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PLANAR OPTICAL GUIDES
FOR INTEGRATED OPTICS

The contents of Chapters 9 and 10 are closely interwoven. Both chapters deal with
guided waves, but Chapter 9 deals primarily with guided waves in a medium bounded
in one direction (taken as the x direction), while Chapter 10 deals with guided waves in
a medium bounded in two directions (taken as the x and y directions). The slab optical
guide is an example of a medium bounded in one direction; and the rectangular optical
guide is an example of a medium bounded in two directions. For the analysis in both
Chapters 9 and 10, the z direction is taken as the direction of the wave propagation.

The foundation of integrated optics is the planar optical guide. The light is guided
by a medium whose index of refraction is higher than that of surrounding layers.
An optical guide made of an electrooptic material changes its characteristics with a
change in the applied electric field. This type of guide is very useful for fabricating
electronically controllable optical switches, directional couplers, interferometers, and
modulators.

According to geometrical optics, light will propagate by successive total internal
reflections with very little loss provided that certain conditions are met. These condi-
tions are that the layer supporting the propagation must have a higher refractive index
than the surrounding media, and the light must be launched within an angle that satis-
fies total internal reflection at the upper and lower boundaries. This simple geometrical
optics theory fails when the dimensions of the guiding medium are comparable to
the wavelength of the light. In this regime, the guide supports propagation only for a
discrete number of angles, called modes of propagation. In this chapter, the concept of
modes of propagation is fully explored. We will explain what a mode looks like, how
many modes there are, how to suppress some unwanted modes, and how to accentuate
only one particular mode. This information is essential for designing an optical guide.

The chapter starts with the characteristic equation that primarily controls the mode
configuration. Then, details of each mode are described. Due to the simplicity of the
geometries studied, exact solutions will be obtained in many cases. Such knowledge
is essential for designing the various optical waveguide configurations in the next
chapter.
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606 PLANAR OPTICAL GUIDES FOR INTEGRATED OPTICS

9.1 CLASSIFICATION OF THE MATHEMATICAL APPROACHES TO THE
SLAB OPTICAL GUIDE

Slab optical guides consist of three planes and can broadly be classed into two types.
One is the symmetric guide and the other is the asymmetric guide. “Slab optical
guide” will be called simply “guide.” The refractive indices of the top and bottom
layers of the symmetric guide are identical, as indicated in Fig. 9.1, whereas those of
an asymmetric guide are different. In integrated optics, both types are used. The core
material of the symmetric guide is completely imbedded inside the substrate (cladding)
material. The asymmetric guide consists of a film layer as the guiding core layer, with
air or some other covering material as the top cladding layer, and substrate as the
bottom cladding layer.

Since the mathematics dealing with a symmetric guide is much simpler than that
of an asymmetric guide, the symmetric guide will be treated first for better physical
insight.

The commonly used methods of analysis are the following:

1. The wave optics approach, which is the most rigorous but sometimes more
complicated method.

2. The coefficient matrix approach whose manipulation is more or less mechanical
and straightforward.

3. The transmission matrix method, which has the potential to be extended to solve
multilayer problems.

4. The modified ray model method, which is simple but provides less information.

The wave optics approach is explained in Sections 9.2 to 9.6 and the other methods
in Section 9.7.
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Figure 9.1 Geometry of the slab optical guide.
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9.2 WAVE OPTICS APPROACH

This method starts with Maxwell’s equations [1–5]. It needs no approximation and the
results are rigorous. First, the field expressions are derived, followed by a derivation of
the characteristic equations that are instrumental in determining the propagation modes
in the guide.

Let a sinusoidally time-varying wave propagate in the z direction. The propagation
constant in the z direction is ˇ. The electric and magnetic components of the wave are
expressed as

E D E0�x, y�e
j�ˇz�ωt�

H D H0�x, y�e
j�ˇz�ωt� �9.1�

The following two assumptions simplify the analysis:

Assumption 1. No component of the field varies in the y direction:

∂

∂y
D 0 �9.2�

Assumption 2. There is no magnetic field component in the z direction (TM
modes),

Hz D 0 �9.3�

The first assumption means that a wave is launched that does not vary in the y
direction. This means that the field extends indefinitely in the y direction, but in
reality there is no such wave. Note also that an infinite dimension does not guarantee
Assumption 1. The infinity of the y dimension of the layer is certainly a necessary
condition for ∂/∂y D 0, but not a sufficient condition. For instance, a plane wave has
variations even in an infinitely large medium in the direction of propagation. The
manner of launching determines this condition.

The second assumption leads to a natural way of dividing the solutions, but it is not
the only way to divide the solutions. The solutions are separated into two waves: one
that has only transverse and no longitudinal magnetic field, that is, Hz D 0; and the
other that has only transverse and no longitudinal electric field, that is, Ez D 0. The
former is called transverse magnetic or TM mode (wave) and the latter, a transverse
electric or TE mode. In general, a wave has both Hz and Ez components. The Hz

component is accounted for by the Hz component of the TE mode and the Ez compo-
nent, by the Ez component of the TM mode. The field is composed of both TM and
TE modes in general. Except for Section 9.6, TM modes are assumed in this chapter.

With the assumption of Eq. (9.2), the Hy component of Eq. (9.1) is found first by
inserting it into the wave equation:

r2H C �n1,2k�
2H D 0 �9.4�

∂2Hy

∂x2
C �n2

1,2k
2 � ˇ2�Hy D 0 �9.5�

Equation (9.5) is applicable for both core and cladding layers by using the respective
values of n1 or n2 for n1,2.
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There are two kinds of solutions for the differential equation, Eq. (9.5): trigonometric
solutions such as cos Kx or sin Kx for a positive value of �n2

1,2k
2 � ˇ2�, and exponential

solutions such as e�x or e��x for a negative value of �n2
1,2k

2 � ˇ2�. Here, only the guided
wave is treated, that is, the wave whose amplitude decays with both x and �x. The
solutions are chosen to fit the physical conditions of the guided wave. Inside the core
layer, the wave is oscillatory and the trigonometric solutions are suitable. Inside the
cladding layer, however, only the evanescent wave is allowed and the solution must
have a decaying nature. Thus, inside the core one has

n2
1k

2 � ˇ2 D K2 jxj < d �9.6�

and in the cladding,

n2
2k

2 � ˇ2 D ��2 jxj > d �9.7�

The range of values of ˇ2 that satisfy both Eqs. (9.6) and (9.7) is limited. The left-hand
side of Eq. (9.6) has to be positive, while that of Eq. (9.7) has to be negative. This is
especially true because the difference between n1 and n2 is normally a fraction of 1%
of n1. The range of ˇ set by Eqs. (9.6) and (9.7) is

n1k > ˇ > n2k �9.8�

Moreover, ˇ is allowed to take only discrete values in the above range, as will be
shown later.

The solution of Eq. (9.5) with Eq. (9.6) inside the core is

Hy D A cosKx C B sinKx �9.9�

and the solution of Eq. (9.5) with Eq. (9.7) inside the cladding layer is

Hy D Ce��x C De�x �9.10�

where the factor ej�ˇz�ωt� was suppressed.
The next step is to find the constants A, B, C, and D using the boundary conditions.

In the upper cladding layer, D has to be zero (note that zero is also a legitimate
constant) so as to prevent Hy from becoming infinitely large as x approaches C1.
Using the same reasoning, C has to be zero in the lower cladding layer.

Hy D
{
Ce��x, x > d

De�x, x < �d �9.11�

Matters are simplified if Eq. (9.9) is separated into two parts:

Hy D A cosKx �9.12�

Hy D B sinKx �9.13�

In the end, the two solutions are combined to reach the final solution. Equation (9.12) is
called the even-mode solution, and Eq. (9.13) is the odd-mode solution, simply because
cos Kx is an even function of x (i.e., cos ��Kx� D cosKx), and sin Kx is an odd
function of x (i.e., sin ��Kx� D � sinKx). This way of separating the solutions into



WAVE OPTICS APPROACH 609

two is quite natural. If the slab optical guide is excited with an incident wave whose
amplitude distribution is symmetric with respect to x, A is nonzero and B is zero. B is
nonzero and A is zero for a perfectly antisymmetric incident amplitude distribution.

In order to determine the values of the constants, the boundary condition of the
continuity of the tangential H field is used at x D d, and from Eqs. (9.11) and (9.12),
this boundary condition for the even TM modes gives

A cosKd D Ce��d �9.14�

Putting this equation back into Eq. (9.11) gives

Hy D A�cosKd�e���x�d� �9.15�

An expression for the lower cladding layer is obtained using the boundary condition
at x D �d. The results for the even TM modes are summarized as

Hy D



A�cosKd�e���x�d� in the upper cladding

A cosKx in the core

A�cosKd�e��xCd� in the lower cladding

�9.16�

Expressions for the odd modes are obtained by starting with Eq. (9.13) instead of
Eq. (9.12) and following the same procedure. The results for the odd TM modes are
summarized as

Hy D



B�sinKd�e���x�d� in the upper cladding

B sinKx in the core

�B�sinKd�e��xCd� in the lower cladding

�9.17�

Next, Ex and Ez are obtained from Hy using Maxwell’s equations:

W× H D ∂D
∂t

�9.18�

W× E D �∂B
∂t

�9.19�

With Eqs. (9.1), (9.2), and (9.18), Ex and Ez are

Ex D ˇ

ω�r�0
Hy �9.20�

Ez D j

ω�r�0

∂Hy

∂x
�9.21�

The value of �r depends on the medium and

�r D
{
n2

1 in the core

n2
2 in the cladding

�9.22�
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Now, all field components of the TM modes have been obtained. They are summa-
rized as

Ex D ˇ

ω�r�0
Hy

Ey D 0

Ez D j

ω�r�0

∂Hy

∂x

Hx D 0

Hy D A cosKx C B sinKx

Hz D 0

�9.23�

where B D 0 for the even TM modes, and A D 0 for the odd TM modes. The equation
Ey D 0 was derived from Maxwell’s equations as follows. The y component of Eq. (9.18)
and the x component of Eq. (9.19) are combined to give

Ey�ω
2��r�0 � ˇ2� D 0 �9.24�

Since the value inside the parentheses is K2 from Eq. (9.6) and is nonzero, Ey D 0.
Hx D 0 was derived by inserting Ey D 0 into the x component of Eq. (9.19).

9.3 CHARACTERISTIC EQUATIONS OF THE TM MODES

In the previous section, not much was said about the actual values of K2 and ��2

except that the former is a positive number and the latter, a negative number. The
values of K and � are crucial to determining the modes of propagation. Some more
boundary conditions are used to find these values.

9.3.1 Solutions for K and g

First, the even TM modes are considered. Continuity of the tangential E field, Ez in
Eq. (9.23), at x D d requires that

n2AK sinKd D �Ce��d �9.25�

where Eqs. (9.11), (9.12), and (9.21) and n D p
�r2/�r1 D n2/n1 were used. Dividing

Eq. (9.25) by Eq. (9.14) gives

n2Kd tanKd D �d �9.26�

Equation (9.26) is called the characteristic equation for the even TM modes. The
characteristic equation is used to find the solutions for K and � .

We need one more equation to find the values of K and � . From Eqs. (9.6) and
(9.7), ˇ is eliminated to obtain

�Kd�2 C ��d�2 D V2 �9.27�
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where

V D kd
√
n2

1 � n2
2 �9.28�

Since V consists of only physical constants such as the height of the guide, the
indices of refraction, and the light wavelength, V is referred to as the normalized
thickness of the guide. The normalized thickness V is an important parameter specifying
the characteristics of the guide.

Equations (9.26) and (9.27) are transcendental equations and the solution cannot
be found in a closed form. Graphical solutions are available, as shown in Fig. 9.2.
Equations (9.26) and (9.27) are plotted on the Kd–�d plane as solid lines in Fig. 9.2.
Note that Eq. (9.27) is a circle with radius V. The shape of the curve for Eq. (9.26)
is quite similar to tan Kd. Each intersection point shown in Fig. 9.2 corresponds to a
solution, or mode of propagation, of an even TM mode. These intersections are called,
for short, the even TM modes.

The corresponding characteristic equation for the odd TM modes is obtained using
Eq. (9.13) instead of Eq. (9.12). The continuity of Hy at x D d gives

B sinKd D Ce��d �9.29�

and the continuity of Ez in Eq. (9.23) gives

n2BK cosKd D �C�e��d �9.30�
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Division of Eq. (9.30) by Eq. (9.29) renders the characteristic equation for the odd TM
modes as

�n2Kd cotKd D �d �9.31�

Equation (9.31) is plotted as the dashed lines in Fig. 9.2.
The intersections between the solid lines and the circle are the even (order) TM

modes and those between the dashed lines and the circle are the odd (order) TM
modes. Even numbered subscripts are used for even modes and odd numbers for odd
modes. The subscript is called the order of the mode or the mode number.

With a decrease in V, the number of modes that the guide can support decreases
one by one. For example, referring to Fig. 9.2, an optical guide whose normalized
thickness is V1 can support four modes, whereas that with V0 can support only one
mode. For every  /2-radian decrease in V, even and odd modes alternately disap-
pear. The disappearance of a particular mode is called the cutoff of that mode. For
instance, the cutoff condition for the TM3 mode is V D 3

2 . As the cutoff condition is
approached, the value of � approaches zero, and the effective depth of the evanescent
wave (Section 2.8) in the cladding layer increases. When � reaches zero, the evanes-
cent wave is present throughout the cladding layer and the light energy cannot be
sustained inside the core.

As long as V is greater than  /2, more than one mode can be excited simulta-
neously. Among the excited modes, the higher order modes are more susceptible to
the conditions outside the guide because � is smaller and the effective depth of the
evanescent wave is deeper.

If V is less than  /2, there exists only one mode and no other modes can be excited.
The mode that is capable of being the only excited mode is called the dominant mode.
The dominant mode of the TM modes in the slab optical guide is the TM0 mode. Note
also that there is no cutoff for the TM0 mode, which remains excited down to V D 0.

A slab optical guide that exclusively supports the dominant mode is called a single-
mode guide or monomode guide. Guides that support more than one mode are called
multimode guides. When light is launched into a multimode guide such that several
modes are excited, then the incident light power is divided among the excited modes.
Each mode, however, has a different propagation constant ˇN. Thus, each mode arrives
at the receiving point at a different phase and the signal is distorted. This distortion
is called mode dispersion. A signal in a monomode guide is not distorted by mode
dispersion.

Since the number of modes increases for every  /2-radian increase in V, the highest
mode number N is the largest integer that still satisfies

2 

"
d
√
n2

1 � n2
2 > N

 

2
�9.32�

and the total number of TM modes including the zero-order mode is N C 1.

9.3.2 Examples Involving TM Modes

Example 9.1 Optical communication systems are normally operated at a light wave-
length of 0.85, 1.3, or 1.55 µm. These wavelengths are outside the visible range. A
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He–Ne laser emitting light at 0.63 µm is often used to test devices because 0.63 µm
lies in the visible wavelength range.

A symmetric guide designed to be monomode for a wavelength of 1.3 µm was
excited by a He–Ne laser. At most, how many TM modes will be excited by the
He–Ne laser in this guide?

Solution According to Fig. 9.2, the largest normalized thickness V of a single-mode
guide is  /2. Setting V D  /2 at 1.3 µm, the thickness d of such a guide is

2 

1.3
d
√
n2

1 � n2
2 D  

2

With this d, for 0.63 µm, the normalized thickness becomes

V D 2 

0.63
d
√
n2

1 � n2
2

D  

2
Ð 1.3

0.63

D 1.03 radians

From Fig. 9.2, at most three modes are excited. �

Example 9.2 The TM2 mode in a symmetric guide was observed to be cut off when
the wavelength was increased beyond 1.5 µm. The refractive index of the core is
n1 D 1.55 and that of the cladding is n2 D 1.54.

(a) What is the thickness 2d of the guide?
(b) What is K2 at the cutoff?
(c) What is ˇ2 at the cutoff?

The subscripts on K and ˇ refer to the mode number.

Solution
(a) From Fig. 9.2, the TM2 mode has its cutoff at V D  .

2 

"
d
√
n2

1 � n2
2 D  

2d D "√
n2

1 � n2
2

D 1.5p
1.552 � 1.542

D 8.53 µm

(b) At the cutoff, the normalized thickness is

V D K2d D  

and the value of K2 is

K2 D 0.74 rad/µm
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(c) At the cutoff, �2 D 0. Putting �2 D 0 in Eq. (9.7), one finds that ˇc at the cutoff
is n2k:

ˇc D 6.4 rad/µm

This relationship can also be derived from Eq. (9.6). Expressing Eq. (9.6) in terms of
ˇ2 gives

ˇ2 D
√
�n1k�2 �K2

2

At the cutoff, V D K2d and

K2
2 D k2�n2

1 � n2
2�

Inserting this K2
2 value into the equation for ˇ2 gives ˇc at the cutoff:

ˇc D n2k

It is interesting to note that at the cutoff, the propagation constant is n2k regardless of
the order of the mode. �

Example 9.3 Show that if the slab guide can be excited up to the �Nmax)th TMNmax

mode, the propagation constant ˇN for the Nth �N − Nmax� TMN mode can be approx-
imated as

ˇN D n1k

√
1 � 2

(
N C 1

Nmax

)2

where

 D n1 � n2

n1
− 1

N − Nmax

Solution The propagation constant ˇN for the Nth TM mode is, from Eq. (9.6),

ˇN D n1k

√
1 �

(
KN

n1k

)2

�9.33�

The values of KN in the region of

N − Nmax

are, from Fig. 9.2,

KNd D  

2
�N C 1� �9.34�

The missing information is d. The order of the highest mode is Nmax and the corre-
sponding V is

V D  

2
Nmax �9.35�
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From Eq. (9.28) and the condition imposed on , V can be expressed as

V D n1kd
p

2 �9.36�

Inserting the value of d obtained from Eqs. (9.35) and (9.36) into Eq. (9.34) gives the
value for KN. The final result is obtained by inserting this KN value into Eq. (9.33),
giving

ˇN D n1k

√
1 � 2

(
N C 1

Nmax

)2

�9.37�

�

9.4 CROSS-SECTIONAL DISTRIBUTION OF LIGHT AND ITS
DECOMPOSITION INTO COMPONENT PLANE WAVES

The cross-sectional distribution of light in the guide is given by Eq. (9.16) or (9.17)
and is shown in Fig. 9.3. The intensity distribution of the Nth-order TM mode has
N C 1 loops and N nulls in the core layer. The shapes of the curves in Fig. 9.3 are
determined by the value of K. If the even-mode KN are far from the cutoff and are
almost an odd multiple of  /2, then the field vanishes at x D d; but if the values of
KN for the even modes are smaller than an odd multiple of  /2, then the field at
x D d becomes a finite value. In fact, these finite values determine the amplitude of
the evanescent field in the cladding layer.

It will be shown that the mode patterns are nothing but the standing-wave pattern
produced by the interference of component plane waves zigzagging inside the optical
guide. If the trigonometric cosine function is rewritten in exponential functions, Eq. (9.12)
combined with Eq. (9.1) becomes

Hy D 1
2A�e

j�KxCˇz�ωt� C ej��KxCˇz�ωt�� �9.38�

Note from Chapter 1 that a plane wave propagating in the k D �kx, ky, kz� direction is
expressed by

ejkÐr D ejkxxCjkyyCjkzz

TM0

0

x

Hy(x)

TM1 TM2 TM3

Figure 9.3 Distribution of the Hy field in the slab optical guide. The field distributions correspond to
the modes in Fig. 9.2.



616 PLANAR OPTICAL GUIDES FOR INTEGRATED OPTICS

The first term of Eq. (9.38) is a component plane wave propagating slightly upward in
the direction connecting the origin and a point (K, ˇ) in the x–z plane. The second term
is a similar plane wave but propagating slightly downward in the direction connecting
the origin and a point (�K, ˇ) in the same plane.

The interference of these two component plane waves is nothing but the field distri-
bution of the mode. The spacing between adjacent null contour lines changes as the
angle between the two plane waves is changed. This behavior can be demonstrated
by drawing phase lines on two sheets of transparent paper, and then placing one over
the top of the other as shown in Fig. 9.4. The phasefronts of these plane waves are
designated by two kinds of lines. The 0° phase line is represented by a heavy line and
the 180° phase line is represented by a fine line. The intersections of two heavy lines
are the points of maximum amplitude, while the intersections of two fine lines are
the points of minimum amplitude (negative extrema). The location where a fine line
meets a heavy line indicates a null amplitude. The contours of the amplitude extrema
and amplitude nulls are lines parallel to the z axis and alternate. The cross-sectional
distribution along the x axis would look like the sinusoidal curve indicated on the
right-hand side of Fig. 9.4. This sinusoidal curve is nothing but the mode pattern in
the guide.

The spacing between the null amplitude contour lines starts to contract from the
maximum of infinite distance to one-half wavelength by rotating from the parallel
position to the perpendicular position. The angles between the component waves that
can match the boundary condition are found by adjusting the rotation of the sheet.
The boundary condition is met by lining up the null contours close to the upper and
lower boundaries of the guide (to be exact, slightly inside the cladding layer due to
the evanescent wave). For a given value 2d of the guide, the boundary conditions are

0° Phase contour
180° Phase contour

S

O

n1

z

x

x

R ′

Null contour

Loop contour

Loop contour

q2 K2
−K2

b2

Null contour

S

R

Figure 9.4 Composition of the TM2 mode in terms of component plane waves. The effective index
of refraction is N D n1 sin %2.
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satisfied only for a discrete number of angles %N. Conversely, for a given angle %1, the
values of 2d that satisfy the boundary condition are discrete.

Because the field does not become exactly null on the boundary but goes into the
cladding layer as an evanescent wave, there is some inaccuracy in situating the null
contour line by this method. This inaccuracy can be removed by finding the value of
K from Fig. 9.2 and then using Eq. (9.6) to find ˇ and hence the angle %N. In this
way, the directions of propagation that satisfy the boundary conditions are accurately
determined.

The relationship between K and ˇ in Eq. (9.6) is graphically represented by the
K–ˇ circle of K2 C ˇ2 D �n1k�2 as shown in Fig. 9.5. By using K from Fig. 9.2, ˇ is
found from Fig. 9.5. The direction of propagation is a vector connecting the point (K,
ˇ) and the origin, as shown in Fig. 9.5. The extensions of these vectors determine the
directions of the component waves in the guide, shown on the right-hand side. The
discrete angles %N of propagation are, from Fig. 9.5,

%N D sin�1
(
ˇN
n1k

)
�9.39�

The range of allowed values of ˇ is limited. The maximum value of ˇ is n1k from
Fig. 9.5. The minimum value of ˇ is determined by the critical angle %c associated
with the boundary between the core and cladding layer as

%c D sin�1
(
n2

n1

)
�9.40�

From Eqs. (9.39) and (9.40), the minimum value of ˇ is n2k. The allowed range of ˇ
agrees with the earlier results of Eq. (9.8). The prohibited region is to the left of the
n2k line in Fig. 9.5. In a typical glass guide, n2/n1 D 1.54/1.55 and %c D 83.5°. The
allowed range is quite small, only 6.5°.

n2k

K 2 + b2 = (n1k)2

n1k
TM0

−K1

K1

−K0

K0

n1k

b1

b0

O

q

TM1

Figure 9.5 K–ˇ circle and component waves.
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Example 9.4 Using the TM2 mode as an example, describe how the following quanti-
ties change as the thickness 2d of an optical guide is decreased: (a) K2, (b) the incident
angle %2 to the core–cladding interface, and (c) the cross-sectional field distribution
of Hy .

Solution Figure 9.6 summarizes the results.
(a) The value of Kd is determined by the length p2 shown in Fig. 9.6a:

K2 D p2

d
�9.41�

With a decrease in d, the value of V D kd
√
n2

1 � n2
2 decreases and hence p2 decreases.

With a decrease in d, both the numerator and denominator of Eq. (9.41) decrease. But

(c)

(d)

Thick core Medium core
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Figure 9.6 Changes to the parameters of the TM2 mode in a slab optical guide with respect to
its core thickness. The left column is the thick core and the right column is the thinnest (at cutoff)
core. The free-space wavelength is kept fixed. (a) K–� diagram. (b) K–ˇ diagram. (c) Component rays.
(d) Field pattern in the guide.
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as seen from Fig. 9.6a, the decrease in p2 is much slower than the decrease in d itself
(keep in mind that V and d are linearly related) so that the value of K2 in fact increases
with a decrease in d.

(b) With an increase in K2, the incident angle %2 D cos�1�K2/n1k� decreases. If
the value of %2 should fall below the critical angle %c, then the TM2 mode ceases
to propagate since it leaves the realm of total internal reflection. This can also be
explained using Fig. 9.4. With a decrease in 2d, the null contour line RR0 has to come
down; hence, the angle %2 has to be decreased.

(c) Figure 9.6d shows the changes in the cross-sectional distribution of the field.
The sinusoidal wave inside the core slightly contracts in the x direction, whereas the
evanescent wave in the cladding expands significantly with a decrease in d. �

9.5 EFFECTIVE INDEX OF REFRACTION

First, the concept of the propagation constant ˇ in ejˇz is reviewed. The propagation
constant ˇ is the rate of advance in phase for unit distance (not for unit time) of
advance in z. It means that the shorter the wavelength is, the larger the rate of advance
in phase for a given distance, and the larger the value of ˇ is.

In free space, the propagation constant is

k D 2 

"

where " is the wavelength in vacuum. If the free space is now filled with a medium
with refractive index n0, the wavelength will be contracted to "/n0 and the rate of
advance in phase per distance will become larger: namely, the propagation constant
ˇ0 in such a medium is

ˇ0 D 2 

"/n0
D n0k �9.42�

Conversely, the refractive index of the filling medium is given by

n0 D ˇ0

k
�9.43�

The index of refraction is the ratio of the propagation constant of the medium to
that of the vacuum.

Now consider the optical guide. The propagation constant depends on the direction;
for instance, it is K in the x direction and it is ˇ in the z direction. In many instances,
it is propagation in the z direction that is of principal interest. In the z direction, the
guide may be treated as if it were free space filled with a medium with an index of
refraction N, defined as

N D ˇ

k
�9.44�

where N is called the effective index of refraction. The effective index of refraction
can be found from Fig. 9.5:

ˇ D n1k sin %
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Figure 9.7 Mode-index lens used for integrated optics devices.

and

N D n1 sin % �9.45�

Modulation of % has the same effect as modulating the index of refraction. This
effect is used to fabricate integrated optics devices, such as the mode-index lens on
a slab guide, shown in Fig. 9.7. When a mode in the guide encounters an increase in
guide thickness, the angle % increases. (This is illustrated in Fig. 9.6b by examining the
figure from the right to the left direction, which is the direction of increasing d.) As %
increases, so does the effective refractive index N. For the mode-index lens shown in
Fig. 9.7, the advance in constant phase lines is slowed down the most where N is the
greatest, and the spacing between the constant phase lines narrows. The result is that
the phasefronts of the transmitted wave converge toward the point F.

9.6 TE MODES

The wave optics approach applied earlier to the TM modes is applied in a similar
manner to the TE modes. Since the approach is so similar, only the key formulas are
repeated for the benefit of summarizing the approach.

The TE modes have only transverse and no longitudinal electric field:

Ez D 0 �9.46�

Again, the same assumption is made that the guide is excited such that no variation of
the field occurs in the y direction, namely,

∂

∂y
D 0 �9.47�
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With an assumed solution

Ey D Ey�x, y�e
jˇz�jωt �9.48�

the wave equation becomes

1

Ey

∂2Ey
∂x2

C [�n1,2k�
2 � ˇ2] D 0 �9.49�

The types of solutions of this differential equation depend on the sign of the
second term.

If the second term in Eq. (9.49) is a positive constant, the solutions becomes trigono-
metric functions; whereas if it is a negative constant, the solutions become hyperbolic
or exponential functions. In order to suit the physical conditions, the former solutions
are used inside the core and the latter inside the cladding:

�n1k�
2 � ˇ2 D K2 in core

�n1k�
2 � ˇ2 D ��2 in cladding

�9.50�

The solutions of Eq. (9.49) with Eq. (9.50) are

Ey D
{
A cosKx, even TE mode
B sinKx, odd TE mode

}
in core �9.51�

Ey D
{
Ce��x, upper layer
De�x, lower layer

}
in cladding �9.52�

The same notations A, B, C, and D that are used for the TM modes are used for
the TE modes, but there is no connection. A factor of ejˇz�jωt is suppressed.

Maxwell’s equation W× E D �∂B/∂t is used to find Hz:

Hz D 1

jω�1,2

∂Ey
∂x

�9.53�

where �1,2 represents the magnetic permeability of the core and cladding layers.
Applying Eqs. (9.51) and (9.52) to Eq. (9.53) gives

Hz D K

jω�1

{�A sinKx, even TE mode
B cosKx, odd TE mode

}
in core �9.54�

Hz D �

jω�2

{�Ce��x, upper layer
De�x, lower layer

}
in cladding �9.55�

The other components of the TE modes [5] are

Hx D � ˇ

ω�
Ey

Ex D Hy D Ez D 0

�9.56�
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Now, the characteristic equations will be found using the boundary conditions. First,
the characteristic equation of the even modes is obtained. From the continuity of Ey
at x D d,

A cosKd D Ce��d �9.57�

and from the continuity of Hz at the same boundary,

� K

jω�1
A sinKd D � �

jω�2
Ce��d �9.58�

The division of the above two equations finally gives the characteristic equation for
the even TE modes. (

�2

�1

)
Kd tanKd D �d �9.59�

Similarly, the continuity of the odd modes gives the characteristic equation for the
odd TE modes.

�
(
�2

�1

)
Kd cotKd D �d �9.60�

The difference between the characteristic equations for the TE modes and those for
the TM modes is in the factor. The factor for the TE modes is �2/�1, while that for
the TM modes is �n2/n1�2. Unless magnetic material is used, �2/�1 D 1 and, for the
TE modes, the characteristic equations are

Kd tanKd D �d, even TE mode

�Kd cotKd D �d, odd TE mode
�9.61�

Since the factor �n2/n1�2 for the TM modes is close to unity but slightly smaller than
unity, the curves of the characteristic equations of the TE modes are almost identical
with those of the TM modes shown in Fig. 9.2, but the curves for the TE modes are
slightly higher than those of the corresponding TM modes.

9.7 OTHER METHODS FOR OBTAINING THE CHARACTERISTIC
EQUATIONS

In Section 9.3, the characteristic equation was derived by the method of wave optics.
In this section, a few other available methods are presented. Since the methods will be
explained using the simplest geometry, there is little basis for preferring one method
over the other; but for more complicated multilayer guides, the choice of the method
makes a marked difference in complexity of the treatment. For the sake of comparison,
the same geometry and the familiar TM wave are used for all cases.

The three methods described in this section for obtaining the characteristic equation
are (1) the coefficient matrix method, (2) the transmission matrix method, and (3) the
modified ray model method.
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9.7.1 Coefficient Matrix Method

This method is straightforward, but the coefficient matrix is not well suited to multilayer
problems because the size of the matrix becomes too cumbersome to manipulate.

The geometry shown Fig. 9.1 is used. The solution for Hy inside the core was given
by Eq. (9.9), and that inside the cladding was given by Eq. (9.10). As the first step,
terms such as De�x in the upper cladding, which are obviously unfit for physical reasons,
are removed. The unfit terms would eventually have been removed automatically by
the method, but early removal shortens the procedure.

The constants A, B, C, and D are to be determined using the boundary conditions
of continuity of the tangential components of both E and H at x D d and x D �d. The
general solution for Hy in the three layers of a symmetric guide is summarized as

Hy2 D Ce��x
x D d:

Hy1 D A cosKx C B sinKx
x D �d:

Hy3 D De�x

The tangential H field is continuous at x D d, giving

A cosKd C B sinKd D Ce��d �9.62�

and similarly at x D �d,

A cosKd � B sinKd D De��d �9.63�

Since there are four unknown constants, two more independent equations are needed
to find a solution. Continuity of the tangential components of the E field is used. With
the help of Eq. (9.21), the Ez fields in the three regions are

Ez2 D �jC�
ω�0�r2

e��x

x D d:

Ez1 D jK

ω�0�r1
��A sinKx C B cosKx�

x D �d:

Ez3 D jD�

ω�0�r2
e�x

In the top and bottom layers, the relative dielectric constants are �r2, whereas in the
core the dielectric constant is �r1. The continuity of the tangential components of the
E field at x D d means that

K

�r1
��A sinKd C B cosKd� D �C

�r2
�e��d �9.64�
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The equation analogous to Eq. (9.64) at the lower x D �d boundary is

K

�r1
�A sinKd C B cosKd� D D

�r2
�e��d �9.65�

Equations (9.62) to (9.65) can be put into matrix form as

Hy�x D d�

Hy�x D �d�
Ez�x D d�

Ez�x D �d�




cosKd sinKd �e��d 0

cosKd � sinKd 0 �e��d

�K0 sinKd K0 cosKd � 0e��d 0

K0 sinKd K0 cosKd 0 �� 0e��d





A

B

C

D


 D 0 �9.66�

where

K0 D K
1

�r1
D K

n2
1

, � 0 D �
1

�r2
D �

n2
2

�9.67�

Since the right-hand side of the equation is zero, the determinant has to be zero if
a nonzero solution for A, B, C, and D is to exist. The determinant is the characteristic
equation. Factoring Eq. (9.66) gives

 D e�2�d cosKd sinKd

∣∣∣∣∣∣∣∣∣

1 1 �1 0

1 �1 0 �1

�K0 tanKd K0 cotKd � 0 0

K0 tanKd K0 cotKd 0 �� 0

∣∣∣∣∣∣∣∣∣
�9.68�

Multiplying the second row by � 0, and then subtracting the fourth row from the second
row leads to a matrix with the fourth column all zero except at the bottom. The
determinant reduces to

 D � 1
2e

�2�d sin 2Kd

∣∣∣∣∣∣
1 1 �1

� 0 �K0 tanKd �� 0 �K0 cotKd 0

�K0 tanKd K0 cotKd � 0

∣∣∣∣∣∣ �9.69�

By multiplying the first row by � 0 and then adding the third row to the first row, the
determinant reduces to a 2 ð 2 matrix and the characteristic equation finally becomes

 D e�2�d sin 2Kd�� 0 �K0 tanKd��� 0 CK0 cotKd� D 0 �9.70�

From Eq. (9.70), the determinant is zero when

2Kd D n �9.71�

or

�d D
(
n2

n1

)2

Kd tanKd �9.72�
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or

�d D �
(
n2

n1

)2

Kd cotKd �9.73�

Thus, the same results as those in Section 9.3 are obtained. The values of Kd given
by Eq. (9.71) are on the cutoff points of the TM modes.

9.7.2 Transmission Matrix Method (General Guides)

This method is especially suited for treating multilayer guides [6,7], such as shown in
Fig. 9.8, because, regardless of the number of layers in the guide, the matrices dealt
with are always 2 ð 2 matrices. The guide is treated layer by layer, and in each layer
the field is expressed by a 2 ð 2 matrix. Using the TM case as an example, the 2 ð 2
matrix gives the relationship between the field [Hy�x0�, Ez�x0�] at x D x0 and the field
[Hy�x�, Ez�x�] at x D x in that same layer. Using the condition of the continuity of the
tangential fields at the boundaries, the fields are connected between the layers.

Let us start with the general solutions of the TM wave, which have been obtained
earlier. From Eqs. (9.9) and (9.21), the fields in the ith layer are

Hy�x� D A cosKix C B sinKix �9.74�

Ez�x� D �AZi sinKix C BZi cosKix �9.75�

where

Zi D jKi

ω�0�ri
�9.76�

or

Zi D jKi

ω�0n2
i

Ki D
√
�nik�2 � ˇ2

�9.77�

We want to choose the values of A and B such that the H and E fields become the
given values of H�x0� and E�x0� at x D x0:

Hy�x
0� D A cosKix

0 C B sinKix
0 �9.78�

Ez�x
0� D �AZi sinKix

0 C BZi cosKix
0 �9.79�

Both x and x0 belong to the same ith layer as indicated in Fig. 9.8.

xi�1 � �x0, x� � xi

where xi�1 is the value of x at the lower boundary of the ith layer and xi is the value
of x at the upper boundary of the ith layer. The values of A and B are obtained by
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Figure 9.8 Geometry of a layered medium.

solving the simultaneous Eqs. (9.78) and (9.79). The solutions for A and B are put
back into Eqs. (9.74) and (9.75) to reach

[
Hy�x�

Ez�x�

]
D


 cosKi�x � x0�

1

Zi
sinKi�x � x0�

�Zi sinKi�x � x0� cosKi�x � x0�


[

Hy�x0�
Ez�x0�

]
�9.80�

Equation (9.80) is the transmission matrix that relates the fields at x D x0 with those
at x D x. The x0 and x can be set at any point as long as they belong to the same layer.
Equation (9.80) is the only type of matrix that is needed for the transmission matrix
method.

The transmission matrix method will first be illustrated using the example of a three-
layer guide with the geometry shown in Fig. 9.9. The core-cladding lower boundary
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was placed at x D 0 and the upper boundary at x D 2d. All other parameters are the
same as before. Only one transmission matrix is needed for this geometry:

[
Hy�2d�

Ez�2d�

]
D


 cos 2Kd

1

Z1
sin 2Kd

�Z1 sin 2Kd cos 2Kd


[

Hy�0�

Ez�0�

]
�9.81�

The geometry of the layers alone can never determine the field inside the medium.
It is only after the fields on the boundary are specified that the field inside the medium
is determined. The specification of the field can be the field Hy or Ez itself, as in
the case of a given incident field to the boundary; or the field specification can be an
unbounded traveling wave, a ratio of reflected to incident waves (standing wave), or
an evanescent wave. These are called boundary fields. This section deals with guides
whose boundary fields are evanescent waves.

Now let us deal with the case of a guide for which the fields in the bottom layer
as well as in the top layer are unbounded waves. The unbounded field in the bottom
layer is the evanescent wave Hy0�x�, which is expressed by the bottom equation of
Eq. (9.11). The bottom equation of Eq. (9.11) is inserted into Eq. (9.21) to obtain

Ez0�x� D j

ω�r�0

∂

∂x
De�0x D Z0Hy0�x� �9.82�

where

Z0 D j�0

ω�0n2
0

�9.83�

The unbounded field Hy2�x� in the top layer is also an evanescent wave and is
expressed by the top equation of Eq. (9.11). Inserting the top equation of Eq. (9.11)
into Eq. (9.21) gives

Ez2�x� D j

ω�0�2

∂

∂x
Ce��2x D �Z2Hy2�x� �9.84�
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Figure 9.9 Geometry of the three-layer slab guide.
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where

Z2 D j�2

ω�0n2
2

�9.85�

The minus sign on the right-hand side of Eq. (9.84) should be noted. For simplicity,
the second subscripts will be dropped as

Hy0�0� D Hy�0� Ez0�0� D Ez�0�

Hy2�2d� D Hy�2d� Ez2�2d� D Ez�2d�
�9.86�

The Ez�2d� and Ez�0� in Eq. (9.81) are rewritten in terms of Hy�2d� and Hy�0�,
applying the boundary conditions to Eqs. (9.82) and (9.84) and rearranged as

 cos 2Kd C Z0

Z1
sin 2Kd �1

Z0 cos 2Kd � Z1 sin 2Kd Z2


[

Hy�0�

Hy�2d�

]
D 0 �9.87�

In order that Hy�0� and Hy�2d� have nonzero solutions, the determinant has to be zero.
The determinant is

�Z0 C Z2� cos 2Kd �
(
Z1 � Z0Z2

Z1

)
sin 2Kd D 0 �9.88�

or
Z0/Z1 C Z2/Z1

1 � Z0Z2/Z2
1

D tan 2Kd �9.89�

If the guide is symmetric and Z2 D Z0, then

2�Z0/Z1�

1 � �Z0/Z1�2
D tan 2Kd �9.90�

The trigonometric identity

tan 2Kd D 2 tanKd

1 � tan2 Kd

is inserted into Eq. (9.90). After rearrangement, Eq. (9.90) becomes( �

n2K
� tanKd

)( �

n2K
tanKd C 1

)
D 0 �9.91�

where Eqs. (9.76) and (9.83) were used to rewrite

Z0/Z1 D �

n2K

Thus, the first factor of Eq. (9.91) is the characteristic equation for the even TM
modes and the second, for the odd TM modes.

Next, this method will be extended to an �N � 1�-layer guide in unbounded space.
The continuity condition is used to connect the field of one layer to the next. As already



OTHER METHODS FOR OBTAINING THE CHARACTERISTIC EQUATIONS 629

stated, in the two outermost layers, the wave is necessarily an evanescent wave, and
the first and last layers are set aside for now. The matrix that applies to the ith layer
in the geometry shown in Fig. 9.8 is, from Eq. (9.80),[

Hy�xi�
Ez�xi�

]
D [Ti�xi � xi�1�]

[
Hy�xi�1�
Ez�xi�1�

]
�9.92�

where

Ti�xi � xi�1� D

 cosKi�xi � xi�1�

1

Zi
sinKi�xi � xi�1�

�Zi sinKi�xi � xi�1� cosKi�xi � xi�1�


 �9.93�

In the event that a particular mode that has an evanescent wave in the ith layer is
desired, the transmission matrix Ti�xi � xi�1� of the ith layer has to be derived in a
similar manner as Eq. (9.93) was derived from Eqs. (9.74) and (9.75), starting from

Hy�x� D C cosh �ix C D sinh �ix �9.94�

Ez�x� D ZiC sinh �ix C ZiD cosh �ix �9.95�

where

�i D
√
ˇ2 � �nik�2 �9.96�

Zi D j�i
ω�0�ri

�9.97�

The values of C and D are chosen such that H and E become H�x0� and E�x0� at
x D x0. These values of C and D are put back into Eqs. (9.94) and (9.95). The obtained
matrix is

Tei �xi � xi�1� D

 cosh �i�xi � xi�1�

1

Zi
sinh �i�xi � xi�1�

Zi sinh �i�xi � xi�1� cosh �i�xi � xi�1�


 �9.98�

Compared to Eq. (9.93), the lower left element has a positive sign instead of a negative
sign, and the sine and cosine functions are changed to hyperbolic functions.

Repeated use of Eq. (9.92) to connect the field starting from the first layer up the
(N � 1)st layer gives [TN�1][TN�2] Ð Ð Ð [T1]:[

Hy�xN�1�
Ez�xN�1�

]
D [TN�1][Tn�2] Ð Ð Ð [Ti] Ð Ð Ð [T1]

[
Hy�x0�
Ez�x0�

]
�9.99�

The product of the T matrices is rewritten as[
Hy�xN�1�
Ez�xN�1�

]
D

[
A B
C D

] [
Hy�x0�
Ez�x0�

]
�9.100�

Now, the field at the top boundary of the zeroth layer is

Ez�x0� D Z0Hy�x0� �9.101�

where

Z0 D j�0

ω�0n2
0

�9.102�
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and

�0 D
√
ˇ2 � �n0k�2 �9.103�

The field at the lower boundary of the top free-space layer, which is the top boundary
of the (N� 1)st layer has a similar relationship as Eq. (9.84) and

Ez�xN�1� D �ZNHy�xN�1� �9.104�

where

ZN D j�N
ω�0n2

N

�9.105�

and

�N D
√
ˇ2 � �nNk�2 �9.106�

Note the difference in signs in Eqs. (9.101) and (9.104). Also note that the Nth layer
is free space and ZN given by Eq. (9.104) has to be used.

It may be added that, as explained in Section 2.7.1, the z-direction propagation
constant ˇ in the zeroth layer given by Eq. (9.103) is the same as that in the Nth layer
given by Eq. (9.106) because the fields in both layers satisfy Eq. (9.1).

As a matter of fact, the fields in every layer satisfy Eq. (9.1) and have the same
value of ˇ. The phase match condition in the z direction is automatically satisfied
across every layer boundary. The expressions for Ez�xN�1� and Ez�x0� are rewritten
in terms of Hy�xN�1� and Hy�x0� using Eqs. (9.101) and (9.104) and are incorporated
into Eq. (9.100): [

A C Z0B �1
C C Z0D ZN

] [
Hy�x0�
Hy�xN�1�

]
D 0 �9.107�

In order that the solutions for Hy�x0� and H�xN�1� are nonzero, the determinant of
Eq. (9.107) has to be zero. Thus, the characteristic equation is finally

ZNA C Z0ZNB C CC Z0D D 0 �9.108�

where the values of Z0 and ZN are available from Eqs. (9.102) and (9.105) and the
matrix elements A, B, C, and D are obtained after calculating the product of the T’s
in Eq. (9.99). See the example of the asymmetric three-layer case in Example 9.6.

9.7.3 Transmission Matrix Method (Symmetric Guide)

If symmetry exists in the distribution of the indices of refraction, the computation
becomes significantly simpler. Let us say, as shown in Fig. 9.10, symmetry exists with
respect to x D 0 and the indices of refraction from the bottom to the top layer are
arranged as n0, n1, n2, . . . , nn�1, nn�1, . . . , n2, n1, n0. The transmission matrix then
becomes

[T1][T2] Ð Ð Ð [Tn�1] Ð [Tn�1] Ð Ð Ð [T2][T1] �9.109�
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Figure 9.10 Geometry of layers with symmetry with respect to x D 0.

where the zeroth layer is considered unbounded and will be treated separately, as was
done in Eq. (9.101). Equation (9.109) is now divided into two layer groups:

TC D [T1][T2] Ð Ð Ð [Tn�1] �9.110�

T� D [Tn�1] Ð Ð Ð [T2][T1] �9.111�

Noting that with either Eq. (9.93) or (9.98) if

[T1][T2] D
[
a b
c d

]

then

[T2][T1] D
[
d b
c a

]

because in both formulas the two diagonal elements in [Ti] are identical.
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Let

T� D
[
A B
C D

]
�9.112�

then TC, which consists of the same matrices but in reverse order in multiplication,
becomes

TC D
[
D B
C A

]
�9.113�

Thus, the characteristic matrix

[T] D [TC][T�] �9.114�

is obtained by the product of Eqs. (9.112) and (9.113) as

[T] D
[
AD C BC 2BD

2AC AD C BC

]
�9.115�

The [T] can be obtained by first calculating A, B, C, and D of T� and then using them
in Eq. (9.115). The characteristic matrix thus obtained involves only about one-half of
the number of matrix multiplications.

The calculation of the modes in the symmetric structure can be simplified further
by calculating the even and odd modes separately. Even and odd refers to Hy for the
TM modes.

A special feature of the even modes is that not only is the field distribution in the
upper layer group symmetric with that in the lower layer group with respect to x D 0,
but also the derivative dHy/dx has to vanish at x D 0 for a smooth connection.

dHy

dx

∣∣∣∣∣
xD0

D 0 means Ez�0� D j

ω�0�r

dHy

dx

∣∣∣∣∣
xD0

D 0 �9.116�

As mentioned earlier, at the lowest boundary

E��x0� D Z0Hy��x0�

The field in the lower layer group is, from Eqs. (9.100) and (9.116),[
Hy�0�

0

]
D

[
A B
C D

] [
Hy��x0�
Z0Hy��x0�

]
�9.117�

Equation (9.117) can be rewritten as[
AC Z0B �1
C C Z0D 0

] [
Hy��x0�
Hy�0�

]
D 0 �9.118�

For Hy��x0� and Hy�0� to exist, the determinant has to vanish and the characteristic
equation for the even modes is given by

C C Z0D D 0 �9.119�
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Next, the characteristic equation for the odd TM modes is derived. A special feature
of the odd modes is that not only is the field in the upper layer group the negative of
the corresponding field in the lower layer group, but also the field itself has to vanish
at x D 0 and Hy�0� D 0 so as to connect at x D 0.

[
0

Ez�0�

]
D

[
A B
C D

] [
Hy��x0�
Z0Hy��x0�

]
�9.120�

Equation (9.120) can be rewritten as

[
A C Z0B 0
C C Z0D �1

] [
H��x0�
Ez�0�

]
D 0 �9.121�

For H��x0� and Ez�0� to exist, the determinant has to vanish and the characteristic
equation for the odd modes is given by

A C Z0B D 0 �9.122�

Example 9.5 Derive the characteristic equation of a planar type W guide (named
after the shape of the index of refraction). The geometry and the indices of refraction
are shown in Fig. 9.11.

Solution Calculation will take an advantage of the symmetry in the guide structure.
Since n1 > n2, the guided waves can be in the center region. No total internal reflection
exists at x D š�d1 C d2� and this boundary alone cannot be used for confinement. The
guided wave exists in d1 > x > �d1 only when the waves in d1 < jxj < d1 C d2 are
evanescent waves.

x

n

x

d1+d2

−(d1+d2)

d1

−d1

00 2d1

d2

d2

n1 n1 z

n2

n0 n2

n0

Figure 9.11 Geometry of the planar W guide.
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In the region ��d1 C d2� < x < �d1, from Eqs. (9.97) and (9.98), T1 is

T1 D

 cosh �2d2

1

Z2
sinh �2d2

Z2 sinh �2d2 cosh �2d2


 �9.123�

with

Z2 D j�2

ω�0n2
2

�9.124�

In the region �d1 < x < 0, from Eqs. (9.76) and (9.93), T2 is

T2 D

 cos K1d1

1

Z1
sin K1d1

�Z1 sin K1d1 cos K1d1


 �9.125�

with

Z1 D jK1

ω�0n2
1

�9.126�

Next, from T2 and T1, the matrix T� D [T2][T1] is calculated and then the matrix
elements in T� are used to find the characteristic equations by Eqs. (9.119) and (9.122).

For the even modes

� Z1 tanK1d1 C Z2 tanh �2d2

C Z0

(
1 � Z1

Z2
tanK1d1 tanh �2d2

)
D 0

�9.127�

which can be rewritten as

Z0 D Z1

(
1 � A/B

1 � AB

)
tanK1d1 �9.128�

where

A D tanh �2d2 �9.129�

B D Z1

Z2
tanK1d1 �9.130�

Equation (9.128) can be rewritten using Eqs. (9.102), (9.124), and (9.126). Thus, the
characteristic equation for the even TM modes is

�0d1 D
(
n0

n1

)2

K1d1

(
1 � A/B

1 � AB

)
tanK1d1 �9.131�

B D
(
n2

n1

)2 K1

�2
tanK1d1 �9.132�
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The result can be verified by setting either d2 ! 0 or n2 ! n0. If d2 ! 0, then A D 0
and Eq. (9.131) immediately reduces to Eq. (9.72). If n2 ! n0 and hence �2 ! �0,
then B in Eq. (9.132) approaches unity because Eq. (9.72) can be approximately used
in Eq. (9.132), and Eq. (9.131) approaches Eq. (9.72).

The procedure for calculating ˇ for given physical parameters will be described.
From Eqs. (9.77) and (9.96), the attentuation and propagation constants are

K1 D
√
�n1k�2 � ˇ2 �9.133�

�0 D
√
ˇ2 � �n0k�2 �9.134�

�2 D
√
ˇ2 � �n2k�2 �9.135�

From Eqs. (9.133) and (9.134), V2
0 is expressed as

V2
0 D �K1d1�

2 C ��0d1�
2 �9.136�

where

V0 D kd1

√
n2

1 � n2
0 �9.137�

Similarly, from Eqs. (9.133) and (9.135), V2
2 is expressed as

V2
2 D �K1d1�

2 C ��2d1�
2 �9.138�

where

V2 D kd1

√
n2

1 � n2
2 �9.139�

The procedures to find ˇ are as follows:

1. Calculate both V0 and V2 from Eqs. (9.137) and (9.139).

2. Use �2d1 D
√
V2

2 � �K1d1�2 to calculate �2d1 for a given K1d1.

3. Insert �2 and the given value of K1d1 into Eqs. (9.129) and (9.132) to find
A and B and hence the corresponding value of �0d1 for the given K1d1 from
Eq. (9.131). Repeat the same with the other values of K1d1 to complete such
curves as shown in Fig. 9.12.

4. The intersections between the above curves and the circle of Eq. (9.136) are the
desired solutions.

5. From Eq. (9.133), ˇ is calculated for the obtained value of K1.

As shown in Fig. 9.12, the value of K1d1 for the W guide is shifted from that
of the three-layer symmetric guide shown in Fig. 9.2. One of the determining factors
of the distortion of a light pulse during the transmission in the guide is dˇ2/dω2 as
will be detailed in Chapter 11. The values of n2 and d2 are manipulated to make a
distortion-free line out of the W guide.
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Figure 9.12 Graphical solution of the planar W guide for the even TM modes. The physical parameters
are " D 1.3 µm, d1 D 0.9 µm, d2 D 1.0 µm, n0 D 3.44, n1 D 3.5, and n2 D 3.42. (Calculation courtesy
of H. S. Loka.)

The characteristic equation for the odd TM modes can be obtained in a similar
manner and the result is

�0d1 D �
(
n0

n1

)2

K1d1 cotK1d Ð
(

1 C AB0

1 C A/B0

)
�9.140�

where A is given by Eq. (9.129) and

B0 D z2

z1
tanK1d1

The result can be verified by setting either d2 ! 0 or n2 ! n0, as in the case of the
even TM modes. �

9.7.4 Modified Ray Model Method

The mode is essentially a quantization of the propagation constant, or a quantization
of the angle of propagation of the component plane waves. At angles other than the
quantized angles, no light can propagate in the guide. In Section 9.4, it was shown
that a mode in the guide could be thought of as the standing-wave pattern of two
component waves, one propagating in a slightly downward direction and the other in
a slightly upward direction. Figure 9.13 shows the path of the component rays inside
the optical guide. The hatched bell-shaped curve signifies the transverse distribution of
the light. The field at x D x1 for the downward component wave is considered first. As
illustrated in Fig. 9.13, the field at any given point along x D x1 is the sum of numerous
contributing fields due to the transverse spread of the beam. If the beam were a plane
wave, the transverse spread would be wider, and the interference would be even bigger.
If the phases of the contributing fields are random, the resultant travelling wave field
becomes null. If, however, the phase shift associated with one round trip is an integral
multiple of 2 radians, all the contributing fields interfere constructively, and the field
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Figure 9.13 Explanation of the quantization in the x direction. (a) Random phase at x D x1. (b) In
phase at x D x1. 4Kd � 4υjj D 2 µ .

builds up. The phase shift associated with one round trip includes the phase shifts due
to the total internal reflections at the top and bottom boundaries as well as the phase
shift due to the round-trip distance inside the guide.

The same is true with the upward component wave. The field at any given point is
the sum of many contributing fields, which must interfere constructively for the field to
build up, and the same condition applies that the round-trip phase shift be an integral
multiple of 2 .

The upward and downward component waves propagating in opposite directions again
interfere and generate a standing-wave pattern, which is the mode pattern of the guide.

The amount of the phase shift associated with the reflection from the boundary
depends on the direction of the polarization of the component plane wave. As shown
in Fig. 9.13, if the TM wave is used, the direction of the H field is perpendicular to
the plane of propagation and, hence, the direction of the polarization of the E field
is parallel to the plane of propagation (in the plane of the page). The total round-trip
phase shift for a 2d-thick guide for constructive interaction is

4Kd � 4υjj D 2� �9.141�

where � is an integer and the phase shift due to the total internal reflections at each
boundary is �2υjj as given by Eq. (2.86). Equation (9.141) is sometimes called the
dispersion equation.

With Eq. (2.91), Eq. (9.141) becomes

tan
(
Kd �  

2
�
)

D �

n2K
�9.142�

where

n D n2

n1

The integer � is the mode number and separating it into even and odd modes gives

tanKd D �

n2K
for even � �9.143�

� cotKd D �

n2K
for odd � �9.144�

Thus, these results are identical to the results with the other three methods.
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In the case of multilayer guides, the fields that are reflected from each interface must
be taken into account in order to calculate the resultant phase shift, and calculation by
this method becomes difficult.

9.8 ASYMMETRIC OPTICAL GUIDE

The three-layer optical guide with a different index of refraction for each layer is
investigated in this section. Even though the analysis is slightly more complex, the
asymmetric guide is of more practical importance than the symmetric guide. The
geometry of the guide under consideration is shown in Fig. 9.14. The thickness of
the film (core layer) is 2d and its index of refraction is n1. The index of refraction of
the substrate (cladding layer) is n2. Very often, the top layer is air but sometimes it is
a covering medium. The index of refraction of the top layer is n0.

The characteristic equation for an asymmetric guide is derived by modifying the
dispersion equation for the symmetric guide. The phase shift due to total internal reflec-
tion in Eq. (9.141) is separated into two parts, and with this modification, Eq. (9.141)
becomes

4Kd � 2υcjj � 2υsjj D 2� �9.145�

where �2υcjj is the phase shift due to the reflection at the air–film or cover–film
interface and �2υsjj is that of the film-substrate interface. From Eq. (2.91), the values
of υcjj and υsjj are known and Eq. (9.145) becomes

�2Kd � � � D tan�1
(

�0

n02
0 K

)
C tan�1

(
�2

n02
2 K

)
�9.146�

where

n0
0 D n0

n1
, n0

2 D n2

n1

Equation (9.146) can be rewritten by recalling the identities

tan�%1 C %2� D tan %1 C tan %2

1 � tan %1 tan %2
�9.147�

tan�% � � � D tan % �9.148�

With the help of these identities, the characteristic equation for the asymmetric guide is

K

(
�0

n02
0

C �2

n02
2

)

K2 � �0�2

n02
0 n

02
2

D tan 2Kd �9.149�

Equation (9.149) becomes identical with Eq. (9.89) obtained by the transmission matrix
method if the relationships Eqs. (9.102), (9.124), and (9.126) are used.

There are three unknowns —K, �0, and �2 — in Eq. (9.149), and in order to find a
solution, more formulas are needed. The propagation constant relationships across a
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boundary were discussed in Section 2.7.1. Because of phase matching, the propagation
constant ˇ in the z direction is the same for every layer and

K D
√
�n1k�2 � ˇ2 �9.150�

�0 D
√
ˇ2 � �n0k�2 �9.151�

�2 D
√
ˇ2 � �n2k�2 �9.152�

Now, there are four unknowns —K, �0, �2, and ˇ; and there are four equations —
Eqs. (9.149) to (9.152). By substituting Eqs. (9.150) through (9.152) into Eq. (9.149),
an equation in terms of ˇ is obtained. Unfortunately, this equation is a transcendental
equation and no closed-form solutions are possible, but the solutions can be obtained
by numerical methods. The solutions for a specific optical guide are shown in the next
example.

Example 9.6 An asymmetric optical guide such as the one shown in Fig. 9.14 is
fabricated by depositing a glass film with a higher index of refraction over a glass
substrate. The film thickness is 2d. The indices of refraction are n0 D 1, n1 D 1.55,
and n2 D 1.54 and the TM modes are excited. The wavelength is ". The positive x
direction is taken downward.

Without any elaborate numerical calculations, make intelligent guesses at the
following:

(a) The total number of possible modes.
(b) The conditions for a single mode guide.
(c) The field distributions for the first few mode orders.
(d) The correlation of the region of ˇ with the field pattern and directions of

propagation of the component plane waves.

Solution The change in the index of refraction at the air–film interface is much
greater than that at the film–substrate interface. Therefore, if the condition of total

n0  = 1.0 Air

n2 = 1.54 Substrate

0

x

2d

n1 = 1.55 Film

Figure 9.14 Geometry of an asymmetric slab optical guide.
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internal reflection for the film–substrate is satisfied, that for the air–film is auto-
matically satisfied. Hence, the results are primarily determined by the film–substrate
boundary.

First, the region of ˇ is investigated. Using Eqs. (9.150) to (9.152) and the given
physical parameters, the curves for K, �0, and �1 are plotted as a function of ˇ in
Fig. 9.15a. The upper limit of ˇ is determined by the index of refraction of the film
n1k from Eq. (9.150).

n1k > ˇ �9.153�

Both leak

(b)

(c)
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Figure 9.15 Combined chart of an asymmetric optical guide. (a) K–ˇ diagram. (b) Amplitude distri-
bution. (c) Ray path.
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The lower limit of ˇ is determined by the condition of the cutoffs (total internal
reflection) at the air–film and the film–substrate boundaries. From Eq. (9.151), the
cutoff at the air–film boundary is

ˇ > n0k �9.154�

Whereas from Eq. (9.152), the cutoff at the film–substrate boundary is

ˇ > n2k �9.155�

Since n2 is larger than n0, if Eq. (9.155) is satisfied, Eq. (9.154) is automatically
satisfied. Thus, for transmission, ˇ must satisfy the condition

n1k > ˇ > n2k �9.156�

This is a narrow region fenced in by the hatched sections in Fig. 9.15a.
Next, an approximate expression for the characteristic equation is found. The differ-

ence in the refractive indices n1 � n0 is much larger than that of n2 � n1 and the
following approximation is possible. Since the range of ˇ where mode propagation
takes place is so narrow, the value of �0 can be assumed constant over this range
(see the curve of �0 in Fig. 9.15a). Moreover, �0 in this region is much larger than
Kmax. Hence, the value of υcjj D tan�1��0/n02

0 K� ranges from 70° to 90° depending on
the value of K. For simplicity, υcjj �  /2 is assumed for the time being. With this
assumption, Eq. (9.146) is simplified:

� cot 2Kd D �2

n02
2 K

�9.157�

It is interesting to note that Eq. (9.157) is similar to the characteristic equation
[Eq. (9.31)] for the odd TM modes inside the symmetric guide, but with a factor of 2.

Another relationship has to be found to solve for K and �2. From Eqs. (9.150) and
(9.152), we have

��2d�
2 C �Kd�2 D V2

2 �9.158�

where

V2 D kd
√
n2

1 � n2
2 �9.159�

Equations (9.157) and (9.158) are plotted in Fig. 9.16 to find the solutions. Now,
we are ready to answer the questions.

(a) From Fig. 9.16, starting with V2 D  /4, new modes are generated at an interval
of  /2 radians. Modes up to the �th mode are excited if

 

4
< V2 <

 

4
C  

2
�� C 1� �9.160�

If � is the largest integer that satisfies Eq. (9.160), then the number of possible
modes is � C 1.

(b) The single-mode condition is again, from Fig. 9.16,

 

4
< V2 <

3 

4
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Figure 9.16 Graphical solutions for the asymmetrical guide. The exact locations of the intersections
determined by the numerical methods are slightly to the left, as indicated by the arrows.

or the thickness 2d of the film has to satisfy

0.25"√
n2

1 � n2
2

< 2d <
0.75"√
n2

1 � n2
2

�9.161�

An important feature of the asymmetric guide is that, unlike the symmetric guide,
the lowest order mode does have a cutoff and this cutoff occurs near V2 D  /4.

(c) The distribution of the Hy field in the core will be found using Eq. (9.74). In
the air layer, only the evanescent wave exists. Inserting Eqs. (9.74) and (9.75) into
Eqs. (9.82) and (9.86), with x D 0, gives

B

A
D Z0

Z1

The values of Z0 and Z1 are given by Eqs. (9.102) and (9.126) and

B

A
D �0

n02
0 K

�9.162�

As we already found from the curves in Fig. 9.15, the right-hand side of Eq. (9.162)
is very large. Hence, B is much larger than A and the distribution function of Eq. (9.74)
can be approximated as

Hy D B sinKx �9.163�
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The value of K for the zero-order mode is, from Fig. 9.16,

 

4d
< K <

 

2d

The distribution of Hy with � D 0 is shown in Fig. 9.15b together with higher order
modes.

(d) In the region

0 < ˇ < n0k �9.164�

total internal reflection does not take place at either interface and the light ray penetrates
these boundaries according to the usual laws of reflection and refraction at boundaries.

We next examine the region

n0k < ˇ < n2k �9.165�

When ˇ satisfies this condition, total internal reflection does not take place at the
film–substrate interface, but the light is totally internally reflected at the air–film
interface.

In the region

n2k < ˇ < n1k � � �9.166�

guided modes exist. The small number � (shown in the expanded graph on the right side
of Fig. 9.15a) is introduced to account for the fact that K in ˇ D

√
�n1k�2 �K2 does

not become n1k because the lowest mode is cut off at Kd D  /4 and not at Kd D 0.
Ray paths of these regions are summarized in Fig. 9.15c. �

9.9 COUPLED GUIDES

Coupling between optical guides can be treated as a five-layer medium problem. Such
a five-layer medium consists of two guiding layers with higher index of refraction,
spaced by a center layer with lower index of refraction.

9.9.1 Characteristic Equations of the Coupled Slab Guide

Now, let us start with the calculation of the propagation constants of the coupled
slab guide. The refractive index distribution is shown in Fig. 9.17. For simplicity, the
distribution was chosen to be symmetric with respect to x D 0. The geometry is the
same as the W guide explained in Example 9.5. The only difference is that this time
there is a refractive index ditch in the center, and the d2 layers in Fig. 9.11 become
the guiding layers. The analysis procedures are quite similar and only a brief outline
will be repeated here.

Because of the symmetry in the geometry, the product [T�] of the transmission
matrices for the bottom half of the layers suffice. The layers in the bottom half are
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Figure 9.17 Slab optical coupler with symmetry in the refractive index distribution.

designated as

Region 2 � s < x < 0

Region 1 � �s C 2d� < x < �s
Region 0 x < ��s C 2d�

�9.167�

The [T�] transfers [
Hy�0�
Ez�0�

]
D [T�]

[
Hy���s C 2d��
Ez���s C 2d��

]
�9.168�

where

[T�] D [T2][T1] �9.169�

and where [T1] and [T2] are transmission matrices for regions 1 and 2. For the mode
that has the evanescent wave in region 2 and guided wave in region 1, [T�] becomes

T� D

 cosh �2s

1

Z2
sinh �2s

Z2 sinh �2s cosh �2s




 cos 2K1d

1

Z1
sin 2K1d

�Z1 sin 2K1d cos 2K1d


 �9.170�

If we put [T�] as

[T�] D
[
A B
C D

]
�9.171�

then, as explained in Section 9.7.3, the characteristic equations for the even and odd
modes are

C C Z0D D 0 even mode �9.172�

A C Z0B D 0 odd mode �9.173�
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where

Z0 D j�0

ω�0n2
0

Z1 D jK1

ω�0n2
1

Z2 D j�2

ω�0n2
2

�9.174�

From Eqs. (9.170) to (9.172), the characteristic equation for the even modes becomes

� �2

n2
2

tanh �2s C K1

n2
1

tan 2K1d

� �0

n2
0

[
1 C �2

K1

(
n1

n2

)2

tanh �2s tan 2K1d

]
D 0

�9.175�

Similarly, the characteristic equation for the odd modes becomes

1 � K1

�2

(
n2

n1

)2

tanh �2s tan 2K1d C �0

K1

(
n1

n0

)2

tan 2K1d

C �0

�2

(
n2

n0

)2

tanh �2s D 0

�9.176�

The equations for the attenuation and propagation constants are

�2
0 D ˇ2 � �n0k�

2 �9.177�

K2
1 D �n1k�

2 � ˇ2 �9.178�

�2
2 D ˇ2 � �n2k�

2 �9.179�

The equations for the normalized thicknesses are

V2
0 D �K1d�

2 C ��0d�
2 �9.180�

V2
2 D �K1d�

2 C ��2d�
2 �9.181�

V0 D kd
√
n2

1 � n2
0 �9.182�

V2 D kd
√
n2

1 � n2
2 �9.183�

Equations (9.175) and (9.176) can be rewritten in a form similar to Eq. (9.131). The
curves of �0d versus K1d of either Eq. (9.175) or (9.176) are made incorporating
Eq. (9.181). The intersections of the characteristic equation with the circle of Eq. (9.180)
are the solutions for the K1x even and the K1x odd modes.
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From the solutions for the K1x even and K1x odd modes, ˇe and ˇ0 are found as

ˇe D
√
�n1k�2 � K2

1x even �9.184�

ˇ0 D
√
�n1k�2 � K2

1x odd �9.185�

An actual calculation will be given in Example 9.7.

9.9.2 Amplitude Distribution in the Coupled Slab Guide

Next, the amplitude distribution across the five layers will be calculated. Only the case
of the lowest order mode is treated and the subscript indicating the mode order will be
suppressed. The field in the center region is calculated first, and then the outer regions
in the order of 2, 1, and lastly 0.

Let us begin with the field of the even mode. The boundary field of the even mode
in the x D 0 plane is Ez�0� D 0 as explained earlier in Section 9.7.3. Note that the
transmission matrix is always used from the bottom to the top in each region. Only
the field in the bottom half group of layers will be considered.

Field in Region 2 The field inside region 2, which extends from x D �s to 0, is,
from Eq. (9.98),

[
Hy2�x�

Ez2�x�

]
D


 cosh �2�x C s�

1

Z2
sinh �2�x C s�

Z2 sinh �2�x C s� cosh �2�x C s�


[

Hy2��s�
Ez2��s�

]
�9.186�

where 0 > x > �s. Since we are dealing with the even mode, the condition of
Ez2�0� D 0 as in Eq. (9.116) is used to simplify Eq. (9.186). From the bottom row
of Eq. (9.186) with x D 0,

Ez2��s� D �Z2Hy2��s� tanh �2s �9.187�

Insertion of Eq. (9.187) into the top row of Eq. (9.186) gives

Hy2�x� D cosh �2x

cosh �2s
Hy2��s�

and

Hy2�0� D H�0� D 1

cosh �2s
Hy2��s� �9.188�

From Eqs. (9.187) through (9.189), we have

Hy2�x� D H�0� cosh �2x �9.189�

Insertion of Eq. (9.187) into the bottom row of Eq. (9.186) and the use of Eq. (9.188)
give

Ez2�x� D H�0�Z2 sinh �2x �9.190�
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Field in Region 1 The field in region 1 is given by Eq. (9.80):

[
Hy1�x�

Ez1�x�

]
D


 cosK1�x C s C 2d�

1

Z1
sinK1�x C s C 2d�

�Z1 sinK1�x C s C 2d� cosK1�x C s C 2d�


[

Hy1���s C 2d��

Ez1���s C 2d��

]

�9.191�
where

�s < x < ��s C 2d�

The fields at the top of region 1 have to match those of the bottom of Region 2:

Hy1��s� D Hy2��s� D H�0� cosh �2s

Ez1��s� D Ez2��s� D �H�0�Z2 sinh �2s
�9.192�

where use was made of Eqs. (9.189) and (9.190).
Removing H�0� from Eq. (9.192), we have

Ez1��s� D �Z2Hy1��s� tanh �2s �9.193�

Inserting the boundary condition into Eq. (9.191) with x D �s gives

[
Hy1��s�

�Z2Hy1��s� tanh �2s

]
D


 cos 2K1d

1

Z1
sin 2K1d

�Z1 sin 2K1d cos 2K1d


[

Hy1���s C 2d��

Ez1���s C 2d��

]
�9.194�

Equation (9.194) will be inverted so that[
Hy1���s C 2d��
Ez1���s C 2d��

]

is used in Eq. (9.191). Recall that the matrix inversion is

[
a b
c d

]�1

D 1



[
d �b

�c a

]
�9.195�

After inserting Eq. (9.192), Eq. (9.194) is inverted using Eq. (9.195) to obtain

[
Hy1���s C 2d��

Ez1���s C 2d��

]
D


 H�0� cos 2K1d cosh �2s C H�0�

Z2

Z1
sin 2K1d sinh �2s

H�0�Z1 sin 2K1d cosh �2s � H�0�Z2 cos 2K1d sinh �2s




�9.196�

Inserting Eq. (9.196) into (9.191) gives

Hy1�x� D H�0�
[

cosK1�x C s� � Z2

Z1
sinK1�x C s� tanh �2s

]
cosh �2s �9.197�

Ez1�x� D �H�0�Z1

[
sinK1�x C s� C Z2

Z1
cosK1�x C s� tanh �2s

]
cosh �2s �9.198�
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Field in Region 0 In region 0, both Hy0�x� and Ez0�x� decay exponentially and
the relationship between them is Ez0�x� D Z0Hy0�x� as seen from Eq. (9.82). The
fields at the top of region 0 have to be smoothly connected with Hy1���s C 2d��
and Ez1���s C 2d�� in region 1. The fields are

Hy0�x� D H�0�
[

cos 2K1d C Z2

Z1
sin 2K1d tanh �2s

]

cosh �2s�e
�0�xCsC2d�� �9.199�

Ez0�x� D H�0�
[
Z1 sin 2K1d � Z2 cos 2K1d tanh �2s

]
cosh �2s�e

�0�xCsC2d�� �9.200�

Table 9.1 Even TM modes in the coupled slab guide

Even TM Mode Fields

Region x Hy�x� Ez�x�

0 Ce��0�x�s�2d� �Z0Ce��0�x�s�2d�

s C 2d
1 A cosK1�x � s�C B sinK1�x � s� Z1[�A sinK1�x � s�C B cosK1�x � s�]

s
2 0 H�0� cosh �2x Z2H�0� sinh �2x

�s
1 A cosK1�x C s�� B sinK1�x C s� �Z1[A sinK1�x C s�C B cosK1�x C s�]

�s � 2d
0 Ce�0�xCsC2d� Z0Ce�0�xCsC2d�

A D H�0� cosh �2s

B D H�0�
Z2

Z1
sinh �2s

C D H�0�[cos 2K1d cosh �2s C Z2

Z1
sin 2K1d sinh �2s]

Table 9.2 Odd TM modes in the coupled slab guide

Odd TM Mode Fields

Region x Hy�x� Ez�x�

0 �C0e��0�x�s�2d� Z0C0e��0�x�s�2d�

s C 2d
1 A0 cosK1�x � s�� B0 sinK1�x � s� Z1[A0 sinK1�x � s�� B0 cosK1�x � s�]

s
2 0 �H�0� sinh �2x �Z2H�0� cosh �2x

�s
1 �A0 cosK1�x C s�� B0 sinK1�x C s� Z1[�A0 sinK1�x C s�� B0 cosK1�x C s�]

�s � 2d
0 C0e�0�xCsC2d� Z0C0e�0�xCsC2d�

A0 D H�0� sinh �2s

B0 D H�0�
Z2

Z1
cosh �2s

C0 D H�0�[cosh 2K1d sinh �2s C Z2

Z1
sin 2K1d cosh �2s]
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The smoothness of the connection is enforced by the characteristic equation,
Eq. (9.172), which was originally derived from the smooth connection of both Hy

and its derivative. With this condition, the ratio between the terms in square brackets
in Eqs. (9.199) and (9.200) is found to be Z0 (see Problem 9.8).

The amplitude distributions of the even TM modes in the coupled slab guide are
tabulated in Table 9.1. The same for the odd TM modes are tabulated in Table 9.2.

Example 9.7 Using a lithium niobate substrate, coupled slab guides were fabricated.
The dimensions and refractive indices are indicated in Fig. 9.18.

(a) Find the propagation constants of the first even and odd modes.
(b) Find the expression for the fields Hy and Ez of the even and odd modes, of the

lowest order with respect to x. Draw the curve for Hy�x�.

Solution
(a) A slightly different approach will be taken to calculate the numerical solutions.

So far, the mode values have been obtained from the intersections between the
characteristic equation and the circle of the normalized thickness. The intersections
provided the values of both Kd and �d at the same time.

Let us put the left-hand side of Eq. (9.175) as f�K1d�. Every term in Eq. (9.175)
can be expressed in terms of K1d using Eqs. (9.180) to (9.183). The function f�K1d�
is plotted with respect to K1d. Figure 9.19 shows such a graph. The intersections of
f�K1d� with the K1d axis are the solutions for K1d. This method provides the solutions
only for K1d, but is straightforward.

K1xevend D 1.1939

K1xoddd D 1.1955
�9.201�

2

0

n2=n1/1.1

n0 = n1/1.2

n0 = n1/1.2

l = 1.3 µm

n2

z

x

s + 2d

−(s + 2d)

s

−s

0

1

1.5 µm

L

1.0 µm n1

n1=2.2861.0 µm

Figure 9.18 Geometry and dimensions of coupled slab guides.
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Figure 9.19 Solutions of the characteristic equations. (a) Solution for even-order modes. (b) Solution
for odd-order modes. (Calculation courtesy of R. James.)

From Eq. (9.178), ˇe and ˇ0 are calculated as

ˇe D 10.788 µm�1

ˇ0 D 10.787 µm�1
�9.202�

(b) In order to use the formulas in Table 9.1, �0, �2, and K1 are calculated using
Eqs. (9.180), (9.181), and (9.201).

Even Mode Odd Mode

�0 (µm�1) 5.6213 5.6199
K1 (µm�1) 2.3877 2.3910
�2 (µm�1) 3.9351 3.9331

s D 0.75 µm

d D 0.50 µm

" D 1.3 µm

n1 D 2.286

n0 D n1/1.2

n2 D n1/1.1

Figure 9.20 shows the field distribution of the even and odd TM modes calculated
using the parameters and geometries shown in Fig. 9.18. �
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Figure 9.20 Calculation of the field Hy�x� along the x axis inside the five-layer medium. (Calculation
courtesy of R. James.)

9.9.3 Coupling Mechanism of the Slab Guide Coupler

We are now able to discuss the coupling mechanism of the slab guide coupler [8].
Figure 9.17 shows the cross section of a five-layer medium that forms a coupled slab
guide. The coupling mechanism is interpreted from the change in the relative phase of
the fundamental odd and even modes. As shown in Fig. 9.20, the field distribution of
the even mode has two symmetric humps along the x axis, while that of the odd mode
has two antisymmetric humps along the x direction. With the presence of the even
and odd modes of equal amplitude, the two fields enhance each other and the resultant
amplitude is nearly doubled in the lower guides in Fig. 9.17, whereas inside the upper
guide, the two fields nearly cancel each other and the amplitude is almost null. With
this distribution of the resultant fields, it appears as if only the lower guide is excited.

Because of the difference in the propagation constants of the even and odd modes,
after some distance of propagation, the relative phase between the even and odd modes
becomes 180°, so that the resultant field in the upper guide becomes large whereas the
resultant field in the lower guide becomes null. The resultant field intensities in the
upper and lower guides reverse. This is interpreted as the transfer of the light energy
from the lower to the upper guide. The length of the transfer of the energy is called
the transfer length. After another transfer length, the light energy returns to the lower
guide. Light goes back and forth between the guides.

The transfer length L is given from Eqs. (9.184) and (9.185) by

L D  

ˇe � ˇo
�9.203�

The value of L with Example 9.7 is 4.41 mm.
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1.0mm

Figure 9.21 Fields seen from the top surface of the coupled slab guides. The film records light
scattered from the top guiding layer. (Courtesy of N. Goto, Y. Miyazaki, and Y. Akao [9].)

The relative field strengths between the guides at a distance other than the transfer
length are obtained by adding the even- and odd-mode fields with the relative phase
taken into consideration.

Figure 9.21 is a photograph taken looking downward on the top surface of a five-
layer medium [9]. The light is transferred back and forth between the two guiding
layers. The film records only the light scattered from the upper guide layer, and the
photograph shows a sequence of dots of light.

PROBLEMS

9.1 Why is only one quadrant drawn in Fig. 9.2?

9.2 Obtain the angle of propagation of the component plane waves of the highest
order TM mode when the normalized thickness V is a multiple of  /2 radians.

9.3 What is the range of thickness 2d of a slab optical guide that has a total of five
possible TM modes, where " D 0.85 µm, n1 D 1.55, and n2 D 1.54.

9.4 Choose either increase or decrease in the following sentences. If the thickness of
the slab guide is decreased with all other physical constants fixed, the normalized
thickness V (increases, decreases) and K2d of the TM2 mode (increases,
decreases) and the value of K2 (increases, decreases), and this means that the
value of ˇ2 (increases, decreases). Thus, in order to obtain a region of larger
effective index of refraction N D ˇ2/k, the thickness 2d has to be (increased,
decreased).

9.5 With a symmetric slab guide such as shown in Fig. P9.5, the cross-sectional
distribution of the light intensity was examined. It was found that among the K
values, the largest Kmax was

Kmax D 1.0 rad/µm
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n2 = 1

n2 = 1

l = 1.3 µm
Kmax = 1.0 rad/µm

n2 = ?

Figure P9.5 Symmetric optical guide with unknown refractive index of the core layer.

Find the index of refraction n1 of the core layer. The index of refraction n2 of
the cladding is unity and the wavelength of the light is 1.3 µm.

9.6 An slab optical guide is bent as shown in Fig. P9.6. Find the radius of curvature
r of bending that will start leaking light into the cladding for these parameters:

 D �n1 � n2�/n1 D 0.055

d D 50 µm

n2

n2

Iin

r

O

n1

2d

Figure P9.6 Leak from a bent optical guide.

9.7 Find the characteristic equation of an asymmetric guide with the geometry shown
in Fig. P9.7, using (a) the coefficient matrix method and (b) the transmission
matrix method. Compare the results. The TM wave is excited.

9.8 Verify that the ratio Ez0�x�/Hy0�x� of Eqs. (9.199) and (9.200) is equal to Z0.
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n2

n0 g0

g2

n0 < n1 n2 < n1

2d n1

Figure P9.7 Geometry of an asymmetric guide.
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