundary conditions for these two scalar equations,
they could be deduced from those already known by a separate consider-
ation of the normal and tangential velocity components at the boundary
points. If n is the unit outward normal vector drawn to the boundary
0D, T is the unit tangent vector counterclockwise oriented, s is the
natural parameter (the arc length) on the boundary, then the condition
v|sp = b implies

d
n-(Vz/)xk)laDz(kxn)-VWaD:'r-V¢|3D:% —n-b,
8D
respectively
7 (VY x k)|5p = (kX \Y = - __W
: ap = (kx7) - Vi|gp = —n- Vi|sp = dn |, =7-b.
D

The first of these conditions, after integrating along the boundary,
leads to a Dirichlet condition for ¥. By accepting that D is a simply
connected domain, from the global condition f b - nds = 0 we get the

aD
warranty that the respective integral along the boundary defines a uni-
form function a(s,t), to within an additive function of time A(t), such
that

a(s,t) = /n(s') b (s',t)ds’ + A(t),

where s1 is the natural coordinate of a fixed point of d.D.
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To simplify the form of the boundary condition for 1 we will not take
into consideration the term A(t) and, denoting by b(s,t) = —7(s) -
b (s,t), the two conditions could be written

dip

=b.
dn{ap

¥lop = a,
Regarding the initial condition, this implies a vorticity condition at
the instant ¢ = 0, precisely

Cli=o = (V x Vo) - k.

With respect to the compatibility condition attached to the Navier—
Stokes system, that is n-b|,_, = n-vg|yp , it could be rewritten in the
form

da (s,0)
Ths n-volsp,

where also V - vy = 0.

If these last two conditions on the data are satisfied, Guermond J. L.
and Quartapelle L. have rigorously established in 1993 [126], the equiv-
alence between the genuine formulation of the Navier—Stokes equations
and the “¢ — 1 formulation”, which means with the system

¢ 2 _
E_VV C+'](<7¢)—Oa
_v2¢:C1
d
1/),30 =aq, % aD:b,

C|t=0 =(V xvy) - k.

Obviously this formulation is nonlinear due to the presence of the
Jacobian which is “coupling” the equations in { and %; further, there are
two boundary conditions for ¢ and none for ¢. If the difficulties caused
by this nonlinearity can be overtaken by combining some explicit or
implicit step-time algorithms within suitable iterative procedures, those
connected with the boundary conditions will be avoided by one of the
following methods (formulations) which are presented in the sequel.
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5.1.1 The Biharmonic Formulation

The simplest way to avoid the lack of a boundary condition for vor-
ticity is to eliminate, from the previous system, the vorticity itself. By
substituting the expression for vorticity ¢ = —V?4 into the transport
equation for it (the vorticity equation) we reach the problem

2772
?—BVT?- — vV + T (V3,9) =0,
_ o dp _

where 1) is the solution of the Dirichlet problem

—V29o = (V x vo) - k, %olap = a(s,1),

the data vg and @ satisfying both the compatibility and solenoidal condi-
tion. In the above formulation the boundary conditions don’t lead to an
overdetermined problem (as they seemed to in the “{ —4” formulation)
because the equation in 3 is of fourth order. There are many numerical
procedures either in finite differences or in boundary elements (for the
linearized variants). This problem could also be written in the following
variational form (which is essential for a finite element type method):

“To find a function ¥ € H? (D) such that Ylgp = a and % o = b
and

(Vso, %V¢> +v (V2p, V) + (T (0, 9) , VI) = 0,V € HE (D),

where (-, ) denotes the inner (dot) product in L? while H?*(D) and
HZ (D) are the standard notations for the corresponding Sobolev spaces”.

5.2 A “Coupled” Formulation in Vorticity and
Stream Function

This new formulation envisages a new way to avoid the difficulties
joined to a double condition for ¢ on @D and to a total absence of
conditions for (.

We remark that, even in the absence of the non-linear term from the
vorticity equation, the involved equations should be considered as being
coupled through the boundary conditions. In other terms, one of the
conditions for ¥ must be “associated” with the vorticity equation but
this equation is not sufficient to determine alone the unique ¢. Therefore,
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in this approach, a boundary condition for ¢ is not needed but the two
equations should be solved necessarily as coupled.

More precisely, the Dirichlet condition |5, = a will be attached to
the rotation (vorticity) equation

9
ot

while the Neumann condition —% ‘6D = b is associated with the equation

UV ST (GY) =0

~V?2i = (. But this last equation will not be a real Poisson equation
since ¢ is an unknown and so the compatibility condition for such a

Neumann problem
/Cdv= /bds (3.1)
D

oD

is not required anymore. Obviously we also have the initial condition
for vorticity, i.e., ¢|,q = (V x vp) - k.

To such a formulation one could join either ADI techniques with fi-
nite differences (Napolitano) [94] or Chebyshev spectral approximations
(Heinrichs)[63].

At the same time, in view of the construction of some finite element
type methods, one could state the following variational (mixed) formu-
lation for the above equations:

“To determine ¢ € H' (D) and + € H' (D) such that v|5p = a and

o
v(Ve, V() + (% a—i> + (¢, J (¢, ¥)) = 0,V € H} (D),

(VE, V) - (6,C) = / £bds, V¢ € H' (D)
oD

where again (-, -) denotes the inner (dot) product in L? while H*(D)
and H§ (D) are the standard notations for the Sobolev spaces”.

We finally remark that in this formulation one of the two conditions
on % is imposed implicitly as a natural condition.

53 The Separated (Uncoupled) Formulation in
Vorticity and Stream Function

In what follows we will try to separate the equations from the “¢ —
formulation”. To do that we need some supplementary conditions for
vorticity which should replace the boundary conditions for it. These
supplementary conditions will be stated in a different form versus the
classical boundary conditions, since they have an integral character.
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Due to L. Quartapelle and Valz—Cris we have the following result
[127]:

THEOREM A function { defined on D, is such that ( = —V* with
Ylop = a and %1,!;, oD =b if and only if

/Cndv = / <— - bn> ds,

for any harmonic function n on D, that is V*n =0 in D.

This integral condition, whose existence has been anticipated by other
scientists, has to be considered as a condition of a unique type vis-a-vis
the usual classical boundary conditions. This is not a boundary integral
formulation due to the presence of the volume integral.

If we introduce the fundamental solution G(r,r') for the Laplace
operator (the Green function) through the equation —V'2G(r,r') =
47d (r — r') where d (r — r') is the Dirac distribution in two dimensions,

by using the Poisson (Green) formula for a pair of regular functions «
and 8 (on D), that is

g d
/(av2,6 — BV%a) dv = / ( dﬁ £> ds
D aD

where now @ = G (r,r') while 9 satisfies ~V2% = (, 9|,p = a and

dy
dn 8D

= b, we obtain the following new form of the integral condition

—4mp (r /G rr r)dv

- / [" () d—Ga%L) -b(s) G (r,r')] ds'.

aD
with v (r) = 1,0, % as r is inside, outside or on the boundary point of D.

The introduction of the above integral condition allows us to break
the “¢ — % formulation” into the two problems

(—uv2 + %) (=-J((v), /gndv = / <a— - bn> ds

and
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V=, Ylpp=a
where 7 is an arbitrary harmonic function.

Obviously, in the absence of the nonlinear term, a complete separa-
tion of the two equations may be achieved so that they could be solved
successively (one by one) in the indicated order.

At the same time, if the second equation is accompanied by the Neu-
mann condition

dy .

dn|sp

the result is completely equivalent. The same thing happens if we con-
sider also the arbitrary function of time A(#), the integral condition being
invariant with respect to this choice.

Among the applications of the vorticity integral condition we should
mention the works of Dennis and his collaborators where one has studied
the fluid flows past flat plates of finite size and which are ‘“aligned”
with the stream, the fluid flows around circular cylinders or spheres and
even the Oseen model [25], [26], [27], [28]. More precisely, in all these
researches, one deals with series expansions for ¢ and 3, with respect to
different suitable orthogonal function systems and then one keeps only
a finite number of series terms. The final results agree well with the
classical ones [42].

Now we will make some considerations on the equivalent formulations
in the three-dimensional case. For these flows some additional difficulties
occur due to the fact that the components of the velocity vector (which
is solenoidal) are, in general, different from zero and two of them (the
tangential components) should be determined on the solid boundaries.

We would limit ourselves to the “p — { — A” formulation, backed by
the (always possible) vector decomposition

v=Vp+V xA where (VxA)-n|y,=0.

Concerning the transport equation for vorticity (the rotation equa-
tion), it is known that now it has the form (we denoted { = w)
0
5%+Vx(§xv)=z/V2C
with an initial condition (corresponding to the initial condition for v) of
the type ¢|;—g = V X vq.
By applying then the divergence operator to the vorticity equation we
get
8(V-¢)

—at—*=VV2(V'C)
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with the supplementary initial condition V- ¢|,_o =V - (V x vg) = 0.

If this equation is also completed by the supplementary homogeneous
condition V-{|3p = 0, for £ > 0, the unique solution of the above
equation will be identical to zero, which means ¢ should be a solenoidal
vector for ¢ > 0 (V-¢ = 0). This last condition, introduced by Lighthill,
together with the initial condition for ¢, are the necessary and suffi-
cient requirements for { to be solenoidal, a condition demanded by the
definition itselfof ¢ (¢ = V x v).

In the sequel we will limit ourselves to considering the “p — { — A”
formulation based on the unique (always possible) “splitting” of the
velocity vector by v = Vi + V X A where the vector A is determined
up to the gradient of a scalar function % and it fulfils the condition
(VxA)-n|g,=0.

Obviously the above representation and the incompressibility condi-
tion lead also to

—V2(,0 =0,

which means ¢ will be harmonic in D.

The boundary conditions which are imposed on ¢ and A will be de-
rived from those imposed on v by separation of the normal and tangential
components from v|yp=b.

We accept, together with Hirasaki and Hellums, that regarding the
boundary condition on the normal direction, it will be satisfied by

n-Vyly,p=n-b
and

n-(VxA)yp=0,

the last condition being, in fact, synonymous with the orthogonality
condition

/V(p-(VxA)dvzo.
D

The determination of ¢ leads to solving a Neumann problem which,
taking into consideration the global condition

/b-nds=0,

oD
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can be uniquely solved to within an arbitrary function of time @ (¢).
Once  is determined, the tangential part of the boundary condition for

v, that is n X v|3p = n x b,becomes also

By applying now the rotor (curl) operator to both sides of the decom-
position v = Vo + V x A, we get for A the equation V XV x A = (

and the attached boundary conditions

n- (VxA)yp=0,nxVxAlyp=nx(-Vely,+b).

But the above system is equivalent with

nx (VxA)sp=nx(-Velgp+b), V- -Aly,=0.

Finally the following results hold:
THEOREM 3.1. The Navier—Stokes system written in the genuine

variables v and p together with a Cauchy-Dirichlet (initial-boundary)
condition is equivalent with the following system in variables @, and

A,
—V2p =0, n-Vylyp=n-b,

0
a_f-VVQC‘FVX[(C-I-VXA)]:O, C,t:O:VXVOaV'CL?D:O’
~V2A =¢,nxAl,p =0,
nXVXAIaD=nX (“ V(plaD‘i‘b),V'AlaD:O,
provided that the data n - b and vy satisfy the restrictions
/b-nds=O,V-v0:0,n-b|t:0= n-volgp -

aD
As regards the vorticity integral condition this could be written now

in the form [126]
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[emiv= [ nx (= Volop + b)) - mds
D

aD

where 7 is an arbitrary solenoidal vector.
Correspondingly, the “uncoupled” (separated) form in the “@—({ — A”
formulation would be [126]

—vchzo,n-w;[aD =n-b,

T T X (¢ (Vo x ¥ x A)] =0, Clucy = ¥ x vo,
/C-nd”=/[“><(— Velap +b)]-nds, V- {lap =0,
D oD

[—V2’I’) =0,V 77|6D = 0],
~VZA=¢,nxAlyp =0,V-Aly, =0.

It is important to remark that, in three dimensions, the equation of
rotation (vorticity) has been completed by both boundary and integral
conditions, the last of them implying all the three components of vortic-

1ty.

54 An Integro-Differential Formulation

The establishing of a unique integro-differential equation which is
equivalent with the Navier—Stokes system is due to Wu [157], [158].
Basically, the procedure uses both the rotation equation

?3% + 7ot (wxv) = vAw,

and the Poisson equation

Av = —rotw,

the last one being the consequence of the consideration of the condition
div v = 0 into the identity

Av = —grad (div v) — rotw.

Let now £ and x be a variable and a fixed point respectively, both
belonging to the flow domain, while r =|¢ — x|. It is known that the
solution of the above Poisson equation is given (in three and then in two
dimensions) by
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v =g [+ L [P0 v L (D] w .

T Arx r r dn r
D oD

respectively

v(x) = _21?!'111 <%) rotw (&) dv (£)

2 ()20 (e
aD

But we also know that

) _ (- grad)v () = (gradev) »

and both the identity

(gradv) -n=wxn+ (n x grad) x v+ n(divv)

and the (Gauss) theorem

/rothv:—//aD(Pxn)ds

D

are valid.
Making then successively P = 2 and P = win (}) , we get

/rotfwdv:_/wxnds+/(§—x3)xwdv,
r r r

D aD D
respectively

/ln <1> rotgwdv = - /wxnln (l) ds + / (—é————};)—xﬁdv
r T T
D aD D

which leads to

v(x) = 57;/ (é—}:_l . Y v (6
D
+ i / [(n . gridf) A (f;x)v(é)] ds (€),
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respectively
v =5 [EED 20
D
+ 5}7}-/ [(n X grade) X vin <%) + i—(—-f—ziczv(f) ds (€).
aD

Using the adherence (no-slip) condition v|,,; = 0 and the consequence
(n x grad) x v|zp = 0, for interior flow we would have

v(g)zi/g—“—jgﬁdv
D

while for the exterior flow with the free-stream velocity v,
1 —X) X w
v(©) =veo+ 5 [EE 0,
D

with A = 47 or 27 and d = 3 or 2 (according to the tri or bidimensional
case).

The substitution of these representations in the vorticity equation
gives rise to the integro-differential equation.

6. Similarity of the Viscous Incompressible Fluid
Flows

The (dynamic) similarity method is a very useful tool not only in
aerohydrodynamics but even in the approach to many other physical or
technical problems. This method allows us to specify all the conditions
which should be imposed on some laboratory models such that the in-
formation obtained from laboratory experiments could be extended to
the real situations. At the same time this method provides a special
technique for getting a whole class of solutions (depending on certain
parameters), starting with a solution of the system of equations which
governs the respective problem (process).

This method will also support the possibility of the construction of
some nondimensional solutions, a fundamental feature in the numerical
approach to the equations associated to the process (problem).

Generally speaking, two physical phenomena are said to be (dynam-
ically) similar if the parameters characterizing one of these phenomena
could be directly obtained from the same parameters for the second phe-
nomenon (and which are, obviously, evaluated at the “similar” spatial
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points and at the same moments) by a simple multiplication with some
unchanged factors called the similarity coefficients.

Let us now establish the similarity conditions for two viscous incom-
pressible fluid flow without any heat interchange with the surroundings
(isothermal). Considering then a system of characteristic (reference)
values for time, length (coordinates), velocity, pressure and mass (body)
forces, denoted respectively by t¢, L, v, pe, fe and operating the vari-
able and function change

t= tcfa x; = L¢Ti, up = vy, p = Peb, f= foTv
where the quantities with “bar” are obviously nondimensionalized, the
Navier—Stokes system becomes”

2

Yea -1l (5. @ = £.7 — Lovp+ 2 Aq,
tcu”t+ ;. (’U V) a; = fefi pLCVp+ 72 a;
and
Ve _
7.l =0

2
Dividing by Z—CC and supposing that the conservative terms are not
neglected, we get

Shi;; + (’l_) . @) i; = —fi — BuVp + = At
and
ﬂi,i = 07
where the following nondimensionalized entities (also called the similar-
ity numbers) interfere:

L
Sh = —— (Strouhal number); Eu = % (Euler number);
Uclc p’l)f
vele Vg

R= (Reynolds number); Fr = (Froude number).

fCLC
The above equations are the nondimensionalized Navier—Stokes equa-
tions. To them we should add the nondimensionalized initial and bound-
ary conditions, according to the given problem.
If two viscous incompressible isothermal fluid flows are similar, the pa-
rameters (field values) of one of them could be obtained from the same

“The components of the velocity v are now denoted by u; while those of the nondimensional
velocity ¥ are denoted by ;.
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parameters of the second flow, by multiplying with the same factor,
i.e., both the equations and the initial and boundary conditions (which
ensure at least the solution uniqueness) should be identical and, conse-
quently, the similarity numbers Sh, Eu, Fr and R are also the same.
Obviously the respective solutions will depend on the parameters t., L.,
Ve, Pe, fe and even on v and p (supposed constant but, generally, differ-
ent in the two flows), all the parameters being linked by the condition
that Sh, Eu, Fr and R take the same values in the two similar flows.
Therefore we are led to a class of solutions depending on a reduced (with
four) number of free parameters, an important theoretical result.

In the case when we put away both the isothermal and homogeneous
character of the flow, but supposing that the variation of the tempera-
ture and of the concentration do not influence the viscosity, the thermal
conductivity as well as other thermodynamical properties of the fluid
then, if the radiation heat is ignored, the equations of the viscous in-
compressible fluid could be written as

88_: +(v-V)v= —%gradp + BgAT +vViv

and

divv =0

where T is the temperature whose variation is AT, 8 is the thermal
coefficient of the fluid expansion connected with the Archimedean force
due to the density difference, that is F = SgAT, and g is the gravity
acceleration.

Concerning the equation of heat conduction, it takes the form

T
%t— + v - gradT = aV?T,

where a is a constant which is called the thermal diffusion coefficient.
By using again the above equations, the technique of the similarity
method, we obtain the nondimensionalized system

ov _ _ 1 1 _
h——_ D - D= — n —_— —_ 25
S 6t+('u V)v Equ—%-Frg—}-RV 7,
5L 5. 97 = Loor
Ot " Pe

where, besides the Strouhal, Euler, Reynolds and Froude numbers (the
2

last being now defined by Fr = gﬂfgﬁ‘iﬁ“)v there arises also the Peclet

number Pe which is defined by Pe = ﬂc—g—ﬁ Sometimes the Froude and
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Peclet numbers are replaced by the Prandtl number Pr and the Grashof
number Gr, defined as Pr = -F-’Rﬁ and Gr = %.

Considering now the adjacent phenomenon of the propagation (diffu-
sion) of the involved substance if C is the concentration of the “mixture”
and D the diffusion coefficient of it, it is shown [87] that the differen-
tial equation of the mixture diffusion has exactly the same form as the

equation of heat conduction, namely

~

%C’-} +v-gradC = DV?C,

which, by nondimensionalizing, becomes
acC

I
Shogy +9-VC = 5-V*C

where Pey is the diffusion Peclet number which is different from the
ordinary Peclet number, defined above (and in which a is replaced by
D), namely

Vel
D

and to which there corresponds a diffusion Prandtl number Pr; (also-
called the Schmidt Sc number) by the relation

Ped =

P
SCEPI‘d=%=%.

In the sequel we will consider only the steady flows of the viscous
incompressible (homogeneous and isothermal) fluids, in the absence of
the external (mass, body) forces. These flows which basically depend
only on a unique similarity number (the Reynolds number), are of great
practical interest within the context of dividing these fluid flows in two
great categories: the fluid flows with small (low) Reynolds number and
the fluid flows with high (large) Reynolds number.

6.1 The Steady Flows Case

Let us consider again the Navier—Stokes system in the particular con-
ditions of steadiness and of the absence of external mass (body) forces.
Let L, v., p. be respectively, a reference length, velocity and pressure
which are characteristic for the envisaged problem.

Let us now make a variable and function change

x; = LZ;,u; = vy, p = pcp,
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which transforms the equation of continuity into %4, ; = 0, that is @;; =
0, while the flow equations become

— Pc . VvV

“jui,j -+ p_'ugpj = Eui’jj.

The variables and the functions with “bar” will be called reduced and
the corresponding resultant system of equations is called the reduced
system. Within this system two nondimensional coefficients arise:

— the first, ;’fg, is not connected to any interesting feature of the

(solution) system and that is why we avoid it by choosing p. = pv? (it
is possible to make such a choice because the pressure interferes only by
its derivatives, which does not happen in the compressible case);

- the second will be the inverse of the Reynolds number R = ”JVL =
ﬂ’,j—L and it characterizes the weight of the viscosity effects () versus
those caused by the inertia ( v.L ).

In this way the reduced system can be written

Let there now be a solution of this system (considered for R fixed),
namely

U =1 (T, R), p=(Zi,R).

To this solution there corresponds, by the formulas of variable and
function change, a family of solutions for the Navier—Stokes equations
and the equation of continuity, a family which depends on four parame-
ters L, ve, p, 4, linked by the condition that R should be fixed (therefore
only three parameters are independent).

Hence there is the following family of solutions (associated to a solu-
tion of the reduced system)

_ (T1 T2 I3
Uq (w1,$2,x3§L,UcaPa#) = Uy ('— - -——,R)

and
_(T1 T3 T3
p (mla Z2,T3; L7 Uc,pvl"’) = PUzP (“E’ f, 'Z‘v R) .
The fluid flows which correspond to such a family of solutions, for the
same fixed R, are called similar flows.
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Obviously, if #; are zero on a surface of equation F(Zi,Z9,Z3) = 0,
any similar flow satisfies also the adherence condition along the surface
F (-’]i:l, %, %) = ( which represents the equation of the boundary of an
obstacle immersed in the fluid.

Besides its exceptional theoretical importance (connected with the
construction of a class of solutions of the Navier—Stokes system which
depend on three free parameters), the nondimensionalized reduced sys-
tem is the system we deal with in view of the use of the numerical
algorithms and implicitly to simulate the fluid flows on the computer.

We cannot also forget that the similarity principle for the fluid flows
backs the laboratory experience on prototypes (as those made in an
aerodynamical tunnel) and when, by starting with the measurements
performed in some particular conditions, it is possible to anticipate the
results in much more general conditions provided that the Reynolds
number is constant.

7. Flows With Low Reynolds Number. Stokes
Theory
Let 4; = @;(Z;,R) and p = p(Z;, R) be a solution of the reduced
system for a certain fixed R.
Suppose now that we make R — 0 while z; are fixed. Denoting by
111(-1) and 5V the main parts of @; and prespectively, it is shown that the
following asymptotic behaviours hold, namely

@ =" (F) +o(f),

p=R°Y (z;) +0(R™®),

« being a real number (not determined yet) while the notation o(f)
designates infinitely small quantities with respect to f.

Using these developments in the reduced system and neglecting those
terms which are of higher order (in the small parameter R) than the
kept terms, we get
(1 —a(1) _ -1
“g,z) =0, R7pY = uE])J

It is obvious that only the choice o = 1 allows us to watch the problem
in what follows (i.e., to keep the maximum number of the unknown
functions), such that we are led to the system (we will now omit the

writing of superscripts)

4,33°
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This linear system is the Stokes system for steady flows. By applying
the divergence operator to the second equation, we also have Ap = 0,
which means the pressure is a harmonic function within this model.

We now remark that if the flow is plane or axially symmetric, there
will be a stream function % which allows us to express both components
of velocity (that is © and v) with the help of this unique function so we
have (see also Chapter 1)

i 10w
Y™y’ ym oz
(m = 0 in the plane case and m = 1 in the revolution case).
Nondimensionalizing the steady Navier—Stokes system, starting now
from the rotation (vorticity) equation

1/0v Odu
rot (wxv) =vAw (w=wk and w-—i(é;—a—y)),

by
r=Lz,y=Lyu=Un,v=V0

and corresponding

Y = UL ™), w = UL ta,

we are led (keeping only the main parts in ) to the system

Op O m oY
0z2  9y®?  § Oy
0% (@y™) | 9% (@y™) mao(@y™) _
02 0y g 0y

The last equation could be also found in the study of the stream
function of an inviscid incompressible irrotational fluid flow (Chapter 1).
If wy™ is determined, from the second equation, then the first equation
allows us to define the function 2.

Obviously, in the plane case (m = 0), the stream function will be a
biharmonic function , that is A (Aiﬁ) = 0.

Unfortunately the Stokes model which is elliptic in the steady case
while it is parabolic in the unsteady one, fails at large distances from the
immersed obstacle [33]. This result, known also as Stokes paradox, could
be proved, in an elegant manner, in the case of the flow past a circular
cylinder by pointing out the impossibility of such a steady flow with a
nonzero constant velocity at far field [153]. Basically this paradox means
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that, irrespective how small is the flow velocity at infinity (at far field),
the nonlinear term of the Navier—Stokes system (which is neglected in
the Stokes model) cannot be considered small enough vis-a-vis the other
terms (uniformly, in the whole cylinder outside). Or, in other words, the
Navier—Stokes equations should be considered, basically, nonlinear.

In fact, even if we study the three-dimensional flow past a sphere
using the Stokes model, a serious deviation versus the experiment arises
at a sufficiently large distance from the sphere. An explanation of this
weakness consists in the fact that the simplification considered within
the Stokes model is rigorous only if terms @; 37 and @;4; ; are of the same
magnitude order. But at far field such a situation does not always occur
(for instance in the case of the sphere, the terms i, ;; are always of the
order o (;15) while the terms @;4;; are of order o (771;)) To overtake this
inconvenience when we study the fluid flow at large distances, a good
suggestion is to choose a reference length L sufficiently great (of the
order of the distance between the obstacle and the far points) such that,
even in the case of slow flows with high viscosity, the Reynolds number
does not become small. Considering then a new variable and function
change defined by Z; = RZ;, u; = u;, p = p where &; are kept constant
while Z; — oo, the initial system

1

Ui =0, Uly5+Ps= 5l
will be rewritten in the form
Uiy =0, Utz +Pi=1u;3;,
a system which, by keeping its non-linearity, does not differ essentially
from the Navier—Stokes system.
If we accept that the far field (stream) velocity is parallel with the

Oz; axis (this means its nondimensionalized components are given by
di1), the solution of the above system will be sought under the form

G =0 +Ri,+- and p=Rp +---

where ﬁ; and § are the main parts of the perturbation terms associated
to the presence of the obstacle. Finally, by using these expansions in the
above equations and eliminating the terms of higher order in the small
parameter R, we arrive at the linear system

Ui,i = 0, ui,i +p,f = 'UIZ.J-. s

known as the Oseen system.
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This system is different from the previous Stokes system only by the
presence of the term u, 7. But just the presence of this term allows us to
avoid the Stokes paradox, i.e., it becomes possible to study flow at large
distances.

Before stating some appreciation about the Oseen model (system)
within a known problem, we remark once again that, the pressure f)’ is
a harmonic function (which we get directly by applying the divergence
operator to the second equation).

Let then ® be a harmonic function in Z; such that f)’ = g—%. If we

introduce, instead of the function ;, the function v; = i; + ®; , then
this new function v; will satisfy

vi; =0, R Rk 0,

while

Pi=25, ®5;=0

a system whose unknowns are “separated”.

7.1 The Oseen Model in the Case of the Flows
Past a Thin Profile

Let us consider the plane flow of a viscous incompressible fluid with a
uniform (parallel to Oz) velocity v at far field in the presence of a thin
obstacle (profile) whose sketch in the flow plane Ozy is the smooth arc
C of continuously differentiable equations z = z(s), y = y(s), s € [0,].

Following [33] we accept, if the perturbations induced by the presence
of the profile are respectively v/ and p/, that the looked for velocity and
pressure fields have the representations

V=ve (i+V), p=po+pvip
where v, is the velocity magnitude at far field, p is the constant density
and py is the pressure in the unperturbed flow.
Nondimensionalizing, by the introduction of the new variables and
functions as follows,

o =Lz, =L 'y and p' = L7!p,
in the hypothesis of the steadiness and by neglecting the perturbations

of higher order, we get a new system for perturbed velocity and pressure,
namely

ov 1 Lveg

— = — it =
o gradp + RAv, with R >
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(where we have omitted using the “prime” superscript symbol for the
perturbed entities, a convention which is kept in the sequel).

But this equation corresponds to the Oseen approximation and it will
be completed with the equation of continuity

ou | I
Jdr Oy

together with the (nondimensionalized) no-slip condition on C,

=0

vilg=-1, wl,=0

and the behaviour condition at far field (infinity)
Jlim (v,p) = 0.

As pis a harmonic function, if ¢(z,y)designates a harmonic conjugate
function of it, then p(z,y) + ig(z,y) will be an analytic function whose
development in the neighborhood of infinity is of the form

. (s3] g
p(z,y) +igq(z,y) = — gt

Let there now be a holomorphic function P(z,y) + iQ(z,y) whose
derivative is equal to R(p + iq). According to the derivative definition
for such a function we have that P and Q should satisfy the system

_10P 10Q _10Q _ 10P
P=Roz ROy’ 1= Ror ~ ROy’

On the other side the stream function (z,y) whose existence is as-
sured by the continuity equation (v = %% and vy = —%%), is a constant
which, vanishing at infinity, is necessarily zero everywhere.

So we are led to the equation

oy 0Q
AYp=R— + —
V=Bt
which, completed with AQ = 0, would provide a system we deal with in
the flow domain. B B
Considering now the auxiliary functions % and @, defined by

. 1 . -
Q=2Q, spv=-Q+9,
the above system can be decomposed into the independent equations

AQ =0, A¢_3%=o
oz
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to which one adds the vanishing conditions at far field of the type

. g 0 . -
rllglo (8$’ ay) (Q,I/J) =0

Let P (z(t),y(t)) and Ps(z(s),y(s)) be two points of the contour
C. Since the arc C, swept as s increases from an origin O, is smooth
either the distances p between these points or the argument o of the
joining chord (which means the angle made with the positive sense of
Ocz) are continuous functions.

Let

& 4in = .’I)(S) - :Ij(t) + 14 [y(s) — y(t)] — piasgn(s—t)
and analogously

F=f4ij=z—xz(t) +ily —y(t)] = 7e
where z = x + 4y is the affix of a point M(z,y) from the flow plane.
Obviously, the continuity of @ (z, y, t) requires us to avoid its “growth”
which could arise by a complete rotation around P, which means we
should consider a suitable cut in the flow plane, as for instance the half-
straight line Moo Ps Py (M being the infinity point of the flow plane).
Further, it M — P, € C, and we also have that

g — a , ifs>t
| afm, ifs<t

the sign + corresponding to the “right”, respectively “left”, boundary
value. -
Let there now be a holomorphic function Logz = In# + 46 where 7
and @ satisfy the Cauchy — Riemann system
80 0 190 9

—In - ln1
or Oy nF’c’)y_ 7

T oz
Our intention is to search the solution Q (z,y) of the modified Oseen
system in the form

1

Q(z,y) = / [Al(t)é+Bl(t) In %] dt
0

which is obviously a harmonic function while the arbitrary functions A4;
and B are to be determined through the fulfilment of the boundary
conditions.



170 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

Concerning the second equation of the Oseen system, by the change
.= Ry . . .
of function ¥ = Fez? it becomes, in the new unknown function F, a
. R2 . .
Helmbholtz equation AF — ——F 0. But it is well known that this

Helmholtz equation admits the solution Ky ( ) where K is the Bessel
function of imaginary argument of the second klnd and zero order. If we
now introduce the function © ( 0) connected with Ky by the system

00 0 Rr R Rr
Era e (7) "K"( 2 )

00 0 Rr R Rr
k(7)) e (7).

this function will also verify the above Helmholtz equation, that is®

RQ
A® - —06=0.
4
Consequently, the solution of the Oseen equation AP ~—R-‘?—f£ = 0 could
be represented in the form

1

b () / [Ag (1) © (——r 9) + By () Ko (%—r):l eBigy

0

the functions Az(t) and By(t) being distinguished via the boundary con-
ditions.

By introducing also the Bessel function of imaginary argument, of the
second kind and the first order, that is Kj(z), which is linked to the
previous function Ko(z) by the relation Ky(z) = —Ki(z) and denoting
by C1 = A1 + 1By and Cy = A; + iBy, it is shown that [33]

) 2 /0 0 L0\ -
vl_QO:_E<8y+z—;>Q+ (53/‘+15;)’(f)

i 1
2 R R = R\ i
- ‘—E /61222 [CQKQ (57‘) + CQKI (—2_7"> € 19] dt.

—
i

o

>The explicit expression of this function ©, the KO s conjugate, can be found in the literature
[154].
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By imposing now the adherence condition, either we approach the
arc (C) from its left or from its right, that is vy —ive = —1; using the
Plemelj “jump” theorems for the potential of double layer, we obtain
the singular integral equation (but which can be reduced to a Fredholm
equation with a continuous kernel) of the problem

L dt
}g C(t)é +in

R [! R _ R . R

where C = A+ iB with A = A} = Ay and B = —B, = B (equali-
ties previously proved) while £ denotes the integral considered in the
Cauchy (principal) sense.

When (C) is a flat plate without any incidence (that is, placed on the
Oz axis), the equations of this profile are z = s , y = 0 (s € [0,1]),
E=s—t,n=0,p=|s—t|and 2 =z — t + iy = 7e'.

Remarking that the factors which multiply the unknown C, in the
integral equation of the problem, are zero, by separating the real and
imaginary part of this equation we obtain either an equation which has
only the trivial solution B(t) = 0 or the integral equation of first kind

],[ 1 A H(s — t)dt = k
0

where

1 R = R R
H Py 262 [KO(Z |s t|)+sgn(s t)K1(2 Is t|)]

Supposing that the Reynolds numbers are low, the singular kernel

Rig_
H(s —t) could be approximated by % In JlsTt—l + % (v — 1), v being the

Euler constant. Consequently the above integral equation becomes

1
/A(t)[ln4|s—t|+a—1]dt=1
0

where a =y + In % and whose solution, given by T. Carlemann, is

1

7(a—1)t{d —t)

Aft) =
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More details on this Oseen system approach can be found in [33].

8. Flows With High (Large) Reynolds Number

If we look again at the reduced system

where now the Reynolds number K = %L is supposed large (which could

be done also for v small) a legitimate question will be whether or not
the solution of this system is “close” to that of the corresponding Euler
system, for the same flow domain, that is to

Uiz = 0,0;U;5 +p; =0, 8- nfyp =0.

In other words, the fact that —1}351_1 — 0 would imply the convergence
of the Navier—Stokes system solution to the corresponding solution of
the ideal incompressible fluid (Euler) equations?

We will see that the presence of this viscosity term %{-Aﬁ, irrespective
of how small it is, besides retaining of the second order character for the
Navier—Stokes system, together with the adherence condition (obviously
more complete than the slip condition for inviscid fluids) will determine:

1. The “Procrustian” differentiation of the fluid flow governed by
the Navier—Stokes equations (vis-a-vis the flow associated to the Euler
equations) in the proximity (vicinity) of the boundary @D in a region
whose “thickness” is in inverse variation with R.

2. The mentioned region where this differentiation occurs and which
persists irrespective of how small R is, could be even separated from the
boundary, this separation acting as a source of vorticity.

So that completely new circumstances will arise and they will be fun-
damental to understanding the limits of the inviscid fluid model, which
means the extent to which one could use with good results the hypothe-
ses (schemes) already introduced for this inviscid fluid.

For a better understanding of these ideas we start our study with a
simple mathematical model where one analyses the relationship between
the solution of the second order differential equation with Dirichlet (bilo-
cal) condition and the solution of a Cauchy problem for that first order
differential equation which is the “limit” of the first equation when the
small parameter € — 0. The conclusions obtained from this abstract
mathematical model will be extended to the parallelism between the
Navier—Stokes and Euler equations.
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8.1 Mathematical Model

Let us consider the second order differential equation

ef (z) + fl(z) =a, z€0,1]

where a € (0,1) and ¢ is a small positive parameter, to which we join
the boundary conditions

f(0)=0,f(1)=1.

It is known that the unique solution of this bilocal problem is

o8

flae) =(1—-a) "% 4ag.
l—e"¢

Suppose now that, in this solution, we make ¢ — 0 and so we have

lim f(z,e) = fo(z) =1+ a(z ~ 1)

for z € (0, 1].

A questionable aspect would be the rapport between this limit and
the “limit” of the differential equation resulting from the given equation
when € — 0, which means the differential equation f' = a. In fact fo(z)
will be a solution of the differential equation f' = a, more precisely that
solution which satisfies the prescribed condition fp(1) = 1 but it does
not at the point 0 where fo(0) =1 —a # 0.

In other terms the convergence of f(z,e) to fo(z) when € — 0, is
nonuniform in the interval [0, 1] and in the neighborhood of zero fo(z)
cannot be considered a correct approximation for the exact solution
f(z,€) of the initially given bilocal problem for the second order dif-
ferential equation.

To get a correct approximation of f(z,€) in the neighborhood of z =
0 we will use a special technique (the ‘“ordinates dilatation”). More
precisely, we perform a change of variable z = £ and then we make
g — 0 but keeping £ = £ to be a constant. So that we obtain

lim f(2,6) = fo(§) = (1-a)(1-e7¢).
(& fized)

This new limit function fy (¢) will be the solution of that differential
equation got from the initial one by the change of variable and function
z = €€, f(z,e) = f (¢&,¢) and then keeping only the main (of the highest
order in €) terms of it, i.e., of the differential equation "+ f'=0.We
can also see that f(0) = 0 and Elim fo(€) =1—a = fu(0), that is a

o0
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“matching condition” of the two approximations holds. Obviously the
just found function fy (%) represents a good approximation of f(z,¢)
(for £ enough small) in the neighborhood V(0) of the origin (where a
boundary condition is lost) while fo(z) will be a correct approximation
for the same function in the complement of the previous region, that is
for z ¢ V(0).

This simple model could be a guide in introducing the so-called “bound-
ary layer” which corresponds to the region where the approximation of
the solution of the Navier—Stokes system through the corresponding Eu-
ler solution is not possible. In fact the Navier—Stokes system, with a high
Reynolds number, plays the role of the above second order differential
equation with € = %, the immediate proximity of the wall (obstacle) cor-
responds to V(0) and the Euler equation takes the place of the “limit”
equation f' = a (when ¢ = % - 0).

To get a correct approximation of the Navier—Stokes equations in the
vicinity of the obstacle (wall), where the solution of the Euler equation
fails (replacing also the adherence condition by the much less rigorous
slip condition), one performs again a change of variables and functions
(the “ordinate dilatation”) making then ¢ — 0 such that the new just
introduced variables keep their constancy. Finally, considering only the
main terms in € = % (and neglecting the rest) we reach the so-called
boundary layer equations.

As regards the solutions of the Euler system, they match with those
of the boundary layer equations at a sufficiently large distance from the
obstacle, i.e., on the “border” of this boundary layer whose thickness
varies directly with € = %, as we will see later.

The parallelism between the envisaged mathematical model and the
approximation of the Navier—Stokes system by the Euler and boundary
layer equations is illustrated also in Figure 3.1.

8.2 The Boundary Layer Equations

Our purpose is now to determine explicitly the boundary layer equa-
tions in the conditions of the existence of an obstacle which could be
identified with the positive real semiaxis (the half-infinite flat plate) and
which is placed in a viscous incompressible fluid stream with a veloc-
ity voo(Uso,0) at far field. Obviously the same problem for an ideal
fluid (a uniform flow) leads, in nondimensional variables, to the solution
u = 1,0 = 0,p = 1, but this solution does not approximate the viscous
fluid flow in the boundary layer formed in the proximity of the wall.

To determine the boundary layer equations, we should set up a change
of variable and function that implies the “coordinates dilatation” (in this
case an “ordinates dilatation”) and then we keep only the main terms in
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Y1g
Euler solution
0.8 fo(x)
Navier-Stokes solution
i f(x,e)
0.6 -
54l /deary layer solyition
A fol %)

0.2

0 -

0 0.5 e

Figure 3.1. The approximation of the Navier—Stokes solutions by the Euler and
boundary layer solution

71{. More precisely, in the nondimensionalized equations of the viscous

incompressible fluid, that is in

_ _ 1_ . _ = _ o _
Uiz =0,%5u; 5+ Pz = g hI = 1,2;7,7 =1,2 and 4; = 4; U = 0,
performing a change of variable and function which allows a clearer ap-
pearance of the velocity component normal to the plate (“the ordinates
dilatation”), that is

57:5,?7=R_a7hﬂ = U, :R_aﬁaﬁ:ﬁ with >0,

we obtain that (necessarily) a = %, §=R"2 being just the boundary
layer “thickness” (for any other value of ¢, either the continuity equation
would lose a term, becoming trivial, or the terms due to viscosity or
those due to the acceleration quantity — from the other two equations
— would disappear, in both situations the whole system becoming more
“poor”). If now we make R — oo, imposing £ and 7 to be constant and
then keeping only the main terms in -}17, one obtains the following system
of equations of boundary layer (Prandtl)®

o 9

o T

®The boundary layer equations in the case of curved surfaces are much more complicated
(see, for instance, S.L. Goldstein [56]).
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_ou  _0u  0p 0%

Yo "oy T oe T aer
op
an ="

with the boundary conditions which express the adherence to the plate

ﬂ(f,()) :5(570) =0,£>0

together with the matching conditions with the inviscid fluid flow

hmu({n)—hn(l)u( y) =1,

n—o00
nlggop(&n) = ?}gr(l)p(w,y) =1

Obviously, the approximation through the boundary layer solution
is backed by the existence of some positive constants C and & such
that, in a certain norm within the velocity space, the solution of the
Navier—Stokes system and the corresponding solution of the boundary
layer equations satisfy an estimation of the form’

||ﬁ—ﬁ||§%, for 0 <y <éand R — oo.

Before giving a brief mathematical study of the Prandtl equations we
should make some remarks. First, if we evaluate the circulation along a
simple contour (for instance, a rectangular one) which is tangent to the
obstacle, being all the time inside the boundary layer, this circulation
will vanish. Really, if our rectangular contour ABCD has the side DC
tangent to the obstacle at D and the other side AB is obviously parallel
with it, from @ = 0 on the boundary, we have also there g’é = 0 while the

continuity equation leads to a = 0. Thus, since ¥ = 0 on the boundary
we could suppose that v is small in the proximity of the boundary or
more specifically, ¥ is small compared with the value of @ along AB while
% is near zero along DC. So we have

/ i’r-dr:/f)dn+/ad§—/fzdn—/adﬁz/ﬂd§>0.

ABCD DA AB CB DcC AB

"There are very few, and only in particular cases, mathematical results on such estimations.
Concerning the existence and uniqueness theorems we should mention O.A. Olejnik [96] and
P. C. Fife [44] who have shown, under some assumptions, the existence of such an estimation

? = 1
for o = 3
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Implicitly, there will be a source of vorticity, the existence of the
boundary layer being associated with a mechanism for producing vor-
ticity in the boundary vicinity.

Experimentally, we can see that, when a boundary layer arises in the
neighborhood of an obstacle and an “unfavourable” pressure gradient®
occurs, there is a point C where this boundary layer is separating from
the obstacle, between the upper delimitation border of the boundary
layer and the obstacle surface some inverse flows being possibly formed.
This separation will be a vorticity source which propagates in the bound-
ary layer which could support the almost potential fluid flows model (see
the previous chapter), the separating vorticity lines being considered as
emanating from the separation points of the boundary layer. It would be
plausible to identify the separation points with those points where the
vorticity vanishes although there are no mathematical results to support
this assertion.

The second matching condition, together with the last equation, shows
that § (£,m) = 1, which means the pressure is constant inside the bound-
ary layer and its value equals that of the pressure of the ideal fluid in
the adjacent flow. .

As a consequence of this remark, %’é = 0 and the Prandtl system
will contain only the velocity components % and ©. But the continuity
equation (the compressibility condition) allows then the construction of
a stream function % such that dz/) = @idn ~vd{ and so the boundary layer
system could be rewritten, in the unique unknown w, as

Fp_ oY

ond  On0tdn  O¢ On?

an equation to which one should attach the conditions
8 (£,0) O

$(E0) = =5 =0, lim o=

=0,

To construct the solution of this third order nonlinear partial differ-
ential equation, we remark that if ¢ (£,7) is a solution of this equation,

8The “unfavourable” pressure gradients are corelated with a pressure increasing in the flow
direction which leads to a slower fluid flow in the boundary layer together with an accentuated
slenderness of this one, all of them determining the formation of a rest region where a slow
inverse flow could arise. As the main fluid stream should avoid this quite significant zone and
thus determine the boundary layer separation, in this case we can’t make an exact assesment
of the adjacent inviscid flow. In the conditions of the “favourable” pressure gradients, the
decrease of the pressure in the sense of the flow together with the continuous slenderness of
the boundary layer, make that the outer inviscid fluid model will be not affected anymore
and this inviscid model could be “added” without any difficulties.
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the same thing happens with the functions %KE (%, %) for any constants
a and b. In the particular case when these constants are linked through
a relation of the form b = a™ (n rational), together with the solution

P (£,m) we also have the class of solutions a'~"¢) (5 —’7—). An imme-

a’a™

a’a™
any fixed points, i.e., if this correspondence, by a suitable choice of the
constants @ and b, can lead to such functions which satisfy the equality

b (€m) = a " (é i) :

diate question will be if the application ¥ (£,7) — al~™% (§ —77—) has

a’ a®
It is shown that the necessary form of the functions % (€,7) to fulfil

the above requirement is 9 (£,7) = 17" f (Zﬂ'?) for any rational n [52].
On the other hand the fulfilment of the condition

lim %13 = lim 722§/ (i) =1,

n—oo Jn 7—00 '3

implies a compulsory choice for n, namely n = %

Therefore we intend to look for those solutions (of the boundary layer
system) which are of the form ¢ = §%f (0) withé > 0 and 6 = E% In the

language of the function f, the Prandtl equation becomes a nonlinear
ordinary differential equation

2f" (0) + f(6) f" (6) =0 (3.2)

with the boundary conditions

FO)=7(0)=0, f'(c) =1

H. Weyl formulated a successive approximations procedure which pro-
ves the existence and the uniqueness of the solution of the above equa-
tion. This solution has been exactly calculated but it presents some
inconvenience. Thus for £ small, ¥ becomes infinite which could be
avoided by choosing a suitable system of coordinates. At the same time,
in V(0) the Reynolds number R, = *z (there is no reference length
associated to the problem) becomes small, irrespective of how small is
v, which contradicts the basic hypothesis that the Reynolds number is
always very large. In spite of all these shortcomings, which cannot be
avoided in the boundary layer theory, the obtained solutions agree very
well with experience at all the points outside of V(0).
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Figure 3.2 points out the shape of the longitudinal velocity profile
@ = f'(#) which comes from the Weyl solution. Experience confirms
these results, showing that this velocity profile tends to stabilize.

1 AU=U/to

0.8¢

0.6}

0.4

0.2

0=n& =2y (u v '3
0 2 4 8 i)

Figure 3.2. The profile of the longitudinal velocities

Before ending this section we try to give a definition of the bound-
ary layer “thickness”, even if this concept is not very precisely stated.
One accepts an understanding that the thickness corresponding to the
abscissa z is that y for which u = 0,99U,. Therefore, it corresponds
to the value § which satisfies 1 — f/(#) = 0.01, which means this value
should be approximately # = 5. Consequently we have

vr v
6:5 ——— e
VUOO 5\/ Uy’

that is the thickness grows together with y/z and hence the shape of the
boundary layer “border” has a parabolic shape.

The aim of this book is not to overview the analytical or “practical”
methods for solving the boundary layer equations. There is a large vari-
ety of such methods but most of them are valid only in particular cases or
they are not sufficiently rigorous concerning the approximations made.
In fact this last remark involves many of the papers on the boundary
layer theory, the practical applications imposing a “rush” for effective
solutions which are not always correct from the mathematical point of
view.

In what follows we will focus on a probabilistic algorithm which allows
modification of the fluid flow governed by the Euler equations, in the
vicinity of the boundary, in order to simulate the boundary layer effects
and implicitly to get new approximations, in the same vicinity, for the
solutions of the Navier—Stokes system.



180  BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

8.3 Probabilistic Algorithm for the Prandtl
Equations

In what follows we will describe a random procedure (due to A. 1.
Chorin) based on a distribution of vortex sheets that allows construction
of a practical numerical algorithm for approaching the boundary layer
equations.

Let us consider, first, the heat equation for an infinite rod, namely

UVt = Vg, —00 < T < 00,1 2> 0,
where v = v(z,t) represents the temperature in the rod and v its con-
ductivity.
Accepting that, at the initial moment, v(z,0) = d(z), 6(x) being the
Dirac distribution, then the (distributional) solution of this equation is
the fundamental (Green) solution given by

1 —1z?
Gz, t) = \/Eu—teXp(4l/t) .

This solution could be probabilistically interpreted in two ways:

1) Fix the time ¢ and place N particles, of mass %, at the origin
z = 0. Suppose that these particles “jump” so that the associated
random variables follow the Gaussian distribution with mean zero and
variance 2vt. Thus, the probability that such a particle will “land”
between z and z-+dz is the Gauss probability density function multiplied

by dz (the length of the landing interval), precisely ﬁ exp (—%) dz.

If we repeat this with a very large number of particles (provided that
their total mass is unity), then, according to the central limit theo-
rem, the probability density function of the arithmetic average of the
associated independent Gaussian random variables when their number
increases indefinitely, converges to the probability density function of
the individual Gaussian distribution considered above;

2) Let us split up the time interval [0,t] into { subintervals, each of
them with length At = %, and consider the following procedure in a step
by step manner.

Again let us place the N particles of mass %, at the origin, but now
at t = 0 too. Suppose that these particles will undergo a random walk,
more precisely, the position of the ** particle at the moment mA¢t (i = 1,
o Nym=1,...,1)is

+1
apt =t + ", (a7 = 0)
where 1] are independent Gaussian random variables, each of them with

mean 0 and variance 2vAt. The final displacement of the it* particle



Viscous Incompressible Fluid Dynamics 181

is the sum of its displacements and it has, obviously, a Gaussian dis-
tribution with mean zero and variance ! x 2vAt = 2vt. Automatically
the probability density function associated to one particle (its random
variable) at time £, has the same structure as above and methods 1) and
2) are equivalent.

Let us recall now the same heat equation but with the initial condition
v(z,0) = f(z). We know that the solution of this problem is

o]

v(z,t) = / G (z,2',t) f (2) dz'

where

G(z,x',t) =

4ut

1
Varmut

But this solution has also a probabilistic interpretation. More pre-
cisely, let us consider the N particles, starting at a random initial posi-

S 0
tion z?, 1 = 1, N , and let us assign to each of them the mass f—(Naﬁ If

we let the particles perform a random walk (as in the method 2), keep-
ing their mass constant, then, after ! steps, the expected distribution of
mass for the N particles, at a real position, is given by the above v(z,t)
solution.

If the heat equation is considered only on the half-line z < 0, with
boundary condition v(0,t) = 0, then the Green function for this problem
is

exp [_ M] _

G* (z,2',t) = G (z,7',t) — G (z, -7, 1)

with
’ _ 1 _ (:L‘ — ‘LJ)2
G(x,w,t)—mexp[ mrranli
As
G*(0,2,t) =0, G*(z,2',0) =6 (z —2z')
and

8G* (z,2',t) = vo2G* (z,7,t),

the solution of the heat problem
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Vg = Vpr, Z < 0,8 >0,

v(2,0) = f(2),v(0,) =0,

is
v(z,t) = / G* (z,2',t) f (') do’.

The probabilistic interpretation of the last result is obtained as above,
by starting with N particles of mass ﬂﬁl—z at ' and N of mass —L%’l at
—z', and letting them all (random) walk (by, for instance, the method
2).

Random walk methods will now be applied to vortex sheets. For the
sake of simplicity, let us consider the plane fluid flow in the upper half
plane y > 0 and suppose that the boundary y = 0 (the infinite flat
plate) is rigid and at rest while the free-stream velocity of magnitude U
is parallel to the real axis. Let us seek that solution of the Navier—Stokes
system which is parallel to the flat plate and independent on z, that is
u = u(y,t), v = 0, the pressure constancy being also ensured such that
gradp = 0.

Obviously the appropiate Euler system solution is (U, 0).

Since the Navier—Stokes equations require the boundary conditions

u (0,t) = 0,u(o0,t) =U

and thus
0
— — =0
U o7 +v By )
the Navier—Stokes system reduces to
ou _ 1%
ot ROy?
or by introducing the nondimensional variables y' = £ and ¢’ = %, to
Ou L? d%u
ot~ RT by'?’

2 . . . . .
If LT = 1, then the nondimensionalized form of this equation is the
same as that of the above equation and it will be the same with the
boundary conditions. Accepting that the nondimensionalized equation
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with appropiate boundary conditions has a unique solution, this solution
must satisfy u (%, £) = u (y,t) if L* = T Picking T =1t, L = V/t, that is

u (—\%, 1) = u (y,t), we can state that u depends on y and ¢ only through

the combination \% Set n = 2—\/%, v=% and u(y,t) = Uf (). Then

the initial equation becomes the following ordinary differential equation
(in thefunction f), with appropiate boundary conditions, more precisely

") +2nf (n) =0, f(oo) =1, f(0)=0.

But the unique solution of this bilocal problem is

n
20 _g2
=— d
u \/7_r/e S
0

o0
where we have used the well-known result f e’ ds = 4
0

This solution shows that there is a significant deviation from the Euler

equation solution in a region near the wall (the boundary layer) whose

“thickness” is proportional to —‘—/_\/% and thus, for fixed time, the boundary

1
layer decreases as 7R

Correspondingly, the vorticity of the flow is

()
N yvt )’
satisfying the equation &; = lRfyy.

Unfortunately the boundary conditions for vorticity are not explicit
and they should be determined from the adherence conditions on the
boundary.

To reconstruct this solution using random walks method, we first de-
fine a vortex sheet of strength ¢ as a fluid flow parallel to the real axis
Oz where the component u “jumps” by the amount £ when ¥y crosses a
parallel line with Oz, say y = yo, i.e., u{yg) —u(yy ) = —¢.

As t — 0%, the solution tends to the constant value U, for y > 0,
while it vanishes (u = 0 ) for y = 0. In other words, when ¢ = 0% the
solution approaches a vortex sheet on Oz with strength —U.

Let us replace this vortex sheet by N “small” vortex sheets, each of
strength —-%. Accept that each of these smaller vortex sheets undergoes
a random walk in the y direction defined by

y =y 4+, (v = 0)
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where 7" are Gaussian random variables with mean zero and variance
2vAt whith At =&, m=1,2,.., 1

We state that for large N the distribution of vorticity is constructed
this way and from it the function

o

u(y,t)=U+/s<y,t)

)

satisfies the heat equation ( u; = %uyy and & = %uyy )- This is clear
from the random walk method developed above for the heat equation.
What requires additional explanation is why u satisfies the no-slip con-
dition on the boundary. If we remark that on the average, half of the
vortex sheets are above Oz and half below, we can write

umw:U+/§mﬂﬁ
0

or, in a discrete version,

N/2

w0, =U+» & .
1=1

But the strength of the ith vortex sheet is & = ——%VQ and therefore

u(0,t) = 0.

The random walk method based on vortex sheets will now be extended
to the solution of the Prandtl equation(in an unsteady regime) for the
half-infinite flat plate (the positive real semiaxis).

The associated fluid flow (boundary layer) will be approximated at
t = 0 by a set of N vortex sheets of finite width h, corresponding to
the coordinates = € [z, - %,xi + %] and y = y;, of strength &. To
displace these vortex sheets we split up the time interval [0,] in [ parts
of duration At = % and we advance in time (from ¢ to ¢t + At)following
the algorithm:

(i) the vortices move according to a discrete approximation of the
ideal (Euler) flow;

(ii) vorticity is added by placing new vortex sheets on the boundary so
that the resultant flow satisfies the adherence condition on the boundary;

(iii) the vortex sheets undergo a random walk as that described in the
previous flat plate example to approximate the solution of the heat equa-
tion & = v&yy, and to preserve the boundary conditions on boundary
u=v=0;
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(iv) time is advanced by the step At and the procedure restarts until
time t is reached.

Obviously, the number of vortex sheets will increase in time, which
corresponds to the fact that vorticity is created in the boundary layer.

Let explain now step (i). It is known that the velocity component u
satisfies

u(m)=u(oo)—/y§—‘;dy:u<oo)—/ysdy

or, in a discrete version, the component u of the velocity of the i* vortex
due to the vortex sheets, is given by

u (zi,9:) = u(00) — Y _&;.

This sum is extended over all the vortex sheets such that y; > y; and
|z; — ;| < %, that is for all the vortex sheets whose “shadow” on the Ox
axis contains the point (z;,y;). On the other hand the incompressibility
and the boundary condition v (z,0) = 0 lead to

y y
v(z,y,t) =v(:1:,0,t)-—/uz(:c,s,t)ds=—%/u(m,s,t)d&.
0 0

9

This last relation determines v in terms of w and a corresponding

(discrete) approximate evaluation could be

y Yy
1 h h
v(x,y,t)_ﬁ /U(z+§,s,t) ds—/u(x—i,s,t) ds
0 0

But a more useful approximation is obtained by rewriting the above
relation in terms of the vortex strengths &;, precisely

1. .
vi (Zi, %, t) = 7 (L -1t)

where

2Obviously, due to this relation, if u(oo) is prescribed we will not be allowed to prescribe
v (00) too.
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+

and
I (ziym) = > ujés

Here ) means the sum over all j # i for which |.'zj - (a:, + %)l < %
+

and 2 means the sum over all j which satisfy |$j — (zi — %)[ < %

We could summarize all this by saying that in step (i) of the above
algorithm, the i*® vortex sheet is moved by

x;”H = z]" + u; At,

Yyt =y 4oy At

where u; and v; are given by the respective above expressions.

The new velocity field is now determined by the same vortex sheet but
considered at their new positions. This new velocity field satisfies v =0
on the real axis (by construction) and also % (0c0) = U. Concerning the
condition © == 0 on the real axis at the beginning of the procedure, it
needs not remain so.

The aim of the second step (ii) is just to correct the boundary condi-
tions. This may be done as follows: divide the real axis into segments of
length h and, supposing that at the center P; of one of these segments
u = u; 7 0, we place at P, one or more vortex sheets with the same sum
of strengths 2wy, which will guarantee that, on average, © = 0 on the Oz
axis in the new flow.

In step (iii) we add a random y component to positions (z;,y;) of
the existing vortex sheets, precisely a Gaussian random variable n (with
mean 0 and variance 2vAt), such that the new positions are given by

+1 _
' = ot + u A,

ymth =y 4 v At + g

Intuitively, the vortex sheets move about in ideal flow together with a
random y-component, simulating viscous diffusion. Vortex sheets newly
created (to observe the boundary conditions) diffuse out from the bound-
ary by means of the same random component y and then get “swept”
downstream by the main flow.
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If there is a leading edge (such as the origin in the case of the half-
infinite plate situated on the positive real semiaxis), the model will be
forced to create more vortex sheets at this edge in order to satisfy the
adherence condition (since they are immediately swept downstream by
the flow with no replacement).

Regarding the length of the vortex sheet displacement, if in the Oz
direction its average is proportional to At, in the Oy direction the “av-
erage” jump (displacement) will be proportional to VAt

Details about the use of this model on vortex sheets can be found in
the papers [20] while some theoretical aspects are treated in [21].

8.4 Example

Let us consider, as a simple problem, a semiinfinite flat plate aligned
with a uniform flow of constant velocity U and of constant physical
properties, including density p [22]. The boundary layer equations are
in this case simplified to

du  Ou  Ou
U%‘ + ’Ué; = 'U—a—y~2,
(3.3)
Ou Ov _ 0
oz + oy
where v = p/p is the kinematic viscosity of the fluid. From these equa-
tions we could calculate the velocity components u,v. The model is valid
for the thin laminar boundary layer within an incompressible fluid but
also for a compressible fluid with a velocity much slower than the speed
of sound.
At any point z on the plate we have three boundary conditions —
two for the first equation and one for the second — namely the non-slip
conditions at the surface and the uniform flow at far distances, that is

uly:() = 0, 'Ulyz() = 0, uly:w =U. (34)

The differential equation and the boundary conditions for f (3.2) are

therefore =
+ "2— =V,
f(0) = f'(0) =0, (3.5)
f(o0) =1,
(the Blasius problem) and the velocity components become
u=Uf,

v=1 (ﬂ)m (nf' — 1.

x
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This problem could be numerically solved. First, it is transformed
into a system of three first order equations

ll

f'=p, f(0) =0,
P =q, p(0) =0,
ql = _%fqa (I(O) = qo,

with gg not known for the moment. It will be calculated by successive
numerical integrations with a Runge—Kutta method such that p(oc) =1
is satisfied.

If we have f and its derivatives p and g, we could calculate the velocity
components within the boundary layer from formulas (3.6).

Let us consider a numerical example with U = 30m/s and the kine-
matic viscosity of the air (at sealevel) v = 1.49x1073m?2/s. The problem
(3.5) is solved by the MATLAB program

for i=1:10 q(i)=i/10;

[t,x]=0ode45(Q@edstrlim, [0,10]1,[0 0 q(i)1);

r(i)=x(length(x),2);

end;

plot(q,r);grid;xlabel(’q’);ylabel(’r’);

which uses the function subprogram edstrlim.m

function yprim=edstrlim(x,y);

yprim=zeros(3,1);

yprim(1)=y(2);

yprim(2)=y(3);

yprim(3)=-y(1)*y(3)/2;

The program chooses different values for go and solves the correspond-
ing Cauchy problem. The values of 7 representing f’ for large values
(n = 10) are taken and the value go = 0.3320572 for which f’'(10) =1 is
found (see for example Figure 3.3).

The corresponding solution f'(n) is represented in Figure 3.4.

The structure of the boundary layer could be now obtained by rep-
resenting the components of the velocities u respectively v from the
formulas (3.6). We remark that the thickness of the boundary layer (de-
fined as the height for which u = 0.994U which occurs for 1 = 5.2) is of
the form

vz\1/2
d(:z:)—5.2(U) :
therefore it is represented by a parabola, see Figure 3.5.

We also remark that the boundary layer thickness is about 0.37cm
and the Reynolds number corresponding to this distance is R = Uz /v =
2.01 x 108; the Reynolds number must be large in order to ensure the
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25

Figure 3.3. Choosing the initial condition go

15

0 B 4 H ;
0 2 4 M 6 8 10

Figure 3.4. The solution of the Blasius problem. The graph of f

validity of the boundary layer theory. Moreover, the shear stress is

Oou U2
r=ugy = (55)

v

thus f” describes the dimensionless shear stress in the boundary layer.
Consequently, the particular value f”(0) = go which is the value calcu-
lated in the program, is the dimensionless shear stress on the flat plate.

We could avoid the calculation of gg (which needs the successive solv-
ing of Cauchy problems on large intervals [0,7]) by using the following
change of coordinates.

Let n = kz where k is a constant that will be determined, and let g
be a function associated to f through f(n) = g(2)/k. Then

arf 1 d'g

dn® k1l gun




190  BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD
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Figure 3.5. The boundary layer for a flat plate

so that the Blasius problem (3.5) becomes

g/// + %gg// =0
9(0) = ¢'(0) =0,
g'(00) = k2.

But k£ appears only in the condition at infinity, therefore we may
choose g”(0) = 1. By solving this single Cauchy problem, we obtain
its solution g(z), together with the derivatives ¢'(z) and ¢"(z), on a
reasonably large interval for 2. Taking the square root of ¢’ we find the
value of k at the end of that interval. Then, f(n) = g(z)/k and n = k=.

Other procedure could be the use of the relation f”(0) = k=3 after
the calculation of %, and the solving of the Cauchy problem for f with
these initial data.

The above problem may be complicated by injection or suction of fluid
through the body surface resulting in a modification of the structure of
the boundary layer and also of the heat transfer. If the injection of
fluid is suitably distributed, the fluid flow remains self-similar, that is
the equations describing the phenomenon and the boundary conditions
may be transformed into a form with a single parameter as independent
variable.

Such a case is when the velocity of the injected (or sucked) fluid is of

the form 12
e
T

where C is a constant. In this case the equation and the initial conditions
of the problem (3.5) remain the same, excepting of f(0) = —2C where C
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positive or negative means injection, respectively suction of fluid. The
results are shown in Figure 3.6.

-2

0 0.5 1 1.5

Figure 3.6. Boundary layer with injection of fluid

Now in the velocity profile within the boundary layer there exists an
inflection point. At that point uyy = 0 and this means an instability of
the flow and a turbulence may develop in the boundary layer.

We remark that in the case of an injection or suction of fluid, we
cannot apply the method of changing of variables to solve the Blasius
problem. The constant k& appears now at a boundary condition, not only
at infinity and now g”(0) cannot be arbitrarily chosen.

8.5 Dynamic Boundary Layer with Sliding on a
Plane Plaque

We will now determine the characteristic values of the viscous bound-
ary layer, disregarding the classical hypothesis of adherence to the wall
114].
[ L]et us consider a semifinite plane plaque situated on the Oz axis,
having the edge at O, attacked under a null angle by a viscous incom-
pressible fluid stream. The flow is plane and we let Ozy be the plane of
the flow. The fluid flow equations are

op

pv-Vuz—ax

+ pAu, pv-Vv=—g§+uAv,

o o,
dr oy
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where v = v(u,v), i.e.,

Ju Ju 0%u
du Ov
5z "oy 0

according to the approximations of the boundary layer theory. Unlike
the theory of the classical boundary layer, in which to these equations
one associates the boundary conditions

U(fL‘,O) = 0, U(aj,o) = 0, U(.’L‘,OO) = Upo,

in our case, the boundary conditions will be

u(z,0) = ng—Z(m,O), v(z,0) = 0, u(z,0) = U, (3.8)

the first signifying the fact that the fluid, in contact with the plaque,
slides on its surface.

Taking v from the second equation (3.7) and replacing it into the first
equation, we get

ou_(fou, \oul _ o
ahre / oz oy “"ay2

and, by integration with respect to y fromy = 0 to y = é(z), we obtain
[0 ‘o |1 oo
U u u
—dy — —d —dy = —
P/Uamy Pu/axy +p/u6zy Tw
0 0 0 0

0
where 7, = i (—a%) , thus leading to the integral relationship
w

d
pugoa L (_u_ - 1) dy = —7y. (3.9)

Uoo \ Uo

We shall use this integral relationship by considering a velocity profile
within the boundary layer of the shape

U _—_ 2 3 4

=u=a+an+am +azn” +asn,

Uoco
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where
0<y<éz), —=u=1fory>dz), n=~2
—_— == = T = .
SyYs 'l y=z2 0 5(2)

The a; coefficients can be determined by using the appropriate conditions

__ ou 9

U = a—n, 6—772=0f0r7;:0,

_ ou 0%*u

u=1, 6—7].:07 '6—7—]‘2—=Of01‘7]=1,

L,

where L = m

Following the calculations, there appears the nondimensional profile
of the horizontal component of the velocity, in the shape

T= (2L +2n — 2 + %) . (3.10)

1
1+2L
In Figures 3.7, respectively 3.8, we present the profile of the nondimen-
sional velocity together with the influence of the L parameter on the
velocity’s profile.

u=u(eta,L)

Figure 3.7. The profile of the nonmensional velocity

Now, one can also determine other characteristic values of the bound-
ary layer. For instance, the local tension between two neighbor layers

T=p % has the expression

_ 2 2 3
T~5(1+2L)(1 3n* + 2n°)
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u=u(eta,lL)

> |L3=107" : : :

© L1=10"8

0 0.2 0.4 0.6 0.8 1

Figure 3.8. The influence of the L parameter

tau=tau(eta,L)

Figure 3.9. The local tension between two neighbor layers

and it is represented, within the section x = const. in Figure 3.9.
The local stress on the plaque has the expression

2uU 0
= . 3.11
"= 501+ 2L) (3:11)

Replacing the velocity expression (3.10) and the local stress on the
plaque (3.11) in the integral relationship (3.9), we get

A (S 3] o e
Ploogz {14202 \5 " 315)] ~ 5( +2L)’
respectively \
d(o 31
( ):(1+2L)——~5—4—",
dz 37 4+ 189L pus
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from where, by integrating, it turns out that

315 1!
=2,/(14+2L) v ——
o) \/( +20) T80T pus

due to §(0) = 0. From the relation (3.11) we get the expression of the

local stress on the plaque

3 1 \/37+ 189L ppud,
Tw(l') - (1+2L)3/2 315 z

which is represented in Figure 3.10.

tauw=tauw(x,L)

Figure 3.10. The local stress on the plaque

The influence of the abscissa ¢ and of the L parameter on the thickness

of the boundary layer is presented in Figure 3.11.

delta=delta(x,L)

0.2

Figure 3.11. The thickness of the boundary layer



Chapter 4

INTRODUCTION TO NUMERICAL
SOLUTIONS FOR ORDINARY AND
PARTIAL DIFFERENTIAL EQUATIONS

1. Introduction

The equations describing the flow of fluids are ordinary or partial dif-
ferential equations which combine the flow variables (the velocity com-
ponents, the pressure, etc.) and their derivatives. But for most of these
equations there are no analytical methods to find their solutions. Con-
sequently, different numerical methods should be used, methods which
allow us to produce approximative solutions by using computers. For
more details on such methods which are also presented in this book, we
refer to [4], [13], [18], [22], [43], [79], [100], [120], [121], [125], [128], [131],
[145], [155].

The main quantitative feature that we deal with is the accuracy of a
numerical method, i.e., its ability to approximate “as well as possible”
the analytical solution of the given problem when the approximation
tools become ‘“fine enough”. The main qualitative feature taken into
account is the stability of the method, i.e., its ability to not propagate
and not accumulate errors from the previous calculations to the following
ones.

The first step to numerically solve a given problem is its numerical
discretization. This means that each component of the differential or
partial differential equation is transformed into a “numerical analogue”
which can be represented in the computer and then processed by a com-
puter program, built on some algorithm.

The continuous form of these models could be represented as

Ay = f.

Excepting some very simple cases, we can not determine the exact so-
lutions of these equations and therefore we should find at least some
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approximative solutions that describe well enough the physical phe-
nomenon. These approximative solutions must be the elements u; from
a finite dimensional space, calculable by an acceptable effort from a finite
system of equations of the type

Apup = fp.

Here his a parameter supposed to tend towards zero, when the di-
mension of the system tends to infinity. The essential problem is the
link between up, and u. For its study, we need also a link between the fi-
nite dimensional space and the continuous space which allows finally the
evaluation of the distance (deviation) between u; and u, distance (devi-
ation) that must become small for a small ~ (the convergence problem).
For this, we need first a study which ensures that Ap becomes closer
to A when h — 0 (the consistency problem). Moreover, we need also a
study which ensures that uy, belongs to a bounded set when & — 0 (the
stability problem).

For example, the finite differences method based upon the Taylor
series, describes the derivatives of a function as the difference between
its values at various points. In other words, the method replaces the
derivative operators from A with combinations of some ‘“translation”
operators into Ap. If we know the values of the function u and its
derivatives at the point z, we could approximate the values of u at the
neighboring points  + h or £ — h by

du R?2d’u  A3d%u
& 2d e
‘ du h?d*v  h3d3u
u(z — h) = u(x) hE-{_?Eﬁ_F(_sz‘T}‘F

where his small and the derivatives of u are calculated at z.

But if we know the values of w at £ — h, z, = + h, by adding and
subtracting the above formulas we can approximate the first and the
second order derivatives of u at z, namely

u(z +h) =ulz) +h 4.

du 1
I = 7 @+ k) = u(@)] + O(h)
or
% = 2_1h_ [u(z + h) — u(z — h)] + O(h?)
and
d?u 1

= = 73 lule = h) = 2u(2) + ulz + k)] + O(R)

where O(h) or O(h?) represents the error order.
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Combining these formulas into the given equation Au — f = 0, we get

Apup — frn = apule + kh) =Y bef(z 4+ kh) =0
k k

The above formulas and others deduced by various techniques, as we
will see in the next sections, allow the replacing of every term from
the given equation, and thus obtaining its numerical analogue. This
can be performed by choosing a grid in the computational domain and
replacing the derivatives at the grid points with finite differences, as
above. Finally, we obtain a system from which we calculate the values of
the unknown functions at the grid points, i.e., we calculate the numerical
solution.

By this procedure, a differential or partial differential equation de-
fined on the entire domain, that is at an infinite number of points, is
transformed into a system with a finite number of equations which de-
scribes the relations between the values of the unknown solution at a
finite number of points (belonging to the domain).

If u is the exact solution and up the numerical one, then Apu — fj
is called the residue. If Apu — fp, = O(hP) when h — 0, p is called
the truncation order. The discretization procedure is consistent if the
truncation error tends towards zero when A — 0. But consistency is not
sufficient to prove the convergence of uy towards u. We have

u—up = (An) " (Apu — fn)

and thus a uniform boundedness of (Ah)—1 into the considered functional
space is also necessary, a property which is called the stability of the
approximation scheme. It comes usually from the relation

|can o] < K

by applying the Banach—Steinhaus theorem [121].

There are other aspects that must be taken into account when we
analyze a numerical method. Let us take an illustrative example, specif-
ically

Up — VUgg = 1,

u(0) = 0,u(1) =0,
where the exact solution is

T
1—ev
U =1I— -

1—ev

Let us discretize this equation with centered finite differences

5% [ula +h) = u(w ~ )] ~ 5 [z — ) = 2u(z) +ulz + B)] = 1
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If u; denotes the approximation of u(jk), for 7 = 0,1,..., N where
h = 1/N, we can calculate the exact discrete solution from the above
equations

1-¢/ 24P

“jzjh—m', 1=5"p

where P = h/v is the Peclet number. For P > 2 we remark some
important oscillations of the numerical solution in the vicinity of z =1,
see Figure 4.1. For P < 2 we have no oscillations.

1.5

0.5

0 0.2 04 0.6 0.8 1

Figure 4.1. The spatial instability

This particular behaviour is called spatial instability of the numerical
method and it is due to the dominant advective character of the equation
in the case of a small coefficient v.

If we use another numerical scheme, for instance

1 v
7 (uj —uj—1) — ) (uj1 — 2uj +uj_1) =1,

the numerical solution is given through the same formula but with g =
1+ 1/P and therefore the spatial instability does not interfere.

In the case of a time evolution, by discretization of the time deriva-
tive one can obtain explicit or implicit links between the values of the
unknown function at different time instants. It is necessary to study the
time stability of the envisaged numerical method.

The passing from a time level to another is numerically performed by
multiplication by a complex factor — the so-called amplification factor.
The errors appear, in magnitude — the dissipative errors — if the ampli-
fication factor is, in magnitude, less than 1, or in phase, if the numerical
solution is advected along a different speed than the exact solution. If
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the amplification factor is in magnitude larger than 1 the scheme is un-
stable. The phase errors are joined to the odd order derivatives which
are present in the equation, while the dissipative ones are joined to the
even order derivatives.

The discretization is often performed in two stages, using the lines
method. First, a spatial discretization is performed, obtaining a system
of time differential equations. To this system the specific methods are
then applied. The distribution of the eigenvalues of the spatial operator
from the discretized equation and the behaviour of the amplification
factor have an important role for the study of the algorithm.

The schemes which are not of this form are the space-time schemes.
Typical examples are the Lax—Wendroff (1960) and MacCormack (1969)
methods, but from the 1980s they gradually were replaced by the lines
methods. A reason for this is that the numerically steady solutions for
the space-time schemes could depend on the considered time step-size.

In physical problems, the admissible values of some variables are lim-
ited to some intervals. On the other hand, some numerical methods
allow the generation of spurious oscillations in the numerical solutions,
violating the above requirement.

Numerical schemes with a higher accuracy and generating lower oscil-
lations must be used. One of the properties characterizing such schemes
is the reduction of the total variation of the numerical solution (TVD
- Total Variation Diminishing) when marching in time, TV (u"t1) <

TV (u") where TV (u") = 3_; 'u;-’ﬂ - u;‘!

A much used scheme is MUSCL (Monotonic Upstream Scheme for
Conservation Laws), elaborated by Van Leer in 1983. For the construc-
tion of a nonoscillatory scheme it is important to reconstruct a local
interpolant of the unknown function from a discrete set of values.

Harten and Osher (1987) found a criterion which allows the construc-
tion of schemes not-TVD but yet nonoscillatory. A reconstruction of
degree k, R(u, k) of the function w is essentially nonoscillatory (ENO) if
TV(R(u,k)) < TV (u)+O(h")for r < k. Of course, in the neighborhood
of some singularities of the solution, the accuracy of these schemes is not
so good and must be improved by the grid refinement. But this action
could lead to stability problems which could be avoided by choosing of
some spatial discretizations with better stability qualities.

In the sequel we will illustrate, by some simple examples, the main
numerical methods for the basic types of problems of fluid dynamics. We
remark that, taking into account the significance and the frequency of
the appearance of these equations in practical problems, a lot of software
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was elaborated, more or less comprehensive, more or less accessible, in
order to solve numerically such problems.

Nowadays, the calculation of the values of some elementary or special
functions is no more a problem; many optimized algorithms are imple-
mented on all computing packages and the solving of linear systems of
equations Az = b is very easy. The exact solving methods for such sys-
tems are now accessible in MATLAB by the command z = A\b, which
analyses the matrix A and chooses the optimal solving procedure. The
frequently encountered case of a sparse matrix A is also considered; so we
may solve large systems of thousands of equations within an acceptable
computing time.

For very large systems, some iterative methods are also available
(gmres - Generalized Minimum Residual, pcg - Preconditioned Con-
jugate Gradients, for instance). These iterative methods need, usually,
the description of the matrix A or only the algorithm to calculate the
matrix-vector product Au and they are particularly efficient. Of course,
complex problems may lead to very large systems of algebraic equa-
tions whose solving is very difficult or even impossible with the already
implemented methods. In these cases it is necessary to find and to pro-
gramme specific algorithms taking into account the specific structure of
the system.

Analogously, the numerically solving of the main problems for partial
differential equations is facilitated by using the (PDE) -Partial Diffe-
rential Equations toolbox of MATLAB which allows a complete treat-
ment, from a description of the computational domain, to imposing of
the initial and the boundary conditions, choice of the (constant or vari-
able) coefficients of the equations, discretization of the domain by a
suitable triangular mesh, implementation of the finite element method
(including visualization of the solution), mesh refinement, etc.

Unfortunately, the increasing specificity of the problems reduces the
flexibility of these packages. They are designed to solve standard prob-
lems, more and more complex, with few variations, for specific domains
and taking into account only certain equations and phenomena. We re-
mark, for instance, the industrial packages FLUENT or COSMOS, used to
solve problems from fluid dynamics and heat transfer in 3D, which is in
a continuous development. Other software, based on the finite element
method, finite differences, finite volumes or spectral methods are FEAT-
FLOW, SIMPLE, QUICK, PHOENICS, FLOTRAN, NSFLEX, FIDAP, FIRE,
Liss, FASTEST, FEMLAB and many others, for educational or scientific
purposes, accessible on INTERNET.
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2. Discretization of a Simple Equation
In order to illustrate and compare some discretization methods, we
apply them to a simple equation (the one-dimensional diffusion equation)
ou  0%u

Er 2

2.1 Using the Finite Difference Method

We start by establishing the domain where the equation is studied. If,
for example, we model the diffusion of a gas into a tube of length I, the
spatial domain is the interval of the Oz axis associated to this length,
i.e., (0,1). The time domain begins at ¢ = 0 and indefinitely extends to
the positive direction of the time axis Ot, i.e., (0, +00). Concluding, the
equation domain is = (0,1) x (0, +o00) C IR2.

Now we can choose the grid. We will construct a grid formed by the
straight lines x = z;, = 0,1,...,n where zo = 0 and z, = [, with the
constant step size Az = z;41 — z; for all j in the Oz direction and the
straight lines ¢t = tx, k = 0,1,... where tg = 0 with the constant step
size At = tx41 — tg for all k£ in the Ot direction. The nodes will be the
intersection points of these straight lines, i.e., (z;,t), 7 = 0,1,...,n ,
k=0,1,...

We are able now to discretize the equation by replacing the derivatives
by finite differences. For example, if we denote by uf = u(z;, ), we
obtain for the node (z;, ),

uF ok k

— 9k k
j uj Ui - 2uj tugy,

At Azx? ’
which could be reset in the form

k+1 k k k

Applying these formulas for any 7 = 1,...,n — 1, we see that from the
known values for & = 0 (the initial conditions) we can calculate those
for k£ = 1, then from these values we calculate those for £ = 2 and so on.
At each step, we must know the values 4% and uf (from the boundary
conditions) in order to complete the time level values. Such a procedure
is called explicit. There are many such formulas, as we will see in a next
chapter.

2.2  Using the Finite Element Method

We will choose the same grid as that for the finite difference method
but for instance we will discretize the equation only with respect to the
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time
Y S

At 0Ox?

where u* = u(z, t;).

Let us construct the variational (or weak) form of this equation, by
multiplication with the known function v and by integration upon (0,1)

U k+1 k 182
u —-u U
had R SR Zd
/Ov ; dx——/ov 5 dz

which becomes, after an integration by parts,
/l 2 o
V—————ds = v —

0 At

Let us transform now this equation into its numerical analogue. We
divide the spatial domain (0,!) into elements, for example (z;,z2) U
(z2,z3), on each element we seek the unknown function under the form

= 3 j=1Nju; where N; are the shape functions and u; are those
corresponding to that element’s nodal values. Choosing the multipliers
v to be the shape functions on each element and considering the right-
hand side of the variational equation at the same time instant ¢z (the
explicit procedure), we find

! L 9 du
— — —dx
o Jo Oz 0z

*2 2 8Nu

Za,

n = 1,2, for the first element and a similar equation for the second.
But the shape functions are simple, the above integrals can be ex-
actly calculated, the integrated parts reciprocally reduce at the interior
nodes and finally we obtain two equations for each element, having as
unknowns the nodal values. In matrix form, these equations are, for

each element
a1y a2 Ilc+1 — fl
as; a2 uktt fe

Assembling these elements, the local numbering 1 — 2 becomes a global
numbering 1 —2 — 3 and the above systems become

z1 0

k41

air a2 0 U}C h
o .

az az 0 ustt | = | fo

0 0 o0/ \ i 0
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for the first element and

0 0 0 uhtl 0
0 b1 bio ustt = &
0 bo1 boo ubt! 92

for the second.
Combining these local systems into a global system , we get

k+1
ar aio 0 u f1
azy az +bi1 bio ustt =1 fot+o
0 ba1 ba2 uk+1 g2

Here we introduce the boundary conditions and then, by solving the
system, we get the nodal values of the solution at the instant ¢, from
the values at the instant f; (which appear on the right-hand side). We
also remark, although for two elements it is not yet apparent, that the
matrix of the system is a sparse matrix and thus the system could be
solved by corresponding techniques.

2.3  Using the Finite Volume Method
At the first step we discretize in time the equation,

uk-}-l _ ulc aZu

At T 9z?

Then, at the time instant t;, we divide the spatial domain (0,!) into
finite volumes (in our case they are intervals too) but having the reference
point P at the center. Considering three such neighboring finite volumes,
with centers at the points W and E (to West respectively to East of
P), these volumes have their interior boundaries placed at the points w
between W and P, respectively e between P and E. The discretization
of the spatial derivative is now performed by the formula

ou ou
) aer e
Fu| _ oz|, 0Oz,
022 |p Te — T
and then
du Ug — Uup Ou|  up—uw
oz|, zg—zp Oz|, zp—zTw

Replacing into the above equation for every reference point E, P, W
we obtain another system from which we can calculate ug, up, uw at the
next time instant {gx41. This step is performed as for the finite differences
method, using the initial and boundary conditions. What is different in
these two methods is the discretization procedure.
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24 Comparison of the Discretization Techniques

The above presented methods have a common feature: they generate
equations for the values of the unknown functions at a finite number of
points in the computational domain.

But there are also several differences. The finite difference and the
finite volume methods generate numerical equations at the reference
point based on the values at neighboring points. The finite element
method produces equations for each element independently of all other
elements. Only when the equations are collected together and assembled
into a global matrix are the interactions between elements taken into
account.

The finite element method takes care of boundary conditions of Neu-
mann type while the other two methods can easily apply to the Dirichlet
conditions.

The finite difference method could be easily extended to multidimen-
sional spatial domains if the chosen grid is regular (the cells must look
cuboid, in a topological sense). The grid indexing is simple but some
difficulties appear for the domain with a complex geometry.

For the finite element method there are no restrictions on the con-
nection of the elements when the sides (or faces) of the elements are
correctly aligned and have the same nodes for the neighboring elements.
This flexibility allows us to model a very complex geometry.

The finite volume method could also use irregular grids like the grids
for the finite element methods, but keeps the simplicity of writing the
equations like that for the finite difference method. Of course, the pres-
ence of a complex geometry slows down the computational programs.

Another advantage of the finite element method is that of the specific
mode to deduce the equations for each element which are then assembled.
Therefore, the addition of new elements by refinement of the existing
ones is not a major problem. For the other methods, the mesh refinement
is a major task and could involve the rewriting of the program.

But for all the methods used for the discrete analogue of the initial
equation, the obtained system of simultaneous equations must be solved.
The time marching from one time level to another could lead to a blow-
up of the numerical accumulated errors (the numerical instability of
the computations). This instability must be counteracted by using
suitable discretization procedures. On the other hand, when the spatial
dimensions of the cells tend towards zero, the numerical solutions must
tend towards the analytical solution of the problem (the convergence of
the algorithm). The following chapters will detail these features.
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3. The Cauchy Problem for Ordinary Differential
Equations

The simplest problems for ordinary differential equations (ODE) are
that for the first order equations

Y few) (4.1)

where y(z) is the unknown function. The geometric interpretation of
such an equation is based on the idea that for a given function y = y(t),
its derivative Mdtﬂ represents the slope of the tangent to its graph at the
point ¢. If at any point (¢,%) from IR? (or from the definition domain
of the equation) we draw a vector of slope f(t,y), we obtain a vector
field and therefore the differential equation defines a family of curves
(trajectories) which are tangent at every point (¢,y) to the corresponding
vector of the field.

For example, for the differential equation % = t?y we obtain Figure
4.2 where the (trajectories) curves family mentioned is obvious. From

2 - -
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=
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Figure 4.2. The flow field generated by the equation %’f =ty

here arises also the notion of flow field generated by the differential
equation, because the image is similar to the motion of the particles of
some fluid flow.

It is “obvious” from the picture that we can choose a unique solution
by choosing a point (¢,y) on the respective curve, i.e., by imposing a
condition of the form

y(to) = %o (4.2)
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called also a Cauchy condition. The two relations (4.1, 4.2) form a
Cauchy problem.

There exists a natural trend to “a priori” suppose the existence and
the uniqueness of the solution of a Cauchy problem since the differential
equation models a real, physical, observable phenomenon. However, the
real process and its mathematical model are two distinct entities. The
model reflects only partially the phenomenon, therefore it is possible
that some models have either no solutions or many solutions, some of
which without physical relevance.

The aim of the existence and uniqueness theorems is to describe fam-
ilies of equations as large as possible for which the existence and the
uniqueness of the Cauchy problem is ensured. For some difficult prob-
lems, often there are no explicit formulas for the solutions and implicitly
numerical calculations must be used. In these cases it is important to
know that a solution exists before investing time and computing effort
to look for something that eventually could not be found.

Definition. A solution of the Cauchy problem (4.1, 4.2) is a differen-
tiable function y of £, on an interval I which contains tg, which verifies

'Jt‘y(t) = .f(t7 y(t))7Vt el

and
y(to) = yo.
We remark that this definition could be weakened, by accepting the
nondifferentiability of ¥ on a “small enough” set of points ¢ € [I.
In order to ensure the existence and the uniqueness we must impose
some restraints on the function f, i.e., on the slopes of the trajectories
generated by the differential equation. For example, the problem

dy
— 2 =
7 = 2vy y(0) =0

has two solutions on I = (0,+00), z(t) = 0 and w(t) = t2. This may
occur due to the rapid change of the slopes of the solutions near ¢ = 0,
generated by the function /y.

The usual requirements that ensure the existence and the uniqueness
are the continuity of the function f with respect to ¢ and the satisfaction
of the Lipschitz condition

K >0:|f(t,z) — f(t,w)] < K|z — w|,Vt, z,w

with respect to the second argument of f. The proof of the existence
theorem is based on the transformation of the given differential equation
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into an integral equation

t

y(t) = y(to) + t f(s,y(s))ds

and on the fact that this Volterra type equation has a solution which

could be found by a convergent process of successive iterations (Picard),
namely

yO(t) = Yo,
yl(t) =% + fti) f(sa yO(s))dS,

va(t) =yo + [, £(s,51(s))ds,
Un(t) = 0+ [ F(s,m_1(5))ds,

THEOREM 4.1. Suppose that in D = [to—a,to+a] X [yo — b, yo +b] the

function f(t,y) is continuous with respect to t and verifies a Lipschitz
condition

3K > 0:|f(t,2) — f(t,w)] < K |z — w|,¥(¢, 2), (£, w) € D.

Then there exists a unique solution of the Cauchy problem (4.1, 4.2),
which can be extended until the boundary of D.
Let us recall the example of Figure (4.2)

dy 9
o y, y(0)

where the associated integral equation is

t
y(r) =1 +/O s2y(s)ds.
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The successive iterations are

£

() =1+ [1s 2ds—1+—3—

" 3 t3 t6
yz(t)=1+f032( 3)ds-1+3+18,

ds =14+ -+ —<+ =

6 t3 t6 t9
) 3 718 T 162

y3(t)=1+f0ts2< +?+18

and we recognize the partial sums of the power series expansion of the
exact solution y = et*/3.

In many cases we can find such explicit solutions. But, also many
important problems have no such representations of the solutions and
we should use numerical approximation methods.

There are many such numerical methods. In simple cases, a simple
method could be satisfactory but more “serious” problems could require
the more elaborate methods.

A first problem to solve is to establish what the numerical method
calculates. As an algorithm which runs a finite time interval gives only
a finite number of outputs, we should determine what those values rep-
resent. They could be approximations of the coefficients of some series
expansion (as for the previous example) or they could be approximations
of the values of the solution at a finite number of points, previously or
even chosen while running . Moreover, the numerical method should
allow also some estimations of the approximation errors.

A second problem is to calculate the next values from the previous
ones, for example to calculate y(t + h) once given y(t). This suggests
the Taylor’s series finite expansion (Taylor’s formula)

ay(t) , Wyt B ()

y(t+h) =y +h=5~+ 5 = mr 1) dmt

where the last term is an error term and & € (¢,¢ + h).
The simplest numerical method (Euler) derives from the above ex-
pansion by truncation after the linear term

dy(t)

y(t + h) = y(t) + h——+ o
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which leads to the basic formula

Yn = Yn—1+ hf(tn—layn—l) (4~3)

where y, = y(nh),t, = nh and h is a chosen step size.

Assuming that the second derivative of the solution is bounded by M
in magnitude, one can show that the step error is of order O (h?) and the
total error on the interval (a,b) where a =ty <t; < --- <t, =nh=25b
is bounded by M %52h, i.e., it is of order O (h).

We could obtain better methods, with errors of order O (h?) ,forp > 1,
using the above integral representation

t+h 1 [t+h
veh) =y + [ feueNds =u0 +h (5 [ s,
Here the last term in the parentheses represents an average slope of the
solution on the interval (¢,¢ + h). A good numerical method should
calculate, as accurately as possible, this average slope.

For example, the Euler method takes as average slope the solution
value at ¢. Of course, a better value seems to be the slope considered at
the midpoint of the interval ¢ + %, ie.,

y(t+h) = y(t) + b (t+g,y(t+g)) .

The problem here is the calculation of the solution y(t + %) which is,
in fact, the same problem as that to be solved. But this value at the
midpoint of the interval could be also approximated by an “Euler step”,
precisely

Y+ D)~ y(t) + 2 (),

and thus we obtain an algorithm of the form

K = f(t:y(t))a

Ko = f(t+ 5,0(0) + 3 Ku), (4.4

y(t+ h) = y(t) + hK>.

By developing these expressions we obtain a coincidence with the
Taylor development of the solution until the term in h? so that the step
error of the above algorithm (Runge) is of order O (h3) while the total
error on (a,b) is of order O (h?). The price paid for this is the twice
evaluation of the function f at each step.
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The general methods of such type, called Runge-Kutta methods consist
of a sequence of stages, at each stage evaluating an approximative value
of the slope of the exact solution. The final step advances the solution
from ¢ to t + h by using a weighted sum of the above calculated slopes.
This means

Ky = f(t,y(),

Ko = f (t + coh,y(t) + has1 K1),

K3 = f (t +c3h,y(t) + haz 1 K1 + haz 2K>) ,

K;=f (t + csh, y(t) + hﬂs,lKl + h-as,2K2 + e+ has,s-+1Ks-1) 3

y(t+ k) = y(t) + h(b K1 + ba K3 + ..bsK)

(4.5)
where s is the number of stages. A particular method is characterized
by the coefficients a; j,b; and ¢; which could be given in a Butcher table
— see Table 4.1.

Toble 4.1. Runge-Kutta method
0

c2 @2,
C3 3,1 az,2

Cs Qg,1 Q5,2 e Qg,s—1

| b b: ... bs—1  bs

For example, the above Runge method (4.4) has Table 4.2

Table 4.2. Runge method

0
1/2 | 1/2
0 1

These methods use a fixed step size h. By diminishing A the accuracy,
but also the computing time, increases. It is possible to diminish the step
size only where the approximative solution changes rapidly its values and
we could use a larger step size in the regions with a slow variation of
the solution. Consequently, the step size h should be modified while
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calculating and in agreement with the solution’s behaviour. This task
could be performed, for instance, by running (in parallel) two different
methods, one for the solution propagation and the other to estimate and
to control the errors.

For example, the popular method RK4 with 4 stages of Kutta, Table
4.3, gives the approximation

Table 4.83. Kutta method

0
1/2 | 1/2
12| 0 1/2

1o o0 1
['1/6 2/6 2/6 1/6

y(t + h) = RK4(t,h) + Mh> + O(h®)

where y(t + h) is the exact solution and RK4(¢,h) is a step obtained
by this method. The coincidence with the Taylor series, of the exact
solution is until the order 4. This method could be coupled by a RK3
method, of order 3, Table 4.4, which gives a similar formula

Table 4.4. RK3 method

0
1/3 | 1/3
2/3| 0 2/3

[1/4 0 3/4

y(t + h) = RK3(t,h) + Kh* + O(h5).
By subtraction of the above two representations for y(f + h) we get
0 = RK3(t,h) — RK4(t,h) + Kh* + O(h%)

from where
Kh* = RK4(t,h) — RK3(t,h) + O(h®).

Consequently, calculating RK4 we can give a good approximation of
the error of RK3. But this parallel calculation requires new evaluations
of the function f. Fehlberg has discovered that there exist some pairs of
Runge-Kutta methods with different truncation orders while the main
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lines of the respective tables are the same. So that, the step size h could
be fitted using only one supplementary evaluation for the function f.
Such a pair is formed by the methods described in Tables 4.5, 4.6
with the truncation order 5, respectively 6, so that the accuracy of the
method is of order 4, respectively 5. There are many other such pairs,

Table 4.5. RKS5 method

0
2/9 | 2/9
1/3 | 1/12 1/4
3/4 | 69/128 -243/128 135/64
1 | -17/12 27/4 -27/5  16/5

[ 1/9 0 9/20 16/45 1/12

Table 4.6. RK6 method

0
2/9 | 2/9
1/3 | 1/12 1/4
3/4 | 69/128 -243/128 135/64
1 | 17712 27/4  -27/5  16/5
5/6 | 65/432  -5/16  13/16  4/27 5/144
47450 0 12/25 32/225 1/30 6/25

implemented in the usual computing packages.
The above presented methods are also applicable (in the vector form)
for the first order systems of differential equations, namely

d
_571 = fi(t,y1, - ¥n)> ¥1(0) = Yo1,

d
—(?—tn_ = f’n(tayla )yn)7yn(0) = Yon-

Therefore, the higher order differential equations

d"y dy dn—ly _
din +f (tiyaav"a dtn_l _Oa

y(0) = y0,4'(0) = yh, -, y™ D (0) = y{* ™,

which, by the change of variable and function

t=yo, y=y1, ¥ =y2,..., YV =yn,
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is reduced to a system of the form

yo =1,
yé = ya,
Yo = Y3,
.
yn—l - yn,

Yn = f (Y0, Y1, Y2, -, Yn)
can also use the above methods.
For example, the problem

d*y dy
7l +costa+y =0,

reduces to the system

¥ =1,

yll = Y2,

Yp = —Y1 — Y2 COS Yo,

yO(O) = anl(o) = anQ(O) =1

which is of the form

Y' = F(Y),
Y(0) = Yo.

The numerical integration of this problem by MATLAB requires a
subprogram which describes the system

function yp=funct(t,y)

yp=zeros(2,1);

yp(D)=y(2);

yp(2D=-y(1)-y(2) *cos(t);
saved as funct .m, while the main program

[t,yl=o0de45(@funct, [0,50],[0,1]);

plot(t,y(:,1));pause;plot(y(:,1),y(:,2));
performs the integration of the system on the interval [0,50] with the
given initial conditions and plots the solution y(¢) and the phase portrait
(i.e., the curve 3’ as function of y, parametrized by t).

For the approximating Runge—Kutta methods, an essential fact is that
they are one-step methods. This means that the approximative solution
at a next time level ¢+ A is calculated from the solution at the given time
level t only. But after performing several such steps, we could also use
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the multi-step methods which use the information from more previous
time levels.

The most used multi-step procedures are the Adams—Bashforth (AB2
and AB3) methods,

Y'IH-]. — Y’n +h (%Fn _ %Fn——l) ,

23 16 5
n+l _ vn fon 2 pn—1 Y ogmn—2
Y =Y +h(12F 12F +12F )
and Adams—Moulton (Crank—Nicolson and AM3) methods
h

Yn+1 =Yy" + _2_ (Fn+1 + Fn) ,

Yn+l — Yn + 1% (5Fn+1 +8Fn ___Fn—l)

where Y" ~ Y(nh) and F"* = F(Y").

3.1 Examples

In order to present some very simple examples of the motion of a body,
we will follow Chow [22], taking into account also the forces exerted by
the surrounding fluid that leads to systems of differential equations.

3.1.1 Falling of a Spherical Body

Let us consider a spherical body, of mass m and diameter d, located
at ¢ = 0 at the origin of the Oz axis, which is chosen in the direction of
the gravitational acceleration. The initial velocity of the body is vj and
it moves under the action of the gravitational force mg along the Oz
axis. At the moment ¢ the body is at the distance z(t) from the origin
and it has the velocity v(t), all these functions satisfying the differential
system

dz
= v(t),

(4.6)
(ji_;) = % [B — Cv|v| ca(v)],

where A =1+ g,B = (1 —ﬁ)'g,C = %g .and p= %, py being the mass
density of the surrounding fluid while p is the density of the body.

Here ¢4 is the (dimensionless) drag coefficient which expresses the
influence of the viscosity of the fluid. It depends on the shape of the



Introduction to Numerical Solutions for ODE and PDE 217

body and the Reynolds number R and, generally, it is difficult to find
it analytically so that some appropiate experiments are used for this
purpose. If the fluid has the kinematic viscosity v, the experimental
expression for ¢g as a function of the Reynolds number R = ”T/d— (in the
case of a smooth sphere) could be approximated by

¢ 24
= <1
R’ R— b
2
R) =
) =1 o5 400 < R < 3 x 105,

0.000366 R%4275, 3 x 10° < R < 2 x 106,

L 0.18, R > 2 x 108.

The particular values for a steel sphere dropping in air (under atmo-
spheric conditions at sea level), are p = 8000kg/m3, p; = 1.22kg/m?,
v =149 x 107°m?/s, g = 9,8m/s%. Obviously, in vacuum, without any
surrounding fluid, py = p = 0 and the differential system becomes

dz dv
22— ot — =
dt U( )1 dt g

with the solution v(t) = vg + gt, 2(t) = 20 + vot + —zl-gt2, where 2zp and vg
are respectively the initial position and velocity.

Now we have a mathematical model of the phenomenon, represented
by the system (4.6) together with the initial conditions, so that we are
able to perform various numerical experiments. The numerical results
are confirmed by physical experiments if we are placed in the domain of
the model’s validity. The MATLAB programs are:

a) program of function type, computing the coefficient ¢4, saved as
drag.m

function cd=drag(Re)

if Re==0 cd=0;

elseif Re>=0 & Re<=1 cd = 24/Re;

elseif Re>1 & Re<=400 cd=24/Re~0.646;

elseif Re>400 ¥Re<=3.eb5 cd=0.5;

elseif Re>3.eb &Re<=2.e6 cd=3.66e-4*Re”0.4275;

else ¢d=0.18;

end;

b) program of function type describing the system (4.6), saved as
ecdifll.m
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function yprim=ecdifli(x,y)

global RO D ROF NU;

yprim=zeros(2,1);

g=9.81;robar=ROF/R0O;

a=1+robar/2;b=(1-robar)*g;c=3*robar/4/D;

r=abs(y(2))*D/NU; cd=drag(r);

yprim(1)=y(2);

yprim(2)=(b-c*y(2)*abs (y(2))*cd)/a;

¢) the main program, saved as freefall.m

function (t,x]=freefall(ro,d,rof,nu,Tf,z0,v0)

global RO D ROF NU;

RO=ro;D=d;R0OF=rof ; NU=nu;

[t,x}=0ded5(Qecdifll, [0,Tf]1, [z0 vO]);

plot(t,x(:,2);'.’,'MarkerSize’,12);

xlabel('t(s)’);ylabel('v(m/s)’);
and called up with particular values of the parameters.

The results of numerical simulations with different values of the di-
ameters of the spheres are represented in Figure 4.3 where the time
variation of the velocities for some particular diameters are shown.
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Figure 4.3. Velocities of steel spheres falling in air (for particular diameters)

We remark that after some time the bodies reach a final constant
velocity which increases with the diameter of the sphere. For a large
sphere, the effect of the viscosity becomes negligible in comparison with
body inertia, so that the sphere would behave as if it were moving in
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a vacuum. In this case, the velocity increases indefinitely with time
without a terminal constant velocity.

The terminal velocity for a particular fluid and diameter d could be
calculated by taking to zero the right-hand side of the velocity equation
from (4.6), i.e., v|v| cg(v) = . If we plot the values of the expression
v |v| cg(v) and if we remark that for d = 0.01 (for instance), under the
above conditions, we have B/C = 857.5741, then the calculated terminal
velocity will be vg = 41.41m/s.

Moreover, we remark from the same equation of the velocity (4.6)
that if v > vy, then the right-hand side of the equation is negative, so
the velocity v diminishes and, conversely, if v < vg the right-hand side is
positive so that the velocity v increases. This means that vy is a steady
stable solution of the system (4.6).

We must remark that the above model for the numerical experiments
is suitable only for subsonic velocities (for supersonic velocities the effect
of the shock waves must be taken into account). Also, if the displacement
of the body is large, the variation of the air density is significant and it
must be used in the model.

The reader could perform many numerical experiments, for example
with a ping-pong ball (with a density supposed to be equal to that of
the air) and of diameter d = 0.036m, in water, where py = 1000kg/m3
and v = 1 x 10~%m? /s while p = 1.22kg/m?® or with a glass sphere with
p = 2500kg/m?, etc.

3.1.2 Ballistic Problem

Let us study now the translation motion of a body through a fluid in
the Oxy plane, where the Oy axis is in the opposite direction to that
of the gravitational force. The body has a velocity of components (u,v)
and the fluid has a velocity of components (uf,vs) which depend on the
position and time. Assuming a spherical body of diameter d and mass
m, the governing equations (which take also into account the specific
fluid dynamic forces) are

d2_.’17 - 3p Cd(uf _ u)wr
dt? ~ 4d 1+ 1p

) (4.7)
Py _ —(1-p)g + Feavy — v)w,
dt? 1+1p ’

where w, = /(us — u)? + (v/ — v)2. We will consider as an example a
steel sphere of diameter d = 0.3m moving in the air, starting from the
initial position (0,0) with an initial velocity 800m/s which makes an



220  BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

angle (elevation) 6y with the horizontal Ox direction. The motion in a
vacuum is obtained for py = 0. Moreover, for large initial velocities, the
variable density of the air at a higher altitude, must be considered by
using, for instance, the function py = 1.22¢~0-000118y g /3,

The MATLAB subprogram describing the differential system is:

function yprim=ecdifi4(x,y)

global thetaO cod;

yprim=zeros(4,1); ro=8000;

if cod==1 rof=1.22; else

rof=1.22*exp(~0.000118*y(2)) ;end;

g=9.8;robar=rof/ro;nu=0.0000149; d=0.3;
a=1+robar/2;b=(1-robar)*g;c=3*robar/4/d;
uf=-10;vf=0;wr=sqrt ((uf-y(3)) "2+ (vf-y(4))"2);

cd=0.4;

yprim(1)=y(3);

yprim(2)=y(4);

yprim(3)=c*cd*(uf-y(3))*vwr/a;

yprim(4)={(-b+c*cd* (vi-y(4) ) *wr)/a;

if y(2)<0 yprim(1)=0;yprim(2)=0;end;
where an opposite horizontal wind was considered, i.e., 4 = —10m/s and
for simplicity, the drag coefficient was taken as ¢g = 0.4 (corresponding
to the postcalculated Reynolds number, which now depends also on the
Mach number). The computation is stopped if the projectile reaches its
initial height y = 0. The main program, saved as p14 .m, is the following

global thetal cod;

w0=800; thetalO=thetaO*pi/180;

cod=1; [t,x]=oded45(Qecdifil4,[0 100],...

[0 0 wO*cos(theta0) wO*sin(theta0)]’);

plot(x(:,1),x(:,2));xlabel('x’);ylabel('y');

axis([0 4000 0 3500]); grid;hold on;

cod=2; [t,x]=0ded5(Qecdif14,[0 100],...

[0 0 wO*cos(theta0) wO*sin(theta0)]’);

plot(x(:,1),x(:,2),".") ;x1label ("x’) ;ylabel('y’);

axis([0 4000 0 3500]); grid;

title(rhof variable: ... rhof constant: ---');

hold off;
and it is called by the command

global theta0 cod;theta0=60;pl4;

The results are shown in Figure 4.4. We remark the changes in the
range depending on the density of the air. Any elevations and wind
velocities may be tested and compared with the motion in the vacuum.
The program is also useful for other problems, for instance to determine
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rhof variable: ... rhof constant; ——-
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Figure 4.4. The motion of a projectile

the elevation such that the maximum range is reached, for certain given
conditions. In this case the suitable drag coefficient must be taken into
account, by using the subprogram drag.m.

3.1.3 Shock Waves in Viscous Fluids

In a real fluid flow, the velocity and the pressure vary smoothly
through a thin shock region instead of jumping, as described in the
inviscid theory. Let us study now numerically the structure of a shock
in the presence of the viscosity, for a simplified problem.

Suppose the shock propagates at a constant supersonic velocity u;
along the negative direction of the Oz axis. Let the coordinate system
move at the shock wave velocity, so that it becomes steady with respect
to this frame. Let us use the subscripts ; and o for the far upstream,
respectively for the far downstream, given quantities.
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For a steady one-dimensional flow the continuity, motion and energy
equation become respectively

d
Ju__dp d [ du
P dz dr dz de ’

" d T+ ¥ u? d ,du de

e\t ) T\ et e
where g/ = 2u + A, while p and X are the viscosity coefficients of the
fluid, ¢, is the constant-pressure specific heat and k is the thermal con-

ductivity. Integrating with respect to z on an interval containing the
shock, we get

pu=pru; =m

u
= —mU-P‘-: —muy; — p1,
du dT u? u?
up' — e kd— (cpT + ~2——) = —m <cpT1 + —21) ,

where m is the mass flux through the shock. The left sides of the above
equations become, far downstream (where the velocity and the temper-
ature are uniform),

pPuU2 = p1uy,
m(uy — U22) =p2-p,
u u

which represent the laws of conservation of mass, momentum and energy
across the shock.

The effective integration of the above equations may be generally per-
formed only by numerical methods, after some simplifications. Let us
replace the pressure in the state equation (the Clapeyron relation)

T
p=pRT =mR—
u
where R is the gas constant. Let us replace u";—g from the obtained
equation into the energy equation. Using the dimensionless variables
m m?R

Us—" o 7=
muy + pp (mu; +p1)°T
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from the relation 7% = 777, we get the new formulations of the momen-
tum and energy equations, that is

dU m T’
Z (v T-1),

’ —_—
i’ _y-1mg ———T’ lwryu-2),
dz Y K y-1 2

where Pr = pc,/k is the Prandtl number and a is the dimensionless
parameter

2m? (e Ty + %)
(muy +p1)*

Consider now a simpler case, of a monoatomic gas, so that A = —%u
and p' = %p,fy = g Finally, we get the equations

!
dU 3m(U+T__1)

a =

dz 4 U
dT’" m
—=—P - U? —a).
i r (37 —U?%+2U - a)
The boundary conditions at the end of the shock are
TI
wl o
dz =200 dz z=%00

and the use of these conditions for the above equations yields to an
algebraic system for U and 7" with the solutions
S5+te¢ T 15 — 2 1 2¢
’ 64
where e = /25 — 16 characterizes the shock strength. The upper and
lower signs give the upstream, respectively the downstream, conditions.
Now we rewrite the above system by introducing the new variables w
and ¢ through the relations
5+ ew
8
and thus we obtain the ‘“shock equations”
dw  3m2(t+w) —e(1 — w?)
dr ~ 4p 5+ ew

U=

15 — €2 + 2¢t

U= 64

T =

K

(4.8)
dt _ mPr

dz 10u

[6(t +w) + (1 —w?)].
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The steady solutions of this system, obtained for £ — o0, could be
deduced by solving the system

3m2(t+w) — (1 — w?)
4 5+ ew

=0,

m Pr
10p

[6(t +w) +e(1 —w?)] =0,

which leads to
P:uw=4Lt=-1, P:w=-1t=1

where P; represents the upstream and P the downstream conditions.
Computing the Jacobian of the left side functions at the two points P o
for the particular data Pr = % and € = 1.77, we find that at P, there are
two real positive eigenvalues, so it is an unstable node, while at P there
are one positive A; = 0.6837 and one negative A2 = —0.6412 eigenvalue,
so it is a saddle point. In this case, the heteroclinic trajectory joining
the two steady points must be numerically calculated from P> towards
Py, ie., downstream towards upstream, in the decreasing of x direction.
This trajectory is a stable manifold for P, and it is tangent at P> to
the linear stable subspace generated by the eigenvector of the Jacobian
corresponding to the negative eigenvalue v = (-0.8534,0.5213).

The calculation could be even more simplified by dividing the equa-
tions (4.8), thus obtaining

dt 2 6(t +w) +e(1 — w?)

— = —Pr(b , 4.9
R T L s pae ) (4.9)
i.e., a unique differential equation which will be integrated from w =
—1 towards w = 1 with the Cauchy condition E%'U):—l = —%% =

—0.6109 for our particular case. Of course, we do not start exactly from
the critical point but from a neighboring (towards the stable manifold
direction) point w = —1 4+ 0.001, t = 1 — 0.6109 x 0.001.

The numerical results could be compared with the experimental (wind
tunnel) ones. We will introduce the dimensionaless distance

%Pr me
=27z

1+2Pr p*
where the reference viscosity coefficient p* is to be evaluated at the
temperature T* = 3Ty /4, Ty being the constant upstream temperature

of the fluid. Finally, we have

dX  £ePr
dw ~ 1+2Pr

0.647 5+ ew
2(t + w) — (1 —w?)’

[0.076(15 — £* + 2¢t)]
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This equation will be joined with the equation (4.9), together with
the Cauchy condition X = 3.30 for w = —0.999, deduced from the
experiments and which determines the X coordinates. The results are
shown in Figure 4.5.

t. ——— ;w. -.—. ;experimental: ****
=1 e T T —he=

-

-3 -2 - 0 1 2 X3

Figure 4.5. Shock waves in viscous fluids

The MATLAB program is:

[t,x]=0ded45 (@edsoc,-1+0.001,1, [1-0.001%0.6109,3.30]);

plot(x(:,2),x(:,1), - ,x(:,2),t,'-.));

axis([-3 3 -1 1]);grid;hold on;

plot([-2.2 -1.85 -1.45 -1.25 -1.05 -0.85 -0.65...

-0.45 -0.25 -0.05 0.15 0.35 0.55 0.75 0.95 1.1...
1.5 1.95 2.30],[-0.99 -0.96 -0.94 -0.90 -0.85...
-0.80 -0.70 -0.60 -0.45 -0.30 -0.10 0.12 0.30...
0.50 0.62 0.75 0.92 0.98 0.99],’%’) ;hold off;

xlabel ('X') ;ylabel('t,w');

title('t: ---- ;w: =~.-. ; experimental: *x¥x');

which uses the function subprogram edsoc.m

function yprim=edsoc(t,y)

yprim=zeros(2,1);e=1.77;pr=2/3;

yprim(1)=2/15+pr* (5+ext) * (6% (y(1)+t)+e*(1-t"2))...

/(2x(y(1)+t)-e*(1-t"2));

yprim(2)=8/15*e*pr/ (1+2*pr) * ((0.076*(15-e"2+. ..

2%exy(1))) "0.647*(5+ext))/(2x(y(1)+t)-e*(1-t"2));

We remark an excellent agreement between the numerical simulation
and physical experiment results concerning the structure of the shock
wave. The reference length /X in this particular case is 0.0013m so
that the shock interval is of length 0.68cm. See [22] for more details.
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4. Partial Differential Equations
4.1 Classification of Partial Differential Equations

Different phenomena are governed by partial differential equations of
different structures and types. For example, the inviscid compressible
fluid flow (in a subsonic regime) around a body could be described, by
linearization, with the equation

(1 - M*»)®y + Oy, =0,

where ® is the velocities potential and M < 1 is the Mach number
(the ratio of the fluid velocity and the sound speed). In this case, the
perturbation generated by the presence of the body propagates in all
directions.

In the supersonic case, for M > 1, the above equation changes its type,
the two coefficients being now of different sign. Physically, the fluid in
its motion goes beyond the perturbations produced in front of the body
and thus a perturbation region appears only behind the body, bounded
by two straight lines — the characteristics of the partial differential
equation. On the characteristics, the first derivatives of the components
of the velocity are different from one side to another, due to the fact
that the perturbations exist only at one side so that the second order
derivatives of the velocity potential ¢ are not defined on these lines.

The type of a second order partial differential equation is induced by
the existence (reality) of these characteristics. Suppose that the equation
of  is

A®,; + 2B®,, + Cd,y = D (4.10)

where A, B, C, D could be functions of z,y, ®, ®,, ®, (Monge equation).
The variations of the velocity components @z, ®, passing from (z,y) to
(z + dz,y + dy) are given by

dz®g + dydgy = dPs,
dz®yy + dyd,, = d®,.

Let us now consider the above three relations as a system having as
unknowns the second order derivatives of ®,taking into account the fact
that along the characteristics these derivatives are not defined. Therefore
the determinant of the system must vanish

A B C
dz dy 0 | =0,
0 dzx dy
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1.e., we have the differential relation

dy 2 dy _
A(dx) —2BE£+C—O'

Consequently, on the characteristics we can write

dy B=£+vB?- AC
dr A '

There are three different cases.

a) If B2 — AC > 0, then through every point (z,y) from the compu-
tational domain, two characteristics pass (like the case of the supersonic
flow) and the equation (4.10) is called of hyperbolic type. For example,
the equations describing oscillations, particularly the wave equation, are
of this type;

b) If B2 — AC < 0, then there are no real characteristics. These
equations are of elliptic type , like the equation for the subsonic flow
case or the Laplace or the Poisson equations;

¢) If B2 — AC = 0, there exists through every point of the computa-
tional domain only one real characteristic and the equation is of parabolic
type. The equations describing diffusion or dissipation phenomena are
of this type.

We remark that these types of equations describe not only different
types of phenomena but also their solutions are of different types and
can be numerically found by using different techniques.

In the case of systems of partial differential equations we have a similar
situation. Let

a1ug + biuy + crvg + divy = fi,

agug + bauy + covy + davy = fo (4.11)

be such a system, where ay,...,d2 and fi, fo are functions of z,y, u,v.
Being placed at a point in the Oxy plane, let us seek the directions
along which the derivatives of © and v are not determined — the so-
called characteristic lines. If we add to the above system (4.11) the
equations
Ugdz + uydy = du,

VzdT 4 vydy = dv, (4.12)

we see that ug, uy, vz, vy could be undetermined only if the determinant

ap b o dy
ay by ca do

dz dy 0 0
0 0 dz dy
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is zero. Therefore
ady? + bdzdy + cdz? = 0
where
a = a1C2 — a2Cy,
b= —(a1dy — azdy + byco — bacy),
cC= bldz - bgdl,

or, in other form,
dy —b£vb?—4ac
de 2a '

The above equations give the directions of the characteristic lines
through the current point (z,y). As in the case of a single equation, we
have three situations:

a) b2 —4ac > 0, the system is hyperbolic and we have two characteristic
curves through (z,y),

b) b? — 4ac = 0, the system is parabolic and we have a single charac-
teristic curve through the given point

and

¢) b?—4ac < 0,the system is elliptic and we have no real characteristic
lines through that point.

We remark that in the hyperbolic case, if we try to solve the above
system with respect to the derivatives of 4 and v (by Cramer’s rule, for
instance) we are led to an undetermination only when the respective
numerators are also zero. So that we obtain the equations

fi i o &

fo b2 c dy | _

du dy 0 0| 0, etc.
dv 0 dzr dy

which are, in fact, differential equations for the variables u and v. These
equations are valid only on the characteristic lines and the integration
of the system reduces, in fact, to the integration of these differential
equations.

4.2 The Behaviour of Different Types of PDE

a) Hyperbolic equations. In this case the information from the point
P of the computational domain influences only the region between the
characteristics through P, see Figure 4.6.

The value of the solution at P is influenced only by the values of the
data on the interval {a,b) between the characteristics through P. The
inviscid steady supersonic fluids and the inviscid compressible subsonic
unsteady fluids are described by such type of equations. For the unsteady
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Figure 4.6. The influence domain for the hyperbolic case

case the role of the Oy axis is taken by the time axis and its direction is
also a flow field direction.

b) Parabolic equations. The value of the solution at the point P from
the plane Oxy influences the whole region of the plane to one side of the
characteristic through P, see Figure 4.7.

y.

Influence
domain
of P

Data

Data

X
Flow field direction

Figure 4.7. The influence domain for the parabolic case

If the axes Oz, Oy are the boundaries of the computational domain,
the solution of the equation at P depends on the values of the data
on the semiaxis Oy and on the semiaxis Oz from O to b. This solution
could be calculated starting from the data and marching in the flow field
direction (here the Oz direction). Some reduced forms of the Navier—
Stokes equations (for example the Stokes system) and the boundary layer
problems are of such a type.
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¢) Elliptic equations. The information from P influences the entire
computational domain. The value of the solution at P depends on the
data on the entire boundary Obcd, see Figure 4.8.

Influence domain
of P C

b X

Figure 4.8. The influence domain for the elliptic case

What is specific for this case is the fact that the solution at P must
be calculated simultaneously with the solutions at all the points from
the computational domain. This is a different procedure than that for
the parabolic and hyperbolic cases where the information marches from
the data of the problem in the flow field direction to the solution at
other points. Based on this fact, the elliptic problems are also-called
equilibrium problems.

The subsonic steady inviscid and the incompressible fluid flows are
governed by equations of this type. On the boundary we could have
Dirichlet type conditions, when the values of u, v are given or Neumann
conditions, when the values of the derivatives g%, ... are given. Of course,
mixed conditions are also used.

d) The same problem may lead to equations which are of different
types in different regions. For example, the supersonic motion of a blunt
body through the atmosphere (or, the same thing, the supersonic air flow
past that body) shows a region with supersonic velocity, with M > 1
and, in front of the body, a region with a local subsonic velocity, with
M < 1 so we are in a transonic case. In the first case the fluid flow is
described by a hyperbolic equation and in the second case by an elliptic
equation, see Figure 4.9.

The method of a simultaneous treatment of the two regions requires
that, starting with the given initial conditions, one marches in time
considering the unsteady equations which determine the fluid flow. After
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Figure 4.9. The transonic case

a long time, the solution approaches the steady state which describes the
fluid flow into both regions, the super and subsonic regions.

We also remark that if we try to solve a problem with wrong or in-
complete initial and boundary conditions, the numerical solutions could
be obtained but these are spurious solutions, without physical relevance.
A problem is well-posed in the Hadamard sense if its solution exists, it is
unique and it depends continuously on data. It is important to know this
fact before taking the numerical approach on the respective problem.

4.3 Burgers’ Equation

We shall now consider, following [42], the nonlinear equation

Ju 9 [u?

— 4+ (=)=0

ot oz \ 2
written in the conservative form which could be rewritten into the non-
conservative form

ot oz

These two forms are equivalent in the continuous approach but of differ-
ent behavior in the discrete (by finite differences) approach. We remark
the analogy between the nonconservative form and the linear advection
equation, but now the advection velocity is no longer constant, depend-
ing on the solution u. The initial shape

=0. (4.13)

u(z,0) = ug(z) (4.14)

distorts at the next time levels. More precisely, the points where u is
greater are moving faster in a direction given by the sign of wu.
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4.3.1 Classical and Weak Solutions

If we choose a point on a curve z = z(t) of the plane (z,t) and we
calculate the total derivative of u on it, we find

du ou ou

— o —— + R
it ~ ot Pox
where p = ‘fi—f.
We remark that the derivative %’ti vanishes in the direction of slope
u if and only ifu is a solution of Burgers’ equation. If we consider the

family of straight lines indexed by a parameter &,

z = a(§)t + b(¢),

and impose the condition u = a(é), then u(z,t) is constant on each
straight line. These straight lines are, in fact, the characteristic curves
of the equation.

The solution of the Cauchy problem (4.13)+(4.14) can be given as
follows: Through the point (£,0) of the Oz axis passes a single straight
line of slope ug(¢), of equation

z = ug(€)t + €. (4.15)

On this characteristic line the solution u is of a constant value, the value
at the point £ of the Oz axis,

u = ug(£). (4.16)

The equations (4.15)+(4.16) constitute a parametric representation
of the solution u(z,t) of the Cauchy problem. Theoretically, from the
equation (4.15) we obtain ¢ as a function of z and ¢ and replacing it into
the equation (4.16) we obtain the analytical form of the solution u(z,t).

We remark that for the linear advection equation

du ou
ot "z
the characteristic curves were the parallel straight lines z — ct = const.
For Burgers’ equation the characteristic curves are straight lines too
but, generally, they are nonparallel; the slopes depend on the value of
the solution at the considered point. This is an effect of the nonlinearity
of the equation.
Let us consider three examples of different initial conditions in order
to point out this phenomenon.
Example 1.

0

V IA

ug(§) ={ g: g 8
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As above, the parametric form of the solution is

z =E, u=0, £<0,t>0
z=E&+¢ u=¢ £€>0,t>0

from where, by eliminating &, we obtain

0, £<0,t>0
u(@,t) = 2> 0,t>0.
t+1

This is a continuous, piecewise derivable solution and its regularity is
similar to the regularity of the initial profile. The derivative discontinuity
moves on the characteristic curve z = 0.

Example 2.
0, £€<0

Here ug has a discontinuity at the origin and let us consider for ug at
this point, all the values & between 0 and 1. As above, the parametric
form of the solution is

z=¢, u=0, £€<0,t>0
r=t+¢ u=1, £€>0,t>0
r=at, u=a £=0,t>0,ac]0,1]

Eliminating the parameters £ and « from the above equations, we

obtain

0, z<0,t>0
1, z>t>0
z

- z €[0,t],t >0

u(z,t) =

In this case, the initial shape is discontinuous at the origin. From this
point we have, in the plane (z,t), a set £ = ot of characteristic curves
and the Cauchy problem solution is still continuous in the halfplane
t>0.

Example 3.

w©={ % 50

If in the previous cases ug was a monotonically increasing function, now
up 1S a monotonically decreasing function. The characteristic slopes
decrease, because

dr 0
E{ —u0(§) = ‘“E ’£ > 0.
Consequently, the characteristics intersect in the halfplane ¢ > 0. But,
on each characteristic, u is of the constant value coming from the Oz
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axis and therefore at the intersection point of the characteristics u must
take different values. This is possible only if we accept discontinuous
solutions of the equation. These solutions appear although the initial
profile was a continuous differentiable function.

Such discontinuities appear in the physical phenomenon described by
the Burgers equation. In gas dynamics, for example, they are called
shocks or shock waves. For their mathematical characterization we need
the notion of weak solution, which allows the discontinuities, see section
1.3.5. The shock condition becomes

dz
dt

_uyp Fup
= )
E 2

(4.17)

that is the slope of the shock is the average of the values on its sides.
Example 4. Let us consider now the initial profile

uo(€) z{ é: gig

The solution is (in parametric form)

z=t+¢& u=1, £€<0,t>0
x=£, u=0, £>0,t>0.

But ug decreases, so the characteristics intersect themselves and a shock

appears, beginning, in this case, from the origin. Its slope is %“f— = 1—75—0

so the shock’s equation is z = %

The solution of the Cauchy problem is therefore

1, z<it>0
M%ﬂ_{o,m>§ﬁ>0

and we remark that there is a discontinuity at x = %

The extension of the notion of solution allows significant physical
results even in the case of decreasing initial shapes. Conversely, the
uniqueness of the solution is lost.

If we resume Example 2, for which

w®={ 3 £50

we easily remark that together with the continuous solution
0, z<0,t>0
—J 1, x>t>0
U(.’L‘, t) - T
?,xemﬂm>0
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we also have a discontinuous solution

0, =z< E,t >0
u(z,t) = 42
1, x> —2—,t >0
which verifies the equation on subdomains, together with the initial con-
dition and the shock condition. But this discontinuous solution does not
verify the entropy condition (see again section 3.5, Chapter 1) and, of
course, it has no physical significance and must be eliminated.

The following theorem can be proved:

THEOREM 4.2. If the initial profile is a bounded and measurable
function, then the Cauchy problem for the Burgers equation has a unique
entropy solution.

We conclude:

a) the elliptic or parabolic equations cannot allow shocks,

b) the linear hyperbolic equations allow shocks only if these exist in
the initial or boundary conditions,

c¢) the nonlinear hyperbolic equations allow shocks, even without dis-
continuities in the problem’s data.

4.3.2 Burgers’ Equation with Dissipative Term
Let us now consider the equation

ou 0 (u? 8%u

where v is a positive constant. This is a parabolic equation, and it may

be considered as derived from the diffusion equation with a convective

2 . . . . e .
term 5"’5 (“7) or derived from the Burgers equation with a dissipative

2 . . . )
term vg—z’é. Generally, v is considered small, so we have in fact a singu-

larly perturbed problem. This equation is often used for testing numer-
ical methods because it is a model of Navier—Stokes equations.
Looking for stationary solutions of this equation we consider the dif-

ferential equation
d [u? _ d*u
dz \2 ) T Vda?

and we obtain, by integration,

2 2
ur_ e CF
2 dzx 2



236  BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

Choosing the + sign and C > 0 we get the differential equation
dr= 2 du  du
TTC\u-C u+cC

Cz
u(z) = Cli_lie_a_”_i_‘

1—Ke™

which yields

In this last form of the solution we consider K < 0 in order to focus
on the solutions defined on IR. For K = —1 these solutions are u(z) =
—C'tanh (g—g) , .., they are decaying functions from C to —C, and their
slope at the origin tends to —oo as v \, 0. At the limit we obtain a shock
(a discontinuity verifying the entropy condition). We have

THEOREM 4.3.

a) The problem(4.18)+(4.14)has a unique regular solution for t > 0;

b) This solution tends, as v \y 0, to the weak solution of the problem
(4.13) + (4.14) verifying the entropy condition u(x — 0,t) > u(z + 0,1)
for all z € IR and t > 0.

4.4 Stokes’ Problem

A very important and much studied example, which introduces the
difficulties of the Navier—Stokes system is the Stokes problem, which
means

Ju op 1 ,

5 + P EAU, in (4.19)
ov dp 1

— 4+ —==A in

i + 3y R v, in ,

Ou Ov _

oz + —a—y =0, in Q,

(u,v)| 90 = (ugr,vpr), on 0K,
(u,v)];— = (uo,v0), in €,

where (u, v) are the components of the velocity flow, p is the pressure and
R the Reynolds number. We remark the lack of a boundary condition
fpr thp pressure and the presence of the equation g—% + g;—’ = 0 at every
time instant, see also section 3, Chapter 3.

4.4.1 Direct Solving

We will present here, following [126], a very important direct method
of Glowinski and Pironneau to solve the Stokes system. Let us consider
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the problem

(-V24+y)u+Vp=g, (4.20)
V - u =0,
ulg = b,

which defines the Stokes problem on the tridimensional domain V and
where § = 0V, coming from the temporal discretization of the linearized
incompressible equations.

The particularity of the method is the introduction, besides the Pois-
son equation —V?p = —V-g for the pressure, of another Poisson equation
for a scalar unknown 1,

~V%) =V -u,i|s = 0. (4.21)

By applying to that equation the operator (—V? ++) we remark that ¢
is a solution of the fourth order elliptic equation

(=V? + )V =0.

It means that we may ensure V - u = 0 if the solution of the equation
(4.21)is 9 = 0. But the solution % of the fourth order equation will be

9 =0 if ¢|s =0 and —8—1—/{ =0.
on

Consequently, the equation and the conditions of the Stokes problem
(4.20) will be fulfilled by the solutions p and u of the system

-V¥p=-V.g, (4.22)
(-V?+7)u=-Vp+g, uls=Dh,
~'V27~/} =V- ua’lMS =0,

if the auxiliary unknown % verifies also the Neumann condition % =
0. s

We remark that the last condition is a substitute for the non-existent
boundary condition for the pressure. In order to determine the boundary
condition for p which ensures the fulfillment of the incompressibility
equation V - u = 0, we will consider the system

—V?pr =~V -g, pals = A,
(=V2+7)uy = —Vpyr +8, wyls = b,
—V2) =V -uy, s =0,
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oy
on s
on the surface S and which is supposed to be of null average in order to
fix the indetermination (up to an additive constant) of p.

Ot

The condition —=
on |g

and we calculate A for which = (. Here Ais an unknown defined

= ( is next rewritten in a variational (integral)

o2 B
- }[ M s =0 (4.23)

for every function y defined and of null average on S.

By using the Green formula for V2 (which transforms the surface
integral into a volume integral), the equations of the system (4.22) and
the similar equations for a system for yu, the integral from (4.23) may be
written as

form

faalp)‘udS /fyuA u, +Vxuy-Vxu,+V-u,V-u,)dV

which shows the symmetry of that integral. However, it is useless for
calculations because of the necessity to record the values of u) for each
function A. It is more workable to use the decomposition of the solution

(p,u,9) into

p(z) P°(2) p'(z;0)
u(@) | = | (@) |+ 7{ w(z:0) | Mo')dS(o")
¥(2) P°(x) P (z;0")

where p,w’, ¢ are solutions, for every o' € S\ o* (o* being an arbitrary
fixed point on S), of the three elliptic problems

—V?' =0, p|s = 6@ (s —o') — 6@ (s — 6%),
(=V2+y)u’ = -Vp', u'|s =0,
—V) =V -u,¢|s =0,
and p°,u®, 9% are solutions of the problems
-V’ =-V.g,p’ls =0
(V24 =-vp' +g, u’ls =D
—-V20 = v . u®, s = 0.

Here 6@ is the Dirac function on S for a tridimensional domain V.
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Instead of the functions g defined only on S, we will introduce the
auxiliary scalar functions w(z;0’) defined on V by

w(z;o’) arbitrary on V,
w(z;0')|s = 6P (s —a') — 6P (s — o).

With these functions, the problem (4.23) will be transformed into the
linear problem _

AlN=7
where

Afo,0') = —/ (Vy' + u’) - VwdV,
B (o) = / (V¢ +u°) - Vwav.

Practically, the functions w(z; o) may be taken nonvanishing only at
a sharp region in the neighborhood of the boundary S, which leads to a
more efficient evaluation of the integrals. We remark also that the linear
operator 4 is a symmetrical one, so the algebraic system of equations
may be iteratively solved by the efficient conjugate gradient method.

4.5 The Navier—Stokes System

Let us consider a bidimensional domain 2 (the extension to tridimen-
sional domains is immediate) and the Navier—Stokes system written in
the form

-86—1; + Vp=—(uV) u+uV2u, in Q, (4.24)
V-u=0, n Q,
ujse = ug,.

Almost all the numerical procedures to solve a system of this form use
the fractional step method. The velocity u is advanced in time by an ap-
proximation of the first equation, obtaining an “intermediate” velocity.
It is then used in an elliptic equation which imposes the incompressibility
condition and determines the pressure at the end of the time step.

We can remark that the usual methods are (time convergence) of
second order for the velocity but only of first order for the pressure. In
the sequel we will describe a particular numerical method and we will
show how one can obtain a complete second order (in time) accuracy.

As in Chapter 3, the basic theorem is that of Ladyzhenskaya, as a
particular case of the orthogonal decomposition results of Hodge.
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THEOREM 4.4. Every vectorial field v defined on the domain § allows
a unique orthogonal decomposition v = w+V®, where w is a solenoidal
field with a zero normal component to the boundary 0Q = S.
If we return to the system (4.24), we remark that the first equation
is such a decomposition and it may be rewritten as
Ou
— =P [~ (uV)u+rV?y]
ot
where P is an operator which projects a vectorial field on the space of
the solenoidal vector fields, with suitable boundary conditions.
By half-discretization in time, the equations (4.24) become
n+l _ 4n
.‘LF“_ F VP = — [(u V) u]" e +%v2 (u™*! +u”), (4.25)
V-utt =0,
un+1|69 — u}z;!—l_

Here [(u-V) u]"+% represents a second order approximation at the time
level t*+1/2, which is usually explicitly calculated.

The above half-discretized problem is solved by a fractional step pro-
cedure. From the first equation we determine an “intermediate” velocity
u*, which is then projected on the space of divergence free vectorial fields,
obtaining u™*1. A typical algorithm is of the form

Step 1. We solve for u*,

EA%“— +Vg=—[(uV)u]*" +gv2 (u* +u"), (4.26)

B(u*) =0,
where ¢is an approximation of p"+% and B(u*)is a boundary condition

for u*, which can be specified depending on the particular method.
Step II. We project u* on the solenoidal fields space

u* = u"tl 4+ AtVOnTL (4.27)

AvAR un+1 =0,

with boundary value conditions consistent with B(u*) = 0 and u"*!|5q =
un+1

S
Step 1II. We update the pressure
pn+% =q+1L (q,n+1)

T
where L represents the dependence of p"*2 with respect to ®"+1.
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In the sequel, we pass to the next time level. Such type of methods
are called projection methods. Particular methods should be pointed out

1. by the approximation of the pressure g,

2. by choosing the boundary condition B(u*),

3. by choosing the function L{®"*+1).

These three approaches must be correlated in order to obtain a second
order accuracy of the method. For instance, the boundary condition for
u* must be consistent with the first equation (4.27) but the function
"+ is not yet calculated at this instant and should be approximated,
depending on the choice of q. Similarly, replacing the first equation of
(4.27) into the first equation of (4.26), by eliminating «* and comparing
with the first equation from (4.25) we obtain an update for the pressure

pn+% — q+ (bn—f—l _ VAthq)n-l—l.
2

This update must be taken into account in order to obtain a second
order accuracy for the pressure, on the boundary too, and in order to
eliminate the spurious modes for the pressure.

The choice of the boundary conditions may be better understood by
referring to an alternative formulation of the Navier—Stokes equations.
Let there be new variables m and x, connected with the flow velocity
by the relationship

m = u+Vy (4.28)

and so that u and p obey the Navier—Stokes equations. For instance, we
require that m verify on €2,

%—T + (V) u= vV2m, (4.29)
Ul = ugr,
where
u =P(m). (4.30)

The equations (4.28,4.29,4.30) constitute an equivalent formulation
of the Navier—Stokes equations, where the pressure was eliminated. It
could be calculated, if it is necessary, from the relationship

ax
P=7 - vV2x (4.31)
obtained by comparison of the first equation (4.29) with the first equa-
tion (4.24). It is easy to remark that even the boundary conditions are
given for u, the equation (4.28) shows that there is a coupling of the
boundary conditions for m and Vy.



242 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

The time half-discretized form for the above equations is

__mn

At

m = —[(wV)u"tz +—’;-v2 (m™! 4+ m"), (4.32)

un+1 — mn+1 _ VXn+1-

If it is necessary, the pressure may be computed from the second order
approximation of the equation (4.31)

n+1 n
n+ — X — X . Z 2 n+1 n
p At RV ("X
The numerical calculation of the projection P is made usually by solv-
ing a Poisson equation. Let w be a given vectorial field which must be
decomposed into w = v+V®, where v is of free divergence and satisfies

V|sn = Vir,where [5q VrdS = 0. In order to find v we have

(S

v =P(w) =w-Vo
where

Vo=V w,
n-V®laq =n- (W|sq — vyr).

We remark that, for the thus defined projection, v always automat-
ically satisfies the boundary condition in the normal direction to the
boundary n - v|gn = n- vy, but in the tangential direction to the bound-
ary we will have 7 - v|gq = T - vy, only if w is so that

7 Wlga = T- (Vi + V®|sq) .

This fact must be taken into account at the choice of the boundary
conditions for the equations (4.26) and (4.32) where the projection of
the solution must verify both the normal and the tangential boundary
conditions.

With regard to the above facts, we will describe two projection meth-
ods of second order accuracy and without spurious pressure modes.

The first method, which is similar to that proposed by Liu in 1997,
may be written as

mn+1 —m"

At
n- rnn+1|an =n- u}z;&-l,

=~ [(wVa) w42V} (™! + m"),

7-m"gq =7 u}’j’l +7Va (2" — X" Joq-
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The velocity at the end of the time step is

un+1 — mn+1 _ vhxn—H

n-+1

where x is the solution of the problem

Vix""l =V, -m", in Q
1
n-Vyx" o = 0.

If it is necessary, the pressure may be calculated from the relationship
n+1 n
n+% _ X ~X Vo2 /on+tl n
p T Ve (X X
In the above relations, the index h means the centered differences

discretization, of second order accuracy. The term [(u-V}) u]"+% is cal-
culated by centered differences in space and second order extrapolation
in time.
The second method, similar to those proposed by Kim and Moin in
1985, is
u* —u”
At
n+1

%
n-u laQIIl-llfr .

=~ [(WVa) a2 +2V7 (u +u"),

T u*|aQ =T (u}‘jl + Atvhq)") |aQ.
Then
u"t! = u* - AV,
where ™! is the solution of the problem
AtVientl = v, . u*, in Q,
n-V,®" 50 = 0.

If it is necessary, the pressure may be calculated from the relationship
vAtL
2

In the numerical calculations, we remark that the time extrapolation,
where it intercedes, does not perform at the first time step. Here one

may use an iterative procedure. For instance, in the case of the first
method,

Vit = V0" - 00, vien T,

mb* — m®

At
ki _ 1
n-mtlgn =n-ug, ,

= —[(uVp) u]%’]C +1~21-V,21 (ml"c + mo) ,

I 1 Lk—1
T-mlaq =7 U+ TVax " o,
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followed by

2 1k _ 1k
Vix"* =Vp-m™*,

n-Vix'*lan =0,

where the iterations start with x° = x°. The advection term is reset
at each iteration taking the average of the derivatives of u® and ub*.

Another remark is that, in the same relations, we calculate finite
differences at neighboring points to the boundary ones, for instance V-
u*. The necessary unknown values at the boundary are calculated by
quadratic extrapolation from the first three inside values.

More comments on the considered methods may be found in [12].

We retain the idea that, generally, the numerical solution of the
Navier-Stokes system is obtained by the following general scheme:

First, we perform a half-discretization in time, by one of the known
procedures from the differential equations — backward or forward Eu-
ler, Crank-Nicolson or #-scheme — and we obtain a sequence of steady
(generalized) Navier—Stokes systems, with given boundary conditions, in
the form:

Being given u™ and time step size k = tp11 —1ty, let us find u=u
and p = p™* such that

n+1

u—u"

+0 [—VVzu +u-Vu] + Vp =g,
V.-u=0

with the right-hand side
g™t = 0" 4+ (1 - 0)f" — (1 - 0) [-vV2u"+u"-Vu"].
This problem may be stated in the compact form

[+ 6kN (W] u+kVp = [I — 61kN (™) u”™ + O.kE" ! + O3kf", (4.33)
V-u=0,

where we have used the notation N(v)u = —vV?u + v-Vu.

Second, we perform the spatial discretization by the finite element
method (FEATFLOW, FLUENT), finite difference (SIMPLE, QUICK), fi-
nite volume, spectral methods. Some commercial or scientific packages
are PHOENICS, FLOTRAN, NSFLEX, FIDAP, FIRE, LISS, FASTEST. By
denoting again u, respectively p, the discrete values of the corresponding
functions, the discrete version of the problem (4.33) is:
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n+1

Being given u™ and the time step size k, let usfind u = u and

p = p"*! such that
Su + kBp=g,
BTu= 0,
where
Su=[M + 60kN (u)] u,
g=[M — 01kN(u™)] u” + k™ 4 O5kf™.
Here M is the mass matrix, B is the gradient matrix and —BT the
transpose of the divergence matrix. The problem becomes a nonlinear
algebraic system, which may be usually iteratively solved.
Particular choices lead to particular algorithms, completed by proce-

dures to describe the complex geometries domains, convergence tests,
local refinement of the meshes, etc.

4.5.1 Projection-Diffusion Method

We will present now, following [7], [147], [148], a so-called “projection-
diffusion algorithm™, elaborated by a French group led by G. Labrosse,
to solve the Navier—Stokes unsteady system. This algorithm uses no
auxiliary temporal schemes to decouple the velocity field and the pres-
sure.

Let us consider the system

Qﬂ—uvzu+vp=fina,

ot
V-u=0inQ,
u = uy on IJ1,
where f contains, besides some sources, the advective contribution of
(u-V)u. We assume here 2 = (—1,1) x (=1, 1). Theprojection-diffusion

method is suggested by the physical process to instantaneous adaptation
of the pressure field on the whole domain, keeping both the solenoidality

) ou .
of u and of the acceleration u* = — — vV2u. The method consists in

solving, at each instant, of the problems.
1. The pressure calculation from the system

w+Vp=f inQ, 9
V-u*=0inQ,

un= [%Etl——uvzu]-nonaﬂ
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where Q; = (—1,1)x{-1,1}, Q, = [-1,1]x(—1,1) are the computational
domains for the u components from the first equation u, respectively v.

Here n is the normal unit to Of2.
2. The calculation of the velocities field u at the next time instant,

from the problem
ou 9
—_— =u*in Q
T vVeua =u” in Q,
ulan = uy,

implicitly solved in the spectral space. So, at every step we directly solve
a Poisson type problem for each dependent variable (the velocities and

the pressure).



Chapter 5

FINITE-DIFFERENCE METHODS

1. Boundary Value Problems for Ordinary
Differential Equations
Some types of problems from fluid dynamics lead to boundary value
problems for differential equations of the form
d%y d

—= 4+ A(z)—=

3 Y+ Bla)y = C(2), 5 € Bmin, Tmax),

dz (5.1)
Y(ZTmin) = Ym,  Y(Tmax) = Yum-
The first step to approximately solve these problems by finite differ-
ences is to construct the grid

Tmin = L0y .y Tj = ]h, vy N1 = iL‘max,j = 0, ...,N +1
with the step size Az = h = . The values of y evaluated at these
points z; will be denoted by y;. We will evaluate also the derivatives

of y at the same points z; using the values of y at the neighboring grid
points. From the Taylor expansion we have, for a small A,

mh)? mh)®
Yi+m = y(zj + mh) = y; + mhy; + (_2_'.2._1/9’ + (_3_!)_1/;.” 4o

7
tr—t

Therefore,
m

2
yio1=yj — hyl+ Byl = Byl

2
yir1 = s +hyy + By + Byl
and, consequently,
/ Yi+1 — Y5 h ,
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This represents an approximating formula by forward finite differ-
ences. Analogously, we obtain

ygz%%y%...
which represents the approximating formula by backward finite differ-
ences and
r_ Y+l T Yi-1 _if_ "
Vit "o 6
that by centered finite differences.

The approximation errors are of order O(h) for the first two formulas
and O(h?) for the last formula. But using also other values for m dif-
ferent from +1 and —1 (and considering more points in the grid) some
formulas of higher accuracy order can be obtained.

The second derivative is similarly approximated,

g = YL T 2y tyj-1

h2 n
' h2 + y + e

1277

By replacing these formulas into the differential equation, we get

e — Q0. - e
Yi+1 Yj + Yj 1+Ajy_7+1 Yj-1

where by Aj, Bj,C; we understand their values at ;. Arranging the
terms, we have the system

h h .
(1 - EAJ> Yj—1+ (h2Bj - 2) y; + (1 + §AJ) Yj+1 = h2Cj,j =1,..,N

which represents the requirement to verify the equation at the interior
grid points.
The boundary conditions become

Yo =YmyYN+1 = YM

which are the known values that pass to the right-hand side. Finally,
the following tridiagonal system for yi, ..., ¥y is obtained

o Ci
Y2 h2C;,

Yn Cn
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where
h2B1 -2 1+44,;

Mo — 24, KBy -2

1+ %AN—l
1-2%4y h%By -2

6’1 = h201 - (l — -;—LAl) Yms éN = h?Cy — <1 + *gAN) YM-

By solving this system, using sparse matrices techniques, we get the
approximative values of the solution y at the interior grid points. Simi-
larly one could approach the systems of differential equations.

1.1 Supersonic Flow Past a Circular Cylindrical
Airfoil
Let us consider the plane, steady, irrotational, inviscid, supersonic

fluid flow past a symmetrical circular arcs airfoil, at zero angle of attack,
see Figure 5.1. In a Cartesian reference frame Ozy, the equation of the

Iy//ﬂ&(z)
[
h

0

Q
N

Figure 5.1.

upper side is

with

h
the geometry of the profile being also characterized by the ratio — =8,

where h is the “arrow” of the profile and ¢ is its “chord”. We suppose
the free stream Mach number to be M = 2.5. For details, we refer to
the monograph of M. Holt [64], page 69.
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To numerically solve this problem we consider the B V L R (Babenko—
Voskresenki—Liubimov—Rusanov) method. Let the equations of the given
flow (the fluid is supposed to be compressible barotrop)

u@—l—va—u—}—lég—o
0z Oy pOz
v ov 10p

U

T2 2%
82+U8y+p8y ’

Olpu)  O(pv) _

0z Oy
where p = p(p). This system is equivalent to the matrix equation
0X 0X
A=+ B'—
0z Oy =0
where
u 0 -:; 0 v 0 00 u
A’:OuOO,B'zo'“;O,X:“
pc> 0 u 0 0 pc2 v 0 p
p 0 0 wu 0 p 0 w P

(here the penultimate equation is a consequence of the last equation, of
the Bernoulli integral and of the state equation).
: . y — G(2)
By ch h 1 = = - T
y changing the variables * = 2z and &€ = &(z,y) F(z) = G(2)
where the function &(z,y) was chosen so that £ = 0 on the wall and £ = 1
along the shock wave, the above matrix equation could be rewritten
0X 0X
A Br =
Oz 0¢

where
A = A/') B = £ZA’ + gyBla

f_ y_G(z) £ __Gz+€(Fz_Gz) § _ 1
T F(z)-G(2) F-G YT R -G

Obviously, to this equation considered for £ > z¢ (given) and 0 < ¢ <
1, one attaches both the slip condition on the wall

uG, —v=20
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and the boundary conditions (the jump conditions) on the shock, written

in the form
Vi = poaVaoo, where Vi = —22
PVv = PooVvoo, WNETE “*W’

p+ Poonoon = Poo + pooVU2oo7

1 1 ¥

DI

U+ VvF, = Uso + Voo Fy.
Let us now consider a rectangular mesh, with step sizes Az = 7,

1
A¢ = i h1, with mesh nodes of coordinates 2™ = zg+n7, &, = mhy

(M,n,m being integers). Let us denote the value of a mesh function f
at the node (z",&m) by f(2",&ém) = fr.

We will deduce the system of differential equations attached to the
above equations. We will use centered differences, with correction terms
in the z direction (artificial viscosity), leading to an order2 of accuracy
system which may be written in symbolic form

Ormt1/2 Xpdi + Vrt12Xm' = fmi1/2- (5.2)

We remark that this system represents 4M scalar equations attached
to the points of the same “layer” (i.e., having the same index n). To
these equations we add the slip-conditions on the wall and the four shock
conditions. In the language of finite differences, these equations may be
rewritten in the form

GZ+1 u8+1

n+1 _
- UO —_ 0,

V)it = (pVo)i T,

[P+ (PooVuco) Valig = [p + V2],

1 2
hpit et + S (Voldh)*,

(V"“) = hoo + 5

l\.’)lr—-

U+ ()" i = oo + (Fo)™ oo,
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where 41 1 +1
n n n
nel _ Upy (Fe)"T — oy

{1 + [(Fz)”“r}l/T

In other words, the system contains on each “layer” 4M + 5 equations
with 4M+5 unknowns: the values of (u,v,p, p) for everym = 0,..., M — 1
and the values of (u,v,p, p) on the shock wave (m = M), together with
the shock wave equation F' = F(z). The location of the shock wave is
determined, finally, by the immediate formula

. T
Frtl — pnoy 5(F;‘+1 + FD).

This system may be iteratively solved by the “double sweep” method.
Precisely, at the beginning of each iteration cycle, we use the last evalua-
tion of X*! (at the step m) to compute the coefficients al, +1/2) b, +1/20
Fos1 /2 which depend effectively on X. In the sequel, we consider the

system (5.2) as a linear system with the unknown X;‘n‘_';_ll (from the step
m + 1) with the known previously computed coefficients.

These iterations will be continued until the difference between the
initial and final values for X becomes sufficiently small.

In order to effectively solve the proposed system by the “double sweep”
method, we remark that along the airfoil profile (its upper side) the slip
condition may be written

HoXo = go
where )
Ho = ———— G 7'—170a0
(1+G§)1/2( ‘ )
and gg = 0.

By forward “sweep” this condition will be transfered, step by step,
from the wall (m = 0) to the shock (m = M). At a certain point
(at an intermediate step) we will establish a relationship of the type
UmXm = gm With the recurrence formulas

Hm+1 = wm+l'u'm(b—1a)m+1/2a

Im+1 = wm+1[iu'm(b_.1f)m+1/2 — gml]

where wm41 is a normalizing factor that makes ||gm+1]l = 1. So, at
every step py, and g,, are computed. For m = M one comes on the
shock wave where, again, pupXp = gum. This equation together with
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the four boundary conditions, written above on the shock wave, give
a system of five equations which allows the determination of the five
unknown functions (Xas and F). The effective solution of this system
may be found in the paper “Three Dimensional Flow of Ideal Gases
Around Smooth Bodies”, NASA TT F-380, of the authors ofthe B V L
R method.

In order to perform now the reverse “sweep”, i.e., the successive deter-
mination of Xps—1, Xar—2, ..., Xo, starting from the shock wave, we must
get, by using the difference system (5.2) and the equation pi,, X, = g,
a relationship of the form Xy, = ¢m X1 + dm, where |ley]| < 1, the
necessary condition for stability, which is feasible. Details on such a
scheme may be found in A.N. Liubimov, V.V. Rusanov [86].

The computations will be continued until the difference between the
forward values X,, and the reverse values X,, will be smaller than an
“a priori” given number, i.e., until the computation stabilizes at a given
approximation. The method provides a sufficiently accurate computa-
tion of the supersonic flow, the location of the shock wave being better
represented than in the Prandtl-Meyer model.

2. Discretization of the Partial Differential
Equations

Let z = z5,1 = 1,...,m and ¥y = y;,7 = 1,...,n be a grid on the
computational domain, with the nodes (z;,y;) and the step-sizes Az, Ay
for the two directions, step-sizes of which could be different.

The finite differences method replaces the derivatives from the par-
tial differential equation by finite differences, thus resulting an algebraic
systems. The basic tool is the Taylor development in the neighborhood
of the current point.

For example, if u is the horizontal component of the velocity, then at
the point P;; where z = z; and y = y;, we have the value u;; while
u;41,; at Piyyj has the expression

winny =uig+ () aps (Zv) Qo (Fu) (Ao
t+1,7 — Y15 Iz i or? id 2 913 i 6 '

(5.3)
The exact value of u;41,; could be obtained by taking into account all
the terms of the series (if the series is convergent). Practically, the series
is “truncated” by neglecting the high order terms and considering very
small step sizes Az. So that, we have

Uit1,5 =~ Uij 9z i T 912 i 2
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with a second order accuracy or
ou
Uil = Ujj + (5— Ax
T/ ig

with a first order accuracy.
From these relations one could evaluate

u)  _ Uit1j— Uiy
< am)m = ZHI T 4 o(Ad) (5.4)

which approximates the first derivative by a forward finite difference.
Like the previous one-dimensional case, we have also

() (Fwy (B (0w (Aa)
Uj—1,5 = Uj,j Bz g T amz i 2 Ox3 ij 6

(5.5)

from which

3’u, _ U5 — Ui—1,5
( m)i,j = == + 0(Aq), (5.6)

that is the approximation of the derivative by a backward finite differ-
ence.
By subtraction of the formulas (5.3) and (5.5) we get

Ou\ Uil — Ui-l 2
(63:)1.’1. N 2Az +0(Az%)

i.e., the approximation by centered differences.
If we add the same formulas we obtain

(62u) Uil — Ui+ Ui

»J 2
= = + O(Az
022 ), ; Ar? (Az)
which is an approximation of the second order derivative.
Obviously, there exist similar formulas for the derivatives with respect

to y:
ou U 41 — Ui j
- =__’__*+OA ,
<3y>i,]’ Ay (29)

ou Ujj — Ui -1
—— :_’__’__+O A ,
(ay)i,j Ay (89)

5U> Uijpl = Uij—1 2
- = 1w O(A ,
(By i, 248y (A7)
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0%u U1 = Ui 5 + Ui
- — 3 2 Ll O A 2 .
(8y2>i,j Ay? + O(Ay®)

We also remark that

(%), (&)
Pu\ _ (0 (Ou N0/, N0/
ox? i “ \ 9z \ 0z ij ~ Az

Uitlj — Uiy  Uij — Uil
_ Az Az _ Uil — 25+ Ui

Az Az? ’

i.e., forward and backward finite differences are used simultaneously.
Thus, we could similarly generate different formulas for other kinds of
derivatives. For instance,

(5).0,,~ ()
<a2u) _(a <8u>) N0 iy Ny i
i,j i,J

Oz dy oz \ dy 2Azx

Uitl,j+1 — Uit1,5-1  Ui-1,541 — Ui—1,5—1

_ 2Ay 2Ay
2Azx
from which
*u U1, j+1 + Uim1 j—1 — Ui+1,j—1 — Ui—1 j+1 2 9
= 2 : : > Az, Ay*).
(8x8y>” 4Az Ay +0(Az%, Ay’)

An important problem is how to approximate the derivatives at the
boundary grid points, for example, how to approximate %’;— at the bound-
ary node 1 from Figure 5.2.

Using one of the previous formulas, we have

ou Uy — UL
— ] = + O(Ay).
(By)l Ay (289)

A more precise formula could give

du _ Uz — Ug 2
(512/—)1 - 2Ay + 0y

but ug is unknown outside of the computational domain. The boundary




256  BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

Ay

Ay

Ay the boundary

Figure 5.2. The approximation of the derivative at a boundary node

could be imposed by choosing ug = wg but we cannot calculate the
derivative with this formula.
Suppose that in the neighborhood of the boundary, u is of the form

u(y) = a + by + cy®. (5.7)

Then
u; = a,
ug = a + bAy + cAy?,
uz = a + 2bAy + 4cAy?,
thus, having u, ug, uz one could calculate a, b, c. But, on the other hand,
Bu)
— ) =(b+2cy), =b,
((9y 1

therefore

Ou)  —3u; +4uy; —u3
0y /, - 2Ay
Concerning the accuracy, we have

ou u\ (Ay)? Bu\ (Ay)?
- TUY Ay (2H g L (5
“ u1+<3y>1 y+<0y2)1 2 +(3y3)1 6 8

Comparing the formulas (5.7) with (5.8) we find
ug = a + bAy + cAy® + O(Ay®)
with errors which affect u1,u9,u3. Dividing by Ay we obtain
_3_u _ —3uy +4us —u
o), 2Ay
Such type of formulas are called one-sided finite differences. More details
can be found in [124].

2+ 0(Ay?).
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3. The Linear Advection Equation

The linear advection equation is

Ju ou
—4+c— =0 1),t
(9t+cBa: ,Z € (0,1),t >0
where ¢ is a constant that physically represents the advection velocity.

It is easy to verify that the general solution of this equation is
u(z,t) = F(z — ct)

where F'is an arbitrary, differentiable, single-valued function which rep-
resents, in fact, the shape of the solution » at ¢ = 0. This profile is
translated along the Ogz- direction at the velocity ¢ at the next time
moments.

This equation is commonly used as an example and a test equation
for many numerical methods.

3.1 Discretization of the Linear Advection
Equation
The first step in the numerical treatment of this problem is the dis-
cretization. In this section we will study different types of discretization

by finite differences following [79].
We define a spatial grid of N + 2 points, with a constant step size A,

1
;= (j—-g)h, j=0,1,.,N+1

where N of them lie within the computing interval (0,1). The solution
u will be approximated at the points zi,...,zny while g, Ty Will be
used for describing the boundary conditions.

So, if u is fixed outside the computing interval, these boundary con-
ditions are discretized by

k_ .0 k _ .0
Ug = Ugy, Uyl = UN4y-

In the case of periodic boundary conditions, we have

kE _ .k kK _ .k
Uy = Uy, UNy1 = U

while in the case of homogeneous Neumann conditions we have

k__ .,k kK .k
Up = Uy, UNy = Up-

Here a temporal grid is defined on (0, o), with constant step size At,

tr = kAL, k=0,1,..
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and the approximations of the solution u on the grid (z;, tx) are denoted
by ’U,?,

uf = u(zj, ).

We shall study different discretizations of the advection equation, ob-
tained by various discretizations of partial derivatives.

3.1.1 Forward-Time and Centered-Space Scheme

We shall use the forward difference for the temporal derivative and
the centered difference for the spatial derivative. So, we obtain a discrete
form of a first order accurate in time and second order accurate in space,
equation

k+1 _ k k k
U — U, uy — U
24— 1 oAt Il 0(Az?) ) =0
Az + O( )+c( SAL + O(Az?)
or, by neglecting the “small” terms,
cAt
uf“ = uf ~ oAz (uf+1 - u§_1> . (5.9

First, let us analyze the stability of the scheme. We shall use the von
Neumann method, based on the study of the behavior of a single Fourier
mode

u(z,0) = e®

in the approximation process.
The exact solution corresponding to this initial condition is

Ueg (2, 1) = gin(z—ct)
If we are looking for solutions of the approximating equation (5.9) of the
form

u‘l; - ein(zj —c*ty)

advected at the velocity c*, then

k . ptinlAzx k
lu’j:':l =€ UJ

and
u?il — gFinc Atu;q.

Substituting in the equation (5.9) we find

et cAt —
e~ e ot _ 1— (emAx —¢ mA:c)

2Azx
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or

ot .CAt
e A = 1 — 1= sin(nAz).

Az

But the above equation implies that the amplification factor e
of the numerical solution passing from the moment t; to the moment
tx+1 has a magnitude greater than 1 (we note that ¢* may be complex).
Consequently, the numerical solution

—inc* At

Ic — pin(x;—c*ty) __ £ (e—inc*At)k
uj = =

is growing when t — oo and this scheme is unconditionally unstable, that
means useless.

This example shows that not any discretization gives valid numerical
solutions.

3.1.2  Centered-Time and Centered-Space Scheme

The discretization of both derivatives, in space and in time, by cen-
tered differences, leads to

“?H k ' 2 “§+1 —uj 2)
b A b B g} A =
SAz + O(At?) + SAa + O(Az 0
or
_ cAt
uft = - = (i = uby) (5.10)

which is second order accurate.
Let us study the stability of this scheme. As in the previous section,
we obtain

i o Sy ¥ At . .
e~ine At _ eine at _ ¢ (emAac _ e—mAz) (5‘11)
Az
and consequently,
At
sin(nc*At) = CA— sin(nAz). (5.12)
z

This implies that ¢* is real and now, as the left-hand-side has a magni-
tude less than 1, the above equality is satisfied for every n only if

cAt <1
Az
The factor C = <&¢ which can be considered a “nondimensional

Az
velocity”, is called the Courant number. The above condition is in fact
a restriction on the time step size when the space step size is fixed, and

it is called the CFL (Courant—Friedrichs—Lewy) condition.
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If the CFL-condition is not satisfied then, denoting the amplification
factor by

€ = e in¢ At

and by

~ At

C= CA—m sin(nAx),
the equation (5.11) becomes

2 +2Ce—1=0

such that, consequently

e=—iC+1/1-C2

If |5| < 1 it is obvious that |¢|] = 1 and the scheme is stable. But if

C > 1, then
ezi(i\/éz——l—a)

and the solutions of the difference equation (5.10) are combinations of
two elementary solutions: one is oscillating and decaying but the other
is oscillating and growing. This growing solution swamps the other and
yields instability.

Let us study the accuracy of this scheme, supposing the CFL-condition
satisfied. The equation (5.12) gives us the advection velocity of the nu-
merical solution

N 1 . [cAt .
¢’ = < arcsin (A_m sm(nAa:))

which may be put in the form

*

—Rp aresin (C sin(nAcz))

where C* = %ﬁ and C = %‘;.

It should be noted that ¢* may coincide with ¢ (for all n) only for
very particular spatial and temporal step sizes Az and At. Such a case
is C = 1, that is Az = cAt, which is situated on the stability limit.

If we decrease the step size At in order to increase the accuracy and
to maintain the stability (C < 1), the result is a translation velocity of
the numerical solution lower than the exact velocity. This fact is obvious
if we plot ¢* with respect to ¢ or C* with respect to C.
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Figure 5.3. Numerical velocity with respect to the wave number

Moreover, the advection velocity of the numerical solution ¢* depends
on the wave number n. If we represent C*/C with respect to nAz for a
fixed C, for example C = 1/4, we obtain Figure 5.3.

We remark that if nAz = w, then ¢* = 0 so a wave with the wave
number

v
n=-—
Az
never advects. This happens for waves of wavelength
A= n = 2Az.
n

Longer waves spread numerically faster than shorter waves and the larger
the wavelength the better is the numerical velocity.

But the initial profile of the unknown function » may be represented
as the sum of a Fourier series and each term of the series is a wave with
a specific numerical velocity. Consequently, the initial shape cannot be
preserved by numerical advection with this scheme.

Even if the stability is ensured by imposing the CFL-condition, even if
we have an acceptable accuracy when the initial profile is a superposition
of waves with wavelength greater than the grid step Az, there are other
facts that make the above method difficult to use.

We remark that the equation (5.10) allows the computation of u at
the time level £+ 1 from its values at the time levels & and k—1. But, at
the first step, we know only the time level £ = 0. The necessary values
for the next time level may be computed, for example, using the method
from the previous section. We suppose that the errors coming from this
single step by the unstable method are small relative to other errors of
the present method.
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Another feature, much more serious, is that our scheme may generate

two numerical solutions of the same problem. The value uf“ is com-

puted from the values ufﬂ and uf”l but ignoring the values uf If we
mark on the grid (z;,%x) the points which are under the influence of uf
we see that these points are completely independent from those under
the influence of u¥, or uf*! (like the white and black squares on a chess
board). So, what we compute are two uncoupled solutions, that may be
of different behavior and producing spurious numerical oscillations.

Of course, we may diminish this phenomenon by recoupling the partial
solutions. For example, such a way which ensures the circulation of the
information between the two types of grid points is to substitute the
computed values uf by the modified values

—k _  k k+l | —k—1 _ o k
uj =uj +7(u; U 2u;)

where 7 € (0.01,0.05). There are many types of such filters but their
use leads to unnatural algorithms.

3.1.3 Backward-Time and Centered-Space Scheme

Let us consider now the following discretization of the linear advection
equation

uk — 'u,k.:_l u’? — uk
e R it st S el Y 2y} _
. T O(AY) +e sy TOBzY) ) =0
or C
uj + 5 (“§+1 - “f-l) =uy . (5.13)

This is an implicit scheme. The solution at the next time level is
computed from the present time level by solving a tridiagonal system of
equations.

Now, if we study the stability by the von Neumann method, replacing
the wave e™(#i—¢"t%) in the previous equation, we obtain

1+ iCsin(nAx) = e AL,

The magnitude of the left-hand side is greater than 1, resulting thus in
a complex c¢*. So, the right-hand side modulus is greater than 1 and the
amplification factor
e—inc"At _ 1
einctAt
has magnitude less than 1. The scheme is then unconditionally stable
but it does not preserve the amplitude of the waves.
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3.14 Crank—Nicolson Scheme

Using the average of forward and backward schemes, we obtain

k1 k ko _ .k E+1 _  k+1

At 2 2AT 2Az

If we study the stability as in the previous sections, we have
.C inct C
(1 + % sin(nAx)) gTinc At = (1 — % sin(nAa:)) .

The terms in brackets have the same magnitude, thus resulting in a
unitary amplification factor e~™¢"At, The implicit scheme is then un-
conditionally stable but, as in the previous sections, this scheme does
not preserve the shape of the waves: the numerical velocity ¢* depends
on the wave number n. Particularly, the waves with the wave length
2Az, for which nAz = 7, yield ¢* = 0.

3.1.5 Upstream Schemes

We have remarked above that the use of the centered-differences
schemes for the spatial derivative does not yield good algorithms. Tak-
ing into account the fact that the partial differential equation advects
the values of the solution from left to right (downstream), it is natu-
ral to use for the spatial discretization a finite difference that uses the
known value (from left, upstream) and not the unknown value (from
right, downstream) from the spatial grid point z;.

Then we discretize the spatial derivative by a backward finite differ-
ence, using the upstream values of u. For ¢ > 0 we obtain

uf“ - uf +C (u;C — uf_l) =0. (5.14)
We firstly remark that this scheme is of first order of accuracy and we
need only an upstream boundary condition, so we must specify only the
value uf.

The stability study, as in the previous sections, yields

e—inc*At =1-C+ Ce—inAz_
We see that, generally, ¢* # ¢. Moreover,
a2 : .
/e—mc At‘ — (l —-C + Ce~znAw) (1 —-C+ CemAz)

=1+ 2C(1 — C) [cos(nAz) — 1].
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It follows that the magnitude of the amplification factor is less than 1
for 0 < C <1 and greater than 1, conversely. So, for C € [0,1) the
numerical solution is stable but it decreases with time while the exact
solution does not.

But, if C = 1, from the above relations it follows that |e“i"C*At| =1
so the numerical solution does not diminish and, more, ¢* = ﬁ—f =c. In
this particular case the numerical solution is “perfect”.

Even in the case C € [0,1), when ¢* # ¢ and it depends on the
wave number n, we have no spurious maxima or minima, due to the
numerical diffusion, manifested by a decreasing amplitude of the initial
shape. Moreover, each step profile at the initial state is rounded.

Due to the conservation of the maxima and minima of the initial state,
even not exactly in position or magnitude, we can say that this scheme
is monotony preserving.

3.2 Numerical Dispersion and Numerical
Diffusion
It is the moment to explain the reason of the numerical difficulties
encountered at the above schemes. It should be recalled that we were
trying to solve numerically the equation

Ou ou

E-{-Ca—m:(]

by discretizing the partial derivatives and neglecting the “small” terms
(i.e., of order of some powers of At or Az). But from the generic devel-
opment in Taylor series

— 2 Az?

we remark that the neglected terms link to the high order derivatives of
u with respect to z and ¢. This means that the exact equation we try to
solve by simple discretizations becomes

Ju 0%y 9 &u
5{ + C1At— pY + Co At 3t3

Ju 0%u ,Bu
— =0.
+a +DlAwa2+D2A$8 + -
If we use a centered finite difference for the spatial derivative and if
we suppose At sufficiently small such that the error comes only from Az
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and Az2, we will have

k+1 _ & E .k
o A AU e 3 B
At 2Azx

13] ou Az? 934y
= a‘(iﬂj,tk) +ec (51‘:(53]',%) + T@(J’jatk)) :

So, in fact, the numerical solution approximates the solution of a (new)
equation of the form
Ju (8u Az? 33u> _

-a~t+c 8CL‘+——6 5{1}3 (5.15)

If we replace here the test wave
u(m,t) — ein(z-—c*t)

we obtain Ag?
—inc*u+ ¢ ('mu — z——6—~n3u) =0,

& ) Aw2n2>
=cl|l- .
6

Concluding, the numerical solution, which approximates in fact the
solution of the equation (5.15), is advected by a velocity ¢* slower than
by the exact velocity ¢ and this velocity depends on the wave number
n. This is the origin of the numerical dispersion that we encountered in
the above schemes and it is generated by the presence of odd derivatives
into the considered equation.

Let us now take the scheme where the spatial derivative is approxi-
mated by a backward finite difference (for ¢ > 0), where we also neglected
the terms of order Az?,

k+1 k k k
At Ax
Ju

ou
= —t(wj,tk) +c (Ez(mjatk) - TW(wj,tk)) :

from which

In this case the equation to solve is, in fact,

bu, (0 e\
ot ¢ Oz 2 9z2)
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The term which contains the second spatial derivative of u represents a
diffusion and it smoothes the initial state. This term is not a physical one
but it is the effect of the discretization of the spatial derivative and thus
it is the origin of the numerical diffusion encountered in some schemes.
This phenomenon is generated by the presence of even derivatives into
the equation.

Also, by replacing the test solution

’U,(IL', t) = ein(z—c*t)

into the above equation, we find

Lk . Az 2
—incu+c mu+—§—nu =0

. inAcx
c-c(l 5 )

Az
2t

and thus

So,

U(IL‘,t) — ein(z—-ct)e—nzc

and the numerical solution moves with the same velocity as the exact
solution while its amplitude decays to zero.

3.3 Lax, Lax—Wendroff and MacCormack
Methods

There are many other discretization methods. For example, in the
equation
u + cuy, = 0,
we can replace the spatial derivative by the centered finite difference and
the temporal derivative by the formula

k1 _ 1.k k
Yi T2 (“j+1 + “j—l) + CU§+1 —uf
At 2Az

=0
obtaining thus the Lax method

k k k k
R e B e S o % Bl e
J 2 Az 2 '
In this case, by considering a perturbation

em(z,t) = e¥ethm®
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the amplification factor becomes
e = cos(kyAz) — iC sin(ky Az)

where C = c{: AA; The stability condit