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FOURIER OPTICS: CONCEPTS
AND APPLICATIONS

Welcome to the exciting field of photonics. Chapter 1 is a quick tour of Fourier optics, a
vital foundation for the chapters that follow. The branch of optics that can be analyzed
by means of the Fourier transform is known as Fourier optics. The presentation of
this subject is a condensed version of several texts on the subject [1–8]. This chapter
starts with expressions for plane waves and a collection of special functions that are
often used in photonics. The rest of the chapter is devoted to problems that can nicely
be solved by Fourier optics, including various diffraction patterns, thin lenses, optical
signal processing, spatial filters, and holography. A more rigorous derivation of the
diffraction equations is also added at the end.

1.1 PLANE WAVES AND SPATIAL FREQUENCY

The representation of plane waves is introduced first, followed by a discussion of
spatial frequency.

1.1.1 Plane Waves

The expression for a plane wave propagating in an arbitrary direction when observed
at an arbitrary point in space will be derived. Let’s first restrict ourselves to a two-
dimensional (2D) vacuum medium such as shown in Fig. 1.1a.

Let a plane wave observed at the origin at time t be expressed as

E�0, 0, t� D E0�0, 0�e�jωt �1.1�

where the vector E0�0, 0� represents the amplitude and direction of polarization, and
ω represents the angular frequency. In this book the sign convention of e�jωt rather
than ejωt is used. The direction of propagation associated with the sign convention is
discussed in the boxed note.
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Figure 1.1 Expression for a plane wave. (a) A plane wave propagating in the Oe direction and observed
at P�x, y� in 2D space. (b) The position vector r and direction Oe of propagation of a plane wave in 3D
space.

The direction of propagation is expressed by the unit vector

Oe D exOı C eyO �1.2�

where

ex D cos �, ey D sin � �1.3�

and Oı and O are unit vectors in the x and y directions, respectively.
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There are two equally valid conventions for expressing the time dependence of the electric
wave; they are ejωt and e�jωt. Depending on the choice of convention, the wave expression
is different.

Let’s take the expression

E D Re
[
E0e

j��ωtCˇz�
] D E0 cos��ωt C ˇz�

as an example.

0

E = E0e j (−wt+bz)

P P ′

z

Snapshot at t = 0

at t = ∆t

E D E0 e j��ωtCˇz� is a forward wave.

The peak occurs when the term within the cosine bracket equals zero. Therefore, when
a snapshot of the wave is taken at t D 0, the location of the peak is at z D 0. Now, another
snapshot is taken at t seconds later. The position z of the peak is again where the value of
the bracketed term is zero. The peak has moved to a positive new location at z D �ω/ˇ�t.
Thus, this equation represents a forward wave with the phase velocity

vp D ω/ˇ

On the other hand, as time increases with

E D E0 cos�ωt C ˇz�

the peak moves toward the negative z direction, z D ��ω/ˇ�t, and this represents the
backward wave.

The rule is, whenever the signs of t and z are different, as in E D E0ej��ωtCˇz� or E D
E0ej�ωt�ˇz�, the waves are forward waves; and whenever the signs are the same, as in E D
E0ej�ωtCˇz� or E D E0ej��ωt�ˇz�, the waves are backward waves. In this book the convention
of e�jωt is used, unless otherwise stated, because the forward wave E D E0ej��ωtCkz� has a
positive sign on the z.

Let us now observe this wave from the observation point P�x, y�, which is connected
to the origin by the position vector r,

r D xOı C yO �1.4�
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0Q is the distance between the origin and the projection of point P in the direction
of Oe as shown in Fig. 1.1a. If the field travels at the speed of light, the field observed
at point P is that which has left the origin 0Q/c seconds ago. 0Q can be represented
by the scalar product ê · r. Thus, the field E�x, y� observed at P is

E�x, y, t� D E0�0, 0�e�jω�t�ê·r/c� �1.5�

Equation (1.5) is rewritten as

E�x, y, t� D E0�0, 0�e�jωtCjk·r �1.6�

where

k D ω

c
Oe D 2�

�
Oe �1.7�

and where � is the wavelength in vacuum. k is called the vector propagation constant.
Using Eq. (1.2) the vector propagation constant k can be expanded in Cartesian coor-
dinates as

k D 2�

�
cos � Oı C 2�

�
sin � O �1.8�

Equation (1.6) is the expression for a plane wave propagating at a speed of c in the
Oe direction observed at point P. So far, we have assumed a refractive index equal to
1. Inside a linear medium with refractive index n, the frequency does not change, but
the wavelength is reduced to �/n and the speed of propagation is slowed down to a
velocity of v D c/n. Hence, the propagation constant becomes nk.

1.1.2 Spatial Frequency

Next, the vector propagation constant k will be rewritten in terms of spatial frequency.
It is important to note that spatial frequency is different from temporal frequency.
Temporal frequency f is defined as the number of wavelengths that pass through a
particular point in space per unit time, whereas spatial frequency fs is defined as the
number of wavelengths in a unit of distance:

fs D 1

�
�1.9�

The most popular unit of fs is lines/mm or lines/m. In the field of spectroscopy, fs is
called the wavenumber with units of cm�1.

The relationship between the spatial and temporal frequencies of a plane wave is

f D cfs �1.10�

Equation (1.10) was obtained by comparing Eq. (1.9) with the temporal frequency

f D c

�
�1.11�

The spatial frequency depends on the direction in which the unit distance is taken.
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Referring to Fig. 1.1a, we see that �x and �y are

�x D �

cos �

�y D �

sin �

�1.12�

The spatial frequencies in these directions are

fx D 1

�x
D exfs

fy D 1

�y
D eyfs

fs D 1

�

�1.13�

where Eq. (1.3) was used.
Earlier, we derived the propagation vector k to be

k D 2�
(

cos �

�
i C sin �

�
j
)

in Eq. (1.8). This can now be expressed more elegantly using Eq. (1.12) as

k D 2�
(

1

�x
Oı C 1

�y
O
)

D 2��fxOı C fyO�

where, to repeat, fx and fy are spatial frequencies. From this, it follows that k · r is
expressed as

k · r D 2�fxx C 2�fyy �1.14�

From Eq. (1.12), we obtain

(
1

�

)2

D
(

1

�x

)2

C
(

1

�z

)2

which can be rewritten as

f2
s D f2

x C f2
y �1.15�

Finally, the two-dimensional expression will be extended into three dimensions by
adding a unit vector Ok in the z direction. The direction of propagation Oe becomes

Oe D exOı C eyO C ez Ok �1.16�
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With the coordinates shown in Fig. 1.1b, the components of the unit vector Oe are

ex D sin � cos �

ey D sin � sin �

ez D cos �

�1.17�

With � 6D 90° in Eq. (1.17), the expression corresponding to Eq. (1.8) is

k D 2�
cos �

�
sin � Oı C 2�

sin �

�
sin � O C 2�

cos�

�
Ok �1.18�

and

�x D �

cos � sin �

�y D �

sin � sin �

�z D �

cos �

�1.19�

and in terms of spatial frequencies,

fx D 1

�x
D fsex

fy D 1

�y
D fsey

fz D 1

�z
D fsez

fs D 1

�

�1.20�

The three-dimensional (3D) position vector r is

r D xOı C yO C z Ok �1.21�

Similar to the two-dimensional case, E is expressed as

E�x, y, z, t� D E�0, 0, 0�e�jωtCjk·r �1.22�

where

k · r D 2�fxx C 2�fyy C 2�fzz �1.23�

and where

f2
s D f2

x C f2
y C f2

z �1.24�
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Example 1.1 For a plane wave propagating in the direction

� D 30°, � D 45°

find the expression for the field when observed at point P�1, 2, 3� ð 10�6 m. The
free-space wavelength is � D 1.55 µm. The vector E0 representing the polarization is
Oı C 2O � 1.86 Ok.

Solution From the value k · r in Eq. (1.23) and from Eqs. (1.19) and (1.20), the x
component is

kxx D 2�fxx

D 2�

�
exx

D 2�

�
sin � cos � Ð x

D 2.48

Similarly, the y and z components are

kyy D 2.86

kzz D 8.60

and

ω D 2�c

�
D 1.22 ð 1015 rad/s

From Eq. (1.22), the expression for E is

E[�1, 2, 3� ð 10�6, t] D �Oı C 2O � 1.86 Ok�ej13.94�j1.22ð1015t �

Example 1.2 A plane wave propagating in a given medium is expressed as

E�x, y, z, t� D E0e
j�2xC3yC4z�ð106�j1015t �1.25�

(a) Find the unit vector for the direction of propagation.
(b) What are the values of � and � that characterize the direction of propagation?
(c) Find the refractive index of the medium.
(d) Find the vector expression of E0 of Eq. (1.25), assuming that E0 is polarized

in the x D x1 plane and the amplitude is 5.0.

Solution
(a) The direction of the vector parallel to the propagation direction is 2i C 3j C 4k.

The unit vector is found by normalizing this vector. The result is

Oe D 1p
29

�2Oı C 3O C 4 Ok�
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and therefore

Oe D 0.37Oı C 0.56O C 0.74 Ok

(b) The direction of the unit vector in terms of � and � can be solved for by using
Eq. (1.17):

� D 56.3°

� D 42.0°

(c) In order to determine the refractive index n, the velocity of the wave needs to
be determined since n D c/v. The velocity is expressed by the product of the temporal
frequency and the wavelength or v D f�. The first part of the exponential term of
Eq. (1.25) contains the wavelength information whereas the second term contains the
temporal frequency information.

To solve for the wavelength, the spatial frequency fs is first obtained from its
components fx, fy , and fz. Explicitly,

k · r D 2��fxx C fyy C fzz� D �2x C 3y C 4z� ð 106

where

fx D 2 ð 106

2�
lines/m

fy D 3 ð 106

2�
lines/m

fz D 4 ð 106

2�
lines/m

and hence fs D 0.86 ð 106 lines/m from the sum of the squares.
The inverse of the spatial frequency is the wavelength and is equal to

� D 1.17 ð 10�6 m

From the second part of the exponential term in Eq. (1.25) we now obtain the temporal
frequency, which is

f D 1015

2�
D 1.59 ð 1014 Hz

Hence, the phase velocity v is

v D �f D 1.86 ð 108 m/s

Finally, from the velocity we obtain the refractive index

n D c

v
D 1.61
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(d) Let the amplitude vector be

E0 D �aOı C bO C c Ok�

With a plane wave, the direction of polarization is perpendicular to the direction of
propagation. Thus, their dot product should be zero:

E0 · ê D 0

Since E0 is polarized in the x D x1 plane, it follows that

a D 0

and

eyb C ezc D 0

From Eq. (1.25), and the given magnitude of 5, a pair of equations are obtained that
can be solved for b and c, namely,

3b C 4c D 0

b2 C c2 D 52

Hence, the vector expression of E0 is

E0 D š�4O � 3 Ok� �

1.2 FOURIER TRANSFORM AND DIFFRACTION PATTERNS IN
RECTANGULAR COORDINATES

Referring to Fig. 1.2a, the field distribution from a source is observed on a screen. The
field distribution on the screen is called a diffraction pattern.

We will demonstrate that the diffraction pattern can be elegantly expressed by the
Fourier transform of the source. Let E�xi, yi� represent the field at point P on the
screen placed a distance zi away from the source field E�x0, y0�. The distributed source
E�x0, y0� is considered as an ensemble of point sources. Each point source radiates a
spherical wave. The field at the observation point P is comprised of contributions from
an ensemble of fields radiated from all the point sources. The contribution of the point
source located at �x0, y0� to point P at �xi, yi� is

dE�xi, yi� D ejkr

r
E�x0, y0�dx0 dy0 �1.26�

where E�x0, y0� is the magnitude of the point source located at �x0, y0� and r is the
distance between �x0, y0� and �xi, yi�. The distance r is expressed as

r D
√

z2
i C �xi � x0�2 C �yi � y0�2 �1.27�
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Figure 1.2 Field distribution from a source observed on a screen. (a) Geometry. (b) Distribution of
the field in the �yi, zi� plane.

The contribution of the spherical waves from all the point sources to E�xi, yi� is

E�xi, yi� D K
∫∫

ejkr

r
E�x0, y0�dx0 dy0 �1.28�

This equation is known as the Fresnel–Kirchhoff diffraction formula. The amplitude
of the diffracted field is inversely proportional to its wavelength and is expressed as

K D 1

j�
�1.29�

The constant K will be derived later in Appendix A of Volume I.
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If the point of observation is far enough away or in the vicinity of the z axis
(paraxial),

z2
i × �xi � x0�

2 C �yi � y0�
2 �1.30�

then the distance r can be simplified by the binomial expansion as

r � zi

(
1 C �xi � x0�2 C �yi � y0�2

2z2
i

)
�1.31�

which can be rewritten as

r ¾D zi C x2
i C y2

i

2zi
� xix0 C yiy0

zi
C x2

0 C y2
0

2zi
�1.32�

The region of zi for which the approximate expression Eq. (1.32) is valid is called the
Fresnel region or the near-field region. As the distance is further increased in the z
direction, the last term in Eq. (1.32) becomes negligible for the finite size of the source.
This region of zi is called the Fraunhofer region or far-field region. In this chapter we
are concerned about the far-field. In the far-field region, the approximation for r is

r D zi C x2
i C y2

i

2zi
� xix0 C yiy0

zi
�1.33�

By substituting this approximation into the exponential term of the Fresnel–Kirchhoff
diffraction formula, Eq. (1.28), the field becomes

E�xi, yi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]

∫∫ 1

�1
E�x0, y0�e

�j2��fxx0Cfyy0� dx0 dy0

with fx D xi

�zi
, fy D yi

�zi
�1.34�

We recognize that the integral is the two-dimensional Fourier transform of the field in
the x, y domain into the fx, fy domain:

Ffg�x, y�g D
∫∫ 1

�1
g�x, y�e�j2��fxxCfyy� dx dy �1.35�

Or in mathematical terms, the diffraction pattern is

E�xi, yi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]FfE�x0, y0�gfxDxi/�zi, fyDyi/�zi �1.36�

where F denotes the Fourier transform.
In short, the Fraunhofer diffraction pattern is the Fourier transform of the source

field.
Sometimes, the angular distribution rather than the planar distribution is desired.

For this case, the azimuth angle � and the elevation angle �, measured with respect
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to the center of the source field, are approximated as sin � � xi/zi and sin � � yi/zi.
Hence, the values in Eq. (1.34) are

fx D sin �

�
, fy D sin �

�
�1.37�

The branch of optics that can be analyzed by means of the Fourier transform is
categorized as Fourier optics. First, the physical meaning of fx and fy in Eq. (1.34)
will be explored. For simplicity, only the distribution in the �yi, zi� plane will be
considered. Figure 1.2b shows a typical phase and amplitude distribution of the field
diffracted from an aperture source whose dimensions are much smaller than the distance
to the screen.

In the region far from the aperture, the phase distribution is more like that of a spher-
ical wave. With the source placed at the origin, the phase front along the yi axis near
yi D 0 is always parallel to the yi axis. In the vicinity of this point, there is no variation
in the phase of the field with respect to yi. Hence, the field has zero spatial frequency at
yi D 0. (The variation of the field amplitude with yi is normally much slower than that
of the phase.) As shown in Fig. 1.2b, the change in the variation of phase increases as
the point of observation P moves along the yi axis, such that, eventually, the wavelength
�yi measured along the yi axis will approach the wavelength of free space.

Mathematically, �yi at the observation point P�yi, zi� is, from the geometry in
Fig. 1.2b,

�yi D �

sin �

4.50

Microwave oven door shields us from microwaves but not from light.

How is it that a microwave oven door shields us from microwaves but not from light
waves, allowing us to see our food as it cooks? The answer is found by examining the
Fresnel–Kirchhoff diffraction formula applied to the mesh of our microwave oven door. The
mesh is equivalent to a series of equally spaced apertures. Hence, this causes diffraction to
occur, and the Fresnel–Kirchhoff equation, Eq. (1.34), is used to calculate the diffracted field.

Let us calculate the amplitude of the microwave and light wave field observed at the
center: xi D yi D 0. The integral in Eq. (1.34) is the same for both microwaves and light,
but as shown by the factor K of Eq. (1.29), the amplitude of the field is inversely proportional
to the wavelength. Thus, the amplitude of the microwaves is about 10,000 times smaller than
that of light. Thank goodness for the presence of K.
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The field located at P, therefore, has the spatial frequency of

fyi D sin �

�
¾D yi

zi�

If we wish to construct a spatial frequency filter to pick selectively a particular fyi

spatial frequency, we can place an opaque screen in the �xi, yi� plane and poke a hole
in it at a particular location. The location of this hole for a desired spatial frequency
can be calculated by rearranging the above equation to give

yi D fyi�zi

The usefulness of Eq. (1.36) extends throughout the electromagnetic spectrum. For
example, the inverse of this calculation is used in X-ray crystallography. By knowing
the X-ray diffraction pattern of a crystal, the structure of the crystal is found by its
inverse Fourier transform. The same is true with radio astronomy. By probing E�xi, yi�,
the radio radiation pattern of a star, the structure can be analyzed by the inverse Fourier
transform in a similar manner. Yet another application is to use this relationship to find
the radiation pattern of an antenna (Problem 1.4). The antenna radiation pattern for a
given current distribution I�x0, y0� can be obtained [9]. With a few simple substitutions,
E�x0, y0� is replaced by 1

2$I�x0, y0� sin �, where $ D 120� is the intrinsic impedance
of free space, and sin � is necessary to convert Ez to E� , since antenna theory expresses
its patterns in terms of E�.

Before closing this section, we will demonstrate that the Fresnel field or the near
field can also be expressed in terms of the Fourier transform. As previously stated,
the Fresnel region is valid when r is approximated with the addition of the quadratic
phase factor term of the source in Eq. (1.32). By similarly substituting this value of r
into the Fresnel–Kirchhoff diffraction formula, the field in the Fresnel region becomes

E�xi, yi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]F

{
E�x0, y0�︸ ︷︷ ︸

Input

ejk�x2
0Cy2

0�/2zi︸ ︷︷ ︸
Part of the

point spread
function

}
fxDxi/�zi,fyDyi/�zi

�1.38�
Alternatively, the Fresnel field can be expressed elegantly as a convolution of two

terms explained as follows. Recall that the approximation of r, the distance to the
screen, is from Eq. (1.31)

r D zi

(
1 C �xi � x0�2 C �yi � y0�2

2z2
i

)

When r is directly substituted into the Fresnel–Kirchhoff diffraction formula,
Eq. (1.28), the result is

E�xi, yi� D j
1

�zi

∫∫
E�x0, y0�fejkzi[1C�xi�x0�2/2z2

i C�yi�y0�2/2zi2]gdx0 dy0
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The expression in the curly brackets is in the form of f�xi � x0, yi � y0�. From this
observation, we note that the above expression takes on the form of a convolution:

g�x� Ł f�x� D
∫

g�%�f�x � %�d%

Thus,

E�xi, yi� D E0�xi, yi� Ł fzi�xi, yi� �1.39�

where

fzi�xi, yi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi] �1.40�

The function fzi�xi, yi� is called the point spread function (or impulse response function
of free space) and is identical with the field at �xi, yi, zi� when a point source is placed
at the origin of the source coordinates. Whether Eq. (1.38) or (1.39) is used, the results
are the same.

The Fourier transform Fzi of the point spread function in Eq. (1.40) is

Fzi D ejkzi�j��zi�f2
x Cf2

y � �1.41�

The derivation of Eq. (1.41) is found in the boxed note.

The Fourier transform Fzi of the point spread function fzi , given by Eq. (1.41), will be
derived. Let’s start with the easy to remember Fourier transform [10]

Ffe��x2 g D e��f2

The Fourier transform of this function is the original function itself.
First, the xi component of Eq. (1.40) is rewritten as

ejkx2
i /2zi D e[���xi/

p
j�zi�2]

The similarity theorem of the Fourier transform is

Ffg�˛x�g D 1

˛
G

(
fx

˛

)
�1.42�

where G is the Fourier transform of g�x�. If Eq. (1.42) is used, the Fourier transform of the
xi component is

Ffe[���xi/
p

j�zi�
2]g D√j�zie

�j��zif
2
x

For the two-dimensional case, the Fourier transform is

Ffejk�x2
i Cy2

i �/2zig D j�zie
�j��zi�f2

x Cf2
y � �1.43�

Hence, the Fourier transform of the point spread function is

F
{

1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]

}
D ejkzi�j��zi�f2

x Cf2
y � �1.44�
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Example 1.3 A Fresnel diffraction pattern observed at a certain distance away from
the source is identical with that obtained by a series of diffractions taking place
successively from one fictitious plane after another up to the screen. This phenomenon
is related to Huygens’ principle. Prove this using the example of dividing the distance
zi into d1 and d2.

Solution Let the source function be E0�x, y�. The distance zi to the screen is arbitrarily
divided into two, d1 and d2, with zi D d1 C d2 as shown in Fig. 1.3. The diffraction
pattern on a fictitious screen at distance d1 will be used as the input for another
diffraction pattern on a screen at an additional distance d2. This result will be compared
with that obtained when a single diffraction pattern impinges directly from the input
onto the screen at distance zi D d1 C d2.

From Eq. (1.39), the diffraction pattern of E0�x, y� on the fictitious screen at d1 is

E1�x, y� D E0�x, y� Ł fd1�x, y� �1.45�

The diffraction pattern of E1�x, y� on the screen at an additional distance d2 is

E2�xi, yi� D E0�xi, yi� Ł fd1�xi, yi� Ł fd2�xi, yi� �1.46�

(a)

(b)

Input
E0(x,y)

Input
E0(x,y)

Fictitious
intermediate
screen

Diffraction
pattern on the
screen E(xi,yi)

Diffraction
pattern on the
screen E (xi ,yi)

d1 d2

d1+ d2

Figure 1.3 Comparison of diffraction patterns with and without a fictitious screen. (a) Two-step
diffraction. (b) One-step diffraction.
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The Fourier transform and inverse Fourier transform are successively performed to
make use of the product rule of Fourier transforms. The result is

E2�xi, yi� D F�1fε�fx, fy� Ð Fd1�fx, fy� Ð Fd2�fx, fy�g �1.47�

From Eq. (1.41),

E2�xi, yi� D F�1fε�fx, fy�e
jk�d1Cd2�e�j���d1Cd2��f2

x Cf2
y �g �1.48�

where ε�fx, fy� is the Fourier transform of E0�x, y�. From Eq. (1.39), the one-step
calculation of the diffraction pattern on the screen over the distance zi is

E2�xi, yi� D E0�xi, yi� Ł fd1Cd2�xi, yi� �1.49�

Thus, the result of the single diffraction is identical with successive diffractions.
This fact conforms with Huygens’ principle that a wave propagates by creating new
wavefronts from the pattern of the old wavefront. �

1.3 FOURIER TRANSFORM IN CYLINDRICAL COORDINATES

Photographic plates are rectangular, but most optical components like lenses, retarders,
and apertures are cylindrically symmetric. The relationships between rectangular spatial
coordinates �x, y� and spatial frequency coordinates �fx, fy� and cylindrical spatial
coordinates �r, �� and spatial frequency coordinates �*, �� are

x D r cos � fx D * cos �

y D r sin � fy D * sin �

dx dy D r dr d� dfx dfy D * d* d�

�1.50�

This relationship is illustrated in Fig. 1.4. The two-dimensional Fourier transform in
rectangular coordinates

G�fx, fy� D
∫∫ 1

�1
g�x, y�e�j2��fxxCfyy� dx dy �1.51�

is converted into cylindrical coordinates using the relationships of Eq. (1.50) as

G�*, �� D
∫ 1

0

∫ 2�

0
g�r, ��e�j2�*r cos�����r dr d� �1.52�

In order to simplify the calculation of the double integral, g�r, �� is first separated
into functions of r and �. Since g�r, �� is periodic with respect to � with period 2�, it
can be expanded into a Fourier series as

g�r, �� D
1∑

nD�1
ane

j2��n/T�� �1.53�
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fxfx

Figure 1.4 Change of coordinates from rectangular to cylindrical. (a) Space domain. (b) Spatial
frequency domain.

where the coefficient an is

an D 1

T

∫ T/2

�T/2
g�r, ��e�j2��n/T�� d� �1.54�

Substituting 2� for the period T gives

g�r, �� D
1∑

nD�1
gn�r�e

jn� �1.55�

where

gn�r� D 1

2�

∫ �

��
g�r, ��e�jn� d� �1.56�

Inserting Eq. (1.55) into (1.52) gives

G�*, �� D
1∑

nD�1

∫ 1

0
r dr

∫ 2�

0
gn�r�e

jn��j2�*r cos����� d� �1.57�

The integral with respect to � can be expressed in terms of the Bessel function of the
first kind of nth order [10] as

Jn�z� D 1

2�

∫ 2�C˛

˛
ej�nˇ�z sin ˇ� dˇ �1.58�

Noting that

cos�� � �� D sin�� � � C �/2� �1.59�

and letting

ˇ D � � � C �/2 �1.60�
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and inserting Eqs. (1.58), (1.59), and (1.60) into (1.52) finally gives

G�*, �� D
1∑

nD�1
��j�nejn�2�

∫ 1

0
rgn�r�Jn�2�*r� dr �1.61�

where gn�r� is given by Eq. (1.56). Conversely, the inverse Fourier transform is given
by

g�r, �� D
1∑

nD�1
�j�nejn�2�

∫ 1

0
*Gn�*�Jn�2�*r� d* �1.62�

where

Gn�*� D 1

2�

∫ �

��
G�*, ��e�jn� d� �1.63�

When n 6D 0, the Fourier transform in cylindrical coordinates is called the
Fourier–Hankel transform of the nth order. When n D 0, it is called the Fourier–Bessel
transform and is written as Bfg�r�g D G�*�, and B�1fG�*�g D g�r�.

For the special case where there is no � dependence, such as a circular aperture,
then

g�r, �� D g�r� �1.64�

and Eq. (1.56) becomes

gn�r� D g�r�

2�

∫ �

��
e�jn� d�

D g�r�

2�

[
e�jn�

�jn

]�
��

D
{

g�r� n D 0
0 n 6D 0

�1.65�

Terms with nonzero n disappear from Eqs. (1.61) and (1.62), and these equations
simplify to

G�*� D 2�
∫ 1

0
rg�r�J0�2�*r� dr �1.66�

g�r� D 2�
∫ 1

0
*G�*�J0�2�*r� d* �1.67�

which are, as mentioned above, the Fourier–Bessel transform Bfg�r�g and its inverse
B�1fG�*�g.

Example 1.4 Find the Fourier–Hankel transform of a circular aperture with a one-
sixth section obstruction as shown in Fig. 1.5.
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60°
0a

Figure 1.5 Circular aperture with obstruction.

Solution G�*, �� D whole circle � wedge portion. The wedge portion is expanded
into a Fourier series as

gn�r� D 1

2�

∫ �/6

��/6
g�r, ��e�jn� d� �1.68�

D 1

2�

[
e�jn�

�jn

]�/6

��/6

gn�r� D



1

n�
sin

n�

6
n 6D 0

1
6 n D 0

�1.69�

G�*, �� D 2�
∫ a

0
rJ0�2�*r� dr

� 2
1∑

n D �1
except n D 0

��j�n
ejn�

n
sin
(n�

6

) ∫ a

0
rJn�2�*r� dr

� �

3

∫ a

0
rJ0�2�*r� dr �1.70�

G�*, �� D 5�

6

a

*
J1�2�*a� � 2

1∑
n D �1

except n D 0

��j�n
ejn�

n
sin
(n�

6

) ∫ a

0
rJn�2�*r� dr

�1.71�

�

Fourier transforms performed in either rectangular or cylindrical coordinates provide
the same results, but one is usually more convenient than the other.
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Now that the significance of the Fourier transform has been demonstrated, the
next section describes representations of the source shape function and their Fourier
transforms.

1.4 SPECIAL FUNCTIONS IN PHOTONICS AND THEIR FOURIER
TRANSFORMS

1.4.1 Rectangle Function

An aperture function of unit width can be represented by the rectangle function. The
rectangle function �x� shown on the left in Fig. 1.6a is defined as

�x� D
{

1 jxj � 1
2

0 jxj > 1
2

�1.72�

The Fourier transform of the rectangle function is

Ff�x�g D
∫ 1/2

�1/2
e�j2�fx dx

1

1

1

0

0

1
1− 1

2
1
2

1
a

a

(a)

(b)

− a
2

x
a

a
2

Π(x)

Π(   )

−3

−2

−1

00.21

1

2 f

sinc(f )

3

−2 −1 0 1 2 f

a sinc(af )

x

x

Figure 1.6 The rectangular function �x� and �x/a�. (a) �x� and its Fourier transform. (b) �x/a�
and its Fourier transform.
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D
[
e�j2�fx

�j2�f

]1/2

�1/2

D sin �f

�f
�1.73�

The right-hand side of Eq. (1.73) is the sinc function, defined as

sinc�f� D sin �f

�f
�1.74�

As indicated in Fig. 1.6a, the main lobe of sinc�f� has a width of 2, as measured
along the f axis, and attains unit height at f D 0. Side lobes decrease in height
as jfj increases. The extrema of sinc(f) occur when f is near an odd multiple
of 1

2 , and the zeros of sinc(f) are located at every integer. The height of the
first side lobe is approximately 0.21 that of the main lobe. Now, let us extend the
definition of Eq. (1.72) to an aperture with width a. The rectangle function for such
an aperture is


(x

a

)
D
{

1 jxj � a/2
0 jxj > a/2

�1.75�

The Fourier transform is

F
{

(x

a

)}
D
∫ a/2

�a/2
e�j2�fx dx

D a sinc�af�

�1.76�

Equation (1.76) certainly can be derived directly using the similarity theorem of the
Fourier transform, Eq. (1.42). As indicated in Fig. 1.6b, sinc(af) also has its main
lobe at f D 0, but its height is a. The width of the main lobe is now 2/a. Side lobes
with decaying amplitudes appear with extrema near odd multiples of 1/2a and zeros
at integral multiples of 1/a. The ratio of the height of the first side lobe to the main
lobe still remains at 0.21.

1.4.2 Triangle Function

The triangle function is defined as

�x� D
{

1 � jxj jxj � 1
0 jxj > 1

�1.77�

and is shown on the left in Fig. 1.7. Unlike �x�, the width of the base is 2. The fact
that the triangle function can be generated from the convolution of two rectangular
functions makes the calculation of the Fourier transform simple:

�x� D �x� Ł �x� �1.78�

and

Ff�x�g D sinc2�f� �1.79�
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f
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Figure 1.7 The triangle function �x� and its Fourier transform.

The triangle function with base width 2a can be expressed as the convolution of two
rectangular functions as


(x

a

)
D 1

a

( x

a

)
Ł 

( x

a

)
�1.80�

Since the convolution of �x/a� at f D 0 is a, the factor 1/a is necessary in Eq. (1.80)
to make �x/a� unity at f D 0. The Fourier transform of Eq. (1.80) is

F
{

( x

a

)}
D a sinc2�af� �1.81�

The graph of �x� with its Fourier transform is shown in Fig. 1.7. Compared to
sinc(f), the side lobes of sinc2�f� are significantly lower in height. An input aperture
having a �x0� distribution is used to reduce the side lobes in its diffraction pattern.
This technique is called apodizing to reduce the side lobes. Apodal means a creature
without legs, as, for example, eels or whales. Apodization of a lens is performed by
darkening the lens toward the edge of the lens. Apodization of a radiation pattern from
an antenna array is achieved by reducing the element antenna current toward the edge
of the array [9].

The intensity pattern I�xi, yi� of the diffracted field is expressed as

I�xi, yi� D E�xi, yi�E
Ł�xi, yi� �1.82�

The field intensity patterns of the diffraction from a normal and an apodized slit are
obtained by inserting Eqs. (1.76) and (1.79) into Eqs. (1.36) and (1.82) as

Is�xi, yi� D
(

a

�zi

)2

sinc2
(

a

�zi
xi

)
υ2�yi� �1.83�

Ias�xi, yi� D
(

a

�zi

)2

sinc4
(

a

�zi
xi

)
υ2�yi� �1.84�

where υ is the delta function (see Section 1.4.5). The field intensity, which is EEŁ, is
not the same as the power intensity, which is 1/$jEj2 (see Section 2.3.1).

Examples of a normal and an apodized slit are shown in Fig. 1.8a, and the
corresponding intensity patterns of the diffraction are compared in Fig. 1.8b. The
reduction of the side lobe levels by the apodization is clearly demonstrated.
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a

(a)

(b)

a

(1) (2)

(1) (2)

Figure 1.8. Comparison of (1) a normal slit and (2) an apodized slit. (a) Geometry of the apertures.
The dark portions are the openings. (b) Diffraction patterns.

Example 1.5 Find the Fraunhofer diffraction pattern of a rectangular aperture with
dimensions a ð l.

Solution The input function is given by

E�x0, y0� D 
(x0

a

)

(y0

l

)
�1.85�

The field E�xi, yi� in the z D zi plane is found from Eqs. (1.36) and (1.85):

E�xi, yi� D al

j�zi
ejk[ziC�x2

i Cy2
i �/2zi] sinc

(
a

xi

�zi

)
sinc

(
l
yi

�zi

)
�1.86�
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It should be noted that x0 and y0 are independent variables. Equation (1.86) is not the
convolution of the two sinc functions but the product of the two.

The aperture and a photograph of its diffraction pattern are shown in Fig. 1.9.
An important feature of the diffraction pattern is that the width of the main lobe is
narrowed with widening of the aperture. To remember the concept, think of a water
hose. The narrower the nozzle is pinched, the wider the water is sprayed. The smaller
the structure of the source (or object), the wider the radiation pattern becomes. X-ray
crystallography uses this fact very wisely to analyze molecular structure. The X-ray
pattern scattered from an angstrom-sized structure is enlarged enough to be recorded
by an ordinary photographic plate. �

l

a

(a)

(b)

Figure 1.9 A rectangular aperture and its far-field diffraction pattern. (a) Geometry. The dark portion
is the opening. (b) Diffraction pattern.

F

A firefighter knows that a narrower nozzle expands the beam. In the same way, a narrower source
produces a larger diffraction pattern.
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1.4.3 Sign and Step Functions

The sign function, sgn x, is positive unity for positive values of x and negative unity
for negative values of x:

sgn�x� D
{ 1 x > 0

0 x D 0
�1 x < 0

�1.87�

It is used to express a phase reversal at x D 0. The Fourier transform of Eq. (1.87) is

Ffsgn�x�g D lim
˛!0

[∫ 0

�1
��1�e�j2�fxC˛x dx C

∫ 1

0
e�j2�fx�˛x dx

]
�1.88�

The presence of ˛ is necessary to perform the integral. After integration, ˛ is reduced
to zero. The result is

Ffsgn�x�g D 1

j�f
�1.89�

The step function, H�x�, is immediately generated from the sign function:

H�x� D 1
2 [1 C sgn�x�] �1.90�

The step function is used to mask one-half of a plane. Its Fourier transform is

FfH�x�g D 1

2

(
υ�f� C 1

j�f

)
�1.91�

where υ represents the delta function and is explained in Section 1.4.5.
Figure 1.10 shows the geometry of the step function and its diffraction pattern. It

is worth noting that even though the aperture does not have symmetry with respect to
x0 D 0, the intensity pattern of the diffraction has a symmetry with respect to the edge
at x0 D 0. The streak pattern is always perpendicular to the direction of the edge, and
its intensity decreases monotonically with distance away from the edge.

1.4.4 Circle Function

In order to describe a circular aperture, the circle function shown in Fig. 1.11a is
defined as

circ�r� D
{

1 r � 1
0 r > 1

�1.92�

The Fourier transform of the circle function is found from Eq. (1.66):

Bfcirc�r�g D 2�
∫ 1

0
rJ0�2�*r� dr �1.93�

The Bessel function has the property

xnJn�1�x� D d

dx
[xnJn�x�] �1.94�
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1

H(x0)

(a)

(b)

(c)

0 x0

Figure 1.10 Diffraction from a semi-infinite screen. (a) Semi-infinite screen. (b) Step function.
(c) Diffraction pattern.

Substituting n D 1 in Eq. (1.94) and integrating both sides of the equation gives∫
xJ0�x� dx D xJ1�x� �1.95�

Using x D 2�*r, Eq. (1.93) becomes

Bfcirc�r�g D 2�
1

�2�*�2

∫ 2�*

0
xJ0�x� dx

D 2�

�2�*�2
[xJ1�x�]

2�*
0

Bfcirc�r�g D 1

*
J1�2�*� �1.96�
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Figure 1.11 The circle function. (a) Geometry. (b) Fourier transform. (c) Diffraction pattern.

The graph of Eq. (1.96) is shown in Fig. 1.11b. The similarity theorem for the
Fourier–Bessel transform does not follow Eq. (1.42); that is,

Bfg�ar�g D 1

a2
G
(*
a

)
�1.97�

and

B
{

circ
( r

a

)}
D a

*
J1�2�*a� �1.98�

The circle function and its Fourier transform are shown in Figs. 1.11a and 1.11b,
respectively. The intensity pattern of the diffraction from the circular aperture with
radius a is

I�ri� D
(

a2

�zi

)2 (
J1�2�a*�

a*

)2

�1.99�

with

* D ri
�zi
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which can be rewritten as

I�ri� D
(

ka2

zi

)2 (
J1�kari/zi�

kari/zi

)2

�1.100�

where ri is the radial coordinate in the plane of the diffraction pattern. This diffraction
pattern was first derived by Sir George Biddell Airy and is referred to as the Airy
pattern. The diffraction photograph is shown in Fig. 1.11c.

1.4.5 Delta Function

The delta function υ�x� is conveniently made to represent a point source [10]. Its
amplitude is confined within a minute range of x D šε, while it is zero outside this
range, as shown in Fig. 1.12a. The amplitude grows to infinity as ε shrinks to zero, but
in such a way that the area enclosed by the curve is always unity. In the limit ε ! 0,
υ�0� ! 1, while satisfying ∫ ε

�ε
υ�x� dx D 1 �1.101�

The delta function is most often used in an integral form:∫ 1

�1
f�x�υ�x � a� dx D f�a� �1.102�

The integrand is shown in Fig. 1.12b. The region where the product is nonzero is only
at x D a š ε. Consequently, f�x� in this region can be approximated by the constant

δ(x)

0

(a) (b)

x

f (a)

f (x)

Delta functiony

−e e 0 x = a

Figure 1.12 Diagram showing
∫

f�x�υ�x � a�dx D f�a�. (a) Delta function. (b) Integral including the
delta function.
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value f�a�, and the constant f�a� can be brought outside the integral. The integral of
the delta function is unity and Eq. (1.102) holds. Equation (1.102) is used to sample
(or sift) the value of f�x� at x D a. This is called the sifting property of the delta
function.

The Fourier transform of the delta function is

Ffυ�x�g D
∫ 1

�1
e�j2�fxυ�x� dx �1.103�

Since the delta function samples the value of e�j2�fx at x D 0, Eq. (1.103) becomes

Ffυ�x�g D 1 �1.104�

Next, the inverse Fourier transform of υ�f� is considered. The inverse Fourier transform
uses ej2�fx instead of e�j2�fx on the right-hand side of Eq. (1.103), and therefore

F�1fυ�f�g D 1

Taking the Fourier transform of both sides gives

Ff1g D
∫ 1

�1
e�j2�fx dx D υ�f� �1.105�

Next, the value of υ�bx� will be expressed in terms of υ�x�:

∫ ε

�ε
f�x�υ�bx� dx D 1

b

∫ bε

�bε
f
(y
b

)
υ�y� dy �1.106�

Thus, Eq. (1.106) becomes ∫ ε

�ε
f�x�υ�bx� dx D 1

b
f�0� �1.107�

Equation (1.102) with a D 0 gives∫ ε

�ε
f�x�υ�x� dx D f�0� �1.108�

A comparison of Eqs. (1.107) and (1.108) leads to

υ�bx� D υ�x�

jbj �1.109�

The absolute value is placed in the denominator of Eq. (1.109) because the result is
the same for �b and Cb. Another property of the delta function is that its convolution
with a function is the function itself; namely,

f�x� Ł υ�x � a� D f�x � a� �1.110�
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because ∫ 1

�1
f�$�υ�x � $ � a� d$ D f�x � a� �1.111�

1.4.6 Shah Function (Impulse Train Function)

An array of equally spaced delta functions, such as shown in Fig. 1.13a, is called the
shah function (or comb function), and it is denoted by �x�. Mathematically, the shah
function is represented as

�x� D
1∑

nD�1
υ�x � n� �1.112�

Two major applications of �x� are the following:

1. The generation of a sampled function. The sampled function gs�x� is an array
of delta functions whose envelope is proportional to g�x), such as shown in

−3 −2 −1 0

(a)

(b)

g(x+1) g(x)

d(x)d(x+1)d(x+2) d(x−1) d(x−2)

1 2 3 4

0 1−1 2 0

g(x)

(c)

−3 −2 −1 32

g(x)

gs(x)

10

g(x −1)

=∗
(x) R(x)=g(x)∗ (x)

x

x

x

Figure 1.13 Shah function and its applications. (a) Shah function �x�. (b) g�x� sampled by �x�.
(c) Step and repeat function R�x�.
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Fig. 1.13b. The sampled function can be generated by simply multiplying g�x)
by the shah function:

gs�x� D g�x� �x� �1.113�

A typical use for gs�x� is in optical signal processing, as, for example, processing
a newspaper photograph that is made of closely sampled points.

2. The generation of a step and repeat function. The step and repeat function, such
as that shown in Fig. 1.13c, can be generated by convolving g�x� with the shah
function:

R�x� D g�x� Ł �x� �1.114�

From the definition of convolution, R�x� is

R�x� D
∫ 1

�1
g�6� �x � 6� d6

D
∫ 1

�1
g�6�

1∑
nD�1

υ�x � 6 � n� d6 �1.115�

Using Eq. (1.102), Eq. (1.115) becomes

R�x� D
1∑

nD�1
g�x � n� �1.116�

which steps and repeats g�x� at a unit interval.

The shah function that steps and repeats at an interval other than the unit interval
warrants special attention. The step and repeat function at an interval of a is
expressed as

g�x� Ł
(x

a

)
D
∫ 1

�1
g�6�

1∑
�1

υ

(
x � 6 � an

a

)
d6 �1.117�

From Eq. (1.109), Eq. (1.117) becomes

g�x� Ł
( x

a

)
D a

1∑
nD�1

g�x � an� �1.118�

Thus, the step and repeat function at an interval of a is

R�x� D 1

a
g�x� Ł

(x

a

)
�1.119�

The existence of the factor 1/a should be noted.
Next, the Fourier transform of the shah function will be derived. Because the shah

function is a periodic function, it can be expanded into a Fourier series with a period



32 FOURIER OPTICS: CONCEPTS AND APPLICATIONS

of unity as

�x� D
1∑

nD�1
ane

j2��n/T�x �1.120�

where

an D 1

T

∫ T/2

�T/2
υ�x�e�j2��n/T�x dx D 1

and where T is the period of the delta functions and is unity. Thus, Eq. (1.120) becomes

�x� D
1∑

nD�1
ej2�nx �1.121�

Whenever x is an integer, �x� becomes infinite, so that Eq. (1.121) constitutes an array
of delta functions spaced by unity. Equation (1.121) is an alternate expression for the
shah function. Thus, using Eqs. (1.35), (1.105), and (1.121), the Fourier transform of
the shah function becomes

Ff �x�g D
1∑

nD�1
υ�f � n� � �f� �1.122a�

Similarly,

Ff �x/a�g D a �af� �1.122b�

�x� is a very special function in that the Fourier transform is the same as the
function itself.

1.4.7 Diffraction from an Infinite Array of Similar Apertures
with Regular Spacing

Making use of the shah function, the diffraction pattern will be calculated for a
one-dimensional array of slits such as shown in Fig. 1.14a(1). The slits are identical
rectangle functions with width a, and the slits are equally spaced with period b, thereby
forming a step and repeat function. The transmittance of this step and repeat function
is expressed using Eqs. (1.75) and (1.119) as

E�x0, y0� D 1

b

(x0

a

)
Ł

(x0

b

)
�1.123�

The diffraction pattern is given by Eq. (1.34) as

E�xi, yi� D a sinc
(

a

�zi
xi

)
Ð
(

b

�zi
xi

)
υ

(
yi

�zi

)
�1.124�

where the quadratic phase factor will be suppressed in this section.
A photograph of the diffraction pattern is shown in Fig. 1.14b(1). The pattern

consists of an array of bright spikes with spacing �zi/b. For this particular array,
the ratio between the slit width a and the period b is b/a D 5. This means that the fifth
spike overlaps with the first null of sinc�afx� and the intensity of the fifth spike is faint.
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(1)

a b

(2)

(a)

(1) (2)

(b)

Figure 1.14 Comparison of (1) an array of long slits and (2) an array of short slits. (a) Geometry of
the apertures. The dark portions are the openings. (b) Diffraction patterns.

Figure 1.14b(2) was included in order to demonstrate how the dimension in fy of
the diffraction pattern stretches as the height of the slits y0 is shortened, while keeping
other parameters unchanged.

Next, a two-dimensional array will be formed out of rectangular apertures with
dimensions a ð l, with period b in the x direction and m in the y direction, as shown
in Fig. 1.15a(2).

The aperture is represented by

E�x0, y0� D 1

bm

[

(x0

a

)
Ł

(x0

b

)] [

(y0

l

)
Ł

(y0

m

)]
�1.125�

The diffraction pattern is given by

E�xi, yi� D al

j�zi
sinc

(
a

�zi
xi

)
sinc

(
l

�zi
yi

) (
b

�zi
xi

) (
m

�zi
yi

)
�1.126�

The photograph of the diffraction pattern in Fig. 1.15b(2) shows a grid of bright spikes.
The spacing of the spikes is �zi/b in the xi direction and �zi/m in the yi direction.
Note that the brightness of the spikes is not uniform and the overall distribution of the
bright spikes is similar to that of the single rectanglar aperture shown in Fig. 1.15b(1).
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Figure 1.15 Comparison of rectangular apertures in various configurations: (1) single rectangular
aperture, (2) rectangular apertures in a grid pattern, (3) rectangular apertures with random position in
the vertical orientation, and (4) randomly arranged rectangular apertures. (a) Geometry. (b) Diffraction
patterns.
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Figure 1.16 Circular apertures in various configurations: (1) single circular aperture, (2) circular aper-
tures in a linear array, (3) circular apertures in a grid pattern, and (4) randomly arranged circular
apertures. (a) Geometry. (b) Diffraction patterns.
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1.4.8 Diffraction from an Infinite Array of Similar Apertures
with Irregular Spacing

In the configuration shown in Fig. 1.15a(3), the elements of the array are randomly
arranged, but without any rotation of the individual elements. For simplicity, consider a
one-dimensional array with random spacing. If each rectangular aperture is translated in
the x0 direction by a random distance bj from the origin, then the aperture distribution
is represented by

E�x0, y0� D
N�1∑
jD0



(
x0 � bj

a

)

(y0

l

)
�1.127�

Using the shift theorem of the Fourier transform

Ffg�x � a�g D e�j2�faG�f� �1.128�

and

I�xi, yi� D E�xi, yi� ð EŁ�xi, yi�

the intensity distribution of the diffraction pattern is

I�xi, yi� D E�xi, yi��1 C e�j2�b1fx C e�j2�b2fx C Ð Ð Ð�
ð EŁ�xi, yi��1 C ej2�b1fx C ej2�b2fx C Ð Ð Ð�

D jE�xi, yi�j2

N C 2

N�1∑
jD1

N�1∑
kD1

cos 2fx�bj � bk�


 �1.129�

where jE�xi, yi�j2 is the diffraction pattern of a single rectangular aperture.
Since bj and bk are random, the second term is a superposition of cosine functions

of a random period, which means that the resultant is zero and the diffraction pattern
becomes NjE�xi, yi�j2. The intensity distribution of the diffraction is the same as that of
the single rectangular aperture but with N times the intensity, as shown in Fig. 1.15b(3).

Finally, the rectangular apertures are randomized with respect to rotation as well
as translation. The diffraction photograph in Fig. 1.15b(4) looks like one that would
have been obtained by rotating the single rectangular aperture diffraction pattern in
Fig. 1.15b(1) about its center.

Figure 1.16a and 1.16b show what happens when the rectangular apertures in
Fig. 1.15a are replaced by circular apertures.

The diffraction pattern of the single circular aperture in Fig.1.16a(1) is shown in
Fig. 1.16b(1). When this circular aperture is arranged in a one-dimensional array, as
shown in Fig. 1.16a(2), the diffraction pattern is made up of an array of vertical lines
(shah function) as shown in Fig. 1.16b(2). The brightness of the lines is not uniform,
but the overall brightness distribution resembles the diffraction pattern of the single
circular aperture shown in Fig. 1.16a(1).

Next, the circular apertures are arranged in grid form with period b in both the x0

and y0 directions as indicated in Fig. 1.16a(3). A photograph of the diffraction pattern
is shown in Fig. 1.16b(3). The grid pattern of the diffraction looks like the pattern that
would be obtained by the product of the pattern of an array in the x0 direction and the
pattern of an array in the y0 direction.
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As in the case of the rectangular element apertures shown in Fig. 1.15b(2), the
overall pattern of the brightness of the spikes in Fig. 1.16b(3) has a similar distribution
to the diffraction pattern of a circular element aperture.

In Fig. 1.16a(4) the circular apertures are arranged in a random manner. As with
the rectangular aperture, the photograph of the diffraction pattern in Fig. 1.16b(4)
resembles that of a single circular aperture but with N times the intensity.

The speckle patterns are due to the finite number of element apertures and decrease
with an increase in the number of elements.

1.4.9 Diffraction from a Finite Array

So far the dimensions of the array have been assumed to be infinite. In this section, the
effect of the finiteness of the array will be explained. An example of a two-dimensional
finite size rectangular aperture array is shown in Fig. 1.17a. The element apertures have
a size of a ð l and are spaced b and m apart in the x0 and y0 directions, respectively.

c

n

m

l

a

b

(a)

1

Gives information
about unit cell

Gives information
about lattice dimension

(b)

1
a

b
1

c

1l

n1m 1

Figure 1.17 Diffraction from an array of finite size. (a) Two-dimensional array of windows with
external dimensions c ð n. (b) Diffraction pattern of (a).
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The extent of the array is limited to c ð n in the x0 and y0 directions. The expression
for the transmittance is

E�x0, y0� D 1

bm

[

(x0

a

)
Ł

(x0

b

)]

(x0

c

)
ð
[

(y0

l

)
Ł

(y0

m

)]

(y0

n

)
�1.130�

The step and repeat functions in the square brackets are truncated by the rectangle
functions �x0/c� and �y0/n�.

The Fourier transform of the transmittance pattern is obtained from Eqs. (1.76) and
(1.122b):

FfE0�x0, y0�g D acln[ sinc�afx� �bfx�] Ł sinc�cfx�

ð [ sinc�lfy� �mfy�] Ł sinc�nfy� �1.131�

The order of the dimensions in the transmittance pattern is

a < b < c

where a is the width of the window, b is the spacing between windows, and c is the
overall dimension. In the diffraction pattern in Fig. 1.17b, the order of the dimensions
is inverted and reversed; namely,

1

c
<

1

b
<

1

a
�1.132�

where 1/c is the size of an individual spike, 1/b is the spacing between spots, and
1/a is the overall size of the diffraction pattern. Thus, the external size of the array
controls the size of the individual spike in the diffraction pattern.

Figure 1.18 illustrates how the external shape of the array controls the shape of
the individual spikes in the diffraction pattern. In Fig. 1.18a, the element apertures are
circular, and the grids are bordered by four different boundaries — circular, rectangular,
rectangular tilted at 45°, and triangular. The corresponding diffraction patterns are
shown in Fig. 1.18b.

From Eq. (1.131), the pattern of an individual spike is proportional to [sinc�cfx�
sinc�nfy�]2. As the shape of the outer boundary is rotated, the shape of the individual
spike rotates as shown in Figs. 1.18b(2) and 1.18b(3).

Finally, Fig. 1.18b(4) demonstrates that when the outer boundary is an equilateral
triangle, the shape of each spike becomes the diffraction pattern of a single triangular
aperture.

For large c, Eq. (1.131) can be approximated as

FfE0�x0, y0�g D acln sinc�afx�[ �bfx� Ł sinc�cfx�]

ð sinc�lfy�[ �mfy� Ł sinc�nfy�] �1.133�

Now, Eq. (1.133) can be separated into two factors of different natures. The factors
outside the square brackets are determined solely by the shape of each cell and are
called the element pattern. The factors inside the square brackets are determined solely
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(3) (4)

(b)

(1) (2)

(1) (2)

(3) (4)

(a)

Figure 1.18 The effect of external border shapes on a grid of circular apertures: (1) circular
border, (2) rectangular border, (3) tilted rectangular border, and (4) triangular border. (a) Geometry.
(b) Diffraction patterns. Each inset is the diffraction pattern of a single aperture with the same shape
as the border.
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b

m

Figure 1.19 Two-dimensional crystal array.

by the spacing and overall dimensions of the lattice, are independent of the shape of
each cell, and are called the array pattern. The diffraction pattern is the product of
these two patterns. The array pattern, which is periodic, provides the lattice dimension.
The element pattern, which is the envelope, provides the shape of the cell.

�Pattern� D �Element pattern� ð �array pattern� �1.134�

The two-dimensional crystal pattern such as shown in Fig. 1.19 can be obtained
by simply replacing sinc�afx� sinc�lfy� by G�fx, fy� D Ffg�x0, y0�g. The amplitude
envelope function G�fx,fy� contains information about the structure of the unit cell. The
structure of the unit cell g�x0, y0� can be derived by taking the inverse Fourier transform
of the envelope function. This is precisely the principle of X-ray crystallography.

In X-ray crystallography the darkness of each spot of the diffraction pattern in an
X-ray photograph is measured by a microdensitometer to obtain the envelope of the
intensity distribution jG�fx, fy�j2 of the diffraction pattern. This method, however,
measures the intensity pattern, and not the amplitude pattern of G�fx,fy�. The inverse
Fourier transform of the intensity pattern gives

F �1jG�fx, fy�j2 D g�x0, y0� Ł g��x0,�y0�

which is called the Harker pattern. From the Harker pattern, g�x0, y0� is resolved using
additional information derived from the physical chemistry of the molecule.

1.5 THE CONVEX LENS AND ITS FUNCTIONS

Geometrical optics is most often applied to find the location and size of the image
formed by a lens. Geometrical optics, however, fails to provide information about
the wavelength and polarization dependences of the field distribution, and the image
resolution for a given lens size. On the other hand, Fourier optics describes the wave
nature of optics, corrects these failures, and hence will be explained here.
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1.5.1 Phase Distribution After a Plano-Convex Lens

Figure 1.20 shows a thin plano-convex lens made by slicing a small section of a sphere
by the plane A–A0. The lens medium is glass and the surrounding medium is air. The
phase distribution across the tangent plane B–B0 will be calculated. Plane B–B0 is
parallel to plane A–A0. The incident light is a plane wave whose propagation direction
is normal to the plane A–A0. The incident wave is represented as an array of parallel
rays, as shown on the left side of Fig. 1.20. The ray passing through the fat lens center
suffers the longest phase delay, while that passing through the thin rim undergoes the
shortest phase delay. The exact distribution ��x, a� will be calculated in the coordinates
whose origin coincides with the center of the sphere. A light ray at an arbitrary height
x goes through both glass and air to reach plane B–B0 from plane A–A0. The total
phase delay ��x, a� is

��x, a� D k[n�
√

a2 � x2 � b� C a �
√

a2 � x2] �1.135�

where the y component is suppressed. With �x/a�2 − 1 and using the binomial
expansion, ��x, a� is approximated as

��x, a� D �0 � k
x2

2f0

where

�0 D kn�a � b� �1.136�

and

f0 D a

n � 1
�1.137�
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Figure 1.20 Geometry of a thin lens.
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Thus, the emergent field from the plane B–B0 is

E�x� D Ae�jkx2/2f0 �1.138�

The phase �0 is a constant that causes the same phase delay everywhere. It has no
physical significance and is suppressed. In the two-dimensional case of a spherical
lens, the emergent field E�x, y� is

E�x, y� D Ae�jk�x2Cy2�/2f0 �1.139�

where f0 is the focal length of the lens, as will be seen shortly. The lens generates a
quadratic phase distribution with a negative sign. This negative sign plays an important
role in the convex lens.

1.5.2 Collimating Property of a Convex Lens

The collimating property of a lens is one of the simplest Fourier optics examples and is
a good starting point for more detailed lens analysis. A delta function source is placed
at F in front of a convex lens at a distance f0 as shown in Fig. 1.21. The field incident
on the lens is

E�x, y� D 1

j�f0
ejk[f0C�x2Cy2�/2f0] �1.140�

Point
source

F

Aperture

Parallel beam

Convex
lens

f0

Cancel each other

ejkf0+jk
(x 2

0+y 2
0)

2f0 e−jk
x2

0+y 2
0

2f0

Figure 1.21 Interpretation of the generation of a parallel beam by Fourier optics.
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where the coordinates �x, y� are in the plane of the lens. When the field passes through
the lens it experiences a phase delay, which has previously been shown in Eq. (1.139)
to be � D �k[�x2 C y2�/2f0]. Hence, the resultant Fresnel diffraction of this field
at a distant z D zi plane is obtained from the Fresnel–Kirchhoff diffraction formula
(Eq. (1.38))

E�xi, yi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]

ð F

{
1

j�f0
ejk[f0C�x2Cy2�/2f0]

︸ ︷︷ ︸
Input

e�jk�x2Cy2�/2f0

︸ ︷︷ ︸
Lens

ejk�x2Cy2�/2zi

︸ ︷︷ ︸
Part of the

point spread
function

}
fxDxi/�zi,fyDyi/�zi

�1.141�

The divergence of the input field factor is partially cancelled by the lens factor. The
rearrangement of Eq. (1.141) results in

E�xi, yi� D 1

j�f0
ejkf0Cjk[�x2

i Cy2
i �/2zi]F

{
1

j�zi
ejk[ziC�x2Cy2�/2zi]

}
fxDxi/�zi,fyDyi/�zi

�1.142�

The quantity in the curly brackets is the point spread function and its Fourier transform
is obtained from Eq. (1.41):

E�xi, yi� D 1

j�f0
ejk�f0Czi�Cjk[�x2

i Cy2
i �/2zi][e�j��zi�f2

x Cf2
y �]fxDxi/�zi,fyDyi/�zi �1.143�

Due to cancellation we finally obtain a function independent of xi and yi:

E�xi, yi� D 1

j�f0
ejk�f0Czi� �1.144�

Hence, the field is a parallel beam and is a plane wave with constant amplitude 1/�f0.
The amplitude stays constant with distance zi as shown in Fig. 1.21. This proves that
f0 is indeed the focal length of the lens.

1.5.3 Imaging Property of a Convex Lens

The Gaussian lens formula is derived by geometrical optics as

1

d1
C 1

d2
D 1

f0
�1.145�

where f0 is the focal length of the convex lens, d1 is the distance from the lens to the
object, and d2 is the distance from the lens to the image. The Gaussian lens formula
will be obtained using Fourier optics. The imaging condition is that the light emanating
from a point on the object converges back to a point in the image plane.
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Figure 1.22 Imaging condition of a convex lens.

For simplicity, the object is a delta function source S located on the z axis, as shown
in Fig. 1.22. The input field El�x, y� to the lens in x, y coordinates is

El�x, y� D 1

j�d1
ejk[d1C�x2Cy2�/2d1] �1.146�

The Fresnel diffraction from the lens to the image plane at zi D d2 is, from Eq. (1.38),

E�xi, yi� D �ejk[d2C�x2
i Cy2

i �/2d2]

�2d1d2

F

{
ejk[d1C�x2Cy2�/2d1]︸ ︷︷ ︸

Input
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Part of the

point spread
function

}
fxDxi/�d2,fyDyi/�d2

�1.147�

If the observation is made at the particular value of d2 that satisfies the Gaussian lens
formula, Eq. (1.145), then the value inside the curly brackets becomes unity and

E�xi, yi� D � 1

�2d1d2
ejk[d1Cd2C�x2

i Cy2
i �/2d2]υ

(
xi

�d2

)
υ

(
yi

�d2

)
�1.148�

The delta function image P is recovered if the imaging condition is satisfied. Thus,
Fourier optics has proved Eq. (1.145).
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E�xi, yi� will be rewritten in a form more conducive to extracting the physical
meaning. Using Eq. (1.109), the last two factors of Eq. (1.148) can be rewritten as

υ

(
xi

�d2

)
υ

(
yi

�d2

)
D ��d1�

2υ

(
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d2
xi

)
υ

(
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yi

)
�1.149�

Let m be the magnification factor:

m D d2

d1
�1.150�

The expression for the image finally becomes

E�xi, yi� D � 1

m
ejk[d1Cd2C�x2

i Cy2
i �/2d2]υ

(xi

m

)
υ
(yi

m

)
�1.151�

Since the object is a delta function source υ�x0�υ�y0�, its image is also expected to be
a delta function and is υ�xi/m�υ�yi/m�. The width of υ�xi/m� is wider than υ�x0� by
m times, and hence the image is magnified by m times. As far as the light intensity is
concerned, the amplitude of the light is diluted by 1/m times.

The advantage of the Fourier optics approach is that it can be applied to situations
where geometric optics is inadequate, such as dealing with the finite size of the
lens. For example, the case of the finite-sized square aperture of dimensions a ð a
is represented as

A�x, y� D 
(x

a

)

(y
a

)
�1.152�

This has the effect of altering the input by this factor. With this insertion into
Eq. (1.146), the finite lens equivalent of Eq. (1.148) is

E�xi, yi� D � 1

�2d1d2
ejk[d1Cd2C�x2

i Cy2
i �/2d2]

ð [a2 sinc�afx� sinc�afy�︸ ︷︷ ︸
Due to a finite
square aperture

Ł υ�fx�υ�fy�︸ ︷︷ ︸
Image

]fxDxi/�d2,fyDyi/�d2 �1.153�

The final result is

E�xi, yi� D 1

�2d1d2
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)
�1.154�

Thus, the image of the delta function object is no longer a delta function but a sinc
function whose main lobe size is �2�d2/a� ð �2�d2/a�. The larger the aperture a ð a
is, the smaller the width of the lobe becomes. However, as long as the dimension of
the aperture is finite, the lobe is also finite. Hence, the image cannot be the same as
the original delta function, even when the lens is designed perfectly and is aberration
free. If the only limitation on resolution is due to the finiteness of the aperture causing
the diffraction, then the imaging system is said to be diffraction limited.
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1.5.4 Fourier Transformable Property of a Convex Lens

Besides the properties of converging, diverging, collimating, and forming images, the
convex lens also has a Fourier transformable property [1,6,8]. It takes place at the back
focal plane of the lens. For instance, when a parallel beam (constant with respect to x0

and y0) is incident onto a convex lens, the distribution of light that results on the focal
plane behind the lens is a point or delta function. The delta function is the Fourier
transform of a constant. In this way, the convex lens can be considered to possess a
Fourier transformable property.

Now consider a source (an input function or input mask) placed on the back surface
of a convex lens, as shown in Fig. 1.23. The screen is located in the near field and
hence Fresnel’s near-field diffraction equation, Eq. (1.38), is used. The field on the
screen is the Fourier transform of the field just behind the lens multiplied by the point
spread function.

E�xi, yi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]

FfE�x0, y0�e
�jk�x2

0Cy2
0�/2f0 Ð ejk�x2

0Cy2
0�/2zigfxDxi/�zi, fyDyi/�zi �1.155�

If the observation is made at a distance zi D f0, the point spread phase factor
is cancelled by the quadratic phase factor of the convex lens and Eq. (1.155)
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with a convex lens
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Parallel
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Figure 1.23 Fourier transform when the input image is pressed against a plano-convex lens.
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becomes

E�xi, yi� D 1

j�f0
ejk[f0C�x2

i Cy2
i �/2f0]ε
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xi

�f0
,

yi

�f0

)
�1.156�

where

ε�fx, fy� D FfE�x0, y0�g

Thus, the output E�xi, yi� is the Fourier transform of the input function. It should be
noted, however, that the output is not exactly the Fourier transform but is altered by
a quadratic phase factor exp[jk�x2

i C y2
i �/2f0]. Furthermore, the size of the Fourier

transform pattern ε�xi/�f0, yi/�f0� depends on the focal length of the lens.
Next, a different problem is investigated. Consider the case when the input function

is placed at the focal plane in front of the lens, as arranged in Fig. 1.24. The field
incident upon the lens is in the near field. Hence, the Fresnel diffraction pattern of the
input function, in the form of convolution with the point spread function as given by
Eq. (1.39), is used.

El�x, y� D E0�x, y� Ł ff0�x, y� �1.157�

Using the previous discovery that the field in the back focal plane of a convex lens
is merely the Fourier transform of the input function (Eq. (1.156)), the distribution on
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yi

xi

xi

yi

zi

0

Figure 1.24 Fourier transform by a convex lens when the input is at the front focal plane F1 and the
Fourier transform is on the back focal plane F2.
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the screen in the back focal plane is given by

E�xi, yi� D 1

j�f0
ejk[f0C�x2

i Cy2
i �/2f0]FfE0�x, y� Ł ff0�x, y�gfxDxi/�f0, fyDyi/�f0 �1.158�

Using the product rule of Fourier transforms and the Fourier transform of the point
spread function from Eq. (1.41), the field is equal to

E�xi, yi� D 1

j�f0
ejk[f0C�x2

i Cy2
i �/2f0][ε�fx, fy� Ð ejkf0�j��f0�f2

x Cf2
y �]fxDxi/�f0, fyDyi/�f0

�1.159�

E�xi, yi� D ej2kf0

j�f0
ε

(
xi

�f0
,

yi

�f0

)
�1.160�

This final result can be compared to the previous findings for the lens system of
Fig. 1.23. This formula is very similar except for the absence of the quadratic phase
factor.

Thus, the Fourier transform without the quadratic phase factor is obtained when the
input is placed in the front focal plane and observed on the back focal plane.

Lastly, consider what happens when the input is placed in an arbitrary converging
beam, as shown in Fig. 1.25. In this case, the Fourier transform is obtained in a plane
containing the point of convergence. It does not matter whether the converging beam
has been made by a single lens or a composite of lenses, as long as a converging
spherical wave is the incident input beam.

Before going into detail, the difference in the expressions for diverging and
converging rays needs to be understood. Figure 1.26 shows how two phase fronts
evolve as time elapses from t D 1 to t D 3. Both beams are propagating in the positive

Composite
lenses

E(x0,y0)
Input

Fourier transform
fr0

(xi,yi) e(xi,yi)

F1

Arbitrary
converging
beam

An array of 
lenses or a
single lens

Expand the Fourier
transform image

Shrink the Fourier
transform image

r0

Figure 1.25 Fourier transform by a converging beam.
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Figure 1.26 Diverging and converging spherical waves.

z direction and have a quadratic phase distribution in the transverse �xi, yi� plane.
However, the signs of the phase are opposite. The difference in signs can be explained
as follows. In Fig. 1.26a, if the phase is observed outward from the origin (increasing
x2

0 C y2
0), the later or the more delayed phase is observed. Therefore, the factor is

positive and is expressed as

E�x0, y0� D E0 ejk�x2
0Cy2

0�/2r0 �1.161�

where r0 is the distance between the point source and the screen.
On the other hand, for the converging beam in Fig. 1.26b, the earlier or more leading

phase is observed as the point of observation moves away from the center of the lens;
thus, the phase factor has to be

E�x0, y0� D E0 e�jk�x2
0Cy2

0�/2r0 �1.162�

Now, let us return to the diffraction pattern of the input and consider the case
when the input is inserted into a converging beam. From the Fresnel diffraction
formula of Eq. (1.38) and the phase factor, the field observed at a distance r0 from the
input is

E�xi, yi� D 1

j�zi
ejk[r0C�x2

i Cy2
i �/2r0]

Ffe�jk�x2
0Cy2

0�/2r0E�x0, y0�e
jk�x2

0Cy2
0�/2r0gfxDxi/�r0, fyDyi/�r0 �1.163�
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The phase of the converging beam and the point spread function cancel each other,
and the final expression becomes

E�xi, yi� D ejk[r0C�x2
i Cy2

i �/2r0]

j�r0
ε

(
xi

�r0
,

yi

�r0

)
�1.164�

The Fourier transform is obtained, but with the inclusion of the quadratic phase factor
once again. This time, however, the size of the Fourier transform diffraction pattern
can be controlled without changing the focal length of the lens. The size of the image
is enlarged as r0 is increased, until the input is obstructed by the lens.

1.5.5 How Can a Convex Lens Perform the Fourier Transform?

Figure 1.27 gives a pictorial explanation of how a convex lens performs the Fourier
transform of the input image. The input is placed in the front focal plane of the convex
lens, and the output is observed in the back focal plane. The observation point P�xi�
will always be at xi D xi in the back focal plane.

In case (1), a delta function source is placed at the origin of the input plane. The
emergent light from the lens is a parallel beam. The phase at P�xi� is the same as that
at the origin. In case (2), the light source is moved to x0 D x1. The parallel beam will
be tilted and propagates slightly downward. The phase at P�xi� is leading that at the
origin by �jk�sin �i�xi radians or approximately �j�2�/���x1/f0�xi radians. The field
at P�xi� is

E�xi� D E1 exp
(

�j
2�

�

xi

f0
x1

)

In case (3), one more source is added at x0 D x2, and the sum of the contributions of
the two sources is

E�xi� D E1 exp
(

�j
2�

�

xi

f0
x1

)
C E2 exp

(
�j

2�

�

xi

f0
x2

)

In case (4), a distributed source E�x0� is placed in the input plane. The contribution of
the distributed source is expressed by an integral over the source plane.

E�xi� D
∫

E�x0� exp
(

�j
2�

�

xi

f0
x0

)
dx0

Thus, the lens performs the Fourier transform of the input image and the output is

E�xi� D F fE�x0�gfxDxi/�f0

1.5.6 Invariance of the Location of the Input Pattern to the
Fourier Transform

Even when the input pattern is moved sideways, the location of the Fourier transform
pattern stays in close proximity to the back focal point of the lens. Figure 1.28 shows
how the ray paths change as the input object (letter envelope) is moved vertically
in the x–y plane and horizontally along the z axis. From the figure, we see that the
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Figure 1.27 How a convex lens performs the Fourier transform.
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Figure 1.28 Demonstrating that the Fourier transform is confined to the vicinity of the back focal
point F regardless of the location of the input image.

incident parallel beam converges to the back focal point and the diffraction pattern
of the input remains around the focal point regardless of the location of the input.
When the envelope is lowered, the scattered beam starts from a lower location but the
scattered field first converges to the center of the back focal plane and then forms an
image at a higher location. In fact, the Fourier transform pattern is usually confined
within a small range. For instance, with � D 0.63 µm, the focal length f D 10 cm,
and with a maximum spatial frequency of fx D 100 lines/mm, the Fourier transform
appears within xi D šfx�f D š6.3 mm at the back focal point. This is one of the
most useful features of the Fourier transform nature of a lens. In practical applications,
such as mass processing of addresses on letters, this means that stringent positioning
requirements of the input image are not necessary.

The reason for this phenomenon mathematically is that the Fourier transform of
the shifted input g�x � a� is e�j2�faG�f�. The shift causes the phase shift e�j2�fa.
However, the human eye cannot recognize phase shifts and thus the pattern does
not show any change when the input is shifted. However, this is only true with a
translational shift and not true with a rotational shift.

1.6 SPATIAL FREQUENCY APPROACHES IN FOURIER OPTICS

Another way of calculating the diffraction pattern will be introduced. The given
input pattern is first decomposed into its constituent spatial frequencies by Fourier
transforming the input, and then the propagated field of each spatial frequency
component is calculated. The desired diffraction pattern of the given input pattern
is the sum of the propagated patterns of the spatial frequency components [1, 11].

1.6.1 Solution of the Wave Equation by Means of the Fourier Transform

With the geometry shown in Fig. 1.2, the field E�xi, yi, z, t� at z D zi will be calculated
from the spectrum of the input field at z D 0. Assuming a sinusoidal time dependence,
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the field is expressed as

E�x, y, z, t� D E�x, y, z�e�jωt �1.165�

Equation (1.165) has to satisfy the wave equation

r2E C k2E D 0 �1.166�

If Cartesian coordinates are used to express Eq (1.166), the general solutions for
Ex, Ey , and Ez are all identical. What makes Ex, Ey , and Ez different is that the
boundary conditions depend on the components. Let the solution of Eq. (1.166) be
denoted as E�x, y, z�. This approach is called the scalar wave approach. The scalar
wave approach is much simpler than the vector wave approach but is less accurate
because it assumes that the same boundary conditions are applicable to both normal
and tangential components. Accepting this trade of simplicity for accuracy, the scalar
equivalent of Eq. (1.165) is

E�x, y, z, t� D E�x, y, z�e�jωt �1.167�

Thus, the scalar wave equation becomes

∂2E

∂x2
C ∂2E

∂y2
C ∂2E

∂z2
C k2E D 0 �1.168�

Now, the wave equation (1.168) can be solved using the Fourier transform method [11].
The Fourier transform of E with respect to x in the fx, fy domain is

FxfEg D ε�fx, y, z� �1.169�

The derivative rule of the Fourier transform is

F
{

∂E

∂x

}
D j2�fxε�fx, y, z� �1.170�

The Fourier transform of Eq. (1.168) with respect to x gives

�j2�fx�
2ε�fx, y, z� C ∂2

∂y2
ε�fx, y, z� C ∂2

∂z2
ε�fx, y, z� C k2ε�fx, y, z� D 0 �1.171�

Similarly, the Fourier transform of the above equation with respect to y gives

�j2�fx�
2ε�fx,fy, z� C �j2�fy�

2ε�fx, fy, z� C ∂2

∂z2
ε�fx,fy, z� C k2ε�fx, fy, z� D 0

�1.172�

Hence, the Fourier transform of the scalar wave equation, Eq. (1.168), with respect to
both x and y is [

∂2

∂z2
C �2�fz�

2
]
ε�fx,fy, z� D 0 �1.173�
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where

fz D
√

f2
s � f2

x � f2
y �1.174�

fs is the spatial frequency in the direction of propagation and fs D 1/� as defined by
Eq. (1.20). Equation (1.173) is a second order partial differential equation with respect
to z whose solution is

ε�fx, fy, z� D Aej2�fzz C Be�j2�fzz �1.175�

The first term is a forward wave while the second term is a backward wave. The values
of A and B are to be found from the boundary conditions of either ε or its derivative.
We will restrict ourselves to the simple case where only the forward wave is present,
and B D 0. By setting z D 0 in Eq. (1.175), A is found to be ε�fx, fy, 0�. The solution
becomes

ε�fx, fy, z� D ε�fx,fy, 0�ej2�fzz �1.176�

Finally, we solve for the field E�xi, yi, zi� by taking the inverse Fourier transform of
Eq. (1.176). This gives

E�xi, yi, zi� D
∫∫

1
ε�fx, fy, 0�ej2�

p
f2
s �f2

x �f2
y Ðziej2�fxxiCj2�fyyidfxdfy �1.177�

where

ε�fx,fy, 0� D
∫∫

1
E�x0, y0, 0�e�j2�fxx0�j2�fyy0dx0 dy0 �1.178�

The combination of these equations is called the Rayleigh–Sommerfeld diffraction
formula and provides the field at z D zi from the Fourier transform of the input field
at z D 0.

Even though Eqs. (1.177) and (1.178) are simple expressions, it is difficult to obtain
a highly accurate representation of E�x0, y0, 0� that expresses the field for an aperture of
finite size. For example, the field of an aperture illuminated from the back by a plane
wave is almost, but not exactly, uniform across the aperture. The aperture contains
contributions from the waves scattered by the edges, as well as multiple scatterings
between the facing edges. As a result, it is quite difficult to obtain the exact expression
of the input field.

Example 1.6 Demonstrate that the Rayleigh–Sommerfeld and Fresnel–Kirchhoff
diffraction formulas provide the same answer using the example of the diffraction
pattern of a pinhole. The pinhole is located at the origin of the input plane and is
illuminated by a plane wave of unit amplitude from behind as shown in Fig. 1.29a.

Solution
1. Solution by the Rayleigh–Sommerfeld formula.

In this method, the Fourier transform ε of the input field is first obtained and
then ε is allowed to propagate to the output screen where the inverse Fourier
transform is performed to obtain the final result.
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Figure 1.29 Field from a pinhole in space and spatial frequency domains. (a) Space domain.
(b) Spatial frequency domain.

The pinhole is represented by

E�x0, y0� D υ�x0�υ�y0� �1.179�

Inserting Eq. (1.179) into (1.178) gives

ε�fx, fy, 0� D 1 �1.180�

Since there is no backward wave in the region between the input and output
planes, B D 0 in Eq. (1.175). Let ε�fx, fy, 0� propagate to the output screen
using Eq. (1.176):

ε�fx, fy, zi� D ej2�fzzi �1.181�

If we apply the para-axial approximation, which means that the propagation
directions of the component waves are almost along the z axis, then fs satisfies

f2
s × f2

x C f2
y �1.182�
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Recalling that

fs D 1

�

the binomial expansion of Eq. (1.174) becomes

fz D 1

�
� �

2
�f2

x C f2
y � �1.183�

Inserting Eq. (1.183) into (1.181) gives

ε�fx, fy, 0�ej2�fzzi D ejkz�j��zi�f2
x Cf2

z � �1.184�

Using the Fourier transform relationship of Eq. (1.44), Eq. (1.184) is inverse
Fourier transformed to obtain the final result as

E�xi, yi, zi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi] �1.185�

2. Solution by the Fresnel–Kirchhoff integral.
Inserting Eq. (1.179) into (1.38) gives

E�xi, yi, zi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]

∫∫ 1

�1
υ�x0�υ�y0�

ð ejk�x2
0Cy2

0�/2zi Ð e�j2��fxx0Cfyy0�dx0 dy0 �1.186�

The integral in Eq. (1.186) is unity and Eq. (1.186) is the same as Eq. (1.185).
�

Example 1.7 As shown in Fig. 1.30, light is incident from an optically dense medium
with refractive index n into free space. The interface between the medium and free
space is in the plane of z D 0. The propagation direction of the incident wave is in the
x–z plane and the incident angle to the interface is �i. Find the field at point �xi, yi, zi�
in free space and its propagation direction.

Solution The wavelength �x0 in the x0 direction at the interface is

�x0 D �

n sin �i
�1.187�

The corresponding spatial frequency from Eq. (1.13) is

fx0 D nfs sin �i �1.188�

Note that B in Eq. (1.175) is zero because there is no wave propagating in the negative
z direction in the free-space region. Thus, the field E�x0, y0, 0� in the z D 0 plane is

E�x0, y0, 0� D E0e
j2�nfsx0 sin �i �1.189�
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Figure 1.30 Transmission from an optically dense medium into a less dense medium is calculated.

From Eq. (1.189), Eq. (1.178) becomes

ε�fx,fy, 0� D E0υ�fx � nfs sin �i�υ�fy� �1.190�

Thus, the input field contains only one spatial frequency component, nfs sin �i. Next,
Eq. (1.177) will be calculated:

E�xi, yi, zi� D
∫∫

E0υ�fx � nfs sin �i�υ�fy�e
j2�

p
f2
s �f2

x �f2
y zi ej2��fxxiCfyyi� dfx dfy

�1.191�

Applying Eq. (1.102) to (1.191) gives

E�xi, yi, zi� D E0 exp[j2�
√

f2
s � n2f2

s sin2 �i zi C j2�nfs�sin �i�xi] �1.192�
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From Snell’s law at the boundary,

n sin �i D sin �t �1.193�

the final result is

E�xi, yi, zi� D E0 exp[j2�fs�cos �t�zi C j2�fs�sin �t�xi] �1.194�

Equation (1.194) is a plane wave whose propagation unit vector is

Oe D sin �tOı C cos �t Ok �1.195�

The propagation direction with respect to the normal of the input plane is

tan�1 ex

ez
D �t �1.196�

Next, the case of the evanescent wave will be explained. Equation (1.192) can be
rewritten as

E�xi, yi, zi� D E0 exp[�2�fs

√
n2 sin2 �i � 1 zi C j2�nfs�sin �i�xi] �1.197�

When either �i or n is large and the condition n sin �i > 1 is satisfied, the amplitude
of the wave decays exponentially in the z direction. This is an example of an
evanescent wave. For the evanescent wave, the phase varies in the xi direction whereas
the amplitude of the wave does not, as shown by Eq. (1.197) and Fig. 1.30b. The
evanescent wave is a very important subject and will be treated in more detail in the
next chapter. �

1.6.2 Rayleigh–Sommerfeld Integral

This section is devoted to explaining the conceptual differences between the
Rayleigh–Sommerfeld and the Fresnel–Kirchhoff diffraction formulas. Mathemati-
cally, the two integrals are equivalent, and Appendix A of Volume I presents a general
proof of this. Conceptually, there are differences between the two approaches. Under-
standing these differences is important so that the most appropriate choice is made in
solving a given problem.

The Fresnel–Kirchhoff diffraction formula, Eq. (1.28), is repeated here for conve-
nience.

E�xi, yi, zi� D 1

j�

∫∫
ej2�fsr

r︸ ︷︷ ︸
Spherical

wave

E�x0, y0� dx0 dy0︸ ︷︷ ︸
Amplitude of the
spherical wave

with r D
√

�xi � x0�2 C �yi � y0�2 C z2
i

�1.198�

As mentioned in Section 1.2, ej2�fsr/r represents a spherical wave emanating from
the point �x0, y0� with E�x0, y0� dx0 dy0 as its amplitude. The representation of
the source function as a collection of spherical wave point sources is indicated
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by S1, S2, S3, . . . , Sn in Fig. 1.31a. In order to find the field observed at P, the
contributions of all spherical wave sources S1, S2, S3, . . . , Sn are integrated over the
entire shape of the source.

Next, let us examine the Rayleigh–Sommerfeld diffraction formula. Equation
(1.177) is rewritten below:

E�xi, yi, zi� D
∫∫

ej2x�fxxCj2�fyyCj2�fzz︸ ︷︷ ︸
Plane wave propagating

in the �fx i, fy j, fzk�
direction

ε�fx,fy, 0� dfx dfy︸ ︷︷ ︸
Amplitude

with fz D
√

f2
s � f2

x � f2
y

�1.199�

The first factor of the integral in Eq. (1.199) is a plane wave component propagating
in the direction

�fxi, fyj, fzk� �1.200�

The second factor is the amplitude of the plane wave. The integral with respect to
fx and fy means the integration of the plane wave contributions from all propagating
directions. Since fs D 1/� is given, once fx and fy are specified, the value of fz is
accordingly set from the lower equation of Eq. (1.199). There are few noteworthy
points with regard to this integral. As shown in Fig. 1.31b, the integral includes not
only the plane wave B whose wave normal is aimed at P but also all other wave
normals denoted by A, C, . . .. However, a wave normal is not the same thing as a
light beam. Any line drawn parallel to the propagation direction of a given wave can
be the wave normal of that same wave. For example, the wave represented by B0 in
Fig. 1.31b is identical with the wave represented by B.

It is also important to include the contributions of plane waves propagating in the
negative x0 direction, such as shown by A in Fig. 1.31b.
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Figure 1.31 Conceptual comparison of the diffraction formulas. (a) Fresnel–Kirchhoff. (b) Rayleigh–
Sommerfeld.
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According to Eq. (1.199), another significant point to remember is that fz becomes
an imaginary number for

f2
x C f2

y > f2
s �1.201�

When fz is an imaginary number, the integrand becomes an evanescent wave whose
magnitude decays exponentially with z. The contribution of the evanescent wave is
insignificant unless the point of observation is close to the source and z is small.

1.6.3 Identifying the Spatial Frequency Components

The spatial frequency components shown in Fig. 1.31b can be identified by using a
convex lens as illustrated in Fig. 1.32. Only two spatial frequency components are
considered. Both of them are incident from the left of the convex lens. Because both
waves are plane waves, they are focused on the back focal plane. The component with
fx D fy D 0 is incident normal to the lens and is focused at �0, 0, f�, where f is the
focal length of the convex lens. The component with fx 6D 0, fy D 0 is incident to the
lens with an incident angle

� D tan�1�fx/fz� �1.202�

and is focused on the back focal plane at �xi, 0, f�, where

xi D f tan � � f�fx �1.203�

and where the approximation of fz D fs was made. The location of the focused light
rises along the xi axis as fx is increased. The higher the location, the higher the spatial
frequency of the converging light. This means that by placing a mask of a predetermined

xi = f l fxwith fx ≠ 0 
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Figure 1.32 Identifying the spatial frequency components by means of a convex lens.
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transmittance distribution in the back focal plane of the convex lens, the waves of a
particular spatial frequency component can be either selectively transmitted through
or blocked by this mask. The following sections elaborate on this technique. (See
Section 1.2 for the case without a lens.)

1.7 SPATIAL FILTERS

This section is devoted to a discussion of optical signal processing based on
manipulation of spatial frequency components.

1.7.1 Image Processing Filters

Figure 1.33 shows different arrangements for image processing using various types of
spatial frequency filters [1,8]. For all the cases, there is a point source that is collimated
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P1 P2L2 L3

L1 P1 P2
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P1 L2 P2 L3
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f1 f2 f3f2 f3
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(b)
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Lens Lens ScreenPinhole
filter

High
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Figure 1.33 Various types of spatial filters. (a) Low-pass filter. (b) High-pass filter. (c) Schlieren
camera. (d) Spatial derivative operation. (e) Step and repeat operation.
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Figure 1.33 (Continued)

by lens L1. The collimated beam illuminates a transparency overlay forming the input
image. Lens L2 Fourier transforms the transparency pattern in its back focal plane.
The spatial filter is placed in the back focal plane of L2 and modifies the pattern. The
modified pattern is Fourier transformed again by means of lens L3, and the processed
image is finally projected onto the screen.

Figure 1.33a shows a low-pass spatial filter. In the plane of the spatial filter, the
spatial frequency is zero on the z axis and increases linearly with distance from the
axis. The higher frequency components, which are diffracted to the area away from
the axis, are blocked by the mask. A typical low-pass filter consists of a pinhole and
a lens combination, commonly marketed as a “spatial filter.”Ł This filter filters out all
the spatial frequency components except the zero spatial frequency, resulting in a pure
parallel beam.

Ł Keep in mind that the true meaning of a spatial filter is broader in scope than the marketplace meaning
of spatial filter.



SPATIAL FILTERS 63

Figure 1.33b shows an example of image processing with a high-pass spatial filter.
Here, the lower spatial frequency components are suppressed. In general, sharp edges
and fine lines in the image generate higher spatial frequency components, which are
then accentuated in the image. Thus, fine point or edge enhancement is achieved by
this type of filter.

Figure 1.33c shows an example of a Schlieren camera. This filter is used to view
transparent objects. It is normally difficult to view or photograph objects that are
transparent although they may have varying indices of refraction within them. Examples
include such objects as microbes, turbulent air, or ultrasound patterns in a liquid. The
difficulty is that the images of these objects have only phase variations, which neither
our eyes nor an ordinary camera can detect.

The Schlieren camera, however, creates an interference pattern between the image
and a constant phase reference wave. The constant phase reference wave is generated
by placing an opaque dot at the back focal point of lens L2 on P2. The generation of
the reference wave is explained as follows. The zero spatial frequency is blocked by
the opaque dot. Blocking the zero spatial frequency component means there is zero
field at the location of the opaque dot, and a zero field is equivalent to the sum of two
waves of equal amplitude and opposite phase. Thus, the field at the location of the
opaque dot can be expressed as the sum of the original zero spatial frequency wave,
and a wave of equal amplitude but opposite phase (reference wave). This reference
wave can be thought of as a fictitious point source located at the front focal point of
lens L3 and projecting a constant phase reference field onto the screen, while the input
wave is Fourier transformed by L3, forming an inverted image on the same screen.
The superposition of image and reference waves on the screen creates an interference
pattern. The contours of the constructive interference are the brightest and those of the
destructive intereference are the darkest. The phase variation of the object is converted
into an intensity variation by the Schlieren camera.

A quarter-wave phase plate can also be used instead of an opaque dot
(Problem 1.10). The effects of a Schlieren camera can also be replicated by placing a
knife edge to block the entire lower half domain of the Fourier transform.

Figure 1.34 shows a photograph of a fetal mouse taken by a Schlieren camera.
Practically no image is formed if an ordinary microscope is used.

Figure 1.34 Schlieren photograph of a fetal mouse. (Courtesy of Olympus Optical Co., Ltd.)
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Figure 1.33d shows an example of the spatial derivative operation. The Fourier
transform of the derivative is

Ffg0�x0�g D j2�fx Ð Ffgg �1.204�

The filter placed at the back focal plane of the Fourier transform lens L2 has
transmittance characteristics of 6�fx� D fx in the spatial frequency domain. The filter,
however, has to have this characteristic from fx D �1 to fx D 1 in order for
6�fx� D fx to be realized. The positive fx region can easily be realized, but the negative
fx region is much more difficult to realize. The phase of the negative fx region can
be reversed by a thin layer of a substance with a higher refractive index. This layer
causes a �-radian phase delay. After another Fourier transform through lens L3, the
image of g0�x0� is obtained on the screen. One of the practical applications of such an
operation is in edge enhancement or outlining the input image for easy identification
of the shape of the object.

Figure 1.33e shows how to generate the repeated image of the input. A mask of a
grid of pinholes with periods a and b in the x and y directions is placed in the back
focal plane of lens L2. The transmittance of such a mask is

1

ab

(x

a

) (y
b

)
�1.205�

Thus, the field distribution after passing through the pinhole mask would be

1

ab

ejkf

j�f
G

(
x

�f
,

y

�f

) (x

a

) (y
b

)
�1.206�

where G�fx, fy� is the Fourier transform of the input g�x, y� function. The effect to the
field then, after passing through lens L3, is an additional Fourier transform producing
the field

E�xi, yi� D �ej2kfg��xi, �yi� Ł
{ (

axi

�f

) (
byi

�f

)}
�1.207�

on the back focal plane of lens L3. From the above relationship, we see that the resultant
image is a grid of repeated input images.

1.7.2 Optical Correlators

Optical correlators determine whether a particular image exists within a given picture.
The two most popular types of correlators are the Vander Lugt correlator [1,12,13] and
the joint transform correlator [14].

1.7.2.1 Vander Lugt Correlator
The Vander Lugt correlator (VLC) was first proposed by Vander Lugt in 1964. The
VLC will be explained in two stages: a brief description of the principle in this section,
followed by more detailed mathematical expressions in the next section.

Figure 1.35a shows a schematic of the VLC correlator. The input image h�x1, y1� is
interrogated to determine if it has the same shape as a given reference image g�x1, y1�.
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Figure 1.35 Vander Lugt correlator (VLC). (a) Layout. (b) Fabrication of a VLC filter.

First, with the input h�x1, y1� D g�x1, y1� in the front focal plane of lens L2, its Fourier
transform

G�fx, fy� D jG�fx, fy�jej��fx,fy� �1.208�

is projected onto the P2 plane in the back focal plane of lens L2. The encoded filter,
whose transmission is the complex conjugate of Eq. (1.208),

GŁ�fx, fy� D jG�fx, fy�je�j��fx,fy� �1.209�

is inserted in the P2 plane. The light transmitted through the filter is the product of
Eqs. (1.208) and (1.209) and

E�fx, fy� D jG�fx,fy�j2 �1.210�
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This function E�fx, fy� has no spatial variation in phase, and the wavefront of the
incident light on lens L3 is parallel to the lens surface. The incident light converges to
the back focal point of lens L3 as indicated by the solid line where a photodetector is
located to measure the light intensity.

If, however, the input is h�x1, y1� 6D g�x1, y1�, then the light projected through the
filter is

H�fx, fy� D jH�fx, fy�jej�0�fx,fy� �1.211�

and the transmitted light through the filter on P2 becomes

E0�fx, fy� D jH�fx,fy�jjG�fx,fy�jej�0�fx,fy��j��fx,fy� �1.212�

The phase distribution is not uniform and not all the light converges to the back
focal point of lens L3. Moreover, the patterns of jH�fx, fy�j and jG�fx, fy�j may
not overlap and the total light power reaching lens L3 will be less than the case of
h�x1, y1� D g�x1, y1�. Hence, the input that best matches the reference image g�x1, y1�
gives the largest light intensity at the output.

1.7.2.2 Detailed Analysis of the Vander Lugt Correlator
It is not always a simple matter to fabricate a filter with the prescribed complex
transmission coefficient. One way, which is similar to fabricating a hologram, is
illustrated in Fig. 1.35b. From Eq. (1.160), when the reference image g�x1, y1� is put
in the front focal plane of lens L2, its Fourier transform,

E�x2, y2� D 1

j�f
G

(
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�f
,

y2

�f

)
�1.213�

is projected onto the film in the back focal plane. The factor ej2kf0 is supressed. A
parallel beam at angle � to the normal of the film is added at the same time.

The transmittance t�x2, y2� of the exposed and then developed film is

t�x2, y2� D t0 � ˇ

∣∣∣∣Aejky2 sin � C 1

j�f
G

(
x2

�f
,

y2

�f

)∣∣∣∣2 �1.214�

where t0 and ˇ specify the photographic characteristics of the film. Equation (1.214)
is rewritten as

t�x2, y2� D A2 C
(

1
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C jA
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j�f
G

(
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�f
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�f

)
e�jky2 sin � �1.215�

where t0 and �ˇ were suppressed. The third term of Eq. (1.215) is the most important
term. The desired quantity for the filter is GŁ�x2/�f, y2/�f� but this term has an extra
factor of ejky2 sin � . This factor, however, does not harm the operation but just shifts the
location of the correlation peak by � degrees from the center.
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Now, the input image h�x1, y1� to be interrogated is installed in the front focal plane
of lens L2 in Fig. 1.35a and the filter is installed in the back focal plane of the same
lens. The light transmitted through the filter is Fourier transformed by lens L3 and its
field E�x3, y3� in the P3 plane is given by

E�x3, y3� D 1

j�f
F
{

1

j�f
t�x2, y2�H

(
x2

�f
,

y2

�f

)}
fxDx3/�f,fyDy3/�f

�1.216�

Equation (1.216) has the same number of terms as Eq. (1.215), and we can designate
these terms as E1�x3, y3�, E2�x3, y3�, E3�x3, y3�, and E4�x3, y3�.

The first term is

E1�x3, y3� D 1

j�f
F
{

A2

j�f
H

(
x2

�f
,

y2

�f

)}
fxDx3/�f,fyDy3/�f

�1.217�

Recall that lens L3 performs the Fourier transform but not the inverse Fourier transform,
and

E1�x3, y3� D �A2h��x3, �y3� �1.218�

The inverted image of the input picture is seen around the origin of the P3 plane.
The contribution of the second term is

E2�x3, y3� D 1

j�f
F
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1

j��f�3
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fxDx3/�f,fyDy3/�f

�1.219�
Changing variables as

x2

�f
D %,

y2

�f
D $

Eq. (1.219) becomes

E2�x3, y3�

D � 1

��f�2

∫∫ 1

�1
G�%, $�GŁ�%, $�H�%, $�fe�j2��f�fx%Cfy$�d% d$gfxDx3/�f,fyDy3/�f

�1.220�
E2�x3, y3�

D � 1

��f�2
g���ffx,��ffy� Ł gŁ��ffx, �ffy� Ł h���ffx, ��ffy�fxDx3/�f,fyDy3/�f

Inserting fx and fy into the equation and using Rule (5) from the boxed note,
E2�x3, y3� is expressed as

E2�x3, y3� D � 1

��f�2
[g�x3, y3� ? g�x3, y3�]

Ł Ł h��x3, �y3� �1.221�

E2�x3, y3� is the autocorrelation of g�x3, y3� convolved with h��x3,�y3�. It is spread
around the origin and is considered background noise (zero order noise).
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The contribution of the third term is the most important one.
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Changing variables as
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Eq. (1.222) becomes

E3�x3, y3�

D A

j�f

∫∫ 1

�1
GŁ�%, $�H�%, $�fej2��sin �/���f$e�j2��f�fx%Cfy$� d% d$gfxDx3/�f,fyDy3/�f

�1.223�
Equation (1.223) can be expressed as the convolution of three factors. Using the rules
in the boxed note, Eq. (1.223) is written as

E3�x3, y3� D A

j�f
gŁ��ffx, �ffy� Ł h���ffx,

� �ffy� Ł υ

[
�ffx, �f

(
fy � sin �

�

)]
fxDx3/�f,fyDy3/�f

�1.224�

Inserting fx and fy into the equation gives

E3�x3, y3� D A

j�f
gŁ�x3, y3� Ł h��x3, �y3� Ł υ�x3, y3 � f sin �� �1.225�

Using Rule (5) in the boxed note, Eq. (1.225) is expressed as

E3�x3, y3� D A

j�f
[g�x3, y3� ? h�x3, y3�]

Ł Ł υ�x3, y3 � f sin �� �1.226�

Equation (1.226) is the expression of the cross-correlation between g and h. When
g�x1, y1� and h�x1, y1� match, the peak value rises at

�0, f sin �� �1.227�

in the P3 plane as indicated by the dotted line.
Finally, the contribution of the fourth term of the Eq. (1.216) is considered.
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E4�x3, y3� is quite similar to Eq. (1.221). The differences are the minus sign in the front,
the absence of the complex conjugate sign on G, and the minus sign in the exponent
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(a) The following are relationships for the Fourier transforms of Fourier transforms:

�1� FfG�f�g D
∫ 1

�1
G�f�e�j2�fx df

D
∫ 1

�1
G�f�ej2�f��x� df

D g��x�

�2� FfGŁ�f�g D
∫ 1

�1
GŁ�f�e�j2�fx df

D
[∫ 1

�1
G�f�ej2�fx df

]Ł

D gŁ�x�

�3� FfjG�f�j2g D FfG�f� Ð GŁ�f�g
D g��x� Ł gŁ�x�

(b) The correlation symbol is ? and the correlation operation is defined as

�4� g�x� ? h�x� �
∫

g�%�hŁ�% � x� d%

D
∫

g�% C x�hŁ�%� d%

The operation g ? h is called the cross-correlation, and the operation g ? g is called the
autocorrelation. Thus, the relationship between the convolution and the cross-correlation
becomes

�5� g�x� Ł hŁ��x� D
∫

g�%�hŁ�% � x� d%

D g�x� ? h�x�

and from Rules (3) and (5)

�6� FfjG�f�j2g D [g�x� ? g�x�]Ł

of the last factor. Thus, the contribution of the fourth term is obtained directly from
Eq. (1.226) as

E4�x3, y3� D jA

�f
g��x3,�y3� Ł h��x3,�y3� Ł υ�x3, y3 C f sin �� �1.229�

The convolution of g and h appears around

�0, �f sin �� �1.230�

in the P3 plane as indicated by the dotted line.
In summary, the cross-correlation term E3�x3, y3� peaks up when h D g, indicating

a match. The peak appears at �0, f sin �� in the P3 plane. The value of � should be
chosen large enough to ensure that the E3�x3, y3� peak is well separated from the fields
E1�x3, y3� and E2�x3, y3� that are spread around the origin.
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Figure 1.36 Fingerprint interrogator. Correlation of fingerprints. Left: Reference fingerprint. Middle:
Sample fingerprints. Right: Correlation peak. Only the sample fingerprint that matches the reference
fingerprint generates a correlation peak. (Courtesy of A. Bergeron, J. Gauvin, and INO.)

Figure 1.36 shows the results when the VLC is applied in indentifying a specific
fingerprint from multiple samples. The similarity to the encoded fingerprint is indicated
by the brightness of the cross-correlation of E3�x3, y3�.

1.7.2.3 Joint Transform Correlator
The joint transform correlator (JTC) was first proposed by Weaver and Goodman in
1966 [13,14,15]. A schematic diagram of the joint transform correlator is shown in
Fig. 1.37. The difference between the VLC and JTC is the arrangement of the input.
In a sense, the former is arranged in series and the latter in parallel. With the VLC,
the Fourier transform H is projected onto the prefabricated GŁ filter to generate HGŁ,
while with the JTC, the input images are put side by side in plane P1 to generate
GŁH. The JTC is based on the principle of the lateral shift invariance of the Fourier
transform mentioned in Section 1.5.6.
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Figure 1.37 Joint transform correlator (JTC). (a) Step 1: Fabrication of the film t�x2, y2�. (b) Step 2:
Display of correlation.

The JTC procedure is a two-step operation. The first step is shown in Fig. 1.37a and
is the operation of the square detection of the Fourier transforms of the input images.
The second step in Fig. 1.37b is the illumination of the detected Fourier transforms to
display the cross-correlation.

In Fig. 1.37a, the reference image is placed a distance a to the left of the center of
the P1 plane, and the input image is placed a distance a to the right of the center. Before
considering the general case of an arbitrary input image h, we can gain some useful
insight into the JTC by examining the simple case of g D h. When g D h in Fig. 1.37a,
the input consists of two identical g images located side by side. The Fourier transform
of such a pair, which appears in the output plane P3, is

Ffg�x � a� C g�x C a�g D G�f��e�j2�af C ej2�af�

D 2G�f� cos 2�af

Thus, a sinusoidal striation appears in the recorded film pattern. It is this sinusoidal
striation that plays a key role in the JTC.

The developed film is now inserted in the front focal plane of lens L0
2 in Fig. 1.37b

for interrogation. The Fourier transform of the sinusoidal striation generates two peaks
in the output plane P4 (see Problem 1.3), indicating g D h.

If, however, g 6D h, the sinusoidal striation is absent from the film, and no peaks
appear in the output plane P4, indicating g 6D h. A more precise explanation follows.

The total input to the system is

g�x, �a, y1� C h�x1 C a, y1� �1.231�
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The transmittance of the exposed and then developed film is
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where the transmittance of the film was assumed to be linearly proportional to the
square of the incident field. Equation (1.232) is expanded as

t�x2, y2� D
(

1

�f

)2
[∣∣∣∣G

(
x2

�f
,

y2

�f

)∣∣∣∣2 C
∣∣∣∣H
(

x2

�f
,

y2

�f

)∣∣∣∣2

C GŁ
(

x2

�f
,

y2

�f

)
H

(
x2

�f
,

y2

�f

)
ej4��a/�f�x2

CHŁ
(

x2

�f
,

y2

�f

)
G

(
x2

�f
,

y2

�f

)
e�j4��a/�f�x2

]
�1.233�

Thus, the square detection generates a GŁH term.
The second step is the generation of the correlation peaks. As shown in Fig. 1.37b,

the film is placed in the front focal plane of lens L0
2 and is illuminated by a parallel

beam with amplitude A. The field in the back focal plane of L0
2 is

E�x3, y3� D A

j�f
F ft�x2, y2�gfxDx3/�f,fyDy3/�f �1.234�

Equation (1.234) can be calculated directly by comparing Eq. (1.233) with the VLC
results. The first two terms of Eq. (1.233) are compared to Eq. (1.219), and the last
two terms with Eq. (1.222). The final result is

E�x3, y3� D A

j�f
[g�x3, y3� ? g�x3, y3�

C h�x3, y3� ? h�x3, y3�

C g�x3, y3� ? h�x3, y3� Ł υ�x3 � 2a, y3�

C h�x3, y3� ? g�x3, y3� Ł υ�x3 C 2a, y3�]
Ł �1.235�

The last two terms of Eq. (1.235) are the cross-correlation terms appearing at �2a, 0�
and ��2a, 0�. If g and h are pure real, the two peaks are of identical shape.

When g D h, both curves are not only identical but their intensities peak up,
indicating a match.

The complex conjugate signs appearing in Eqs. (1.221), (1.226), and (1.235)
disappear if the �x3, y3� coordinates are further transformed as x3 ! �x3, y3 ! �y3,
namely, rotating the coordinates of �x3, y3� by 180° in its plane.

1.7.2.4 Comparison Between VLC and JTC
VLC and JTC are compared as follows [16,17]:

1. While VLC needs a prefabricated reference filter, JTC does not.
2. After the reference filter has been made, the VLC can interrogate the input in

one step. If the same reference image is used, countless interrogations can be
made without changing the filter. The JTC requires a two-step operation. For
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every interrogation, a Fourier transform filter has to be made, which then has to
be illuminated for the correlation peak.

3. VLC demands a very precise lateral alignment of the filter. Even though the
lateral location of the input image h in the P1 plane is arbitrary in Fig. 1.35a, its
Fourier transform H always appears at the same location in the P2 plane. The
location of the filter GŁ has to match precisely with this location of H. In fact,
it has to match within microns. In short, the location of h is arbitrary but that of
GŁ has to be very precise. JTC does not demand this precision.

4. The required diameter of the JTC lens is twice that of the VLC lens.
5. A higher signal-to-noise ratio (S/N) is obtainable with VLC because a larger

separation from the zero order terms is possible by increasing �, whereas with
JTC, the separation from the zero order term is limited by a and hence by the
size of the input lens.

1.7.3 Rotation and Scaling

Even though the JTC is impervious to lateral misalignment, its sensitivity is
significantly reduced if the input and reference images are rotated with respect to
one another or there is a difference in their sizes.

First, let us consider a rotation countermeasure [18]. This countermeasure is exp-
lained by way of example in Fig. 1.38.

The points on the rectangle are replotted in polar coordinates with *��� as the vertical
axis and � as the horizontal axis. To obtain the polar graph, the transformation
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Figure 1.38 Polar coordinate representation of a rectangle. (a) Before rotation of the input. (b) After
rotation.
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was performed. Figure 1.38a shows the polar graph before the rotation of the rectangle
and Fig. 1.38b, after the rotation.

It is clear that the shape of the polar graphs are the same regardless of the rotation of
the input image. The only difference is a shift of the curve in the horizontal direction.
If the polar coordinate image is used as the input, the property of the lateral shift
invariance of the Fourier transform can be utilized.

The shape of the transformed result, however, depends on the choice of the center
of rotation. This polar graph method should be used in the Fourier transform domain
rather than in the input image domain because the location of the Fourier transformed
image is independent of the location of the input in the input plane.

Next, let’s look at a countermeasure for differences in scale [19]. Figure 1.39 shows
three similar triangles whose heights are in the ratio of 1:5:10. Figure 1.40 shows these
same triangles replotted on a logarithmic graph. The triangular shape is distorted but
all three are congruent. The locations of the logarithmic images are shifted to the right
according to the size of the input image. The logarithmic images can be used as the
input for the VLC or JTC processor when the scales of the inputs are different.

Logarithmic scaling for the VLC will be explained using mathematical expressions.
The transformation from the �x, y� plane to the �%, $� log–log plane is

% D log x, $ D log y �1.237�

The reference image g�x, y� in the xy plane is transformed to m�%, $� in the log–log
plane.

g�x, y� ) m�%, $� �1.238�

The image m�%, $� is used as the input to the VLC in the P1 plane in Fig. 1.35b in
order to fabricate the filter. In the P2 plane, this quantity is Fourier transformed to
M�u�. For simplicity, the one-dimensional, rather than the two-dimensional, Fourier
transform will be used.

M�u� D
∫ 1

0
m�%�e�j2�u% d% �1.239�

Taking the derivative of Eq. (1.237) gives

d%

dx
D 1

x

With the help of this derivative, M�u� is expressed in terms of x as

M�u� D
∫ 1

0
f�x�e�j2�u log x dx

x
�1.240�

Let’s rewrite the exponential by putting

Y D e�j2�u log x �1.241�

Taking the log of both sides of Eq. (1.241) gives

log Y D �j2�u log x log e

log Y D log x�j2�u log e

and hence,

Y D x�j2�u log e �1.242�
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Inserting Eq. (1.242) back into (1.240) gives

M�u� D
∫ 1

0
f�x�x�j2�u log10 e�1 dx �1.243�

If the same is repeated using a ln–ln graph instead of log–log graph, Eq. (1.243)
becomes

M�u� D
∫ 1

0
f�x�x�j2�u�1 dx �1.244�

where f�x� is defined in 0 � x < 1. This integral is known as the Mellin transform;
namely, the Fourier transform of the logarithm of the input function is the Mellin
transform of the input function. The VLC filter MŁ�u� is made out of M�u� according
to the method described in Section 1.7.2.2.

Next, the input image h to be interrogated has to be ln–ln transformed in a similar
manner. Let us say the input image h is a times the reference image g, namely,

h�x, y� D g
(x

a
,
y

a

)
�1.245�

The ln–ln transform of Eq. (1.245), ma�%, $�, is put into the P1 plane in Fig. 1.35a.
The x component of the output in the P2 plane is

Ma�u� D M

{
g
( x

a

)}
�1.246�

where Mf g represents the operation of the Mellin transform.
From Eq. (1.244), Ma�u� is

Ma�u� D
∫ 1

0
g
(x

a

)
x�j2�u�1 dx �1.247�

Putting x/a D X gives

Ma�u� D a�j2�u
∫ 1

0
f�X�X�j2�u�1 dX �1.248�

Note the similarity between Eqs. (1.244) and (1.248). In order to rewrite the first factor
of Eq. (1.248) as a power of e, let

Y D a�j2�u

ln Y D �j2�u ln a

Y D e�j2�u ln a �1.249�

Putting Eq. (1.249) into (1.248) and comparing with Eq. (1.244) gives the final result:

Ma�u� D e�j2�u ln aM�u� �1.250�

The enlargement of the input generates an additional phase shift.
Ma�u� is the pattern projected to P2 in Fig. 1.35a, where the Fourier transform

MŁ�u� of the reference image has already been placed. Thus, the input to lens L3 in
Fig. 1.35a is

MŁ�u�Ma�u� D e�j2�u ln ajM�u�j2 �1.251�

where �f was assumed unity for simplicity.
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The output from lens L3 is now proportional to

[m�x3� ? m�x3�]
Łυ�x3 C ln a� �1.252�

Thus, the magnitude of the correlation peak is always

[m�x3� ? m�x3�]
Ł

regardless of the enlargement factor a. Only the location of the peak shifts in accordance
with the enlargement a.

1.7.4 Real-Time Correlation

Correlators have many practical applications [13,15]. They are used as robotic eyes in
automatic assembly lines, and as security devices for checking biometric indicators such
as fingerprints, facial images, voice, and DNA. For applications such as these, correlators
with real-time response are crucial. The bottleneck for the real-time operation of either
the VLC or JTC is the recording of G and H by means of photographic film, which acts
as a square detector to produce GŁH. The photographic film can be replaced either by a
photorefractive (PR) crystal whose index of refraction is changed by light intensity (see
Section 5.6) or simply by using a CCD camera with the camera lens removed.

Figure 1.41 shows an example of the real-time operation of the JTC using a
photorefractive crystal. The pattern of jG C Hj2 is generated by laser light S1 from
the left. This pattern is recorded by the photorefractive crystal in the P2 plane. The
recorded pattern is then read by laser light S2 from the right. S1 and S2 have different
wavelengths. The read image is projected into a CCD camera whose camera lens has
been removed. As far as the input method is concerned in this particular example, the
input scene h has been taken by another CCD camera whose camera lens is intact. The
input scene is displayed on the spatial light modulator (SLM) located in the input plane
P1. The SLM is a liquid crystal display panel, which is described in Section 5.10.4.4.
One of the advantages of the SLM is its optically flat display surface. The surface

g
h

P1
P2L1 L2 L ′1

SLMS1 S2

G + H  2

PR crystal

CCD camera
without lens

CCD
camerah Computer

Figure 1.41 Real-time JTC using a photorefractive (PR) crystal.
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Figure 1.42 Real-time VLC using optics and a computer.

condition of the images is an important factor in the performance of optical signal
processors that use coherent light.

Optical signal processing provides high speed and large information capacity while
computers provide versatility and reliability. The examples shown in Figs. 1.41 and
1.42 make use of both.

Now let’s look at the real-time VLC example shown in Fig. 1.42. The input image,
taken by the CCD camera whose lens is intact, is fed into the computer, and is displayed
on SLM1 in the input plane P1. The input image is then optically Fourier transformed
and projected over the computer-generated GŁ displayed on SLM2. The operation of
FfGŁHg is again performed optically and is projected onto the CCD camera whose
lens has been removed. The signal from the lensless CCD camera is fed back to the
computer. The computer processes the results to arrive at a final decision.

Figure 1.43 shows a similar arrangement but with the JTC. The process of obtaining
GŁH is quite similar to the previous case. The laser light S, which has been branched
off to the bottom of the figure, optically performs the operation of FfGŁHg to provide
g ? h on the CCD camera whose lens has been removed.

Figure 1.44 shows a system that relies more heavily on the computer. The scene
captured by the lensed CCD camera is displayed on the SLM. The optical system
Fourier transforms �g C h� to give jG C Hj2 on the lensless CCD camera. The computer
takes over the rest of the processing including the operation of FfGŁHg as well as the
decision on the result of the interrogation.

1.7.5 Cryptograph

Another special application of the spatial filter is the cryptograph [20,21] (meaning
encoding) of an image for security purposes. Optical signal processing needs to provide
fast and reliable identification of people and verification of their signatures on a
document.

First, the method of encryption will be described referring to Fig. 1.45a. Let the
input image to be encrypted be E0�x0, y0�. The Fourier transform of E0�x0, y0� is
projected onto the back focal plane of L2. The key card, onto which a white sequence
noise pattern n�x, y� is imprinted, is also placed in the back focal plane of L2. The
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Figure 1.44 Real-time JTC that heavily relies on the use of a computer.
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Figure 1.45 Cryptographic spatial filters. (a) Encryption. (b) Decryption.

input to the second Fourier transform lens L3 becomes

FfE0�x, y�gn�x, y� �1.253�

In the back focal plane of L3, the image given by Eq. (1.253) is further Fourier
transformed to

E�xi, yi� D E0��xi, �yi� Ł N�xi, yi� �1.254�

where N�xi, yi� is the Fourier transform of the white noise sequence. The output image
represented by Eq. (1.254) does not resemble the original input image E0�x0, y0�. The
original input image can be recovered only when the key card is used. In order to
photographically record E�xi, yi� including the phase onto a card, a reference plane
wave R�xi, yi� (not shown in the figure) is added at the time of recording. Thus, the
encrypted card has the intensity pattern I�xi, yi�:

I�xi, yi� D jR�xi, yi� C E0��xi,�yi� Ł N�xi, yi�j2

D jR�xi, yi�j2 C jE0��xi, �yi� Ł N�xi, yi�j2
C RŁ�xi, yi�[E0��xi,�yi� Ł N�xi, yi�]

C R�xi, yi�[E0��xi, �yi� Ł N�xi, yi�]
Ł �1.255�

Next, the method of decrypting the original image is explained referring to
Fig. 1.45b. The encrypted pattern I�xi, yi� is placed in the front focal plane of lens
L2, and all four terms in Eq. (1.255) are Fourier transformed in the back focal plane.
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Only the Fourier transform E3�x, y� of the third term in Eq. (1.255) is of prime concern,

E3�x, y� D R0FfE0��x, �y�g Ð n��x,�y� �1.256�

where for simplicity of expression, the direction of incidence of the plane reference
wave was assumed normal to the card surface in order to make R�xi, yi� a constant R0

across the surface of the card. If a key card imprinted with the pattern of n�1��x, �y�
is placed in the back focal plane of L2, the second factor in Eq. (1.256) is canceled.
The input to the Fourier transform lens L3 becomes R0FfE0��x, �y�g and in the back
focal plane of L3, the original input image is recovered. Recovery of the original image
is only possible for a key card imprinted with n�1�x, y�.

A method for fabricating a key card that can be used for both encrypting and
decrypting is described as follows. A pseudorandom pattern of 0s and 1s is written
onto a half-wavelength thick optical film on a substrate. The light passing through the
“0” location experiences no phase shift while that passing through the “1” experiences
a �-radian phase shift. The transmission pattern of the key card is then

n�x, y� D ej�b�x,y� �1.257�

where b�x, y� is the pseudorandom pattern. Note that such a pattern satisfies n�1�x, y� D
n�x, y� and can be used for both encrypting and decrypting. The pattern n�1��x, �y�
can be obtained by rotating the card by 180° in the plane of the card.

1.8 HOLOGRAPHY

Holography was invented by Dennis Gabor in 1948 when he was trying to improve
the quality of electron microscope images. The word holo in Greek means complete
and gram means recording, so that a “hologram” is a complete recording of the wave
scattered from an object. Holography uses both phase and amplitude distributions of
the scattered light to record the image of the object [1,6,8].

Both conventional photography and holography utilize light-sensitive film as the
recording medium. In both cases, the film records light intensity. In conventional
photography, the camera’s lens generates an image of an object in the film plane,
and the film records the image’s intensity pattern. In a hologram, the film is directly
exposed to the light scattered by an object. By itself, recording the scattered wave’s
intensity is not sufficient to make a hologram, as phase information would be
lost. This shortcoming is overcome by illuminating the holographic film with a
reference wave, as well as the scattered object wave. The holographic film records
the fringe pattern that results from the interference of the reference wave and the
scattered object wave. Fringe contours with high intensity indicate the scattered object
wave and the reference wave are in phase; likewise, low intensity contours indicate
the waves are out of phase. Note that the phase information has been converted
into an intensity pattern. The holographic film thus exposed and developed is the
hologram.

In order to see the image from the hologram, a laser beam illuminates the hologram.
The laser beam is diffracted by the recorded fringe patterns on the hologram. The
diffracted light recreates the image of the original object. An observer looking through
the hologram toward the laser will see a view just as if the real, original object were
present behind the hologram.



82 FOURIER OPTICS: CONCEPTS AND APPLICATIONS

P0
Object

Parallel laser beam
(reference beam)

Fringes of the hologram

Hologram

Real

P0

P1

zi

d0 d0

E4

E3

Virtual

Reconstruction
beam

0

H

(a)

(b)

Figure 1.46 Illustration of the Gabor-type hologram. (a) Fabrication of the hologram (point object).
(b) Reconstruction of the image.

1.8.1 Gabor-Type Hologram

Figure 1.46a shows an arrangement for fabricating a Gabor-type hologram. A parallel
laser beam illuminates both the object and the photographic film. A special feature of
the Gabor-type hologram is that only one beam illuminates both the object and the film.
In contrast, the Leith–Upatnieks type hologram uses two beams: one for illuminating
the object and the other for illuminating the film.

Let’s take a closer look at the geometry of the Gabor-type hologram in Fig. 1.46a.
For simplicity, the object at P0 is a point object. The reference beam R is incident along
the z axis, which is perpendicular to the film. The object beam is the wave scattered
from the object. The film is simultaneously illuminated by both the reference beam
and the object beam. The film records the interference pattern between the reference
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and object beams. For the recording of the interference pattern to be successful, it
is necessary to have a mechanically stable setup, a spectrally pure source, and a
high-resolution film. After being exposed, the film is developed, and the result is a
Gabor-type hologram.

The human eye is not able to decipher the interference pattern of the hologram
directly. Instead, the image has to be recreated by a process called reconstruction.

Let’s assume that a laser was used to provide the spectrally pure source for
creating the hologram, and that a similar laser with the same wavelength is used
in the reconstruction process. Figure 1.46b shows the arrangement for reconstructing
the image from the hologram. The hologram is illuminated from the back by the
reconstruction laser beam. The light scattered from the interference pattern on the
hologram forms the image of the original point object.

A more quantitative description is in order. Let’s say the film is in the �x, y� plane
at a distance d0 from the object. The field scattered by the point object is a spherical
wave centered at the object. The scattered field observed on the film is

O�x, y� D A

j�

ejkr

r
�1.258�

where

r D
√

d2
0 C x2 C y2

If d0 is much larger than the size of the photographic film, Eq. (1.258) can be
approximated as in Eq. (1.31)

O�x, y� D A

j�d0
ejk[d0C�x2Cy2�/2d0] �1.259�

The reference beam is a plane wave propagating in the z direction and is expressed by

R D R0e
jkz �1.260�

where R0 is a real number.
The photographic film is now exposed to the interference pattern of the object and

reference beams. The developed film looks like a Fresnel zone plate and is composed
of a set of concentric rings as shown below the hologram in Fig. 1.46a. The expression
t�x, y� for the transmission coefficient of the film is

t�x, y� D t0 � ˇjR0 C O�x, y�j2

D t0 � ˇ[R2
0 C jO�x, y�j2 C R0O�x, y� C R0O

Ł�x, y�] �1.261�

We are now ready to reconstruct the image from the hologram by illuminating it
with the reconstruction beam. The Fresnel diffraction pattern forms the reconstructed
image. In order to use the Fresnel diffraction formula Eq. (1.38), we need to find
the integrand E�x, y�, which is the light distribution that has just passed through the
hologram. For simplicity, the reconstruction beam is assumed to be the same as the
reference beam used at the time of the hologram’s fabrication. From Eqs. (1.260) and
(1.261), the expression for E�x, y� is

E�x, y� D R2
0 C jO�x, y�j2R0 C R2

0O�x, y� C R2
0O

Ł�x, y� �1.262�
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where t0 and ˇ were suppressed. The hologram is placed at z D 0 and the diffraction
pattern is observed in the �xi, yi� plane at z D zi.

The first two terms of Eq. (1.262) do not have much of a spatial variation, which
means that this portion of the reconstruction beam passes straight through along the z
axis with some attenuation. The Fresnel diffraction pattern E3�xi, yi� associated with
the third term of Eq. (1.262) is from Eqs. (1.38), (1.259), and (1.260):

E3�xi, yi� D AR2
0
ejk[ziCd0C�x2

i Cy2
i �/2zi]

j�zi

1

j�d0
Ffejk�x2Cy2�/2d0ejk�x2Cy2�/2zigfxDxi/�zi,fyDyi/�zi

�1.263�
Equation (1.263) can be rewritten as

E3�xi, yi� D AR2
0
ejk[ziCd0C�x2

i Cy2
i �/2zi]

j�zi

1

j�d0
Ffejk�x2Cy2�/2DgfxDxi/�zi,fyDyi/�zi �1.264�

where
1

D
D 1

zi
C 1

d0

Using the Fourier transform relationship Eq. (1.44) gives

E3�xi, yi� D AR2
0
ejk[ziCd0C�x2

i Cy2
i �/2zi]

j�zij�d0
Ð j�Dfe[�j��D�f2

xCf2
y�]gfxDxi/�zi,fyDyi/�zi

�1.265�

E3�xi, yi� D AR2
0

ejk�ziCd0�

j��zi C d0�
Ð ejk�x2

i Cy2
i �/2�ziCd0� �1.266�

Equation (1.266) is the expression for a diverging spherical wave that would be
established if a point source were located at a distance of zi C d0 from the observer.
Referring to Fig. 1.46b, this location is P0 and is exactly where the point object had
been placed. No light rays, however, converge to this point so that the image is a
virtual image of the point object.

Next, the diffraction pattern due to the fourth term is obtained in a similar manner
and the field observed is

E4�xi, yi� D AR2
0

ejk�zi�d0�

j��zi � d0�
ejk�x2

i Cy2
i �/2�zi�d0� �1.267�

Equation (1.267) is the expression of a spherical wave that would be established if
a point source were located at a distance of zi � d0 from the observer. Referring to
Fig. 1.46b, this location is P1 and is symmetric to P0 with respect to the hologram.
The spherical wave is convergent first in the region zi < d0 and actually converges at
zi D d0; then it is divergent again in the region of zi > d0. If a sheet of paper is placed
at zi D d0, a bright spot is observed. This bright spot is the real image of the point
object.

The object was assumed to be a point object, but the analysis can be extended
to a more complex object. The complex object can be considered as an ensemble
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of individual points; thus, the virtual image of the original object is observed at the
original object location. This image is called the orthoscopic image.

The real image is in a plane that is symmetric to the object with respect to
the hologram. This image is called the pseudoscopic image of the hologram and is
explained further in Section 1.8.3. The observer can view this image either by inserting
a piece of paper or by positioning his/her eyes at a distance zi > d0.

A major disadvantage of the Gabor-type hologram is that the wavefronts overlap.
With the geometry shown in Fig. 1.46b, the observer sees three wavefronts at the
same time; one from the undiffracted portion of the reconstructing beam that passes
straight through the hologram, one from the extension of the virtual image P0, and
one from the real image P1. When the observer tries to focus his/her eyes on P0, the
reconstruction beam and the blurred image of P1 are in the background and the quality
of the reconstructed image of the Gabor-type hologram is not high.

1.8.2 Off-Axis Hologram

The disadvantage of the Gabor-type hologram was overcome by Leith and Upatnieks in
1962. They proposed a scheme for slanting the direction of incidence of the reference
beam in order to spatially separate the locations of the reconstructed images. The
quality of the images were substantially improved.

Figure 1.47a shows an off-axis reference hologram. The reference beam is incident
on the hologram at an angle � with respect to the normal to the hologram and is
expressed by

R D R0e
jkx sin �Cjkz cos � �1.268�

where R0 is a real number, again. The same light beam will be used as the reconstruction
beam. The change to the slanted reference beam from the straight-on reference beam
needs only a minor modification to the previous results obtained with the Gabor-type
hologram in Section 1.8.1. The transmission coefficient of the hologram at z D 0 is

t�x, y� D t0 � ˇjR0e
jkx sin � C O�x, y�j2

D t0 � ˇ[R2
0 C jO�x, y�j2 C R0e

�jkx sin �O�x, y� C R0e
jkx sin �OŁ�x, y�]

�1.269�

In the process of reconstructing the holographic image, the hologram is illuminated
with a reconstruction beam that is the same as Eq. (1.268). The input pattern E�x, y�
to the Fresnel diffraction formula is obtained by the multiplication of t�x, y� and R.

E�x, y� D R3
0e

jkx sin � C jO�x, y�j2R0e
jkx sin � C R2

0O�x, y� C R2
0e

j2kx sin �OŁ�x, y�

�1.270�

The amplitude of the first two terms has practically no spatial variation; these terms are
the parallel beams in the � direction. The third term is identical to the earlier result in
Eq. (1.263). This means that tilting the reference beam does not affect the location of
the virtual image (as long as the reference beam is used as a reconstruction beam). The
virtual image occupies the same location as the original object, which in Fig. 1.47a
is along the z axis. The fourth term can be obtained the same way that Eq. (1.267)
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was obtained:

E4�xi, yi� D AR2
0
ejk[zi�d0C�x2

i Cy2
i �/2zi]

j�zi

1

j�d0
Ffejk�x2Cy2�/2D0 Ð ej2kx sin �gfxDxi/�zi, fyDyi/�zi

�1.271�
where

1

D0 D 1

zi
� 1

d0
�1.272�

The Fourier transform of the second factor in the braces is

Ffej2kx sin �g D υ

(
fx � 2 sin �

�

)
�1.273�

Using the convolution relationship and then the delta function property, Eqs. (1.110)
and (1.44), the final expression for Eq. (1.271) is

E4�xi, yi� D jAR2
0

��zi � d0�

ð exp

[
jk

(
z1 � d0 C �xi � 2d0 sin ��2 C y2

i C 4d0�zi � d0� sin2 �

2�zi � d0�

)]
�1.274�

Thus, the real image appears at

�xi, yi, zi� D �2d0 sin �, 0, d0� �1.275�

with some aberration for large �.
For small �, Fig. 1.47a summarizes the positions of the images. These images are

the virtual image at � D 0, the undiffracted beam at �, and the real image at 2�.
Except for the overlap region, the images are clearly separated and can be observed

without interference.

1.8.3 Pseudoscopic Image

When the observer views the real image, his/her eyes will see a peculiar image. Let’s
suppose the object is a bird, as shown in Fig. 1.47b. The object bird was facing the
observer when the hologram was made, but the reconstructed real image of the bird is
facing away from the observer. The hologram can record only the side of the object
that is facing the hologram. The light scattered from the other side never reaches the
hologram and cannot be recorded. Because of this, the observer looking at the real
reconstructed image sees the tip of the beak further away than the bird’s eyes. The
observer has the sensation of looking straight through the back surface and seeing the
front surface image from the inside out (like looking at the inside of a mask). Such an
inside-out image is called a pseudoscopic image.

1.8.4 Volume Hologram

Important applications such as the high-density recording of images and white light or
color holograms are based on the volume hologram. As the thickness of the emulsion



88 FOURIER OPTICS: CONCEPTS AND APPLICATIONS

Zeroth order beam

Reconstruction beam

Reconstruction beam

Q2

Q1

P1

Real
image

Q2

Q1

P0
Virtual
image

(a)

(b)

O z

x

O z

x

l

l

Figure 1.48 Illustration of the reconstruction of the holographic image from a thin emulsion film.
(Cross section of the hologram). (a) Reconstruction of the virtual image. (b) Reconstruction of the real
image.

of the photographic film is increased, properties that do not exist with thin emulsion
holograms begin to surface. Before going into the case of the thick emulsion, the case
of the thin emulsion will be reviewed.

The geometry considered is exactly the same as already studied in Fig. 1.46,
but Fig. 1.48 is intended to show the finer details of the fringe patterns on the
hologram. Points Q1, Q2, . . . (actually rings) form an array of scattering centers. The
reconstruction of the image can be treated approximately as the problem of obtaining
the scattering pattern from a periodic array of point scatterers. As mentioned earlier
in Section 1.4.9, the field pattern can be separated into the element pattern, which
is the radiation pattern of the individual element, and the array pattern, which is the
pattern determined by the spacing between the elements and the overall dimension of
the array. The scattering pattern is the product of these two patterns as indicated by
Eq. (1.134).

When the emulsion of the film is thin, the size of the individual Q’s are comparable
to the light wavelength, and each Q scatters the light in all directions. Hence, the
element pattern is omnidirectional when the emulsion is thin.
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With the geometry shown in Fig. 1.48a, the path difference between P0Q1 and P0Q2

is exactly one wavelength and the rays scattered from Q1 and Q2 enhance each other
in the direction of P0Q2. The observer sees this peak of light as the virtual image.

Another peak is observed in the direction of propagation of the reconstruction beam
because the light scattered from Q1 and Q2 are also in phase in this direction. This
peak is associated with the undiffracted or zeroth order beam and is treated as noise.

Furthermore, with the geometry shown in Fig. 1.48b, the path difference between
Q1P1 and Q2P1 is exactly one wavelength and the array pattern makes another peak that
is associated with the real image. Thus, the array pattern of a thin emulsion hologram
has three peaks; namely, in the directions of the virtual image, the zeroth order noise,
and the real image. The sharpness of the image is determined by the product of the
element and array patterns. In the case of a thin emulsion, the element pattern is
omnidirectional and the sharpness of the image is predominantly determined by the
array pattern.

Next, the thick emulsion case will be explained. The scattering points Q1, Q2, . . .
grow into a set of mirror platelets made out of silver grains as shown in Fig. 1.49a. The
mirror platelets are formed by the standing wave pattern created by the interference
between the reference and object beams. They are oriented in the plane of the bisector
of the angle between the reference and object beams. If the reconstruction beam is
the same as the reference beam, the orientation of each mirror platelet is such that the
reflected beam is directed toward the extension of the object beams P0Q1 and P0Q2,
thus forming the virtual image.

Because of the reflective nature of the platelet mirror surfaces, the element pattern
has only one peak, which corresponds to the virtual image at P0. Light is not reflected
toward the real image P1, and no pseudoscopic image is observed from the volume
hologram.

As far as the array pattern is concerned, the spacing between the mirror platelets
is the same as for the thin emulsion, and the array pattern is also directed toward the
extension of the object beam. The diffraction pattern is the product of the element and
array patterns, both of which are sharply directed in the same direction. Thus, a very
sharp image is reconstructed from a thick emulsion hologram. This type of hologram
is often called a volume hologram.

Bragg reflection is the basis for X-ray analysis of atomic layers. Bragg reflection
takes place when the directivity established by the path difference between the rays
diffracted from adjacent atomic layers matches up with the direction of the specular
reflection from the surface of the atomic layer. With the geometry shown in Fig. 1.49c,
the Bragg reflection is in the direction given by

2d sin � D m� �1.276�

where � is traditionally taken with respect to the surface rather than the normal. In
other words, Bragg reflection takes place when the array pattern of the atomic layer
matches the element pattern of the atomic layer. So, we can say that the reconstruction
of the image from the volume hologram is based on Bragg diffraction.

A volume hologram is capable of storing a large number of images. If the images
are each recorded using a different angle of incidence for the reference beam, then the
images can selectively be reconstructed by adjusting the angle of the reconstruction
beam. The reason we do not see all the images reconstructed simultaneously is
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Figure 1.49 The reconstruction of the holographic image from a thick emulsion film. (Cross section of
the hologram). (a) Reference and reconstruction beams are identical. (b) Reference and reconstruction
beams are not identical. (c) Bragg reflection. (d) Polar diagram of the pattern.

explained as follows. Suppose the reference and reconstruction beams for a given
image are not identical, as shown in Fig. 1.49b. With the change in the direction
of the reconstruction beam, both the element and the array patterns shift, but they
shift differently. Their peaks no longer match, as indicated by the polar diagram in
Fig. 1.49c, and the sharp peak disappears from the product of the polar diagram.
The image can be reconstructed only when the reconstruction beam is identical to
the reference beam. This fact is used for the high-density recording of the volume
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Figure 1.50. Sample reconstructions from 1000 holograms recorded in a lithium niobate crystal.
(Courtesy of F. H. Mok [22]).

hologram. Figure 1.50 shows a sample of reconstructions from 1000 holograms
recorded in a 2 ð 1.5 ð 1-cm3 photorefractive crystal of lithium niobate, Fe:LiNbO3.
The direction of the reference beam was stepped at less than 0.01° [22,23].

The principle of the thick emulsion hologram is also applied to the white light
hologram. The direction of the peak of the array pattern moves with the wavelength of
the reconstruction beam but that of the element pattern more or less remains unchanged.
Hence, when white light is used for reconstructing the holographic image, the image is
reconstructed only by the light spectrum that creates a match between the peaks of the
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Figure 1.51 White light hologram. (Courtesy of Dainippon Printing Co.)

element and array patterns. Thus, the reconstruction process is wavelength selective,
and the reconstructed image is of a single color. The color is the same as that of the
reference beam used to fabricate the hologram. This kind of white light hologram is
called either a Lippmann or Denisyuk hologram. An example is shown in Fig. 1.51.

The wavelength selectivity of the thick emulsion hologram is also the basis of
the color hologram. As just mentioned, the thick emulsion hologram reconstructs the
image in the color used to fabricate the hologram. To produce a color hologram, the
thick emulsion hologram is triple exposed by three kinds of lasers whose wavelengths
correspond to basic colors such as red, green, and blue. When the hologram is
illuminated with white light, images of the three different colors are reconstructed,
and a color image is produced.

1.8.5 Applications of Holography

Holography has gained recognition both as an art form and as a measurement tool. A
few of the numerous applications are described next [8,24].

1.8.5.1 Three-Dimensional Displays
When a hologram is illuminated, it causes the wavefront that was originally formed by
the object to be reconstructed. It is the lens of the observer’s eye that forms an image
on the retina from the reconstructed wavefront. Depending on the viewing angle of the
observer’s left and right eyes relative to the hologram, the left and right eyes intercept
different portions of the reconstructed wavefront. Figure 1.52a is a photograph of the
reconstructed image taken by a camera set at the position of the left eye of the observer
and Fig. 1.52b is a photograph of the same image taken with the camera set at the
position of the right eye.

Notice the movement of the chess piece in the foreground with respect to the
others: Fig. 1.52a is what the left eye sees and Fig. 1.52b is what the right eye sees.
This difference of scenes produces the perception of viewing the original object as if
it were present in front of the observer in three dimensions. This is called binocular
parallax. Even with one eye, the side to side movement of the observer’s face provides
the observer with a differential movement (the foreground appears to move faster than
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(a) (b)

Figure 1.52 The reconstructed image of a hologram varies with the viewing angle. The upside down
image is the pseudoscopic image. (a) When viewed from the left. (b) When viewed from the right.

the background), and as the observer’s face moves hidden portions of the reconstructed
image become visible. These movement effects are usually perceived and contribute
to the observer’s sensation of seeing the image in three dimensions. This is called
movement parallax. The tendency of the observer’s eyes to focus on the object, which
is called accommodation, also contributes to the three-dimensional perception.

1.8.5.2 Microfiche Recording
Since the hologram does not use a lens in the fabrication process, the reconstructed
image has neither limitations on the depth of focus nor aberrations due to the lens.

The scattered wave from the object is spread and recorded over the entire hologram,
so that even if a portion of the hologram is missing or damaged, the same image could
still be reconstructed. The damage to the hologram results in an overall degradation
in quality, but no specific portion of the image is lost. Consequently, the hologram
has a high tolerance to mishandling and is ideal for applications such as high-density
microfiche recordings.

1.8.5.3 Measurement of Displacement
An ordinary photograph records only the intensity pattern, but the image reconstructed
from a hologram has both phase and amplitude information. If the light waves of the
reconstructed image are overlayed with those of the original object, an interference
pattern is generated. The interference fringes indicate minute distortions of the object
between its current state and its prior state when the hologram was recorded. This
technique is called interference holography. An interference hologram can be fabricated
by exposing a hologram twice to the same object, with and without the deformation.
The resultant fringe patterns are seen in the reconstructed image.
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Figure 1.53 Interferometric hologram of a photoelastic sheet under load.
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Figure 1.54 A photoelastic sheet under three-point loading. (a) Fringes of the interferometric
hologram, which represent Fx C Fy. (b) Photoelastic fringes, which represent Fx � Fy . (Courtesy of
X. Yan, T. Ohsawa, [25] and T. Ozaki.)

An example of combining the interferometric hologram with photoelasticity is
presented in Figs. 1.53 and 1.54 [25]. With the geometry shown in Fig. 1.53, an
interferometric hologram is made to visualize the pattern of strain established in a
photoelastic sheet (e.g., PlexiglasTM). When a photoelastic sheet of uniform thickness
is loaded, the thickness becomes nonuniform. When the direction of the illuminating
laser beam is normal to the sheet surface, the phase change � associated with the
increase in the optical path length is

� D knt �1.277�
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where t is the increase in thickness. The hologram is doubly exposed. The first
exposure is made without compression and the second, under compression. Dark fringes
will appear in the reconstructed image where

� D �2n C 1�� �1.278�

due to the destructive interference between the two reconstructed images. This pattern
is called the isopachic fringe pattern, meaning the locus of points of constant thickness
of the sheet [26]. Both of the principal stresses Fx and Fy can be attributed to the change
in thickness of the sheet. t is proportional to the sum of Fx C Fy . From the isopachic
fringe alone, the contributions of Fx and Fy cannot be known separately.

Next, we will describe the procedure for observing the birefringence pattern of the
same sample with the same loading. In order to do so, a polariscope (Section 6.7) is
built around the sample. A polarizer is placed between the sample and the illuminating
laser light, and the hologram is replaced by an analyzer whose transmission axis is
perpendicular to that of the polarizer.

When the photoelastic sheet is stressed, the sheet becomes birefringent. That is,
if the direction of compression is in the x direction, the index of refraction seen by
the light polarized in the x direction is no longer the same as that of the y direction,
and the degree of birefringence is proportional to the difference Fx � Fy between the
principal stresses. The degree of birefringence can be observed using the polariscope.
With the isotropic (uncompressed) sample inserted in between the polarizer and the
analyzer, no light gets through. With the birefringent (compressed) sample inserted in
between the polarizer and analyzer, light is observed emerging from the analyzer in
accordance with the degree of birefringence caused by the stress. Thus, the polariscope
displays the pattern of the stress by means of the birefringence in the photoelastic sheet.
By combining Fx C Fy from the isopachic fringes with Fx � Fy from the photoelastic
fringes, it is possible to obtain Fx and Fy separately.

Figure 1.54a is the isopachic fringe pattern observed by means of the interferometric
hologram. Figure 1.54b is the photoelastic fringe pattern of the same sample under the
same compression as in Figure 1.54a observed by means of the polariscope.

1.8.5.4 Measurement of Vibration
Another application of holography is in recording vibration patterns. The hologram is
able to record fringe patterns on the order of microns. While the holographic film is
being exposed, both the object and the holographic plate must be very steady, otherwise
the fringe patterns cannot be recorded. This fact can be used conversely to record the
vibration pattern of an object since the vibrating portions of the object would appear
dark in the reconstructed image. Figure 1.55 shows an example of mapping vibration
patterns in a loudspeaker [27].

1.8.5.5 Nonoptical Holographies
So far, light has been assumed to be the wave source for generating holograms. In fact,
other types of waves are capable of forming an interference pattern that can be used for
generating holograms. For instance, microwave [8] and acoustic wave [28] holograms
are possible. These hologram images can then be viewed optically by photographically
reducing the dimensions of the hologram to the ratio of their relative wavelengths. By
doing so, one can visualize how microwaves radiate from antennas (radiation patterns)
or reflect from objects.
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Figure 1.55 Images of a vibrating loudspeaker. (Courtesy of A. Marrakchi, J.-P. Huignard, and
J. P. Herriau [27].

Figure 1.56 shows an example of a microwave hologram used to examine the
radiation pattern from an antenna [29]. Figure 1.56a shows a photograph of the object,
which is a radiating monopole driven at the end of a microwave waveguide and
Fig. 1.56b shows the reconstructed image of the plane of the monopole. The hologram
reveals that the tip and the driving point are the major sources of radiation, and the
function of the antenna wire is simply that of a feed wire for bringing current to the
tip of the antenna. Figure 1.56c and 1.56d are the reconstructed images as the point of
observation moves away from the antenna.

Figure 1.57a shows the geometry of a side scan sonar. The ship tows the sonar
transducer whose beam is swept perpendicular to the direction of the ship’s motion.
The composite image is constructed as the ship cruises. The transducer is towed instead
of being kept aboard the ship in order to decouple the motion of the ship. Figure 1.57b
is the recorded image of a sunken ship resting on the sea bottom at a depth of 25 m.
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Figure 1.56 Visualization of a radiation pattern from a monopole antenna by means of a microwave
hologram. (a) Photograph of the monopole used as the object. (b) At the antenna plane. (c) At a plane
in the Fresnel region. (d) At the Fraunhofer region [29].

Figure 1.57c is the image of a bicycle sunken 4.2 m deep in the ocean [30]. The
sound wave signal was processed by synthetic aperture [8] holography and even the
spokes of the bicycle wheels can almost be resolved.

Another advantage of nonoptical holography is that an object imbedded in an
optically opaque medium can be visualized.

A further advantage of the nonoptical hologram over “shadowgrams” such as an
X ray is the freedom of choice of the hologram’s location with regard to the source
and object. With X rays, the film always has to be behind the object, which is not
true in holograms. A particularly useful example of this advantage is when nonoptical
holograms are used in geological surveys, where placing a film deep beneath the surface
is neither efficient nor desirable.

1.8.5.6 Computer-Generated Holograms
Holograms need not be fabricated using actual electromagnetic waves. They can be
computer generated from values based on theory [31,32]. For instance, holograms
can also be generated using the expected field pattern for a given object that can be
calculated using the Fresnel diffraction formula of Eq. (1.38) or (1.39). The interference
of the object and reference beams can then be calculated and drawn by computer.
This image is then photographically reduced so that the holographic image can
be reconstructed by light. Figure 1.58 shows an example of a computer-generated
hologram.
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Figure 1.57 High-resolution underwater acoustic images. (a) Geometry of the side scan sonar.
(b) Vineyard Sound Lightship on the sea bottom off Nantucket, Massachusetts, recorded with a
HYDROSCAN. (Courtesy of Klein Associates, Inc.) (c) Synthetic aperture holographic acoustic image
at 4.2 m. (Courtesy of K. Mano and K. Nitadori [30].)

Figure 1.59 shows another kind of computer-generated hologram. The image of
the hologram is reconstructed by light propagating in the plane of the hologram [33].
As shown in Fig. 1.59a, the reconstruction beam is fed through an optical fiber
pigtail. Figure 1.59b is a photograph of a scanning electron microscope image of
the computer-generated hologram. The pattern was generated using electron-beam
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(a) (b)

Figure 1.58. Computer-generated holography. (a) Hologram. (b) Reconstructed image. (Courtesy of
D. Asselin, A. Bergeron, and INO)
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Figure 1.59. Off-plane computer-generated waveguide hologram (OP-CGWH). (a) Geometry.
(b) Photograph of scanning electron microscope image of the hologram. (c) Designed pattern.
(d) Obtained pattern. (After M. Li et al. [33]. )

lithography. Figure 1.59c gives the desired pattern of the reconstructed image.
Figure 1.59d shows the reconstructed image from the fabricated computer hologram. A
hologram such as this can be used as an optical interconnect, where the output light from
an optical fiber has to be connected to multiple terminals through free-space propagation.

1.8.5.7 Holographic Video Display
Figure 1.60 shows a schematic of a holographic video display system [34]. The system
is intended to animate computer-generated holograms. The key component of the
system is the surface acoustooptic modulator (AOM) on which three of the line fringe
patterns are written for three primary color holograms.
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Figure 1.60 Schematic of a color holographic video display. (After P. St.-Hilaire et al. [33].)

Figure 1.61. A frame of the animated color computer-generated hologram of colorful donuts.
(Courtesy of P. St.-Hilaire et al. [33].)

The fringes of the holograms are scanned as a composite of line holograms. The
diffracted images from the line holograms are reassembled into a complete image of a
computer-generated hologram using horizontal as well as vertical scanners. The AOM
is made of a TeO2 crystal. A pair of interdigital electrodes are deposited on the crystal
surface. The interdigital electrodes launch a surface acoustic wave (SAW) due to the
piezoelectric effect in accordance with the video signal from the computer. The surface
wave spatially modulates the index of refraction due to the acoustooptic effect and writes
a one-line hologram on the crystal as it propagates along the crystal (see Example 5.6).
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When laser light is illuminated perpendicular to the surface, a diffracted image
moving at the speed of the surface acoustic image is generated.

The horizontal scanner is an 18-sided polygonal mirror. It scans in the opposite
direction to the movement of the diffracted image to immobilize the image. The
horizontal scanner also multiplexes the image of the crystal, creating a virtual crystal
that is exactly the same length as one line of the computer-generated hologram.

The galvanometric scanner shifts the horizontal one-line fringe vertically after each
horizontal scan completing the reassembly of the computer-generated hologram.

Figure 1.61 shows one of the frames of an animated color computer-generated
hologram of colorful donuts. Three primary color lasers were used simultaneously.
These are a HeNe laser at � D 633 nm for red, a frequency-doubled YAG laser at
� D 532 nm for green, and a HeCd laser at � D 442 nm for blue.

PROBLEMS

1.1 For a plane wave that is propagating (Fig. P1.1) in the direction

� D 45° � D 45°

the light field observed at P�2, 3, 4� ð 10�6 m is expressed as

E D E0e
j67.32�j2.44ð1015t

(a) Find the wavelength of light in the medium.

(b) Find the index of refraction of the medium.

1.2 The spatial frequencies of an incident wave (Fig. Pl.2) were measured along the
x and y axes as

fx D 0.6 lines/µm, fy D 0.8 lines/µm

The wavelength of the received light is � D 0.84 µm.

(a) What is the direction of propagation of the incident wave?

(b) What would be the spatial frequency if the measurement were made along
a line in the direction Ol D 3Oı C 4O?

45°

y

Direction of propagation

P (2,3,4) × 10−6 m
point of observation

n = index of refraction

z

x

45°

Figure P1.1 Geometry of the propagation.
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1.3 Find the diffraction pattern from a film whose transmittance is modulated
sinusoidally as shown in Fig. P1.3:

t�x0, y0� D 1 C cos 2�fxox0

Assume that the size of the film is infinitely large.
1.4 Derive the radiation pattern of a half-wave dipole using Fourier optics. Assume

that the current distribution along the antenna is sinusoidal (Fig. Pl.4).

1.5 Match each of the letter apertures in Fig. P1.5a with its correct diffraction pattern
in Fig. P1.5b.

1.6 Figure P1.6a shows apertures of three of the fingerprints that appeared in
Fig. 1.36, and an aperture in the shape of a cartoon character. Figure P1.6b
shows the photographs of the diffraction patterns. Match the apertures with
their respective diffraction patterns.

1.7 The finest possible light spot is to be obtained using a finite size convex lens.
The aperture of the lens is square �x/a��y/a� and the focal length is f0.
The incident light is a parallel beam.

(a) What is the smallest spot size obtainable?

(b) What is the required size of a diffraction-limited lens that can resolve 1 µm.
The wavelength of the light is � D 0.555 µm and f0 D 50 mm. Assume a
rectangular lens.

1.8 Explain the principle of operation of a pinhole camera using Fourier optics
(Fig. P1.8). Assume the shape of the pinhole is a square.

1.9 An input function g�x0, y0� is placed in the front focal plane of lens L1 with
focal length f1 (Fig. P1.9). A second lens L2 with focal length f2 is placed
behind lens L1 at a distance f1 C f2 from L1. Find the expression for the field
at the back focal plane of lens L2.

1.10 The optical system shown in Fig. 1.33c is a Schlieren camera made by placing
an opaque dot or �/2-radian phase plate at the back focal point G0 of lens L2.
Let us say that the object is transparent but with a small variation of the index
of refraction so that the input function

g�x0, y0� D ej��x0,y0�

can be approximated as

g�x0, y0� D 1 C j��x0, y0�

(a) Find the expression for the output intensity distribution Ia�xi, yi� with the
opaque dot placed at the back focal point G0 of lens L2.

(b) Find the output intensity distribution Ib�xi, yi� with the �/2-radian phase
plate at the same location as the opaque dot in part (a).

(c) Compare the results of parts (a) and (b).
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Figure P1.5. Match the aperture with its diffraction pattern. (a) Apertures of letters. (b) Photographs
of diffraction patterns.



PROBLEMS 105
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Figure P1.6. Match the aperture with its diffraction pattern. (a) Apertures of fingerprints and a cartoon
character. (b) Photographs of diffraction patterns.
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Figure P1.8 Principle of the pinhole camera by Fourier optics.
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Figure P1.11 A convex lens with focal length f0 is used as the key card for encryption.
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Figure P1.12 Cassegrain reflecting telescope with obstruction. (a) Telescope. (b) Obstruction.
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Figure P1.13 Locations of the reconstructed images. (a) Fabrication of hologram. (b) Reconstructing
the images.
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1.11 With the encryption scheme shown in Fig. P1.11, if a convex lens of focal
length f0 is used as the key card for the encryption, what is the key card for
the decryption?

1.12 A Cassegrain telescope has a primary concave mirror and a secondary convex
mirror, as shown in Fig. P1.12a. The supports holding the secondary mirror
present an obstruction and act like a mask, as shown in Fig. P1.12b. Find the
diffraction pattern of the masked aperture shown in Fig. P1.12b.

1.13 A hologram was fabricated with the geometry shown in Fig. P1.13. Assume the
thin emulsion case. The object was placed on the z axis, which is perpendicular
to the hologram. A plane wave reference beam was incident at angle � to the
normal of the hologram. Find the locations of the reconstructed images when
the reconstruction beam is not identical with the reference beam and is incident
along the z axis.
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