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PRINCIPLES OF NANO-OPTICS

Nano-optics is the study of optical phenomena and techniques on the nanometer
scale, that is, near or beyond the diffraction limit of light. It is an emerging field of
study, motivated by the rapid advance of nanoscience and nanotechnology which
require adequate tools and strategies for fabrication, manipulation and characteri-
zation at this scale.

In Principles of Nano-Optics the authors provide a comprehensive overview of
the theoretical and experimental concepts necessary to understand and work in
nano-optics. With a very broad perspective, they cover optical phenomena relevant
to the nanoscale across diverse areas ranging from quantum optics to biophysics,
introducing and extensively describing all of the significant methods.

This is the first textbook specifically on nano-optics. Written for graduate stu-
dents who want to enter the field, it includes problem sets to reinforce and extend
the discussion. It is also a valuable reference for researchers and course teachers.
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Group. In 1999 he joined the faculty of the Institute of Optics at the University of
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at the graduate level and which forms the basis of this textbook. His general inter-
est is in nanoscale light—matter interactions ranging from questions in solid-state
physics to biophysical applications.
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tional Center of Competence in Research in Nanoscale Science at the Institute of
Physics at the University of Basel. After studying Physics at the University of Kon-
stanz, he joined the IBM Zurich Research Laboratory in Riischlikon and worked in
near-field optical microscopy and plasmonics. In 1996 he received his Ph.D. from
the University of Basel. He then joined the Swiss Federal Institute of Technology
(ETH) where he worked in the Physical Chemistry Laboratory on single-molecule
spectroscopy in combination with scanning probe techniques. He received the ve-
nia legendi in Physical Chemistry from ETH in 2002. In 2001, he was awarded a
Swiss National Science Foundation research professorship and took up his present
position. In 2004 he received the venia docendi in Experimental Physics/Optics
from the University of Basel. He has authored or co-authored more than 50 articles
in the field of nano-optics.






PRINCIPLES OF NANO-OPTICS

LUKAS NOVOTNY

University of Rochester

BERT HECHT

University of Basel

&3 CAMBRIDGE
%) UNIVERSITY PRESS



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cB2 2ru, UK

Published in the United States of America by Cambridge University Press, New York
www.cambridge.org

Information on this title: www.cambridge.org/9780521832243

© L. Novotny and B. Hecht 2006

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 2006

ISBN-13  978-0-511-16811-6  eBook (EBL)
ISBN-I0  O-SII-I681I-X  eBook (EBL)

ISBN-13  978-0-521-83224-3 hardback
ISBN-IO  0-521-83224-1 hardback

ISBN-13  978-0-521-53988-3
ISBN-IO  0-52I-53988-9
Cambridge University Press has no responsibility for the persistence or accuracy of URLs

for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.


http://www.cambridge.org
http://www.cambridge.org/9780521832243

To our families
(Jessica, Leonore, Jakob, David, Nadja, Jan)

And our parents
(Annemarie, Werner, Miloslav, Vera)

... it was almost worth the climb
(B. B. Goldberg)






Contents

Preface

Introduction

1.1
1.2
1.3

Nano-optics in a nutshell
Historical survey
Scope of the book

References

Theoretical foundations

2.1
22
2.3
24
2.5
2.6
2.7
2.8

29
2.10

2.11

2.12

Macroscopic electrodynamics

Wave equations

Constitutive relations

Spectral representation of time-dependent fields
Time-harmonic fields

Complex dielectric constant

Piecewise homogeneous media

Boundary conditions

2.8.1 Fresnel reflection and transmission coefficients
Conservation of energy

Dyadic Green’s functions

2.10.1 Mathematical basis of Green’s functions

2.10.2 Derivation of the Green’s function for the electric field
2.10.3 Time-dependent Green’s functions

Evanescent fields

2.11.1 Energy transport by evanescent waves

2.11.2 Frustrated total internal reflection

Angular spectrum representation of optical fields

2.12.1 Angular spectrum representation of the dipole field

vii

page xv

N W =

—_

13
14
15
15
17
17
18
19
19
21
23
25
25
26
30
31
35
36
38
42



viii

Contents

Problems
References

3 Propagation and focusing of optical fields

3.1 Field propagators
3.2 Paraxial approximation of optical fields
3.2.1 Gaussian laser beams
3.2.2 Higher-order laser modes
3.2.3 Longitudinal fields in the focal region
3.3 Polarized electric and polarized magnetic fields
3.4 Far-fields in the angular spectrum representation
3.5 Focusing of fields
3.6  Focal fields
3.7 Focusing of higher-order laser modes
3.8  Limit of weak focusing
3.9 Focusing near planar interfaces
3.10 Reflected image of a strongly focused spot
Problems
References
4 Spatial resolution and position accuracy
4.1 The point-spread function
4.2  The resolution limit(s)
4.2.1 Increasing resolution through selective excitation
4.2.2  Axial resolution
4.2.3 Resolution enhancement through saturation
4.3 Principles of confocal microscopy
4.4 Axial resolution in multiphoton microscopy
4.5 Position accuracy
4.5.1 Theoretical background
4.5.2 Estimating the uncertainties of fit parameters
4.6  Principles of near-field optical microscopy
4.6.1 Information transfer from near-field to far-field
Problems
References
5 Nanoscale optical microscopy
5.1  Far-field illumination and detection
5.1.1 Confocal microscopy
5.2 Near-field illumination and far-field detection

5.2.1 Aperture scanning near-field optical microscopy
5.2.2 Field-enhanced scanning near-field optical microscopy

98
100
102
105
110
111
112
115
121
125
131
132

134
134
134
147
148
149



53

54
55
5.6

Contents

Far-field illumination and near-field detection

5.3.1 Scanning tunneling optical microscopy

5.3.2 Collection mode near-field optical microscopy
Near-field illumination and near-field detection

Other configurations: energy-transfer microscopy
Conclusion

Problems
References

Near-field optical probes

6.1 Dielectric probes
6.1.1 Tapered optical fibers
6.1.2 Tetrahedral tips
6.2 Light propagation in a conical dielectric probe
6.3 Aperture probes
6.3.1 Power transmission through aperture probes
6.3.2 Field distribution near small apertures
6.3.3 Near-field distribution of aperture probes
6.3.4 Enhancement of transmission and directionality
6.4 Fabrication of aperture probes
6.4.1 Aperture formation by focused ion beam milling
6.4.2 Electrochemical opening and closing of apertures
6.4.3 Aperture punching
6.4.4 Microfabricated probes
6.5 Optical antennas: tips, scatterers, and bowties
6.5.1 Solid metal tips
6.5.2 Particle-plasmon probes
6.5.3 Bowtie antenna probes
6.6 Conclusion
Problems
References

Probe-sample distance control

7.1

7.2

Shear-force methods

7.1.1 Optical fibers as resonating beams

7.1.2 Tuning-fork sensors

7.1.3  The effective harmonic oscillator model
7.1.4 Response time

7.1.5 Equivalent electric circuit

Normal force methods

7.2.1 Tuning fork in tapping mode

7.2.2 Bent fiber probes

ix
157
157
162
163
165
169
169
169

173
173
174
179
179
182
184
189
193
195
197
200
201
202
203
208
208
215
218
219
220
220

225
226
227
230
232
234
236
238
239
240



Contents

7.3 Topographic artifacts
7.3.1 Phenomenological theory of artifacts
7.3.2 Example of near-field artifacts
7.3.3 Discussion

Problems

References

Light emission and optical interactions in nanoscale environments
8.1 The multipole expansion
8.2 The classical particle-field Hamiltonian
8.2.1 Multipole expansion of the interaction Hamiltonian
8.3 The radiating electric dipole
8.3.1 Electric dipole fields in a homogeneous space
8.3.2 Dipole radiation
8.3.3 Rate of energy dissipation in inhomogeneous environments
8.3.4 Radiation reaction
8.4 Spontaneous decay
8.4.1 QED of spontaneous decay
8.4.2 Spontaneous decay and Green’s dyadics
8.4.3 Local density of states
8.5 Classical lifetimes and decay rates
8.5.1 Homogeneous environment
8.5.2 Inhomogeneous environment
8.5.3 Frequency shifts
8.5.4 Quantum yield
8.6 Dipole—dipole interactions and energy transfer
8.6.1 Multipole expansion of the Coulombic interaction
8.6.2 Energy transfer between two particles
8.7 Delocalized excitations (strong coupling)
8.7.1 Entanglement
Problems
References

Quantum emitters
9.1 Fluorescent molecules
9.1.1 Excitation
9.1.2 Relaxation
9.2 Semiconductor quantum dots
9.2.1 Surface passivation
9.2.2 Excitation
9.2.3 Coherent control of excitons

260
261
265
266
268
269
270
273
276
277
277
281
282
283
284
284
285
294
299
300
302

304
304
305
306
309
310
312
313



10

11

12

Contents

9.3 The absorption cross-section

94 Single-photon emission by three-level systems
9.4.1 Steady-state analysis
94.2 Time-dependent analysis

9.5 Single molecules as probes for localized fields
9.5.1 Field distribution in a laser focus
9.5.2 Probing strongly localized fields

9.6 Conclusion

Problems

References

Dipole emission near planar interfaces
10.1  Allowed and forbidden light

10.2  Angular spectrum representation of the dyadic Green’s function

10.3  Decomposition of the dyadic Green’s function

10.4  Dyadic Green’s functions for the reflected and transmitted fields

10.5  Spontaneous decay rates near planar interfaces

10.6  Far-fields

10.7  Radiation patterns

10.8  Where is the radiation going?

10.9  Magnetic dipoles

10.10 Image dipole approximation
10.10.1 Vertical dipole
10.10.2 Horizontal dipole
10.10.3 Including retardation

Problems

References

Photonic crystals and resonators
11.1  Photonic crystals
11.1.1  The photonic bandgap
11.1.2  Defects in photonic crystals
11.2  Optical microcavities
Problems
References

Surface plasmons

12.1  Optical properties of noble metals
12.1.1  Drude-Sommerfeld theory
12.1.2  Interband transitions

12.2  Surface plasmon polaritons at plane interfaces
12.2.1  Properties of surface plasmon polaritons

335
336
338
339
340
343
346
350
353
356
357
358
359
359
360
361

363
363
364
368
370
377
3717

378
379
380
381
382
386



xii

13

14

Contents

12.2.2 Excitation of surface plasmon polaritons
12.2.3 Surface plasmon sensors

12.3  Surface plasmons in nano-optics
12.3.1 Plasmons supported by wires and particles
12.3.2 Plasmon resonances of more complex structures
12.3.3 Surface-enhanced Raman scattering

12.4 Conclusion

Problems

References

Forces in confined fields
13.1 Maxwell’s stress tensor
13.2 Radiation pressure
13.3 The dipole approximation
13.3.1 Time-averaged force
13.3.2 Monochromatic fields
13.3.3 Saturation behavior for near-resonance excitation
13.3.4 Beyond the dipole approximation
13.4 Optical tweezers
13.5 Angular momentum and torque
13.6 Forces in optical near-fields
13.7 Conclusion
Problems
References

Fluctuation-induced interactions
14.1 The fluctuation—dissipation theorem
14.1.1 The system response function
14.1.2 Johnson noise
14.1.3 Dissipation due to fluctuating external fields
14.1.4 Normal and antinormal ordering
14.2 Emission by fluctuating sources
14.2.1 Blackbody radiation
14.2.2 Coherence, spectral shifts and heat transfer
14.3  Fluctuation-induced forces
14.3.1 The Casimir—Polder potential
14.3.2 Electromagnetic friction
14.4 Conclusion
Problems
References

387
392
393
398
407
410
414
414
416

419
420
423
424
426
427
429
432
433
436
437
443
443
444

446
446
448
452
454
455
456
458
459
461
463
467
472
472
473



Contents

15 Theoretical methods in nano-optics

15.1 The multiple multipole method

15.2  Volume integral methods
15.2.1 The volume integral equation
15.2.2 The method of moments (MOM)
15.2.3 The coupled dipole method (CDM)
15.2.4 Equivalence of the MOM and the CDM

15.3 Effective polarizability

15.4 The total Green’s function

15.5 Conclusion and outlook

Problems

References

Appendix A Semianalytical derivation of the atomic polarizability
A.1 Steady-state polarizability for weak excitation fields
A.2 Near-resonance excitation in absence of damping
A.3 Near-resonance excitation with damping

Appendix B Spontaneous emission in the weak coupling regime
B.1  Weisskopf—Wigner theory
B.2 Inhomogeneous environments
References

Appendix C  Fields of a dipole near a layered substrate
C.1  Vertical electric dipole
C.2 Horizontal electric dipole
C.3  Definition of the coefficients A;, B;, and C;

Appendix D Far-field Green’s functions
Index

Xiii
475
476
483
484
490
490
492
494
495
496
497
498

500
504

508

510
510
512
514

515
515
516
519

521
525






Preface

Why should we care about nano-optics? For the same reason we care about optics!
The foundations of many fields of the contemporary sciences have been estab-
lished using optical experiments. To give an example, think of quantum mechanics.
Blackbody radiation, hydrogen lines, or the photoelectric effect were key experi-
ments that nurtured the quantum idea. Today, optical spectroscopy is a powerful
means to identify the atomic and chemical structure of different materials. The
power of optics is based on the simple fact that the energy of light quanta lies in the
energy range of electronic and vibrational transitions in matter. This fact is at the
core of our abilities for visual perception and is the reason why experiments with
light are very close to our intuition. Optics, and in particular optical imaging, helps
us to consciously and logically connect complicated concepts. Therefore, pushing
optical interactions to the nanometer scale opens up new perspectives, properties
and phenomena in the emerging century of the nanoworld.

Nano-optics aims at the understanding of optical phenomena on the nanometer
scale, i.e. near or beyond the diffraction limit of light. It is an emerging new field of
study, motivated by the rapid advance of nanoscience and nanotechnology and by
their need for adequate tools and strategies for fabrication, manipulation and char-
acterization at the nanometer scale. Interestingly, nano-optics predates the trend
of nanotechnology by more than a decade. An optical counterpart to the scanning
tunneling microscope (STM) was demonstrated in 1984 and optical resolutions had
been achieved that were significantly beyond the diffraction limit of light. These
early experiments sparked a field initially called near-field optics, since it was real-
ized quickly that the inclusion of near fields in the problem of optical imaging and
associated spectroscopies holds promise for achieving arbitrary spatial resolutions,
thus providing access for optical experiments on the nanometer scale.

The first conference on near-field optics was held in 1992. About seventy
participants discussed theoretical aspects and experimental challenges associated
with near-field optics and near-field optical microscopy. The subsequent years are

XV



XVi Preface

characterized by a constant refinement of experimental techniques, as well as the
introduction of new concepts and applications. Applications of near-field optics
soon covered a large span ranging from fundamental physics and materials science
to biology and medicine. Following a logical development, the strong interest in
near-field optics gave birth to the fields of single-molecule spectroscopy and plas-
monics, and inspired new theoretical work associated with the nature of optical
near-fields. In parallel, relying on the momentum of the flowering nanosciences,
researchers started to tailor nanomaterials with novel optical properties. Photonic
crystals, single-photon sources and optical microcavities are products of this effort.
Today, elements of nano-optics are scattered across the disciplines. Various review
articles and books capture the state-of-the-art in the different subfields but there
appears to be no dedicated textbook that introduces the reader to the general theme
of nano-optics.

This textbook is intended to teach students at the graduate level or advanced
undergraduate level about the elements of nano-optics encountered in different sub-
fields. The book evolved from lecture notes that have been the basis for courses on
nano-optics taught at the Institute of Optics of the University of Rochester, and at
the University of Basel. We were happy to see that students from many different
departments found interest in this course, which shows that nano-optics is impor-
tant to many fields of study. Not all students were interested in the same topics
and, depending on their field of study, some students needed additional help with
mathematical concepts. The courses were supplemented with laboratory projects
that were carried out in groups of two or three students. Each team picked the
project that had most affinity with their interest. Among the projects were: surface
enhanced Raman scattering, photon scanning tunneling microscopy, nanosphere
lithography, spectroscopy of single quantum dots, optical tweezers, and others. To-
wards the end of the course, students gave a presentation on their projects and
handed in a written report. Most of the problems at the end of individual chapters
have been solved by students as homework problems or take-home exams. We wish
to acknowledge the very helpful input and inspiration that we received from many
students. Their interest and engagement in this course is a significant contribution
to this textbook.

Nano-optics is an active and evolving field. Every time the course was taught
new topics were added. Also, nano-optics is a field that easily overlaps with other
fields such as physical optics or quantum optics, and thus the boundaries cannot be
clearly defined. This first edition is an initial attempt to put a frame around the field
of nano-optics. We would be grateful to receive input from our readers related to
corrections and extensions of existing chapters and for suggestions of new topics.
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1

Introduction

In the history of science, the first applications of optical microscopes and telescopes
to investigate nature mark the beginning of new eras. Galileo Galilei used a tele-
scope to see for the first time craters and mountains on a celestial body, the Moon,
and also discovered the four largest satellites of Jupiter. With this he opened the
field of astronomy. Robert Hooke and Antony van Leeuwenhoek used early optical
microscopes to observe certain features of plant tissue that were called “cells”, and
to observe microscopic organisms, such as bacteria and protozoans, thus marking
the beginning of biology. The newly developed instrumentation enabled the obser-
vation of fascinating phenomena not directly accessible to human senses. Naturally,
the question was raised whether the observed structures not detectable within the
range of normal vision should be accepted as reality at all. Today, we have accepted
that, in modern physics, scientific proofs are verified by indirect measurements, and
that the underlying laws have often been established on the basis of indirect obser-
vations. It seems that as modern science progresses it withholds more and more
findings from our natural senses. In this context, the use of optical instrumentation
excels among ways to study nature. This is due to the fact that because of our abil-
ity to perceive electromagnetic waves at optical frequencies our brain is used to the
interpretation of phenomena associated with light, even if the structures that are ob-
served are magnified thousandfold. This intuitive understanding is among the most
important features that make light and optical processes so attractive as a means
to reveal physical laws and relationships. The fact that the energy of light lies in
the energy range of electronic and vibrational transitions in matter allows us to use
light for gaining unique information about the structural and dynamical properties
of matter and also to perform subtle manipulations of the quantum state of matter.
These unique spectroscopic capabilities associated with optical techniques are of
great importance for the study of biological and solid-state nanostructures.

Today we encounter a strong trend towards nanoscience and nanotechnology.
This trend was originally driven by the benefits of miniaturization and integration
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of electronic circuits for the computer industry. More recently a shift of paradigms
is observed that manifests itself in the notion that nanoscience and technology are
more and more driven by the fact that, as we move to smaller and smaller scales,
new physical effects become prominent that may be exploited in future techno-
logical applications. The advances in nanoscience and technology are due in large
part to our newly acquired ability to measure, fabricate and manipulate individual
structures on the nanometer scale using scanning probe techniques, optical tweez-
ers, high-resolution electron microscopes and lithography tools, focused ion beam
milling systems and others.

The increasing trend towards nanoscience and nanotechnology makes it in-
evitable to study optical phenomena on the nanometer scale. Since the diffraction
limit does not allow us to focus light to dimensions smaller than roughly one half of
the wavelength (200 nm), traditionally it was not possible to optically interact se-
lectively with nanoscale features. However, in recent years, several new approaches
have been put forth to “shrink” the diffraction limit (confocal microscopy) or to
even overcome it (near-field microscopy). A central goal of nano-optics is to ex-
tend the use of optical techniques to length scales beyond the diffraction limit.
The most obvious potential technological applications that arise from breaking the
diffraction barrier are super-resolution microscopy and ultra-high-density data stor-
age. But the field of nano-optics is by no means limited to technological applica-
tions and instrument design. Nano-optics also opens new doors to basic research
on nanometer sized structures.

Nature has developed various nanoscale structures to bring out unique opti-
cal effects. A prominent example is photosynthetic membranes, which use light-
harvesting proteins to absorb sunlight and then channel the excitation energy to
other neighboring proteins. The energy is guided to a so-called reaction center
where it initiates charge transfer across the cell membrane. Other examples are
sophisticated diffractive structures used by insects (butterflies) and other animals
(peacock) to produce attractive colors and effects. Also, nanoscale structures are
used as antireflection coatings in the retina of various insects, and naturally occur-
ring photonic bandgaps are encountered in gemstones (opals). In recent years, we
have succeeded in creating different artificial nanophotonic structures. A few ex-
amples are depicted in Fig. 1.1. Single molecules are being used as local probes for
electromagnetic fields and for biophysical processes, resonant metal nanostructures
are being exploited as sensor devices, localized photon sources are being devel-
oped for high-resolution optical microscopy, extremely high Q-factors are being
generated with optical microdisk resonators, nanocomposite materials are being
explored for generating increased nonlinearities and collective responses, micro-
cavities are being built for single-photon sources, surface plasmon waveguides are
being implemented for planar optical networks, and photonic bandgap materials
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Figure 1.1 Potpourri of man-made nanophotonic structures. (a) Strongly fluores-
cent molecules, (b) metal nanostructures fabricated by nanosphere lithography, (c)
localized photon sources, (d) microdisk resonators (from [2]), (¢) semiconduc-
tor nanostructures, (f) particle plasmons (from [3]), (g) photonic bandgap crys-
tals (from [4]), (h) nanocomposite materials, (i) laser microcavities (from [5]),
(j) single photon sources (from [6]), (k) surface plasmon waveguides (from [7]).

are being developed to suppress light propagation in specific frequency windows.
All of these nanophotonic structures are being created to provide unique optical
properties and phenomena and it is the scope of this book to establish a basis for
their understanding.

1.1 Nano-optics in a nutshell

Let us try to get a quick glimpse of the very basics of nano-optics just to show that
optics at the scale of a few nanometers makes perfect sense and is not forbidden by
any fundamental law. In free space, the propagation of light is determined by the
dispersion relation /iw = c-fik, which connects the wavevector k =  /k2 + k? + k2
of a photon with its angular frequency o via the speed of propagation c. Heisen-
berg’s uncertainty relation states that the product of the uncertainty in the spatial
position of a microscopic particle in a certain direction and the uncertainty in the
component of its momentum in the same direction cannot become smaller than
71 /2. For photons this leads to the relation

Ahky - Ax > h/2, (1.1)
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which can be rewritten as

Ax > L (1.2)

2Ak,

The interpretation of this result is as follows: The spatial confinement that can be
achieved for photons is inversely proportional to the spread in the magnitude of
wavevector components in the respective spatial direction, here x. Such a spread in
wavevector components occurs for instance in a light field that converges towards
a focus, e.g. behind a lens. Such a field may be represented by a superposition
of plane waves travelling under different angles (see Section 2.12). The maximum
possible spread in the wavevector component k, is the total length of the free-space
wavevector k = 27 /A.! This leads to

A
Ax > g (1.3)

which is very similar to the well-known expression for the Rayleigh diffraction
limit. Note that the spatial confinement that can be achieved is only limited by
the spread of wavevector components in a given direction. In order to increase
the spread of wavevector components we can play a mathematical trick: If we
choose two arbitrary perpendicular directions in space, e.g. x and z, we can in-
crease one wavevector component to values beyond the total wavevector while at
the same time requiring the wavevector in the perpendicular direction to become
purely imaginary. If this is the case, then we can still fulfill the requirement for the
total length of the wavevector k = /kZ + k3 + kZ to be 27 /A. If we choose to in-
crease the wavevector in the x-direction then the possible range of wavevectors in
this direction is also increased and the confinement of light is no longer limited by
Eq. (1.3). However, the possibility of increased confinement has to be paid for and
the currency is confinement also in the z-direction, resulting from the purely imag-
inary wavevector component in this direction that is necessary to compensate for
the large wavevector component in the x-direction. When introducing the purely
imaginary wavevector component into the expression for a plane wave we obtain
exp(ik,z) = exp(—|k.|z). In one direction this leads to an exponentially decaying
field, an evanescent wave, while in the opposite direction the field is exponentially
increasing. Since exponentially increasing fields have no physical meaning we may
safely discard the strategy just outlined to obtain a solution, and state that in free
space Eq. (1.3) is always valid. However, this argument only holds for infinite free
space! If we divide our infinite free space into at least two half-spaces with different
refractive indices, then the exponentially decaying field in one half-space can exist
without needing the exponentially increasing counterpart in the other half-space.

I For a real lens this must be corrected by the numerical aperture.
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In the other half-space a different solution may be valid that fulfills the boundary
conditions for the fields at the interface.

These simple arguments show that in the presence of an inhomogeneity in space
the Rayleigh limit for the confinement of light is no longer strictly valid, but in
principle infinite confinement of light becomes, at least theoretically, possible. This
insight is the basis of nano-optics. One of the key questions in nano-optics is how
material structures have to be shaped to actually realize the theoretically possible
field confinement. Another key issue is the question of what are the physical con-
sequences of the presence of exponentially decaying and strongly confined fields,
which we will discuss in some detail in the following chapters.

1.2 Historical survey

In order to put this text on nano-optics into the right perspective and context we
deem it appropriate to start out with a very short introduction to the historical de-
velopment of optics in general and the advent of nano-optics in particular.
Nano-optics builds on achievements of classical optics, the origin of which goes
back to antiquity. At that time, burning glasses and the reflection law were already
known and Greek philosophers (Empedocles, Euclid) speculated about the nature
of light. They were the first to do systematic studies on optics. In the thirteenth
century the first magnifying glasses were used. There are documents reporting the
existence of eye glasses in China several centuries earlier. However, the first op-
tical instrumentation for scientific purposes was not built until the beginning of
the seventeenth century, when modern human curiosity started to awake. It is of-
ten stated that the earliest telescope was the one constructed by Galileo Galilei
in 1609, as there is definite knowledge of its existence. Likewise, the first proto-
type of an optical microscope (1610) is also attributed to Galilei [8]. However, it
is known that Galilei knew of a telescope built in Holland (probably by Zacharias
Janssen) and that his instrument was built according to existing plans. The same
uncertainty holds for the first microscope. In the sixteenth century craftsmen were
already using glass spheres filled with water for the magnification of small details.
As in the case of the telescope, the development of the microscope extends over a
considerable period and cannot be attributed to one single inventor. A pioneer who
advanced the development of the microscope as already mentioned, was Antony
van Leeuwenhoek. It is remarkable that the resolution of his microscope, built
in 1671, was not exceeded for more than a century. At the time, his observation
of red blood cells and bacteria was revolutionary. In the eighteenth and ninteenth
centuries the development of the theory of light (polarization, diffraction, disper-
sion) helped to significantly advance optical technology and instrumentation. It
was soon realized that optical resolution cannot be improved arbitrarily and that a
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lower bound is set by the diffraction limit. The theory of resolution was formulated
by Abbe in 1873 [9] and Rayleigh in 1879 [10]. It is interesting to note, as we saw
above, that there is a close relation to Heisenberg’s uncertainty principle. Different
techniques such as confocal microscopy [11] were invented over the years in order
to stretch the diffraction limit beyond Abbe’s limit. Today, confocal fluorescence
microscopy is a key technology in biomedical research [12]. Highly fluorescent
molecules have been synthesized that can be specifically attached to biological en-
tities such as lipids, muscle fibers, and various cell organelles. This chemically
specific labelling and the associated discrimination of different dyes based on their
fluorescence emission allows scientists to visualize the interior of cells and study
biochemical reactions in live environments. The invention of pulsed laser radiation
propelled the field of nonlinear optics and enabled the invention of multiphoton
microscopy, which is slowly replacing linear confocal fluorescence microscopy
[13]. However, multiphoton excitation is not the only nonlinear interaction that is
exploited in optical microscopy. Second harmonic, third harmonic, and coherent
anti-Stokes Raman scattering (CARS) microscopy [14] are other examples of ex-
tremely important inventions for visualizing processes with high spatial resolution.
Besides nonlinear interactions, it has also been demonstrated that saturation effects
can, in principle, be applied to achieve arbitrary spatial resolutions provided that
one knows what molecules are being imaged [15].

A different approach for boosting spatial resolution in optical imaging is pro-
vided by near-field optical microscopy. In principle, this technique does not rely on
prior information. While it is restricted to imaging of features near the surface of a
sample it provides complementary information about the surface topology similar
to atomic force microscopy. A challenge in near-field optical microscopy is posed
by the coupling of source (or detector) and the sample to be imaged. This challenge
is absent in standard light microscopy where the light source (e.g. the laser) is not
affected by the properties of the sample. Near-field optical microscopy was origi-
nally proposed in 1928 by Synge. In a prophetic article he proposed an apparatus
that comes very close to present implementations in scanning near-field optical mi-
croscopy [16]. A minute aperture in an opaque plate illuminated from one side is
placed in close proximity to a sample surface thereby creating an illumination spot
not limited by diffraction. The transmitted light is then collected with a microscope,
and its intensity is measured with a photoelectric cell. In order to establish an im-
age of the sample, the aperture is moved in small increments over the surface. The
resolution of such an image should be limited by the size of the aperture and not
by the wavelength of the illuminating light, as Synge correctly stated. It is known
that Synge was in contact with Einstein about his ideas and Einstein encouraged
Synge to publish his ideas. It is also known that later in his life Synge was no longer
convinced about his idea and proposed alternative but, as we know today, incorrect
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ideas. Due to the obvious experimental limitations at that time, Synge’s idea was
not realized and was soon forgotten. Later, in 1956, O’Keefe proposed a similar
set-up without knowing of Synge’s visionary idea [17]. The first experimental real-
ization in the microwave region was performed in 1972 by Ash and Nichols, again
without knowledge of Synge’s paper [18]. Using a 1.5 mm aperture, illuminated
with 10 cm waves, Ash and Nichols demonstrated subwavelength imaging with a
resolution of A/60.

The invention of scanning probe microscopy [19] at the beginning of the 1980s
enabled distance regulation between probe and sample with high precision, and
hence set the ground for a realization of Synge’s idea at optical frequencies. In 1984
Massey proposed the use of piezoelectric position control for the accurate position-
ing of a minute aperture illuminated at optical frequencies [20]. Shortly after, Pohl,
Denk and Lanz at the IBM Riischlikon Research Laboratory managed to solve the
remaining experimental difficulties of producing a subwavelength-sized aperture:
a metal-coated pointed quartz tip was “pounded” against the sample surface until
some light leakage through the foremost end could be detected. In 1984 the IBM
group presented the first subwavelength images at optical frequencies [21] and
almost simultaneously an independent development was realized by Lewis et al.
[22]. Subsequently, the technique was systematically advanced and extended to
various applications mainly by Betzig et al., who showed subwavelength magnetic
data storage and detection of single fluorescent molecules [23-25]. Over the years,
various related techniques were proposed, such as the photon scanning tunneling
microscope, the near-field reflection microscope, microscopes using luminescent
centers as light emitting sources, microscopes based on local plasmon interaction,
microscopes based on local light scattering, and microscopes relying on the field
enhancement effect near sharply pointed metal tips. All these techniques provide a
confined photon flux between probe and sample. However, the confined light flux is
not the only limiting factor for the achievable resolution. In order to be detectable,
the photon flux needs to have a minimum intensity. These two requirements are to
some extent contradictory and a compromise between light confinement and light
throughput has to be found.

1.3 Scope of the book

Traditionally, the field of optics is part of both the basic sciences (e.g. quantum
optics) and applied sciences (e.g. optical communication and computing). There-
fore, nano-optics can be defined as the broad spectrum of optics on the nanometer
scale, ranging from nanotechnology applications to fundamental nanoscience.

On the nanotechnology side, we find topics like nanolithography, high-
resolution optical microscopy, and high-density optical data storage. On the basic



8 Introduction

science end, we might mention atom—photon interactions in the optical near-field
and their potential applications for atom trapping and manipulation experiments.
Compared with free propagating light the optical near-field is enriched by so-called
virtual photons that correspond to the exponentially decaying fields introduced be-
fore. The virtual-photon picture can be used to describe local, non-propagating
fields in general. These virtual photons are the same sort of particles that are also
responsible for molecular binding (van der Waals and Casimir forces) and there-
fore have potential for selective probing of molecular-scale structures. The con-
sideration of virtual photons in the field of quantum optics will enlarge the range
of fundamental experiments and will result in new applications. The present book
provides an introduction to nano-optics that reflects the full breadth of the field
between applied and basic science that is summarized in Fig. 1.2.

We start out by providing an overview of the theoretical foundations of
nano-optics. Maxwell’s equations, being scale invariant, provide a secure basis
for nano-optics. Since optical near-fields are always associated with matter, we
review constitutive relations and complex dielectric constants. The systems that
are investigated in the context of nano-optics, as we saw, must separate into
several spatial domains that are separated by boundaries. Representations of
Maxwell’s equations valid in piecewise homogeneous media and the related
boundary conditions for the fields are therefore derived. We then proceed with the
discussion of fundamental theoretical concepts, such as the Green’s function and
the angular spectrum representation, that are particularly useful for the discussion

Optical interactions between nanosystems

Interaction of light with nanoscale systems - Foerster energy transfer
- absorption / emission of light - coupled excitations (excitons)
- artificial quantum structures (dots, wires, wells) - optical trapping
- photonic bandgap materials - van der Waals / Casimir forces
- molecules / proteins
\ / Resonance phenomena

- plasmons

NANO_OPTICS - - surface phonon-polaritons

- microresonators

Theoretical concepts

/
- angular spectrum representation \
- multiple multipole method
- Green's function methods
Strongly focused light
Diffraction limit - confocal microscopy
- light confinement - multiphoton microscopy

- apertures, tips, fibers
- near-field optical microscopy

Figure 1.2 Constituents of the field of nano-optics.
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of nano-optical phenomena. The treatment of the angular spectrum representation
leads to a thorough discussion of evanescent waves, which correspond to the new
virtual photon modes just mentioned.

Light confinement is a key issue in nano-optics. To set the basis for further dis-
cussions in Chapter 3, we analyze what is the smallest possible confinement of
light that can be achieved by classical means, i.e. microscope objectives and other
high numerical aperture focusing optics. Starting out with the treatment of focused
fields in the paraxial approximation, which yields the well-known Gaussian beams,
we proceed by discussing focused fields beyond the paraxial approximation as they
occur for example in modern confocal microscopes.

Speaking of microscopy, spatial resolution is a key issue. Several definitions of
the spatial resolution of an optical microscope exist that are related to the diffrac-
tion limit. An analysis of their physical foundations in Chapter 4 leads to the dis-
cussion of methods that can be used to enhance the spatial resolution of optical
microscopy. Saturation effects and the difference between spatial position accu-
racy and resolution are discussed.

The following three chapters then deal with more practical aspects of nano-
optics related to applications in the context of near-field optical microscopy. In
Chapter 5 we discuss the basic technical realizations of high-resolution micro-
scopes starting with confocal microscopy, and proceeding with various near-field
techniques that have been developed over time. Chapter 6 then deals with the cen-
tral technical question of how light can be squeezed into subwavelength regions.
This is the domain of the so-called optical probes, material structures that typically
have the shape of pointed tips and exhibit a confined and enhanced optical field at
their apex. Finally, to complete the technical section, we show how such delicate
optical probes can be approached and scanned in close proximity to a sample sur-
face of interest. A method relying on the measurement of interaction (shear) forces
between probe and sample is introduced and discussed. Taken together, the three
chapters provide the technical basics for understanding the current methods used
in scanning near-field optical microscopy.

We then proceed with a discussion of more fundamental aspects of nano-optics,
i.e. light emission and optical interactions in nanoscale environments. As a starting
point, we show that the light emission of a small particle (atom, molecule) with an
electronic transition can be treated in the dipole approximation. We discuss the re-
sulting fields of a radiating dipole and its interactions with the electromagnetic field
in some detail. We proceed with the discussion of spontaneous decay in complex
environments, which in the ultimate limit leads to the discussion of dipole—dipole
interactions, energy transfer and excitonic coupling.

Having discussed dipolar emitters without mentioning a real-world realiza-
tion, we discuss in Chapter 9 some experimental aspects of the detection of
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single-quantum emitters such as single fluorescent molecules and semiconductor
quantum dots. Saturation count rates and the solutions of rate equation systems are
discussed as well as fascinating issues such as the non-classical photon statistics of
fields emitted by quantum emitters and coherent control of wave functions. Finally
we discuss how single emitters can be used to map spatially confined fields in great
detail.

In Chapter 10 we pick up again on the issue of dipole emission in a nanoscale
environment. Here, we treat in some detail the very important and illustrative case
of dipole emission near a planar interface. We calculate radiation patterns and de-
cay rates of dipolar emitters and also discuss the image-dipole approximation that
can be used to obtain approximate results.

If we consider multiple interfaces, instead of only one, that are arranged in a reg-
ular pattern, we obtain a so-called photonic crystal. The properties of such struc-
tures can be described in analogy to solid-state physics by introducing an optical
band structure that may contain bandgaps in certain directions where propagating
light cannot exist. Defects in photonic crystals lead to localized states, much like
their solid-state counterparts, which are of particular interest in nano-optics since
they can be considered as microscopic cavities with very high quality factors.

Chapter 12 then takes up the topic of surface plasmons. Resonant collective
oscillations of the free surface charge density in metal structures of various ge-
ometries can couple efficiently to optical fields and, due to the occurrence of res-
onances, are associated with strongly enhanced and confined optical near-fields.
We give a basic introduction to the topic, covering the optical properties of noble
metals, thin film plasmons, and particle plasmons.

In the following chapter we discuss optical forces occurring in confined fields.
We formulate a theory based on Maxwell’s stress tensor that allows us to calculate
forces of particles of arbitrary shape once the field distribution is known. We then
specialize the discussion and introduce the dipole approximation valid for small
particles. Practical applications discussed include the optical tweezer principle. Fi-
nally, the transfer of angular momentum using optical fields is discussed, as well
as forces exerted by optical near-fields.

Another type of forces is discussed in the subsequent chapter, i.e. forces that
are related to fluctuating electromagnetic fields which include the Casimir—Polder
force and electromagnetic friction. On the way we also discuss the emission of
radiation by fluctuating sources.

The current textbook is concluded by a summary of theoretical methods used in
the field of nano-optics. Hardly any predictions can be made in the field of nano-
optics without using adequate numerical methods. A selection of the most powerful
theoretical tools is presented and their advantages and drawbacks are discussed.
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2

Theoretical foundations

Light embraces the most fascinating spectrum of electromagnetic radiation. This is
mainly due to the fact that the energy of light quanta (photons) lies in the energy
range of electronic transitions in matter. This gives us the beauty of color and is the
reason why our eyes adapted to sense the optical spectrum.

Light is also fascinating because it manifests itself in the forms of waves and par-
ticles. In no other range of the electromagnetic spectrum are we more confronted
with the wave—particle duality than in the optical regime. While long wavelength
radiation (radiofrequencies, microwaves) is well described by wave theory, short
wavelength radiation (X-rays) exhibits mostly particle properties. The two worlds
meet in the optical regime.

To describe optical radiation in nano-optics it is mostly sufficient to adopt the
wave picture. This allows us to use classical field theory based on Maxwell’s equa-
tions. Of course, in nano-optics the systems with which the light fields interact are
small (single molecules, quantum dots), which necessitates a quantum description
of the material properties. Thus, in most cases we can use the framework of semi-
classical theory, which combines the classical picture of fields and the quantum
picture of matter. However, occasionally, we have to go beyond the semiclassi-
cal description. For example the photons emitted by a quantum system can obey
non-classical photon statistics in the form of photon-antibunching (no two photons
arriving simultaneously).

This section summarizes the fundamentals of electromagnetic theory forming
the necessary basis for this book. Only the basic properties are discussed and for
more detailed treatments the reader is referred to standard textbooks on electro-
magnetism such as the books by Jackson [1], Stratton [2], and others. The starting
point is Maxwell’s equations established by James Clerk Maxwell in 1873.
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2.1 Macroscopic electrodynamics

In macroscopic electrodynamics the singular character of charges and their associ-
ated currents is avoided by considering charge densities p and current densities j.
In differential form and in SI units the macroscopic Maxwell’s equations have the

form
VxE@rp = - BED @.1)
ot
aD, 1) .
V x H(r, 1) = — + jr, 1), (2.2)
V-D(,t) = p(r,t), 2.3)
V-B,t) = 0. 2.4

where E denotes the electric field, D the electric displacement, H the magnetic
field, B the magnetic induction, j the current density, and p the charge density. The
components of these vector and scalar fields constitute a set of 16 unknowns. De-
pending on the considered medium, the number of unknowns can be reduced con-
siderably. For example, in linear, isotropic, homogeneous and source-free media
the electromagnetic field is entirely defined by two scalar fields. Maxwell’s equa-
tions combine and complete the laws formerly established by Faraday, Ampere,
Gauss, Poisson, and others. Since Maxwell’s equations are differential equations
they do not account for any fields that are constant in space and time. Any such
field can therefore be added to the fields. It has to be emphasized that the con-
cept of fields was introduced to explain the transmission of forces from a source
to a receiver. The physical observables are therefore forces, whereas the fields are
definitions introduced to explain the troublesome phenomenon of the “action at a
distance”. Notice that the macroscopic Maxwell’s equations deal with fields that
are local spatial averages over microscopic fields associated with discrete charges.
Hence, the microscopic nature of matter is not included in the macroscopic fields.
Charge and current densities are considered as continuous functions of space. In
order to describe the fields on an atomic scale it is necessary to use the micro-
scopic Maxwell’s equations which consider all matter to be made of charged and
uncharged particles.

The conservation of charge is implicitly contained in Maxwell’s equations. Tak-
ing the divergence of Eq. (2.2), noting that V - V x H is identical zero, and substi-
tuting Eq. (2.3) for V - D one obtains the continuity equation

dp,t) _ 0

V- jr, t
Jj, 0 + Y

(2.5)
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The electromagnetic properties of the medium are most commonly discussed in
terms of the macroscopic polarization P and magnetization M according to

D(r,t) = gE(@,t) + P(r, 1), 2.6)
H(r,1) = py'B(r,n) — M(x, 1), @7
where g9 and ¢ are the permittivity and the permeability of vacuum, respectively.

These equations do not impose any conditions on the medium and are therefore
always valid.

2.2 Wave equations

After substituting the fields D and B in Maxwell’s curl equations by the expres-
sions (2.6) and (2.7) and combining the two resulting equations we obtain the in-
homogeneous wave equations

V xV E+182E 9 ‘+8P+v M (2.8)
X V x — = = —Ho— — X , .
c? 912 ”Oat ] ot
VxVxH + 1 9°H Vxj+V 3P+ M 2.9)
X X _— = X X — —_— . .
c? 912 J at Ho ot

The constant ¢ was introduced for (gy/40) "> and is known as the vacuum speed

of light. The expression in the brackets of Eq. (2.8) can be associated with the total
current density

P
jt:js+jc+¥+VXMs (2.10)

where j has been split into a source current density js and an induced conduction
current density j.. The terms dP/dt and V x M are recognized as the polariza-
tion current density and the magnetization current density, respectively. The wave
equations as stated in Egs. (2.8) and (2.9) do not impose any conditions on the
media considered and hence are generally valid.

2.3 Constitutive relations

Maxwell’s equations define the fields that are generated by currents and charges
in matter. However, they do not describe how these currents and charges are
generated. Thus, to find a self-consistent solution for the electromagnetic field,
Maxwell’s equations must be supplemented by relations that describe the behavior
of matter under the influence of the fields. These material equations are known as
constitutive relations. In a non-dispersive linear and isotropic medium they have
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the form
D = g¢E P = g xE), (2.11)
B = ppH (M= xnH), (2.12)
jo = oE. (2.13)

with . and x;, denoting the electric and magnetic susceptibility, respectively. For
nonlinear media, the right hand sides can be supplemented by terms of higher
power. Anisotropic media can be considered using tensorial forms for ¢ and p. In
order to account for general bianisotropic media, additional terms relating D and
E to both B and H have to be introduced. For such complex media, solutions to
the wave equations can be found for very special situations only. The constituent
relations given above account for inhomogeneous media if the material parameters
g, n and o are functions of space. The medium is called temporally dispersive if
the material parameters are functions of frequency, and spatially dispersive if the
constitutive relations are convolutions over space. An electromagnetic field in a
linear medium can be written as a superposition of monochromatic fields of the
form

E(,t) = Ek, w)cos(k-r — wt) , (2.14)

where k and w are the wavevector and the angular frequency, respectively. In its
most general form, the amplitude of the induced displacement D(r, ¢) can be writ-
ten as'

Dk, w) = gk, o) Ek, o). 2.15)

Since E(k, ) is equivalent to the Fourier transform E of an arbitrary time-
dependent field E(r, t), we can apply the inverse Fourier transform to Eq. (2.15)
and obtain

D(r,t) = ¢ //é(r—r/, t—t) E(r, ¢')dr’dr’ . (2.16)

Here, & denotes the response function in space and time. The displacement D at
time ¢ depends on the electric field at all times ¢’ previous to ¢ (temporal disper-
sion). Additionally, the displacement at a point r also depends on the values of
the electric field at neighboring points r’ (spatial dispersion). A spatially disper-
sive medium is therefore also called a non-local medium. Non-local effects can
be observed at interfaces between different media or in metallic objects with sizes
comparable with the mean-free path of electrons. In general, it is very difficult to
account for spatial dispersion in field calculations. In most cases of interest the ef-
fect is very weak and we can safely ignore it. Temporal dispersion, on the other

! Inan anisotropic medium the dielectric constant ¢ =¥ is a second-rank tensor.
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hand, is a widely encountered phenomenon and it is important to take it accurately
into account.

2.4 Spectral representation of time-dependent fields

The spectrum E(r, ») of an arbitrary time-dependent field E(r, ¢) is defined by the
Fourier transform

N 1 d .
E(r,w) = — / E(r,t) e dr . 2.17)
21 J_ o
In order that E(r, ¢) is a real valued field we have to require that
Er, —0) = B, o) . (2.18)

Applying the Fourier transform to the time-dependent Maxwell’s equations (2.1)—
(2.4) gives

V x E(r,w) = iwB(r, o), (2.19)
V x Hr,0) = —ioD(r, 0) + jr, o), (2.20)
V-D(r,w) = pr, o), (2.21)
V.Br,w) = 0. (2.22)

Once the solution for I:Z(r, ) has been determined, the time-dependent field is
calculated by the inverse transform as

E(r,t) = / ” Er, 0)e ™ dow . (2.23)

o0
Thus, the time dependence of a non-harmonic electromagnetic field can be Fourier
transformed and every spectral component can be treated separately as a monochro-
matic field. The general time dependence is obtained from the inverse transform.

2.5 Time-harmonic fields

The time dependence in the wave equations can be easily separated to obtain a
harmonic differential equation. A monochromatic field can then be written as?

E(r,7) = Re(E(r)e '} = %[E(r) e + EXr)e] , (2.24)

with similar expressions for the other fields. Notice that E(r, ¢) is real, whereas the
spatial part E(r) is complex. The symbol E will be used for both, the real, time-
dependent field and the complex spatial part of the field. The introduction of a new

2 This can also be written as E(r,t) = Re{E(r)}coswt + Im{E(r)} sinwt = |E(r)| cos[wt + ¢(r)], where the
phase is determined by ¢(r) = arctan[Im{E(r)}/Re{E(r)}]
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symbol is avoided in order to keep the notation simple. It is convenient to repre-
sent the fields of a time-harmonic field by their complex amplitudes. Maxwell’s
equations can then be written as

V x E@r) = ioB(), (2.25)
V x Hr) = —iwD(T) + j{), (2.26)
V.-Dr) = p), 2.27)
V.B@r) =0, (2.28)

which is equivalent to Maxwell’s equations (2.19)—(2.22) for the spectra of arbi-
trary time-dependent fields. Thus, the solution for E(r) is equivalent to the spec-
trum E(r, ) of an arbitrary time-dependent field. It is obvious that the complex
field amplitudes depend on the angular frequency w, i.e. E(r) =E(r, ). However,
o is usually not included in the argument. Also the material parameters ¢, u, and o
are functions of space and frequency, i.e. ¢ =¢(r, ), 0 =0 (1, W), u=u(r, ®). For
simpler notation, we will often drop the argument in the fields and material param-
eters. It is the context of the problem that determines which of the fields E(r, ¢),
E(r), or E(r, w) is being considered.

2.6 Complex dielectric constant

With the help of the linear constitutive relations we can express Maxwell’s curl
equations (2.25) and (2.26) in terms of E(r) and H(r). We then multiply both
sides of the first equation by p~' and then apply the curl operator to both sides.
After the expression V x H is substituted by the second equation we obtain

2
Vxu ' VxE - Lo +io/(@e)] E = iouols - (2.29)
;

It is common practice to replace the expression in the brackets on the left hand side
by a complex dielectric constant, i.e.

[e + io/(wep)] — €. (2.30)

In this notation one does not distinguish between conduction currents and polar-
ization currents. Energy dissipation is associated with the imaginary part of the
dielectric constant. With the new definition of ¢, the wave equations for the com-
plex fields E(r) and H(r) in linear, isotropic, but inhomogeneous media are

Vxu''VxE —IgeE = iouojs (2.31)

Vxe!'VxH - KpH = Vx e, (2.32)



2.8 Boundary conditions 19

where ko = w/c denotes the vacuum wavenumber. These equations are also valid
for anisotropic media if the substitutions & — & and p— i are performed. The
complex dielectric constant will be used throughout this book.

2.7 Piecewise homogeneous media

In many physical situations the medium is piecewise homogeneous. In this case
the entire space is divided into subdomains in which the material parameters are
independent of position r. In principle, a piecewise homogeneous medium is inho-
mogeneous and the solution can be derived from Egs. (2.31) and (2.32). However,
the inhomogeneities are entirely confined to the boundaries and it is convenient
to formulate the solution for each subdomain separately. These solutions must be
connected with each other via the interfaces to form the solution for all space. Let
the interface between two homogeneous domains D; and D; be denoted as 9.D;;.
If &; and u; designate the constant material parameters in subdomain D;, the wave

equations in that domain read as
Vpi

(V2 +kDE; = —iopopi i+ —— (2.33)
0¢i

(V2 + k) H; -V X ji, (2.34)

where k; = (w/c) /g is the wavenumber and j;, po; the sources in domain
D;. To obtain these equations, the identity V x Vx = —V? + VV. was used and
Maxwell’s equation (2.3) was applied. Equations (2.33) and (2.34) are also denoted
as the inhomogeneous vector Helmholtz equations. In most practical applications,
such as scattering problems, there are no source currents or charges present and the
Helmholtz equations are homogeneous.

2.8 Boundary conditions

Since the material properties are discontinuous on the boundaries, Eqs. (2.33)
and (2.34) are only valid in the interior of the subdomains. However, Maxwell’s
equations must also hold for the boundaries. Due to the discontinuity it turns out to
be difficult to apply the differential forms of Maxwell’s equations, but there is no
problem with the corresponding integral forms. The latter can be derived by apply-
ing the theorems of Gauss and Stokes to the differential forms (2.1)—(2.4) which

yields
/ E(r,?)-ds
3

S
/H(r,t)~ds — /[j(r,r)+3D(r,t)]-nsda, (2.36)
3 s at

N

3
- / —B(r, ) -n,da, (2.35)
s ot
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Figure 2.1 Integration paths for the derivation of the boundary conditions on the
interface d D;; between two adjacent domains D; and D ;.

/ D(r,?) -ngda = f o, t)dv , (2.37)
v v

/ B(r,?) -ngda
av

In these equations, da denotes a surface element, ng the normal unit vector to
the surface, ds a line element, 0V the surface of the volume V, and 9.5 the border
of the surface S. The integral forms of Maxwell’s equations lead to the desired
boundary conditions if they are applied to a sufficiently small part of the considered
boundary. In this case the boundary looks flat and the fields are homogeneous on
both sides (Fig. 2.1). Consider a small rectangular path 9.5 along the boundary as
shown in Fig. 2.1(a). As the area S (enclosed by the path 05S) is arbitrarily reduced,
the electric and magnetic fluxes through S become zero. This does not necessarily
apply for the source current, since a surface current density K might be present.
The first two Maxwell’s equations then lead to the boundary conditions for the
tangential field components®

0. (2.38)

n x (El — E/) =0 on 8D,] s (239)
nx (H;—H;) = K on dD;;, (2.40)
where n is the unit normal vector on the boundary. A relation for the normal field

components can be obtained by considering an infinitesimal rectangular box with
volume V' and surface 0V according to Fig. 2.1(b). If the fields are considered

3 Notice that n and ny are different unit vectors: ng is perpendicular to the surfaces S and 9V, whereas n is
perpendicular to the boundary 9D;;.
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to be homogeneous on both sides and if a surface charge density o is assumed,
Maxwell’s third and fourth equations lead to the boundary conditions for the nor-
mal field components

n- (D, _D/) = o Oon 8D,~j, (241)

In most practical situations there are no sources in the individual domains, and K
and o consequently vanish. The four boundary conditions (2.39)—(2.42) are not
independent of each other since the fields on both sides of 9D;; are linked by
Maxwell’s equations. It can be easily shown, for example, that the conditions for
the normal components are automatically satisfied if the boundary conditions for
the tangential components hold everywhere on the boundary and Maxwell’s equa-
tions are fulfilled in both domains.

2.8.1 Fresnel reflection and transmission coefficients

Applying the boundary conditions to a simple plane wave incident on a single pla-
nar interface leads to the familiar Fresnel reflection and transmission coefficients.
A detailed derivation can be found in many textbooks, e.g. [3], page 36ff. We only
briefly mention the results.

An arbitrarily polarized plane wave E;exp(Kk; - r — iwt) can always be written
as the superposition of two orthogonally polarized plane waves. It is convenient
to choose these polarizations parallel or perpendicular to the plane of incidence
defined by the k-vector of the plane wave and the surface normal n of the plane
interface

E =EY +EP . (2.43)

E(ls) is parallel to the interface while E(lp) is perpendicular to the wavevector k and
E(ls). The indices (s) and (p) stand for the German words “senkrecht” (perpen-
dicular) and “parallel” (parallel), respectively, and refer to the plane of incidence.
Upon reflection or transmission at the interface, the polarizations (s) and (p) are
conserved.

As shown in Fig. 2.2, we denote the dielectric constants of the medium of in-
cidence and the medium of transmittance as ¢; and ¢, respectively. The same
designation applies to the magnetic permeability p. Similarly, we distinguish be-
tween incident and transmitted wavevectors k; and k;. Using the coordinate system
shown in Fig. 2.2, it follows from the boundary conditions that

)

kl = (kkayskzl)i |k|| :kl :?\/elulv (2'44)
®

ky = (ky, ky, k), k| = ky = “Val . (2.45)
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Figure 2.2 Reflection and refraction of a plane wave at a plane interface. (a) s-
polarization, and (b) p-polarization.

Thus, the transverse components of the wavevector (k,, k,) are conserved and the
magnitudes of the longitudinal wavenumbers are given by

ke = K = 4K, ke =K — R+,

[k} + k3 can be expressed conveniently in
terms of the angle of incidence 6, as

JK2 + k)z, = ky sin6; ,

which, according to Eqgs. (2.46), also allows us to express k;, and k., in terms
of 6 1-

It follows from the boundary conditions that the amplitudes of the reflected and
transmitted waves can be represented as

(2.46)

The transverse wavenumber k; =

ky = 2.47)

EY = EY ri(k,, k), EY = EP rP(k,, k), (2.48)
EY = BV ko ky),  EY =EP Pk ky),
where the Fresnel reflection and transmission coefficients are defined as*
/“LZkzl - Mlkza 52kzl - 81k22
ke, ky) = ———2, rPky, ky) = ———2, 2.49
(kx: k) wokzy + ik, (e ) &2k:, + &1k, ( )
i 2ok, 2&7k,
Pl ky) = — 25k k) = ——2 B2 g 50)
: /’L2k21 + Mlk:z : 82k21 + slkzz H1€2

As indicated by the superscripts, these coefficients depend on the polarization of
the incident plane wave. The coefficients are functions of k, and k,,, which can

4 For symmetry reasons, some authors omit the square root term in the coefficient tP. In this case, ¢P refers to
the ratio of transmitted and incident magnetic field. We adopt the definition from Born & Wolf [3].
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be expressed in terms of k., k, and thus in terms of the angle of incidence 6;. The
sign of the Fresnel coefficients depends on the definition of the electric field vectors
shown in Fig. 2.2. For a plane wave at normal incidence (8; =0), r* and rP differ
by a factor of —1. Notice that the transmitted waves can be either plane waves or
evanescent waves. This aspect will be discussed in Section 2.11.

2.9 Conservation of energy

The equations established so far describe the behavior of electric and magnetic
fields. They are a direct consequence of Maxwell’s equations and the properties of
matter. Although the electric and magnetic fields were initially postulated to ex-
plain the forces in Coulomb’s and Ampere’s laws, Maxwell’s equations do not pro-
vide any information about the energy or forces in a system. The basic Lorentz’ law
describes the forces acting on moving charges only. As the Abraham—Minkowski
controversy shows, the forces acting on an arbitrary object cannot be extracted
from a given electrodynamic field in a consistent way. It is also interesting that
Coulomb’s and Ampere’s laws were sufficient to establish Lorentz’ force law.
While the field equations have been later completed by adding the Maxwell dis-
placement current, Lorentz’ law remained unchanged. There is less controversy
regarding the energy. Although also not a direct consequence of Maxwell’s equa-
tions, Poynting’s theorem provides a plausible relationship between the electro-
magnetic field and its energy content. For later reference, Poynting’s theorem will
be outlined below.

If the scalar product of the field E and Eq. (2.2) is subtracted from the scalar
product of the field H and Eq. (2.1) the following equation is obtained:

B b
H (VXE)-E-(VxH) =-H-— —-E-— —j-E. 2.51)
at at

Noting that the expression on the left is identical to V - (E x H), integrating both
sides over space and applying Gauss’s theorem the equation above becomes

B 5 I
(ExH).nda:-/[H-—+E-—+J-E]dv. (2.52)
\%4

oy at at

Although this equation already forms the basis of Poynting’s theorem, more insight

is provided when B and D are substituted by the generally valid equations (2.6)
and (2.7). Equation (2.52) then reads

19
(ExH)-nda+f—/[D-E+B-H]dV (2.53)
v XTI

. 1 P IE
=—|jEdv — - | |[E.-Z=—P-=|aV
v 2 )| o at
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This equation is a direct conclusion of Maxwell’s equations and therefore has the
same validity. Poynting’s theorem is more or less an interpretation of the equation
above. It states that the first term is equal to the net energy flow in or out of the
volume V, the second term is equal to the time rate of change of electromagnetic
energy inside V' and the remaining terms on the right side are equal to the rate of
energy dissipation inside V. According to this interpretation

S = (ExH) (2.54)

represents the energy flux density and
1
W o= 5[1).1«:+B-H] (2.55)

is the density of electromagnetic energy. If the medium within V is linear, the last
two terms equal zero and the only term accounting for energy dissipation is j - E.
Hence, the last two terms can be associated with nonlinear losses. The vector S
is denoted as the Poynting vector. In principle, the curl of any vector field can be
added to S without changing the conservation law (2.53), but it is convenient to
make the choice as stated in (2.54). Notice that the current j in Eq. (2.53) is the
current associated with energy dissipation and therefore does not include polariza-
tion and magnetization currents.

Of special interest is the mean time value of S. This quantity describes the net
power flux density and is needed for the evaluation of radiation patterns. Assuming
that the fields are harmonic in time and that the media are linear, the time average
of Eq. (2.53) becomes

f S)nda = —+ / Re{j*- E}dV, (2.56)
v 2 Jy

where the term on the right defines the mean energy dissipation within the volume
V. (S) represents the time average of the Poynting vector

S) = %Re{E x H*} . (2.57)

In the far-field, the electromagnetic field is purely transverse. Furthermore, the
electric and magnetic fields are in phase and the ratio of their amplitudes is con-
stant. In this case (S) can be expressed by the electric field alone as

1
) = = [ EPn, (2.58)
2V o

where n, represents the unit vector in the radial direction and the inverse of the
square root denotes the wave impedance.
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2.10 Dyadic Green’s functions

An important concept in field theory is the Green’s function: the fields due to a
point source. In electromagnetic theory, the dyadic Green’s function G is essen-
tially defined by the electric field E at the field point r generated by a radiating
electric dipole u located at the source point r’. In mathematical terms this reads as

E(r) = o*uop G@r,v) 1 . (2.59)

To understand the basic idea of Green’s functions we will first consider a general
mathematical point of view.

2.10.1 Mathematical basis of Green’s functions

Consider the following general, inhomogeneous equation:
LA(r) = B(r). (2.60)

L is a linear operator acting on the vectorfield A representing the unknown re-
sponse of the system. The vectorfield B is a known source function and makes the
differential equation inhomogeneous. A well-known theorem for linear differential
equations states that the general solution is equal to the sum of the complete ho-
mogeneous solution (B = 0) and a particular inhomogeneous solution. Here, we
assume that the homogeneous solution (Ap) is known. We thus need to solve for
an arbitrary particular solution.

Usually it is difficult to find a solution of Eq. (2.60) and it is easier to consider
the special inhomogeneity § (r—1’), which is zero everywhere, except in the point
r = r'. Then, the linear equation reads as

LG, ¥) =ndr—-r) i=x,y,2), (2.61)

where n; denotes an arbitrary constant unit vector. In general, the vectorfield G; is
dependent on the location r’ of the inhomogeneity §(r—r’). Therefore, the vector r’
has been included in the argument of G;. The three equations given by Eq. (2.61)
can be written in closed form as

LGrr) =18r—T), (2.62)

where the operator £ acts on each column of G separately and 1 is the unit dyad.
The dyadic function G fulfilling Eq. (2.62) is known as the dyadic Green’s function.

In a next step, assume that Eq. (2.62) has been solved and that G is known.
Postmultiplying Eq. (2.62) with B(r’) on both sides and integrating over the volume
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V in which B#0 gives

/ LG, r)BE)dV' = / B(r)5(r —r)dV’ . (2.63)
v 14
The right hand side simply reduces to B(r) and with Eq. (2.60) it follows that

LA®r) = / LG r)BrE)dV'. (2.64)
|4

If on the right hand side the operator £ is taken out of the integral, the solution of
Eq. (2.60) can be expressed as

Ar) = / G(r,r)Br)dV'. (2.65)
14

Thus, the solution of the original equation can be found by integrating the product
of the dyadic Green’s function and the inhomogeneity B over the source volume
V.

The assumption that the operators £ and [dV’ can be interchanged is not strictly
valid and special care must be applied if the integrand is not well behaved. Most
often G is singular at r = r’ and an infinitesimal exclusion volume surrounding
r =1’ has to be introduced [4, 5]. Depolarization of the principal volume must be
treated separately resulting in a term (f) depending on the geometrical shape of the
volume. Furthermore, in numerical schemes the principal volume has a finite size
giving rise to a second correction term commonly designated by M. As long as we
consider field points outside of the source volume V, i.e. r ¢ V, we do not need
to consider these tricky issues. However, the topic of the principal volume will be
taken up in later chapters.

2.10.2 Derivation of the Green’s function for the electric field

The derivation of the Green’s function for the electric field is most conveniently
accomplished by considering the time-harmonic vector potential A and the scalar
potential ¢ in an infinite and homogeneous space characterized by the constants ¢
and w. In this case, A and ¢ are defined by the relationships

E(r) = iwA() — V¢(r), (2.66)
H(r) = b V x A(r) . (2.67)
Mol

We can insert these equations into Maxwell’s second equation (2.26) and obtain

VX VxAr) = popj(r) —iopopsoeliwA(r) — Vo (r)], (2.68)
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where we used D = epeE. The potentials A, ¢ are not uniquely defined by
Egs. (2.66) and (2.67). We are still free to define the value of V - A which we
choose as

V-A(r) = iopoueoed(r). (2.69)
A condition that fixes the redundancy of Egs. (2.66) and (2.67) is called a gauge
condition. The gauge chosen through Eq. (2.69) is the so-called Lorentz gauge.

Using the mathematical identity V x Vx = —V2+VV. together with the Lorentz
gauge we can rewrite Eq. (2.68) as

[V2+ ]A®) = —pouj(), 2.70)

which is the inhomogeneous Helmholtz equation. It holds independently for each
component A; of A. A similar equation can be derived for the scalar potential ¢

[VZ+ 1] o) = —p(r)/eoe . (2.71)
Thus, we obtain four scalar Helmholtz equations of the form
[V2+ K] f(r) = —g(r). (2.72)

To derive the scalar Green’s function G(r, r’) for the Helmholtz operator we re-
place the source term g(r) by a single point source §(r—r’) and obtain

[VZ+,*]Go(r,¥) = —=8(x—T)). (2.73)

The coordinate r denotes the location of the field point, i.e. the point at which the
fields are to be evaluated, whereas the coordinate r’ designates the location of the
point source. Once we have determined G we can state the particular solution for
the vector potential in Eq. (2.70) as

Ar) = pop /j(r/) Go(r,r')dv’. (2.74)
v
A similar equation holds for the scalar potential. Both solutions require the knowl-
edge of the Green’s function defined through Eq. (2.73). In free space, the only
physical solution of this equation is [1]

H J
ei|k|r—r |

(2.75)

The solution with the plus sign denotes a spherical wave that propagates out of
the origin whereas the solution with the minus sign is a wave that converges to-
wards the origin. In the following we only retain the outwards propagating wave.
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The scalar Green’s function can be introduced into Eq. (2.74) and the vector po-
tential can be calculated by integrating over the source volume V. Thus, we are in
a position to calculate the vector potential and scalar potential for any given cur-
rent distribution j and charge distribution p. Notice that the Green’s function in
Eq. (2.75) applies only to a homogeneous three-dimensional space. The Green’s
function of a two-dimensional space or a half-space will have a different form.

So far we have reduced the treatment of Green’s functions to the potentials A
and ¢ because it allows us to work with scalar equations. The formalism becomes
more involved when we consider the electric and magnetic fields. The reason for
this is that a source current in the x-direction leads to an electric and magnetic field
with x-, y-, and z-components. This is different for the vector potential: a source
current in x only gives rise to a vector potential with an x-component. Thus, in
the case of the electric and magnetic fields we need a Green’s function that relates
all components of the source with all components of the fields, or, in other words,
the Green’s function must be a tensor. This type of Green’s function is denoted
as dyadic Green’s function and has been introduced in the previous section. To
determine the dyadic Green’s function we start with the wave equation for the
electric field Eq. (2.31). In a homogeneous space it reads as

V x VxE®r® — k*E®) = iopopj) . (2.76)

We can define for each component of j a corresponding Green’s function. For ex-
ample, for j, we have

V x VxG(r,v) — k*G(r,¥) = §(r—r)n, , .77)

where n, is the unit vector in the x-direction. A similar equation can be formulated
for a point source in the y- and z-directions. In order to account for all orientations

Figure 2.3 Illustration of the dyadic Green’s function G (r, r’). The Green’s func-
tion renders the electric field at the field point r due to a single point source j at
the source point r’. Since the field at r depends on the orientation of j the Green’s
function must account for all possible orientations in the form of a tensor.
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we write as the general definition of the dyadic Green’s function for the electric
field [6]

Vx VxGrr) —kGrr) =18 —r), (2.78)

i being the unit dyad (unit tensor). The first column of the tensor G corresponds
to the field due to a point source in the x-direction, the second column to the field
due to a point source in the y-direction, and the third column is the field due to a
point source in the z-direction. Thus a dyadic Green’s function is just a compact
notation for three vectorial Green’s functions.

As before, we can view the source current in Eq. (2.76) as a superposition of
point currents. Thus, if we know the Green’s function G we can state a particular
solution of Eq. (2.76) as

E(r) = ioupo / G, )jr)dv’ . (2.79)
\4

However, this is a particular solution and we need to add any homogeneous solu-
tions Eo. Thus, the general solution turns out to be

E) = Eo(r) + ia)uou/ é(r, r)j)dv’ reV. (2.80)
v

The corresponding magnetic field reads as

Hmzmm+f

[VX G, r/)] jaydv rev. 2.81)
\%

These equations are denoted as volume integral equations. They are very important
since they form the basis for various formalisms such as the “method of moments”,
the “Lippmann—Schwinger equation”, or the “coupled dipole method”. We have
limited the validity of the volume integral equations to the space outside the source
volume V' in order to avoid the apparent singularity of G at r=r'. This limitation
will be relaxed in later chapters.

In order to solve Egs. (2.80) and (2.81) for a given distribution of currents,
we still need to determine the explicit form of G. Introducing the Lorentz gauge
Eqg. (2.69) into Eq. (2.66) leads to

Er) = iw |:1 + %VV-] A(r) . (2.82)

The first column vector of é, i.e. Gy, defined in Eq. (2.77) is simply the electric
field due to a point source current j = (iwpo)~'8(r —r')n,. The vector potential
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originating from this source current is, according to Eq. (2.74),
A = (iw) ' Go(r,r)n,. (2.83)

Inserting this vector potential into Eq. (2.82) we find

1
G,(r,r) = |:1 + szV-:| Go(r,Y) n, , (2.84)
with similar expressions for G, and G.. The only remaining thing to do is to tie the
three solutions together to form a dyad. With the definition V - [Gy I]= VG the
dyadic Green’s function G can be calculated from the scalar Green’s function G
in Eq. (2.75) as

G, r) = [i’ +k12vv] Go(r, ¥). (2.85)

2.10.3 Time-dependent Green’s functions

The time dependence in the wave equations can be separated and the resulting har-
monic differential equation for the time behavior is easily solved. A monochro-
matic field can be represented in the form of Eq. (2.24) and any other time-
dependent field can be generated by a Fourier transform (sum of monochromatic
fields). However, for the study of ultrafast phenomena it is of advantage to retain
the explicit time behavior. In this case we have to generalize the definition of A and
¢ as’

E(r,1) = —%A(r, t) —Vo(r,t), (2.86)
H(r,1) = L V x A(r, 1), (2.87)
Kol

from which we find the time-dependent Helmholtz equation in the Lorentz gauge
(cf. Eq. (2.70))

5 n? 92 .
\Y BT A(r,t) = —popjr,t). (2.88)

A similar equation holds for the scalar potential ¢. The definition of the scalar

Green’s function is now generalized to

2 n2 82 / / / /
Ve — —— | Go(r, 1’5 t, 1) = =8(r—1r)s(—1t"). (2.89)
¢? 02

5 We assume a non-dispersive medium, i.e. e(w)=¢ and p(w)=pu.
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The point source is now defined with respect to space and time. The solution for
Gy is[1]

S(t/— [t:F§|r—r/|])

4 |r—r'|

Go(r,x'; t,1) = , (2.90)

where the minus sign is associated with the response at a time ¢ later than #’. Using
Gy we can construct the time-dependent dyadic Green’s function f} (r,x'; t,t)
similar to the previous case. Since we shall mostly work with time-independent
Green’s functions we avoid further details and refer the interested reader to special-
ized books on electrodynamics. Working with time-dependent Green’s functions
accounts for arbitrary time behavior but it is very difficult to incorporate disper-
sion. Time-dependent processes in dispersive media are more conveniently solved
using Fourier transforms of monochromatic fields.

2.11 Evanescent fields

Evanescent fields play a central role in nano-optics. The word evanescent derives
from the Latin word evanescere and has meanings like vanishing from notice or
imperceptible. Evanescent fields can be described by plane waves of the form
Ee!®™=*)_ They are characterized by the fact that at least one component of the
wavevector k describing the direction of propagation is imaginary. In the spatial
direction defined by the imaginary component of k the wave does not propagate
but rather decays exponentially. Evanescent fields are of major importance for the
understanding of optical fields that are confined to subwavelength dimensions. This
section discusses the basic properties of evanescent waves and introduces simple
experimental arrangements for their creation and measurement.

Evanescent waves never occur in a homogeneous medium but are inevitably
connected to the interaction of light with inhomogeneities [7]. The simplest case
of an inhomogeneity is a plane interface. Let us consider a plane wave impinging
on such a flat interface between two media characterized by optical constants ¢y,
w1 and &5, (o. As discussed in Section 2.8.1, the presence of the interface will
lead to a reflected wave and a refracted wave whose amplitudes and directions are
described by Fresnel coefficients and by Snell’s law, respectively.

To derive the evanescent wave generated by total internal reflection at the sur-
face of a dielectric medium, we refer to the configuration shown in Fig. 2.2. We
choose the x-axis to be in the plane of incidence. Using the symbols defined in
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Section 2.8.1, the complex transmitted field vector can be expressed as
—EP P (k,) k=, / k2
E, = EY (k) elfer k2 (2.91)
EY (k) k/ ko

which can be expressed entirely by the angle of incidence 6; using k, = k; sin 6.
With this substitution the longitudinal wavenumbers can be written as (cf.
Eq. (2.46))

k;, = kiy/1 — sin®6,, k., = kyy/1 — 7% sin® 6, (2.92)

where we introduced the relative index of refraction

(2.93)

For n > 1, with increasing 6, the argument of the square root in the expression
of k., gets smaller and smaller and eventually becomes negative. The critical angle
6. can be defined by the condition

[1 —i?sin6,] =0, (2.94)

which describes a refracted plane wave with zero wavevector component in the z-
direction (k;, = 0). Consequently, the refracted plane wave travels parallel to the
interface. Solving for 6, yields

6. = arcsin[1/n]. (2.95)
For a glass/air interface at optical frequencies, we have e, = 1, ¢y = 2.25, and
1 = pp = 1 yielding a critical angle 6, = 41.8°.
For 6; > 6, k., becomes imaginary. Expressing the transmitted field as a func-
tion of the angle of incidence 6 results in

—EP (0)) V72 sin?6, — 1
E2 — Egs) tp(gl) ei sin@ kyx efyz’ (296)
EP tP(6)) 7i sin 6;

where the decay constant y is defined by

y = koy/7% sin®6; — 1. (2.97)

This equation describes a field that propagates along the surface but decays expo-
nentially into the medium of transmittance. Thus, a plane wave incident at an angle
0 > 6. creates an evanescent wave. Excitation of an evanescent wave with a plane
wave at supercritical incidence (6, > 6.) is referred to as fotal internal reflection
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(a) 1 (b)

Figure 2.4 Excitation of an evanescent wave by total internal reflection. (a) An
evanescent wave is created in a medium if the plane wave is incident at an angle
61 > 6. (b) Actual experimental realization using a prism and a weakly focused
Gaussian beam.

(TIR). For the glass/air interface considered above and an angle of incidence of
6; = 45°, the decay constant is y = 2.22/X. This means that already at a distance
of ~)/2 from the interface, the time-averaged field is a factor of e smaller than
at the interface. At a distance of ~2A the field becomes negligible. The larger the
angle of incidence 6; the faster the decay will be. Note that the Fresnel coefficients
depend on 0;. For 6, > 6, they become complex numbers and, consequently, the
phase of the reflected and transmitted wave is shifted relative to the incident wave.
This phase shift is the origin of the so-called Goos—Hénchen shift. Furthermore, for
p-polarized excitation, it results in elliptic polarization of the evanescent wave with
the field vector rotating in the plane of incidence (see e.g. [8], and Problem 2.5).
Evanescent fields as described by Eq. (2.96) can be produced by directing a
beam of light into a glass prism as sketched in Fig. 2.4(b). Experimental verifica-
tion for the existence of this rapidly decaying field in the optical regime relies on
approaching a transparent body to within less than 1 /2 of the interface that supports
the evanescent field. As shown in Fig. 2.5, this can be accomplished, for example,
by using a sharp transparent fiber that converts the evanescent field at its tip into a
guided mode propagating along the fiber [9]. This measurement technique is called
photon scanning tunneling microscopy and will be discussed later in Chapter 5.
For p-polarized evanescent waves, the intensity of the evanescent wave can be
larger than that of the input beam. To see this we set z = 0 in Eq. (2.96) and
we write for an s- and a p-polarized plane wave separately the intensity ratio
|E2(z = 0)|/|E;(z = 0)|. This ratio is equal to the absolute square of the Fresnel
transmission coefficient 7. These transmission coefficients are plotted in Fig. 2.6
for the example of a glass/air interface. While for s-polarized light no field en-
hancement is observed, for p-polarized light the transmitted evanescent intensity is
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Figure 2.5 Spatial modulation of the standing evanescent wave along the propa-
gation direction of two interfering waves (x-axis) and the decay of the intensity
in the z-direction. The ordinate represents the measured optical power. From [9].

-0)

It [z

Angle of incidence 6, []

Figure 2.6 Intensity enhancement on top of a glass surface irradiated by a plane
wave with variable angle of incidence 6. For a p-polarized wave, the enhance-
ment peaks at the critical angle 6. = 41.8° marked by the vertical line.

up to a factor of 4 larger than the incoming intensity. The maximum enhancement
is found at the critical angle of TIR. The physical reason for this enhancement is
a surface polarization that is induced by the incoming plane wave which is also
represented by the boundary condition (2.41). A similar enhancement effect, but a
much stronger one, can be obtained when the glass/air interface is covered by a thin
layer of a noble metal. Here, so-called surface plasmon polaritons can be excited.
We will discuss this and similar effects in more detail in Chapter 12.
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2.11.1 Energy transport by evanescent waves

For non-absorbing media and for supercritical incidence, all the power of the inci-
dent wave is reflected. This effect coins the term total internal reflection (TIR). One
can anticipate that because no losses occur upon reflection at the interface there is
no net energy transport into the medium of transmittance. In order to prove this fact
we have to investigate the time-averaged energy flux across a plane parallel to the
interface. This can be done by considering the z-component of the Poynting vector
(cf. Eq. (2.57))

1 * *
(8). = ERe(ExHy — E,H) , (2.98)

where all fields are evaluated in the upper medium, i.e. the medium of transmit-
tance. Applying Maxwell’s equation (2.25) to the special case of a plane or evanes-
cent wave, allows us to express the magnetic field in terms of the electric field as

Vi () <]
H= | —/— xE| . (2.99)
topt [\ k

Introducing the expressions for the transmitted field components of E and H into
Eq. (2.98), it is straightforward to prove that (S). vanishes (Problem 2.4) and that
there is no net energy transport in the direction normal to the interface.

On the other hand, when considering the energy transport along the interface
({S),), a non-zero result is found:

(S)x = 1 E2lt2 sin 0, (|tS |2 ‘E(ls)
2V ey
Thus, an evanescent wave transports energy along the surface, in the direction of
the transverse wavevector.
The absence of a net energy flow normal to the surface does not mean that there is
no energy contained in an evanescent wave. For example, the local field distribution

2 2
+ | [P )e*zﬂ. (2.100)

can be mapped out by using the fluorescence of a single molecule as a local probe.
The rate R at which the fluorophore emits photons when excited by the optical
electric field is given by

R~ |p-EJ?, (2.101)

where p is the absorption dipole moment of the molecule. As an example, for
s-polarized fields the fluorescence rate of a molecule with a non-zero dipole com-
ponent along the y-axis at a distance z above the interface will be

2

R(z) ~ |*EY| 7277, (2.102)

6 Excitation of fluorescence using evanescent waves is quite popular in biological imaging. Since only a thin
slice of the sample is illuminated, background is drastically reduced. The technique is know as total internal
reflection fluorescence microscopy (TIRFM) [10].
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decaying twice as fast as the electric field itself. Notice that a molecule can be
excited even though the average Poynting vector vanishes.

2.11.2 Frustrated total internal reflection

Evanescent fields can be converted into propagating radiation if they interact with
matter [7]. This phenomenon is among the most important effects in near-field op-
tical microscopy since it explains how information about subwavelength structures
is transported into the far-field. We shall discuss the physics behind this conversion
by considering a very simple model. A plane interface will be used in order to cre-
ate an evanescent wave by TIR as before. A second parallel plane interface is then
advanced toward the first interface until the gap d is within the range of the typical
decay length of the evanescent wave. A possible way to realize this experimentally
is to close together two prisms with very flat or slightly curved surfaces as indi-
cated in Fig. 2.7(b). The evanescent wave then interacts with the second interface
and can be partly converted into propagating radiation. This situation is analogous
to quantum mechanical tunneling through a potential barrier. The geometry of the
problem is sketched in Fig. 2.7(a).

The fields are most conveniently expressed in terms of partial fields that are
restricted to a single medium. The partial fields in media 1 and 2 are written as

Figure 2.7 Transmission of a plane wave through a system of two parallel inter-
faces. In frustrated total internal reflection (FTIR), the evanescent wave created
at interface B is partly converted into a propagating wave by the interface A of a
second medium. (a) Configuration and definition of parameters. A, B: interfaces
between media 2, 3 and 1, 2, respectively. The reflected waves are omitted for
clarity. (b) Experimental set-up to observe frustrated total internal reflection.
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a superposition of incident and reflected waves, whereas for medium 3 there is
only a transmitted wave. The propagation character of these waves, i.e. whether
they are evanescent or propagating in either of the three media, can be determined
from the magnitude of the longitudinal wavenumber in each medium in analogy to
Eq. (2.92). The longitudinal wavenumber in medium j reads

ki = J&—& = kj\/1 — (ki /kp)?sin® 6, jef(l,2,3}, (2.103)

where k; = njky = nj(w/c) and n; = ,/g;i;. In the following a layered sys-
tem with n, < n3 < n; will be discussed, which includes the system sketched

in Fig. 2.7. This leads to three regimes for the angle of incidence in which the
transmitted intensity as a function of the gap width d shows different behavior:

1. For 6, < arcsin(n,/n;) or kj < nyko, the field is entirely described by prop-
agating plane waves. The intensity transmitted to a detector far away from
the second interface (far-field) will not vary substantially with gapwidth,
but will only show rather weak interference undulations.

2. For arcsin(ny/n;) < 6, < arcsin(ns/ny) or nokg < ky < nsko the partial
field in medium 2 is evanescent, but in medium (3) it is propagating. At the
second interface evanescent waves are converted into propagating waves.
The intensity transmitted to a remote detector will decrease strongly with
increasing gapwidth. This situation is referred to as frustrated total internal
reflection (FTIR).

3. For 6, > arcsin (n3/n;) or ky > n3ko the waves in layer (2) and in layer (3)
are evanescent and no intensity will be transmitted to a remote detector in
medium (3).

If we chose 6, such that case 2 is realized (FTIR), the transmitted intensity / (d)
will reflect the steep distance dependence of the evanescent wave(s) in medium 2.
However, as shown in Fig. 2.8, I (d) deviates from a purely exponential behavior
because the field in medium 2 is a superposition of two evanescent waves of the
form

cre V4 cpetrr, (2.104)

The second term originates from the reflection of the primary evanescent wave
(first term) at the second interface and its magnitude (c¢;) depends on the material
properties. This simple experiment illustrates the fact that in near-field optical ex-
periments the effect of the probe on the field distribution must never be neglected.
Figure 2.8 shows typical transmission curves for two different angles of incidence.
The figure also shows that the decay measured in FTIR deviates from a simple
exponential decay. In the next section, the importance of evanescent waves for the
rigorous theoretical description of arbitrary optical fields near sources or material
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Figure 2.8 Transmission of a system of three media with parallel interfaces as
a function of the gap d between the two interfaces. A p-polarized plane wave
excites the system. The material constants are n; = 2, np = 1, n3 = 1.51.
This leads to critical angles 6, of 30° and 49.25°. For angles of incidence 6;
between (a) 0° and 30° the gap dependence shows interference-like behavior (here
01 = 0°, dash-dotted line), for angles between (b) 30° and 49.25° the transmission
(monotonically) decreases with increasing gap width (here 6; = 35°, full line).
(c) Intensity of the evanescent wave in the absence of the third medium.

boundaries will be discussed. Mathematically, they are more difficult to deal with
than plane waves because they do not represent a system of orthogonal functions.

2.12 Angular spectrum representation of optical fields

The angular spectrum representation is a mathematical technique to describe op-
tical fields in homogeneous media. Optical fields are described as a superposition
of plane waves and evanescent waves which are physically intuitive solutions of
Maxwell’s equations. The angular spectrum representation is found to be a very
powerful method for the description of laser beam propagation and light focusing.
Furthermore, in the paraxial limit, the angular spectrum representation becomes
identical with the framework of Fourier optics which extends its importance even
further. We will use the angular spectrum representation extensively in Chapters 3
and 4 to discuss strongly focused laser beams and limits of spatial resolution.

By the angular spectrum representation we understand the series expansion of an
arbitrary field in terms of plane (and evanescent) waves with variable amplitudes
and propagation directions. Assume we know the electric field E(r) at any point
r = (x, y, z) in space. For example, E(r) can be the solution of an optical scattering
problem, as shown in Fig. 2.9, for which E = E;,; + Eg,. In the angular spectrum
picture, we draw an arbitrary axis z and consider the field E in a plane z = const.
transverse to the chosen axis. In this plane we can evaluate the two-dimensional
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Figure 2.9 In the angular spectrum representation the fields are evaluated in
planes (z = const.) perpendicular to an arbitrarily chosen axis z.

Fourier transform of the field E as
1 o0
E(k,, ky; z) = = // E(x, y, z) e v +hol gy gy | (2.105)

where x, y are the Cartesian transverse coordinates and k,, k, the corresponding
spatial frequencies or reciprocal coordinates. Similarly, the inverse Fourier trans-
form reads as

E(x,y,z) = /f E(k,, ky; z) el T00) dke dk, . (2.106)

Notice that in the notation of Eqs. (2.105) and (2.106) the field E = (Ey, E,, E.)
and its Fourier transform E = (I:A“X, E v I::Z) represent vectors. Thus, the Fourier
integrals hold separately for each vector component.

So far we have made no requirements about the field E, but we will assume that
in the transverse plane the medium is homogeneous, isotropic, linear and source-
free. Then, a time-harmonic, optical field with angular frequency w has to satisfy
the vector Helmholtz equation

(V2+kHE@T® = 0, (2.107)

where k is determined by k& = (w/c)n and n=,/ue is the index of refraction.
In order to get the time-dependent field E(r, ) we use the convention

E(r,?) = Re{E(r)e '’} . (2.108)
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Inserting the Fourier representation of E(r) (Eq. (2.106)) into the Helmholtz equa-
tion and defining

ke = JU2—k2—k?)  with Im{k.} =0, (2.109)

we find that the Fourier spectrum E evolves along the z-axis as
Bk, ky; z) = Bk, ky; 0) etike? (2.110)

The =+ sign specifies that we have two solutions that need to be superimposed: the
+ sign refers to a wave propagating into the half-space z > 0 whereas the — sign
denotes a wave propagating into z < 0. Equation (2.110) tells us that the Fourier
spectrum of E in an arbitrary image plane located at z = const. can be calculated
by multiplying the spectrum in the object plane at z = 0 by the factor exp(+ik.z).
This factor is called the propagator in reciprocal space. In Eq. (2.109) we defined
that the square root leading to k. renders a result with positive imaginary part.
This ensures that the solutions remain finite for z — o0. Inserting the result of
Eq. (2.110) into Eq. (2.106) we finally find for arbitrary z

o]
E(x,y,2) = // E(k,, ky; 0) ellor thoy k2] g ke (2.111)
—00

which is known as the angular spectrum representation. In a similar way, we can
also represent the magnetic field H by an angular spectrum as

H(x,y,z) = ff H(k,, ky; 0) ellher thy 2zl qr dk, (2.112)

—00

By using Maxwell’s equation H = (iwpuo) ™' (V x E) we find the following
relationship between the Fourier spectra E and H

A = Z [k/0E. — (/0 E\], 2.113)
1, = Z (k) b) Ex — (ke/B) E-],
A = Z (k)0 Ey— (ky/K) E]

where Z . = /(o) /(g0¢) is the wave impedance of the medium. Although the
angular spectra of E and H fulfill Helmholtz equation they are not yet rigorous
solutions of Maxwell’s equations. We still have to require that the fields are diver-
gence free, i.e. V-E = 0 and V-H = 0. These conditions restrict the k-vector to
directions perpendicular to the spectral amplitudes k-E=k-H = 0).
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For the case of a purely dielectric medium with no losses the index of refrac-
tion n is a real and positive quantity. The wavenumber k, is then either real or
imaginary and turns the factor exp(z£ik,z) into an oscillatory or exponentially de-
caying function. For a certain (k, k,) pair we then find two different characteristic
solutions

Plane waves : el ke +h ] gilklz K2+ k2 < k?
’ LT (2.114)
Evanescent waves : el kol g=lkallz] ki + k3 > k2.

Hence, we find that the angular spectrum is indeed a superposition of plane waves
and evanescent waves. Plane waves are oscillating functions in z and are restricted
by the condition kf + ki < k2. On the other hand, for kf + k? > k% we encounter
evanescent waves with an exponential decay along the z-axis. Figure 2.10 shows
that the larger the angle between the k-vector and the z-axis is, the larger the oscil-
lations in the transverse plane will be. A plane wave propagating in the direction of
z has no oscillations in the transverse plane (kﬁ +k§ =0), whereas, in the other limit,
a plane wave propagating at a right angle to z shows the highest spatial oscillations
in the transverse plane (k7 + k3 =k?). Even higher spatial frequencies are covered
by evanescent waves. In principle, an infinite bandwidth of spatial frequencies can
be achieved. However, the higher the spatial frequencies of an evanescent wave are,
the faster the field decay along the z-axis will be. Therefore, practical limitations
make the bandwidth finite.

(a) z (b) z (© k
0y

ke k | x  plane waves k= K2

_\WW\ M
¢ k. O\ e ke
VAN
evanescent waves
. |

Figure 2.10 (a) Representation of a plane wave propagating at an angle ¢ to the
z axis. (b) Illustration of the transverse spatial frequencies of plane waves inci-
dent from different angles. The transverse wavenumber (k% + kL2 depends on
the angle of incidence and is limited to the interval [0...k]. (c) The transverse
wavenumbers ky, ky of plane waves are restricted to a circular area with radius k.
Evanescent waves fill the space outside the circle.
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2.12.1 Angular spectrum representation of the dipole field

Strongly localized sources such as dipoles are most conveniently described in a
spherical coordinate system. The corresponding solutions of the wave equation are
called multipoles. In order to couple these solutions with the angular spectrum pic-
ture we need to express the localized sources in terms of plane waves and evanes-
cent waves. Let us start with the vector potential A of an oscillating dipole with its
axis aligned along an arbitrary z-axis. The vector potential can be expressed as a
one-component vector field as (cf. Eq. (2.83))

_ikZus eik\/x2+yz-0—z2
- n,. (2.115)
47 /XZ + y2 + 72
Besides a constant factor, the expression on the right hand side corresponds to the

scalar Green’s function (2.75). According to Egs. (2.67) and (2.82) the electric and
magnetic fields are obtained from A as

A(x,y,z) = Ax,y,2)n;, =

1
E(x,y,2) = iw (l + EVV) A(x,y,2), (2.116)
1
H(x,y,z) = —V xA(x,y,2). 2.117)
Mokt

Thus, the electromagnetic field of the dipole can be constructed from the function
exp(ikr)/r, where r = (x? 4+ y? + z2)!/? is the radial distance from the dipole’s
origin. To find an angular spectrum representation of the dipole’s electric and mag-
netic field we need first to find the angular spectrum of the function exp(ikr)/r.
This is not a trivial task because the function exp(ikr)/r is singular at » = 0 and
therefore not divergence free at its origin. The homogeneous Helmholtz equation
is therefore not valid in the present case. Nevertheless, using complex contour in-
tegration it is possible to derive an angular spectrum representation of the function
exp(ikr)/r. Since the derivation can be found in other textbooks [11] we state here
only the result, which is
eika/xHy 422 i o eikvtikyyik 2]
// ——dk, dk, . (2.118)

Jt2 2m k.
—00
We have to require that the real and imaginary parts of k. stay positive for all values
of ky, k, in the integration. The result (2.118) is known as the Weyl identity [12]. In
Chapter 10 we shall use the Weyl identity to calculate dipole emission near planar
interfaces.
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(3]
(4]
(5]
(6]

[7]

(8]

References 43

Problems

Derive the dyadic Green’s function G by substituting the scalar Green’s function G
into Eq. (2.85). Discuss the distance dependence |r — r/|.

Consider an interface between two media 1 and 2 with dielectric constants

&1 = 2.25 and & = 1, respectively. The magnetic permeabilities are equal to one. A
p-polarized plane wave with wavelength A = 532 nm is incident from medium 1 at
an angle of incidence of 6;. Express the Fresnel reflection coefficient in terms of
amplitude A and phase ®. Plot A and & as a function of 6;. What are the
consequences for the reflected wave?

Consider the refraction of a plane wave at a plane interface and derive Snell’s law by
using the invariance of the transverse wavevector k.

Show that the z-component of the time-averaged Poynting vector (S), vanishes for
an evanescent field propagating in the x-direction.

Analyze the polarization state of an evanescent field propagating in the x-direction
created by total internal reflection of a p-polarized plane wave. Calculate the
time-dependent electric field Eo (x, 1) = (E3,y(x, 1), 0, E2 - (x, t)) just on top of the
interface (z = 0). For a fixed position x, the electric field vector E; defines a curve
in the (x, z) plane as the time runs from O to A /c. Determine and plot the shape of
these curves as a function of the position x. For numerical values choose 6; = 60°,
n=1.5.

Calculate the transmitted intensity for a system of two glass half-spaces (n = 1.5)
separated by an air gap (d) and as a function of the angle of incidence 6. Determine
the transmission function for s-polarized excitation. Normalize the transmission
function with the value obtained for #; = 0°. Repeat for p-polarized excitation.
Derive Eq. (2.110) by inserting the inverse Fourier transform in Eq. (2.106) into the
Helmbholtz equation (2.107). Assume that the Fourier spectrum is known in the
plane z =0. R

Using the Weyl identity (2.118), derive the spatial spectrum E (ky, ky; z) of an
electric dipole at ro = (0, 0, zg) with dipole moment . = (u, 0, 0). Consider the
asymptotic limit z — 0o and solve for the electric field E.
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3

Propagation and focusing of optical fields

In this chapter we use the angular spectrum representation outlined in Section 2.12
to discuss field distributions in strongly focused laser beams. The same formalism
is applied to understand how the fields in a given reference plane are mapped to the
far-field. The theory is relevant for the understanding of confocal and multiphoton
microscopy, single-emitter experiments, and the understanding of resolution limits.
It also defines the framework for different topics to be discussed in later chapters.

3.1 Field propagators

In Section 2.12 we have established that, in a homogeneous space, the spatial spec-
trum E of an optical field E in a plane z = const. (image plane) is uniquely defined
by the spatial spectrum in a different plane z = 0 (object plane) according to the
linear relationship

E(k,, ky: ) = H(k,, ky; 2) E(ky, ky; 0) . 3.1

where H is the so-called propagator in reciprocal space

Hky, ky; 2) = etiker, (3.2)

also referred to as the optical transfer function (OTF) in free space. Remember that
the longitudinal wavenumber is a function of the transverse wavenumber, i.e. k, =
[k* — (ki + k2)]'/?, where k = nky = nw/c = n2m/A. The + sign indicates
that the field can propagate in positive and/or negative z direction. Equation (3.1)
can be interpreted in terms of linear response theory: E‘(k,\-, ky; 0) is the input, H
is a filter function, and I::(kx, ky; z) is the output. The filter function describes the
propagation of an arbitrary spectrum through space. H can also be regarded as the
response function because it describes the field at z due to a point source at z = 0.
In this sense, it is directly related to the Green’s function &

45
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The filter A is an oscillating function for (k2 + k)z,) < k? and an exponentially
decreasing function for (kf + k}z,) > k2. Thus, if the image plane is sufficiently
separated from the object plane, the contribution of the decaying parts (evanescent
waves) is zero and the integration can be reduced to the circular area (k7 +k3) < k>.
In other words, the image at z is a low pass filtered representation of the original
field at z = 0. The spatial frequencies (k2 + k2) > k2 of the original field are
filtered out during propagation and the information on high spatial variations gets
lost. Hence, there is always a loss of information on propagating from near- to
far-field and only structures with lateral dimensions larger than

- (3.3)

can be imaged with sufficient accuracy. Here, n is the index of refraction. This
equation is qualitative and we will provide a more detailed discussion in Chap-
ter 4. In general, higher resolution can be obtained by a higher index of refrac-
tion of the embodying system (substrate, lenses, etc.) or by shorter wavelengths.
Theoretically, resolutions down to a few nanometers can be achieved by using far-
ultraviolet radiation or X-rays. However, X-rays do cause damage to many sam-
ples. Furthermore, they are limited by the poor quality of lenses and do not provide
the wealth of information of optical frequencies. The central idea of near-field op-
tics is to increase the bandwidth of spatial frequencies by retaining the evanescent
components of the source fields.

Let us now determine how the fields themselves evolve. For this purpose we
denote the transverse coordinates in the object plane at z = 0 as (x’, ¥') and in the
image plane at z = const. as (x, y). The fields in the image plane are described
by the angular spectrum (2.111). We just have to express the Fourier spectrum
E(k,, ky; 0) in terms of the fields in the object plane. Similarly to Eq. (2.105) this
Fourier spectrum can be represented as

o0
A l H ! a 7/
Bk, ky: 0 = H/f E(x, ', 0) e e w60l qydy . (3.4
—00

After inserting into Eq. (2.111) we find the following expression for the field E in
the image plane z = const.

o0 o0
1 ) . , i L
Ex,y,z) = mf/ E@', y'; 0) // eilby =x)+ky =y ko2l g0 dy’ dk, dk,
—00 —0Q

= E(x,y;0) «x H(x,y;2) . 3.5)
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This equation describes an invariant filter with the following impulse response
(propagator in direct space)

o0
Hx.y:2) = /fei[k"’”">’—"ik:ﬂ k. dk, . (3.6)
—00

H is simply the inverse Fourier transform of the propagator in reciprocal space H
(3.2). The field at z = const. is represented by the convolution of H with the field
at z=0.

3.2 Paraxial approximation of optical fields

In many optical problems the light fields propagate along a certain direction z
and spread out only slowly in the transverse direction. Examples are laser beam
propagation or optical waveguide applications. In these examples the wavevectors
k = (ky, ky, k) in the angular spectrum representation are almost parallel to the
z-axis and the transverse wavenumbers (k,, k,) are small compared to k. We can
then expand the square root of Eq. (2.109) in a series as

k:+ k3
ke = k1= (&2 +kH/k*> ~ k — % (3.7

This approximation is called the paraxial approximation and it considerably sim-
plifies the analytical integration of the Fourier integrals. In the following we shall
apply the paraxial approximation to find a description for weakly focused laser
beams.

3.2.1 Gaussian laser beams

We consider a fundamental laser beam with a linearly polarized, Gaussian field
distribution in the beam waist

2442

E(,y,0) = E,e "0, (3.8)

where E, is a constant field vector in the transverse (x, y) plane. We have chosen
z = 0 at the beam waist. The parameter w, denotes the beam waist radius. We can
calculate the spatial Fourier spectrum at z = 0 as'

0o 2,2
A 1 - A )
E(k,\', ky; O) = 7472'2 f/ Eoe “'(% e_l”‘“ +kyy'l dx’ dy’
—00
2 2
= By 20 -0+ (3.9)
47

1 [20, exp(—ax? +ibx) dx = /m/a exp(=b?/4a) and [0 x exp(—ax? +ibx) dx = iby/T exp(—b?/4a)/
(a3/?)
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which is again a Gaussian function. We now insert this spectrum into the angular
spectrum representation Eq. (2.111) and replace k, by its paraxial expression in
Eq. 3.7)

2
wy

(o]
2 .
E(x,y,2) = Eg —:’0 elts f/ e WHDEE 5D itk +hol gk dk, , (3.10)
g
—00

This equation can be integrated and gives as a result the familiar paraxial represen-
tation of a Gaussian beam
EO eikz _ (J2+2>'2) 1

E(x, vy, — e w} (l+2i:/kw(2)). 311
Y2 = T i ke G0

To get a better feeling for a paraxial Gaussian beam we set p?> = x% 4 y?, define a
new parameter z as

kwg (3.12)
0 = — , .
0 2
and rewrite Eq. (3.11) as
E(p, 2) = By —% ¢ w cilkne)Hn?/2RC)) (3.13)
’ w(z)
with the following abbreviations
w(z) = wo(l+2%/z3)"/*  beam radius (3.14)
R(z) = z(1+ z%/zz) wavefront radius
n(z) = arctanz/zg phase correction

The transverse size of the beam is usually defined by the value of p = /x2 + y?2
for which the electric field amplitude has decreased to a value of 1/e of its center
value

IE(x, y,2)|/|E,0,2)] = 1/e. (3.15)

It can be shown that the surface defined by this equation is a hyperboloid whose
asymptotes enclose an angle
2

0 = — 3.16
Fan (3.16)

with the z-axis. From this equation we can directly find the correspondence be-
tween the numerical aperture (NA = 7 sinf) and the beam angle as NA =~
2n/kwo. Here we used the fact that in the paraxial approximation, 6 is restricted to
small beam angles. Another property of the paraxial Gaussian beam is that close
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Figure 3.1 Illustration and main characteristics of a paraxial Gaussian beam. The
beam has a Gaussian field distribution in the transverse plane. The surfaces of
constant field strength form a hyperboloid along the z-axis.

to the focus, the beam stays roughly collimated over a distance 2z. zq is called the
Rayleigh range and denotes the distance from the beam waist to where the beam
radius has increased by a factor of /2. It is important to notice that along the z-axis
(p = 0) the phases of the beam deviate from those of a plane wave. If at z - —o0
the beam was in phase with a reference plane wave, then at z — +o00 the beam
will be exactly out of phase with the reference wave. This phase shift is called
Gouy phase shift and has practical implications in nonlinear confocal microscopy
[1]. The 180° phase change happens gradually as the beam propagates through its
focus. The phase variation is described by the factor n(z) in Eq. (3.14). The tighter
the focus the faster the phase variation will be.

A qualitative picture of a paraxial Gaussian beam and some of its characteris-
tics are shown in Fig. 3.1 and more detailed descriptions can be found in other
textbooks [2, 3]. It is important to notice that once the paraxial approximation is
introduced, the field E fulfills no longer Maxwell’s equations. The error becomes
larger the smaller the beam waist radius wy is. When wg becomes comparable to the
reduced wavelength A/n we have to include higher-order terms in the expansion
of k, in Eq. (3.7). However, the series expansion converges very badly for strongly
focused beams and one needs to find a more accurate description. We shall return
to this topic at a later stage.

Another important aspect of Gaussian beams is that they do not exist, no mat-
ter how rigorous the theory that describes them! The reason is that a Gaussian
beam profile demands a Gaussian spectrum. However, the Gaussian spectrum is
infinite and contains evanescent components that are not available in a realistic sit-
uation. Thus, a Gaussian beam must always be regarded as an approximation. The
tighter the focus, the broader the Gaussian spectrum and the more contradictory
the Gaussian beam profile will be. Hence, it actually does not make much sense to
include higher-order corrections to the paraxial approximation.
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3.2.2 Higher-order laser modes

A laser beam can exist in different transverse modes. It is the laser cavity that deter-
mines which type of transverse mode is emitted. The most commonly encountered
higher beam modes are Hermite—Gaussian and Laguerre—Gaussian beams. The for-
mer are generated in cavities with rectangular end mirrors whereas the latter are
observed in cavities with circular end mirrors. In the transverse plane, the fields of
these modes extend over larger distances and have sign variations in the phase.
Since the fundamental Gaussian mode is a solution of a linear homogeneous
partial differential equation, namely the Helmholtz equation, any combinations of
spatial derivatives of the fundamental mode are also solutions to the same differen-

tial equation. Zauderer [4] pointed out that Hermite-Gaussian modes E!  can be
generated from the fundamental mode E according to
H +m 9" 9"
n-+m
E, (&, y,2) = w way—m E(x,y,2), (3.17)

where n, m denote the order and degree of the beam. Laguerre—Gaussian modes
EL . are derived in a similar way as

N LA B I ik
E];m(x,y,z) = k" wé"”" elks % (8x+18y> {E(x,y,z)e ‘k‘} . (3.18)

Thus, any higher-order modes can be generated by simply applying Egs. (3.17)
and (3.18). It can be shown that Laguerre-Gaussian modes can be generated as a
superposition of a finite number of Hermite—Gaussian modes and vice versa. The
two sets of modes are therefore not independent. Note that the parameter wy only
represents the beam waist for the Gaussian beam and that for higher-order modes
the amplitude Ey does not correspond to the field at the focal point. Figure 3.2
shows the fields in the focal plane (z = 0) for the first four Hermite—Gaussian
modes. As indicated by the arrows, the polarizations of the individual maxima are
either in phase or 180° out of phase with each other.

The commonly encountered doughnut modes with a circular intensity profile
can be described by a superposition of Hermite—Gaussian or Laguerre—Gaussian
modes. Linearly polarized doughnuts are simply defined by the fields Ef; or E},.
An azimuthally polarized doughnut mode is a superposition of two perpendicularly
polarized Ef| fields and a radially polarized doughnut mode is a superposition of
two perpendicularly polarized E!} fields.

3.2.3 Longitudinal fields in the focal region

The paraxial Gaussian beam is a transverse electromagnetic (TEM) beam, i.e. it
is assumed that the electric and magnetic fields are always transverse to the
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(a) (b)

(d)

Figure 3.2 Intensity (IE|?) in the focal plane (z = 0) of the first four Hermite—
Gaussian modes. (a) (00) mode (Gaussian mode), (b) (10) mode, (c) (01) mode,
and (d) (11) mode. The wavelength and beam angle are A = 800 nm and
6 = 28.65°, respectively. The arrows indicate the polarization direction of the
individual lobes. A linear scaling is used between contour lines.

propagation direction. However, in free space the only true TEM solutions are
infinitely extended fields such as plane waves. Therefore, even a Gaussian beam
must possess field components polarized in the direction of propagation. In order
to estimate these longitudinal fields we apply the divergence condition V - E = 0
to the x-polarized Gaussian beam, i.e.

E. = —/[BEX] dz. 3.19)
ox

E . can be derived using the angular spectrum representation of the paraxial Gaus-
sian beam Eq. (3.10). In the focal plane z = 0 we obtain

2
E.(x,y,0) = —i-—5 E,(x,,0) , (3.20)
kwg

where E, corresponds to the Gaussian beam profile defined in Eq. (3.8). The
prefactor shows that the longitudinal field is 90° out of phase with respect to
the transverse field and that it is zero on the optical axis. Its magnitude de-
pends on the tightness of the focus. Figures 3.3 and 3.4 show the calculated total
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Figure 3.3 Fields of the Gaussian beam depicted in the polarization plane (x, z).
The wavelength and beam angle are A = 800 nm and 6 = 28.65°, respectively.
(a) Time dependent power density; (b) total electric field intensity (IE[%); (c) lon-
gitudinal electric field intensity (|E; 1%). A linear scaling is used between contour
lines.

and transverse electric field distribution for the Gaussian beam and the Hermite—
Gaussian (10) beam, respectively. While the longitudinal electric field of the fun-
damental Gaussian beam is always zero on the optical axis it shows two lobes to
the sides of the optical axis. Displayed on a cross-section through the beam waist,
the two lobes are aligned along the polarization direction. The longitudinal elec-
tric field of the Hermite—Gaussian (10) mode, on the other hand, has its maximum
at the beam focus with a much larger field strength. This longitudinal field qual-
itatively follows from the 180° phase difference and the polarization of the two
corresponding field maxima in Fig. 3.2, since the superposition of two similarly
polarized plane waves propagating at angles £¢ to the z-axis with 180° phase dif-
ference also leads to a longitudinal field component. It has been proposed to use the
longitudinal fields of the Hermite—Gaussian (10) mode to accelerate charged par-
ticles along the beam axis in linear particle accelerators [5]. The longitudinal (10)
field has also been applied to image the spatial orientation of molecular transition
dipoles [6, 7]. In general, the (10) mode is important for all experiments that re-
quire the availability of a longitudinal field component. We shall see in Section 3.6
that the longitudinal field strength of a strongly focused higher-order laser beam
can even exceed the transverse field strength.



3.3 Polarized electric and polarized magnetic fields 53

x3

(@) ©)

z
J—»X Ium

Figure 3.4 Fields of the Hermite—Gaussian (10) mode. Same scaling and defini-
tions as in Fig. 3.3.

3.3 Polarized electric and polarized magnetic fields

If we send an optical beam through a polarizer, we eliminate one of the two trans-
verse field components. The transmitted field is then called polarized electric.

In fact, any propagating optical field can be split into a polarized electric (PE)
and a polarized magnetic (PM) field

E =E + E?M | (3.21)

For a PE field, the electric field is linearly polarized when projected on the trans-
verse plane. Similarly, for a PM field the magnetic field is linearly polarized when
projected on the transverse plane. Let us first consider a PE field for which we can
choose EFE = (E,, 0, E.). Requiring that the field is divergence free (V-EPE = 0)
we find that

A ky »
Ez(kxz ky; 0) = _/; Ex(kxv ky; 0) s (322)

which allows us to express the fields EPE, HPE in the form

TR 1 - )
E"(x,y,2) = /f Ey(ke. ky: 0) - [kom —konc] B0 =5 dg, dky, - (3.23)

—00
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o0
. 1
H™(x, y,2) = Z,! / / E (ky, ky; 0) E[—kxkynx—l—(kf + k2)n, (3.24)
_ k‘}{?nz] eillor by £k g g

where n,, n,, n; are unit vectors along the x, y, z axes. To derive HE we used the
relations in Eq. (2.113).

To derive the corresponding PM fields we require that H"™™ = (0, H,, H.). After
following the same procedure as before one finds that in the PM solution the ex-
pressions for the electric and magnetic fields are simply interchanged

s 1
E™M(x,y,2) = Z, f/ H,y(ky, ky; 0) m[(k§+kf)nx—kxkyny (3.25)
+hen, el FhyER2 g dk,
T 1 ‘
H™(x,y,2) = /f Hy (ke ky: 0) = lhomy —kymJelthe Hoy 25T dk, d,

(3.26)

It is straightforward to demonstrate that in the paraxial limit the PE and PM solu-
tions are identical. In this case they become identical with a TEM solution.

The decomposition of an arbitrary optical field into a PE and a PM field has
been achieved by setting one transverse field component to zero. The procedure is
similar to the commonly encountered decomposition into transverse electric (TE)
and transverse magnetic (TM) fields for which one longitudinal field component is
set to zero (see Problem 3.2).

3.4 Far-fields in the angular spectrum representation

In this section we will derive the important result that Fourier Optics and Geomet-
rical Optics naturally emerge from the angular spectrum representation.

Consider a particular (localized) field distribution in the plane z = 0. The angu-
lar spectrum representation tells us how this field propagates and how it is mapped
onto other planes z = z(. Here, we ask what the field will be in a very remote plane.
Vice versa, we can ask what field will result when we focus a particular far-field
onto an image plane. Let us start with the familiar angular spectrum representation
of an optical field

00
E(x, y,2) = f / E(k,, ky; 0) el thyEksl qr d, (3.27)

—00
We are interested in the asymptotic far-zone approximation of this field, i.e. in the
evaluation of the field in a point r =r, at infinite distance from the object plane.



3.4 Far-fields in the angular spectrum representation 55

The dimensionless unit vector s in the direction of r, is given by
Xy z
S = (Sx, §y,8;) = (7, =, 7) , (3.28)
roror
where = (x2 4 y% + z2)'/2 is the distance of r,, from the origin. To calculate the
far-field E, we require that 7 — oo and rewrite Eq. (3.27) as

N ke ky .
Ex(si,8,,5:) = lim // Bk, ky; 0) e Urst TotEsl g dk, . (3.29)

r— 00
(k2+k3)<k?
Because of their exponential decay, evanescent waves do not contribute to the
fields at infinity. We therefore rejected their contribution and reduced the integra-
tion range to (k7 + k}) < k*. The asymptotic behavior of the double integral as
kr — oo can be evaluated by the method of stationary phase. For a clear outline of
this method we refer the interested reader to Chapter 3.3 of Ref. [3]. Without going
into details, the result of Eq. (3.29) can be expressed as
ikr

Eoo(sy. 5y.5:) = —2miks, B(ks,, ks,; 0) (3.30)

P
This equation tells us that the far-fields are entirely defined by the Fourier spectrum
of the fields l:j(kx, ky; 0) in the object plane if we replace k, — ks, and k, — ks,.
This simply means that the unit vector s fulfills
ke ky ke

S:(S)C?Sy’ ;) = <?’ ?, ?) , (3.31)
which implies that only one plane wave with the wavevector k = (k,, k,, k.) of
the angular spectrum at z = 0O contributes to the far-field at a point located in the
direction of the unit vector s. The effect of all other plane waves is cancelled by
destructive interference. This beautiful result allows us to treat the field in the far-
zone as a collection of rays with each ray being characterized by a particular plane
wave of the original angular spectrum representation (Geometrical optics). Com-
bining Egs. (3.30) and (3.31) we can express the Fourier spectrum E in terms of
the far-field as

R ir e ik
E(kxv ky; O) = W Eoo(kx, ky)s (332)

keeping in mind that the vector S is entirely defined by k,, k,. This expression can
be substituted into the angular spectrum representation (Eq. 3.27) as

1 a—ikr . 1
E(x.y.2) = “— / / Euo(k, ky) el Hho=hel = dkdk,y. | (3.33)

(k24k3)<k?
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Thus, as long as evanescent fields are not part of our system then the field E and its
far-field E,, form essentially a Fourier transform pair at z = 0. The only deviation
is given by the factor 1/k,. In the approximation k, = k, the two fields form a
perfect Fourier transform pair. This is the limit of Fourier Optics.

As an example consider the diffraction at a rectangular aperture with sides 2L,
and 2L, in an infinitely thin conducting screen which we choose to be our object
plane (z =0). A plane wave illuminates the aperture at normal incidence from the
back. For simplicity we assume that the field in the object plane has a constant field
amplitude E, whereas the screen blocks all the field outside of the aperture. The
Fourier spectrum at z =0 is then

~ E, [t [th Sk 4 ky Y] 4t A
Bk, ky; 0) = —2 eilked T4 4 dy
47'[2 _L, _L
y X
- L.L, sin(k, Ly) sin(ky Ly) ’ (3.34)
w2 ky Ly ky L,
With Eq. (3.30) we now determine the far-field as
2L, L, sin(ks, Ly) sin(ksy L,) e*"
Eaos0, 5y, 52) = —iks.By by S L) sinsy ) €205 55

ks, L, ksy Ly

which, in the paraxial limit k, & k, agrees with Fraunhofer diffraction.

Equation (3.30) is an important result. It links the near-fields of an optical prob-
lem with the corresponding far-fields. While in the near-field a rigorous description
of fields is necessary, the far-fields are well approximated by the laws of Geomet-
rical Optics.

3.5 Focusing of fields

The limit of classical light confinement is achieved with highly focused laser
beams. Such beams are used in fluorescence spectroscopy to investigate molec-
ular interactions in solutions and the kinetics of single molecules on interfaces [6].
Highly focused laser beams also play a key role in confocal microscopy and op-
tical data storage, where resolutions on the order of 1/4 are achieved. In optical
tweezers, focused laser beams are used to trap particles and to move and position
them with high precision [8]. All these fields require a theoretical understanding of
strongly focused light.

The fields of a focused laser beam are determined by the boundary conditions of
the focusing optical element and the incident optical field. In this section we will
study the focusing of a paraxial optical field by an aplanatic optical lens as shown
in Fig. 3.5. In our theoretical treatment we will follow the theory established by
Richards and Wolf [9, 10]. The fields near the optical lens can be formulated by
the rules of Geometrical Optics. In this approximation the finiteness of the optical



3.5 Focusing of fields 57

n n

Einc

——|

‘ S

Figure 3.5 Focusing of a laser beam by an aplanatic lens.

wavelength is neglected (k — 00) and the energy is transported along light rays.
The average energy density is propagated with the velocity v = ¢/n in the direction
perpendicular to the geometrical wavefronts. To describe an aplanatic lens we need
two rules: (1) the sine condition and (2) the intensity law. These rules are illustrated
in Fig. 3.6. The sine condition states that each optical ray which emerges from or
converges to the focus F of an aplanatic optical system intersects its conjugate ray
on a sphere of radius f (Gaussian reference sphere), where f is the focal length
of the lens. By conjugate ray, one understands the refracted or incident ray that
propagates parallel to the optical axis. The distance & between the optical axis and
the conjugate ray is given by

h = fsin(9) , (3.36)

0 being the divergence angle of the conjugate ray. Thus, the sine condition is a
prescription for the refraction of optical rays at the aplanatic optical element. The
intensity law is nothing but a statement of energy conservation: the energy flux
along each ray must remain constant. As a consequence, the electric field strength
of a spherical wave has to scale as 1/r, r being the distance from the origin.
The intensity law ensures that the energy incident on the aplanatic lens equals
the energy that leaves the lens. We know that the power transported by a ray is
P =(1/2)Z,;}*|E|*dA, where Z,,, is the wave impedance and dA is an infinites-
imal cross-section perpendicular to the ray propagation. Thus, as indicated in the
figure, the fields before and after refraction must fulfill

Ey| = |E1|‘/%\/% cos'’26 | (3.37)
2 1

Since in practically all media the magnetic permeability at optical frequencies is
equal to one (= 1), we will drop the term 4/, /; for the sake of more convenient
notation.
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Figure 3.6 (a) Sine condition of Geometrical Optics. The refraction of light rays
at an aplanatic lens is determined by a spherical surface with radius f. (b) Inten-
sity law of Geometrical Optics. The energy carried along a ray must stay constant.

Using the sine condition, our optical system can be represented as shown in
Fig. 3.7. The incident light rays are refracted by the reference sphere of radius f.
We denote an arbitrary point on the surface of the reference sphere as (xXo0, Yoo, Zoo)
and an arbitrary field point near the focus by (x, y, z). The two points are also
represented by the spherical coordinates (f, 8, ¢) and (r, ¥, ), respectively.

To describe refraction of the incident rays at the reference sphere we introduce
the unit vectors n,, ng, and ng, as shown in Fig. 3.7. n, and ny are the unit vec-
tors of a cylindrical coordinate system, whereas ny together with ng4 represent unit
vectors of a spherical coordinate system. We recognize that the reference sphere
transforms a cylindrical coordinate system (incoming beam) into a spherical co-
ordinate system (focused beam). Refraction at the reference sphere is most conve-
niently calculated by splitting the incident vector E;;,. into two components denoted
as E® and E. The indices (s) and (p) stand for s-polarization and p-polarization,

mc inc*

respectively. In terms of the unit vectors we can express the two fields as

E. = [Enc-ng]ny,  Ef) = [Enc-n,]n,. (3.38)
As shown in Fig. 3.7 these two fields refract at the spherical surface differently.
While the unit vector ng remains unaffected, the unit vector n, is mapped into ng.
Thus, the total refracted electric field, denoted by E,, can be expressed as

n
Eoo = [ts [Einc . n¢] ny + tP [Einc . np] ng] \/;;(COS 9)1/2 . (339)

For each ray we have included the corresponding transmission coefficients #* and
t? as defined in Egs. (2.50). The factor outside the brackets is a consequence of the
intensity law to ensure energy conservation. The subscript oo was added to indicate
that the field is evaluated at a large distance from the focus (x, y, z) = (0, 0, 0).
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Figure 3.7 Geometrical representation of the aplanatic system and definition of
coordinates.

The unit vectors n,, ng, Ny can be expressed in terms of the Cartesian unit vec-
tors n,, n,, n; using the spherical coordinates 6 and ¢ defined in Fig. 3.7.

n, = cos¢n, + singn,, (3.40)
ng = —singn, + cosén,, (3.41)
ng = cosf cos¢n, + cosf singn, — siné n; . (3.42)

Inserting these vectors into Eq. (3.39) we obtain

—sing —sing m
Eo(0,¢) = t°0) | Einc(0,¢) - | cosg cos ¢ \/j(cos 6)!/2
0 0 "

cos ¢ cos ¢ cos@ m
+1P0) | Einc (8, @) - | sing sing cosf | /= (cos6)'/2
. ny
0 —sinf
(3.43)

which is the field in Cartesian vector components just to the right of the refer-
ence sphere of the focusing lens. We can also express E., in terms of the spatial
frequencies k. and k, by using the substitutions

ky = ksin® cos ¢, ky =ksinf sin¢, k, =kcosf . (3.44)

The resulting far-field on the reference sphere is then of the form Eq (ky, k) and
can be inserted into Eq. (3.33) to rigorously calculate the focal fields. Thus, the
field E near the focus of our lens is entirely determined by the far-field E., on the
reference sphere. All rays propagate from the reference sphere towards the focus
(x,y,2)=(0, 0, 0) and there are no evanescent waves involved.

Due to the symmetry of our problem it is convenient to express the angular
spectrum representation Eq. (3.33) in terms of the angles 6 and ¢ instead of k,
and k,. This is easily accomplished by using the substitutions in Eq. (3.44) and
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Figure 3.8 Illustration of the substitution (1/k;) dk, dky, = k sinf df d¢. The
factor 1/k, = 1/(k cos8) ensures that the differential areas on the plane and the
sphere stay equal.

expressing the transverse coordinates (x, y) of the field point as
X = pcose, y=psing . (3.45)

In order to replace the planar integration over k,, k, by a spherical integration over
0, ¢ we must transform the differentials as

1
= dk,dk, = ksin6dfdg, (3.46)

which is illustrated in Fig. 3.8. We can now express the angular spectrum represen-
tation of the focal field (Eq. 3.33) as

max 277

. 6,
ik f e ik e cost ik sind costda)
E(p. ¢.2) = =5 [ [Ex(8.¢) e’ ehoon €os@=9) sin 0 dgp .
g
0 0

(3.47)

We have replaced the distance r, between the focal point and the surface of the ref-
erence sphere by the focal length f of the lens. We have also limited the integration
over 0 to the finite range [0 ... ,,x] because any lens will have a finite size. Fur-
thermore, since all fields propagate in the positive z-direction we retained only the
+ sign in the exponent of Eq. (3.33). Equation (3.47) is the central result of this sec-
tion. Together with Eq. (3.43), it allows us to calculate the focusing of an arbitrary
optical field Ej,. by an aplanatic lens with focal length f and numerical aperture

NA = n sinbyy , 0 < bnax < 7/2), (3.48)

where n = n, is the index of refraction of the surrounding medium. The field
distribution in the focal region is entirely determined by the far-field Eo,. As we
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shall see in the next section, the properties of the laser focus can be engineered by
adjusting the amplitude and phase profile of E.

3.6 Focal fields

Typically, the back-aperture of a microscope objective is a couple of millimeters
in diameter. In order to make use of the full NA of the objective, the incident field
Ei,. has to fill or overfill the back-aperture. Thus, because of the large diameter of
the incident beam it is reasonable to treat it in the paraxial approximation. Let us
assume that Ej, is entirely polarized along the x-axis, i.e.

Einc = Einc n, . (349)

Furthermore, we assume the waist of the incoming beam coincides with the lens so
it hits the lens with a planar phase front. For simplicity we also assume that we have
a lens with good antireflection coating so we can neglect the Fresnel transmission
coefficients

=1 =1. (3.50)
With these assumptions the far-field E,, in Eq. (3.43) can be expressed as
Eo(0,¢9) = Ein(0, ¢) [cosq&ne — sin¢n¢] v/ ni/ny (cos 0)'/? (3.51)
(14cosf) — (1—cosB)cos2¢p m
= Einc(9, ) 3 —(1—cos ) sin2¢ [=L (cos6)'72,
—2cos ¢ sinf 2

where the last expression is represented in Cartesian vector components. To pro-
ceed we need to specify the amplitude profile of the incoming beam Ej,.. We will
concentrate on the three lowest Hermite—-Gaussian modes displayed in Fig. 3.2.
The first of these modes corresponds to the fundamental Gaussian beam and the
other two can be generated according to Eq. (3.17) of Section 3.2.2. Expressing the
coordinates (X, Yoo, Zoo) in Fig. 3.7 by the spherical coordinates (f, 6, ¢) we find

(0, 0) mode:
Eine = Ege™CaM%)/wG = Fge=/"sin*0/uwg (3.52)
(1, 0) mode:
Eine = Eg(2x00/wo)e™ %2/ = (2 Eq f/wy) sinf cos ¢ e~/ 50" 6/v5 (3.53)
(0, 1) mode:
Eine = Eo(2yoo/wo)e W% H%)/W5 = (2 Eq f/wo) sin @ sin ¢ e~/ 50" 0/v8 (3 54)

The factor f,,(9) = exp(— f> sin® 0 / w(z)) is common to all modes. The focal field
E will depend on how much the incoming beam is expanded relative to the size of
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the lens. Since the aperture radius of our lens is equal to f sin6y,,x we define the
filling factor f as

Wo
= sin O

Jo (3.55)

which allows us to write the exponential function in Eqgs. (3.52)—(3.54) in the form

1 _sin26

fu(®) = e Jo i (3.56)

This function is called the apodization function and can be viewed as a pupil filter.
We now have all the necessary ingredients to compute the field E near the focus.
With the mathematical relations

2

/ cos ng e @ dy = 27 (") J,(x)cos ng

0

2

/ sinng e @9 dgp = 27(i") J,(x)sinng , (3.57)

0
we can carry out the integration over ¢ analytically. Here, J, is the nth-order Bessel
function. The final expressions for the focal field now contain a single integration

over the variable 6. It is convenient to use the following abbreviations for the oc-
curring integrals:

9max
Ioo = ffw(e) (cos0)/?sin @ (14cos ) Jo(kp sin@) e <% dg  (3.58)

0

Omax

Iy = f fu(®) (cos 0)/*sin® 6 J; (kp sin6) =7 do (3.59)
0
Omax

Iy = [fw(e) (cos0)/?sin@ (1—cos0) Jo(kp sin@) e <% do  (3.60)
0

Omax

Io = /fw(e) (cos 0)'7?sin® 0 Jo(kp sin6) el** <? g (3.61)
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Omax
I = /fw(e) (cos 0)/2sin* 6 (143 cos 0) J, (kp sin0) ¥ <% d (3.62)
0
Omax
I = / fu(®) (cos )72 sin? 6 (1—cos 0) J; (kp sin0) e*7 <% 49 (3.63)
0
Omax
I = / Fuw () (cos0)'/%sin’ @ J,(kp sin 0) 7 <°5? dg (3.64)
0

Omax

Iy = /fw(e) (cos )% sin* 6 (1—cos 0) J3(kp sin ) ¥ <> do  (3.65)

where the function f,,(6) is given by Eq. (3.56). Notice, that these integrals are
functions of the coordinates (p, z), i.e. I;; =1;;(p, z). Thus, for each field point we
have to numerically evaluate these integrals. Using these abbreviations we can now
express the focal fields of the various modes as

(0, 0) mode:
ik f Too + Iy cos2¢
E(p,¢,2) = T %Eoeilkf I sin2¢
—2i Iy cos ¢ (3.66)
ik f Ipp sin2¢
H(p,¢,2) = ﬁ %Eoeilkf Too — Iop cos2¢
pe —2ily; sing
(1, 0) mode:
ik £ ily; cos@ + il4cos 3¢
E(p,¢,2) = > %Eoe’“"f —iljp sing + il14 sin 3¢
wo _
210 + 2113 cos 2¢ (3.67)
1kf2 —illzsing0+i[|4sin3(p
H(p, ¢, 2) = : nEye | i(I1 +2112) cos@ — il14 cos 3¢

n
2woZye 213 sin2¢
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(0, 1) mode:
i([]1+2[12) sin(p + i[14 sin3go

ik f? .
E(p,¢,2) = z—f /:—;Eoe‘”‘f —iljp cos @ —il 4 cos 3
wo 21,3 sin2¢
(3.68)
ik 2 —iljp cose —ilj4 cos 3¢
H(p, ¢, z) = ﬂEoe_ik'f il sing —ili4sin3¢

N7 A m
2woZ e —2119 — 2113 cos 2¢p

For completeness, we have also listed the magnetic fields for the three modes. They
can be derived in the same way by using the corresponding paraxial input fields Ho,
with the magnetic field axis along the y-axis. Notice that only the zero-order Bessel
function possesses a non-vanishing value at its origin. As a consequence, only the
(1, 0) mode has a longitudinal electric field (E.) at its focus.

In the limit f,, = 1 the fields for the (0, 0) mode are identical with the solu-
tions of Richards and Wolf [10]. According to Eq. (3.56), this limit is reached for
fo—> 0o, which corresponds to an infinitely overfilled back-aperture of the focusing
lens. This situation is identical with a plane wave incident on the lens. Figure 3.9
demonstrates the effect of the filling factor f; on the confinement of the focal fields.

X653
) x 10445
|E|
\
fo=0.1 fo=02
x2.53 x1.28
IE?
fo=1.0 N
-1 -0.5 0 0.5 1 -0.5 0 0.5 1 -0.5 0 0.5
x/N, y/IN x/\, yIN x/N, y/IN

Figure 3.9 Influence of the filling factor fj of the back-aperture on the sharpness
of the focus. A lens with NA = 1.4 is assumed and the index of refraction is
1.518. The figure shows the magnitude of the electric field intensity [E|? in the
focal plane z = 0. The dashed curves have been evaluated along the x-direction
(plane of polarization) and the solid curves along the y-direction. All curves have
been scaled to an equal amplitude. The scaling factor is indicated in the figures.
The larger the filling factor is, the bigger is the deviation between the solid and
dashed curve, indicating the importance of polarization effects.
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Figure 3.10 (a,b) Contour plots of constant |E|? in the focal region of a focused
Gaussian beam (NA=1.4, n = 1.518, fo=1); (a) plane of incident polarization
(x, z), (b) plane perpendicular to plane of incident polarization (y, z). A loga-
rithmic scaling is used with a factor of 2 between adjacent contour lines. (c,d,e)
show the magnitude of the individual field components |E, |2, |Ey |2, and |E.|? in
the focal plane (z =0), respectively. A linear scale is used.

In these examples we used an objective with numerical aperture of 1.4 and an in-
dex of refraction of 1.518, which corresponds to a maximum collection angle of
68.96°. It is obvious that the filling factor is important for the quality of the focal
spot and thus for the resolution in optical microscopy. It is important to notice that
with increasing field confinement at the focus the focal spot becomes more and
more elliptical. While in the paraxial limit the spot is perfectly circular, a strongly
focused beam has a spot that is elongated in the direction of polarization. This
observation has important consequences: as we aim towards higher resolutions by
using spatially confined light we need to take the vector nature of the fields into
account. Scalar theories become insufficient. Figure 3.10 shows field plots for the
electric field for a filling factor of f; = 1 and a NA = 1.4 objective lens. The
figure depicts the total electric field intensity E? in the plane of incident polariza-
tion (x, z) and perpendicular to it (y, z). The three images to the side show the
intensity of the different field components in the focal plane z =0. The maximum
relative values are Max[E}]/Max[E7] = 0.003, and Max[E?]/Max[E}] = 0.12.
Thus, an appreciable amount of the electric field energy is in the longitudinal
field.
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Figure 3.11 Single molecule excitation patterns. A sample with isolated single
molecules is raster scanned in the focal plane of a strongly focused laser beam
. For each pixel, the fluorescence intensity is recorded and encoded in the color
scale. The excitation rate in each pixel is determined by the relative orientation
of local electric field vector and molecular absorption dipole moment. Using the
known field distribution in the laser focus allows the dipole moments to be recon-
structed from the recorded patterns. Compare the patterns marked x, y, and z with
those in the previous figure.

How can we experimentally verify the calculated focal fields? An elegant
method is to use a single dipolar emitter, such as a single molecule, to probe the
field. The molecule can be embedded into the surrounding medium with index n
and moved with accurate translators to any position r = (x, y, z) = (p, ¢, z) near
the laser focus. The excitation rate of the molecule depends on the vector prod-
uct E-u, with p being the transition dipole moment of the molecule. The excited
molecule then relaxes with a certain rate and probability by emitting a fluores-
cence photon. We can use the same aplanatic lens to collect the emitted photons
and direct them onto a photodetector. The fluorescence intensity (photon counts
per second) will be proportional to |E-p|%. Thus if we know the dipole orientation
of the molecule, we can determine the field strength of the exciting field at the
molecule’s position. For example, a molecule aligned with the x-axis will render
the x-component of the focal field. We can then translate the molecule to a new
position and determine the field at this new position. Thus, point by point we can
establish a map of the magnitude of the electric field component that points along
the molecular dipole axis. With the x-aligned molecule we should be able to re-
produce the pattern shown in Fig. 3.10(c) if we scan the molecule point by point
in the plane z = 0. This has been demonstrated in various experiments and will be
discussed in Chapter 9.

3.7 Focusing of higher-order laser modes

So far, we have discussed focusing of the fundamental Gaussian beam. What about
the (10) and (01) modes? We have calculated those in order to synthesize doughnut
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modes with arbitrary polarization. Depending on how we superimpose those modes
we obtain

Linearly polarized doughnut mode:

) (3.69)
LP = HG]Q n, + 1 HG()] n,
Radially polarized doughnut mode:
(3.70)
RP = HGgn, + HGyg n,
Azimuthally polarized doughnut mode:
3.71)

AP = —HGg; n, + HGy, n,

Here, HG;; n; denotes a Hermite—Gaussian (ij) mode polarized along the unit
vector n;. The linearly polarized doughnut mode is identical with the Laguerre—
Gaussian (01) mode defined in Eq. (3.18) and it is easily calculated by adding
the fields of Eqgs. (3.67) and (3.68) with a 90° phase delay. To determine the focal
fields of the other two doughnut modes we need to derive the focal fields for the
y-polarized modes. This is easily accomplished by rotating the existing fields in
Egs. (3.67) and (3.68) by 90° around the z-axis. The resulting focal fields turn out
to be

Radially polarized doughnut mode:

ik £ ‘ i(ly1—112) cosg
E(p,p,2) = ™ s Eoe™™ | il —11p) sing
—41 (3.72)

ik —i(Iy1+31}) sing

nmp e k| i1 43112) cos @
ZwOZ,M "2 0

H(p,¢,2) =

Azimuthally polarized doughnut mode:

i(l11+311) sing

RS2 i |
E(p,p,2) = TV m Epe —i(I11+3112) cos ¢
0 0 (3.73)
lkf2 o i(111_112)COS§0
H(p, ,z2) = L Eye M| i(l1— 1) sing

2W0Zus V12 Y
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With the definition of the following integrals
9!“3)(
L =1n— 1 = / Fuw(8) (cos0)*?sin’ 6 J; (kp sin @) e** <% dg  (3.74)
0

emax
Lym =1 +31; = /fw(e) (cos0)"/?sin* 0 J, (kp sin @) X <% dg  (3.75)
0

we see that to describe the focusing of radially polarized and azimuthally polarized
doughnut modes we need to evaluate totally two integrals. The radial and azimuthal
symmetries are easily seen by transforming the Cartesian field vectors into cylin-
drical field vectors as

E, cosp Ex + sinp E, (3.76)
Ey = —sinpE, + cospEy,

and similarly for the magnetic field. While the radially polarized focused mode
has a rotationally symmetric longitudinal electric field E, the azimuthally polar-
ized focused mode has a rotationally symmetric longitudinal magnetic field H,. As
shown in Fig. 3.12 the longitudinal field strength |E.|? increases with increasing
numerical aperture. At a numerical aperture of NA ~ 1 the magnitude of |E.|?
becomes larger than the magnitude of the radial field |E,|>. This is important for
applications that require strong longitudinal fields. Figure 3.13 shows field plots
for the focused radially polarized beam using the same parameters and settings as
in Fig. 3.10. More detailed discussions of the focusing of radially and azimuthally
polarized beams are presented in Refs. [11-13]. The field distribution in the beam
focus has been measured using single molecules as probes [7] and the knife-edge
method [13].

Although laser beams can be adjusted to a higher mode by manipulating the laser
resonator, it is desirable to convert a fundamental Gaussian beam into a higher-
order mode externally without perturbing the laser characteristics. Such a conver-
sion can be realized by inserting phase plates into different regions in the beam
cross-section [14]. As shown in Fig. 3.14, the conversion to a Hermite—Gaussian
(10) mode is favored by bisecting the fundamental Gaussian beam with the edge
of a thin phase plate which shifts the phase of one half of the beam by 180°. The
incident beam has to be polarized perpendicular to the edge of the phase plate and
subsequent spatial filtering has to be performed to reject higher-order modes. A
related approach makes use of half-coated mirrors to delay one half of the laser
beam. In this case, the beam passes twice through the bisected part and hence the
thickness of the coated part must be A /4. Other mode-conversion schemes make
use of external four-mirror ring cavities or interferometers [15, 16]. The approach
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Figure 3.12 Ratio of longitudinal and transverse electric field intensity
|E. |2/ |E)O|2 of a radially polarized doughnut mode as a function of numerical
aperture (fo=1,n = 1.518). |E, |2 has its maximum on a ring in the plane z=0
whereas the maximum of [E,|? is at the origin (x, y, z) = (0, 0, 0). According to
the figure, the maximum longitudinal electric energy density can be more than
five times larger than the maximum transverse electric energy density.

44 — 1. 84—

Figure 3.13 (a) Contour plots of constant |E|? in the focal region of a focused ra-
dially polarized doughnut mode (NA=1.4,n = 1.518, fo=1) in the (p, z) plane.
The intensity is rotationally symmetric with respect to the z-axis. A logarithmic
scaling is used with a factor of 2 between adjacent contour lines. (b, ¢, d) show
the magnitude of the individual field components |E; |2, |Ep|2, and |Ey|2 in the
focal plane (z=0), respectively. A linear scale is used.
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Figure 3.14 Generation of a Hermite—Gaussian (10) beam. A fundamental Gaus-
sian beam is bisected at the edge of a 180° phase plate. The polarization of the
incident beam is perpendicular to the edge of the phase plate. The arrangement
delays one half of the beam by 180° and therefore favors the conversion to the
Hermite—Gaussian (10) mode. A subsequent spatial filter rejects any modes of
higher order than the (10) mode.

shown in Fig. 3.15(a) has been developed by Youngworth and Brown to generate
azimuthally and radially polarized beams [11, 12]. It is based on a Twyman—Green
interferometer with half-coated mirrors. The polarization of the incoming Gaussian
beam is adjusted to 45°. A polarizing beamsplitter divides the power of the beam
into two orthogonally polarized beams. Each of the beams passes a A/4 phase
plate which makes the beams circularly polarized. Each beam then reflects from
an end mirror. One half of each mirror has a A/4 coating which, after reflection,
delays one half of the beam by 180° with respect to the other half. Each of the two
reflected beams passes through the A/4 plate again and becomes converted into
equal amounts of orthogonally polarized Hermite—Gaussian (10) and (01) modes.
Subsequently, one of these modes will be rejected by the polarizing beamsplitter
whereas the other will be combined with the corresponding mode from the other
interferometer arm. Whether a radially polarized mode or an azimuthally polarized
mode is generated depends on the positioning of the half-coated end mirrors. To
produce the other mode one needs to simply rotate the end mirrors by 90°. The two
modes from the different interferometer arms need to be in phase, which requires
adjustability of the path length. The correct polarization can always be verified by
sending the output beam through a polarizer and by selectively blocking the beam
in one of the two interferometer arms. Since the mode conversion is not 100% ef-
ficient one needs to spatially filter the output beam to reject any undesired modes.
This is accomplished by focusing the output beam on a pinhole with adjusted di-
ameter. Although the pinhole also transmits the fundamental mode, higher order
modes have larger lateral extent and are rejected by the pinhole.
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Figure 3.15 Two different mode conversion schemes for the generation of radi-
ally and azimuthally polarized modes. (a) Using a Twyman—Green interferome-
ter. The incident beam is polarized at 45° and is split by a polarizing beamsplitter
into two orthogonally polarized beams of equal power. Each beam is then turned
circularly polarized and reflected off a half-coated end mirror. (b) Using a “com-
posite waveplate” consisting of four quadrants with different optical axes. Each
segment is oriented such that the field is rotated to point in the radial direction. In
both schemes, the outgoing beam needs to be spatially filtered to reject unwanted
higher-order modes. See text for details.

o —\—

To avoid noise and drift sensitive interferometers, Dorn et al. have implemented
a single-path mode conversion scheme for radially and azimuthally polarized
beams [13]. As shown in Fig. 3.15(b), a laser beam is sent through a A /2 wave-
plate consisting of four segments. The optical axis of each segment is oriented
such that the field is rotated to point in the radial direction. Subsequent spatial fil-
tering extracts the desired mode with very high purity. A phase plate as shown in
Fig. 3.15(b) can be fabricated by cutting two A/2 plates into four quadrants each,
and then assembling the pieces into two new phase plates. This mode-conversion
principle can be generalized to waveplates with many elements such as liquid crys-
tal spatial light modulators. It can be expected that programmable spatial light
modulators will be able to convert an incoming beam to any desired outgoing
laser mode.

3.8 Limit of weak focusing

Before we proceed to the next section we need to verify that our formulas for the
focused fields render the familiar paraxial expressions for the limit of small 6,,,x.
In this limit we may do the approximations cosé = 1 and sinf =~ 6. However,
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for the phase factor in the exponent of the integrals Iy ... /14 we need to retain
the second-order term, i.e. cosf ~ 1 — 62 /2, because the first-order term alone
would cancel the 6 dependence. For small arguments x, the Bessel functions be-
have like J,(x) ~ x". Using these approximations, a comparison of the integrals
Ioo - . . 114 shows that the integral Iy is of lowest order in 8, followed by /1, and /5.
Whereas [y defines the paraxial Gaussian mode, the other two remaining integrals
determine the paraxial Hermite—Gaussian (1, 0) and (0, 1) modes. In principle, the
integration of Iy, /19 and /;; can now be carried out analytically. However, since
the results lead to inconvenient Lommel functions we reduce our discussion to the
focal plane z = 0. Furthermore, we assume an overfilled back-aperture of the lens
(fo > 1) so that the apodization function f,,(8) can be considered constant. Using
the substitution x = kp6 we find

kp Omax
2 2
Iy =~ — xJo(x)dx = 20

kp max

J 1 (k)o Gmax)

3.77)
k,O Ormax

0
The paraxial field of the focused Gaussian beam in the focal plane turns out to be
—ikf Jl (k,O emax)
ko Ormax
This is the familiar expression for the point-spread function in the paraxial limit.
Abbe’s and Rayleigh’s definitions of the resolution limit are closely related to the

expression above as we shall see in Section 4.1. The focal fields of the (1, 0) and
(0, 1) modes in the paraxial limit can be derived in a similar way as

(1, 0) mode:

E~ikf62, Eoe n, . (3.78)

E X Giax [J2 (kp Qmax)/(kp emax)] COS @ Iy, (379)
(0, 1) mode:
E « er%ax [JZ (k,O Qmax)/(kp emax)] sin @ n,. (38())

In all cases, the radial dependence of the paraxial focal fields is described by Bessel
functions and not by the original Gaussian envelope. After passing through the
lens the beam shape in the focal plane becomes oscillatory. These spatial oscilla-
tions can be viewed as diffraction lobes and are a consequence of the boundary
conditions imposed by the aplanatic lens. We have assumed f, — oo and we can
reduce the oscillatory behavior by reducing fy. However, this is at the expense of
the spot size. The fact that the spot shape is described by an Airy function and
not by a Gaussian function is very important. In fact, there are no free propagating
Gaussian beams! The reason is, as outlined in Section 3.2.1, that a Gaussian pro-
file has a Gaussian Fourier spectrum which is never zero and only asymptotically
approaches zero as ky, k, — o0o. Thus, for a Gaussian profile we need to include
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evanescent components, even if their contribution is small. The oscillations in the
Airy profile arise from the hard cut-off at high spatial frequencies. The smoother
this cut-off the less oscillatory the beam profile will be.

3.9 Focusing near planar interfaces

Many applications in optics involve laser beams that are strongly focused near
planar surfaces. Examples are confocal microscopy where objective lenses with
NA > 1 are used, optical microscopy or data storage based on solid immersion
lenses, and optical tweezers where laser light is focused into a liquid to trap tiny
particles. The angular spectrum representation is well suited to solve for the fields
since the planar interface is a constant coordinate surface. For simplicity we assume
that we have a single interface between two dielectric media with indices 7, and n,
(see Fig. 3.16). The interface is located at z =z and the focused field E; illuminates
the interface from the left (z < zp). While the spatial frequencies k, and k, are
the same on each side of the interface, k, is not. Therefore, we specify &, in the
domain z < zg by k., defined by k., = (k} — k7 — k3)"/?. Similarly we define
kz, = (k3 — k7 — k3)'/2 for the domain z > z. The wavenumbers are determined by
ki = (w/c)n; and k, = (w/c)n,, respectively.

The interface leads to reflection and transmission. Therefore, the total field can
be represented as

Ei+E : z<z

E= { E, >z (3.31)

n

Figure 3.16 Focusing of a laser beam near an interface at z = zo between two
dielectric media with refractive indices n; and n5.
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where E; and E; represent the reflected and transmitted fields, respectively. The
refraction of plane waves at planar interfaces is described by Fresnel reflection
coefficients (%, rP) and transmission coefficients (¢°, #P), which were defined in
Chapter 2 (Egs. (2.49) and (2.50)). As indicated by the superscripts, these coef-
ficients depend on the polarization of the field. We therefore need to split each
plane wave component in the angular spectrum representation of the field E into
an s-polarized part and a p-polarized part

E=E® +E® | (3.82)

E® is parallel to the interface while E® is perpendicular to the wavevector k and
E®. The decomposition of the incoming focused field E; into s- and p-polarized
fields has already been done in Section 3.5. According Eq. (3.39) we obtain the
s- and p-polarized fields by projecting E; along the unit vectors ny and ngy, re-
spectively. Equation (3.43) represents the refracted far-field as a sum of s- and p-
polarized fields expressed in terms of 6 and ¢. Using the substitutions of Eq. (3.44)
we are able to express the far-field in terms of the spatial frequencies k, and k,.

In the case where E; originates from a paraxial beam polarized in the x-direction
we can express the far-field as (cf. Eq. (3.51))

K2+ Kk, /k
Ew = Einclky, ky) _kxky + kxkykzl/kl
0 — (kHkke/ ki

ks, / ki
K2+ k2’

(3.83)

where the first terms in the bracket specify the s-polarized field and the second ones
the p-polarized field. Notice, that according to Fig. 3.16 we consider a lens with
the same medium on both sides, i.e. n; = n = n'. Ey is the asymptotic far-field in
the direction of the unit vector s= (k. /k, k,/k, k-, / k) and corresponds to the field
on the surface of the reference sphere of the focusing lens. With E, the angular
spectrum representation of the incident focused beam is given by (c.f. Eq. (3.33))

ifeh/ L itox 4k 4k 2]
E¢(x,y,2) = BETEE Eoo(ky, ky) o eltfx* Ty a5 dk, dky . (3.84)
2
ke Ky

To determine the reflected and transmitted fields (E;, E;) we define the following
angular spectrum representations

E = e e k) et g gk, (3.5
(X, y,2) = = v (ky, y)k e v dky, (3.85)
k. .
: —iky f 1 .
Ei(x,y. 2) = M;T//Efo(kx,ky) k—e'[k»\“kw'”fz-’] dk, dk, . (3.86)
5]

kyx,ky
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Notice that in order to ensure that the reflected field propagates in the backward
direction we had to change the sign of k., in the exponent. We also made sure that
the transmitted wave propagates with the longitudinal wavenumber £.,.

In the next step we invoke the boundary conditions at z = zj, which leads to
explicit expressions for the yet undefined far-fields EX° and E°. Using the Fresnel
reflection or transmission coefficients we obtain

—1%k2 4 rPk2k,, [k

2iks, ’ Jh vk /ki
E® = —Einc(ky, ky) e 5070 rSkoky + rPhokyke, ki T 68D
0 + rP(kI+kDke/ Ky

1R + 1Pk2kz, /Ko
E® = Einc(ky, ky) %1 78020 | Sk ko + 1Pk k., / ko
0 — P(k2+kDk,/ ks

ke, Kz /K

ky K2R

(3.88)

These equations together with Egs. (3.83)—(3.86) define the solution of our prob-
lem. They hold for an interface between two materials characterized by constant E;
and p;. This is straight-forward to verify by evaluating the boundary conditions at
z = z¢ (Problem 3.7). We are now able to evaluate the field distribution near a plane
interface illuminated by a strongly focused laser beam. The field depends on the
amplitude profile Ejn.(ky, k) of the incident paraxial beam (cf. Egs. (3.52)—(3.54))
and on the defocus zy. The defocus essentially introduces a phase factor into the
expressions for EX° and E°. Although we concentrated on a single interface, the
results are easily adapted to a multiply layered interface by introducing general-
ized Fresnel reflection/transmission coefficients that account for the total structure
(cf. Ref. [17]).

In the next step, we can use the relations Eq. (3.44) to perform a transformation
to spherical coordinates. As before, we are able to reduce the double integrals to
single integrals by involving Bessel functions. We avoid going into further details
and instead discuss some important aspects that result from this theory.

In the example of Fig. 3.17 a Gaussian beam is focused by an aplanatic objective
lens of NA = 1.4 on a glass/air interface at zo=0. The most characteristic features
in the field plots are the standing wave patterns in the denser medium. These stand-
ing wave patterns occur at angles 6 beyond the critical angle of total internal reflec-
tion 6.. To understand this let us have a look at a single plane wave in the angular
spectrum representation of the incident focused field E¢. This plane wave is char-
acterized by the two transverse wavenumbers k., k,, its polarization and complex
amplitude given by the Fourier spectrum Ey. The transverse wavenumbers are the
same on each side of the interface, but the longitudinal wavenumbers &, are not
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Figure 3.17 Contour plots of constant |E|? in the focal region of a Gaussian beam
(NA = 1.4, n = 1.518, fo = 2) focused on a glass/air interface (n; = 1.518,
ny=1). A logarithmic scaling is used with a factor of 2 between adjacent contour
lines. The critical angle for total internal reflection is . =41.2°. All plane wave
components incident from angles larger than 6, are totally reflected at the interface
and interfere with the incoming waves.

since they are defined as

k., = /kf_(k§+k§), k., = /kg—(k§+k§). (3.89)

Eliminating k., k, we obtain

key = R, + 3 — kD) (3.90)



3.9 Focusing near planar interfaces 77
Let 6 denote the angle of incidence of the plane wave so that
k;, =kjcosf . (3.91)

Equation (3.90) can then be written as

k2
ke =k [1— 2 sin’6 . (3.92)
k2

It follows that k., can be either real or imaginary, depending on the sign of the
expression under the square root. This in turn depends on the angle 6. We find that
for angles larger than

6, = arcsin - (3.93)

ny

k., is imaginary. Thus, for 8 > 6. the considered plane wave is totally reflected
at the interface giving rise to an evanescent wave on the other side of the inter-
face. The standing wave patterns seen in Fig. 3.17 are a direct consequence of this
phenomenon: all the supercritical (8 > 6.) plane wave components of the incident
focused field are totally reflected at the interface. The standing wave pattern is due
to the equal superposition of incident and reflected plane wave components. Due
to total internal reflection an appreciable amount of laser power is reflected at the
interface. The ratio of reflected to transmitted power can be further increased by
using a larger filling factor or a higher numerical aperture. For example, in appli-
cations based on solid immersion lenses with numerical apertures of 1.8 ... 2 over
90% of the beam power is reflected at the interface.

An inspection of the focal spot reveals that the interface further increases the
ellipticity of the spot shape. Along the polarization direction (x) the spot is al-
most twice as big as in the direction perpendicular to it (y). Furthermore, the
interface enhances the strength of the longitudinal field component E,. At the in-
terface, just outside the focusing medium (z > —z;), the maximum relative inten-
sity values for the different field components are Max[Ei] /Max[Ef.] = 0.03 and
Max[Ef] /Max[Ef,] = 0.43. Thus, compared with the situation where no interface
is present (cf. Fig. 3.10), the longitudinal field intensity is roughly four times
stronger. How can we understand this phenomenon? According to the boundary
conditions at the interface, the transverse field components E,, E, have to be con-
tinuous across the interface. However, the longitudinal field scales as

E.ey=E.& . (3.94)

With &, = 2.304 we find that £2 changes by a factor of 5.3 from one side to the
other side of the interface. This qualitative explanation is in reasonable agreement
with the calculated values. In the focal plane, the longitudinal field has its two
maxima just to the side of the optical axis. These two maxima are aligned along
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the polarization direction and give rise to the elongated spot size. The relative mag-
nitude of Max[E}z,] is still small but it is increased by a factor of 10 by the presence
of the interface.

In order to map the dipole orientation of arbitrarily oriented single molecules
it is desirable that all three excitation field components (E,, Ey, E.) in the focus
are of comparable magnitude. It has been demonstrated that this can be achieved
by annular illumination for which the center part of the focused laser beam is sup-
pressed [18]. This can be achieved by placing a central obstruction such as a cir-
cular disk in the excitation beam. In this situation, the integration of plane wave
components runs over the angular range [0, - . . Omax] instead of, as before, over
the full range [O ... Oyax]. By using annular illumination we reject the plane wave
components with propagation directions close to the optical axis, thereby suppress-
ing the transverse electric field components. As a consequence, the longitudinal
field components in the focus will be enhanced as compared to the transverse com-
ponents. Furthermore, the local polarization of the interface due to the longitudinal
fields gives rise to a strong enhancement of the E fields. Hence, strong longitudi-
nal fields are a prerequisite for generating strong E, fields close to interfaces. It is
possible to prepare the annular beam such that the three patterns Fig. 3.10(c—e) are
of comparable magnitude.

3.10 Reflected image of a strongly focused spot

It is interesting to further investigate the properties of the reflected field E; given
by Eq. (3.85) and Eq. (3.87). The image of the reflected spot can be experimentally
recorded as shown in Fig. 3.18. A 45° beamsplitter reflects part of the incoming
beam upwards where it is focused by a high NA objective lens near a planar in-
terface. The distance between focus (z =0) and interface is designated by zo. The
reflected field is collected by the same lens, transmitted through the beamsplitter
and then focused by a second lens onto the image plane. There are four different
media involved and we specify them with the refractive indices defined in Fig. 3.18.
We are interested in calculating the resulting field distribution in the image plane.
It will be shown that, for the case where the beam is incident from the optically
denser medium, the image generated by the reflected light is strongly aberrated.
The reflected far-field EX° before it is refracted by the first lens has been calcu-
lated in Eq. (3.87). It is straightforward to refract this field at the two lenses and
refocus it onto the image plane. The two lenses perform transformations between
spherical and cylindrical systems. In Section 3.5 it has been shown that the lens
refracts the unit vector n, into the unit vector ny, or vice versa, whereas the unit
vector ng remains unaffected. In order to oversee the entire imaging process we
follow the light path from the beginning. The incoming field E;, is an x-polarized,
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Figure 3.18 Experimental set-up for the investigation of the reflected image of a
diffraction-limited focused spot. A linearly polarized beam is reflected by a beam-
splitter (BS) and focused by a high NA objective lens with focal radius f onto an
interface between two dielectric media ny, ny. The reflected field is collected by
the same lens, transmitted through the beamsplitter and refocused by a second
lens with focal radius f”.

paraxial beam defined as (Eq. (3.49))
Einc = Eincny, (395)

where Ej, is an arbitrary beam profile. Expressed in cylindrical coordinates the
field has the form

Einc = Einc [cosgn, — singny] . (3.96)

After refraction at the first lens f it turns into

E = Ein[cos¢ny —singny] [~ (cos§)'/? . (3.97)
ni
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The field is now reflected at the interface. The Fresnel reflection coefficient 1P ac-
counts for the reflection of ny-polarized fields whereas r* accounts for the reflection
of ng-polarized fields. We obtain for the reflected field

E = Eje?fa? [— cos ¢prPny — sin¢rsn¢] /@ (cos9)/? | (3.98)
ni

where z( denotes the defocus (cf. Eq. (3.87)). Next, the field is refracted by the
same lens f as

E = Ej a0 [— cos¢rPn, — sind)rsn(f,] , (3.99)

and propagates as a collimated beam in the negative z-direction. Expressed in
Cartesian field components the field reads as

E® = —E, 2% [[Cosqurp—sinzq& FIn, + sing Cos¢[rp+rs]ny] . (3.100)

T

This is the field immediately after refraction at the reference sphere f. For an
incident field focused on a perfectly reflecting interface located at zo = O the

reflection coefficients are 1P = 1 and r® = —1.% In this case we simply obtain
E> = —FEincn,, which is, besides the minus sign, identical with the assumed input

field of Eq. (3.49). The difference in sign indicates that the reflected field is “upside
down”.

In order to calculate the reflected collimated beam anywhere along the optical
axis we have to substitute sin@ = p/f and cos @ =[1— (p/f)*]'/?, where p denotes
the radial distance from the optical axis (see Problem 3.8). This allows us to plot
the field distribution in a cross-sectional plane through the collimated reflected
beam. We find that the Fresnel reflection coefficients modify the polarization and
amplitude profile of the beam, and, more importantly, also its phase profile. For no
defocus (zo = 0) phase variations only arise at radial distances p > p. for which
the Fresnel reflection coefficients become complex numbers. The critical distance
corresponds to p. = fny/n; and is the radial distance associated with the critical
angle of total internal reflection (6, = arcsin(ny/n;)). Since p. < f there are no
aberrations if n, > n;.

We now proceed to the refraction at the second lens f’. Immediately after re-
fraction the reflected field reads as

E = Eje®™1% [~ cos¢rPng — singring] 110 (cos 612 | (3.101)
nj

where we introduced the new azimuth angle 6" as defined in Fig. 3.18. The field
now corresponds to the far-field EZ° that we need in Eq. (3.33) to calculate the field

2 Notice that the reflection coefficients rS,rP for a plane wave at normal incidence differ by a factor of —1, i.e.
r$(@=0) = —rP(0=0).
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distribution in the image space. We express this field in Cartesian field components
using the relations in Eqgs. (3.41)—(3.42) for ny' and n, and obtain

rPcos 0’ cos®¢p — r®sin’g
E® = —Eipe* 17| rPcos @' sing cos¢ + r’sing cos ¢ \/nj) (cos"'/2 .
—rPsinf’ cos¢ + 0 3
(3.102)
This far-field can now be introduced into Eq. (3.47), which, after being adapted to
the current situation, reads as

i
max27

0
Lo £ a—iksf!
Ep g5y = 2L C /ze : / f EX (0, ¢) ez glhapsind’ cos9=0) sin 9'dep dp)’ .
s
00

(3.103)

Notice that we had to change the sign in one of the exponents in order to ensure
that the field propagates in the negative z-direction. To proceed, we could express
the longitudinal wavenumbers k., and k., in terms of the angle 6’. This would
also make the reflection and transmission coefficients functions of 8’. However,
it is more convenient to work with 6 and transform the integral in Eq. (3.105)

correspondingly.
As indicated in Fig. 3.18 the angles 6 and 6’ are related by
ino ,
sinb _ S (3.104)
sin 6’ f

which allows us to express the new longitudinal wavenumber £, in terms of 6 as

key = kayJ1 = (f/f")? sin®6 . (3.105)

With these relationships we can perform a substitution in Eq. (3.105) and rep-
resent the integration variables by 6 and ¢. The Fresnel reflection coefficients
r5(0), rp(0) are given by Eqs. (2.49) together with the expressions for the longi-
tudinal wavenumbers k,, and k., in Egs. (3.91) and (3.92). For the lowest three
Hermite—Gaussian beams, explicit expressions for Ei,.(6, ¢) have been stated in
Egs. (3.52)—(3.54) and the angular dependence in ¢ can be integrated analytically
by using Eq. (3.57). Thus, we are now able to calculate the field near the image
focus.

In practically all optical systems the second focusing lens has a much larger focal
length than the first one, i.e. f/f’ < 1. We can therefore reduce the complexity of
the expressions considerably by making the approximation

%

2
[1+ (f/f)sin20]"" ~ 1+ %(%) sin0 . (3.106)



82 Propagation and focusing of optical fields

If we retain only the lowest orders in f/f’, the image field can be represented by

Omax 2w
iky fle~isf” f2 o lan( £ P2 s
E(p,¢,z) = 73]02” % // Efo(97¢)e(1/2)lxzz(f/f) sin6)
00
x k3P U/Dsin cos(6=9) in ) cos O dep 6, (3.107)

where E2° reads as

P cosip — rsing -
EX(0,¢) = —Einc(8, ¢) :170°% | singcosp (P +1%) | /= .  (3.108)
0 "

In order to keep the discussion in bounds we will assume that the incident field
Einc is a fundamental Gaussian beam as defined in Eq. (3.52). Using the relations
in Eq. (3.57) we can integrate the ¢ dependence and finally obtain

ks 2. ,
E(p, ¢,2) = Ey 3—f.e“"3("+f),/@ [([0r+]2r cos2¢)n, — Iy sin2¢p ny],
2f7i ns3
(3.109)

with
emax

Io(p,2) = / Fu(®) cos6 sind [ry(0) — ry(0)] Jo(ksp siné £/f)
0
x exp[(i/2) ks z(f/f))?sin0 + 2ikizocos0] df,  (3.110)

Omax

Iu(p,2) = / Fuw(®) cos sind [rp(®) + r,(6)] L (ks p sin f£/£")
0
x exp[(i/2) ks z(f/f))?sin0 + 2ikizocos0] do,  (3.111)

where f,, is the apodization function defined in Eq. (3.56). We find that the spot
depends on the Fresnel reflection coefficients and the defocus defined by zg. The
latter simply adds for each plane wave component an additional phase delay. If the
upper medium 7, is a perfect conductor we have r, = —r; = 1 and the integral
I vanishes. In this case the reflected spot is linearly polarized and rotationally
symmetric.

In order to discuss the field distributions in the image plane we choose n; =1.518
for the object space, n3 = 1 for the image space, and a numerical aperture of 1.4
(Bmax =67.26°) for the objective lens. For the ideally reflecting interface, the images
in the lower row of Fig. 3.19 depict the electric field intensity |E,|? as a function
of slight defocus. It is evident that the spot shape and size are not significantly
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Figure 3.19 Reflected images of a diffraction-limited focused spot. The spot is
moved in steps of A/4 across the interface. z is positive (negative) when the fo-
cus is below (above) the interface. The primary focusing objective lens has a nu-
merical aperture of 1.4. The index of refraction is n; =1.518 and the filling factor
fo=2. The upper row shows the situation for a glass/air interface (1, =1) and the
lower row for a glass/metal interface (¢; — —o00). Large aberrations are observed
in the case of the glass/air interface because the totally internally reflected plane
wave components generate a second virtual focus above the interface. The arrow
indicates the direction of polarization of the primary incoming beam.

affected by the defocus. However, as shown in the upper row in Fig. 3.19 the situa-
tion is very different if the medium beyond the interface has a lower index than the
focusing medium, i.e. if n, <n;. In this case, the reflected spot changes strongly as
a function of defocus. The spot shape deviates considerably from a Gaussian spot
and resembles the spot of an optical system with axial astigmatism. The overall size
of the spot is increased and the polarization is not preserved since /o, and I, are of
comparable magnitude. The patterns displayed in Fig. 3.19 can be verified in the
laboratory. However, some care has to be applied when using dichroic beamsplit-
ters since they have slightly different characteristics for s- and p-polarized light. In
fact, the patterns in Fig. 3.19 depend sensitively on the relative magnitudes of the
two superposed polarizations. Using a polarizer in the reflected beam path allows
us to examine the two polarizations separately as shown in Fig. 3.20. Notice that
the focus does not coincide with the interface when the intensity of the reflected
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Figure 3.20 Decomposition of the in-focus reflected image (center image of
Fig. 3.19) into two orthogonal polarizations. (a), (c) polarization in direction of
incident polarization (ny); (b), (d) polarization perpendicular to incident polariza-
tion (ny). (a), (b) are calculated patterns and (c), (d) are experimental patterns.

pattern is maximized. The focus coincides with the interface when the center of
the reflected pattern (/o(p, z)) has maximum intensity. The images in Figs. 3.19
and 3.20 display the electric energy density, which is the quantity that is detected
by optical detectors such as a CCD. On the other hand, the tofal energy density, and
the magnitude of the time-averaged Poynting vector, render rotationally symmetric
patterns.

How can we understand the appearance of the highly aberrated spot in the case
of a glass air interface? The essence lies in the nature of total internal reflection. All
plane wave components with angles of incidence in the range [0...6.], 8. being the
critical angle of total internal reflection (=41.2° for a glass air interface), are partly
transmitted and partly reflected at the interface. Both reflection coefficients r; and
rp are real numbers and there are no phase shifts between incident and reflected
waves. On the other hand, the plane wave components in the range [6....0m.x] are
totally reflected at the interface. In this case the reflection coefficients become
complex valued functions imposing a phase shift between incident and reflected
waves. This can be viewed as an additional path difference between incident and
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Figure 3.21 Scattered radiation (reflected and transmitted) of a laser focused on a
glass/air interface. Same parameters as in Fig. 3.17. The lines indicate the appar-
ent direction of radiation as seen by an observer in the far-field. The lines intersect
in a virtual focus located ~0...) above the interface. While all plane wave compo-
nents in the angular range [0...6.] originate from the focal point on the interface,
the supercritical plane wave components emerge from an apparent spot above the
interface giving rise to the aberrations in Fig. 3.19. Image size: 161 x31.

reflected waves similar to the Goos Hénchen shift [19]. It displaces the apparent
reflection point beyond the interface thereby creating a second, virtual focus [20].
In order to visualize this effect we plot in Fig. 3.21 only the scattered field
(transmitted and reflected) of Fig. 3.17. If we detected this radiation on the surface
of an enclosing sphere with large radius, the direction of radiation would appear as
indicated by the two lines which obviously intersect above the interface. Although
all reflected radiation originates at the interface, there is an apparent origin above
the interface. If we follow the radiation maxima from the far-field towards the
interface we see that close to the interface the radiation bends towards the focus to
ensure that the origin of radiation comes indeed from the focal spot.

We thus find the important result that the reflected light associated with the an-
gular range [0...6.] originates from the real focal point on the interface, whereas
the light associated with [6,...0m.x] originates from a virtual point located above
the interface. To be correct, the “virtual” point above the interface is not really a
geometrical point. Instead, it is made of many points distributed along the verti-
cal axis. The waves that emanate from these points have different relative phases
and give rise to a conically shaped wavefront similar to the Mach cone in fluid
dynamics. The resulting toroidal aberration was first investigated by Maeker and
Lehman [21].



86 Propagation and focusing of optical fields

The observation of the aberrations in the focal point’s reflected image has im-
portant consequences for reflection-type confocal microscopy and data sampling.
In these techniques the reflected beam is focused onto a pinhole in the image
plane. Because of the aberrations of the reflected spot, most of the reflected light
is blocked by the pinhole destroying the sensitivity and resolution. However, it has
been pointed out that this effect can dramatically increase the contrast between
metallic and dielectric sample features [20] because the reflected spot from a metal
interface appears to be aberration free. Finally, it has to be emphasized that the
real focal spot on the interface remains greatly unaffected by the interface; the
aberrations are only associated with the reflected image. The understanding of the
patterns in Figs. 3.19 and 3.20 proves to be very valuable for the alignment of an
optical system, for example to ensure that the focal plane of a laser coincides with
the glass/air interface (object plane)

Problems

3.1 The paraxial Gaussian beam is not a rigorous solution of Maxwell’s equations. Its
field is therefore not divergence free (V-E #0). By requiring V-E=0 one can derive
an expression for the longitudinal field E. Assume that £y =0 everywhere and
derive E, to lowest order for which the solution is non-zero. Sketch the distribution
of |E;|? in the focal plane.

3.2 Determine the decomposition of an arbitrary optical field into transverse electric
(TE) and transverse magnetic (TM) fields. The longitudinal field £, vanishes for the
TE field, whereas H, vanishes for the TM field.

3.3 Consider the fields emerging from a truncated hollow metal waveguide with a
square cross-section and with ideally conducting walls. The side length ag is chosen
in such a way that only the lowest order TE ¢ mode polarized in the x-direction is
supported. Assume that the fields are not influenced by the edges of the truncated
side walls.

(a) Calculate the spatial Fourier spectrum of the electric field in the exit plane
(z=0).
(b) Calculate and plot the corresponding far-field (E - E*).

3.4 Verify that energy is conserved for a strongly focused Gaussian beam as described
in Section 3.6. To do this, compare the energy flux through transverse planes on
both sides of the optical lens. It is an advantage to choose one plane at the origin of
the focus (z=0). The energy flux is calculated most conveniently by evaluating the
z-component of the time-averaged Poynting vector (S;) and integrating it over the
area of the transverse plane. Hint: You will need the Bessel function closure relation

o]
1
/ Ju(a1bx) Jy(arbx)xdx = —=d8(a; — a2) . (3.112)
0 a1b2

Check the units!

3.5 Consider a small circular aperture with radius ag in an infinitely thin and ideally
conducting screen which is illuminated by a plane wave at normal incidence and
polarized along the x-axis. In the long wavelength limit (A >>ap) the electric field in
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the aperture (z =0, x>+ y% < a(z)) has been derived by Bouwkamp [22] as

4ik Eg 2a}—x>—2y?
3 ag_xz_yz

4ikEg Xy

37 /ag_xz_yz’

where E is the incident field amplitude. The corresponding spatial Fourier
spectrum has been calculated by Van Labeke et al. [23] as

Ex(x,y)

Ey(x,y)

(3.113)

. 2ika’ Eo
Ey (ky, ky) = 0 |:

3n2

3k2 cos(aok,) - (@Gks + 3k2 + agk2k?) sin(aok,)
aék;‘) agkf,
(3.114)

Ey(k,k'7 ky) = -

2ikalEo [ 3koky cos(agk,)  kiky(3 — adk2) sin(aok,)
372 a(z)kﬁ ag k; ’
(3.115)

with k, = (kf—l—kf) 1/2 being the transverse wavenumber.

(a) Derive the Fourier spectrum of the longitudinal field component E .

(b) Find expressions for the field E=(E,, Ey, E) at an arbitrary field point
(x, ¥, 2).

(c) Calculate the far-field and express it in spherical coordinates (r, ¢}, ¢) and
spherical vector components E=(E:, Ey, E,). Expand in powers of kag and
retain only the lowest orders. What does this field look like?

3.6 The reflected image of a laser beam focused on a dielectric interface is given by
Egs. (3.109)—(3.111). Derive these equations starting from Eq. (3.100) which is the
collimated reflected field. Notice that the fields propagate in the negative z-direction.

3.7 Show that the field E defined through E¢, E;, and E, in Section 3.9 fulfills the
boundary conditions at the interface z = z¢. Furthermore, show that the Helmholtz
equation and the divergence condition are fulfilled in each of the two half-spaces.

3.8 In order to correct for the aberrations introduced by the reflection of a strongly
focused beam from an interface we design a pair of phase plates. By using a
polarizing beamsplitter, the collimated reflected beam (cf. Fig. 3.18 and Eq. (3.100))
is split into two purely polarized light paths. The phase distortion in each light path
is corrected by a phase plate. After correction, the two light paths are recombined
and refocused on the image plane. Calculate and plot the phase distribution of each
phase plate if the incident field is a Gaussian beam ( fy — c0) focused by an
NA =1.4 objective on a glass air interface (zo =0) and incident from the optically
denser medium with 71 =1.518. What happens if the focus is displaced from the
interface (zg#0)?
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4

Spatial resolution and position accuracy

Position accuracy refers to the precision with which an object can be localized in
space. Spatial resolution, on the other hand, is a measure of the ability to distinguish
two separated point-like objects from a single object. The diffraction limit implies
that optical resolution is ultimately limited by the wavelength of light. Before the
advent of near-field optics it was believed that the diffraction limit imposes a hard
boundary and that physical laws strictly prohibit resolution significantly better than
/2. It was found that this limit is not as strict as assumed and that various tricks
allow us to access the evanescent modes of the spatial spectrum. In this chapter we
analyze the diffraction limit and discuss the principles of different imaging modes
with resolutions near or beyond the diffraction limit.

4.1 The point-spread function

The point-spread function is a measure of the resolving power of an optical sys-
tem. The narrower the point-spread function the better the resolution will be. As
the name implies, the point-spread function defines the spread of a point source. If
we have a radiating point source then the image of that source will appear to have
a finite size. This broadening is a direct consequence of spatial filtering. A point
in space is characterized by a delta function that has an infinite spectrum of spatial
frequencies k,, k,. On propagation from the source to the image, high-frequency
components are filtered out. Usually the entire spectrum (k)%—l—k?) > k? associated
with the evanescent waves is lost. Furthermore, not all plane wave components can
be collected, which leads to a further reduction in bandwidth. The reduced spec-
trum is not able to accurately reconstruct the original point source and the image
of the point will have a finite size. The standard derivation of the point-spread
function is based on scalar theory and the paraxial approximation. This theory is
insufficient for many high-resolution optical systems. With the so far established

89
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Figure 4.1 Configuration used for the calculation of the point-spread function.
The source is an arbitrarily oriented electric dipole with moment p. The dipole
radiation is collected with a high NA aplanatic objective lens and focused by a
second lens on the image plane at z = 0.

“angular spectrum” framework we are in a position to rigorously investigate image
formation in an optical system.

Consider the situation in Fig. 4.1, which has been analyzed by Sheppard and
Wilson [1] and more recently by Enderlein [2]. An ideal electromagnetic point
source is located in the focus of a high NA aplanatic objective lens with focal length
f - This lens collimates the rays emanating from the point source and a second lens
with focal length f’ focuses the fields on the image plane at z=0. The situation is
similar to the problem in Fig. 3.18. The only difference is that the source is a point
source instead of the reflected field at an interface.

The smallest radiating electromagnetic unit is a dipole. In the optical regime
most subwavelength-sized particles scatter as electric dipoles. On the other hand,
small apertures radiate as magnetic dipoles. In the microwave regime, paramag-
netic materials exhibit magnetic transitions, and in the infrared, small metal par-
ticles show magnetic dipole absorption caused by eddy currents of free carriers
produced by the magnetic field. Nevertheless, we can restrict our analysis to an
electric dipole since the field of a magnetic dipole is identical to the field of an
electric dipole if we interchange the electric and magnetic fields, i.e. E— H and
H— —E.

In its most general form, the electric field at a point r of an arbitrarily oriented
electric dipole located at ry with dipole moment g is defined by the dyadic Green’s
function é (r, ro) as (cf. Chapter 1)

2 <>
E(r) = % G, . 4.1

We assume that the distance between dipole and objective lens is much larger than
the wavelength of the emitted light. In this case, we do not need to consider the
evanescent components of the dipole field. Furthermore, we choose the dipole to be
located at the origin ro =0 and surrounded by a homogeneous medium with index
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n. In this case, we can use the free-space far-field form of é, which, expressed in
spherical coordinates (r, 6, ¢), reads as (see Appendix D)

e k a
Go (r,0) = exp(ikr)
4rr
(1 — cos?¢sin®0)  —singcos¢sin®d — cos ¢ sin6 cos
x | —singcospsin®0 (1 — sin’¢p sin®xs6) — singsinb cos O
—cos¢sinfcosfd  —singsinb cosd sin®

4.2)

This is simply a 3 x 3 matrix which has to be multiplied with the dipole moment
vector it = iy, [by, ;) to obtain the electric field.! To describe refraction at the
reference sphere f we have to project the electric field vector along the vectors ng
and ny as already done in Section 3.5. After being refracted, the field propagates
as a collimated beam to the second lens f’ where it is refracted once again. For
a dipole aligned with the x-axis (@ = w, n,) the field just after the second lens
becomes

W, exp(ikf)
goct 8rmf

(14cos 8 cos8)—(1—cos 6 cosO’) cos 2¢ P
X —(1—cos @ cos ') sin2¢ \/ ,
n’cos@

2 cos 0 sinf’ cos ¢

EY O, ¢) =

4.3)

sing’ = % sin, cost = g(@) = \/1— (f/f")2sin% . (4.4)

The term (cos @’/ cos0)'/? is a consequence of energy conservation as discussed
in Section 3.5. In the limit f < f’ the contribution of cos 6’ can be ignored, but
cos 6 cannot since we deal with a high NA objective lens. The fields for a dipole
and a dipole p, can be derived in a similar way. For an arbitrarily oriented dipole
=iy, Ly, ;) the field is simply obtained by the superposition

where

E.(0.¢) = E) + EY) + EQ) . (4.5)

To obtain the fields E near the focus of the second lens we insert the field E,, into
Eq. (3.47). We assume that f < f’, which allows us to use the approximations in
Eq. (3.106). The integration with respect to ¢ can be carried out analytically and

! The far-field atr of a dipole located at rg =0 can also be expressed as E = 7(02/1.0 [rxrxp] exp(ikr)/4m‘34
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the result can be written as

0)2

E(p,¢.2) = Gese (0, 9,2) - 1, (4.6)

&0 c?
where the dyadic point-spread function is given by

(i00+i02 COSZ(/)) i()z sir12<p —Zii()l Cos ¢ \/7

< ' . 't - o -
Grsr= —ie'(kf_k £ Ipsin2¢  (Iog—Igp cos 2¢) —2ily; sing

8mi f 0 0 0
o 4.7
and the integrals Iop—/, are defined as
emax
Ioo(p,z) = /(cos@)”z sinf (14cos @) Jo(k'p sin® f/f")
0
x exp {ik'z[1 — 1/2(f/f")*sin*01} db , (4.8)
91118)(
In(p,z) = /(cose)W sin?6 J, (k' p sin@ f/f")
0
x exp {ik'z [1 — 1/2(f/f")*sin’0]} db , 4.9)
91118)(
Ip(p,z) = /(cose)‘/2 sinf (1—cos @) Jo(k'p sin® f/f")
0
x exp {ik'z[1 — 1/2(f/f")* sin’0]} do. (4.10)

The first column of éPSF denotes the field of a dipole p., the second column the
field of a dipole i, and the third column the field of a dipole w.. The integrals
ioo—ioz are similar to the integrals /oy—/o, encountered in conjunction with the fo-
cusing of a Gaussian beam (cf. Egs. (3.58-3.60)). The main differences are the
arguments of the Bessel functions and the exponential functions. Furthermore, the
longitudinal field E, is zero in the present case because we required f < f’.

Equations (4.6)—(4.10) describe the mapping of an arbitrarily oriented electric
dipole from its source to its image. The result depends on the numerical aperture
NA of the primary objective lens

NA = 7 sinOyax 4.11)
and the (transverse) magnification M of the optical system defined as
_nf

M= - 4.12)
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In the following, we will use the quantity |[E|? to denote the point-spread function,
since it is the quantity relevant to optical detectors. We first consider the situation
of a dipole with its axis perpendicular to the optical axis. Without loss of generality,
we can define the x-axis to be parallel with the dipole axis, i.e. 4 = u,n,. For a low
NA objective lens, O, is sufficiently small to allow us to make the approximations
cosf &~ 1 and sin# = . Furthermore, in the image plane (z = 0, ¥ = 7/2) the
exponential terms in the integrals are equal to one and the second-order Bessel
function J, goes to zero for small 8, making the integral I, disappear. We are then
left with I, which can be integrated analytically using

/x]o(x)dx =xJi(x). (4.13)

The paraxial point-spread function in the image plane for a dipole oriented along
the x-axis turns out to be

. 2
lim Ex, y,z=0)|" =
Omax <7 /2 | .y )| einn A° M?

7t WENAYTJ,2rp) T __NAp
orp |0 T Ma

(4.14)

The functional form is given by the term in brackets which is known as the Airy
Sfunction. Tt is depicted in Fig. 4.2(a) as the solid curve. The dashed and the dotted
curves show the exact calculation of the point-spread function for a NA = 1.4
objective lens according to Egs. ( 4.7)—( 4.10). The dashed curve is depicted along
the x-axis (direction of dipole axis) and the dotted curve along the y-axis. Along
both axes the field is purely polarized (cos 2¢ ==l1, sin 2¢ =0) but the width along
the x-axis is larger. This is caused by the term foz, which in one case is subtracted
from Iy and in the other case added to /. The result is an elliptically shaped
spot. The ellipticity increases with increasing NA. Nevertheless, it is surprising
that the paraxial point-spread function is a very good approximation even for high
NA objective lenses! If the average between the curves along the x-axis and the
y-axis is taken, the paraxial point-spread function turns out to be nearly a perfect
fit.

The width of the point-spread function Ax is usually defined as the radial dis-
tance for which the value of the paraxial point-spread function becomes zero, or

M A
Ax = 0.6098 — . (4.15)
NA

This width is also denoted as the Airy disk radius. It depends in a simple manner

on the numerical aperture, the wavelength and the magnification of the system.
We defined the point-spread function as proportional to the electric energy den-

sity, the quantity to which optical detectors are sensitive. Since the magnetic field
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(a) (b) p=0 1 (©)
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Figure 4.2 (a) Point-spread function depicted in the image plane (z = 0) of a
dipole with moment u = p,n,. The solid curve is the paraxial approximation
whereas the dashed and dotted curves are the results of exact calculations for
a NA = 1.4 (n = 1.518) objective lens. The dashed curve has been evaluated
along the x-axis and the dotted curve along the y-axis. (b) Point-spread function
evaluated along the optical axis z. The solid curve is the paraxial approximation
and the dashed curve is the exact result for NA = 1.4. (c) Point-spread function
depicted in the image plane of a dipole with moment g = u,n;. The solid curve
is the paraxial approximation and the dashed curve is the exact result for NA =
1.4. The figures demonstrate that the paraxial point-spread function is a good
approximation even for high NA objective lenses!

H is simply proportional to the electric field rotated by 90° around the z-axis, we
find that the point-spread function for the magnetic field is also 90° rotated com-
pared with the point-spread function for the electric field. The total energy density
and the time-averaged Poynting vector are therefore rotationally symmetric with
respect to the z-axis.

Let us now discuss the field strength along the optical axis z, denoted as the
axial point-spread function. The only non-vanishing integral is /oo, implying that
anywhere on the z-axis the field stays polarized along the direction of the dipole
axis x. In the paraxial limit we can integrate Ioo and obtain the result

, >t pANA* [sin@rs) ]’ . NAZ

lim |E(x=0,y=0,2) = 5—"—=——|— =  I=-——1r.

Omax <K /2 80}’[}’[/ )\.6 M2 (T[Z) 2n/M2)\.
(4.16)

This result is compared with the exact calculation in Fig. 4.2b for NA = 1.4. The
curves overlap perfectly indicating that the paraxial result is an excellent fit even
for large NA. The distance Az for which the axial point-spread function becomes
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Zero is
A 2n' M3 4.17

z =2n NAZ’ 4.17)
and is denoted as the depth of field. Contrary to the Airy disk, Az depends on the
index of refraction of the image space. Furthermore, it depends on the squares of
M and NA. Therefore, the depth of field is usually much larger than the Airy disk
radius. For a typical microscope objective with M = 60x, NA = 1.4 and for a
wavelength of 500 nm we obtain Ax 13 pum and Az~1.8 mm.

So far, we have considered a dipole with its axis perpendicular to the optical
axis. The situation is very different for a dipole with its axis parallel to the optical
axis, i.e. o = u.n,. The focal fields turn out to be rotationally symmetric, radially
polarized, and zero on the optical axis. In the paraxial limit we find

4 OANACT . L2 p) T NA
lim E(r,y, z=0) = -~ “‘[ﬂ(”f’)], j="R0
Bmax <7T/2 ggn3n’ AS M? Q2 p) M
(4.18)

which is shown in Fig. 4.2(c). The comparison with the exact calculation using
NA =1.4 demonstrates again that the paraxial expression is a good approximation.
Because of the vanishing field amplitude on the optical axis it is difficult to define
a characteristic width for the point-spread function of a dipole with its axis along
the optical axis. However, the comparison between Figs. 4.2(a) and (c) shows that
the image of a dipole u, is wider than the image of a dipole w,.

In many experimental situations it is desirable to determine the dipole orienta-
tion and dipole strength of an emitter. This is an inverse problem which can be
solved in our configuration by detecting the field distribution in the image plane
by using, for example, a CCD [3, 4]. With Egs. (4.6)—(4.10) we can then calcu-
late back and determine the parameters of the emitter. This analysis can be made
more efficient by splitting the collected radiation into two orthogonal polarization
states and focusing it onto two separate detectors. The detection and analysis of
single molecules based on their emission and absorption patterns will be further
discussed in Chapter 9.

As a conclusion of this section we mention that the point-spread function de-
pends strongly on the orientation of the dipole moment of the emitting point source.
For dipoles aligned perpendicular to the optical axis we find excellent agreement
with the familiar paraxial point-spread function, even for high NA.

4.2 The resolution limit(s)

Now that we have determined how a single point emitter is mapped from its source
to its image, we ask ourselves how well are we able to distinguish two point
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emitters separated by a distance Ar, = (Ax? + Ay*)!"/2 in the object plane. Each
point source will be identified on the basis of its point-spread function having some
characteristic width. If we move the two emitters in the object plane closer and
closer together, their point-spread functions in the image plane will start to overlap
and then reach a point where they become indistinguishable. We might state that
the two point-spread functions can only be distinguished if their maxima are sepa-
rated by more than the characteristic width of one individual point-spread function.
Thus, the narrower the point-spread function is the better the resolution will be.

We have mentioned already in Section 3.1 that the resolving power of an optical
system depends on the bandwidth of spatial frequencies Ak = (Ak; + Ak})'/? that
are collected by the optical system. Simple Fourier mathematics leads to

Ak Ar, =1, (4.19)

similar to the Heisenberg uncertainty principle in quantum mechanics. The product
of Ar, and Ak, is minimized for a Gaussian distribution of spatial frequencies.
This Gaussian distribution is the analog of the minimum uncertainty wavefunction
in quantum mechanics.

In far-field optics, the upper bound for Ak, is given by the wavenumber k =
(w/c)n = (2w /L) n of the object medium because we discard spatial frequencies
associated with evanescent wave components. In this case the resolution cannot be

better than

A
Min[Ar ] = . (4.20)

} Ar__ M A,

object plane image plane

Figure 4.3 Illustration of the resolution limit. Two simultaneously radiating point
sources separated by Ary in the object plane generate a combined point-spread
function in the image plane. The two point sources are optically resolved if they
can be distinguished based on their image pattern.
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However, in practice we are not able to sample the entire spectrum of Ak, =[0...k]
and the upper limit will be defined by the numerical aperture of the system, i.e.

A
~ 27NA
This figure is the best case and, in fact, Abbe’s and Rayleigh’s formulations of the
resolution limit are less optimistic.

Abbe’s formulation considers the paraxial point-spread function of two dipoles
with axes perpendicular to the optical axis (cf. Eq. (4.14)). The distance Ar be-
tween the two dipoles in the object plane is mapped onto a distance M Ar in the
image plane. Abbe states that the minimum distance Min [M ArH] corresponds to
the distance between the two point-spread functions for which the maximum of one
point-spread function coincides with the first minimum of the second point-spread
function. This distance is given by the Airy disk radius defined in Eq. (4.15). We
find according to Abbe [5]

Min [Ar] 4.21)

A
Abbe (1873):  Min[Ar ] = 0.6098 . (4.22)

This limit is a factor of 3.8 worse than the one defined in Eq. (4.21). It is based on
the paraxial approximation and applies to the special case of two parallel dipoles
oriented perpendicular to the optical axis. Things look quite different for two
dipoles aligned parallel to the optical axis. We see that there is some arbitrariness
in the definition of a resolution limit. This applies also to Rayleigh’s criterion [6],
which is based on the overlap of two point-spread functions in a two-dimensional
geometry. Rayleigh’s criterion was formulated in connection with a grating spec-
trometer and not with an optical microscope. However, it is often adopted in con-
junction with optical microscopy.

In Abbe’s resolution limit the distance between the two point sources does not
become distorted for dipoles with unequal strengths. This is because the maximum
of one point-spread function overlaps with a minimum (zero) of the other point-
spread function. Of course, we can overlap the two point-spread functions further
and still be able to distinguish the two sources. In fact, in a noise-free system we
will always be able to deconvolve the combined response into two separate point-
spread functions even if we are not able to observe two separate maxima in the
combined point-spread function. However, even if the two sources, the optical in-
strument and the detector, are both noise free there is always shot-noise associated
with the quantized nature of light, which puts a limit on this idealized view of
resolution.

According to Eq. (4.19) there is no limit to optical resolution if the bandwidth
Ak, is arbitrarily large. However, going beyond the limit of Eq. (4.20) requires
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the involvement of evanescent field components. This is the subject of near-field
optical microscopy and will be discussed in subsequent chapters.

Many tricks can also be applied to stretch the resolution limit if prior information
on the properties of the point sources is available. For example, in Abbe’s formu-
lation, prior knowledge about the dipole orientation is necessary. If, in addition to
Abbe’s assumption, the two dipoles are perpendicular to each other, i.e. u, and
Iy, a polarizer in the detection path can increase the resolution further. Other prior
knowledge might be available in regard to coherence properties of the two emitters,
i.e. |[E{|> 4+ |E;|? versus |E; 4+ E,|?. In all cases, prior knowledge about the prop-
erties of a sample reduces the set of possible configurations and thereby improves
the resolution. Object reconstruction with prior knowledge about the properties of
the object is one of the central topics of inverse scattering. In fluorescence mi-
croscopy prior knowledge is associated with the type of molecules used to label
specific parts of a biological specimen. Knowledge of the absorption and emission
properties of these molecules makes it possible to substantially increase resolution.
A general theory of optical resolution must include a quantitative measure of prior
information. Since, however, information can exist in a variety of different forms it
is certainly difficult to propose a generally valid concept.

4.2.1 Increasing resolution through selective excitation

In discussing the resolution limit we assumed that there were two radiating point
sources separated by a distance Ary in the object plane. However, the sources do
not radiate without any external excitation. If, for example, we can make only one
dipole radiate at a certain time, then we are in a position to assign the detected
field in the image plane to this particular dipole. We then scan the excitation to
the other dipole and record its image in a similar way. Thus, we are perfectly able
to distinguish the two point sources no matter how close they are. Therefore, the
resolution criteria require some correction.

In practice, the point sources are excited by an excitation source Ecy. with finite
spatial extent. It is this extent that determines whether for a given dipole separation
Ar, we are able to excite only one dipole at a time or not. The resolution criteria
formulated before assume a broad illumination of the sample surface making all
point sources radiate simultaneously. Hence, we need to incorporate the effect of
the excitation profile. This can be done in a general way by considering the inter-
action between excitation field E.x. and a sample dipole

n, = f [material properties, Eexc (rs—rn)] , (4.23)

where r), is the (fixed) position vector of the dipole u,, and r; the (variable) position
vector of the excitation field origin. The latter coordinate vector can be scanned in
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object space image space

Figure 4.4 Schematic of a general set-up using a confined excitation source for
sample excitation. The dipole strength p, of the point source depends on the
excitation field Ecxc. The point-spread function defined by the field E in the image
space depends on the nature of the interaction between p,, and Ecyc, and on the
relative coordinates r, —r;.

the object space to selectively excite individual dipoles. With the relationship of
Eq. (4.23), the point-spread function becomes dependent on the excitation field
and the specific light-matter interaction. The resolution of the optical system will
therefore depend on the type of interaction. This increases the number of parame-
ters in our analysis considerably. The problem becomes even more complicated if
we have to consider interactions between the individual dipoles. To keep our feet
on the ground, we need to restrict our analysis somewhat.

Let us assume that the interaction between dipole and excitation field is given by
a general nonlinear relationship

ﬂn(w, 26‘)7 .. Iy, rn) = Oé((,l)) Eexc(w7 r‘\'_rn) + (424’)
/3(20)) Eexc (a), I _rn) Eexc(a)’ Iy _rn) +
)’(30)) Eexc(a)s I _rn) Eexc(wa rs_rn) ECXC(wv Iy _rn) +

where the multiplications between field vectors denote outer products. In its most
general form, the polarizability « is a tensor of rank two, and the hyperpolarizabili-
ties B, y are tensors of rank three and four, respectively. It is convenient to consider
the different nonlinearities separately by writing

Mn(wa 2ws ey I, rn) = M’n(w7 Iy, rn) + /Ln(2w, Iy, rn) + ILn(3w, Iy, rn) + -
(4.25)
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With the help of the dyadic point-spread function for a dipole in the object space
at r,, the focal field at r as a function of the position r; of the excitation beam
becomes

(nw)*
E@r.r.ryinw) = =5 Grsr (0, 103 n0) - o, (N0, X5, X)) (4.26)
0

For multiple dipoles we have to sum over #.

Equation (4.26) demonstrates in a quite general way how the point-spread func-
tion can be influenced by the excitation source. This tailoring of the point-spread
function was named point-spread function engineering and plays an essential role
in high-resolution confocal microscopy. The field in Eq. (4.26) depends on the co-
ordinates of the excitation source, the coordinates of the dipole in the object space,
and the coordinates of the field point in the image space. It is convenient to keep
the coordinates of the excitation beam fixed and to collect, after some spatial fil-
tering, the total intensity in the image plane (integration over r). In this way, the
detector signal will depend only on the coordinates r, of the dipole. Similarly, the
field in the image plane can be evaluated in a single point such as on the optical
axis. This is essentially done in confocal microscopy, which will be discussed in
the next section. Notice that the field E not only depends on the spatial coordinates
of the system but also on the material properties, represented by the polarizabil-
ities «, B and y. Any optical image of the sample will therefore be a mixture of
spectroscopic information and spatial information.

4.2.2 Axial resolution

To characterize the position of the dipole emitter, confocal microscopy uses the
relative coordinate r, —r; between the excitation beam and the dipole position. An
image is generated by assigning to every coordinate r, —ry; some property of the
emitter measured in the image plane.

To demonstrate the basic idea of axial resolution in confocal microscopy we
discuss two special situations. First we assume that the properties of a dipole lo-
cated on the optical axis are represented by the total integrated field intensity in
the image plane. Using the Bessel function closure relations (see Problem 3.4)
we find

2w 00
s1(2) = //E(p,w, 2)EX(p, ¢, 2) pdpde (4.27)
00
wtn 2 2 2 3
= YT [(u"_ + ;Ly)(28 — 12 ¢0S Oppax — 12c08” Orppax — 4 €08~ B10x)
0

+ 12 (8 — 9COS Opnay + COS 30max)].
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The signal has units of V2 and depends on the NA of the system through .. The
important point is that the signal does not depend on the axial coordinate z! Thus,
if the position of the dipole is displaced from the object plane in the direction of the
optical axis it will render the same signal s;. There is no axial resolution associated
with this type of detection.

In order to achieve axial resolution we need to spatially filter the fields in the
image plane before they are sent to the detector. Usually, this is achieved by placing
a pinhole with a radius on the order of the Airy disk radius (Eq. (4.15)) into the
image plane. In this way, only the center part of the point-spread function reaches
the detector. There are different strategies for the choice of the pinhole size [7]
but to illustrate the effect we can assume that only the field on the optical axis
passes through the pinhole. The resulting signal has been calculated in Eq. (4.16)
and reads as

52(z) = E(p =0,2)E(p =0,2) dA (4.28)
7t M3+ NA? [sin(rz) ]2 d . NAZ
= —_— s 7= ———".
ginn’ A0 M? | (n2) 2n' M2

Here, dA denotes the infinitesimal area of the pinhole. We see that a dipole located
on the optical axis with a dipole moment parallel to the optical axis is not detected
in this scheme because its field is zero on the optical axis. In order to enable its
detection we have to increase the pinhole size or displace the dipole from the op-
tical axis. However, the important information in Eq. (4.28) is the dependence of
the signal s, on the axial coordinate z which gives us axial resolution! To illustrate
this axial resolution, let us consider two dipoles on the optical axis near the object
plane. While we keep one of the dipoles in the image plane we move the other
by a distance Ar, out of the image plane as shown in Fig. 4.5. The lens maps a
longitudinal distance Ar, in the object space into a longitudinal distance M Ar,
in the image space, where M is the longitudinal magnification defined as

M, = Lm?. (4.29)
n

It depends on the transverse magnification M defined in Eq. (4.12) and the refrac-
tive indices n and n’ of object and image space, respectively. We place the detector
into the image plane (z = 0). According to Eq. (4.28), the signal of the in-plane
dipole is maximized whereas the signal of the out-of-plane dipole gives®

sin’[TNAZAr, / 2n]

4.30
[*NAZAr, /2n)]? 30

$2(z)

2 We assume that the two dipoles radiate incoherently, i.e. |E\2 =|E; \2+ \Ez\z. The situation is essentially the
same for coherently radiating dipoles, i.e. [Ej2= |Eq +E2\2.
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Figure 4.5 Illustration of axial resolution in confocal microscopy. A pinhole on
the optical axis in the image plane spatially filters the image before it is directed
onto a detector. The pinhole only passes the fields near the optical axis thereby
generating axial resolution.

To ensure that the entire signal can be assigned to the in-plane dipole we have to
require that the contribution of the out-of-plane dipole cancels. This is achieved for
a separation Ar, between the dipoles of

na

Min[Ar] = 2.

(4.31)

This distance defines the axial resolution of the confocal system. Only dipoles
within a distance of Min [Ar ] from the image plane will lead to a significant signal
at the detector. Therefore, Min [Ar, ] is called the focal depth. Besides providing
lateral resolution on the order of Min [AI‘H], confocal microscopy also provides
axial resolution on the order of Min [Ar, ]. Hence, a sample can be imaged in three
dimensions. While the lateral resolution scales linearly with NA, the axial resolu-
tion scales quadratically with NA. As an example, Fig. 4.6 shows a multiphoton
confocal microscopy image of a spiky pollen grain [8]. The 3D image was recon-
structed from multiple sectional images that are displaced in the z-direction by
roughly 2n)/NA?. More detailed experimental issues related to axial resolution
will be discussed in Chapter 5.

4.2.3 Resolution enhancement through saturation

We have discussed how the point-spread function can be squeezed by using non-
linear optical interactions, i.e. the width of E*'(r,) is narrower than the width of
E?(r). A similar advantage can be achieved through saturation as demonstrated
in the pioneering work by Hell and coworkers [9]. The necessary ingredients are
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Figure 4.6 Multiphoton confocal image of a 25 pum spiky pollen grain. Three-
dimensional reconstruction based on multiple sectional images (left), and a single
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sectional image (right). From [8].
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Figure 4.7 Illustration of resolution enhancement through saturation. (a) Energy
level diagram of a two-state molecule with excitation rate y., radiative decay rate
¥, and stimulated depletion rate y4. (b) Transverse intensity profiles of excitation
field and depletion field. The zero of the depletion field is placed at the maximum
of the excitation field. (c) Transverse fluorescence profiles (y;) for two different

depletion parameters d, = 0 and d, =
fluorescence peak will be.

100. The higher dj, the narrower the

(1) an intensity zero located at the region of interest, and (2) a target material with
a reversible saturable linear transition.

To illustrate how saturation can be used to increase resolution in fluorescence
microscopy let us consider a dense sample made of randomly oriented molecules
that are well approximated by two-level systems as shown in Fig. 4.7(a). Each
two-level system interacts with two laser fields: (1) an excitation field E. which
populates the excited state |1), and (2) a field E4 used to deplete the excited state
by stimulated emission. For sufficiently high intensities the depletion field saturates
the ground state |0). Figure 4.7(b) shows typical intensity profiles of excitation and
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depletion fields. Far from saturation of the excited state |1), the excitation rate of
the system is given by

Ye(r) = o l.(r) / hay , (4.32)

where o is the one-photon absorption cross-section and /. is the intensity associ-
ated with the excitation field E.. Once the system is in its excited state the proba-
bility of a spontaneous transition to the ground state |0) (emission of fluorescence
photon) is given by
Vr

Vot va
Here, y; is the radiative decay rate and y4 the stimulated transition rate. The latter
can be written as

(4.33)

va(r) = o l4(r)/haoy , (4.34)

with /4 being the intensity of the depletion field. Combining Eqgs. (4.32) and (4.33)
we can express the fluorescence rate of the system as

14 o [(r)

r =yr——— 7 = — ————— | 4.35
7a(m) = ye( )yr T 7 heon 1+ dy(0) (4.35)

where we introduced the depletion parameter
A = —2— Iy (4.36)

hawo v

which corresponds to the ratio of the rates of stimulated and spontaneous emission.
For a weak depletion field the stimulated emission is weak (d, — 0) and the
fluorescence rate reduces to the familiar expression given by Eq. (4.32).

Let us now discuss the relationship between this simple theory and the issue of
resolution in optical microscopy. Obviously, for d, = 0 the resolution in the flu-
orescence image will be determined by the width of the excitation field shown in
Fig. 4.7(b). However, if we use a depletion field with a zero at the maximum of
the excitation field then the width can be narrowed significantly, depending on the
magnitude of d},. This behavior is illustrated in Fig. 4.7(c) for d, = 100. In princi-
ple, there is no limit for the narrowing of the fluorescent region and, in principle,
arbitrary resolution can be achieved. We can introduce the depletion parameter into
Abbe’s resolution criterion and obtain approximately

Min [Ar,] =~ 0.6098 (4.37)

NA/T+d,
Thus, any d, > 0 improves the spatial resolution. It should be noted that reso-
lution enhancement based on saturation is not limited to imaging. The same idea
can be employed for lithography or for data storage provided that a material can
be found with the desired saturation/depletion properties. Finally, we have to re-
alize that resolution enhancement through saturation makes use of very specific
material properties as provided, for example, by a fluorophore. In this sense, the
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Figure 4.8 Schematic of an inverted confocal microscope. In this set-up, the light
path is held fixed whereas the sample is scanned in three dimensions. A beam-
splitter divides the excitation path and detection path into two separate arms. A
laser beam is focused into the sample by a high NA objective lens to provide a
spatially confined excitation source. The response of the sample is collected by
the same objective lens and focused onto a pinhole in front of a detector.

electronic structure of the target material has to be known in advance and hence
there is no spectroscopic information to be gained. Nevertheless, information on
biological samples is normally provided through chemically specific labelling with
fluorophores.

4.3 Principles of confocal microscopy

Today, confocal microscopy is a technique that is applied in many scientific disci-
plines, ranging from solid state physics to biology. The central idea is to irradiate
the sample with focused light originating from a point source (or a single-mode
laser beam) and direct the response from the sample onto a pinhole as discussed
in Section 4.2.2. The basic idea was put forward in a patent application by Min-
sky in 1955 [10]. Over the years, different variations of confocal microscopy have
been developed. They differ mostly in the specific type of laser—matter interac-
tion, such as scattering, fluorescence, multiphoton excited fluorescence, stimulated
emission depletion, third-harmonic generation, or CARS. In this section we will
outline the general ideas behind confocal microscopy using the theoretical frame-
work established so far. Experimental aspects will be covered later in Chapter 5.
More detailed treatments can be found in dedicated books on confocal microscopy
such as Refs. [11-13].

To understand image formation in confocal microscopy we will focus on the con-
figuration shown in Fig. 4.8. This is a special case of the general situation shown
in Fig. 4.4. In the present situation, excitation and detection are accomplished by
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the same objective lens using an inverted light path. A beamsplitter is used to split
the excitation path and the detection path into two separate arms. In fluorescence
microscopy, the beamsplitter is usually replaced by a dichroic mirror which trans-
mits or reflects only specific spectral ranges thereby increasing the efficiency. To
keep things as simple as possible we assume that a sample with one single dipo-
lar particle is translated in all three dimensions relative to the fixed optical system.
Thus, we can set ry =0 and use the vector r,, = (x,,, y,, z,,) to denote the coordinates
of the dipolar particle.

To generate an image we assign to each position r, a scalar quantity measured
in the image space. In confocal microscopy, this quantity corresponds to the signal
sy discussed previously. Similarly, for non-confocal microscopy we use the signal
s1. The process of image formation embraces the following three steps:

1. Calculation of excitation field in object space (Sections 3.5 and 3.6).
— excitation point-spread function

2. Calculation of interaction.

3. Calculation of response in image space (Section 4.1).
— detection point-spread function

The first step provides the excitation field Ec.. It depends not only on the parame-
ters of the confocal system but also on the incident laser mode. For the interaction
between the excitation field E¢y. and the dipolar particle we first assume a linear
relationship, which we write as

”’n(w) = &) Eexc(rnv w) . (438)

Finally, the response of the dipole in the image space is determined by (cf.
Eq. (4.6))
w? =
E(r) = 3 [ (4.39)
& C

The combination of these equations allows us to eliminate u, and thus to calculate
the image field as a function of the excitation field, the particle polarizability and
the system parameters.

To evaluate the equations above it is necessary to understand the mapping from
object space to image space. A field point in the image space is defined by the
vector r. We have learned before that a dipole u,, at the origin (r, = 0) generates
afield E(x, y, z) in the image space according to Egs. (4.6)—(4.10). If we translate
the dipole from its origin to an arbitrary position r, in the object space, the field in
the image space will transform as

E(x,y,z) = E(x —x,M, y — y,M, z — z,M*n’/n), (4.40)
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where M is the transverse magnification defined in Eq. (4.12). The pinhole fil-
ters this field and the detector behind it performs an integration over x, y. To keep
things simple, we can assume that the pinhole is sufficiently small allowing us to
replace the detected signal by the field intensity at r =0 multiplied by an infinites-
imal detector area dA (cf. Eq. (4.28)). The detector signal is then only dependent
on the coordinates of the dipole

SQ(X,,, Yns Zn) = ’E(ng5 )’nM, Zann//n)‘z dA . (441)

The field E (x,M, y,M, z,M?*n’/n) is obtained from Egs. (4.6)—(4.10) by using
the substitutions p — p,M, z— z,M?n’/n, and ¢ — @,. Then, the detector signal
becomes

4 2

w <
§2 (xm Yns Zn) = @ GPSF (pm ©Dns Zn) R, dA B (442)
0
with
(i00+i02 cos 2¢,) foz sin 2¢, —2ii01 cos ¢,
GPSF(pns @ns Zn) X oo — ]02 sin 290,1 (IO() — ]()2 Cos 2(p,,) —21]01 sin ©On
8n M 0 0 0

(4.43)

and the integrals Too—Ion

gmax
To0(pn, ) = ekan(I11? / (cos0)/2 sin@ (14cos 0) Jo(k p, sin ) e~ 2 k=5’ g
0

Omax

To1(pn, ) = eken(I11? / (cos0) 2 sin? 6 J (k p, sin@) e~ 2K7500 49 (4.44)
0

9max
T2 (Pns ) = ei"Z"(f/f’)Zf (cos )72 sin @ (1—cos 0) Ja(k p, sin@) e~ 2 k=50 gg_
0

The field depends on the magnitude and orientation of the dipole p,, which, in
turn, depends on the nature of the interaction between the excitation field Ey. and
the dipolar particle. The excitation field can be an arbitrary focused laser mode as
discussed in Section 3.6. Let us choose a fundamental Gaussian beam as this is
used in most confocal set-ups. We assume that the beam is focused on the object
plane and that its propagation direction coincides with the optical axis. According
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to Egs. (3.66) and (4.38) the dipole moment can be written as

L] (Too + Loz cos 2¢,)
I, (@) = ik f Ege %/ 5| (o2 sin 2¢,) , (4.45)
(422 (_2i101 Cos %)\/g

where «;; denote the diagonal elements of the polarizability and E is the field
amplitude of the incident paraxial Gaussian beam. The integrals Ioo—I; are defined
in Egs. (3.58)—(3.60) and read as
emax
Too(pn, 2,) = /fw(e) (cos0)"/? sin6 (1 + cos 8) Jo(kp, sin ) <37 dg,
0
Hmax
To1(Pn, zn) = / fu(®) (cos 0)/2sin? 0 J (kp, sin ) %737 dg, (4.46)
0
Gmax
T2 (Pus 2n) = /fw(e) (cos0)'/? sin6 (1—cos 0) Jo(kp, sin @) e*<°? dg |
0

where the function f,, defines the expansion of the incident beam relative to the
back-aperture of the objective lens.

The integrals inm and the integrals /,, differ only by the term f,,(f) and in
the exponential terms which become identical in the small angle limit (cosf =~
1 — 162, sin> 0 ~ 6?). Using Eq. (4.42), we are now in a position to exactly cal-
culate the confocal signal in the image plane. However, in order to see the essence
of confocal microscopy we need to reduce the complexity somewhat. We assume
that the incident beam is sufficiently expanded, i.e. f,,(#) =1, and that the slight
difference in the exponential terms is marginal so that the two sets of integrals
become identical. Furthermore, we neglect the contribution of Iy, relative to Iy
and assume that the dipole is rigidly aligned along the polarization direction, i.e.
ay, = a;; = 0. The resulting detector signal is then identical to the signal that

would result from a purely scalar calculation and reads as

2
confocal: 82 (Xpy Vs Zns @) X ozmrloz()’ dA . 4.47)

The important outcome is the fact that the integral appears squared. This means
that the point-spread function in confocal microscopy is essentially the square of
the point-spread function in ordinary microscopy! Thus, in addition to the axial
resolution, confocal microscopy has increased transverse resolution — and this is
simply the result from placing a pinhole in front of the detector. If the pinhole is
removed and all radiation in the image plane is directed on the detector, the signal
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turns out to be
2
O 100’ dA . (4.48)

non-confocal: 81 (Xny Yus Zny @) X

This seems somewhat surprising since in the previous section we concluded that
ordinary far-field microscopy has no axial resolution. However, we assumed before
that we have a uniform illumination of the object space. The axial resolution in the
present case is achieved by the spatially confined excitation source provided by the
focused laser beam and by having only a single dipolar emitter in the sample vol-
ume. If we had a dense sample of dipoles (see Problem 4.3) we would lose any axial
resolution in non-confocal microscopy. Nevertheless, we clearly see that the pin-
hole in confocal microscopy increases both transverse and longitudinal resolution.

The total point-spread function of the system can be regarded as the product of
an excitation point-spread function and a detection point-spread function

TOTAL PSF ~ EXCITATION PSF x DETECTION PSF, (4.49)

where the former is determined by the field distribution of the focused excitation
beam and the latter by the spatial filtering properties of the pinhole in the image
plane. However, we have to keep in mind that the increase in transverse resolu-
tion achieved by confocal microscopy is marginal, often only a small percentage.
While the zeros of the point-spread function remain unchanged, the width of the
central lobe becomes slightly narrower. The benefit of confocal microscopy lies
much more in the axial sectioning capabilities in dense samples (see Problem 4.3).
It has to be emphasized that it is a rough approximation to reduce the two sets of
integrals Egs. (4.44) and (4.46) to a single set. This can only be done for a Gaussian
excitation beam because the symmetries of detection and excitation turn out to be
the same. The analysis becomes more complicated if we use a higher-order beam
mode as an excitation source.

Figure 4.9 shows an experimentally measured point-spread function. It has been
recorded by raster scanning a gold particle through the focal region of a focused
excitation beam and recording, for each image pixel, the scattered light intensity.
Because of its spherical symmetry, the particle has no preferred dipole axis and
hence oy, = @,, = ... Experimental aspects of confocal microscopy will be
discussed in more detail in Section 5.1.1.

It is straightforward to extend the analysis to account for nonlinear interactions
between particle and excitation beam. For example, with the same assumptions and
approximations as before we find for a second-order nonlinear process

2
confocal: s (X, Y, Zn; 20) X ﬂx”Ioo(Zw)lozo(w) dA, (4.50)
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Figure 4.9 Total point-spread function (PSF) measured by scanning a gold parti-
cle through the laser focus and detecting the scattered intensity at each position.
From Ref. [9].

2
non-confocal: sy (X, Yy, Zs; 20) & ﬁx,‘.xlozo(a))‘ dA . (4.51)

Here, we had to consider that excitation occurs at a frequency w, whereas detection
occurs at a frequency of 2w. It is often claimed that nonlinear excitation increases
resolution. However, this is not true. Although a nonlinear process squeezes the
point-spread function it requires longer excitation wavelengths. While the Airy disk
radius scales proportionally with the wavelength it is not so strongly influenced by
being multiplied with itself. Therefore, the wavelength scaling dominates.

4.4 Axial resolution in multiphoton microscopy

We have determined that the benefit of confocal microscopy is not necessar-
ily an increase of the transverse resolution but an increase of the longitudinal
resolution. This longitudinal resolution provides sectioning capability for true
three-dimensional imaging. The same benefits are achieved in multiphoton mi-
croscopy even without using confocal arrangements. In multiphoton fluorescence
microscopy the signal generated at a position r is qualitatively given by

s(r) o« o, [E@) -E*(0)]" | (4.52)

where o, is the n-photon absorption cross-section and E is the excitation field. In
a dense sample of fluorophores the total signal generated in a spherical volume of
radius R is calculated as

2r w R

Stotal X O / f / [E(r, 6, ¢)|*" r?sin6 dr d6 d¢ . (4.53)

000
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Figure 4.10 Localization of the excitation volume in multiphoton microscopy.
The figure depicts the signal that is generated in a dense sample within a sphere
of radius R when excited by a focused Gaussian beam by n-photon excitation.
Different from multiphoton excitation (n > 1), one-photon excitation (n = 1)
cannot restrict the excitation volume without the use of a confocal pinhole.

For large distances from the exciting laser focus, the excitation fields decay as 7!

and consequently the integral does not converge for n = 1. Thus, without the use of
a confocal pinhole, it is not possible to axially localize the signal in one-photon ex-
citation. However, for n > 1 the situation is different. The signal is only generated
in the vicinity of the laser focus. This is illustrated in Fig. 4.10 where we evalu-
ated Eq. (4.53) for a Gaussian beam with beam waist radius wy = A/3. Although
we used the paraxial approximation and ignored the fact that longer wavelengths
are used in multiphoton microscopy, it is a general finding that localization of the
excitation volume requires a process with n > 1. It is this property that makes mul-
tiphoton microscopy such an attractive technique. Multiphoton microscopy will be
discussed in more detail in Chapter 5.

4.5 Position accuracy

We have seen that when we use an optical microscope to image individual fluores-
cent objects with a subwavelength spatial extension the recorded two-dimensional
map of fluorescence (e.g. in the x—y-plane) corresponds to the respective 2D pro-
jection of the relevant 3D point-spread function. The individual patterns obtained
this way can be evaluated to precisely yield the x—y-position of the emitter [14—
17]. The accuracy of determining the position of a single emitter is much better
than the spatial extension of the point-spread function and, as will be discussed in
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(b) ()

A A A

Figure 4.11 Simulated image pattern of two nearby emitters with a constant Pois-
sonian background. The emitters are simulated to exhibit Gaussian patterns with
Poissonian noise uncorrelated to the background noise. (a) Two emitters without
discrimination of photons. (b), (c) Individual patterns obtained by energy discrim-
ination of photons. The individual patterns are displaced by finite distance Ax.

the following, it is only limited by the “quality” of the data, that is the amount of
noise present in the data. For example, when tracking moving objects the precision
can be as high as a few nanometers. Furthermore, if the photons that arrive at the
detector can be distinguished by any observable, e.g. energy, polarization, or ar-
rival time, as discussed before, they may be attributed to separate objects even if
two objects are very close and their image patterns overlap. This idea is illustrated
in Fig. 4.11. In (a) a composite pattern consisting of two individual spots is shown.
If the photons that contribute to these spots can be separated into e.g. red and green
photons (Fig. 4.11 (b) and (c)) the positions of and therefore also the distance be-
tween the two emitters can be estimated with subwavelength precision. This way of
attaining subwavelength position accuracy has important applications in astronomy
[14] and biophysics [17, 18] as well as analytical [19] and physical chemistry [20].

4.5.1 Theoretical background

In principle, there are numerous ways to find the position of an isolated emitter.
For example, one could calculate the “center of mass” of a given pattern based on
the intensities of the pixels or use appropriate correlation filtering techniques. In
order to quantify the precision with which a position is found, a statement about
the uncertainty in the position measurement is required. It is therefore common to
approximate the point-spread function by a suitable model and to fit this model to
the obtained data by minimizing x2, the sum of the squares of the deviation be-
tween data and model at each data point. Because x? reflects the likelihood that a
certain set of parameters is correct, it can be used to establish well-defined error
limits to each fit parameter. Thus, exploiting the x? statistics it is possible to obtain
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Figure 4.12 Similarity of the Airy function and a Gaussian. The deviations are
negligible for noisy data.

not only the set of best fit parameters for a given model but also the standard devi-
ations associated with this set based on the measured data. The analysis given here
follows the work of Bobroff [14], which relies on a maximum likelihood criterion
for data with a Gaussian error distribution. More general approaches are discussed
in the literature [16]. We limit ourselves here to the specific case of least-squares
fitting of two-dimensional Gaussian distributions. A 2D Gaussian fits very well to
the intensity patterns of subwavelength emitters obtained in optical microscopy.
Although fitting an Airy pattern would be the more realistic choice, usually the
signal quality is not good enough to result in significant systematic deviations. In
special cases, however, the use of more complex models might be necessary de-
pending on the problem. For example, the complex patterns obtained by annular
illumination confocal microscopy and illumination with higher-order modes cer-
tainly have to be fitted by more complex models [21]. The present analysis can be
adapted to such cases.
For a two-dimensional Gaussian intensity distribution

(4.54)

— 2 o 2
Gx,y) = B + Aexp|:—(x X0)” + (y — yo) }

2y2

there are five parameters that have to be determined, i.e. the spatial coordinates
of the maximum x, and y, (i.e. the spot position), the amplitude A, the width
y, and the background B. Sometimes the width y of the point-spread function is
assumed to be known from independent measurements. This reduces the number of
fit parameters and increases the accuracy of the remaining parameters by roughly
10% as shown below. Typically, experimental data are recorded at a finite number
of points (x;, y;), e.g. corresponding to the pixels of a CCD chip or of a scan image.
Each data point (x;, y;) is associated with a signal D(i, j) and a corresponding
uncertainty o; ;, €.g. due to Poissonian counting statistics. The sum of the squares
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of the deviation between data and model, x?2, over all data points (i, j) then reads
as

NN ,
=XYool (455)
, of
i=1 j=1
where N is the number of pixels in the x- and y-directions. Here, G, ; are the values
of the model at the point (x;, y;), 2 is a weighting factor to ensure that data points

with small uncertainties are more 1mp01“[ant. The set of parameters that minimizes
2 is denoted as [xo,mim Y0.min> Ymins Amin> Bmin]. It is obvious that the uncertainty
in each of the parameters depends on the shape of x? around its minimum x>, . Toa
good approximation, for small variations of a single parameter about the minimum,
%2 has the shape of a parabola. Depending on whether the parabola has a small or
large opening factor, the statistical error associated with the respective parameter
is smaller or larger. In order to find these opening factors and thus quantify the
uncertainties we write the Taylor expansion of x2 around its minimum x>,

2 1 3G, ;
X = Z Z —5| (Gijimin = Dij) + one ) (X0~ Xomin)

i=1 j=1 Ui-/ X0, min
G ; 3G ;
+ < 9 J) (yo - yO,min) + <T]> (V - Vmin)
Yo Y0,min 4 Ymin
2
8(;ij aG,‘A]‘
: A — Anin - B — Bnin) | - (4.56
(50w (55, o] 050

The deviation A of x? from the minimum can then be expressed as

N N 1 G 2
A= = DY 2|:< ak’o’) (X0 — X0,min) 4.57)
1 X0,min

im1 j=1 %i.j
3G, \* 2 3G \*
+ <4> (yO - yo,min) + ( lyl) (y — ymin)z
8)’0 Y0,min aJ/ Ymin
0G; 2 3G,
+( 8A1>An,,n (A — Ain)* + ( an)Bm (B — B Y’ + cross tem]

The cross terms can be shown to vanish [14]. Some contain the partial derivatives of
x?2 that vanish because x? has a minimum at [Xo.mim Y0,mins Ymin> Amin, mm] The
other cross terms are negligible because they are sums over products of symmetric
and antisymmetric functions. This leads to the final result, i.e. the approximation
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Figure 4.13 Two Gaussians displaced by a small amount. It is obvious that the
main contribution to the differences between the two curves (shaded in gray) oc-
curs where the slope is large. This is expressed in Eq. (4.58).

of A for small deviations from the minimum

N N 2 2
1 <8G,' j) 2 (E)G,- j) 2
A = —5 - (xo — Xo,min)” + | —— (Yo — Yo.min)

im1 ; CTi?j |: dxo X0,min Yo Y0,min

3G\ 3G\
+ ( ’j) (y — Vmin)2 + (’j> (A— Amin)z

a y Ymin a A Amin

9G: \?
+ ( aBﬁJ)Bmin (B - Bmin)2:| . (4.58)

This result describes by how much x? increases by a variation of the parameters
around their optimal values. The surfaces of constant A are “ellipses” in the pa-
rameter space. According to Eq. (4.58) the strongest contributions to x> come from
the regions where G has steep slopes. For the position parameters (xo, yo) this can
be easily verified by displacing a Gaussian fit curve from the best fit parameters
(X0,min» Y0,min) illustrated in Fig. 4.13.

4.5.2 Estimating the uncertainties of fit parameters

As A increases, the statistical likelihood of the parameter set being the correct one
decreases. It is possible to establish a connection between the magnitude of A and
the statistical likelihood associated with the fit parameters [22, 23]. Once the value
of A for a given level of confidence of the fit is substituted, Eq. (4.58) can be used to
estimate the uncertainty in the parameters. The normalized probability distribution
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Table 4.1. Values of A, obtained from Eq. (4.60) for up to seven fit parameters.

v 1 2 3 4 5 6 7
A, 1 23 35 47 59 705 82

function for A with v fitting parameters® is given by (see e.g. [22] Appendix C-4)

P(A,v) = (4.59)

2220 (v/2)
If we integrate P (A2, v) up to infinity starting from the value of A, that leads to a
value of the integral of 0.317,

/ P(A,v)dA =0.317, (4.60)

then with a probability of 1 — 0.317 = 0.683 the correct parameters lie within
the region of parameter space for which A is smaller than A,, corresponding to
a lo confidence level. The value of A, increases with the number of free fit pa-
rameters v since usually correlations between the different parameters exist. Table
4.1 provides the respective values of A, for up to seven fit parameters for a 68.3%
confidence level. Other values can be calculated using Egs. (4.59) and (4.60).

For example, in order to estimate the uncertainty of the position x, we assume
that all parameters apart from xy have their optimum values. In Eq. (4.58), in this
case all terms vanish but the one containing x. From Eq. (4.58) we then obtain

S 3G 1\ B
o= (0 o) = {1 30 (ax'o’> s
i=1 j=1 J X0,min

The sum over i and j can either be calculated directly numerically from the result
of the fit or be approximated by an integral to yield an analytical expression for the
uncertainty o,. The latter approach has the advantage that it allows us to discuss
the dependence of the positional uncertainty on various experimental parameters.
To obtain an analytical expression we exploit that

ol—

N

N 2 2
1 1 (3G, 9G,,;
_ = — . , (4.62
2 Z Z 2 < axo >X0_m|n // 2('x y) ( axo )XO min ( )

i=1 j:l

where L = Néx = Ny is the side length of the quadratic fitting area with
8x and 8y being the size of individual quadratic pixels* and N is the number of

3 Also called “degrees of freedom”.
4 This assumption is not mandatory but simplifies the analysis.
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pixels within the length L. To evaluate the integral on the right side of Eq. (4.62)
we have to make some assumptions about the noise of the data o%(x, y). We as-
sume uncorrelated Poissonian (or Gaussian) noise of the background and the sig-
nal. Thus we have o%(x, y) = o + 03, where according to Eq. (4.54) 07 = B and
o3 = A exp[(—(x — x0)> 4+ (y — y0)?) / 2y?]. When introducing this expression
into Eq. (4.62) it is difficult to arrive at an analytical result. We therefore apply
the following approximations: (i) We assume that the signal dominates the back-
ground around the maximum of the Gaussian peak up to a distance of «y. This
means that only the Poissonian noise of the signal o4 is assumed to contribute in
this region. (ii) For distances larger than xy we assume that the Poissonian noise
of the background op dominates. The parameter « allows us to adjust the transi-
tion point depending on the relative magnitude of signal and background that may
occur in specific experiments. The sum of Eq. (4.62) can now be approximated by
a sum of three integrals as follows

EE A+ o2
— ~
izt j=1 9i.j dxo X0,min L? i (x Y\ %o X0,min
N2 1 (3G ;\*
+ — 8x 8y — /
L? // 02< 9x ) _
L2 B 0 X0,min
, L2
N 0G|
— 8x 8 , 4.63
+L2//”2<axo>,m. (4.63)
KJ/ ., min

where the last two terms yield identical results due to the symmetry of the prob-
lem. With this approximative description using Eq. (4.61), we can write for the
normalized uncertainty in the position in the x-direction

Oy 2t A, Sx A,
9 _ 2 = — . (4.64)

v N [c(K)A+A§F(z,K)] 1 [c(K)A+%2F(t,K)]

Here we have introduced the dimensionless parameter t = L /(2y) which describes
the width of the fitting area in units of the width of the peak. The function F (¢, k)
and the constant c¢(k) in Eq. (4.64) are defined as

F(t,x) = g [Erf(k) —Erf(t)][‘/j [Exf(x) — Erf(1)] + re™" — Kekz:l,
k) = 2Erf<j§>[nErf<é> —K\/ZTTC_KZZ} : (4.65)
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Figure 4.14 Dependence of o, on several relevant parameters for y = 125 nm
and dependence of F (¢, «) on t. (a) Plot of o, vs. number of pixels N. Other
parameters: A = 500, B = 10, =5, A, = 5.9, k = 1.6. (b) Plot of o, vs. the
amplitude of the signal A. Other parameters: B = 10, =5, A, =5.9, N = 10,
k = 1.6. (c) Plot of o, vs. the background level B. Other parameters: A = 500,
t=5A,=59,N =10,k = 1.6. (d) Plot of F(t,«) vs. t forx = 1.6.
with

Erf(z) = % /0 e du (4.66)

being the so-called error function. From our definitions it follows that 0 < k < .
With this we are now in a position to provide hard numbers for the uncertainty in
the peak position o, /y for a given experimental situation (see Problem 4.6). It is
obvious that a similar analysis can be used to obtain uncertainties in other param-
eters such as the width of the spot (see Problem 4.7). To visualize the dependence
of the normalized uncertainty in position o, /y on the various parameters we plot
o, as a function of the number of pixels, the signal amplitude, and the background
level for a spot size of 250 nm (FWHM) as achieved by a high-NA oil immersion
objective. We observe by inspection of Fig. 4.14(a)—(c), that a position accuracy
down to a few nanometers can be achieved by increasing the number of pixels,
increasing the signal and lowering the background level. On the other hand, in-
creasing the width of the fitted area decreases the position accuracy linearly for
t > 2.5, which is where F (¢, 1.6) saturates (see Fig. 4.14(d)) unless the number
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Figure 4.15 Tracing fast diffusion with subwavelength accuracy. (a) Series of
5 ms exposures recorded at 35 ms intervals of two fluorescence peaks of individ-
ual labelled lipids in a lipid bilayer. Image size: 5.4 x 5.4 um?. (b) Trajectories
of both molecules as obtained by fitting the peaks in (a). Inset: Mean-square dis-
placement of individual molecules averaged over many trajectories. Adapted from
Ref. [18].

of pixels N is also increased. Also, the number of free parameters has an influence
on the uncertainty. Roughly, increasing the number of parameters by one decreases
the accuracy of all parameters by 10%.

Finally we compare our predictions to some results reported in the literature
concerning the tracking of individual fluorescent molecules. The first experiment is
the tracking of individual fluorescently marked lipid molecules in a supported lipid
bilayer [18]. Here the challenge is to capture the rapid diffusion of individual lipid
molecules. The set-up uses a 1.3 NA microscope objective in conjunction with a
sensitive and fast CCD camera that is able to record sequences of images at rates up
to 140 images/s. The resulting short integration time limits the position accuracy.
Figure 4.15(a) shows a series of 5 ms exposures recorded at 35 ms intervals of a
5.4 x 5.4 um? area of a lipid bilayer featuring two labelled lipids. The latter show
up as distinct peaks. Using the following data taken from [18], A = 60, B = 6,

=5 A =59« = 16,and y = 240 nm we obtain o, = o, = 43 nm in
coincidence with the value for the typical standard deviation of the position stated
in the article. This accuracy is seven times smaller than the diffraction limit of
the set-up. The Brownian motion of individual lipids in a lipid bilayer membrane
could be confirmed by studying more than 500 trajectories similar to those shown
in Fig. 4.15(b). The inset shows the resulting linear dependence for the average
mean-square displacement vs. time-lag.
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Figure 4.16 Nanometer position accuracy with single dye labels. (a) 3D represen-
tation of an image of single Cy3-dyes recorded at an integration time of 0.5 s. Note
the high amplitudes of up to 3000 counts and the low background. The variation
in amplitude is due to non-uniform illumination. (b) Displacement of individual
markers linked to a Myosin V motor protein vs. time. The stepwise motion of the
marker is clearly resolved. Adapted from Ref. [17].

If the observation times are longer (~0.5 s), at the expense of the high time res-
olution of the previous experiment, and if the marker is photostable, it is possible
to achieve a remarkably high position accuracy down to a few nm. The conditions
that have to be fulfilled to enter this regime can be inferred from Fig. 4.14(a) and
(b). The number of pixels N that is used to display and fit a single Gaussian peak
has to be rather large, e.g. around 16 with ¢t & 5. Furthermore, the signal amplitude
A has to be rather large, e.g. about 1000 counts, while the background B is to be
kept small, e.g. around 100 counts. All these conditions were met in [17]. Exam-
ples of measured spots are shown in Fig. 4.16(a). This plot shows the high quality
of the data obtained during a 0.5 s integration time. Using the above mentioned
parameters we obtain a position accuracy of better than 3 nm using Eq. (4.64) with
k = 1.6. In [17] the step size of the molecular motor myosin V has been investi-
gated. To this end the motor protein was labelled and the position of the individual
marker molecule was observed over time while the motor was stepping ahead. Indi-
vidual steps of down to ~25 nm could be easily discerned as shown in Fig. 4.16(b)
[17]. The traces in Fig. 4.16(b) nicely show that the position accuracy is in the
estimated range.

Apart from applications in tracing the motion of individual molecules, the high
position accuracy can also be used to address questions such as whether two
molecules that are distinguishable in a certain observable are colocalized or not.
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This question is of major importance e.g. in the evaluation of binding assays at the
level of individual or few molecules [19].

We have shown that it is possible to achieve nanometer precision in position
measurements using optical imaging. The precision depends on the noise level of
the data and can be as high as a few nanometers even when detecting individual flu-
orescent molecules. It should be emphasized again that this type of precision is not
to be confused with high resolution although it can be used to determine distances
between closely spaced individual emitters. The latter distance determination is
only possible if prior information exists about the molecules, i.e. if the photons
that are emitted can be assigned to one or the other emitter by means of differences
in a certain observable, like the energy of the photon. Thus, this type of “resolution
enhancement” falls into the categories of tricks discussed in Section 4.2.

4.6 Principles of near-field optical microscopy

So far we assumed that the spatial frequencies (k,, k,) associated with evanescent
waves are lost upon propagation from source to detector. The loss of these spatial
frequencies leads to the diffraction limit and hence to different criteria which im-
pose a limit to spatial resolution, i.e. the ability to distinguish two separate-point
like objects. The central idea of near-field optical microscopy is to retain the spa-
tial frequencies associated with evanescent waves thereby increasing the bandwidth
of spatial frequencies. In principle, arbitrary resolution can be achieved provided
that the bandwidth is infinite. However, this is at the expense of strong coupling
between the source and the sample, a feature not present in standard microscopy
where the properties of the light source (e.g. laser) are negligibly affected by the
light-matter interaction with the sample. In this section we will ignore this coupling
mechanism and simply extend the concepts of confocal microscopy to include the
optical near-field.

A near-field optical microscope is essentially a generalization of the confocal
set-up shown in Fig. 4.8 where the same objective lens was used for excitation
and collection. If we use two separate lenses we end up with the situation shown
in Fig. 4.17(a). In general, for high optical resolution we require high spatial
confinement of the light flux through the object plane. This spatial confinement
can be viewed as the product of excitation confinement and detection confinement
as stated in Eq. (4.49). To achieve a highly confined light flux we need to include
a broad spectrum of spatial frequencies (k., k) which requires the use of high NA
objective lenses. However, in far-field optics we encounter a strict cut-off of the
spatial spectrum: only the free propagating plane wave components with k; < k

(k=n2m/r ky =k, = /ki = k}) can be included.
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Figure 4.17 Near-field optical microscopy viewed as a generalization of confocal
microscopy. (a) In a far-field microscope the propagating field components are
focused onto the object plane in the sample. The bandwidth of spatial frequen-
cies is limited to k| < k, where k = n2m /A, which sets a limit for the maximum
achievable resolution. (b) In a near-field optical microscope the focusing lens is
replaced by an object (aperture) which extends the bandwidth of spatial frequen-
cies beyond k. Because the field components with spatial frequencies beyond k&
do not propagate, the object has to be placed close to the sample.

In order to extend the spectrum of spatial frequencies we need to include evanes-
cent waves with kj > k. Unfortunately, these do not propagate and thus cannot be
guided towards the sample by using standard optical elements. Evanescent waves
are bound to the surfaces of material structures, which necessitates that we bring an
“evanescent wave carrying object” close to the sample in order to extend the spec-
trum of spatial frequencies. Such an object can be a favorably illuminated metal
tip or a tiny illuminated aperture in a metal screen as shown in Fig. 4.17(b). The
price that we have to pay for the inclusion of evanescent waves is high! The object
that is brought close to the sample becomes part of the system and the interactions
between object and sample complicate data analysis considerably. Furthermore,
the extended spatial spectrum is only available close to the object; since in most
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cases we cannot move with the object into the sample, near-field optical imaging
is limited to sample surfaces.

Beyond the source plane the confined fields spread out very rapidly. Indeed,
this is a general observation: the more we confine a field laterally the faster it will
diverge. This is a consequence of diffraction and it can be nicely explained in terms
of the angular spectrum representation. Let us consider a confined field in the plane
z =0 (source plane). We assume that the x-component of this field has a Gaussian
amplitude distribution according to Eq. (3.8). In Section 3.2.1 we have determined
that the Fourier spectrum of E, is also a Gaussian function, i.e.

—# ~ w2 2442 ’“(2)
E((x,y,0) = Ege "0 — E (ke ky; 0) = Eg e &=,

(4.67)
Figures 4.18(a, b) demonstrate that for a field confinement better than A /2n we re-
quire the inclusion of evanescent field components with k > k. The shaded area in
Fig. 4.18(b) denotes the spectrum of spatial frequencies associated with evanescent
waves. The better the confinement of the optical field is the broader the spectrum
will be. Notice that we have displayed only the field component E, and that in order
to describe the distribution of the total field |E| we need to include the other field
components as well (see Problem 4.4). Beyond the plane z = 0 the field spreads
out as defined by the angular spectrum representation Eq. (3.23). Using cylindrical
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Figure 4.18 (a) Gaussian field distributions with different confinements in the
source plane z = 0: wo = A (solid curve), wo = A/2 (dashed curve) and wo =
A /8 (dash-dotted curve). (b) Spectrum of spatial frequencies corresponding to the
field distributions in (a). The shaded area denotes the range of spatial frequencies
associated with evanescent fields. The better the confinement of the optical field
is the broader the spectrum of spatial frequencies will be. (c) Field decay along
the optical axis z corresponding to the field distributions in (a). The better the
confinement in the source plane is the faster the field decay will be.
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coordinates the field component E, evolves as

5
Ex(x, y, Z) = E() % fCikﬁw%/4k||‘]0(k”p)€ikﬂ dk” . (468)
0

This field distribution is plotted along the z-axis in Fig. 4.18(c). It can be observed
that a highly confined field in the source plane decays very fast along the optical
axis. The reason for this decay is the fact that the spectrum of a strongly confined
field contains mainly evanescent field components which do not propagate but ex-
ponentially decay along the z-axis. However, this is not the only reason. Another
contribution to the fast decay stems from the fast divergence of a highly confined
field. As shown in Fig. 4.19, the more we squeeze the fields at z=0 the faster they
spread out (like a bunch of half-cooked spaghetti). Thus, to achieve high resolu-
tion with a strongly confined light field we need to bring the source (aperture) very
close to the sample surface. It has to be emphasized that £, does not represent the
total field strength. In fact, the inclusion of the other field components leads to even
stronger field divergence than displayed in Fig. 4.19.

Notice that the conclusions of this section are consistent with the findings of
Section 3.2 where we discussed the behavior of a Gaussian field distribution in the
paraxial approximation. In particular we found that the Rayleigh range r and the
beam divergence angle 6 are related to the beam confinement wy as

kw% 2
0 = — , 06 = —. (4.69)
ku)()

Figure 4.19 Divergence of optical fields with different confinements in the source
plane. The same parameters are used as in Fig. 4.18. A point on a line denotes the
radial distance for which the field strength of £, decays to 1/e of its on-axis value.
The better the confinement in the source plane at z =0, the faster the fields will
diverge.
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Hence, the stronger the field confinement is, the faster the decay along the optical
axis will be and the faster the fields will spread out.

Each near-field source (tip, aperture, particle, ...) has its own unique field dis-
tribution. The electromagnetic properties of these sources will be discussed in
Chapter 6. The unavoidable interaction between sample and source is also differ-
ent for each source. To investigate these issues it is necessary to perform elaborate
field computations. In general, the configurations need to be strongly simplified to
achieve analytical solutions. On the other hand, the intuitive insight of such calcu-
lations is very valuable and provides helpful guidelines for experiments. Examples
of analytical models are the fields near a small aperture as derived by Bethe and
Bouwkamp [24, 25], and models for dielectric and metal tips as formulated by
Barchiesi and Van Labeke [26, 27].

4.6.1 Information transfer from near-field to far-field

In near-field optics, the electromagnetic field of a source interacts with a sample
surface in close proximity and then propagates to the far-field where it is detected
and analyzed. But how does information about subwavelength-sized structures get
encoded in the radiation? How is it possible at all to retrieve near-field information
in the far-field where evanescent waves do not contribute? We shall discuss the
problem in a rather general way specifying neither the field distribution of the
near-field light source nor the specific properties of the sample. A more detailed
discussion can be found in Refs. [28, 29].

Let us consider three different planes as shown in Fig. 4.20: (1) the source plane
at z = —zp, (2) the sample plane at z = 0, and (3) the detection plane at z = z.
The source plane corresponds to the end face of an optical probe used in near-field
optical microscopy but it could also be the focal plane of a laser beam employed
in confocal microscopy. The sample plane z = 0 forms the boundary between
two different media characterized by indices n; and n,, respectively. Using the
framework of the angular spectrum representation (cf. Section 2.12), we express
the source field in terms of its spatial spectrum as

o]
Eqouree (X, ¥; —20) = / / Eqource (ks kys —20) el ol di dk, . (4.70)
—00
Using the propagator (3.2), the field that arrives at the sample is given by

00
Esource(xv y; O) = // I’::source(k)m ky; _ZO) ei[k;x-#kyy-#k:,lzo] dkxdkya (471)

—00



126 Spatial resolution and position accuracy

=
v

Figure 4.20 Mapping of information from a sample plane (z = 0) to a detector
plane (z = zo > A) using a confined source field at z = —z¢. The high spatial
frequencies of the sample can be detected by using a strongly confined source
field in close proximity to the sample (zo < A). In scanning near-field optical
microscopy, the detector field is usually focused onto a point detector.

Esource (z = -20) Esource (z=0)
A A

N
> ky >k

—k k 2k -, 0 k2

Figure 4.21 Attenuation of bandwidth of spatial frequencies upon propagation
from source (z = —zg) to sample (z = 0). Evanescent components (k| > k)
are exponentially attenuated. The attenuation is stronger the larger k| is. The spa-
tial spectrum arriving at the sample can be written as a sum over discrete spatial
frequencies represented by delta functions. Only three representative spatial fre-
quencies are depicted for illustration: §(k), é (k) — k), and § (k| — 2k).

where Egouree (¥, y; 0) is the field at the sample surface before any interaction takes
place. Because of the proximity of the sample to the source (zo < 1), Egource 18 @
superposition of plane and evanescent waves. However, as qualitatively shown in
Fig. 4.21, the magnitude of the evanescent waves is attenuated as their transverse
wavenumber increases. Since we know Egq. at the surface of the sample, we can
determine the interaction separately for each plane or evanescent wave and then
obtain the total response by integrating over all incident waves, i.e. over the entire
ky, ky plane.
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To keep the discussion focused, we assume the sample to be an infinitely thin
object characterized by a transmission function T (x, y). This choice allows us to
ignore topography induced effects [30]. Very thin samples can be produced, for
example by microcontact printing [31]. Immediately after being transmitted, the
field is calculated as

Esample(xv i 0) = T(x, y)Esource(xv s 0) . (472)

We have to keep in mind that this treatment is a rough approximation since e.g. the
influence of the sample on the probe field is neglected. A more rigorous description
could be accomplished e.g. by adopting the concept of the equivalent surface pro-
file [28]. The multiplication of T and Eqyc. in direct space becomes a convolution
in Fourier space. Therefore, the Fourier spectrum of Egyple can be written as

Esample(Kx» Ky; 0) = // f(Kx - k,\‘, Ky - ky)ﬁsource(kxv ky; 0) dk\ dky ) (473)

= /f f(Kx_ kxa Ky— ky)l::source(kxv ky; _Z()) eikzlzo dkk dk) ’

with f”(k;, k;) being the Fourier transform of T where k' y = Key— ky,y, TESpEC-
tively.

We now propagate the sample field Egnpie to the detector in the far-field at
Z = Zs. We have seen in Section 3.4 that the far-field simply corresponds to the
spatial spectrum in the source plane. However, here we are interested in the spatial
spectrum in the detector plane and therefore propagate Esample as

00
Edeteclor(xv y; Zoo) = // Esample(Kx» Ky, 0) ei[K“'XjLK’vy] eikzzm de d’(y . (474)

—00
Because of the propagator exp[ix,z.] only plane wave components will reach the
detector. These plane waves fulfill

Ky < ks = %m , (4.75)

where the transverse wavenumber | is defined as xy = [«7 + «}]"/>. If the finite
collection angle of a lens with numerical aperture NA is taken into account we
obtain

Now, this appears just to be a restatement of the diffraction limit. What can we
learn from this?
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To simplify the interpretation, let us rewrite the spectrum of the source field as
oo
Buoneeis k1 0) = ([ B o By50) 5(K, = k) 86, — k) d i, . 477)
—00

which, as illustrated in Fig. 4.21, is simply a sum over discrete spatial frequencies.
Thus, we can imagine the source field as an infinite number of partial source fields
with discrete spatial frequencies. For each partial field we calculate separately the
interaction with the sample and the resulting far-field at the detector. In the end, we
may sum over all the individual responses.

Recall that we performed a convolution of YA"(kv’x, k;) and Esource(kx, ky; 0). A
source field consisting of a single spatial frequency k| = (ky, k,) only” will simply
shift the transverse wavevectors of the sample k| as

k) = kj+Kk|, (4.78)

i.e. it translates the spectrum T by k. Figure 4.22 illustrates the shifting of the
sample spectrum T for three discrete transverse wavenumbers of the source field:
8(ky), §(ky — k), and §(kj — 2 k) already pointed out in Fig. 4.21. A plane wave
at normal incidence is represented by 8(kj) and does not shift the original spec-
trum. The plane wave with the largest transverse wavenumber is incident parallel
to the surface and is represented by & (k) — k). This wavenumber shifts the original
spectrum by k thereby bringing the spatial frequency range k| = [k ... 2k] into the
detection window « < k where propagating plane waves exist. Of course, this has
to be viewed only conceptually because, in order to fulfill the boundary conditions,
the plane wave at parallel incidence must have zero amplitude. Finally, & (k) — 2 k)
represents an evanescent wave. It shifts 7 by 2k and brings the frequency range
ki = [2k ... 3k] into the detection window. Hence, the large spatial frequencies of
the sample are combined with the large spatial frequencies of the probe field such
that the difference wavevector corresponds to a propagating wave in the angular
spectrum that travels towards the detector. The effect that occurs here is similar
to the creation of the long-wavelength Moiré patterns that occur when two high-
frequency gratings are shifted against each other. We can conclude that by using
a confined source field with a large bandwidth of spatial frequencies, high spatial
frequencies of the sample become accessible in the far-field! The better the con-
finement of the source field is, the better the resolution of the sample will be.

Let us estimate the highest spatial frequencies that can be sampled using a spe-
cific probe field. According to Egs. (4.76) and (4.78)

, _ 27NA
K} max + Kjmax| = - (4.79)

5 This corresponds to illuminating the sample with a single, propagating plane or evanescent wave.
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Figure 4.22 Convolution of the spatial spectra of sample transmission (f") and
source field (Esoume). Three discrete spatial frequencies of l:jsoum are shown.
Convolution with (k) — mk) shifts the spatial spectrum of T by mk.m =0
corresponds to a plane wave at normal incidence, m =1 to a plane wave at par-
allel incidence, and m = 2 is an evanescent wave. In the far-field, the resulting

spectrum of I:Isample can only be detected in the range kj = [—k ... k]. The fig-
ure illustrates that evanescent components in the source field shift the high spatial
frequencies of the sample into the detection window.

For a confined source field with a characteristic lateral dimension L (aperture
diameter, tip diameter, ...) the highest spatial frequencies are on the order of
kjmax &~ 7 /L and thus

k| ~

|I,max

(4.80)

T 2 NA
L T A '

For L « X we can neglect the last term and find that the source confinement en-
tirely defines the highest detectable spatial frequencies of the sample. However,
one has to keep in mind that the detection bandwidth is restricted to [—% ... k] and
that the high spatial frequencies are always intermixed with low spatial frequen-
cies. Thus, image reconstruction can become a difficult task. This problem is ab-
sent if the source field is composed of a single spatial frequency §(k; — B k) as in
our discussion illustrated by Fig. 4.22. In this case, there is no overlap of spatial
frequencies in the detection window. By a continuous variation of the source fre-
quency (8 — 0...00) it is possible to recover piece after piece of the entire spatial
spectrum of the sample (T). In fact, this type of sampling is referred to as romog-
raphy. Carney and coworkers have demonstrated that the inclusion of evanescent
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Figure 4.23 Images of a latex sphere projection pattern recorded by scanning
near-field optical microscopy. In (a) detection is restricted to low spatial frequen-
cies, whereas in (b) only the high spatial frequencies are sampled.

waves makes the three-dimensional object reconstruction of subwavelength-scale
features possible [32]. Near-field tomography is expected to find important future
applications.

In order to illustrate the influence of the numerical aperture we assume ky max to
be only moderately larger than 27 /A. This corresponds e.g. to an aperture probe
with an aperture diameter of 100-200 nm. In this case the numerical aperture of
the collection optics has a considerable influence on the resolution of near-field
optical images. An example for such an effect is shown in Fig. 4.23. The sample
is a latex sphere projection pattern. The transmission of such a sample is increased
if the probe is positioned over a hole in the thin metal film. The light transmitted
by the sample is separated in two angular regimes, below and above the critical
angle of total internal reflection, corresponding to the allowed and forbidden light
regime corresponding to different ranges of spatial frequencies. The two images
are displayed in Fig. 4.23(a), the low frequency image and (b), the high frequency
image. The aperture probe that was used had an aperture for which k, m.x Was
only three times larger than 277 /A. The resulting two images clearly show a differ-
ence in resolution with the higher resolution obtained in the high spatial frequency
image (b).

To summarize, we have described how the high spatial frequencies of a sample
get encoded in the propagating part of an angular spectrum. In a more rigorous ap-
proach, we would need to develop a more detailed model for the sample and take
multiple interactions between source and sample (probe—sample coupling) into ac-
count. In general, the better the confinement of the source field is, the better the
resolution of the images will be. In the next chapter we will discuss different light-
confining probes that are employed in near-field optics.
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Problems

A continuously fluorescing molecule is located at the focus of a high NA objective
lens. The fluorescence is imaged onto the image plane as described in Section 4.1.
Although the molecule’s position is fixed (no translational diffusion) it is rotating in
all three dimensions (rotational diffusion) with high speed. Calculate and plot the
averaged field distribution in the image plane using the paraxial approximation.
Consider the set-up of Fig. 4.1. Replace the single dipole emitter by a pair of
incoherently radiating dipole emitters separated by a distance Ax =A/2 along the
x-axis. The two dipoles radiate at 2 =500 nm and they have the same dipole
strength. One of the dipoles is oriented transverse to the optical axis whereas the
other dipole is parallel to the optical axis. The two dipoles are scanned in the object
plane and for each position of their center coordinate a signal is recorded in the
image plane using a NA=1.4 (n=1.518), M =100x objective lens.

(a) Determine the total integrated field intensity (s1) in the image plane.

(b) Calculate and plot the recorded image (s2) if a confocal detector is used. Use
the paraxial approximation.

(c) Discuss what happens in 1 and 2 if the dipoles are scanned at a constant
height Az =21/4 above the image plane.

Consider a sample with a uniform layer of dipolar particles with fixed dipole
orientations along the x-axis. The layer is transverse to the optical axis and each
element of the layer has a constant polarizability oy ,. The sample is illuminated by
a focused Gaussian beam and is translated along the optical axis z. We use both
non-confocal (s1) and confocal (s7) detection. The two signals are well
approximated by Eqgs. (4.47) and (4.48), respectively.

(a) Calculate the non-confocal signal as a function of z.
(b) Calculate the confocal signal as a function of z.
(c) What is the conclusion?

Hint: Use the Bessel function closure relations of Eq. (3.112).

Calculate the longitudinal fields corresponding to the Gaussian field distribution in
Eq. (4.67). Assume that Ey =0 everywhere in space. Show how the longitudinal
field evolves in transverse planes z = const. State the result in cylindrical
coordinates as in Eq. (4.68). Plot the longitudinal field strength in the planes z=0
and z=A.

Consider a plane z = const. transverse to the optical axis of a paraxial Gaussian
beam E with focus at z = 0, beam waist wyp = A and wavelength A = 500 nm.
Assume that the plane is covered with a layer of incoherently radiating fluorescent
molecules. Calculate the power of the generated fluorescence P as a function of z
by assuming that the fluorescence intensity generated at a point (x, y, z) is given by

(a) I,(x,y,z) = A|E(x, Yy, z)|2 (One-photon excitation)
(b) Iy (x,y,z) = B |E(x, y, B (Two-photon excitation)

Plot P for the two cases and normalize to curves to unity at z = 0.

In order to verify the validity of Eq. (4.64) perform a Monte-Carlo simulation of the
fitting process. To this end simulate a large number (~1000) of point images by
creating Gaussian peaks with uncorrelated Poissonian noise superimposed on the
background and on the amplitude. In terms of Eq. (4.54), in the absence of the
background B, this means that for each data point a random number drawn from a
Poissonian distribution with maximum at G (x, y) and width /G (x, y) is added to
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the originally calculated G (x, y). Now perform a nonlinear least-squares fit on each
of the peaks using a suitable software package (the use of a Levenberg—Marquard
algorithm is recommended). Plot the resulting distribution of positions x( min and
Y0.min that result from the fits. Compare the width of this distribution with the value
for o obtained from Eq. (4.64).

Determine analytical expressions for the uncertainties of the other parameters in
Eq. (4.54) using the same analysis that led to Eq. (4.64).
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5

Nanoscale optical microscopy

Having discussed the propagation and focusing of optical fields, we now start to
browse through the most important experimental and technical configurations em-
ployed in high-resolution optical microscopy. Various topics discussed in the previ-
ous chapters will be revisited from an experimental perspective. We shall describe
both far-field and near-field techniques. Far-field microscopy, scanning confocal
optical microscopy in particular, is discussed because the size of the focal spot
routinely reaches the diffraction limit. Many of the experimental concepts that are
used in confocal microscopy have naturally been transferred to near-field optical
microscopy. In a near-field optical microscope a nanoscale optical probe is raster
scanned across a surface much as in AFM or STM. There is a variety of possi-
ble experimental realizations in scanning near-field optical microscopy while in
AFM and STM a (more or less) unique set-up exists. The main difference between
AFM/STM and near-field optical microscopy is that in the latter an optical near-
field has to be created at the sample or at the probe apex before any interaction can
be ineasured. Depending how the near-field is measured, one distinguishes between
different configurations. These are summarized in Table 5.1.

5.1 Far-field illumination and detection
5.1.1 Confocal microscopy

Confocal microscopy employs far-field illumination and far-field detection and has
been discussed previously in Section 4.3. Despite the limited bandwidth of spatial
frequencies imposed by far-field illumination and detection, confocal microscopy
is successfully employed for high-position-accuracy measurements as discussed in
Section 4.5 and for high-resolution imaging by exploiting nonlinear or saturation
effects as discussed in Section 4.2.3. Let us start out here by discussing experimen-
tal aspects of conventional confocal microscopy.

134
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Table 5.1. Summary of possible configurations in high-resolution optical
microscopy categorized by the illumination and detection principle.

Illumination near-field near-field far-field far-field
Detection near-field far-field near-field far-field

% E

\_?ﬁ

¥ 4 4

Set-ups atowed

LW

Experimental set-up

Figure 5.1 shows the set-up of the simplest type of a scanning confocal microscope.
Its beam path is fixed and the sample is raster scanned to record an image. In
such an instrument, light from a laser source is typically spatially filtered, e.g. by
sending it through a single-mode optical fiber or a pinhole. The purpose of the
spatial filtering is to arrive at a beam with a perfect Gaussian beam profile. After
propagating through the fiber or the pinhole, the light is collimated by a lens. The
focal distance of the lens must be chosen such that the beam diameter is large
enough to overfill the back-aperture of the microscope objective used to focus the
light onto the sample. It is advantageous if the microscope objective is designed
to work with collimated beams. Such objectives are called “infinity corrected”.
The spotsize Ax that is achieved at the sample depends on the numerical aperture
NA of the objective and the wavelength used for illumination (see Section 4.2). It
is usually limited by diffraction of the laser light at the entrance aperture of the
objective to (cf. Section 4.2)

A
Ax =0.61— , (5.1)
NA

where A is the light wavelength. For NA = 1.4 the lateral spotsize for green light
(A = 500 nm) is about 220 nm, slightly better than A /2.
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Figure 5.1 Set-up of a sample scanning epi-illumination confocal optical mi-
croscope. A laser light source is spatially filtered, e.g. by sending the light
through a single-mode optical fiber or a pinhole. After exiting the fiber/pinhole
the light is collimated by a lens. A (dichroic) beamsplitter reflects the light into a
high-numerical-aperture microscope objective. The back-aperture of the objective
should be overfilled to achieve the optimal spotsize (see Chapter 4). The optical
signal (e.g. fluorescence) and scattered light created at the focus are collected by
the same objective and converted into a collimated beam. The dichroic beamsplit-
ter transmits light in a restricted spectral range, which is then filtered further and
finally focused onto another pinhole in front of a detector. Images are obtained
pixel by pixel by scanning the sample relative to the focus.

SPAD

The laser light interacts with the sample and produces reflected and scattered
light at the excitation wavelength and also at wavelengths shifted with respect to
the excitation. The same microscope objective that is used for illumination can also
be used to collect light emanating from the sample. It is possible to collect the light
with a second objective facing the first one, however this is experimentally more
demanding because it requires the alignment of two objectives with respect to each
other with a precision much better than A /2. On the other hand, the dual-objective
configuration opens up new possibilities for excitation, e.g. by overlapping the foci
of two counter-propagating beams [1]. We come back to these issues later on in
this chapter.

When using a single objective, once the incoming beam of light is collimated, the
beam of collected light is also collimated for a chromatically corrected microscope
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objective. Working with collimated beams makes it possible to introduce filters and
other optical elements anywhere into the beam path without introducing offsets in
the light path.

The collected light has to be separated from the incoming light. This can be done
by exploiting the difference in wavelength using a dichroic mirror, by exploiting
changes in the polarization using a polarizing beamsplitter, by time gating if pulsed
excitation is used, or by simply exploiting different directions of propagation using
a non-polarizing beamsplitter. Figure 5.1 depicts the case where a dichroic mirror
is used which transmits e.g. redshifted fluorescence. The filtered beam of collected
light is now focused by a second lens onto a pinhole in front of a detector. Certain
detectors such as the widely used single-photon counting avalanche photodiodes
have rather small active areas. They can be used without an additional pinhole. The
size of the detection pinhole must be correctly matched to the diameter of the focal
spot (Airy disk) produced by the second lens in order to efficiently reject out-of-
focus signals. A larger pinhole diameter impairs the rejection of out-of-focal-plane
signals but can help to optimize the effective transmission of light through the
pinhole. It is found that a spotsize two times smaller than the pinhole diameter
still yields good results both in terms of lateral resolution and out-of-focal-plane
rejection.

Another point of view one may take when designing the detection path is the
following: The lateral spotsize from which to a good approximation light is effi-
ciently and uniformly collected corresponds to the size of the demagnified image
of the detection aperture in the focal plane of the microscope objective. Using ge-
ometrical optics, the demagnification factor is given by the ratio of the two focal
distances of the objective lens and the lens focusing to the pinhole (tube lens). This
point of view becomes very important when implementing e.g. a tip-scanning near-
field microscope, where one has to make sure that the full scan range of the tip lies
well within the detectable area.

At this point we would like to note that the beam profile at the output of a single
mode optical fiber is a fundamental Gaussian mode. As discussed in Section 3.7,
other beam modes can be created and some of them can lead to particular prop-
erties of the fields in the focal region including e.g. reduced spotsize or longitudi-
nal polarization. If higher-order modes are required, a mode conversion unit (see
Section 3.7) can be introduced to the excitation beam path before the beamsplitter
in order to keep the detection beam path unperturbed.

The confocal principle

Confocal detection is based on the fact that light not originating from the focal area
will not be able to pass through the detection pinhole and hence cannot reach the
detector. Laterally displaced beams will be blocked by the detector aperture and
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beams originating from points displaced along the optical axis will not be focused
in the detection plane and therefore will be strongly attenuated by the detection pin-
hole. This effect has been discussed theoretically in Section 4.2.2 and is illustrated
qualitatively in Fig. 5.2. The imaging properties of a confocal microscope are best
discussed in terms of the total point-spread function introduced in Section 4.3. One
may think of the point-spread function as the volume out of which the probability
for exciting and detecting a photon is larger than a chosen threshold value. It was
discussed previously that the point-spread function of a confocal microscope has
the shape of an ellipsoid that is elongated along the optical axis and whose center
coincides with the geometrical focus of the objective lens. For a 1.4 NA objective,
to give an example, the width is 220 nm and the length is 750 nm. The lateral
resolution of a confocal microscope is not significantly increased as compared to
a wide-field illumination microscope due to the fact that the zero-field points in
the total point-spread function remain unchanged. Squaring the Airy pattern only
reduces the full-width at half-maximum by a factor of 1.3. However, side lobes
are suppressed significantly leading to a significant increase in the dynamic range
of images, meaning that weak signals may be detected in the proximity of strong
ones. For a detailed discussion of these issues see e.g. Ref. [2].

The recording of images in a confocal microscope can be done in numerous dif-
ferent ways by raster scanning either the sample or the excitation beam. At each

optical axis
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Figure 5.2 Confocal principle. The detection path of a scanning confocal optical
microscope is shown. Three objects in the sample are depicted. Only the object
(circle) on the optical axis lying in the conjugated detection plane in the object
space is imaged onto the pinhole and can be detected. The other objects (triangle
and square) are either focused to the side of the pinhole (triangle) or arrive at the
pinhole unfocused such that their signals are suppressed.
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Figure 5.3 Point-spread function engineering. (a) Standard epi-illumination con-
focal microscopy. (b) Confocal theta configuration. (c) 47 confocal theta config-
uration. Adapted from [3].

pixel either a number of counts per integration time or the output voltage of a pho-
tomultiplier tube is sampled. The brightness (or color) of a pixel is defined by the
sampled detector value. The information from all the pixels can then be represented
in the form of a digital image. In particular, due to the finite extent of the confocal
point-spread function, it is possible to perform optical slicing of thick samples. In
this way, three-dimensional reconstructions of samples can be obtained. A more
detailed description of instrumentation and reconstruction techniques can be found
in Refs. [2, 3].

The spatial resolution in confocal microscopy can be optimized by “point-spread
function engineering”. The underlying idea is that the total point-spread function
is the product of the illumination and detection point-spread functions. If they are
modified, e.g. by means of nonlinear optical interactions, displaced or tilted with
respect to each other, their spatial extension and/or spatial overlap decreases. This
can lead to an effective point-spread function with a smaller volume. In addition,
interference effects between coherent counter-propagating beams can be exploited.
These principles form the basis of confocal microscopy techniques known as 47
[4], theta [5] and 47 -theta confocal microscopy [6]. The respective configurations
of detection and illumination point-spread functions are illustrated in Fig. 5.3.
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Figure 5.4 Two-photon excitation of a fluorescent molecule. (a) Energy level
scheme: A fluorophore with a one-photon absorption in the blue is excited
by simultaneous absorption of two near-infrared photons. The emission of the
molecule occurs in the green. (b) The fluorescence rate increases as the square of
the excitation intensity. This leads to the fact that, while for one-photon excita-
tion the whole beam path in a fluorescent medium lights up (c), for two-photon
excitation (d) notable fluorescence is only excited in regions of the highest field
strength, e.g. in the focus of a laser beam (see arrow). (c), (d) adapted from [10].

Nonlinear excitation and saturation

The possibility that a transition in a quantum system could be achieved by simul-
taneous absorption of two or more photons was first investigated theoretically by
Maria Goeppert-Mayer in 1929 [7]. The phenomenon could only be demonstrated
experimentally in 1961 [8] after the invention of the laser, which provided the
necessary high photon densities. Today, with the availability of fs-pulsed lasers
two- and multiphoton excitation is a standard tool in high-resolution confocal mi-
croscopy [9]. Chromophores with transitions in the blue and green can be excited
by using infrared light. At the same time, multiphoton microscopy leads to im-
proved and simplified optical sectioning capabilities since excitation only takes
place at the regions of highest intensity, i.e. in a tight focus, which makes the tech-
nique an indispensable tool, not only in biology, for studying the three-dimensional
morphology of samples.

Figure 5.4 summarizes the basics of two-photon excitation. Two low-energy
photons are absorbed simultaneously and excite a molecule from the ground state
to a vibronic level of the first excited electronic state. Much the same as for one-
photon fluorescence, the excited molecule relaxes to the lowest vibrational level
of the excited state and then, after a few nanoseconds, decays to the ground state
either non-radiatively or by emitting a photon. While for one-photon excitation
for low intensities the fluorescence rate scales linearly with the excitation inten-
sity (see Chapter 9), for two-photon excitation it scales as the excitation intensity
squared. The low cross-section for two-photon excitation, which is of the order
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of 1073 cm* s per photon,' requires the use of pulsed lasers with ~100 fs pulse
width at high repetition rates. The pulses have to be short in order to limit the total
irradiation dose of a sample and still provide the enhanced photon density required
to make up for the low cross-section of two-photon excitation. The repetition rate
has to be high since per pulse a maximum of one fluorescence photon is produced
per molecule. Typically, 100 fs pulsed Ti:Sapph lasers operating around 850 nm at
repetition rates of 80 MHz are used to excite two-photon excited fluorescence of
suitable dyes.

Another method of focal engineering is the so-called stimulated emission de-
pletion (STED) technique already discussed in Section 4.2.3. The basic principle
of STED is the use of stimulated emission to selectively reduce the excited state
population of suitable fluorescent dyes in certain spatial regions in the focal area,
while in other regions it remains largely unchanged. In principle, this requires sub-
wavelength control over the spatial field distribution that induces the stimulated
emission. Such control is indeed possible by exploiting the pronounced saturation
behavior of the degree of stimulated emission depletion as a function of the de-
pletion beam power. Saturation allows achievement of extremely sharp transitions
between regions with and without depletion of the excited state. In particular, if a
region exists in the focus where the intensity of the depletion beam is zero, a tiny
volume of undiminished fluorescence is created around it (cf. Section 4.2.3).

The principle of STED microscopy is summarized in Fig. 5.5. The set-up in-
cludes two pulsed lasers. One is used to induce one-photon excitation of dye
molecules present in the focal volume. The second, more powerful laser is red-
shifted in order to produce stimulated emission from the excited to the ground
state.” The delay between the pulses is chosen such that the vibrational relaxation
in the first excited electronic state, which takes a few ps, has time to complete. This
ensures that the excited electron is in a relatively long-lived state where stimulated
emission can become effective. This is important since the probability for stimu-
lated emission increases with time. This is also the reason why the STED pulse has
to be substantially longer than the excitation pulse as indicated in Fig. 5.5(a). The
wavelength of the depletion pulse has to be chosen such that it cannot excite fluo-
rescence. This can be ensured by introducing a relatively large redshift. The large
redshift has the additional advantage that it opens up a spectral window between
the excitation and the depletion wavelength in which fluorescence can be recorded.
Time gating of the fluorescence can be used to increase the signal to background
ratio. The current world record in far-field optical microscopy of 33 nm resolution
was achieved using a combination of 47 confocal microscopy and STED [12].

1 also denoted as 1 GM (Goppert-Mayer).

2 For a detailed discussion of molecular fluorescence see Chapter 9.
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Figure 5.5 Principle of stimulated emission depletion confocal microscopy. (a)
Set-up of the STED confocal microscope. A short excitation pulse and a long
depletion pulse are coupled into a microscope objective. The depletion beam is
engineered so that it shows zero intensity at the geometrical focus (b, right panel)
while the excitation beam shows the usual focus (b, left panel). (c) Fluorescence
from the confocal volume as a function of the depletion beam intensity. Note the
strongly nonlinear behavior. (d) Point-spread function without and with depletion
beam switched on (e). Adapted from [11].

In STED, the foci of the excitation and depletion beams are made to overlap, but
the field distribution in the focal region of the STED beam is engineered such that
the intensity is zero in the geometrical focus. This guarantees that the STED beam
depopulates the excited states everywhere but in a small region centered around the
zero-intensity point. Because of saturation, this region can be made smaller than
a diffraction-limited spot. Thus, the spatial extent of the fluorescent region can be
narrowed down substantially. This effect is illustrated in Fig. 5.5(d) and (e) (see
Problem 5.2).

Confocal fluorescence microscopy, such as STED microscopy or multiphoton-
excitation microscopy, relies on the presence of fluorescent markers in a sample,
e.g. in a living cell. However, it is not always possible or even desirable to at-
tach a dye marker to an entity of interest. This is especially true e.g. for small
molecules that would be significantly altered by the labelling. If chemical contrast
via optical microscopy is the goal, an obvious way to go is to exploit the energy
transfer between photons and molecular vibrations. Since the energy of molecular
vibrations covers the far-infrared, it is difficult to achieve high spatial resolution
since the diffraction-limited spots are technically difficult to achieve and are also
quite large. A work-around for this problem is to use Raman spectroscopy. Here,
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Figure 5.6 Energy diagram of spontaneous Raman scattering and coherent anti-
Stokes Raman scattering (CARS). Light scattering from a molecule can result in
(a) Stokes-shifted photons, (b) Rayleigh scattering, or (c) anti-Stokes emission
(d). CARS is a four-wave mixing process using two tunable (pulsed) lasers at w,
and ws. If the difference in frequency between the two lasers hits the energy of
a vibration, the CARS signal w,s is enhanced and emitted preferentially into a
direction determined by the phase matching condition (e). (f) An image of fibro-
plast cells stimulated to produce lipids. The lipid droplets can be visualized using
CARS when tuning to the aliphatic C-H vibration. The 100 x 100 um? image was
taken in 2.7 s. Image courtesy of X. S. Xie, Harvard University.

photons interacting with the sample can either lose or accept quanta of vibrational
energy. In essence, Raman scattering is the analog of amplitude modulation used in
broadcasting: the frequency of the carrier (laser) is mixed with the frequencies of
the signal (molecular vibrations). As a result, the frequencies of Raman scattered
light correspond to sums and differences of the frequencies of laser and vibrations.
Because a Raman scattering spectrum contains information about the characteris-
tic molecular vibrations it represents a highly specific fingerprint for the chemical
composition of the sample under investigation (see Fig. 5.6(a)—(c)). The likelihood
that a photon interacting with a molecule undergoes Raman scattering is very small.
Typical Raman scattering cross-sections are up to 14 orders of magnitude smaller
than the cross-sections for fluorescence. These low cross-sections usually make
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the use of Raman scattering for microscopy very difficult. Long integration times,
which require very stable and static samples, are necessary. However, the cross-
section can be strongly increased near metal surfaces with nanoscale roughness
or near metal nanoparticles. This effect, called surface enhanced Raman scattering
(SERS), is limited to regions near the very surface of a sample as discussed later
on (see Section 12.4.3), and cannot be employed for long-range subsurface imag-
ing. Nevertheless, for bulk imaging the cross-section of Raman scattering can be
enhanced by applying a coherent (resonant) pumping scheme. Coherent pumping
gives rise to an in-phase oscillation of the molecular vibrations in the illuminated
sample volume leading to constructive interference in certain directions. The so-
called coherent anti-Stokes Raman scattering (CARS) process [13, 14] is a four-
wave mixing process which uses two (pulsed) tunable lasers with a wavelength
difference that can be adjusted to coincide with the energy of a molecular vibra-
tion, which then leads to an increased efficiency of the Raman scattered signal. The
CARS energy diagram and phase matching condition are shown in Fig. 5.6(d) and
(e), respectively. Due to the fact that CARS is proportional to the intensity squared
of the pump beam at w,, and the intensity of the Stokes beam at w; a sizable signal
is only generated in regions of high pump intensities. Therefore, the optical sec-
tioning capabilities of CARS microscopy are similar to two-photon microscopy.
Furthermore, a combination with point-spread function engineering techniques as
they are used in 477 and theta microscopy is conceivable in future to improve spatial
resolution.

The solid immersion lens

According to Eq. (5.1) a higher numerical aperture (NA) leads to better spatial
resolution. Solid immersion lenses have been put forward to optimize the NA
available in a microscope. A solid immersion lens (SIL) can be viewed as a variant
of an oil-immersion microscope objective. It was introduced in 1990 for optical
microscopy [15] and applied in 1994 for optical recording [16]. As shown in
Fig. 5.7, a SIL produces a diffraction-limited, focused light spot directly at the
SIL/object interface. The resulting spotsize scales as A/n, where n can be as large
as 3.4 when using SILs made out of gallium phosphate (GaP). Such a reduction in
the focused spotsize has led to advances in optical disk storage schemes with fast
read-out rates for addressing media with very high bit density [16]. The prospect
of using such lenses in combination with a shorter wavelength blue semiconductor
laser diode makes SIL techniques potentially very attractive not only for data stor-
age devices but also in the area of high light throughput super-resolution optical
microscopy and spectroscopy with high sensitivity.

The SIL is a solid plano-convex lens of high refractive index that provides
an optimum focus for a Gaussian beam. There are two configurations with a
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Figure 5.7 Solid immersion lens (SIL) configurations. In (a), a hemispherical lens
increases resolution by ~n. (b) A Weierstrass optic, or super-SIL, has a resolution
increase of ~n2. Two types of imaging modes, surface SIL microscopy (c) and
subsurface SIL microscopy (d).

semispherical lens that achieve diffraction-limited performance. One focus exists
at the center of the sphere, with incoming rays perpendicular to the surface and is
generally termed a SIL (cf. Fig. 5.7(a)). Also, a second focus exists at a set of apla-
natic points a distance below the center of the sphere, and whose rays are refracted
at the spherical surface. This type is generally referred to as a super-SIL [16], or
Weierstrass optic (see Fig. 5.7(b)). While the super-SIL configuration has a greater
magnification (oc n? versus n) and increased numerical aperture, it suffers from
strong chromatic aberration. The applications of SIL microscopy fall into two cat-
egories: surface and subsurface imaging [17]. In the latter, the SIL (or super-SIL)
is used to image objects below the lens and into the sample under study. In this sort
of subsurface imaging, a good match in index between the lens and substrate must
be maintained.

The principle of subsurface imaging is schematically shown in Fig. 5.8. With-
out the SIL, most of the light rays emanating from a subsurface structure would
undergo total internal reflection (TIR) at the surface of the sample. The remaining
propagating rays would be confined to a narrow cone around the surface normal
thereby drastically reducing the numerical aperture. By placing an index-matched
SIL on the surface of the device, the numerical aperture can be considerably in-
creased. This type of SIL is therefore referred to as a numerical aperture increas-
ing lens (NAIL) [17]. The dimensions of the SIL have to be adjusted to the depth
X of the subsurface structure to be imaged (cf. Fig. 5.8). The vertical thickness D
of the lens has to fulfil

D =RA+1/n) — X, (5.2)
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Figure 5.8 Subsurface imaging using a numerical aperture increasing lens
(NAIL). (a) In a high-index material, light rays emanating from subsurface struc-
tures can undergo total internal reflection thereby reducing the NA of an imaging
system. (b) Addition of a SIL enlarges the NA up to NA = n. (c, d) Comparison
of images of an electronic circuit in silicon taken with and without NAIL. From
[18] with permission (© 2002 IEEE).

which is the same design condition as encountered in Weierstrass-type SILs. Equa-
tion (5.2) ensures that the subsurface object plane coincides with the aplanatic
points of the NAIL’s spherical surface, which satisfies the sine condition yielding
spherical aberration-free or stigmatic imaging.

The addition of a NAIL to a standard microscope increases the NA by a factor
of n?, up to NA = n. As an example, Figs. 5.8(c), (d) demonstrate how a NAIL im-
proves resolution well beyond the state-of-the-art in through-the-substrate imaging
of silicon circuits [18]. Image (c) was obtained using a 100x objective with
NA = 0.5, whereas image (b) was recorded with a 10x objective (NA = 0.25)
and a NAIL. The resulting NA is 3.3. At a wavelength of A = 1 pum, the resolu-
tion can be as good as 150 nm. Recently, Unlii and coworkers applied the NAIL
technique to thermal subsurface imaging which makes sample illumination unnec-
essary [18]. In this case, the emitted infrared radiation originates from heating due
to electric currents.

Figure 5.9(a) shows a schematic of a NAIL confocal microscope. The NAIL is
in fixed contact with the sample surface. To obtain an image, the sample together
with the NAIL are raster scanned using piezoelectric transducers. However, in ap-
plications like data storage or photolithography it is desirable to retain the relative
positioning capability between lens and surface. In order not to sacrifice the NA
and not to introduce unwanted abberations, the end-face of the SIL must be kept
parallel and at close proximity to the sample surface. Naturally, this demands a SIL
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Figure 5.9 SIL technology in three different instruments. (a) Numerical aperture
increasing lens microscopy with SIL in contact with sample, (b) SIL microscopy
using AFM cantilever for distance control, (c) flying head configuration based on
rotating sample surface for magneto-optical data storage.

with small dimensions or a cone-shaped SIL that guarantees that the closest point
to the surface is the focal spot. Two approaches have been put forward to control
the distance between SIL and surface. The first is based on a cantilever as used
in atomic force microscopy (AFM) [19]. The AFM tip is replaced by a miniature
conically shaped SIL that is illuminated from the top, Fig. 5.9(b). This combined
AFM-SIL technique has been successfully applied to microscopy and photolithog-
raphy with spatial resolutions of the order of 150 nm [19, 20]. Another approach
for controlling the SIL—sample distance is based on a flying head [16]. Rotating the
sample at high speeds relative to the stationary SIL results in an air-bearing which
keeps the SIL—surface distance at a few tenths of nanometers (see Fig. 5.9(c)). This
approach was originally developed by the IBM company as part of a SIL-based
magneto-optic recording system.

An obvious extension of SIL techniques is the marriage with concepts developed
in near-field optical microscopy. For example, it has been proposed to microfabri-
cate a tiny aperture at the end-face of a SIL [21], to implant into the end-face a tiny
metal structure acting as a local field enhancer [18], or to deposit on the sides of
a conical SIL a bowtie antenna consisting of two electrodes with a small gap [22].
Currently, these techniques are still under development.

5.2 Near-field illumination and far-field detection

In general, spatial resolution can be optimized by increasing the spectrum of spa-
tial frequencies. The numerical aperture of an optical system limits the spectrum of
spatial frequencies to k; = [0 ... NA w/c]. The NA, as we saw, can be maximized
by a large index of refraction (n) or by the focusing angle. In the best case, NA = n
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which poses a strict resolution limit. However, as discussed in Section 4.6, this con-
sideration ignores spatial frequencies associated with evanescent waves. In fact, if
evanescent waves are taken into account, the bandwidth of spatial frequencies is
unlimited and resolution can in principle be arbitrarily optimized. In this section,
we consider optical microscopy with a near-field excitation source, i.e. a source
with evanescent field components. The near-field interacts with the sample and the
response due to this interaction is recorded with standard far-field collection op-
tics. While Section 4.6 provided the necessary theoretical background, this section
concentrates on experimental issues. The near-field source is commonly referred
to as the “tip” or “probe”.

5.2.1 Aperture scanning near-field optical microscopy

The optical design of an aperture-type scanning near-field optical microscope dif-
fers from a confocal set-up only in that the excitation beam is replaced by the field
emanating from a tiny aperture placed near the sample surface (cf. Fig. 4.18). Most
commonly, apertures are formed by coating the sides of a sharply pointed optical
fiber with metal. The uncoated apex of the pointed fiber represents an aperture. Its
size is defined by the sharpness of the fiber tip and the quality of the metal coat-
ing. The physical properties of aperture probes will be discussed in more detail
in Chapter 6. The optical response due to the interaction between the near-field
and the sample surface is recorded with the same scheme as employed in confo-
cal microscopy. The possibility to easily switch back and forth between near-field
and far-field illumination modes is an advantage of the similarity between the two
techniques.

Since in aperture-type near-field microscopy we now have two separate elements
for illumination and detection, the two elements must finally share the same optical
axis. This requires some means of adjustment for the lateral position of the optical
probe. If the sample is scanned, the optical path does not change during image ac-
quisition. This guarantees e.g. the same collection efficiency throughout the image.
If tip scanning is required, the back-projected image of the detection aperture has
to be large enough to accommodate the whole scan range of the tip.

In the case that a perfect aperture probe is used it is not necessary to use confo-
cal detection optics. However, it turns out that aperture probes are hardly ever as
perfect as desired. Pinholes in the metal coating or spurious light escaping from the
uncoated upper parts of a probe may pose serious problems when detecting weak
signals. Allowing the detection of light only from a limited confocal volume can
improve this problem. As already pointed out in Section 4.6.1, for larger apertures
the resolution of near-field microscopy can be influenced by the numerical aper-
ture of the collection optics. A large numerical aperture optimizes the collection
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Figure 5.10 Typical set-up for a fluorescence aperture scanning near-field optical
microscope. Note the similarity to the confocal set-up in Fig. 5.1. Laser light is
injected into an optical fiber that holds an optical probe at its far end. The probe is
held within near-field distance of the sample using e.g. a tuning-fork shear-force
feedback (see Chapter 7). The light interacts with the sample and is collected
by a microscope objective that is aligned with respect to the fiber axis. In the
case of fluorescence imaging, a dichroic mirror reflects most of the excitation
light. Residual excitation light is removed by additional filters and the redshifted
fluorescence is focused onto a detector or spectrometer. M: mirrors, L: lenses,
DM: dichroic mirror. The dashed mirror can be flipped in and out of the beam
path.

efficiency, which is important in fluorescence applications. For pure absorption
and scattering contrast, light collected below and above the critical angle (allowed
and forbidden light, respectively, see Chapter 10) can show inverted contrast [23].
For such applications, high numerical apertures have to be used with care.

5.2.2 Field-enhanced scanning near-field optical microscopy

Aperture-type near-field microscopy is limited in resolution because the effective
diameter of an aperture cannot be smaller than twice the skin depth of the metal
used for coating the glass taper. The skin depth is between 6 and 10 nm for good
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metals at optical frequencies. As a consequence, even if the physical aperture is
zero, there exists an effective aperture of about 20 nm in diameter. It is not straight-
forward to achieve such a resolution routinely because for apertures of such a small
size the transmission becomes exceedingly low, as will be discussed in Chapter 6.
When working with aperture probes on a routine basis, aperture diameters are usu-
ally kept between 50 and 100 nm in diameter for signal-to-noise reasons unless the
taper angle of the pointed probe can be drastically increased (see Chapter 6).

In order to further push the confinement of light one can rely on the fact that a
near-field is created by any irradiated, small material structure. This near-field is lo-
calized to the surface of the material and, depending on the material properties, the
near-field intensity can be enhanced over the intensity of the irradiating light. Thus,
material structures that are different from apertures can be used as optical probes as
well. The goal, of course, is to find specific structures that show particularly strong
confinement and enhancement. One possibility is to exploit the enhanced fields
that exist close to small illuminated metal particles and sharp, tip-like metal struc-
tures. When an electromagnetic field interacts with a metal it periodically displaces
the free electrons on the surface of the metal along the direction of the oscillating
electric field. If the metal is of finite size, geometry dependent resonances occur
for certain frequencies. These so-called surface plasmon resonances are associated
with strong field enhancements and can be employed for efficient near-field probes.
Surface plasmons will be discussed in more detail in Chapter 12.

Even if no plasmon resonance is hit, a structure can still exhibit non-resonant
field enhancement due to “field line crowding” as it occurs at the apex of sharp
metal tips. This phenomenon is also known as the “lightning-rod” effect in electro-
statics. A major problem that is encountered when working with field-enhancing
structures is that they usually have to be excited using far-field illumination. This
means that, in addition to the highly confined and strongly enhanced fields near
the illuminated structure, diffraction-limited fields exist owing to the external far-
field illumination. Although the intensity associated with the external irradiation
is weak, the irradiated sample area is much larger than the area associated with
the confined near-field. To discriminate the signal generated by the near-field in-
teraction from the signal generated by the far-field irradiation, nonlinear interac-
tions such as two-photon excitation or sum-frequency generation can be used (see
below). Another way to solve the background problem was demonstrated by Frey
et al. Tips can be grown on the end-face of aperture probes [24]. Excitation through
the aperture instead of using a far-field illumination spot drastically reduces the
background induced by the latter.

For a diffraction-limited excitation spot, the ratio between the areas associated
with external excitation and near-field excitation is of the order 10°. Hence, as-
suming a uniform surface coverage of molecules, the near-field intensity has to be
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enhanced by a factor of at least 10° in order to generate a near-field signal that is
stronger than the signal associated with the external irradiation. On the other hand,
for a second-order nonlinear process, which scales with the square of the excitation
intensity, the required enhancement factor is only +/103. Of course, for very low
surface coverage the problem of near-field vs. far-field discrimination is less impor-
tant. With only a single species in the illumination focus, the far-field background
can even become negligible.

The use of nonlinear optical processes can also pose problems because a new
source of background appears, i.e. nonlinear processes taking place at the tip itself.
Prominent examples are white light generation [25] and second harmonic genera-
tion [26] at increased illumination levels. Being disturbing effects in luminescence
measurements, both effects can be exploited, e.g. to generate local light sources for
spectroscopy or lithography.

Figure 5.11 shows the experimental set-up employed in field-enhanced scan-
ning near-field optical microscopy based on two-photon excited fluorescence. The
configuration is rather similar to a confocal microscope, Fig. 5.1. Different from
aperture-type scanning near-field optical microscopy, Fig. 5.10, an additional illu-
mination path through the transparent sample is required. Before being reflected
at the dichroic mirror, the mode structure of the excitation beam is adjusted for
strong longitudinal field components in the laser focus. Longitudinal fields refer
to electric field vectors pointing in the direction of beam propagation, i.e. along
the tip axis. These longitudinal fields are necessary for establishing the field en-
hancement effect. The origin of longitudinal fields and their generation has been
discussed in Chapter 3. As an example of field-enhanced microscopy, Fig. 5.12
shows a near-field two-photon excited fluorescence image of PIC J-aggregates.

To understand the importance of polarization in the context of field enhance-
ment, consider a metal tip made of a gas of free electrons. The external driving
field, polarized along the tip axis, drives the free electrons periodically up and
down along the tip axis with the same frequency as the exciting field. Because of
the small surface area near the end of the tip, a uniform displacement of the elec-
tron sea towards the tip gives rise to a huge surface charge accumulation at the tip
end. According to Gauss’s law, these charges generate a secondary (dipole) field
that is seen as the enhanced field. As the electron sea is displaced in the opposite
direction, positive ions are left behind giving rise to an enhanced field polarized in
the opposite direction. No charges can be accumulated at the tip end if the driv-
ing field is polarized transverse to the tip axis and hence no field enhancement is
observed.

Field-enhanced scanning near-field optical microscopy has also been success-
fully combined with vibrational spectroscopy such as Raman scattering [27] or
CARS [28]. The basic idea had been presented conceptually by John Wessel in
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Figure 5.11 Nonlinear tip-enhanced near-field microscopy. GVDC: group ve-
locity dispersion compensation M: minor, MC: mode converter, F: filter, DM:
dichroic mirror, O: microscope objective, S: sample, L: lenses, SPAD: single-
photon counting avalanche photodiode.
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Figure 5.12 Imaging with a tip-enhanced scanning near-field optical microscope
using two-photon excitation. (a) Two-photon excited fluorescence of a sample of
PIC J-aggregates on glass. (b) Corresponding topographical image recorded with
tuning-fork shear-force feedback.
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1985 [29]. Since in the presence of a field-enhancing structure not only the exci-
tation field but also the Raman-scattered radiation is enhanced, usually the Raman
signal is assumed to scale with the fourth power of the local field strength [30]. This
effect has been exploited by many researchers. As an example, Fig. 5.13 shows
near-field Raman scattering images of a sample of carbon nanotubes [31]. Carbon
nanotubes possess comparatively large Raman scattering cross-sections and are
easily imaged at low sample coverage. The Raman image in Fig. 5.13 was ob-
tained by integrating over a narrow spectral band centered around the G’ band at
v =12615cm™!.

It is very likely that field-enhanced near-field microscopy will experience vari-
ous improvements in the future. Favorable tip geometries and materials are being
explored to maximize the field enhancement and the competing effect of fluores-
cence quenching is being studied. Ultimately, the resolution only depends on the
tip sharpness and it is conceivable that membrane proteins or quantum mechanical
wavefunctions will be imaged.

Modulation techniques

Modulation techniques are also used to discriminate the near-field signal generated
at the tip apex against the background signal associated with the diffraction-limited
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Figure 5.13 Field-enhanced near-field Raman scattering. (a) Raman scattering
image acquired at v = 2615 cm™! and (b) shear-force topography of a sample of
single-walled carbon nanotubes on a glass substrate. The topography shows that
the nanotubes are covered with condensed water droplets. The line cuts (c) and
(d) are taken along the respective dashed white lines in (a) and (b). From [31].
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external irradiation. Most commonly, the distance between tip and sample is mod-
ulated and the optical signal is detected at the same modulation frequency, or at
higher harmonics, using lock-in amplifiers. Lock-in amplification is easily appli-
cable to analog signals only. As opposed to the digital information obtained by
single-photon counting, the generation of analog signals usually requires a high
photon flux. Consequently, modulation techniques are mostly applied to Rayleigh
scattered light at the same frequency as the external excitation, and less to fluo-
rescence or other weak spectrally shifted radiation. Spectroscopic information in
this mode can be gained by tuning the frequency of the excitation laser. The ex-
citation field induces a dipole in the tip which itself induces an image dipole in
the sample. The signal that is observed is the light scattered by the effective dipole
emerging from the combination of tip and sample dipoles. Using the model of a
spherical particle above a plane interface, the following effective polarizability of
the coupled tip—sample system can be derived:

= LD (5.3)

167 (a+2)3

where o = 47m3(8ﬁp —1)/(eip+2), B = (€sample — 1)/ (Esample + 1), @ is the radius
of curvature of the tip, and z is the gapwidth between tip and sample [32]. For
a small particle, the scattered field amplitude is proportional to the polarizability
aefr. Therefore, changing the wavelength of illumination will lead to changes in the
scattering efficiency as the values of the dielectric constants of the sample &g mpie
and the tip &;, will be subject to change. This type of spectroscopy allows one to
distinguish between different materials if the tip’s response is flat in the spectral
region of interest.

Wickramasinghe and coworkers introduced a technique called scanning interfer-
ometric apertureless microscopy (SIAM). In this technique, a Nomarski objective
is used to focus a laser beam to two diffraction-limited spots on the sample surface.
One of the spots serves as the reference spot while the other is the signal spot. A
sharp oscillating probe tip is stabilized above the sample surface and positioned
into the signal spot. The superposition of scattered field from the tip and back-
reflected signal beam introduces a small phase shift that is measured by compar-
ing the signal beam phase with the reference beam phase using a Nomarski-type
prism interferometer. The weak signal is recovered by using a lock-in amplifier
that is locked to the oscillation frequency of the tip. The signal detected this way is
thought to be proportional to the product of the local susceptibilities of both sample
and tip [33]. Figure 5.14 shows the principle of the set-up along with an approach
curve that shows a strong decay of the signal with distance. As an example of the
imaging capabilities, a microfabricated bit pattern is shown imaged both by AFM
with slow feedback (c) and by SIAM (d).
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Figure 5.14 Scanning interferometric apertureless microscopy (SIAM). (a) Prin-
ciple of the set-up [33]. (b) Decay of the optical signal with distance. The de-
cay length of about 20-30 nm is a measure for the lateral resolution that can be
achieved. (c) AFM image of an e-beam fabricated bit pattern. The AFM feedback
ensures that an average tip—sample distance is maintained. (d) Simultaneously
recorded SIAM image. The smallest feature is about 50 nm. Adapted from [33,
35].

Usually it is found that detection of the optical signal at the fundamental oscil-
lation frequency is not very favorable since the upper (far-field) parts of the tip can
also contribute a modulation of the signal. This problem can be solved by demodu-
lation at higher harmonic frequencies of the fundamental tip oscillation frequency.
Since the gapwidth dependence of the near-field optical signal is strongly nonlinear
(see Eq. (5.3)), it will introduce higher harmonics in the detected signal. These
higher harmonics can be extracted by using heterodyne or homodyne interferome-
try. Figure 5.15 shows the set-ups used in this context. Exploiting higher harmon-
ics, the near-field can be extracted more specifically. The possible order of the har-
monics to be used is, however, limited by the measurement noise, which is usually
the shot-noise of the detected signal. It prevents the weak contributions of higher
order harmonic components of the signal being detected above the noise. Detecting
at the third harmonic seems to be a good compromise between good background
suppression and tolerable noise. Figure 5.15 demonstrates the effect of demodula-
tion at the third harmonic on the image quality. The set-up of Fig. 5.15(a) is used to
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Figure 5.15 Set-ups for scattering-type scanning near-field optical microscopy
using heterodyne (a) and homodyne (b) detection. Imaging example of scaltering-
type scanning near-field optic microscopy with demodulation. (c) Topography of
a latex sphere projection pattern. (d) Upper panel: scattered light image at the
fundamental oscillation frequency of the cantilever. Lower panel: approach curve
showing strong interference fringes due to remaining far-field contributions. (e)
Upper panel: scattered light image at the third harmonic of the cantilever. Lower
panel: approach curve recorded on the third harmonic of the cantilever oscillation
frequency showing a clean near-field signal. From [32].

image a latex sphere projection pattern. The topography is shown in Fig. 5.15(c). In
Fig. 5.15(d) and (e) the optical signals demodulated at the fundamental frequency
and at the third harmonic are shown, respectively. The third-harmonic picture is
much clearer since far-field contributions are better suppressed. This can also be
seen by looking at the respective approach curves beneath the optical images [32].

It should be noted that modulation techniques have also been extended to
discrete signals such as streams of single photons. The respective technique,
called time-stamping, records the arrival time of each individual photon (the so-
called time-stamp) and only retains the photon if it falls into a predefined time-
window [34]. For example, only photons that arrive during a short period before
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Figure 5.16 Correlation of photon arrival times with the vertical oscillation of
the near-field probe. In time-stamping only photons that fall into periodic time-
windows (shaded areas) with preset widths (arrows) are counted.
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and after the tip reaches its nearest point to the sample surface are counted. Be-
sides better sensitivity, a further advantage of this method is that different analysis
techniques can be applied to the raw data, depending on the signal properties that
are to be extracted. Figure 5.16 illustrates the relation between the time-stamps of
optical data and the time-stamps of probe position data.

Although we classified the configurations employing an externally irradiated
probe under “near-field excitation and far-field detection,” such a classification is
not strictly possible. The reason is that the interaction between probe and sample
influences both the excitation path and the detection path. The configuration would
therefore be more suitably referred to as local interaction configuration and the
probe could be viewed as an optical antenna as discussed in Section 6.5. The an-
tenna assumes a reciprocal function: it helps to channel radiation to a local spot
on the sample and it assists in releasing an optical response and converting it into
far-field radiation.

5.3 Far-field illumination and near-field detection

In the previous section, the sample was irradiated locally with a near-field source
and the optical response was collected with standard far-field optics. In this sec-
tion, we consider the reverse situation, i.e. the sample is broadly irradiated and the
response is collected locally using a subwavelength optical probe.

5.3.1 Scanning tunneling optical microscopy

The scanning tunneling optical microscope (STOM) [37], also called the photon
scanning tunneling microscope (PSTM) [38] belongs to the group of microscopes
that use near-field detection and far-field illumination. To illuminate the sample, a
laser beam undergoes total internal reflection at the surface of the sample-support,
usually a prism or a hemisphere. The resulting evanescent surface wave has a typ-
ical decay-length on the order of 100 nm (see Chapter 2). A bare tapered glass
fiber is dipped into this evanescent field to locally couple some of the light into
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Figure 5.17 Scanning tunneling optical microscope or photon scanning tunneling
optical microscope (STOM/PSTM). (a) Typical set-up: A transparent sample on
top of a prism is irradiated by total internal reflection. (b) Close-up of the gap
region showing a dielectric tip dipping into the evanescent field above the sample.
(c) Exponential decay with increasing gapwidth of the optical signal guided to the
detector.

the probe where it is converted into propagating modes that are guided towards
a detector. This conversion is in analogy to frustrated total internal reflection dis-
cussed in Chapter 2. The preparation of sharply pointed fiber probes is described
in Chapter 6. Figure 5.17 illustrates the basic set-up. Using a bare fiber tip has
both advantages and disadvantages. Counting as an advantage is the fact that a
dielectric tip perturbs the field distribution much less than any kind of metallized
probe. On the other hand, the spatial confinement of the collection area for a di-
electric tip is not very small and not well defined. Since the tip is not a point-like
scatterer the collection efficiency can depend in a complicated way on the specific
three-dimensional structure of the tip. Nevertheless, for weakly scattering samples,
photon tunneling microscopy can resolve lateral field distributions with resolutions
down to about 100 nm. A nice example is shown in Fig. 5.18. Here, photon tunnel-
ing microscopy was used to map the evanescent optical fields bound to integrated
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Figure 5.18 Field distribution near a micro-optical resonator imaged by photon
tunneling microscopy. (A) topographic image of the disk-like resonator coupled
to a waveguide (left). (B)~(D) STOM images of the field distribution for three
different zoom levels showing mode beating in (C) and standing wave patterns
with a periodicity of 190 nm in (D). Line cuts along the dotted lines for each
image are shown in the top panels. The solid white line indicates the outline of
the resonator rim. Adapted from [36].

optical waveguide structures. The images help to understand and optimize the prop-
agation of light in integrated optical components. Notice that bare fiber probes can
generate severe artifacts when imaging strongly scattering samples. These artifacts
originate from the fact that fields are most efficiently coupled into the fiber along
the tip shaft and not at the tip end (cf. Chapter 6).

Characterization of field distributions by photon tunneling microscopy

To a first approximation, the images acquired by photon tunneling microscopy cor-
respond to the electromagnetic field distribution near the sample surface. This has
been demonstrated by various studies comparing experimental results with solu-
tions of Maxwell’s equations. In the following we will discuss a representative
experiment performed on a metal nanostructure excited in total internal reflection
[39]. The structure is a 100 x 100 x 40nm> gold particle fabricated by electron
beam lithography on a transparent ITO substrate. The excitation was a p-polarized
laser beam at a wavelength of 633 nm. It was determined that the structure exhibits
an electromagnetic resonance at a wavelength of 640 nm.

Figure 5.19(a) is a simulated map of the intensity distribution in a plane 140 nm
above the ITO substrate calculated using a discrete Green’s function method (see
Chapter 14). This height is an empirical number that was found to provide the best
match between experiment and theory [39]. It is thought to best reflect the effec-
tive collection properties of the dielectric tip. Figure 5.19(b) is the experimental
map recorded with photon tunneling microscopy at a constant height of 45 nm.
The discrepancy between the theoretical and experimental heights is an indication
that light is coupled into the fiber over an extended region of the tip shaft. The
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Figure 5.19 (a) Simulated field distribution above a 100 x 100 x 40 nm?® gold par-
ticle fabricated by electron beam lithography on a transparent ITO substrate. The
position of the gold square is indicated by the white lines. The field is evaluated at
a height of 140 nm above the substrate. (b) Measured field distribution above the
gold particle in constant height mode (gapwidth < 45 nm) using photon tunneling
microscopy. (c) Linear arrangement of 100 x 100 x 40nm? gold particles sepa-
rated by 100 nm. The much stronger field confinement is due to collective effects.
From [39].

experimental images were acquired in constant-height mode to avoid topographi-
cal cross talk as discussed in Chapter 7. The theoretical and experimental images
show good qualitative agreement. In particular, both images clearly show two spots
(250nm FWHM) indicating resonant excitation. In a second experiment, several
gold squares, arranged in a linear chain, are excited in total internal reflection with
polarization in the direction of the chain. The measured near-field pattern is shown
in Fig. 5.19(c) (left side). It shows that, compared with a single square, the intensity
is much more strongly confined (~90nm FWHM). The corresponding simulation
is in good agreement with the experimental image and suggests that the field is
concentrated between the metal patches.

Amplitude and phase of recorded field distributions

A unique feature of photon tunneling microscopy is the possibility to measure not
only the time-averaged intensity in the near-field but also its amplitude and phase
[41]. These measurements can even be time-resolved by employing heterodyne
interferometry [42]. The experimental set-up for this type of measurements is
shown in Fig. 5.20. The light frequency wq in the reference branch is shifted by
acousto-optic modulation by an amount dw. The signal recorded via the fiber tip
and the reference field can be described as [41]

Es(x,y) = As(x,y) expli(wor + ¢s(x, y) + Bs)l, 54
Er AR exp [i (wot + dwt + Br)] - (5.5
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Figure 5.20 Photon tunneling microscopy combined with time-resolved hetero-
dyne interferometry. The light from a fixed-frequency laser source is divided into
a reference and a signal branch. In the reference branch the frequency is shifted
by means of an acousto-optic modulator (AOM). Furthermore, in the reference
branch there is a delay line for time-resolved experiments. The signal branch un-
dergoes total internal reflection inside a prism and provides evanescent field il-
lumination at a structure of interest. An evanescent field can also be created by
coupling the signal branch into a waveguide. A sharp fiber probes the evanescent
field above the sample and directs the sampled light to a beamsplitter where the
sampled light interferes with the reference field. The resulting signal is analyzed
with a lock-in amplifier.

Here, As(x, y) and Ay are the real amplitudes of the signal and the reference field,
respectively. ¢s(x, y) is the relative phase of the optical signal at the sample. Both
the signal amplitude and the phase depend on the position of the fiber tip. 85 and
Br are constant phase differences due to the different optical paths in the reference
and signal branches. The sampled field is then interfered with the reference field
and directed onto a photodetector. The resulting signal becomes

I =|As(x, Y)I* + |Ar|® + 2Ag - As(x, y) cos[—8wt + ¢s(x, y) + Bs — Br] -

(5.6)
This signal has a DC offset and an oscillating component at . The amplitude and
phase of this component contain the relevant information. They can be extracted by
a dual output lock-in amplifier locked at the frequency dw. For pulsed excitation,
interference can only occur if signal and reference pulses arrive at the detector at
the same time. This way, by varying the delay time t the propagation of a pulse
through a structure of interest can be monitored [42].
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Figure 5.21 Field distribution above a Si3sN4 channel waveguide. Linearly polar-
ized light has been coupled into the channel waveguide to excite only the TMqo
mode. (A) Topography recorded with shear-force feedback. (B) Amplitude of the
field distribution. (C) Cosine of the measured phase distibution. From [40].

Figure 5.21 shows the result of a heterodyne interferometric measurement on a
SizNy4 channel waveguide. The topography is shown in Fig. 5.21(A) and the field
intensity picked up by the probe is shown in Fig. 5.21(B). Linearly polarized light
was used to excite only the TMy mode in the waveguide. The phase, extracted
with the lock-in amplifier, is rendered in Fig. 5.21(C). The figure actually shows
the cosine of the phase, which avoids the plotting of discontinuities (0° — 360°).
As expected for a pure TMyy mode, the image shows straight phase fronts oriented
perpendicular to the waveguide axis.

The result of a second, related experiment is shown in Fig. 5.22. Here, TE
and TM modes have been excited simultaneously in the waveguide. This leads to
a beating effect (Fig. 5.22(A)) between copropagating modes with identical opti-
cal frequencies but different wavelengths [41]. Figure 5.22(B) shows the recorded
phase image. Singularities in the phase patterns are indicated by white squares
and are enlarged in Fig. 5.22(C). They appear at positions where the summed am-
plitudes of the modes vanish and the phase becomes undefined (phase singulari-
ties).

5.3.2 Collection mode near-field optical microscopy

Instead of using bare fiber tips, photon tunneling microscopy can also be im-
plemented with aperture probes [43]. Although the collection efficiency is lower
in this configuration, it helps to reject scattered fields that couple through the
shaft of the fiber probe. In fact, when aperture probes are used for local collec-
tion, evanescent field excitation is not mandatory and any field, such as a fo-
cused laser beam, can be used for excitation (see Fig. 5.23). Early near-field ex-
periments were indeed performed in this geometry [44]. This technique became
less frequently used later on. The reasons for this are manifold: (i) A strong
influence of the tip on the recorded near-field signal is expected (‘“shadowing”
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Figure 5.22 Evanescent fields above the Si3N4 channel waveguide shown in
Fig. 5.21(A). Linearly polarized light has been coupled in the channel waveguide
to excite the lowest TE and TM modes simultaneously. (A) Measured amplitude
of the optical field inside the waveguide. A clear beating pattern is observed. (B)
Measured phase distribution of the optical field. The cosine of the phase is shown.
Several phase singularities are apparent. (C) Close-up of the square region (left)
indicated in (B). The phase singularity has a topological charge +1. (D) Close-up
of the square region (right) indicated in (B). The phase singularity has a topolog-
ical charge —1. From [40].

effects). (ii) The collection efficiency of low-opening-angle aperture probes is
rather low so that high illumination powers are necessary to generate a signal.
(iii) The very high irradiation dose on the large diffraction-limited spot prevents
applications of the method to photosensitive materials. Today, application of col-
lection mode near-field optical microscopy is therefore limited to special applica-
tions like mapping fields in a laser focus [45] or at the exit plane of a laser diode

[46].

5.4 Near-field illumination and near-field detection

In this section we discuss configurations that make use of near-field interactions
for both excitation and detection. An obvious configuration, shown in Fig. 5.24,
is a microscope that uses a fiber probe or an aperture probe to excite the sample
and to collect the optical response. In the case of a bare fiber probe, light has to
pass through the tip twice and hence the resolution is improved compared with
configurations that use fiber probes only for illumination. Resolutions of about
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Figure 5.23 Collection mode SNOM: The sample is illuminated with a focused
laser beam in reflection or transmission geometry. An aperture probe is used to
locally pick up a light signal out of the sample’s near-field. The signal is recorded
by a detector at the far end of the fiber.

Laser

(@) Detector (b) Detector
F

F
t t
Laser -’N ” Y, _:” "

it

Figure 5.24 Concept of near-field microscopy in the “double-passage” mode. The
probe is used both for excitation and for collection. Implementation with (a) an
external beamsplitter and (b) a y-shaped fiber coupler.

150 nm at a wavelength of 633 nm have been demonstrated using fiber probes for
both excitation and collection [47]. On the other hand, aperture-type probes are
not widely used in the “double-passage” configuration, because of signal-to-noise
limitations. Light throughput through a subwavelength aperture is very small and
if light has to pass twice the throughput is even lower (cf. Chapter 6). Neverthe-
less, the throughput can be optimized by use of metal-coated fibers with large taper
angles or probes with a double taper. In fact, Saiki and coworkers have demon-
strated single-molecule imaging with ~20 nm resolution using “double-passage”
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Figure 5.25 Reflection-mode SNOM. A subwavelength aperture (left) is illumi-
nated by a waveguide mode in a glass slab. The scattering from the aperture is
recorded as a function of the local environment of the aperture. Right: scan image
of a latex sphere projection pattern showing subwavelength features. From [49].

through aperture probes [48]. Near-field microscopy in the “double-passage” con-
figuration is attractive because of numerous conceivable technical applications
to non-transparent samples including data storage. To overcome the limitation
of low throughput, a combination with local field enhancement could be ex-
plored.

An early version of a near-field microscope working in the “double-passage”
mode was devised by the pioneers of near-field optics, U. Fischer and D. W. Pohl,
in 1988 [49]. A sketch is shown in Fig. 5.25. A subwavelength aperture in a metal
screen is illuminated by a waveguide mode supported by a glass slab. Light scat-
tered at the aperture is recorded as a function of the aperture—sample distance and
as a function of the lateral scan coordinates [49]. The scattering strength depends
on the local effective index of refraction in the vicinity of the aperture. As shown
in Fig. 5.25, high-resolution optical images were obtained using this type of mi-
Croscopy.

5.5 Other configurations: energy-transfer microscopy

In energy-transfer microscopy, the near-field interaction between probe and sample
is achieved through dipole—dipole coupling encountered in fluorescence resonance
energy transfer (FRET) or through local fluorescence quenching. In essence, any
type of near-field microscope is subject to these types of interactions because the
physical properties of a sample are affected by its local environment, such as the
presence of a local probe. Often this is an undesired property, but it can also be
turned into a desired effect. Here we discuss configurations that explicitly make
use of this type of coupling.

Instead of using a metal tip for local field enhancement it can also be employed
for local fluorescence quenching. In fact, the two processes are interconnected and
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often it is difficult to take advantage only of one effect. The presence of a metal
nanostructure within the near-field of a local emitter such as a single molecule
usually strongly enhances the non-radiative decay via coupling to electrons in the
metal (cf. Section 8.5). The transferred energy is ultimately dissipated to heat. The
left side of Fig. 5.26 shows a scheme of a set-up for near-field microscopy based on
local fluorescence quenching [34]. It consists of a tapping mode AFM on top of an
inverted optical microscope. The excitation light is focused on the sample through
a high NA microscope objective. The gold-coated silicon AFM tip is centered in
the excitation focus and gated photon counting is applied to select photons that
are detected in certain time intervals as shown in Fig. 5.16. The count rate at the
closest contact to the sample is subtracted from the count rate at the upper turning
point of the tapping cantilever. This yields a positive signal if the count rate is
reduced at small tip—sample distances, e.g. due to quenching. In Fig. 5.26(b), a
positive optical signal is indeed observed for a fluorescent particle but not for a
non-fluorescent, contaminating particle of similar size.

The contrast in quenching increases as the size of the object becomes smaller
and smaller. In the limiting case of a single fluorescent molecule, fluorescence can
decrease dramatically and a complete extinction of the fluorescence is conceivable
when the tip is positioned over the molecule. As demonstrated in Refs. [50, 51], the
fluorescence and the excited state lifetime of single molecules embedded in a 20 nm
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Figure 5.26 Imaging of 60 nm fluorescent beads based on local quenching with a
gold-coated AFM tip. The left panel shows a scheme of the experimental arrange-
ment. It combines a tapping-mode AFM with an inverted optical microscope. The
optical signal is created by gated photon counting. The count rate at the closest
contact to the sample was subtracted from the count rate at the upper turning point
of the tapping cantilever. This yields a positive signal if the count rate is reduced
at close contact between tip and sample, e.g. due to quenching. (a) Tapping mode
AFM topographic image of a 60 nm fluorescent bead and a contaminating parti-
cle. (b) Only the bead is visible in the optical image. Adapted from [34].
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Figure 5.27 (a) Sketch of an energy transfer microscope with single-molecule
sensitivity and excitation with picosecond laser pulses. (b) Excited state lifetime
as a function of the gapwidth in a system of stratified layers that mimics the local
geometry under the AFM tip. The dipolar emitter is located inside a 20 nm thick
PMMA layer. For both the perpendicular and the in plane orientation of the dipole
moment a sharp decrease of the lifetime towards a zero air gap is observed. (c)
Fluorescence rate and excited state lifetime of individual molecules as a gold-
coated Si3Ny tip (upper row) or a bare tip (lower row) is scanned over it. Adapted
from [50, 51].

PMMA film was quenched when a gold-coated Si3N4 AFM tip was placed on top of
a molecule. Figure 5.27(a) shows a sketch of the set-up used in these experiments.
To qualitatively explain the measured lifetimes, Fig. 5.27(b) shows the excited state
lifetime of a single dipolar emitter embedded in a stratified medium as a function of
the air layer thickness (see Chapter 10). The planar layers locally approximate the
tip—sample contact region. Independent of dipole orientation, the lifetime decreases
as the air-gap becomes smaller, which is a signature of fluorescence quenching.
Figure 5.27(c) shows maps of the emission rate and the excited state lifetime of a
single molecule as a function of the position of an AFM tip that is scanned over
it. A clear decrease of the fluorescence rate and the lifetime is observed for close
distances between tip and molecule. The particular shape of the quenched zone
depends on the size and shape of the tip.

Another approach to energy transfer microscopy is to use an acceptor that reports
the presence of energy transfer by means of its fluorescence. FRET is a well estab-
lished technique in the biological sciences for assessing nanometer-scale distance
changes (cf. Section 8.6.2), and a combination with scanning microscopy holds
promise for ultrahigh spatial resolutions and single-molecule sensitivity. There are,
however, major problems associated with this approach. (i) To achieve high spa-
tial resolution the interaction needs to be restricted to a single or a few donor—
acceptor pair(s) since for a large number of pairs in the excitation volume, due to
the short range of the interaction, only a few pairs will contribute to FRET and all
the others will increase the background due to either direct acceptor excitation or
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trivial reabsorption. Both of these processes are likely to contribute significantly to
a long-ranged background. (ii) For a small number of FRET pairs, photobleaching
and blinking become the overwhelming problems. Photostable donors or acceptors
would be of great interest in this context. Despite these problems, some groups have
demonstrated the feasibility of near-field FRET imaging. As demonstrated by the
experiments in Ref. [52], the chance of premature photobleaching can be reduced
by attaching acceptors and not donors onto the tip. This ensures that the acceptors
cannot be excited by the excitation laser but only via FRET by an excited donor
in the sample. The principle of these experiments is depicted in Fig. 5.28(left).
Here, the donor is embedded in several layers of lipid membrane. Excitation of the
sample gives rise to donor fluorescence and when the acceptor-coated tip is ap-
proached, additional red fluorescence is observed. Domains become visible when
raster-scanning the sample. The density of these domains is much lower compared
with the domain density seen with confocal or wide-field fluorescence microscopy
indicating the presence of an extremely short-ranged interaction between tip and
sample. This short-range interaction makes it possible to discriminate the topmost
layer of the membrane stack from underlying layers. The images in the center and
on the right-hand side of Fig. 5.28 show the experimental near-field FRET images.
The size of the ~140 nm spots in the right image is limited by the size of the tip
used in these experiments.

e 25 LM —— 5 1M

Figure 5.28 Near-field microscopy based on fluorescence resonance energy trans-
fer (FRET). Left: Cartoon of the experiment. The donor molecules are located in a
multilayer Langmuir-Blodget (LB) film whereas the acceptor molecules are sup-
ported by a LB layer deposited on a tip. The donor fluoresces in the green if the
tip is absent. On the other hand, additional red fluorescence is observed in the
presence of the tip because of FRET between the topmost layer of the LB film
and the tip. Middle: FRET image of a 50 x 50 pum area of the sample. Patches of
fluorescence are observed revealing donor islands in the LB film. Right: Spatial
resolution achieved in these experiments. Adapted from [52].
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5.6 Conclusion

Congratulations to everybody who survived this tour de force of imaging modal-
ities. After having read this chapter you should have acquired some knowledge
of what types of nanoscale optical microscopy methods currently exist and what
their characteristic features are. It should have become clear that the apparently
large diversity of methods can be categorized according to specific illumination
and detection conditions. Be aware of the fact that we did not discuss every optical
microscopy technique that is out there, some had to be omitted to keep the discus-
sion focused — one example being spectral self-interference microscopy [53]. New
specialized methods are being developed continuously. In fact, it is desirable to
have different specialized techniques available since various measurements cannot
be tackled efficiently by a single instrument accommodating many tasks.
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(1]
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(3]
(4]
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(6]

[7]

Problems

Surface enhanced spectroscopy: Using Ref. [30] discuss why the enhancement of
Raman scattering near nanostructure is proportional to the fourth power of the field
enhancement factor. Does the same scaling also hold for other spectroscopic
signals?

Use the formalism of Section 3.6 to determine the diameter of the on-axis phase
plate that should be used in STED microscopy in order to exactly cancel the total
field in the geometrical focus. Discuss why it is important to really achieve zero
field with a high degree of accuracy.

Derive Eq. (5.3) assuming a small spherical particle above a plane interface. The
particle is treated as a single dipole which induces an image dipole in the substrate.
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6
Near-field optical probes

Near-field optical probes, such as laser-irradiated metal tips, are the key compo-
nents of near-field optical microscopes discussed in the previous chapter. No mat-
ter whether the probe is used as a local illuminator, a local collector, or both, the
optical spatial resolution solely depends on the confinement of the optical energy
at the apex of the probe. This chapter discusses light propagation and light confine-
ment in different probes used in near-field optical microscopy. Where applicable
we study fundamental properties using electromagnetic theories (see Chapter 15)
and provide an overview of current methods used for the fabrication of optical
probes. We hope to provide the basic knowledge to develop a clear sense of the
potentials and the technical limitations of the respective probes. The most com-
mon optical probes are (1) uncoated fiber probes, (2) aperture probes, (3) pointed
metal and semiconductor probes, and (4) nano-emitters, such as single molecules
or nanocrystals. The reciprocity theorem of electromagnetism states that a signal
remains unchanged upon exchange of source and detector [1, 2]. Therefore, it suf-
fices to investigate a given probe in only one mode of operation. In the majority
of applications it is undesirable to expose the sample surface on a large scale due
to the risk of photo-damage or long-range interference effects complicating image
reconstruction. Therefore, we will preferentially consider the local illumination
configuration.

6.1 Dielectric probes

Dielectric, i.e. transparent, tips are an important class of near-field optical probes
and are the key components for the fabrication of more complex probes, e.g. aper-
ture probes. Transparent tips can be produced by tapering of optical fibers yielding
conical tips, by suitable breaking of glass slides to produce tetrahedral tips, by
polymer molding processes, or by silicon (nitride or oxide) microfabrication tech-
niques. Tips at the end of glass fibers have the distinct advantage that the coupling
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of light into the taper region can be done easily by exciting the guided modes in
the fiber at the far fiber end. Microfabricated or molded tips can be mounted at the
end of cleaved fibers. In the following we discuss the most important methods that
can be used to create sharp dielectric tips.

6.1.1 Tapered optical fibers

Tapering of optical fibers can be done by chemical etching, or by local heating and
subsequent pulling. Here we compare the results of different etching and pulling
techniques and discuss their respective features, advantages and disadvantages.

Etching

Chemical etching of glass fibers is very attractive because it has the potential for
batch fabrication of a large number of identical tips. Initially, etching of glass fibers
was performed using Turner’s method [3, 4]. Here, fibers with their plastic coat-
ing stripped off are dipped into a 40% HF solution. A thin overlayer of an or-
ganic solvent is usually added (i) to control the height of the meniscus of the HF
forming at the glass fiber and (ii) to prevent dangerous vapors escaping from the
etching vessel. By using different organic overlayers the opening angle of the re-
sulting conical tapers can be tuned [4]. Large taper angles are of interest because,
as we shall see, they result in high-throughput optical probes. Taper formation in
the Turner method takes place because the height of the meniscus is a function of
the diameter of the remaining cylindrical fiber. The initial meniscus height depends
on the type of organic overlayer. Since the fiber diameter shrinks during etching,
the meniscus height is reduced so preventing higher parts of the fiber from being
etched further. Finally, if the fiber diameter approaches zero the etching process in
principle should be self-terminating. The time evolution of the process is sketched
in Fig. 6.1.

This sounds quite attractive, but the method has some important drawbacks: (i)
The process is not really self-terminating. Diffusion of the small HF molecules
into the organic solvent overlayer degrades the tip if it is not removed immediately
after it has formed. (ii) The surface of the conical taper is usually rather rough.
This roughness is most probably due to the fact that the meniscus of HF does not
move continuously and smoothly during etching but rather jumps from one stable
position to the next. This results in a faceted, rather rough surface structure, which
can pose problems in later processing steps, e.g. resulting in mediocre opacity of
metal coatings.

This roughness problem can be overcome by applying the so-called tube-
etching method [5]. Here, the fibers are dipped into the HF solution with an organic
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Figure 6.1 Sketch of the Turner etching method. The meniscus height of the 40%
HF solution is expected to decrease as the diameter of the fiber decreases during
etching. The process should terminate once the tip is formed. For more details
see [3].

solvent overlayer (p-xylene or iso-octane) without stripping off their plastic coat-
ing. The plastic coatings of standard optical fibers are chemically stable against HF.
Figure 6.2 schematically shows the progress of the etching process for (a) HF im-
permeable and (b) permeable cladding. The insets show photographs of the etched
fibers in situ. Both types of cladding result in different pathways for tip formation.
For more details the reader is referred to the original publication [5]. Figure 6.3
shows typical results for fiber tips etched by the different techniques. Note the dif-
ference in roughness between Turner and tube-etched tips.

Besides the Turner and the tube-etching methods there are a number of other
etching methods that result in sharp tips. A prominent method was introduced
based on dipping cleaved fibers into a buffered HF solution consisting of a mix-
ture with volume ratio NH4F:HF:H,O = X:1:1, where X denotes a variable vol-
ume [6]. In general, mixtures with X > 1 are used. The opening angle of the tips
monotonously decreases for increasing X and tends to a stationary value for X > 6.
The magnitude of the stationary angle depends strongly on the Ge concentration
in the fiber core. It varies between 100° and 20° for doping ratios of 3.6 and 23
mol%, respectively. The method relies on the fact that in such a solution Ge-rich
parts of optical fibers are etched at a lower rate. Since the core of suitable fibers is
doped with Ge, the core starts protruding from an otherwise flat fiber. Figure 6.4
shows the typical shape of fiber tips created by Ohtsu’s method. The fiber is flat
apart from a short and sharp protrusion sitting on the fiber core. For the method to
work, the Ge concentration in the core has to have a suitable profile, which is not
the case for all types of standard commercial single mode fibers. More involved
techniques have been applied to achieve tapers with discontinuous opening angles,
so called multiple tapers [7].
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Figure 6.2 Schematic view of the time evolution of the tube-etching process.
The insets show in situ video frames of the etching process. Cleaved fibers are
dipped into a 40% HF solution with an organic overlayer (p-xylene or iso-octane).
The etching proceeds along different pathways whether or not the polymer fiber
cladding is permeable to HF. In the case of a non-permeable cladding the tip
forms at the end of the fiber and keeps its shape while shortening inside the tube
(a). In the second case the tip forms at the meniscus between HF and the organic
overlayer (b). From [5].

Figure 6.3 Etched fiber tips. Left: Turner’s method. Right: Tube-etched tip. The
upper panels show optical images taken with a conventional microscope. The
lower panel shows higher-resolution scanning electron micrographs of the sur-
face roughness of the tips sputtered with 3 nm platinum at 77 K. From [5].
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Figure 6.4 Scanning electron microscopy images of fiber tips etched by Ohtsu’s
method. Left: Highly Ge-doped special fiber. From [6] with permission. Right:
Commercial fiber. From [79].

Heating and pulling

Another successful method to produce tapered optical fibers is local heating of
a stripped fiber and subsequently pulling it apart. The technology used here was
originally developed for electrophysiology studies of cells using the patch clamp
technique. The patch clamp technique was developed in the 1970s by Erwin Ne-
her and Bert Sakmann [8] at the Max Planck Institute for Biophysical Chemistry
in Gottingen, Germany. In 1991 they were awarded the Nobel prize in medicine
for this discovery. Micropipettes for patch clamp experiments are produced from
quartz capillaries by local heating and pulling. The shape and the apex diameter
of heat-pulled pipettes depends strongly on all kinds of parameters involved in the
heating and pulling including pulling speed profile, size of the heated area, and the
heating time profile.

For applications in nano-optics, as mentioned before, tapered optical fibers
should exhibit a short and robust taper region with a large opening angle at the
apex. In order to achieve this goal, the length of the heated area of the fiber should
be smaller than or equal to the fiber diameter. In order to achieve a symmetric tip
shape, the temperature distribution in the glass should have cylindrical symmetry.
Also, heating of the glass should be moderate because a certain minimum viscos-
ity of the glass before pulling is necessary to achieve short enough tips. A too
low viscosity leads to the formation of thin filaments upon pulling. In many labs
CO, lasers at a wavelength of 10.6 um are used to heat the glass, which at this
wavelength is a very efficient absorber. Alternatively, a perforated heating foil or a
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Figure 6.5 Sketch of a typical set-up for pulling of optical fibers using a CO,
laser. The laser is focused onto the fiber. For heating, a laser pulse of some mil-
liseconds is applied. The pulling starts after the laser pulse and follows a distinct
velocity profile. See e.g. [9] for details.

heating coil can be used. Figure 6.5 shows a typical set-up for heating and pulling
of fibers. There exist commercial pipette pullers that are used to pull optical fibers
since they provide control over magnitude and timing of all relevant process param-
eters. A detailed study on how to adapt a pipette puller for fiber pulling is found
e.g. in Ref. [9].

Close inspection of fiber tips by scanning electron microscopy reveals that pulled
tips tend to show a flat plateau at the apex. The diameter of the plateau is a func-
tion of the pulling parameters. A probable explanation for the occurrence of the
plateau is that there is brittle rupture once the diameter of the glass filament be-
comes very small and cooling is very effective. This would imply that the diameter
of the plateau should scale with the heating energy applied to the fiber. This was
actually observed. Figure 6.6 shows a series of pulled tips with decreasing heat-
ing power. There is also a distinct correlation between opening angle and supplied
heating energy. The angle becomes larger as less heating energy is supplied. Un-
fortunately, concomitantly the diameter of the flat facet at the apex increases, as
can be seen in the insets of Fig. 6.6.

It is important to note that tapers created by etching and by pulling are not com-
pletely identical. Some groups report problems with pulled tips when polarization
of light is an issue. There seems to be some kind of stress relaxation over time that
creates time-dependent polarization behavior of pulled tips [10]. Also, for pulled
tips the refractive index profile in the taper is changed since both the fiber core and
the cladding are affected by the heating and pulling. For etched tips the fiber core
is unaffected as long as the diameter of the taper is larger than the core diameter.
In pulled fibers, in contrast to etched fibers, the thinning of the core can lead to
unfavorable mode distortions when the light propagates towards the tip apex. The
lower-index coating becomes irrelevant in the low-diameter tapered region near the
apex, where the waveguide fields extend into the surrounding ambient (air). On the
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Figure 6.6 Scanning electron microscopy images of pulled glass fibers sputtered
with 20 nm of gold. The insets show magnifications of the respective tip apex.
There is a trend that the shorter the tip and therefore the larger the opening angle
is, the more pronounced is the plateau that occurs at the apex. This plateau defines
the smallest possible aperture that can be achieved after metal coating.

other hand, the tapers of pulled fibers show very little surface roughness, which is
favorable for subsequent processing, e.g. metal coating.

While the shape of tapered fibers can be accurately determined in scanning elec-
tron microscopes, the optical properties, e.g. the effective optical diameter, are
more difficult to assess experimentally in a standard way. Here we wish to point the
interested reader to a method that relies on imaging a pattern of standing evanescent
waves [11]. By comparing the measured with the expected fringe contrast using a
simple model for the tip’s collection function, one can estimate the effective optical
diameter of a given tip (see Problem 6.1). It is found that for pulled glass fiber tips
this diameter is about 50—-150 nm.

6.1.2 Tetrahedral tips

Tetrahedral tips [12] are produced by cleaving a rectangular slab of glass twice
at an angle. Figure 6.7 schematically shows a resulting fragment with triangular
cross-section. The fragments can be produced from 170 pum thick cover slips, so
that the overall size of the fragment is rather small. In order to couple in light
that is focused to the tip (marked by the circle in Fig. 6.7) a coupling prism has
to be used. A particular feature of tetrahedral tips is that they are not rotationally
symmetric, which after metal coating and aperture formation can lead to interesting
field distributions[13].

6.2 Light propagation in a conical dielectric probe

Dielectric tips can be regarded as homogeneous glass rods with a conical pointed
end. The analytically known HE;; waveguide mode, incident from the infinite
cylindrical glass rod and polarized in the x-direction, excites the field in the conical
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Figure 6.7 Tetrahedral tip created by cleaving a rectangular slab of glass twice at
an angle. The actual tip is marked by the circle. For details see [12].
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Figure 6.8 Contours of constant power density on two perpendicular planes
through the center of a dielectric probe (factor of 3 between adjacent lines). The

fields are excited by the HE;; mode (polarization indicated by symbols) incident
from the upper cylindrical part. A = 488 nm, ¢ = 2.16.

probe. For weakly guiding fibers, the modes are usually designated as LP (linearly
polarized). In this case, the fundamental LPy; mode corresponds to the HE; mode.
The tapered, conical part of the probe may be represented as a series of disks with
decreasing diameters and infinitesimal thicknesses. At each intersection, the HE;
field distribution adapts to the distribution appropriate for the next slimmer section.
This is possible without limit because the fundamental mode HE; has no cut-off
[14]. With each step, however, part of the radiation is reflected, and the transmitted
HE;; mode becomes less confined as the field extends more and more into the sur-
rounding medium (air). One hence expects high throughput but poor confinement
for this type of probe.

The calculated field distribution in Fig. 6.8 qualitatively supports the expected
behavior but reveals some interesting additional features: the superposition of
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incident and reflected light leads to an intensity maximum at a diameter of ap-
proximately half the internal wavelength. Further down the cone, the light pene-
trates the sides of the probe so that at the tip apex there is an intensity minimum,;
subwavelength light confinement is achieved with this configuration only in a sub-
tractive sense. Thus, the fiber probe is not a local illumination source and one can
expect that the best field confinement is on the order of A/(2nyp), with ng, being
the refractive index of the fiber.

If the field in a plane in front of the probe is transformed into the spectral do-
main of spatial frequencies (k,, k), it is found that evanescent field components are
confined to the probe tip, whereas plane wave components are spread over larger
distances. Evanescent field components localized to the very end of the fiber probe
can be selectively probed by using a high-index dielectric substrate, which trans-
forms evanescent field components into plane waves propagating in the substrate
at angles o > «. (forbidden light), where o, is the critical angle of total internal
reflection. As a consequence, forbidden light contains information on a confined
region close to the fiber tip and therefore leads to improved resolution. This find-
ing was experimentally confirmed by Hecht et al. by recording forbidden light and
allowed light separately [15]. In general, the spatial (k-vector) spectrum of a highly
confined light field is much broader than that of a diffraction-limited field distribu-
tion as it contains strong evanescent components. Evanescent components that are
transformed into propagating waves in the substrate decay as

it VAT ) 6.1)

where k; = ko and k, = nk( are the wavenumbers of the upper medium and the
substrate, respectively. It follows that the larger the refractive index of the substrate
n is, the faster the decay of the exponential term (6.1) will be. Thus, for high #,
forbidden light contains information on spatially better confined fields, leading to
higher resolution.

To understand the efficiency of the fiber probe in the collection mode we sim-
ply apply time-reversal to the illumination mode configuration. The essence is as
follows: in illumination mode, the HE|; mode propagating in the fiber is converted
into radiation near the end of the tip. The radiation field can be decomposed into
plane waves and evanescent waves propagating/decaying into various directions
with different magnitudes and polarizations (angular spectrum, see Section 2.12).
Reversing the propagation directions of all plane waves and evanescent waves will
excite a HE;; mode in the fiber probe with the same magnitude as used in the il-
lumination mode. Hence, at first glance it seems that no high resolution can be
achieved with a fiber probe in collection mode. However, as long as the fields to
be probed are purely evanescent, such as along a waveguide structure, the fiber
probe will collect only the evanescent modes available and the recorded images
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will represent the local field distribution. But if the sample contains scatterers that
convert the evanescent modes into propagating modes, then there is a good chance
that the measured signal is dominated by radiation that is coupled into the probe
along the tip shaft and image interpretation becomes difficult. Therefore, the fiber
probe turns out to be an unfavorable near-field probe for radiating structures.

Resolutions beyond the diffraction limit were reported by groups using the fiber
probe for both illumination and detection (see Chapter 5 and e.g. [16, 17]). Al-
though the reported resolutions are worse than those achieved by aperture scanning
near-field optical microscopy, the experiments show that resolution can be further
improved by passing light twice through the fiber probe.

6.3 Aperture probes

Probes based on metal-coated dielectrics with a transparent spot at the apex are
often referred to as aperture probes. The metal coating basically prevents the fields
from leaking through the sides of the probe. The most common example is a
tapered optical fiber coated with a metal, most often aluminum. In order to under-
stand the light propagation in such a probe we note that it can be viewed as a hollow
metal waveguide filled with a dielectric. Towards the probe apex, the diameter of
the waveguide is constantly decreasing. The mode structure in a tapered hollow
waveguide changes as a function of the characteristic dimension of the dielectric
core [18]. For larger diameters of the dielectric core there exist a number of guided
modes in the waveguide. These run into cut-off one after the other as the diame-
ter decreases on approaching the apex. Finally, at a well-defined diameter even the
last guided mode runs into cut-off. For smaller diameters of the dielectric core the
energy in the core decays exponentially towards the apex because the propagation
constants of all modes become purely imaginary. This situation is visualized in
Fig. 6.9. The mode cut-off is essentially the reason for the low light throughput of
aperture probes. This low light throughput of metal-coated dielectric waveguides
is the price for their superior light confinement. Figure 6.10 shows a comparison
of the fields of the fiber probe and the aperture probe obtained from an electro-
magnetic simulation. In both figures the contours are discontinuous in the plane of
polarization (y = 0), as the electric fields have a net component perpendicular to
the boundaries. While the dielectric probe shows very low field confinement, the
aperture probe suffers from very low throughput. For the latter, approximately one
third of the incident light is reflected and two thirds are dissipated (absorbed in the
metal coating).

This behavior determines some of the design goals and limitations of aperture
probes. (i) The larger the opening angle of the tapered structure, and the higher the
refractive index of the dielectric core, the better the light transmission of the probe
will be. This is because the final cut-off diameter approaches the probe apex [19].
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Figure 6.9 Cartoon of the successive cut-off of guided modes and exponential
decay of the fields towards the aperture in a tapered, metal-coated waveguide.
Adapted from [17].

z

Figure 6.10 Contour lines of constant [E|? on three perpendicular planes through
a dielectric probe (left) and an aperture probe (right) (factor of 4 between succes-
sive lines). A = 488 nm, gcore = 2.16, £coar = —34.5 + i8.5. The exciting HE
mode is polarized along the x-direction.

(ii) In the region of cut-off, the energy is partly dissipated in the metal layer. This
can result in significant heating of the metal coating in this region, which as a con-
sequence might be destroyed. The maximum power that can be sent down such a
probe is therefore limited. Improving the heat dissipation in the relevant region or
increasing the thermal stability of the coating can increase this destruction thresh-
old [20]. These effects will be analyzed in some detail in the following section.
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Figure 6.11 Contours of constant power density on two perpendicular planes
through the center of an infinitely coated aperture probe (factor of 3 between ad-
jacent lines). The field is excited by the HE{; mode incident from the cylindrical
part.

6.3.1 Power transmission through aperture probes

Figure 6.11 shows the calculated power density inside an aperture probe. The probe
is excited by the analytically known cylindrical HE;; waveguide mode at a wave-
length of A = 488 nm. At this wavelength the dielectric constants of the dielectric
core and the aluminum coating are &.ore = 2.16 and .oy = —34.5 + 8.51, respec-
tively.! The corresponding skin depth is 6.5 nm. The core has a diameter of 250 nm
at the upper cylindrical part and a half cone angle of 10° at the taper.

In the cylindrical part the HE;; mode is still in the propagating regime, i.e. its
propagation constant has a negligibly small imaginary part. As the core radius be-
comes smaller, the modes of the tapered part become evanescent and the field de-
cays extremely fast, faster than exponentially, towards the aperture. Since roughly
one-third of the incident power is reflected backwards this leads to a standing wave
pattern at the upper part of the probe. To the sides of the core the field penetrates

I The complex dielectric function of aluminum for visible wavelengths can be well described by a plasma
dispersion law (see Chapter 12),

2
f@)=1— P 6.2)

0 +iyo’

where a plasma frequency of wp = 15.565 eV /A and a damping constant y = 0.608 eV /A yield a good
approximation for the dielectric function [18].
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Figure 6.12 Mode matching approximation for the power P(z) in the aperture
probe. In each waveguide section the attenuation of the HE1; mode is calculated
analytically. The contributions of all sections are added and the limit dz — 0 is
applied.

into the aluminum coating where roughly two-thirds of the incident power is dissi-
pated into heat.

The fast power decay inside the aperture probe can be well explained by a mode
matching analysis. In this approach, the tapered part of the probe is subdivided into
small cylindrical waveguide pieces as shown in Fig. 6.12. For a lossy waveguide
the propagation constant &k, of any mode is usually written as

k.= B +ia, 6.3)

where f is the phase constant and « the attenuation constant. According to wave-
guide theory, the power loss in the nth waveguide section is

Ploss(n dz) = P (n dz)(1 — e~ 2omn d2) dzy (6.4)

where P(n dz) is the incident power and «;;(n dz) the attenuation constant of
the HE; mode in the nth waveguide section. «; depends on the diameter of the
waveguide section, on the wavelength and on the material properties. A more de-
tailed discussion on lossy waveguide modes can be found in Ref. [21]. Summing
Eq. (6.4) over all waveguide sections, using

P([n+ 1]dz) = P(n dz) — Pioss(n dz), 6.5)
and taking the limit dz — 0 we obtain the power distribution
P(z) = P(zp)e on®d (6.6)

This formula is compared in Fig. 6.13 with the computationally determined power
along the probe axis (curve a). The power in the probe can also be plotted against
the core diameter D using the geometrical relationship

D—-D,

=—— "2 6.7
2 tanéd ©.7)
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Figure 6.13 Power decay in an infinitely coated aperture probe as a function of
distance from the aperture z and of the core diameter D. a: Computed decay, b:
mode matching approximation with zg = —600 nm, ¢: mode matching approx-
imation with zg = —400 nm, d: decay of the HE{; mode in the cylindrical part
of the probe, e: decay of a wave inside bulk aluminum. The vertical line indicates
the transition from the cylindrical to the tapered part of the probe.

where § is the half-cone angle and D, the diameter of the aperture. Note that
zg < z < 0 for the coordinates chosen in Fig. 6.12. The asymptotic values of
P (2) are indicated by curves d and e, which describe the decay of the HE;; mode
in the cylindrical part of the aperture probe and the decay of a wave inside bulk alu-
minum, respectively. Since the presence of the aperture has almost no influence on
P(z) the curve may be applied in good agreement to any D,. The power transmis-
sion of aperture probes with D, = 100 nm, 50 nm and 20 nm therefore is ~ 1073,
107% and 2 x 107'2, respectively. The steep decay of the transmission curve (see
Fig. 6.13) indicates that in the chosen configuration (especially for the chosen cone
angle) it is very unfavorable to decrease the aperture size considerably below 50—
100 nm, which is actually the diameter most commonly used for aperture probes.
For an aperture probe with a thick (infinite) coating, Fig. 6.14 shows « and g for
the HE;; mode as functions of z and D. The transition from the propagating to the
evanescent region occurs at D ~ 160 nm. The agreement of the computed decay
(curve a) and the power decay obtained by Eq. (6.6) is dependent on the lower
integration limit zo. Excellent fits are obtained if z( is chosen to be in the evanescent
region of the HE|; mode where «;(z) is well described by an exponential function

an(D) = Im{ncoat}ko e_AD7 (68)

where n¢o, 1s the index of refraction of the metal coating, ky = 2 /A is the prop-

agation constant in free space and A is a constant determined to be 0.016 nm~! in

the present example (cf. Fig. 6.14). If Eq. (6.8) is inserted into Eq. (6.6) and the
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Figure 6.14 Attenuation constant o1 and phase constant 811 of the cylindrical
HE ;| mode as a function of the core diameter D. z is the corresponding distance
from the aperture. The vertical line indicates the transition from the cylindrical to
the tapered part of the aperture probe. From [21].

integration in the exponent is carried out, we arrive at
P(z) = P(zp) expla — b(e***“")] (6.9)

with the two constants

— Im{ncoat}koe_ADO b= Im{”coal}kOC_ADa
Atan$ ’ A tan$

)

where Dy is the core diameter at z = z(. According to Eq. (6.9) the power trans-
mission is higher for larger §. However, at the same time more power penetrates
the edges of the aperture leading to a larger effective aperture width. The analysis
above is valid for a § that is not too large since reflections in the probe were ne-
glected. This also explains the deviation of curve b in Fig. 6.13 where z( was chosen
to be in the propagating region of the probe.

The outlined mode matching analysis can be simplified if a perfectly conducting
metal coating is assumed. In this case, the propagation constant k. of the lowest
order TE{; mode can be calculated as

k(D) = \/ecmkg — (3.68236/D)? , (6.10)

with gqore being the dielectric constant of the core. For large core diameters D
the propagation constant is real and the TE;; mode propagates without attenua-
tion. However, for diameters D < 0.5861.,/ecore the propagation constant becomes
purely imaginary and the waveguide mode decays exponentially in the z-direction.
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Therefore, in the attenuated regime, we can write

a (D) = \/(3.68236/D)2 — Ecorek? (6.11)

which can be inserted into Eq. (6.6). A similar analysis has been carried out by
Knoll and Keilmann for a perfectly conducting aperture probe with a square cross-
section [22].

The throughput of the aperture probe also depends strongly on the taper angle.
As the half-cone angle § is increased the spotsize will decrease because more and
more radiation penetrates through the edges of the aperture. Surprisingly, the spot-
size remains almost constant over a large range of § and increases rapidly for
8 > 50° [23]. However, as shown in Fig. 6.15 the power transmission behaves
very differently. A strong variation is observed in the range between 10° and 30°.
The data points in the figure are calculated by three-dimensional computations for
a probe with aperture diameter of 20 nm and excitation at A = 488 nm. The solid
line on the other hand is calculated according to mode matching theory, i.e. by
using Eqgs. (6.6)—(6.9). The analysis leads to

Pou o oeos (6.12)
P;

with B being a constant. While the above theory leads to a value of B = 3.1, the

best fit to the numerical results is found for B = 3.6. Figure 6.15 shows that the

agreement is excellent for 10° < § < 50°. The deviation above 50° is mainly due to

neglected reflections in the mode matching model. Changing the taper angle from
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Figure 6.15 Dependence of power transmission on taper angle (6 = half-cone
angle). The aperture diameter is 20 nm and the wavelength A = 488 nm. Changing
the taper angle from 10° to 45° increases the power throughput by nine orders of
magnitude. Three-dimensional computation (points) and according to Eq. (6.12)
with a value of B = 3.6 (solid line).
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10° to 45° increases the power throughput by nine orders of magnitude while the
spotsize remains almost unaffected. Thus, methods that produce sharp fiber tips
with large taper angles are of utmost importance.

6.3.2 Field distribution near small apertures

To understand light—matter interactions near an aperture probe we need a model
for the field distribution near subwavelength-sized apertures. In classical optics,
the Kirchhoff approximation is often applied to study the diffraction of light by an
aperture in an infinitely thin, perfectly conducting screen. The Kirchhoff approxi-
mation assumes that the field inside the aperture is the same as the excitation field
in the absence of the aperture. Of course, this assumption fails near the edges of
the aperture, and consequently the Kirchhoff approximation becomes inaccurate
for small apertures. For an aperture considerably smaller than the wavelength of
the exciting radiation it is natural to consider the fields in the electrostatic limit.
Unfortunately, for a wave at normal incidence the fields in the electrostatic limit
become identical zero because the exciting electric field consisting of a superposi-
tion of incident and reflected waves disappears at the surface of the metal screen.
Therefore, the electric field has to be calculated by using a first-order perturbative
approach. On the other hand, it is possible to solve the magnetostatic problem.

In 1944 Bethe derived an analytical solution for the electromagnetic field near a
small aperture [24]. He also showed that in the far-field the emission of the aperture
is equal to the radiation of a magnetic and an electric dipole located at the center
of the aperture. The electric dipole is only excited if the exciting plane wave is
incident from an oblique angle. In 1950 Bouwkamp revealed that the electric field
derived by Bethe is discontinuous in the hole, contrary to what is required by the
boundary conditions [25].

To derive the correct solution, Bouwkamp first calculates the solution for a disk
and then uses Babinet’s principle to obtain the magnetic currents for the case of the
aperture. The solution is derived from an integral equation containing the current
distribution function on the disk as an unknown function. The integral equation
is then solved using a series expansion method and making use of the singularity
condition at the rim of the disk. This condition states that the electric field compo-
nent tangential to the edge of the disk must vanish as the square root of the distance
from it. Furthermore, the electric field component normal to the edge must become
infinite as the inverse square root of the distance from the edge. This boundary
condition had already been used by Sommerfeld in the study of diffraction by a
semi-infinite metal plate. An alternative approach for solving the fields near a small
disk can be found in Ref. [26].



190 Near-field optical probes

Babinet’s principle is equivalent to replacing the electric currents and charges in-
duced in the metal screen by magnetic currents and charges located in the aperture.
The magnetic surface current density K and magnetic charge density 7 in the aper-
ture give rise to a magnetic vector potential A™ and a magnetic scalar potential

M ag
- QikR - 1 kR
A = K ds, oM = — ds, 6.13
80/ 47 R Ho n47rR ( )

where R = |r — r’| denotes the distance between the source point r’ and the field
point r, and the integration runs over the surface of the aperture. Similar to the
electric case, A™ and ®™ are related to the electric and magnetic fields as

1
E=—VxA™, H=iwA™ — Vo™ ~ — V™, (6.14)
€0

In what follows, we neglect the first term in the expression for H because it is
proportional to k = w/c and therefore negligible in the limit of a small aperture a
(ka < 1).

To solve for A™ and ®™ it is convenient to introduce oblate-spheroidal coor-
dinates r = (u, v, ¢) defined by

z=auv, x=av(l—u®)(1+v¥cosp, y=av(1—u?)(1+v?)sing,
(6.15)
where 0 <u <1, —00 < v < 00,0 <0 < 27. The surfaces v = 0andu = 0
correspond to the aperture and the screen, respectively.

Plane wave at normal incidence

For a plane wave at normal incidence, the Laplace equation VZ2®™ = ( yields the
solution

2
o™ = —Hy"L plu) 0! (iv) sing, (6.16)
s

where P, and Q7' are associated Legendre functions of the first and second kind,
respectively [27], and Eq and Hy = E+/g/ 1o are the magnitudes of the electric
and magnetic fields of the incident plane wave polarized in the x-direction (¢ = 0).
The solution for the magnetic vector potential A™ is much more difficult to derive
since it cannot be calculated statically. The expression derived by Bouwkamp
reads as

k 2
A = —eyEoz— P3(0) Q3((v) sin2¢.
2

- ka . . 2 2
A; ) — SOEOE [—48Q0(1v) + 24P>(u) Q2 (iv) + P; (1) Q5(iv) cos 2(/)] , (6.17)

and is different from Bethe’s previous calculation.
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The electric and magnetic fields are now easily derived by substituting ™ and
A®™ into Eq. (6.14). The electric field becomes

E./Ey = ikz—gikau [l—i—varctanv—{—1 ! + -y :|
) T 3u? +0v2 0 3a?W? + )1 +0v2)? ]|’
Ey/Ey = — dikxyu
3ra(u? + vA) (1 +v?2)?’
E./E) = — Ak . (6.18)
. 3 (u? + v2)(1 + v?)
and the magnetic field turns out to be
Hy/Hy = — 4xyv
: ma?(Ww? + v2)(1 4 v?)?’
2 v(x? — y?
Hy,/Hy = 1— P |:arctanv + P naz(u2(+ vz)?l)—i- vz)z] ,
H./Hy = dayu (6.19)

a4+ v)(1 4 v?)
By evaluating the electric and magnetic fields on the metal screen it is straight-
forward to solve for the electric charge density ¢ and the electric surface current
density I as

8i a
o(p,9) = eoEo—ka /e

3 Vptat—1
I(p,¢) = HO% [arctan(\/pz/a2 -1+ %\/1 - az/,oz] cos¢ (6.20)

ny |: 1 +a?/p? :| )
— Ho— arctan(v/ p2/a? — 1) + ———— | sin¢.

m vp*la* =1
Here, a point on the metal screen is defined by the polar coordinates (p, ¢) and
n,, n, are the radial and azimuthal unit vectors, respectively. It is important to
notice that the current density is independent of the parameter ka, indicating that
it is equal to the magnetostatic current for which V - I = 0. On the other hand,
the charge density is proportional to ka and therefore cannot be derived from elec-
trostatic considerations. At the edge of the aperture (0 = ) the component of
the current normal to the edge vanishes whereas the tangential component of the
current and the charge density become infinitely large.

The fields determined above are only valid in the vicinity of the aperture,
i.e. within a distance R < a. To derive expressions for the fields at larger dis-
tance one can calculate the spatial spectrum of the fields in the aperture plane and
then use the angular spectrum representation to propagate the fields [28]. However,
as shown in Problem 3.5 this approach does not correctly reproduce the far-fields

cos ¢,
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because the near-field is only correct up to order ka whereas the far-field requires
orders up to (ka)>. Bouwkamp calculates the fields in the aperture up to order
(ka)’ [29]. These fields are sufficiently accurate to be used in an angular spectrum
representation valid from near-field to far-field.

Bethe and Bouwkamp show that the far-field of a small aperture is equivalent
to the far-field of a radiating magnetic dipole located in the aperture and with axis
along the negative y-direction, i.e. opposite to the magnetic field vector of the in-
cident plane wave. The magnetic dipole moment m turns out to be

m = —gaSHO. (6.21)
It scales with the third power of @ indicating that the aperture behaves like a three-
dimensional polarizable object.

Plane wave at arbitrary incidence

Bouwkamp derives the fields for a small disk irradiated by a plane wave with ar-
bitrary incidence [29]. Using Babinet’s principle it is straightforward to translate
the solution to the case of an aperture. It turns out that the far-field is no longer
equivalent to the radiation of a magnetic dipole alone. Instead, the electric field
also induces an electric dipole oriented perpendicular to the plane of the aperture
and antiparallel to the driving field component. Thus, the far-field of a small aper-
ture irradiated by an arbitrary plane wave is given by the radiation of an electric
dipole and a magnetic dipole with the following moments [24]

4 8
p=—ze0q [Bo-nin.,  m=—ajn. x (B xn)l, (6.22)
with n, being the unit vector normal to the plane of the aperture pointing in the
direction of propagation.

Bethe—Bouwkamp theory applied to aperture probes

Figure 6.16 compares the near-fields behind the aperture probe and the ideal aper-
ture. The fields look very similar at first glance but there are significant differences.
The field of the ideal aperture is singular at the edges in the plane of polarization
and zero along the y-axis outside the aperture. This is not the case for an aperture
probe with a metal coating of finite conductivity. The Bouwkamp approximation
further shows higher confinement of the fields and much higher field gradients,
which would lead if they were real, for instance, to larger forces being exerted on
particles next to the aperture. Notice that the infinitely conducting and infinitely
thin screen used in the Bethe—Bouwkamp theory is a strong idealization. At optical
frequencies, the best metals have skin depths of 6-10 nm, which will enlarge the
effective aperture size and smooth out the singular fields at the edges. Furthermore,
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Figure 6.16 Comparison between Bouwkamp’s solution (left) and the fields in
front of an aperture probe with aluminum coating (A = 488 nm) calculated by the
multiple multipole (MMP) method (right). Contours of constant |E|? (factor of 2
between adjacent lines). The incident polarization is along the x-axis.

any realistic metal screen will have a thickness of at least A /4. The exciting field
of the aperture is therefore given by the waveguide mode in the hole and not by a
plane wave.

An ideal aperture radiates as a coherent superposition of a magnetic and an
electric dipole [24]. In the case of an ideal aperture illuminated by a plane wave
at normal incidence the electric dipole is not excited. However, the fields in the
aperture of a realistic probe are determined by the exciting waveguide mode. A
metal coating with finite conductivity always gives rise to an exciting electric field
with a net forward component in the plane of the aperture. One therefore might
think that a vertical dipole moment must be introduced. However, since such a
combination of dipoles leads to an asymmetric far-field, it is not a suitable ap-
proximation. Also, the magnetic dipole alone gives no satisfactory correspondence
with the radiation of the aperture probe. Obermiiller and Karrai propose an elec-
tric and a magnetic dipole which both lie in the plane of the aperture and which
are perpendicular to each other [30]. This configuration fulfills the symmetry re-
quirements for the far-field radiation and is in good agreement with experimental
measurements.

6.3.3 Near-field distribution of aperture probes

Figure 6.17 shows the fields in the aperture region of an aperture probe in vacuum
and above a dielectric substrate. The coating is tapered towards the aperture and
the final thickness is 70 nm. The aperture diameter is chosen to be 50 nm. In the
plane of polarization (y = 0) a field enhancement at the edges of the coating is ob-
served, which is due to the large field components perpendicular to the boundaries
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Figure 6.17 Contours of constant [E|? on three perpendicular planes near the fore-
most end of an aperture probe (factor of 2 between successive lines). The arrows
indicate the time averaged Poynting vector. The incident polarization is in the
plane y = 0. The transmission through the probe is increased when a dielectric
substrate (¢ = 2.25) is brought close (right figure).

and the high curvature of the geometry (lightning-rod effect). In the plane perpen-
dicular to the plane of polarization (x =0) the electric field is always parallel to the
boundaries leading to continuous contour lines.

Part of the field penetrates the edges of the aperture into the metal thereby in-
creasing the effective width of the aperture. When a dielectric substrate is brought
towards the aperture the power transmission through the probe increases. This can
be seen in Fig. 6.17 by comparing the contour lines in the probe. Part of the emitted
field is scattered around the probe and couples to external surface modes propagat-
ing backwards along the coating surface.

External surface modes can also be excited in the forward direction by the field
transmitted from the core through the coating. In analogy to cylindrical waveguides
they have almost no attenuation [21]. Most of the energy associated with these
modes therefore propagates towards the aperture plane. If the coating chosen is too
thin it may happen that the light from the surface of the coating is stronger than
the light emitted by the aperture. In this case the field is strongly enhanced at the
outer edges of the coating leading to the field pattern shown in Fig. 6.18(right). To
avoid such an unfavorable situation a sufficiently thick coating has to be chosen. A
tapered coating could be a reasonable way to reduce the coating thickness near the
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Figure 6.18 Contours of constant |E|? (factor of 3'/2 between successive lines)
in the aperture planes of three aperture probes with different coating thicknesses.
Left: Infinite coating. Middle: Finite coating, the field is dominated by the flux
emitted by the aperture. Right: Finite coating, the field is dominated by the flux
from the outside coating surface.

aperture. It has to be emphasized that surface modes cannot be excited by illumi-
nation from outside since they possess propagation constants that are larger than
the propagation constant of free propagating light similar to surface plasmons (see
Chapter 12).

The Bethe—Bouwkamp theory has been used by various authors to approximate
the near-field of aperture probes. Single-molecule experiments have shown a good
qualitative agreement [31] and are the perfect tool to analyze the field distribution
of a given aperture (see Chapter 9).

6.3.4 Enhancement of transmission and directionality

Ebbesen and coworkers have demonstrated that the transmission through a metal
screen with subwavelength-sized holes can be drastically increased if a periodic
arrangement of holes is used [32]. The effect originates from the constructive in-
terference of scattered fields at the irradiated surface of the metal screen and thus
depends strongly on the excitation wavelength. The periodic arrangement of holes
increases the energy density on the surface of the metal screen through the creation
of standing surface waves. However, the enhanced transmission relies on an illu-
mination area that is much larger than that of a diffraction-limited spot.

The enhanced transmission in a periodically perforated metal screen was first
ascribed to the creation and interference of surface plasmons until it was pointed
out that the same effect persists in an ideal metal that does not support any surface
modes. The debate was relieved by realizing that a periodically perforated ideal
metal acts as an effective medium supporting surface modes that “mimic” surface
plasmons encountered on noble metal surfaces [33]. Thus, even though an ideal
metal cannot support any “bound” surface modes, it is the periodic arrangement of
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holes that helps the ideal metal to act as a noble metal. Within the effective medium
framework, Pendry and coworkers derived the following dispersion relation for a
perforated metal screen [33]

6da’ o2
ky () = % \/ A (6.23)

T4d4 wgl —?

Here, k| represents the propagation constant along the surface of the perforated
metal screen, c is the vacuum speed of light, a is the hole diameter, and d is the
hole spacing. The plasma frequency wy of the effective medium is defined as

Tc

wp = (6.24)
a. /e

with ¢ and p being the material constants of the material filling the holes. Equa-
tion (6.23) is similar to the familiar dispersion relation of surface plasmons sup-
ported by a Drude metal (see Chapter 12). However, while for a Drude metal the
plasmon resonance (k; — ©0) occurs at a lower frequency than the plasma fre-
quency, the plasmon resonance for the perforated metal screen is identical with the
plasma frequency wy,. The interesting outcome is that it is possible to simulate real
surface plasmons by a perforated metal screen and that the dispersion relation can
be tailored by the hole size and the hole periodicity. Notice that the periodicity of
the holes implies a periodicity of 27 /d in the dispersion relation similar to the the-
ory of photonic crystals or the electronic theory of semiconductors. This property
is not reflected in Eq. (6.23) and it implies that it is impossible to reach the surface
plasmon resonance kj — oo.

In similar experiments, Lezec and coworkers have used a single aperture with
a concentric microfabricated grating to delocalize the radiation in the near-zone
of the aperture [34]. This delocalization leads to either an increased transmis-
sion or improved directionality of the emitted radiation. To better understand this
effect, we note that the theory of Bethe and Bouwkamp predicts that the light
emerging from a small irradiated aperture propagates in all directions. The smaller
the aperture the stronger the divergence of radiation will be. A significant por-
tion of the electromagnetic energy does not propagate and stays “attached” to the
back-surface of the aperture. This energy never reaches a distant observer (see
Fig. 6.19(a)). With the help of a concentric grating, Lezec and coworkers convert
the non-propagating near-field into propagating fields that can be seen by a dis-
tant observer (see Fig. 6.19(b)). Because the grating at the exit plane artificially
increases the radiating area it also destroys the light confinement in the near-field,
which is not suitable for applications in near-field optical microscopy. However,
light throughput can be strongly increased by placing the grating on the front-side
of the aperture.
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Figure 6.19 Improving the directionality of light emission by a grating fabricated
on the exit side of a small aperture. (a) Without the grating radiation diffracts
into all directions. (b) The grating delocalizes the near-field and converts it into
directional radiation.

6.4 Fabrication of aperture probes

In order to create aperture probes [35] in the laboratory, a transparent tapered struc-
ture that forms the basis of the optical probe has to be coated with a reflective coat-
ing such as a metal. Among all metals, aluminum has the smallest skin depth in
the visible spectrum. Figure 6.20 shows the transmission and reflection of various
metal thin films as a function of the film thickness. It is easy to see from these
plots that aluminum (Al) shows the best performance. Coating of dielectric tips
with aluminum can be done e.g. by thermal evaporation, electron-beam (e-beam)
assisted evaporation or by sputtering. Thermal and e-beam evaporation have the
advantage of being directed processes. Certain areas of a sample can be excluded
from being coated by exploiting shadowing effects. Sputtering, on the other hand,
is an isotropic process. All surfaces even of complex bodies will be coated at the
same time. The formation of apertures at the apex of fiber tips can be accomplished
by exploiting the shadowing effect supported by thermal and e-beam evaporation.
In this process, the tips are positioned and oriented such that the stream of metal
vapor hits the tip at an angle slightly from behind. At the same time the tips are
being related. The deposition rate of metal at the tip apex is much smaller than on
the sides, which leads to the self-aligned formation of an aperture at the apex as
illustrated in Fig. 6.21.

Evaporation and sputtering suffer from the tendency of aluminum to form rather
large grains. These grains have a typical size of about 100 nm and can be ob-
served when imaging coated tip structures using a focused ion beam apparatus.
Figure 6.22(a) shows an optical probe coated with aluminum. The enhanced vis-
ibility of grains in the focused ion beam microscope is caused by ion-channeling
effects in grain boundaries (see e.g. [37]).
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Figure 6.20 Transmission and reflection of thin films as a function of the film
thickness for various metals. Measurements were performed at a wavelength of
550 £ 5 nm for Ag, Au, Cu, Ga, In, Mn, Pd, Al, Co, Cr, Fe, Pt, Ti, and Sb and
at a wavelength of 503 £ 5 nm for Ni, Pb, Sn and using white light for Bi and
Te. The films were thermally evaporated at a pressure of 1x 10~ Torr at a rate
of 2100 nm/min and then tempered at a few hundred degrees Celsius in vacuum.
From [36].

The grain formation in aluminum films is unfavorable for two reasons: (i) leak-
age of light at grain boundaries and related imperfections can occur, which inter-
feres with the weak wanted emission at the apex; (ii) the optical apertures are rather
ill-defined since the aperture size is usually smaller than the average grain size.
Grains also prevent the actual optical aperture from approaching close to the sam-
ple because of protruding pasticles. This can strongly degrade the resolution that
can be achieved with a given aperture probe even if the aperture seems to be very
small on inspection with the SEM. The latter effect is illustrated in Fig. 6.22(b)
and (c). E-beam evaporation often produces smoother aluminum coatings com-
pared with thermal evaporation.

The small amount of light that is emitted by a near-field aperture is a
limiting factor in experiments. Therefore one is tempted to just increase the



6.4 Fabrication of aperture probes 199

Figure 6.21 Self-aligned formation of an aperture by thermal evaporation. The
evaporation takes place at an angle slightly from behind while the tip is being
rotated. Adapted from [17].

(@) (b) ()

Figure 6.22 Grains and apertures in aluminum-coated optical probes. (a) Image
of an aluminum-coated optical probe recorded in a focused ion beam apparatus.
The enhanced visibility of grains is caused by ion-channeling effects in grain
boundaries (see e.g. [37]). The aperture is well defined because the apex was cut
off by the focused ion beam. Image courtesy of N. F. van Hulst (b), (¢) Scanning
electron microscope image of a pristine aperture with large grains. From [17].
Scale bars are 300 nm.

input power at the fiber far end. However, aperture probes can be destroyed by
too strong illumination. This happens because of the pronounced energy dissipa-
tion in the metal coating which, as a consequence, is strongly heated. Tempera-
ture measurements along a taper of aluminum-coated fiber probes have been per-
formed (see e.g. [38]), and showed that the strongest heating occurs far away
from the tip in the upper part of the taper. Here temperatures of several hun-
dred degrees Celsius can be reached for input powers up to 10 mW. For larger
input powers the aluminum coating usually breaks down leading to a strong
increase of light emission from the structure. Breakdown usually happens ei-
ther by straightforward melting of the aluminum layer or by fracture and subse-
quent rolling up of the metal sheets due to internal stress. This is illustrated by
Fig. 6.23, which shows a tip that was exposed to high-energy light pulses [20].
Using additional adhesion layers or multilayer coatings was shown to improve the
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Figure 6.23 Destruction of an aperture probe by excessive input of light. From [20].

destruction threshold by up to a factor of 2 [20]. It should be pointed out, however,
that the far-field transmission of an aperture probe does not take into account the
enhanced near-field close to the aperture. With this in mind, a low far-field trans-
mission might still provide enough energy density at the aperture to perform cer-
tain tasks, such as polymerization of a photo resist, or excitation of single emitters.

6.4.1 Aperture formation by focused ion beam milling

The availability of high-resolution focused ion beams opens new possibilities for
micromachining with nanometer-scale resolution [39]. Current focused ion beam
(FIB) instruments operate with liquid metal sources. To ensure a constant supply of
ions for the beam, a tungsten coil with a tip [39] is wetted with gallium or indium
which is then field ionized and accelerated. Using conventional electromagnetic
lenses as in SEM, such an ion beam can be focused down to a diameter of ~10 nm.
At an ion flux of ~11 pA at 30 kV, aluminum can be locally removed. The ablated
material can be chemically analyzed using mass spectrometry [39]. At much lower
ion flux (1 pA), or with an antiliary electron beam, the micromachined structure
can be inspected with nearly negligible material ablation.

The standard procedure of probe processing by FIB is to cut conventional
aluminum-coated probes by slicing them perpendicular to the optical axis [40]. De-
pending on where the cut is performed, either an existing aperture can be smoothed
and improved by removing protruding grains or a closed tip can be opened to any
desired aperture radius. An example of the result of such micromachining is shown
in Fig. 6.22(a). FIB-treated probes show superior performance since no grains pre-
vent the probe from coming very close to the sample. This is a prerequisite to
exploiting the full confinement of the optical near-field. Also the field enhance-
ment in the optical near-field that strongly decays with increasing gapwidth can be
exploited to a much larger extent using smooth probes. Using single molecules
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as local field probes, it was found that the optical near-field distribution could
be recorded reproducibly and that it very much resembles the fields of a Bethe—
Bouwkamp aperture [40]. For conventional non-smoothed apertures such patterns
were observed very rarely, maybe only once, e.g. in 1993 by Betzig and Chichester
[41] and could not be reproduced before the advent of FIB treated optical probes.
One challenge that is encountered when using FIB milled apertures is the adjust-
ment of the aperture plane parallel to the sample surface. Typically, the lateral size
of the probe is up to 1 um and, to ensure high resolution, its aperture has to be
placed as close as 5—10 nm from the sample surface.

It can be expected that the use of FIB techniques in near-field optics will be fur-
ther extended as the next generation of FIB machines becomes available to a larger
number of researchers. Micromachining of prototype structures at the apex of tips
that are more complex than simple apertures can lead to improved probe structures
with very high field confinement and strong enhancement (see Section 6.5).

6.4.2 Electrochemical opening and closing of apertures

FIB is a fascinating and simple possibility to micromachine structures at length
scales suitable for near-field optics. However, it is a rather expensive and inherently
slow technique. Significantly less expensive procedures have been put forward for
the reliable fabrication of aperture probes. Here, we discuss two alternative elec-
trochemical processes.

Electrochemistry is usually performed in liquid environments and this poses
a problem in its application to micromachining. In the presence of a liquid, in
general large areas are wetted and nanometer-scale material processing cannot be
achieved. However, there exist solid electrolytes that show significant transport
of metal ions in the solid phase. Such electrolytes have been used to perform
controlled all solid-state electrolysis (CASSE). A prominent electrolyte is amor-
phous silver metaphosphateiodide (AgPO3:Agl), chosen from a variety of known
solid electrolytes [42] for its high ionic conductivity, optical transparency, and ease
of fabrication [43]. The aperture formation is induced by bringing a fully silver-
covered tapered transparent tip towards the solid electrolyte and transferring silver
ions from the tip to the solid electrolyte. A voltage (~100 mV) is applied between
the tip and a thin silver electrode beneath the electrolyte. The tip usually has to be
brought closer than the point of shear-force contact in order to achieve a current
flow. Once a current is established it is kept constant via a feedback loop while the
shear-force feedback is switched off. An additional feedback loop is used to termi-
nate the process as soon as the light emission from the probe reaches a predefined
value. Figure 6.24 shows the result of such an experiment.
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Figure 6.24 Aperture at the apex of an optical probe created using the CASSE
technique [43]. Note the small diameter of the aperture (dark region in the center)
and the smooth endface. Image courtesy of J. Toquant and D. W. Pohl.

Another electrochemical method that is actually a light-induced corrosion pro-
cess was introduced in Ref. [44]. In this approach, an aperture is produced in the
metal layer at the probe apex by a simple, one-step, low-power, laser-thermal ox-
idation process in water. The apex of a tip is locally heated due to the absorption
of light from an evanescent field created by total internal reflection at a glass/water
interface. Due to the heating, the passivation layer that normally covers aluminum
is dissolved in an aqueous environment. The loading force acting on the probe has
to be set high enough to ensure contact between the tip and the glass substrate dur-
ing the complete corrosion process. Figure 6.25 shows a typical result obtained for
a laser intensity of 2.5 mW/um? at the interface and an incidence angle of ~62°.
The aperture is formed within the first 5 s of tip exposure to the evanescent field.

6.4.3 Aperture punching

Aperture punching, or in other words, the opening of a small aperture at the apex of
a completely metal-coated dielectric tip by plastic deformation of the metal near the
apex, was the method that was used by the pioneers of near-field optics to produce
apertures of small size and high flatness [45]. This method was later adapted by
other groups [13, 46], because it has distinct advantages: (i) The aperture is created
in situ, i.e. an initially opaque tip is mounted to the microscope and is opened up
by inducing a slight contact to the sample. If the sample surface is flat, then the rim
of the aperture will be flat as well and, equally important, completely parallel to
the sample. The minimum gapwidth that can be achieved by advancing the tip to
the sample is therefore very small allowing for high-resolution optical imaging. (ii)
Similar to the CASSE method, the aperture size can be controlled by monitoring
the far-field intensity recorded from the apex region during pressing. Figure 6.26
shows the results of punching an etched optical fiber sputtered with 200 nm of gold.
A circular aperture with a flat rim can be observed.
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Figure 6.25 Aperture formation by laser-thermal oxidation. SEM image of an alu-
minum coated AFM cantilever whose tip apex was exposed for 10 s to a 488 nm
laser beam at 2.5 mW/um?2. The silicon nitride tip can be seen protruding from
the otherwise flat end-face of the tip. Adapted from [44].

Figure 6.26 Scanning electron micrographs of (a) a side view and (b) an overhead
view of an aperture with a diameter of 100 nm produced by aperture punching.
Adapted from [46].

6.4.4 Microfabricated probes

Because the production of individual probes is tedious and not always easily repro-
ducible in different labs, it would be much more desirable to fabricate standardized
probes in large batches, e.g. using established silicon micromachining techniques.
This would yield large numbers of probes with equal properties, like aperture size
and shape and thus also transmission. There have been several ideas and attempts
to produce such probes based on standard AFM cantilever technology. A clear
problem in such a concept is the delivery of light to the actual optical probe. It
seems a good idea to integrate a waveguide into the cantilever [47]. This, how-
ever, complicates the overall design of such a lever and adds additional problems.
As a consequence, most developments deal with the microfabrication of aperture
tips only. Such tips can then be bonded to fibers or they can be integrated into a
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Figure 6.27 Microfabricated probes based on optical fibers. (a) Microfabricated
photoplastic probe attached to the end of a single mode fiber. From [48]. (b) Hy-
brid optical fiber probe. From [49]. (c) Another example adapted from [50].

cantilever. Figure 6.27 summarizes some work that is aimed at the fabrication of
hybrid probes. They combine the advantages of fibers in delivering light from a
remote location with the reproducibility of microfabrication.

In a study of a prototype probe, Krogmeier and Dunn have modified commer-
cial cantilevers by FIB micromachining [51]. They have attached a high-refractive-
index glass sphere to a standard AFM cantilever (see Fig. 6.28, left panel). This
glass sphere was then shaped into a pyramidal tip with controllable opening angle
by focused ion beam milling (see Fig. 6.28, right panel).

After coating the whole structure with aluminum, an aperture with controlled
size was opened also by FIB milling. This type of work is a good example for the
strength of FIB milling to produce unique prototype structures in nano-optics.
The use of a high-refractive-index material and a large opening angle pushes the
mode cut-off towards the probe and thus increases the transmission of light through
the probe (cf. Section 6.3.1).

Batch fabrication of cantilever-based optical probes was realized by Eckert et al.
[52]. They succeeded in fabricating quartz tips on silicon cantilevers that were
coated with aluminum. The use of high-index quartz material in the tip increases
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Figure 6.28 AFM cantilever modified by focused ion beam milling. For details
see text. From [51].

Figure 6.29 SEM image of a silicon cantilever with integrated aluminum-coated
quartz tip. The inset shows a TEM image of the tip. The tip is completely covered
with 60 nm of aluminum, yet is still transmissive for light. From [52].

the transmission compared to a previous hollow pyramid design [53]. Interestingly
the probes were transmissive even though the aluminum layer covered the tip com-
pletely. Figure 6.29 shows an SEM image of the whole structure. The inset is a
TEM close-up of the completely covered probe tip apex. Despite the total coverage,
Eckert et al. were able to observe light emission from this tip. An optical resolution
of ~30 nm was demonstrated by using single molecules as probes. The recorded
patterns hint at a field enhancement effect.

The cantilevered probes discussed so far can be classified as “passive” probes
because they influence the propagation of light but not its generation. An “active”
probe is one that directly converts near-field optical intensity into an electrical sig-
nal or is itself a subwavelength source of light driven by an electric current. In
the following we discuss two exemplary approaches that were used to realize ac-
tive detection probes. To combine the high lateral resolution of AFM with near-
field optical measurements, the use of microfabricated piezoresistive cantilevers
as miniaturized photosensitive elements was proposed. The silicon-based sensors
consist of a p-doped piezoresistive path, which also includes the tip. The resistance
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Figure 6.30 Top and side view of an n-doped silicon cantilever with tip. Two
successive metal evaporation processes create a Schottky diode at the tip apex.
From [55].

of the piezoresistive path can be changed either by pressure on the lever or by
light. For combined optical and topographical measurements, an evanescent field
above a suitable sample should be created by TIR. Because the AFM tip is the
only part of the cantilever that is exposed to the evanescent field, the tip can be
used as a near-field optical probe. In Ref. [54] it was shown that it is possible to
extract the exponential decay of the evanescent field from combined force/optical
measurements. To decouple optical and topographical information, the intensity
of the evanescent field is modulated and the optical signal is measured by lock-in
techniques.

Another approach relies on the fact that silicon microstru