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Introduction

Physics would be dull and life most unfulfilling if all physical phenomena
around us were linear, Fortunately, we are living in a nonlinear world. While
linearization beautifies physics, nonlinearity provides excitement in physics.
This book is devoted 1o the study of nonlinear electromagnetic phenomena in
the optical region which normally occur with high-intensity laser beams.
Nonlinear effects in electricity and magnetism have been known since Maxwell's
time. Saturation of magnetization in a ferromagnet, electrical gas discharge,
rectification of radio waves, and electrical characteristics of p—n junctions are
just a few of the familiar examples. In the optical region, however, nonlinear
optics became a subject of great common interest only after the laser was
invented. It has since contributed a great deal to the rejuvenation of the old
science of optics.

11 HISTORICAL BACKGROUND

The second harmonic generation experiment of Franken et al.! marked the
birth of the field of nonlinear optics. They propagated a ruby laser beam at
6942 A through a quartz, crystal and observed uliravielet radiation from the
crystal at 3471 A. Franken's idea was simple. Harmonic generation of electro-
magnetic waves at low frequencies had been known for a long time. Harmonic
generation of optical waves follows the same principle and should also be
observable. Yet an ordinary light source is much too weak for such an .
experiment. It generally takes a field of about 1 kV /e to induce a nonlinear
response in a medium. This corresponds to a beam intensity of about 2.5
kW,/cm’. A laser beam is therefore meeded in the observation of optical
harmonic generation.

Second harmonic generation is the first nonlinear optical eflect ever ob-
served in which a coherent input generates a coherent output. But nontinear
optics covers a much broader scope. It deals in general with nonlinear
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interaction of light with matter and includes such problems as light-induced
changes of the optical properties of a medium. Second harmonic generation is
then not the first nonlinear optical effest ever observed. Opiical pumping is
certainly a nonlinear optical phenomenon well known before the advent of
lasers. The resonant excitation of optical pumping induces a redistribution of
populations and changes the properties of the medium. Because of resonant
enhancement, even a weak light is sufficient to perturb the material system
strongly to make the effect easily detectable. Low-power CW atomic lamps
were used in the earlier optical pumping experiments on atomic systems.
Optical pumping is also one of the effective schemes for creating an inverted
population in a Jaser system,

In general, however, observation of nonlinear optical effects requires the
application of Jasers, Numerous nonlinear optical phenomena have been
discovered since 1961. They have not only greatly enhanced cur knowledge
about interaction of light with matter, but alse created a revolutionary change
in optics technology. Each nonlinear optical process may consist of two parts.
The intense light first induces a nonlinear response in a medium, and then the
medium in reacting modifies the optical fields in a nonkinear way. The former
is governed by the constitutive equations, and the latter by the Maxwell’s
equations.

At this point, one may raise a question: Are alt media basically nonlinear?
The answer is yes. Even in the case of a vacuum, photons can interact through
vacuum polarization. The nonlinearity is, however, so small that with currently
available light sources, photon-photon scattering and other nonlinear effects in
vacuum are still difficult 1o observe.? So, in a practical sense, a vacuum can be
regarded as linear. In the presence of a medium, the nonlinearity is greatly
enhanced through interaction of light with matter. Photons can now interact
much more effectively through polarization of the medium.

1.2 MAXWELL'S EQUATIONS IN NONLINEAR MEDIA

All electromagnetic phenomena are governed by the Maxwell’s equations for
the electric and magnetic fields E(r, t) and B{r, ¢):

1JB
vxXE= T A’
1dE  4nm
VXB=TH (11)
v - E=4np,
v-B=10

where [K(r, ¢) and p{r, 1) are the current and charge densities, respectively. They
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are related by the charge conservation law

dp _
Vo= (1.2)

We can often expand J and p into series of oultipoles:*

JaP d
J7J°+W+cva+E(v-Q)+---, 13
p=p -9 P-v(vV Qi+ .

Here, P, M, Q,..., are respectively the electric polarization, the magnetization,
the electric quadrupole polarization, and so on. However, as pointed out by
Landau and Lifshitz,* it is not really meaningful in the optical region to
express J and p in terms of multipoles because the usual definitions of
multipoles are unphysical. In many cases, for example in metals and semicon-
ductors, it is more convenient to use J and p directly as the source terms in the
Maxwell's equations, or to use a generalized electric polarization P defined by

aP

J= Jdc + ? (1.4)
where J;, is the dc current density. In other cases, the magnetic dipole and
higher-order multipoles can be neglected. Then, the generalized P reduces to
the electric-dipole polarization P. The difference between P and Pisthat P isa
nonlocal function of the field and P is local. In this book, we assume electric
dipole approximation, P = P, unkess specified. s

With (1.2) and (1.4), the Maxwell’s equations appear in the form

1 JB
v XE= _;T’
14d 4
v XB=;§;(E+4W|’}+TJﬂu (1.5)

v (E+ 4aP) =0,
v-B=20

where P is now the only time-varying source term. In general, P is a function
of E that describes fully the response of the medium to the field, and it is often
known as the constitutive equation. If we could just write the constitutive
equation and find the solution for the resulting set of Maxwell's equations with
appropriate boundary conditions, then all optical phenomena would be pre-
dictable and easily understood. Unfortunately, this seldom is possible, Physi-
cally reasonable approximations must be resorted to in order to make the
mathematical solution of the equations feasible. This is where physics comes
into play.




4 Introduction
The polarization P is usually a complicated nonlinear functicn of E. In the
linear case, however, P takes a simple linearized form

P(r, 1) = fw xPF - — ) B, ) dr'd’ (1.6}

-
where x!) is the linear susceptibility. If E is 2 monochromatic plane wave with

E(r, t) = Efk, w) = £k, wlexp{ik -t — iwt), then Fourier transformation of
(1.6) yields the familiar relation

P(r, 1} = Pk, w)

(17
= xY(k v} Ek «)
with
o0
xWik, w) =f x B (r, exp( —ik-r + iwt)drdr. (1.8)
—on
The linear dielectric constant e(k, «) is related to x*)(k, w} by
ek, w) =1 + drx Mk, ). (1.9}

In the electric dipele approximation, ™(r, ¢} is independent of r, and hence
both x*V(k, w) and e(k, w) are independent of k.

In the nonlinear case, when E is sufficiently weak, the polarization P* as a
Function of E can be expanded into a power series of E:

P(r, ¢} =fm xP(r =t — ") E(r, ") dr’ de
—od
L]
+f P -, e~ r—r, 0~ 5 ) By, )
—
XE(r,, t, }dr, dt, dr, dr? (1.10)
+foc AU SRS B
~—m

r—ry,t— b)Y En, )
XE(ry, 1, )E(r;, 1y )dr dt, dvy dt, drydt; + -

where %" is the nth-order nonlinear susceptibility. If E can be expressed as a
group of monochromatic plane waves

E(r, £) =):_jE(k,,m), (1.11)
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then, as in the linear case, Fourier transform of (1.1¢) gives
Pk, w) = POk ) + POk, ) + PPk @)+ - (1.12}
with
plll(k, ‘_,,) = X(l)(k, w] 'E.(k, w),
Pm(kv "") = Xm(k =k + kj9 w=w;t mj): E(k:v @ )E(k;! “’;),

1.13
POk, w)=xP(k =k +k +knw=0w+w+) (113)
Bk, 0, )E(k;, 0 )E(k;, o),
and
Mk =k +k + - Fk o= Fwyt+ - w,)
o0

- [T e — —

fimx (r-r,¢ 1 .J LT n) (1.14)

¥ g~ {Mlr=r) el —n)+ - +l‘..(1'—1'ﬁ)-t-l,‘(r*"n)ldvl-1 dt, -+ dr, dr,

Again, in the electric dipole approximation, X'™'(r, 1) is independent of r, or
%"k, w) independent of k.

The linear and nonlinear susceptibilities characterize the optical properties
of a medium. If x is known for a given medium, then at least in principle,
the nth-order nonlinear optical effects in the medium can be predicted from
the Maxwell’s equations in (1.5). Physically, x‘™ is related to the microscopic
structure of the medium and can be properly evaluated only with a full
quantum-mechanical calculation. Simple models are, however, often used to
illustrate the origin of optical nonlinearity and some characteristic features of
x!"™. We consider here the anharmonic oscillator model and the free electron
gas model,

1.3 ANHARMONIC OSCILLATOR MODEL

In this model, a medium is composed of a set of N classical anharmonic
oscillators per unit volume. The oscillator describes physically an electron
bound to a core or an infrared-active molecular vibration, Its equation of
metion in the presence of a driving force is

2
%+F%+w&x+axl=£ (1.15)
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We consider here the response of the oscillator to an applied fietd with Fourier
components at frequencies +w, and +w,:

F= % [El(e—fu,: + eiu,:) + Ey(e i + Emzr)] . (1.16)

The anharmonic term ax? in (1.15) is assumed to be small so that it can be
treated as a perturbation in the successive approximation of finding a solution:

x=xt b x® Py (117)
The induced electric polarization is simply
P = Ngx. (1.18)
The first-order solution is obtained from the linearized equation of (1.15):

W= x(”(mi) + x“)(wz) +c.c.

x(l)(w_) = __—(q/m)Ei‘ Pl (1'19)
Ll P

where c.c. is a complex conjugate. Then, the second-order solution is obtained
from (1.15) by approximating ax? by ax®'%:

X = xP(0; + @)+ xP(w, — @) + x®(20)) + xP(2e,) + xD(0) + cc

—2a{q/m)*E,E
ey £ @)= )2 : 22 :
(o~ ol —ioT) el - ¥ iw, T}
X 21 g lwt vy
[0 = (0 £ @) = i, £ 0)1]
(1.20)
—a(q/m) B} —fw

x®(2w,) = > e
(wf — o — i) (@ - 40? — 20,1}

1 1

0p— ol —io T wf-wl— inI‘)

By successive iteration, higher-order solutions can also be obtained. As seen in
the second-order solution, new frequency components of the polarization at
w; £ @y, 2wy, 2w,, and 0 have appeared through quadratic interaction of the
field with the oscillator via the anharmonic term. The oscillating pelarization
components will radiate and generate new em waves at w) + w,, 2wy, and 2w,.
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Thus, sum- and difference-frequency generation and second-harmonic genera-
tion are readily explained. The appearance of the zero-frequency pelarization
component is known as optical rectification. More generally, frequency compo-
nents at @ = nyw; + 1w, with n; and n, being integers, are expected in the
higher-order solutions. In this model, the anharmonicity ¢ determines the
strengih of the nonlinear interaction.

Treating ax? as a small perturbation in the foregoing calculation is equiva-
lent to the assumption that E is small and P can be expanded into power series
of E. We can give a rough estimate on how the nenlinear polarization shoutd
diminish with increasing order. Assuming the nonresonant case with wy = @,
and w,, we find from (1.1% and (1.20),

gakE

)
‘ F . {1.21)

Y

ma

For an electron bound to a core, if x is so large that the harmonic force mafx
and the anharmonic force max? are of the same order of magnitude, then both
will be of the same order of magnitudes as the total binding force on the
electron |gE,,|:

|gE,,| ~ mu}x ~ max®

or
ns) )
gE, | ~ — = {1.22)
Equation (1.21) then becomes
P& E
o 0x)

In fact, ene can show in general

E
E,

!

Pt
pla)

(1.24)

such that |[E/E,,| acts as an expansion parameter in the perturbation calcula-

tion. Typically, E,, ~ 3 x 10® V /cm. The E field for a 2.5-W /cm? laser beam

is only 30 V/cm with (E/E,,| ~ 10~". The nonlinear polarization is much

weaker than the linear polarization. This suggests that the observation of
nonlinear optical effects requires high-intensity laser beams.

Relation (1.24), however, is true only for optical frequencics away from

- resonance. Near resonance, the resonant denominators may drastically en-
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hance the ratio |P"*B/P™|. Consequently, the nonlinear effects can be
detected with much weaker light intensity. Optical pumping is an example.
With resonant enhancement, it may even happen that | P+ /P()| = 1, When
this is the case, the perturbation expansion is no longer valid, and the full
nonlinear expression of P as a function of E must be included in the
calculation. The problem then falls into the domain of strong interaction of
light with matter.

1.4 FREE ELECTRON GAS

A simple but realistic model to illustrate optical nonlinearity in a medium is
the free electron gas model. It properly describes the optical properties of an
electron plasma. The simplified version of the model starts with the equation of
motion for an electren

Z
Q=vi(E+1va). (1.25)
dr? m ¢
Damping is neglected here for simplicity. Clearly, the enly nonbinear term in
this equation is the Lorentz force term. Since ¢ <« ¢ in a plasma, the Lorentz
force is much weaker than the Coulomb force, and then (e/mc)y X B in (1.25)
can be treated as a perturbation in the successive approximation of the
solution. For E = &efkrrivar 4 gpfkrr=ion 4 ¢e we obtain

e} = ﬁé’ie‘kf"”"’“" + e,

e mie?
mzm]mz(ml + mz)2 (1.26)

x[ &, x(k, X &) + & x(k, % £}]

r‘:l)(tu‘ + wz) =

K+ k) r® e, +
X giatha) rO—Hoytagdt 4 o o

and so on. For a uniform plasma with an electronic charge density p, the
current density is given by

J=J0 4324 ...
2 (127}
= g— [ Dy ..
par(r +r® 4 -0}

with, for example,

B0 + wy) = P%'m(wl + ”z),
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and so on. This shows explicitly how an electron gas can respond nonlinearly
to the incoming light through the Lorentz term.

In a more rigorous treatment of an eleciron gas, we must alse take into
account the spatial variations of the electron density o and ve1001ty v. Two
equations, the equation of motion and the continuity equation,® are now
necessary 10 describe the electron plasma;

o _.yr_ e 2

3 +{v-w)y po m(E+ va]

and {1.28)
ap _
Fra (p¥) =10

where p is the pressure and m is the electron mass. The pressure gradient term
in the equation of motion is responsible for the dispersion of plasma reso-
nance, but in the following calculation we assume ¥p = 0 for simplicity. Then,
coupled with (1.28), is the set of Maxwell’s equations

JB
v XE=—-——",
g LIE_dud _dmv. (1.29)
c c ¢

v E=4a(p—p?),
and
v'B=0

We assume here that there is a fixed positive charge background in the plasma
to assure charge neutrality in the absence of external perturbation. Successive
approximation can be used to find J as a function of £ from (1.28) and (1.29).
Let®
o=+ p® 4 p@ g
y=vi @y
and
f=f0+j@+ .. {1.30)
with
J = gy
and (1.31)
B = p Oy 4 gy
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We shall find the expression for j*(2w) as an example assuming E = & x
exp(ik-r — jwr). Substitution of (1.30) into (1.28) and (1.29) yields

wm
Lar(i) - ~i®= - Cf,
1)
‘?P_a!(‘"lg —iwpl = — 7 - (p®yi)
) (1.32)
v E = 470V{0),
@
Al aglw) = —i2av® = —(y0. gy - mic‘,u) X B.
The second-order current density is then given by
JE(10) = L-‘ﬁ
w
(1.33)
r4ﬂ'mm (V EE.
The last term in (1.33) has the following equalities:
€ =-_f d
i4-rrmc..=(V BE= - me? [v (v )]E
ol
ie
=~V ("E]E (1.34)
_ it | wp% . E
1-— w;/wz

wherc @, = (4mp™e/m)/? is the plasma resonance frequency. With (1.34),
= (c/rw)v X E, and the vector relation EX (v X E)+ (E- v)E =
5 V(E E), the current density in (1.33) can be written as

tp( )e

JB(26) = i v(E-E) +
ipiMa? io? (0}
ipPe le v -E
= (E-E}) + — | ———— |E. 1.35
dm¥y’ (E-E) mi’ [1 - w‘g/wl} (1.35)

Equation (1.23) shows explicitly that aside from the Lorentz term, there are
also terms related 10 the spatial variation of E. They actually arise from the
nonuniformity of the plasma. In a uniform plasma, vp'® =0 and hence
v +E = 0 from (1.34). This means that k is perpendicular to E and therefore
(E - ¥ )E also vanishes. The Lorentz term is then the only term in J®(2w).
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The induced current density J®(2w) shoutd now act as a source for second
harmonic generation in the plasma. In a uniform plasma with a single pump
beam, J®{2w)« EX B is only along the direction of beam propagation.
Since an oscillating current cannot radiate tongitudinally, no coherent second
harmonic generation along the axis of beam propagation is expected from the
bulk of a uniform plasma. In the bulk of a nonuniform plasma or at the
boundary surface of a uniform plasma, however, it is possible to find second
harmonic generation through the nonvanishing vp®.

Equation (1.35) shows that when wp'® = 0, the nonlinear response of the
medium J®(2w) is greatly enhanced if w is near the plasma resonance. From
the general principle, the nonlinear response of a medium is resonantly
enhanced when the incoming field hits the resonance of the medivm. One
should, of course, also expect a resonant enhancement in the second harmonic
generation when 2w is at resenance. This actually does come in through the
response of the second harmonic field to J¥(Zw). As 2w — w,, the current
density will excite the longitadinal field at 24 resonantly.

As shown in (1.33) or (1.35), the current density JP(2w) depends exclu-
sively on the spatial variation of E. In fact, using vector identities, the
expression of J®(2w) in (1.33) or (1.35) can be put into the form’ J@H(Zw) =
¢V X{ )—i2wv + ( ). Comparing it with (1.3), we recognize that the two
terms in J¥(2w) represent the magnetic dipole and electric quadrupole
contributions, respectively. No induced electric dipole polarization exists in a
plasma. Also, the induced electric quadrupole pelarization depends on the
gradient of the electric field, and therefore cannot show up in the bulk of a
uniform plasma.

The free electron model here is applicable to a number of real problems,
First, it can be used io describe the optical nonlinearities due to plasmas in
metals and semiconductors. Second harmonic generation from metal surfaces
is readily observable. Then, with some modification to take inte account the
net charge distribution, the nonvanishing vp, and so on, it can also be used to
describe the optical nonlinearities of a gas plasma. Various nenlinear optical
effects in gas plasmas have been observed, They will be discussed in some
detail in Chapter 28. The model has also been used to describe the ebservation
of nonlinear effect in a crystal in the X-ray region.® The electron binding
energy is much weaker than the X-ray photon energy, and therefore the
electrons in the crystal will respond to the X-ray as if they were free.
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2

Nonlinear Optical
Susceptibilities

For lower-order nonlinear optical effects, nonlinear polarizations and nonlin-
ear susceptibilities characterize the steady-state nonlinear optical response of a
medium and govern the nonlinear wave propagation in the medium. Chapter 1
showed how the nonlinear optical response can be calculated for two model
systems. Chapter 2 gives a more general discussion of nonlinear susceptibilities
starting from the microscopic theory.

2.1 DENSITY MATRIX FORMALISM

Nonlinear optical susceptibilities are characteristic properties of a medium and
depend on the detailed electronic and molecular structure of the medium.
Quantum mechanical calculation is needed to find the microscopic expressions
for nonlinear susceptibilities. Density matrix formalism is probably most
convenient for such calculation and is certainly more correct when relaxations
of excitations have to be dealt with.?

Let f be the wave function of the material system under the influence of the
electromagnetic field. Then the density matrix operator is defined as the
ensemble average over the product of the ket and bra state vectors

p=R>{H z1)
and the ensembie average of a physical quantity P is given by
Py =
(Py ={JIPI¥3 (2.2)
= Tr(pP)

In our calculation here, P corresponds to the electric polarization. From the

13
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definition of p in (2.1) and from the Schrodinger equation for J¢>, we can
readily obtain the equation for motion for p,

de 1
AL 23)

known as the Liouville equation. The Hamiltonian #is composed of three
parts,

H= Hy + Koy + Ao (2.4)

In the semiclassical approach, J is the Hamiltonian of the unperturbed
material system with eigenstates {r) and eigenenergies E, so that #n) =
E,ln), #,, is the interaction Hamiltonian describing the interaction of Light
with maiter, and Hntom 18 2 Hamiltonian describing the random perturbation
on the system by the thermal reservoir around the system, The interaction
Hamiltonian in the electric dipole approximation is given by

Hy, = er-E. (2.5)

We consider here only the electronic contribution to the susceptibilities. For
the ionic contribution, we would have to replace er - E by —ZgR;-Ewith g,
and R, being the charge and position of the ith ion, respectively. The
Hamiltonian Handom 18 Fesponsible for the relaxations of material excitations,
or in other words, the relaxation of the perturbed p back to thermal equi-
librium. We can then express 2.3y ag™*

a 1 2
o "B+ H ]+ (2

* " h ; ),ﬂm (2.6}

with
dp 1
(5 = s 1. @7

If the cigenstates |} are now used as base vectors in the calculation, and ¥} is
written as a linear combination of In}, that is, ) = E,aqn), then the
physical meaning of the marrix clements of p is clear. The diagonal matrix
element p,, = {n|plmy = EF represents the population of the systemn in state
|7}, while the off-diagonal matrix element Pon = (nlp|n’y = a_a¥. indicates
that the state of the system has a coherent admixture of |#) and |n". In the
latter case, if the relative phase of @, and a,. is random (or incoherent), then
P = 0 through the ensemble average. Thus at thermal equilibrium % is
given by the thermal population distribution, for example, the Boltzmann
distribution in the case of atoms or molecules, and pf% = 0 for 5 # 57,
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We can use a simple physical argument to find a more explicit expression
for (3p/3t) aex- The population relaxation is a result of transitions between
states induced by interaction with the thermal reservoir. Let W, be the
thermally induced transttion rate from [r} to |n"y. Then the relaxation rate of
an excess population in |n) should be

o

ap,
(52} ~Estrn = W] (28)
relax n
At thermal equilibrium we have
3
o~ LW - W] =0 (2.9)
e
Therefore, {2.8) can alse be written as

‘%[(pﬂ)mju - Pr(v?-ll = E[Pyn‘ﬂn(pn‘n' - p}lol)!‘) - pVn—»n'(-”nn - l[i(jl})]
(2.10)

The relaxation of the off-diagonal elements is more complicated.? In simpie
cases, however, we expect the phase coherence to decay exponentially 10 zero.
Then, we have, for n # »’,

apml‘ = —
(7).11“ = ~Lpbuw (2.11)

with T3 = [} = (7,3, being a characteristic relaxation time between the
states |n) and |#’}, In magnetic resonance, the population relaxation is known
as the longitudinal relaxation, and the relaxation of the off-diagonal matrix
elements is known as the transverse relaxation. In some cases, the longitudinal
relaxation of a state can be approximated by

2 .
1 (e = A e = ~ (1), (000 — 62). (1)

Then T; is called the longitudinal relaxation time, Correspondingly, 7, is called
the transverse relaxation time.

Thus, at least in principle, if Hy, Ky, and (3p/ 1), are known, the
Liouville equations in {2.6) together with (2.2} fully describe the response of
the medium to the incoming field. It is, however, not possible in general to
combine (2.6) and (2.2} inte a single equation of motion for (P> Only in
special cases can this be done. In this chapter we consider only the case of
steady-state response with {P*) expandable into power series of E. The tran-
sient respense is discussed in Chapter 21,
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To find nonlinear polarizations and nonfinear susceptibilities of various
orders, we use perturbation expansion in the calculation. Let

p=p® 4 gy 4@y L
and
(Py = (PO 4 (POY 4 ... (213)
with
(PO = Tr(pPp) (2.14)
where p'® is the density matrix operator for the system at thermal equilibrium,
and we assume no permanent polarization in the mediym 50 that (P@) =g,

Inserting the series expansion of @ inio (2.6) and collecting terms of the same
order with M, treated as a first-order pertarbation, we should obtain

Ao 1 Aptlr
g’ =E[(%,pm) +{ A p)] _;_(L) ,
relax

at ot 215)
2 3o 2.15
%},— = w10, 0%) + {2, p1)] +(S—,)mn:

and s0 on, We are interested here in the response to a field that can be
decomposed into Fourier components, E = L. &exp(ik, * v — iw,). Then, since
Hay = Loy, (w,) and #, (w,) €exp(—iw,r), the operator p™ can also be
expanded into a Fourier series

§ = Ep(a).
4

With dp'™(w,) /8¢ = —iwpt"(w}, (215} can now be solved explicitly for
#"(4,) in successive orders. The firsi- and second-order solutions are
P'U,(w-) = ._[Ym‘(“z’)] nw
e h(“’J =y, + !TM-)
o L) 6], + [l 520)]
pm;'(“’, T = — -
h(“!;‘ + g — 0, +T,,)
_ 1
Bla + @y — w,, +1T,,) (2.16)
x ): e NrrtB{ )

- pﬂr)"(“’k)[fim(“’j)] it
+ [‘;f’inl{wk )] nn"pg)n'(”j)
— o () )] oy}

We use here the notation Anw = {n|4|n"). Higher-order solutions can be

0] ()
(a0 - o
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P P P

obtained readily, although the derivation is long and tedious. Whenever
diagonal elements p{}(0) appear in the derivation, further approximation on
(80m/ 08) reiax in {2.8) is often necessary in order to find a closed-form
solution. We also note that the expression for o0 (w, + mk) in (2.16) is valid
even for n = n’ as long as w, + w, * 0 since the term (o) /1) .1, can then
be neglected in the calculatlon

22 MICROSCOPIC EXPRESSIONS FOR NONLINEAR
SUSCEFTIBILITIES

The full microscopic expressions for the nonlinear polarizations (P} and the
nonlinear susceptibilities (x'™) follow immediately from the expressions of
¢, With #,, = er+E and P = — Ner in (2.14) and (2.16), the first- and
second-order susceptibilities due to electronic contribution are readily ob-
tained. They are given here in explicit Cartesian tensor notation:

P( )(w
£(w)

xi(w) =

_ 72 (ri)ng('})gr, _ (i‘ rE )X'! i)
Frg" @t +il,, w-e +il, By

sz}r(‘*’ = + )

L)
Ej(“’L)Ek(""z)
(1) gnl) o (r )y

e3
= -N— Z [(w = W, 1L, s)(“’l — Wy, + :T,,.g)

(Dol

{© = g+ T, 0wy — wpp + 1T,,) .
(re) g (5], (5) g {217)

(w + “’ns + iFNg)(ml + g + irn'g)
(5) () (7 g

(o + w,, + irug)(wi + g+ iTy)

_ (':!')ng(rf)n'n(rk)gn‘( 1 1 )

. T + .
(0 = @ + T, ) Ly + oy +il,, @y — @, + iT,,

+ -
(@ = e +iT, ) |0y — g il wp twg, + L,

(a5}, ( 1 1 )]
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There are two terms in x{} and eight terms in x{%- The cateulation can be
extended to third order to find X}, (@ = @, + w, + w,), which will have 48
terms. The complete expression for x5}, is given in the literature® and is not
reproduced here. The resonant structure of x{%},, however, is discussed in
Chapter 14. In nonresonant cases, the damping constants in the denominators
in (2.17) can be neglected. The second-order susceptibility can then be reduced
to a form with six terms, noting that the last two terms in the expression for
x% in (2.17) become

(7)1 () a2 ) g () gl ) an(n) g

(wl - wng)(wl + "’n‘g) (“’l + urx’g)(wZ - “’r:g) '

With ¥ denoting the number of atoms or molecules per unit volume, the
expressions in (2.17) are actually more appropriate for gases or molecular
liquids or solids, and p® is given by the Boltzmann distribution. For solids
whose electronic properties are described by band structure, the eigenstates are
the Bloch states, and p},"’ corresponds to the Fermi distribution. The expression
for x{} and x%}, should then be properly modified. Since the band states form
essentially a continuum, the damping constants in the resonant denominators
can be ignored. In the electric dipole approximation with the photon wavevec-
tor dependence neglected, x4 for such solids has the form®

Xﬁi(“’ =+ owy)

e {eaqlnle, @y {e, alrle’, g¥{c’ alr v, q}
R e et peerme

(osalnle. (e alrde, a){c",qlr]v, @

[0 - e (@] - wa)]
(v glrgle, a¥{e.qlnle’, )’ qlrle, 4)

[w+ @p (@)] [ + w,(q)] (2.18)
v, alrle, D {e.ginde’, ay (e’ qlnle. )

[+ e (@i + . ()]
{o.qlnle,@¥{c.qlnle, @), qr e, q)

[e1 = eep(@][w; + @ (0]
(v‘qlrklc.q><c.qlrflctqxctqlr,lv.q)} (@

(w1 + e (@ [0 — w,,(q)] :
where q denotes the electron wavevector, v, ¢, and ¢’ are the band indices, and
f,(@) is the Fermi distribution factor for the state [v, g).

For condensed matier, there should be a local field arising from the induced
dipole-dipoie interaction. A local field correction factor L™ should then
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appear as a multiplication factor in % (™. We discuss the local field correction
in more detail in Section 2.4, For Bloch (band-state) efectrons in solids with
wavefunctions extended over many unit cells, the local field tends to get
averaged out, and L) may approach 1.

23 DIAGRAMMATIC TECHNIQUE

Perturbation calculations can be facilitated with the help of diagrams.
Feynman diagrams have been used in perturbation calculations on wavefunc-
tions. Here, since the density matrices involve products of two wavefunctions,
perturbation calculations require a kind of double-Feynman diagram. We
introduce in this section a technique devised by Yee and Gustafson.® Only the
steady-state response is considered here.

The important aspects of any diagrammatic technique are that the diagrams
provide a simple picture to the corresponding physical process as well as
allowing one to write down immediately the corresponding mathematical
expression. It is essential to find the complete set of diagrams for a perturba-
tion process of a given order. The scheme we adopt for calculating p involves
in each diagram a pair of Feynman diagrams with two lines of propagation,
one for the |} side of p and the other for the (| side. Figure 2.1 shows one of

£
ES
3
-
=
|

Fig. 2.1 A representative double-Feynman
F2d <gl diagram describing ene of the many terms

10 :
Pee inp"™w = +wt o+
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the many diagrams describing the various terms in p™{w = w; + @, + -+ +
w, ). The system starts initially from |g)({g| with a population p{J. The ket state
propagates from fg) to |n") through interaction with the radlauon field at
Wy, y,...,u,, and the bra state propagates from { g| to (| through interaction
with the ﬁeld at w;,...,w, ;. Then, the final interaction with the output field at
w puts the system in {n){x|. Through permutation of the interaction vertices
and rearrangement of the positions of the vertices on the lines of propagation,
the other diagrams for ) can also be drawn.

The microscopic expression for a given diagram can now be obtained using
the following general rules describing the various multiplication factors:

1 The system starts with 1g)p0{ gl.

2 The propagation of the ket state appears as multiplication factors on the
left, and that of the bra state on the right,
3 A vertex bringing Ja} to [b) through absorption at w, on the left (ket) side
of 1he diagram is described by the matrix element (1/:k)(b| N RIT)
16)
with #5, (w;} & e~ | denoted by /* in Fig. 2.1{. If it is emission
o

l#)
- \ 15
| la)
(1/ik)(b} #], {w)|a). Because of the adjoint nature between the bra and
ket sides, an absorption process on the ket side appears as an emission
process on the bra side, and viee versa.* Therefore, on the right (bra) side
(6l
of the diagram, the vertices for emission and absorption
(al|

(B
( are described by —(1/ih)}a|o#, (w)|b) and —(1/ik}{a]
<ﬂi

Hhy (w)1b), respestively,

4 Propagation from the jth vertex to the (f + 1)th vertex along the }/}(k]
double lines is described by the propagator IT; = L[i(T{_«; — wy +
iTy 17" The frequency «, is taken as positive if absorption of «; at the ith
vertex occurs on the left or emission of «, on the right; it is taken as
negative if absorption of «, occurs on the right or emission on the left.

5 The final state of the system is described by the product of the final ket and
bra states, for example, |#")(n| after the nth vertex in Fig, 2.1 for p{™.

6 The product of all factors describes the propagation from [g){g| to |n'}{a}
through a particular set of states in the diagram. Summation of these

] instead of absorption, the vertex should be described by

*If the field is also quantized, #,,( w;) operating on a ket state will annihilate a photon at w,, while
if operaling cn a bra state it will create a photon.
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Fig. 22 The complete set of eight diagrams for the eight terms in p™{w = w, + w).
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products over all possible sets of states yields the final result with contribu-
tions from all states,

By using these rules, the diagram in Fig. 2.1 leads to the expression

T [y {1, lm) - - (Blo#(w;}lay(alo () )ig)
L i Wy = Wy irn'n)("ilwl = Wy + irmn T
i=1 i=1

[T

(2.19)

« P gl (w3hie) -+ (I (@, )lm){n]
(w, +owyt ey —wy + il",,r)(ml oy —wy, + irbg)(wl =@y, + !T,,g)

— iy twyt e
o g At @

which is just one term in the full expression for p* (w = oy + 0, + --- + w, )

As a more concrete example, Fig. 2.2 gives the complete set of diagrams for
PP (0=, + @) that leads o x7} (v =0 + ;) in (217). The «ight
diagrams {a}-(h) correspond in successive order to the eight terms in (2.17).
Note that X% (@ = @, + w,) is derived from Tr(¢™F,)/E,(w;}E;(w;). There
are in fact only four basic diagrams, (a), (c), {¢), and (g}, in Fig. 2.2. The
others can be obtained by permutation of the w, and w, vortices.

As another example, Fig, 2.3 presents eight basic diagrams for p® (w = «,
+ @, + @,) that lead to x{¥, (w = @, + @, + ;). There should be 48 dia-
grams in the complete set corresponding to the 48 terms in x{7),. The other 40
diagrams are obtained from permutations of the three vertices (1,2, 3) in the
¢ight basic diagrams in Fig. 2.3. The full expression of x 7}, can then be written
down from the diagrams according to the rules.

What happens if identical photons appear at a number of vertices? Dia-
grams obtained from permutations of these vertices in a given diagram yield
identical terms in p{™. They should not be discarded, and should be taken inte
account by a degeneracy facior attached to the terms in p™?. For example,
N (30 = w + @ + w) has 48 diagrams, but 40 of them yield terms identical

i

to others. Thus x3(3w = w + @ + @) has only eight terms, cach having a

degeneracy factor of 6. It reduces further to four terms when the damping
constants in the denominators of the expression can be neglected.

24 LOCAL FIELD CORRECTION TO x ‘)

The expressions for x™ in the previous sections are strictly correct only for
dilute media. They can be written as x‘” = Na!™ with ¥ being the number of
atoms or molecules per unit volume and o'™ the nth-order nontinear polariza-
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hilities. Tn condensed matter, however, the induced dipole-dipole interaction
becomes important and leads to the so-called local field correction. The
susceptibilities %" are no longer simply proportional to of™. The usnal
derivation of local field correction applies to isotropic or cubic media with
well-localized bound electrons. The general theory applicable to media with
any symmetry or with more freely moving electrons is not yet available.

“The local field at a local spatial point is the sum of the applied field E and
the field due to neighboring dipoles Egp,

Ep =E+Eg. (2.20)
In the Lorentz model, By s proportional to the polarization; for isotropic or

cubic media, it is given by’

Egp = %”P. (2.21)

The polarization can be expressed in terms of either microscopic polarizabili-
ties and local fields or macroscopic susceptibilities and applied fields:

Plw) = N{a(l)[‘Ekx(w)]i} + ag}({EIoc(.ml)]j[Elnc(“’Z)lk + o

(222)
— XOE{0) + (R (o) B} + -
With (2.20) and (2.21), the first expression in (2.22) becomes
-1
Ple) = N[l - %’iml)(m)]
(223)

x {aE, (@) + af}[ Eoe (w0)] [ B 02)] s + -+ }

If the contribution of P™ to E,, with n > 1 is neglected [which is usually an
excellent approximation since [P, < [P, then the local field can be
written as

Eru(i) = [1 = 2 Ra(w)] B, (2.24)

Then, from (2.22) and (2.23), we find

(py o NaD(w)
XY = T A Ve (@)
Xﬁ}c(“’ =w t+ @) (2.25)
N} (e)

=L =@y N (] [L —(am/3) Na(wy)][1 = (4r/3) Na®(a,)]

————
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and more generally

xMNe=w +u+ - +a)

2,26
N w=w +w,+ - +w,) (2:26)

= [1 —(41r/3)Nam(m)][l —(47;'/3)Nu(l)(wl)] [1 —(417/3)Nam(m")] ’

Since the linear dielectric constant £ is related to x¥ by

_1 +{8w/3) Na'V

M= 1 4 dgy®
¢ X 1 —(4m/3) Na®?

we can write

dr o170 42
P ALY S e i}
[1 3 Ned ] 3
and (2.26) becomes®

XM= et o) =N N e =0ttt w,)
(2.27)

with

L = [Bm{”s) *2]

gci)(,.,;)+2] '__[E‘”(“;)*z] (22®)

being the local field correction factor for the nth-order nonlinear susceptibili-
ties. In media with other symmetry, the expression (2.27) is still valid, but L™
will be a complicated tensorial function of e™(w), £ (w)),..., and £ (w,).?

25 PERMUTATION SYMMETRY OF NONLINEAR
SUSCEPTIBILITIES

There is inherent symmetry in the microscopic expressions of susceptibilities,
As can be readily seen from (2.17), the lincar susceptibility x|) has the
symmetey

xPlo) = xP(-w) (2.29)
which is actually a special case of the Onsager refation. Similarly, the nonlinear

susceptibility xﬁ}c(w = @y + w,) in (217} or a similar expression for x{%} (2
= w + w) has the following permutation symmetry when the damping cen-
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stants in the frequency denominators can be neglected (i.c., the nonresonant
cases):h*

KWl = 0 +ap) = xRl = —wr ¥ 0)
= xPlwy = w —w), (2.30)
xPe=wtw)= Pl = 20— w) = dxle=—o+ 2w).

In the permutation operation, the Cartesian indices are permutated together
with the frequencies with their signs properly chosen, More generaily, one can
show that the mth-order nonlinear susceptibility also has the permutation
symmetry®

X‘;ﬂ},.,‘f_’(‘*’ ot t )= Xl = —wg -t w)
- @3)
= Xf:‘r%\---l,,_,(“’n =@ -y “’n—x)-

If the dispersion of x*" can also be neglected, then the permuiation symmetry
in (2.31) becomes independent of the frequencies. Consequently, a symmetry
relation now exists between different elements of the same '™ tensor, that is,
x4, temains unchanged when the Cartesian indices are permuted. This is
known as Kleinman’s conjecture,® with which the number of independent
elements of x '™ can be greatly reduced. For example, it reduces 27 elements of
%@ to only 10 independent elements. We should, however, note that since all
media are dispersive, Kleinman's conjecture is good approximation only when
all frequencies involved are far from resonances such that dispersion of ) is
refatively unimportant.

26 STRUCTURAL SYMMETRY OF NONLINEAR
SUSCEPTIBILITIES

As optical properties of a medium, the nonlinear susceptibility tensors should

have certain forms of symmetry that reflect the structural symmetry of the

medium. Accordingly, some tensor elements are zero and others are related to

cach other, greatly reducing the total number of independent elements. As an

illustration, we consider here the second-order nonlinear susceptibility tensor
@

Each medium has a certain point symmetry with a group of symmetry
operations {S), under which the medium is invariant, and therefore x‘
remains unchanged. In real manipulation, S is a second-rank three-dimen-
sional tensor S,. Then, invariance of x@ under a symmetry operation is




Table 2.1
Independent Nonvanishing Elements of ¥ (« = w, + w;) for

Crystals of Certain Symmetry (lasses
Symmetry Class Independent Nonvanishing, Elements
Triclinic
1 All elements are independent and nonzero
Moneclinic
2 XpI, XY, XXP, XVX, YXX, V¥V, YZZ, ¥ZX, VXZ, 2¥Z,
22y, 2xp, Zyx {two fold axis paralkl to 7)
m XXX, XYY, XIE, XZX, XXE, YPZ, YZV, ¥XV, YPX, IXX,
zyy, zzz, 2zx, rxz {(mirror plane perpendicular to ¥)
Orthorhombic
22 XYZ, XIY, YIX, YXI, IX}, VX
mml XIX, XXZ, YYZ, YZV, ZXX, ZV¥, EIL
Tetragona!
4 Xyr = —yxz,XIy = —YIX, XZX = YIy, XKZI = y¥Z,
IXX = 2y, 122, ZXY = —IyX
4 XYL = PXZ,XI) ™ YIX,XZX ™= —YIy,XXI = — VI,
ZXX = = IV, ZXY = VX
422 XVZ = —yXI,XIy = —YIX,IXY = —IyX
4mm XZX = yZV, XXZ = YYI, ZXX = I¥y, ZZI
TZm XYZ = yXT,XZ¥ = VIX,IXY = Z¥X
Cubic
432 X¥Z = —XIY = YIX = —PXI = IXy = —IpX
L Xyz = Xxzp = pIx
23 = yXZ = IXy = IyX
Trigonal
k] XXX = — XYY = —PyI = =YXV, X¥I = —¥XI, XIy = —VIX,
XZX = YIVY,XXZI = YV, J¥Y = —YXX = —Axy = —X¥X,
IXX = Iy, Z2Z,ZXY = —IyX
32 XXX = Xy = —PYX = —YXp, XYI = —yXz, XIy = —yIx,
ZXp = —zpx
3m XZX = VIV, XXI = YYZ, ZXX = Z¥Y, ZZ2, }¥Y = —¥XX =
—xxy = — xyx (mirror plane perpendicular to k)
Hexagonal .
6 XYZ = —yXZ,XI} = —YIX,XIX = VXY, XXZ = Yz,
IXX = Yy, ZZZ IXY = —IyX
6 XXX = XY CPXP T OCPYX, YV W CYAXE —xpx =
XXy
622 XYz = —yXZ,XIy = —PXi,IXy = —I¥X
Gmim XEX = yIy,XXI = yyI,IXX = Iyy,ifZ
dm2 . YYF = —yXX = —XXy = —APX

27
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explicitly described by

(187 x®: (8-S - k) = xfL. (z32)

For a medium with a symmetry group that consisis of » symmetry operations,
n such equations should exist. They yield many relations between various
elements of x %, although often only a few are independent. These relations
can then be used to reduce the 27 elements of X to a small number of
independent ones.

An immediate consequence of (2.32) is that x'® = 0 in the electric dipole
approximation for a medium with inversion symmetry: with S being the
inversion operation, S + & = —&, (2.32) yields x%, = — x%, = 0. This explains
why %@ for a free electron gas does pot have an electric dipole contribution as
shown in Chapter 1. Among crystals without inversion symetry, those with
the zincblende structure such as the ITI-V semiconductors have the simplest
form of x®. They belong to the class of T,(43m) cubic point symmetry.

Table 2.2
Independent Nonvanizhing El ts of X PN w = @y + @y + wy) for
Crystals of Certain Symmetry

Symmetry Class Independent Noovanishing Elements
Triclinic All 81 ¢lements are independent and nonzero
Tetragonal XXXX = Yy¥y, 22,

422, dmm, FPIZ = ZZyY, ZEXX = XAZZ, KXYV T PYXX,YI¥E = IV,

4/mmm, 42m ZXZIX = XZXZ, XFXY = PXYX, YEZY = Iyyr, ZXXZI = XIIX,

XYYX = yAXy

Cubic XXXX = WYY = 2ZZZ,YYIZ = ZIXX = XX)),

23, m3 2ZyY = YPXX = XXIZ,ZYIY = XZXI = VXVX,

YIPZ = IXIX = XYXY, ZYYI = XIZX = yXXV,
VIV = ZXXZ = XJ¥X
432, 8m, mim XXXX = YYYy = ZZZZ
PyEz = 2Zyy = ZIXX = XXIZ = XX}y = JYXX
yIyz = Iyzy = IXIX = XIXZ = VXX = XyXY
yIZy = I¥yZ = IXXI = XZIX = XJYX = pXiy

Hexagonal 2222, XXXX = Yyy¥ = XXy¥ + X¥x + xpxy
622, 6mm, AXYY = YYRA, XFYX = YXXF, XYXy = FX¥X,
6/mmm, 6m2 YYIZ = XX2Z, ZZYY = ZZXX, ZYYI = EXXZ,

YZIy = XZIX, YZVE = XIXT, ZYZY = IKZX

Isotropic XXXX = YYY¥ = 322,

yyzz = zzyy = ZZXX ™ XXIZ = XXVy = JyxX,
yzyz = Zyzy = IXIX = XIXZ ™= XyXy = YRYX,
IZy = ZYYZ = IXXZ = XIZX = XPPZ = YAXY,
XXXX = Xxyy + Xypxy + xppx
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Although many symmetry operations are associated with T,(43m), only the
180° rotations about the three four-fold axes and the mirror reflections about
the diagonal planes are needed to reduce x*. The 180° rotations make
X3 =—x =0 xf=-x%=0and x% = -x =0, where %, j, and k
refer to the three principal axes of the crystal. The mirror reflections lead to the
invariance of x{(J # j # k) under permmtation of the Cartesian indices.
Consequently, x5.(¢ # 7 # k) is the only independent element in x@ for the
zinchlende crystals.

For other classes of crystals, the forms of x® can be similarly derived
through the corresponding symmetry operations, The symmetry consideration
here is the same as the one used to derive the electrooptical tensor [which is
actually a special case of x®(w = w; + w,) with w; = 0] and the piezoelectric
tensor.*! The forms of x for second-harmonic generation are in fact identical
to the latter."? We reproduce a part of x®(w = @, + w,) for various classes of
crystals in Table 2.1.

The above symmetry consideration for ¥ can of course be extended to
higher-order nonlinear suseeptibilities. In particular, symmetry forms for x'®
ar¢ most important in view of the many interesting third-order nonlinear
optical effects that can be observed readily in almost all media. Table 2.2 lists
the x ® tensors for the more commonly encountered classes of media,'?

27 PRACTICAL CALCULATIONS OF NONLINEAR
SUSCEPTIBILITIES

Symmetry operations drastically reduce the number of irdependent elements
in a nonlinear susceptibility tensor, but then for a given medium, we would
also like to know the values of these independent elements. While they can
often be measured (see, for example, Section 7.5), it is also important that they
can be calculated from theory. A successful theoretical calculation can help in
predicting x ™ for media not easily subject to measurements or for the design
of new nonlinear crystals. In principle, the microscopic expressions, such as the
one for xﬁ}‘ n (2.17), with appropriate local-field cosrection, can be used for
such calculations. However, in most practical cases these expressions are
useless because neither the transition frequencies nor the wavefunctions for the
material are sufficiently well known. This is especially true for large molecules
or solids. Simplifying models or approximations often are needed. If all
frequencies involved are far from resonances, one simplifying assumption often
used is to replace each frequency denominator in the microscopic expression of
x‘ by an average one and bring all frequency denominators out of the
summation [see, for example, %@ in (2.17), Then the summation over matrix
elements can be greatly simplified through the closure property of the eigen-
states and can be expressed in terms of moments of the ground-state charge
distribution. The problem reduces to finding the ground-state wavefunction of
the system.!*
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The foregoing approximation, however, is too drastic 10 yield good results.
A more successful calculation of x ™ can be done by the bond model, Such a
model was used in the early 1930s to calculate the linear polarizability of a
molecule or the linear diclectric constant of a crystal.'* The bond additivity
rule was assumed: the induced polarizations on a molecule (or a crystal) is the
vector sum of the polarizations induced on all bonds between atoms. In other
words, the bond—bond interaction is neglected. The same ruie can be used in
the calculations of x ). We can write

X" = Lofp (233)
X

where o is the nth-order nonlinear polarizability of the X'th bond in the
crystal {or medium), and the summation is over all the bonds in a unit volume.
Thus, with known crystal structure, the calculation of %™ reduces to the
calculation of o’ for different types of bonds.

We discuss here only the caleulations of ™, using the zincblende crystals
as an example. The general procedure is as follows. The linear bond polariza-
bility af is first calculated as a function of the applied field using the recently
well developed bond theory.'® The second-order nonlinear bond polarizability
o2 is then obtained from the first derivative of off’ with respect to the applied
field. Finally, the summation of {2.33) over the bonds is performed to find x .
We assume here that a simple crystal can be constructed entirely out of the
same type of bonds, and the bonds are cylindrically symmetric. The linear
susceptibility x of the crystal can then be written as

X = (o)

= GPad + GPa® (234)

= {Gl(iu + FGS}))L“{'U

i

where afV and af are the polarizabilities parallel and perpendicular o the
bond, g = afl'/af, and G{" and G ate the respective geometric factors
arising from the vectorial summation over the bonds. Both GIV and GY are
proportional to the number of unit cells per unit volume. For the zincblende
structure, G{P = §G = 4N /3, and (2.34) bocomes

4N
X = A1+ 20)afh. (2.35)

The next siep is to find an approximate expression for e through x . The
microscopic expression of x{J in (2.17) away from resonance has the form

NeX o Inlh
A= — JRLILLLT S (0
X == gZ“;ngh = 20,9 (2.36)
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In the low-temperature limit, p«n 0 for all states except the ground state.
Then, l'nllowmg the approximation of replacing w,, in the denominater by an
average @,,, and the sum rule’

h
2): glrlig = pp (231
(2.36) reduces to
92
1 rd
i ) ey (2.38)
ng

with ) = 4wNe’/m being the electron plasma frequency. This simplified
expresswn for x{I' has actuatly been shown more rigorously by Penn for solids
in the limit of zero frequency.!’” From (2.34), we now have

Q2
Gl + Gl = (GO 4 aGW gl = [ 2.39
= 1451 ( il L ) (l 4'”(5,33 _ mz) ( )

We are, however, interested in af” as a function of applied field. The
polarizability should depend on the field through the field perturbation on the
transition frequencies and matrix elements. However, m the approximate form
of (2. 39) o can depend on the field only through &;,. To find an cxpression
for w is where the bond theory comes in. Physncally, h@, = E can be
rcga.rded as an average energy gap between the filled and u.nﬁl]ed states It can
be written as'®

= [} + c*]* (2.40)

where E, and C are known as the homopolar and heteropolar gaps, respec-
tively, and, in the bond theory, have the expressions

E,'-Z = adz:
and (2.41)
c=b( 2 - Za)pran
a g '

In these expressions, a, b, and s are constant coefiicients, Z, and Zy are the
valences, and 7, and r, are the covalent radii of the 4 and B atoms forming the
bond, d = r, + ry is the bond length, and exp{—k,d/2) is the Thomas- Fermi
screening factor. If A and B are identical atoms, then € = 0. Equation (2.40)
can be derived easily from molecular orbital theory.'® The bond clectrons have
two eigenstates, a2 bonding state and an antibonding state. The energy dif-
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ference between. the two states is EE. For a homopolar bond (A = B), the
bond lectrons see a symmetric potential with respect to the bond center and
E,~E, Fora heteropolar bond (4 # B), the bond electrons see an anti-
syymmetric potential, and EZ = Ef + C? with C proportional to the asymmet-
tic part of the potential. The wavefunctions of the bonding and antibonding
states along the bond are shown in Fig. 24, Tt is seen that in the heteropolar
case, there is a charge transfer from the side of the less electronegative atom (o
the side of the more electronegative atom. According to the molecular orbital
theory, the amount of transferred charge { is related to the heteropolar gap C
by

0= —=. (2.42)

Figure 2.4 also shows that there is a bond charge cloud between the two atoms.
The magnitude of the bond charge derived from the bond theory is

2eE:
p el
B+ 102

g= (2.43)

Fig. 24 Sketches of electronic wavefunctions of {(a) the bonding state and (&) the
antibonding state along the bond connecting the atoms A and B. The solid curves are
for the homopolar case and the dashed curves for the heteropolar case.
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Levine'’ suggests that the bond charge may be considered as a point charge
sitting at distances r, and rg, respectively, from atoms A and 8.

We can now discuss how the bond polarizability changes when the bond is
subject to an external field. The change occurs through the field perturbation
on the charge distribution, In our deseription here, af'? depends on the applied
field E through the dependence of E; on E

(ehﬁ N CV) (2.44)

while E, and C depend on E through field-induced changes in the charge
transfer and bond charge. However, since the applied field is not expected to
change the bond length, we have dE,/dE; = 0 from (2.41), The second-order
nonlineer bond polarizability «ff, is obtained from defp/dE,. I ¢ and 7
denote the two directions parallel and perpendicular to the bond, respectively,
then from the symmetry argument, only af?; and o), are nonvanishing. We
also meglect &3, by assuming that a field transverse o the bond will not
significantly perturb the charge distribution. Thus afZ; is the only nonvanishing
element of ¢, Using (2.39) and (2.44), we find

dall
aff = a;_‘rfe

-20203C ac (243)
4n(GP + pGO)E? - w7y OB

Now, either (2.41) or (2.42) can be used to calculate JC/JE;. The two,
however, correspond to two different physical pictores. In (2.41), the applied
field changes ¢, and ry, but keeps r, + ry = d. In terms of the simple model
where the bond charge can be treated as a point charge sitting at distances r,
and rg away from the atoms 4 and B, the field then simply shifts the position
of the bond charge along the bond. This is known as the bond-charge model.'?
In (2.42), on the other hand, it is the field perturbation on the charge transfer
0 that relates C to the field. This is the charge-transfer model.?
The bond-charge model involves, with Ar = Ary = —Arp,

ac _(ac ac) ar 2.46)

3 " \ar, ~ @, | 7E,

and since gAr = afN(w)AE (") for w — 0, we find from (2.41), (2.45),
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(2.46), (2.34, and (2.38)

A 2aM o) C zZ Z
(ot e T B Tt

T 2wg(G + pGS}))(Eg - .‘i"wz) i i

(2.47)
2 s
- S”C[XE})(”)] xi{w) [ﬂ n ﬁ]be“"“"ﬂ.
(6P +uc®)gwal | 7
The charge-transfer model following (2.42) gives
B

o _ 1% 80 (2.48)

3E, e g2 9E;

It is assumed in this model that the field-induced charge transfer is from atom
B to atom A, treating the atoms as points. Since af{w)AEy(w’) = AQd, we
have from {2.45) and (2.48)

2020 E V[ o
(“?e)e)CT= . ﬂPCERf“ ) 2
- 21,(.(;51) + PG(P)(E: - ﬁzm’-) edE}
_ 8aCE} [xP () x P ()
(6 + ko) eaEiiia?

(2.49)

We should, howevet, keep in mind that the description of how an applied field
madifies the charge distribution in both medels is still fairly crude. In reality,
the electronic charges are broadly distributed in the region between the two
atoms. The peak of the distribution is near the center of the bond, As an
example, a contour map of the valence electron distribution around a Ga-As
bond obtained by empirical pscudopotentiat calculation is shown in Fig. 2.5.7
In the presence of a dc external field along the bond, the charge distribution
becomes only stightly more asymmetric with its peak essentially unshifted. This
is shown in Fig. 2.6 for the charge distributions along the Si-5i and Ga—As
bonds.? The field-induced shift of the bond charge in the bond-charge model
actually refers to the shift of the center of gravity of the valence electron
distribution, while the field-induced charge transfer in the charge-transfer
model refers to the redistribution of the valence charges around the bond from
one side of the bond center to the other.

Finally, we can obtain x(%, of a given medium from «}; for various bonds,
where 3, j, and k denote the three orthogonat symmetry axes in the crystal:

X = g(uﬁ?’)m

= g\: (G}\Z))fjk(a?g)g)!\ (2.50}




Fig. 25 Comtour map of valence electron density distribution (in units of e per
primitive cell) for GaAs in the (1, — 1,0} plane. {From Ref. 21.)

where (G{),, is a geometric factor for the A-type bonds reflecting the
structure of the medium. We note that with (aff;), expressed in terms of x{
rather than & in (2.47) and (2.49), even the total field correction has been
somehow taken into account in the above derivation.

We now use InSb as an example to illustrate the calculation of x ). The
erysial has a zincblende structure; therefore, the only nonvanishing elements of
*x@ are x[7, withi # j # k. There is only one type of bond in the crystal: those
connecting In and Sb. The geometric factor G2, is then given by 4¥/3y3 and
the density of unit cells ¥ is related to the bond length & by N = 33 /164°.
We also have GV = }G{? = 4N/3. From (2.47), (2.49), and {2.50), the bond-

L L (1

(a)

i |
m
Ga As trn

{b)
Fig. 26 Sketches of the charge distribution along a bond in (a) Si and (&) GaAs.
Solid and dashed curves refer to cases with and without an external field along the
bond, respectively. (Courtesy of S. Louie.)
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charge model gives

(x2,), e = 320 °C[x W 0) XV ()] {_ZA )

eine 3(1 + 2p) gh?9} oo

}be“"f"/z (2.51)

and the charge-transfer model gives

327d *CEX [ @)
(X(.E}rz) er= il [X “’)] [X i )] (2.52)
3(1 4+ 2p)° eELhQ2

We calculate here x%), in the low-frequency limit @ ~ o’ ~ 0. For TnSb,
d=1254, E ——37cV E,=31¢¥, C=21¢V, xm—ll'l'esu,flﬂ =13
eV, Z, =3, Zy =5, 7 =1p = d/2 bexp(—k,d/2) = 0.12 e, p=1, and
g = 06 e,” we obtain (x&,)pc = 1.6 X 107 % esu and (x @, )er= 23 X 107¢
esu. The resull.s of both models are in fair agreement with the experimental
value of x@, = (3.3 + 0.7) X 107 esu. This should be considered satisfactory
in view of the crude approximations in the models.

The calenlations can also be extended to higher-order nonlinear susceptibili-
ties. However, because of the crude approximations involved, they become
much less reliable. Also, since we use the covalent bonding picture in the
models, the calculations are less suitable for ionic crystals, In nonlinear optics,
we are often interested in materials with high nonlinearity. This discussion
suggests that the materials should have high nonlineanity in bond polarizabili-
ties. For large x@, the crystal structure should also be as asymmetric as
passible so that there is a minimum of vectorial canceliation in sumrming over
af? of all bonds.

The calculations here are good only in the low-frequency limit. The ap-
proximations in the models break down when the optical frequencies are close
10 the absorption bands. Because of resonant enhancement, the transitions
with transition frequencies closer to the optical frequencies contribute much
more to the susceptibilities. In order to caleulate % and its dispersion in
these cases, we must use the full microscopic expression of %™ such as those
derived in Section 2.2. Then detailed information about the transition matrix
elements and frequencies of the material is necessary. Such calculations have
been carried out by several authors on x#(2w) of zinchlende semiconductors
with various degrees of approximation. In most cases, constant matrix ele-
ments are assomed. The more accurate caleulations, however, are those with
wavefunctions and epergies of the band states derived from the empirical
pseudopotential method,* which has been extremely successful in reproducing
xW(w) for zincblende semiconducters; it should therefore also vield accurate
results for x@(2w). An example is shown in Fig. 2.7 for InSb. The peaks and
shoulders in the spectrum generally correspond to resonances of w or 2w with
the critical point transitions. The results also show that it is important to
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Fig. 27 Dispersion of x{).(2w) of InSb cakulated using the empirical psendopeten-
tial methed. The peaks arise from interband transitions in the regions indicated, (From
Ref. 24.)

include the dispersive effects of both the matrix elements and the density of
states for transitions in the calculations,

Full quantum mechanical calculations of x 2 of {2.17) for molecular crystals
have also been carried out using semiempirical Hartree—Fock LCAO {linear
combination of atomic orbitals) methods by many researchers.?s They were
able to predict quite satisfactorily the measured values of x. Highly asym-
metric molecules with strong charge-transfer bands appear to vield large |x @)
if the crystal stracture is also highly asyrmetric.

28 MILLER'S COEFFICIENT

Miller defined a coefficient?
X."ﬂ(“’s =w + "’2)

B = (2:53)
7 XSP(“’;)X&?(”l)X&(“’z)

and found empirically that A has only weak dispersion and is almost a
constant for a wide range of crystals. This is known as Miller's rule, It Supgests
that high refractory materials should have large nonfinear susceptibilities. The
weak dispersion of A, can be seen from either the bond-charge or the
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charge-transfer model. Equations (2.51) and (2.52) show that for & — 0,

4, = constant independent of frequencies.

The constant is, however, proportional to the heteropolar gap C, and does
change, although only mildly, from crystal to crystal. That the measured 4, ;, is
indeed proportional 1o C for a large number of semiconductors has been
demonstrated by Levine.!® For a crystal with several different types of bonds, a
weighted average C must be used, The values of 4, for most nonlinear
crystals are around few times 1075 esu.

29 CONVENTIONS ON NONLINEAR SUSCEPTIBILITIES

The definitions of nonlinear susceptibilities in the literature vary and have
caused some confusion. This section clarifies the conventions used in this book.
The definition of nonfinear susceptibilities is governed by the following rela-
tion between the nonlinear polarization P**) and the electric fields E :
PO o) =0 =w + oy + o+ 0,) 1 Ey{0)Ex (e} - E, ()
(2.54)

with E; and P(® expressed as complex quantities;

E, = &explik, + 1 — iwt)
2.55
P w) = Pexp(ik - r — iwt). (235)

assuming w; and  are both nonzero. Many authors have written the ampli-
tudes of E; and P in somewhat different forms with

E, = +&exp(ik; * r — iw;f)

{2.56)
P (w)} = & Wexp(ik 1 — fw!f)
and defined a nonlinear coefficient d) to connect the amplitudes
PV =g, £187 - & (2.57)
ar
P = (2)" 4" EE, -+ E,. (2.58)

Comparison of (2.54) and (2.38) gives

dm = (2)7 "o {2.59)
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and in particular 43 = $x/%. Fquation (2.59), however, needs modification
when there are de fields present. For w; = 0, the corresponding de field E;
should be related 1o &; and & by E, = 2&, = &/. Then, if 5 of the n fields,
namely, E,,_..,E_, are dc, we have, following (2.54) and (2.57) as definitions
for x " and 4},

PO = xR B ()TN - Eexpli(k,,, + oo+ K )er
—ifw, g+ o+ Wn)r]

. 2.60
—WOE, B g il 4t 2O
—ifw g+ o),
and hence
) = (1) Ty, (2.61)

More explicitly, (2.54) takes the form

P o=a, +a+ - +w,)

= 2 X’ml....',,(“’ e T “’n)E.'.(wl)EJ,("’z) e E!.(‘*’n)-
Holy.dy

{2.62)

Our convention is that the term xf} (0=« +w + -+ @)
Ey(@)Ep(@y) -+ - £ (w,) can be written with the fields arranged in any ordcr
as long as the subindices of x'™ are arranged in the same order, but no
additional contribution to P{” should arise from permutation of the fields in
(2.62). The conventional notalion demands that the field arrangement should
always follow the ordering of the frequencies in the argument of x. This
leads to the question of what happens if two or more fields involved have the
same frequency. In our convention, permutation of the fields with the same
frequency should yield no additional contribution to P{™. For example, we
have for second-harmonic generation,
Pu)(lw) x5 (20 = w + @) E,(w)E{w)

xyz

x@ E w)E{w)}+x?E (w)E,{w).

Xiye xzy s

(2.63)

In the convention using the d coeffictents, however, all terms derived from
permutation of the fields with the same frequency must be included in the
expression of the nonlinear polarization, For example,

1PP(20) = dZ, (20} E (w)E (0) + d2),(20) E,(«)E, ()

=242,(20)E, (w) £, (). (2.64)
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In comparison with
P (wy =y + wy) = d2.(0y = w0, + w, ) E(w)) E () (2.65}

we notice that since the nonlinear respense of the medivm is not expected to
have a sudden change as w, approachcs wy, the coefficient d () (4.:3 =w; T ;)
should change smoothly 10 2d%@), (w, = 2a;). The result that [ (w; = w0y +
@2 )]y = 243 (2w,) with j + k has caused a great deat of confusion, A
similar snuauon occurs when one or more fields have their frequencies ap-
proach zero, as we discussed earlier. Our convention here avoids such diffi-
culty: x,,{(m; = w, + w,) changes continuously to x,ﬂ,(m3 = 2e,) as ) ap-
proaches w;, or l.o x3{w, = 0 + @) as w, approaches zero. The continuons
variation of x& k with [requencies can be explicitly seen in the microscopic
expression of x‘ in (2.17).

Anather convention proposed by Maker and Terhune?” and often used for
third-order nonlinearity is to indicate explicitly the number of terms one can
obtain by permutation of different field components in the expression of the
nonkinear polarization. For example, we write

P w=wy + wy + )

= Z %qu%(w =w tw+ ”3)‘%(“"1)}3&(‘02)51(”3) (2.66)

where D,,, is the degeneracy facior for the particular terms. If E(w,)} # E,(w;)
# Ei(w,), then D, = 6, indicating that six terms can be obtained by permut-
ing the three fields. For E(w,) = E.(w;) * E/(w;), we have Dy, = 3, and for
Efw)) = Elwy) = E,(w3) we have D, = 1. This convention also has the
dlﬂ’icully that the nonlinear coefficients C(w = w; + w; + w;) vary discon-
tinuously as the frequencies become degcnerale. i

Further discussions of nonlinear optical susceptibilities appear in later
chapters in connection with the specific nonlinear optical problems discussed,
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General Description of
Wave Propagation in
Nonlinear Media

Waves can interact through nonlinear polarization in a medinm. Propagation
of waves in the presence of wave interaction leads to various nonlinear optical
phenomena. The quantitative description of a lower-order nonlinear optical
effect usnally starts with a set of coupled wave equations with the nonlinear
susceptibilities acting as the coupling coefficients. This coupled-wave approach
can also be generalized to include waves other than electromagnetic. This
chapter is devoted to a general discussion of coupled electromagnetic waves in
a medium and the solution of the coupled wave equations under certain
approximations. Applications of the analysis to specific nonlinear optical
phenomena appear in later chapters.

11 COUPLED WAVES IN A NONLINEAR MEDIUM
The wave equation that governs optical wave propagation in a medium is
1 8 4q §?
T

v x(v xX)+=5 B = -—
( ) ¢ ot (r.5) et

P(r, 1), (3.1)

which follows directly from the Maxwell equations (1.5). Wave interaction
gives ris¢ to the nonlinear terms in P. We assume that both E(r, ¢) and P(r, 1)

42



Coupled Waves in a Nonlinear Meddium 43

can be decomposed into a set of infinite plane waves:
E(r.r) = LE/(X, @)
1
= T g et
]

P(r, 1) = PO(r, ¢} + PN"(r, 1),

PO, 1) = PO (K, )
!

=L x"(w,)-E lk,, @), (3.2)
H
and

PNL(r, 1) = 3 P™(r, 1)
nzl

=LP(k,, o)
m
- E?NLelkm-rfm,,r

where &) is taken as essentially independent of time. With e(w,) =1+
4x D w,), (3.1) becomes

z i
v x(¥ x) ~ e [Ek, 0) =ﬂ’lipm(km,mm =w). (33
[ [0

Suppose P¥!(k,, ) = PU(k,,, ») is a nonlinear polarization from the prod-
uct of E,(ky, ,} - - E (k,, w,). Then, for the n ficlds E,{k;, w;), there should
be n corresponding wave equations similar to (3.3). Together with (3.3), they
form a set of (r + 1) coupled wave equations. Note that while w,, should be
equal 1o « in PNM(k,, w,) because of photon energy conservation in the
steady-state case, k,, need not be exactly equal to k since wave momentum
conservation is not strictly required in a finite medjum. Equation (3.3) clearly
indicates that the various waves E,(k;, ;) are nonlinearly coupled through the
nonlinear polarization PN, and their propagations in the medium will conse-
quently be very different from the lincar case where P™- = 0. Through
nonlinear coupling, energy can now be transferred back and forth beiween
waves, and the larger PNU is, the more pronounced the effect should be. The
coupled wave approach was first used in the description of microwave para-
metric amplification’ and later adopted by Armstrong et ab.? for describing
wave interaction in nonlinear optics.

The simplest case of oplical wave interaction deals with second-order
nonlinear optical effects. We use it here as an example to illustrate the coupled
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wave formalism. Consider three waves E(k), «)), E(k,, w,), and E(k, w = @, +
w,) interacting in a medium by second-order nonlinear polarization, Then, the
coupled wave equations from (3.3) are

2
daw]

T PO{ey)

wf
v X(v x) ‘?31' Ey(ky, @) =

dnw?
= - l'xm('-"} = —wy + @) E2(k,, 0, )E (k, @),
sl el
v X{¥ %) __ier E;(kg, 0;) = —2PP ()

_ dmeg (3.4)
2Xm(“’ = w — @) E(k, 0)EHk, 0, ),

and

v x(v X} —-——e]E(k w)= P@)( )]

_4
e’ TP = wy + ) By, 0)E(K;, 0;).

As seen here, the nonlinear susceptibilitics appear explicitly as the coupling
coefficients. They determine the rate of energy transfer among the three waves.
In the case of a dissipationless medium, the permutation relation x5 (w = @,
+w) = xPile = ey tw)= xB (s, = @ — w)) exists (see Section 2.3).
This is actually a necessary oondmon for the coupled wave equations 1o satisfy
the requirement that the iotal energy in the three waves is a constant, as we
shall see in Section 3.2. The photon energy and momentum conservations in
the present case are @ = @, + w, and k = k; + k,, respectively. For most
effective energy transfer among the waves, one naturally expects that both
photon energy and momentum conservations should be satisfied in the wave
interaction. Therefore, even though k = K, + K, is not required, as mentioned
earlier, satisfaction of the relation is preferred for the maximization of the
wave coupling. This photon momentum maitching condition is known in
nonlinear optics as the phase matching condition, and it is one of the most
important considerations in many nonlinear optical processes. Detailed sotu-
tions of (3.4) appear in later chapters.

3.2 FIELD ENERGY IN A NONLINEAR MEDIUM

The Maxwell equations {1.5) lead to the following familiar energy relation {or
the fields:

¢ o1 8.2, gy g 0P
Ev-(ExB)— Swat(E + B -E TR

(3.5)
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With E X B being the Poynting vector, it shows that the rate of electromag-
netic energy flowing out of a unit volume is equal 10 the reduction rate of the
stored electromagnetic energy density. If the dispersion of the medium can be
neglected, then the polarization P can be written as

P(r,s) = x™E(r, ) +x®:EE+ --- (3.6)

and (3.5) reduces to the form

¢ d
];V'(EXB)— __H?U(r”) 3.7
with
Ur, 1) :8%(}31 + BY) +%E-x‘“-E+§E-xm:EE+ - {38

being the instantaneous electromagnetic energy density. This is clearly not
valid in a medium with dispersion, since the susceptibilities are defined only in
terms of the Fourier components of fields and polarizations. In reality, it is
more meaningful to consider the time-averaged energy relation. Let us il-
lustrate the problem by first assuming a linear medium.
We begin by assuming a quasi-monochromatic field
E(r, 1) = (1)@ w0 4 g2(z)e =0 (3.9}

where &(r) is a slowly varying amplitude. Expressing &'(r) as a Fourier
integral, we have

E(, 1) = f dné(e + q)er-on—m 4 co (3.10)
Then the linear polarization takes the form -
PO, 1) = f dnx(w + )+ Elw + gheffer-ad-m L oo (311)

This leads to

7 i gy
FPOE 0 = fan(=)o + x0) + By o esa )
Xellrwn=im L g0 (3.12)

a
= [—imx“)(m)'é'(r) + —L?:’ } -Lé;(:) ]e"(""‘”" +c.c.
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With x(w) = xP(—w)*, the time average of (3.5) yields®

<{;v -(EXB)>= A%wm) - {3.13)
where
Wy = o0 260y +meor .
@ - Las(ryera(o), 619
and

e=¢+ig"=1+4ox®.

As may be inferred from the preceding equations, {U'™) is the average field
energy density stored in the lincar medium and Q is the average power density
dissipated into heat through absorption because £” # 0. Equation (3.13) is
therefore an energy conservation relation one should expect physically.

The above calculation can be extended to the nonlinear case.* Additional
terms in the energy relation are expected from wave coupling. Consider, for
example, three waves with w; = @ + «, and k; = k; + k, interacting in a
ponlinear medium via x™. One finds, with the help of the permutation
symmetry relation of x®, that the average field energy density has an
additional term

Uy =285(t) xPoy = —op + wy): &5} &(1)

Iy @ Ay@ I
+¢f(;).[ml Xa“f:dl)+wz xﬁcf:)]} L it ‘)} (3.15)

x &F(1) & (1) + ce.

obtained from

at at

U _< 3 E.- ,;p.,(l))
= . .
=1

Note that only when |w,, %@ /80,,| < [xP| can we write
Uy =287  xP(a = =iy + @) : 16 + ¢ (3.16}

The last equation, however, is frequently used in the literature® to describe the
interaction free energy density for the wave coupling. One would write the free
energy density as 9 = — (U™} using (3.16) and detive the nonlinear polari-
zation from P@(w,) = — 33FP 3% From 3*PP(w) 367 36, =
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FPP(w,))/96F 3Ly = FPD*(w,)/dEF &2, the permutation symmetry rela-
tion of x'* immediately results, Although this is a practice one can indeed
follow, we must realize that it is actwally the permutation symmetry of x @ that
leads to the expression of {I/®) in (3.15). Conversely, it is the existence of
{UD) that physically justifies the permutation symmetry of x?. Near reso-
nances, when dissipation in the medium becomes important, the permutation
symmetry relation of x@ breaks down, and accordingly, (3.15) is no longer
valid.
More generally, in a nonabsorbing medium, the time-averaged field energy
density should be*
o
L= L U (317)

a=1
where (U™ arises from nonlinear coupling of (# + 1) waves via the nth-order
nonlinearity in the medium, and is given by

(Y = n&r My =@ F g+ -+ @) 61 &

fady L 3.18
+&N - Zw,—a;(w ]:6152“-€n+c.c. (3.18)
i=1 i
The time-averaged energy conservation relation takes the form
3
(4—°wv-1~:x3>= - 2T, (3.19)

33 SLOWLY VARYING AMPLITUDE APPROXIMATION

In actually solving the coupled wave equations, several simplifying approxima-
tions are often made’ * Among them are the slowly varying amplitude
approximation, the infinite plane-wave approximation, and constant pump
intensity approximation. We discuss here only the slowly varying amplitude
approximation and leave the others to later chapters.

As mentioned earlier, wave coupling in a nonlinear medium results in
energy transfer among waves. Therefore, the wave amplitudes are expected te
change in propagation. We assume for illustration a plane wave propagating
along £

E(w, z) = &(z)elken,

Since the energy transfer among waves is usually significant only after the
waves travel over a distance much longer than their wavelengths, we expect

32&(z)
az

kaé’

Fr (3.20)
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The field E can generally be decomposed into a longitudinal component E,
paraliel to k and a transverse component E | perpendicular to k. The wave
equation for E, following (3.3), can similarly be split into two equations:

2
vE, +‘—:;(e°E)i= 4”‘“ ) (3.21a)
and
v -{(e-E)y + 4aPf%] = 0. (3.21b)
We now have
vIE, = B g = eneman| e ? ol (z) (3.22)
o 3z dz + i
and
2
-K%E, + (e E), = 0. (323
I

Then the approximation of (3.20) reduces the second-order differential equa-
tion (3.21a) to a simple first-order differential equation

&, r2-.'m

Fn s =P (w, z) e thimen, (3.249)

This is known as the slowly varying amplitude approximation.

The preceding description of the slowly varying amplitude approximation is
what is usually found in the literature. However, the real physical implication
of the approximation is in neglecting the oppositely propagating field compo-
nent generated by PML. Consider, for example, the wave propagation in an
isotropic mediom,

82 4re’
(F+—E)E(w )= ——— o ——P%(w, z) (3.25)

with plane boundaries at z = ¢ and /. The equation can be solved by the Green
function method. Let G(z, z') be the Green function, which obeys the equation

2
(%+-z)6(z )= —8(z, 2°). (3.26)
Then we find
-1 JRIJEEEY) R
G(z,27) = T forz >z

(3.27)

-1 k p
=g k= forz <’
i2k
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with k = wyz /e. The solution of (3.25) is given by

z i
E(o, ) =f A pr( 6 (z, ) e + |6 2E — £ 9G]~
o ¢? z’ dz' |

2
- _(217‘0 )[fszl(zl)eik(z-z')dzl +f[PNL(z’)E”"”7"')dZJ
0 H

ike?
If we write
E(w, z) = &p{z) ek 4 &, (z)e!k2mwn (3.29)

and impose the boundary conditions 3&5/3z° = 0 and d&,/dz" =0 atz = (0~
and [*, indicating that no amplitude change should occur outside the medium,
then we have

i
o2 -p20

= [&p(0)e™ + £{Ne* e (3.30)
dz’ [LEA P

Comparison of (3.28) and (3.29) yields

2z

& (2) = £:(0) + i [Nzt -ongy:
ket Yo

and

2
Elzy=&,(1) + i“—‘jf?“‘(z')e"m‘*w)dz'. {3.31)
ket /.

The corresponding differential equations for &5 and & are

a¢y - 2w’ NL —i(kz—wr)
Fra ey PR (w, z)e
and
7€, 2@w? ko
2= —iT PN (g, g) gtk ren, (3.32)

Comparing (3.24) with (3.32), we recognize that {3.24) can be obtained by
neglecting €5 in & (or neglecting &if &, is propagating with wavevector —k).
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34 BOUNDARY CONDITIONS

The usual boundary conditions for electromagnetic waves should be valid here;
for example, the tangential components of E and B at a boundary surface must
be continuous for each Fourier component. In general, the solution of the wave
equation (3.3) for Ek,, w,) driven by PNk, ,, = @) & exp(ik,, ¥ — ityt)
has the form

E(k, K, 0,) = (Exe'™ + &ethe )i (3.33)

where the &, and &, terms correspond to the homogeneous and particular
solutions, respectively. At the boundary, an incoming wave E;(k;;, K,.p w;)
splits into a reflected wave Eg(k, K.z, @) and a transmitted wave
Er{k;r,K,.r» @) Let z = 0 be the boundary plane, and £-£ be the piane of
incidence. Then it is easily seen that the continuity of the tangential compo-
nents of E and B leads o the following relations:”

Ep x ¥ Eorx F ur x  Epn, = Fyrx + Eor

and
(ki X 8p) .+ (Ko X Epp) + (g X )« H{Kor X &)

334
= {kyr X Eyr), +(Hr X Epr)s (334)

with two similar equations for the y components, and
kpp o = kg = Kipx = Kt x = Kir = Ko 1 {335)

The last equation relating the various tangential wavevectors is most inter-
esting. It prescribes the directions of propagation for all waves (homogencous
and panicular) in the media when one of them is given. This is therefore
equivalent to Snell's law in linear optics.

35 TIME-DEPENDENT WAVE PROPAGATION

Propagating waves with time-varying amplitudes should of course obey the
time-dependent wave equation in (3.1). Here again, the slowly varying ampli-
tude approximation is usually valid. We expect that both the second-order time
derivative and the second-order spatial derivative of the field amplitude can be
neglected in the wave equation. This is illustrated in the following by assuming
a quasi-monochromatic plane wave propagating along a symmeiry axis, 2, of
the medinm. The wave equation takes the form
[ 2 4q 3*

1 2
EE(Z,!)—?FD(Z,!)=??PNL(Z,!) (3.36)
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with D(z, )= E(z, 1) + 49PV(z, 1), and E(z, 1) = &z, exp(ikz — iwt).
Then, as shown in Section 3.3, the slowly varying amplitude approximation
gives

Kl

2
%E(z, t) = (1‘2k prl k‘&) gitkr—wn (3.3

If E(z, t) is expressed in terms of the Fourier integral
E(z,1) =f€(w + p)etEitetn gy
then we have

D(z, 1) =fe(w + )& (w + plet ieTn gy

z - 2 .
la—D(z, 1) =fi(w :- ) e{w + )& (w + g)eteilurn gy
¢ c

[

—C—lzf[wzs(w) + 2wne{w) + wza]g—;]ﬁ(w + 1) (3.38)

x el‘kx- {w+4) dﬂ

w? T g
= gl 9 ithz - wi)
{ cze(m)f(z,t) tZkug arm"(z,!)]e'
where v, = (dk/dw)~" is the group velocity. Insertion of (3.37) and (3.38) in
(3.36) with the approximation of #2P™ /317 = — o’ P™ yields®

.13
(&+ZE

2z
)J(z, t)y= —i’—c“;PNL(z, r)eitks=wn, (3.39)

In fact, as we have shown in the time-independent case in Section 3.3, the field
amplitude & in (3.39) actually corresponds to & for the forward propagating
wave, For the backward propagating wave, the corresponding equation is

i 13 27w? ket
(Ez - v—gm]é"s(z, )= ELp (et (340)

Equations (3.39) and (3.40) should be used for short pulse propagation in a
nonlinear medium. The time-derivative term in the equations is negligible only
if the amplitude variation is insignificant during the time 7 = W /c it takes
for light to traverse the medium. We use (3.39) and (3.40) later in the
discussion of nonlinear optical effects with ultrashort pulses,
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4

Electrooptical and
Magnetooptical Effects

Optical properties of a material can be modified by an applied electric or
magnetic field, The refractive index changes as functions of the applied electric
and magnetic fields are responsible for many electrooptical and magnetooptical
effects. Although these effects were well known long before the advent of
lasers, they can be regarded as nonlinear optical mixing effects in the limit
where ane of the field components is of zero or nearly zero frequency. This
chapter therefore offers a brief discussion on these effects.

4.1 ELECTROOPTICAL EFFECTS

In the presence of an applied dc or low-frequency field E,(£ ~ ), the optical
dielectric constant e(w, Eg) of a medium is a function of E,. For sufficiently
small E, &(w, E,) can be expanded into a power series of E,:

e{w,Bp) =eW(w) + Mo+ )-Ey + e w + 2Q):E By + -+,

{4.1)
Since E + 4#4P = ¢*F, and P = x™+E + x@:EE + - - -, we recognize that

e + 8) = drxPw + Q)
and
e w + 28) = 4w + 22). (4.2}
Then, in a2 medinm with no inversion symmetry, the electrooptical effect is

dominated by the €@ term linear in E,. This is known as Pockel's effect. The
symmetry forms of the nonvanishing & or x» for the 20 classes of crystals

53
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are already given in Table 2.1 with, in addition, xP(w = @ + 0) = x (e =
@+ 0), Ta a medium with or without inversion symmeiry, the quadratic
field-dependent term {4.1) always exists and is known as the dc Kerr effect.
The symmetry forms of €™ or x for some classes of crystals are given in
Table 2.2 with, in addition, x{i (e =@ +0+0)= X =0+0E+0)
and xTh = x k-

The field-induced refractive indices give rise to linear birefringence or
double refraction. Traditionally, the electrooptical effect is defined through the
idex ellipsoid

2 2 2

z 2 2 x
R s Zy Y -1 4.3)
Myx fyy e 2y, Moy L

withn;! = {e71)}/* being the refractive index tensor. The power serics expan-
sion 15 carried out for all the coefficients n7,*(E,) of the index ellipsoid

i 1
=|—=| + ¥ F. Byt O EEo A e, 44
"?;(Eu) (nf) )0 %'-’" Gk Elpuk-‘ ok 2ot (4.4)

The coefficient r, ;, often is called the linear electrooptical tensor, and p, i, is
the quadratic electrooptical tensor. The values of 7, for many crystals are
tabulated in the literature.?

Physically, electrooptical effects result from both jonic or melecular move-
ment and distortion of electronic ¢loud induced by the applied electric field.
Even if the induced refractive index change is only around 10* {typical values
of £, are around 10-1° 1o 107% c¢m/v), a medium 1 cm long can already
impose on a visible beam a phase retardation of more than =/2. Therefore,
electrooptical effects have been widely used as optical modulators.

42 MAGNETOOPTICAL EFFECTS

The optical dielectric tensor e of a medium is also a function of an applied dc
magnetic field, Hg. It has the symmetry relation 3

ei](HO) = Eji(_HO)‘ (4.5)

Here, even in the absence of dissipation, g;; is a complex guantity but it has the
property of being Hermitian:

5.’;(]'10) = E:j(HO) + "Eﬁ(ﬂo) = E;:'(Hﬂ)' (4-6)
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Then, in a nondissipative medium, we have

E;J(HU) = 5}.‘(“0) = Efj(’Hn)

4.7

5:}(Ho) = '5;:(“0) = _5;}(41'10)- (47)
Thus the real part of the tensor is symmetric and is an even function of Hy,
and the imaginary part is antisymmetric and odd in H,. The dependence of &
on H leads to circular birefringence or the Faraday effect, while the depen-
dence of &/, on Hy leads 1o linear birefringence or the Cotton—Mouton effect.?
This can be illustrated with a medium of uniaxial symmetry, having H,
paraliel 1o the axis. In this case, the only nonvanishing elements of e are
£, = &, and g;; even in H, and e}, = —¢,; odd in H,. Diagonalization of ¢
in the coordinate system with orthogonal unit vectors e ,= (£ + i9)/ V2 and
yields the three diagonal elements e, and e, where ¢, = &), & £, are the
susceptibilities for right and left circularly polarized waves, respectively. Since
ey, <« e, the wavevectors of the two circularly polarized waves can be written

xx7

as
wje wye’ 1+ il
ki=;=(¢)(#) (4.8)
¢ ¢ o
and the circular birefringence in a medium of length /is
we”
(k,— k)= 2 (4.9)
ofel,

A linearly polarized beam propagating along 2 will have its polarization
rotated by an angle

oo a1

5 (4.10}

which is known as the Faraday rotation. On the other hand, since e (Hg) —
#;,(0) is generally different from €, (Hg) — &,(0), the linear birefringence in
the i-# plane is also altered by the presence of H,, known as the
Cotton—Mouton effect.

For sufficiently weak H,, the power series expansion of e(H,) yields

lw,Hy) = eP{e) + @ (0 +22) HHy + -
and
e(0H,) = ¢ @(w + ) Hy+ -+ (4.11)
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Again, £@ /4=, e /47, and so on, can be regarded as nonlinear susceptibili-
ties, although they now arise from the magnetic contribution.

Analogous 1o the electrooptical effects, the magnetooptical effects can also
be used for optical modulation. The Faraday effect or circular birefringence
causes the linear polatization of a beam traversing the medium to rotate. In the
low-field limit, the rotation is proportional to the applied magnetic field.
Again, the induced change in the dielectric constant or refractive index is
usually small { ~ 10~ /gauss for glass doped with a few percent of rare earth
jons), but the Totation resulting form the relative phase shift between the two
circular pelarizations can be few tens of degrees in a 1-cm-long medium with a
field of several thousand gausses. The Cotton—Mouton effect, however, is much
weaker and has limited applications.
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Optical Rectification and
Optical Field-Induced
Magnetization

Modulation and demodulation are commonly known processes at radio wave
and microwave frequencics. They form the basis of telecommunications, It is
natural to believe that these processes should also exist in the optical region.
Light modulation by electrooptical and magnetooptical effects has already
been discussed n Chapter 4. In this chapter, optical rectification producing dc
electric polarization and magnetization is considered.

51 OPTICAL RECTIFICATION

In the literature, optical rectification, which was among the first nonlinear
optical effects discovered," wsually refers to the generation of a dec electric
polarization by an intense optical beam in a nonlinear medium, The effect can
be seen directly from the nonlinear polarization

P0) = xP(0 = w ~ w): E(w)E*(w) (5.1)

with E{w) = €exp(ik~r — iwt). The nonlinear susceptibility x#(0 = v — @)
here governs the magnitude of the effect. In a nonabsorbing medium, the
permutation relation of x® relates x®(0 = w — @) to the clectrooptical
coefficients

A0 =w~w)=xBlw=0+0}=xF{e=0+w)
gD
= %rijk (5.2)

57
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in a principal-axis system. Thus, from the electrooptical coefficient 1y, the
- polarization generated in optical rectification can be predicted. In actual
experiments, (he induced de field or voltage, instead of P® s measured, but
the two are linearly related, Bass et al.' and Ward? performed optical rectifica-
tion experiments and measured XB0 =0 —w} for a number of crystals. The
experimental arrangement can be simple. A slab of crystal is oriented with its #
axis perpendicular to the two parallel faces of the stab. The faces are coated
with silver to form a set of condenser plates, An intense light beam is then
directed through the crystal in a direction perpendicular to | to generate PA0)
according to (5.1), and the induced dc voltage across the condenser plates is
measured. Let the dc dielectric constant of the crystal along i be g, and assume
that the beam intensity can be approximated as uniform over a rectangular
cross section s X ¢ in the crystal, as shown in Fig. 5.1. Then, following the
infinite plane approximation for condensers, the equations governing the d¢
fields are

Eod = E,(d— ) + Eyt

53
ey, = 6By + 47P (53)
and since there is no net charge on the plates
—E{w—s)= E,s. (5.4)
The solution of these equations yields a de voltage across the plates as
V= 4«(-’1—)P,.m
EgW
{535)

- 74,,(;:_‘;) p XBEAw)ER(@).

In the experiments to find xﬁ}l(ﬂ = w— w), both the voltage V {in the

o

+ =+

N T T L &
N

¥
E —":—— —P‘JT B
D
i<————s \LE

{
'+++++++w_‘___v_

Ep
+
a
Fig. 5.1 Experimental geometry for measurement of optical rectification.




Effective Free Energy Density 5%
mv/MW range} and the laser intensity must be accurately measured, The
results of Bass et al* and Ward? on optical rectification show that the identity
of (5.2) indeed holds within experimental error.

52 EFFECTIVE FREE ENERGY DENSITY

The time-averaged field energy demsity (U} in a nonlinear medium was
derived in Section 3.2, where we saw that we can obtain the polarization
P(w)in the mediuvm from the derivative of the effective free energy density
F=F0= —((U) = (U®))

(5.6)

if the dispersions of susceptibilities are neglected. Thus the effective free energy
density corresponding to a not very intense quasi-monochromatic wave ina
nonabsorbing medium subject to a dc electric field £, is*

F[E(“’)vEu] = FO(E,) - Ek[x;k(Eo)Ej‘(‘-")Ek(“’) + o ] (5—73}

If x ;4 (E;) can also be expanded into power series of Eq, it becomes

F=FO(E}+ FY+ F®+ -

F = — ZXjk(O)E?(w)Ek("’)-
Jok (5.7b)

FO= - E Xg;:Eo.‘Ej(W)*Ek(W)'

ik

The free energy density here governs both the electrooptical effect and the
optical rectification. From (5.6), the polarization induced in optical rectifica-
tion is given by

pPo IFD @) g
i =- 3E,, = E;X.jkEj (‘")Ek(“’) (5.8)
i

as is expected. The same X', in (57) and (5.8) is clearly responsible for the
linear electrooptical effect.

The above description can be extended to the magnetic case.™* For a not
too intense light beam propagating in 2 nonabsorbing medivm in the presence
of 2 magnetic field, the effective free energy density can be written as a power

*Note that Eq = limg_o3[(R) + EF (23]
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series of the optical field

F= Fy(Hy) ~ T, Ho) (@) Efw) + . (59)
o

In analogy to the electric case, [x,;(Hy) — x;;(0)] here governs the magneto-
optical effect. Then one also expects from M(0) = - dF/dH,, that there should
be a dc magnetization induced in the medium by the incoming light. Indeed,
this has been observed and is known as the inverse magnetooptical effect.®
For illustration, we assume a medium of uniaxial symmetry with light
propagating along the axis, say, the s-axis, 1t is well known that if the dc
magnetic field is also along 2, the two circular polarizations are the eigenmodes
of propagation. The effective free energy density can therefore be written as

F = By(Hg) = x. (Ho)iE (@) - x (H)IE_ () + --- (510)

where ¥, = Xz + X,y a0 X_= Xy — Xy T8, respectively, the linear sus-
ceptibilities for the right and left circularly polarized waves. Equation (5.10)
can be rearranged inio

F = B(Hy) — +[x.(Ho) = x-{ ) (|EL1* — |E_P)

311
_’HX+(HO)+x—(HD)](|E+I1+|E—12)+ ( )

with [x,(H,) — x_(H)! and [x.(Hp) + x-(Hy)] being odd and even func-
tions of Hj, respectively. The Faraday effect is now proportional to

aF 23

-—t = x,.{Hy) — x-(H

31E+|2 3|E,|2 x.+(H) x-( u)
(5.12)

=5+(H0)‘E—(Hu)

4q
as discussed in Section 4.2. We can also show

x:cx(HO) = xyy(H()) (5 13)

xoe(Hod = %20} = b3 (Ho) + x_(Hg) = x+(0) = x-(0)].

This magnetic field-induced susceptibility change is conmected to the
Cotton—Mouton effect. On the other hand, the optical field-induced magneti-
zation can also be derived from (5.11). With the optical field on, the induced
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magnetization change along 2 is given by

d
AM = —3—H0(F— K)
= AM; + AMcy, (5.14)
=18, . g
MMy = 5 g, O ) NIELE — 1E1),
and

1 4
Mo = 3 77 O+ X NIEE +IEP).

The term &M even in H, comes from the term responsible for the Faraday
effect in F, and A My, odd in I, from the Cotton—Meouton term in F. The
phenomena are therefore called the inverse Faraday effect and the inverse
Cotton-Mouton effect, respectively, As seen from (5.14), even if Hy = 0, the
inverse Faraday effect is nonvanishing as long as |E,|+|E_|, and is a
maximum for circular polarization. The light beam with |£,|* = |£_|* here
plays the role of a dc magnetic field and breaks the time-reversal symmetry of
the medium. The inverse Cotton-Mouton effect can, however, exist even with
linearly polarized light but vanishes for H, = 0 since 3{x, + x_}/0H; is odd
in Hy.

The eflective free energy density then allows us 1o predict the magnitudes of
the inverse Faraday and Cotton-Mouton effects from the measured Faraday
rotation and Cotton—Mouton effect in the medium. Physically, the Faraday
and Cotton—Mouton effects originate from circular and linear dichroism
induced by the dc magnetic field, but how do we describe the inverse effects?
This is the subject of the following section,

53 INVERSE FARADAY AND COTTON-MOUTON EFFECTS

Microscopically, the light-induced dc magnetization arises because the optical
field shifts the different magnetic states of the ground manifold differently
(known as optical Stark shifts), and mixes into these ground states different
amounts of excited states. Let the interaction Hamiltonian be

Hig = H, + A

o = 7e[r+E_(m)+r_E+(w)] (5:15)

From the time-dependent perturbation calculation, we find the perturbed



62 Optical Rectification and Optical Fiekd-Lnduced Magnetization

cigenstale as

[#) = |ndo + Blr}
EA LN 15# In 18
- pofg ]

and the optical Stark shift for [} as

sE - T [Kn’lamrr)oﬁ . 1<n'|»=e°1*|n>o#] (5.17)
wen Ao — ) Ae+ w,)

where kw,,, = E, — E,. To demonstrate the inverse magnetooptical effect, we
assume here a simple paramagnetic ion with only two pairs of states as shown
in Fig. 5.2. The ground | + m}) state is connected to the excited | ~ m”) state
only by the matrix element { — m'|r_|m) and the | — m) state connected 1o
the | + m’) state by { + m’|r,| — m), withr, = {x + iy)/VZ. In an applied
magnetic field along £, the Zeeman splittings for the two pairs are Tespectively
2gBmH, and 2gBm'H,, where £ is the Bohr magneton. The energy separation
between the pairs of states is A, 3 kT at Hy = 0. The dc magnetization of a
system of N ions per unit volume along Z is given by

M= —NgB{J

5.18
= — NgB(mIdim)p, + { = mlJ] = m)p.n]- 618

Here J, is the angular momentum operator and p , , are the thermal popula-

2gm Bty

__.——_L<+m'|

—L<*’”' Fig. 5.2 Energy ievel diagram' of an ideal
<—m| paramagpetic system with only two paris of
states connected by circularly polarized opti-

2gmpH, cal fields,
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tions in | + m} described by the Boltzmann distribution

o—F su/kT

Piem= e~ En/KT L g—E_n/kT {5.19)

with E , ,, = tgfmH, + AE .. Through its perturbation on €, and [m),
the optical field induces a dc magnetization
AM = M(H)) - M5, =0)
= AMP 4+ AMP, (5.20}
AMT = —Ngpm[(p, — o) —(eh — #" )],
and

AMP = — Ngf[{A{m))J(Alm))al + (A — m) LA — m))p® ]

where ¢, ,, = (0 4 n)ag,,.—0» and AM7 and AM® come from induced changes
in the populations and matrix elements, respectively. From (5.15) to (5.20) with
|AE , | < kT and |{m’|r,| — m)1? = |( — m'|r_|m)|?, we readily find

_ —2NgBm(AE, — AE_, }of 0",
kT

2NgBmpb Ly,
- - ler, | - 2
x{

AMT

hlw — w,)
# (o~ w)’ ~(gm + gm’) B2H;

hle+ wy)
(0 + ) —(gm + g'm’) 2]

(5.21)

X{|E,* - |E_*)

. —{gm + g'm’)BH,
B — @) —(gm + g'm') B2}

(gm + g'm’) BH, ]( 2 2 }
B+ 1)
hz(u + %)2 —(gm -+ g’m’)zﬁzH(,z
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and
AMP = - kNgBm'[(m'ler.| - m)[*

X({ -, !
ih(” — w) +{gm + gm”)BH)
+ 2
[A{w + wg) = (gm + g'm’)BH,|"

-
+
(A0 — @) —(gm + gm)BH,]”

0

+ Pm |ELJ - E_*
[#(w+ o) +(gm+ g )BH,|’ ( | )(5.22)

-0
+ m
["(W — ag) +{gm + 8’""')51{0]2

N -
[#la + @) ~{gm + Klm’)JBHnlz

[
+ L]
fi{w - wp) —(gm + g'm)BH, |’

Po—m } 2 2
+ T HUEL* HIE]
[R(w + ) +(gm + g'm)BH,] ( )

Since A M* arises from the induced population change in the ground siates due
o optical Stark shifts, it vanishes in a diamagnetic system which has only a
singlet pround state that is populated at ordinary temperatures. It is therefore
designated as the paramagnetic part of AM. Because of the finite relpxation
time for the population distribution to reach new equilibrium, AM? cannot
respond instantaneously to a short incoming light pulse. In fact, from the time
variation of AM?, one should be able to deduce the T, relaxation time of
the ground states. The A M® term arising from the wavefunction mixing by the
optical field exists even in & diamagnetic system and is designated as the
diamagnetic part of AM. It responds almost instantanecusly to the incoming
light. The paramagnetic part is proportional to 1/kT for |AE , ,| = kT, and
the diamagnetic part is essentially independent of temperature. This is similar
to the temperature behavior of ordinary paramagnetism and diamagnetism.”
Both AM? in (5.21) and AM? in (5.22) have been explicitly decomposed into a
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part proportional to (|E,{* ~ |E_|?) and a part proportional to (J£,° +
|E _1%). The former corresponds to the inverse Faraday effect, and the latter to
the inverse Cotion-Mouton effect. For light frequency far away from reso-
nance, the inverse Cotton—Mouton effect is much smaller than the inverse
Faraday effect. As seen from (5.21) and (5.22), the ratio of AMey, to AMf is
about [(g'm’ + gm)BH,/h{w — wy)| for the pa.ramagneuc part, and i3 about
Kg'm' + gm)BH/B(w — wy) or (g% — 0% )/ (sl + p%,,), whichever is larger,
for the diamagnetic part. It may become comparable to 1 when h(w — w,)
approaches the Zeeman splitting energy. However, close to resonance, the
induced dc magnetization due to optical pumping often becomes dominant.” Tn
actual experiments, the inverse Cotton-Mouton effect is distinguishable from
the inverse Faraday effect by the fact that with a reversal of the magnetic field
H,, 4 M, changes sign but AM, does not. Finally, we realize that (5.21) and
(5.22) can be derived from (5.14) if the microscopic expressions of x, and x_
for the system in Fig. 5.2, following (2.17) for x,,, are used. This is left as an
exercise to the readers. The above calculation for AM can of course be
generalized to a paramagnetic system with N ground states. In dense media, a
Jocal field correction factor should also be included.

The experimental scheme for observing the light-induced dc magnetization
is seen in Fig. 5.3. The light pulse induces a pulsed AM{(r) in the sample. The
time-derivative d(AM)/dt then induces a voltage across the terminals of a
pick-up coil around the sample. As an example, consider the case of
CaF,: 3%Fu?*. The Faraday rotation at A = 7000 A is 2 X 10™* rad/om-Oe
at 42 K. From (4.9) and (4.10), we obtain [8(x,— X_)/9H]y, -0 = 1.8 X
10~ ¢su/Qe. Then (5.14) predicts that with a circularly polarized ruby laser
beam of 10 M\i‘«v'/cm2 in the sample, the induced dc magnetization is AM =
AM, =7 X 10~ erg/Oe-cor’. This is equivalent to that induced by a de field
of aboul 0.01 Qe. If a Q-switched laser pulse with a 10-MW peak intensity and

A
Polarizer 5 Beam splitcer
Laser pulse Sampie
i .

Detector Amplifier

i A~

Qscilloscope

Fig. 53 Experimental arrangement for measurement of inverse magaetooptical effects.
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a rise ume of 2 X 1078 sec is used, and AM(r) is assumed to follow instanta-
neously the intensity variation of the laser pulse, then the voltage induced
across the terminals of a 30-turn pick-up coil will be 1.3 mv, This agrees with
the experimental cbservation of van der Ziel et al.,’ who demonstrated that the
inverse reationship between the Faraday effect and the inverse Faraday effect
indeed holds for many paramagnetic and diamagnetic substances.

54 INDUCED MAGNETIZATION BY RESONANT
EXCITATION

The dc magnetization can of course alse be induced by light through direct
optical pumping, and is generally much stronger than the inverse magnetoopti-
cal effect discussed in Section 5.3. Optical pumping by circularly polarized
light, for example, alters the population distribution in the magnetic sublevels
of both the ground and the excited states. A net angular momentum and hence
a magnetization result. Theoretically, rate equations can be used to calculate
the population redistribution and hence the magnetization induced by the
resonant optical excitation if transition probabilities and relaxation rates
between levels are known. Optical pumping in gases and selids has long been a
subject of extensive investigation. Polarized fuorescence is often a means for
detection of the induced orientation of the angular momentum in the medium.
With the setup in Fig. 5.3, however, il can also be studied by measuring the de
magnetization generated in the medium by the laser pulse.” This may be useful
in some cases for studying relaxation between magnetic sublevels in condensed
matter.
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6

Sum-Frequency Generation

Wave interaction in a nonlinear medium leads to wave mixing, The result is the
generation of waves al sum and difference frequencies. Sum-frequency genera-
tion is one of the first three nonlinear optical effects discovered in the early
days.! With the recent advances in tunable lasers, it has become one of the
most useful nonlinear optical effects in extending the tunable range to shorter
wavelengths. This chapter deals mainly with the basic principle of sum-
frequency generation.

6.1 PHYSICAL DESCRIPTION

Bass et al.! in 1962 first observed optical sum-frequency generation in a crystal
of triglycine suifate. In their experiment, two ruby lasers, with their operating
wavelengths 10 A apart, were used to provide the input beams. The output,
analyzed by a spectrograph, exhibited three lines around 3470 A, two side lines
ansing from second harmonic generation and the middle one from sum-
frequency generation by the two laser beams,

The physical interpretation of sum-frequency generation is straightforward.
The laser beams at «, and w, interact in a nonlinear crystal and generate a
nonlinear polarization P@(w; = w, + «,). The latter being a collection of
oscillating dipoles acts 25 a source of radiation at @, = w, + w,. In general, the
radiation could appear in all directions; the radiation pattern depends on the
phase-correlated spatial distribution of P*¥(w,). With appropriate arrange-
ment, however, the radiation pattern can be strongly peaked in a certain
direction. This can be determimed by phase matching conditions. As discussed
in Section 3.1, for effective energy transfer from the pump waves at @, and w,
to the generated waves at w,, in the sum-frequency generation (Fig. 6.1), both
energy and momentum conservation must be satisfied. The energy conserva-
lion requires wy = w, + wy, while the momentum conservation requires k, =
k; + k. The latter indicates that the sum-frequency radiation is most effec-

&7
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Fig. 6.1 Schematic description of sum-frequency generation.

tively generated in the so-called phase-matching direction defined by ky = k,
+ k,.2 I the wave interaction length / is finite, momentum conservation needs
to be satisfied only to within the uncertainty range of 1/7 The radiation
pattern should therefore be a finite phase-matching peak with an angular width
corresponding to Ak ~ 1/1. Absorption in the medium, for instance, can Emit
the interaction length and broaden the phase-matching peak. In general,
sum-frequency generation from the bulk, if allowed and phase-maiched,
dominates over that from the surface. In reflection, however, because of lack of
phase matching, a surface layer ~ A /2= thick could contribute significantly to
the output. This description gives a qualitative picture of sum-frequency
generation, which needs to be substantiated with a more formal treatment.

6.2 FORMULATION
The coupled wave approach discussed in Section 3.1 finds a direct application
here.? The three coupled waves are E(w), E{w,), and the sum-frequency
output E{w,). Each field can be decomposed into a longitudinal and a

transverse part E(w)) = E (@) + E (;). They obey the wave equations

tl'ra'miZ

VE, (o) + 2 [e(0) Blo)] = ~ 3PP ()

CZ
and
7 -[Eylw) + 47P{Hw,) + 4PP ()] = 0 (6.1)

where P(w;) = Py{e) + P (w), PP(wy) = * ey = —w; + w3): E¥e;)
B(w,), PP(a,)= Xy = w; — w1) 1 E(wy)E* (@), and PO (0w} = xP(asy
= &, + w,)  E(w,)E{w,). The general solation of (6.1} with boundary condi-
tions is extremely complicated. Fortunately, in real situations, reasonable
approximations often can be made to simplify the solution. To illustrate,
consider a simple case with the following assumptions: (1) all waves are infinite
plane waves; (2) depletion of energy from the pump waves can be neglecied;
{3) the nonlinear medium is semi-infinite with a plane boundary surface; (4}
the nonlinear medium is cubic, or the beams are propagating along a symmetry
axis. These assumptions are of course not essential, and in the appropriate
circumstances can be relaxed, as we shall discuss later.
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These assumptions drastically simplify the solution. Negligible depletion of
pump field energy means that the nonlinear polarization terms responsible for
wave coupling and energy transfer in the equations for E(w, } and E(w, ) can be
neglected. Thus the pump waves propagate essentiatly linearly in the nonlinear
medium with E{(w,} and E{w,)} governed by the linear wave equations. In the
infinite plane wave approximation we have in the nonlinear medivm Er(w) =
&irexplitkyr - v — 0,f)} and Er{w,) = &rexplikyr - ¥ — wyf)]. The only
equations left to be solved are those for E{w,) in (6.1) with P®(w,) =
PPexpli(ky, - ¥ — w3)] and k,, = k- + k. The solution for E(ew;) in the
medium is straightforward. It comprises a hemogeneous solution (a free wave
with wavevector k,;-) and a particular solution (a driven wave with wavevector

ky,),

2 2
E {w) = [Aer T + 4y # - 4n gils § pmiuge
c2(kf, — kir) g(ws)

(6.2)

where the amptitude A of the homogencous solution is a coefficient to be
determined from the boundary conditions, and we assume Epj(w;) +
4P {03) = (e )E7 (e29).

We now give a more complete description of the problem including the
boundary conditions.* Let z = 0 be the boundary plane separating the semi-
infinite nonlinear medium on the right and a linear medium on the left. All
waves are propagating in the x—z plane with wavevectors described in Fig. 6.2.
For cach w,, there exists in the linear medium an incoming field E,(w;) from
theileft and a reflected field Eg(w;} to the left, and in the nonlinear medium a
transmitted feld Ex(w;) to the right. They are related to one another by the
boundary conditions. An immediate consequence of matching of the field
components at the boundary is that at each w;, all the wavevector components
parallel io the boundary surface must be equal. This leads to Snell’s law of
reflection and refraction for the pamp waves. For the sam-frequency wave, we
have

kyre=kKapx = karn = Kag o (6.3)
In 1erms of the propagation angles described in Fig. 6.2, this relation becomes
Kygsin by = kypsinyy = Kypsin by
=k, sind
= k:nsin ;:T + kypsin fyr (64)

= k,,sind,, + k,sind,,.

Equation (6.4) can be regarded as the nonlinear Snell law, When the wavevec-
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Fig. 6.2 Description of wavevectors of various waves involved in sum-frequency
generation in a semi-infinite nonlinear medium with a boundary surface at z = 0.

- tors of the incoming pump waves are known, it determines the propagation
directions of the nonlinearly generated output waves.* To complete the solu-
tion, one must also find the amplitades of the output waves.

In (6.2), FP(w,) = x@: &7&,¢- For 2 given nonlinear medium, 2 is
prescribed, and &, and &, are related to the incoming pump field amplitudes
by the Fresnel coefficients. The only unknown in the expression of Ex(wq) in
(6.2 is the coefficient A. Then we should also consider the incoming and
reflected waves at w,, described by E,(w;) and Eg(«w,), respectively, in the
linear medium

E{w) = &g
and
Ej(w;) = &pe@orTmen, (6.5)

The incoming field amplitude &, is given, but the reflected field amplitude &5
is to be determined. Thus there are two unknown coefficients, A and &5, to be
fixed by the boundary conditions. Clearly, the requirement that both electric
and magnetic field components parallel to the surface must be continuous
provides enough relations to solve for A and &, 5. We postpone the solution to
a later section, considering first the case of sum-frequency generation in the
bulk.
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6.3 SIMPLE SOLUTION OF BULK SUM-FREQUENCY
GENERATION

We are interested here only in sum-frequency genmeration in the bulk of a
nonlinear medium, as described by the growth of Er(w;) along Z in Fig. 6.2.
Since the growth of the sum-frequency field is generally insignificant over a
distance of a wavelength, the slowly varying amplitude approximation dis-
cussed in Section 3.3 is applicable here. With Ep(w,) = &;7(2)explitkyy - T —
wyt)], (6.1) then takes the form

3 i2mod P Akr
a_z€3T,¢ (z)= k—;z?ﬁ)e ak
Mz (6.6)

d i
:,J,-Z‘{e"(w])ﬁr!" + 4”‘?3(?2 A"“} =10

where
Ak =zAk =K+ Kyr — Kar (6.7)

is the phase mismatch. Solution of (6.6) vields

2wl i
&, (2) =&y (0) + 2—393(?(9; ak: 1y
kyy Ak
4 PP (6.8}
&y (2) = &7 (O C T i dks 1),
3T 51, (0) o) {

As a further approximation, we may neglect the effect of nonlinear polarization
on reflection and refraction at the boundary. Then, &,,(0) is directly related 1o
the incoming field &,{0) through the Fresnel coefficients.

The intensity of the generated sum-frequency wave at z is given by

fvs(“’a)

I;(Z) =T |631‘(Z)|1- (6.9)

The corresponding output power is obtained from the integration of 1; over the
beam cross section, Herxe, the finite beam cross section seems to be in conflict
with the infinite plane wave assumption, but as is well known, if the beam
cross section is sufficiently large, then the ray approximation is valid, and each
ray can be treated as an infinite plane wave. Thus with I, depending on the
transverse coordinate g, the total output power at w, is

Pos, 2} = [L(z.p)dp

T {6.10)

5 J1€sr(z. 001 do.
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A case of practical inierest occurs in the absence of an input at w,, that is,
€;; = 0. In the present approximation, &,7(0) also vanishes. Then for |k,/Ak|
1, we have |87} < |7, | and the intensity J; following (6.8) and (6.9)

* takes the form

2
2703

13(2) ig}(?lz[sin(ﬁkz/l) ]2 2

Ak z/2 (6.1}

T e{105) cos?hyy

As shown in Fig, 6.3, I; versus A% z given here peaks strongly at phase-match-
ing Ak, = 0. The peak value is

[N = Ot (612
and the half-width between the first zeroes is
(Ak )z = (A;‘B)T“W kyrz = 2m. (6.13)
i

—3rfs -2n/z -7z i 2miz 3niz
Ak

Fig. 63 Sum-frequency output as a function of the phase mismatch Ak near Ak ~ ¢,
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For z = 1 ¢m, kyp ~ 10% ¢cm™! in a typical example, we find (Ak )y /K7 ~
167*, which indicates that in terms of Ak, the phase-matching peak is often
extremely narrow.

The calculation of sum-frequency generation in anisoiropic media requires
slight modification. First, since P{® in the second equation of (6.1) is usually
negligible, £, (w,)/E;, (w;) = tanw; is a constant determined from linear
wave propagation, where a, is the angle between Ex(w,) and Er | (w,). With
the infinte plane wave approximation, and the slowly varying amplitude
approximation, (6.1) becomes
1 oros?
Rms o Plgishs (6.14)

d
L2y —
325 (2) k3 o 7cos%

where &;; is the unit vector along &y, The solution of (6.14) is

v
27wy

——— P -1 6.15
Koy Akccos’ay i FNe ) (615)

Hip{(z) = & (0) +

Within the range of our approximation, (6.15) is consistent with (6.8) for the
isotropic medium.

64 SOLUTION WITH BOUNDARY REFLECTION

~
In the more general selution of {6.2) and (6.5), E;(w,) can be rewritten in the
form

Ep(wg) = &7 (2) efrr—wsn

()] +4”—“’§9'“’(e" s -1)
3,1 = G, K2, - k3 it (6.16)
4u P
JJT,I\ = 3T.IE(0) - 3 (el akz _ 1)
g {w;)

with &, (0) = A + Amd P2/ (k3, - k%) and &y (0) = —47:'.?3(1?/
g;(wy). We then notice immediately that if the approximation

k%: - k32T = (k]J'.Z + k3T,z)Ak

6.17
= 2kyp, Bk (617)
is used, (6.16) reduces to the simplified solution in (6.8). The above approxima-
tion is excellent when Ak is small, or equivalently, when the output in the
backward direction with A% ~ &, can be neglected. As pointed out in Section
3.3, the latter is just what the slowly varying amplitude approximation means.




L7 Sum-Frequency Generation

In finding &,.(0), however, the more correct solution should include the

effect of nonlinear polarization on boundary reflection of the sum-frequency

. wave. By requiring the tangential components of electric and magnetic fields be
matched at the boundary z = 0 (see Fig. 6.4), we find*

4l
S 0y =4, + T
7 7 Cz(kgs - kiz?")
=&y, 6y,

4nu} PP

yrcosbyp A, + k3,008 8y, 2 = kaeos Ba{ 8y, — Eir,

(k3 - k!r)

41:':.:%@{‘_’1’ cos By
"z(kgs —kir
B 4rPDsin b, (6.18)

glw)
= (511.:. = &yp.0)c05 835

&y (0) = Ayoos byr +

41d7f) ,
2012 2
< (kls - ksr}

kyrdy + Ky, = k3a(irn + E1n)
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Fig. 64 Schematic diagram describing the incoming and reficcted sum-frequency

waves in the linear medium and the transmitted sum-frequency waves in the nonlinear
medium. The boundary surface between the two media is at z = 0.




Sotution with Boundary Reflecti 75

where the subscript 7 denotes components in the plane of incidence. This set of
four equations can then be used to find the four unknown coefficients 4,, A,

&g, and &5y ;. The result is

1

4= keyr0s oy + k308 B3

X [Zk“cos&mv’”J

(k3,008 8y, + kyzeos By Mawd 257
(&3, - kir)

1
A= kypcos Byr + karcos g
Ak, P Dsin )y,
X2k Gy + ———
[ 3RC0S U3par E“(w]) (6.19)
(05 By, + ks 008 BpYAmai P
(K3, - kir) |
P S
Wy T kreos Oy + kopeos By

X [(kmcosﬂm — k3rcos 931)‘;3:,_?

(k3,005 83, = kyroos by )4l PP
fz(kzls - klz'r) '
and

S S
IR feopo0s By + Kypcosfyp

X [(k,,-cos Oip — koageos B30 &y

_ {kspoos 8y, ~ kyLos A . 4k PiDsin by,
(k3 - ki g{ws)

With A and &,; known, the solution in (6.2) and (6.5) is then complete. It
shows that even in the absence of an input, &; = 0, both &, and &;,(0} are
nonvanishing because of the nonlinear polarization effect on reflection and
refraction. In fact, the reflected sum-frequency wave is easily detectable.” It can
be shown that &(0) = 0 and & is about kz times smaller than &57(z) at
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phase matching. Thus the refiected sum-frequency wave is essentially generated
by the nonlinear polarization in a surface layer of the order of A/2w thick.
With some modification, the solution here for a cubic nonlinear medium can
be extended to anisotropic media.

6.5 PHASE-MATCHING CONSIDERATIONS

As shown in Fig. 6.3, the bulk sum-frequency generation is strong only when
|Akz| < 1. The phase mismatch, Ak, defines a coherent length, /, = 1/Ak. If
the length of the medium ! is below [, the sum-frequency oukput increases
more or less quadratically with [, If [ > /[, the output tends te saturate and
may even decrease as / increases. For efficient sum-frequency generation, we
must therefore have [, sufficiently long, of the order of at least a few
millimeters in practice.

In actual experiments, to avoid reduction of the effective beam interaction
length due to finite cross sections, collinear phase matching is required;

Ak =kt kypr— kyp=0. (6.20)
In terms of the refractive indices n{w,), (6.20) can be written as

o fnley) = nlw)] + e ale) = n{e;)] = 0. {6.21)

Clearly, for isotropic or cubic materials with normal dispersion r(sw;) >
{n(w,}, n{w,))}, this relation can never be satisfied. Therefore, collinear phase
matching can be achieved only with (1) anomalous dispersion or (2) birefrin-
gent crystals.? In the latter case, the medium should be a negative uniaxial
crystal with n,{w,) < ny(w,). By choosing the wave at «w, to be extracrdinary,
it is possible to find [n,(w;) — 2(w)] and [n,(w,) — n{w,)] with opposite
signs so that (6.21) can be satisfied. Two types of collinear phase maiching are
commonly used. In Type I, both n(w,} and n{w,} are ordinary or extraor-
dinary, while in Type II, gither r(w,) or n(e,) is ordinary.

6.6 EFFECT OF ABSORPTION

Absorption is detrimental to sum-frequency generation since it limits the
effective interaction length to roughly the attenuation length, It also broadens
the phase-matching peak and lowers the peak value. This can be seen by
including absorption in the derivation in Section 6.4. With absorption, the
wavevectors become complex: k = k" + i, where B is the attenuation coeffi-
cient, Equation (6.14) changes into

'2""’§ éw.yBQ)e!Ak'H:BlﬁBzr)z {6.22)

a
(E + Bar}ﬂfsr(z) " kg, covtay
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with
Ep(03) = dyp(z)eltim o,
The resulting solution is

2nwiesr P
ki ot |1k’ — (Bir + for — far ] (6.23)
X [er'ﬂk’z—(ﬂu*ﬂzr)l — e-ﬂm]_

&r(2) = &7 (0)e B +

If the absorption at either the pump frequencies «, and w, or the output
frequency w, is appreciable so that

Ieiﬁk'!"(ﬁlrﬂ?:r)l - e"ﬂ:rxll =1,
then the output intensity can be approximated by

2l PP

cyfe(w, } vos?fyreosar, [(Ak‘)2 + ,82]

I,(z) (6.24}

where B =By + By with B3y ~ 0 or B =By with By + Br~ 0. The
phase-matching curve I, versus Ak now takes on a Lorentzian shape with a
half-width 8. Compared with the zero absorption case, the peak value here is
independent of z and is reduced by a factor of 1/8%z%. This shows that with
absorption, the effective interaction length is reduced 1o 1/8, which is just the
attenuation length. When both (8, + f,7) and B, are appreciable, the
output intensity even decreases exponentially with 2.

6,7 SUM-FREQUENCY GENERATION WITH HIGH
CONVERSION EFFICIENCY

We saw in earlier sections that at perfect phase matching, the output power of
sum-frequency generation in a nonabsorbing bulk medium is proportional to
2, the square of the length of the medium. Then as / — oo, the output power
would increase without limit, in violation of energy conservation. This is the
consequence of the assumption of negligible pump power depletion, which is
not valid when the output becomes significant compared to the pump. The seq
of three coupled equations in (3.4) or (6.1) must now be solved together to find
a complete solution.

For sum-frequency generation with high conversion efficiency, the following
conditions usually exist: (1) the coupled waves are collinearly phase matched;
(2) the medium is nearly lossless; and (3) the slowly varying amplitude
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approximation is valid. The coupled equations can therefore be written as
[similar to (6.14)}

;)2
3y iwy

=—— K &% 8,
- oy 050, 1%17%31
(6.25)
&y il
— = 7!( &by,
3z ;7 <05 2917%r
and
ag‘ —_
*= K5
oz kn cos’a,
with
2w L
K, = T‘?IT xP (w0 = —wy + w0y} dyréyy,
Im, s 2
K= C_‘-’zr Xm(“’z =y @) eyréiry
and

2a
= 5wl — *.53 3
Ky= e G Xy =0y +u0,)7 1 8,58

From the permutation symmetry of X in a lossless medium discussed in
Section 2.5, we find K, = K, = K, = K. Equation (6.25) can be solved exactly.®
First, we can easily show from (6.25) that the total power flow ¥ in the
medium,

1 1 3 2 1 2
W | B goseldi® | ko costagldyy| 4 far £os’ey |8y
27 W, wy w3

(6.26)

is a constant independent of z. This is also known as the Manley-Rowe
relation.® Then the number of photons created at w, must be equal to the
numbers of photons annihilated at w, and w,:

lng(O [ ()1 (O — 6 ()1
iy - - ey o i 2T

- &5 (2))° = 187 (0)

Fiwy

(6.27)
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In solving {6.25), we define

) el o057y v
u e = (W) & r{z).
1

kyr L0570 v
u,e'® = &r(2),
2 ( Voot W ) 2r(2)

2 2, Y172
. ck 5%
e = (_ﬂ".&) &, (2).

2eiW {6.28)
(2} = ¢3(z) = #1(2) — & (),
¢ - 2eWealkolad sz
ey kap ko, Losmcostacosta, '
m, = u3(0) + ud(0) = ui + 13,
= “3(0) +uf(0) = uf + uf,
and
My = uf(0) — u3(0) = of - uf.
Equation (6,25} becomes
di
af}l —uyuysinf,
d
di; = —uyusind, (6.29)
du
Ffj- = uju,sinéd,
and
3—? = Kcotﬂ I.u(uluzu])

The last equation in (6.29) can be integrated to yield

uuucosf =T

where ' is a constant independent of z. Then by eliminating sin # in (6.29), we

find

duf  dul

Fi *7‘: T = 2[u1u2u3 }1/2 {6.30)
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The choice of sign “+" or “—" in {6.30) depends on the initial value of §. The

general solution of (6.30) is given in Ref, 3.

. We consider here the frequently encountered case where the boundary
condition is &7(0) =0, or w;(0) =0, which leads to T'=0 and # = #/2.

Equation (6.30) becomes

d" = 2[w2(my - ud)(m, — u2)]' {6.31)

The solution takes the form of a Jacobi elliptical integral

*=ﬁﬁ[qhﬁ)] m( "o ”

_ 1 f“)/“z(m dy
1(0) hus@ i [(1 - p2)(1 - y22)]

(6.32)

assuming m, = u(0) > m; = u3(0) and y = u,(0)/w,(0). From (6.32) and
(6.28), we find the intensities of the three waves as

3(8) = 1w} (Osn® [10)8, 7]

6.33
() = (0} - u3O)se [ 0)5, ], @33
and
uf (£} = #f{0) — u3(0)sn* {4, (0}, ¥].
The elliptical function sn?[,(0)3, v] is periedic in § with a period
& . (6.34)

B ul(o)‘ll; [(1=¥3)(1- Y2),12)]1/1

Physically, this indicates that as the interaction length increases, energy is
transferred back and forth between the wave at w, and the waves at w; and w,
with a period L. While the process first pumps energy into the sum-frequency
field, it reverses the energy flow after photons in cne of the pump waves are
depleted.

A simple case of physical interest is the up-conversion process used, for
example, 1o convert an infrared image to the visible. It often occurs with
{0} = u,(0) and u,;(0) = 0. Since y <« 1, the elliptical integral of (6.32)
reduces 10 a simple form and we find

u§(§)= 3(0)sim? [, (0],

W2(£) = u2(0) — w3)sin? [ (0}3], (6:3%)

and
up(§) = w0} ~ u(0)sin* fue (0)8] = 1 (0
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They are plotted in Fig. 6.5, which shows explicitly the periodic variation of
energy flow back and forth between the waves at w, and w,. In this case, the
depletion of the pump field at o, is negligible. Therefore, the solution in (6.35)
can also be obtained from (6,25) by letting &, be a constant.

Another case of interest is when u,{0) = #,(0} so that y = 1. The solution
becomes

(¢) = uf (O)tant? [, (0)5],

(6.36)
#(§) = w3 (§) = uf (O)sect? [ (0)¢].
It shows that the period of interaction L is infinite. As.{ — oo, we have
W) = w,(0) and u)(§) = uy({) — 0. This applies to the case of second
harmonic generation, which we discuss in more detail in Chapier 7.

The foregoing discussion is based on the assumption of infinite plane waves.
In reality, the beam cross sections are finite with intensity variation over the
transverse profile. Accordingly, the results here have to be modified, using, for
example, the ray approximation. As a result, complete depletion of photons in
any beam is impossible. Focused beams are often used in actual experiments to
increase the laser intensity, and the theoretical treatment of the problem

N
A

1072 =

—_— wy
——
S——

-

INITIAL DISTRIBUTION
5320 ny/n=0.01

RELATIVE NUMBER OF PHOTONS

[l

e T T

Fig. 6.5 Relative numbers of photons, as a function of z, in the three coupled waves
with perfect phase matching {w, = w, + w;, k; = k; + &) in an up-coaversion pro-
cess. The initial distribution of the photons in the three waves is 7, = 100 n; and
n, = 0. (After Ref. 3)
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becomes more complicated. Boyd and Kleinman' have worked out the case
with negligible depletion. Here we simply refer to their work and postpone our
discussion on focused beams to the next chapter.

6.8 A PRACITCAL EXAMPLE

In most applications, efficient sum-frequency generation is desired. A number
of rules should therefore be followed :

1 A nonlinear optical crystal with litile absorption at w,, @,, and w; is first
chosen. It should have a sufficiently large nonlinear susceptibility x™® and
should atlow collinear phase matching.

2 The phase matching directions in the crystal, generally in the form of a
cone, are determined from the known refractive index tensor of the crystal.

3 The particular phase-matching direction with the appropriate set of polari-
zations for the three waves is selected to optimize the effective nonlinear
susceplibility x 3} = &,-x®: &,2,.

4 The length of the crystal is finally chosen to give the desired conversion
efficiency.

We consider here a practical example of sum-frequency generation in a
KDP crystal with the pump beams at A, = 5320 A and A, = 6200 A. The
sum-frequency generated is at A, = 2863 A. The ordinary refractive indices of
KDP at room temperature are mo(w,) = 1.5283, n,(w,) = 1.5231, and ng{w;)

= 1.5757. For a beam propagating in a direction at an angle away from
the optical axis, the extraordinary refractive index is given by

@) - el )10l 2)
ne( i ®] [né(m‘)sinl@ +Hfm(w,-)cosz®]u2

with () = 14822, n,,,(w,) = 14783, and r,,,(w,) = 1.5231. For type 1
phase matching, we have from (6.21)

"e("’a’@) "o(“’l) + "o(wz)

= 1.5258

from which we can find
@ = sin1 Hem(w3} [ nf(w;) = ni(wy)
n () n3(w,) — ni,(wy)

=76.6°.
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Let the waves be propagating in a plane at an angle ¢ from the X-axis of the
crystal. In the X—Y-Z coordinates, the three polarization vectors are

& =& = (sin®, —cos®,0)

é = (—ws@ cos P, —cos@ sin‘b,sin@ )

The KDP crystal has a 4 2-m point group. Its nonvanishing x'» elements are

xfhz = xPhz = xGy = xBx = 26 X 107 esu

and

and
x By = x%hy = 2.82 X 10~ % esu.

The effective nonlinear susceptibility* for type I phase matching is
X% = 8y xP: ey = —xPrysin(®) sin 20
= —2.74 X 10~ %sin 2 esu.

To optimize jx$)|, we must choose @ = 45°. Finally, in the limit of negligible
depletion of pump power, the output power is, following (6.12), given by

Bvrswf @22 L% L8
iz A

T e e

=4x 10'“22(—P114P2) MW,

where A4 is the beam cross section in square centimeters, z in centimeters, and
we have used the approximation P, = I, 4 in megawatts,

6.9 LIMITING FACTORS FOR HIGH CONVERSION
EFFICIENCY

As a nonlinear effect, the output power of sum-frequency generation is
expected to increase with the pump intensity if the pump power is kept the
same. This seems to suggest that a tighter focusing of the pump beams should

*The expressions of x & for type I and type Il phase matching for the 13 uniaxial crystal classes
can be found in Ref. 8.
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be used to attain higher conversion efficiency, as long as the longitudinal focal
dimension (the confocal parameter) is longer than the effective interaction
length. There is, however, a limit to the focusing one can use. First, 100 high a
faser intensity leads to optical damage in the crystal, Then, the reduced beam
cross section due to focusing may decrease the effective interaction length even
for collinearly propagating beams. This occurs in an anisotropic crystal. For
and extraordinary wave, the directions of wave propagation and ray {(energy)
propagation are generally different. Therefore, although the waves are propa-
gating collinearly, the rays are not. “Walk-off" of the rays effectively decreases
the interaction length.

The walk-off effect can of course be (minimized it the beams are propagating
in a direction along which the wavevector and ray vector are parallel. This may
be achieved for sum-frequency generation in a uniaxial crystal in a plane
perpendicular to the aptical axis, and is known as 90° phase matching. Such
phase matching has been found possible in many crystals over a certain
frequency range by temperature tuning.

The poer beam quality also reduces the conversion efficiency. A multimode
Jaser beam can be considered crudely as a beam with hot spots. The small
dimension of these hot spots increases the walk-off’ effect and decreases the
interaction length. Therefore, for high conversion efficiency, beams with TEMgo
mode should be used.

Good crystal quality is also important for efficient sum-frequency genera-
tion. Inhomogeneity prevents perfect phase matching thronghout the erystal.
Since |Akz| < 7/2 18 needed for efficient energy conversion, the tolerable
fuctuation of the refractive index due to inhomogeneity is An < A/4z = 25 %
1075 for A =1 pm and z = 1 cm. This means that the requirement on the
crystal quality is stringent. For the same feason, temperaturs uniformity
throughout the crystal length is also important. For a typical case with
dn/dt = 5 %X 107%, a temperature stability of AT < 0.5 K throughout the
crystal is necessary 1o achieve An < 2.5 % 1073, This discussion generally
applies to all mixing Processes.
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Harmonic Generation

In the history of nonlinear optics, the discovery of optical harmonic generation
marked the birth of the field.! The effect has since found wide application as a
means 1o extend coherent light sources to shorter wavelengths. This chapter
summarizes the important aspecis of harmonic generation. As it is a special
case of optical mixing, most of the discussion in Chapter 6 can be applied here
without much modification. The application of harmenic generation to the
measurements of nonlinear optical susceptibilities and to the characterization
of wltrashort pulses is also discussed.

7.1 SECOND HARMONIC GENERATION

“The theory of second harmonic generation follows exactly that of sum-frequency
generation discussed in Chapter 7. With w, =, = @ and w, = 2w, the
derivation and results in Sections 62 to 6.6 can be applied directly to the
present case. In particular, the plane wave approximation with negligible pump
depletion yields a second harmonic output power

32’

- me i’ (Ak 2/2) P2{0)
Plo) e(w)el2w)

51
85, X P €.8,1%° . (71)
? (Akzs2f A

For collinear phase matching in a crystal with normal dispersion, we must
have, following (6.20), either

n, (20} =m(w) (typeD) (7.2)
or

n 2o} = ilng(w) +n (@) (ypelD). {1.3)
86
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The calculation in the limit of high conversion efficiency requires slight
modification. Specifically, for type I collmear phase matching, the permutation
symmetry of x®@, following (2.30), gives

2T . oa
K= gl P20 =w t+ w):é g,

(7.4)
=11é P w=—w+2w): 8,8,
The coupled equations of {6.24) reduce to the form'
94, _zxg &y
3 k, costa,
. (15)
3, _ —t(Zm) K.

dz by, o087y,

The conservation of power flow and the conservation of the number of photons
in (6.26) and (6.27), respectively, become

k, Los ‘a,|f, £ kzu,zwsz"z..,lgzmﬁ
2w w 2w

18,00 — 18P _ , 1u(2}1 = 15, (O
Ao ’

2hw

W_

(76)

Using the definition of u, and u;,, (u; and u; in {6.28) with w; = w; = w and
wy = Zw], we obiain

du,,

d—f = = Zuuuiusinﬂ
and
P
L{’ = ulsind (7.7

If we assume t,,,(0) = 0, then # = /2, and the solution takes the form

u,(§) = (O)sechlﬁ v (0)],
u, {§) = \/_ ,.,(O)tanh[v'fu“(ﬂ ] {71.8)
The second harmonic output power is then given by

Py (2} = P, (O)tan?[C(P, (0)/4)" "] (19)
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where © = K(2w/ yeX2me/ Ve )2, assuming, for simplicty, &, .= k,
= 4k, = tko, , and o, = a5, Following (7.9), Fig. 7.1 shows how Py,(2)
increases with z at the expense of P,(2).

As a practical example, we consider the use of KDP as a second-harmonic
generator for a Nd: YAG laser beam at 1.06 pm. Using the same calculation
as in Section 6.8 with ng{w) = 1.4939 and n.(20) = 1.4706 at room tempera-
ture, we find that for type I collinear phase matching, the beams should be
propagating in a direction at an angle = 40.5° away from the Z-axis of
the crystal. The pump field should be linearty polarized in a plane bisecting the
X—Z and Y-Z planes in order 1o yield an optimum x@ = xZy(2w)sin
= 15 % 10-* esu. With the plane wave approximation, the efficiency of
second harmenic generation, following (7.9), is

i[5

A
(7.10)

= tanhz{4.7 X 10-2[5“15—0)]l/zz} (®, in MW).

As seen from (7.10), the efficiency # reaches 58% when [P (03412 =
21yMW , or P(0)/4 = 18 MW /e for z = 5 cm. In an actual experiment, 1
is often less because of the finite dimension and transverse intensity variation
of the pump beam. An efficiency as high as 40% with giant pulses or 85% with
ultrashort pulses has, however, been achieved.? The foregoing calculation does
indicate that in order to have an appreciable conversion efficiency {1 > 10%}
in a crystal like KDP, a pump intensity of the order of 10 MW sent is needed

—— FUNDAMENTAL
-~ —.—2nd HARMCHNIC

NORMALIZED AMPLITUDE
3]
T
N,

ol-/— ! )
t 2t z

Fig. 7.1 Decay and growth of the normalized fundamental and sccond harmonic
amplitudes, respectively, for the perfect phase-matching case. (After Ref. 1)
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with a crystat length of a few centimeters. (A much longer crystal is seldom
practical) In general, higher pump intensity leads to a larger n, except in the
limit of very high conversion efficiency.’ For a low-power pump beam,
therefore, focusing is generally used to increase # and hence the second
harmonic output.

Focusing, however, increases the walk-off effect, but as mentioned in Section
6.9, it also increases the spread of the beam propagation. The spread hurts the
conversion efficiency as a portion of the beam now deviaies from the exact
phase matching direction. For type I coilinear phase matching at the angle
@ , for example, it can be shown readily that a small deviation Af of the

beam propagation direction from @ leads to a phase mismatch®

\ 1 1
Ak = Lk n} —_— sin 2 Ab. 711
%unu(w)[nz(m nww)] in2(%) (11)
With Akl = = being the half-width of the phase-matching peak, the acceptance
angle about one can allow for beam convergence is, from (7.11),
i ni(2w) 1
Al = . .12
" [ng(zw) — (2 | s 2(@) 01

For a KDP crystal with {=1 ¢m and @ =45° at A, = 106 pm, the

a ance angle A8, is only 2.5 mrad. Equation (7.12) shows that Ad diverges

as approaches 90°. This occurs because the higher order terms of &8

were neglected in (7.11). The correct result for @ = 90° is, assuming
no{2w) ~ n(2w),

AD. = n,(2w) v

4 kd[ngl2w) - n,(2a)] |

For a 1-om KDP crystal at &, = 1.06 pm, the acceptance angle is 36 mrad,

which is an order of magnitude larger than in the previous case. The large

acceptance angle for 90° phase matching is clearly advantageous if beam
focusing is used in second harmonic generation.

(7.13)

72 SECOND HARMONIC GENERATION BY FOCUSED
GAUSSIAN BEAMS

Single-mode laser beams usually are required for efficient second harmonic
generation. The conversion efficiency may be greatly enhanced by focusing of
the pump beam into the nonlinear crystal. At the focal waist a single-mode
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beam has a Gaussian intensity profile described by exp(— p*/ W) with W
being the beam radius. The longitudinal dimension of the focal region is
defined by the confocal parameter b = kW as the distance between two
points on the focusing axis where the beam radii are 2 times larger than that
at the waist. Within the focal region, the beam has approximately a plane wave
front, so that the plane wave approximation can be used.

We consider first the case of negligible double refraction or walk-off effect,
¢.g., the 90° phase-matching case. Obviously, if the crystal length / is smaller
than the confocal parameter &, the conversion efficiency for second harmonic
generation can be described by the result of plane wave approximation in

(7.10) with 4 = # W2,
P, 0]
n= tanh’{c[—w%z l b (7.14)

Here, as long as b >/, tighter focusing should increase P,(0)/7W7 and
improve the efficiency. H & < {#, however, the approximation breaks down, and
tighter focusing tends to reduce the efficiency. Thus optimum focusing occurs
when the confocal parameter is about equal 1o the crystal length, b ~ /. Boyd
and Kleinman® studied the focusing problem in detail with numerical calcula-
tion. They introduced an efficiency reduction factor Ay (£) with & = {/b 1o take
into account the effect of focusing on the efficiency®> They find

CP,(0)k ho(£) |
—=

7 = tanh? (7.15)
The function A4(£) is plotted in Fig. 7.2. For § = I/b < 0.4, we have Ag(§) = £,
and 7 in (7.15) reduces to the form in {7.14) as we expected. In the tight
focusing limit, £ > 80, the function Ay(£) takes the asymptotic form Ay(£) =
1.187%2/¢, and the efficiency drops rapidly with increasing §. The maximum
value of hy(£) = 1.068 appears at £ = 284, with k()= 1 in the range
1 < ¢ < 6, This shows that although optimum focusing cccurs at b = [/2.84
for given I, the efficiency will not decrease appreciably even if b = I

With double refraction, the situation is more complicated, Boyd and Klein-
man showed that in the limit of low conversion efficiency, (7.15) is still valid if
ho($) is replaced by BB, §) [A(0, §) = Ao(£)], or

g o Sl (B, E)

T

(7.16)

where B = 1p(k_I)* is a double refraction parameter, and

= -1 "2(",) 1 —_ 1 i
S [ni(Zu) na(zw)]m@}
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Fig. 7.2 Efficiency reduction factor h{B, &) versus £ = I/b at various values of the
double refraction parameter B. {After Ref. 4)

is the walk-off angle between the Poynting vectors of the collinearly propagat-
ing fundamental and second harmonic waves along a direction at an angle

away from the optical axis. The function k{ B, £) for several values of B is seen
in Fig. 7.2. Note that k(B, {) depends only weakly on § near its maximum
h\( B). The latter can be approximated to within 10% by the expression’

hy(8) = < T hy ©) {717}

4B7/7 )k (0)

with b, (0) = 1.068. This equation together with (7.16) indicate that the
efficiency reduction due to double refraction becomes appreciable when
(487 /m)h ,,(0) ~ 1. We can define an effective length

o _._®
N kpthy(0) kst

Equation (7.17) becomes

(7.18)

hy(B)= Th‘-g?(;%;' (7.19)

This shows explicitly that when /¢ = ! in the presence of double refraction, the
efficiency for second harmonic generation with optimum focusing reduces by a
factor of 2 as compared to the case without double refraction. When /g < [,
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this efficiency becomes

C2P {0}kl qoh o (O
Mot = Lﬁ:lf‘fL{l (7_20)

The effect of double refraction on 7, is insignificant only when [ < /. These
results do not depend critically on focusing as long as k(B, £) = &, (B).

COmne can use a more physical argument to understand these results. Because
of double refraction, the phase-matched fundamental and second harmonic
beams can overlap only over roughly a distance, I, = Wy/m /p, often known as
the aperture length. For optimum focusing, we like to have [ = & = & Wy, but
to avoid reduction of efficiency by double refraction, we must have / </,
= {i/k, p*, which leads to I<lq=w/k,p* which is the same result
described in the preceding paragraph.

This discussion assumes that the laser intensity in the crystal is not limited
by optical damage. This is of course not always the case. As an example, let us

720
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Fig. 73 Fundamental wavelength versus crystal temperatare at 90° phase matching
for some of the KDP isomorphs. (After Ref. 6.)
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assume a crystal with n =15, /=1¢m and p = 30 mrad at A, = 1.06 gm.
Then, B = 3.65, and from Fig. 7.2, #(B = 3.65, £} = h, (B) for 0.2 < { < 10.
Since /.y = (.04 cm is much less than /, we have h,(B) = 1.q/1, and according
to (7.20) 4 o /. Comparing with the case of no walk-off and optimum
focusing b ~ {, we have 5,_, o /, and hence, %,_o/%, = Il = 2np*l/h =25
This shows that it is of great advantage 1o use 90° phase matching to avoid the
walk-off effect. The 90° phase matching for second harmonic generation can be
achieved by temperature tuning in many crystals. In Fig, 7.3, the 90° phase-
matched wavelength as a function of temperature is shown for a nember of
KDP isomorphs.®

7.3 THIRD HARMONIC GENERATION IN CRYSTALS

In a crystal with inversion symmetry, second harmonic generation is forbidden
under the electric dipole approximation, although it can be induced by an
applied de electric fild” Third harmonic generation, on the other hand, is
atways allowed, The theory for third harmonic generation in the Limit of
negligible pump depletion is the same as that for second harmonic generation
with P@(2e) replaced by PP(3w) = x@ (3o = o + @ + w): E(@)E(«)F(w).
Since [x™| is usually small [~ 10~ to 107 * esu as compared to [x'?] ~ 1077
to 10~ ? esu typically], and the laser intensity is often limited by optical damage
in crystals, the conversion efficiency for this third-order nonlinear process is
small. In addition, phase matching is more difficult to achieve, It has therefore
found little practical application.

An efficient third harmonic generator can, however, be constructed by
having two nonlinear crystals in series. The first generates a second harmonic
beam. The transmitted fundamenial beam and the second harmonic output
beam are then combined in the second crystal to yield a third harmonic output
by sum-frequency generation. Both processes are phase-matched (either type I
or type 1I). With a sufficiently intense fundamental beam, the overall efficiency
of third harmonic generation can be fairly high. Commercial units with
efficiency as high as 20% are available.

In principle, this type of two-siep third harmonic gencration can occur ina
single crystal. However, except in very special cases, it is not possible to have
both second harmonic generation and sum-frequency generation simulta-
neously phase matched, Consequently, the overall conversion efficiency cannot
be very significant.

7.4 HARMONIC GENERATION IN GASES

Third harmonic generation can also occur in gases, One would think that
because of the much lower atomic or molecular density in gases than in liquids
or solids, the third-order nonlinear susceptibility |[x®| for a gas medium should
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be much smaller than that for a liquid or solid, and the efficiency for third
harmonic generation in gascs would be so low that it could never be significant.
This conjecture turns out to be incorrect, as pointed out by Miles and Harris.®
First, |x*¥| can be resonantly enhanced. The much sharper transitions in gases
allow much stronger enhancement near resonmances, especially those with
higher transition matrix elements. Then, the limiting laser intensity in gases is
orders of magnitude higher than in condensed matter (> few GW/cn? in
gases as compared to few hundred MW /em? in solids). As a result, although
[ is small, the induced nonlinear polarization [P®| by a high-intensity laser
field can be comparable to {P@| induced in a solid with a moderately intense
beam.

Consider sodium vapor. The third-order nonlinear susceptibility for Na can
be fairly accurately estimated from the general expression of x*(3w) derived
by the technique in Sections 2.2 and 2.3:

Net
xﬁl.’ (3"’ =wtwet “’) = F Zb (ri)gﬂ(’})“b(rk)bc(rl}cgpg?‘{abr
g.d,8,C

where
Ay = (g = @)y, = 20) (00, = 30)] 7
+[ (g = @) 045 — 20)(w00g + @)] 7
+[ (00, — )5y + 200} wr,g + @)

+{(wcg + 34..:)(4.:1,5 + 2w)(w,,g + w);_l.

Here N is the number of atoms per unit volume, and we assume that the
frequencies are sufficiently far way from resonances so that the damping
constants in the denominators can be neglected, For alkali atoms, the transi-
ton frequencies and the major matrix elements are often known. Therefore,
Ix®(3w)| can be calculated from (7.21). This has been done by Miles and
Harris® The result for Na is seen in Fig. 7.4 along with the energy level
diagram for Na. It shows that even when 3w is a few hundred cm™ ! away from
an s — p resonance, the ncar-resonance enhancement can make the value of
[x™1/N larger than 10~* esu. Then, with ¥ = 10 atoms /cnt’, and |E(«)| ~
2 x 107 esu corresponding to a beam intensity of 1 GW /om?, the induced
nonlinear polarization |P®) = |[xPEEE] can be larger than 107° esu. This is
compared with |PP(2e)| = [xPEE| ~ 10~* esu induced in KDP with [x?| -
10 esu and | E) ~ 107 esu (2.5 MW /cm?). Therefore, third harmonic genera-
tion in sodium vapor should be easily observable with 3w near resonance, e.g.,
with a Nd laser at 1.06 pm.
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Fig. 74 (a) Encrgy levels of sodium. () Third-order nonlinear polarizability,
x™®(3w)/N, versus fundamental wavelength for sedium. (After Ref. %)

To have high conversion efficiency, aside from resonant enhancement and
sufficiently high pump intensity, the third harmonic generation process must be
collinearly phase-matched with n(w) = n{3w). Since a gas medium is isotropic,
the usual method utilizing the birefringent property of a medium for phase
matching is not applicable here. Then, phase matching for third harmonic
generation {or optical mixing in general) is not always achievable in a gas
medium. When anomalous dispersion exists between w and 3w, however, it can
be achieved by using a buffer gas to compensate the difference of refractive
indices at w and 3ew. This is demonstrated in Fig. 7.5. With « below and 3w
above a strong 5 — p transition of the alkali atom, the anomalous dispersion
causes n (@) > n,(3w) in a pure alkali vapor. If a buffer gas (e.g., Xe) with
normal dispersion nz(w) < ng(3w) is mixed into the medivm, then by adjust-
ing the buffer gas density, it is possible to achieve phase matching with
n(w) +agle)=n,0w)+ ng3uw).
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There are s¢veral important advantages of using a gas medium for nonlinear

optical mixing,

1
2

A homogeneous medium lenger than 10 em is easily available.

Since the medium is isotropic, the walk-off problem does not exist. Opti-
mum focusing can then be used to inerease conversion efficiency.

Aside from the high optical damage threshold, a gas medium also has
self-healing capability. Except in special cases, no permanent change can be
afflicted in the medium by laser-induced ionization or dissociation.
Atomic vapor is transparent 10 radiation at almost all frequencies below the
ionization level except for a number of discrete absorption lines, and is the
only nonlinear medium one can usé in the extreme uv or soft X-ray region.

A gas medium may then appear o be ideal for third harmonic generation,

especially for conversion to the uv range. High conversion efficiency could
presumably be obiained by using a high laser intensity with a reasonably long
gas cell. Unfortunately, there are also many factors that often limit the
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Fig. 75 (a) Refractive indices of Rb and Xe versus wavelength. {b) Required ratio of
Xe to alkali atoms versus fundamental wavelength for phase-matched third harmonic
generation. (After Ref. 9.)

efficiency through limitation of the laser intensity:

1 Linear absorption at w and 3w suppresses the efficiency (Section 6.6).
Resonant enhancement of [x®| also enhances the linear absorption, al-
though not proportionally.

2 Two-photon and multiphoton absorption may become important in limil-
ing the efficiency when 2 high-intensity pump beam is used.

3 Population redistribution due to absorption can induce a phase mismatch
to the optical mixing process.
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4 A refractive index change caused by another laser-induced mechanism can
also give rise to a phase mismatch.
5 Laser-induced breakdown of the medivm may cut off the mixing process.

All these factors become rapidly more important when « or 3w gets closer to
resonance, Usually, (3) turas out o be the limiting process and (5) may easily
occur with long laser pulses.

Third harmonic generation in gases has been experimentalty demonstrated
in many cases.” With 30-psec, 300-MW Nd:YAG laser pulses optimally
focused 10 & 10~ 3¢ spot in a 50-cm Rb(3 torr) : Xe(2000 torr) cell, Bloom et
all! observed a phase-matched third harmonic owtput at 3547 A with a 10%
conversion efficiency. The same group also obtained phase-matched third
harmonic generation at 3547 A in Na: Mg with a 3.8% efficiency. Then, the uv
third harmonic generation from 5320 to 1773 A and from 3547 10 1182 A was
also observed in Cd:Ar and Xe: Ar gas mixtures by Kung et al.'* with a
maximunt efficiency of 0.3%,

This discussion could be extended to higher-order harmonic generation in
gases, although the conversion efficiency is expected to be very low because of
the relatively small nonlinear optical susceptibilities. It was suggested by
Harns" that coherent vacuum uv and soft X-ray radiation could be obtained
from fifth and seventh harmonic generation in atomic vapor. This was later
demonstrated by Reintjes et al.™*

75 MEASUREMENT OF NONLINEAR OPTICAL
SUSCEPTIBILITIES

The well-established theory of sum-frequency and harmonic generation allows
us to deduce nontinear optical susceptibilities @ (0 = @, + w;) and x"Haw)
from sum-frequency and harmonic generation. We discuss here the measure-
ment of x®(2w) as an example.

As shown in (7.1), the absolute magnitude of |&z, - x®:.e.2,| can be
deduced from the measured second harmonic output power if P(w), 4, &k, 2,
ete. in (7.1) are known. Then, by choosing the set of polarizations &, and é,,
properly aligned with the appropriate crystal orientation, the particular tensor
element of x®(2w) can be found. For more accurate delermination of
%@ (20), the second harmonic output P(2w) as a function of Akz is measured,
and the effect of beam profile is taken into account in the calculation. An
absolute measurement is always difficult, however, as the laser beam character-
istics must be known to great accuracy. It has only been attempted in a few
cases, mainly on ammonium dihydrogen phosphate (ADP)."* The nenlinear
susceptibilities of other crystals can then be measured in comparison with that
of ADP. In particular, careful comparison between KDP, quartz, and ADP has
been made,'® and these three crystals are now often used as reference materials
in the measurements of x@ of given materials.
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Fig. 76 Experimental arrangement for measurement of the relative second harmonic
susceptibility of a sample.

In the relative experiment, the laser beam is split into two; one is used for
generating P(20) in the sample and the other for generating Pp(2w) in the
reference crystal (Fig. 7.6). The ratio of the two is

P20) _ 102X 68, Pep{w)fen(20) sin’ (8K /D) (Akg/2)’
Py (2a) 1ao X D: 8,8, (w) fe120) (8k/2)°  S(Akgle/2)
(7.22)

assuming that two arms have equal laser intensities. Here, the subindex R
refers to the reference crystal. With other quantities known, the ratio {é;,, *
X1 e 8,1/ 182, " x P 8,8,] can be determined from the measurement of
P(2w)/Pg(2w) versus AkL. As seen in (7.22), the result is now independent of
the laser characteristics. This makes the measurement much easier since the
very difficult absolute measurement of the laser characteristics is no longer
necessary.

The result of P{2w),/Pr(2w) « sin?{Aki/2) as a function of Ak/ appears as
a set of fringes, known as Maker fringes.!” It is usually obtained by rotation of
a plane-parallel slab of sample about an axis. The effective sample thickness is
then given by dcos & with 4 being the slab thickness and @ the angle between
the slab normal and the beam propagation direction. With P(2w) o
sin?[{ Ak )d cos 8/2), the Maker fringes arise through variation of #. In practice,
the crysial orientation is also chosen, if possible, to make Ak independent of 8.
An example is seen in Fig, 7.7, where a slab of quartz is used with its é-axis
parallel to the face being the axis of rotation for variation of 8.

The nonlinear susceplibility is in general a complex quantity. The phase
factor of x{ can be measured from the interference of second harmonic
generation in two siabs of crystals in series.!® Let the two crystals of thickness
dy and d,, respectively, be separated by a distance 5. Assume phase matching
in the first crystak. The second harmonic field generated from the first crystal in
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the normal direction is
Eu(dy) = EII%‘:_)xsz.]cr(dl”‘»}em”mmwd'_m"- (7.23}
The input fields at the entrance of the second crystal are
E{(dy + 5) = &,/ Nmeerdienotudel-iat
and
B, (d +s5)= E, (d))e'@esetnales (7.24)

where nry is the refractive index of the medium between the two crystals. Then
the second harmonic output from the second crystal is

4mw
P(20) X |E, (d +35)}+ mxﬁ’d[dzEﬁ(dl +5){e!dkd - 1)?
1
dmo o B o igeseinzey-riel
= | —_ 1 W, L7 ) w)]s 7_25
c ¢ |n{20) Xt . (1:33)
4, Ak ) :
—_ i Ak dy -1 .
nz(2w)Ak(e )x&,eu

Expression (7.25) shows that P(2w) depends on the relative phase of the
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effective nonlinear susceptibilities of the two crystals x{*ky and x %y If the
crystals are mounted in an enclosed chamber filled with a known gas and
the gas pressure is varied, then because of the dispersion of the gas, ry(2w) #
ng{w), the relative phase of the two terms in (7.25) will vary, resulting in a set
of interference peaks, This observed interference in P(2w) versus [ry(2w) —
no(w)]s allows us to determine the relative phase of xZg and xq. Usually
X%y of KDP is used as the reference. For a nonabsorbing crystat, x ! k is real,
either positive or negative. In Table 7.1, we list the values of x{7} for a number
of commonly encountered nonlinear optical crystals.

Table 7.1
Selected Second Harmonic Nonli Susceptibilities of a Number of Crystals
Symmetry ald -8 i Fundamental
Material Class x (411 x 10 esu) Wavelenpth (pm)
a-8i0, 32-Dy X2 =08+ 004 1.0582
{quartz) . mz = 0.018
Te 32-D, x“’ =10* 105
Ba;NaNb; O3  mm1-Cy, x, = -291+15 1.0642
x%, = -291129
xg), = —40 £ 29
LiNbO; 3Im-C,, X = 614 £ 0.56 1.0582
X2, = ~1L6+ 1.7
x& =814+ 21
BaTi0, dmm=-C,y, xfjg, = -344+128 1.0582
X =-36+28
X3 =-132+1
NH,H,FPO, 42m-Dyy xgza, =096 + 0.05 0.6943
(ADP) = 0.97 + 0.06
KH, PO, 2m-Dy, "' =098 + 0.4 1.0582
(KDP) 5 -09%4
Za0 mm-G, gf 42+ 04 10582
x5 =461 04
X% = —140 1 04
LilQ, 6-Cy xB = -112+06 1.0642
X3 = —8.4+ 28
CdSe 6mm-Cy, x@, =62415 10.6
X, =57113
xg), =109 + 25
" GaAs 3m-T, xD, =3 138 106
GaP Bm-T, X2, =7 3.39

“The values of x® ate obtained from R. J. Pressley, ed., Handbook of Lasers
(Chemical Rubber Co., Cleveland, Ohio, 1971), p. 497. In the convention we
have adopted, our x'* here are two times larger than the d coefficients given in
the literature. Note that x@ (esu) here is related to x™ (m/v) by x*? (esu) =
3/47 X 107 x® (m/v).
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For absorbing crystals, x{7 is complex, and the measurement of second
harmonic reflection from the surface, with the help of the theory developed in
Section 6.4 is often used to find x{%,."* Again, the interference technique can be
adopted to measure the phase of x5}

The foregoing methods allow accurate relative or absolute measurement of
x%. but the crystal to be studied must be of fair size and good quality. In
practice, however, special effort often is needed to grow a crystal of large
dimensions, It is therefore important that the nonlinear optical constants of the
erystal can somehow be estimated beforehand. The powder method developed
by Kurtz® is most helpful in this respect.

Figure 7.8 shows the experimental arrangement. Powder sample is packed
into a thin cell of a definite thickness, and the second harmonic output from
the sample over the entire 4 solid angle is collected. The output is measured
relative 1o the second harmonic generation in a reference crystal, The desired
information can then be obtained by the measurement of the second harmonic
output as a function of the particle size of the powder. For an average particle
size 7 much smaller than the average coherent length, defined by Ig=mw/Bk
= mc/wn{2w) — r{w]), the sccond harmenic output P(2w) increases almost
finearly with 7 since essentiaily all the particles in the beam are effectively
phase matched while the number of particles in the light path decreases
inversely with 7. As 7 becomes larger than 14 the output P(2w} can increase
further if the material is phase-matchable. This is because some particles in the
light path should have the correct orentation for phase matching. The output,
however, shows saturation as the corresponding decrease in the number of
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Fig. 78 Schematic layout of the apparatus used in the powder measurement of the
second-order nonlinearity. [After 8. K. Kurtz, IEEE J. Quant. Electron. QE-4, 578
(1968).]
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particles in the light path suppresses the gain of P(Zw) (Fig. 7.5). For
non--phase-matchable materials, the output from each particle saturates when
7> [, and hence P(2w) should decrease inversely with F as a result of
decrease in the number of particles in the light path as shown in Fig, 7.9. With
this technique, numerous materials have been surveyed. They can be divided
into five groups:?” centrosymmetric, phase-matchable, non—phase-matchable,
large nonlinear coefficient, and small nonlinear coefficient.

7.6 SECOND HARMONIC GENERATION WITH
ULTRASHORT PULSES

Second harmonic generation with ultrashort pulses requires some special
consideration. With the pulse length smaller than the length of the medium, the
nonlinear polarization varies drastically along the length at a given time. The
only simple case occurs when the group velocities of the forward propagating
fundamental and second harmonic waves are the same. Then the two pulses
will propagate together and interact with each other as if the problem were
stationary. This is the quasi-stationary case. The solution is identical to that of
the stationary case if z — v,? replaces z where v, is the group velocity. If the
group velocity dispersion is nonnegligible, then the solution becomes much
more complicated. Physically, the velocity mismatch causes the fundamental
pulse to displace against the second harmonic pulse as they propagate along.
This reduces the effective interaction length and decreases the comversion
efficiency.?

A rigorous mathematical treatment of the problem has been worked out by
Akhmanov et al? Infinite plane waves propagating along z with slowly
varying amplitudes are assumed. As shown in Section 3.5, the pulse propaga-
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tion of a wave, &(z, t)exp[ikz — iwi), in a nonlinear medium can be described
by

£ 2w .
3—2 - Dl%’ = %PNL(z. f)eitsmun, (1.26)
T

In the present case, the group velocities of the fundamental and second
harmonic waves are vy and Dy respectively. If we use, as independent
variables, z and 7 = 1 — z/p), instead of z and 1, then the wave equations
governing the fundamental and second harmonic wave amplitudes &,(z, 7)
and &,,,(z, %) under the phase-matching condition become

a4,
3_; =0é,6,,
ae IE (7.27)
2w 1o _ 2
P + = aé;

where » = v3,! — 07, and o = Qma/kict) ey, x P 8,2, assuming &, (2 =
0) = 0 The solution of (7.27) is nontrivial Akhmanov et al.?! showed that the
coupled nonlinear equations can be combined into a single second-order
differential equation

{1 1
salg) - r g, 029

where F(q — vz) = 0382 + €L, + vvi&, /30 is a [unction of (v — ¥z)
only, as can be shown by the vanishing Jacobian

aF/d, aF/dz
d [ =0.
w-n) gln- )
Equation {7.28) is now a linear equation with a varying coefficient /% It can be

solved analytically for arbitrarily large conversion efficiency.
Let the fundamental pulse at z = {f take the form

£.(r) = A/(l + %) (7.29)

Here, 7 is the pulsewidth. In addition, we define a number of characteristic
lengths for the problem: L is the length of the medium; Lyg = 1/0A is the
interaction length at which 75% of the fundamental power is converled into
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second harmonic power in the stationary case; L, = 7/» is the propagating
distance over which the overlapping fundamental and second harmonic pulses
of width 7 are clearly separated. With a new set of variables i = n/7,
=270, 1, = vhy, f= (1332 — W2 and §=[r822 - 12 X ftan ™'y
— tan~}(5 — £)], the solution of (7.27) has the form

& = 4 {coshs +

RS ORG IRTCESIE A

it

f

sinh §}_1
(7.30)

o g% [ Zoosh§+[7—7(s — 2)/f]sink § e
G4 r{ cosh £ + {7/ sinh £ }/IH(" ik

When L, 3 Ly (7  17.), the group velocity dispersion is clearly negligible
so far as second harmonic generation is concerned. In this quasi-stationary
case, the solution in (7.30) reduces to

z
(1+#)Lw

1

A
&z, q)= 1+7 soch{

{7.31)

A
& (2,1} = 7 tanh

z
(1+#) Ly

They are exactly the same as the stationary solution for second harmonic
generation given in (7.8) il we replace &,(z = 0} there by 4/(1 + 7). In the
limit of negligible pump depletion, z < (1 + #2) Ly, the second harmonic
fietd from (7.31} is proportional to the square of the fundamental field

&.(2.0) = &) z2/ALy .

Then the second harmonic pulsewidth is approximately half of that of the
fundamental.

When L, < Ly, the group velocity mismatch becomes important, and the
general solution of {7.30) must be used. There is a relative displacement
between the fundamental and the second harmonic pulses. Consequently, the
conversion efficiency drops, and the second harmonic pulse broadens. This has
been experimentally confirmed.?® On the other hand, one can also use the
group velocity mismaich to sharpen an input second harmonic pulse through
amplification. If the fundamental pulse is appreciably longer than the second
harmonic pulse, and if , > vy, then the two pulses can be arranged in such a
way that the leading edge of the second harmonic pulse always sees the
undepleted part of the fundamental pulse and gets amplified more than the
lagging edge, resulting in a sharper oulput pulse.
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The group velocity mismatch is generally more appreciable at higher fre-
quencies because of anomatous dispersion due to absorption bands in the uv
region. For a 1-psec pulse propagation in KDP, for example, L, = 3 cm at
A=106 gm and L, =03 cm at A =033 um. Thus the effect of group
velocity mismatch is much more important for frequency doubling of picosec-
ond pulses into the uv.
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Difference-Frequency
Generation

Difference-frequency generation is theoretically not very different from sum-
frequency generation, but the problem is of great technical importance in its
own right, as it provides a means for generating intense coherent tunable
radiation in the infrared, Traditionally, blackbody radiation has been the only
practical infrared source. Yet, governed by the Planck distribution, it has weak
radiative power in the medium- and far-infrared range. A l-en?, 5000 K
blackbody radiates 3500 W over the 4w solid range, but its far-infrared content
in the spectral range of 50 + 1 em~" is only 3 x 107% W /cn?® - sterad.
Infrared lasers may seem to have all the desired properties as infrared sources
but their output frequencies generally are discrete with essentially zero tunabil-
ity. Tunable infrared radiation can, however, be generated by difference-
frequency generation. Being cohercnt with high average or peak intensity, it
may find many applications in the field of infrared sciences. This chapter deals
mainly with infrared generation by difference-frequency mixing. The diffrac-
tion effect is considered in the long wavelength limit. Far-infrared generation
by ultrashort pulses is also discussed.

81 PLANE-WAVE SOLUTION

In the infinite plane-wave approximation, the theory for difference-frequency
generation follows almost exactly that of sum-frequency generation if the
pump intensities can be approximated as constant. Then the output power at
w; = wy — « generated from the bulk is

P, ) N
g’ R . o sin?{Akz/2
== | 18y x Py = w3 — w ) e,ellz—(—/zf)zl
€ Vf(wl)f(wl)f(‘*’:) (Akz/2)

 Ble)Plen) -
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Plane-Wave Solution 109

With phase matching and in the presence of appreciable pump depletion, the
salution of Section 6.7 must be used. However, the usual initial boundary
condition is #,(z = 0) = 0 [i.e., £2(0) = 0; the notations here follow those in
Section 6.7.] in the present case. The equation to be solved becomes (§ = —n/2)

2
B2 < w3l udlm, — ) (m, + 1)) (82)

with m, = u2(0) and my = uf(0). The solution takes the form
(€)= —uf(O)sn [y (0}¢, v],

3
uF(§) = ui(0) — uf (0)so? finy (03, ], {8.3)
wl () = w2(0) + uf (D)se? Liny (), v]

u

where

-1 iy _ [im/ni) dy
sn (ul(O),v) J;) [(1-y2)1 = 1))

- (0
uy(0)

In the particular simply case where u3({) < u3(0) or |y*y?| = 1, we have
sl iy (0)§] = isinhfu,(0){] and hence

w3(2) = u}(O)sink? [, (0)¢],
uf (§) = uf(0)cost? [u5{0)¢], (8.4)
wi(t) = u}(0) - w2 (0)sink? [, (0)¢] = ul(0).

For |u(0)§] << 1, this solution leads to (8.1) with Ak = 0. The above results
can of course be obtained directly from the coupled wave equations of (6.25)
by letting &; be a constant. The more general solution with 45 = constant,
&,(0) # 0, £,(0) # 0, and Ak + 0 can also be cbtained, but this is postponed
10 the next chapter in connection with a discussion of parametric amplification.
The plane-wave approximation adopted here is good as long as the output
wavelength is much smaller than the beam cross section. The foregoing results
should describe fairly well near-IR and mid-IR generation by difference-
frequency mixing. Experimental reports on the subject are numerous, and have
been summarized in recent review articles.>? An important fact o realize is
that the efficiency of infrared generation is expected to be low because of its
dependence on the square of the cutput frequency as seen in (8.1).
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82 FAR-INFRARED GENERATION BY
DIFFERENCE-FREQUENCY MIXING

The infinite plane-wave approximation ceases (0 be valid for far-infrared
generation in the long-wavelength limil as diffraction becomes important when
the pump beam diameter appears comparable to the far-TR wavelength. We
must look for a better solution of the wave equation

Wk 703
[vanfﬁdw%Ewﬂ=tﬁPW%) (5)

with P@(wy) = xPoy = w3 - w,): E{wy)E*{w,). Since the conversion
efficiency is expected to be small because of the small w,, the depletion of the
pump fields can be neglected and the amplitude of P® can be regarded as
independent of propagation.

1f we neglect the boundary reflections by assuming that the nonlinear crystak

is immersed in an infinite index-matched linear medium, the far-field solution
of (8.5) has the [amiliar expression’

PO, mz)e;k,yr—v'l
L R A S

8.6
. 8.6

E(r, @;) = [%)lfvdjr'{l - )~

where ¥ is the volume of interaction of the pump fields in the nonlinear
medium, With PO, w;) known, E(r, w,) can be calculated. Consider, for
example, the case where the pump fields E{w;) = & (explik,z — inl) and
E{w;) = €3(nexp(ik;2 — iwy?) can be approximated by &,(r) and &;(x) being
constart in a cylinder defined by (x* + y?) < a* and vanishing lsewhere. The
nonlinear polarization is assumed to have the form

{1- 7 P r, wz) = pOgithar -2 for (x* + y=zat
=0 for(x*+ y) > a (81N
Ky, = ks — Ky

With this expression of P@, the integral in (8.6) can be readily evaluated. Let

v =2rcos¢ + kreiné (see Fig. 8.1},
¢ = gp'cosf + pp'sind + iz,
and
(#kak = x)
exp=
-

xp{szr - ikzr(r vl
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for the far field. Equation (8.6) then becomes™?

q Mixing 111

i(kar—agt)

2
[ € 12 ikl -
E(r,m2)= 2ll;.(z:. do'g— 2l —cos g+ Bk k)
[4

r —12

2 2T L an ke ces B sing
XJ;dpJ; ek (8.8)

o]

_ wa% po en(kzr—w;:) ( sin a
et r a
with

ko
a=72(1+%—ws¢), B=kyasing, Ak=ky —~ky,

and J, being Bessel's function. We now have

w? 2 gt 2 sing A 7
1E(r, w,)|* = (‘C_:)|X(=?r‘fl¢"3|21 ) (im_)z[zjéﬁ)} . {89)

r? o

Integration of cye{w, ) |E(r, w,)|*/ 2w over the detector surface (Fig. 8.1} vields
the total far-infrared power P(w,) collected by the detector as

Plo,) = f:""IE(r, wy)P2mrsin g do. (8.10)

This result is physically understandabie. The [2,{# /81 term arises from
diffraction from a circular aperture as usual, and the (sin a/u)? term describes

o Linear Medla —
1 1

" ' n 1 o - -
o’—
L___ . _—
20 LOssr 7 N’L’/ ,—”l ¢lll¢l
Beoms /B(,”’A_ “s-tTssTEsTTTTTT
T
Detectol
Nanlinear
Crysial
— % —

Fig. 8.1 Schematic for calenlations of power output, The laser beams produce a
nonlinear polarization in the crystal at the difference frequency; the polarization is then
treated as a source for the difference-frequency generation.
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the phase-matching condition. In the limit of k,a > 1 so that the diffraction
effect is expected to be negligible, 24(B)/Bis appreciable only for ¢ < 1/k,a,
and then (sin a/a)* reduces approximately 10 the usual phase-matching factor
| sin (Akl/l)/(AH/Z)]’. Also, for kya = 1, if the detector is large enough 50
{hat Pae = 1/Kk;a, we have fo‘"“"‘[ZJ,(B)/_B]zsimp d¢ = 2/k}a’. The output
power P(w;) calculated from (8.10) can then be shown to have an expression
exactly the same as that in {(8.1) derived from the infinite plane-wave ap-
proximation.

The theory here properly takes into account the diffraction effect. Equations
(8.9) and (8.10) can in fact be used for an order-of-magnitude estimate of the
far-infrared output. In the long-wavelength Timit, the output approaches the w}
dependence on the frequency as one would expest from the dipole radiation
theory. This suggests that the efficiency of Jifference-frequency generation
should decrease drastically toward longer wavelengths in the far-IR region.
Even so, with the commonly available lasers, the far-IR output from
difference-frequency generation still can be much more intense than a blackbody
radiation source.

A number of simplifying approximations have been employed mn the deriva-
tion leading to (89). It i possible to us¢ a mMOre realistic expression. for
PP, w,) in (8.6) and evaluate the integral numerically to yield a better
result. However, the assumption that the nonlinear medium is immersed in an
index-matched linear medium is fairly ideal and is usually a poor approxima-
tion. In practice, a nonlinear crystal in air has a very different refractive index
at far-IR wavelengths than that of the air, Consequently, reflections of far-IR
waves at the boundary surfaces are very important, In treating waves at the
boundaries of the nonlinear crystal, one cannot use the far-field approxima-
tion, This makes the foregoing theoretical approach inappropriate for dealing
with the boundary effects. In order to propetly take into account the boundary
effects, one should decompose the spatially dependent far-IR ficld into spatial
Fourier components and impose the boundary conditions on each component
separately. The calculation naturally becomes much more complicated, and
numerical solation is often pecessary for elucidation. We discuss here only
some of the physical resulis and refer the readers to the literature for the
details of the calculation.>®

Since the far infrared refractive index of a solid is uswally large (~ 3%
refiection at a solid-air boundary can be high. Even multiple reflections can be
significant, and in a crystal slab they give rise to a Fabry-Perot facior to each
Fourier component in the output. The Jong wavelength of the far-IR field
makes the phasc-maiching angle less critical, so that phase matching can be
satisfied approximately by far-IR output over a fairly broad cone. This cone is
substantially broadened outside the crystal through refraction at the boundary.
Part of the far-IR radiation may not even be able to get out of the crystal
because of total reflection. Focusing of the pump beams generally helps, but
absorption hurts the far-IR output as expected. The output field in (8.6)

incorporated with an average transmission coefficient can in fact be a very
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good approximation if the realistic P®(r’, w;)} is used in the calculation.
Fquation (8.1) obtained from the infinite plane-wave approximation, however,
gives a poor description of the far-IR generation.

Experimentally, far-IR generation by difference-frequency mixing has been
observed in numercus cases,> ° with output frequencies ranging from 1 to
several hundred inverse centimeters. For example, in LINDO;, x$hy(w = @ —
w,)=4.5 % 107%esu for w, ~ &, around the ruby laser frequency. If the
pump laser beams are of 1 MW each over an area of 0.2 cm?, a far-IR power of
~ 3 mW at 10 cm ™! is expected from {8.10) to be generated from a L1Nb03
crystal 0.05 ¢m thick under the phase-matching condition. In a real experi-
ment, 1 mW at 8.1 cm ™! was detected from a crystal of 0,047 cm. Dlscretely
tunable CW far-IR output of 107 W has also been observed from mixing of
two CQ, lasers (25 W) in GaAs.” Tunable far-IR radiation can also be
generated by stimulated polariton scattering and by spin-flip Raman transi-
tions. We postpone their discussion to Chapter 10.

§3 FAR-INFRARED GENERATION BY ULTRASHORT
PULSES

The discussion in previous sections on infrared generation by optical mixing
applies to cases where the pump beams are quasi-monochromatic. The two
pump pulses are assumed to be sufficiently long, and the spectral punity of the
infrared output, generally correlated with the laser spectral widths, is limited
by the pulsewidth. Here, however, we consider the case of far-IR generation by
a single short laser pulse.®*® If the laser pulsewidth is as short as 1 psec, the
corresponding spectral width should be at least 15 cm™". Then, in a nonlinear
crystal, the various spectral components of the pulse can beat with one another
and generate far-IR radiation up to the submillimeter range. One might
consider this an optical rectification process in which a de picosecond pulse is
gencrated. However, unlike the case discussed in Section 5.1, we are here
interested only in the radiative component of the rectified field. This generation
of the radiative output is subject to the influences of phase matching, diffrac-
tion, boundary refiection, radiation efficiency, and so on.™

Far-IR generation by ultrashort pulses is, as usual, governed by the wave
equation

2
vx(vxE)+ L Z g = -2 P pag g w1

e? 9t T

Given PA(r, 1), (8.11) with appropriate boundary conditions can, at jeast in
principle, be solved. The far-IR output and its power spectrum can then be
caleuated. The solution of far-IR generation by a single short pulse in a thin
slab of nonlinear crystal has actually been obtained through the Fourier
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transform of E(r, f) and P@(r, r), neglecting the dispersion of 2 and x® in
PO, 1) = xP - Elr, OE*(r, t).1° We present here a physical description: of the
solution.

Figure 8.2a shows the calculated power spectrum of farIR radiation
generated by a 2-psec Nd laser pulse from a 1-mm LiNDQ; slab. First, the
Fabry-Perot geometry of the slab gives rise to the interference pattern under
the dotted envelope. Then the dotted envelope of the spectrum is basically the
product of three contributions seen in Fig. 8.2b: curve a represents the power
spectrum of the rectified input puise, curve & describes the w? dependence of
the radiation efficiency with a much sharper low-frequency cutoff as @ — 0 due

. to difftaction; curve ¢ is the phase-matching curve with its phase-maiching
peak at w = 0 for the particular ¢rystal orientation with the £-axis along the
face of the slab. Thus, the calculated power spectrum in Fig. 8.24 can be
physically understood.

Such theoretical calculation actually gives a very good description of the
experimental observation. Figure 8.3a shows a comparison between theory and
experiment for far-IR generation from a 0.775-mm LiNbQ, with the Z-axis in
the slab face by a train of normally incident mode-locked Nd/glass laser
pulses.® The Fabry—Perot pattern is absent here because the spectrum has been
averaged over the actual instryment resolution. By orienting the crystal to

INTENSITY

o 2z 4 & & 10 12 W 0 2 4 6 B 0 12 14 &
cm” em!
fa) 18)
Fig. 83 (4) Far-infrared spectrum generated by mode-locked pulses in LiNbO, phase
matched ai zero frequency. The experimental points were obtained from the Michelson
interferogram and the solid curve from the theosetical calculation assuming, Gaussian
laser pulses with a 1.8 psec pulsewidth. {b) Far-infrared spectrum generated by
mode-locked pulses in LiNbO; oriented to have forward and backward phase matching
at 13.5 and 6.7 em™ ", respectively. The cxperimental points were obtained from the
Michelson interferogram. The solid and dashed curves were calculated by assuming
Gaussian laser pulses with a pulse-width of 2.3 and 1.8 psec, respectively. (After Ref.
8)
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achieve phase matching at finite w, one expects, from the above discussion,
that a single phase-matching peak at « # 0 may dominate the outpwl spec-
trum. An example is seen in Fig. 835, Again, theory and experiment agrec
well. The two peaks in the theoretical curves correspond to phase-matched
generation of the far-IR radiation in the forward and backward directions,
respectively. This figure suggests that we can have tunable far-IR output by
simply rotating the nonlinear crystal. As shown, the pulse still has a faidy
broad linewidth, indicating that it is also a pulse of picosecond duration.
Nevertheless, since the output Linewidth is appreciably narrower than the laser
linewidth, the output pulse must be appreciably longer than the input pulse.
That the output is still significant after the input has more or less decayed
away is an interesting fact considering that the medium response to the input
pulse is essentially instantaneous in this case. With an input peak power of 0.2
GW over a cross section of 1 cr?, a far-IR output of 200 W peak power has
boen detected from a 0.78-mm LiNbQ; crystal®
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Parametric Amplification
and Oscillation

The three-wave interaction discussed in previous chapters is manifested by
energy flow from the two lower-frequency fields to the sum-frequency field or
vice-versa. The latter happens in difference-frequency generation, which, in
general, can be initiated with a single pump beam at the sum frequency.
Difference-frequency generation can then be considered as the inverse process
of sum-frequency generation, and is generally known as a parametric conver-
sion process. Parametric amplification and oscillation in the radio frequency
and microwave range were developed before the laser was invented.! The same
process was expected in the optical region, and was actually demonstrated in
19652 It has since become an important effect because it allows the coastruc-
tion of widely tunable coherent infrared sources through the comtrollable
decomposition of the pump frequency. In this chapter we explore the theory of
parametric fluorescence, amplification, and oscillation together with some
practical considerations.

91 PARAMETRIC AMPLIFICATION

As an inverse process of sum-frequency generation, ‘the general theory of
parametric amplification is the same as that for difference-frequency genera-
tion. In fact, the only difference of the two processes is in the input conditions.
Even there, the difference is not clear-cut, but we normally consider parametric
amplification as a process initiated by a single pump beam while difference-
frequency generation is initiated by two pump beams of more or less compara-
ble intensities. The difference disappears after a significans fraction of the
pump energy has been transferred to the two lower frequency felds. Thus the
theoretical description of parametric amplification with infinite plane waves
again starts Irom the set of three coupled wave equations (3.4). In the slowly

17
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varying amplitude approximation with E(w,) = &{z)explilk;-r — «f + ¢l
and a plane boundary at z = ¢, they become (see Sections 3.3 and 6.7)

;2
% = 'I:"rllxsg;gaes akzriy
il
%g, = %wﬂe’;e*‘“"'"n, (9.1)
-z
)

iwl

2 g = Wigg gt thi
3 192

725 " T,

where

27, 53
K= C—Zei"xm(“’s g b wy) g, and Bk =k o ky, — Ko

and 0y = ¢ — §1 — Pz is the initial phase difference of the fields at 2 = 0.} We
assurne here f, = —#/2. The solution of (9.1) with &k = 0 has becn discussed
in previous chapters in. connection with sum- and difference-frequency genera-
tion, In parametric amplification, E(w,) is known as the pump wave, E(w,) for
£(w,)] the signal wave, and E{w,) [or E(wy)] the idler wave. We consider here
first the case of negligible pump depletion with Ak + 0.

The assumption of negligible pump depletion means that &5 can be regarded
as a constant. Equation (3.1) then reduces to & set of two linearly coupled
equations between &; and &;. Writing £, = Cem and £ = C,e', we find
immediately v, = —¥7 + Ak, and

2
. -
i1, —E:LKG’,
=0. {9.2)

ol
w

K&y, (i —idk)
2

This leads 1o the solution
N+~ slabx jg]_

12 4ot
N b At
z 2z

& = [CHe‘W’)B + Cl_eu/ugz]eﬂumuz,

&r = [C1+e41ﬂ}x= + C1‘e£1/2\31] PRLUCLLS (93)
1 ) o k . 1/2
. £ |18 960 o) a0

o]

1],. .
Gy = :Fz—g[(eﬁk?g)d’z*(O]—;—z- 2

1




Parametric Amplification 119

This solution shows the following physical properties. If X &, s small so that
g2 < (Ak)%, then g is purely imaginary. If K&, is sufficiently large so that
g¢ > (Ak)?, then g is real and positive, and at large gz, both & and &, grow
exponentially with z. Thus g, = {8Kk) is the threshold for parametric amplifica-
tion. The parametric gain is clearly a maximum with g = g, 01 phase matching,
Ak = 0. Introduction of attenuation coefficients at and w, in the above
formalism is straightforward. As expected, they increase the threshold and
decrease the gain,

As an example, consider parametric amplification in LINbO, with x 3} = 2.7
5 107% esu at A, ~ A, = 1.06 pm with ny = ny = 2.23. The maximum gain is
found to be go = 0.9 x 1073, cm~". For a pump field of & = 100 esu
corresponding to 2.5 MW/cm’, the gain is 08 cm~', Thus the overall
exponential gain g/ even in a crystal of length f = 5 ¢m is not very large. To
achieve an overall gain of gof ~ 40, we must either use a pump beam of much
higher intensity (which is attainable only with picosecond pulses if optical
damage to the crystal is to be avoided) or use an optical cavity to increase the
effective lenggh. In the later case, the system may become an oscillator, as will
be discussed later.

As noted in {9.3), the phase mismatch Ak suppresses the gain very effec-
tively, Therefore, in the limit of high conversion efficiency, we need only
consider the phase-matching case although the general solution of (9.1} with
Ak + 0 has been worked out by Armstrong et al.* Following the notations and
derivation in Section 6.7, we find, assuming 6 = —w/2in (9.1)

d
d—gui = Z[ui(m] —u)(m, - ug)]l’q, (9.4}
which has the salution [assuming #2{0} < #3(0)]
u{t) = (#3(0) - HNES

x[: ul{0)} + w3(0) § + sn"(i———,ﬂ%%d]ﬂr}
G(5) = w3(0) + 1} (0) ~ u3(E) (:3)
ul (£} = w}(0) — u}(0) + 23(§)
, _ 13{0) = ui(0)
w(0) + w30}

In the case of u,(0) = ©, this result can be shown to reduce to {8.3) derived for
difference-frequency generation.
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92 DOUBLY RESONANT PARAMETRIC OSCILLATOR

As mentioned earlier, an optical cavity can be used to increase the overall gain
in parametric amplification. Then, parametric oscillation can also occur. That
tunable output is possible in the absence of input makes the parametric
oscillator a practically more useful device than the parametric amplifier.

As shown in Fig. 9.1, a parametric oscillator is composed of a nonlinear
optical crystal sitting in an optical cavity. For simplicity, we assume that the
cavity is formed by two plane parallel mirrors. Two types of cavity commonly
are used. The doubly resonant cavity has the mirrors strongly reflecting at both
@, and w,, and the singly resonant cavity has the mirrors strongly reflecting at
cither w, oT «,. Usually, both mirrors are \ransparent to the pump wave. IF the
single-pass parametric gain is small, the pump intensity can be regarded as
independent of the distance in the cavity.

Let us consider the doubly resonant case first.3-* The fields in the cavity can
be written as

E(w, ) = 2, (#)sin kyze™ ™",
E(w,) = 285{1)sin kyze ™", (9.6)
E(MJ) = g]elkﬁ*iw!l
with @, = wyg, @y = Wy, and @y = 6y b @y = Gy + wy + Bw. The cavity
condition requires

=wmnl=m11r+tbl and K =wmn2=m2n+¢2
! 2 1

c <

ky (9.7

where m, and m, are positive inegers, I is the cavity length (we assume here,
for simplicity, that the crystal length is equal Lo the cavity length), and 2, and
20, are round-trip phase shifts at w, and w, due to boundary reflections and
refractions. The coupled wave equations in this case become

nif g & aqw}
[kf‘ + c—;[rlﬁ—“ + 5) E("’l) = +—chx_(2):E*(mz)E(w3),

2
A

{k%+"—i‘(5§:+a'z)]“<wz)= + 30 g () E(0). 6F)
[

ar?

P

Nenlinear crystal

Pump beam Gy
e ) ==
Wy —n
iy
N 4
R R
Fig. 9.1 Schematic diagram of a parametric oscillator.
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Here, I'; and T, are the damping constants at e, and w,. They constitute the
attenuation loss due to absorption and scattering in the cavity plus the mirror
transmission loss. With an intensity attenuation coefficient of a,(w,) per unit
length and two mirrors of equal reflectivity Ri{(w,), T, is obtained from the
definition
g~ 2Tinife = R~ 2l
or
L= i[ai i Ri]

n; ! ©9)
¢ 1 . ’
=;t:[ﬂ' + I(l - R,)] ifR, =1,

We assume [, = T,. With the slowly varying amplitude approximation,
|3%¢,/ 367 < 0, &,/ 91|, (9.8) reduces 10

Fi
[% + %r] £,(t)sin kyz = mm(;f—] KEr(t)ysin kyze'™,  (9.20a)
1

2
[% + %I‘]J{(r)sin kyz = _mm(ni) K& (1) &,sin k ze™*  (9.10b)
2
where
27, J.
K= ?2‘91'1(1)(“’1 = —wy @) 6é

and we treat &; as a constant. Multiplying (9.10a) and (9.10b) by sin &,z and
sin k,z, respectively, and integrating the equations from z = 0 10 z = [ we find

[ 2 in{ Ak /2
[+ - o s 1

sin{ Ak 1/2) i 8k 12
{Ak1/2) '

2 (9.11)
[% N %r] exe) = wi%wm(niz) x&e ()

The solution of this set of Yinearly coupled equations can be written in the form

£,(1) = (D e + Dy_esr)eT MDA,
£ = (D1+e‘+' + Dz_e’*‘)e'“/ll““',
5y=3[-T £ 6],
6 =[az -(aa)]”
_ Ml“:JZ“C‘KlgBl sin’ ( Ak !/22)
(akis2)

(9.12)

2
Gy 1
rinz
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where D, , and D, , are coefficients to be determined from (9.11) together with
the initial values &,(0) and £*{{). In the discussion of parametric oscillation,
however, it is not possible to find D, , and D, ,. We are more interested in the
threshold condition for osciflation. Equation (9.12) shows that oscillation starts
when G = G, = I' or the threshold pump intensity for parametric oscillation is

N4

= 55,
_ (Aw)! + T2
Zﬂwmmmclesinz(Ak I/2)
nindn, (akis2)

(9.13)

Clearly, the threshold is a minimum for Aw = 0 and Ak = 0. Thus if we use
the same LiNbO, crystal described in the example of parametric amplification
and insert it between two plane mirrors of R, = R, = 0.98 separated by the
crystal length / = 5 cm, we find a minimum pump threshold of

(Fo) e = 2.5 kKW /o

assuming that the attenuation loss «, is negligible. This is a fairly low intensity
and is achievable even with a CW laser. The doubly resonant CW parametric
oscillator was first demonstrated by Smith et al. in 1968.5

The solution in (9.12} alse shows that the output frequencies of the signal
and idler waves are

W = wp+ e and @, = ey + e (9.14)

with ), and w,, being the cavity resonant frequencies given by (9.7) and
Aw = @y — Wy — Wy is automatically minimized to achieve the lowest pump
threshold possible. Tuning of the output frequencies is discussed in Section 9.3,
One serious disadvantage of the doubly resonant parametric oscillator is that it
has low stability,™® Let us assume that originally the oscillator with a cavity
length  operates at w, = w,g = myuc/ml, wy = Wy = mome/nyl, and @y + w;
= w;. A small change of the cavity length Al due to external perturbation
shifts the output frequencies to ] = wip = (my + Amyme/my(i + Al), wj =
wyy = {m, — Am)wc/ny(1 + Al), and @] + w} = w;. We then find

oo (B TR m
am () /(7))
The shift in the output frequencies due to Al is therefore given by

- = — o
Sw=w] —wy =Wy — W

AN
L T (9.15)
ot A
_nz#nlw;j..
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Thus a change of Al/f = 1077, which shifts the frequency of a cavity mede by
only 1077, will cause the output frequencies of the doubly Tesorant parametric
oscillator te change by more than 10~ %w, if jn, — m)l/n; < 1072, This shows
that the output of the oscillator will be very unstable, subject 1o external
vibration and thermal fluctuations.

For steady-state operation, an oscillator must have its gain clamped to the
threshold value, since otherwise the output would continuously grow in time or
decay to zero. This makes the calculation of conversion efficiency fairly
simple.* The pump field in the cavity is self-adjusted through pump depletion
by parametric conversion to yield an oscillator gain clamped to the threshold,
The signal and idler fields increase with the increasing pump energy, but being
standing waves, their amplitudes are constant across the cavity. The part of the
pump power coupled into the signal and idler fields should show up as power
loss in the cavity and in the signal and idler output through the cavity mirrors.
Let us assume the phase-matching case, Ak = 0. In the slowly varying ampli-
tude approximation, the equation for & reduces to that in (9.1). With &, =
—w/2, the forward propagating pump field at z = [is

e
3

& (1) =&7(0) ﬁ[ ]m’lgzz. (9.16)

Then the generated fields at w, and w, in the cavity can also react back and
generate a backward propagating wave at o, with

£(0) = “;—3:1(&1521. (9.17)

Energy consetvation requires
{167 ()1 — 167D = 185 O} = mIA (1 — e72" )
|2 — e7Tme) (8.18)
= (a}l&, 2, + n}| & T, )20/e
That the number of photons generated at w; and w, must be the same leads 10

LU SR LY

oy w {9.19)
Combining (9.16) to (9.19) gives
n3h6|° _ nih o
wma| GO w5 (0)* 20
c |1 1 (9.20)

Twllyw N
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where

(RIS C‘
N = [-;—zi%—ﬂw; (0)[1]/1'11‘1.

1

I we take &, = Wy, 8 = Wz, a0d I, = T, and use the expression of the gain
Gy in (9.12) for Ak =10, we have N = G/T? = G3/Gj,. Since G2 is propor-
tionat to the pump intensity, N has the physical meaning of how many times
the pump intensity is above the threshold value, with N = 1 corresponding to

the threshold. The total power output (signal and idler, inclading attenuation
loss in the cavity) is

21,1221, + adldf*2TL)!
P1+Pl=(%)inll i 1C"111| 2]_

The overall conversion efficiency is then given by
P+P, 2
n=—t—=% N -1}, 9.1
= JUN D) (s:21)

which can reach 50% for N = 4,

93 SINGLY RESONANT PARAMETRIC OSCILLATOR

Because of its intrinsic instability, doubly resonant parametric oscillators are
seldom used in practice even though they have lower oseillation thresholds.
The instability can be climinated by using a singly resonant cavity.>** Let the
mirrors be transparent at & and @5, and highly reflective only at @,. Then we
can describe the three fields as

E(‘I’l) = g‘[(zy I)ei‘c'z—l'ulll’
Fw,) = 2&,(¢)sin fepze™ e, (9.22)
E(w;) = ga(z)eik’z—m"

with wyq = mpmc/myl and @, + Wy = Wi- Clearly, in this case, a small frac-
tional change of Al/T induces only a shift of 8w = wsp(Al/1) in the ontput
frequencies.

To find the threshold of oscillation, we can again solve the coupled wave
equations for E(w,) and E{w,). We shall, however, take a somewhat different
approach here. We can start with the solution of parametric amplification in
(9.3) and impose the condition that for parametfic oscillation, a single-pass
gain must be equal to the round-trip loss. Assume the phase-matching case
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Ak =0, The round-trip attenuations of the two fields are e¢”"™'/* and
g~ Tamd/x respectively. Then from ($.3) we have

L/2
£,(0) = e’r'""/"[a?](o)coshi gl + z(;—l) £7(0)sinh} g,hfl,
1

Y2 {9.23)
£H0) = e—r,nz:/c[g;(o)msh%g‘hl - r(?l] &,(0)sinhi g/
1
and hence
1, 4172
coshlg,s — e, e["—’) sinh}g !
1 l =0. (9.24)
r, (12
_i(n—l) sinh%gml, “—"Sh%g,,.n'# LTamise
2
This leads to the threshold condition for oscillation
1 + eTmtTngise
1, o 1t efmriamie
coshy gl iy g
(9.25)

s (erlnlI/t _ 1)(erzn].'/r _ 1)
ghimize o gTaml/c :

The result here is quite general and is applicable also to the doubly resonant
case, where yg/, Ty /¢, and Tyn,l/c are all much smaller than 1. Equation
(9.25) reduces to g3 = 4mn, T T, /¢?, which can be shown to be the same as
the threshold condition (Gy, = I') derived in the previous section. Now, for the
singly resonant oscillator, only 4g,,/ and I;n i/ are much smaller than 1, but
exp{T,n,//c) > 1 because of the karge transmission loss of the mirrors. We
then find the threshold condition to be

8 {efmi/s — 1)T,nyl/c

2 12 =
i 1 + eTimb/c

9.26
8Lyl (9.26)
= =2

In comparison with the doubly resonant case, the square gain threshold ratio,
which is equal to the pump threshold ratio, is

(gi)singly - (Ilh)Sinsly
(88 )oowty (T )ooussy
2
1-&,

(927
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For R, = 0.98, this ratio indicates that the pump threshold for the singly
resopant oscillator is 100 times higher than that for the doubly resonant
oscillator. Thus singly resonant parametric oscillatars usually require pulsed
lasers as pump SOUECES.

The conversion efficiency can again be calculated from energy or photon
sumber consideration, knowing that the oscillator gain must be clamped to the
threshold in the steady-state operation. In this case, &, is a constant, and &£ (1)
and &(!) are obtained from the coupled wave equations in ©6.1)

a8, @,
_a'? = T]’ng g:
and (9.28)
[il4 w5
5, =" = K&HE

The backward waves at «; and w, are negli gible. With £,(0) = 0, we find

16, (NP = (%;—:—i){é}(ﬂ)lzsinzﬁl
and (9.29)
18, (12 = 1€ {0} cosBt
where
Wytd0?
B = —4;1;3 KY&)R

The photon number generated at «, ina single-pass gain must be equal to the
photon number at w, gengrated and then lost in a round trip around the cavity,
so that

@nymi/cnl&? _ migiDPE

2 “ (9.30)
~ (22 ) opesiat
Wy
The last equality leads to the relation
sintft _ 1 {5.31)
Bl.ﬂ N r b

where

_ (/) KAGOF _ g

N
8(Tyn,i/c) S
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again has the physical meaning of how many times the pump intensity is above
the threshold valae. The conversion efficiency is then given by

P, +P
n P3
_ rl &y (DP + (2Tgnal/chn| 61 {9.32)
n5|€5(0}
= sin®Bl

with sin28! determined from (9.31). For N’ = 4, we find 7 = 90%. This is of
course somewhat ideal since we have used the steady-siate plane wave ap-
proximation in the derivation. A more realistic calculation with Gaussian beam
profiles has been worked out by Bjorkholm." The output conversion efficien-
cies at w, and w,, defined as output versus input, are

w1} = (‘:—;)" (9.33)

_ 1-R, wy
Toul2) = rz"zf/f(‘*’a)n‘

An overall output conversion efficiency, fuy,{e@;) + Nom{ez); 23 high as 70%
has been experimentally demonstrated.'?

94 FREQUENCY TUNING OF PARAMETRIC OSCILLATORS

The output frequencies of a parametric oscillator are determined by energy and
momentum conservation

w, = +w, and k;=k +k;.
Together they yield the relation
ws[my{wy) = mylay - wy)] = e [m o) + az(e; — w)]. {934)

Equation (9.34) diciates the signal frequency w, if the dispersions of the
refractive indices nr,(w,) are known. As discussed earlier in sum-frequency
generation, (%.34) can be satisfied only in anisotropic crystals. With negative
uniaxial orystals in the normal dispersion region, n3{w;) must be extraor-
dinary, while n,(w,) and #,(w,) can be either both ordinary (type 1 phase
matching) or one ordinary and one extraordinary (type II phase matching).
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Equation (9.34) shows that the output frequencies of the oscillator (or the
frequencies for maximum parametric gain) can be tuned if #(w) can be varied
by external parameters. We consider here frequency tuning by angular rotation
of the crystal and by temperature. We assume type 1 phase matching in the
following discussion.

In angle tuning, let the output frequencies be w, and w, when the crystal is
oriented with an angle 8 between its & axis and the axis of the cavity. We have

wn§(w;, 8) = wyrf(w) + ”1”01("’2)- 9.35)

If the crystal is now rotated to # + AB, the output frequencies should corre-
spondingly change o w; + Aw and @, ~ Aw, Bquation ($.35} becomes

ang o dny 2
wy | n§{wy, 0} + 48| = (o, + Aw)| nl{e;) + Aw + O(8e)
a8 duy

+{wy,— Aw)[ng(wz) - SLGEA@ + O(sz)]
(9.36)

or

Wz

an§ an? an
Aw = m,#ﬁﬂ/{[wla—& - wlﬁ—ll +n(w) - ng(az)} {(9.37)

where O(Aw?) are terms of orders higher than o equal to (Aw)?. For uniaial

crystals, one finds
dn§ (m;)3 . 14 (1 :
- = 3 sin 28 e —ng . (9.38)

Then, given the dispersions of n,(w,), the angular tuning curve w; {0r ;)
versus @ can be calculated from (9.37) and (9.38). As w, approaches wy/2,
however, the quadratic terms of Aw in (9.36) become nonnegligible. Keeping
the (Aw)? terms in {9.36) near the degenerate operating point § = f, and w,
= }w,, we find, instead of (9.37),

e an w, #%n 172
= = &gy 32— 1z
fo= {w,( £ )an/{z 7w T2 aszﬁ)u]} (a0Y, (3.39)
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AMGLE TUNED LiNbQ3
PARAMETRIC OSCILLATOR
T=25°C

130
-1120
-ie
100
-90
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-70
-160
—50
—140
130
20

WAVELENGTH (u}
BANDWISTH (cm-!) Sem CRYSTAL LENGTH

50° 49* 48° 47°  46° 45  44°
CRYSTAL ANGLE

Fig. 9.2 Tuning range and gain bandwidth for the angle-tuned, singly resonant,
LiNbQ, parametric oscillator. The pump wavelength is 1.06 pm. (After Ref. 14

As examples, we show in Figs. 9.2 and 9.3 the angulas tuning curves of LiNbO,
pumped by a 1.06-pm laser bearn and ADP pumped by a 0.347-pm beam. The
tuning is of the order of 1000 ¢m ™" per degree of rotation away from the
degenerate point.

Temperature tuning follows a similar treatment. Assume at temperature T

(e, T) = winf(e, T} + wn(wy, T). (9.40)
At T + AT, the output frequencies change to «; + Aw and w;, — Aw, and we

have, away from the degenerate operating point,

wy|n5(w,, T) + a;ar] (w0, + Au){n?(ml, )+ %Aﬂ _’;_Aw]
ar d
_ wn(@n5/9T) — w(an)/3T ) = wy (3n§/6T)
ry = n§ + @,(9nl/d0} - w{ n3/30)
(9.41)

and [
+{w, - Am)[ng(wz, Ty + —ZAT - nzAw]
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Wavelength in Angsiroms
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Fig. 93 Tuning curve for the angle-tuned ADP parametric oscillator. The pump
wavelength is 0.347 pm. The angle Af is measured with respect to the angle at which
the signal and idler frequencies are degenerate. The dotted curve is a theorctical curve.
[After D. Magde and H. Mahr, Phys. Rev. Letr. 18, 905 (1967).]

Around the degenerate operating point, T = T, and «; = w,/2, W find

172
B dng Gn{] an, | w3 172
Aw—{w][ = - o To/zam 1 R
(5.42)

The temperature tuning curves of LiNbQ, for a number of pump laser
frequencies are shown in Fig. 9.4 as an example. With a pump wavelength at
0.53 pin, the degenerate point is a1 Ty = 49.3°C and wning is 300 em ™' /(°C).
While Ak = k; — k; — k, = 0 determines the output frequencies, Akl = 27
determines the gain bandwidth of a parametric oscillator, Since
IO (L S
1] Ry W) ab)l (2] awz

Akl = 186 /¢ (9.43)
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tem™)
tnm}

WAVENUMBER
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Ag v 5268 650

16,000
Ap 4735 - 8e0
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] L L | 1
200 250 30Q 350 400 45Q
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Fig. 94 Tuning curves for the temperature-tuned LiNbQ; parametric oscillator at
various pump frequencies. [After R. L. Byer, in H. Rabin and C. L. Tang, eds.,
Quanrum Electronics (Academic Press, NY, 1975), vol. 1, p. 631.]

the bandwidth is given by
any dn,
S = 2'ms/lnl —n;+ ml(-é;’-l-} - QZ(F“E)
Around the degenerate operating point, a better approximation gives
12
_|2me on wy [ @n
3«:7{ : /[Zaw 5 (aw2 » (9.45)

The result here shows that near the degenerate point, the bandwidth can be
fairly large, ~ 100 ecm~"! for / = 1 cm. Away from the degenerate point, dw is

. (9.44)
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Fig. 9.5 Singly resonant cavity design for an angle-tuned parametric oscillator. {After
Rel 14)

typically around 5-10 cm-!. A more dispersive crystal yields a narrower
bandwidth.

The output linewidth can be narrowed appreciably by using frequency
selection elements in the cavity. Figure %.5 shows an angle-tuned singly
tesonant LiNbO, parametric oscillator designed by Byer.!*'* The beam splitter
transmits 90% of the pump beam and reflects 99% of the signal beam. The
angular tuning curve of this oscillator is shown in Fig. 9.2 together with the
gain bandwidth. If a 600-line /mm grating blazed at 1.8 pm is used as the back
mirror of the cavity, the signal output has a linewidth around 1 cm™" for a
beam spot size of 1.6 mm. With a prism beam expander in the cavity to
increase the beam spot size on the grating, the linewidth can be narrowed by
another order of magnitude. Alternatively, 2 1-mm tilted etalon can be inserted
in the cavity to reduce the linewidth to less than 0.1 cm~ !, Other frequency-
selective elements, such as multiclement birefringent filters and etalon assem-
bly, can also be used in the cavity for reduction of the output linewidth.

In Table 9.1 we reproduce the list prepared by Byer and Herbst,'* describ-
ing the operating characteristics of a number of representative parametric
oscillators,

95 PARAMETRIC FLUORESCENCE

Parametric oscillation occurs through amplification of noise photons initiated
by parametric scattering or fluorescence. In general, in the parametric process,
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a photon at w, is scattered into a photon at «; and a photon a1 w, with
@ + w, = w, and k, + k; = k;. Parametric scattering or fluorescence refers
1o the parametric scattering process where the initial numbers of photons at «;
and w, are zero, This nonlinear optical emission can be properly described only
by quantizing the fields.'*

In the parametric process with negligible pump depletion, the intense pump
field can be treated as a constant classical field. The Hamiltonian governing the
problem can be written as

= 3 holaa +§)+ 7kGo[a{a*e’“""' + alazei””} (9.46)
im].2

where @) and a; are creation and anpihilation operators [or photons at «;
respectively, and G is given in (9.12). The Heisenberg equatien of motion for
an operator X is

dx 1

& =~ ml L] (947)

from which we obtain

da )
d] = iwaf + i1Gyae
(9.48)
92 ioyay — YGoar e
& = Tleas — BGeare .
The above set of equations can be solved to yield
at (1) = [ (Dcoshd Gyt + iy (0)sinh} Gye] e (9.45)
9.49

a3 (1) = [a,(G)cosh} Gyt — ia, (0)sinhi Gyr] ™"+,

Then, [assuming {a;{0)} = {a,(0)) = 0] the average numbers of photons at w,
and w, are, respectively,
{m(0)) = (af (2}a(2)}
= (n,(0))coshP Gyt + {1 + (m,(0)))sindP4 Gt
(ra () = (a3 ()ay (1))
= {n,{0)ycost? Gyt + (1 + (n,(0)})sink’ s Gyr.

{9.50)

The result bere shows clearly that the number of photons at w; and w, can
grow out of zero in the parametric process. For {n,(0)} = 0 and {n,({0) =0,
we have

{ay{e)y = {ny(e)) = sinh*4Gyt. (9.51)
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While parametric fluorescence leads to parametric oscillation, it can also
provide initial photons as input of a parametric amplifier. If the single-pass
gain of the amplifier is large, the output can be appreciable. This single-pass
parametric amplification of noise photons in a nonlinear crystal often is known
as parametric superfluorescence.™'* To find the cutput power, we note in
(9.50) that the output at w, (or @,) actually grows out of the initial noise
photon at w, (0r ;). We can assume on¢ photon per mode is created at o, (or
w,) by parametric scattering at the input end, z = 0, and use (9.3) to calculate
the output of the parametric amplifier at &, (or w,). For one photon in each
mode, the corresponding input intensity at w, is Aepc/myV, and the output at
woatz=1lis

2k
L{w) = (ﬁ%ﬁ)smﬂy. (9.52)
g

The number of modes in the frequency range w; 10 &, + dw and in a solid
angle extended by k, from ¢, to ¥, + i, (see Fig. 9.6) is, for small 5,

2ak2sin b, diy dif,

dN =
8w /V

9.53
by (9.53)

4q%c

kb, dyy do.

The total output power in a beam of cross section 4 between o, and @, — 4@
collected by a faraway detector with a small collection angle § is then given by

Plw,) de = fI,(w,)A aN

- (dw)

nin,halgil®A o sinb*hgl
1Rauwn &g j[;d\h g‘h-

1o’ sty

Nenlinear

crystal
Detector

m

k
B S
Vi ¥z
kJ

Fig. 96 Geometry of paratmnetric fluorescence collected by a photodetector.
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Here g? = g2 — (Ak)* is a function of ¥, through ak. In the furward
direction, s,bl =0, the phase—matchmg condition Ak = 0 is satisfied at w, = w]
and o, = such that wir, + w3n, = wyn;. From Fig. 9.6, we find for small

¥ and ‘;‘2’
K2 —(h, + Ak — ky)" = 2kgky(1 — cos )

Ak o= (ky— kg~ k) + (kk’)l (9.55)

= —ghw + by}

o~ |fan) (w2

Aw =w, — ) =} — w,
kiks

2k,

where

Equation (9.54) becomes

2 3,272 sink?{ | g2 — (- adw + ba;tl)z l',2.'/2
P(s,) = n,nzﬁw;gOIAfo {[ 0 1 ] }‘hd%-

tor'et ol (—ato+ 53} 1)

(9.56)
This result shows that P(c,) is a maximum at w, = w}, that is, when the waves
at ©,, w4, and w, are phase matched in the forward direction, The half-power
points appear at w, = wf + |Aw,| and @, = &} — |Aw_|, where |Aw,| and
|Aw_} are given approximately by

sint?{[ g} — (66 ¥ ajtw I)z]mf/z} sinh*{ g54/2)
{[gé ~(66* % ajaw )] ’r/z}z (gol/2)

1 T 2912
~ plBi-(B8" Faldw |7} ’/e“" =1,

which yields, for g, = b82,

12 - (9.57)
|Aw_| = = (—"1;.2) — b8,
a I
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Therefore, the bandwidth of parametric superfluorescence observed by the
detector is

Boogy = 18w, + 180 |

2 12
- %(—?lnz) ) (5.58)

A crude estimate using (9.56) yields, for gof = 50, and w, in the near
infrared, a P(w,)/4 as large as 107 W /cm? per cm~* in a 10-mrad forward
cone. Even in a 5-cm LiNbO; crystal, gof = 50 requires a pump beam intensity
of about 150 MW/cm?. This intensity, however, is easily obtained with
mode-locked laser pulses without damaging the crystal. Indeed, parametric
superfluorescence has become the most realistic scheme for producing tunable
picasecond pulses in the near-infrared region.!” The general time-dependent
description of parametric amplification or supetfluorescence by ultrashort
pump pulses has been given by Akhmanov et al. '8 but the qualitative features
are the same as those discussed in Section 7.6. In particular, if the group
velocity mismatch can be neglecied, then the quasi-stationary solution is still
applicable in the moving frame of the propagating pulses.

Parametric fluorescence or superfluorescence can also be used to determine
experimentally the frequency tuning curves of parametric oscillators.*'® This
is most useful when the refractive index data of the crystals are not readily
available.

9.6 BACKWARD PARAMETRIC OSCILLATOR

The case of parametric amplification with counterpropagating signal and idler
waves shows interesting characteristics and deserves special consideration. The
two waves grow in opposite directions and, through parametric interaction,
impose a positive feedback on each other, Then, with sufficient gain, the system
may become a mirrorless oscillator, that is, it may yield a finite output with a
zero input.!® The principle is similar 10 the backward-traveling wave tube.?”

The equations governing backward parametric amplification are a simple
modification of (9.1). With negligible pump depletion and linear attenuation,
they are

: 2
%gl = :J_lngggei Ak z+iflg
1
and (9.59)
"
3‘3_2.52: ﬂKé'lﬂ*e'* Ak -0,

=k2

assuming E, = &explik,z — oyl + i), By = Eyexp[—ikyz — il + il &
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= constant, and Ak =k; — kl + k3. The input boundary conditions are
&, = &,(0)yat z = 0 and &F = £ () at z = I The solution of (9. 59) forAk =0
is (#, = #/2 is assumed for mmphcny)

£(z) = 6'1(0)[006———30(22_ d) /cong"Il

12
oy [k . [ 22 gul]
+1—w2(—kl) EX (1) sin=3- /cosf2 s

) o1 (9.60)
1 . BolZ — 2ol
Ex(z) = [ kz) &, (0}[5111 7 /cos 3 ]
+¢5"2"(!)[cos—-/ccs g"’]
with g; given in (9.3}, and hence the output is
gl | oy fks} &l
i - g(o)/cos ‘mz(kl) #(1)1an %2
(9.61)
- ﬁ 2 g_OI £o
&X0) = s (kz) & (0Han 7+ ta"z‘(I)/cosT.

If gof/2 — n/2, both &(1} and £*(0) become infinite unless the input &,{0)
and &M(/) are zero. This is therefore the oscillation threshold. The actual
output will grow drastically as g,/ — # and will be determined only by taking
into account the pump depletion through the nonlinear coupiing between the
waves.

Fxperimentally, backward parametric oscillation has rot yet been observed.
The reason is that the phase-matching condition Ak = 0 cannot be satisfied in
the usual cases. It is possible to obtain Ak =0 with w, (or w;) in the far
infrared range,”' but then the gain coefficient gy/ is too small to reach the
oscillation threshold.
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10

Stimulated
Raman Scattering

The wave coupling problems discussed in previous chapters are certainly not
limited to electromagnetic waves. They can be generalized to involve both
electromagnetic waves and other types of waves, allowing us to imagine a host
of new nonlinear optical effects. In this chapter, we show that stimulated
Raman scattering can be described classically as a parametric generation
process with one of the electromagnetic waves replaced by a material excita-
tional wave. More correctly, one would, of course, treat the material excitation
quantum mechanically. Stimulated Raman scattering is then considered a
two-photon stimulated process grown out of spontaneous Raman emission.
Stimulated Raman scattering is one of the few nonlinear optical effects
discovered in the early 1960s. Over the years, many useful applications have
been developed out of this process. Some of them are discussed in this chapter.

10.1 HISTORICAL REMARKS

In 1962 Woodbury and Ng,! while studying §-switching of a ruby laser with a
nitrobenzene Kerr c¢ll, detected an infrared component in the laser output. Its
frequency was 1345 cm ™" downshifted from the laser frequency. This frequency
shift coincided with the vibrational frequency of the strongest Raman mode of
nitrobenzene. It was then recognized by Woodbury and Eckhardt® that the
infrared output must result from stimulated Raman emission in nitrobenzene.
This was soon verified in a large number of liquids by several research workers.
Similar effects were also found in gases and solids. Table 10.1 shows a list of
Raman modes of some materials in which stimulated Raman scattering was
observed.

An early theoretical description of stimulated Raman scattering was given
by Hellwarth,® who treated it as a two-photon process with a full quantum

141



142 Stimulated Raman Scattering

Table 10.1
Frequency Shift, Linewidth, and Scattering Cross Section of Spontaneous Raman
Scattering for a Nurnber of Sab and the Corresponding Stimulated Raman Gain®
Cross Section Raman Gain
Raman Shift ~ Linewidth  do/dR X 10% Gy % 10°

Substance {em” Yy 2T (em™ ) (em™! = ster™) (om/MW)
GasHY 4155 \¥) 1.5 (300 K, 10 atm)
Liquid O, 1522 0177 048 + 0,14 145 + 4
Liquid N, 2326.5 0.067 029 + 0.09 1743
Benzene 992 215 3.06 28
CS, 655.6 0.50 1.35% 24
Nitrobenzene 1345 6.6 6.4 21
LiNbO, 258 7 262 287
InSb* 0 - 300 03 10 1.7 x 104

safter Y. R. Shen, in M. Cardona, ed., Light Scattering in Solids (Springer-Verlag, Berlin,
1975), p. 275.

E_ E. Hagenlocker, R. W. Minck, W. G. Rado, Phys. Rev. 154, 226 (1967).

“For a carrier concentration n, = 1"® ¢cm ™%,

mechanical calculation. The simple theory, however, cannot account for the
observed anti-Stokes radiation which often appears with intensity almost as
high as the Stokes radiation. Garmire et al.* and Bloembergen and Shen® later
used the coupled wave approach to describe stimutated Raman scattering and
were able to explain the anti-Stokes generation as well as the higher-order
Stokes and anti-Stokes output.

Yet the theories still could not explain many other important observations.
These included an observed stimulated Raman gain much larger than the vaiue
predicted by the theeries, extremely sharp threshold for stimulated Raman
emission, asymmetry of forward-backward Raman intensity, and appreciable
spectral broadening of the Raman radiation. It was later realized that these
anomalies were actually induced by self-focusing of the laser beam in the
medium, which is discussed in Chapter 19, Without self-focusing, the theories
predicted experimental results satisfactorily.

Farly interest in stimulated Raman scattering arose because it could provide
intense coherent radiation at new frequencies and because it was a possible loss
mechanism in propagating high-pawer laser beams in a medium, for example,
in the atmosphere or in a fusion plasma. More recently, stimulated Raman
scaltering was used to generate tunable coherent infrared radiation by either
tuning the material excitation as in stimulated polariton scattering® and
stimulated spin-Aip Raman scattering,” or by tuning the exciting laser frequency
with, for example, a tanable dye laser, Spectroscopic applications of stimulated
Raman scattering have also been developed, with emphasis on high-resolution
studies® Transient stimulated Raman scattering has been applied to the study
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of relaxation of material excitations in the picosecond region with mode-locked
laser pulses.®

10.2 QUANTUM THEQRY OF STIMULATED
RAMAN SCATTERING

Raman scattering is a two-photon process in whick one photon at w,(k;) is
absorbed and one photon at w,(k,) is emitted, while the material makes a
transition from the initial state |¢} to the final state |f}, as shown in Fig. 10.1.
Energy conservation requires A(w, — w;) = ¥, — E, = Aiwy,, which is the en-
ergy difference between the final and initial states. Stokes and anti-Stokes
scattering correspond 10 wy; > ( and wy, < 0, respectively.

To find the Raman transition probability, we use the standard second-order
perturbation calculation.’® The interaction Hamiltonian in the electric-dipole
approximation is

Hy = —er+ E + adjoint (10.1)
where E = &%t 4 £g'®27-w) The Raman transition probability
PEr unit time per unit volume per unit energy interval is found to be

awy,  dW,  3niNew,
d(hw))  d(ha,) £E,

ereéy| s)(s lerr & er-&jsy(s |er- &,
M= 2 -
g f’("’l - “’si) h(“’z + ‘*’u}

KM [ aglaf ayle)Pg( hdw)
(16.2)

Here N is the density of molecules or unit cells in the medium, ¢ is the

haytky) huwy ikl

he (k)Y [herdRy)

>  Fip. 101 Schematic drawing showing the
Stokes (w, < w,) Raman transition from the
initial state |¥) to a final excited state |f )},
and the anti-Stokes (w; > w,) Raman transi-
li>  tion from (f) to|i).
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dielectric constant, & denotes the field polarization, s} is the intermediate siate
of the material system, ja) denotes the state of the radiation field, a* and a are
the creation and annihilation operators of the field, and finally g(hAw)
describing the lineshape is the joint density of states of the Raman transition.
For a Lorentzian Yineshape, we have

Kl /m

g(hbw) = ————
) #{Aw) + BT?

(10.3)

where AT is the halfwidth in energy units.

The transition probability in (10.2) is proportional to |( a layala)f If
(o] = {my, 1yl and {ag] = {my — Loy + 1| with and n, being integers, then
AW /d{huy) & my(n, t+ 1), spontaneous and stimulated Raman scattering
correspand 1o ny = 0 and n, * 0, respectively. The states of the radiation
fields are often more complex in general. Then there exists no simple expres-
sion of (alay mle;). However, if the average numbers of photons 7, and 7, at
w, and w, are much larger than 1, the approximation |(af|aIa1|n,>|2 = 7iyfi, i8
excellent.l! In a certain sense, this is equivalent to saying that the field can be
treated classically.

Consider now the propagation of the w; and w, beams in the Raman
medium. The Raman transition leads to the absorption of the w; beam and
amplification of the w, beam. From a simple physical argoment, the change of
the average number of Raman photons in a single mode at w; per unit length
of propagation is given by®

dny (W Wy NG

dz du, T du, L P
= (G — )7,

where p; and p; are the populations in i} and | £}, and a, is the attenuation

coefficient at w,. Since Wj; = W, from detail balancing, the quantity Gy takes
the form

{10.4)

10.5)

8’ Nuwyua, i (

= BTN o 2n (hA0)p — py),  fOTEy, iy 1
e’ 1My 18 haw){p; — pr) 1, 2

which is a constant if 7, can be treated as a constant. This is the case when
depletion of the w, pump beam is negligible. The solution of (10.4) is then
simply an exponentially growing function of z

#iy(z) = Ay (@) el {10.6)
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with G playing the role of a stimulated gain coefficient proportional to the
incoming laser intensity at w,.

Since the gain is proportional to the Raman transition probability, one
expects that it should also be proportional to the spontaneous Raman cross
section. By definition, the differential Raman cross section d2o/d( ;) d9 is
the scattering probability of an incoming photon at w, per unit area into a
Raman photon of a certain polarization at «, per unit solid angle around £
and unit energy interval around kw,:

d% dw;,
- M alat e lad
d{huw,) a0 ng’d(hwg)/ asladaja,) e

3
= (‘ajlulz—e{z)lMilzg(ﬁﬁw)p
4 El

(10.7)

where

_kz( dkz]/(z y?

is the density of radiation modes per unit solid angle at w«,. From (10.5) and
(10.7), we immediately find the relation

41rr:£1

(P—P)( 4% )Ié"l2
wwie,p; i d(hw, ) dQ !

47.'2(:’51

Gp=

do (10.8)
(p - Pj)(m) 14,17 ( hdw).

2
W28,

Thus, given the spontanecus Raman cross section do/dQ and the halfwidth T,
the stimulated Raman gain in a medium can be estimated easily. Table 10.1
shows the cross sections, the halfwidths, and the estimated gains for the
Raman lines of some materials in which stimulated Raman scattering has been
observed.

As an example, let us consider stimulated Raman scattering in benzene.
From Table 10.1, we find that the Raman gain for the 992 cm ™! mode of
benzene is 2.8 X 107? cm,/MW. Thus, in order to generate ¢*° Raman photons
from one noise photon {corresponding to an output of ~ 100 kW /cm®) in a
10-cm benzene cell, a laser beam of 1 GW /cm® is needed. This shows that a
high-power pulsed laser is necessary for the study of stimolated Raman
scattering. In actual experiments, stimulated Raman scattering with a power
gain of ~ ¢ in benzene and in many other liquids has been observed with a
laser beam of ~ 100 MW /cm? or less. The order-of-magniwde discrepancy
between theory and experiment is the result of self-focusing of the laser beam
in the medium (see Section 17.3).
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Note that we use the approximation [(a{aya|a,)|* = A, in describing
stimulated Raman amplification. This approximation is certainly not valid
when 7, or i, is small. Therefore, strictly speaking, this theory is rather crude
for describing stimulated Raman amplification starting from neise or sponta-
neous scattering. The complete quantum theory of stimulated Raman scatter-
ing by spontaneous scattering is a difficult but challenging problem in quantum
optics and has not yet been fully developed. In some respects, it is a
1wo-photon analog of the superfluorescence problem (Chapter 21),

103 COUPLED WAVE DESCRIPTION OF STIMULATED
RAMAN SCATTERING
Coupling of Pump and Stokes Waves
From the wave interaction point of view, a two-photon transition is a third-order

process. It can be seen from the relation that the net transition rate is equal to
the rate of generation or loss of photons at @, or w,:

dw, 2 oy
E”(P.“Pf)’zRe ﬁp (o) By || /hoy
A (10.9)
=12 Re[EP(”‘(wz) 'Ez] /Ry

Since dW/do \EPIEy %, we have PONw,) o |E;°E; and P® ()

| E(|*E;, both of which are therefore third-order nonlinear polarizations.
Stimulated Raman scattering can then be described as a third-order wave

coupling process between the pump and Stokes waves. The wave equations are

H 4areal
9 X( X E)) — agE, = —2 PP w)
C c

and (10.10)

4mu§
(3
e P®(w,).

w
v X(v XE)) -k =
[

For simpticity, we consider the special case of an isotropic medium with E;
and E, polarized in the same direction. The nonlincar polarizations take the
form

PO = [XPHEHZ + Xg“Eﬂl] E
and (10.11}
PO(w,) = [xBIEP + xPE; ] B,

As seen in (10.11), the % and x§ terms in P™ only act to modify the
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dielectric constants ¢, and &, in (10.10). They are responsible for the field-
induced birefringence, self-focusing, etc., but have no direct effect on stimu-
lated Raman scattering. We therefore neglect them in the following discussion.
The x@ terms in P®), on the other hand, effectively couple E; and E; in
(10.10) and cause energy transfer betwesn the two fields. They are then
responsible for the stimulated Raman process, and they are known as the
Raman susceptibilities,

The microscopic expressions for x3 can of course be obtained from the
usual procedure outlined in Chapter 2. Each x4 should have a resonant term
and a nonresonant term. Only the resonant term is connected to the Raman
process. In fact, the microscopic expression of the resonant term [x%']g can be
obtained directly from the relation in (10.9)

aw, 2Im x| E P E |
fig. - XailEal*| £
dw2 (P,' Pj) = h
(10.12)
_ _ 2mmxBE B
= 5 .
From (10.5), (10.8), and the relation |E)% /27 = hwh, we find
dmel
Ge = = — ~ (ImxRBNEL,
ctky
Im x§) = —1Im x§}
10.13)
Cdf}(Pi - Pj) do (
- NI EE kA
wwieyp, 48 it

—NiM (o, - o) mglhdw).

If g(hAw) is a Lorenizian, then from the Kramers-Kronig relation, the real
part of [x@'lg can be explicitly derived. We then have the microscopic
expression

X8 = [xBlww + [x%]e

NIM, A, —
[x@lx = - ﬁ!(wll—f:‘:g (_Hwﬁ;j_) i’ (10.14)

x&E-

xR
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Knowing x%}, we can now solve (10.10) with (10.11). For plane-wave propaga-

tion along £, and assaming stowly varying amplitude approximation, the wave
equations reduce 10

P o { 2mad
(E + —21‘)51 = '( C1k1)x%l£2|zﬁ.1

1
and ' {10.15)

| 2mad
]49‘2 = ‘(c‘z—kz)xgkz!Ellzgz

,q

&
+

Nlj

They can be transformed into

8 Al
(2 alt = - o tmxRIEES
1

and (10.16)

a Azl
(25 it =~ F BT
2

These equations can pow be identified with the equation for 7 in (10.4) and a
simitar equation for A, if |E,|? and |E;\* are replaced by 2whe,fi /5 and
2w hanfia /e vespectively, with G given in (10.13). Thus, when the depletion
of the pump field |E,|? is negligible, we again have the exponentially growing
solution of |Ey(2)* = |E5(0)exp(Grz — aZ).

If the attenuation constants ey and e, are vanishingly small, then even the
exact solution of (10.16) can be obtained easily with the help of the conserva-
tion of the total number of photons 187218, /w0y + &/%|8,[*/w,} = K. The
solution takes the form

|£’1(z)|1 _ |€2(0)|2 exp — &, KGgz
ig’l(zﬂl - le/zi/z Igl((])f - ‘*’1KAE=/2 |6’1(0)|2511ﬂ ’ (10 1)
i) _ 16, (0} exp +w, KGg? ‘
() — w K/ 16O — @K/ )14 |

Parametric Coupling of Optical and Material Excitational Waves

Stimulated Raman scattering can also be considered as a parameiric genera-
tion process in which the optical pump wave gencrates a Stokes wave and a
material excitation wave.*® This can be seen as follows.
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We recall that the expressions for the nonlinear polarizations in (10.10) can
also be derived using the density matrix formalism of Chapter 2. Let us
consider here only the Raman resonant term in PO, We can write, in the
notation of Fig. 10.1,

POy} = NE [(sler - 20pi0(wy) + (Fler - aldeif (2]

=N}, UIer;iz)f:r). Eali) Ew )o@y — o) {10.18)

_ {fler - &jsi(sier - 4)1i)
k(wz - "’:])

E(“’])PEP(“‘: - @)

which, with «, — @, = &, — w;, and (10.2), reduces to
PR wy) = _NM;;E(“l)P?:(”z - w) (10.19)

The resonant second-order density matrix element pff'(w; — ©;), on the other
hand, can be obtained from the equation

3, . 1 5
(E + fw, Fij)PE})(“z )= E{[“’r ~SEY, P ()]
+ [ —er &, E;, Pm( - '-"1)] } » {10.20)
1
- EMAEE, 0.
Then, in the steady state, we have

Mii(p. — p
——;(p—f—),—El‘El,
Ao, — @y — oyt rI‘,[) (1021)

P:g)(”z) = [Xg)z]RiEtlez

Pg)(‘*’z )=

with [x$} 1z having exactly the same expression as in (10.14). One can find
P2(eoy) similarly.

The formalism here shows explicitly p{¥'(w; — «,) as 2 material excitation
resonantly driven by optical mixing EFE,. Stimulated Raman scattering can
therefore be considered 2 result of coupling of three waves Ey(w,), E3{(w;), and
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prlw; = wy), as governed by the wave equations

g &° dm?
[V x(v X} +;:L2¥ EL‘TlP(j)("-‘l)

4wl
! €, { xi”lEllel + [ X%]NRLEzlel

+ NMJEy () = @)} (10.22)

4 2
T & (%] wml B *Es

C

2 4 2
{V x(v x}+ Lza—]Ez :l%Pm("’z) =
¢t o ¢
FXPIEIE; + NMEy(on)p) (@) = @)},
J i
(5 — duy, + rf.-)Pff(wl —w}= EM?E(P; - p)ELE;

where E, is the pump wave, and £, and py; are the generated waves. Aside from
the x™ terms, which are not essential for stimulated Raman scattering, (10.22)
is very similar to (3.4), which was used in Chapter 9 to describe the parametric
generation process, except that here the dynamic equation for pfi'{(w, — @}
has replaced the idler wave equation.

We assumed in the above discussion a localized Raman excitation between
two energy levels. This is a good approximation for most Raman excitations
including molecular vibration, optical phonon, ¢lectronic excitation, spin-flip
(ransition, and optical magoon and plasmon, even though the dynamic equa-
tions for different excitations are generally different. Since pf? has no disper-
sion, phase matching for the wave coupling is automatically satisfied here, This
makes the solution look different from that of the optical parametric process.
The general formalism, however, is valid for any material excitation if the |
dynamic equation for p}f’ is replaced by the appropriate dynamic equation for
the excitation, with or without dispersion.

We note that as long as the response of of?? can be considered as stationary,
as given in (10.21), elimination of P 1n (10.22) with (3% ) E(w) =
—wE(w) immediately leads to {10.10), which was used earlier to describe
stimulated Raman scattering. However, the set of equations in (10.22) is clearly
more general as it also describes the transient case where pf? does not respond
instantaneously to the time variation of the driving force E,E5. The popula-
tion difference p, — gy in (10.22) can be approximated by its thermal equi-
librium value under weak excitation, but in general, from physical argument, it
should obey the relaxation equation

dW;;
%(% + %][(p, — o) - (o0 - )] = Wf,'z(ﬂ- -p) (10.23)
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where the right-hand side is the transition rate, which, from (10.8) and (10.1%),
is fpund to be

aw;, ;
fi !
Nda, (ei-p)=3% [ M.E,\Efo} — M}EYE;p,). (10.24)

In the general description of stimulated Raman scattering, (10.23) should be
solved together with (10.22). Strong excitation of the population leads to
" saturation in the Raman gain. This description, however, applies only to the
localized two-level excitation. For the boson-lype excitation, (10.23) should be
replaced by the equation

aw,
(%+%}(n3—ﬁ3)=ﬁ(proﬂ (10.25)

[

where 1, and 7, are the average numbers of bosons present with and without
the driving fields, respectively.

Stimulated Raman Scattering by Molecular Vibrations or
Optical Phonons

The most commeon case of stimulated Raman scatfering is by a molecular
vibration or optical phonon, which is often described as oscillation of the
normal coordinate . In agreement with the conventional definition of @, we
can identify pf(w) in (10.22) with (A/2w)/?Q and replace its dypamic
equation by the driven harmonic oscillator equation for O

3t F] 2w, — wy) 172
(? + ZFE + ”ﬁ)Q(“’l — @)= [(_1’1_2)] MLEES(p; = o),
(10.26)
which, with @, — w; = wy;, reduces to
a . . -
(E + fay; + F)Q = '[2"(‘“’1 - “’2)] 1/2%15157'_'(% - P])-
(10.26a)

Then the equations for E;, and E, in (10.22) together with (10.26) properly
describe stimulated Raman scattering by phonons. In particular, in the steady-
state case, we again obtain the expression for the resonant Raman susceptibil-
ity [x%1]g in (10.14).
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104 STOKES-ANTI-STOKES COUPLING

We have thus far discussed only the stimulated Stokes emission. Experimen-
tally, however, both Stokes and anti-Stokes waves are simultaneously generated
with comparable intensity in the stimulated Raman process even at very low
temperature. This is very different from the case in spontancous Raman
scattering and cannot be understood as a stimlated two-photon process
described in Section 10.2 since the anti-Stokes wave then would be absorbed
instead of generated. Yet it can be explained readily by the coupled wave
description.** A third-order nonlinear polarization PO{w,) at the anti-Stokes
frequency w, = 2w, — w, can be induced in the medium through mixing of the
pump wave at «, and the Stokes wave at o, via the Raman resonance at
w — W, = @, — o, 85 we e below.

With the simultaneous presence of E,(w,), E,(w,), and E (&), the material
excitation p;,, now driven by both E,E* and E, E}, obeys the equation

é . i
(E — oy + rﬂ)p;, =5 [ ML EPE + My L EXE| (e, - p)  (1027)
where M, , and M, , are the Raman matrix elements for the transitions
incurred by E,, E, and E,, E, respectively. Mixing of the material excitation
with the em waves then gives mse to the resonant part of the nonlinear
polarizations

PO{w) = N(M}, Epy + Mﬁ,aEaPﬁ),
P w,) = NMy Epf. (10.28)
Prg)(wu) = NMﬁ,aE.'Pﬁ-
If the response of gy, to the fields is stationary, then py; can be solved from
(10.27) and substituted into (10.28). The resultant P% combined with the

nonresonant part of 7@ can be cast into the form PO (w=w, +wy+w)=
XPE (w,) Eg{wg) E,{w,) with x* containing both a resonant and a nonreso-

nant term. The set of wave equations describing the steady-state anti-Stokes
generation then is given by

wl -\ dnwl .
[ %09 %) ofp = el iae

+(x2+ xO)EEEF + xNEE

[ o? 4l (10.29)

v x(9 x) - S [B, = T [XIELE, + XL,

w 4ol
lv X(V X) - C_;Ea E: = czﬂ ea[x{s]a)ElZE.r* + xgﬂ!EfFEa*]
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where
N|Mﬁ',s|2(9. - P,r)
hw, — o — @y — r']:,‘-)
NM].‘.JMI‘.‘,R(PE — Pf)
R, — w, W — ET',,-) !

2
X2 = (xP)g - _NIM e ey)
o “@/NR gy — w, — W, =~ fo,)

X2 = (x@hw =

X2 (xm)NR - {10.30)

and we have neglected terms of x™|E;°E, in (10.29).

The set of equations in (10.29) actually describes a four-wave parametric
generation process with E, being the pump wave, E, and E, being the signal
and idler waves, and x,, acting as the coupling constant between the signal
and idler waves. The solution of (10.2%) in the limit of no pump depletion
therefore follows closely that of parametric generation described in Chapter 9,
We skip the derivation and present only the results here, Assuming an isotropic
medium with a plane boundary at z = 0 and slowly varying amplitudes for E,
and E,, we find®

E, = &, exp(iAK . z) + & _exp(iAK_z)]exp(ik, "1 — a,z)
and (10.31)
= [&r exp(iAK, 2) + & exp(iAK z)|exp[— ik, + 1 — (ifk + a,)z]

where
2.
pr=YL
)
0= 2'klx,y - k:x‘y - kax.y‘
Ak = 2ky, — K, — kK =k 2,
12
AK = %i[(“‘) —(8K)A ] ,
2z
e (2M’ XDIEL,
ek
2
ek, k.
Gy = —2Im{A).

For the sake of simplicity, we neglect the dispersions of the abserption
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Fig. 10.2 General relationship between the wavevectars of Stokes, anti-Stokes, and
laser waves.

coefficients a, and the coupling coefficients (2mw’/ ¢k, yx®. The relationship
between the various wavevectors is shown in Fig. 10.2, With &, = &, and
&, = & qatz =0, we have

£, AK,—A
£, A 7
o (1032)
g o K+ 8)8, ¥ AdY
st AK,- AK; :

A number of imporiant physical results come out of the above selution.
First, through the Stokes-anti-Stokes coupling, iwo composite waves (€00 E00)
and (&, , §,) are formed with the ecigenvectors AK, and the
Stokes-anti-Stokes amplitude ratio (£,/€,) . One of them may experience an
exponential gain and the other a loss if Im{(AK.) < 0. The coupling clearly
depends on phase matching. If the phase mismatch is sufficiently large that
|Ak| # |Al then the Stokes and anti-Stokes waves are effectively decoupled.
This is explicitly seen by the fact that AKX, and &, , /€, , reduce to

AK =A, AK,=8k-A
and
&
&, _

=|i\- @1
Ak ’ L

G |80

The first denotes a nearly pure Stokes wave with an exponential power gain of
21m(AK_) = G, while the second denotes & nearly pure anti-Stokes wave
with an attenvation — G. These are the results expected when the Stokes and
anti-Stokes waves are decoupled from one another. The Stokes-anti-Stokes
coupling is maximum when Ak =0. The solution yields AK,=0 and

——
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|€)./&, .| = 1. Then neither Stokes nor anti-Stokes waves should experience
an exponential growth. This is because through coupling, the Stokes gain is
completely canceled by the anti-Stokes attenuation, a result well known in the
parametric amplifier theory where no gain can be expected at &, = w; — w, if
the other sideband at w, = w, + w; is not suppressed. As jAk| gradually
deviates from zero, the gain 2 Im{AK )| increases rapidly from 0 toward G,
as shown in Fig, 10.3, while the anti-Stokes—Stokes ratio |#7_/¢, _| decreases
from 1 to 0. Appreciable anti-Stokes generation is sherefore expected in the
region |Ak| ~ |A| where both Im(AX )| and {&} /&,_| are sufficiently finite.
The anti-Stokes radiation should appear in the form of a double cone around
the phase-matching direction, as shown in Fig. 10.4. We should, however,
remember that infinite plane waves are assumed in this theory. In reality, a
pump beam of finite cross section has a spread of wavevectors. Consequently,
the sharp dip in the gain curve in Fig. 10.3 may get smeared out, and instead of
the double cone in Fig. 10.4, one may observe only a single cone of anti-Stokes
radiation.'?
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Fig. 103 The Stokes power gain as a function of the normalized Linear momentum
mismatch Ak/Gp in the z direction. The asymmetry is due to the nonresonant part
%58 = 0.LIm x%|max- (After Ref. 5.)
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Fig. 104  Anti-Stokes intensity versus the Linear phase mismatch Ak (normalized by
the Stokes power gain Gg). The asymmetry is due 10 X pr = 0110 X Fmax- (After Ref.
5)

105 HIGHER-ORDER RAMAN EFFECTS

Intense higher-order Stokes and anti-Stokes radiation often shows in experi-
ments accompanying first-order Stokes and anti-Stokes generation.'” Unlike
the overlones in spontaneous scattering, they appear with frequencies at
@ + Moy, where n is an integer. This characteristic suggests that they are §
generated more or less successively. For example, when the first Stokes E,{w;)
becomes sufficiently intense, it may also act as a pump wave [0 generate the
second Stokes E,y (0 = @ — 95} In general, however, we must find the
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answer from the coupled wave approach, because an nth-order Siokes or
anti-Stokes wave may couple to several Stokes and anti-Stokes waves of
various orders through third-order nonlinear polarizations, Again, coupling of
a particular set of waves is strongest if phase matching is satisfied. Unfor-
tunately, with many complex waves nonlineariy coupled together, the problem
becormes extremely complex.

We consider here, as an example, a special case where only the Stokes
generation in the +3 direction needs to be taken into account.® This can be
achieved in a real situation with short pulsed laser excitation such that the
backward Stokes generation is suppressed (see Section 10.9), while the anti-
Stokes generation can be neglected. The set of coupled wave equations is then
given by

T wke LA
(ﬁ*#)% —( Cz’)xﬁ’ |ELLE,

7t wle, dqw?
NP

2 whe, Anwl, .
(—+ SERE, = | = 3 XL En + 1B E

)[xSHE,l‘EJ + xF1ESE]. (10.33)

etc. The solution of (10.33) can be obtained by numerical calculation, as seen
in Fig. 10.5. As the length of the medium or the pump power increases, the first
Stokes power increases gradually at the beginning, and then suddenly builds
up to a maximum while the pump power plunges to nearly zero by depletion.
Then the first Stokes power remains roughly constant for a while and gets
depleted into the second Stokes, and so on. This is in fact what one would

10 T T T T [T T T T T T T 1T
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Fig. 105 Generation of higher-order Stokes waves as a function of normalized cell
length z = (16 ’w}Im x§] /k,c*)P,(0)2. (After Ref. 5))
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Fig. 106 Schematic of 2 sct-up for investigation of stimulated Raman scattering.
PM1, PM2, and PM3 are photodetectors measuring the laser, the forward Raman, and
backward Raman radiation, respectively.
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Fig. }0.7 First-order forward and backward Stokes power versus the toluene cell
length at three laser powers P = 80, P, =67, and Py =53 MW /car, [After Y. R.
Shen and Y, J. Shaharn, Phys. Rev. 163, 224 (1967)]
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expect from the simple physical picture. The calculation here, however, as-
sumes infinite plane waves. With a pump beam of finite cross section, the rise
and fall of an nth-order Stokes wave should be more gradual, as demenstrated
both theoretically and experimentally by von der Linde et al.1?

10.6 EXPERIMENTAL OBSERVATIONS AND APPLICATIONS
Stimulated Raman Scattering in Self-Focusing Media

A typical setup for studying stimulated Raman scattering is seen in Fig. 10.6.
As mentioned in Section 1.1, earlier results on the Stokes intensity measure-
ments disagreed strongly with theory. Most of those experiments were on
liquids with large Kerr constants and the results showed a sharp thresheld for
stimulated Raman scattering and an effective Raman gain an order of magni-
tude larger than the predicted gain. An example is given in Fig. 10.7, which
also shows a forward-backward asymmetry in the Stokes output that was not
predicted by the theory. Other anomalies such as the Raman spectral broaden-
ing and the anomalous anti-Stokes ring pattern were also observed. It was later
realized that these amomalies were initiated by self-focusing, which readily
occurred in Kerr media (see Chapter 17), Self-focusing has a threshold; it
increases the laser intensity dramatically at the fecal region, and breaks the
forward-backward symmetry of the Raman amplification. This then explains
qualitatively the results of Fig. 10.7. Raman anomalies constituted a subject of
great confusion in the past. We do not go into any detailed discussion on the
subject here. Interested readers should consult Section 17.3 and the relevant
literature (see Bibliography).

Stimulated Raman Scattering in Non-Self-Focusing Media

Even without self-focusing, stimulated Raman scatiering often shows a certain
gain anomaly. An example is seen in Fig. 10.8, where the Stokes output is
plotted against the laser input in liquid nitrogen. Self-focusing was not
observed in this case. As the laser power increases, the Stokes output first
increases linearly because it is generated from spontaneous scattering, and then
grows quasi-exponentially when stimulated scattering sets in. At a certain
input power, the output rises suddenly with an effective gain much larger than
the theoretical prediction, It finally levels off as a result of depletion of the
laser power.

The sharp rise of the Stokes output is presumably due 1o feedback in the
Stokes amplification from Rayleigh scattering or diffuse reflection from walls
and cell windows, Experiments of the kind in Fig. 10.8 actually describe the
build-up of Raman cscillation, that is, amplification from necise. As is well
known, the output of an oscillator without saturation depends critically on
small perturbation or feedback. This makes the quantitative interpretation of
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Fig. 10.8 Experimental result of the firsi-order Siokes output as a function of the laser
intensity in liquid . [After 1. B. Grun, A. K. McGuillan, and B. P. Stoichefl, Phys.
Rev. 180, 61 (1969).]

the oscillator outputl extremely difficult, especially if the perturbation or
feedback cannot be well characterized. With careful elimination of feedback,
Haidacher and Maier have shown that the sharp rise of the Stokes cutput can
be greatly suppressed.'

Raman Gain Measurements

The theory developed earlier is clearly 2 theory of Raman amplification rather
than oscillation. To check the theory, one should carry out experiments on
Raman amplifiers.** This can be done with the oscillator-amplifier setup in Fig.
10.9. The backward Stokes emission from the oscillator pravides a Stokes input
to the amplifier, and the amplification gain of the backward Raman scatiering
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in the amplifier is measured. Figure 10.10 shows the result on hydrogen gas
exhibiting good agreement between theory and experiment. Such a Raman
gain experiment was, however, not every successful in self-focusing media,
where self-focusing in both the oscillator and the amplifier led to complica-
tions,

Anti-Stokes and Higher-Crder Raman Radiation

Anti-Stokes radiation of many order often can be observed in stimulated
Raman scattering'*'? In condensed matter they appear in the form of bright
multicolored rings on a plane perpendicular to the laser beam. Rings of
different color correspond to different orders of anmti-Stokes. Chiao and
Stoicheff2 showed in calcite that the nth-order anti-Stokes radiation is emitted
in the direction given by the phase-matching condition k, , =k, .1 + k, —
K, . This is expected if we assume that the higher-order anti-Stokes is
generated successively from the lower-order Stokes and anti-Stokes. The first-
order anti-Stokes ring should be defined by k, = 2k, — k, according to the
theory,

In self-focusing liquids the situation is more complicated. The directions of
the anti-Stokes rings now deviate from those defined by k, , =k, , 1 + K, —
k, , as they are now affected by sell-focusing. Garmire'® had some success in
interpreting thes¢ rings by assuming the existence of thin filaments of pump
light resulting from self-focusing in (he medium. The problem, however,
remains since the assumption of Elaments is not quite valid.
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Fig. 10.11 Normalized transmitted laser {R}), first (Rg,) and second Stokes (Rs;)
pawer as a function of the incident laser intensity J;(0,0). The experimental data of
R;, Rg, and Rg, are represented by circles, rectangles, and diamonds, respectively.
The curves are calculated according to the theory in Section 10.5 with the finite beam
cross section taken into account. (After Ref. 13.)
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Higher-order Stokes radiation appears mostly along the axis in the forward
and backward directions. Quantitative studies generally are difficult. Using
subnanosecond laser pulses, von der Linde et al’® were able 1 carry out
quantitative study in a special case. The short input pulse excited only the
Stokes radiation in the forward diregtion, as already described in Sectien 10.5.
Their results are shown in Fig. 10.11. Theoretical calculation following {10.33}
but with a Gaussian beam profile shows good agreement with the experiment.

Stinmuiated Raman Scattering by Broadband Pump Source

Raman pain measurentents in the absence of self-focusing may stll show a
forward-hackward asymmetry. This resulis from the finite linewidth of the
pump beam. If the pump linewidth is 2T}, and the Raman linewidth is 2T,
theories predict that the maximum backward Raman gain is proportional to
(T +I,)"* and the maximum forward Raman gain is proportional to 'Y,
assuming no relative dispersion between the Stokes and pump frequencies.!’
This surprising result can be understood qualitatively from the following
picture. In the forward direction, as a short At section of the Stokes wave
propagates in the medium, it always coherently interacts with the same At
section of the pump wave. On the other hand, if a short section of the Stokes
wave propagates in the backward direction, it constantly encounters a new
wavefront of the pump wave. Consequently, the forward Raman gain follows
the pump intensity variation and is proportional to T~1 as predicted by the
stationary theory described carlier. The backward Raman gain is reduced
because the amplification process averages over the amplitude and phase
vaniation of the pump field. Bxplicit results can be obtained, for example, by
considering the special case of stimulated Raman scattering by a short pump
pulse (see Section 10.9) where the pump linewidth is given by the inverse of the
pulsewidih. More generally, statistical theories should be used to describe the
problem.!’?

Competition between Raman Modes

In stationary stimulated Raman scattering, only the mode with the maxirmuin
gain appears to participate in the process. It is usvally the mode with both a
farpe Raman cross section and a narrow Raman linewidth. Effective depletion
of laser power into this Raman mode forbids the occurrence of stimulated
scattering into other modes. Only in transient cases (see Section 10.10) will
several competing modes show up simultaneously.

Inverse Raman Effect
A loss in pump radiation always accompanies the gain in the Stokes radiation

in a stimulated Raman process. Thus with both the pump and the Stokes
waves senl into a medium, one can observe simultaneously the gain of the
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Stokes wave and the attenuation of the pump wave. The absorption of the
pump radiation in a stimulated Raman process was first demonstrated by
Jones and Stoicheft and is known as the inverse Raman effect.®

Tunable Infrared Sources Obtained from Stimulated Raman Scattering

Stimulated Raman scattering with its Raman-shifted output has long been
considered a viable method for generating coherent radiation at new frequen-
cies. Special interest is in tunable coherent sources. Since the Raman frequency
of a medium is usually fixed, the tunability is often achieved by using a tunable
pump laser.

Two systems have received much attention. One is the atomic vapor system,
mostly alkali and alkali-earth metal vapor. Raman transitions involved are
often of the S = P = Sor § — P — D type."? The tunable pump source is
near resonance with the § — P {ransition, so that the Raman cross section is
greatly enhanced. As a result, even though the atomic vapor density is small
(=< 10" atoms/cm?’ at a pressure of ~ 10 torr), the Raman gain is significant.
Stimulated Raman scattering with emission in the near infrared can be readily
observed. With a dye laser input of a few tens of kilowatts in an alkali vapor,
the infrared output can have a continuous tuning range of several hundred
inverse centimeters and a peak photon conversion efficiency as high as 50%.2
The tuning range can be further extended by using different Raman transi-
tions, For example, in Cs, with a tunable pump dye laser in the blue and uv,
the observed Stokes oulput appears in the range of 2.5-4.75 pm, 5.67-8.65
uin, and 11.65-15 pm resulting from the Raman transitions 65 — 75, 65 — 88§,
and 65 — 95 respectively. It can be extended to ~ 20 gm using the 65 — 105
transition. If a broadband dye laser is used as the input, the infrared output
will have the same broad bandwidth. With a pulsed dye laser, Bethune et al.
generated the broadband infrared beam aind used it to obtain single-shot
absorption spectra of molecules. To increase the detection sensitivity, they
up-converted the infrared signal transmitted through the sample into visible
through nonlinear mixing in another alkah vapor cell. The technique allows the
recording of infrared spectra of transient chemical species with nanosecond
resolution using nanosecond laser pulses.

At high pump power, the cutput power from stimulated Raman scattering
in atomic vapor is often limited by the occurrence of multiphoten absorption
and ionization, population saturation, field-induced spectral broadening, and
other nonlinear optical processes.2” However, output as high as 30 mJ at ~ 2.9
um with a photon conversion efficiency of 40% has been observed in Ba vapor.
The Stokes cutput from atomic vapor tends to have a linewidth increasing with
the pump intensity. This line broadening may result from the Stark effect
caused by the photoionized atoms, or saturation in the Raman transition, or
others; the dominant mechanism has not yet been identified.

Another system of immense practical interest is the molecular gas system,
such as H,, N,. These simple molecules have very strong Raman modes.
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Intense Raman output can be expected from a gas cell of a few tens of
centimeters long at a few atmospheric pressure with several megawalls per
square centimeter laser intensity in the visible.2 Molecular ydrogen is proba-
bly most interesting because of its large Raman shift (4155 cm ~1). With a
pump source at A > 7500 A, the third-order Stokes output has a wavelength
larger than 10 pm. Figure 10.12 shows the accessible wavelength range the
various orders of Stokes and anti-Stokes output from H, and D), can cover
with a tunable pump source between 2000 and 8000 A. The output power can
be significant, as indicated in Table 10.2 for a commercial unit. It can be

Tahle 10.2
Raman Output from RS-1“

Wavelength (nm)® Energy (mly Pressure (psi)®

With 560-nm Pump Beam”
195 { ASg) 0031 125
213 (AS;) 0091 125
234 (AS) 024 g
259 (AS5) 034 115
290{A5,) .10 145
330(A%) .26 160
382 (A5 78 ' 190
454 (45)) 21 200
305y} 17 90
1048 (5,) 6.2 300
1855 (5;) .60 215
With 280-nm Pump Beam®
207 (A3;) .038 100
227 (AS,) 19 125
251 (AS)) .34 125
317 (8)) 22 40
365 (5,) 31 300
430 (5y) 12 160
324 (5.} 0.24 110
669 (5;) 0.060 100
“After Quanta-Ray, Inc., advertising brochure on RS-1
Raman Shifter.
%5, denotes ith Stokes wavelengih; AS; denotes ith Anti-
Stokes wavelength.

“Gas: H, at 300°K

“Pump: 85 mJ at 560 nm from a Quanta-Ray PDL-1 dye
laser pumped by a DCR-1A Nd : YAG laser.

‘Pump: 17 mJ at 280 nm from a frequency doubled
Quanta-Ray PDL-1 dye laser pumped by a DCR-1A
Nd: YAG laser.
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improved by using the oscillator-amplificr scheme as in the laser-pumped dye
laser case. Conversion efficiency as high as 80% in the Stokes cutput has been
achieved.?

High-power infrared CO, lasers can also be used to obtain stimulated
Raman scattering in molecular gases. It yields, for example, a Stokes output
around 16 pm from CH,. A conversion efficiency of ~ 10% can be achieved.™
The 16-pm radiation is most important for laser isotope separation of uranium
through vibrational excitation of UF;. It can also be obtained by stimulated
Raman scattering via rotational transition in para-hydrogen molecules using
CO, lasers. An output energy in excess of 1 J and a peak power of ~ 20 MW
with a photon conversion effiiency of 85% has been observed.” Tunable
far-infrared output down to 257 pm has also been obtained from stimulated
Raman scattering via rotational transitions @{J) in HF using the tunable
infrared output from stimulated Raman scattering in H, by a flash-pumped
dye laser as a pump source.”

Tunable UV Source Obtained from Anti-Stokes Scattering

Stimulated anti-Stokes Raman scattering is possible if a Raman transition has
an inverted population [p, < p; in (10.5) leading to a positive exponential gain

s
39
24

&
40

49

A

MuN i

0B.2 906.4 9086 506.8 5080 9092
RAMAN SHIFT (em™)

Fig. 10.13 Inverse Raman spectrum in the vicinity of », fundamental of CF, at 4 Torr.
Fundamental and hot band transitions are labeled by J and J*, respectively. Pump and
probe laser powers of 2 MW and 100 mW were used, respectively, A 3-sec time
constan1 was used to average the 10 pps signs. [After A, Owyoung, in W. O. N.
Guimaraes, C. T. Lin, and A. Mooradian, eds., Lasers and Applications (Springer-Verlag,
Berlin, 1981), p. 67.]
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for the E, field]. This has been suggested as a means to obtain a potentially
powerful uv source which is broadly tunable. To achieve the inverted popu-
lation, it is generally necessary to choose a metastable state as the upper state
in the Raman transition. The population can be pumped into the metastable
state by various methods. In a recent demonstration,” photodissociation was
used to obtain an inverted population between a metastable staie and the
ground state of a dissociation fragment, and stimufated anti-Stokes Raman
scattering from the melastable state was then observed. For example, through
ArF laser pumnping, TIC was dissociated into Tt and CL The thallium product
was in the 6p2Py,; metastable state. It could reach a concentration of 4 X 10'¢
atoms /e’ out of the original TICI eoncentration of 6.9 x 10* molecules /o’
If the second- or third-harmonic output from a Q-switched Nd: YAG laser
was then propagated into this photodissociated system, stimulated anti-Stokes
Raman emission from 6p*PY,; to the ground state 6p°P{, of Tl was readily
seen. A 10% conversion efficiency was achieved in a cell 25 cm long.

Even spontaneous anti-Stokes Raman scattering can be useful as a radiation
source.?® Using a high-lying metastable state, the emission can be tunable over
narrow regions in the XUV. Such a source can have the unique properties of

A GAIN [ARB)

1 | 1
1570 1590 161G 1630

AV teen™)

Fig. 10,14 The Raman gain spectrum of a monolayer of p-nitrobenzoic acid (PNBA)
an a thin film of aluminum oxide supported by sodium fluoride. Three principal
features are marked. [After J. P, Heritage and D, L, Allara, Chem. Phys. Lett. 74, 507
(1980}.)
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narrow linewidth, ultrashort pulsewidth, and relatively high peak spectral
brightness,

Stimulated Raman Scattering as a High-Resolution
Spectrescopy Technique

The theory of stimulated Raman scattering in Section 10.2 or 10.3 shows a
Stokes amplification gain Gg(w, — w,) and a corresponding pump attenuation
both proportional to the Raman lineshape. Therefore, measurements of the
Stokes gain versus w; — w, (known as stimulated Raman gain spectroscopy) of
measurements of the pump attenuation versus w, — w, (known as inverse
Raman spectroscopy) should vield a Raman spectrum identical to that ob-
tained from spontaneous Raman scattering. The coherent spectroscopic tech-
nique, however, has two important advantages. First, no spectrometer is
needed, so that the spectral resolution is limited only by the laser linewidths
which can be many orders of magnitude better than the resolution of a
spectrometer. It can be used to obtain high-resolution Raman spectra of gases
not realizable by spontaneous Raman scattering.® An example is seen in Fig,
10.13. Second, with CW mode-locked laser pulse and a locked-in detection
scheme, the coherent technique can be extremely sensitive and can be used to
study Raman spectra of thin films and adsorbed molecules.” Monolayer
detection is possible, as has been demonstrated by Heritage shown in Fig.
10.14,

10.7 STIMULATED POLARITON SCATTERING

The material excitation P discussed in Section 10.3 can in general be both
infrared and Raman active, that is, it can be excited by both the two-photon
Raman process and the one-photon infrared absorption process. This is the
case, for example, with phonons in polar crystals. The direct coupling between
infrared and phonon waves actually forms a mixed excitational wave which is
vsually known as polariton.®® A typical polariton dispersion curve of a polar
crystal is seen in Fig. 10.15. Because of the strong dispersion in the k — we'/? /¢
region, Raman scattering by polaritons shows a Raman frequency shift that
depends on the scattering angle, as dictated by the frequency and wavevector
matching conditions w, = @, + w, and k; = k, + k,, where v, and k, are the
frequency and wavevector of the polariton.

Stimulated Raman scattering by polaritons {or stimulated polariton scatter-
ing) occurs when the pump excitation is sufficiently strong. It can again be
described by the coupled wave approach. Four interacting waves are now
involved in the problem: the pump E,, the Stokes E_, the infrared E,, and the
matenial excitation py;. The process can be considered a combination of the
parametric generation process discussed in Chapter 9 and the stimulaled



170 Stimmlated Raman Scattering

3 *®
&S
Real K
———=Magnitude of K
when K is pure
imaginary
o m1=1><10"rad s
T Phonantike / wp = 1% 10" rad 57
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Kin10* cm™!

Fig. 10.15 Coupled modes of photons and transverse optical phonons in an ionic
crystal. The fine horizontal line represents oscillators of frequency wy in the absence of
coupling o the electromagnetic field, and the fine line labeled @ = cK/ yfe{o0)
corresponds fo electromagnetic waves in the crystal, but uncoupled to the lattice
oscillators at wr. The heavy lines are the dispersion relations i the presence of
coupling between the lattice oscillators and the electromagnetic wave. One effect of the
coupling is to create the frequency gap between w; and w,; within this gap the
waveveetor is purely imaginary of magnitude given by the broken line in the figure.
[After C. Kitte), Introduction to Solid State Physics, 5th ¢d. (Wiley, New York, 1976), p.
304.]

Raman process discussed in previous sections. The wave equations for the four
waves®! are

2 2
@ 47wy .
v x{v x) —C—;s,]El =5 X*'E,Ey + NMJE,p;],
w? 4rea?
v x{v x) - ;gelE - Cz’ 2,|XPEEs + NM,Epf),
dma? {10.34)

ol
v x{v X} - 5—2333 E,= e,[me,E,* + NA};P],-],

[
and

d . i
(E + iy, + rﬁ]pﬁ = E(A;;Ea + ML EE) (i — o)

where x® is the usual second-order nonlinear susceptibility and A, =
{fl— er~&i} is the transition matrix element for the infrared excitation of
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the material system from |/} to |f). The third-order nonresonant terms
xSk E;*E, in (10.34) have been omitted for simplicity.
If the response of py, is stationary, then by eliminating py,, {10.34) reduces to

44:1.-:[ .

02 .
[V x(v x) _:;‘E! E = [ x3'EEs + xR |Ex|zE-']’

& {XBEES + xRIEVE,], (10.35)

2 2

o, L)

v xX(wv x}f—;s,]EJ= =
¢

e HEE}

2
w; Aqwl
v X(v x)*?sj.cﬂ]E:i: 2

where

NAG My (0, — o)
hioy — Wy + i]"ﬁ)
N|M112(P= - Pf)
ﬁ(mj -yt sr,,)

. — NM,{:‘P(P;“F‘;)
defl 5 h(w3—w!,+irf,)

xH=x%-

= - (10.36)

where k5 = (w,/¢)ey 5 actually describes the polariton dispersion curve. The
solution of (10.35) again resembles that of parametric generation. With a plane
boundary at z = @, and assuming no pump depletion, it takes the form

Er = [#2,exp(iAK 2} + &* exp(iAK_z)]exp(—ik, - 1),

£y = [, expli8K..2) + 6 _exp(i8K_2)expliby e 4 i8ks),
where
k= %(83,&!)1/1'
A'k=k,,—k —ky,,  k,=k-3,
=3y, — 1) £ 4]y + w) - aal”,
{10.38)

v - ﬁ(ia. + 2hy),

e 4”X‘3’\E;12.
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As one would expect, the solution here reduces to that of simple Raman-Stokes
generation and parametric amplification, respectively, when the coupling of the
infrared field E, to the other waves vanishes [A,, = O and x@ = 0] and when
the nonlinear coupling of gy, with E, and E, vanishes (M}, = 0). Numerical
examples on GaP and LiNbQ, can be found in Henry and Garrett and in
Sussman.*?

By adjusting properly the relative angle between k, and k, to tune along the
polariton dispersion curve, the output of stimulated polariton scattering is
tunable. This has been demonstrated in LiNbO,.* In a resonator, up to 70% of
the laser power can be converted into Stokes. The infrared output is tunable
from 50 to 238 cm~ . Its peak power was found to be 3 W when a 1-MW
pump beam from a O-switched ruby laser with a beam diameter of 2 mm was
focused into 2 3.3-cm LiNbO, crystal by an f = 50 cm lens. This output is
limited because LINDQ; has a low damage threshold. In practice, single-mode
lasers should be used 10 avoid hot spots in the beam which increase the damage
probability, Observation of far-infrared output from stimulated polariton
scattering in quartz has also been reported.

108 STIMULATED SPIN-FLIF RAMAN SCATTERING

An alternative way (o obtain tunable ontput from stimulated Raman scattering
is to use a fixed pump frequency and tune the resonant frequency of the
material excitation. Stimulated Raman scaitering between Zeeman levels is an
example: the resonant frequency is tumed by the applied magnetic feld.
Unfortunately, the tuning range is usually small. The Zeeman splitting 2u 8B
= gB,/21.4 em~", with B in kOersted, is only ~ 1 cm " forg = 2 and B = 10
¥Oersted. In some solids, however, the effective g factor can be much larger,
for example, g = 50 in InSb, Then, when B is varied from 0 to 100 kOersted,
the Zeeman splitting can be tuned over ~ 240 cm™. This is a reasonably
broad tuning range.

It happens that InSb is also a good Raman scatterer in the infrared. Zesman
levels of band electrons in semiconductors are usually known as Landaw levels,
and Raman scattering between spin-up and spin-down states is called spin-flip
Raman scattering, described schematically in Fig. 10.16. Wolff and Yafet™
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Fig. 10.16 Schematic of spin-flip Raman process in #-InSb,

showed that the spin-flip Raman cross section is given by

doy _ [ et e, Eghey |
(42} = (ﬂmscz) (;] il i (10.39)

El - B}

for pump and Stokes polarizations perpendicular to each other, where m =
2m/|g| is the spin electron mass, m is the natural electron mass, and E, is the
energy gap. In InSb, we have g =50 and E, = 1500 e¢m~!. Then, with
E, b, /(E} — Hwf) ~ 1, the spin-flip Raman cross section is already ~ 600
times larger than the Thomson scattering cross section for free electrons, which
is (e2/mc?)? ~ 107 em?/ster. This is what was actually observed in InSb
with 2 CO, laser (w, = 940 cm™'), As a comparison, the Raman cross section
for the strongest mode of benzene at 992 em™ ' is 3 X 107 co? /ster in the
visible. For A, = E,, (do/df)s can be even much larger as a result of
resonant enhancement, as seen in Fig. 10.17. With a CO laser at w, = 1800
em™}, {do/dR)gp was found to be ~ 10° times stronger than the Thomson
scattering cross section.

According to (10.8), the stimulated Raman gain G is proportional ‘to
N(do/d)T™Y, and the density N here for spin-flip scattering, refers Lo the
carrier density, In the case of n-type semiconductors (Fig. 10.16), N is the
electron density in the conduction band. As a result, Gy here is badly hurt by
N, which is always much smaller than the atomic or molecular density in
condensed matter. Bven so, for n > 10" /cn?, it is still larger than those in
other condensed media if the halfwidth I' is assumed to be the same. Actually,
T of n-InSb is quite narrow at low temperature and depends on the carrier
concentration and k, - H. Tt can be as narrow as 0.15 cm™* with n =1 %
10 fem’.

Assuming I =2 em™!, N = 3 X 10%/cm?’, and p, — p; =} in (10.8), we
find in n-InSb a spin-flip Raman gain G = 1.7 X 107°7 em ™, where [ is the
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Incident photon wavelength (um}
12 6.1 6.0 60 58 57 56 55 54 53 52
T 1T T 1T 17711

Relative cross section

el 1 1 1 [ 1 1 1
200 205 210 216 220 225 230 235 240

incident photon energy (meV)
Fig. 10.17 Resonance enhancement of spontancous spin-flip Raman scattering as a
function of input photon energy (n =1 X 10" cm™?, H = 40 kOe, and T ~ 3} K).
{After 5. R. J. Breeck and A. Mooradian, Phys. Rev. Lett. 28, 161 (1972).]

CO, laser intensity in wails per square centimeter. This is the largest known
Raman gain for all materials. The gain can be increased further by adjusting ¥
properly 10 yield an optimum value for NI'™! and by moving Aw, closer to E,.
At the CO laser frequency, the gain becomes 6 X 107*F em™". From these
estimaltes, one expects that stimulated spin-flip Raman scattering should be
observable in InSb of a few millimeters in length with a pump beam of ~ 10°
W /cn? at 10.6 wm or ~ 10* W /cm® at 5.3 pm. In practice, optical feedback at
the air-sample interfaces can result in Raman oscillation. Patel and Shaw,’
using a (-switched CQ, laser of 1 kW at 10.6 pm focused to a spot of 1072
em? in a 5-mm n-InSb sample with N = 10'¢/c’ at T = 18 K, observed a
Stokes output of 10 W. The cutput was tunable from 10.9 to 13.0 pm with B
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varied from 15 to 100 kOrsted. The output linewidth was less than 0,03 cm ™%
Using a single-mode CW CO laser at 5.3 pm focused to ~ 5 X 10 cm’ in a
48-mm p-InSb sample with n =10*/cn’ at T =30 K, Brueck and
Mooradian®® obtained a Raman oscillation threshold at a pump power less
than 50 mW, a power conversion efficiency of 50%, and a maximum Stokes
output in excess of 1 W. The output linewidth can be as narrow as 1 kHz. With
samples in a low magnetic field, a conversion efficiency of 80% has been
achieved.” Anti-Stokes radiation and Stokes radiation up to the fourth order
have also been observed. Detailed operation characteristics of InSb spin-flip
Raman lasers are listed in Ref. 38.

Stimulated spin-flip Raman scattering can also occur in other semiconduc-
tors. Among those reported in the literatures are CdS pumped by a dye laser,
InAs pumped by an HF laser, and Fb,Sn,_,Te, HgCd, ,Te, and
Hg Mn,_Te pumped by a CO, TEA laser.

Raman Gain {ocm’)

T,

420

[Plwy)/ Plws] 0t

[Piwsd/ Plug) ] <0
{ Non collinear, Phase - Matched )

( Collinear, Non- Phase - Matched )

.

-6 -4 -2 2 4

o

(ws-we) /1

Fig. 10.18 Theoretical curves of the Raman gain g, and the ratios of the far-infrared
output P{w;) to the Raman output P{w,) for the collingar phase-mismatched case and
for the noncollinear phase-matched case. (After Ref. 37)
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Actually, the spin-flip transition can be excited by both the Raman process
and the direct one-photon absorption process, although the latter is weak
because it is 2 magnetic-dipole transition. Therefore, strictly speaking, stimu-
lated spin-flip Raman scattering is a special case of stimulated polariton
scattering,® and the theory developed in the previous section should apply
here. In addition to the Siokes output, a far-infrared output at the spin-flip
transition frequency is expecled. In the present case, the calculation is, how-
ever, relatively simple, because the free carrier absorption at @, is quite sirong
and we always have (y, + 1) > A in (10.38). As a result, the gain is almost
exactly equal to the stimulated Raman gain with A = 0, We show in Fig, 10.18
a calculated example of both the gain and the ratio of the far-infrared cutput
1o the Stokes output. Collingar phase matching is not possible in this example,
so that the far-infrared output in the forward direction is relatively low. It
becomes stronger in the noncollinear phase-matching direciion. In fact, be-
cause the direct excitation of the spin-flip transition is weak, the far-infrared
output can be calculated through iteration by first finding the Stokes output
from stimulated Raman scattering and then the difference-frequency Gutput
from the pump and Stokes mixing.

Far-infrared output from a spin-flip Raman oscillator has not yet been
reported. Only the collinear phase-mismatched case has been tried, Far-infrared
generation by optical mixing of pump and Stokes waves in InSb has, however,
been observed with its maximum appearing at the spin-flip resonance.*® The
results agree very well with the theory. This far-infrared output is, of course,
tunable over the same range as the Stokes output, and constitutes a potential
tunable coherent source in the far-infrared which can be both intense and
natrow in linewidth.

109 TRANSIENT STIMULATED RAMAN SCATTERING

Pulsed lasers often are used in stimulated Raman scattering experiments. We
must therefore consider the time dependence of the oytput. If the pulsewidth is
much longer than the relaxation time of the Raman excitation and the time
required for light to traverse the medium, we can expect from physical
argument that the output pulse will follow the temporal vanation of the input
pulse. This is the quasi-steady-state case. Otherwise, the output should exhibit
a transient behavior.

To describe the transient effect, we should, in general, use the coupled wave
approach of Section 103, In this approach, the dynamic equation for the
material excitation explicitly takes into account the possible transient response
of the medium. Even in the case of strong Raman gain, the slowly varying
amplitude approximation of the fields is usually still valid. For Stokes genera-
{ion in the forward direction along 2, the set of coupled equations in (10.22),
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following the derivation of Section 3.5, can be written as

F Zﬂw} .
(az o &x & (z,1) e NM} &, 4
4 134 pAL
(82 " a’)ﬁz(z t) = :(ckz)NMf,é’A“ (10.40)

at
with E,(w,) = &{z, Nexplik,z — iw;t) and py,(w, — w;) = A{z, Dexpli(k; —
ky)z — i{w; — wy)] in (10.22). Here, v, and v, are the group velocities at w;
and w,, respectively, and we have neglected for simplicity the nonresonant
driving terms in the equations of &, and 4.

Consider first the simpler case where the amplitude variations of &, and ¢,
are sufficiently slow so that |84 /d| is negligible compared to T4}, Then
A(z, 1) = iM(p, — p;)& &7 /hTy,, and if we assume for simplicity v, = vy,
and use the transformation of variable z’ = z and ¢* = t — z/v, {10.40) reduces
to

(2 + T} A (e ) = 5 M0 = m) 606,

ag, [ 2nw} w2
az _’( Czkl Xii6d,

2
id;fg ,‘( mﬁ) (3)|g flg
dz e,

(10.41)

where x%' = N|M;|*(p, — p,)/ihT. These equations are identical to (10.15)
with a = 0 except that &', and &, are now functions of z and ¢ — z/v. In other
words, &, and &, should obey the steady-state solution in the retarded time
coordinate. Physically this result follows from the fact that a differential
section of the laser pulse always interacts with one and the same differential
section of the Stokes pulse throughout the medium. This is the quasi-steady-state
solution.

For backward scattering, we must replace ¢, in (10.40) by —uy, and (10.41}
is no longer valid. The quasi-steady-state solution applies only when the
amplitude variations of the input pulses are negligible in the time duration for
light to traverse the entire length of the medium. However, the general solution
for this case can still be found for || = {o,| as**

21
|gz|z(f+£,r7£)= &) + z/0,0} ‘
v vl E(t+ z/v) + exp[ = F (1 — z/0)]
Z 1—z/t
A I_E) If ’ l5"0"1('3-,V)lldy, (10.42)
0

< |t

) =£”/”glé”2(ys 0} dy,
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and

4ol
z= -( Czk;)lm(x‘a?')‘

It reduces to the quasi-steady-state solution when both the laser and the Stokes
input pulses are so long that the integrands in F) and F can be approximated
by constants. On the other hand, if both input pulses are much shorter
compared to the time for light to traverse the length of the medium, then the
backward Raman amplification is greatly reduced in comparison with the
forward Raman amplification due to the limited interaction range of the laser
and the Stokes pulses. This is seen in (10.42) that Fy{r — z/v) < gidi(s —
z/v)|%, where { is the length of the medium. Another case of interest is the
amphification of a backward Stokes pulse in a long medium against a relatively
long laser pulse. If the leading edge of the laser pulse is sufficiently steep,
Stokes pulse sharpening may occur as the wavefront of the backward Stokes
pulse continuously sees the fresh undepleted incoming laser beam and gets full
amplification while the tagging part of the pulse does not.** An example is seen
in Fig, 10.19. This pulse-sharpening phenomenon can be observed in some
liquids when the initial Stokes pulse is generated by self-focusing near the end
of the cetl.

We now consider the more general case where |34/t is no longer
negligible compared with |[4} This happens when &, &3 varies rapidly so that
the material excitation cannot respond instantaneously, or more quantitatively,
when the laser pulsewidth T, is smaller than or comparable with the dephasing

TIME -t [nsec]
3 ¥ .

4

&

PULSE INTEWSITY 7 LASER INTENSITY

Q [ [ x

-
it- !ul Gefn
Fig. 10.19 Calculated normalized Raman pulse intensity as a function of time for an
initial condition | E,| = | E,gl(f — fo) for t > Io. The curves show the palse development
at length intervals of A/ = 2.77/G. G is the Raman gain and was determined to be 0.7
cm ! in CS,. Lower scale is in dimensionless units; upper scale describes the experi-
mental conditions. (After Ref. 39.)
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time 7, = 1/T, of the Raman excitation (or more correctly, as we shall see
later,** when 7, < GpplT,, where Gy, is the steady-state Raman gain from
(10-8) by assuming the laser intensity to be the peak intensity of the inpus pulse
and ! is the length of the medium). Although @-switched pulses may be short
enough for studying transient stimulated Raman scattering in gases, picosec-
ond pulses are needed for liquids since 7, is usually of the order of picosec-
onds. With a picosecond pump pulse, the backward Raman scattering is hardly
detectable because of the very himited length of interaction between the
backward Raman and the incoming pump pulse. We discuss here only the
forward Raman scatlering.

Consider the case where both the depletion of pump power and the induced
population change are negligible. Then (assuming v, = v,) (10.40) reduces to

d 14 ; PR
(‘-“ + I,“é;)ﬁ'z = mlé”l(r - E)A s
(10.43)

(% + I‘)A‘ - —met{i-%)e

where

and &,{t — z/v) is given by the initial condition. The solution of (10.43)
describes the transient stimulated Raman scattering,. Its derivation is somewhat
long and tedious. We shall therefore only sketch the result here and refer the
readers to Ref. 42 for details.

Witht" =t — z/vandz’ = z, (10.43} can be transformed into a second-order
partial differential equation

az
|5z~ mensien(OE o =0 (1040

where U/ = Fexp(Tt’) and F stands for either &; or 4% The equation can be
further simplified to

62
(31_'(?_42' - 7?1712)” =0 (10.45)

by defining 7 = f£ _|&,(¢"}|* dt”, Equation (10,45) is in the siandard form of a
hyperbolic equation which can be solved with arbitrary initial conditions. In
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the present case, the solution takes the form

20z 0) = &0, ) +{umyz)' &, (r)

x [ e (&) 80, () = 1)

X Il(zhlﬂz("'(") - T(‘"))z']l/z)} dr”, (10.46)

a(eey= i e T8 () 80,07
X I (2[1]11;1(7(1') - t”))z']l/z)] dr”,

where the input conditions are A*(z') = 0att’ — —co and &z, 1) = &(0,1)
at z =z’ = 0, and ; is the ith order Bessel function of tmaginary argument.
The solution in (10.46) has the following characteristics:

1 Since [(x)=1 and J;(x) = x for x « 1 and I,(x) = Qwx)" iexp(x) for
x 3 1, the Stokes amplitude &, first increases linearly with z and then, in
the Timit of large amplification, increases exponentially in the form

gz xa(r) [ 8&0. W) - ()7
—® (10.47)

xexp{~T(r = ) + 2 (r(e) = 7N =12}

2 If the pump pulse is sufficiently long, then &, 1akes on a quasi-stcady-state
exponential gain. This can be seen from (10.47) when {t — ty) > GgzT, for
a rectangular pump pulse starting at z,. For this reason, T, < GygqiT; can
be used as the condition for the observation of transient stimulated Rarnan
scattering, as mentioned earlier.

3 If 7, < Ty, the factor exp|— (1" — )] can be approximated by 1 in the
integrals of (10.46) and (10.47). The Stokes amplitade grows rapidly only
toward the middle part of the pump pulse. It then drops off following the
pump pulse at the tail. The Stokes pulse is therefore always narrower than
the pump pulse. The material excitation 4 behaves in the similar manner
but has an exponential decay tail exp{—T7) after the pump pulse is
switched off or dropped to nearly zero. :

4 TIn the limit of large amplification, (10.47) gives

(£2)oue < 0 ) (10.48)
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where G 15 a transient gain given by

T;‘ 172
Gr= 4["11’72(15112)7] s
i . , {10.49)
AT, = [ 16 ()P ar.

The transient gain here is independent of the laser pulseshape. For a pulse
of the form &,{t") = &,,&xp(—1¢'/T|"), the peak of the Stokes pulse is
delayed from the peak of the pump pulse by a tme 1, = T(}log Graz )"

Numerical calculations of transient stimulated Raman scattering have been
carried out by Carmen et al.*? for various pump shapes. The results confirm
the characteristic features presented above.

Transient behavior of stimulated Raman scattering was first noticed in gases
by Hagenlocker et al.*? Later, with picosecond pulses, it was also observed in
liquids. Quantitative measurements have shown good agreement with theoreti-
cal predictions.** A better experiment yet to be carried cut is to measure the
temporal variation of Stokes amplification in an amplifier cell (see Section
10.6C). The transient gain G is different from the steady-state gain G in the
fact that the former depends only on the Raman cross section (& 7,7, ), while
the latter is also inversely proportional to the halfwidth I'. Therefore, it is
possible to observe in transient stimulated Raman scattering some Raman
modes which are suppressed in the steady-state case. More than one Raman
mode can in fact simultaneously show up in transient Raman scattering.**

1010 MEASUREMENTS OF EXCITATIONAL
RELAXATION TIMES

Relaxation of a material excitation can be measured directly by probing the
decay of the excitation. In amalogy to the magnetic resonance cases, two
relaxation times are often used to characterize the relaxation process: the
longitudinal relaxation time 7;, which governs the decay of the induced
population change in the excited state, and the transverse relaxation time 73,
which is the dephasing time of the excitational wave (see Section 2.1). In
condensed matter, T; and T, are usually of the order of picoseconds, and
therefore picosecond pulses are needed to excite and to probe the material
. excitation in the measurements of 7; and 7;. We consider here only Raman-

- allowed excitations, with both excitation and probing achieved through Raman
transitions. The general principle, however, is applicable to other types of
transitions. We also note that only in the limit of homogeneous broadening is
T, equal to the inverse halfwidth, but even then T; can be very different from
T,
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In the preceding section, it was seen that transient stimulated Raman
scattering yields a material excitational wave 4 which decays exponentially as
exp(—t/T,) even after the pump pulse is switched off. This material excita-
tional wave at (&, — @) = 4, can be probed by mixing 4 with a probe pulse
E; at k; and w, (0 generate a coberent anti-Stokes wave E, = £exp(ik, 1 —
fw ) with Kk, = k; — k; + kg and @, = @ — @y + @, The equation govern-
ing the forward anti-Stokes pulse amplitude is

2
T,
2

2
n )NMJ;*“G£3(Z,J)A(Z.J) (10.50)
£

(2 L dfaen-

from which we find, with the help of transformation of variables z" = z and
' =t — z/u,, the solution

1
&,(1,1) crfé’,(z’, Az, ) de'
[
The time-integrated coherent anti-Stokes signal is theretore given by

Sn f"’wm,,(:, £} d
- (10.51)

00 1 B
o LJ‘{OJS(Z’, )A(z, ) dz7| dr.

This signal is, of course, a function of the time delay ¢, between the exciting
and the probing pulses. If ¢ > T, 2 pulsewidth T, then it is clear from
(10.51) that S, ® exp(— 2t/ T;). Therefore, T, can be easily deduced from
the result of S, versus {5 More rigorously, the effect of the finite pulsewidth
T, should be taken into account in the time convolution in deducing T;.

The longitudinal relaxation time T; describes the decay of the induced
pepulation change Ap as governed by (10.23) or, more explicitly,

@ 1Y, LN
(5; + f)ﬁp < [ MuirAr - Mz 4)(s - ) (1052)

with Ap = (p, — p;— o7 + o) = {#¢ — g7} The equation shows that after
the pump pulse is over Ap should decay exponentially as exp(—t/T;). Incoher-
ent (sponizneous) anti-Stokes scattering is directly proportional to Ap and
thesefore can be used to probe the decay of Ap. With a probe pulse E; at w,,
the time-integrated signal at w; = @, + w,, is given by

Sioe @ f162(2, ) 8p(z, 1) de dt, (10.53)
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which is a function of the time delay 7, between the exciting and the probing
pulses. When ¢, 3> T, z T, this signal is proportional to exp(—¢,,/T;) so that
T, can be deduced from Sy, versus 15,

The method was first used by DeMartini and Ducuing® 1o measure 7, of
the 4155 cm~' vibrational excitation of gaseous f,. At (.03 atmospheric
pressure, T, = 30 psec, so that (-switched laser pulses are short enough to

gL avpurer SWITCH ’—-—{m LASER |

LY

Kor[

TO SCOPE

Fig. 10.20 Schematic of the experimental system for photon lifetime measurement.
The pump beam Bl at A ~ 1.06 pm and the probe beam B2 at A = (.53 pm interact in
the Raman sample RS. Glass red for fixed optical delay, FD; glass prisms for variable
delay, VI; filter, F; photedetectar, P; two-photon fluorescence system, TPF. [After A,
Lanberean, D). von der Linde, and W. Kaiser, Phys. Rev. Lert. 28, 1162 (1572).]

T T T i
1 —/}Iﬂ- a0 -

- R T
3 A .,
= i \o Singlip) ¢ ]
E i \
2 107 | \i, —
3 |
3 i \Seon(ip)
Bl
= § T, =20 + 5 psec
= = 2
Z 1w I 3\ T,/T, =60

| \

1 1 [ | |

Q 0 20 30 40

Delay time tp {psec)

. Fig. 1021 Mcasured incoherent scattering S, (#p)/Sinc,,,,» {closed circles} and coher-
ent scattering S.(¢5)/Seon,,,» (Open circles) versus delay time ¢, for ethyl alcohol. The
. solid and dashed curves are calculated. [After A. Lauberean, D. von der Linde, and W.
Kaiser, Phys. Rev. Lert. 28, 1162 (1972}.]
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carry out the measurements. In condensed matter, however, T, and 7, are in
the picosecond range, and picosecond mode-locked laser pulses must be used,
as pioneered by Alfano and Shapire and by Kaiser and associates.” Figure
10.20 is a typical experimental arrangement. The mode-locked pulse from an
Nd laser is used to excite the material excitation by stimulated Raman
scattering, and the second harmonic of the mode-locked pulse, after an
adjustable time delay, is used to probe the excitation. The resulis on ethyl
aleohol in Figure 10,21 is an example. The exponential tails of the 5, ,(¢p) and
Sinc(tp) curves in the figure yield 7, and T; readily. The technique can be
extended to the study of decay routes of an excitation, and the dephasing
dynamics of an excitation in large molecules or condensed matker.”’

Note, however, that this discussion of dephasing time measurements applies
only to a homogeneously broademed Raman transition.® In the case of
inhomogeneous broadening, the material excitation has a distribution of reso-
nant frequencies w,,, and A{z, ¢) in (10.50) and (10.51) should be replaced by
an integration of the excitational waves over the distribution of . The decay
of S, with time is no longer in the form of exp(—2¢,/T,). 1f the width of the
inhomogeneous broadening is considerably larger than 1,/7,, the decay time of
5., will be dominated by T; then no information about T, can be obtained. It
is, however, possible that when the pump pulse is so intense as to cause
coherent saturation in the Raman transition, the T; value can still be deduced
from the decay of §,,.** More details on theory and experiments of vibrational
relaxation studied by ultrashort pulses can be found in Refs. 47 and 48.
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11

Stimulated
Light Scattering

In Chapter 10 stirnulated Raman scattering was treated as a result of paramet-
ric interaction between light and material excitation. Examples were given in
which the material excitation was either electronic or vibrational. The Raman
shift involved could in principle range from zero to a frequency as large as the
pump laser frequency. Some material excitations have very low {requencies, of
the arder of <1 cm™!. They are usually related to atomic or molecular
motion. Light scattering by such material excitations frequently is called
something other than Raman scattering. For example, Brillouin scattering
involves acoustic wave excitation, Rayleigh scattering deals with entropy wave
excitation, and Rayleigh-wing scattering relates to molecular orientational
excitation.! With sufficiently high pump laser intensity, all these spontaneous
light scattering processes could become stimulated. Some of them are discussed
briefly in this chapter.

11.1 STIMULATED BRILLOUIN SCATTERING

Stimulated Brillovin scattering results from parametric coupling between light
and acoustic waves. The theory foflows the general formalism given in Section
10.3 for stimulated Raman scattering, with the material excitational wave here
referring to the acoustic wave, We consider only Brillouin scattering in liquid.
The coupled wave equations, similar to (10.22), are

c? 9t c
and {11.1)

& 4l
[v x{(w X))+ —ZF]EQ:TZPNL(WI)

2 Aareo?
[V ®(7 X)+L g ]E :—ﬂ:’—‘PNL(ml)
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together with the driven acoustic wave equation

G LA
EE—ZI‘BE—UV Ap=—-v-1I (11.2)

We use the density variation Ap to describe the acoustic wave; v is the acoustic
velocity, and [, is the acoustic damping coefficient or the halfwidth of the
Brillouin line in spontaneous scattering. The driving force f and the nonlinear
polarizations PN arise from the nonlinear coupling of the three waves and can
be obtained as follows:

: d [ <E 1 d¢
"”L(“J=a—p[4—,f 0= 4y 9p Eabes
1
P {aw,) = ETPEIAP“: (1.3)

1
f=vp= V(EYEI'Eg]

where p is the clectrostrictive pressure, ¥ = p, d¢/dp is the electrostrictive
coefficient, and py is the mass density of the liquid.

The problem is just another example of parametric wave interaction, and
the solution of the coupled wave equations (11.1) and (11.2) follows those
described repeatedly in Chapters 9 and 10. We consider here only backward
stimulated Brillouin scattering in the steady-state case. The forward Brillouin
scattering does not occur as it has a zero frequency shift. Let E, =
8,& explilk,z — iwt), By = 8,8 exp(—ikyz — fwyit), and Ap = Aexp(ik,z —
i, 1), with w; = @, + @, and k, = w,/v. Following the slowly varying ampli-
tude approximation, (11.1) and (11.2) reduce to

jin2
[ [ a] iw} aE(é{-éz)é’er‘m“

=) T

?d a B3 Begy iAks

(2~ %)ar =SR2 aapaev, (1)
z

d  Fpy, _ ik, Fe Vet 5 Vo panidhs

(EJr?)A—“szo P (- 8,)7 & &%

where Ak =k, + k; — k,. This is analogous to the backward parametric
amplification case described in Section 9.6. If the damping constants « and I
are sufficiently small, the amplification can in principle go into oscillation. For
the acoustic waves involved in backward Brillouin scattering in liquids, how-
ever, w,/27 is typically of the order of 5 GHz and the corresponding Iy /2 is
around 0.1 GHz (see Table 11.1). the attenuation coefficient Ty/v is — 10*
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Table 11.1
Frequency Shift vy, Linewidth Ty, and Maximum Steady-State Gain Factor of
Stimulated Briflouin Scattering, (25 & Bj. for a Number of Liquids®

Frequency Linewidth Gain Factor
shift T Calculated Measured
g (spont.) gp(max) g5 (max)

Substance (MHz) (MHz) (cm/MW) {cm/MW)
CS; 3850 523 0.197 013
Acetone 4600 224 0.017 {1020
n-Hexane 222 4,027 6.026
Toluene 5910 579 0013 0.013
CCly, 4390 520 0.0084 0.006
Methanol 4250 250 0.013 0.013
Benzene 6470 289 0.024 0.018
H,0 5690 317 0.0066 4.0048
Cyclohexane 5550 174 £0.007 0.0068
After . L. Fahellinskii, Mofecular Scattering of Light (Plenum, New York, 1968).
cm-! with v ~ 10° ¢m/sec. This is often much larger than the gain coefficient
of stimulated Brillouin scattering estimated below. Consequenily, the acoustic

wave excilation here can be considered as highly damped, and (11.4) can be
solved by first eliminating 4 using the approximation dA/dz = iAkd. We
then have

2l
)61 = 2lxg,|€2|2‘fl*
k¢

o
|2
+
1R~

J_ a) . 2mw? e Zow (1.3)
(?__)é’z ’WX(B A
2

where

9 = [(36/69)(é¥ &) ]’ kopy

darpy Ak — iTy/v
Equation (11.5) looks exactly the same as (10.15) in the stimulated Raman
scattering case except that the Briflouin susceptibility x§° now replaces the
Raman susceptibility x% in (10.15). Since Imx§ > 0, (11.5) shows that &,
would grow in the backward {—z) direction if (27w, /k,c”)imx§ > a/2,
while &, would decay in the forward direction. Tn the case of negligible pump
depletion, the solution of (11.5) is

[&:(2) = &, (1)e! ComX (11.6)
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where the Brillouin gain Gy is given by

2
dorwg

L 1m xPIe. (1.7 4
¢

B
al
Catenlated values of G for a number of liquids are listed in Table 11.1.% It is
seen that with 100 MW /cm? pump intensity in a 10-cm cell, the exponential
gain G can be of the order of 10 (much larger in CS, because of the narrower
Brillouin width), and therefore stimulated Brillouin scattering should be easily
observable.

The solution of (11.5) including the pump depletion, but with o = 0, can
also be obtained readily,’ One finds the following algebraic refations between
the inputs {E,(0)|%, |E;(D1? and the outputs |ELD% | E )

LE{O))? — By (D = B, (0)1* — B ()
and (11.8)
B (D _ 1 - |E{0)/E (01 _
B expl[L - 1E,(0)/E, (@] Gl £ (0)P1] — 1Bz (0)/En(O)I*
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=
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TIME [nsec)
Fig. 111 Oscilloscope traces of the incident laser pulse Py, the backward Brillouin
pulse Py, and the sransmitted laser pulse Py in ethyl ether. [After M. Maier, Phys. Rev,
166, 113 (1968).]
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Significant pump depletion in stimulated Brillowin scattering is in fact a
common phenomenon. A typical example is seen in Fig. 11.1, where depletion
of the pump pulse into a backscatered Brillouin pulse is clearly demonstrated.*
Energy conversion as high as 90% has been reported.

The lifetime of acoustic waves is 73 = 1,/20g, which is of the order of 1 nsec
for w,/2w ~ 5 GHz. Transient stimulated Brillouin scattering is expected if
the pump pulse has a width comparable to 1 nsec or less. The transient
solution again resembles that of the Raman case. However, we do not dwell on
it here, but refer the readers to Kroll.* Experiments actually found sirong
dependence of the gain on the lifetime of the acoustic wave for pulsewidth less
than ~ 100 75. This is especially so near the threshold for stimulated scatter-
ing. Careful measurements have shown guantitative agreement between theory
and experiment.®

Stimulated Brillouin scattering was first observed by Chiao et al.” in quartz
and sapphire using a Q-switched ruby laser. They analyzed the reflected light
from the medium with a Fabry-Perot interferometer and found the Brillouin-
shifted component. Because of the high conversion efficiency, the backscattered
Brillouin pulse frequently is so intense that it can be detected by eye. Without
proper isolation beiween the sample and the laser system, the backscattered
Brillouin pulse will propagate into the laser medium and be further amplified.
The result is that a Brillouin-shifted component will now appear in the laser
output. Such a process can repeat a number of times, and the laser output will
then have a spectrum containing several orders of Brillovin-shifted compo-
nents.?® This is what one would avoid in experiments requiring 2 single-mode
laser beam.

g% (1073 cm/MwW)
(=]

=10 —
| 1 | |

—400 -200 O 200 400
Frequency shift Aw/2m {MHz)

Fig. 11.2  Experimental Brillovin gain factor, g5 o B§, versus frequency shift dw/2n7
. for a nonabsorbing liquid (66% €S, and 34% CCl,). The theoretical fit is a Lorentzian
 curve. {After Ref. 15.)
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As in the Raman case, the best way to test the theory of stimulated Britlouin
scattering i5 to conduct gain measurements with an oscillator-amplifier
arrangement similar to that in Fig, 10.9. An example is shown in Fig. 1127 A
theoretical fil to the data using (10.7) allows the deduction of T, which
compares well with [y obtained from spontaneous scattering,

Comparison of the Brillouin gains in Table 11,1 with the Raman gains in
Table 10.1 shows that stimulated Brillouin scattering should usually dominate
over stimulated Raman scattering in most liquids in the steady-state case. With
a strong pump laser beam, especially one that is focused, stimulated Brillowin
scattering can actually have enough gain to occur in all directions. Experimen-
tally, acoustic waves of vatious frequencies are generated at the focal point in
different directions. An audible sound can be heard when it happens. It is
likely that a shock wave is initiated at the focal point. Cell windows often are
shattered by the strong pressure waves generated, but the detailed mechanism
involved is not yet understood.

112 STIMULATED THERMAL BRILLOUIN AND RAYLEIGH
SCATTERING

We have assumed that the acoustic wave is described by the density variation
Ap. This is, however, only an approximation first used by Einstein'® and
Brillouin® to describe spontaneous hight scattering by low-frequency thermo-
dynamic fluctuations in 2 single-component medium. Actually, p is a function
of pressure p and entropy S, and one can write Ap = (dp/dp),Ap +
(3p/08),AS. Then Ap(1) describes the acoustic wave, while AS(#) describes
the entropy wave at zero frequency with a diffusion-type equation of motion.
In spontanecus scattering, Ap is responsible for the Brillouin doublet of the
spectrum, and AS for the ceniral Rayleigh component.! Therefore, for the
stimulated Brillouin scattering discussed in the previous section, a more correct
formalism will have to replace Ap by Ap and de/dp by {Be/dp)}s. In some
cases, howevet, it is more convenient (o use the independent thermodynamic
variables p and 7 instezd of p and 5. This is particularly true when the
temperatare T varies in direct response 1o the external heating of the medium.
In the equations of motion, we expect that 4p{¥) and AT(1) are coupled since
both, being linear combinations of p(r) and AS(#), are mixtures of acoustic
and entropy waves, Light scattering under the effect of heating due to optical
absorption is known as thermal light scattering.!?

The equations of motion for Ap and AT are, respectively, the Navier—Stokes
equation in conjunction with the equation of continuity,'?

dy

o 0*Brp
pug + 5 V(80) + 5 v{aT) — vy

=5, V(ECED) - %(g—;]p(lil ‘E3)w{aT), (119

[i
EAP'fPoV v=0
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and the energy transport equation
C(8-1 ¢ A
——5 T 2P
[

1/ de 2
(EI-E;)+;(ﬁ]pTDEI-EE;

(Poqw"% - ?\TVZJAT -
(11.10)
_nea

L

where v is the acoustic wave velocity, 8 = C,/C, is the ratio of heat capacities
a1 constant pressure and at constant volume, 8 is the isothermal compressibil-
ity, n characterizes the acoustic damping, y = pol 8e/3p)y, Ay is the thermal
conductivity, and & is the linear absorption coefficient. The two equations in
(11.9) can be combined to yield

# oty md v'B0p 2
EJFSV +poafv dp+ vi(aT)
(11.11)
¥ 1 3de
= L (e, -E2) _E(ﬁ)pv [E,-Ez w(aT)).

We notice that if the approximations § = 1, a = 0, and {32/9T), = 0 are
used, (11.10) gives AT = 0 and (11.11) reduces to the acoustic wave equation in
{11.2). Stimulated thermal Brllouin and Rayleigh scattering is now described
by the coupling of {11.10) and {11.11) with the wave equations fer E, and E, in
{11.1) having

1 de

¥
PN{w,) = ITEEIAP + E(ﬁ)pEzAT

and {11.12)

¥ 1 [ de
PV (w,) = F_%Elﬂp‘ + G[-ﬁ]pElAT*

The solution of the coupled wave equations is sirilar to those of stimulated
Raman and Brillouin scatiering. We consider only the steady-state solution for
backward scatiering here, and assume that both excitations Ap and AT are
highly damped. We can then replace /¢ by —iw, = —i{w, — @} and
v = 8/8z by i(k; + k;) in (11.10) and (11.11) and solve for Ap and AT.
Substituting the expressions of Ap and AT into (11.12) and then P into
{11.1), and using the slowly varying amplitude approximation for E, and E¥,
we again find the amplitude equations for &, and & in the form of (11.5), or

2
25 +allgf = ~gerial
(a’ ) ' i {11.13)

E
(7 - o) = -merier
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With the approximation (de/d0)rP = {3e/9T),T, we have

B =85

where

_,lg‘z +
1 +(882/Ty)
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In the limit of negligible pump depletion, |&* grows exponentially in the

backward direction with &

pain G — a = f&Y — o

The first two terms in (11.14) are responsible for stimulated Brillouin
scattering, and the last term for stimulated Rayleigh scattering. The B term is
for normal siimulated Brillouin scattering. It leads 10 the same Brillouin gain
derived n the previous section. The gain spectrum is centered at A =0 or

Ty — =kt k,)/6%2, which is the frequency of the acoustic wave
excitation involved in the packward Brillonin scattering. The SF term corre-

sponds ¢ thermal Brillouin scattering,

since it vanishes if the absorption
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Fig. 11.3 Experimental thermal Brillouin gain factor, g§ « 82, versus frequency shift
Aw/2m for an absorbing liquid (66% CS, and 34% CCl, with a small amount of 15}
with an absorption coefficient & = (.83 cm ™. The theoretical curve is the dispersive
counterpart of a Lorentzian. (After Ref. 15.)

coefficient & is zero. Its gain spectrum is antisymmetsic about A8 = 0, The 83,
term also vanishes when a = (), and corresponds to thermal Rayleigh scattering
with a gain maximum at «, = @, — «@, = I'y;. Finally, the 8%, term corre-
sponds to ordinary Rayleigh scattering with the same gain spectrum as 8z, .

Experimentally, stimulated Rayleigh scattering is most difficult to observe
because of the small Bg;, but has actually been observed."® The maximum
Rayleigh gain in liquids is estimated to be two orders of magnitude lower than
the Brillouin gain.” With absorption, Rayleigh scattering can be greatly en-
hanced through the 8§, term. Indeed, stimulated thermal Rayleigh scattering
can be readily observed in absorbing gases and liquids.'* Stimulated thermal
Brillouin scattering in absorbing media is also easily observable.’® Its occur-
rence is evidenced by a small upshift of the Brillovin-shifted frequency, since
the combined pain spectrum exhibited by the 7 and 8 terms in (11.14) has a
maximum at AL > 0. The best way to study the effect of thermal Brillouin
scattering is to measure the Brillouin gain as described in Section 11.1, The
measured gain spectrum can then be compared directly with the theoretical
spectrum in (11.14). An example is presented in Fig. 11.3, which shows a good
agresment between theory and experiment.

113 STIMULATED RAYLEIGH-WING SCATTERING

Fluctuations of molecular orientation and distribution in a fluid medium result
- in fluctuations of the dielectric constant and lead to spontaneous light scattes-
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ing.! This is known as Rayleigh-wing scattering, which has a spectrum similar
to Rayleigh scattering but much broader. in wadth. Stimulated Rayleigh-wing
scattering can also be expected at high pump intensity. The physical picture is
as fotlows: mixing of E, and E, reorient and redistributes the molecules; the
molecular reorientation and redistribution, which vary in space and time, in
turn beat with E, to enforce E,. Stimulated Rayleigh-wing scattering is then
simply the result of coupling between E,, E,, and the induced variation in
molecular recrientation and redistribution. For guantitative description, we
must find the equation of motion for molecular reorientation and redistribu-
tion. We consider here only the reorientation mechanism.

We assume anisotropic molecules with cylindrical symmetry. The optical
polarizabilities parallel and perpendicular to the molecular axis are denoted by
ayand a , , respectively. Let the molecular axis tilt at an angle # from the %-axis
(Fig. 11.4). Then a lincarly polarized E field along & induces & dipole p on the
molecule withp, = a,, Eand -

o, = a,c08%0 + a, sin’d
! * (11.15)

=& + Aafcos™ — })
where

g=1o+2a,) and Ba=a -, .

The applied field E now interacts with the induced dipale and tends to align
the molecule along % against the therma! randomization. Let us assume a
collection of noninteracting molecules with a density N and a random orienta-
tionat distribution in the absence of E. With the applied E, the orientational

Fig. 114 Sketch showing a uniaxial melecule lying at an angle
@ from the electric field E along X.
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distributicn function at equilibrium becomes

£(0) = wﬂ (11.16)

where

Z= f (— **'El}mada,

k is the Boltzmann constant, and the factor 2 instead of 1/2 appears in the
exponential because of our convention on the amplitude of E (Section 2.9).
Then the tensor component x,, of the optical susceptibility, following (11.15}
and (11.16), is given by

_ 2
Xex =X+ ENAaQ
with
%= Na
Q= 3{cos0 — 1}
= fwi(coszﬂ — Decp| —28e|E]*(cos®f — 1) /k,T ]sin 0 49
o

I
G

(11.17)

f"exp[—ma|£|2(m529 - 1)k, T]sin8 46
[}
where ¢ ) denotes the orientational average. Similarly, we find
_ 1
Xy = Xer =X~ ENAaQ. (11.18)

Physically, the quantity Q, which describes the degree of molecular alignment,
often is known as the orientational order parameter. For random distribution,
@ = 0, and for perfect alignment @ = 1. The polarization induced by E takes
the form

P=ix,E
2 {11.19)
=%|xE+ ENAaQE}.
Since Q is also a function of E, the second term in (11.1%) represents a
nonlinear polarization PN

PN = %NAaQE {11.20)
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For relatively weak fields, we have @ o |E|?, and then P™ is a third-order
nonlinear polarization.

In stimalated Rayleigh-wing scattering, the molecular orientational distribu-
tion changes in response to the beating of two optical fields E, and E,. The
equation of motion for molecular reorientation by this combined action of E,
and E, is provided by the Debye Totational diffusion equation for the distribu-
tion function f(#):*

1 3. E|[*sinfcos ¥

”%{:mﬁ smﬂ(%wLﬂMﬁ—ﬂf)] {11.21)

Equation (11.21} can be reduced to a simple equation of motion for Q by

multiplying both sides by #(cos’8 — §) followed by an integration over §, and
neglecting the field-dependent terms of higher orders than |E| |*/k 5T

0__2, 4,
ik P L {11.22)

where 1, = »/5 k5 T'is the Debye relaxation time and » is a viscosity coefficient
for an individual molecule. Now that E = E, + E; = 3 exp(ik, *T — jwyf)
+ idexp(ik, -1 — iw,1}) and we are interested in the orientational redistribu-
tion excited by the beating of E, and E,, the |E |* term in {11.22) should be
replaced by E, -E%. Equation (11.22) is then coupled to the wave equations
(11.1) for E, and E, via (11.20). In the steady-state case, one finds

_ 4mpAaE EY
e (1l — ieTy)

PN (0,) = xS, (11.23)
@ SNTD(Aa)l

Xt = 9l + iwTy)

with @ = w, — «,. The Rayleigh-wing susceptibility x4 has a negative imag-
inary part. In analogy to the other stimulated light scattering cases, this
indicates that E, can experience an exponential gain exp{Gpw — @)z With

b3
Grw = %tw_llm(xﬂv)w:lz

@, N{da) wrpl &
= log— ———F e
en 45k ,T(1 + w'rf)

{11.24)

which has its maximom at @ = 1/7,.
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For a liquid with 7, ~ 10°™* sec and 167N (Aa)®/45k 5T ~ 1071 e’ ferg
in a typical case, we have (Ggw)max ~ 1077 cm/MW, comparable to Raman
gains in many liquids? Stimulated Rayleigh-wing scattering is thercfore ex-
pected to be easily observable, as is indeed the case.'™'® In fact, it is very much
analogous to stinnlated Raman scattering by vibration: the material excitation
|Q| is independent of the wavevector 5o that the stimulated gain is isotropic.
Consequently, Stokes—anti-Stokes coupling (see Section 10.4) that leads 1o the
generation of anti-Stokes radiation in the near forward direction in stimulated
Raman scattering also occurs in stimulated Rayleigh-wing scattering.'® The.
results are somewhat different because of the difference in the resonant
frequencies of the material excitations. Unlike the Raman case, the maximum
gain with Stokes—anti-Stokes coupling in stimulated Rayleigh-wing scattering
appears at w; — o, = w,, — &3 = { with k, and k,, making an angle &, with
k,.% In other words, the taser beam, generates through stimulated Rayleigh-wing
scattering a cone of radiation of the same frequency at an angle 6., from the
laser beam. In reality, a laser beam of finite cross section has a spread of &,
The effect of stimulated Rayleigh-wing scattering is to broaden this spread of
K; or, equivalently, to reduce the laser beam cross section. The laser beam
therefore appears to self-focus as it propagates in the medium. This is an
unconventional way of describing self-focusing of light. The conventional way
will be discussed in Chapter 19, We note that it is amplification of the existing
off-axis k, components that leads to self-focusing. If stimulated Raman scatter-
ing also occurs in the medium, it is initiated by amplification of noise. Since
the Raman gain and Rayleigh-wing gain are comparable in many liquids, we
can expect that the occurrence of self-focusing often precedes that of stimu-
lated Raman scattering.

114 OTHER STIMULATED LIGHT SCATTERING

In a multicomponent system, local concentrations of the components can
fluctuate, causing vaniation in the dielectric constant and scaltering of light,
known as concentration scattering! In thermodynamics, concentrations to-
gether with p, T or p, § form a set of thermodynamic variables. Variation of
the dielectric constant of a two-component system can be written for example,
as,
de de de
de=|=| 4 +(—) AT+(—) 125
£ (ap)m P\ 3T C.p ¢ p.TAC (11.25}
where C is the relative concentration. In stimulated concentration scattering,
AC is excited by the beating of E; and E,. It obeys a driven diffusion
equation®
_ D(85/9C),.rv*(E; " E)
Bapg ( O/ C ) o7

( g DVI)AC =

i (11.26)
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In (11.26) we neglected the coupling of AC to Ap and AT; D is the diffusion
coefficient and p is the chemical petential. In a more rigorous treatment, the
coupling between AC, Ap, and AT can be taken into account.”® Analogous to
the other stimulated light scattering cases, stimulated concentration scattering
is then described by the sclution of the coupled equations (11.26) and (11.1)
with PM{w,) = (3¢/3C), 7E;AC/4m and PY(w,) = (8e/8C), 7EAC"/
47, The stimulated gain has a spectrum proportional 1o w1.{l + w’r?) with
771 = Dk? and k = k; — k,. Details of theory and experiment of stimulated
conceniration scattering can be found in Ref. 20.

There are, of course, many other types of light scattering: light scattering by
molecular libration (rotational oscillation), by sheer waves, by spin waves, by
surface waves, etc.! In principle, with sufficient pump intensity, they can all
become stimulated: knowing the dynamic equation for the material excitation,
the theoretical treatment again follows the coupled-wave approach. However,
the threshold for a certain stimulated scattering may be higher than the optical
damage threshold; if so, such stimulated scattering will not be observable,

A very different type of stimulated light scattering is stimulated Compton
scattering, first proposed by Pantell et al.”! By backscattering microwaves from
a relativistic electron beam, tunable far-infrared radiation could be generated.
Tunability could be achieved by varying the electron energy, Sukhamite and
Wolif showed that stimulated Compton scattering could be greatly enhanced
in a magnetic field if the microwave frequency is equal to the cyclotron
resonance [requency. Experiments on stimulated Compton scattering have not
yet been reported. However, in a related problem, tunable microwave and
far-infrared radiation have been generated by relativistic electrons performing
cyclotron motion in a magnetic field. Also, intense microwave emission with
peak power = 500 MW and conversion efficiency ~ 17% has been observed in
coherent Cherenkov radiation from a relativistic electron beam interacting with
a slow wave structure.®
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Two-Photon Absorption

One-photon and two-phaton transitions follow different selection rules. They
are therefore complementary to each other as spectroscopic tools. A well-known
example is infrared absorption versus Raman scattering. In a two-photon
absorption process, two photons are simultancously absorbed to excite a
material system. Being a higher-order process, its absorption cross section
often is many orders of magnitude smaller than that of a one-photon absorp-
tion. Even so, two-photon absorption is readily observable with lasers and has
become a valuable spectroscopic technique complimentary 1o linear absorption
spectroscopy. This chapter briefly describes the basic theory, measuring tech-
niques, and various applications of two-photon absorption.

121 THEQRY

The transition probability of a two-photon process was first derived by
Goppert-Mayer using second-order perturbation theory.! The derivation was
given in Section 10.2 for the case of Raman scattering. For two-photon
absorption, the transition probability per unit time per unit volume per unit
energy interval closely resembles that of (10.2) and is given by

dw,  dW,  8nNww,
dhw}  dlhay) EiEy

M=%

5

K AAMID K e laymle) g (k bw),

. ) ) . (12.1)
ev=&;)s)(sler-é, + er-é,|s)(sler-é,

Aoy — w,) Ay — w,)

(see Fig. 12.1). Notation here follows Section 10.2, with & = w) + «; — @y,
In the semiclassical approximation, |(aj|a2al|tx,)|2 = F; 1, can be replaced by
(e,e)| B\ 1P| By 2/ (20 Y Beoy X By ) = L L(ee)? e (ko Y B, ), where I
and I, are the beam intensities at «; and w,, respectively. The two beams

02
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Fig. 12.1 Two-photon excitation of a system from
ji> iy o]f) via the virtual intermediate state |5).

propagating along  in such a nonlinear absorbing medium have their attenua-
tions governed by the equation

1.
= —wyyhi1, {12.2)

df, d
— = —wvhl, “d_;

dz
with

_ [awra(he,)](n — )
i A

37N
= WIM,‘JZ&(" aw)(p; — o).

As in the Raman case, the above equation fer y can also be derived from the
coupled wave approach. It is easily shown, following a derivation similar to
that of Section 10.3, that the two-photon absorption coefficient y is linearfy
proportional to the imaginary part of the third-order nonlinear susceptibility
x*¥ for the two-photon absorption process:

872
¥ =———Imx?®
c'a/ef? (12.3)

Imx® = Na (M, g(h do)p; — pr)-

The same result can of course be obtained by treating two-photon absorption
as @ wave-mixing process in which the two optical waves at w, and w, jointly
excite the material excitational wave pf(w, + w, ). The derivation follows that
in Section 10.3.
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The coupled equations in (12.2) can be solved analyticaily, noting that

which is the consequence of having equal numbers of photons absorbed at oy
and w, in a two-photon absorption process. M Iy, and Iy are the beam
intensitics at the entrance of the medium, we have

o= 1 _ =1 . (12.4)

Wy w

The solution of (12.2) can then be obtained by first eliminating either , or I;.
Assuming Iy > fop, we find

(/e )}~ (ag/ e}

I =1y {To/1) “Un/ay)exp{—Kz)

- [(ho/@) = (Ta/w0p) exp(—Kz)
= B () ~ /g enpl -~ K2) a23)
K=oy i—“:* %]

If 7,y 3 Iy, then the attenuation of 1, is negligible, and the selution reduces
to
I = k.

(12.6)
I, = Lyexp(—Kz).
A special case of interest is when w; = w,. The conventions of Section 2.9
should be used in dealing with the two-photon absorption coefficients in this
case. Equation (12.2) becomes

1,
7‘;‘ = —wyl? (12.7)
and the solution takes the form
- Iy
h=1% Tgunyz’ (12.8)

In the case of weak absorption, it reduces to

= It = gwrvz)- (129
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The two-photon absorption coefficient y and the corresponding third-order
susceptibility x** are in general tensor guantities. Analogous to Raman scatter-
ing, the selection rules can be derived from group theory. They have been
obtained by Inoue and Toyozawa® for the 32 crystal point groups and by
McClain® for molecular fluids. Spin-orbit coupling has been included by Bader
and Gold* in an extension of Inoue and Toyozawa's calculation.

122 EXPERIMENTAL TECHNIQUES

Two-photon absorption can be measured directly from beam attenuation if the
absorption is sufficiently strong. Let us assume, as an example, & typical
two-photon absorption coefficient with Im x*® = 107" esu for a condensed
medium. Then, from (12.3} and (12.5), the induced attenuation coefficient X is
of the order of 102 for I, ~ few MW /cm’. This corresponds to a ~ 1%
attenuation of the @, beam in traversing through a medium 1 cm long, and it
should be easily measurable, Direct attenuation measurement of two-photon
absorption is therefore fairly straightforward with pulsed lasers unless x® is
orders of magnitude smaller than 10~12 esu.

For two-photon spectroscopic work, one of the two input beams must be
tunable. In the carly days, only fixed-frequency lasers were available. The
tunable beam was provided by an incandescent or arc lamp in conjunction
with a monochromator. A two-photon absorption spectrum was obtained by
measuring the laser-induced atienuation as a function of the frequency of the
tunable beam in the medium. A typical experimental arrangement is shown in
Fig. 12.23 Over the years, several research groups have constructed more
sophisticated, automated versions of the setup.® The incoherent lamp can now
be replaced by a tunable laser with great improvement on the signal-to-noise
ratio. Unfortunately, the tunability of a laser is siill limited. Replacement of
the lamp by a tunable laser is preferable only if a narrow spectral range is of
interest.

Weak beam attenuation is generally difficult to measure. One would like to
find other methods of higher sensitivity for two-photon absorption measure-
ment. In many media, lominescence may appear following excitation. This is
nearly always the case in gases, and is also fairly common in condensed matter
although the quantum yield could be small. Since luminescence 1s easily
detectable, it provides a means to monitor two-photon absorpticn with a
sensitivity many orders of magnitude higher than the beam attenuation mea-
surement. The first two-photon absorption experiment was actually done with
this technique.” However, in two-photon absoeption spectroscopy, one must be
sure that the quantum yield of luminescence does not depend strongly on the
excitation frequency; otherwise, the spectrum will appear distorted.

Two-photon excitation near or above the ionization level of an atom or
molecule may lead to ionization, and the resulting electrons and jons are easily
detectable.! Therefore, photoionization can also be a sensitive method for
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Fig. 122 Schematic diagram of an experimental sct-up for two-photon absorption
spectrascopy. (After Ref. 5.)

detecting two-photon absorption. Its application, however, is limited to the
case where the final excited state is near or above the ionization level.
The observed spectrum is the two-photon absorption spectrum weighted by the
ionization rate, which generally depends on the energy of the final excited
state.

By the same token, photoconductivity can also be used to detect two-photon
absorption in a solid. If heat released through relaxation after the two-
photon excitation can be monitored, it can also be used to measure two-photon
absorption. An example is photoacoustic spectroscopy, in which heat released
appears as an acoustic signal detectable by cither a microphone or a trans-
ducer. Less conventional methods of detecting two-photon absorption include
photoemission, photodissociation, photocherical reaction, and optogalvanic
effect,

123 TWO-PHOTON ABSORPTION SPECTROSCOPY
Solids
The first spectroscopic measuremends of two-photon absorption were carried
out by Hopfield et al.® on alkali halides near the band edges, using the setup

shown in Fig, 12.2. Since the crystals have inversion symmetry, the states near
the band edges have more or less definite parities. Thus one-photon and
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two-photon absorption spectra are expected to be different, as seen in Fig,
12.3. In particular, no exciton peak is present in the two-photon absorption
spectrum. The result was wsed by Hopfield et al. to test the validity of the
various exciton models for the alkali halides.

Two-photon absorption in semiconductors is the subject of numerous
studies.” It was hoped that the technique would lead to new information about
the band structares. Thus far, the results have been disappointing mainly
because, first, the band structures of those sermiconductors are already very
well known; second, the two-photon absorption data are not very accurate due
1o laser fluctuations; and third, the specwral ranges covered by two-photon
absorption are very limited. Two-photon absorption is, however, a useful tool
to study excitions and exciton-polaritons in a semiconductor. With one-photon
absorption, only the existence of the exciton-polaritons can be shown by the
observation of the reststrahlung band. With two-photon absorption, the disper-
sion curve of the exciton-polaritons can be measured.!® An example is given in
Fig. 12.4. In this case the excitons can be excited by both one- and two-photon
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transitions. The observed two-photon absorption is due partly to excitation of
excitons and partly to sum-frequency {or second harmonic) generation.!! The
carrect theoretical treatmens of the problem follows closely the derivation in
Section 10.7.12

Two-photon absorption has also been used to probe the states of éxcitonic
molecules'® that cannot be reached by one-photon excitation. In other applica-
tions, two-photon absorption can be used to yield a uniform excitation of
carriers in the bulk. This could be useful in both physics and device studies,
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Molecular Fluids and Gases

Two-photon absorption can be used to probe excited states that cannot be
reached by one-photon excitation. In molecules with centers of symmetry, the
electronic states can be divided into gerade {g) and ungerade (&) states.
One-photon transitions from g to g or from u 1o # are forbidden, but
two-photon transitions are altowed. Thus with two-photon absorption, it is
now possible 1o study a new set of electronic, vibrational, and rotational states
which cannot be reached by one-photon absorption. Numerous examples are
cited in Ref. 14, McClain® has pointed out that even though the motecules are
randomly criented in a gas or liguid, two-photon absorption with W@y # 4w, still
shows polarization properties that allow us to determine the symmetry of the
excited states of the molecules. Therefore, two-photon absorption has become
an important tool in the field of molecular spectroscopy, as evidenced by the
large number of references cited in Ref, 14.

Atoms

Two-photon absorption also can be used to study excited electrenic states of
an atom that cannot be probed by one-photon absorption. Examples are the ns
and nd siates of an alkali atom. Because of the targe transition matrix elements
between the atomic states, two-photon absorption in atomic gases is generally
much stronger than in molecuiar gases. Yet it is still too weak to be observed
by the measurement of beam attenuation. Fortunately, other methods, such as
photoluminescence and photoionization, can be wsed, They ase sensitive encugh
to detect two-photon absorption in a vapor of less than 1 torr pressure. With
counterpropagating beams of the same frequency, two-photon absorption in
gases can yield Doppler-free speciral lines. This is described in Chapter 13.
Applications of two-photon absorption o the atomic studies of high Rydberg
states, quantum defect theory, and autoionizations are discussed in Chapter 18,
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13

High-Resolution Nonlinear
Optical Spectroscopy

Lasers are known to have extremely narrow intrinsic linewidths. They are thus
ideal tools for high-resolution spectroscopic studies. For a He-Ne laser at 339
pm, a linewidth as narrow as 3 Hz has been reported.! This represents a
resolving power of 2 X 1013, which is only two orders of magnitude less than
the Mossbauer effect. In ordinary spectroscopy, however, the studies of spec-
troscopic details often are limited by inhomogeneous broadening rather than
by instrument resotution. The Doppler width of the sodium D lines at room
temperature is ~ 1.3 GHg, while the hyperfine splittings of the lines are only
several hundred megahertz. In solids, the inhomogeneous width of a line can
be even much higher. Thus for high-resolution spectroscopy it is of prime
importance to find ways to reduce the effect of inhomogeneous broadening.
This chapter introduces a number of nonlinear optical spectroscopic tech-
niques which serve the purpose. These methods have, in recent years, revo-
lutionized the field of atomic and molecular spectroscopy and stimulated a
great deal of interest in the area of high-resolution solid-state spectroscopy.

13.1 GENERAL DESCRIPTION

Inbomogeneous broadening of a spectral transition arises because atoms,
molecules, or ions in an ensemble do not all have the same local environment.
Consider a transition between two states |#) and |n”) with a resonance
frequency w,.,. In general, w,., is a function of a number of parameters, o, B,
¥,... describing the local environment. These local parameters are random
variables and should obey a certain statistical distribution function, say,
gle, B.v, - ) with fgdadBdy - = 1. A physical quantity X, which is a

211
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function of ., should then have its average value given by

X = [X[o,,(a 87, Mgl B, . )dad - (131)

For example, a Lorentzian absorption line with inhomogeneous broadening
has the expression

S Tg(a, B....)
Slw)= dadB . 13.2
() f[w‘m..',.(u,ﬁ,-.-)lz*'l"’ ¢ (32

The number of local parameters necessary to characterize the local environ-
ment can be many. For impurity jons in 4 solid, each ion has its own local
environment, and sees a local crystal field resulting from the Coulomb force of
neighboring atoms or ions.? The crystal field can be described by a set of local
parameters, and the distribution of ions over the local sites therefore, can be
characterized by the distribution function of thes¢ local parameters. The total
number of such local parameters depends on the local symmetry of the ion site.
Tt can be very large for a low-symmetry site, for example, larger than 10 for a
¢, symmetry. The inhomogeneous broadening of the impurity ion spectrum is
in principle determined by the statistical variation of the many local parame-
ters characterizing the ion site. In practice, however, one or a few parameters
describing the high-symmetry components of the crystal field may dominate
the rest.

In gases, the situation is most fortunate, since the velocity of atoms or
molecules is the only local parameter contributing to the inhomogeneous
broadening, which is just the Doppler broadening. The thermal velocity obeys
the Maxwellian distribution

= _1_ —pfu?
s(v) y=mtd (13.3)

where u? = 2kT/m, and m is the mass of a single atom or molecule. The
Dappler width is then given by the well-known eXPTession

(AWD)”-” = 26y, [(2kT/mcz)1n 2] /2 (13.4)
= 7.163 % 10 (T/4) e, '

where T is in degrees Kelvin and A is the atomic or molecular weight. For
A = 100, we find Aw,, ~ 002 cm™! (0.6 GHz) in the green, and Awp ~ 103
¢t~ (30 MHz) in the infrared around 10 pm. These inhomogeneous broaden-
ings may seem to be narrow by the standard of ordinary spectroscopy, but they
often are much broader than homogeneous linewidths. The natural lifetime
broadening is 10% 1o 107 Hz for atomic transitions, and 10 to 10 Hz for
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molecular vibrational transitions. The pressure broadening due to atomic or
molecular collisions is around 10* Hz at 1 mtorr, and broadening due to
collisions with walls of a container of a few centimeters in dimension is 10° 10
10* Hz. The power broadening (or saturation broadening) of an atomic
transition can be ~ 10 MHz/mW /cn. If a spectroscopic technique has
sufficient resolution, then elimination of the Doppler broadening allows us to
measure the homogeneous linewidth and lineshape and to probe the various
physical mechanisms for the homogeneous broadening. Furthermore, level
shifts and splittings smaller than the Doppler width but larger than or
comparable to the homogeneous width can also be studied. These include
many interesting problems such as Zeeman and Stark effects, collisional effects,
hyperfine splittings, isotope shifts, Lamb shifts, quantam defects of Rydberg
states, measurements of rotational splittings, and the like.

Tao eliminate Doppler broadening, the classical approach is 10 use 4 mono-
energetic atomic or molecular beam. For a small beam divergence of 26, the
residual Doppler width seen by a perpendicular probe beam is (8wp),, =
(Qu/c)w,,¢ where u is the forward beam velocity. With ¢ = 1072 rad,
(8wp),-, can be more than onc order of magnitude smaller than (Awp) .

High-resolution nonlinear optical spectroscopy, however, uses nonlinear
optical methods to reduce the effect of inhomogeneous broadening, There exist
a number of such techmiques. They gencrally foliow the basic idea of ¢ither
using a resonant effect that is independent of inhomogeneous broadening or
selectively studying only a group of molecules with the same resonant frequency.
Most of the techniques discussed in the following sections are applicable, in
principle, to both gases and condensed matter, although the spectral lines in
condensed matter frequently are too broad to require high-resolution spectro-
scopic measurements.

132 QUANTUM BEATS?

Consider a system with two closely spaced excited states as seen in Fig. 13.1. If
a laser pulse with an inverse pulsewidth larger than the spacing between the
two excited states is used to resonantly excite the system, then after the pulse

E——]

—_—1)

wene S LwrA

Rt Fig. 131 A three-level system having two closely
spaced upper levels coherently excited by a laser
pulse with a spectral width 24 larger than the
—_ 1 g spacing w,, ‘between the upper levels.




214 High Resolution Nonlinear Optical Sp
excitation, the system is in a coherent superposition siate
\b — +a lll e’“-’w'*rl' +a e-nmm:—l'lt 13.5
L] 1 1 Y2

where (i}, and {§,, (W] are the ground and excited eigenstates, respectively,
and 4, and @, are coefficients depending on the pulse excitation. The system in
the coherent superposition state will radiate to go back to the ground state.
The radiation power is given by

P(1) « Ky {e)lerldo)?
= |al<\"ﬂ“|‘1’n)eﬂ:mm+r']' + “z<¢z|e'i#’o)e_(mm+rz)'|2 (13.6)

= Ao 4+ Ao 4 Be Tt T0%08] (g — wy)t + 9!,

V54 = 82,9 MHz

\ V43 = 66.5
AN o~ Vaz=49.9

N

116.4,66.5,
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b \
4555A 149.4, 82.9
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mw pow

Ag = 9193 MHz

3

(a}

Fig. 13.2 {a) Hyperfine structute of the 65, , and 72P;  levels of cesium. The scts of
quantum beat frequencies expected for the a and b excitations arc indicated. (b}
Observed oscilloscope traces of the quantum beats in Aucrescence resuliing from the @
and b excitations, respectively. The corresponding theoretical plots of the beats are
shown under the experimental traces. (c) Time recording and frequency analysis of the
I, — I, signal in (b, (After Ref. 4)
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Fig. 3.2 {Continued).

which shows a damped oscillation with a beat frequency (s, — wyg).

For an ensemble of such systems, each system may have slightly different
wyq and tiyy due to the Doppler effect or other inhomogeneous effects, but the
oscillation frequency (s, — wyo) should be the same for all systems. Conse-
quently, the spontancous radiation power from the ensemble after the pulse
excitation is still given by (13.6). The oscillation is observable as long as
[y — @0l 2 (Ty + T3} The oscillation frequency yields directly the level
Spacing wy = @y — Wyy.
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This quantum beat technique can be extended to systems with several
closely spaced transitions. The time-varying signal becomes more cemplicated,
but if the level spacings are much larger than the damping coefficients T, the
spectrum can be obtained readily from a Fourier transform of the time-varying
signal. The technique is most usefud for finding small Jevel splittings, so that
the signal can be accurately measured using the conventional transient detec-
tion system. Both the time-varying signal and its Fourier spectrum can be
directly displayed on the oscifloscope. Figure 13.2 is an example of the results
from a quantum beat experiment.*

133 SATURATION SPECTROSCOPY

The basic idea of saturation spectroscopy is as follows. A monochromatic light
beam resonantly excites only a small group of atoms or molegules under the
inhomogeneously broadened profile and induces in them a population change.
This group of atoms or molecules, marked by the population change, can then
be selectively studied by cither absorption or luminescence. The effect of
inhomogeneous broadening is thus suppressed.

Saturation in Excitation

Consider first the induced population change due to resonant excitation in a
two-level system shown in Fig, 13.3. The rate equation for the population
change is

2 1
(§+f)(ﬁp—ﬂpn)= —2W,, Ap (13.7)

where Ap = py — £y, i$ the population difference between the two levels, Ap”
is the corresponding thermal equilibrium value, Wy, = 2r@g(w} is the transi-
tion rate, & = (1/R)|(1jer - E|2)] is the Rabi frequency for the transition, and
g(w) is the lincshape funciion of the transition. We assume that g(w) =

<21

W~ iy

Fig. 133 A two-level system with a resonant excila-
<1 tion
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T/al{w — wg)* + T?]. The steady-state solution of (13.7) can be written as

(/1) A8

(@ — wy F + THL + L/1) (138)

Ap — Apd =

with J/I, = 4Q2T,/T. Here I = c|F|*/Znn is the intensity and /[, =
cT{Ej?/87nQ2T, is defined as the saturation intensity. Physically, 1(ap — 4%
of the population i3 resonantly pumped from the lower state into the excited
state. When 7 /1, approaches infinity, Ap approaches Apy. This is known as the
purnp saturation effect. The absorption of the pump beam is proportional to
W,, Ap and can be described by an absorption coefficient

1
o= z“"r (13.9)
(0 —w ¥ +TH1+ /L)

where « is the peak value at w = wy and /1, = 0. Equation {13.9) shows
that for nomnegligible 1,/1,, the absorption line is broadened by a factor of
(1 + I/I,Y/%, This is the well-known power broadening effect.

In the weak saturation limit of £/, << 1, (13.8) and (13.9 reduce, respec-
tively, to

TH/L) A
Ap— A = ((—L‘Sz—pF (13.10)
w—wy) +
and
a2l ru/I, (13.11)
a = . .
(e — wm)z +T? {w— m21)2 + T2

The change in the absorption coefficient o then is proportional to f or |E |2 and
can be regarded as a third-order nonlinear optical eflect.

With inhomogeneous broadening, 2 monochromatic laser beam can reso-
nantly excite only a small fraction of the atoms or molecules. Consider a gas
medium in which the Doppler effect dominates the inhomogeneous broaden-
ing. For the group of atoms or molecules with a velocity component v, along
the laser beam propagation, the resonant frequency in the laboratory frame is
wyy — ku,, where wy is the resonant frequency in the rest frame. Then,
following (13.8), the population excitation in this group of atoms or molecules
is given by

{rir/1,)80(s,)
(w—wy + ku,)2 + 21+ 1/1)

8p(s,) - Ap°(n,) = o (1312)
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Fig. 134 Hole burning in the Maxwellian distribution resulting frem resonant excita-
tion. ’

Here Ap"(u}=(Ap™/vru)e /' and Ap™ is the thermal population
difference between the two levels {1} and [2). Clearly, appreciable pumping of
the population, Ap(z,) # 4p°(t,), can occur only in those atoms or molecules
with &, = {w — wy)/k, as shown by the dip in the population distribution in
Fig. 13.4, This is the hole-burning effect.’ The pump excitation has modified
Ap%(o,) in such a way that it creates a hole with a halfwidth (1 + [/7)2/k
in the Maxwellian distribution.

Absorption of a Weak Probe in the Presence of a Strong Pump Beam

One would think that the hole-burming effect can be probed by a weak beam
with a frequency «' scanned across the hole. The absorption coefficient of the
probe beam would be dominated by those atoms or molecules with v, = (&’ —
wy,)/k for co-propagating pump and probe beams, and therefore as o’ = w the
probe beam should feel the presence of the hole in Ap(v.). This simple
description, however, neglects the coherent interaction between the pump and
probe beams. As we shall sce below, the coherent interaction can significantly
modify the absorption spectrum, especially in the strong saturation limit when
7Lz

The calculation of probe absorption can begin with the density matrix
element p,; (), knowing that the absorption coefficient is given by

Aqe’

afw’} = (———)Imx(w’)

(4
with (13.13)

o) = Npapy (@)
x{w’) (o)
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and py, = (1|er|2). In the presence of the sirong pumping field £{«w}, we want
to find p;, (') to all orders of E(w), but linear in the probe field E{w").® This
is possible for a two-level system. Directly from the Liouville equation {2.6) for
the density matrix, we can obtain the following set of couple equations (see
Section 2.1):

(o — ay + iT)py (o)

"P:uE(w'){pu(U) - Pzz(U)]
_PnE("’)[Pu(W' —w) = pple’ — w)],

k(“‘" -et I'Eli)[."u('ﬂ?' - w) = pu(e - @)

—2p E*{w}pn{e’) + 2pp E(w)pp(— )}
+2puE(w)p (e - 20}, (13.14)
ﬁ(m' - 2w~ wyy + ir}pu(m’ — 2w}

= —pnE*(w)[pplw — @) - py(e = @),

[pn(O)—pu(O)]sAp=Apﬂ/[1+ w1, ]

(e — u21}2 + T

—hlp,E(-w)dp

al—e) = @ =ty — il

We ignore py(2w) and p;{2w) in (13.14) because they are small in compari-
son. The solution of p,; () from (13.14) is

, 1 ,
palw) = { — 3 onE(w) 80

-1

202

X (w’ =y t+ iI‘) - v

(wwf—)—_—r——
T & = 2o+ vy +iT

2 A E(0) E(w)pp(—w)

h
+ s 13.15
( , ,1) 92 ( )
w—tieg | —————=
T o = 20+ wy T
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which can be written as
—(i/h}py E(w)p
' = wy + il
. (1) py E{w @ — 2w + wy + T e + o — 20, )22 8p
(0= wy = iTHw — wy + ir)p

pule) =

D=(w -y + ir)[(m’ —w+ %)(w’ — 2w+ wy + tT) -2
b
202w — 20 + wy +iT),

2

gr - 1B (13.16)

H2

The first term in p,,(w") of (13.16) arises from the hole-burning effect, while the
second term comes from the coherent interference of the pump and probe
beams. Physically, this interference sets up an osciilation in the populations
pp(« — w) and py(w” — w), which in turn scatters the pump beam to yield a
coherent output at «’. The denominator of py{w’) now has three zeroes,
corresponding to three distinct resonances when E(«) is sufficiently strong.
This result of strong interaction of light with a resonant two-level system can
also be understood from the picture of dynamic {or ac) Stark splitting, or the
dressed atom picture, which will be described in Chapter 22.

In the presence of Doppler broadening, there is a py(w’) for each velocity
group of atoms or molecules. (We assume, for simplicity, that the Doppler
broadening is much larger than the homogeneous broadening.) The expression
of py,{’, ©,) can be obtained from (13.15) or (13.16) by replacing « and o’ by
w — k*v, and w’ — k=v,, respectively. To find the abserption coefficient seen
by the probe beam in this case, we must integrate py (v, u,) over the Doppler
profile. In other words, py(w) in (13.16) should be replaced by
I .dv, pn(t’, v,). For counterpropagating pump and probe beams, the hole-
burning term in (13.16) yields an absorption coefficient

AN pyl
aygle’) = -MLHL

Lol
*f
-0

TAap(u,) dv,

[( = wy — &0, + rl][1 +

, |y 1
= ay{w ){1 [1 _(1 R f/]s)l/z}

i ‘
* [(“’l ~w)+2e - “’21)]2 + fz} (1

s ]

{0 —wy + k) +T?
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where

» 2 L
R

and

The above result shows that over the entire Doppler profile, epy(w’) is
approximately equal to ay{w’) & Ap°[e, = (@’ = wy}/k’] except around &’ =
2wy — w, where it exhibits a dip with 2 halfwidth T, Both the ampliwude and
the halfwidth of the dip increase as I/I, increases. This resonant dip seen by
the probe beam at «’ = 2wy, — @ originates from the hole at o — kb, = @y
created by the pump beam with frequency o = wy — k.

The weak saturation limit (f/7, < 1) is of particular interest. Equation
{13.17) reduces to

~ iyl
[(w' —w)+ 2w~ w,_l)]z +4T?

apg(@) = ap{w)il

}, (13.18)

which shows that the absorption dip now has a halfwidth equal to the natural
width 2T of the individual atoms. For co-propagating pump and probe beams,
the formulation and results are essentially the same except that the probe beam
sees a hole = w as expected.

The term in py (') of (13.16) due to the coherent effect is more com-
plicated, It can modify the absorption spectrum significantly. Only a qualita-
live discussion is presented here; Ref. 7 provides mathematical details, For
counterpropagaiing pump and probe beams, the coherent part of py(e’, v;)
has three poles, but in the contour integration over v the integration path
should be closed in the upper plane that contains only one pole. It gives a
contribution superimposed on the hole caused by the saturation effect to form
a broader but shaliower dip in the absorption spectrum. This is seen in Fig.
13.5. It is seen that when I/I, is large, the coherent effect can drastically
change the absorption spectrum seen by the probe beam. However, if I/, < 1,
the coherent effect is not very significant, and the saturation effect alone gives a
good description of the absorption spectrum. For co-propagating pump and
probe beams, the contour integral of the coherent part over v; should be closed
in the lower plane that contains two poles. The coherent effect again broadens
the saturation hole, For I/, < 1, the hole is composed of two Lorentzian dips
at the same resonant frequency « = , one with a halfwidth 2T and a depth
$1/1, and the other with a halfwidth 1 /T, and a depth 1171, [If the two levels
have different lifetimes v;'! and v;! in the more general case, then the
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Fig. 13.5 Absorption specira with a saturation dip seen by a weak probe beam in the
presence of a strong counterpropagating pump wave of different strengths [/7,. The
solid curves include the coherent effect, bui the siashed curves do not. (After Ref. 7.)

)

ahsorption dip is a superposition of three Lorentzian dips, with halfwidths 2T°,
11 1 and depths 1I/L, HU/LYn/0n + 1) /L0 + 1) respec-
tively.] By analyzing the shape of the overall dip it is possible to deduce I and
Ty (or T, 1y, and ¥,).

As mentioned earlier, the coherent effect is caused by coherent scattering of
the pump wave at « by the population modulation at (w — «') resalting from
the beating of the pump and probe waves at @ and o’. The coherently scattered
oudput at «" can constructively or destructively interfere with the incoming
probe wave causing a decrease or increase in the absorption of the probe beam.
Then it is obvicus that if pulsed lasers are used, the coherent effect can be
eliminated by delaying the probe pulse from the pump pulse.

The preceding discussion shows that one can deduce the homogeneous
linewidth of a transition from the observed saturation dip, but the main
purpose of saturation spectroscopy is to resolve the closcly spaced lines
normally hidden under the inhomogencously broadened profile. This can not
be achieved with co-propagating pump and probe beams since the saturation
dip always appears at w” = w. With counterpropagating pump and probe
beams, however, the dip appears at " = 2w, — w; different transitions with
different resonant frequencies w,, then show up as different dips and can be
well resolved as long as the frequency separation is larger than the dip width.

Absorption of the Probe Beam in the Presence of a Counterpropagating
Pump Beam of the Same Frequency

The spectroscopic method described above requires two tunable lasers of high
monochromaticity, which is seldom affordable. The saturation spectroscopy
can, however, be carried out with counterpropagating pump and probe beams
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of the same frequency. This can be seen from the fact that the counterpropa-
gating pump and probe waves interact with the same velocity group of atoms
under the Doppler profile when w — kp, = @ + ku, = wyy or v, = 0, that is,
when w is tuned to the center of the Doppler-broadened transition line.

In the case of a strong pump and a weak probe, the calculation is similar to
that in the previous section. In (13.14), for the sake of simplicity, the wavevec-
tor dependence in the density matrix components is not explicitly showm.
Actually, for counterpropagating waves we have p (&’ — w, k* + k). Then
even when w = ' the coherent effect is still present because the pump and
probe waves can interfere and yield a spatial modulation in the population
difference, Ap(k’ + k). However, as pointed out earlier, the coherent effect is
relatively unimportant when 7/f, << 1. We therefore assume /I <1 and

“neglect the coherent effect in the following discussion. The absorption coeffi-
cient of the weak probe beam is then given by (13.18) with w = «".

A typical experimental arrangement is seen in Fig. 13.6.® The error asising
from the beams being not exactly antiparallel is not significant for most
applications. As an example, Fig, 13.7 compares the saturation spectrum of the
Balmer a-line of atomic deuterium with the emission line profile of a cooled
deuterium gas discharge.® The Lamb shift is resolved m the saturation spec-
trum. Note that the spectrum in Fig. 13.7 was obtained by subtraction of the
saturation spectrum from the original Doppler-broadened spectrum. Each
resonant peak here corresponds to an absorption dip in the sateration spec-
trum.

\Jaser iock-in

amplifrer

signaf

apsorption cetl

detector
saturating beam probe

Fig. 13.6 Experimental arrangement of saturation spectroscopy with two counterprop-
agating waves of the same frequency. (After Ref. 8.)
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More generally, the pump and probe beams can be of comparable intenst-
lies. We consider the special case of iwo beams of equal intensities and neglect
the coherent effect. Under the resonant excitation, the population difference
between the two levels of an atom with a velocity component g, is obtained
from the usual saturation formula

Ap{o,) = Ap°
plu) = 4p°(e,) T, - T

(:.:-(«.=21+.fcux)z+[‘2 (w7w21~kuz)1+rz
(13.19)

1+

where I is the intensity of each beam. The absorption coefficient for each beam
is given by

W Ap(e,)T
ale) = ofd”:{”[(w — oy + ko) I'Z] }

where ap = (47’ /e ¥ N| py;|/T). In the weak saturation limit, I/1, < 1, we
find

(13.20)

(w— w21)2 + 2

a(e) = au(w)[l 5[zl —i—” (1321

with

ap{w) = auApﬁ(vz = —m—kml)
The result shows that when jw — wy,| 3 T, the absorption coefficient is a{w)
= gg(eX1 ~ I/21,), but when |o — wy| ~ I, additional absorption appears
in the form of a dip, with a depth (/1 )ay(«w) and a halfwidth equal 1o the
homogeneous halfwidth T'. This is sketched in Fig. 13.8a.

In practice, the two counterpropagating waves of equal intensities can be
provided by the fi¢ld in a laser cavity. The medium in this case can be the laser
medium with a negative Ap corresponding to an inverted population. A
reduction in |Ap| decreases the gain and hence the laser output. Thus the
hole-burning effect appears here as a dip in the gain spectrum or a dip in the
laser output spectrum. This was first proposed by Lamb, and is known as
the Lamb dip.? It was the observation of the Lamb dip that opened the field of
high-resolution laser spectroscopy.

One can, of course, also insert an absorbing medium into a laser cavity. In
this case, the absorption generally reduces the laser gain and decreases the laser
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Fig. 138 (g) Lamb dip and (b) inverted Lamb dip in saturation spectroscopy with
two counterpropagating waves of the same frequency and intensity.

Aw/2l

Fig. 139 Dip width as a function of pumping strength J/I,. Curve A is exact
calculation; B is an approximation ignoring the coherent effect. (After Ref. 7)

6




Saturation Spectroscapy 77

output. Then a dip {decrease) in the absorption arising from hole burning
should lead to an inverted dip in the laser gain spectrum, as in Fig. 13.85. This
is known as an inverted Lamb dip. The Lamb-dip experiment requires the
coincidence of the laser frequency with the transition frequency. It is therefore
more limited than the general absorption spectroscopic technique described
carlier.

We bhave neglected the coherent effect here. To see that it is indeed
negligible for I/, < 1, Fig. 13.9 shows the dependence of the dip width as a
function of I/, with and without the coherent contribution.” The difference
clearly is appreciable only when I /7, = 1.

Multilevel Saturation Spectroscopy

The preceding discussion can be extended to a three-level system with two
transitions sharing a common level (Fig. 13.10).)® A strong monochromatic
beam with frequency w = |wg} is used to induce a population change in levels
0 and 1 for a selected group of atoms or molecules. A weak beam at ' = |wyy)
is used to probe the induced population change. Since only a selected group of
atoms or molecules is seen by the probe beam, the inhomogeneous broadening
of the (0 — (2| transition is greatly reduced. For this case, the calculation is
fairly straightforward. The induced population change has already been de-
rived, so that the absorption or gain spectrum obtained by the probe beam can
be calculated readily. The coherent effect is negligible when w and «” are very
different. When « ~ «’, it is still negligible for counterpropagating pump and
probe waves in the weak saturation Limit, I/1; < 1, The technique is most
useful for resolving transitions between two sets of closely spaced multilevels.
If the difference of the two resonant frequencies [w | and |wy) is smaller
than or comparable to the Doppler width in a gas medium, saturation
spectroscopy can also be carried out with twoe counterpropagating waves of the
same frequency (w = «’).}® They interact with the same velocity group of
atoms when « and o, satisly the relations w — kv, = |wg] and w + kv, = |amg]
The saturation dip appears at w = 3(Jwg| + |wy). The experiment can be
performed in either an absorption cavity or a laser cavity as in the Lamb-dip

21 2t <0
<) o
o
w' <0 w
[
<2f
La}
<0| <11 < 1|
(a) (b} (c}

Fig. 13.10 Three-level systems with two transitions sharing a commen level.
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Fig. 13.12  Four-level systems with two transitions involving two coupled levels.

case discussed previously. An example is shown in Fig. 1311 The three
strong structures on the right and two weak ones on the left all result from
two-level saturation dips. They correspond to the three AF = —1 and two
AF =0 single transitions, respectively. Only the middle structure in the
spectrum originates from three-level sataration. It results from superposition of
the four saturation dips arising from the double transitions labeled **crossings”
in the energy level diagram of Fig. 13.11b.

The technique can aiso be exiended to two transitions with no comron
level, but coupled through atomic or molecular collisions.'? As seen in Fig.
13.12, collisions may tend to equalize the populations in nearby energy levels
for atoms or molegules of the same velocity group. If the saturation pumping
induces a population change in 10}, there will be a corresponding population
change in [07). A scan of & about wyp should exhibit a saturation dip at
W= @yt kY, = gy K@y w)/k, where + and — refer to counter-
and co-propagating pumyp and probe beams, respectively.

In three- or four-level saturation spectroscopy, if spontaneous ermnission
exists between [2) and 0), then the emitted light can be used to play the role of
the probe beam.!* The pump beam at w induces a population change in (0|
(and {07 for a sclected velocity group of atoms, and thus modifies the
emission between (0| {or ¢07 and {2| for that group of atoms. Clearly,
the induced emission spectrum is Doppler-free (to the first order). Because the
detection of emission often is far more sensitive than the measurement of
absorption or amplification, this technique can be used to study gases of very
low pressure. The same technique can be extended to condensed matter.
Laser-induced fivorescence line-narrowing has recenily become a very popular
technique for high-resolution spectroscopic study of ions in solids.™

134 TWO.PHOTON DOPPLER-FREE ABSORPTION
SPECTROSCOPY

For gas media, two-photon absorption of two counterpropagating waves of the
same frequency can also yield a first-order Doppler-free spectrum.’® The
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two-photon transition probability for an atom moving with a velocity ¥ is,
following (12.1) with , replaced by w, + k&, °¥,

dw;, dWwy 8n’N N
2 ™ Ay " (g SR BB

. (13.22)
{fler-élsH(sler=-&|) N {fler-és)(sler-&|i)
Ao, + kv — @) Bl +Ryrv— ) |

LAED>

If no intermediate tesonance is involved, the v dependence in |1‘I/J’ﬁ|2 can be
neglected. Then the only dependence of Wy, on v is through the lineshape
function

gl hdw) = g[A(w T e e (13.23)

It is readily seen that if o, = w, and K, = ~k,, then the first-order Doppler
effect of g(kAw) 18 completely eliminated, with g(h Aw) reduced to gk
(2w — @)l In the case of a Lorentzian lineshape, we have

T/w

gl Aw) = ————F——.
(2o - wﬁ)z + T

(13.24)

With g(h Aw) independent of ¥ to the first order of v, the two-photon
absorplion spectrum of a gas medium is then the same as that of stationary
atoms or molecules. Here, unlike saturation spectroscopy, all molecules con-
tribute equally to two-photon absorption. The absorption coefficient is there-

Absorption

Atorn

O =
Beam % Beam 2

/Beam 1 + Beam 2

Beam 1+ Beam 1
and
//”’_—_’_J Bearn 2 + Beamn 2

w

Fig. 13.13 A two-photon absorption line obtained by counterpropagating waves in a
gas medium. The sharp peak is the Doppler-free line and the hroad background is the
Doppler-broadened spectrum.
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Fig. 1314 (a) A typical experimental arrangement for Doppler-free two-photon
spectroscopy with a CW dye laser. (b) The 35-44 transitions of Na observed by
two-photon Doppler-free spectroscopy with circularly polarized light. (¢} Zeeman
splitting of the 3s-44 transitions at H = 170 G abserved by two-pheton Doppler-free
spectroscopy. {After Ref, 8)
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fore proportional 1o the density of molecules, but the observed spectral width
corresponds to the homogeneous Linewidth.

However, with counterpropagating beams, the two participating photons in
the two-photon absorption process may come in the manner of either one frem
cach beam or both from the same beam. While the former gives a Doppler-free
line, the latter still leads 1o a Doppler-broadened peak. The spectrum should
appear as a sharp line sitling on a broad background, as in Fig. 13.13. If the
intensities of the 1wo counterpropagating beams are the same, the integrated
strength of the background should be equal to that of the Doppler-free line.
Fortunately, the Doppler width is (ku/T") times larger than the homogeneous
width. In the visible range, (kx/F) can be 10° 10 10%, Therefore, the back-
ground appears to be fairly weak and does not hurt the quality of the
Doppler-free spectrum. In some cases the background can also be completely
eliminated by using appropriate pump polarizations.

Two-photon Doppler-free spectroscopy, is attractive because of its simplic-
ity.'® An example is shown in Fig, 13.14, where the hyperfine structure and the
Zeeman splittings of the 3§~4D transition in sodium are clearty resolved.!”
The technique allows the use of a single laser to probe a transition at twice the
laser frequency. The sensitivity of the technique is good, since all the aloms or
molecules in the beam participate in the absorption. It can be further improved
with the Auorescence or ionization detection schemes mentioned in Section
122. In general, however, two-photon absorption spectroscopy is still less
sensitive than saturation spectroscopy because of the lack of an intermediate
resonance. Pulsed lasers with high peak power must then be used, and the
resotution often is limited by the laser linewidth, If a close intermediate
resonance exists, then a CW laser can be intense enough to be used to obtain a
high-resolutien two-photon absorption spectrum. Figure 13.14 is a good exam-
ple.

13.5 HIGH-RESOLUTION POLARIZATION SPECTROSCOPY

A polarized pump beam, resonantly exciting a transition in a medium, is
expected to induce a dichroism and a corresponding birefringence in the
medium through the induced population change. Both the dichroism and the
birefringence should exhibit a resonant behavior at transitions involving levels
with the induced population change, and ¢an be measured by the polarization
variation of a probe beam through the medium. This is the vnderlying
principle of polarization spectroscopy.'® We consider it here as a modification
of the saturation spectroscopy discussed in Section 13.3. Only a qualitative
discussion is attempled; quantitative details can be found in Ref. 19.
Consider a circularly potarized monochromatic Jaser beam which resonantly
excites a transition of & selected velocity group of atoms o saturation.'® This
group of atoms will then preferentially absorb the oppositely polarized compo-
nent of a probe beam probing the saturation. In addition, there is an induced
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circular birefringence since, as a result of the selective excitation, the refractive
indices for the two circularly polarized components are no longer the same.
Consequently, in traversing the medium, a linearly polarized probe beam, with
frequency in the region of the saturation dip, becomes elliptically polarized
along with a rotation of the major polarization axis. I the probe frequency is
away from the saturation dip, then the polarization of the probe remains
essentially unchanged, The transmitied probe beam can now be analyzed by a
crossed analyzer. Only at the saturation dip in the Doppler-broadened peak
will the probe light leak through the analyzer. Unlike the absorption saturation
spectroscopy, the polarization spectroscopy here yields a Doppler-free spec-
trum with no inhomogeneous background. This is certainly an advantage since
the sensitivity can be greatly improved without the strong backgroumd. It
allows the use of lower laser power and lower gas pressure. In general, an
elliptically polarized pump beam can also be used as long as the analyzer is set
correspondingly.t®

The technique applies to both two- and three-levelsystems. In the latter
case, there should be a common levet for the pump and probe transitions as
described in Fig. 13.10. With a sysiem of many closely spaced transitiens, as in
the case of a molecule, the polarization speciroscopy also has the advantage of
being able to greatly simplify the spectrum.?®* The polarized pump beam
modifies the population of the common level with a particular molecolar
grientation. The probe beam monitoring transitions from this common level 1o
other levels should experience a dichroism and a2 birefringence. Then, with a
crossed analyzer, these transitions can be easily distingnished from the others.
The resulting spectrum seen by the probe beam through the analyzer is usually
far simpler and better characterized than the ordinary absorption spectrum. In
this technique, the common level is labeled through saturation pumping by the
polarized pump beam. It is therefore known as polarization labeling spectros-
copy 208

Figure 13.15 shows the polarization labeled spectra of Na, as an example.”
The pump laser beam was circularly polarized and tuned to a X7 — BTI,
transition of Na, near 4825 A. The first row of spectrum in Fig, 13 15 was
obtained with the pump frequency adjusted to the (v = 0, J = 4%) — (4,50)
transition. Transitions from (0, 49) to the various (v, J ") states were monitored
by the polarization change of the probe light induced by the population change
in (0, 49). For each v — ¢’ transition, three spectral lines are expected accord-
ing to the selection rules AF = +1,0. The signal intensity for Af = +1is, to
the first order, proportional to e}, and for AJ = 0, proporticnal to 1//2,
where &, is the absorption coefficient in the absence of pumping. Therefore, for
large J, the AJ = O transitions are much weaker and may not show up in the
spectrure. We can then identify the successive doublets in the first row of the
spectrum in Fig. 13.15 as (0,49) — [{0,48), (0,50}, [(1,48), (1, 50%], [(2, 48),
- (2,500,- .-, [(6,48), (6,50)], respectively. Similarly, the successive rows of
. spectra in Fig. 13.15 were obtained with pumping transitions (1, 25) — (3,24),
E(0,42) > (4,41), (1,29) — (5,29) amd (1, 33) — (5, 34), respectively. The v = 1
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— ¢* = 3 transitions in the second and fourth rows are missing because of the
small Franck-Condon factors. The upper-state vibrational quantum numbers
in the observed transitions can be assigned here easily because each row of
spectrum should end up at the low-frequency side with a * = 0 doublet. The
spectrum in Fig. 13,15 is much simpler than the ordinary absorption spectrum,
where the transitions from many rotational states of the lowerv = 0 and v = 1
vibrational states will create a nearly intangible forest of lines in the spectrum.

The polarization labeling technique can also be extended to the effective
four-level systems described in Fig. 13.12. The polarized pumping partially
arients the molecules in the j0) level, Through molecular collision, the orienta-
tion is transferred from [0} to [0°). The probe beam probing the transition from
0"y to |2} should again experience an induced dichroism and birefringence.

Potarization spectroscopy alsc can be used to study two-photon transitions.
Instead of absorption, the pelarization variation of the incoming beams is
measured. We consider this in more detail in Chapter 15 under the rubric of
Raman-induced Kerr effect, recognizing that Ramarn- transitions are just a
special case of two-photon transitions.

13.6 OPTICAL RAMSEY FRINGES

In radio atomic spectroscopy, an ingenious high-resolution technique was
invented in the late 1940s by Ramsey using an atomic beam.” As seen in Fig.
13,16, an atomic beam interacts with the applied radio fields in two regions.
" Atoms passing through the first region are coherently excited. I the coherence
persists when the excited atoms reach the second region, they may absorb or
emit, depending on whether the atomic coherence is in phase or out of phase
with the exciting radio field. The absorption in the second region therefore
appears as interference fringes as the radio frequency scans through the atomic
resonance. These are known as Ramsey fringes. The fringe pattern depeads on
the coherent lifetime (dephasing time) of the atomic excitation from which the
high-resolution spectrum can be deduced.

The technique can be extended to optical spectroscopy. Since the dephas-
ing time of an opiical transition is usually very short, a medification of the
techinique is necessary. Instead of the em fields exciting an atomic beam at two
separate spatial points, one can use two laser pulses separated in time to excite
the same group of aloms in a vapor cell**** The effect is the same. The

Redio fields

Atomic beam

Fig. 13.16 Schematic describing the interaction of an atomic beam with two radio
E frequency fields leading to the observation of Ramsey fringes.
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absorption spectrum seen by the second pulse or the emission spectrum after
the second pulse exhibits the Ramsey fringes.

It is interesting 1o note that the spectroscopic resolution of the Ramsey-fringe
technique is not limited by the pulsed laser linewidth, whick, by the uncer-
tainty principle, is given by the inverse of the pulsewidth, This can be seen as
follows, For two identical coherent pulses separated by time T, the field can be
written as

E{1) = de[é”(w)sinwr + &{w)sin(wt + «T)]
(13.25)
- { dm[Z&(w)sin%Tcos(m } T}

with @ = w, + Aw. As seen in Fig. 13.17, it has a sawtooth spectrum whose
envelope is the spectrum of a single pulse. Then, in tuning the laser over a
resonance, it is the sawtooth spectral profile of the laser scanning over the
resonance. Therefore, the spectral resolution is now limited by the width of the
sawtooth instead of the width of the envelope. In scanning w, over a §-function
resonance, the linear transmission spectrum should reproduce the sawtooth
spectrum of the laser excitation. 1f the resonance has a finite linewidth, then
the sawteeth in the transmission spectrum are broadened with a decreased
contrast of peaks to background.

The Ramsey fringes depend on the phase correlation of the two pulse
excitations. If the pulses are not phase-correlated, no fringes can be seen. Also,
if the coherent excitation imposed on the atoms by the first pulse dephases
before the second pulse arrives, the fringe pattern will disappear. The dephas-

i ;
Q> =
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Fig. 13.17 Single and double coberent laser pulses with their corresponding frequency
spectra,
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ing effect on the observed spectrum is in broadening the sawteeth and
decreasing the contrast of the fringes.

In an actual experiment, atomic motion also may cause dephasing. This,
however, can be eliminated if two-photon excitation is used.” As discussed in
Section 13.4, the former is independent of atomic velocity and has all atoms
participate in the absorption. In the following discussion, we use this case as an
example to give a simple mathematical derivation of the Ramsey fringes.*

Consider a two-level system excited via two-photon transitions by two
square pulses of duration 7; one is switched on at r = 0 and the other at¢ = T.
At 1 < 0 the system is in state {1}, and at ¢ > § the system is in a coherent state

[y = a(e)1)y + 6(r)2). (13.26}

Assume that the perturbation theory is valid. Then a(f) = 1, and b{r) can be
obtained from the Schrodinger equation or

iv;;b(l) = dg=Cuw-walt {13.27)

where A is a coupling coefficient proportional to the square root of the
two-photon transition probability, We find, for ¢ = 7,

A

b(r) = 2mfmu[e-'a“-“zﬂf -1] (13.28)

and forr = T+ 7,

= 4 —iRw—w XT+7) _ —i{2w—wy )T
OE 2w—w21[e ' e 7] + b(t}

(13.29)

I | —iumwg)T _ ][ o= i2e- waT
2m_mn[e W —1][e T 1],

If fluorescence from (2§ is detected, the signal should be proportional to
|B(1}1?, which, after the second pulse, is given by

i ) ~
1B(T + 1) = 44%2 sind (e = @y ) cosz(zm ‘”2‘?). (13.30)
%(2“’ — )T 2

; The spectrum of [5(T + 7)|? versus (2w — wy;} is seen to be a fringe pattern
E. shown in Fig. 13.18. The periodic spacing of the fringes is 1/2T. In the
. presence of a dephasing rate T' with 7 < '™, (13.29) should be modified by
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Aw=w{T

44247

7 1 1
3 W —w/T Flac 7Y +wiT w

Fig. 13.18 Ramsey fringes resulting from two-photon excitatior of a transition by twe
square pulses of duration 7, ene switched on at t = 0 and the otheratt = T

replacing b(7T) by 5(T)e "". We then find

A

2
A4 —iQa- _ —i2e—w -rry?
T un] |[e Hu—wyd7 1][e iQe—wn)T 4 o ]| A

BT+ 1) = (
(13.31)

The fringe contrast is given by
_ BT+ ) (T ) o
[B(T + 7)oy + 16(T + 7}

3p-TT
VR

(13.32)

which is 1 for T = 0 and decreases rapidly as I increases.

Figure 13,19 is an example of the optical Ramsey fringes obtained by
two-pulse two-photon excitation in sodium together with the experimental
arrangement.® On each spectral line, the interference fringes are clearly visible.
The observed periodic spacing of the fringes is indeed given by 1/2T and
decreases with increase of T.

An obvicus improvement of the Ramsey fringes can be achieved by using a
series of many equally spaced pulses.’” It can be obtained from either a
mode-locked laser or a pulse through a resonant cavity with partially transmit-
ting mirrors. If the pulses are phase-correlated, the frequency spectrum will
appear as a series of equally spaced spikes, as in Fig. 13.20. The spectral
resolution is now limited by the widih of each spike. With ¥ pulses coherently
exciting the atoms within the dephasing time, the width of the spikes is
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Fig. 13.19 () Arrangement of the Ramsey fringe experiment in Na. (5) Observed
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excitation pulses. (After Ref. 27))




240 High Resolution Nonlinear Optical Spectroscopy

w

Fig. 13.20 A scries of equally spaced laser pulses and the corresponding frequency
spectrum.

inversely proportionat o N, while the signal intensity is proportiona! to N2,
This technique has been demonstrated by Teets et al.””

13.7 OTHER HIGH-RESOLUTION SPECTROSCOPIC
TECHNIQUES

There are 2 number of other high-resolution spectroscopic techniques. Most of
them are varjations of the techniques we have already discussed, including
multiphoton Doppler-frec absorption and multiphoton saturation spectros-
copy. Coherent transient spectroscopy and four-wave mixing SpectroOscopy,
however, are unique and deserve a more detailed discussion. The former is
discussed in Chapter 21 on coherent transient effects, and the latter in Chapter
15.
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Four-Wave Mixing

Four-wave mixing refers to the nonlinear process with four interacting electro-
magnetic waves. In the weak interaction limit, it is a third-order process and is
governed by the third-order nonlinear susceptibility. Unlike second-order
processes, a third-order process is allowed in all media, with or without
inversion symmetry. Yet it is generally much weaker than an allowed second-
order process because of disparity in the sucsceptibilities, [x™ = |x®] With
high-intensity, lasers, however, it is still easily abservable, as first demonstrated
by Maker and Terhune! This is particularly true if 1x®1 shows resonant
enhancement, When more than one tunable laser is used for pumping, even
multiple resonances of x** can be excited.

Being flexible and easily observable in all media, four-wave mixing has
many interesting applications. It extends the frequency range of unable
coherent sources to the infrared and ultraviolet.? In the degenerate case (i,
four waves having the same frequency) it is used for wavefront reconstruction
in adaptive optics,* With resonances, it can be adopted as a powerful spectzo-
scopic and analytical tool for material studies. We consider the fundamentals
as well as some applications of four-wave mixing in this chapter, and leave the
discussion of four-wave mixing spectroscopy to Chapter 15,

141 THIRD-ORDER NONLINEAR SUSCEPTIBILITIES

In media with inversion symmetry, third-order nonlinearity is the lowest-order
nonlinearity allowed under electric-dipole approximation.* The microscopic
expression of a third-order nonlinear susceptibility x® can be derived from a
perturbation calcutation using, for example, the diagrammatic technique out-
lined in Section 2.3. In general, it consists of 48 terms, explicitly shown in Ref.
5. While x is governed by the overall symmetry of the bulk medium, each ]
term of X is governed by the selection rules on its matrix elements.

42




Third-Order Nonlinear Susceptibitities 213

Near resonances, a few terms of x*” are resonantly enhanced through the
resonant denominators. The resonant part of % can be separated from the
nonresonant part through resonant dispersion. The former is a complex
quantity as the damping coefficients in the resonant denominators become
nonnegligible. A few examples are discussed here.

Singly Resonant Cases

Assume three input pump frequencies «,, ,, and w;. Single resonance of x &
occurs when any of the three frequencies or their algebraic sums approach a
transition frequency of the medium. Consider as an example the case seen in
Fig. 14.1 where w; — w, is at resonance, The third-order susceptibility can be
written as the sum of a Tesonant part % § and a nonresonant part x {%

X = X + X (141)

The expression of x& can be obtained either from the general expression of
x® or from the derivation in Section 2.3 or 10.4. We find

N(M:'E);(M;‘g)m(pg - px’)

Bl = w; = wp, — il )

{X{tp(‘*’a =wy—wy t ‘*’1)}:’,&: ==
{14.2)

~ where

sy oy | $8lendmd(nlenig)  {gllenlny(mier]g)
(Mylg)“_z[ A, _“’ng; h(i?2+wnx; ]

oy _ x| Salenimd(ulenlg)  {gllenlnd(rien|g)
(MS'S)'J - [ fi(jmﬂ — wwg) h{w3 + w";) }

The resonant x§? of other singly resonant cases can be similarly derived.

<m|

ax Wy Wy
4 L

b <p 1 —
Fig. 14.1 Schematic showing a four-wave mixing process
<gi— with ) — w; at resonance.
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Doubly Resonant Cases

We assume here two input pump frequencies «, and w,, and consider the
various doubly resonant cases seen in Fig. 14.2.% The expressions for x g’ can
be derived following the diagrammatic technique of Section 2.3, For the cases
of Fig. 14.2a-d, the diagrams are shown explicitly, with resonant transitions
denoted by the heavy dots. They yield, respectively,

[K(Rs)(”a =w; — w + ‘*’1)] il

_Net o | (glndm){mlnley | (gllm){minlay
hy S 20— w0y @y, 20y ~ g + 1,y

. 14.3a
) (&l il 4% (1432
(“’1 T Wy + irng)("’l Ty T W + ”‘E’S)
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[Xg){‘*’l = =Wyt "’1)] ikt
Ny {glrin’)
Fa p 2o - wy ~ g ar,,,g (14_3!})
» {rlgtm)Cminda) | (alrdmy (i {nlnlg o5,
W) =y = Wy 260 =ty e = e + 0L
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B (20, = 0y = wg i )@ — @y = wp il )
’ ” 14.3¢
* 1 [ 3 )
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Fig. 142 Schematics describing the various cases of doubly resonant four-wave
mixing, The double Feymann diagrams for cases {a)—(4) are explicitly shown.

Resonances are explicity shown in these expressions by the frequency de-
nominators with damping constants. Similarly, the expressions of ¥ (w, = &,
— w, + w,) for Fig. 14.2¢-h at the output frequency 2w, — |, and those of
x{(w, = w; — wy + w,) for Fig, 142/ and j at the output frequency w, can
also be derived.

Triply Resonant Cases

We assume here three input frequencies, w,, w}, and w,. and consider the ¥
terms in which all the three frequency dencminators are near rescnances.®
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Fig. 143 Schematics showing two cases of triply fesonant four-wave mixing.

They are schematically shown in Fig, 14.3. The expressions of % @(w; = @ —
@) + w,) for the cases of Fig. 14.3a and b are, respectively,
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These expressions are for isolated molecules or ions. As discussed in Section
13.1, the resonant frequencies of molecules or ions often depend on the local
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environment. The effective x & of an ensemble of molecules or ions should be a
weighted average of x§ over the distribution of the resonant frequencies.

142 GENERAL THEORY OF FOUR-WAVE MIXING
The theory of four-wave mixing follows closely the general theory of optical
mixing. We assume here, for simplicity, a cubic or isotropic medium. Three
different cases are considered in this section.
Three Pump Fields
Let the pump fields be E,, (w,,) = &€,exp(iK,, *r — iw,t) withm = 1,2, 3 (Fig.

14.4a). The output field, E,(w,) = &exp(ik, -r — ju ) with o, = w, + @y +
w;, is governed by the wave equation

w? 4w’ -
vi+ c—;s(u,) E = - —C;’Pf”{w,) (14.5)

where PP} = x™(w, = @y + oy + w;) 1 E(w))E(w;)E(w;). The solution of
(14.5) follows that described in Chapter 6. With the usual slowly varying
amplitude approximation, negligible pump depletion, and the simplifying
boundary condition, it yields

27l Ak
‘ xfj‘,}(,ﬁ’u&’ué’,,{] — iy (14.6)
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Fig. 144 Three different types of four-wave mixing discussed in Section 14.2.
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where
AK = AR + iAk” = (k[ + K + K5 — K)oy + oo T o T a,),

_are the attenuation coefficients of

Ak’ is the wavevector mismatch, and the a,,
the waves along 2.

As is common for optical mixing, phase matching (&k = 0} is of prime
importance here, since it greatly enhances the signal output. In four-wave
mixing, phase matching can be achieved in an infinite number of ways by
properly adjusting the directions of propagation of the three pomp Wwaves.
Which arrangement is preferred often depends on practical considerations,
such as optimum beam overlapping length and better spatial discrimination
against scatiering background.

Output Field in the Same Mode as One of the Input Fields

In this case, we take By = Es; (Fig. 14.4b). The input field E,; should then
experience gain or loss induced by the nonlincar wave interaction. Since
@, = wy and k, = ky in (14.5), we must have w, = — o, and Ak = k (e} +
k,(ex). With negligible depletion of E, and E,, the solution becomes

£,(z) = J;;(U)“P[&(Z) -a,z],

2
21wy

_ (14.7)
&)= Rk ke

Xﬁlfgljé.u(l — gl

The real part of g{z) represents a gain. For the special case of Eyj(w) =
E}{w,) and Ak” = 0, we find

kul

2w}
Re[g‘.(z)] = P lm[xﬁbl!gulzzy (]4-8)
which can be compared with the result of Raman gain discussed in Section
10.3.

Backward Parametric Amplification and Oscillation

This is a special case of four-wave mixing in which two strong waves act as the
pump fields and two counterpropagating weak waves get amplified (Fig-
14.4¢). It resembles the parametsic amplification case of Section 9.6, except
that twa pump fields instead of one are used here. The two weak waves are the
signal and idler waves, tespectively, The solution then is essentially the same as
that described in Section 9.6. Assuming perfect phase maiching, which can be
achieved easily in this case, and negligible pump depletion, we find, following
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the detivation in Section 9.6, for the signal and idler fields, E; and E,
propagating along F 5, respectively,

2 ;
&(z=0)= ff,(!)/cos%gl + 1%(%) &‘(O)lan%,

= (14.9)
v oyl Bl | g &!
&z =0) Gl &(I)an™y + &0} /055
where
2 2.2
(8] - (5 e
2 Kk (14.10)
g » )] -
K="58x (= —e o Hoidg} 1 88483,
<

and E, and E, are the pump fields. As gof approaches 7, both &,(0) and &,(/)
diverge according to (14.9). This indicates the onset of oscillation, which yields
an gutput even in the absence of any input, &,(1} = &0y =0

In the case of sufficiently weak pump fields, gof <= 1, and &(2} = &£,(0), the
signal cutput should reduce to the expression for an ordinary four-wave mixing
process with three pump fields.

143 DEGENERATE FOUR-WAVE MIXING

We now consider a special case of four-wave mixing in which all the four
waves have the same frequency. The third-order nonlinear polarization govern-
ing the process has, in general, three components with different waveyectors:

PO (w) = Pk + & — Ky w)+ PPk — Ktk @) (1411)
FRO{ -k, + K+ K, 0)
where
POk, + kj — ks w)=x%(w) CE, (b JE (g JEXK ),
PO, — ki + K, w) = (@) Ey (kBT (R E ().
POk, + ki + X w)=x"(«) Ef(ky)F (K] )E (k. }-
E,k,), Exk: and E,(k;) are the three input fields, and alt x®(w) in the

above equations are the same under the electric dipole approximation. We note
that in this case X () has at least a singly resenant term arising from the
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two-photon zero-frequency resonance, ic., a term with (w — @ + i/17) in the
denominator. It may also have a (wo-photon resonant term if @ + w is in
resonance with a transition of the medium, Finally, ¥ can be triply resonant
if w is near a resonance. Because of the strong resonant enhancement, X for
degenerate four-wave mixing can be very large in some media. As a result, such
a third-order process is even observable with CW laser beams.

The output of degenerate four-wave mixing can be calculated using the
theory in Section 14.2, but it can also be easily understood from the following
physical picture. Two of the three input waves interfere and form cither a static
grating or a moving grating with an oscillation frequency 2«; the third input
wave is scattered by the grating to yield the output wave. In many cases where
2w is away from resonance, the contribution from the static gratings should
dominate. With three input waves, three different static gratings are formed.
The grating formed by the k; and k, waves scatters the ki wave to yield
outputs at k, = ki + (k; — k;). The one formed by the k| and k, waves
scatters the k, wave to yield the outputs at k, =k; £ (kj — k,}. The one
formed by the k, and ki waves scatters the k, wave to vield the outputs at
k, = k; + (k; — k{). They are illustrated in Fig. 14.5 for the special case of
ki = —k,. Altogether, three output waves with different wavevectors, k, = k;
+k{ —k;, k; — k] +k;, and —k, + k] + k,, are expected. However, we
realize that since [k,|, in general, is not equal to we'/? /¢, the generation of the
three output waves may not be all phase matched. Consider, for example, the
case with kj = —k,. The output waves are expected to have k, = —k; and
k, + 2k,. While the generation of the output at k, = —k, is always phase
matched, that of the other two is not. Thus usually only the output at
k, = -k, needs 1o be considered. It is interesting to see the connection
between this case and holography. In both cases, the output wave (k, ), arising
from scautering of one of the pump waves (k, or ki) off the interferogram
formed by the object wave (k,) and the other pump wave (k| or k,), retraces
back the path of the object wave (k, = —k,). Now that an object can be
represented by a group of k, waves, we see that an image of the object can be
reconstructed by the corresponding output waves.

In an isotropic medium, if we require the output of degenerate four-wave
mixing net to be in the same mode as one of the pump waves, then for
phase-matched output we must have ki = —k, and k, = —k,. The effective
nonlinear polarization can be written, from symmetry consideration, as

POk, = —k;, ) = x*{w) : E (k JE{{ — K JEF (k)
= A(E,Ef)E{ + B(E{-E} )E, + C(E,-E{JEf
(14.12)
where 4, B, and C all depend on the angle # between E; and E,, and

B(8) = A(w — ). The brackets (E, -E#) and (E-E*) in the 4 and B terms
in (14.12) describe the static gratings formed by the wave interference, while
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K, = kj— 2,

(b (e}

Fig. 145 Degenerate four-wave mixing resulting from scattering of an incident wave
by the static grating formed by the other two incident waves: (@} grating formed by the
k, and k, waves, { b} grating formed by the kj and k, waves, and {¢) grating formed by
the k, and k{ waves.

(E, * E{) in the C term is a moving grating with an osciliation frequency Zw. By
properly arranging the polarizations of the three incoming waves, it is possible
10 have only one panicular term in (14.12) nonvanishing. The output is
polarized along P®. Being in the backward direction with respect 1o the
incoming k, wave, it can be described by the solution of {14. 9).” We then notice
that with &,(1) = 0, the output field £,(0) has a magnitude proportional to that
of the input field &,(0), and a phase complex conjugate 1o that of &,(0).

144 PHASE CONJUGATION BY FOUR-WAVE MIXING

Phase conjugation® i defined as the process in which the phase of the output
wave is complex conjugate to the phase of an input wave. In other words, the
process reverses the phase of the input. This happens, for example, in
difference-frequency generation, parametric amplification, and four-wave mix-
ing. If the phase-conjugated output propagates in the backward direction with
respect 1o the corresponding input wave, then it can be used to correct
abberation due to phase distortion experienced by the input wave. As il-
lustrated in Fig. 14.6, the input beam in passing through a medium suffers a
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Fig. 14.6 Sketches showing how the wavefront of a beam changes in passing through a
distorting medium back and fourth: {o) an ordinary mirror is used, and (&) a
phase-conjugate mirror is used to reflect the beam.

Fig. 14.7 Photographs showing correction of aberration: {(a) an unperiurbed laser
beam, (&) the same laser beam after passing through an etched glass plate, and (c) the
same beam after a phase-conjugate reflection and a second pass through the etched
plate. (After Ref. 9.)
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wavefront distortion. Unlike an ordinary mirror, the phase-conjugate mirror
reverses the wavefront distertion of the input beam upon reflection. Then, as
the phase-conjugated wave reflects back through the medium again, the wave-
front distortion is completely removed (as long as diffraction is negligible). An
example is seen in Fig. 14.7,

In the previous section, we saw that the output of degenerate four-wave
mixing is a reflected phase-conjugate wave with 1espect to one of the input
waves [£,(0) & &*{0)]. Thus a nonlinear medium for degenerate four-wave
mixing can be used as a phase-conjugate mirror.’ According to (14.9) with
#,(1) = 0, the phase-conjugated output |&,(0)|* can even be more intense than
the input |&€0)]* if g,//2 > m/4, and the amplifications approaches the
oscillation limit as gol/2 — /2,

(a} | Conjugator Amplifier .

{lluminaticn Muyminator

Reflection and ampiifigation '

(b | Conjugator pe— Amplifier []
Conjugation

{ec) | Conjugator —  Amplifier / O

{d) | Conjugater Amplifier r

Correction of amplified wave

Fig. 14.8 Wavefront reconstruction applied to laser fusion. The sequence of events is
{a) illomination of the target with a probe beam, () reflection and amplification
resulting in a distorted wave, (c} phase conjugation, and {4) a second pass threugh the
distorting amplifying medium, producing a correct focusing of the beam on the target.
{After Ref. 9)
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There are many interesting and potentially important applications of phase
conjugation based on its ability to remove wavefront distortion.® One is for
correction of distorted images. As an example, consider the amplification of a
laser beam in an amplifier. The beam quality may be seriously deteriorated
after the beam traverses the amplifying medium, If, however, a phase-con-
jugate mirror is used to send the bearn back through the amplifier once again,
then the amplifier output can have its input beam quality restored. This allows
the construction of high-power laser systems with beam guality comparable to
that of a single-mode oscillator. One can also have a laser oscillator with one of
its mirrors replaced by a phase-conjugate mirror, which tends 1o help in
establishing a better beam quality, improve the mode stability, and possibly
provide additional gain 10 the oscillator. In Jaser fusion work, beam focusing
on the target may be impaired by wavefront distortion of the beam in its
propagation from the laser to the target. This can be remedied by the scheme
of Fig. 14.8. The target is first illuminated; the wave radiated from the target is
then amplified by the amplifier, reflected by a phase-conjugate mirror, amplified
again, and finally autcmatically focused onto the target with no net distortion
of its wavefront. The scheme can actually be used on any farget, not necessary
in laser fusion work. In principle, it can also be applied to a moving target at a
distance as the beam automatically tracks the target. This may have great
potential in military applications. With sufficient gain in the amplifier, it is
even possible to have laser oscillation with the target and the phase-conjugate
mirror forming the cavity, so that no external illumiration on the target is
NECESSAry.

Phase conjugation can also be obtained from stimulated scattering of a
highly multimode pump beam.'” In this case, the output is phase conjugated to
the input pump field. This has been observed experimentally, Theoreticaily,
however, it is shown that only approximate phase conjugation can be achieved,
but the approximation becomes better when the number of pump modes
increases.!! A better physical understanding of the effect is still needed.

14.5 TUNABLE INFRARED AND ULTRAVIOLET
GENERATION?

Four-wave mixing can be used to extend the frequency range of coherent
radiation to infrared and ultraviolet. The process is again governed by the
general theory of optical mixing. Ft is the third-order susceptibility x™¥(w, =
w, + w, + w;) that determines how efficient the frequency conversion process
can be with given pump intensities. As shown in Section 7.4, ¥ for third
harmonic generation can be greatly enhanced by resonances, In alkali vapor,
for example, it increases from less than 107* esu/atom to ~ 107 esu/atom
near a single resonance. Now, in four-wave mixing, w,, w,, w; are not
necessarily equal; it is even possible 1o have x™ doubly or triply resonant. A
few examples are schematically shown in Fig, 14.9 using potassium vaper as
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Fig. 149 Energy level diagram of a potassium atom and schematics for a number of
resorant third-order optical mixing processes: {a} third-harmonic generation, (5) sum
frequency generation with w, w, + w,, and w, + w, + w; near resonances, (¢) in-
frared generation with w, and w, — w, near resonances, and (@) infrared generation
with w; and w; + w, near resonances.

the nonlinear medium. As one would expect, % '* doubly or triply resonant can
be orders of magnitude larger than that of the singly resonant case. We use
here the process of Fig. 14.9¢ for illustration.

Let us assume that in Fig. 14.9¢, @, is near the 45 — 5p resonance, w) — w;
is exactly on the 4s — 5s resonance, and w, is not too far from the 45 — 4p
resonance. The dominating resonant term of x ™ in this case is

() = (55| S 00 )55 it
A.rp = [(wl TV JTSF)(QI — oy — Wi, F 1'1-'5,) (14.13)

x("’: - “’4;--4;)] )

where I, sums over the ﬁnc structures in the 5 and p levels. With o) — w5, _ 4,
=50 cm’” LT, =01 em ™, and wy — @y, = 5000 cm ™', we fnd xV=6
x 107 esu/awm 2 For an atomic density of 10" aloms/cm“ the value of
x® = 6 x 107'® esu is already larger than the nonresonant x™ of a typical
condensed matter, We notice that since w, is still far away from resonance, x*
does not vary appreciably with w,. This, together with the large value of 3™,
means that efficient generation of tunable owiput over a broad range of
infrared frequency w, = w, — w, — wy is possible as long as collinear phase
maltching can be achieved. If @5 is tuned toward the 45 — 4p resonance, then
x® is further enhanced. For w, — w,,_,, = 50 om ™", we have x = 6 x 1077
esu/atom.
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Collinear phase matching is essential for high conversion efficiency. In the
above infrared generation, it may be achievable using anomalous dispersien of
the alkali vapor. The collinear phase matching relation &, =k, + ky + k, for
the process of Fig. 14.5¢ can be written in the form

WM, = Wyl ugRy T @7, (14.14}

Since both w, and «, are very far from resonances involving the ground level,
the normally dispersive refractive indices n; and n, do not vary appreciably
with w; and «,. For a prescribed cutput frequency ,, the frequency w; i fixed
from the relation e, _g, = Wy + @, = @ — @y, and hence both n, and n; are
fixed, Now that n, has an anomalous dispersion while 1, is nearly independent
of @, it is possible to satisfy (14.14) by adjusting o and o, properly. For
smaller w,, we must have w, closer to @, 4, 10 achieve phase matching. This
unfertunately increases the absorption of the pump field at w, and decreases
drastically the efficiency of infrared generation. The problem may be alleviated
by mixing foreign gas into the vapor, for example, sodium in potassium, and
utilizing the additional dispersion in the refractive index provided by the
foreign gas.'?

Tunable infrared generation using the process of Fig. 14.9¢ was actually
demeonstrated by Sorokin et al.’>"* In their experiment, only two pump beams,
at @, and «;, were used, while the w, beam was automatically generated in the
cell by stimulated Raman scattering of the w, beam. With peak powers of 1
KW at w, and 10 kW at w, and an active length of 30 ¢m in potassium vapor,
they observed a lunable infrared output from 2 io 25 pm having peak powers
of 100 mW at 2 pm and 0.1 mW at 25 pm. Exlension 1o a broader tuning
range may be possible. The theoretical analysis of this experiment is not yet
complete, Strictly speaking, it is & four-wave parametric amplification process
with waves at w, and w; being the signal and idler waves. The calculation
should be a straightforward extension of that given in Chapter 9, including &
Raman resonant transition.

As a variation of the process, the Raman transition w; — ; = ws,_g, C21
be replaced by a two-photon transition o, + @y = Ws,_4, THE PrOCEss should
be at least equally efficient if w, is also near the w,,_4, [6500a0CE, 25 in Fig.
14.94. Then, for infrared generation, w; can be either larger or smaller than
ws,_ 4, in both Fig, 14.9¢ and Fig. 14.9d. A reverse four-wave mixing process is,
of course, also possible, Thus, by using w,, w;, and w, 25 pump frequencies in
Fig. 14.9d, the w, wave is generated. The process can therefore be used to
consteuct an infrared-to-visible converter.*

With laser powers much higher than 10 kW, the conversion efficiency of
infrared generation by four-wave mixing can, in principle, be high. It may,
however, be limited by other simultaneously occurring nonlinear effects, such
as self-focusing, saturation, and iopization. A thorough study of how the
conversion efficiency can be improved has not yet been reported.
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Four-wave mixing can also be used to generate tunable ultraviolet
radiation.”™ Tn comparison with third-harmenic generation, the four-wave
mixing process has the advantage that x"{w, = @, + w; + ;) can be greatly
enhanced through multiple resonances. An example appears in Fig. 14.95.
Alkali vapor, however, is not very good for vacuum uv generation because ils
ionization energy is too low and there is no discrete state in the ionization
continuum to resonantly enhance x™ at the uv output frequency. Alkali earth
vapor appears to be much better, The process of Fig. 14.10 is used in St vapor
for an example. The pump frequencies w, and w, are adjusted so that «, is
near the (55)% — (55)}5p) resonance and @, + @, is on the (35)® — (5p)?
resonance. The other pump frequency ¢, is near the (5p)? —= (6s)(6p) reso-
nance, and can be tuned to yield tunable uv output at w, = w; + @, + w;.
Note that (65)(6p) is a discrete auteionization state in the ionization con-
tinuum, Because of the multiple resonances, x**(w, ) can be greatly enhanced.

(Bs} (5p)

lenization iimit

VI7777774 L L
0000 — T (5P
15s] {75) {51 (6p)
T | (55 (6s) |
E
i
S
(55) 15p)
20,000 [— —]
o

(Bs)?

Fig. 14.10 Energy level diagram of Sr with arrows showing a resonant four-wave
mixing process for tunable uv generation at 2w, + w;.
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To avoid strong attenuation of the pump beams, the pump frequencies should
be sufficiently far away from resonant absorption. Then, with phase matching,
the conversion efficiency for uv generation can be significant.

Molecular gases, such as CO and NO, also can be used as effective media
for tunable uv generation by four-wave mixing.’® Their resonantly enhanced
nonlinear susceptibilities are lower in comparison with those of metal vapors
because of the weaker resonances, but the gases are much easier 1o handle. The
medivm can be in the form of a melecular beam, which, for vacuum uv
spectroscopy, has the advantage of requiring no window between the uv source
and the sample in the vacuum.'”

Phase matching for uv generation can be achieved by using the anomalous
dispersion of the refractive index as in the case of infrared generation. It can
also be achieved by mixing of foreign gas inlo the vapor. In the actual
experiment of Hodgson et al. on Sr,'* only two pump beams were used with
@, = &, and 2w, was tuned to the resonant transition from (55)? 1o an
even-parity excited state, By varying o, to have the resonant enhancement of
various autolonization states successively coming into play, the uv output was
observed to have a tuning range from 1578 to 1957 A. By using Mg, Hg, and
Zn, the tnable uv generation can be extended to the 1060 A region.'® With
optimal focusing of ~ 1 MW pump beams into a metal vapor of ~ 10 torr,
conversion efficiency of ~ 1% is possible but is limited by the usual detrimen-
tal effects—self-focusing, saturation, ionization, and so on.

In principle, one can also use condensed matter as the nonlinear medium
for efficient infrarcd and ultraviolet generation by four-wave mixing. In
practice, however, a condensed matter is often strongly absorbing in the uv
beiow 2000 A, and has rather broad absorption bands in the visible and
infrared. Therefore, the output cannot be in the vacuum wv or in any of the
absorption bands. If all the four frequencies should stay out of the absorption
region, then the resonant enhancement may not be strong enough to make x*
larger than the multiply resonant x® of a metal vapor at ~ 10 torr.

To conclude this section, consider an interesting application of four-wave
mixing to time-resolved infrared spectroscopy.’® Figure 14.11 is the schematic
of the experimental arrangement. A pulsed broadband infrared beam (why)is
first generated by a stimulated electronic Raman process in a metal vapor cell
using & pulsed broadband dye laser. This infrared beam, in passing through a
sample, carries the spectral information of the sample absorption. Tt then
interacts with a narrow-band faser beam («,) in a second metal vapor cell. The
latter generates a narrow-band Stokes beam (w,) in the cell, and through
four-wave mixing («Z, = w, ~ @, + &g}, up-converts wfy to a broadband
visible output wf,, which can be recorded on a spectrograph. With this
technique, the infrared absorption spectrum of the sample is displayed as a
corresponding visible spectrum, and hence the detection sensitivity is greatly
improved. Moreover, since nanosecond or picosecond laser pulses can be used,
the technique has a time-resolving capability in the nanosecond or picosecond
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Fig. 1411 Schematic of an experimental arrangement using four-wave mixing for
time-resolved infrared spectroscopy.

regime. It may therefore find important applications in studies of chemical
reactions and radical spectra.

146 TRANSIENT FOUR-WAVE MIXING

We have thus far considered four-wave mixing only in the steady state. With
pulsed resonant excitation, however, transient effect in four-wave mixing may
become importani. As in the steady-state case, transient four-wave mixing is
also governed by the third-order polarization P, The only difference is that
P is now a time-varying function of excitation and relaxation of the medium.
Here we discuss the derivation of P, leaving the actual solution of the wave
equation with P as the driving source to Chapter 21
Using the density matrix formalism of Section 2.1, we can write

P® = Tr( - Nerp™), (14.15)

Then, to find P, it is necessary only to find the density matrix p®. We adopt
here again the diagrammatic technique of Yee and Gustafson® for the deriva-
tion of o). The notation here follows Section 2.3, Consider the general case
where three successive fields, &;(w,, 1}expli(k, *1 — w;1)], &(w,, tdexp[itk, T
— wyt )], and &,(w;, t)expli(k, -r — wyr)] interact with 2 material system at f,
15, and #; with ¢ < #; < ¢;. In this given time order, p™(w = w, + w, + w,, 1)
has eight terms derived from the eight diagrams in Fig. 14.12. In comparison,
p®(w) for the steady-state case has 48 terms from 48 diagrams as mentioned
in Section 2.3. The rules for deriving an expression from a diagram are the
same as those given in Section 2.3 expect that the propagation from one vertex
at t, to the next at ¢, is now represented by the phase factor

((ablA(t, = 1;}ab)) = e~ 1kt {14.16)
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where |2} is the ket state on the left between ¢, and r, and {#| is the bra state on
the right, and v,, is the damping constant, The final expression has integration
over all possible time separations between vertices and summation over ali
possible initial, intermediate, and final states.

Two terms of p™(r) corresponding to the diagrams with Figs. 14.12a and
14.126 are used here as examples.® From Fig 14.12a, we have, with the
interaction Hamiltonian given by /(@) = —P cF(w)E TN,

{P(E)(f)](a) == . ?‘_,p J{ffmdﬁj_umd‘rgf_owd,ra(_:_kl_r

X eﬂ:u,,+¢‘,)73‘(iwp,+¢’,)12—{lmpm+¢Pm)r,

A (1417)

(P8, - 1= 7= )Ty
x(""IP"V’z(f — 1y = )it

X (rlp &yt = Ta)E"‘"”'“‘“"”IS)(IP)P?MM)}

With the substitution of variables §, = f— 7 — 72 — T g, =t—m— 7 and
£, =t — 7, this equation becomes

[y = v {eﬂm,,w.s)z(%ﬁ}l(lwp?m(si)

m,rp.s

X plp+ &im){mip - &l ) (rp-&ls)
{14.18)
xf’ deae[[m,ﬁw,,)—(imww,,)—fW;IG;gB{gs)eikrr
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Similarly, we find, from Fig. 14.125,

3
[0l =— T || ) (ot

m.r.p.s
X(plp - &lryrip - &ilm)y{mip - &ls)
% f! dfge [‘:""’;1*"'7"4"""*"*’-)"“’1]536} (EJ ) e
-
% fﬁ) dEEe[(m,,,,-v--p_,..)—(:'m,,,+om)—.,.,z]ezgz(fl)eikz,,
a1

xffz ds]e[(.‘u,n+¢,_,)—m1]eléwl(£1)eikl.r}_ (14_19)
-

The full expression of p™(¢) is the sum of all eight terms derived from the
cight diagrams in Fig. 14,12, In an actual case of transient four-wave mixing,
however, resonant or near-resonant excitations are involved, and terms in &
which are nonresonant can often be neglected. The effective number of terms
of p then is greatly reduced.

As in the steady-state case, transient four-wave mixing yields a coherent
output. It belongs to the category of coherent transient optical effects, which
will be discussed in more detail in Chapter 21. Here we consider only some
general characteristics of transient four-wave mixing.?* First, as is explicitly
shown in (14.18) and (14.19), the nonlinear polarization P® « Y has a
wavevector k, = k, + k; + k;. For the mixing process to be efficient, the
phase-matching condition should be satisfied, that is, k(w) = [w/e(@) selk =
k,. This is the same as in the steady-state case, as one would expect. Second,
the transient behavior of p@(r) arises from resonant or near-resonant excita-
tion of the medium and is governed by the time-dependent phase factors in
™. For illustration, we discuss the case of a molecular gas excited by three
resonant pulses.

In a gas, molecules with different velocities should interact with different
fields at different times. Let r(f) be the position of a molecule at time 7 moving
with a velocity v. The field seen by the molecule at an earlier time £ 18

&8 )enplik,  1(§) — fwd,] at i(§,). Sinee 1(§,) = 1(r) — (t — §)v, we have
&(&)expl ik, r(£)] = &(§)explik, 1) — ik, ¥{e - £)]. (14.20)

As a result, p®(r) for the molecules is a function of v. For example, from
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(14.18) we find
. 1y
T I i e A (PR RE Rt
m,rp.s
X{ plp+ &ylm){mip+ &,lr ) {rlp=&ls)
% f‘ dfeliton et g (£} (14.21)
—oa
th dEleli(””'_"")+¢”‘°’"+'-kz'ﬂezlgz(fz)
o

x fiz d&]b’['(""""7”‘””"“""“"‘“'51(El]}‘
—oa

The overall p*® for the gas system is then given by an average of oM (v, £) over
the velocity distribution n(¥):

2N(1) = f_m r(v)p® (v, t)dv. (14.22)

Equation (14.21) shows explicitly that p™® has a wavevector k, = k, +k; + Ky
The- traasient behavior of p(¥, ) as governed by the time-dependent phase
factor is now also a function of v, Tf we assume that the exciting pulses are
resonant with ey = @yp 93 = Wy, and w; = «,,, and the pulses are short

compared to the relaxation time |‘1>‘-j1‘1 and the velocity dephasing time
[, - ¥|~", then (14.21) reduces to

143 .
{Pm(", !)](n) = (—;ﬁ) !P><Sle‘lu,rl+lk1 v
x e v ikstt—fa) ¥ k(- E) s HEYl
@~ Prili=30)~ 85, —E )~ #pnlin =) (14.23}

X plp- &glmy(mip - &yl 37 &yls)
3 3 £
[ atsa () [° dey(8) [ a5 o
where £, is the time when the center of the ith pulse arrives at 7(7). It is seen
that the only phase factor in p®(v, r) depending on v is

e = gt £ ol —Em) el bal], (14.24)

If #(v) = 0 for all v, then molecules with different v will radiate in phase, and
the transient four-wave mixing output will be a maximum. This happens at
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t = ¢, provided 7, = £, where
t, =k, [k + ko + kafsl /K (14.25)

This result shows that the coherent output from transient four-wave mixing is
expected to last only for a short duration during which (v} is small for all v.
This is generally true for all coherent transient effects. The other factors in
(14.23) determine the intensity of the four-wave mixing output, with
expl— . (1 — €50} ~ Pprlf30 — §20) — G0 — £10)] describing the decay of
molecule excitation due to random perturbation, and hence the decay of the
coherent output signal. We do not dwell on the details of transient four-wave
mixing here but postpone the discussion to Chapier 21 in conjunction with
other coherent transient optical effects.
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Four-Wave Mixing
Spectroscopy

Four-wave mixing with resonant excitations can be a versatile spectroscopic
technique." 2 It has already found important applications in many areas, such
as analytical chernistry, combustion, and material studics. Its advantages over
other techniques are in the capabilities for high resolution, for elimination of
strong fluorescence background, and for time-resolving measurements of ultra-
fast dynamic properties. In this chapter we discuss four-wave mixing spectros-
copy in its various forms. Note that most of the high-resolution nonlinear
spectroscopic techniques discussed in Chapter 13 can be regarded as four-wave
mixing spectroscopy when the nonlinearity is limited to the third order.

151 GENERAL DESCRIFTION

As shown in Chapter 14, the signal in a four-wave mixing process is directly
related to the third-order nonlinear susceptibility x®, which exhibits reso-
nances characteristic of the nonlinear mediwm. Therefore, from x™ as a
function of pump frequencies, one can obtain speciroscopic information about
the medium.

The expressions of x™(w = @, + w; + ;) at the beginning of Section 14.1
show that it can have single, double, or triple resonances. Singly resonant
four-wave mixing has the merit of a relatively simple experimental arrange-
ment since only one pump frequency needs to be tuned. The corresponding
theoretical analysis is also straightforward. The process can yield information
one normally obtains from ordinary one-photon or two-photon transition
measurements. Doubly and triply resonant four-wave mixing may require more
than one tunable pump frequency and hence a more complicated experimental
set-up. It can, however, give more selective spectroscopic information about
the medium. Doppler-free spectra, for instance, can be obtained with double or

16
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tripke resonances. The high-resolution nonkinear spectroscopic techniques dis-
cussed in Chapter 13 are good examples.

The two general types of four-wave mixing progesses discussed in Section
14.2 can lead to two different kinds of four-wave mixing spectroscopic tech-
niques. In the first case, the output is in a mode different from the input
modes. The signal is proportional to {x®|® and can be selectively detected
through filtering against the transmitted pump beams. The technique is most
comumonly used in singly resonant cases where the analysis is relatively simple.
In the second case, the output is in the same mode as one of the input waves.
The signal appears in the form of gain oz loss of that particular input wave and
is proportional to Im(x®) (see Section 14.2, “ Output Field in the Same Mode
as One of the Input Fields™). This then allows a simple interpretation of the
observed spectrum,

In the following sections, we discuss the few well-known four-wave mixing
spectroscopic methods in detail. While in most cases we consider @, — w, near
resonance (the Raman case), keep in mind that the same description applies 1¢
cases with w, + w, near resonance.

152 COHERENT RAMAN SCATTERING SPECTROSCOPY
Coherent Anti-Stokes Raman Scattering (CARS)

As shown schematically in Fig. 15.1, CARS refers to the Raman scattering
process in which the material excitational wave at w; — w; = @, is first
coherently excited by the beating of two incoming waves at w, and «, and then
mixed with the wave at w, to yield a coherent output at the anti-Stokes
frequency «, = 2w, — . It is therefore a coherent version of the spontaneous
Raman scattering process. Because of its numerous important applications,
CARS is perhaps the best known four-wave mixing spectroscopic method. A
large number of review articles already exist on the subject.? The theory of
CARS is simple, as it follows the general theory of optical mixing discussed
earlier in Chapters 6 and 14, With the input pump beams at @, and w,, the
output field is governed by the wave equation (assuming an isotropic medium)

w? dqa’
[vz + qu(wa)]l?a = - —cz—"Pm(mu) (15.1)

where PP(w,) = x™Nw, = w, + 1, — w;): Ey(w,)E, (&, JE${¢s,). The solu-
tion of {15.1) with negligible pump depletion and damping gives an output
intensity I, {from a slab medium of length /.

2wl
ce,

ind Ak,
I, = 5B = T QP B = (15.2)
(48k,4)
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Fig. 15.1 Schematic diagrams describing the CARS process.

where

Ak = k, —(2k; — k).

We note that the anti-Stokes output is proportiomal to |x3){%. If the
frequency scan is limited to a sufficiently narrow range, the variation of I,
versus the pump frequencies is entirely dominated by the resonant dispersion
of x%. As discussed in Section 14.1, x7 can be decomposed into a resonant
part xi and a nonresonant part xk. Here, x§ is singly resonant at
W — @y = W, and can be written in the form

£ . S
xk {w — @y —w,) +il {153)

where, from (14.2), a = —N(M;.g)’(M;,!)(px - px.)/h is essentially indepen-

dent of w, and v, as w, — w, scans over the Raman resonance. Therefore, the
anti-Stokes output has a specirum given by

a(e;
Ix&h* = [x‘é’n +

- W@y — w,) ]2+ a'T?
(@ =w—w) +T?] (o

w —c-Jz-'c‘..:l,)lJrI'2

(15.4)

Figure 15.2 is an example. Because of the presence of the nenresonant part
i in x2, the spectrum appears asymmetric with respect 1o the resonant

as?

point w, ~ w, = w,, and has a peak and a dip at

Z 1/2
(ml—wz)i=mu+%{—ﬁi[(x+§£) +4r2} } (15.5)
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Fig. 152 A CARS spectral line around the 1088-cm ™' resonance in calcite. [After
M. D. Levenson, JEEE J. Quant. Electron. QE-10, 110 (1974).]

We find

a
(- @), {0 — @)= 24, e
XER

(15.6)

[ = ), ~ (o — ) | = (m) 4 are,

Measuremnents of (w; — w,}, together with the output intensities at {w; — w,)
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can in principle desermine all the four quantitics «,, T, 4, and x k. {n practice,
however, the accuracy of intensity measurements is usually peor but that of
frequency measurements can be very good. Then, we note from (15.6) that if w,
or T s known from other measurements, a/x}{7 can be obtained simply from
the frequency measurement of (@, — w,}, +(w, — w;).. If a is also known
from spontaneous Raman scattering, then X4k can be deduced very accurately.?
This contrasts with the inaccurate determination of x%&} by the intensity
measurements.

Although (@, — w,), alone cannot determine the resonant frequency e,
they do give an approximate value for w,, and therefore can be used to
characterize the resonant medium, In many cases the Raman resonance is
strong, while the nonresonant background x {3 is weak, so that la/xjgk| = T
This often occurs, for example, in pure gas media, where, one finds (w, —
@)= @, and (@ — w,)_= @, — a/x§h- The resonant frequency , can be
directly obtained from the peak position of the CARS spectrum. In other cases
where |2/x{%| < T, both the peak and the dip of the spectrum appear around
w, within a range of the order of T'. However, if |x%%] is much larger than a/T,
then the peak and dip will not be prominent in the spectrum. This is clearly a
drawback of CARS as a spectroscopic technique because weak Raman reso-
nances are not easily observable. The semsitivity of CARS can be greatly
improved if the nonresonant background due to x{%; can be suppressed. As we
shall see later, ihis can be done by selectively detecting the proper polarization
component of the output.

Maker and Terhune* first demonstrated the CARS process. Later, Wynne,®
Bloembergen and his associates,® and Akhmanov et al.” used the method for
spectroscopic studies in a large number of liquids and solids. A typical
experimental arrangement is presented in Fig. 15.3. Dye lasers pumped by
either a nitrogen laser of a frequency-doubled Nd: YAG laser are often used
as tunable pump sources. The signal strength can be estimated from (15.2).
Assome |x ), = l6/T] > xZk| and perfect phase matching Ak = 0. Then, if
input beams of 10 kW peak power at — 5000 A are focused 1o a spot of 107°
cm?® into 2 medium 1 mm long with |x§| e = 1072 esw, we find that the
output can have a peak pawer of 5 W. If the medium is 2 cm long with
(%8 e = 1072 esu, the output can still have a peak power of 2 mW, which is
readily detectable. The last example actually corresponds 1o the case of CARS
in a gas medium at nearly the atmospheric pressure. In fact, while initial CARS
work was on condensed matter, the more recent applications of CARS to
material studies have been on gases. Even CARS from molecules in molecular
beams has been observed.®

Because the spectral resolution of CARS is basically limited by the laser
linewidths, it can be used to obtain high-resolution Raman spectra of gases."
Conventional Raman scattering, in comparison, suffers not only poor spectral
resolution limited by the spectrometer but also low signal intensity. The high
sensitivity of CARS allows the method 1o be used for detecting trace molecules
in gases. In particular, it has found applications in combustion studies as a
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Fig. 153 A CARS spectroscopy system. Laser beam 1 () and laser beam 2 (-~ )
are blocked after the samples, and the output duc to frequency mixing 1s collected into
the double monechromators. The signal from the reference arm and the ratioing system
are used for normalization in order 1o reduce the effect from laser Auctuations. [After
M. D. Levenson, JEEE J. Quant. Electron. QE-10, 110 (1974).]

means to monitor the temporal and spatial distributions of various species and
to find the internal energy distribution of the species.'® Because the output is
coherent and highly directional, temporal, spatial, and spectral filtering can be
used to suppress the strong luminescence background from the combustion
process, In fact, its ability to discriminate against luminescence makes coherent
Raman spectroscopy in general a unique technique for combustion studies.
Similarly, CARS can be used 10 probe the reaction products and their internal
energy distribution from a chemical reaction, and to obtain Raman spectra of
fluorescent materials, That CARS is capable of probing materials in an
enclosed, hostie environment with good space and time resolution has
prompted the suggestion of using CARS to study high-temperature plasmas!!
and to monitor target implosion in laser fusion.'

Although the foregoing discussion is focused on Raman resonances, the
theoretical treatment applies equally well to two-photon resonances with
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@, + wy = ay, OF 2y = g, O 2 = wo. The coherent output is al cither
wy T Wy Or wy 0.

Polarization CARS

1t is easy to see from (15.4) that if |xE|may = la/T] = x4k, the resonant
structure sitting on the nonresonant background in the CARS spectrum will be
easily lost in the presence of background fluctuations. With an appropriate
polarization arrangement in the detection scheme, however, the nonresonant
background can be largeky suppressed, and hence the sensitivity of CARS is
greatly improved.'* 4 The basic principle of the polarization CARS is described
helow.

The solution of (15.1) shows that the output field E, is proportional 1o the
nonlinear polarization P&, ), which can be written as

PO = B + PP (15.7)

with P8 = x5y E\E\E3 and PP = x @ E,E,E2. If P& is in the direction
é,, then since PP and PS), are generally not in the same direction, the output
field has the form

E, = [,4"(¢, - B EEET) + 6,484, - X, E,E}) 155)

+é,4%e8, x:EEE}) '

where AM® and AR are coefficients, and é, is orthonormal to &, With an
analyzer in front of the detector to block out the &, component, the output
signal is then given by

1, « | 4%, x @ E EEX? {15.9)

which is propertional to only |2, X : 2,8,&|*. The nonresonant background
can in principle be completely suppressed. In practice, because the analyzer is
not perfect, a residual nonresonant background still shows up but is certainiy
greatly reduced from the original magnitude, For spectroscopic studies, one is
interested in the dispersion of x§' and not in the absolute value of x. Then,
with weak resonances such that (&,-x§: &,8,8; < |&,*xRh: 81818}, 1t is
most convenient 1o record the ratio |R|* of the &, and é, components of the
output, which is given by

AR, 4 88) [
AER(éﬂ-x%:éléléz) '

Note that |R|® is independent of the pump intensities, and therefore is litile

IR]2 = (15.10)
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affected by laser intensity fluctuations. Since the dispersion of x 3} is negligivle
in the resonant region, |R|? versus @, — w, essentially reproduces the spectrum
of X"

A possible experimental arrangement for this polarization CARS is sche-
matically shown in Fig. 154, The ¢, and £, components, corresponding to the
transmitted and rejected components from the analyzer, are simultaneously
. tecorded by the two photodetectors, and their ratio is taken by the divider, The

- polarization CARS spectrum of benzene in CCl, is shown in Fig. 15.5 as an
example.!* The same spectral line would hardly be visible in ordinary CARS
because of the enormous nonresonant background.

In some cases, one would like to obtain the spectra of Re(x ) and Im(x )
separately. This can be achieved with a simple modification of the polarization
arrangement in Fig. 15.4. If we rotate the analyzer by a small angle # from the
nuil point, then R is replaced by R, = tan# + R, and the ratio of the two
output components by

|R1i? = ftan# + R|”. (15.11)

Let us choose tan®@ >» |R{?, Then the output ratio can be approximated, with
R=R'+iR" by

IR, = tan’@ + 2R’tan . (15.12)

Since x{3; is generally real, R’ is directly proportional to Re(8,*x{': 8,8,6;)
The spectrum of |R,|* therefore yields the resomant spectrum of Re(é,+
%P: é,6,8,) on top of a constant background. The relative strength of the
resonant structure versus the background in this case is 2R"/1an #, which is
certainly much larger than that in ordinary CARS. In actual experiments, it is
more convenient to use a polarization rotator in front of the analyzer than to
rotate the analyzer. This is to avoid problems that may arise because of
sensitivity of the photodetection system to the variation of beam polarization.™

If, in addition, a quarter wave plate is also inserted before the polarization
rotator 10 change the relative phase of the &, component by +90°, then the

E¥L)

Plate m
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w

) 17
iz Meno- [7
“ chramator

Sample a2

Plote

Fig. 154 An experimental arrangement for polarization CARS. (After Ref. 15.)
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Stokes shift lem™"} {After Rel. 14.)

ratio of the two output compenents becomes

|R,|* = Jtan § + iR|?

(15.13)
= tan®# F 2R"tané,

which yields the resonant spectrum of Im(é, - x §' : & ¢,é,) on top of a constant
background. An example of |R,|? and |R,|* versus w; — w, is shown in Fig.
15.5 for 0.01 M benzene dissolved in CCl,1* The smali value of [x§ /x{% | due
to the small amount of benzene in this case would make the desection of the
Raman resonance of benzene very difficult with ordinary CARS. The technique
of measuring R’ and R” described here is essentially the same as the well-known
heterodyne technique. The uncrossed coherent background signal here plays
the role of the local oscillator.

We realize that even in detecting |R|?, the resopant spectrum is not
completely free of background because of the finite extinction coefficient of the
analyzer. Fluctuations of the background still limit the semsitivity of the
polarization CARS. Even though the background in the measurements of R’
and R~ is higher than that in the measurement of |R|%, a signal-to-noise ratio
analysis shows that the former can be orders of magnitude more sensitive.'
This is because heterodyning effectively increases the signal-to-background
ratio. The greatly improved sensitivity of the polarization CARS makes it
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particularly useful for probing trace molecules, as in combustion studies.'®

Other Coherent Raman Spectroscopic Techniques

As 4 variation of CARS, one can detect, with the same input pump beams, the
coherent output at the frequency 2w, — w,. This is known as coherent Stokes
Raman scattering (CSRS). The theory of CSRS is the same as CARS, except
that the values of x% and a are somewhat different because of dispersion. The
polarization arrangement can also be used to improve the sensitivity of CSRS.

Raman gain and inverse Raman speciroscopic techniques have already been
discussed in Section 10.6. They can be considered four-wave mixing processes
with the output in the same mode as one of the inputs. The gain or boss, which
is directly proportional to Imx§’, shows a resonant spectrum without the
nonresonant background. The techniques are particularly suitable for obiain-
ing high-resolution Raman spectra of gases. With sufficiently strong imput
laser intensitigs, the Raman iransition can even be saturated. Saturation
Raman spectroscopy, similar in principle to saturation spectroscopy discussed
in Section 13.3, can be used 10 obtain sub-Doppler Raman spectra.'”

Although the discussion in this section has been focused on Raman reso-
nances, the theoretical treatment applies equally well to general two-photon
resonances With @) + w; = wg, OF 24y = wy, OF 2w; = wy, where wy is the
resonant frequency. The coherent output can be detected at either [w) + wy| or
|5 £ @yl Interference may show up if the output exhibits Raman and two-
photon resonances at the same time.'®

153 RAMAN-INDUCED KERR EFFECT SPECTROSCOPY
(RIKES)

A gain or loss is always accompanied by 2 corresponding resonant birefrin-
gence. Thus for an induced Raman gain or loss, there should be a correspond-
ing induced birefringence seen by the probe beam. This is known as the
Raman-induced Kerr effect,'® where the Kerr effect is used indiscriminantly to
denote the field-induced birefringence phenomenon. (The optical Kerr effect is
discussed in more detail in Chapter 16.)

We consider here the same experimental geometry as in the Raman gain
spectroscopy with a pump beam at w; and a probe beam at w, both
propagating along z. The frequency «, — w, is scanned over the Rarman
resonance at o,. For simplicity, let the probe beam be linearly polarized along
. In propagating through the medium, the polarization of the probe beam
becomes elliptical as a result of the Raman-induced birefringence. When the
birefringence is small, the polarization change can be treated as creation of a
new polarization component at w, along p through the four-wave mixing
process s follows. The incoming fields induce a third-order polarization with a



6 Four-Wave Mixing Speciroscopy

¥ component
PP wg) = Fox®(wy = @ — wy +w;) 8,8,3E EPE;. (15.14)

In a medium of length /, this nonlinear polarization component gencrates 2
ficld component along 7

i2wwd
E,{w)= cz—k’p;“(wz), (15.15)
2

Measurement of the output [, (1) & |E_\,(<.;>2)|2 versus ¢, — «, should there-
fore yield the spectrum of |§ - x® : &,¢,%(%, which exhibits Raman resonance.

In many media, if the collinearly propagating beams are along some
symmetry direction, the subindices of x7}, must appear in like pairs from
symmelry consideration. We then have

POar) = X

yxyxElel:fEZx + va:,y)xxElyEl‘xEZX' (1516)

With the pump beam linearly polarized in the direction bisecting % and p, so
that |E,,| ={E, |, we find

3 3
I () o [x B + x5hs

[yl Ex,l* (15.17)

The phase-matching condition is automatically satisfied in this case. Since
™ = 3@ + %, the observed spectrum has the resonant structure superim-
posed on the nonresonant background, similar to that obtained by CARS. If
the pump beam is circularly polarized, then E,, = $/E,,, and we have

L) @ X = XQlIEIHEL (15.18)

In an isotropic medium, the nonresomant part has the symmetry relation
(X8 e = (X8 Dy e 0t OBy # (XD, 0 andl we find

L) « {(x@) e — (XY pasHIEN 1B {15.19)

The observed spectrum therefore shows no nonresonant background and is
similar to that obtained in polarization CARS (Fig. 15.54). In experiments,
1,(w,;)/1,(w,) should be recorded to minimize the effect of probe beam
fiuctuations. This can be done by simultaneously recording the transmitted and
rejected components of /{w,) from an analyzer in front of the detector.

One can also nse the heterodyne scheme to obtain Rex§' and Imx{’
separately.® Again, by rotating the analyzer a small angle # away from j, the
ratio of the transmitted and rejected components becomes

IR = an 8 + +{ (X} e = (X8 pyun } 12 {15.20)
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 where v is a real coefficient proportional to |E;|% If tan®@ = [y{(x®'),xpx —
(XK', 117, then we have

IRy[* = tan’8 + 2y(tan 8)Re{ (@) e = (X&) pex }»  (15.2)

which yields a spectrum of Rex}. On the other hand, with a quarter-wave
plate inserted in the path, the ratio of the transmitted and rejected components
becomes

1Ry = ttand + v { (X8} ey — (X8 pr | 1P

(15.22)
=tan’f + 2'1r(ta.1'|H)Im{()(g’)y”,r —(xﬁ’)),_,,”}

which yields a spectrum of Imy .

Again, while the discussion here is on RIKES, it can be applied equally well
to other two-photon resonances with w, + @, = «, where «, is the resonant
frequency.

154 MULTIPLY RESONANT FOUR-WAYE MIXING

The resonant nonlinear susceptibility x §? can be further enhanced with double
and triple resonances. It should give more selective speetroscopic information
than in the singly resonant case. In general, multiply resonant four-wave
mixing can provide more specific details about a particular one-photon reso-
nant iransition, A few interesting applications ¢of such resomant processes are
described here.

High-Resolution Doppler-Free Spectroscopy

Resonant four-wave mixing with appropriate input beams can yield Doppler-
free spectra. A few examples were discussed in Chapter 13, The Doppler-free
saturation and polarization spectroscopy with the lowest-order saturation is a
triply resonant four-wave mixing process in which the pumnp field E(w) creates
a population change p@ proportional to E(w)}E*(w) and then the probe field
E(w"y detects the change through the nonlinear polarization P®(w’)
E(w)E*(w)E(w) with o and w either on the same or different resonant
transitions. The two-photon Doppler-free absorption spectroscopy, on the
other hand, is based on a singly resonant four-wave mixing process.

In general, multiply resonant four-wave mixing can yield a Doppler-free
spectrum if the damping coefficients of the resonant denominators of x®
satisfy a certain condition. This is seen from the following rmathematical
derivation. ™
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Consider first a doubly resonant case. The resonant nenlinear susceptibility
x has the general form (see Section 2.2)

A
w, — W, ‘T;J)("’b -y * iTy)

x§ = i {15.23)

where 4 is a coefficient with negligible frequency dependence in the present
discussion. In a gas medium, x§’ should be an average over the Doppler profile
{see Section 13.]), while w;; and wy, should be replaced by wf;{1 — vek,/c}
and wQ,(1 — v+ k,/c), respectively:

(xR
:fw dv Ag(v)
- {w“ — w1 - vk, /o) + iﬂj][wh — (1 =k i) ity
{15.24)

where g(v} = {1/ va w)exp(—v’/u®} and u = 2kT/m. Equation (15.24) can
be written in the form

(% Kexp{—+?)
(x®) f_md o to-8) (15.25)

with » = o/u, £, = [e/D - kul(l — o/l F T, /w))), and a similar expres-
sion for &, Then the integral can be evaluated in terms of the plasma

dispersion function

Z(g-g+igr)y=a2f" ___d:f'; forg” 20 o

Z(§r) = —2*(-4)

and (x§") behaves differently near the double resonance & = ¢;, depending |
on the relative signs of £ and £7. If £ and £’ are of the same sign, we have

) « LZ(—g"g:—‘Lgb)]— (152m)

£
which shows no singularity as §; — &, and as a function of £ {or «,), bas a

resonant width more than twice the Doppler width. If, however, £ and &
have opposite signs, we find, as & - &

z  fwe ]

, d
{(xfh « (-33 £ g {15.28)
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where + and — refer to the cases of £ > 0 and £7 < @, respeciively. The last
term in (15.28) has a Lorentzian resonant lineshape with a halfwidth £ + ¢
= [e/(& - k)ul(T,,/af, + T,y /wl). In other words, as w,/af, = w,/wf, at
double resonance, {x§') versus w,/w; has a Lorentzian linewidth given by the
sum of the normalized natural linewidths, (T;/wf + T,;/wy,). Therefore,
measurement of ¢{x&5, or [(xE"|* in this case, can yield a Doppler-free
spectrum. For the various doubly resonance cases shown in Fig. 14.2, spectra
L obtained with 14.24, g, and & are Doppler-free.!® Note that Fig. 14.2g
. describes a CSRS process, while d and k are CARS and CSRS, respectively,
probing a resonant transition between excited states.
A similar result is obtained for the triply resonant case. We can write

- expl(~5?)
)« [ e P

E At triple resonance, £, — §; = £/, if one of the §” has a different sign from the
¢ two others, then (15.29) gives a Doppler-free spectrum. In general, (x&
B versus w, shows two Lorentzian peaks. They merge into one when £; — £/, All
E  the triply resonant processes in Fig. 14.3 should yield Doppler-free spectra.

{. The discussion here can of course be extended to the reduction of inhomo-
I geneous broadening in solids."® However, because of the many crystal-ficld
b parameters governing the broadening (see Section 13.1}, the elimination of
- crystal-field broadening is never perfect.

Measurement of Longitudinal Relaxation Times

b~ |f the relaxation of an excess population in a state can be approximated by

[%(Pm. - pE..)l - (_’3_?;1_;’33 (15.30)

damping

F' the resonant four-wave mixing spectroscopy can also be used to deduce the
" longitudinal relaxation time T,,.!* The physical idea is fairly simple. Two
. imput beams at w, and «] near a resonance can beat in the medium and induce
E a time-varying population change oscillating at the frequency w, — wj with an
I amplitude inversely proportional to the zero-frequency resonant denominator
b [(©, — ]} +i/Ty,]. The induced population change in the particular state is
then probed by a resonant transition from that state, The output spectrum of
f (x©) versus w, — wj has a halfwidth 1/7,,, although the halfwidths of the
k. one-photon transitions involved are much larger than 1/7;,,.
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Consider the process in Fig. 14.3e described by (14.4a) as an example. For
a gas medium, the average x with 7} = T is

1 v
i)« e fdy—— s)
w, —wy +i/T, wy + kv = + T
1 B 1
“’1+k1'v_“’n'g_frn’g ) w’1+k;‘v—w,,-g+ifn.g

{15.31)

Since Ty, > F;), To0 the mtegral in (15.31) is practically independent of w}
in the range of |u1 - w,l ~ T;;}, and therefore we have the spectrum of {x§')
Versus w; — w} as

-1

iy « (@ = wf +i/T,) (15.32)
Yajima et al.** proposed and demonstrated a method for measurements of T}
and T, using four-wave mixing with two laser beams. I was also mentioned in
Section 13.3 that T} and T, can be deduced simultanecusly from the saturation
spectroscopy. Unlike the case described above, however, the lack of a third
adjustable input frequency in the latter cases for selective resonant probing
makes the interpretation of the results less straight-forward.

Coherent Raman Spectroscopy of Excited States

The doubly resonant case of Fig. 14.24 described by (14.34 ) with an output at
2w, — , shows a resonance al w; — @; = @,,, Thus the four-wave mixing
process can be used to probe a Raman transition between the two excited
states [#) and |#").” We, notice however, that the bracket in (14.3d) is

1 1
wp = W ¥ il w0y — e, — il

=(a =@y = @y, + i) +i(Tpy = Iy = T, )
{1 = g + T w3 = gy = T}

(15.33)

which nearly vanishes at w, — o« = @, il @, and w, are far away from
resonances so that I,, and T, are negligible. Yet, even with the double
IESONANCE Wy = &y, and w; = w,,, 0o Raman resonance can be observed if
I‘ LT = %0 because the resonant denominator {0 — wy — @ t

" ,,} in x§ of (14.3d) is canceled by the numerator in (15.33). This actuaﬂy
happens when the damping is deminated by spontaneous emission, since




Forced Light-Scattering Spectroscopy 281

T, + T, = E,..* In the presence of collisions, this relation no longer holds,
and we vsually have [, = T} + vy, p, where LY is due to sponfanecus emis-
sion, p is the gas pressure, and y;; is the coefficient describing the collisional
broadening. The relevant frequency factor in x§ of {14.34) then becomes

1 1 1 )
(e = wy = W + jrn'n)(wl g H il @y e, il

1
(""1 T iy T ‘-rn’x)(wl Wy irng}
o1 dm*mfmh
W T Wy Ty, i(r::n + Yn’nP)

(15.34)

which clearly shows a Raman resonance between |n) and |n%) with an
amplitude proportional to p. This is called the pressure-induced extra reso-
nance in four-wave mixing (PFIER-4) by Bloembergen et al.” They cbserved
the PTER-4 signal between the 3Py, and 3P, ,; states of sodium vapor. The
signal strength is proportional to

(Fom = Yug = Vg P

xR e M1 - -
w0 =y = 0 + 1T+ v 0)

(15.33)

With buifer gas, v,; should be replaced by ¥, + ¥,;Pouper- The linewidth of
the resonance should increase linearly with the pressures. The experimental
results agree with these predictions. It shows that PIER-4 can be used as a
spectroscopic method not only to probe the Raman resonance between excited
stales, but also to study molecular collisions.

The PIER-4 process is, of course, not restricted to gases. In condensed
matter, the relation I, = I‘,,54+ T, usually does not hold, so that the FIER-4
signal should be observable.” Note that the case of Fig. 14.2d can yield a
Doppler-free spectrum. Among the other processes in Fig. 14.2, case k with the
output at 2w, — w, lso probes the Raman resonance between excited states.
The theoretical discussion is essentially the same as case 4.

155 FORCED LIGHT-SCATTERING SPECTROSCOPY

As described in Section 10.3, a transverse excitation, denoted by the density
matrix p,, with n # r’, can be treated as a material excitational wave governed
by a characteristic wave equation. Thus CARS can be considered a process in
which the material excitation wave at w;, — w; = w_, is resonantly excited by
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optical mixing of two incoming waves at «, and w,, and then the material
excitationat wave coherently scatters the incoming wave at w, and yields the
anti-Sigkes output. Theoretically, therefore, the process can be described by
coupling of light waves at w,, w,, and 2w, — «, with the material excitational
wave at w; — w;. In the steady-state case, elimination of the material excita-
tional wave in the coupled equations leads to the same result given in Section
15.2.

We realize that the material excitational wave is not restricled 1o vibrational
or electronic excitation. It can be any excitation including acoustic wave,
entropy wave, spin wave, and charge density wave. Each, however, generally
has its own governing wave equation. A CARS process involving low-frequency
material excitation is often known as a forced light-scattering process.” It
differs from the spontaneous anti-Stokes scattering process in the sense that the
material excitation is not thermally excited but is coherently driven by beating
of two optical waves. (In general, it can of course also be directly excited by an
eleciromagnetic wave with w = w,, or by other means.) In the discussion of
stimulated light scattering in Chapter 11, the wave equations for a number of
low-frequency excilations were given. As an example, consider here briefly the
case of forced light scattering of concentration variation.

The driven equation of motion for the concentration variation is, following

(11.26),

(a% ~pvie %)AC = —AV3(E,-E}) (15.36)

where 4 = D(de/3C), r/8mpy(dp/8C), 1, and we have generalized the
equation by including a term AC /7 to allow relaxation of AC. With monochro-
matic incoming plane waves, E; = & exp(ik, *t — iwt) and E, = &exp(ik,-
T — iw,1), the solution of (15.36) gives

Ak, - kz)z(gl’g;)

AC = -
(w, — @) +i[l/r+ D&, - k,)]

il ~Kg ) r—few; —wgde] (15.37)

This driven concentration wave then coherently scatters the E, wave to yield
an anti-Stokes output, which is governed by (15.1} with —4w{wl/c?) X
P@Hw,) replaced by —(wi/cl)(t?e/t?C)p_r(AC)El. From a medium of length
I, the anti-Stokes output in the phase-matched direction k, = 2k; — k; has an
intensity

@

= 5~ ﬁ 3 2 : E
2= Bec (ac)”(ﬁc VE, + dnx G ELES (15.38) |

where the x{, term is the nonresonant contribution to the output. The
spectrum of I, versus w; — w, in this case is dominated by the zero-frequency
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resonance of the concentration wave. The width of the resonant line has
contributions from both relaxation and diffusion of the local excess concentra-
tion,

156 TRANSIENT FOUR-WAVE MIXING SPECTROSCOPY

With resonant excitation in four-wave mixing, the relaxation of the excitation
naturally leads to a time-dependent output signal when pulsed lasers are used
for pumping and probing. Thus transient four-wave mixing spectroscopy can
be used 1o study the relaxation behavior of a resonant excitation. In fact,
transient CARS was already discussed in Section 10.10. Tt was shown that the
transverse relaxation time of the Raman resonance can be obtained from the
transient measurements. Transient forced light scattering is quite simitar.” Let
us consider again the forced concentration scattering as an example.

Assume that the pump pulses are much shorter than the characieristic time
for concentration variation, and that at ¢ = 0, they induce a concentration
grating in the £ direction, AC{x, t = 0) = AG}{1 + cos Kx), where K = (k, —
k;) - % and AG « &,&,. After the pump pulses are over, the induced con-
centration grating gradually decays away, following the transient solution of
(15.36)

AC(x, 1) = ACOe’"%[l + e~ BKe0s Kx (15.39)

A short probe pulse with intensity [; scattered by AC at time ¢ then yields a
coherently scattered signal with a wavevector k, = k, £ (k, — k, )

S,(8) ¢ [, L~ %/m+BEr (15.40)

E From the measured exponential decay of the signal with time and its depen-
f dence on the prating spacing (27/K), we can then deduce separately the
. relaxation time = and the diffusion constant D, More rigorously, the finite
f widths of the pump and probe pulses should also be taken into account in the
' calculation by proper convolution.

] Transient four-wave mixing spectroscopy can be more general, involving
b possible multiple resonances. This more general discussion is postponed to
} Chapter 21, where transient four-wave mixing is shown 10 be related to other
E coherent transient effects such as photon echoes and free-induction decays,
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16

Optical-
Field-Induced
Birefringence

An applied dc electric or magnetic field can effectively modify the refractive
index of a medium. Electrooptic and magnetooptic effects were discussed in
Chapter 4. The same is possible with an optical field. A sufficiently intense
laser beam can induce a significant change in the refractive indices of a
medium, The refractive index change in turn affects the beam propagation and
leads to a new class of nonlinear optical effects characteristically different from
either optical mixing or nonlinear wave attenuation, This chapter describes the
various physical mechanisms contributing to the optical-field-induced birefrin-
gence, and the resulting effect on the beam polarization. Connection to
four-wave mixing is made. Only media with inversion symmetry are consid-
ered, 10 avoid complications caused by the presence of second-order processes.

16.1 GENERAL FORMS OF OPTICAL-FIELD-INDUCED
REFRACTIVE INDICES

The nonlinear polarization PN“(e) induced by an intense monochromatic field
E{w) has a general form

P () = Ax[e, B (0) Br(e)] E(0). (16.)

A similar expression exists for the nonlinear polarization P™-(w’) at the probe
frequency o’

PUL(w) = Ax [, B (w) E*(w)] - E(w). (16.2)
- .
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Here the probe field E(w’) is assumed to be sufficiently weak so that only the
term linearly proportional to E{w”) in P¥'{w") needs to be taken into account.
The induced susceptibility A is related to the induced refractive index An by
the simple relationship

A{n}) = Ae;, = 4mhy,;. (16.3)
We consider here only the third-order nonlinear polarization or Ay to the
lowest order. Then, by the conventions given in Section 2.10, the third-order

nonlinear polarization P™(w’) can be written as

PO = E x!,u o = + 0~ 0}E{w) B {w) Er(w)

16.4
=6,Z e = v + 0= DE(E (o). Y

J. N

For w = «’, it becomes
PP (w)=13 E Cﬂ, w=w+w—w)E(w)E(«)EF(w). (16.5)

A general review of third-order susceptibilities can be found in Ref 1 In an
isg::opi(': madsi)um the nonzm'o compgnenls of x® are x{¥, xis, xB,, and
i with Xy = xBh + xB + 1B

16.2 PHYSICAL MECHANISMS

A number of physical mechanisms can contribute to the optical-field-induced
refractive indices. We discuss here only the few commonty encountered ones.

Electronic Contribution

" The applied optical field can distort the clectronic charge distribution in a
medium, which will lead to a change in the refractive indices. Microscopically,
the elecironic contribution to the third-order susceptibility can be derived from
- .the third-order perturbation calculation, as outlined in Chapter 2. For a typical
- transparent liguid or solid, x® falls in the range between 10~ and 10715 esy.
- However, as the optical frequencies approach an absorption band, x™ can be
greatly enhanced. This is particularly true if the resonant absorption is sharp.
A population redistribution induced by the resonant excitation often accounts
! for the major part of the enhancement.
Consider, as an example, a monochromatic beam of frequency w propagat-
. ing in a gas medium with a transition frequency a,, close to w. It is easy 1o
F show, from the density matrix formalism, for example, that the beam sees,
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aside from a nonresonant background, a resonant susceptibility

i{nlerlgh*

—_t A 16.6
h(w—wng-f-i[’,,g) ’ (16.6)

xple) =¥

where Ag = p_, — p,, is the population difference between the states g} and
|n), and N is the density of molecules. Clearly, if the beam intensity is
sufficiently strong, the resonant excitation will yield a significant population
redistribution, with Ap decreasing as the beam intensity increases. This is
known as the saturation effects, as discussed in Section 13.3. Following (13.7)
for an effective two-level system, we then have

4p2 T\L, |E(w)|2/H°
Ap=ap°[1- LT IE(w) } 167

(& — wpg) + T + 4p2, ML, | E ()| 2/0

where p, . = (nler|g) and Ag® is the thermal population difference. In the
weak saturation kimit, (16.7) reduces to

(16.8)

2 2
o~ Ap“[l 4RI JE(0) Y/ }

2 2
(w-— w"s) +I;

The resonant susceptibility of (16.6) in the presence of an intense beam can
therefore be written in the form

XR(‘-") = Xg) + AXR("% |E(°’)|2)- (16.9)

Here x{"(w) is the resonant part of the linear susceptibility independent of the
‘beam intensity, and

4p T\ L, | E(w )P /8’
(0~ g + T3 + 4pLTiT, | Ew) /8

RE

Axg = —xf (16.10)

which, in the weak saturation limit, reduces to

Axg = xRIE(w)*
with
4p2 T,/

) (16.11)
(0= w,F + %

X = -x
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It is interesting to see how large x§* can be for an atomic vaper system.
Assume N = 10%° fen?, p,, =5 X 107 U osu (for the 5 — p transition in an
alkali vapor, for example), T, = I, and Jw — @, | =1 em™! » T,,. Then
we obtain x§’ = 0.01 ¢su and x(ﬂ = 2.5 x 107 esu. This shows that even with
|E(w}| = 1 esu only {corresponding to a beam intensity of 250 W /cm?), the
induced susceptibility is as large as Axy = 2.5 >< 1073 esu, or, equivalently,
the induced refractive index is Anp = 1.5 X 107* esu. The large value of x§
for atomic vapor has prompted researchers to use it as the nonlinear medium
in degenerate four-wavc mixing work such as phase conjugation’ and nonlinear
optical diffraction.?

The saturation effect in semiconductors can aise yield a large x&’. In InSb,
for example, ¥ can reach a value of ~ 1 esu when the optical frequency
moves into the direct absorption band.® The mechanism responsible for the
large x'9 here is somewhat different from the atomic systems because of the
band structure in semiconductors. The resonant optical field pump electrons
into the conduction band and leaves holes in the valence band. Because of the
fast relaxation rate of carriers within a band, the excited electrons and holes
quickly relax to thermal population distributions in the conduction band and
the valence band, respectively. The steady-state population distributions of
electrons and holes are finally determined by the balance between the excita-
tion and the electron-hole recombination across the band gap. This induced
population redistribution {pump saturation) results in a change in the absorp-
tion spectrum, which is related to the optical-field-induced refractive index
through the Kramers-Kronig relation.

The large x§ resulting from the saturation effect is not limited to the cases
with electronic resonance. In molecular systems, the same thing can occur near
a vibrational transition, although x§’ is usually not as large as that for the
atomic systems because of the weaker oscillator strength of the vibrational
transition.

Raman or Two-Photon Contribution

The third-order susceptibility ¥®(w’ = @’ + @ — w) can also be resonantly
enhanced if |’ — w| approaches a Raman transition. This fact forms the basis
of the Raman-induced Kerr effect spectroscopy (RIKES) described in Section
15.3. It is seen there that the presence of the field E{(w} can induce ai the probe
frequency «' a susceptibility change Ax(w’) = x(w"):E(0)E*(w), or a
corresponding refractive index change An(w’). Typically, X ~ 3 x 107" esu
in a liquid with |w — «'| near a strong Raman resonance. Therefore, with
|E(e)] = 100 esu (corresponding to a beam intensity of 2.5 MW /cm?}, one
finds An ~ 1075, _
Similarly, x®(@’ = "+ w - w) can be resonantly enhanced if v’ + w
approaches a two-photon resonance. The presence of E(w) again induces a
susceptibility change Ax(w") =x“(w):E(w)E*w) or a corresponding
An(«’) at «'. For both Raman and two-photon cases, x®{w’) is further
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enhanced if w or w’ is also near a transition to an intermediate state, In sodium
vapor, for example, with @, + w, on the 35 — 44 transition and «, being 10
em ! away from the 35 — 4p transition, one finds X ~ 10-%¥ esu where N
is the atomic density. For N ~ 10'*/cm’ and |E| ~ 100 esu, the induced
refractive index change An is as large as 107 °.% In molecular systems, x®(w =
w + & — w)can often be greatly enhanced as 2w approachesthey = 0 = 0 = 2
vibrational transition because w, at the same time, isnear the v =0 — v =1
resonance, The large x™ seen by a 10.6-pm CO, laser in SF; gas is a typical
example.®

Electrostriction

Application of a de electric field to a local region of a medium causes an
increase in the density of the medium in that region. This field-induced density
redistribution occurs in order to minimize the free energy of the system in the
presence of the field, and is known as electrostriction, The same effect is
expected with the optical field, since the de field energy and the optical field
energy are equivalent in this case. The induced density change then leads 1o a
change in the susceptibility or refractive index. The essential mathematical
derivation has already been given in Section 11.1 in connection with the
discussion on stimulated Brillouin scattening.

The induced density variation Ap,, should cbey the driven acoustic equation
of {11.2), which appears in the case of monechromatic pump beam as

2 1
o d - vifan, = - v wE)r). (1612

If the beam is CW, the time-independent solution is

App = 27 (16.13)

The resulting nonlinear polarization seen by a probe beam at &’ is

PO} = 1,, de(o’ )A ppE(w) (16.14)
and hence
_1 de(w”)
Ax(w} an ap App. {16.15)

Here we assume that @’ is very different from w so that App(«’ — «) induced
by the beating of E(w) and E(w’} is negligible. Otherwise, an additional term
in PO{w"), and hence Ax(w’), appears resulting from coherent scattering of
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E(w) by App(w’ — w). Typically, for liquid, Ax ~ 107" esu or Ar ~ 1071}
esu with |E| ~ 1 esu.” In a transparent medium this electrostrictive contribu-
tion often is appreciably larger than the electronic contribution. However, as
we discuss later, the response of the density variation to the applied field is
slow, and therefore, with short optical pulses, An can never reach its full
steady-state value.

Molecular Reorientation and Redistribution

Assume a linearly polarized beam propagating in a liquid. If the molecules are
anisotropic, the optical field tends to align the molecules through interaction of
the field with the induced dipoles on the molecules. Furthermore, because of
the presence of induced dipole interaction between molecules, the molecules
will spatially redistribute themselves in order to minimize the free energy of the
system. Both molecular reorientation and redistribution lead to a change in the
refractive index of the medium.

In Section 11.3, optical-field-induced molecular reorientation in an isotropic
medium was described at length, We reviewed it here with a more general
derivation. We can define an orientational order parameter @ by the macro-
scopic relation®

Xax = X + %00 {16.16)

assuming E along %, where ¥ = }{x,, + X, *+ X,,) is the average linear
susceptibility of the medium, and Ax,, is the anisotropy of the medium when
all molecules are aligned parallel (Q = 1). We also have

Xy = Xz =X~ Y800 (1617}

The order parameter @ defined here is a macroscopic quantity while the one in
Section 11,3 is microscopic. The two become identical if the molecules are
noninteracting,

In the liquid phase, the induced ordering is expected to be small, so that
@ <= 1. According to Landaw’s theory, the free energy of the system can then
- be expanded into power series of {:°

F=F+4a(T—T*}Q* + {BO" + -+ — A% + $Ax,0)|E(w)}?
(16.18)

- where £}, is independent of Q, T is the temperature, ¢ and B are constant
. coefficients, and T* is a fictitious second-order phase transition temperature at
: which the system would necessarily make a transition 1o the ordered phase if it
had not already done so. In the limit of small Q, terms of orders higher than
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Q% in F can be neglected. Then minimization of F immediately gives

4Ax,|E ?

- Xol E(«)] ] (16.19)
3a(T - T*)

The induced change in the susceptibility tensor seen by a probe beam at o',

from (16.16) and (16.17), appears to be

Ay = —28X,, = —2Ax,; = $xo{«")@
_ Ay w Y Axg(w)

= Ww(mw. (16.20)

Again, we have assumed that | — o] is much larger than the inverse of the
relaxation time for molecular reorientation, so that Q{«” — w} induced by the
beating of E(w) and E{w") is negligible. Otherwise, an additional term should
appear in 2, and hence Ax.

In the ideal limit of noninteresting molecules, one would, of course, have
T+ =0, and the foregoing results should reduce to those in Section 11.3,
namely (11.23) with B, = E, = E and @ = " A direct comparison of the
expressions of Q then yields a = SNk, for this ideal case.

We have considered only molecular reorientation induced by a linearly
polarized light. What happened if, instead, a circularly polarized light is used?
Will there be a circular birefringence induced in an isotropic medium? Physi-
cally, it is easy to sec that the optical field should reorient the molecules toward
the (%-p) plane perpendicular to the direction of propagation {£), but in the
%—§ plane, the molecules are randomly distributed since they cannot follow the
field rotating at the optical frequency. Thus one expects a field-induced linear
birefringence between # and -7, and no birefringence in the -3 plane. The
induced susceptibility changes should be

Ay, =ax.~ - 8%, (16.21)

where the subindices “+" and “—" denote the right and left circular polari-
zations, respectively. Since Ax,, should be the same, irrespective of a linearly
polarized aligning field along % or a circularly polarized field in 2, we have

bx= A= T B (16:22)

which is four times less than A) , , induced by a linearly polarized field along £

In ordinary liguids composed of anisotropic molecules, molecular reorienta-
tion can yield a An of the order of 107" to 10™1 esu for [E| =1 esu.” The
response time of molecular orientation is usually of the order of 10 psec.
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Therefore, with nanosecond and subnanosecond laser pulses, molecular re-
orientation is often the dominant mechanism for the observed An. For liquid
crystalline media in the isotropic phase, however, An can be much larger.” This
is because in such media 7* may be less than 1 K below the isotropic—
mesomorphic iransition, and according to (16.20), as T approaches the transi-
tion temperature, Ax or An increases inversely with (T — T*). This pretransi-
tional behavior is commonly known as critical divergence. It has been found
that An can reach a value of ~ 1077 esu for |E| = 1 esu even at a temperature
5 K above the transition. The response time of An, however, also increases
with (T — T*)™}, which is known as the critical slowing-down behavior. At 5
K above the transition, it is of the order of 100 nsec.”

Molecules in the isotropic liquid phase are more or less uncorrelated. Their
response to the external perturbation therefore is an unconcerted effort and
cannot be very large. On the other hand, molecules in a liquid crystal phase are
well correlated, at least in orientation. The orientational response of the
molecules to the external pertarbation is a group effort, and can be expected to
be extremely large. Indeed, with |E| ~ 1 esu, the observed average An in a
nematic liquid crystal film can be ~ 0.05."° Becausc of the wall-aligning force
on molecules, the induced molecular orieatation is not uniform across the film.
The induced An is usnally a strong nonlinear function of |E|? even at || ~ 1
esu. Being a correlated response to the applied field, this induced molecular
reorientation is very slow, having a response time of the order of 1 sec or
larger.

The molecular reorientation can contribute to An orly if the molecules are
anisotropic. However, it has been found that in transparent liquids composed
of nearly spherical molecules or atoms, an appreciable An can still be induced
by laser pulses. The observed An is much larger than what one would expect
from electronic and electrostrictive contributions and mus! anise from optical-
field-induced redistribution.” The theory of molecular redistribuzion is unfor-
tunately not yet well formulated.

Both melecular reorientation and molecular redistribution can ocour only if
molecules are free to rotate and move in the medium. With a few exceptions,
this is generally not the case in solids. Therefore, they should not contribute ¢
the observed Ar in solids.

Other Mechanisms

There are many other possible mechanisms that may contribute to An, In an
absorbing medium, the optical-field-induced temperature rise AT will certainly
lead to a change in the refractive index. The induced concentration variation
AC in a mixture is another possible mechanism. The expressions for AT and AC
can be obtained following the derivation in Chapter 11, An extremely large An
can also be obtained in photorefractive materials such as BaTiO,.!! The optical
beam presumably excites and redistributes the charges trapped at various sites
in the crystal. The charge redistribution sets up a strong internal electric field,
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which in turn induces a large An via the electrooptical effect. Even with a
10-mW /cm® laser beam, the induced An can be larger than 1074, although the
response is very slow (~ 1 sec) at such a low faser intensity.

163 OPTICAL KERR EFFECT AND ELLIPSE ROTATION

The optical-field-induced birefringence can change the polarzation of a beam
propagating in the medium. Conversely, measurements of the change of the
beam polarization should allow us to deduce values of the induced birefrin-
gence.

Consider first the optical Kerr effect, which usually refers to the phenome-
non of linear birefringence induced by a linearly polarized optical field. We
assume an isotropic medium here for simplicity, With a pump beam at and a
probe beam at &, the third-order polarization at &’ takes the form

POW) = I [xfnlo’ = & + 0= ) E(W)E, () B (o)
i
Sxlia{ef = o+ w - ) () E{@) Ep(w) {16.23)
Fxu(o = o + 0= @) E()E () EH@)]-
If the two beams are paralle] and their polarizations are linear but at 43° with
respect to each other, then with the pamp field E{w) along & propagating along

3, one finds

PO ary = (X + xB + xB) E (@) E(w}E*(w),

PO(&) = X, (¢ E(@)E* (). (16249

The field-induced anisotropy in the susceptibility is therefore given by'?

Sx(w') = B, — A,y

5 y {(16.25)
= (Xs.z)u + x NE(w)?
or the induced linear birefringence given by
2w
om{w) = ZZbx ()
{(16.26)

2w
n

(X'\lelz + Xﬁ)n)iﬁ(“’)lz-

Then, in propagating through a medium of length {, the & and § components of
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the probe field experience a relative phase difference
8¢ = (w'/c)8nl. {16.27)

This phase difference changes the polarization state of the probe beam, and
can be measured by an analyzer crossed with the polarization of the incoming
probe beam in front of the detector. A typical experimental arrangement is
seen in Fig. 16112 The signal should be proportional to sin’(8¢,/2), from
which 8¢, and hence 8n,, can be deduced. We note here that the same result
with 8¢ < 1 can be obtained from the four-wave mixing approach, as de-
scribed in Section 15.3. The four-wave mixing output corresponds to the
generation of an orthogonal polarization component in the probe beam.

As mentioned in the previous section, when w approaches &', the beating of
E(w) and F(w’) provides an additional contribution to Ax. The degenerate
case with @ = & and k = k’ is particularly interesting since we now have a
single monochromatic beam propagating in the medium, Will the polarization
state of the beam vary during propagation as a result of the induced birefrin-
gence? The answer is yes, in general, as one can expect from the four-wave
mixing picture. We consider here the special case of an isotropic medium. The
third-order polarization has the same general expression given in (16.23) with
w' = . In terms of circular polarization components, we can write'?

PP(w) = (xfl + x{a) 1B (@)1E ()

N . . ) (16.28)
e +xBa + 2 E v (@) PE {w).
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Fig. 16,1 Experimental arrangement for optical Kerr measurement. P-1, P-2, P-3 are
polarizers, and D-1, D-2 are deteciors. {After Ref. 9.}
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For a linearly polarized field, E(w) = XE(w), (16.28) reduces to

PO(w) = ixfiE(w) PE(w) (16.29)
and for a circularly polarized field, E = ¢ E(w), 1t becomes

POw) = &, (xBs + xP I E()PE (). (16.30)

In both cases, the induced P™(w) has the same polarization state as the
incoming field, and therefore no change in the beam pofarization is expected as
the beam propagates in the medium. More generally, however, for an ellipti-
cally polarized field, E = é, £, + &_E_, (16.28) shows that the induced refrac-
tive indices for the two circularly polarized components are, respectively,

PAd
An,= T{ X + 532]11)|Et| + (Xﬁ}n 1 1z ¥ 2)(%2)11)|EI|2I
(16.31)

The difference between An, and An_ here indicates that the elliptically
polarized beam can induce a circular birefringence in the medium

A= An,— An_= —Qu/m)xEu{IE.F - E_).  (16.32)

As discussed in Section 4.2, a circular birefringence renders a rotation of the
beam polarization. In the present case, the rotation of the elliptical polarization
across the medium of length  is given by

8 = (w/2c)ln i (16.33)

Note that # depends on both the beam intensity and the ellipticity according to
(16.32). Measurement of lhls intensity-dependent ellipse rotauon # allows us to
deduce An, and hence x {3,

Figure 16 2 shows a typical experimental arrangement for ellipse rotation
measurements.'” Because of the beam intensity variation in the transverse
direction , # acwually varies with r. To deduce {3}, from the measurement of
#, one should limit the detection to a small region in the beam profile where
the intensity variation is negligible. Alternatively, cne can use a focused beam
with a Gaussian beam profile.!? The average ellipse rotation of the entire beam
can be calculated in terms of An, and the beam characteristics, and compared
with the measurements.

From (16.26) and (16.32), it is seen that the combined results of the optical
Kerr measurement (with w ~ '} and the ellipse rotatien measurement allow
us to determine two of lhe three independent elements of x, namely x{3,
and x{3,. The third, x13%,, generally can be obtained only by resorting to
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Scope

D1

II:II—-?’-—IIIIFEJ- g P DD s

Ruby P-l =
Casor R-1 Ll Sompe L2 R2F2 £2 D-2

Fig. 162 Experimenial arrangement for ellipse rotation measurement. P-1, P-2 are
polarizers, R-1, R-2, Fresnel Rhombs, and D-1, D-2, detectors. (After Ref. 9.)

another independent experiment, for example, a degenerate four-wave mixing
experiment.

The optical-field-induced variation of the beam polarization in an aniso-
tropic medium is often complicated, because of the existing linear birefrin-
gence even in the absence of an induced An. The problem is particularly
interesting when An is so large that it changes drastically the beam propaga-
tion characteristics in the medium. This may happen, for example, in liquid

164 TRANSIENT EFFECTS

The foregoing discussion was limited to the steady-state case, The response of
a medium, however, becomes transient if laser pulses with pulsewidths shorter
than the response times are used. The response times are different for different
physical mechanisms contributing to the induced refractive index. The elec-
tronic contribution has a response time on the order of (w ~— ) ™' ~ 1075
sec, if the optical frequency w is far away from any absorption band, where w,
is the position of the major absorption band. On the other hand, for Ar
induced by the population redistribution, the response time is determined by
the population relaxation.

For the electrostrictive contribution, the transient response is governed by
the equation of motion (16.12) for acoustic waves.” With the laser pulse given,
the time-dependent density variation App(r, 1) can be solved from (16.12) and
Ax{(w) is directly proportional to App(r, ¢). In this case, the response time is
characterized by the inverse of the damping coefficient, Tz, and the time it
takes for the acoustic wave to travel across the beam radius, R/v. If the
pulsewidth 7, is much longer than both T7' and R/v, the response is
quasi- sleady~state Yet if T, « R/v < r;* the response becomes transient,
with App, ~ Ap’[‘,[TZ/F l(R/v)] near the end of the pulse, where ApF, is the
steady-state value, I[ T < I;' < R/p, the response is also transient, with
App ~ ApRITA(R /W) ForR =1lmmu=2X 105cm/scc I;'~Rjv=
5% 10°7 sec, and 1= 10-% sec, we have App, ~ 4 X 107* Ap’D The corre-
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sponding induced refractive index is also 4 X 107 times smaller than the
steady-state value. This example shows that the electrostrictive contribution 1o
An is far less important with nanosecond or picosecond laser pulses than with
tonger pulses.

For the molecular reorientationat contribution, the order parameter @ obeys
the driven Debye equation given in (11.22), or more gencrally, by the following
dynamic equation for Q including dissipation:

aQ _ oF

Bt aQ (16.34)
= —a(T - T*)Q + $AxglE(w)]?

where » is a viscosity coefficient. The solution of the equation is simply

0w - [ BHlE@IE gy (16.35)

-
with the relaxation time 7 defined as
r=y/a{T - T*). (16.36)

For ordinary liquids, 7 is of the order of 10 psec. Then the response of
molecular reorientation to a nanosecond laser pulse is expected o be quasi-
steady-state, but to a picosecond pulse, it is still transient. For liquid crystats
in the isotropic phase, * can be much larger, approaching 1 psec as T
approaches the isotropic—mesomorphic transition temperature® In the meso-
morphic phase, the coflective motion of the molecules slows down the response
even more drastically. The response time can be longer than 1 sec.'?

16.5 APPLICATIONS

A number of applications can be derived from the opticai-field-induced
refractive index change. In Section 14.3, we saw how degenerate four-wave
mixing can be used for phase conjugation and image reconstruction. As
described there, degenerate four-wave mixing can result from coherent scatter-
ing of a light beam by a refractive index grating induced in the medium by the
interference of two pump light waves, Thus a medium with a large optical-
field-induced refractive index per unit field intensity is most useful for efficient
degenerate four-wave mixing applications.

The optical Kerr effect can be used in optical switching."® As shown in Fig.
16.3, the transmission of the weak signal beam passing through the nonlinear
medium is normally blocked by the crossed anatyzer. In the presence of an
intense pump beam, however, the medium becomes birefringent, and the signal
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beam, experiencing a polarization change in traversing the medium, is no
longer completely blocked by the analyzer. Thesefore, if a picosecond purmp
pulse is used, a nonlinear medium with a picosecond response time can act as a
fast optical gate for a signal beam with a picosecond on-off time. Such an
optical switch is clearly very useful in many applications, especially in dynamic
study of physical phenomena and mechanisms.

If a Fabry-Perot interferometer is filled with a nenlinear medium, then
because of the optical-field-induced refractive index, the transmission of a
monochromatic beam through the interferometer depends on the beam inten-
sity. For example, with the interferometer spacing tuned 10 a value for peak
linear transmission, an intense light beam may find the interferometer badly
mistuned because the field-induced refractive index has caused an additional
phase change on the beam traversing the imterferometer. In general, the
{ransmission of the nonlinear Fabry—Perot interferometer is a highly nonlinear
function of the beam intensity, depending on the initial phase setting of the
interferometer. Three general forms of transmission characteristics of the
interferometer can be obtained, and car be wsed for intensity limiting, differen-
tial amplification, and bistable operation.’ The last one has been the focus of
very active research because of its great potential applications in optical data
processing. !’

Optical bistable operation of a nonlinear Fabry—Perot (FP) interferometer
is illustrated in Fig. 16.4. The FP transmission curve T versus ¢ in Fig. 16.44 is
described by the equation

L

T= m (16.37)

where T, and F are constants, Because of the field-induced refractive index
change in the medium inside the interferometer, the round-trip phase retarda-
tion ¢ now depends on the field intensity. Assuming An = n,|E {2, we can write

b=+ KIT. (16.38)

With ¢, and k being constants, (16.38) describes a straight lin¢ in Fig. 16.4a,

Pump pulse

A

= N | | 4
Signal beam

Polarizer Analyzer
Karr cell

Fig. 163 Optical Kerr cell as a fast optical switch.
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Fig. 164 (a) Graphical method of finding the operating points of a nonlinear
Fabry-Perot interferometer. When I, increases, the operating point moves along the
path 1-2-4-3-3"-4, and when f;; decreases, the operating point moves along, the path
4-3'-B-2"_2-1. (b) I, versus I, in the form of a hysteresis Joop corresponding to the
operating path described in (2).

the slope of which is proportional to the incoming laser intensity 1/1;,. Given
1., the operating point of the interferometer is then determined by the solution
of (16.37) and (16.38), corresponding to the crossing point of the straight line
with the FP transmission carve. 1t is seen in Fig. 16.4a that if £, is sufficiently
large, more than one operating point can exist. Some of them (such as B and [
in Fig. 16.4a) are unstable. Among the stable ones, the real operating point is
selected by the operating condition that if the operating point is varied, the
interferometer preferes t¢ have it varied smoothly along the curve. Thus, as
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shown in Fig. 16.4a, when I,, increases, the operating peint should move along
1-2-A-3-3%-4, but when [, decreases, it should move along 4-3'-C-2"-2-1.
As a result, the corresponding [, versus [, sketched in Fig. 16.4b, takes the
form of a hysteresis oop. For I, between (f,), and ({;),, the output can
have either a high value or a low value depending on the operation path. This
bistable behavior is the basis of binary switching elements. Therefore, the
ponlinear FP interferometer can become an important optical device in optical
data processing and all-optical logic and computing systems. Although the
nonlinear FP interferometer is commonly used to study optical bistability, we
should note that the same phenomenon can arise in many other systems. Away
from the operational point of view, a nonlinear FP interferometer is also
interesting because its switching action resembles a phase transition,'® and it is
a nonlinear system with positive feedback that may lead to bifurcations and
chaos in the output.™

Both the optical Kerr effect and the intensity-dependent ellipse rotation ¢an
be used for pulse shaping. The polarization state of an intense laser pulse in
traversing a nonlinear medinm is time-dependent, resulting from the intensity-
dependent polarization rotation. Therefore, through the use of an analyzer, the
transmisted polse can be reshaped. The same effect can be used in a laser
cavity to reshape the laser pulses.”

The optical-field-induced refractive index can also lead to an intensity-
dependent distortion of the beam wavefront, resulting in self-focusing and
other self-actions of light. This is the subject of discussion in Chapter 17.
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Self-Focusing

Self-focusing of light has fascinated many researchers in the past. It is typical
of the type of nonlinear wave propagation that depends critically on the
transverse profile of the beam. Theoretically, the wave equation governing the
effect is the prototype of an important class of partial differential equations
such as the Landau—Ginzburg equation for type-II superconductors and the
Schrodinger equation for particles with self-interactions. Practically, the effect
often is responsible for optical damage of transparent materials, is a limiting
factor in the design of high-power laser systems, and sometimes plays an
important role in the occurrence of other physical processes in a medium.

Although a complete solution of self-focusing and related effects reguires
extensive numerical cakulations, good physical understanding of the problem
can still be obtained from solutions with approximations based on experimen-
tal findings. This is the emphasis of our discussion in the present chapter.
Aside from self-focusing, there also exisi a number of other self-action phe-
nomena. Only self-defocusing, self-phase-modulation, and self-steepening are
briefly discussed here.

17.1 PHYSICAL DESCRIPTION

We hegin with a physical description of the self-focusing phenomenon. Briefly,
self-focusing is an induced lens effect. It results from wavefront distortion
inflicted on the beam by itself while traversing a nonlinear medium. Consider a
single-mode laser beam with a Gaussian transverse profile propagating inte a
medium with a refractive index x given by n = n, + An(|E|?), where An(|E|?) -
is the optical-field-induced refractive index change (see Chapter 16). If An is
positive, the central part of the beam having 2 higher intensity should experi-
ence a larger refractive index than the edge and therefore travel at a slower
velocity than the edge. Consequently, as the beam travels in the medium, the
original plane wavefront of the beam gets progressively more distorted, as seen

303
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Fig. 171 Distortion of the wavefront of a laser beam leading Lo self-focusing in a
nonlingar medium.

in Fig. 17.1. The distortion is similar to that imposed on the beam by a positive
lens. Since the optical ray propagation is in the directicn perpendicular to the
wavelront, the beam appears to focus by itself.

However, a beam with a finite cross section should also diffract. Only when
self-focusing is stronger than diffraction will the beam self-focus. Crudely
speaking, the self-focusing action is proportional to An(|E)?), while the
diffraction action is inversely proportional 1o the square of the beam radius.
Therefore, as the beam shrinks on self-focusing, both the sel{-focusing action
and the diffraction action become stronger. If the latter increases faster than
the former, then at some point diffraction overcomes self-focusing, and the
self-focused beam, after reaching a minimum cross section (the focal point),
should diffract. In many cases, however, the field-induced refractive index can
be approximated by An = n,|E|?, where , is a constant. Then, because [E| is
inversely proportional to the beam radius, the self-focusing action is always
stronger than the diffraction action if it is initially so. The beam may keep on
self-focusing until some other nonlinear optical effect sets in to terminate the
process. In such a case, the curnulative action of the nonlinear iterative effect
makes the beam shrink sharply and suddenly, as in Fig. 17.1. The focal point
and the focal distance (z;) are then well defined. Which nonlinear effect
actually sets in at the focal point ¢ terminate the self-focusing process depends
on the medium. It could be, for example, stimulated Raman scattering,
stimulated Brillouin scattering, two-photon absorption, or optical breakdown.

A special case of interest occurs when the self-focusing action and the
diffraction action on the input beam just balance each other. One would then
expect that the beam should propagate in the medium over a long distance
without any change in its beam diameter. This is known as self-trapping. In
practice, however, self-trapping in the above context is not a stable situation,
Any smalt loss of the laser power due to absorption or scattering can upset the
balance between self-focusing and diffraction and cause the beam to diffract.

As we shall see in Section 17.2, for self-focusing to be stronger than
diffraction, we must have Ar = 1 /k’a’, where k is the wavevector and a is the
beam radivs. Thus, for & ~ 1 mm, and k ~ 2 X 10* cm ™!, sell-focusing oceurs
only if Arn = 1077 esu. In most media, such a large &r can be induced only by
a laser intensity higher than several megawatts per square centimeter, normally
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Fig. 172 Image of small-scale filaments at the exit wiadows of a €S, cell created by
sell-focusing of 2 multimede laser beam. [After §. C. Abbi and H. Mahr, Phys. Rev.
Lert. 26, 604 (1971).]

achievable only with pulsed lasers. Self-focusing shouid then have a time
dependence resulting from the amplitude variation of the input laser pulse. Yet
il the response of the medium to the field can be considered as instantaneous,
the steady-state description of self-focusing is still applicable, except that the
focal distance now varies with time in response to the laser intensity variation.
This is known as quasi-steady-state self-focusing. If, however, the laser pulse-
width is shorter than or comparable to the response time of A#, then the time
variation of An also becomes impertant in self-focusing since propagation of
the leading part of the pulse can influence propagation of the lagging part. This
is the regime of transient self-focusing. A more detailed discussion en quasi-
steady-state and transient self-focusing witl be given later.

Askar'yan' first suggested the possibility of self-focusing due to An(|E|?).
Hercher” found, in early 1964, that by propagating a (-switched laser beam of
a few megawatts in a solid, one could obtain long threads of damage spots only
a few microns in diameter, Chiao et al.? soon proposed the self trapping model
10 explain the observation, assuming that the damage tracks were induced by




Fig. 173 Images of a self-focused single-mode
laser beam at the exit window of a toluene cell of
different cell lengths: (4} short celi length, beam
not yet seil-focused (~ 700 pm); (#) cell length
close 1o sell-focusing threshold, the self-focused
beam at nearly one-tenth of its original size (~ 50
am}; () cell lemgth above the self-focusing
threshold, the self-focused beam at its limiting size
—the filament (10 zm). [After Y. R. Shen, Prog.
Quani. Electron, 4, 3 (1973).]
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the self-trapped laser filaments. It was shown much later that the damage
tracks were actually due to time-varying self-focusing with moving focal
points.“5 In the meantime, stimuiated Raman scattering was discovered, but it
was found that in many solids and liguids, it had a very sharp threshold which
could not be explained by the usual theory of stimulated Raman scattering.® It
was then realized that stimulated Raman emission in such media was actually
initiated by seif-focusing at the focal point, and the sharp focusing of the
self-focusing process was the cause of the sharp onset for stimulated Raman
scattering.” Self-focusing can also account for many other observed anomalies
in stimulated Raman scattering.

Farlier photwographs of the self-focused beam in a Kerr liquid showed that
the beam shrank upen self-focusing and then broke into many filaments with
nearly constant diameters.® A typical example is shown in Fig. 17.2. Each
filament has a diameter of the order of 10 pm, which appears to be a
characteristic of the medium. That many filaments could result from self-focus-
ing of an apparently single-mode Gaussian beam was a surprising fact and
attracted a great deal of attention. Later, however, it was found that the
multiple filaments actually originated from the weak multimode structure in
the heam. When a truly single-mode laser was used, self-focusing of the beam
did lead 1o only one single filament, as shown in Fig. 17.3. Then the problem
remained interesting because the formation and the characteristics of the
filament were not understood. An important question was whether the ob-
served filament was a manifestation of the predicted self-trapping phenome-
non.? It turned out that the filament was simply the trajectory of the focal spot
in the time-varying self-focusing process achieved with a pulsed input.”!® We
discuss the filament problem in more detail in later sections, but first we
consider a more quantitative theory of self-focusing,

17.2 THEORY

The formal theory of self-focusing is fairly simple. It is described by the
nonlinear wave equation

V2E —(82/c23)|(n, + an)'E| =0 (17.1)

assuming that the medium is isetropic, the field is transverse, and the medium
response is instantaneous so that An(|£|?) does not depend explicitly on 1. In
this case, the differentiation in the wansverse direction is nennegligible, but
since the field amplitude is not expected to vary appreciably over a distance of
a wavelength, we can still use the slowly varying amplitude approximation.
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Then, for a quasi-monochromatic beam propagation along 2, (17.1) can be
reduced to a first-order partial differential equation in z and 2. The equation
<an be further simplified by eliminating 3/3¢ with the substitution of the
reduced time variable £ = ¢ — z/v,, where v, is the group velocity. Thus by
writing E = &£(r, 2, £)exp(ikz — iwt), (17.1) becomes

ard ol el _gpafdn
(r2kaz+vi]é’— 2% (nn}g (17.2)

where the beam profile is assumed to be circularly symmetric with » being the
radial coordinate. Both the absolute amplitude and the phase of the field are
expected to be functions of r, z, and {. with & = 4 exp(id), (17.2) can be split
into two coupled equations for the absolute amplitude A and the phase ;1!

ka_ﬂzAz =-v, (4v ¢) (17.32)

and

{17.3)

+2-

vid anj 0
kA4 g ’

a1 1k
oo+ 3p(va0r -4

Equation (17.3a) is an energy relation, while (17.3b} describes the ay trajec-
tory. Since the phase function ¢(r, z, £) actually represents the wavefront of
the beam, (17.3b) is a description of how the self-focusing action, represented
by 24n/ny, and the diffraction action, represented by A% A /k2d, distort the
wavefront. If a1 z = z, there is an exact balance of self-focusing and diffraction
such thai

2
A
ZQ.FVJ =

0 17.4
Ry kA (174)

for all », and if, in addition, the wavefront is flat at z, 50 that ¥, ¢ = 0, then
(17.3) yields #¢/9z = 0 and 94,/5z = 0 for z > z;. This is the self-trapping
case: the wave propagates in the mediem with a plane wavefront and a
constant transverse profile. The self-trapping solution of (17.4) for An = a,|E|?
can be obtained analytically.® However, it is rather unstable. A small deviation
of A(r, z} from the specific form of the self--trapping solution will cause the
beam to either self-focus or diffract, or partly self-focus and partly diffeact,
Equation (17.3b) has the same form as the Hamilton-Jacobi equaticn
#+ 35/3¢ = 0 in classical mechanics,'? where #= p?/2m + V is the Hamil-
tonian of a particle in a potential well ¥, and 5(g, p. t) is the Hamiltonian’s
principal fumction. In our case, ¢(r, z) plays the role of S, and z, r, k
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vorrespond 10 ¢, q, m, respectively, with (v | $)7 equivalent 1o p? and

2
V= —5( vid + g).

21 k4 g
Then, by knowing that the Hamilton-Jacobi equation should lead to the usual
equation of motion, md?g/d1* = 3V /dq, for the particle, we obtain similarly,
from (17.3b), the equation

H
EARSLIL S (17.5)

k%A fp

which governs the optical ray trajectory r as a function of 2.

The solution of (17.5) can therefore be perceived from the motien of a
particle in the potential well V. However, in our case, ¥ is known only if
A(r, 2} is known, assuming the function An() E|*) is specified, but .4(r, z} can
be obtained only by solving the coupled equations in (17.3). As an approxima-
tion, one can assume a certain functional form for A(r, z). This approximation
is found to be reascnable as long as ray bending during focusing is not
significant. For example, we can assume that the central part of the beam
fetaing its Gaussian profile as it propagates, but the beam radius varies with z:
this means, for 0 < r <« g

Alr, z) =A0,:T1JJexp[7m}, {17.6)

which is known as the paraxial or aberrationless approximation, Each ray
follows a trajectory with r/a = r,/a,, where r, and a, are the ray coordinate
and the beam radius at z = 0, respectively.

With A(r, z) given by (17.6), the potential ¥ takes the form

1 rt An
V= —k|- 420
[ kWt k%t ng )

Since r < ¢ in the paraxial approximation, we have

1 An
V(a) = —k(——kzaz +;;) (a7.7)
and (17.5) with #{z) replaced by a(z) can then be solved. One finds
k {da)? _
E(E) + ¥(a) = constant, (17.8)

which is analogous to the energy conservation relation of the particle case. The
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boundary conditions are & = @, and da/dz = (da/dz), at z = 0, and the focal
point corresponding to @ = 4., and da/dz = 0 appears al z = z,. The solu-
tiom of (17.5) or (17.8) can be written as

: =La{%[lf(ao) - ¥(a)] +(%)z}_1ﬂda‘. (17.9)
The focal length is then given by
a -1/1
zf=j; “”{%[V(a,,)— v{a)] +(%)z} da. (17.10)

We can understand physically how a beam self-focuses and diffracts by
resorting to the picture of a particle moving in a potential well. As seen in
(17.7), the potential ¥ is positive or negative depending on whether the
diffraction term 1/k2a? or the seli-focusing term Ar/ny dominates. If An is
sufficiently large, but gets saturated at high field intensities, then ¥ may have
the shape in Fig, 17.4. It shows that at large beam radius 2, and hence
relatively weak beam intensity, self-focusing may dominate over diffraction,
but as the beam radius shrinks and the beam intensity increases, An becomes
saturated and diffraction scon dominates. It is then easy to see, from the
analogy of a particle trapped in a well, that if the initial beam divergence or
convergence K da/dz )| (corresponding o the initial particle velocity) is smaller
than [— F(ay)/2k'/%, the beam will converge and diverge periodically be-

¥ia
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Fig. 174 A plot of ¥ as a function of beam radius. This iflustrates the analog between
self-focusing and motion of a particle in a potential well.
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tween @, and a,; (Fig. 17.4) as it propagates. The period can be determined
from (17.9). If, on the other hand, Kda/dz)e| > |- V(a,)/2k]'/%, then the
beam can never self-focus but will diffract to infinity, although it may first
focus if (da/dz), < 0.

In real experiments, however, saturation of An may not occur even in the
focal region. Other nonlinear optical effects often set in to affect self-focusing
long before the laser intensity reaches a level to saturate An. In fact, the
paraxial approximation used in the above derivation also breaks down in the
sharp focusing region in the common practical cases. Then, in reality, our
calculation here applies only to the prefocusing region with An = n,|E}2 In
such a case, for a Gaussian beam in the paraxial approximation r < a, the
potential ¥ takes the form

Kt om
(17.11)
~1hH_£
" ka® Py
where
242
_ Mt g nyca Ay
2'”] ARardr 3

is the laser power, and P, = cX’/8w%n,. Using the particle analogy, we
immediately see that self-focusing can occur only if P > P,. As long as the
initial beam divergence (k/2}da/dz)? is less than — ¥(ay,), the self-focusing
action is always stronger than the diffraction action, and the beam radius
should eventually reduce to zero. In the special case of P = P, we have V' = 0,
and if (da/dz}, = 0, the beam should propagate without a change in the beam
radius. This corresponds 1o the self-trapping case. With ¥ given in (17.11) the
integral of (17.9) yields

a’ P 222 day z |*
Loh-% +1+(—)— 17.12
@ ( Pu)klaa [ dz oﬂu] (17:12)

which shows how the beam radius reduces as a function of the propagation
distance z. The sharp focal point should appear at z = z; corresponding to
o =0. We find

_ kai/ V2
(P/Py— 1) — (kao/VZ Wdasdz )y

z; (17.13)
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If (da/dz), = 0, then it becomes

kai/ V2

=— 17.14
I prR - (714

The above solution obtained with the paraxial approximation is of course
valid only for ray propagation close to the beam axis. The more rigorous
solution of (17.3) can be obiained numerically on computers.’? [t is found that
for An = n,Ef and P > P, = (L.22A)%/128n,, ( P, i5 known as the critical

power for self-trapping®), the initially plane Gaussian beam can self-focus into
a sharp focal spot at'*

0.43ka?
7= Skay . (17.15)
12 3 1/2
{[(prr,)” —0852]" ~ 0.0219)

The relation between z, and (P/F,, is ploited in Fig. 17.5. For P > 1.2F_,

1515

1 330}

1,
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Fig. 17.5 Curve A describes the dependence of the self-focnsing distance on input
poewer; curve B is the asymptote of curve A at high powers; curve C describes o in
{17.17) as a function of the input power. (After Ref. 14.)
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{17.1%) can be approximated by the asymptotic form

(17.16)

_ K
9T p - 08RG

with K = 0.367kad/P,

In a Kerr liquid with n, ~ 107" esu, we find P, ~ 8 kW for a laser beam
with A ~ 5000 A The focal length z,is pmpomonal to the square of the initial
beam radius a(, For g, = 500 pm and P/F, = 1.5, we have z; = 31 cm. The
on-axis beam intensity as a function of z can also be calculated, and can be

approximated by
1) =V
ok [1 (Z[)] (17.17)

where o is a parameter depending on P as seen in Fig. 17.5.
In the quasi-steady-state case, the field amplitude &, and hence I and P, are
also functions of § = 1 — z/v,. Then (17.16) and (17.17) become

7t} = JP(_E osszﬁ {17.18)
and

I(Z, f) _ _ i 2]-a/2

el f2)]” 719

An immediate consequence of this time-dependent solution is that the focal
spot position, given by z;, should vary with time.**® This moving focus picture
describes the observed results of self-focusing of nanosecond laser pulses in
liguids very well, as we shall see in the following section.

17.3 QUASI-STEADY-STATE SELF-FOCUSING

For self-focusing of g-switched laser pulses in liquids, having the pulsewidth
{~ 10 nsec) much longer than the response time of the medivm {~ 10 psec),
the preceding discussion of quasi-steady-state self-focusing should apply. Being
a strongly nonlinear effect, self-focusing depends critically on the input beam
characteristics. Weak ripples on the otherwise smooth transverse profile may
get strongly amplified in the self-focusing process and lead to the breaking of
the beam into several independently self-focused sections. With n = ny +
n,|E|*, the critical size A below which a2 beam with intensity [ becomes
unstable against the transverse intensity variation can be estimated from the
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expression of 2,1

= (ﬂ )w - (17.20)

wl N (32ﬂm21}1/2 )

For n; ~ 107 esn, 7 ~ 50 MW /o, and A ~ 5000A, we find A ~ 10 pm.
The use of laser beams with relatively poor mode quality has led to the
observation of beam break-up and multiple filaments, The results then become
very difficult to interpret. To compare experiment with theory, therefore,
single-mode lasers must be used. We consider here only self-focusing of
single-mode laser pulses.

Self-Focusing in the Prefocal Region

Equation (17.19) describes self-focusing in the prefocal region in a2 medium
with 71 = ny + 1,|E|% It has been confirmed experimentally by measuring the
peak intensity on the beam axis as a function of 2. The shrinkage of the beam
radius due to self-focusing has also been observed (Fig. 17.3).

The polarization dependence of self-focusing is very interesting. It has been
found that the output from the focal region is always linearly polarized
irrespective of the input polarization. For a circularly polarized input beam,
the direction of the output polarization is random. This can be understood as
the result of nonlinear coupling between the two circularly polarized field
components via the field-induced refractive indices i the medium. 7 As shown
in (16.31), the field-induced refractive indices for the two circularly polarized
fields can be written as

An = {—2"1}[,-1|,L:1|2 + BIE ] (17.21)

For ordinary liquids, 4 — B = —2x{};, < 0. Therefore, if both circularly
pelarized ficlds are present, the weaker one sees a larger An and hence
self-focuses more readily until its intensity equals that of the other component.
The output then becomes linearly polarized. The abave argument applies even
to the case of a circularly polarized input beam, since, in practice, the beam
can never be perfectly circularly polarized. The quantitative analysis of this
self-focusing problem with mode coupling, however, has not yet been worked
out. ;

Filaments and Moving Foci

The self-focusing threshold for a given medium of length / is determined by the
condition z,(F..) =1/, where Py, is the peak power of the input pulse.
Equation (17.18) describing z, as a function of P, has been experimentally |
confirmed by measuring the self-focusing threshold powers at different .13
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We now consider what happens when the input peak power is above the
self-focusing threshold. In early experiments, it was found that after the beam
self-focused it broke into a number of intense thin filaments.®*® The multiple
filaments were the resull of the multimode structure in the input beam, as
mentioned earlier. It was shown later that a stngle-mode input laser actually
resulted in a single filament on the beam axis. For a given medium, the
filament had a diameter constant to within +20% and lasted over a distance of
a few centimerers. The intensity of the filament could be as high as a few tens
of gigawatts per square centimeter.

From the picture of quasi-steady-state self-focusing, one can perhaps realize
that the filament may correspond to the track of the moving focal spot as it
appears on a time-integrated photograph. That this is indeed the case has been
confirmed by motion pictures taken with streak camera.” The diameter of the
filament then corresponds to the diameter of the focal spot, and the filament
intensity to the intensity in the focal region,

We can obtain a better perspective of the moving-focus picture from Fig,
17.6. The upper U curve deseribes the position of the focal spot as a function
of time. It is constructed from the input pulse P(r) using (17.18) and assuming
K and P, are known.!® In practice, X and P, can be determined from the
measurements of z,( Py, ) versus Pp,.."* Experimental determination of the U
curve (at least partially} is also possible from some sort of time-of-flight
measurements of the moving focus.™ It has been found that the measured
curve agrees very well with the one calculated from (17.18). As seen from Fig.
17.6, the U curve has the following characteristics. If the length of the medium
1is sufficiently long, then the focal spot first appears at z, inside the medium.
It then splits into twe: one moves backward and then forward after it reaches
the minimum self-focusing distance z,4( 2, } corresponding to the peak of the
input pulse; the other moves forward with a velocity faster than light. Both
branches of the U curve have their slopes approach light velocity as z — co.
Note that the faster-than-light feature does not violate the special theory of
relativity because the focal spots appearing at different times actually come
from seli-focusing of different parts of the input pulse, and therefore the
“motion” of the focal spots does not transmit anything real. However, a strong

- polarization induced by the moving focal spot still appears in the medium and
* can have an apparent velocity faster than the light velocity. This is similar o
the case of Cerenkov radiation, but the problem has not yet been worked out.
- The unusual characteristics of the U curve for the moving focus lead to a
. number of interesting resuits.” First, the focal spot should spend a relatively
: long lim_e at a (P, ), a_nd‘hcnce op_tical damage is more likely at z,(Pmu_).
Indeed, in transparent liquids, laser-induced bubbles have been observed in
. this region. Second, when z,( F,,,,) is appreciably smaller than /, the light pulse
. diffracted from the filament within a few centimeters at the end of the cell has
4 very short pulsewidth, less than 100 psec for a nanosecond input pulse.
¥ Third, the high laser intensity (~ 10 GW /ent’) in the focal region readily
initiates other nonlinear optical processes. One is a strong phase modulation
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Distance in medium, Z {em)
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Fig. 176 Lower trace describes input power P{¥) as a function of time 7. Peak power
is 42.5 kW and the balf-widsh at the 1/e point is 1 nsec, Upper trace calculated from
(17.18) describes the position of the focal spot as a function of time. Values of
(8.852)2P,, and K used are § kW and 11.6 cm (kKW)'/?, respectively, which corresponds
roughly to an input beam of 400 gm in diameter propagating in C8;. The dotied lines,
with the slope equal to the light velocity, mdicate how light propogates in the medium
along the z-axis at various times. (After Ref. 22)

and a resultant spectral broadening on the light diffracted from the filament
region due to the large field-induced refractive index change An. We discuss
the problem in more detail in a later section. Another is the initiation of
stimulated Raman and Brillowin scattering, The stimulated scattering, in turn,
drastically affects self-focusing. The interplay between the two, which is most
intriguing and interesting, is discussed below.

The sharp stimulated Raman threshold in Kerr liquids (those in which An is
dominated by molecular reorientation) was a problem that attracted a great
deal of attention in the early development of nonlinear optics (See Section
10.6). We now understand that it results from self-focusing. The extremely high
laser intensity in the focal region readily initiates stimulated Raman and
Brillouin scattering. The sharp stimulated Raman and Erillouin thresholds
should therefore nearly coincide with the self-focusing threshold. The buildup
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of the Raman and Brillouin intensitics, however, depends on the characteristics
of the two stimulated scattering processes in the particular medium. ™
Stimulated Brillouin scattering has a large steady-state gain but a slow tran-
sient response (~ 10 nsec), whereas stimulated Raman scattering has a much
smaller steady-state gain but an almos! instantaneous response (~ 5 psec).
As the laser intensity increases upon self-focusing, the Brillouin scattering may
or may not appear earlier than the Raman scattering, depending on the
medium.

When the laser power is welt above the self-focusing threshold, the stimu-
lated Raman and Briflowin generation can be undersiood with the help of Fig.
17.7.22 The moving focal spot initiates both forward Raman and backward
Raman and Brillouin scattering along the U curve, The backward radiation
initiated from the lower branch of the U curve intersects with the incoming
laser light in the shaded region and gets effectively amplified. Since the Raman
scattering has an instantaneous response, it appears first, and its strong
amplification soon depletes the incoming laser power to a level below the
seli-focusing threshold. Termination of self-focusing then stops the Raman
radiation. As a result, the backward Raman output appeass in the form of an
intense subnanosecond pulse, #* as seen in Fig. 17.8, With the Raman emission
fading out, the incoming laser power recovers from depletion and reaches the
self-focusing threshold again. The backward Brillouin radiation then initiated
can have a larger transient gain than the Raman scattering. It builds up in
intensity and depletes the incoming laser power. Throngh self-adjustment, the
backward Brillouin scattering keeps the transmitted laser power just below the
self-focusing threshold. If the transmitted kaser power is too high or 1oo low,
the Brillouin scattering intensity would increase or decrease accordingly to
deplete more or less laser power. This explains the observations in Fig. 17.8
that after the sharp dip afflicted by the Raman gencration, the transmitied
laser pulse shows a depleted flat top, while the sum of the transmitted laser
power and the backward Brillouin power is equal to the incoming taser

Fig. 17.7 The interaction between backward stimu-
lated scattering and incoming laser radiation. Back-
ward stimulated Raman and Brillouin fadiation, ini-
tiated along the upper branch of the U-curve, propa-
gates along the dot-dashed lines and intesacts with the
son-self-focused incoming laser light in the shaded
region. [After Y. R. Shen Prog. Quant. Electron. 4,12

t (1975)]
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Fig. 17.8 Oscilloscope traces of the incident laser pulse (a), the total stmulated
emission in the backward direction {f), the backward stimulated Raman emission
alone (y), and the transmitted laser light {8). (After Ref. 24.)

power.” The depletion of the incoming laser power 1o a level below the
self-focusing threshold also terminates the moving focus or filament, Conse-
quently, the later portion of the lower branch of the U curve can never be
observed.

The forward stimutated Raman scattering can also be initiated in the
moving focal region. Figure 17.7 shows that its amplification is through
interaction with the diffracted laser light after the focal region, and therefore is
expected to be much smaller than the backward Raman amplification, This is
indeed the experimental observation.®® As the laser power or the medium
length increases further, the focal region becomes longer, and so does the
laser-Raman interaction length. As a result, the forward Raman output
increases steadily. It can eventually deplete nearly all the laser power in the
focat region. Then diffracted Raman, instead of laser light would show up in
that focal region, and the laser filament resulting from the moving focus along
the upper branch of the U curve would appear effectively terminated.”
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Other anomalous observations of stimulated Raman and Brillouin scattering
with self-focusing can also be successfully explained by the moving focus
picture. A more detailed description of the problem is given in Ref. 22.
Quantitative solution of the problem can in principle be obtained by solving
the coupled nonlinear wave equations for the laser, Raman, and Brillouin
fields. However, this is 2 horrendous job even with computers, and it has not
yet been seriously attempted.®

Not all experimental observations about the filaments in quasi-steady-state
self-focusing are understood. For example, the diameter of the filament of the
moving focal spot is presumably determined by the nonlinear processes ini-
tiated in the focal region, but how it can be a characteristic of the medium
independent of the input laser pulse is not clear. The finite relaxation time of
the field-induced refractive index can affect the difftaction of light from the
filament ¢specially when the focal spot has a velocity faster than light. The
quasi steady-state description of seif-focusing is clearly not valid for the focal
region. Transient dynamics with complications from other nonlinear optical
processes have not yet been worked out. Finally, the observation of Stokes and
anti-Stokes rings around the filament®” is yet to be explained by the moving-
focus model.

174 TRANSIENT SELF-FOCUSING

When the input laser pulsewidth is shorter than or comparable to the response
time of An, the time variation of Ar becomes important in the self-focusing
process. This is the transient self-focusing regime. We consider here the case
where An is caused predominantly by field-induced molecular reorientation,
and is governed by the Debye relaxation equation®®

d 1y, 1
(E+?)An—-‘;Anu (1-"'22)

where Any is a function of |E(r, t)[%, and in the lowest order, Az, is propor-
tional to |E(r, 1){?. Integration of (17.22) with E being a function of (r, £),
where £ = 1 — z/u,, yiclds

An(r, £} = %ffmA"u“E('- n)\z)exp[— @ldu. (17.23)

The transient self-focusing dynamics is then governed by the coupled equa-
tions (17.2) and (17.23). The solution has been attempted both analytically®®
and numerically.®-* Only a qualitative description is presented here.

Because of the transient response of An, the leading part of the laser pulse
can affect self-focusing of the trailing part. Figure 17.9 shows how the different
parts of the pulse would propagate in the medium.” The very first part (a in
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the figure) of the pulse sees little induced An, and diffracts almost linearty as it
propagates. The next part (b in the figure) sces somewhat larger An, but not
large enough to cause self-focusing, and therefore it still diffracts, although not
as strongly. Then, the c-f part of the pulse sees a sufficiently large An induced
by the earlier part of the pulse to be able to self-focus. However An is smaller
at larger z, so that the beam will eventually diffract. Both self-focusing and
diffraction of the c—f part of the pulse are fairly gradual and yield a relatively
long focus. The diameter of the focus depends on how large An is. The later
part of the pulse may see a larger An, and therefore sekf-focus at a shorter
distance to a smaller focal diameter, but its diffraction is still gradual because
of the stow diffraction of the leading part. In practice, it is likely that the
minimum diameter is limited by some other nonlinear process. When this
happens, the focal diameter is the same for a finite section of the input pulse,
as seen in Fig. 17.9. The above picture is actually an extension of the
moving-focus pictare, which it reduces to in the quasi-steady-state case.

From Fig. 17.9, we can see how the transverse profile of the pulse gets
deformed. As the trailing portion of the pulse shrinks due ¢ self-focusing, the
pulse quickly deforms into a horn shape. Because of the slow focusing and
diffraction, the horn-shaped pulse soon appears to have reached a stable form,
and then propagates on for a long distance without appreciable change in its
shape. This stable form of pulse propagation often is known as dynamic
trapping. The neck part of the pulse sweeping along the axis should lead to the
appearance of a fitament on a time-integrated photograph. The horn-shaped
pulse gradually expands in the transverse dimension through diffraction and
vields a filament with a fading end if the length of the medium is sufficiently
long.
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Fig. 179 Self-focusing of a picosecond pulse in a Kerr liquid, Different parts (a, b, ¢,
etc.) of the pulse focus and defocus along different ray paths. The pulse first gets
deformed into a homn shape and then propogates on without much further change.
tAfter Y. R. Shen, Prog. Quant. Electron, 4, 27 (1973).]
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Transient seli-focusing with filament formation can be readily observed with
picosecond laser pulses in Kerr liquids’® Quantitative measurements with
picosecond pulses (o verify the dynamic trapping picture are, however, difficult
because of limitations of picosecond technotogy. It turns cut that in isotropic
liquid crystals the response time of An can be varied from a few nanoseconds
to a few hundred nanoseconds by simply varying the temperature.”® Then,
with the same nanosecond pulses, one can study self-focusing from the
transient 1o the quasi-steady-state kimit.”* In the transient case, it was shown
by measuring the on-axis intensity variation of the output that the self-focused
laser beam indeed deformed into a horn-shaped pulse.’” The neck diameter
remeined akmost constant over a fairly long distance. The dynamic trapping
model is therefore well proven. In the above case, the limiting neck diameter
did not result from stimulated Raman and Brillouin scattering but presumably
from two-photon absorption in the focal region.

175 SELF-FOCUSING IN A SOLID

Self-focusing can abso occur in a solid and leave a damage track.” Careful
experimental study has shown that the damage has the foilowing characteris-
ties.* The damage track appears as a cylindrical region of altered refractive
index, a few microns in diameter, straight to within an rms deviation of one
wavelength, and several centimeters in length. It starts with a damage star and
may terminate before it reaches the exit end of the sample, Track formation is
characterized by a flash of white light emission from the track, an increase of
divergence of the transmitted laser beam, and a short pulse of backward
stimulated Brillovin radiation.

For a Q-switched input laser pulse, electrostriction is the dominant mecha-
nism for the induced Arn in most solids. The equation governing Ax is simply
the acoustic wave equation (Section 16.2),

2% =t o Y g2
WAt g ar v (ZW‘E‘ ) {17.24)

2
Ua

, 1 32+2n,6)A _1

Because of the slow response of An in this case, self-focusing falls into the
transient regime. The self-focusing dynamics is given by the solution of the
coupled equations (17.2) and(17.24). This has actually been carried out numeri-
cally by Kerr.® Qualitatively, the transient focusing behavior described in Fig.
17.9 should still be true here, The difference is in the fact that when the
intensity of the self-focused beam reaches a certain value at a local spot,
optical damage occurs there and effectively terminates self-focusing of the
beam beyond that spot. The self-focused beam is strongly diffracted from the
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damage spot, and therefore the horn-shaped pulse seen in Fig, 17.9 cannot be
formed. The picture then resembles more the moving-focus picture, except that
the damage spot now plays the role of the moving focus. The trajectory of this
well-defined damage spot can be determined if the axial intensity variatien
with time can be calculated. As seen from Fig. 17.9, the damage spot resulting
from transient self-focusing is expected to move in the backward direction.
The above qualitative features have been confirmed by experiment.’® The
damage spot marked by the emission of white light can be followed with a
streak camera. An example is seen in Fig. 17.10. The damage spot indeed
moves in the backward direction. It reaches the end of the track around the
peak of the input pulse, and stays there for a relatively long time, with the laser
input continuously feeding ¢nergy inio this region and creating a damage star.
Although the understanding of self-focusing in solids appears to be satisfac-
tory, experimental investigation so far has not been extensive. For example,
self-focusing in semiconductors has seldom been studied. In order for self-
focusing 1o be strong enough to cause optical damage in a solid, the solid must
be longer than a thresheld length. The thickness of an optical window
frequently is smaller than this length. Optical damages in thin windows, in

x'o ns
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Fig. 17.1¢ Typical example of (a) damage filament, (5) streak photograph, and ()
ascilloscope trace for a smooth incident pulse. (Alter Ref. 36.}
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absorbing materials, and on surfaces are generally not related te self-focusing.
(See Section 27.3)

17.6 OTHER SELF-FOCUSING PHENOMENA

Self-focusing in gases is also observable if the incoming laser beam has a
frequency slightly above an ebsorption line so that An 1s positive and suffi-
ciently large.” This has been seen, for example, with a Raman-shifted pulsed
ruby laser in potassium vapor,” and a pulsed CO, laser in SF.* Even
self-focusing of a CW laser beam has been observed in potassium vapor.
Under suitable conditions, the self-focused beam is found to funrel into a
trapped filament.*® This particular case of steady-state self-focusing is different
from the previous cases we discussed, since An is now dependent on atomic
diffusion; also, the optical energy in the self-focused beam is partially lost
through atomic excitation, relaxation, and diffusion. The theory of such a CW
self-focusing case has not yet been worked out.

A similar CW self-focusing has been observed in a liquid with colloidal
suspension of submicron spheres.*® The induced Ar in this case arises from the
field-induced density increase of the colloidal spheres, This case is somewhat
similar to electrostrictive self-focusing and is different from the atomic case in
the sense that no optical energy of the self-focused beam is lost into the
medium.

Another CW self-focusing case of similar behavior is in a slightly absorbing
solid.#* This happens when a positive An arises from heating of the medium
through opticat absorption

n

An=aT

) [ d0p
AT+( app)r( - )AT. (17.25)

The first term can be positive if the temperature rise shifts the absorption
bands in such a way as to increase An. The second term, however, is always
negative with increasing AT. If the resultant An of (17.25) is still positive, then
self-focusing can occur. This is known as thermal self-focusing. Actually, both
transient and steady-state thermal self-focusing have been observed. An exam-
ple of CW thermal self-focusing with the formation of a trapped filament is
seen in Fig. 17.11.4

Optical damage caused by sell-focusing in a laser amplifier is now well
recognized as a limiting factor in the design of high-power laser systems. Yet it
is ironic that so far, little research has been done on self-focusing in an
amplifying medium, Fleck and Layne** performed a numerical calculation on
the problem. Quantitative experimental resuits, however, are net yet available
to check the theory.
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Fig. 17.11 Thermal self-focusing of an argon laser beam inside a lead glass rod
(f = 35 cm) with input power {@) Py = 3 W and (&) P, = 8 W. Part of the self-focused
beam funnels inte a trapped filament. (After Ref. 41.)

17.7 SELF-PHASE MODULATION

In quasi-steady-state and transient self-focusing, a very interesting observation
which we have not yet discussed is the appearance of strong spectral broaden-
ing of light emitted from the filament regions.* With a nonosecond input
pulse, the broadening can be several tens of inverse centimeters, while with a
picosecond input pulse, it can be more than several thousand, An example is
shown in Fig. 17.12. The result is at least partially due to self-induced phase
modulation on the self-focused beam.

Let us first consider the effect with a simple model.** Assume a laser pulse
|E(1)|® propagating in a self-trapped filament of length L If &» in the filament
has an instantaneous response An(r) = ny|E(#}f?, then the output from the
filament has a self-phase modulation A¢(1) = (w/c)Ar{1) = (w/e)n, | E(O[*
and a corresponding frequency modulation Aw(¢) = —8(A¢)/ 2, which ap-
pears as a broadened spectrum. More rigorously, the output spectrum is given
by the Fourier transform

" 2
|E{«)> = J; @'(l)e'“““““‘”dtl (17.26)

which in the slowly varying approximation can be evaluated with £(¢) outside

Fig. 17.12 Obscrved spectral broadenmg 1n & mixiure of C5, and benzens with a
multimode Q-switched ruby laser pulse, [After T. K. Gustafson, J. P. E. Taran, H. A,
Haus, J. R. Lifsitz, and P. L. Kelley, Phys. Rev. 177, 306 (1969).]
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the integral. If A¢(r) < |E(¢)[* is an ordinary bell-shaped pulse as in Fig.
17.13, then, qualitatively, the output spectrum can be expected to have the
following characteristics. First, since Ap{ () is symmetric, the power spectrum is
also symmetric with respect to the incoming laser frequency w,. Second, the
maximum of the frequency spread is given approximately by |Aw|.. =
|3 &)/ M| pas, Wwhich appears at the inflection points of the Ad(r) curve.
Third, there generatly exist two points of the same slope on the A¢(r) curve,
These two peints, crudely speaking, represent two waves of the same frequency
but different phases. They will interfere constructively or destructively depend-
ing on the phase difference between them. The output spectrum should
therefore show a semiperiodic structure with clear peaks and valleys. The
farthest peaks on the two sides, arising from the infiection point on the A¢(7)
curve, are the strongest. The number of peaks on either side is approximately
given by the integer closest to but smatler than |#(Ad)/dr], . /2. In Fig.
17.13a, such a spectrum is shown corresponding to the A¢(r) curve given, If
An has a relaxation time comparable to the pulsewidth, then the transient
response of Ar yields a A¢(¢) with a long tail (Fig. 17. 13b). Consequently, the
spectral broadening on the anti-Stokes side is greatly reduced.

Thus it is clear that the kind of phase modulation shown in Fig. 17.13 can
lead to semiperiedic spectral broadening. Self-trapping of a laser pulse, how-
ever, is only an ideal case. We must show that the output from the moving
focus can be similarly phase-modulated in order to explain the observed
spectral broadening in quasi-steady-state self-focusing.’® Let us assume that
the medium length 7 is much lasger than the minimum self-focusing distance
2{ Prps). As shown in Fig. 17.14, the beam entering the medium at 1,
self-focused sharply at A and leaves the medium at A" If we know how the
beam self-focuses a1 various times, then |E(z, 1)} can be calculated. [n
practice, although the detailed shape of |E(z, 7)|* at a given z is not known
without a real calculation, we know that the pulsewidth of | E(z, £)|* must be of
the order of the relaxation time 7 for Aa. [t cannot be much shorter because
the ohserved An in the focal region is not much less than the steady-state value
An o = 13 E(z, )|, It cannot be much longer since otherwise the nearly
steady-state response of An would lead to a sharper focusing and hence a
pulsewidth smaller than 7, contrary to the assumption. In Fig. 17.14 the
hatched area indicates the region of large | E|%, where one also expects a large
An, which can be calculated from (17.22) assuming |£(z, 1)|* is known. Note
that = for molecular reorientation in a liquid is of the order of 10 psec, It is
then easily seen from Fig. 17.14 that the output from the filament region at the
end of the medium is strongly phase-modulated, because the beams entering
the medium at different times cross different sections of the hatched area.

The phase increment of the self-focused beam traversing the medium can be
WwrLlten as

A.p[z::,, +%”)=L’[%)An(z.r=u +%]dz 17.27)



=]

Ag {normalized}

0 4 g 12 16 20
Time (psec)

=300 -200 -100 ] 100 200 360

N 1.0 — T
E -
= -
g
5 -
=
P
< I
1
o} 4 8 12 16 20 24 28
Time {psec}
T
! |
=300 -200 -100 0 100 00 300
A w=wy—wlem T}
ik

Fig. 17.13 Theoretical power spectrum obtained from self-phase modulation of a
pulse propagating in a nonlinear medium without any change of its shape. (a}
Spectrum corresponding to a phase modulation 4¢ symmetric in rise and fall; (5)
spectrum corresponding to a phase modulation A¢ with a much sharper leading than
falling edge.
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Fig, 17.14 A U-curve describing the moving focus.
The refractive index change Am is appreciable in the
hatched region, which has a width of about a few
relaxation times. Light traversing the cell along the
dashed line acquires a phasc increment A¢, which
varies with time . [After Y. R. Shen, Prog. Quant.
Efectron. 4, 18 (1975).

where for simplicity, we neglect the diffraction contribution to A¢. Qualita-
tively, A¢(?) increases to its maximum during the presence of the pulse
{E(, £)]? in a time of the order of 7, and then decays away much more slowly,
similar to the curve in Fig. 17.134. The corresponding asymmetrically broad-
ened spectrum is indeed what was observed experimentally. The maximum
broadening on the Stokes side can be obtained analytically with a simple
approximation as follows. We approximate the last portion of the U curve
toward the end of the medium in Fig. 17.14 by a straight Yine with a slope
v > ¢/n, Then, the light emitted from the hatched section at z = / has the
phase increment.

So = (”“)( ) fAn(z’:)dt’ (17.28)

¢

where ¢, is a time before which An(/, ¢,} is negligible. From (17.16) we can find

(5737] Iz L 4PG) (17.29)

¢ r & | popin

The maximum spectral broadening on the Stokes side then is given by
- @)
Awgy,, = ( Fral

(2

As an example,* consider an input Gaussian pulse with a full width of 1.2
nsec at the 1 /e points, a beam dismeter of 300 pm, and a peak power of 28
kW self-focused in a 20-cm cell of CS,. The trajectory of the moving focus is
described by (17.16) with K = 5.6 cm(kW)/2 and P,, = 8.65 kw. The part of
the input pulse that self-focuses at the end of the cell has the instantaneous
input power P(z; = ) = 9.8 kW. The diameter of the filament in C8; is 5 pm,
which leads to a An,, ~ 2.5 X 107 esu in the focal region at the end of the
cell, Then, from (17.29) and (17.30), we immediately find Aw,__ /o, = 0.0076,

(17.30)
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or Aw,, =110 em™* for a ruby laser input. Equation (17.30) has been
experimentally verified.*

For the case of transient self-focusing of picosecond pulses in a Kerr liquid,
the dynamic trapping picture of Fig. 17.9 should be used. Again, it is clear
from the picture of ray propagation in Fig. 17.9 that the laser light emerging
from the axial region at the end of the medium must be strongly phase-mod-
ulated. Assuming a given intensily distribution of the hom-shaped pulse, we
can calculate Ar{z, 1) and hence A¢(¢) of the emitted light. In this case, A,
can be very large because of a long dynamic trapping length, while the rise and
fafl of Ag(z) are still on the picesecond time scale. The spectral broadening can
{herefore extend over several hundred or perhaps even a few thousand cm ™1, Tt
is also semiperiodic and may have a strong broadening on the anti-Stokes side
if the fall time of Ag(r} is short.

In many cases, however, focusing of a high-intensity picosecond pulse into a
liquid or solid with little molecular reorientaticnal contribution o An can still
vield an output with a huge spectral broadening extending more than a few
theusand cm ™! on both the Siokes and anti-Stokes sides.*” Self-phase modula-
tion could also be the cause of this spectral broadening, as photopreionization
could lead to a fast and strong self-phase modulation.*® However, it has also
been suggested that wave mixing*® could be responsible for the broadening.
The broadband emission is in the form of a picosecond pulse. It can therefore
be used in picosecond spectroscopy as a tunable picosecend source, In another
application, an ultrashort pulse can be self-phase-modulated in & nonlinear
medium. It can then be reflected from a pair of gratings acting as a pulse
compressor for the phase-modulated light to yield a much shorter pulse.
Compression of a 90-femtosecond puise to a 30-fsec pulse has been demon-
strated. ™

Self-phase-modulation in space on the transverse profile of a beam is also
possible. It appears as a distortion on the wavefront and leads to self-focusing
if the medium is sufficiently long. In a thin medium, strong self-phase modula-
tien can still oecur, but physical shrinkage of the beam inside the medium due
1o self-focusing is hardly visible. The case is then analogous to that of
self-phase-modulation in time. For a beam with a Gaussian-like transverse
profile, the phase increment A¢(r) across the beam profile has a bell shape
centered at r = 0. If {A¢(7)] 44 I8 much larger than 2=, then the cutpul power
spectrum in the transverse wavevector &, space should show peaks and valleys
resulting from constructive and destructive interferences. They appear in the
form of interference rings on a projection screen. The number of bright rings is
approximately given by the integer closest to but smaller than [Ad(r M/ 27
and the diameter of the outermost ring is determined from the maximum slope
of Aé(r} at the inflection point. Such an effect has actually been demonstrated
in a nematic liquid crystal flm.** A large An can be induced in this kind of
media with a CW laser beam of several hundred watts per square centimeter
(see Section 16.2). A maximum of A of several tens of 2w radians can be
readily obtained in a nematic film several hundred micrometers thick. Inter-
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Fig. 17.15 Diffraction ring paitern of a CW Ar™ laser beam after passing through a
300-pm nematic liquid crystal film. (After Ref. 51.)

ference rings up to — 100 have in fact been observed. An example is shown in
Fig. 17.15.

178 SELF-STEEPENING AND SELF-DEFOCUSING

This section considers only a physical description of the self-steepening and
self-defocusing effects. Readers are referred to the literature for details on these
subjects.

Self-steepening of a pulse occurs when the group velocity of light depends
on the light intensity through the induced Arn.* If An is positive and has an
instantaneous response, then a light velocity that decreases with laser intensity
can lead 1o the formation of a steep front in the trailing edge of the pulse,
resembling the usual shock wave formation. If A is negative, the steep front
can be developed in the leading edge of the pulse. This type of self-steepening
relying enly on the intensity-dependent An has never been observed. however.
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Fig. 1716 Thermal defocusing of an argon laser beam. Dependence of beam diver-
gence on laser power in a water cell, { = 44 cm, with different attgnuation constants a.
(After Ref. 57.)

1t turns out that if the group velocity also has a linear dispersion, for example,
when the laser frequency is near an absorption band, self-steepening can be
expected to oceur in a much. shorter propagation distance. This is because
self-phase modulation alse occurs in the medium and modifies the frequency
spectrum of the pulse. The pulse then reshapes according to the linear
dispersion of the group velocity. Self-sieepening has indeed been observed in
Rb vapor with a pulsed dye laser at a frequency slightly below the 5 — p
transition. The results agree well with the theoretical prediction.”
Self-defocusing can occur if An decreases with increase of laser intensity
since the wavefront distortion is now opposite to that in the self-focusing
case.* This happens when the incoming laser frequency is somewhat below a
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Fig. 17.17 Output power of a thermally defocused beam through an aperture as a
function of the input power from an Ar* laser at 4880 A, The inset shows the
power-limiting device. TL is the thermal lens, A is the aperture, and D is the detector.
{After Ref. 59.)

o



References kil

resonant absorption line. More commonly, it happens in absorbing media with
dn/dT < 0. Self-defocusing from a laser-induced thermal effect is also known
as thermal defocusing. Physically self-defocusing is similar to self-focusing
excepl that the wavefront distortion is inverted. In the more quantitative
discussion, however, one finds that unlike the self-focusing case, geormetric
aptics can be used to describe self-defocusing, since the beam diffraction is
always fairly gradual >® The nonlinear mediumn acts as a thin or thick divergent
lens depending on whether the absorption is weak or strong. Because the phase
change across a Gaussian-like beam profile is also a bell-shaped curve centered
at ¢ = 0, interference rings can also be observed if |A¢(r)| ., is much larger
than 27.%

Thermal defocusing is readily detectable even in a very weakly absorbing
medium. Figure 17.16 shows an example of how the beam divergence depends
on the input power and absorption cocfficient.’” The high sensitivity of the
beam divergence to small absorption in the medium has prompted the use of
thermal self-defocusing as a spectroscopy method ™ Absorption coefficients
smaller than 10~° can be routinely measured. Another application of therma!
defocusing is the construction of a laser power limiter,” as seen in Fig. 17.17.
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Multiphoton Spectroscopy

Among the many laser spectroscopic techniques that have revolutionized the
optical spectroscopy feld, multiphoton spectroscopy is certainly one of the
maost important, It allows one to probe excited states that cannot be reached by
one-photon transitions. Through multiphoton processes, transitions between
excited states can also be studied. In previous chapters, two-photon and
Raman spectroscopies have been discussed. Being special cases of multiphoton
spectroscopy, they share many of the general features of multiphoton spectros-
copy. In this chapter, aside from a general discussion of the technique,
applications of multiphoton spectroscopy are emphasized.

18.1 GENERAL CONSIDERATIONS

Multiphaton spectroscopy is based on the fact that with high-intensity lasers
available, multiphoton transitions can be induced with high probabilities and
are readily detectable. Let the transition probability for the n-photon transition -
from |g) to | £} in Fig. 18.1 be

W = g (w0} L(w,)/ ke, - w, {18.1}

where o' is the cross section [we assume, for simplicity, that ¢ is scalar] and
I.{1w;) the laser intensity at ;. The population excitation into the excited state,
Py — By, is then governed by the equation

] 1 .
(E+"ﬁ)(pf1‘p?[}: W (pgp = pyy) (18.2)

the solution of which is straightforward if W™ is small so that the population
difference (p,, — py,) on the right-hand side of (18.2) can be approximated by

334
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£ Fig. 18.1 Multiphoton transitien from {g| 1o (| (a) A single-step 4-photon process;
£ (B) a 3-step 4-photon process.

the thermal equilibrium value p), — gfy. In the steady-state case,

— a0 " 0 _ 0
o= o= WL (e, — )

(18.3)
= g F - [ﬂ(pgg _ p}’j)/h"wl o
The excitation can certainly be large if /*' and /; - - - I, are large.

The expression for the multiphoton excitation cross section ™ can be
obtained from the mih-order perturbation calculation. We onky describe it
qualitatively here. It is propertional to |Af* with 4 cortaining many terms.
Each term has, in the numerator, n mairix elements connecting the initial and
final states through a number of immediate states and, in the denominator,
{n — 1) appropriate frequency factors. One can easily show that, off resonance,

| *0 /0] ~ (2/¢)halx /X Vi,

Then, in the visible range, with [x@"+D /%" B} ~ 107'*, we find |a=* b gt
~ 10~ *, The (n + 1)-photon excitation is 10~% times smaller than the n-pho-
ton excitation if o("* I /hw ~ 107%™, This would require a laser intensity
I ~ 1 GW /co?. The above estimate shows why high-intensity lasers are often
needed for multiphoton excitations. The cross section o'” can be strongly
enhanced by resonances with intermediate states. Resonant enhancement by
many orders of magnitude is possible in atoms and malecules. it then greatly
reduces the laser intensity requirement for multiphoton excitations.
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Equation (18.2} is actually valid only for an a-photon transition sufficiently
far away from intermediate resonances. Such a process is often known as a
single-step n-photon transition (process a in Fig. 18.1). On the other hand, if m
intermediate resonances oceur in the n-photon process (process b in Fig, 18.1),
then the population excitation into the final state depends also on the popula-
tions pumped into the intermediate states. It is governed by the set of
equations

[ 1 .
(Br T, }(Pf; D,',r) = an',?+lj(pmm— P/j},

3.1 \
(;+};)(pmrpﬂm) WA (Pt 1 = )

n 15.4
- W.f:,f"](f-"mm - P//}’ (18.4)

i]
(E)(Pu B P(ﬁ) W(NI)(psx - pll) - u/]i'ﬂzz)(pn - o)

assuming that the population relaxation for each level can be described by a
single longiludinal relaxation time Ty, Here, p, with i=1,..., m is the
population in the ith resonant intermediate state, W‘"u’ is the n,-photon
transition probability from i) o |/}, and n) + n, + -+« + 7., = . Such
an r-photon process with m intermediate resonances is often known as an
(m + 1)-step n-photon transition. In general, the stepwise excitation greatly
increases the population excitation into the final state. This is especially true if
the relaxation times of the intermediate states are long The excitation is
usually a complex function of the input laser intensities. With pulsed lasers, the
transient response complicates the matter even further,

For multiphoton spectroscopy, however, the quantitative dependence of
excitation on laser intensities is often not so important. We are more interested
in the resonant feature of (o — pﬂ) as a function of the laser frequencies. The
experimental problem involved is mainly how (p,, — pff) can be detected.

In this chapter we concentrate on atomic and molecular systems. Multipho-
ton transitions with » > 2 seldom have been studied in solids because the high
laser intensity needed for multiphoton excitation tends to optically damage the
medium. On the other hand, it also seems to be true that not much new
information about the electronic propemes of a solid can be expected from
multiphoton spectroscopy with # = 3.

An interesting aspect of multiphoton spectroscopy applied to gas systems is
its ability to yield Doppler-free spectra, This has already beenr discussed in
detail in Section 13.4 for the two-photon case. The discussion there can be
extended to the multiphoton case in gencral: a Doppler-free n-photon spec-
trum can be observed if the wavevectors of the pump waves obey the relation
k + -+ k, =0
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18.2 EXPERIMENTAL TECHNIQUES

Multiphoton spectroscopy requires one or more high-intensity tunable lasers,
CW or pulsed, as the excitation sources. Tts resolution, assuming Doppler-free,
is usually limited by the laser linewidths, Detection of multiphoton excitation
is most important in multiphoton spectroscopy. Since the excitation is usually
weak, the detection method must be extremely sensitive. A number of such
methods have been developed, and they were discussed briefly in Chapter 12.
Among them, the most commonly used are the fluorescence and ionization
techniques.

Multiphoton-Induced Fluorescence Spectroscopy

The fluorescence yields of atoms and molecules can be very high because,
without collisions, an excited atom or molecule would only decay to lower-
encrgy states by emission of photons. If the fluorescence is in the visible, the
sensitivity of detection can also be high, A photomultiplier can easily detect 2
few photons per second in the CW case or per pulse in the pulsed case. Assume
that the fluorescence quantum yield of a gas system is close to 1, Then, with a
photomultiplier collecting the fluorescence emitted over a # steradian from a
local excitation region, roughly 10-20 excited atoms or molecules in that
region can be detected without much difficulty, The sensitivity is » times better
if gach atom or molecule emits # fluorescent photons during the single-pulse
excitation or per second in the CW case. This therefore shows that Buorescence
detection can be a very sensitive technique for probing multiphoton excitation
(Fig, 18.2).

Aside from its sensitivity, the method can also yield a fluorescence specirum
initiating from the multiphoton-pumped excited state. One can again use the
polarization-tabeling technique discussed in Section 13.5 to selectively pump
the excited state and hence obtain a greatly simplified fluorescence spectrum.
The properties of various excited states can then be learned by analyziag the
spectrum in accordance with the transitions between the excited states. The
detection of n-photon-induced fluorescence therefore allows us to probe states
that can be reached only by (# + 1)-photon transitions.

Multiphoton lonization Spectroscopy

A more sensitive method 10 detect multiphoton excitation, when applicable, is
the ionization method, because the detection of electrons and ions can be
extremely sensitive, The noise of an ion detector can easily be less than 1 ion
per minute, Therefore, if all the multiphoton-excited atoms or melecules can be
ionized before they relax to lower-energy states, and if all the ions can be
collected by the detector, then the sensitivity of the method is limited only by
the detector noise, namely, ~ 1 excited atom or molecule per minute,
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Fig. 18.2 Schematic describing the flourescence and jonization processes for detection
of a multiphoton transition.

Several techniques are commonly wsed for ionization of the excited atoms
(or molecules). One is the photoionization method, where the excited atom is
ionized by a laser beam with photon energy sufficiently large to pump the atom
above the ionization level {Fig. 18.2). The pump intensity has to be strong for
the ionization rate from the excited state to exceed the decay rate. Excitation to
discrete states instead of continuum above the ionization level can greatly
enhance the ionization probability. This method is frequently used for ioniza-
tion of excited molecules. It is most convenient when one of the strong laser
beams used for mutliphoton excitation can also be used for photoionization,

The dc field ionization method also is frequently used. It is well known that
in the presence of an external dc electric field, the potential curve seen by the
electrons in an atom (or molecule) is distorted; the ionization energy is
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lowered, and ionization through electron tunneling out of the atom becomes
possible. For a sufficiently highly excited atom in a sufficiently strong dc field,
the ionization rate can be much higher than the decay rate of the excited atom.
The ionization probability can then be close to 1. This method is most useful
for detecting atoms in high Rydberg states.

Excited atoms or molecules can also be ionized through collisions. The
ionization rate depends on the gas pressure, the excited state and its position
relative to the ionization level, the fraction of excited atoms, and so on. In
general, for collision ionization to be effective, the gas pressure has to be
sufficiently high. This method is useful for ionization of atoms in a gas cell.

Ton detectors can be simple or sophisticated depending on the experimental
requirement. Flectron multipliers and proportional counters are the two well
known examples. Figure 18.3 shows a very simple, but sensitive arrangement
for detection of ions in a gas cell.! The ionization probe in the cell consists of a
metal wire negatively biased with respect to the grounded metal cell wall.
Thermionic emission from the metal wire causes the formation of a space-charge
region around the wire, and leads to a space-charge-limited current, as in the
case of space-charge-limited thermionic diode tube. The ions created in the cell
drift toward the metal wire. In an attempt to neutralize the ions, electrons in
the space-charge region are attracted toward the ions. They induce a current
change many orders of magnitude (> 10°) larger than the one expected from
the ion flow. This large current amplification results in 2 high sensitivity of ion
detection. The signal appears as a voltage drop across the load resistance. The
bias voltage needed in this case is only ~ 1 V. To avoid the dc Stark effect on
the atomic or molecular spectrum, the ionization region can be shielded from
the space-charge region by a grid which makes the ionization region field-free
but allows the ions to drift into the space-charge region. Because of its
simplicity, this ion detection scheme has now been widely adopied for multi-
photon spectroscopy In & gas cefl.
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Fig. 183 A simple experimental setup for multiphoton ionization speciroscopy. [After
P. Esherick, 1. J. Wynne, and J. A. Armstrong, in J. L. Hall and I. L. Carlsten, eds.,
Laser Spectroscopy I (Springer-Verlag, Berlin, 1977), p.170]
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183 SPECTROSCOPIC APPLICATIONS

Multiphoton spectroscopy enables us to study excited states and transitions
berween excited states which cannot be reached by single-photon excitations.
For example, in alkali atoms, the excited states, (n's), {(nd), (n'f), etc., can be
probed by multiphoton excitations, and so can the excited siates (ns)¥nr'’s),
(rsXn'd), (rpXn'd), etc., of the alkali earth atoms. The results are important
for further development of the quantum theory of these simple atoms. In the
case of alkali earth atoms, the experimental data have provided a stringent test
on the multichannel quantum defect theory. Mulliphoton spectra of other
multielectron atoms are also interesting, although the theory for such atoms is
less well developed. In the field of melecular spectroscopy, multiphoton
spectroscopy also forms a new branch. It yields most valuable information
about the energy level structures of molecules and the properties of molecules
in the excited states.

In this section, instead of general discussion on the countless applications of
multiphoton spectroscopy, we concentrate on applications to the studies of
Rydberg atoms and autoionization states. These examples can help to illustrate
the power and usefulness of the multiphoton spectroscopic technique.

Rydberg Atoms

Rydberg atoms are defined here as atoms in highly excited Rydberg states.”
They have very different characteristics from normal atoms. As shown in Table
18.1. the excited electron in a Rydberg atom has an orbital radius roughly
equal 10 n’g, where n is the principal quantum number and &, is the Bohr
radius. For hydrogen with n = 50, this radius is 2500 ay ~ 1000 A, which is
almost a macroscopic size. The corresponding geometric cross section is
6 X 10° times larger than the ground-state hydrogen atom. The excited elec-
tron of the Rydberg atom is then only very weakly bound to the core, and can
be casily perturbed by external fields. The radiative lifetime of the highly
excited electron (which is also the lifetime of the particular Rydberg atom),
however, varies as n°. Becanse of the large excited electron orbits, the transi-
tion probability between 1wo neighboring Rydberg states of large n is very
high. Interaction between Rydherg atoms is also expected to be extremely
strong,

The extraordinary properties of Rydberg atoms render the studies of
Rydberg atoms most interesting. From the fundamental physics point of view,
accurate measurements of energies, lifetimes, ionization probabilities, Stark
and Zeeman effects, and so on, allow the determination of many atomic
parameters such as core polarizability, configuration interactions, and fine
structure splittings. These parameters can be caleulated with good approxima-
tions, and therefore the experimental measurements provide a meaningful test
of the theories. On the other hand, it is easy to have a Rydberg atom subject to
an external perturbation which is stronger than its electron binding energy.
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Table 18.1

Properties of Rydberg Atoms®
Property r dependence Na(10d)
Binding energy n? 0.14ey
Energy between adjacent » states n? 0.023 eV
Orbital radius n* 147 a,
Geometric cross section n 68000 o2
Dipole moment {nd|rinf n? 143 a,
Polarizability " 0.21 MHz/(v/cm)?
Radiative lifetime n® 1.0 psec
Fine structure interval n? ~ 92 MHz

“Alter Ref. 2.

This then leads to & new class of inleresting problems involving nonperturba-
tive atom-field interactions that do not exist under normal conditions.

Single-photon spectroscopy is certainly also applicable to the study of
Rydberg atoms, but the excited states that can be reached are limited. For
example, through the ns — r’p single-photon excitation, only the p state of the
’ Rydberg atom can be reached. Multiphoton spectroscopy, however, allows
other states of the Rydberg atom to be probed. Furthermore, the highly excited
Rydberg states are very closely spaced. The resolution of these states Tequires a
Doppler-free spectrum. In a gas cell, this can be achieved only with multipho-
ton spectroscopy.

Alkali atoms have often been the object of research in Rydberg atoms. We
discuss here a few selective studies on the subject.

Two-photon Doppler-free spectroscopy has been used to study the highly
excited Rydberg states for a number of alkali atoms. In Rb, for example, the
Rydberg states have been probed up to = 116, using the detection scheme of
Fig. 18.3 and a 50-mW CW narrowband dye laser as the pump source.’ The
detection sensitivity in this case can be further enhanced by the lock-in
amplification technique. At n ~ 100, the spacing between successive Rydberg
states is only a few tens of megahertz. For lower #, the (ns) and (nd) states,
and also the spin-orbit split states can be resolved. The latter allows the
determipation of the fine structure splittings.* For n =4 to 55, the fine
structure splittings between 2Dy, and 2Dy of the nd states of Rb have been
found to obey the relation Ang + Bnf, where A and B are constants and
is the effective quantum number defined by T, = — RnZ?, R being the
Rydberg constant and 7, the term value for the principal quantum number #.
The results provide a good test on the various theoretical caleulations. Pressure
shifts and pressure broadenings of Rydberg states can also be investigated.*
For low n values, they can be detected readily even in the mTorr range. Strong
oscillations in the linewidth versus the principal quantam number have been
observed but not yet explained quantitatively.
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The Rydberg states of the alkali earth atoms, including those with doubly
excited electrons, have also been carefully measured.® Pulsed dye lasers were
often used in such studies. The results are most helpful in establishing the
multichannel defect theory developed by Fanc and associates.”

The Stark and Zeeman effects of the Rydberg states are large because of the
large electron orbits.®* In a moderate field, the splittings can be larger than the
spacings between Rydberg states. Level crossing and anticrossing effects should
be readily observable. The results can be used as a sensitive test of the atomic
theory involving field-induced state mixing. When the field perturbation be-
comes comparable to the Coulomb binding energy of the excited lectron, the
perturbation theory breaks down and an exact theory is needed. The measure-
ments are therefore most valuable for theoretical exploration in this new
regime. We consider here the diamagnetic effect of Na Rydberg states as an
example.®

The ratio of the diamagnetic energy to the binding energy of a Rydberg
atom varies as n°B?, where B is the magnetic field. For it to be close to one for
an atomic ground state, the field required is ~ 107 G. Such a field is clearly not
achievable in the laboratory. This strong-field regime may exist in neutron stars
and for hydrogenlike systems in solids, but the problem can never be as simple
as in Rydberg atoms. Because of the n® dependence, a Rydberg atom with
n ~ 30 only requires a magnetic field of several tens of kilogauss to get into the
strong field regime. While the nonperturbative theory for such cases is still
being developed, the experimental measurements are fairly straightforward.

A representative experimental setup is shown in Fig. 18.4. To avoid Doppler
broadening and collisional effects, an atomic beam was used with the exciting
laser radiation crossing it at 90¢ in the magnetic field region. Two S-nsec
pulsed tunable dye lasers were employed to excite the atoms stepwise to &
Rydberg state. During the excitation, the dc electric field was absent, but a few
kilovolts per centimeter de electric field was applied 1 psec later to jonize the
Rydberg atom. The electrons from ionization were then accelerated to 10 kV
and detected by the detector. The detection scheme could be nearly 100%

CHARGED
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PLATES  Fig, 184 An apparatus for speciroscopic
INTERACTION  Studies of Rydberg atoms. The region shown

REGION is located in the center of a superconducting
H \ sf{lenoid. The ficld plates float at —10 kY
AToMIC. BEAM  With respect to the detector. The pulsed fieid

is applicd between the plates. (After Ref. 9)
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Fig. 185 Diamagnetic structure of Na. Experimental excitation curves for even-parity
levels, m;=1, m, = 4, in the vicinity of # = 28. A tunable laser was scanned across
the energy range displayed. The zero of energy is the ionization limit. Signals generated
by ionizing the excited atoms appear as horizontal peaks. The horizontal scale is
quadratic in field. Calculated levels are overlaid in light lines. Some discrepancies are
present due to nounlinearity of the laser scan. (After Ref. 9.)

efficient, insensitive to the applied magnetic field, and linear over a wide
dynamic range. To study the diamagnetic effect, Am, = 0 transitions from
3Py , to the Rydberg states around n = 28 with m, = 1 were chosen so that the
magnedic interaction Hamiltonian linear in the field would not contribute, A
typical set of spectra is shown in Fig. 18.5. The display gives 2 clear picture of
the diamagneiic shifts of the various lines. Crossing and anticrossing of levels
are clearly seen. In this case, a straightforward diagonalization of the Hamilto-
nian can explain the observed spectra very well, but the procedure used is
already near its limit of applicability. For higher »n or larger fGeld, new
theoretical approaches will be needed.

The large electron orbits of high Rydberg states greatly enhance the
transition probabilities between neighboring Rydberg states, For i z 30, these
transitions are in the radio to microwave range. The single-photon transitions
ns = n'p, nd — n'p, etc., can be saturated by an intensity < 10°° W /ent,
" and the double-photon transitions, #ns — n's,nd — n'd, etc., by £ 1072 W /em?.
Since radio and microwave measurements are intrinsically more accurate than
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the optical measurements, studies of transitions between Rydberg states allow
us to deduce more accurately the fine structure splittings, quantum defects,
polarizabilities, and so on.'®

The experimental setup is similar fo that shown in Fig. 18.4, except that
additional radio or microwave field is now applied to the optically excited
atoms. Spectral resolution of microwave transitions can be better than } Mz
if the residue de electric field in the interaction tegion can be climinated.
Detection of the transitions is facilitated by the fact that the dc ionization
threshold fiekd of the Rydberg state is inversely proportional to r*. By applying
a sawtooth potential (increasing linearly with time) on the plate electrodes, the
signal skould appear as pulses shown in Fig. 18.6. Bach pulse, labeled by the
potential, corresponds to the signal obtained from jonization of atoms in a
certain Rydberg state; the pulse strength corresponds to the population in that
state. This dc ionization arrangement acts s 4 Rydberg spectrometer. Then,
without microwave excitation of the Jaser-cxcited Rydberg atoms only one
pulse is observed; with resonant microwave excitation, two pulses should
appear, with their relative strengths indicating the relative populations in the
1wo Rydberg states involved in the transition.

For lower n values, transitions between Rydberg states are in the infrared.
They can again be detected with high sensitivity using the method just
discussed. As a possible application, the Rydberg atoms can be used as a
far-infrared detector.”” With Stark-field tuning, the transition frequency can be
continuously varied. It has been found that such a detector can have a noise

fon
signal

t

Fig. 18.6 [lon signal detected by a Rydberg speciromeicr in response 1o a linear sweep
of an applied dc potential. The two signal pulses at ¥, and V. after the laser pulse
excitation are measures of the populations in the Rydberg states {#| and {n’
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equivalent power of 5 X 107 W /Hz!/* at 496 pm, comparable to the best
existing far-infrared detector. It has a bandwidth of — 1 MHz, a large angular
collection aperture, and a wide tuning range extending possibly up to the
mid-infrared.

Atoms in the high Rydberg states can radiate and make downward transi-
tions. The transition probability is higher for larger n and smaller transition
frequency. Amplified spontaneous emission (or superradiance) and maser (or
laser) action can ocour When the inverted population is above threshold.*? The
threshold condition is given by

Nnn' > Yn/""nn’?nn'

where N, is the population difference between the n and #* states, v, and ¥,
are the total emission rate from {n| and the partial emission rate from {n| to
{n", respectively, and g, is a form factor. For a cylinder of Rydberg atoms in
free space,

[y = 3 /20, 0%

with a being the diameter of the cylinder. If the cylinder is enclosed by a
resonant cavity, then p,,- should be replaced by By F s With 1, DOW being
the cavity-filling factor and #the finesse. For the 255 — 24p transition of Na,
for example, we have v, ~ 10°/5e2, You = 10% /see, A,y = 206/ 0, ~ 1 mun.
Then, if @~ 1 mm, j,, ~ 1072 and $— 200, the threshold population
difference is N, — 10° for amplified spontaneous emission, and N,, ~ 500
for maser action, This example shows that with Rydberg atoms, maser action
can be observed with a very smail number of atoms in the cavity; the number
is closer to 1 for higher n. Maser action in such 2 small system is a subject of
great theoretical interest.'

Amplified spontaneous emission and maser action in an optically excited
Rydberg atomic beam have been observed. The experimental arrangement is
again similar to the one shown in Fig. 18.4. In the maser experiment, a
microwave cavity is built around the laser-atomic beam interaction region. The
microwave emission, in the form of an ~ 1-jsec pulse, has a peak power in the
10-1 10 10~ W range. Such a small power is of course difficult w0 detect
directly. It can, however, be detected indirectly using the Rydberg spectrome-
ter described earlier. The number of microwave photons emitted is monitored
by the number of atoms appearing in the lower state after certain time delay
{~ 1 psec) following the laser excitation, Below the masing threshold, little
population will end up in this lower state by spontaneous cimission after such a
short time delay. Above the threshold, appreciable increase of population in
the lower state can result from stimulated emission. Figure 18,7 shows how
experimentally the maser action from 275 to 26P populates the lower stale
with the microwave cavity tuned on resonance and slightly off resonance,
respectively.
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Autoionization Speciroscopy

For multielectron atoms and molecules, discrete states coexist with the con-
\inuum states above the ionization level. They are known as autoionization
states,”> and have been the subject of immense interest in atomic and molecu-
lar spectroscopy. The positions and characteristics of these states, and their
interaclions with the continuum, which can ail be deduced from spectroscopic
measurements, are important for the test of theories. Here again multiphoton
spectroscopy has the advantage of being able to probe many autoionization
states that cannot be reached by single-photon spectroscopy.

The experimental setup in cither Fig. 18.3 or Fig. 18.4 can be used for
multiphoton autoionization spectroscopic studies. As an example, the autoioni-
zation spectra of S obtained by three-photon stepwise excitations (55)° =
(5s)X5p) — (Ss)ns) or (35)(nd) = (5p1,2)ns) or (5P, 2 Xnd) are shown in
Fig, 18.8.1* Stepwise excitations yield high overall transition probabilities. The
laser powers required are therefore low, and the background signal due to
nonresonant photoionization is consequently weak. With the help of dec field
mixing of states, the method can populate many autoionization states normally
forbidden by dipole selection rules. From the positions of the spectral lines,
quantum defects for a number of Rydberg states (58)(nsY and (55)(nd) can be
deduced. The lineshapes result from the interactions between the discrete states
and the continuum. They also depend on the configuration mixing of the
states. The linewidths reflect the lifetimes of the autoionization states in
accordance with the uncertainty principle. It is found, for example, the
lifetimes of the (5p, ;)(ns) siates vary as (n.), and the lifetimes of the
(5p1,2 016/} increase dramaticlly with I. Polarization arrangement of the pump
beams can help the assignment of the observed lincs. Applied de electric and
magnetic fields can be used to study the Stark and Zeeman splittings of the
autoionization states.

Autoionization spectra of rare carth atoms are particularly interesting."®
Extremely strong, yet narrow (—~ 0.05 ¢cm™!), autoionization lines have been
observed in Gd and Yb. One may wonder if the sharp lines are characteristic
of the rare carth atoms due to excitation of electrons in the shielded but
unfilled 4f shell. Theoretical calculation, however, suggests that they are the
result of excitation of the valence electrons. It will be interesting to see whether
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Fig. 18.8 Excitation spectra for the 5p, 7, rd states {upper curve) and the 5p, 5, 1S
states (lower curve) of Sr. In these spectra, the linewidths are artificially broadened
beyond the autoionization linewidth by instrumentai effects. (After Ref. 14

atoms in the actinide group, which has the analogous 5f shell, exhibit similar
sharp autoionization lines.

Autoionization spectra of molecules are, of course, much more complicated
than those of atoms. Nevertheless, they are interesting from the molecular
spectroscopic point of view. They are abso useful in the sense thal excitations to
these states increase the ionization probability of the molecule, They may also
be used as steppingstones to reach higher autoionization states.

We conclude this section by remarking that multiphoton spectroscopy,
having the freedom to vary the individual input beams separately and having
an inherently high sensitivity, is an extremely valuable technique. Many
variations of the technique can be developed, depending on our imagmation
and on the system to be investigated. The growth of the field will probably also
depend on the advances in the theories of atoms and molecules.
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Detection of Rare Atoms
and Molecules

Understanding of physical and chemical processes at the atomic and molecular
level often is impeded by the lack of sensitive techniques 1o detect and probe
very small numbers of atoms and molecules. This is particularly true when the
atoms or molecules to be detected appear only as impurity or trace particles in
a host medium. In Chapter 18 laser-induced fluorescence and photoicnization
as detection methods are seen to be extremely sensitive. They have, in fact, the
sensitivity of detecting single atoms and molecules, and therefore hold the
promise of becoming a very important experimentat tool. With these methods,
many interesting problems in physics and chemistry that were hitherto un-
touchable can now be studied. This chapter describes these methods in some
deteil, emphasizing their detection capabilities. Possible applications in various
fields are discussed,

19.1 BASIC THEQRY

The basic idea of laser-selective detection of atoms and molecules is simple. 1t
involves two essential steps: laser labeling of the atoms (or molecules}) and laser
detection of the labeled atoms. Every atomic (or molecular) species has a
characteristic spectrum, acting as its own fingerprint. A menechromatic Tight
can selectively excite a particular kind of atom from a specific ground state to a
specific excited state. The excitation puts a label on this pariicular set of atoms.
Following the excitation, if the detection can selectively detect atoms in the
particular excited state, then it means that we have succeeded in selectively
detecting those labeled atoms originally in the specific ground state,

Clearly, t0 be able to detect a very small number of atoms in a specific
ground state, the labeling should apply 1o as many of these selected atoms as
possible. The means that the light intensity should be sufficiently high to
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saturate the selected excitation. Then the labeling should also be so selective
that as few wrong atoms as possible are excited. Both requirements suggest
that intense monochromatic lasers are needed for the sclective excitation.
Detection, on the other hand, must be very sensitive. It should have the
sensitivity to detect a large fraction of the atoms in the selected excited state.
The detection also should be highly selective, since it can then discrimmate
against the wrong atoms that have been excited. In Chapter 18 we saw that
laser-induced fluorescence and photoionization are extremely sensitive. In
principte, they have the sensitivity 1o detect single selected atoms. In practice,
however, the ultimate sensitivity depends on the background noise arising from
the presence of wrong atoms and from the noise in the detection system.

We consider here a simple model illustrating the requirement for detection
of single atoms and molecules {Fig. 19.1). Let the selective excitation rate of
the atom from {g] to { | be W, and the detection rate of the excited atom be
F. We assume two simple cases. First, the detection removes the atom from the
excited state and does not put it back into the ground state. Second, all the
excited atoms after being deteeted are puk back into the ground state. In Fig.
19.1 we have T as the relaxation rate from { /| to (g} and 8 as the loss rate of
the excited atoms through relaxation into traps, metastable states, and so on.

In the first case, the rate equations for the numbers of atoms, #, and nr,, in
{g) and ¢ f|, and for the number of excited atoms removed by detection, rp,
are

dn

?’—E = —W,{n,-n)+Tn

dn (19.1)
= Walng=n;) = (C+ B+ Fay,
F

<fi T

|

i

| é

|

\

|r

i

|

|

;

Fig. 19.1 A wwolevel system under
d setective excilation W,,, detection F,
relaxation T, and loss A.

<gl




Basic Theory 351
and

ap _
dr Fry

assuming r, = 0 at thermal equilibrium. If W,, and F are step functions tumed
on at s =0, and the initial conditions are n, = nq and n,= 0 at ¢ = 0, then
the solution of (19.1) is

ne= 722 [0 - We)e (e~ e ],
O ol /49 Rl IR SRV (19.2)
ST (W +T)b-a) *° ’
and
np =f[;Fn,(r') dt
where

a=1ix, +[(1x2 — x} ]1/2

172
= %xz’[(zxz - ]

b= WL (B +F)
x, =W, + B+ F+T.

»

This result looks complicated. However, we are interested mainly in having a
maximum detection sensitivity, which, from physical argument, is expected to
occur when W, = I and F > 8. Under these conditions and for the usual
simple case of W, » F, we have x; > x, and a > b. The solution reduces to
n, = in e,

& (19.3)

ny=Ltn e,
and

p = el — 7%}
with b = {F. If, on the other hand, F > W, we still have x, > x;, and
a >» b and the solution becomes

- =br 7
Ry =R,

, (19.4)
= (W /F)nge™,

and

np =gl —e ™)
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with b = W,,. Then, for square excitation and detection pulses with a pulse-
width T, and b7 = 1, we have np, = ngg at the end of the pulse. This means
that all the atoms originally in the specific ground state are detected. It is
Iherefore clear that in order to be able to detect nearly all the selected atoms,
we must satisfy the conditions

W, =»=T, F= 8,
FT = 1if W, » F, (19.5)
W, T» Lif F > W,

A more rigorous theory taking into account the coherent nature of the
excitation can be found in Ref, 1.

We frequently are interested in detecting single atoms in the presence of a
huge number of wrong atoms. The signal counts from the right atoms must
then be larger than the background counts from the wrong atoms. If we also
use (19.1) to describe the excitation of the wrong atoms (denoted by prime in
the notations), then because of lack of sclectivity, W« and PP . Tt
follows that the fraction of wrong atoms appears as the background signal is,
assuming W, T <« 1,

o Fw,T
"To =FirT" (19.6)

In comparison with ap, in (19.3) or (19.4), the ratio of signal to background for
a system of r,, right atoms and ny, wrong atoms is given by

s _my (BT
3= (e I 191
for bT z 1. 1f W, T ~ 1, the ratio can be written as

S _ (BT Pu)fle

B ( F }( w7, ) (19.8)

Suppose W, corresponds to a single-step resonant excitation, while W, for
wrong atoms is far from resonance. We have W_ /W, — KM /MK Aw /)R,
where M and M’ are the transition matrix elements in W and W, respec-
tively, Aw is the frequency offset of W, from resonance, and v is the resonant
linewidth of W,,. For M ~ M’ and Aw/Y = 104, we already have W/ W, ~
108, and if (8 + [")/F ~ 100, we would find 5/B ~ 101%n/n5). In other
words, the discrimination factor of detecting the right atoms against the wrong
atoms is 10°°. n the case of discrimination against isotopes, however, Aw/y is
much smaller; to increase the discrimination factor, one should iry to make
(B + I")/F as large as possible through a properly arranged detection
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scheme. The above result suggests that in order to have a large §/8, the
resonant linewidth y should be very narrow, the detection scheme should be
strongly selective, and the laser pulsewidth should be around T ~ 1/W,,, but
not too leng.

In the second case in which all the excited atoms after being detected return
to the ground state, (19.1) becomes

an

~d—‘g = —ch(rrx - n]) +(I‘ + F)nf,

dn,

Z Wex(ngfnf)—(I‘-%—F)nf, (19.9}
dry,

—d,[' —Fr:f

assuming B = 0 for simplicity. The solution with the initial conditions r, = # 4
andn,=0atr=0is

%
= _ r_ a2W+T+F)r
T M0 T I T + Frwoll — e I

- _i_ —2W+ T+ Fyr
AT anﬁ[l e 1. {19.10}
W, F Wy

ZW = 30 3 [1 - e—l2W+I‘+F)|]_
TT+F " G +T+F)

"o =

If W, = F, T, and W, T » 1, then we have

np = §FTng,, {19.11)
which can be much larger than a, if F7' > 1. Thus the conditions for high
detection sensitivity stated in (19 $) are still true here. The background
signal due to excitation and detection of wrong atoms in this case, assuming

T W, P and I'T 3 1, is

nly = (W,/T") FT,,. {19.12)

Therefore, the discrimination factor for detection of the right atoms against the

wrong atoms is
1T\ Fyffn
E(W )(F')(ngu) (19.13)

baIUJ
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for W, » I.If T ~ T'" and W, ~ I, then we have

ARG e

which can be > 10"%(no/n,) for (W, /WLNF/F} > 10%, The results in
(19.13) and (19.14} again show that in order to have a large 5/8, the resonant
excitation should be very sharp with a large Aw/y, and the detection scheme
should be highly selective. The laser intensity should be strong enough to make
W, T~ - 1, but not excessively strong so as to reduce I/ W,

Through focusing of the exciting laser beams, spatial distribution of rare
atoms or molecules in the selected quantum state can be measured by the laser
detection methods. That pulsed lasers can be used in these methods suggest
also the possibility of time-resolved measurements. The Iatter is particularly
useful for detection of radicals and transient or unstable species.

192 EXPERIMENTAL TECHNIQUES

From what we have discussed, it is ¢lear that narrowband tunable lasers, CW
or pulsed, are needed for selective excitation of selected specics. Either single-
photon or mubtiphoton excitation can be used. To increase the selectivity of the
right atoms (or molecules) against the wrong atoms, multisicp multiphoton
excitation is preferred because the overall selectivity is determined by the
product of the resonant features of the successive steps.” For example, if
W WA (WD WED), where WM /W™ is the ratio of the n-siep
excitation rate for the right atoms to that for the wrong atoms, then with
WD WA ~ 10%, the discrimination factor for a twe-step excitation to detect
the right atoms against the wrong atoms, as estimated from (19.8) or {19.14),
can be larger than 10,

While selective excitation as a labeling process is crucial in discriminating
the right atoms (or molecules) against the wrong atoms, it is the high sensitivity
of the detection schemes that make the detection of single atoms possible.
Among the various methods for detection of excited atoms {or molecules),
flucrescence and ionization are most attractive. They have already been
discussed in some detail in Chapter 18. Here we concentrate our discussion of
these methods on their abilities and possible layout to detect single atoms and
molecules.

Laser-Induced Fluorescence
The three main schemes of iaser-induced fluorescence are shown in Fig. 19.2,

where W,, can be either single-photon or multiphoton excitation, That laser-
induced fluorescence has the sensitivity to detect single atoms® can be seen
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from the foflowing example. Consider a single atom with velocity v traversing /
mm distance across a CW exciting laser beam. Assume that the atom after
excitation will return to the ground state by fluorescence through one of the
pathways in Fig. 19.2 in an average lifetime 7. If the excitation is strong
enough to saturate the transition {W,r > 1), then immediately after the atom
returns 1o the ground state, there is a 50% chance that the atom will be
reexcited, The number of excitation—flucrescence cycles the atom: can experi-
ence during the atom-laser interaction time [/v i5 !/vs. The number of
photons emitted by the atom is therefare [/2o7. This result is the same as that
given by (19.11) with nyo =1, 7= I/2, and F = 1/r. For alkali atoms, for
example, 7 is typically ~ 10 nsec. With / ~ 2 mm and v ~ 10 cm /sec, a single
atom is expected to yield 10° fluorescent photons, which should be easily
detectable if the background noise is sufficiently low.

A typical experimental arrangement using the scheme of Fig. 19.2a is seen
in Fig. 19.3.% The resonant fluorescence photons emitted by atoms at one focus
of the ellipsoidal reflector are collected by the photodetector at the other focus.
The overall photon-counting efficiency of 5.5% has been obtained for the case

<fl
W
<gl
{a)
< R L e
\
L'
L™
<m|
/
.f/ <m|
!
<gl 2 <gl £
(8 (<)

Fig. 19.2 Laser-induced fluorescence schemes: {a) resonant fluorescence; (&) and (<)
fuorescence with Irequency different from the exciting laser frequency.
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Fig. 193 Typical experimental arrangement for single-atom detection by lases-
induced Auorescence: { &) barium energy levels; (b) schematic of apparatus. (After Ref.
4.3

of Ba atoms,” with a resonant flucrescent efficiency of ~ 10%. Somewhat more
than one photon can be detected when a single Ba atom crosses a laser beam of
1~-mm diameter. Limited by noise, a few as 10 atoms/sec are detectable by this
technique.

Background noise due to stray laser light and Rayleigh scattering from
wrong atoms is often the limiting factor of the detection sensitivity for scheme
a of Fig. 19.2. The reason is that the background and the signal, having the
same wavelength, cannot be easily separated by an ordinary detection method.
One way to reduce the background is to use the coincidence-counting tech-
nique (Fig. 19.4).5 The resonant fluorescence signal is monitored by two
independent photodetectors. Only when both photodetectors regisier photons
within a certain time interval ( ~ 1 psec) will these photons be counted as the
signal. This discriminates against the background due to stray light and dark
current in the photodetectors which are more random in character. The
coincidence-counting technique can also be applied with the two photodetec-
tors monitoring atoms in an atomic beam at two positions along the beam, The
measured time delay of the delayed coincident photon pulses from the twoe
detectors readily yields the velocity of the atoms.®

Another way to reduce the background is to use scheme & and ¢ in Fig. 19.2.
The fluorescence which is at a different wavelength from that of the exciting
laser can be easily detected against the scattered laser light by the use of a
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Fig. 194 Laser-induced fluorescence of an individual atom detected by the coinci-
dence-counting technigue. [After V. S. Letokhov, Comments Atomic Molec. Phys. 1,93
(1977).)

menochromator or color filter.” The ability to detect the right atoms in the
presence of averwhelming wrong atoms is then greatly enhanced, as seen from
{19.13) or (19.14) with F > F'. It is, however, important in this method that
the relaxations from { f| to {m| and {m’ to {g!in Fig. 19.2 are fast, so that
they do not appreciably lengthen the overall relaxation time from {f] to {gl;
otherwise, the total number of photons emitted by the atom during the
excitation will be reduced. The fast relaxations can usually be achieved through
collisions. The technique is therefore most useful for detecting rare atoms in a
host gas medinm. As few as 10 rare atoms/cn¥’ (or 107? atom in 1-mnr® laser
probing region) in a gas of atmospheric pressure can be detected.

An even better way to reduce the background, if applicable, is to use
two-step two-photon excitation in scheme ¢ of Fig. 19.2. As mentioned earlier,
two-step Tesonant excitation greatly enhances selectivity. Then the fluorescent
frequency is also far away from the exciting laser frequencies, making selective
detection very easy. The signal-to-background ratio can therefore be extremely
high. The onlf3disadvantage is that much higher laser power is needed for
saturation of excitation (W = T in Fig. 19.1).

- Photoionization

The detection efficiency of a fluorescent photon emitted by an atom usually is
less than 10%. In comparison, the detection of ionization of an atom (or
molecule) can be ~ 100%. This makes single-atom (or molecule) derection via
selective excitation-ionization most attractive, especially when high-intensity
pulsed lasers are required anyway for the excitation. Some experimental details
on multiphoton ionization were given in Section 18.2. Detection of either
electrons or ions can be used to monitor the ionization.! While ionization of
the selectively excited atoms can be achieved by different methods, namely,
photoionization, dc field jonization, and collisional ionization, we concentrate
our discussion here on photoionization.
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Fig. 195 Classification of selective photoionization schemes for sensitive detection of
the elements. With these five schemes, all of the elements except He, F, Ne, and
possibly Ar can be detected. (After Ref. 1)

In Fig. 19.5, the various schemes for single-atom detection via photoioniza-
tion are shown.! Note that scheme (3) is different from scheme (B or (3
only in the sense that , and w, are in the uv in the former case. With these
five schemes in Fig, 19.5 involving only cne- or two-siep resonant excitation,
all elements, except ground-state He, F, Ne, and possibly Ar, can be selectively
detected with currently available laser sources. The possible scheme for the
detection of each element in the periodic table is given in Fig. 19.6.

The simple theory described by (19.1) to (19.8) is applicablg to the present
case, with W, denoting the one- or two-step resonant excitation. For high
detection sensitivity, the excitation should be sawrated, and the photoioniza-
tion rate should be large so that nearly afl the excited atoms are ionized. This
means that the required tunable laser powers may be very high, especially if
multiphoton transitions are involved. To increase the photoionization rate,
excitation to discrete autoionization states is preferred.

One possible drawback of the photoionization method for single-atom
detection often is the lack of good selectivity in the ionization process, that is,
the photoionization step may not be very discriminative against the wrong
atoms. This limits the signal-to-background ratio. Several schemes can be used
to improve the selectivity of ionization detection. Ome is to photoionize
through selective excitation into an autoionization state of the right atoms. The
other is to incorporate 8 mass spectrometer in the jon detection system o
discriminate the wrong atoms which have been ionized. This scheme is particu-
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larly useful for detection of selected molecules® and can also be used to study
the dissociation of a molecule after photoionization.?

193 DEMONSTRATIONS OF DETECTION OF RARE ATOMS
AND MOLECULES

A few examples of single-atom (or molecule) detection are briefly described
here.

Alkali and alkali earth atoms can be detected easily by the laser-induced
fluorescence technigue. Sodium is a representative case. The 3s(2§ {2) -
3p(*P, ;) transition has an absorption cross section o, ~ 1.6 X 107 o,
{With Doppler broadening, however, the average o, is much lower). The
lifetime of the 3p state is 7 = 1/T ~ 16 nsec. For saturating excitation,
W, 7 = a,{I/hw)7 ~ 1, the laser intensity needed is J ~ 10 mW /e, which
can be easily obtained from a CW dye laser. Under such CW excitation, the
number of photons emitted by a single atom is np, ~ 37~ 3 X 107/sec. In a
cell with low-density sodium, if the laser probing region is ~ 10 mm® and each
atom spends only ~ 107* sec in the region, then the average number of
photons emitted by each atom is ~ 3000. With a photon detection efficiency of
5%, and a background noise of 10 counts/sec in the pholodetector, a density
of ~ 10 atoms/cnr’ is detectable. This was indeed the sensitivity limit
Fairbank et al.® nearly obtained in their first experiment (se¢ Fig. 19.7). With
the coincidence-counting technique to reduce the background, and using a
sodium atomic beam, Balykin et al.® obtained a sensitivity of ~ 10 atoms,/sec
or 10~* atoms in the probing region. Detection of low-density sodium atoms in
the presence of high-density buffer gases has also been demenstrated. Sodium
has two 3p levels, 2P, , and P, ,,, separated by 6 A. It is possible to sefectively
excite the atoms Lo “P, ,, and utilize collisions to transfer the excitation to
g, 2~ The fluorescence from 2p, ,, to the ground 3s level is then at a frequency
different from the exciting laser frequency, and can be detecled through a
monochromator with an excellent discrimination against the stray or Rayleigh
scattered laser light. Using this scheme, a detection sensitivity of ~ 10
atoms,/cr® in an argon buffer gas of ~ 10'"* atoms /e can be achieved with
C'W laser excitation.”

The detection of molecules by laser-induced fluorescence is generally less
sensitive for several reasons. The oscillator strengths of transitions in molecules
are relatively weak (o, ~ 107" cm® for molecules as compared to 10~ cm®
for atoms). The laser intensity required for saturation of excitation is therefore
much higher. Absorption and luminescence via electronic transitions of mole-
cules are often in the form of broad bands. They make selective excitation and
detection more difficult and reduce the discrimination factor against the wrong
molecules. In addition, with a limited detection bandwidth, the measured
fluoresecent efficiency of the molecules is often much less than 1. Experimen-
tally, 5 X 10* molecules per cubic centimeter of BaO in a specific rotaticnal-
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Fig. 19.7 Sodium-vapor density measurements using the laser-induced fluorescence
technique. The solid line is a thermodynamically derived curve, using & Hg® = 25600
cal/mole. {After Ref. 3.)
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vibrational level have been detected with a pulsed dye laser,'” and 5 x 10°
molecules /oo’ of 1, in a specific rotational-vibrational level have been ob-
served with a CW laser}! The selectivity can be greatly improved by using a
two-step resonant excitation: the first step is a vibrational transition which can
be highly selective because of its narrow linewidth, and the second step is a less
selective electronic transition for inducing fluorescence in the visible. High
laser intensities are usually required for such a two-step excitation, and hence
pulsed lasers are needed for this scheme.'

Detection of small numbers of atoms by photoionization has been demon-
strated in many cases. A list of some of them is given in Table 19.1. As an
example, we consider the detection of He in the long-lived excited state 2813
Scheme (1) in Fig. 19.5 can be used in this case. The laser at 5015 A excites
the 21§ to 3'P with an absorption cross section g, ~ 3 X 10 cm’. (More
rigorously, the degeneracy factors of the two levels should be taken into
account in the calculation, and then emission and absorption cross sections
between the two levels are generally not the same.)” The ionization cross
section from the 3'P level with the same laser frequency is o; ~ 1 X 10~ cm?,
Thus W, = a,(I/fuw) ~ 10% I/sec and F = op{[/hw) ~ 20 I /sec, where I'is
in watts per square centimeter. If the laser excitation is a pulsed one with 2
peak intensity / ~ 1 MW /cnt® and a pulsewidth T ~ 0.5 psec, then we have
W, ~ 10%/sec ~ T ~ 6 x 10%/sec, W, > F~2x107/sec > B~ 3 X
10° /sec, and FT ~ 10. From (19.4), we expect that with such a pulsed laser
excitation, nearty all He (2'S) atoms can be detected. This is roughly what was
actually observed.”® A single atom appearing in the probing region during the
laser pulse could be detected.

Detection of selected molecules by photoionization has also been repeatedly
demonstrated.’ We take here NO, as an example. A tunable dye laser in the
range 4470-4970 A can be used to excite NO, from 24, 0 B, Then a H,
vacuum uv laser (— 1600 A) is used to photoionize the molecule from the B,
state. Detection of a single molecule in a given rotation-vibrational state is
possible if the conditions in (19.5) can be satisfied”

19.4 APPLICATIONS

Applications of rare atom or molecule detection are numerous. An obvious one
is to study properties of excited-state atoms or molecules, radicals, ions, and
other rare of transient species. For example, laser technigues can be used to
probe the number of the excited-state atoms and to measure the photoioniza-
fion cross sections from this excited state.!> !* The latter measurement is
possible as g, can be deduced from the laser fluence (/7'} dependence of the
photoionization signal following (19.3) with bt = Lo, (JT/hw). Spectroscopy
of these rare or transient species is an interesting field which has hardly been
explored because of lack of sensitive tools. With laser techniques, the field is
expected to bloom rapidly, limited only by the power and tuning range of the
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available lasers. As an example, the 1°S; — 2°§) transition of positronium has
recently becn measured by the multiphoton ionization technique with good
resolution.'* The result is 1mportant as a stringent test on the theory of
quantumn electrodynamics,

The ability to detect single atoms or molecules in a given state also makes
the laser techniques most useful for studies of photodissociation and chemical
reactions.!” Detection allows direct measurements of the dissociation and
reaction products before they collide or react with molecules or walls, The
measurements enable one to learn net only the velocity and angular distribu-
tions of the products but also the internal energy distribution in the products.
Again, the limitation of this technique Les in the availability of tunable
high-power lasers over a wide range.

The single-atom detection technique can also find important applications in
nuclear physics. This technique can be used to monitor fission products'® or 1o
study the reaction of heavy elements at very low pressures, The sensitivity to
detect a single atom in a specific volume at a specific time also permits the
detection of exotic or unstable nuclei, rare isotopes, radioactive nuclei, solar
neutrinos, and so on. Detection is achieved through monitoring of the daughter
atoms released by these particles as they are arranged to undergo a nuclear
reaction. Laser techniques have also been proposed for use in the search for
quarks.

Single-atom detection can also be used to explore some basic questions in
statistical mechanics.! One is on the Brownian motion of specific atoms in a
gas. Is the assumption of randomness in the theory justified? Ancther is on the
ergodic hypothesis. As suggested by Einstein,'® a time-resolved diffusion ex-
periment, in which the diffusion equation can be checked by both “time
summation” and “space summation,” can provide a test on the assumption of
an ergodic system. Finally, the atomic fluctuation phenomena can be directly
observed. ” Since the detectable number of atoms N in a specific volume can be
small, the normalized number fluctuations AN /N can be made quite large and
can be accurately measured. The change from a Gaussian distribution of ¥ to
a Poisson distribution as the average number ¥ increases (from 1 to 20) has
been demonstrated experimentally,?

Another possible application of single-atom detection is on dating, The
more conventioral techniques for dating are less sensitive, and require a fair
amount of the material to be dated iv the analytical process. The single-atom
detection technique certainly has the advantage of being able to cut down the
minimum amount of material needed for dating.
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20

Laser Manipulation
of Particles

Radiation forces from a laser beam can be very strong because of the beam’s
coherent and highly directional properties. A focused beam of 10% W /em?® can
exert an acceleration of 10°% on a 1-pm dielectric sphere with a 10% reflectiv-
ity. It is therefore possible to use laser beams to accelerate, decelerate, steer,
manipuiate, cool, or trap small particles including atoms, molecules, and ions.
This has opened another fascinating area of laser physics research. Many
interesting applications in various fields can be anticipated, Studies of single
particle properties and controlled reaction or interaction between particles are
the obvious examples. Laser manipulation of particles is actually a subject
outside the scope of nonlinear optics, but we include it here as a special topic
of laser physics worth knowing.

20.1 RADIATION FORCES
In a dielectric medium, the radiation force per unit volume is given by!
f=v-0——5-. (20.1)

Here, o is the Maxwell stress tensor, and G is the electromagnetic momentum
density in vacuum. Then

I [ Y L B WY PR
u-—[ Pk [e pap) 57821 + 5 (ED + BB),
s

c.!

(20.2)
G= I:r_c (E % B) =

where p is the pressure in the mediom, p is the density of the medium, and S is
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the Poynting vector, With the help of the Maxwell equations, substitution of
(20.2) into (20.1) yields

E? de | E2 3G
f=—Vp—ﬁVeJrv[p(a—;)s—ﬂ]-(z—l)E—, (20.3)

which in a uniform medium reduces to

- LA T S A C
f= Vp+p( p)sva (e-1) - (20.4)
The second term in (20.4) is simply the electrostrictive force (see Section 11.1),
while the third term arises from the change of the electromagnetic momentum
density.

We are usually interested only in the time-averaged (f). Then, in the steady
state, although { #G/dt) = 0 inside a medium, it exerts a finite pressure on the
boundary surface where reflection and refraction occur. The total force on a
macroscopic dielectric object immersed in a fluid is given by

Fio = f<f> dv, (20.5)

which from the momentum conservation rtelation should be equal to the
surface integral f,(A{{3/31)K) - ds)a, around the object where A, is the
surface normal, A((d/91)K) is the time-averaged electromagnetic momentum
density transferred to the object per unit time at the boundary surface between
the two media, with K = &G being the electromagnetic momentum (or pseudo-
momentum) density in a medium with a dielectric constant ¢, This can actually
be shown with the expression of f in (20.4).2

Consider a transparent dielectric sphere with & = ¢, immersed in a fluid
with e = ¢, and located off-axis from a laser beam as shown in Fig. 20.1.7
Assume that the ray approximation is valid. Then the radiation force per unit
area on the sphere exerted by the incoming ray along « at the inpui side is

N FCO R TSRS
o \ e e
where K, K, and K7, are the momentum densities of the incoming, reflected,

and refracted waves, respectively. We can write (K') = k,({K{} + (K})) with
(K{y = (K§), and hence

] (20.6)

Fi=F,+F, (207)
with
,_ (KD - (Ki)e (K (K
Fj T and Fj=
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Fig. 20.1 A dielectric sphere situated off the axis 4 of & TEM-mode beam with a
pair of symmetric rays a and b. The forces due to a are shown for e, > g;. The sphere
is pushed toward +z and —r. (After Ref. 3.)

Then, F; is along the inward normal of the sphere, and F}, has a component
along +# and a component toward the beam axis if ¢ > e, (as shown in Fig,
20.1), or away from the beam axis if £ < ;. The radiation pressure force on -
the sphere due to reflection and refraction of the ray along e at the output
surface can be similarly calculated. Again, we can write

F*=TF: +F} (20.8)
with
Fﬁ:(ﬁuﬁ%_))e,
Err
_ [ &y <K‘:,>)
F§ = - R

(Ko = {((K7y + (KD)kg, and (K7} = (Kp)-

Fg is along the outward normal of the sphere, and Fj has a component along
+# and a component toward the beam axis if &5 > &, or away from the beam
axis if £y < e;. The sum of F' and F* is a net force atong +7 and a net force
toward the beam axis if £, > £, A similar analysis shows that the ray along b,
which is symmetric to & with respect 1o the axis of the sphere as shown in Fig,
20.1, gives the sphere a net force along +Z and a net outward force away from
the beam axis if e, > ;. Since the wave along a is more intense than that
along &, the former exerts a stronger force than the latter. Consequently, the
total radiation force on the sphere, obtained by integrating over the sphere, is
along +# and toward the beam axis if ey > ¢, (away from the beam axis if
£, < £; ). This result can be easily understood from the physical picture that
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the dielectric sphere, aside from being pushed forward by the photon flux,
should tend to move to a position which minimizes the frec energy of the
system, Take the case of a latex ball (\/e_,,. = 1.58) immersed in water (ﬁs: =
1.33) as an example.’ Assume that the ball has a radius r and is sitting on the
axis of a focased argon laser beam. The total radiation force on the sphere
along £, obtained by an integration of F over the sphere, is (Fu), =
E  4g||r?/wi, where P is the laser power, w, is the e~ ? radius of the focused
% beam, and g = 0.6. With #= 1w, and r = wo/ V2 = A = 3140 A, the total
. force on the sphere is found to be ~ 4 X 10~* dyne, and the corresponding
- acceleration of the sphere of density p =1 g/on? is ~ 10° om/sec® or 10° g,
. This shows that the laser radiation pressure can indeed be used to manipulate
particles of micron size.

That the total radiation force on a macroscopic particle can be calculated
from the momentum conservation relation is generally true. It can also be used
to calculate the radiation force on absorbing objects. By the same token, the
conservation of angular momentum can be used to find the torque exerted on a
particle by a circularly or elliptically polarized laser beam. Rotation of a
particle induced by light is an interesting problem not yet fully explored.*

We now consider radiation forces on atoms or molecules. Let the induced
dipole on an atom in an eleciromagnetic field be p. Then the force on the atom
is simply the Lorentz force on the dipole

foow =P VE + %% X B. {20.9)

With p = aF, v X E = —(1/c)(#B/3r), and the identity E+ E = 1 VE? —
E x (v X E), (20.9) becomes?

—oilogra L1
flm—a[sz + ar(EXB)]' (20.10}

One immediately recognizes that (20.10) is nothing but the microscopic coun-
terpart of (204), since in the atomic case p = 0 and £ = 1 + dnpa.

The first term in (20.10) is equivalent to the electrostrictive force in a
macroscopic medium. It is called the dipole force when only the real part of
{= &' + ia”} is considered.

&
F = (E-)VEI. {20.11)
The direct proportion of {5, to o’ makes fp most significant and strongly
dispersive near resonances. With &’ > 0 (immediately below a strong reso-
nance), the force pulls the atom toward regions of higher intensities; with

o < 0 (above a strong resonance), it pushes the alom toward regions of lower
intensities. If the atom can be treated as an effective two-level system, the
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polarizability can be derived from the density matrix formalism (Section 2.1) in
the nonperturbative limit:

Klleri2y? _
hlw— wy +iT) (o = o22)

o - Kler2)*(w — wy)
fi[(m - 021]2 + Fz]

a=

(20.12)
{pu~ Pu)~

In (20:12), the population difference between the two levels |1 and [2) is given
by

Apy
- P N 20,1
P11~ Pn ¥ Tg{w)I 1, {20.13)
where I, = ch®F/87[(1ler[2)|?T; is the saturation intensity, 7 is the laser
intensity, Apg is the population difference at thermal equilibrium, and glw) =
T/#l{(w = wy)* + F?)is the unsaturated resonance lineshape. The polarizabil-
ity can be written in the form

. 1))

T THIg(a)is, (20.14)

with aj(w) denoting the real part of the polarizability without saturation.
Then, from (20.11), the dipole force has the time-averaged expression®

ap(w)

(M) = mv(fl). (20.15)
or

fo) = @ —2n) Jele)] o, 20.16

(ae 1+ Tg(w) I/, | 24T, | V5P (20.16)

We notice that in the limit of strong saturation, although o’ — 0, (™)
remains finite and increases with the detuning (w — w,;). With & < w,, and
hence a” > 0, a TEM, beam tends to attract the atom radially inward and
trap it on the beam axis through the dipole force. The trapping energy
J5*(faip - dr in the radial direction increases with the laser power even in the
saturation limit. Astde from the dipole force, mo other terms in (20.10)
contribute to the time-averaged (f,, ).

Radiation force can also arise from momentum change due to absorption
and emission of photons by an atom. It is sometimes called the scattering
force.™? In absorbing one photon, the atom receives a linear momentum Ak, o
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the ensuing spontaneous emission process, the photon is emitted with equal
probabilities in all directions. Therefore, on average, no momentumn change

: results from the spontaneous emission, If the atom can be treated as a
. iwo-level system, the scattering force is given by the number of photons
- absorbed per unit time multiplied by kk:

Bare? = %‘f"—lzﬁk
B ) 2 - {20.17)
= (erl [ (Pn p22)<E2)k

h[(m - m21)2 + I‘zl

i which reduces to

Tk
Focan) = T (20.18)
1

in the limit of strong saturation, as one would expect from physical argument.
The scattering force is in the direction of beam propagation and appears to
push the atom along the beam.

On molecules, the scattering force is much smaller because of the much
weaker resonant transitions due to spread of oscillator strengths among many
vibration-rotational lines and the longer lifetime 7. The dipele force, however,
can still be significant as it does not depend so critically on resonant enhance-
ment.

20.2 OPTICAL LEVITATION OF MACROSCOPIC PARTICLES

We now consider how the radiation force of a laser beam can be used to

_ manipulate a macroscopic particle. The example given in the previous section

shows that a 10-mW CW visible laser beam can yield an acceleration of 1 g on
& % 10-pm latex or glass ball. With a vertically directed laser beam, it is then
possible to levitate such a macroscopic particle in air or liquid against the
gravitational force.® A typical experimental setup is seen in Fig 20.2. As
actually demonstrated by Ashkin and Drziedzic,*¢ the particle can indeed be
levitated to a height where the radiation pressure force from the focused laser
beam just balances the gravitational force. The particle remains on the beam
axis, but because of the beam Auctuations, the vertical position of the particle
may fluctuate. This ¢an be eliminated using the feedback scheme sketched in
Fig. 20.2. There, the vertical position of the particle is monitored by a height
sensor via the scattered radiation from the sphere. Deviation from a preset
height generates an error signal to increase or decrease the laser intensity 50 as
to bring the particle to the correct position.
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Basic levitation apparatus Feedback apparatus

Fig. 20.2 Apparatus for levitating a dielectric sphere with a feedback stabilization .

scheme. PZT denotes piczoelectric transducer, and EOM, clectrooptical modulator.
[After A. Ashkin, Science 210 (1980).]

Since stable levitation of particles is possible, 2 number of intercsting
experiments can be imagined. First, the spectroscopy of a singie levitated
particle can be studied. For example, the surface wave resonances of a
spherical particle,” which arise when the surface waves run around the sphere
and close head-lo-tail on themselves, can now be detected either from the

fluorescence spectrum of from the variation of the levitation spectrum® (laser '
power required for levitation versus laser frequency). These surface resonances
can be very sharp (< 0.25 A), with their resonant frequencies depending .

critically on the size of the sphere. They can be employed for size measurement
with an accuracy two to three orders of magnitude better than other methods.
The accuracy for relative size measurements can be as good as 1 part in 10°
and can therefore be used to study minute changes of the sphere caused by, for

example, evaporation, condensation, or external perturbation. The levitation

method can also be used to aceurately sort out spherical particles of different
sizes. The optical properties of nonspherical particles are also interesting, and
can be most conveniently studied by the levitation method.

Levitation of particles can also be used to study interaction between two
macroscopic particles, or inferaction between a particle and a surface.” This
can be done by levitating the particles to prescribed positions and observing
the force change. Study of melting and crystallization is another possible
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interesting problem. In the more practical applications, optical levitation can
beused to support the small targets in laser-fusion experiments and t¢ map out
the gas flow pattern around 2 particle in various chambers.

3 The radiation forces can also be used Lo steer, accelerate, and manipulate a
" macroscopic particle. This then allows the studies of dynamic properties of
' particles in a medium, collisions between particles, fusion of particles, and so

k- on_')

In a fluid with many suspended diclectric spheres of higher refractive
indices, the radiation forces of a laser beam can increase the density of
- particles in the region of higher intensitics. Consequently, the refractive index
of the medium becomes higher in the region of high intensities. This is a
nonlinear optical effect since the refractive index now depends on the laser
intensity. Degenerate four-wave mixing and seli-focusing!® have actually been

. observed in such a medium.

203 LASER STEERING OF ATOMIC BEAMS

Radiation forces can be used to manipulate atoms. Because the forces have
f strong resonant enhancement, they are very selective in exerting forces on
[ different atomic species. The scaitering force following (20.17) or (20.18) can
* e very strong. In the saturation limit, which requires only ~ 10 mW fem? for
the 5 — p transition in alkali atoms, an acceleration of a~ {Ak/MT, is
obtained, where M is the mass of the atom. For a sodium atorm with T, =
16 nsec, a saturating laser beam resonant with the 3s — 3p transition yields an
acceleration of ~ 10® cm/sec?. This means that an atom with an initial
velocity v, ~ 10° cm/sec can be stopped by a head-on laser beam in 1 msec
over a distance of 50 ¢m, or can be deflected by 5 mrad by a perpendicular
E beam over a 1-om interaction length. The dipole force following (20.15) or
- (20.16) can also be appreciable. In the saturation limit, a Gaussian beam,
E having J = Igxp{—2r/w?} withw = 100 pm and w — vy = — 2 GHg, yields
- 4 transverse force {fy,)» — 5% 107" dyne on the atom at r=w. (The
[ equivalent acceleration on a sodium atom is a ~ 6 X 107 cm/sec?) The
" radially inward transverse dipole force forms an effective negative potential

i well around the beam with a minimum on the beam axis, In the above

E example, atoms with transverse velocitics less than ~— 10° cm/sec can be
L expected to get trapped in a 1.-W laser beam.

We now describe a few experiments on laser manipulation of atomic beams.
Observation of atomic beam deflection by a resonantly exciting laser beam
crossing at 90° provides direct evidence of the existence of the scattering
force.l! The observed transverse deflection of a well-colliminated atomic beam
agrees with the value predicied. Because it is directly proportional to resonant
absorption in the unsaturated limit [see (20.17)), the process has been suggested
as a high-resolution atomic spectroscopy method.” It can also be used for
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isotope separation based on the finite isotope shift in the resonant frequencies
of different isotopes.’

As another demonstration of the scattering force, a resonant Iaser beam has
been used to decelerale ztoms in a counterpropagating atomic beam. In the
experiment, when the atoms are slowed down, their transition frequency can be
Doppler-shifted cut of resonance with the laser frequency. To decelerate the
atoms appreciably, either the laser frequency should be continuously tuned to
resonance with the decelerated atoms'* or the Doppler-shifted atomic transi-
tions should be continuously tuned by an external field to be always m
resonance with the fixed laser frequency.’ Indeed, with a properly adjusted
axially varying magnetic field to Zecman-tune the 35, ,(F =2, M, = 2)—
3Py p(F= 3, My = 3) transition of Na, deceleration of sodium atoms to 4% of
the. initial thermal velocity by a 50-mW CW laser beam with 2 10-MHz
linewidth has been observed. The temperature characterizing the relative
motion of the atoms was reduced to 70 mK.

The existence of the dipole force has been demonstrated by the observation
that a Gaussian laser beam can be used to transversely confine and focus an
atomic beam.'® The experimental arrangement is shown in Fig, 20.3. When the
dye laser is tuned below the atomic resonance, the inward transverse dipole
force decreases the outward transverse velocity component of the atoms, and
leads 10 the focusing of the atomic beam. This is seen in Fig. 20.42 for the case
of a sodium atomic beam. If the laser is tuned above resonance, then the
transverse dipole force is radially outward, and the atomic beam becomes
defocused, as in Fig, 20.4b. The confining and focusing capability of the dipole
force makes optical steeting of atomic beams possible, as this can be achieved
by simple moving the guiding laser beam at 2 slow enough rate. The process
can also be used for isotope separation or for cleaning up dirty atomic beams
by confining only the desired species of atoms.

Atormic beam defiection by a transient dipole force has also been observed,”
and has been considered as a method for isotope separation. The transient

~Mirror with
I holg

. Alomic
[source Datector

k 80 cm

Fig. 203 Apparatus for observing focusing and defocusing of an atomic beam by the
dipole force of a nearly resonant laser beam. [After A. Ashkin, Science 210 (1980).]
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Fig. 204 (a) Focusing of an atomic beam by light tuned below resonance. (&)
Defocusing of an atomic beam by light tuned above resomance. The detector was
displaced along a line passing through the center 0. [After A. Ashkin, Science 210
(1980).]

behaviar of the radiation forces on an atom is itsell a subject of theoretical
interest.'®

204 OPTICAL COOQLING AND TRAPPING OF ATOMS AND
IONS

Laser deceleration of atoms is a form of optical cooling for atoms in an atomic
beam. The absorption of a photon at = wy; ~ kv by a counterpropagating
atom changes the atomic velocity from & to » — Ap with &v = Ak/M. Here
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only the first-order Doppler shift is taken into account. Subsequently, in the
reverse transition, a photon is emitted at o’ = wy + k’- {v — Av) with k’ being
the wavevector. This emitied photon frequency is always higher than the
absorbed photon frequency. Therefore, the atom is cooled by losing its kinetic
energy to the radiation field. This absorption-emission process has also been
suggested for cooling of atoms in a cell?® By tuning the laser to the low-
frequency side of the Doppler-broadened absorption line, atoms that absorb
the laser photons have a velocity component antiparallel to the laser beam.
These atoms lose their kinetic energies in reradiation. If, through atomic
coltisions, thermal equilibrium exists in the atomic gas, then the equilibrium
temperature is lowered as the total energy of the atoms decreases continuously
through absorption and reradiation.

While the scattering force can be used to cool atoms, the dipole force can be
used to trap atoms.”® We saw in Section 20.3 how the atoms with a transverse
velogily v, < 0, g, Can be trapped in the axial region of a Gaussian beam by
the transverse negative potential of the dipole force. This can, of course, be
extended to the three-dimensional case. If the Gaussian beam is strongly
focused, then the intensity variztion along the beam axis can be appreciable
(see Fig- 20.5). The corresponding axial dipole force is directed toward the
focns and forms a negative potential well around the focus in the axial
direction. This together with the transverse negative potential well sets up a
three-dimensional local trap for atoms around the focus. The maximum kinetic
energy of the atoms that can be confined in the trap is defined by the depth of
the potential well. Other laser beams geometries, using possibly more than one
Jaser beam, can also be used to form optical traps. The basic idea is always to
find an optical field configuration with a stable equilibrium point such that an
atom displaced from this point should experience a restoring force.

Atoms with finite velocities trapped in a potential well will, of course,
oscillate back and forth in the well if there is no damping on their motion.
They can, however, be optically cooled by the scattering force that damps the
motion. For effective cooling and trapping, the scattering force should be
provided by a laser beam tuned below but close to an absorption peak, while
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the dipole force for trapping is from a separate focused laser beam tuned
below but farther away from the resonance (Fig. 20.5).2' According to the
calculations, the trapped atoms can be cooled down to 107K by this means.
The limit here is set by the quantum fluctuations of both the scattering and the
dipole forces.”

Fluctuations of the scattering force are anticipated because absorption and
emission of photons are random processes. Thus, for example, with ¥ photons
both absorbed and emitted by an atom, the momentum of the atom should

fuctuate with a root mean square value [( Mo) /7 = VIN Ak, and the corre-
sponding average kinetic energy is N(Jik)%/M. Fluctuations of the dipole force
are more complicated and difficult to understand. Reference 22 provides a
detailed discussion of the subject. Force fiuctuations have been found to be the
limiting mechanism on the focal spot size of the optically focused atomic
beam.? Because of force fuctuations, even atoms with zero velocity sitting at
the equilibrium point of the trap are expected to be heated up with ever
increasing energy uniil they eventually escape from the trap. To keep the atoms
in the trap at a low temperature, optical cooling must be used. The equilibrium
temperature of the trapped atoms is determined by the balance between
heating by fluctuations and optical cooling,

Optical trapping of neutral atoms in a local region has net yet been
observed, although no insurmountable experimental difficultics are anticipated.
If atoms can be trapped, optical cooling of the trapped atoms should be
straightforward. Indeed, optical cooling of trapped ions has already been
observed.®* As charged particles, the ions can be initially trapped by an ri
quadrupole field. Cooling of the trapped ions is then achieved with a tunable
laser beam. By using optical cooling and trapping, many previously unthink-
able experiments are no longer impossible. If atoms or ions are af rest al a
local point, one can make observations on single atoms or ions over long
periods of time. Then high-resolution spectroscopy of atoms or ions with the
Doppler effects completely eliminated could become a reality. Toschek and
co-workers® have been able to detect and photograph single ions in an rf
quadrupole trap from their resonant fluotescence emission. Yarious fundamen-
tal properties of single atoms or ions can then be studied, With the possibility
of using lasers to manipulate atoms or ions in a trap, studies of forces between
atoms, between atoms and molecules, or between atoms and surfaces, and their
influences on radiation lifetimes, formation of molecules, chemical reactions,
and so on, can also be conceived. These applications, if possible, will certainty
revolutionize the field of atomic physics.
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Transient Coherent
Optical Effects

Pulse propagation in a resonant medium can yield many interesting phenom-
ena. Most of them originate from the transient response of the medium to the
coherent pulsed excitations. Transient coherent effects are among the most
fascinating subjects of resonant wave interaction with matter. They were
studied extensively in magnetic resonance before the laser era. With the advent

' of lasers, extension of these studies to the optical region becomes possible. The

necessity of including the wave propagation effects makes transient coherent
optical phenomeéna more interesting and colorful than their counterparts in
magnetic resonance. Aside from generak theoretical interest, transient coherent
effects have also found nseful applications in material studies.

211 BLOCH EQUATION FOR A TWO-LEVEL SYSTEM

We consider in this chapter mainly transient coherent effects in an effective
two-level system, which is often a good approximation for a real system under
a quasi-menochromatic resonant excitation. Then, as one may expect, a close
analog should exist between the excitation of an optical resonance and that of
a magnetic resonance. Indeed, Feynman et al! have shown explicitly that any
two-level system is equivalent to a spin-§ system as far as the resonant
excitation is concerned, The proof is fairly simple: One shows that the dynamic
response of a two-level system 1o a resonant excitation obeys a Bloch-type
equation of motion” as that of a magnetic spin- 4 system does.

Let us consider the two-level system seen in Fig. 21.1. The two levels are
cigenstates of the unperturbed Hamiltonian 5

Kol + ) =thag + ) and Syl =)= Hhal - ) {21.1)
I
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———————— ]

wp w

Fig. 21.1 A two-level system under a near-resonant
— <—1 excitation.

The nonvanishing dipole matrix efements are assumed to be

o, T ip
yE{+pd =)= {—p_|+ ) and pi;x_ﬁ_y

5o that only the circularly polarized fields can induce transitions between the
two levels. The interaction Hamiltonian of the system in the presence of a field
E = XE () +FE(1)is

(21.2)

Hoip = 7(”’:Ex + -"'yEy}

(21.3)
= —(pE_+pE,)
where E = (E, £ iE})/ V1 are the left and right circularly polarized fields.
The dynamic response of the two-level system to the applied field is now
governed by the Liouville equation for the density matrix {see Section 2.1):

L ap L[ P
ik ar - l% + '#im' p] * Jh{ e )dnmpins’ (21.4)
which can be written explicitly as

Lo, ik
ik 6‘; = hugp,_t YE (pyi=P__)— il‘h—s
L dp_ ih
ih 3l+ = —hwgp_s— TEL{per— o) - f‘P—H

2

(21.5)

@
ma{p——7 p++) = Y(E—P—+7 E+p+—)

- %[(P-—_ p++) _(Po—— - P'1-+)]'
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The expectation values of the electric dipole compenents are then given by

_{r)+{n)
V2
_le_.tp.)
V2
and (21.6)
(1) = <n+)i;2_<#‘>
e, - .ﬂ+-)~

)

(o)

If we now define a psendo-dipole as
(W) = 2w + 3w + )

with

(e =v(pes—0 ) (21.7)
and an effective electric field as

Ey = 3E, + JE, + H{E, )
with a dc compenent
(E)ew = —he/y, (21.8)

then from (21.5) we find

%(»a = - L Bm) ~ (Bdartin)] - 2
2 (> = ~ LB Daln,) + Eu)] - <"’ (219)
%m = —F[ELn) - Ewo)] *<L>-;1<—po>
In the vectorial form, (21.9) becomes
% 2wy = =Ty x () - —(JN#:) +3e,)) - 12'(<#=> - (D).

{21.10)
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This equation is identical to the Bloch eguation in magnetic resonance if we
take p to be the magnetic dipole and replace E.q by the magnetic field H. We
have therefore proved the statement that any two-level system can be treated
as a pseudo-spin- § system.

Equation (21.10) actually resembles the classical equation of motion for a
precessing dipole p driven by the torque — (v/A)Eq X 4. Neglecting the
relaxation terms for simplicity, we can write (21,10} as

T =axw (2111)

where @ = —(v/H)E,_; is the precessing angular frequency. Without an ap-
plied field, E = 2(E,), = —2hwy/y; if the dipole is initially tlted away
from Z, it will precess around Z with the angular frequency & = woZ. With a
time-dependent applied field E(¢}, 8 becomes time-dependent. We consider
here the special case of a near-resonant excitation by a circularly pelarized
guasi-monochromatic field E = [(& + #)/¥2]€(z)e™** ™"+ complex con-
jugate with w ~ eq. As a resonant driving feld, E rotates nearly in synchroni-
zation with the dipole precession around 2. The physical picture is more
transparent in a coordinate frame rotating with « around 2. In the rotating
frame,’ (21,11} becomes

2 ey = (8- w8y x (1)

=0+ x (a7}

(21.12)

where @g = — (v/FH(E, )k + 26347 is related to @ by the rotational trans-
formation, and £’ is along E, (Here, 2¢ instead of ¢ appears in 2, because
according to our definition of &, the field amplitude of a sinuscidal wave is
given by 2&.) Thus we have

2 = (- )2 —[%)2&?’. {21.13)

Then if we neglect the slow amplitude variation of &, the dipole sees effectively
a stationary field

E% = —(%)(wo — )i+ 28R (2119

The dynamic response of the dipole, following {21.12), can therefore be
described by its precession around E2, in the rotating frame.

Equation (21.11) or (21.12) governs the response of (he medium to the field.
To find how the medium in turn affects the field, we must solve the wave
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equation with the time-varying dipoles as the driving source:
z 2
(vz—ia—)E= 47 & nps. (21.15)

Here, {p) = £{pt,) + #{p,), and we have assumed a cubic or isotropic
medium having N dipoles per unit volume; the local field correction is
neglected, Tn fact, the complete solution of the problem should be found by
solving the coupled equations (21.11) and (21.15) together. A number of
interesting transient phenomena arise from such solutions, depending on the
resonant excitation pulses and the characteristics of the medium. We discuss
some of them in the following sections. The emphasis is on physical under-
standing; hence no rigorous mathematical derivations are attempted. They can
be found together with other details in many books and review articles on the
subject (see Bibliography).

21.2 TRANSIENT NUTATION AND FREE INDUCTION DECAY

Consider first the case where the initial population of the wo-level system is all
in the ground state, so that the pseudo-dipoie (p) = 2,y of (2L.T) is
pointing along —2, as in Fig. 21.2. At t = 0", a ncas-resonant circularly
polarized field is switched on. Then, (p*) in the rotating frame sees a

Transmission

o &
j ° ‘
) "
i {a}

()

Fig. 212 {a) Precession of a pseudo-dipole p* in the rotating frame, in which the
applied field # is stationary. () Transient nutation signal induced by the switch-on of
a resonant excitation.
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stationary effective field EY; given by (21.14), and begins the counterclockwise
precession around EY; with a frequency,

o = (%]TE:M
- [(m — ) +(%2é’)2]1/1.

which is generally known as the Rabi frequency.* The precession leads to a
sinusoidal oscillation in the amplitudes of (p}.) and (7)) = (g - The latter
corresponds physically to an escillation in the population difference between
the 1wo levels. Since the absorption coefficient of the medium is directly
proportional to the population difference, the transmission of the exciting light
should experience a sinusoidal intensity modulation at the Rabi frequency, The
precession of {u*) around E%; will eventually be damped out as {u*) relaxes
toward its final steady-state value (u*),, with

{21.16)

_ (v/8)28(wy — )T
D

() '
B)2E8T,
(e = %' {21.17)
N
and
D =1+(wy— @) T +(y/BY44TT,

obtained from (21.9). This happens with a time¢ constant 7~ T, if £ is
sufficiently small; more generally, + depends on T, T, lw, — @], and &.°
Therefore, following the switch-on of the excitation, the transmission of the
exciting light should approach the steady-state value through a damped
modulation period as shown in Fig. 21.2. This phenomenon is known as
transient nutation.® Alternatively, the modulation can be explained by the
amplitude-modulated precession of ().} around ? in the lab frame. The
radiation fromn these precessing dipoles superimposed on the incoming lipht
gives rise to the modulation of the transmitted light,

To observe transient nutation with a few cycles of oscillations before it
decays away, we must have §§* > 1/7, or (y/h)2&> 1/7 if w = w,, For the
5 — p transitions of alkali atoms, for example, (y/A} ~ 5 X 10° esu, and
1~ T, ~ 107% sec, we find &> 0.01 esu, corresponding to a laser intensity
I > 0.03 W /cm®. For the vibrational transitions of molecules, one may have
(y/h) ~ 5 % 10% esu, and 7 ~ 107 sec; the observation of transient nutation
then requires £> 1 esu or [ > 250 W /e, From the theoretical fit of the
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observed damped oscillation one can deduce v, and hence the oscillator
strength of the transition, and the dephasing time 7;.

Optical ransient nutation was first predicted and observed by Tang and
co-workers as an analog to the magnetic resonance case.® Pulsed lasers with a
sufficiently sharp leading edge were needed for the experiments. Brewer and
Shoemaker’ have, however, introduced a pulsed Stark-shift technigue that
allows the observations of a variety of transient effects, including transient
nutation, with the use of a CW laser. The basic setup is sketched in Fig, 21.3.
The sample is in a Stark cell. An applied dc electric field on the sample can
Stark-shift the atoms or molecules in or out of resonance with the CW exciting
laser beam. This is then equivalent to switching on or off of the resonant
exciting field. Figure 21.4 shows an example of transient nutation observed by
this technique.” In this case, the CW laser has a linewidth much narrower than
the Doppler width (or inhomogeneous linewidth) of the transition. It is initially
n resonance with a group of molecules within the Doppler profile. The sudden
application of the electric field shifts the resonance to a different group of
molecules, assuming that the Stark shift is comparable to the Doppler width,
This new group of molecules now begins to adsorb and gives rise to the
observed transient nutation following the switch-on of the field. Then, if the
applied dc electric field is suddenly turned off, the resonant excitation is shifted
back to the original group of molecules. These molecules begin to absorb
again, and yield another transient nutation signal as seen in Fig. 21.4. Of

Photodetector

From pulse generator

To oscilloscope

Fig. 213 Schematic of the Stark switching apparatus that is used for observing optical
transients. [After R, G. Brewer, Physics Today 30, 50 (1977).]
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Fig. 214 The optical nutation cffect in methyl fluaride CYH,F, irradiated by a
carbon-dioxide laser at 9.7 p. (After Ref. 7)

course, the same experiments can alse be performed by shifting the laser
frequency instead of the material resonance.

We now consider the case where a resonant exciting laser beam initially in
equilibrium with the two-level system is suddenly switched off. The stored
energy in the two-level system is expected to radiate out. As shown in Fig, 21.5,
the dipole {p ) initially described by (21.17) sees an effective field E i = (E,) o2
after the laser beam is turned off. It begins to precess around £ in the lab frame
and radiates. A collection of such dipoles radiates coherently until they get out
of phase with one another. Dephasing occurs because atoms or molecules
under the inhomogeneously broadened profile have different resonart frequen-
cies w,, and hence the corresponding dipoles have different precessing frequen-
cies. As a result, the coherent reradiation from the sample should decay away
with a time constant 7, equal to the dephasing time. This decaying coherent
reradiation is known as optical free induction decay,” which also has an analog
in magnetic resonance? 1f the laser linewidth is much less than 1/7, then
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Laser Excitation

¥ Emission (a)

) Fon =Rty K

Iy t
1) ]

Fig. 215 Schematic drewings describing free-induction decay. (a) Laser excitation

switched off at ¢,; () pscudo-dipole p precessing around £ after ¢y; (c) free-induction

decay signal for ¢ > (5.

7l =T+, with T,=[1+ (y/BYHET LI /T, being the power-
broadened width of the excitation. If the laser linewidth is much larger than
the Doppler widih &wy, = 1/T;*, then 7, = T*.'

To observe the optical free induction decay, it is most convenient to use the
heterodyne technique by beating the coherent reradiation with an incoming
beam of slightly different frequency and detecting the beat signal. The Stark-
shift technique of Brewer and Shoemaker is ideal for such experiments.” When
a group of molecules initially on resonance with the incoming CW laser is
suddenly shifted off resonance by an amount dw, the subsequent free induction
decay radiation from these molecules can mix with the laser radiation and
yield a damped beat signal at the beat frequency Sw, as seen iz Fig. 21.6.°
From the decay of the beat signal, the dephasing time of the transition can be
deduced. A homogencous linewidth (1/7;) as low as ~ 1 kHz has been
measured.)® Therefore, free induction decay can be used as a spectroscopy
method of very high resolution. If the shift $w is smaller than the inhomoge-
neous linewidth, and (y/%)2&> 1/T,, the frequency swilching should also
induce simultancously the transient nutation process described earlier, The free
induction signal then appears to be superimposed on the nutation signal. Since
1= A/(y28) = 1/0%w = 0y} « 1/T5, the free induction decay is essen-
tially timited to the first half period of the transient nutation.

TR G. DeVoe and R. G. Brewer in Phys. Rev. Lerr. 50, 1269 (1983), have shown that in the
high-power Limit, (4v2¢2/4%)T,7; > 1, the dephasing time should be v, = (1/7; + 2y8/H)7 3,
and in the Tow-power limit, 7, = 73,/2, as suggested by A G. Redfield in Phys. Rev. 98, 1787
(1955).
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Fig 21.6 Optical free-induction decay in LaFy: Pr** ((.1%) at 1.6 K, as observed by
the Stark-shift heterodyne techrugue. The residuals lead to an uncertainty of less than
1% in the measured dephasing time of 5.1 usec. (After Ref. 9.)

More generally, if there exist several closely spaced transitions which can be
simultaneously excited by the laser beam, then the free induction decay is the
superposition of the induction decay signals from all (hese excited transitions.
Fourier transform of the free induction decay signal should yield the spectrum
of these transitions. This is similar to quantum beat spectroscopy (Section 13.2)
except that the output in the latter case is the nondirectional fluorescent
emission.

21.3 PHOTON ECHOES

Atoms or molecules in different environments have different resonant frequen-
cies, leading to the inhomogeneous broadening of a spectral line. In the
pseudeo-dipele picture, this means that the dipoles should precess with different
frequencies. If initially, through coherent excitation, the precessing dipoles are
arranged in phase, they should then emit coherently as in the free induction
decay case. However, because of their different precessing frequencies, the
dipoles s00n run out of phase with one another in a time ~ T* = 1/Aw,,
where Aw, is the inhomogencous broadening width. As a result, the coherent
emission would die away. Yet if by some means the dephased dipoles could be
rephased, then coherent emission would reappear. That dipole rephasing is
indeed possible was first discovered in magnetic resonance by Hahn in a

| P
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phenomenon known as spin echoes' and is a demonstration of the reversibility
of some type of statistical dynamic processes. The optical analog of spin
echoes, known as photon echoes, was later predicted and observed by
Hartmann et al.'?

Consider a collection of two-level systems with a distribution of resonant
frequencies. The populations initially are in the ground level, so that the
pseudo-dipoles w* are all pointing downward, as in Fig. 21.70. At0 < r < 7,2
narrow square pulse E = [(X + if)&/ 2 Je" ' is applied to the systems, [f
~(v/R)2E % |w — o), then with this excitation, all p* in the rotating frame
where E is stationary should rotate around & by an angle,

g= ]; "(%)2&1‘:. (21.18)

Assuming & = 7 /2, all dipoles end up together in the %-j plane at the end of
the pulse (Fig. 21.74). They then appear in the lab frame precessing around 2,
giving rise to coherent emission in the form of free induction decay, and
because of dephasing due te inhomogeneous broadening, the emissicn signal
decays away in a time T,* = 1/Acw,. This is seen by the fanning out of the
dipoles in Fig. 21.7c. At #; < ¢ < t;, another narrow square pulse (assuming
=&, — 1) with (y/k)2€ % |w — wy| and § = 7 is applied to the
system. In the rotaling frame, this makes the dipoles rotate around & by 180°.
The result is that all p* undergo a mirror reflection about the & — # plane.
Immediately after r,, the dipoles are still badly dephased, and no coherent
emission or free induction should appear. Yet, because of the mirror reflection
of the dipoles caused by the =-pulse excitation, the dipoles, in the rotaling
frame, should now precess back (Fig. 21.74) and begin to fan it. 1t takes the
same amount of time for the dipoles to fan in as it takes them to fan out.
Therefore, at ¢ = ¢, with 1, — 1, = 7, — #,, the dipoles are expected to be back
in phase (Fig, 21.7¢), with the resoltant emission of a coherent pulse. As the
dipoles fan cut again, the emission signal decays away.

This discussion describes how the photon echo, in the form of a coherent
emission pulse, appears from two-level systems. More generally, photon echoes
refer to the appearance of coherent emission pulses following successive
applications of resonant excitation pulses. Their existence depends on the
reversibility of dipole dephasing due to inhomogeneous broadening, However,
the dipoles should also experience an intrinsic dephasing process with a
dephasing time 7, related to the homogeneous broadening. This intrinsic
dephasing is not reversible. Photon echoes can appear only before the intrinsic
phase coherence of the dipoles is destroyed. Therefore, to observe a photon
echo, the time delay between the first excitation pulse and the photon echo
should not be much longer than 7;. The amplitude of the echo actually decay
exponentially with the time delay, from which one can deduce the time
constant T;.
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In photon echoes, the wave propagation effect is also importani.” Consider
a light pulse detected by a detector at, say, r =0 and time ¢, the actual
interaction of the pulse with the atoms at r occurs at the retarded time
r— k*r/w. Thus, more correctly, retarded times should be used in this
discussion. The photon echo should then appear when

(- ke l) =6 -k D) = (- karg ) (0 - w0 ) @119)

where k;, k,, and k, are, respectively, the wavevectors of the /2 pulse, the
m-pulse, and the photon echo. The above equation yields the conditions for the
photon echo:

ty=ty=t,— 1, and ky; =2k, - k. (21.20)

The second equation in (21.20) is actually the phase-matching requirement for
the generation of the photon echo. It defines the direction of the echo
propagation. However, the equation may not be fully satisfied if k; and k, are
not properly chosen. In that case, the echo intensity is expected to reduce
because of the phase mismatch.

The more quantitative analysis of photon echoes often starts with the
description of the pseudo-dipole in the rotating frame. In that frame, after the
#/2 and 7 pulse excitations, the precessing dipole with resonant frequency w,
is readily shown to have the expression'

73

where Aw = @y — @, and the phase change during the excitation pulses is
neglected. In lab coordinates, this becomes

= (3' + ff")”ge.’a.ﬂkl)w—mu{n—:;:—(rl—:,)1 (21.21)

i+ "5') 0, ks — 2500 — Fw[(r = 133 13— )l — et
= Dg#th ~2k st -l 21.22
B ( 7 ¥ (21.22)

For a collection of such dipoles with a resonant frequency distribution g(Aw)
and a density N, the resultant polarization is given by

Nplr, ) = f_ZNpg(Am)d(Aw). (21.23)

This polarization acts as the source of coherent radiation governed by (21.15).
In the slowly varying amplitude approximation, the solution of (21.15) gives a
coherent emission field

E (1)« [fd3 (AN, D glaw)e®am |efer (21.24)
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where &, = wje(w) /c has its direction determined by (k,), = (2k;),
—{k;)_ . With p given by {21.22), it is readily seen that the emission with the
wavevector K, is a2 maximum when the phase factor in the integral vanishes,
that is, when (21.20) are satisfied. As ¢ deviates away from 1, given in (21.20),
E.., quickly reduces in amplitude, The coherent emission therefore appears in
the form of a pulse centered at ¢,. It is circularly polarized in the same sense as
the exciting pulses.

Actually, for the generation of pheton echoes, the two excitation pulses can
have any values of #. They were chosen to be /2 and « in this discussion only
for convenience of Hlustration. The dephasing and rephasing processes are still
operative if ¢ are different from #/2 and . In the next section we see that
photon echoes can also arise when & are small, in which case the perturbative
transient wave mixing approach can be used to describe transient phenomena.
‘We also see that photon echoes are not restricted to two-level systems. In fact,
they are more interesting and intriguing in a multilevel system with multipulse
excitations,

The experimental arrangement for photon echo studies is fairly simple. Cne
can use either laser pulses to successively excite the medium or amplitude or
frequency switching to shift a CW laser excitation on and off in the form of
successive pulses. The latter is most convenient for measuring photon echoes
with long time delays. An example of a two-level photon echo is shown in Fig.
21.8.”% The exponential decay of the echo intensity as a function of the time
delay between pulses gives a direct measurement of the dephasing time 7,. A

Fig. 218 Oscilioscope trace (100 nsec/division) showing the photon echo from a muby
sample at 4.2 K. The echo appears as the third pulse following the two exciting pulses
from a ruby laser. {After Ref. 12.)
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T, as long as a few hundred microseconds, corresponding 10 a homogeneous
linewidth of a few hundred hertz, has been found in transitions of rare earth
ions in solids by the photon echo technique.’”? Study of the T, dependence on
various parameters in gases and condensed maiter enables us to have a much
better understanding of the various transverse relaxation {dephasing) mecha-
nisms.

214 TRANSIENT FOUR-WAVE MIXING

From the microscopic point of view, transient coherent effects result from the
fact that the material system can retain for some time the definite phase of a
coherent excitation {coherent mixing of two states). In two-level systems, the
coherent excitalion can be described pictorially by the precession of the
transverse dipole components around 2. More generally, however, it is de-
scribed by the nonvanishing off-diagonal components of the density matrix.
Therefore, at least formally, one can find the coherent transient responses of a
medium to the applied field from the time-dependent solutions of the equation
of motion for the density matrix. This approach is used here to study coherent
transient effects in four-wave mixing in the perturbation limit and to show that
it can lead to the more general photon echo and free induction phenomena, '

We first generatize the diagrammatic technique of Section 2.3 to the
time-dependent case.'® Consider Fig. 21.9, where three successive pulses E(w,),
E (w,), E{w,) resonantly excite the transitions [m} — {p), (m} — {r|{rl = (5]
al &, &3, Iy, respectively, with ¢; < f; < 5. The rules of writing down the
time-varying density matrix p™(s} are the same as in Section 2.3, except that
the propagator w; for propagation from the jth vertex to the {j + 1)th vertex

Fig. 219 Double Feynmann diagram describing
Im> ph, <ml a transient four-wave mixing process.
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along the lines |/} and { k| should be replaced by the phase factor

A2, = 1, kYY) = et Tad (a4,
1 T )

and the product of all factors in p™(¢) is integrated over all possible time
separations between vertices. We assume here that even the population excita-
tion (/ = k) in a given state decays exponentially with time. Following these
rules, we can find, from Fig 21.9,

#D(1) = f“ d, J’ ® i, j ® e tpt Tum g Ly 11y~ * Ty
0 — -

x (Pl_i‘_hl}l'ﬂ(f -7 = = m)e Ty
-1 ) (21.25)
x (""|__iklr"gz(‘ == nle Ry

-1 -
Xtz &5(s — 1) e s )| phal L sl).

With the substitution of variables §, =t -1 - %~ n, &=t~ 1 — 7, and
&y =t — 7, (21.25) becomes

. 13*
#I() = "e**”"”""(ﬁ) (L2)ennsl)
X{plws&ylmy{mlpe&;lr){rln-&ls)
v f "ty el T et Tl g (£ (21.26)

xf‘! dg, elisnt TolSispm ¥ Dy —iuzling (£
-0

Xj'fz dE‘e[(m,_+l",,,,)—mzlﬁgl(fl)_
-0

In a gaseous system, p®)(¢) is also a function of molecular velocity v. A field
&(£,) seen by a molecule with v at W(£,) = 1(1) — (¢ — &, is

&(&) = A (g eep

{21.27)
- A,(ej)eik‘-r(r)kj(lgg-)(lz,-v)'
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We then have

pC(y, 1) = 7e‘<"“’n+l‘,x)f( ] PTG

X (plp-éyfm)(mlp- &;lr)(rlp-ésis)
X il +iy 1) ) —vi]

XJ" df, elitwn—on T Torikelis g (2 ) (21.28)
xf‘! dE, eltem oD T Lyt drltng ()
-0

2 g elitupm—w0) Tom ik M4 ()
—o

We consider here the case where all resonant excitation pulses are short enough
50 that we can write

fE deae[j(u“-u,,)-#l'_.,,,+lk.'v]£:4(éf)
o (21.29)
) ¢ o - w b
~ e[n,.m,-vlsnf dgr it iy ()

-0

3
oB (v, 1) = _(T}‘F) |2y {s|e ™ bt ket ke

K e~ T Eyi— ) +ate— E)+ Ky~ E19)]
X g~ Toslt =) oot 820) = Tl 20 - £10)
Xl lmy{mlp-&,|ry{rip-élsy

" P (21.30)
Xf diy ettonmobig,(4)

-
x fE’ dg; e'(”"'iuz)‘mz(éz)

-

£ i _
ng dglf!(m”' m‘)"Al(EL)P?nm-
— o0

The overall density matrix for the Doppler-broadened molecular system has
the form

P (1) = f (V)™ (v, £} d¥ (21.31)

where g{v) is the normalized velocity distribution function. The nonlinear
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polarization is then given by

PO(r) = N{u(e}) (21.32)
= NTe[pa™(1)].
We find
(1) = Ceilhat Kl Tyt b -8 g
PP = Ce f_wg(V)e v 21.39)
¢ g Tpelt =303~ Dprln —Eaa) DamlEm —Fd
where

Oy, £) = vo{iy (7 — £30) + Ry (1 — £) + Ko (1 - £l (2134)
and C is a proportional constant. This shows that the nonlinear polarization
has a wavevector k, = k; + k, + k, and a frequency «,,. As is common in
wave mixing problems, for P to radiate efficiently, the radiating wavevector
k, must satisfy the phase matching condition k, = k,. Also, if 8(v)=0 at
t = 1,, the integral in (21.33) becomes unity and, correspondingly, P has the
maximum amplitude, Both are conditions for the appearance of a photen echo,
as already seen in the previous section for two-level systems. The last factor in
(21.33) describes the decay of the coberent radiation resulting from damping of -
the excitations in the various time intervals, Finally, the proportional constant
C in (21.33) is responsible for the intensity of the photon echo. Similar results
can be obtained for other types of inhomogeneously broadened systems from a
similar derivation.

The preceding formalism can be illustrated by considering the case of a
two-level system under the resonant excitations of three successive pulses with
@, = W, = &y = wyg but different wavevectors, as in Fig. 21.10. Because of the
degenerate frequencies, there are four diagrams contributing to o13(1), leading
1o the expression

k|
s(1) = _[lh) "1 ([Lpog(Of) ¢~ Tkt~ b+~
1

o Toottw=f) . g~ Tutbw—tw)]
x{(llu'éalﬂ)(ﬂui-éz|1><1|p-élp>efwrk1+k->-v
o : e
Xf' dESA3{£3)e'("‘"° ﬂ)EaI 3 dEZAi‘(fz)e H{wo—@}Ex
Cw -
xfe’ d,glAl(fl)e.cu.n—me.f“’ dvglv)e B (21.335)
o e
+{O|p-élll)(lm-ézp)(oh_,.g]|1)e:<u,+uru,)-r
Hang=w J flap—w)fy
Xf'f d§3A3(§3)e‘( 1o ]E;f] dEzAl(fz)e( R
—w .

xfez dt, Al*(il)e”"“’m"")“fm dvg(v)e"’ﬂ“’}.
e e .
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Fig. 2L10 Transient four-wave mixing in a two-level system resulting from three
[ successive resosant pulse excitations of the same frequency but different wavevectors.
" The process is generally described by the four scparate diagrams in (a), {#), (c), and
{d)-

The first term in the brackets comes from diagrams @ and &, and the second
term from ¢ and o in Fig. 21.10. They have different wavevector combinations,
and hence different 8(v):

b V)= [kJ(’fﬁm)‘kz(“‘Ezo)*kl{"fm)]"'
b and (21.36)
t(v) = [ky(t — £30) + kot = £3) ~ Ky (¥ — fi)] v

. The phase matching conditions for coherent radiation from the two terms are,
respectively,

; k, =k, =k; -k, +k

. and (21.37)
7 k,=k, =k, +k, — k.

. Figure 21,11 presents the possible arrangements of the k's to satisfy (21.37).

Tt is interesting to sce that (21.35) actually deseribes a number of different
f- photon echo phenomena in two-level systems. To have a photon echo appear
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K =ky —kp +k,

(a} (b £

K, =Ky +ky —k,

ky ks

(dy {e) i

Fig. 21.11 Possible phase-matching arrangements for the depenerate tramsient four-
wave mixing process described in Fig. 21.10,

after the pulsed excitations, we must have 6,(v) or (v} vanishing at 1 = ¢, >
&3 [In general, it is possible to have a photon echo with a reduced amplitude
if #(v) is a minimum instead of zero at ¢ = 1, = £.,,® but we do not discuss
such a case here.] From (21,36), we have for 8,(v) = 0,

—k - (ksés — ko + Kidig)

!
N k}

(21.38)

and for (v} = 0,

gk + Koty — ki) .

t
K}

-k (21.39)

e

The condition ¢, = £;, can be satisfied only for the phase matching arrange-
ments 4, b, d, ¢, in Fig. 21.11. The echo created at ¢t = 1, after the successive
pulse excitations at £, €59, and £, is known as a three-pulse stimulated echo.
The nonperturbative derivation of the stimulated echoes has been worked out
by Fujita et al."? It yields the same result given here in the perturbation limit.
As seen in Fig. 21.11, cases a and b generate a backward stimulated echo (k, in
a direction more or less opposite 10 k, and K,), and cases d and e generate a
forward echo. In a condensed matter, the echo condition is somewhat different.
Cases 4, b, and ¢ are not allowed, but cases d, e, and f are.)”

We can let the second and third excitation pulses merge into one with
£20 = &30, ky =k, and &, = &,, and obtain the two-pulse echo described in
the previous section. We find from (21.38) and (21.39) that the echo exists only
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for case d or ¢ in Fig. 21.11 with k, = 2k, — k,, and it appears at ¢, — &;, =
E & — &) in the forward direction, From (21.33), the echo intensity, propor-
b tionat to [p(1, )%, decays with exp[ - 2T'(1, — £,0)]. (Note that Iy = 1/T;.)
These are the same results obtained in the previous section for the two-pulse
photon echo in a two-level system with the #/2 and = pulse excitations. This
praves that the 7 /2 and # excitation pulses are not necessary for the observa-
tion of the photon echo,

We can also imagine that the first and second pulses in the three-pulse
excitation sequence merge into one to form a two-pulse excitation. With
£10 =&y and k; =k, in (21.38) and (21.39), it is seen that the coherent
emission occurs at 1, = £,,, The output therefore overlaps with and modifies
the input pulse at £,;. From (21.35), one can see that it is in the form of a free
induction decay with the emission field proportional to

[e*rw(gw*fm) + e'ru{Ew—hn)] x [e—rm(l"im) Xfm d’vg(v)efk)"(f—fm) e~
-

The first bracket describes the amplitude decay with the pulse separation
(€30 — £20). while the second gives the time dependence of the free induction
decay for # = £;. The result here shows that, in general, a free induction decay
signal is expected after the second excitation pulse in Fig. 21.7. Cne can also
let the three excitation pulses merge into one with §,, = £,, = £y, and k, = k,
= k;. The coherent emission in this case should be the free induction decay
appearing at the end of the excitation pulse.

The approach here can be easily extended to transient four-wave mixing in
three- and four-level systems. The results should yield many transient coherent
phenomena including free induction decays and various kinds of photon
echoes (trilevel echoes, graling echoes, Raman echoes, etc.).!® The derivation
can even be extended to the more general case of coberent transient effects in
n-level systems with m excitation pulses (transient n-wave mixing). Since the
basic principle is the same, we do not dwell further on the problem, but refer
the readers 1o Ref. 14,

The main application of free induction decays, photon echoes, and transient
four-wave mixing is to measure the longitudinal (population) relaxation of a
prescribed state and the transverse (dephasing) relaxation between a pair of
states. That these relaxations depend sensitively on the interactions of the
excited system with its surroundings can be used to investigate the interaction
mechanisms on the microscopic scale'™ ™ as in the magnetic resonance case.
With the help of tunable lasers and frequency-switching methods, such optical
transient measurements have become increasingly common,

21.5 ADIABATIC FOLLOWING

E We now come back to the two-level system;s with the pseudo-dipole descrip-
tion, and discuss the adiabatic following phenomenon which also has an
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z

Fig. 2112 Schematic describing the adiabatic following process. As 3* = - (A/y)EX
in the rotating coordinates varies slowly, the pseudc-dipole p* precessing around 8*
follows it.

znalog in magnetic resonance. We assume in this case that the dipole precess-
ing frequency 8 in the rotating frame given by (21.13) is much larger than R,
the rate of change of E.;. We also assume R™! < T}, T; so that damping is
ineffective in destroying the coherent effects. Then, as € varies in time, and £*
changes accordingly, the precessing dipole p* shoutd follow G* adiabatically,
as sketched in Fig. 21.12. The variation of £* can be effected by varying either
& or wy — w.

Let us consider the case where the exciting field is inmitially far from
resonance with wy — w < ¢ and jw, — @| = (y/A)R2] In this case, the Q*
vector points downward, making a very small angle a = [(v/#)2&/(w, — w))|
with the -- 2-axis, and the pseudo-dipole p* precesses around @* with the cone
angle a. Now, if w, — « is gradually increased from the initial negative value to |
a positive value far off resonance, @* changes accordingly from its nearly |
downward position to a nearly upward position, carrying the precessing p*
with it. Since y, is directly proportional to the population difference between
the two levels, the inversion of p* corresponds physically to an inversion of the
population to the upper level. This is known as adiabatic inversion. With this
process, practically all the population in the lower level can be excited into the
upper level, Adiabatic inversion is a well-known method in magnetic resonance
to create an inverted population. In the opiical case,™ it has also heen
demonstrated through the detection of a transient stimulated gain effected by
the inverted population.™

The detailed calculation of adiabatic following from the solution of the
Bloch equation has been worked out by Crisp.22 An approximate expression
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for p* can, however, be obtained from Fig, 21.12. Let the three normalized
components of p* be

* *
u=E‘;‘—’, vz%;, and w=% (21.40)

E with 2 + p? + w? = 1, Then, in the limit of a negligibly small angle a* =
E between p* and 8%, p* is parallel to &%, and we find

(y/h)2¢6 ,
[(@ = wy)? +(v/n) 42"

u= -

v=0,

and (21.41}
. {0 — wy)

[(@ = w) +(y/hYae?]

12"

However, o* cannot be exactly zero, because then dp*/di would vanish
identically. We can insert the solution of (21.41} into the Bloch equation and
use iteration to find the next-order approximation. The corrections on » and w
are negligible, but the one on v is important because » = 0 in the first approxi-
[ mation. As one would expect, v will appear to be proportional to
b [d{w — 05)/de]/ [ — wg)® + (v/hY4&%] if (@ — w,) is varied, or propor-
* tional to [(v/k)2d&/dt]/[(w —~ wy)® + (v/h)*4&?] if & is varied. The adia-
batic following picture has been used by Grischkowsky et al. 10 discuss a
number of coherent near-resopant phenemena.”

216 SELF-INDUCED TRANSPARENCY

. We have so far assumed in the discussion that the exciting pulse propagation in
the medium is not affected by the transient response of the medium to the field.
E This is 2 good approximation if the medium is “ thin” such that no appreciable
> distortion of the exciting pulse can happen in propagating through the medium.
E In a “thick” medium, however, the pulse deformation can be appreciable.
¢ McCall and Hahn™ found that if the pulse has an area § = j®_(y/k)2&4dr
* equal to 2n7 with n being an integer, and has a certain definite pulse shape,
- then it can propagate through the resonant (ordinarily absorbing) medium
| without any autenuation and change of pulse shape, as long as the T, and T,
b 1elaxations are negligible. This is called self-induced transparency. Since it
¢ comes out of the pulse propagation effect, it has no analog in magnetic
} resonance.

b The basic idea of self-induced transparency can be seen from the pseudo-
| dipole picture. With a 2nwr pulse excitation, p will precess around € over full



402 Transient Coherent Optical Effects

circles and end up in its original position. Therefore, since the medium is the
same before and after the pulse, it absorbs no net energy from the pulse,
However, during the pulse, it does absorb and emit photons and redistributes
energy in the pulse. Consequently, the transmitted pulse appears to be altered
in shape unless it already has the proper shape. As we shall see in the following
discussion, the proper field envelope for a 2w pulse is of a hyperbolic secant
form. In propagating through the medium, the pulse is apparently delayed
because the medium absorbs energy from the leading part of the pulse and
deposits it back to the tail part.

Formalby, self-induced transparency is described by the wave eguation
(21.15) coupled with the Bloch equation (21.11), in which we have neglected
the T, and T; relaxation terms. In terms of 4, o, w defined in (21.40), the Bloch
equation becomes

%=(Aw}u, 2 - —(Aw}u+(

% J28w, and ﬂ=—(%)2&v

Y
h at
(21.42)

where Aw = w — w;. With the slowly varying amplitude approximation, the
wave equation (21.15) for the circularly polarized wave E = &,£(z, 1) X
exp(ikz — iwt) reduces to an amplitude equation

dF 148 2wiw

E"’-c""é"— N<p+(2 I}) (21.43)

Assume that the resonance is inhomogeneously broadened with a frequency
distribution function g{§ — w,), and let g(€ — w,) be symmetric and @ = w.
Then we can write

(pulz)) = [ slau)lu + ic]d(ae). (21.44)

We consider here the solution with real #. Equation {21.43} then becomes

3¢ 138 Zm.:Nf

Pz ¢ ar [4

(Aw)vd{Aw). (21.45)

The coherent pulse propagation effect is described by (21.45) coupled with
(21.42).

We first ask the question whether a pulse can propagate through the
resonant medium without change in shape. In this case, if V is the pulse
velocity, 8878z = ~ V"&é’/ dt, then, from (21.45), we have

2s (r—%)=%f s(80)e{ 0, rfo;] (A).

{21.46)
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It can be shown in general that e(4w, 1 ~ z/¥,) = v{0, r — z/V,)f(dw), s0
that**

f:ﬂg(ﬂw)v(ﬂw. - %)d(m) = v(o, ¢ {;)s {21.47)

where

§= [ slaw)f(a0)d(s0).

For our purpose here, we can imagine that (21.47) is obtained by assuming
g2{Aw) to be effectively a & function. From the precessing pseudo-dipole
picture, we have

v(O, ‘- i) = sing {21.48)
%

. where # is a function of (r — z/F}), with
" (helr -2\ ar Ly
ﬂ"f_w(.ﬁ)u(’ Vp)dz and (h)w.
Equation (21.46) becomes

& ( L} ) 1 . 78 1
= |5 sinf or — =
a2

%)= —sind (21.4%)

with 72 = (V! — ™1 /(dnwNy $/ch). This is in the form of the well-known
pendulum equation in mechanics, the solution of which can be found as
follows. The first equation in (21.4%) can be transformed into

A& y\8E T A1 .
E = [E)W = (ﬁ);smﬂ. (21.50)

With the initial condition £2 = 0 a1 § = 0, (21.50) has the solution

Ay. 8

This allows (21.50) to be rewritten in the form

38 _ 1.0, (g
af—;é’[l ( rg’)] , (21.52)
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whicn can be ~zadiby intazrated 1o vield

i 2 h 17 z
g(\,—ﬁ]*;hech{;[:le. (21.53)
The corresponding field envelope has an arca
A=6(t— w) ,
T e s (21.54)
=/ (ghed=2n

This solunon shows that a 27 hyperbolic secant pulse can propagate in a
rescnant medium without any attenuation and change of pulse shape.

We next consider how an arbitrary pulse gets deformed in propagating
through a resonant medivm. With

C oy .
A = lim = |26dt’, £t—= +ee) =0, and =1
¢ v [,J\h,l e ' [ |L?I ]
the integration of (2143) from ¢ = —o0 10 ¢ — = vields
44 ArNwiy N
=T [E}Il_l‘n;f_ drf dfo)g(du)u{8e, 2.0%)
. '21.55)'
L AmNey ulAw, 2,7} (
- : ’[hlilﬂ‘cj d{Aw) (Aw)*uw

To solve (21.55), the first step is 1o carry out the integration. We notice that at
+ = 2, the pulse 18 over, and the pseudo-dipole must be precessing around 2.
Therefore, #{Aw, z, t) should have a sinuscidal variation with freguency Aw,
and the integral can get a contribution from the integrand only in the region
Aw ~ 0. Realizing that the pseudo-dipele p* for Aw ~ 0 is tilted away from the
—2% axis by an angle 4 at the end of the pulse (say, r = t;) with ¢(¢) = sin 4,
and u{rgy =0, we find, from (21.42), u{Aw, z, £) = sin 4 sin[Aw(r — 1,)] for
{ = 1p. We then have

u(fw, 7, 1)

,limj dlAw)glhe) "

Csinf Awls —
= g(0)sin A lim | d(AwJM (21.56)

R A, A
= wg(0)sin A.
Equation (21.53) now reduces to the simple form

A4

= gsind (2157
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with o = 42 Noyig(0)/ch, the solution of which is
A(z) = 2tan~Y{[taniA(0)] e~/ ], (21.38)

This describes how the pulse area changes as the pulse propagates in the
medium. This is pletted in Fig. 21.13¢. The curve shows that as z — co, the
pulse area A approaches 2nx if (2r — 1)z < 4(0) < (2a + 1)7, where n is an
. integer. This means that through exchange of energy with the medium, the
input pulse gets deformed and stabilized into a pulse area which is a multiple
. of 27 Indeed, numerical calculations show that for » < A0} < 37, as z
- increases, (he pulse is gradually deformed into a 2 hyperbolic secant field
. envelope predicted in (21.53). An example is seen in Fig. 21.13h. For (2n -
E D < A0} < (2n + 1)7, the pulse splits and stabilizes into n Aa-pulses after
e propagating over a sufficiently long distance, For A{Q) < &, the pulse simply
¢ decays away in the propagation. In fact, for small A((), (21.57) and (21.58) can
- be shown 1o reduce to the forms for linear propagation as they should, and e
can be identified as the linear absorption coeflicient of the medium.

(o) é

Fig. 2113 Pulse area plots of sclf-induced transparency illustrating the arca theorem.
- {g) a > [, the pulsc area evolves In the direction of increasing distance 7 toward the
[ nearest even multiple of ». The entry face of the medium may be at any value of z. (4)
p Computer plots of evolution of inpul 4(0) = 0.97 and A{0) = L.1w pulscs with dis-
;. lance. (After Ref. 24.)
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As seen from the foregoing discussion, self-induced transparency is char- ;
acterized by reduced absorption, pulse delay (¥, < ¢), pulse deformation, and
pulse splitting. As an example,?® for the 55 — 5p transition inm Rb, y ~ 4 X
1018 esy; 1o form a 2 pulse with a pulsewidth of 10 nsec only requires a field
amplitude of €~ 0.1 esu or a peak intensity of 7 ~ 2 W/cm?, Using the
expressions of 72 and « in (21.49) and (21.57), the pulse velocity can be written
as ;

Sac -t
= |1 + ——g1 . . ;
v, [ + 'ng(D)T 1 ¢ (21.59) 1

Fa-~10"2cm L §~1,g0) = L/Aw ~ 1077 sec and 7 ~ 1078 sec, we find |

—

INTENSITY—-

5 15 - 5 15 20

10 ¢
TIME {nstc) TIME (nsec)

Fig. 21.14 Input and output pulses observed in a self-induced transparency experi-
ment (curves on the left) and caleulated from theory (curves on the right). The dotted
curves depict input pulses and the full curves depict the corresponding output pulscs
after propagation through a length of 5/, Curves a through e denote pulses with areas
of slightly less than w, 2w, between 2w and 3w, slightly less than 57, and approximately
&, respectively. Pulse breakup of the pulses with areas above 37, and the absence of
breakup of the pulses with smaller areas, is in excellent agreement with the predictions ;
of the 1heory. (After Ref. 25)
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-~ ¢/10%. In passing through & medium 3 cm long, the pulse undergoing
- self-induced transparency will take 1077 sec, while a normal pulse takes only
. 10~'° sec. The special features of self-induced transparency have actually been
experimentally demonstrated, although the experiments are usually com-
plicated by the existence of degenerate states and transverse variation of the
laser intensity. The pulse delay and pulse breakup are often the more con-
vincing evidence of the presence of self-induced transparency. An example is
seen in Fig, 21,14, While the effect of self-induced transparency is certainly
. very intriguing, its applications to either science or technology have not vet
¢ been seriousky explored.

21.7 SUPERFLUORESCENCE (SUPERRADIANCE)}

We saw that a collection of dipoles oscillating in phase should radiate
coherently, This is described in the pseudo-dipole picture for eflective two-level
systems by a set of coinciding pseado-dipoles p precessing together around the
" % axs, as in Fig, 21.15. The coherent radiation dies away when the dipole
dephasing sets in. It can be seen from (21.15) for example, that the coherent
ouiput is proportional to the square of the number of dipoles per unit volume,
N2, while the incoherent emission is proportional to N. Therefore, for N = 1,
the coherent radiation is much stronger than its incoherent counterpart and is
sometimes called superradiation.®®

In the coherent transient effects discussed earlier, the coherent radiation
. comes from the collective dipole oscillation initially set up by coherent
excitation, that is, the pseudo-dipoles are initially tilted away from the # axis.

x

Fig. 21.15 Source of coberent radiation: precessing giant dipole Ny formed by N
dipoles precessing in phase.
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Both the population in the excited state (longitadinal excitation) and the
average oscillating dipole moment (transverse excitation} are nonvanishing.
The radiation output can then be calculated classically from (21.15) with {p)
given. Here, however, we consider a different case, We assume a collection of
two-level systems whose initial population distribution is completely inverted,
as described by the pseudo-dipoles pointing upward along, + £ in Fig. 21.15. In
the absence of an external field, these two-level systems are initialty un-
correlated and only radiate spontaneously. Subsequently, however, through
interaction of radiation with the two-level systems, the latter may become
correlated and radiate together coherendly, In the pseudo-dipole picture of Fig.
21.15, we can imagine that because of quantum fluctuations the pseudo-dipoles
are not strictly along + 2, They can then precess around # and the emission tikts
the pseudo-dipole further away from + 2. In the meantime, correlation is being
established among the dipoles through the radiation field, which acts to align
the precessing pseudo-dipoles in phase. Eventually the pseudo-dipoles are
completely afigned and tilted significantly from + 2. In that state, they radiate
together coherently in the classical sense. The problem that has attracted a
great deal of interest is how, in a more precise way, the radiation from such a
collection of two-level systems with inverted population changes from the .
initial spontancous emission to the final coherent or superradiant emission.
The process is new known as superfluorescence.

Dicke first studied the problem assuming a collection of spins (s = 1) in a
volume with dimensions much smaller than the wavelength of the field as is i
the case of magnetic resonance.”® Using the guantum description for an N
spin- 3 system, he found that when the system is in the |r, m} state, the
emission rate is

I=(r+m)(r—m+ 1)1, (21.60) _:

where r is the spin quantum number of the total spin, m is the corresponding
magnetic quanturn number, and f; is the spontaneous emission rate of a single
spin. It is seen that for r = m = r,, = N, we have I = NI, This indicates
that when all spins are inverted, they radiate incoherently (or spontaneously).
If, through radiation, the system drops to the |r = N, m) state with |m| < r,
then the emission rate becomes I = NI, which clearly shows that the
emission has become coherent.

Superfluorescence is characterized by a number of special features, First,
there i5 a ume delay between the initial set-up of the inverted population and
the appearance of superradiation. This time delay corresponds to the time it
takes for the system to establish correlation between atoms {or two-level
systems). Then, superradiation should appear in the form of a pulse as the !
emission is over when all the stored energy in the system is extracted. Finally, ;
because of the much faster superradiant emission rate (proportional to N*
instead of N), the effective emission lifetime of the system becomes much
shorter (proportional to 1/N). Establishment of correlation between atoms
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through emission can be visualized as follows. Radiation from an atom can
induce dipole oscillation on the neighboring atoms. These induced dipoles in
turn creale a reaction field on the original atom and influence the radiation
¢ from that atom.
- Superfiuorescence was first observed in magnetic resonance by Bloembergen
and Pound.” In optics, the same effect was also observed by Skribanowitz
¢t al,”® and later stndied more carefully and extensively by Gibbs ¢t al.?® The
optical case is aclually more complicated than described here. The sample
dimensions are always much larger than the wavelength, so that the propaga-
tion effect must be taken into account. Then the transverse intensity distribu-
tion of the beam also affects the output and makes the analysis more complex.
The angular distribution of optical superfluorescence is determined by the
geometry of the active medium. In the case of a long cylinder, the output
appears predominantly in the forward and backward directions with equal
intensities. This is sketched in Fig, 21.16. In the same figure, the time variations
of the excitation, the incoherent output, and the superradiant pulse, as actually
observed in the experiment of Skribanowitz et al. on HF,* are atso shown.
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L Fig. 21.16 Time variations of {¢} the excitation pulsc preparing the system of HF with
k- nearly complete population inversion between two adjacent rotational levels in the
.y = 1 state, (b) the spontaneons emission, and (c) the coherent superradiation. The
Finsets describe the angular distributions of (&) and (¢). (After Ref. 28
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To explain their observation, Skribanowitz et al.?® used the classical
theory of radiation by assuming that the polarization fluctuations could
initially lead to a finite tilt angle &, for the pseudo-dipole in Fig. 21.15.
Superradiation including the propagation effect was calculated by solving the
wave equation (21.15) together with the Bloch equation (21.9). Agreement
between theory and experiment, however, was limited by the complications
in the actual experiment and simplifications in the theoretical calculation. ;
Bonifacic and Lugiato® discussed superfluorescence from the fully quantum
mechanical point of view using a mean-field approach, and set up explicitly the
conditions for superfluorescence. However, they neglected the propagation
effect and hence the spatial variation of the field envelope. Glauber and
Haake® and Polder et al.? later constructed the more correct theory of
superfluorescence including the propagation effect. Their theories provide a
quantitative discussion on the quantum fluctuations and initiation of super-
fluorescence. The only limitation of the theories is that they are one-dimen- .
sional and neglect the transverse variation of the field and polarization.

It can be imagined that quantum fluctuations and spontanecus emission
first set up an initial dlt angle 8, for the psendo-dipole, and then superradiation
is built up in the classical manner. The value of 6, determines the time delay ¢},
between the initial set-up of complete population inversion and the peak of the
superradiant pulse. A larger 8, leads to a shorter r,. Being originated from
quantum fluctuations, 8, should also fluctuate, and so should 1,. The mean
vatue of §, reflects the average strcngth of the quantum fluctuations. It is
inversely proporuona] to YN since, in the more dense medium, correlation
between atoms is more easily established and a smaller 8, is needed to change |
from the quantum 1o the classical emissicn regime. The average value of 6, can
be measured experimentally by injecting a pulse with an area & =
§® o (1/h)2€ dt into the sample. If § < 6, the injection will have no effect
because the initiation of superradiation is still dominated by quantum fluctua- ;
tions in the medium. If & > @, the injection will help the initiation of
superradiation, and the time delay ¢, will become shorter. The experiment on
Cs vapor with a density of ¥ =2 % 10* cm™? gives an average value of
6, =5 x 107* rag™

Theoretical calculations of superfluorescence generally assume a number of
simplifications. To test the theories quantitatively, experiments must be de-
signed to simulate as well as possible the conditions laid out in the theones
Gibbs et al carried out such an expcnmem using Cs vapor as the sample.”
Optical pumping from 635, ato 7P, /2 by a 2-nsec laser pulse set up the nearly
complete population inversion between 72P, ¥ and 7°§; - A 2.8-k(e magneuc
field removed the degeneracy of the transition and made the inverted atomic
system a good effective two-level system. The atomic density of the vapor and
the sample length were selected so that the inequalities between various
characteristic times necessary for clear observation of superfluorescence were
satisfied. Then, the experimental results indeed showed fairly good agreement
with the theoretical predictions. More details on the experiments and the
relevant theories can be found in the review articles in Ref. 35.
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22

Strong Interaction
of Light with Atoms

Strong interaction of light with matter generally refers to the case where light
and matter form a tightly coupled unit, and the usual pictures derived from the
perturbation approach break down. The material system can have its proper-
ties changed drastically not only because of light-induced population redistri-
bution but also because of light-induced changes of the energy levels and
eigenfunctions. This subject is an interesting subarea of nonlinear optics from
both theoreticat and practical points of view. In this chapter, we discuss only
the case of strong inferaction of light with atoms, which under resonant
excitations can be regarded as a simple system with, effectively, only a few
discrete levels. Part of the discussion has already been presented in Chapter 13
as the basis of some high-resolution nonlinear spectroscopic technigues.

221 GENERAL DESCRIFTION

By definition, strong interaction of light with matter occurs when the interac-
tion is so strong that it cannot be treated as a small perturbation. As seen in
the microscopic calculation (see Chapter 2), this happens when the matrix
elements of the Hamiltonian |}, are comparable with or larger than the
frequency denominator klw — e, + il,,,} where w is the laser frequency, w,,
is the resonant tramsition frequency, and T, is the corresponding damping
. constant. Therefore, far away from resonance, a very strong optical field is
F. required to get into the strong interaction regime, but near resonance, a weak
optical field is often sufficient. For example, in alkali vapor, one can observe
strong interaction with a beam intensity not much larger than a few tens of
milliwatts per square centimeter at the ns — np resonance.

The strong dependence of the interaction strength on resonance allows, in
many cases, the simplification of a real material system to an effective system

413
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consisting of only a few levels connected by resonant excitations. This is often
the case for atoms where nearby levels are sufficiently far apart so that the
nonresonant transitions can be truly neglected. In this respect, one deals with
an effective two-level system if only two atomic levels are involved in resonant
excitation and probe, or with an effective three-level system if three atomic
levels are involved, and so on. For large molecules and solids, such simplifica-
tion may be unrealistic because of the many closely spaced transiiions, since
the optical-field-induced level shifts and broadening can be comparable to the
separation between nearby states. The calculation then appears much more
complicated, and in fact, the full theory has not yet been developed. This
discussion thus is limited to simple atomic or molecular cases. While the
formalism in general applies to any effective n-level system, we discuss mainly
systems with effective two or three levels. Analytical solutions are usually
possible only for # < 3.

The problem of strong interaction of light with an n-level system has
attracted the attention of physicists ever since the birth of quantum mechanics,
and ways of attacking the problem have been discovered and rediscovered by
people working in various areas of physics: microwave spectroscopy, magnetic
resonance, and optical spectroscopy. There are two usual approaches to the
prablem. One is the bare-atom approach in which the noninteracting atom-field
cigenstates are chosen as the basis in the calculation.! The other is the
dressed-atom approach, in which all or part of the atom-field interaction is
solved exactly, and the resultant atom-field eigenstates are used as the basis for
further calculation.? The former is perhaps more straighiforward in mathemati-
cal derivation, while the latter is physically more transparent. The amount of
actual calculation in solving a problem is, however, practically the same in the .
two approaches. In either approach, the fields can be treated as classical if they
are intense enough. We use in the following the semiclassical description to
itlustrate the bare-atom approach, and the full guantum-mechanical descrip- |
tion to illustrate the dressed-atom approach. :

The immediate consequence of strong optical excitatiohs one would expect
is the optical Stark shift and broadening (se¢ Sections 5.3 and 13.3 on
saturation in excitation), which is an extension of the picture from the weak
interaction regime. Actually, the picture of strong interaction is more com-
plicated. For example, one can indeed find an optical-Stark-broadened (or ;
saturation-broadened) line if the absorption of a strong pump field versus ;
frequency around a resonant transition is measured (see Section 13.3 on
saturation in excitation). However, if the frequency of the strong pump field is
fixed near resonance, and the absorption of a weak probe beam versus |
frequency around the resonance is measured, three resonant peaks can be
observed in the spectrum (see Section 13.3 on absorption of a weak probe in
the presence of a strong pump). (The actual spectrum shows only one absorp-
tion line and one amplification line situated symmetrically on the two sides of
the pump frequency for reasons to be discussed later.) This can be understood
as follows. With the pump frequency « close to the transition frequency wy




Bare- Atom Approsch 415

between the atomic states [1} and [2), the composite states |1, mhw) and
L [2, nkhe) of the atom-field system are nearly degenerate with the states [2,(n ~
* Dhw) and [1,(n + 1)Aw), respectively, in the absence of atom-field interac-
tion, but from the selection rules, only the tramsition between (1, rhu) and
[2, nhw} is allowed. In the presence of strong interaction, howevez, the nearly
degenerate states become mixed and shifted, and all transitions between the
two sets of states {[2, nfiw), [I,(n + 1}hw)d) and {(2,(n — Dhe), {1, sfiw)d}
f arc allowed. A votal of three absorption lines is expected because the energy
f. scparation of the two states in each set is the same. More generally, a
[ monochromatic field interacting strongly with n Jevels (such that |(i| %, /3] =
Mo — w,; + i) can lead 1o the splitting of each level into » levels, The
description here essentially follows the dressed-atom picture, although the
same results should come out of the bare-atom approach. We discuss in
the following sections the bare-atom and dressed-atom approaches in some
more detail with a few concrete examples.

222 BARE-ATOM APPROACH

We treat the fields as classical, and use the density matrix formalism (Section
. 21y in this section. Assume an effective n-level system in strong interaction
; with m monochromatic pump fields. There are altogether »* density matrix
b clements p,, with i, j = 1,...,n describing the system. Each #;,; has a set of
|- frequency components which are the linear combinations of the m pump
. frequencies. In the bare-atom approach, one solves, more or less exactly, the
i Liouville equation for p,, in responsc to the strong pump fields. Many of the
| frequency components of g;; can be neglected because they are far off reso-
nance. We now assume that a weak field is ased to probe the absorption
E spectrum of transitions either within the » levels or from the n levels 1o other
- levels. The next-step caleulation is then to find p™(w,) 0 the linear order
L of the probe field in terms of p;; already found to all orders of the pump
b ficlds. This is done by using the atom-probe interaction as a perturbation
. Hamiltonian in the Licuville equation. Finally, from the expectation value of
E the induced dipole {p(eipobe }) = THp™ {600 JP), the probe absorption can be
- caleulated.

- The approach here emphasizes the response of the atomic system to the
¥ applied fields. Therefore, only the particular solution to the Liouville equaticn
b is sought, and hence the density matrix p shows no new frequency component
, other than the linear combinations of the applied optical frequencies. In this
respect, the eigenfrequencies of the composite atom-field system are not
: apparent in the solution since they should only show up as frequency compo-
g nents in the homogeneous solution. They can, however, be identified as
[ resonances in response to the probe beam. Thus, in the bare-atom approach,
f the solution of the system under strong optical excitations does not explicitly
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give a picture of the restructured energy levels (although the latter can be
obtained from the homogeneous solution of the Liouville equation), but the
mathematical formalism is simple and straightforward. We now use two- and
three-level systems as examples Lo iliustrate the general description.

The case of an effective two-level system pumped by a strong beam and
probed by a weak beam was discussed in Section 13.3. For clarity, we
reproduce the essential steps of the calculation here and expand on the
discussion.? First, we find the nearly exact selution of the Liouviile equation
for a system of two levels [1) and [2) under the strong excitation of a pump
field E{w). The nonnegligible components of the density matrix are

T2/
1(0) — pppl0) = 4p° —_
and (22.1)
bl —0) = ph(w}=—F IZEIE(:‘JNE{Sii(E)[;)pZI(O}]

where 1/1, = 47T, /T, I = o E(w)|*/2Zmn, & = [P E(0)E /R, and pyy =
{ller2). Next, in the presence of the probe fiekd E{w"), we seek the solution p
linear in E(w"). There exist three nearly resonant components of p linear in
E(@): py (), pp (@ — @) — py(e’ ~ w), and py; (@ — 2w). To find absorp-
tion at «', we need only know p,, (), but it can only be obtained by solving,
the linearly coupled equations for the three components
Ala' — wy + il )py )
= _PuE(“')[Pu(O) - Pzz(o)]
_P21E("’)[P11(“” = @) = pple - "")]’

fo—omig it -0 mpmt -l

= —puE*(w)pn(e) + 2pn
XE(w)ppa(—w) +2py E{w)op{e’ - 20),
Blw — 20 — v, + iD)pp e’ — 2w)

jple‘(‘*’)[Pu(“J’ —w)— palew — u)]

where py(0) — pp (D) and ppp{—w) are known from (22.1). The solution,
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expressed in a form slightly different from that in {13.16), is

pule) = ‘*PztE @M pip (0) - py(0)]
X{(mf o+ i%](w’ — 2w+ ay +iT)

-0

' = 20+ wy + il
1 pry— /D, (22.3)

D= (w —wy +il')

(w' -w+ i%](w’ — 20+ wy + i) — 287
—28%(w — 2w + wy +iT).

The absorption ceefficient at @” is then obtained from

a(u)"( )]mx(w)
with

x(wy = Yuenler) gfz()“’) . (22.4)

The expression for D can be recast into the form

D={(w 7«:)[(«» — @) (g —w) —aQ? -7 — ZF

i[(ﬁ) ay (@ — 20+ wy) — Fz]
n

+il2(w - @) - 40T +
(22.5)

It shows clearly that Re D has three zeroes corresponding 1o three resonances
in the absorption spectrum

W = w,
Y
vmet (22.6)

ar 1/2
A= |(w-wy ) +AT AP+
1

An explicit calculation of the absorption coefficient in (22.4) would show that
at o' = w, a nearly vanishes, while at &’ = w + A, o 15 positive if @ < w,, and
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negative if w > w,,, and at ’ = w — A, & is negative if w < w,; and positive if
@ > wy,. The absorption spectrum therefore shows an absorption line and an
emission line located symmetrically on the two sides of the pump frequency «.
This has been demonstrated experimentally, as we shall discuss in a Jater
section. When [w — wy| % & » T, the emission line is very weak, and the
absorption line appears at @’ = wy, — 282 /(w — wy,), Which is just the posi-
tion one would expect from the simple perturbation calculation of an optical
Stark shift given in {5.17) for the case of a relatively weak interaction of light
with matter,

One may recognize that & in (22.6) is just the Rabi frequency descr’bed in
Chapter 21, although we have not included T and T} in (21.16). Thus,
physically, the resonances at @’ = w + A can be considered as the sidebands
created by modulation of the Rabi precession on the central resonant compo-
nent at w' = w.

We can extend the above discussion to a three-level system, seen in Fig.
22.1, in which the levels {1} and |2} are connected by the strong pump field
E{w) and the transttion from 2} to [3) is probed by the weak field E(w"). This
is a double resonance problem. Again, we first obtain the solution (22.1) by
assuming the presence of only the strong pump field, and then find py(w?)
linear in E{w'} from a set of linearly coupled equations. The result should
show that p;,(w) has a frequency denominator whose real part has two zeroes,
indicating two resonances in the absorption spectrum. When the absorption
coefficient e w'} &€ Im{ py3p5,(w”)/E(w)] is calculated, one would find « to be
positive at both resonances. The absorption spectrum then consists of two
absorption lines, separated by the Rabi frequency A as one would expect from
the earlier description. This effect was first discovered by Autler and Townes*
in a microwave-optical double resonance experiment. More recently, it has also
been repeatedly demonstrated in optical-optical double resonance experiments.
We again postpone the discussion of the experiments to a later section.

<3

E{w')

<2

Elw)

Fig. 221 A three-level system with two nearly reso-
— <1 Dant exciting fields.
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What will happen if both E{w) and E(w’) in the three-level case of Fig. 22.1
are strong? Clearly, the absorption or emission spectrum will be much more
complicated. The result can be more casily visualized with the dressed-atom
approach. We therefore postpone the discussion to the nexi section. Here we
consider only the problem of how the steady-state population is redistributed
in the three levels under the strong excitations. This is relevant not only in
spectroscopy of strongly excited systems, but also in applications of optical
pumping, such as isotope separation, multiphoton ionization, and studies of
physics and chemistry of excited-state atoms. The caleulation is in principle
straightforward and has been discussed repeatedly in the literature.>>® Only
the near-resonant terms in the density matrix formalism are kept and w ~ wy;
and w’ ~ w,; are assumed Lo be very different. The Liouville equation yields
explicitly the following set of equations:®

By oy (@) = Val@)[pn(0) = pu(0)] + V(- w)ps{e + o),
hhgpep{e) = V(e (0) - pi(0)] - Pa(-w)puie + o),
Bz py (o + o} = Vy(opy (@) — Py le)pn(e),
0= (W + Wy)on + Wy + Wiey 27
+ W~ w)oyle) - Vyle)pz(-w).
0= Wypy + Waapy — Wiy + W)y + Vil w)op{ — )
=V~ wey(«),
1=py +py+ey,

where Ay = w—wy + Ly, Ay =0 —w, +ily, Ay =0+ @ — oy +
ily, Vjj(w,) = —p;;E{w,), and the W, are relaxation rates from | /) to|/), We
assume, for simplicity, that the population is conserved in the three levels.
Equations (22.7) together with those for p;;(~ w), pp3{ —w"), and pi3{ —w — w7}
form a set of nine linearly coupled equations. As expected, the formal
expression of the solution is extremely complex and is not particularly
illuminating. The resuits from numerical calculations may be more helpful.
Whitley and Stroud® conducted such a numerical calculation on a three-level
system in which the relaxations are governed by spontanecus emission from |3}
to |2y and from [2) to 1. Their results, shown in Fig. 22.2, indicate that if
w + w’is in exact resonance with wy;, then in the limit of very strong fields, the
population tends to become equalized between the ground and upper excited
states, with a relatively small fraction occupying the lower excited state. This
}  may be what one would expect when « and «’ are detuned from w,; and w,,,
- respectively, since the process then becomes a direct two-photon absorption
process. However, as seen in Fig, 22.2, the same is true even when w and &’ are
resonant with @, and w,;, except that the papuolation in the fower excited state
is now somewhat higher. This result may be extended 1o the general case of an
n-level system, and is most important in many applications of stepwise
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Fig. 222 Steady-statc atomic population distribution in a three-level system as a
tunction of the strength of the applied fields: () the two fields are exactly resonant
with the 1wo successive transitions, and (b) the two fields are detuned from resonances
by equal magnitude but oppasite sign. [After R. M. Whitley and C. R, Stroud, Phys.
Rev. A 14, 1498 (1976).]
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multiphoton pumping. First, it is possible to pump nearly half of the popula-
tion from the ground state to the final state. Second, the population in the
intermediate states may appear depleted in the strong excitation limit. Third, a
population inversion between the final state and the intermediate state can be
established. An experimental demonstration of the effect, to be discussed in
Section 22.4, was presented by Gray et al’

We limited this discussion 1o the steady-state case, but the formalism can be
readily extended to the time-dependent case.** For example, one can use the
time-dependent Liouville equation to discuss the time-dependent Autler-
Townes effect.’ One can also use it to find the development of the population
redistribution in the three-level system under the resonant excitations of the
wo strong fields.® Transient effects in a multilevel system with strong rescnant
excitations should in genmeral be a very interesting subject.® They are an
extension of the coherent transient phenomena discussed in Chapter 21.

223 DRESSED-ATOM APPROACH

In the dressed-atom approach, the cigensolution of the combined system of
atom and pump fields is sought first. The result yields a picture of the energy
level structure of the “dressed” atom and hence a physical understanding of
the absorption or emission spectrum. We use here a full quantum mechanical
description to illustrate the approach.” To avoid excessive mathematical
derivation, we consider only the qualitative or semiguantitative aspect of
varioys problems in the following discussion.

Consider again the two-level system interacting with a strong monochro-
matic field. We first find the eigensolution of the combined atom-field system.
Figure 22.3 shows that in the absence of the atom-field interaction with
@ ~ gy, 1, n) and P, n) are nearly degenerate with 2, # — 1) and |1 # + 1),
respectively, where n indicates the number of photons in the field. With strong
atom-field interaction, the degeneracies are lified and the energy level structure
appears as an infinite set of equally spaced doublets. The splitting A4 between
the two states (a,| and (B,| in a doublet can be obtained easily from
degenerate perturbation theory knowing that the interaction connecting {1, n|
and (2,2 — 1)is

2,n = UK N, n) = —pyE(w) (22.8)
with ¢|E{w)|*/27 = nhw for n 3> 1, We find

A= [(w - o) +402]"7, (22.9)

which is just the Rabi frequency. In terms of (L, r| ard (2, n — 1|, the wo
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Fig. 2.3 Energy level structure of a two-level system in the dressed-atom picture.

eigenstates of the dressed atom are

2p E{w)*
la,) = Pz : i 1, 8}
[(w—wn+ﬁ) +4ﬂ]
© - +4A
+ 0212 7 2on-1)
[(w — oy +A) + 407
and {22.10)
oy + A
18 = S —a L
[{w—wm-v-A) +4ﬂ]
2py E{w}
A iz R D
[(w—mn+A) +4ﬁ]

From this eigensotution, one can then find the fluorescence and absorption
spectea.'! We need only consider transitions between two neighboring doub-
lets. Because of mixing of wavefunctions, all transitions connecting the two
pairs of states are allowed. As shown in Fig. 22.4, this leads 1o a fluorescence
spectrum with three lines: the central component at « and two side ones at
@ + A, In the steady-state case, the detailed-balance condition usually requires
that in equilibrium, the relaxation through fluorescence should obey the
relation

ip,
“ar ~lapps — Tgapa =10
a0, (22.11)
e

where T}, is the spontareous transition rate from the state |/, n) to Ji, n — 1),
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Fig. 224 (a) Fluorescent transitions and the corresponding fluorescent spectrum, and
(b) absorptive transitions and the corresponding abserption spectrum in a two-level
system under a strong optical excitation, The dressed-atom picture is used here to
describe the energy level structure of the composite matter-field system.

and p; is the steady-state population in [¢}. Equation (22.11) immediately leads
1o the conclusion that the two side components in the fluorescence spectrum
are equal in intensity. The absorption spectrum should also have three compo-
nents at w and w + A. However, as seen in Fig. 22.4, the central component
comes from |a,) - la,,,) and |8,) — |B,.,) transitions, and its intensity is
zero because p, = g, and p; = #g,,, (neglecting the very small difference in
the probabllmes of ﬁndmg mand 1+ 1 photons in the strong field). The two
side components have intensities

I{w+ 8) = KTp(p, — o)
and (22.12)
o - A)=KDp(p — pa)
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where X is a proportional constant. If « < wy,, then p, > pa, and hence
flw+ 4)> 0 and I{w — A) < 0, corresponding to an absorption line and an
amplification line, respectively. If w > wy, then p, < p;, and we have the
reverse situation J{w + A) < 0 and {{w — A) > 0, The detailed-balance condi-
tion of (22.11) also leads to

Ho+a)+ o - 8) = K(Tp/p)(pe — p) >0,  (2213)

indicating that the absorption line is always more intense than the amplifica-
tion line. A more detailed calculation taking inio account the relaxations
allows us 1o deduce also the lineshapes of the spectra.”

In the Auder-Townes double-resonance case, the transition from level 2} to
a third level [3) is probed. Clearly, in the dressed-atom picture, having [2, n)
mixed with [1, # + 1), the absorption specttum from |2} should consist of two
lines at wy; + A/2. If w < wyy s0 that p, > pg, one finds J{wy, + 4/2) > I{wyy
— A/2), and if w > w,,, the reverse is true.

The dressed-atom approach can be extended readily to the three-level
system interacting with (wo strong resonant fields in Fig. 22.1, As seen in Fig.
22.5, the energy level structure of the dressed atom is an infinite set of triplets,
It is easily seen that the fluorescence spectrum from [3) to [2) consists of a
symmetric pattern of seven lines, with the central component at «’ and the side
components at @’ + A, o’ + 4", and w’ + (4 + A%). The fluorescence spectrum
from 2} 1o [1} is the same except that the central component is at . The
absorption spectra from [1} to 2) and from 2} to [3) can also be calculated.
Each should also have seven lines, but the central component again has zero
intensity; three of the side lines are absorption lines and the other three are
amplification lines. If the transition from one of the three levels 1o a fourth
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Fig. 225 Energy level structure of the composite system of a threc-level atom strongly
interacting with two nearly resonant exciting fields F{w) and E(w’).
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level of the atomic system is probed, then the absorption spectrum should
consist of three lines. This is the Autler—Townes effect in a four-level system.

Another case of interest occurs when a single monochromatic field interacts
strongly with a three-level system in which two levels, eg., [2} and |3}, are
nearly degenerate with a frequency separation less than the Rabi frequency. In
the dressed-atom picture, (1, #| is nearly degenerate with (2, n — 1| and
{3, n — 1}, and (2, n| and {3, n{ are ncarly degenerate with {1, w + 1}, so that
the energy level diagram is also an infinite set of equally spaced triplets, The
fluorescence spectrum should again be a symmetric pattern of seven lines
centered at «, while the corresponding absorption spectrum has the centrat
component missing.

The foregoing examples show that the dressed-atom approach is indeed
physically transparent, and is most helpful to the understanding of spectros-
copy of atoms under strong resonant excitations. It can be generalized to an
effective n-level system with the following general rules. Each level in the
strong fields is split into n levels, atl of which have the partial characters of the
original n levels, Both the splittings and the partial characters of the split levels
depend on the Geld-atom coupling strengths represenied by the off-diagonal
matrix elements of the pernurbation Hamiltonian connecting the original »
levels. They can be calculated by diagonalizing an » X n matrix following a
degenerate perturbation calculation on the coupled field-atom system. The
energy level diapram of the system now appears to have » sets of n levels, and
the absorption and emission spectra can be directly deduced from transitions
between the # seis of levels. We should remark that in general, strong coupling
of two levels is not necessarily effected by a one-photon resonant excitation
{w~ ;). It can also be effected by fields connecting the levels via, for
example, a two-photon transition (2w ~ w,;). In this latter case, the effective
Hamiltonian for two-photon transition [#; = —E,*M+E, = —E, E, M with
M defined in {12.1)] should be used in the degenerate perturkation calculation.
However, the detailed calculation of a spectrum in the dressed-atom approach,
taking into account the random relaxations, is actually as complicated as in the
bare-atom approach.

22.4 EXPERIMENTAL DEMONSTRATION

The optical-field-induced line broadening, shifts, and splittings generally are
known as the optical Stark effect. Similar effects have long been observed in
microwave spectroscopy. With the advent of lasers, they can also be readily
observed in the optical region. Laser-induced saturation with the resuttant line
broadening is of course the basis of saturation spectroscopy (Section 13.3). The
optical Stark shift which occurs in the relatively weak atom-field interaction
limit has also been extensively studied. With a high-intensity laser, even if the
laser frequency is very far off resonance, the optical Stark shift is still
observable. An example is presented in Fig. 22.6, where a shift of 0.12 cm ™" of
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Fig. 226 The effects of high-iniensity infrared radiation on the positios and line
shape of the S{3) rotational transition of molecular hydrogen. Crosses represent data
obtained by coherent anti-Stokes Raman spectroscopy in the presence of 1.06-pm
radiation from a Q-switched Nd : YAIG lascr; citcles show data in the absence of this
field. The solid and dashed lincs are smooth curves drawn through the data points.
(After Ref, 12} :

the §(3) rotational transition {1034.5 cm ™'} in molecular hydrogen, induced by
a Q-swilched Nd:YAG laser pulse at 1.06 pm with a peak intensity of 8 x 10"
w/en? is clearly seen.'?

With strong atom-field interaction, usually achieved by resonant or near-
resonant laser excitation, optical Stark splitting cccurs. This has been studied
in a large number of experiments. An atomic beam is often employed in the
experiment to avoid complications due to Doppler broadening, to reduce the
inhomogeneous linewidth, ahd to make the observation easier. In the study of
the Anorescence spectrum induced by a strong resonant field, a single-frequency
CW laser beam is used to excite an atomic bearn, and the induced fluorescence
is monitored and analyzed.'® For example, in the experiment of Wu et al. (in
Ref. 13), a circularly polarized CW dye laser with a linewidth less than 250
kHz was used to excite the 3%§, o(F =2, mz=2) = 3Py F =3, mp = 3)
transition of sodium in an orthogonally propagating atomic beam, which had
the initial population in the 3%S; ,(F = 2, m; = 2) ground state prepared by
optical pumping. The fluorescence from the inverse transition emitted in the
direction perpendicular to both beams was detected and analyzed by a
Fabry—Perot interferometer. With sufficiently high laser intensity, three peaks
in the spectrum could be readily observed, in agreement with the theoretical
prediction. Figure 22.7 shows the observed spectra compared with theory for
on- and off-resonance excitation with a peak laser intensity of 640 mW /cr?,
corresponding to an on-resonance Rabi frequency @ = 78 MHz. As predicted,
the spectra are always cemtered on the exciting laser frequency, and the
sideband separation 2A increased with the detuning (v — w;) following
A= [(w — wy)? + 407
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Fig. 228 () Mcasured absorption spectrum of the P8 p(F=2,mp=2)—
3%P, o(F =3, mp=13) transition of sodium driven by a strong field detuned by
28 MHz above Tesonance. The field intensity is 560 mW /cm” corresponding to a Rabi
frequency of 66 MHz, (b) Progression of theorelical line shapes with constant field
strength {Rabi frequency = 66 Mllz) and increasing detuning dw/2s = 0, 5, 10, 20,
28, 40, 60, and 80 MHz. Origin of horizontal axis is the transition resonance frequency.
Arrows indicate frequency of driving ficld. (After Ref. 14)
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The absorption spectrum of the 3%§, L{F = 2, mp=2) = 3P, ,(F' =3,
mp, = 3) transition under sirong laser excitation can also be probed if a
second tunable dye laser is available. A representative piece of an experimental
result of Wu et al!* is shown in Fig. 22.8. It is seen that here, as the Rabi
frequency is much larger than the linewidth, the spectrum exhibits two
sidebands separated by 24. The central component at w is indeed absent. The
compenent on the high-frequency side is an amplification line, and the one on
the tow-frequency side is an absorption line. The latter is more intense than the
former. These observations are all in good agreement with the theoretical
predictions discussed in the previous sections.

In the Autler—Townes effect, the transition from one of the two levels
connected by the strong field to a third level is probed, and two absorption
lines are expected in the spectrum. An example of the experimental demonstra-
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Fig. 229 (a) Autler-Townes absorption doublet observed in sodium when laser A is
exactly on resonance with the 325, ,,(F = 2, mp = 2) = 3Py o(F = 3, mp = 3) transi-
tion and laser B scans over the 3°Py o(F =3, mp=3) = 4D,y (F =4, mp = &)
transition. The splitting increases as the intensity of laser 4 increases. 8y is the deluning
of laser B from resonance. (&) Autler—Townes doublet when laser 4 is off resonance.

As 8, the detuning of laser A from resonance changes, the spectra become asymmetric.
{After Ref. 15)
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8, =25 MHz

L, = 780 mW/cm®
LIp=3 mW/em?

Bg MHz

(b}
Fig. 2.9 (Continued).

tion?® is given in Fig. 22.9. The first laser excites the 3 o (F=2mp=2—
¥P;,5(F' = 3, my. = 3) transition of the sodium atom, and the second laser
probes the absorption from 32Py ,(F' = 3, m. = 3) to 4D, (F" =4, mp.r
= 4). The observed absorption spectram shows two lines. It is symmetric with
on-resonance pump excitation, and asymmetric with off-resonance excitation.
The separation A between the two peaks increases with the detuning w — w,;
following (22.9). These results are in good agreement with theory.

When iwo lasers are used to excite a three-level system from 1) to |2) and
from [2) to |3}, respectively, the theory predicts that in the strong interaction
limit, the two-photon resonant pumping tends to distribute the population
evenly between the initial and final states {1} and [3), with little appearing in
the intermediate state [2). This has been experimentally demonstrated by Gray
et al” The three-level system they chose was formed by the three levels,
B8, 4(F=1) PP ,4(F=2), and 3%, ,(F = 2), of atomic sodium. Two
single-frequency CW dye laser beams were used to connect the two ground §
states 1o the excited P states, as in Fig. 22.10, with the latter acting as the
intermediate state. The population in the P state was monitored by the
intensity of the fluorescence from that state. The result of an experiment in
which the first laser was tuned to exact resonance with the S, alF=1-
Py ,2(F = 2) ransitien and the second laser was tuned through the two-photon
resonance is shown in Fig. 22.18 in comparison with the theoretical caleulation,
Indeed, the population in the intermediate state dropped to nearly zero at
exacl iwo-photon resonance. The same happened even when the first laser was
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Fig. 22.10 {2} The threc levels of sodium under the excitations of two nearly resonant
strong fields. () Experimentally observed excited-siate population ¢y, The fixed-
frequency laser is at exact resonance, §, = 0, with an intensity of 23 mW /co®. The
secand laser is detuncd 8, from exact resonance, with an intensity of 34 mW /em?. (c)
Thearetical prediction of excited-state population oy,. (After Ref. 7.)
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detuned from resonance, except that a much higher pump power was needed to
see the effect,

Experiments on strongly excited a-level systems with n > 3 are rare; but
nonetheless, they could be interesting. For example, the absorption and
emission spectra of a four-level system with two closely spaced intermediate
levels, excited by two fields resonant with the ground-intermediate and inter-
mediate-final transitions, respectively, could vary drastically with the field
intensities. Experimental study on the transient effects in a strongly excited
muMilevel system has not yet been explored either. The time dependence of the
absorption and emission spectra may also be interesting.

225 MULTIPHOTON EXCITATION AND IONIZATION

If the optical field is very intense, n-photon transitions with »# == 1 can occur.
We consider first transitions without intermediate resonances. In this case, the
transition probability is very weak even with a strong excitation field and can
be estimated from the nth order perturbation calculation. While the general
expression of the transition probability is too cumbersome 0 be reproduced
here, it can be symbolically written as

2
e _ 27
kZ

o

——| g0 — .
haay 1| ( ) (2219

where 5" /(hAw)"~! is actually a sum of many terms; in each term, " is a
product of » off-diagonal matrix elements of the Hamiltonian —er-E, and
(Aw)"~1 is a product of (r» — 1) factors of frequency detunings from reso-
nances. The lineshape function g(ne — @y} has, in the ideal case, the simple
Lorentzian form

I'/n

— (22.15)
{nw — mfg)2 + I

g™ nw — wfg) =

We have assumed here n photons of the same frequency. Generalization to n
photons of different frequencies is straightforward with #w replaced by w, +
Wt et

Because |#7hAw| ~ |E/E, ! = 1 far from resonance, knowing that the
optical field £ is much smaller than the atomic field E,, (see Section 1.3), the
above perturbation calculation is justified. Recall, however, that an intense
off-resonant light can still induce an optical Stark effect (see Section 22.2)
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proportional to the light intensity:

Sy, =5, — 35,

CEINIZ e
5 = pRSlerED| & (22.16)
"R (o) — w) et

<E{iV? @
s, = 3 Kaler BIDE o

T B (Jwg] — w) fogl”

This causes a shift in the multiphoton resonant frequency so that g (nw — )
in (22.15) should be replaced by g(nw ~ wy, — §uy,). Line broadening due
o pump saturation is usually negligible for 2n #-photon transition with n 2= 1,
but we can easily include it by replacing the linewidth T in ' by T'(1 +
2W T2 where T, is the longitudinal refaxation time for the excitation.
Thus, in the Lorentzian form, we have more exactly

r{1 + 2w /e
(nm oy — Swfg)z + Tz(l + 2W"”Tl) ’
(2217)

g e - g — Swfg) =

For n =2 (two-photon transition), the shift in the resenant frequency is
actually comparable te line broadening, both being proportiona? to the light
intensity (they are neglected in the discussion of two-photon transition in
Section 12.1). For a > 2, the shift is much larger than broadening. The former
is measurable, but the latter often is not.

Experimentally, both saturation broadening'® and light-induced line shifts'’
have been observed in two-photon transitions. The effect is larger if there exists
a nearly resonant intermediate state. It is often said that an a-photon transition
is characterized by an nth power dependence on the light intensity. This is,
however, true only if both the lineshift and line broadening induced by the
optical field are negligible, €.g., in the low intensity limit. For an r-photon
transition with # > 1 between two discrete states, the lineshift may be
appreciable when the signal reaches the detectable level. The ath power
dependence on the intensity, I”, then would never be observed. In experimen-
tal investigation, multiphoton transitions between discrete states with n > 3
have seldom been studied. This is presumably because the high laser intensity
required for the observation also tends to onize the atoms or molecules, and
the subsequent effects induced by ionization tends to confuse the results.
However, multiphoton ionization can also be considered a multiphoton transi-
tion, but the teansition is between a discrete state and a continuum, In the
latter case, the light-induced shift in the resonant frequency is immaterial in
the presence of the continuum and while saturation broadening is certainiy
negligible. The {” dependence of the signal can therefore be expected. Indeed,
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using a picosecond high-power Nd:glass laser, Manus and co-workers'® 17
observed the m-photon ionization process with an 7 dependence in many

atomic systems; for example, n = 11 was observed in the process Xe'= Xe*+
e-. The situation is, however, very different if there is a diserete m-photon
intermediate resonant level in the n-photon ionization. As shown in Fig.
22.11,% the 4-photon ionization of Cs does have an [ 4 dependence if 3w is
sufficiently far away from wgssr, but with 30 ~ wesep, it is very different
from 7*. Suppose the jonization signal § depends on [ as 1*. Then, from the
slope of log(5) versus log(]), we can find K. Figure 22.11 shows that as 3w
SCANS OVET wegqr, K varies drastically from 4 10 30 to 1 and finally back 10 4.
This result can be easily explained: since there is a light-induced shift on
wss.op» the frequency denominator in the transition probability now also
depends on 1.2 Qualitatively, when 3w > wyg g, an increase of [ shifts wys or
closer to resonance and the ionization signal increases more rapidty than % as
indicated by a K > 4. For 3w < wggp, an increase of I shifts wes_¢r farther
away from rescnance, and the ionization signal increases less rapidly than [ ‘as
indicated by a K < 4. The asymmetry of the curve in Fig. 22.11 can also be
understood as due to interference of two jonization channels, one being a
direct 4-photon ionization path and the other being a 4-photon ionization via
the 3-photon intermediate resonance at s ¢

Suppose from energy considerations that only ¥ photons of the same
frequency are required to ionize an atem, but one may find in an actual

K -;;;T st

FEPENTNES EFEO R |

1
- - = o 20 !
A 20 L 0 An crl'l1

Fig. 2211 Four-photon ionization of cesium with an intermediate resopant step:
variation of the experimental order of nontincarity K, as a functien of the detuning
from the three-photon transition 65 — 6F. (Alter Ref. 20.)
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experiment that each atom is ionized after an absorption of more than N
photons, depending on the laser intensity. This happens when the up-excitation
rate in the continuum above the jonization level is larger than the ionization
rate, and is evidenced by the appearance of higher-energy electrons released in
the jonization process.2 When the excitation rate is very high, it is even
possible 1o excite an atom over the second, third, and nth ionization thresholds.
Indeed, Manus and co-workers™ demonstrated experimentally that Kr?* can
result from Kr via absorption of 33 photons from a 50-psec Nd:YAG laser
pulse, and ¢ven Kr** and Kr** appear in the product.

Among the possible applications of multiphoton ionization are the detection
of rare species (of atoms and molecules) (Section 19.3), isotope separation
(Section 24.2), and generation of spip-polarized electrons. It has been sug-
gested that multiphoton ionization of unpolarized atoms with circularly
polarized light can produce highly polarized elecirons.* Both the angular
distributions and the polarizations of ¢lectrons produced in two-photon and
nniltiphoton ionization of atoms have been measured.” An electron polariza-
tion as high as 0.5 has been observed in the two-photon ionization of Cs.
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Infrared Multiphoton
Excitation and
Dissociation of Molecules

E. A most exciting late discovery in nonlinear optics is the phenomenon of
E infrared multiphoton excitation and dissociation of molecules. It was found
f that a molecule could be highly excited and eventually dissociated through
b frequency-selective absorption of tens of photons from an infrared laser pulse
not much more intense than 10 MW /ent® and a few J /em? per pulse. This was
unexpected, as one would think that such a multiphoton excitation should have
F required a much more intense laser field. The process is of great fundamental
| importance and has far-reaching scientific and practical significance: the
j. possibility of depositing a few electron volis of photon energy through vibra-
" fion-rotational excitation in a molecule is extremely interesting for laser
b chemistry because it can drastically affect the chemical reaction involving the
: molecule. Being frequency-selective, infrared multiphoton dissociation is a
b viable method for isotope separation. Bond-selective (or mode-selective) multi-
E photon dissociation, if possible, could lead to a revolution in chemical synthe-
[ sis. In this chapter, many important aspects of infrared multiphoton excitation
and dissociation are discussed, with particular emphasis on the physical
understanding of the process.

23.1 EARLY INVESTIGATIONS

Infrared multiphoton excitation (MPE) and dissociation (MPD) of single
molecules were accidentally discovered by Isenor and Richardson' in 1971. In
their experiment, when a high-power CO, laser pulse was focused into a
tesonanily absorbing gas medium (NH;, CF,Cl,,etc.), visible luminescence
appeared from the focal region, even when the laser intensity was well below
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the optical breakdown threshold. They identified the luminescence as emission
from electronically excited dissociation products. A more careful study showed .
that the lumimescence had an instantaneous part followed by a delayed part.?
The instantaneous luminescence was believed to come from collisionless uni-
molecular dissociation and the delayed luminescence from collision-induced |
dissociation. Energy considerations indicated that the collisionless dissociation
must have resulted from MPE of single molecules through the vibration-rota-
tional ladder.

The resonant nature of MPE suggested the possibility of using MPD for
isotope separation. In 1974, Ambartzumian et al. indeed found that MPD was
isotopicatly selective” This immediately aroused the interest of many re-
searchers arcund the world, as it was envisioned that MPD used for isotope
separation could be economically advantageous, Subsequent intensive studies
showed that MPD was a general process applicable to a large number of
molecules including SF;, MoF;, BCl,, 0s0,, CECL,. Through selective MPD
in an isotopic mixture, appreciable isotope enrichment could be obtained.
Consider the case of SF; as an example.* The natoral abundance of *SF, is
95% and that of *SF; is 4.2%. This is reflected in the relative sirength of the
infrared absorption peaks of *SF; and *SF; shown in Fig. 23.1 for a gas :
mixture of 0.18 torr of SF; and 2 torr of H,. Ambartzumian et al,* found that
after the selective multiphoton excitation of *SF in the mixture by 2000 CO,
laser pulses of 2 T per pulse, the **SF; concentration was greatly reduced. This
was seen from the resulting absorption spectrum, also shown in Fig, 23,1, The
enrichment factor; defined by
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Fig. 23.1 IR absorption spectrum of the »; vibrational mode in SF;: {d) natural
mixiure, and (b) mixture enriched by infrared multiphoton molecular dissociation.
[After R. V. Ambarizumian, Yu. A. Gorokov, V. 5. Letokhov, and G. N. Makarov,
JETP Lett. 21, 171 (1975).]
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with [ ]y and [ ] denoting the initial and final concentrations, respectively, was
2800. The observed « could be much higher if it were not for the fact that
- molecular collisions and chemical reactions had scrambled the isotopes.
The yields of MPD of SF; and other molecules were found to be very high,
 reaching a few tens of a percent if the laser fluence (energy per unit area) was
- above ~ 10 J/cm?, That the process could be so efficient was a mystery.
Clearly, the infrared MPE must be a resonant or near-resonant stepwise
. process; otherwise, any appreciable absorption of tens of photons would
| require a laser intensity much higher than 10 GW /cn’. The resonant stepwise
. process would be possible if the absorbing molecule behaved as an harmonic
- oscillator in resonance with the incoming laser field, However, a molecular
vibration is generally anharmonic. Because of the anharmonicity, a laser
excitation resonant with the v = 0 to v = 1 iransition is soon out of step with
E the vibrational ladder, as seen in Fig. 23.2. The stepwise resonant MPE would
seem impossible.

It was pointed out by Ambartzumian et al.’ and by Larsen and Bloember-
. gen® that for the lower vibrational transitions in polyatomic molecules, the
> vibrational anharmenicity could be nearly compensated by the rotational
© energy, so that the laser field could remain in near resonance with the
i rotation-vibrational transitions between the vibrational excited states. Then, in
- a polyatomic molecule, the density of states increases rapidly with energy
because of the large mumber of rotational and vibrational modes and forms a
quasi-continuum.>’ Once the molecule is excited into the quasi-continuum,
further multiphoton excitation up the quasi~continuum to and beyond the
. dissociation thresheld is certainly stepwise resonant.
Aside from isotope separation, a considerable amount of interest and
¢ excitement was also generated with the suggestion that MPE could be a novel
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w Fig. 232 Schematic diagram showing a multipho-
ton excitation getting out of step with an anharmonic
w=0 Vvibrational ladder.
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method for energizing molecules. It was hoped that by depositing energy into
sefected vibrational modes, molecules would be dissociated through certain
dissociation channels different from those of thermal decomposition? Initial
experimental results appeared to support this hypothesis: the first reported
analysis of the primary products of MPD of SE; indicated that the molecule
dissociated into SF, and F, by passing over the lower dissociation channel with
fragments SF, and F;® the results of MPD experiments on CFCl; were
interpreted to evidence dissociation through a higher energy channel into CFCl
and Cl, rather than through the lowest energy channel CFCl; and CL.' These
results, however, were not substantiated by the subsequent MPD» experiments
with molecular beams.'™!?

Many other interesting questions came up during the course of investiga-
tion. First, how does MPE modify the internal energy distribution in a
motecule? Will the energy deposited inte a molecale through excitation of a
particular vibrational mode remain in that mode, or will it quickly randomize
into many modes? In this respect, if the energy could be kept in the selected
vibrational mede, then bond-selective (or mode-selective) MPD would be
possible, Second, how many phetons are actually absorbed before a molecule
dissociates, and what limits the number of photons absorbed? Third, what are
the dissociation products? As seen in Fig. 23.3, a polyatomic molecule such as
SF, or CCL;F has many dissociation chanmels with different dissociation
energies. In MPD, would a molecule prefer to dissociate through the lowest
energy channel, or could it selectively dissociate through a channel at a higher
energy? In the latter case, one would have bond-selective dissociation. Fourth,
what is the dynamics of MPD? After dissociation, how much excess energy

200 |-
150 [—  SF, +2F (143) CClp +F+C1{164)
2 o CCIF +2C1 {138}
z Sk, + F, (105} CCl, + CIF (108)
2 oo =
2 cCl, +F {102)
P SF, + F {93)
i corF 7o 76y CCIF * Cla (81)
50 —
0

SFg CClF
Fig. 233 Energy levels of the lower dissociation channels of SF; and CCIF,
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appears as kinetic energy of the fragments and how much as internal energy in
the fragments? How does the internal energy distribute in the fragments?

In the following section, a more detailed physical description of MPE
providing some qualitative auswers to these questions are presented. Section
23.3 offers a simple theoretical model to account for the many experimental
observations.

232 PHYSICAL DESCRIPTION

Figure 23.4 is a schematic of a typical rotation-vibrational energy level diagram
of a polyatomic molecule. It can be arbitrarily divided into three regions: the
lower-energy discrete levels, the higher-energy quasi-continuam, and the true
continuwum above the lowest dissociation level. As mentioned earlier, 1o excile a
significant {raction of the population into the continuum, the MPE process
must be stepwise resenant or near-resonant. It is also necessary that the
density of states be significantly higher at higher energies in order to have
up-excitation dominate over downward stimulated emission. This is easy to
understand because the transition rate is proportional 1o the density of states
of the final state. (Molecules prefer to be excited into a level with less occupied
states.)

Both of these conditions could indeed be satisfied in MPE of a polyatomic
molecule, as we shall see in the following discussion, where the MPE process
through the three regions of the energy-level diagram is described scparately.

MPE Through Discrete Levels

In the discrete-level region, if excitation is restricted to pure vibrational
transitions, then because of vibrational anharmonicity, stepwise resonant MPE
is clearly impossible. However, it becomes possible when the complexity of the
energy levels of 2 polyatomic molecule and the effects of intense kaser excita-
fion are taken into consideration. First, since the actual transitions can be
vibration-rotational with allowed changes of quantum numbers AF = 1 and
AJ =0, +1, the anharmonic ¢nergy shift AE, ,, between the ¥ — (¥ -+ 1) and
(V + 1} = (V + 2) transitions could be nearly compensated by the addition or
removal of rotational energy through |4J| = 1.5 For example, the transitions
=00y F=LJ-1)=(F=2J)>(F=37+1) for a cortain
range of J values in a polyatomic molecule could have nearly equal transition
frequencies. Then the anharmonic coupling between degenerate vibrational
modes can induce anharmonic sphittings in some overtone and combination
levels which can also compensate the anharmenic shift over perhaps a wider
range of initial J values.’® Finally, the forbidden transitions, although much
weaker, could stili participate in MPE to ‘make stepwise resonant transitions
 possible. Since high laser intensities are used in the experiments, even the
' forbidden transition probability of MPE could be high. The high laser intensi-
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Fig. 23.4 Schematic energy level diagram of a polyatomic molecule. Multiphoton
excitation in the various regions is denoted by the vertical arrows and dissociation by
the horizontal arrows.

ties could also induce power broadening of the levels, which would further
reduce the frequency mismatch in MPE. Thus one can expect that, in many
potyatomic molecules, efficient stepwise resonand or near-resenant MPE from
V' =0 (or 1 for thermally excited, vibrationally hot molecules) to ¥ = 3-6 is
possible, As we shall see later, at 7= 3-6 the energy levels of many poly-
atomic molecules have already formed a quasi-continuum, assuming the vibra-

tional frequency to be ~ 1000 cm . This means that a significant fraction of
the molecules can indeed be excited to the quasi-continuum.
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The foregoing discussion shows that MPE is more efficient for molecules
b initially in certain (¥, J) states satisfying the stepwise near-resonant condition.
Consequently, at a given laser intensity, only a certain fraction of the mole-
cules can be excited to the quasi-continuum, with the rest remaining in discrete
levels.'* This fraction increases with increasing laser intensity, approaching 1 at
an intensity » 10°-10% W/cm® in many cases. It determines the maximum
yield of MPD at a prescribed laser intensity because only molecules in the
L quasi-continuum can later be excited through the quasi-continuum to the true
. continuum above the dissociation threshold.

MPE TFhrough the Quasi-Continuum

An r-atom molecule with # > 3 has 5 = 3r — 6 vibrational modes. As a result,
the number of combination and overtone states increases rapidly with energy,
more 50 in molecules with larger #. The levels scon become s0 dense that they
| practically form a continuam, This is known as the quasi-continuum. Superim-
posed on the vibrational levels are the rotational fevels, which further increase
the density of states.

Several approximate formulas have been proposed to calculate the density
of vibrational states of a polyaiomic molecule.'* Among them, the
Whitten—Rabinovitch approximation has been widely accepted. 1t gives the
following expression for the density of vibrational states:

o(E) = (E +aE,)"! {1_ W

s B— (23.1)
(s — 1 TT A,
=1

where E; is the total zero-point vibrational energy of the molecule, E is the
:  energy measured from £, w, is the frequency of the ith vibrational mode, 5 is
E  the number of vibrational modes, 8 = (s — 1){w?}/5{w)” with {w) and {w?})
E  being the mean and mean square vibrational frequencies, respectively,a = 1 —
" BW(n),n = E/E;, and

W(n) = (500 - 27342 + 351) " for0l<m <10
= exp(—2419974)  for1.0 < g <B80.

Figure 23.5 shows the densities of states g(£) versus E for a number of
E molecules. It is seen that g(E) indeed increases much more rapidly with £ in
- larger molecules. In SF;, for example, g( £) is more than 100 states/cm ' at
. £ = 4000 cm™! and is close to 1000 states/cm~' at £ = 5000 cm~. The
: density of states is much higher when rotational states are taken into account.'®
Thus in every practical sense we can say that an SF; molecule is in quasi-con-
tinuwm if it is vibrationally excited to E = 4000 cm . This can be achieved in
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Fig. 23.5 Densities of states as a function of energy for different molecules: (1) D;0;
(2) OCS; (3) CH;F; {4) BCly; (5) G H,; (6) CRL; (7) 0s0,; (8) G RECY (9) SF; (10
UF; (11} 8;Fy. [After V. S. Letokhov and A. A. Makarov, Uspekhi 24, 366 {1982).]

SF,, for example, by MPE of the », mode (w ~ 950 cm ™ ") from =0 orl to
¥ = 4 using a pulsed CO, laser.

We should note that even in the quasi-continuum, the absorption spectrum
may show a structure characteristic of the varjous vibrational modes. This
depends on the mode~mode coupling. Anharmonic coupling in general causes
significant red shifts and huge broadenings of the rotation-vibrational transi-
tions. With the molecules in quasi-continuum, the absorption spectrum shonld
exhibit very broad, red-shifted bands. In some special cases, however, a
particular vibrational mode may couple only weakly with other modes for
reasons such as large mismatches in the mode frequencies. Then, even in the
quasi-continuum, the absorption spectrum may show relatively narrow peaks
characteristic of the mode."

In all practical cases we know, we can regard MPE in the quasi-continuur
as stepwise resonant. The rapid increase of the density of states with the
excitation energy also guarantees a net up-excitation of the population in the
quasi-continuum. In exciting a molecule under the collisiontess condition, each
stepy is a one-photon transition with negligible relaxation (as the spontaneous
emission is weak compared to stimulated emission and absorption with the
laser intensities used in MPE). Therefore, the overall MPE in the quasi-con-
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tinuum by an infrared laser pulse is proportional to the laser fluence (time
integration of the laser intensity). In other words, the energy deposited into the
melecule is directly proportional to the laser energy available.

If the coupling between modes is strong, the energy absorbed by the
melecule in the quasi-continuum is expected 1o be distributed in all modes,
Then MPE may be considered a laser heating process, in which the motecule as
a whole acts as a small thermal reservoir to be heated up via successive
absorption of photons at a selected wavelength.'® However, it is different from
the usual heating process in the sense that the excited population distribution
is not thermal."” Tt is of course also possible that the energy deposited in the
molecule may not get randomized into all the modes.

MPE and MPD in the Troe Contimmm

With enough laser fluence {~ 1 I/em? for 8F,, CF,Cl, etc.), the MPE process
can excite a molecule through the quasi-continuum into the trug continbum
above the dissociation threshold. Once in the true continuum, the molecule
should dissociate, but the dissociation is in competition with the continuing
stepwise resonant up-excitation.'® Being successive one-photon transitions, the
up-excitation has 2 rate proportional 1o the laser intensity but it does not
strongly depend on the excitation energy in the molecule. On the other hand,
the dissociation rate, which is nearly zero at the dissaciation threshold,
increases very rapidly with the excess energy above the threshold. As a result,
the up-excitation in the continuum is soon limited by the dissociation. The
final level a molecule can be excited to in the continwum should increase with
increasing laser intensity, It determines the excess energy the fragments wilt
carry when the molecule dissociates.

In real cases we should also consider the population distribution in the
excited states.!” The MPE process with a sufficiently strong laser fluence can
creale a population distribution that is partly in the guasi-continnum and
partly in the true continuum. The high-energy tail of the distribution is usually
truncated by rapid dissociation overcoming up-excitation. With a higher laser
fluence, a larger fraction of the population can be excited into the continuum.
With a higher laser intensity, on the other hand, the high-energy tail of the
distribution is expected to exiend higher up. (We should, of course, also
remember that a higher laser intensity can drive a larger fraction of the
molecules from the discrete levels to the quasi-continuum, as discussed earlier.)
In dissociation, the mean excess energy appears as the mean energy carried
away by the fragments.

It is possible that with sufficiently high laser intensity and fluence, part of
the molecules can be excited beyond the second and third dissociation levels.
In that case, the molecules can dissociate simultaneously through several
channels, yielding different dissociation products.®® The dissociation rate
through each channel depends on the density of states, as described in Section
234,
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Upon dissociation, the excess energy goes into the translational and rota-
tion-vibrational degrees of freedom of the fragments. How the energy is
distributed should depend on the nature of the bond that is broken and on the
detailed dynamics of the bond breakage. In most cases, because of the large
number of internal degrees of freedom in the molecular fragments, a major
portion of the excess energy would appear as the internal energy in the
fragments

In the following sections, a simple model is used fo substantiate the above
gualitative description. How experimental results support the predictions is
also discussed.

233 A SIMPLE MODEL OF INFRARED MULTIPHOTON
EXCITATION AND DISSOCIATION

We consider MPE of a polyatomic molecule by an infrared monochromatic
field as a stepwise resonant excitation process over a set of equally spaced
discrete levels,'**! shown in Fig. 23.6. The following assumptions are used in
the model:

1 The lowest level in Fig. 23.6 is at the bottom of the quasi-continuum. The
initial population in the ground levels is pumped inte this level via MPE
over the discrete-level region.

2 The degeneracy of each level is given by the density of states of the
molecule according to (23.1).

3 Rate equations can be used to describe transitions.

4 A molecule excited over the dissociation energy level will dissociate with a
rate depending on the excitation energy.

The thermal distribution of the initial population apd the effect of coherent
excitation are neglected in the model. The former is not important if we are
interested only in the kinetics of MPE and MPD, while the latter is expected to .
be negligible because of the very short dephasing times of the highly degener-
ate levels,

Thus the rate equations governing MPE and MPD can be writien as

LA (’)[ N, B g, N, ~Bmaty N, -o.N,
P B

dn'. ﬁw m— -t m'm+1 mtm
-K N, form > 1
and (23.2)
v, 1) fa an,
F " he (g, TN T
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Fig. 23.6 Schematic diagram showing multiphoton excitation and dissociation of a
simple modet system with equally spaced energy levels.

Here N, is the normalized population in the mth level with energy £, = £, +
(m — 1)Aw, g, is the density of states at E,,, o,, is the absorption cross section
for the m = (m + 1) tramsition (g,0,, = £, 1% +1 {rom detailed balancing),
K, is the dissociation rate constant, which is nonzero only if E,, is larger than
the dissociation energy Eplor Ej + Ej if the dissociation has also an exit
barrier E, to overcome), N, is the population in the ground levels, and
—dN,/dr describes the rate of population increase in level 1 resulting from
MPE over the discrete levels. Both absorption and stimulated emission are
taken into account in (23.2), For a polyatomic molecule, the absorption cross
sections o, are generally difficult to estimate because of lack of information
about the excited vibrational states of a molecule. However, we expect that the
anharmonic coupling between modes would cause g, to decrease with increas-
ing m. In the present model, we then simply assume o, = opexp(— Bm) with
the constants ay and 8 to be determined by a fit to the experimental results, We
also assume, for simplicity, dN,/dt = Ng8(¢), so that immediately after 1 = 0,
an initial population N, would appear in level 1. A more reasonable form of
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N,{¢) depending on the laser intensity /(7) can be used in a more sophisticated
calculation. 2

The dissociation rate constant K, as a function of E,, can be calculated
using the RRKM model.* The basic assumption of the model is that the
excitation energy in a molecule is distributed randomly in all modes; in other
words, there is equal probability of finding the molecules in all the degenerate
states. Let g( E)4E be the total number of states between £ and E + dE. If
E » Ep, then part of these states should be the dissociation states in which a
molecute would dissociate. The dissociation rate at E is proportional to the
fraction of dissociation states in g{ EYdE. We need, however, to define the
dissociation states in order to find their number. We realize that in a dissocia-
tion process, 3 bond must be broken along a certain reaction coordinate.
Consider, for example, the dissociation of CFy1 — CF, + I The reaction
coordinate is along the CI bond, since, during dissociation, I moves away from
C ajong that coordinate. If R, the distance between I and C, is within a critical
range d + &, and if at the same time, the momentum pg is larger than zero,
indicating a continuing separation of I from CF,, then the molecule will
dissociate, Therefore, a dissociation state is characterized by E > Ej, (d — 4)
< R < (d + A), and p, > 0. The corresponding translational energy of the
dissociating fragmenis in the eritical region is &= iph/p, where p is
the reduced mass. If the exit barrier for dissociation is zero, then #'is alsp the
translational energy of the resulting dissociation products. Let the number of
dissociation states between E and E + dE with a translational energy between
&and &+ d&be D(E, £)dE d&. Then the probability that a molecule at E
dissociates with a translational energy between & and &+ dé is
D(E, €)d&/g(E). Knowing that the time for the dissoctating system to cross
the critical region is 2pA/pg, one finds the dissociation rate

k(E, &)dé = (po/2u8) D(E, £)dd/glE}. (23.3)
The total dissociation rate for a molecule at E is

K(E) = f:—f"k(E, &)dE (23.4)

and the dissociation Lifetime is 7( E} = 1/K( E). In the case where the dissoci-
ation has no exit barrier, one can also obtain the translational energy distribu-
tion of the dissociation products from

P(E. &) =k(E, &)}/K(E). (23.5)

The density of dissociation states D{ £, &')d¢ is the product of two parts:
g*(E — &), which is the density of states for the molecule at (£ — &) in all
degrees of freedom other than the reaction coordinate, and »{&}d&, which is
the number of states between & and & + d& associated with the reaction
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coordinate. We can treat the molecule in the reaction coordinate as a particle
of mass jt in a one-dimensional box of length 24, The total number of states
between 0 and € with pp > @ is (2pA%/m2h% )2, and therefore

7 172
p(g)d.g':( L ) dé

= [ L )a‘u’ (23.6)

20 By
D(E,é')dﬁ—(ﬂhpR]g (E - £)d6.

Insertion of D{E, £) into (23.3) yields

g*(E — £)dé

K(E, §)ad= Sy

(237

Note that this final expression of k(E, £) is independent of the dimension of
the critical region we assumed. Therefore, using (23.1) to calculate g(£) and
g*(E — &) for a given molecule, we should be able to find the values for
k(E, &), K(E), 7(E), and P(E,&). With K = K(E,) known, the rate
equations of (23.2) can then be solved.

We use MPE and MPD of ST by infrared laser excitation of the »; mode
(948 ¢m™") as an example.'* The frequencies of the 15 vibrational modes of
SF, are taken as 774(1), 642(2), 948(3), and 481(9) cm ~ !, where the numbers in
parentheses denote the degeneracies of the modes and 481 ¢m™! is the
harmonic mean frequency of all the bending modes. The MPD of SF, — SF;
+ F has the reaction coordinate along an SF bond. We assume that in the
critical configuration for dissociation, only three modes are affected by the
change: one 948 cm™! streiching mode disappears, and two of the 481 cm ™!
bending modes are softencd to 481 exp(~d/r,) with d = 3.7 A and the
equilibrium bond distance r, = 1.56 A. The quasi-continuum is assumed to
begin at E = 11 kCal/mole and the dissociation energy of 5F; 15 known to be
* 93 kCal/mole. Then, from (23.1), the densities of states and K can
be calculated. The absorption cross section is taken as g, = (8 X
10~ 1%Yexp( ~0.042 m) cm ™%, which roughly reproduces the experimental re-
sults of mutliphoton absorption in SF;. Finally, we assume the laser excita-
tion to be a pulse of constant intensity f, and pulse duration 7,. All the
coefficients in (23.2) are thus specified, and the rate equations can be solved
numerically. The results are shown in Figs. 23.7 to 23.11.

Figure 23.7 describes MPE in the quasi-continuum of SF; by a resonant
laser beam of 200 MW /cm®. It is seen that the laser excitation broadens the
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population disttibution with time and drives it up to higher levels; the average
number of photons absorbed per molecule increases accordingly. After ~ 20
nsec, the high-energy tail of the population distribution starts to have an
appreciable fraction above the dissociation threshold, indicating that dissocia-
tion has happened. The laser excitation continves to drive the population
distribution up, but the action soon is limited by the increasing rate of
dissociation. As shown in Fig. 23.8, the dissociation rate increases very rapidly
with the excess energy, and hence dissociation would effectively deplete ali the
populations excited beyond certain levels. This is evidenced by the more
abrupt cutoff on the high-energy side of the population distribution and by the
net decrease of population at longer times in Fig. 23.7. If a 100-nsec, 20-] Jom?
laser pulse is used for excitation, most of the molecules appear to have
dissociated during the pulse with an excess of epergy of 6-11 Aw (16-30
kCal/mole), as seen in Fig. 23.9. A very small fraction of the molecules in
lower levels will dissociate after the laser pulse is over because of the low
dissociation rates. The excess energy is distributed mainly in the internal
degrees of freedom of the fragment SF;. As shown by P(E, £) versus €in Fig,
23.10, the average translational energy in the fragments is only a few kilo-
calories per mole.

The calculation also answers the question on how laser intensity and fluence
affect the population distribution above the dissociation threshold and the
spread of excess energy with which SF; dissociates. Figure 23.11 shows the
spread of excess energy in MPE of SF; using a 7.5-J/cnor” laser pulse at two
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Fig. 239 Calcutated dissociation yields from various levels above the dissociation
energy during the laser pulse (unshaded region) and after the laser pulse (hatched
region) for a :00-nsec, 200-MW /cr” laser pulse excitation. (After Sudbe et al,, cited in
Fig. 23.7)
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ments from the muitiphoton dissociation of $F,, assuming an excess cnergy of 5 (—), 8
{(—-—), and 12 (—) keal /mole. (After Ref. 12}

different pulse durations: 60 and 0.6 nsec full widths at half-maxima. Because
the up-excitation rate is much faster with the shorter and more intense pulse,
the average excess energy is higher. However, for the 0.6-nsec pulse, only the
fraction of molecules with excess energy larger than 134w can dissociate during
the pulse. Their excess energy is limited by the balance of up-excitation with
dissociation. Those molecules dissociating after the pulse is over have their
excess energy limited by the laser fluence in the stepwise resonant pumping.
With the 60-nsec pulse, the fraction with excess energy more than 7hw can
dissociate during the pulse. According to the calculation, if the laser fluence is
sufficiently low { < 5 J/cm? in the present case), most of the molecules would
dissociate after the laser pulse is over, irrespective of the laser pulsewidth (< 1
usec). This is because emergy-wise, the laser excitation cannot drnive the
molecules too far above the dissociation level. Then it is the laser fluence rather
than intensity that determines the average excess energy. On the other hand, if,
for a given pulsewidth, the laser fAuence is sufficiently high such that most of
the molecules are pumped to sufficiently high excited states, and are expected
to dissociate during the laser pulse, the laser intensity should then determine
the average excess energy. For a very short laser pulse, it is easily seen that the
average level of excitation of the molecules should be limited by fluence
consideration.

The calculation can, of course, be modified to take into account more
realistic situations. For example, a molecule can have a number of dissociation
channels at different encrgies. If the laser fluence and intensity are sufficiently
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high, a significant fraction of the molecules can be excited beyond the higher
dissociation channels; then, simultaneous dissociations through several chan-
nels can occur. This situation can be included in the calculation by adding
terms in the rate equations of (23.2) describing dissociation through higher
channels, The corresponding dissociation rate constants can be calculated
using (23.4) for the different channels. In another case, the molecular fragment
from MPD, such as SF,, may contain so much internal energy that it also
appears in the guasi-continuum, If most of the molecules dissociate before the
pulse is over, then the fragments can be further excited by the laser via MPE
through the quasi-~continuum and into the true continuum above the dissocia-
tion threshold. This secondary MPD process can also be included in the
calculation by incorporating in {(23.2) another set of rate equations describing
the populations of the fragments in different levels. Section 23.4 shows how the
calculations sketched here can give a fair description of the experimental
observations.

234 EXPERIMENTAL RESULTS

Earlier observations on MPE and MPD described in Section 23.2 were later
substantiated by experiments more carefully designed to study particular
features of the processes. In an experiment designed to show the two distinet
stages of MPE, one over the discrete levels and one through the quasi-con-
tinuum, two infrared laser pulses at different frequencies were nsed.” One was
nearly resonant with a fundamental vibrational frequency. It had sufficiently
high intensity to excite the molecules over the discrete levels but not encugh
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fluence 1o dissociate them. The other was far from resonance with any
fundamental vibrationa! frequency and also was not intense enough to excite
the molecules over the discrete states. It had, however, the appropriate frequency
and enough fluence to be able to excite the molecules through the guasi-con-
tinuum to dissociation. Thus either pulse alone could not dissociate the
molecules, whereas the two pulses together could. Tuning of the frequencies of
the two lasers in the MPD experiment showed a sharp resonant structure with
respect to the first laser excitation, and a strongly red-shifted, nearly feature-
less, broad spectrum with respect 1o the second laser excitation (Fig. 23.12).
They are apparently characteristics of MPE over the discrete levels and the
quasi-continuum, respectively. The observed sharp resonant feature of the first
laser excitation suggests that it is more advantageous to use the two-laser
excitation scheme in isotope separation by MPD, especially for heavy isolopes
in motecules with small isotope shift.

The fraction of molecules excited to (he quasi-continuum should depend en
the exciting laser intensity, which can be measured by spontancous Raman
scattering since molecules in the quasi-continuum have a smaller vibrational
Raman shift than those in the discrete levels.” This is shown in Fig. 23.13. It is
seen in Fig. 23.13b that for the same laser pulseshape, the fraction of molecules
in the quasi-continuum increases with the laser fluence, and hence with the

050,
m!
Bw?
[
2
B
-
0’
2
el 1y A L L
77 948 887 g5
a2, em!

Fig. 23.12 Dependence of the two-frequency multiphoton disseciation yield of OsO,
on the frequency £, of the second iaser. Other parameters of the pulses were fixed:
Q, = 9545 e ™', @, = (.24 J/em’, @, = 0.22 J/cm?. The linear absorption spectrum
of 050, is represented by the curve denoted by &y, {After R. V. Ambartzumian, V. 8.
Letokhov, G. N. Makarov, and A. A. Puretskii, Opt. Commun. 25, 63 (1978).]
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Fig. 23.13 (@) Raman spectrum of (i) unexcited $F; molecules, and (ii) SF, molecules
excited by a COQ, laser pulse of 0.5 J/cm® fluence. AX indicates the instrumental
linewidth. [After V. N. Bagratashvili, Yu. G. Vainer, Y. S. Dolzhikov, V., 5. Letokhov,
A. A. Makarov, L. P. Malyavkin, E. A. Ryabov, and E. G. Sil'kis, Opr. Letr. 6, 148
(2981).] {b) Dependence of the relative fraction q of the molecules excited into the
quasi-continaum on the CO, laser fluence in 8F,, Os0,, and CFI [After V. §.
Letokhov and A. A. Makarov, Uspekhi 24, 366 (1982).]

laser intensity. At very high intensities, all the molecules can be excited into the
quasi-continuum.

The MPE of a molecule can be monitored by the absorption meas-
urement, % which yields the average number of photons absorbed per mole-
cule, ¢n). Figure 23.14 shows the dependence of (r} on laser fluence & for a
number of different molecules. For small molecules such as OCS and D,0, the
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Fig. 23.14 Average number of infrared photons absorbed versus exciting laser fluence
for a number of polyatemic molecules. [After V. 8. Letokbhov and A A, Makarov,
Uspekhi 24, 366 (1982).]

absorption is at first linear and then quickly saturates with {#) < 1 at higher
fluences. This is expected since the quasi-continuum is too high to be easily
reached by MPE in these molecules. They therefore behave more like a
two-level system, For the larger polyatomic molecules, MPE is characterized by
(n) increasing monotonically with @. If most molecules have already been
excited to the quasi-continuum, then the abserption reflecting the stepwise
one-photon excitations should show {») increasing linearly with ® until
dissociation sets in. This happens when the exciting laser pulse is so intense
that it can excite essentially all the molecules over the discrete levels.”> With
dissociation depleting the absorbing molecules, the dependence of {n) on @
finally becomes sublinear.

The average excitation level above the dissociation threshold that a molecule
can be excited 10 depends in general on both the laser fluence and the laser
intensity. It can be determined in a crossed laser and molecular beam experi-
ment in cases where the dissociation has no exit barrier, as in an atomic
elimination process.?’ The laser beam dissociates the molecules in the melecu-
lar beam. The fragments produced can be identified, and their angular and
velocity distributions can be measured by a rotatable mass spectrometer. From
the angular and velocity distributions, the translational ¢nergy distribution of
the fragments can be derived and compared with that calculated from the
RRKM calculation. The fit then allows an eslimate of the average excess
energy. Figure 23.15 shows an example of the §it, from which it was concluded
that the average excess energy carried by the fragments of SF; was ~ Thw and
that most of it appeared in the internal degrees of freedom of SF;. That the
experimental data could not be fit by a calculation assuming only a few
vibrational modes participating in the randomization of the excitation energy
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Fig. 23.15 Center-of-mass translational energy distribution of fragments in SF; — SF,
+ F. Experimental data points obtained with ~ 6 J /e laser pulses are denoted bye.
Curves are caleolated from the RRKM theory assuming a molecular excitatior of
E=Ep+nhewith n=7 (——), n=9 {(—), and n =11 (--) where E, is the
dissociation energy and hw is the CO, laser photon cnergy.

suggested the validity of the RRKM model; that is, the excitation energy must
have been randomized in nearly all the modes. It has also been found
experimentally that the average excess energy indeed increases with the laser
intensity and fluence, as the theory predicied.?!

Molecular dissociation may have an exit energy barrier, This is the case of
bond rupture with molecular elimination. During the dissociation process,
when the fragments have crossed the critical region and are on their way to
infinite separation, the barrier energy is partly converted to translaticnal
energy and partly (o internal energy in the fragments. Consequently, a rela-
tively larger fraction of the excess energy would appear as translational energy.
This was confirmed by experiment.?

The internal energy distribution in the fragments was measured by the
laser-induced fluorescence technique (Section 19.2) in a few cases.® It was
found that the energy distributions in the rotational and vibrational degrees of
freedom of the fragments were Boltzmann-like and could be described by
effective rotational and vibrational temperatures, Ty and Ty, respectively. Both
Ty and 7Y, appeared 1o be higher than the approximate equivalent temperature
describing the translational encrgy distribution, indicating that thermal equi-
librium had not been established among the different degrees of freedom.

A complex molecule often has more than one low-lying dissociation level (or
channel) over which the molecule can be excited through MPE. Then, in MPD,
simultaneous dissociation over several competing channels can be observed.
Their relative probabilities depend on the excited pepulation distribution and
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the dissociation rates through the different channels. The latter can be esti-
mated from the RRKM model. Depending on the densitics of states, the
dissociation rate through the lower channel may increase much more slowly
with the excess energy than the one through the higher channel. As a result, it
can happen that above a certain excitation energy, dissociation through the
higher channel would dominate. Competition of two dissociation channels has
actually been observed in the crossed laser-molecular beam experiment. ® At
low laser fluence, the lower channel dominated, but with increasing fluence, the
upper channel contributed more and more to the products.

Secondary dissociation has also been observed in the MPD of some mole-
cules. ¥ In the SF, case, for example, when the dissociation was barely
detectable, only the SF; and F were found in the products. Then, with higher
laser fluence, SF, began to show up, yet no F, could be detected. The angular
distribution of SF, was appreciably broader than that of SF;. These results
together with other measurements concluded that SF, was the secondary
dissociation product from SF;.

Many other experiments on MPD of polyatomic molecules, conducted
cither in a gas cell or in a molecular beam, have also contributed to the
understanding of the problem. They are described in the review articles listed
in the Bibliography.

135 ENERGY RANDOMIZATION IN A MOLECULE

Whether the excitation energy can be quickly randomized in a malecule is a
very important question from both scientific and practical peints of view. On
the scientific side, energy randomization is the basic assumption in the theory
of unimolecular dissociation and it would forbid mode-selective chemical
reaction. On the practical side, energy nonrandomization would make MPE
significantly different from thermal excitation and could open a new branch in
chemical synthesis.

Two different pictures can be used 1o describe the encrgy randomization
process. In the first picture, a molecule is treated as a bunch of modes or
oscillators coupled by anharmenic forces. The pulsed laser energy is deposited
inte the molecule through selective excitation of a particular mode. Then,
because of mode-mode coupling, energy is randomized into all modes in a
certain characteristic time 7. Obviously, stronger mode-mode coupling should
lead to shorter r. In the second picture, the real eigenstates of the molecule are
considered. Because of anharmenic coupling, the modes are so mixed that
none of the eigenstates can be regarded as a pure mode state. When a coherent
laser pulse of frequency w and pulsewidth T, is used to excite the molecule,
different states in the frequency range between w — 477" and w + 377" are
coherently excited to different extents. The coherent beat of the excitations
causes the populations in these exciled states to vary with time. If the number
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of these states is large, then interference of the beats makes the population in
cach state appear to relax toward an equilibrivm value in a characteristic time
7, Again, if anharmonic coupling is larger, more excited states should par-
ticipate effectively in the coherent beating and 7 becomes shorter.

Experiments on MPE and MPD have so far yielded no firm evidence that
excitation energy in the upper quasi-continumm or true continuum is not
randomized during the laser pulse. The crossed laser-molecular beam experi-
ment described earlier, for example, showed farily good agreement with the
statistical RRKM model, which is based on the assamption of energy randomi-
zation, in the predictions of the dominating dissociation channels, and the
translational energy distribution of the fragments. Other experimental results,
such as the average number of photons absorbed per dissociating molecule, are
also consistent with the RRKM model. It is possible that some particular
modes of the molecule may not participate fully in the energy randomization
because of their weak coupling to the other modes as a result of large
frequency mismatch, for example. With this in mind, MPD of some molecules
via MPE of the C-H bond has been studied.** The C-H vibrational frequency
at ~ 3000 cm ™" was far from the frequencies of the other vibrational modes of
the molecules, which were all around or below 1000 cm™'. Yet the results
obtained were still consistent with the RRKM model.

To see the effect of energy nonrandomization in MPE during a laser pulse, it
is clear that we need a very short pulse and excitation of a mode more or less
isolated from other modes. The characteristic time r of energy randomization
in the quasi-continuwn is believed to be of the order of picoseconds or less.
Therefore, picosecond- or subpicosecond-laser pubses would be needed to see
energy nonrandomization, However, to excite the molecules 10 high energy
states or into the dissociation continunm, the laser pulse musi alse have
enough Ruence. This would then make the laser peak intensity so high that
many dissociation and ionization channels could open at the same time, thus
confusing the results. Comsequently, emergy monrandomization and hence
selective bond breaking would be difficult to realize.

It might be possible that in a molecule with weakly connected, spatially
separated groups, energy randomization during a certain time period is imited
to the group that has been excited. In this case, MPD would break the weakest
bond in the group, which is not necessarily the weakest of the whole molecole.
Then MPD of the molecules could appear significantly different from thermal
dissociation.

23.6 AN ANALOG MODEL OF MULTIPHOTON
DISSOCIATION

We now discuss an analog that can help visualize many important aspects of
MPD.? Consider a trough with many compartments, as in Fig. 23.16. There
are small holes in the partition walls, so that as the trough is filled, water
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Fig. 23.16 An analog model for multiphoton excitation and dissociation of poly-
atomic molecules.

pouring into one compartment will flow into the other compartments through
the holes. With the trough acting as a molecule, the compartments as vibra-
tional modes, the holes as mode-mode coupling, and water as excitation
energy, this picture can be used to illustrate MPD of a molecule fairly well.
The flow of water between compartments corresponds to energy flow between
modes, and the overflow of water through the V-shaped openings in the
containing wall corresponds to molecular dissociation through various chan-
nels. The hole size increases with height to indicate the stronger mode—mode
coupling at higher energy, The V-shape of the apenings is designed to make the
overflow rate increase rapidly as the water level moves up.
A number of conclusions can be readily drawn from Fig. 23.16:

1. The equilibration of water in various compartments depends on the
filling rate of the water and the size of the holes. Larger holes and slower filling
rate help the equilibration. This is analogous to the energy randomization
process in the excitation of a molecule.

2. If the water filling is sufficiently slow and the equilibration sufficiently
fast, so that at all times water in all compartments is ai the same level, then it
will finally nise above the lowest V-shaped opening and leak through that
opening. The final water fevel is determined by the balance between the filling
and leaking rates. This is analogous o0 MPE of a melecule through the
quasi-continuum into the true continuum and its dissociation through the
lowest channel with an average excess energy.

3. If the filling rate is sufficiently fast, but still stow enough for equilibra-
tion to be established among all the compartments, the final water level may
rise above the second or even third lowest opening. Then water can simulta-
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neously leak through more than one opening. This corresponds to MPD of a
molecule through several competing channels as a consequence of MPE by an
intense laser pulse.

4. 1If the amount of water o be poured into the trough is small, the level
water can reach may be limited by the amount of water available instead of the
filling rate. This corresponds to the limitation of excitation of a molecule in
MPE by the laser fluence rather than intensity.

5. Only if the filling rate is much faster than the rate of equilibration
between compartments can water leak through the V-shaped opening in the
same compartment that is being filled. This is eguivalent to the possibility of
bond-sclective MPD by a very intense laser pulse with up-excitatiocn much
faster than energy randomization.

This model is admittedly very crude and cannot deseribe all the characterds-
tic features of MPE and MPD of a molecule. For example, it does not give a
proper description of MPE over the discrete levels. However, it does provide a
simple, easily understandable physical picture that one can use to visualize the
complicated MPE process through the gquasi-continuum and the resultant
MPD process.

237 SUMMARY AND FUTURE WORK

The present understanding of MPD of a polyatomic molecule can be sum-
marized as follows:

1. MPE of a molecule over the discrete levels is a near-resonant, multipho-
ton absorption process.

2. Multiphoton up-excitation of all the molecules in the quasi-continuum
is possible because of stepwise resonances and the rapidly increasing density of
states with increase of excitation energy.

3. At least near and above the dissociation level, the excitation energy is
expected to be randomized in a large number of modes within a few picosec-
. onds. Then the resulting MPD, governed by statistical mechanics, is not very
different from dissociation by thermal excitation,

4. Bond-selective MPD is not likely unless an extremely short but en-
ergetic laser pulse is used.

5. The average excitation level from which the molecules dissociate in
MPD depends in general on both the Jaser intensity and the laser fluence. For
a very short laser pulse, essentially none of the molecules dissociates before the
pulse is over; the final excitation level is then determined only by the laser
fluence. For a sufficiently long pulse with high enough fluence, the final
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excitation level is reached at the balance of up-excitation and dissociation and
is therefore determined by the laser intensity.

6. MPD through competing dissociation channels and MPD with succes-
sive secondary dissociation can occur.

7. A heavier, more complex molecule with more degrees of freedom and
lower vibrational frequencies has a dissociation rate increasing more siowly
with the excitation energy. Consequently, the same laser pulse can excite such
molecules to higher levels. Tn dissociation, their fragments should carry more
excess energy, with a large fraction in the internal degrees of freedom. The
highly excited fragments are also more likely to undergo a secondary MPD.

This suggests that onme can predict faily well the MPD of a not 100
complicated polyatomic molecule. Qualitatively, a larger, heavier, and more
complex molecule has a quasi-continuum begin at lower energy and a dissocia-
tion rate increase more slowly with excess energy. Such a molecule requires a
less intense laser pulse to excite it over the discrete levels, With sufficient laser
intensity and fluence, it can be driven to a level high above the dissociation
threshold. The excess energy carried away by the fragments in the subsequent
dissociation is therefore large. The fragments having most of the excess energy
in internal degrees of freedom may appear highly excited in the quasi-con-
tinnum. They can be further excited by the laser radiation through the
quasi-continuum into dissociation. This description can apply, for example, to
the case of MPD of UF,* Simultaneous dissociation through several channels
competing in the statistical sense could also occur.

Although MPE and MPD of a polyatomic molecule are now fairly well
understood, a number of relevant basic questions have not been answered.
First, a quantitative understanding of MPE over the discrete levels is still
tacking. This is mainly because of lack of spectroscopic information about
polyatomic molecules. Few data are available on the higher rotation-vibra-
tional states; even the linear absorption spectra of polyatomic molecules
generally have not been interpreted. Only if MPE over the discrete levels is
quantitatively understood can the dependence of the fraction of molecules
excited into the quasi-continuum on laser intensity be predicied. Second,
whether the coherent effect of MPE over the discrete levels is important or not
is not vet resolved, although it is fairly certain that for a one-step MPE into the
quasi-continuum, the effective dephasing time should be of the order of tens of
picosecond or less. Third, the dynamics of energy transfer between modes is
still an open problem. How the various modes come in at different excitation
levels to participate in the energy randomization process and how fast the
energy is redistributed among them are most important for the understanding
of the structure of the quasi-continuum and MPE through the quasi-con-
tinuum, Other related questions to be answered are: What is the population
distribution in the quasi-continuum and how does it vary during up-excitation?
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Does the absorption spectrum of a molecule in the quasi-continuum show fine
resolved structure,’ and how does it change with the excitation level? Fourth,
information about the detailed excess energy distribution in the fragments is
scarce, bat is crucial for a better understanding of unimolecular dissociation. It
tells us not only which state the molecule dissociates from but also the detailed
dynamics of how the fragments separate from each other i their path crossing
the critical region of dissociation. Fifth, in special situations, bond-selective
dissociation may still be a possibility, How would the dissociation pattern
change if an energetic picosecond laser pulse is used for MPD? Can one find
some molecules possessing highly isolated modes, through which the excitation
would yield MPD products very different from thermal dissociation?

Applications of infrared MPE and MPD of molecules are many. As already
mentioned, it can be used for isotope separation and for the study of
unimolecular dissociation and laser-induced chemical reaction. In other appli-
cations, it has been suggested as a means to purify a material through MPD of
impurities and to generate a large number of desired radicals for spectroscopic
study or for chemical synthesis.

Multiphoton excitation of a molecule via electronic transitions is also
possible, Two- er three-photon excitation is commonly used 1o selectively
ionize a molecule, but little is known about excitation by more than three or
four photons. The much shorter sponantecus emission lifetimes of the elec-
{ronic excited states is probably the main reason for the limitation. However,
with the now available intense ultrashort laser pulses it is conceivable that a
maolecule can be excited to a very high level in the ionization continuum via an
n-photon absorption process with # much larger than 3 or 4. The theory of
such an MPE process is expecied to be difficult because of our lack of
information about electronic excited states.
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Laser Isotope Separation

The advent of nable lasers opens the prospect of frequency-selective excita-
tion of matter. This is of fundamental importance in photochemistry, since the
selective excitation could change the properties of atoms and molecules drasti-
cally. Of special interest in this respect is the use of tunable lasers for isotope
separation. Since the existing isotope separation methods have various disad-
vantages, one hopes 1o develop new methods that could be cheaper, simpler to
set up, and less power-consuming. Thus laser isotope separation has become a
subject of immense research activity. It shows that lasers and quantum
electronics can even have a major influence on nuctear power technology. In
this chapter, we discuss briefty the ideas and practices of the various laser
isotope separation methods,

24.1 GENERAL DESCRIPTION

The wdea of using selective excitation for isotope separation is simple and
straightforward. The optical spectra of isotopic atoms or molecules are gener-
ally the same except for the existence of small shifts in the positions of the
spectral jines known as isotope shifts. If the isotope shifts of some spectral
tines can be clearly resolved, then selective excitation of the desired isotopic
atoms or molecules is possible. The excited atoms or molecules are expected to
have very different physical and chemical properties from the unexcited ones.
They can therefore be separated from the other isotopic atoms or molecules
which have not been excited.

The difference in the number of neutrons in different isotopes is of course
responsible for the isotope shifts. The electronic energy levels are shifted via
the electron-nucieus interaction by the changes in nuclear mass, nuclear
volume and hence the nuclear charge distribution, and nuclear spin angular
momenturn.} For light elements, the mass effect is important, since it changes
significantly the reduced mass for the electron motion about the nucleus. It
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leads 1o an isotope shift Aw, ~ (mAM/M?*)w,, which is of the order of
1 em™* for Li® and Li’, where m is the electron mass, M is the nuclear mass,
and A M is the isotopic mass difference. For heavier elements, the isotope shifts
are dominated by the change in the interaction of the electron angular
momentum with the nuclear spin (the hyperfine interaction) and the change in
the nuclear volume (the volume shift). They are of the order of a few tenths of
a cm ™! or smaller. Figure 24.1 shows how the atomic isotope shift varies with
the neutron number. In molecular spectira, the isotope shifts of vibrational and
rotational levels are superimposed on the electronic energy shifts.* They are
governed mainly by the mass effect: the vibrational level spacing is inversely
proportionat to- the_square root of the vibrational reduced mass and the
rotational level spacing is inversely proportional to the moment of inertia.
Except for some small molecules, however, the complexity of the very closely
spaced rovibronic levels often forbids the description of isotope shifts of
individual lines. Instead, one considers the isotope shifts of the rotation-vibra-
tional bands. In many cases, even for heavier molecules, the isotope shift of a
narrow band can be comparable to or larger than the half-bandwidth, which is
of the order of a few cm ! at room temperature.

The small isotope shifts necessitate the use of a narrow-band light source for
selective excitation. Tunable lasers with their high monochromaticity are
therefore ideal for such an application. In addition, the high intensity of the
laser radiation greatly facilitates the selection process. Actually, the first
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Fig. 24.1 Atomic isotope shifts versus the neutron number. [After R. C, Stern and
B. B. Snavely, Ann. N.Y. Acad. Sei. 267, 71 (1 976).)
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attempt at isotope separation by Hartley et al.® using optical selective excita-
tion was made in 1922, long before the laser was discovered. The first
successful experiment was the separation of Cl isolopes by Kuhn and Martin®
in 1932, using the 2861 8-A line of an aluminum spark to excite CoCl3’. Later,
photochemical separation of Hg isotopes was also demonstrated.’ The dis-
covery of lasers prompted Tiffany et al.® to uy isotope separation of Br by
selective laser excitation. Their experiment failed becavse of isotopic scram-
bling in the subsequent photochemical reactions, but it revived the interest in
isotope separation by optical means.

The basic requirements in laser isotope separation are summarized as
follows:

[

The isotopic atoms or molecules should have an absorption spectrum with
well-resolved isotope shifts.

2 The laser source should be sufficiently menochromatic and tunable to be

able to selectively excite single isotopic species.

3 There should exist a physical or chemical process which can rapidly
separate the excited and the unexcited atoms or molecules before the
excited ones decay away or transfer their excitation energy to atoms or
molecules of the undesired species.

The following changes in atomic or molecular properties can be induced by
laser excitation:”

The chemical reactivity of atoms or molecules may increase.
2 The energy required to ionize an ¢xcited atom or molecules is less.

3 An excited atom or molecule may have a higher polarizability and 2 larger
cross section of interaction with other particles or external fields.

4 Resonant excitation changes the trajectory of excited atoms or molecules.
The energy required to dissociate an excited molecule is less.
6 An excited molecule may predissociate or isomerize.

These changes allow us to devise effective physical or chemical methods 1o
separate the excited atoms or molecules from the unexcited ones. Referring to
the property changes listed above, the various methods are classified as
photochemical reaction for (1), photoionization for (2), photophysical reaction
for (3), photodefection for {4), photodissociation for (3), and photopredissoci-
ation or photoisomerization for (6). In the two charts below, we summarize the
more frequently considered schemes of laser isotope separation following,
respectively, atomic and molecular excitations. We use A, B, C, AB, and so on
1o denote atoms or molecules.
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Laser Isotope Separation Based on Atomic Excitation
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excitation

The relative isotope enrichment factor is defined as

K(1/7) = T[% (241)

where [F]/[/] is the concentration ratio of the two isotopic species, and
[f15/17]; is the initial valne of the concentration ratio. To have a large K
value, a number of precaution's must be taken. First, the selective excitation
should have excitation energy much larger than kT 1o be distinguished from
the nonselective thermal excitation. Next, the separated isotopic species should
be removed before collisions scramble the isotopes. Finally, other isolope
scrambling processes such as secondary chernical reactions should be avoided.

In the following sections we discuss the photophysical and photochemical
methods of laser isotope separation with some illustrative examples.
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242 PHOTOPHYSICAL METHODS
Photoionization

Laser isotope separation by photoionization stems from the fact that an atom
can be selectively photoionized through multistep selective excitation,® as
already discussed in some detail in Sections 18.3 and 19.3. With the available
lasers, this is almost a universal method applicable to all elements in the
periodic table except a very few. The actual ionization pProcess can OCCUr
through direct excitation into the ionization continuum (g, — 101 ¢m?), or
through excitation inte an autoionization state (o, ~ 107% cm?®), or through
excitation into a Rydberg state followed by de-field-induced ionization {o; ~
10™ ¢m?). The latter two have a much higher excitation probability because of
the larger transition probability into a discrete final state, but they require an
additional narrowband tunable laser. The selectively excited isotope can in
principle also be ionized by collision with a partner.

As charged particles, the selectively ionized atoms can be physically sep-
arated from the neutral atoms by an applied electric field. In colliding with an
atom, however, an ion usually has a large charge-transfer cross section. It is
likely to lose its charge to the neutral atom in the collision, and subsequently
the isotopic selectivity is lost. Such collisions thus should be avoided in the
separation process. This can be best achieved by processing the materials to be
isotopically enriched in an atomic beam. Even so, charge-transfer collisions are
still the limiting factor on the maximum density the atomic beam c¢an have.

As an example, we consider the case of uranjum isotope separation. The
arrangement of the firsi experiment is seen in Fig. 24.2.% An atomic beam of
the Z5U-81) isotopic mixture with a density of ~ 5 X 10" aloms/cn’ was
generated from an oven heated to 2100°C. A CW dye laser with a 50-MHz
bandwidth was used to selectively excite either ¥*U or 28U in the beam with a
{ransition at ~ 5915 A, at which the isotope shift between **U and BT was
~ § GHz. Then the uv radiation from a mercury arc lamp was used to ionize
the excited atoms. To avoid direct ionization of the ground-state atoms,
radiation with wavelengths shorter than 2100 A had been filtered out. The
resulting jomized atoms were transported out of the main beam by the
deflection plates, sent through a quadrupole ion mass filter, and finally
collected by a collector biased at —3100 v, In the initial attempt, the observed
enrichment factor K was already ~ 100. In another experiment,' in which a
pulsed dye laser was used for selective excitation and a pulsed N, laser for
lopization, K(***U /251)) was about 140. It is also possible to selectively ionize
the uraninm atoms by successive resonant excitations over discrete states
before the finat ionization step. This requires more than one tunable laser
system for the resonant excitations but should greatly improve the selectivity.
With the uranium atoms excited 10 a high Rydberg state, an external de
electric field can then be used 1o efficiently ionize the atoms, The large-scale
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Fig. 24.2 Experimental arrangement of uranium isotope scparation by the two-step
photoionization method.

prototype system for uranium isotope separation wsing copper-laser-pumped
dye lasers is presently being developed at Lawrence Livermore Lab.

Laser isotope separation of other isotopes, such as Na, K, Ca, Rb, rare earth
atoms, and transuranium elements, using the stepwise photoionization method
have also been demonstrated.'! In general, this is a relatively simple and
economical method for separation of small quantities of isotopes of essentially
“all elements.

Photodeflection

As discussed in Section 20.1, laser excitation followed by fluorescence can
impart » net m~—entum ¢ an atom or molecule. In absorbing a photon from a
laser beam, the atom or molecule Teceives a mormentum &k, but, in emission,
because the Auorescent photon appears in all directions with equai probability,
the atom or molecule (assuming unpolarized) loses no momentum on the
average. Thus if 10° visible photons are absorbed and emitted during the
course of interaction of the atom or molecule with the laser field, a net
momentum of 10° Ak is transferred 1o the atom or molecule. This is often
sufficient to change appreciably the trajectory of the atom or molecule if the
atomic or molecular mass i3 not exceptionally large.

We consider here the experimental demonsiration of photodeflection of a
1388, beam as an example.’? As shown in Fig. 24.3, the Ba atomic beam from
an oven heated to 800 K had a mean velocity (v) = 4 X 16* cm/sec and a
mean transverse velocity {¢) = 80 cm/sec corresponding te a beam spread
of 2 mrad. A CW dve laser with a spectral width of 10 MHz was used to
selectively excite the 6s2(15y) — 656p(P,) transition of *Ba in a transverse
direction. Since Ak/M = (0.8 cm/sec in this case, it would take the absorption
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Fig, 243 Schematic diagrams of barium isotape separation by resonant photodeflec-
tion. (a) Fxperimenta] arrangement; () relevant energy levels of *¥Ba.

of ~ 100 photons 1o deflect the atoms away from the mean beam. The lifetime
of the 652 — (65)6p) transition is ~ 8 nsec. With a laser intensity (~ 10
W /cm?) sufficient to saturate the (ransition and an effective atom-field interac-
tion length of 1 mm, a total of 300 photons could be absorbed and then
emitted by each '**Ba atom crossing the laser beam. Photodefiection of the
selectively excited ***Ba away from the main beam should therefore be possible
and was acwally demonstrated.!? In the Ba case, there is a 4% probability that
the excited atom would decay inte the (65)5d }'D,) metastable state. The
overall probability that a Ba atom may end up in the metastable state after n
photon collisions is T,(24/25)""Y(1/25), which is appreciable for large a.
Since atoms in the metastable state can no longer absorb photons from the
exciting laser beam and get deflected, the accumulation of populaticn in the
metastable state must be avoided. One possible way 1o quench the population
in (65)(54) is to use another laser to excite it to (6p)(5d), from which it can
decay rapidly to the ground state.

Another method to avoid metastable trapping is 1o use a coherent 7 pulse to
excite the selected atoms to the excited state via adiabatic follewing."? During
the process, a photon momentum kk is transferred to the atom. The laser pulse
is then reflected back from a mirror and is used to stimulate emission from the
excited atom, The stimulated photon emission, being directional, also transfers
a photon momentum —A{—k) = Ak 1o the atom. Thus, with the laser pulse
going back and forth between mireors, the resonantly excited and deexcited
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atoms can be effectively deflected with little loss of photons. The experimental
demonstration of this method has not yet been reported.

The main difficulty of the photodeflection method is that to obtain a large
isotope enrichment factor, a long atom-field interaction length is required. For
heavier atoms, the requirement is more stringent.

Other Physical Methods

Several other physical methods for laser isotepe separation have been pro-
posed, but no successful experiment has yet been reported.

An excited atom or molecule has a different polarizability than one in the
ground state. In an electric field gradient, therefore, the forces acting on the
excited and unexcited atoms or molecules are different, and they can, in
principle, be used to separate the two species. The sticking coefficients for the
adsorption of the excited and unexcited atoms or molecules on a substrate can
also be very different. By fAowing the selectively excited isotopic mixture over a
substrate, one may achieve separation of isotopes through the difference in
adsorption, if admixing from secondary processes is negligible.

243 PHOTOCHEMICAL METHODS
Photochemical Reaction

An excited atom or molecule generally has a stronger chemical reactivity than
the ground-state one and can be separated from the latter via an appropriate
chemical reaction scheme. Although electronic excitation often is more effec-
tive in this respect, vibrational excitation, in the case of molecules, can also be
operative. Two examples are given below to illustrate the isotopically selective
photochemistry. .

In a mixture of ertho-1, and para-I, with 2-hexane (X), ertho-1; was excited
with the 5145 A Ar* laser line.!* After one hour of irradiation with a 0.2-W
laser, the density of artho-I, was found to have reduced to ~ 5%. This was
believed to be due to the fact that the electronically excited ortho-1; could react
with the 2-hexane, while the unexcited parg-1; could not:

A
ortho-1; = ortho-1¥ + X — X1,

In another example, a gas mixture of 1:1:1 Hy;COH : D,COD : Br, was
irradiated by a CW HF laser at ~ 2.7 pm.!* The OH vibration in HyCOH was
excited. The vibrationally excited H;COH then reacted strongly with Br, to
form 2ZHBr and H,CO;

H,COH* + Br, — 2HBr + H,CO.

As a result, after the irradiation of the mixture by a 90-W laser for 60 sec, the
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H,COH : D;COD ratio reduced 10 less than 1:19. The results have, however,
been criticized, and need fusther confirmation.

The chemical reactions in these examples are simple. They yield stable
primary products which can be casily separated from the parent molecules.
This is, however, not the case in general. A chain reaction often occurs
following selective excitation of the atoms or molecules. Isotopic scrambling
could result from the uncontrolled secondary reactions.

One-Step Photopredissociation

Unimolecular dissociation is a special class of chemical reaction that can be
induced by laser excitation. If the excitation is isotopically selective, the
process can be used for isotope separation.

Some molecules have sharp ro-vibronic states superimposed on an electronic
excited state, which is degenerate with the dissociation continuum of another
excited electronic state (Fig. 24.4). These are predissociation states. They are

A*+B

s ° R

Fig. 244 Schematic energy level diagram of a molecule haviag predissociation states
degenerate with the contipuum of a dissociating electronic staie.
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similar in pature as the autoionization states to the ionization continuum. A
molecule excited to a predissoctation state can relax to the continuum and
predissociate. If the sharp predissociation states have resolvable isotope shifts,
selective excitation can lead to the predissociation of a selected isotopic
species.’® The dissociation products may be stable or unstable. In the latter
case, a chermical scavenging process must be devised in order to remove the
specific isotopic species before appreciable isotopic scrambling occurs, Sec-
ondary reactions that would scramble the isotopes should also be avoided. The
advantage of the one-step photopredissociation method is its simplicity. Only a
single, relatively low-power laser is nceded for one-photon selective excitation,

As an example, consider the case of isotope enrichment of deuterium by
photopredissociation of formaldehyde H,CO.™ The same process can be used
for isotope enrichment of C and O. In the predissociation of H,CQ, the
following reaction dominates:

hiw
H,CO = H,CO* > H, + CO.

Both H, and CO are stable and can be readily removed. An enrichment factor
K(D/H) of 14 has been abtained from irradiation of a natural mixture of
H,C0 and HDCO by a CW He-Cd laser at 32503 A.

Two-Step Photodissociation and Photopredissociation

Molecular dissociation can be initiated by exciting a molecule either to a
predissociation state or to the dissociation continuum. For isetepically selec-
tive dissociation, a two-step excitation scheme can be used: the first step
selectively excites the desired isotopic species, and the second step further
excites the molecules to a dissociation or predissociation state. Decause the
predissociation state may also exhibit an isotope shift, the two-step photopre-
dissociation case is generally more selective than the one-step case, although
two tunable lasers of high enough intensities for stepwise excitations will then
be needed. The selective excitation can be either electronic or vibrational. The
latter ofien is used, since for most molecules the isotope shifts are better
resolved in the vibrational levels. Again, the dissociation products should be
scavenged out before secondary reactions or other processes scramble the
isotopic species.

The first demonstration of this method is used as an example here” A 1:1
mixture of “NH, and *NH, at a pressure of 10-20 mm Hg with 250 mm Hg
of buffer gas (Xe or Ne) was irradiated simultaneously by a pulsed CO, Jaser at
10.6 pm and a uv spark. The CO, laser selectively excited the », vibrational
mode of BNH, in the ground state, (X, » = 0) = (X, v = 1), followed by the
uv excitation 1o the predissociation state (A, v’ = 0). The ensuing sequence of
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chemical reactions was believed to be

NH$ -"*NH, + H
NH, +"“NH, = "N,H,,
BN,H, + H =N,H, + H,
2N, H, — 2NH, +*N,.

[1 is seen that the secondary reactions here do not involve the unexcited NH,
moelecules. They are therefore the isotopically selective reactions. The resulting
product N, should be enriched in BN, Indeed, the observed enrichment
coefficient X(**N/*N} in N, was about 2.5-6.

In another example, a pulsed CO, laser was used 1o selectively excite the #,
vibrational mode of “'BCl, in a mixture of BCl; and "BCL,."* The uv
radiation from a Xe flashlamp then excited "'BCL% further into the continuum
of a dissociating electronic state, The dissociation products were removed by
using O, as the scavenger. A 10% enrichment of B versus "B in the
remaining mixture of BC!; was found in the experiment. The two-step photo-
dissociation method bhas been considered for large-scale uranium isotope
separation in the United States."

Infrared Multiphoton Dissociation

Infrared multiphoton dissociation of molecules was discussed at great length in
Chapter 23. Since transitions over the low-lying discrete levels are isotopically
selective, the process can also be used for isotope separation. It has the
advantage that only medium-power pulsed infrared lasers are required.
Uranium isotope separation by infrared multiphoton dissociation of UF; was
demonstrated by Rabinowitz et al.®

244 CONCLUDING REMARKS

The propelling force in laser isolope separation research is the energy crisis.
For consumption in nuclear power plants, large quantities of D and *U are
needed. They must be produced from separation of their natural isotopic
mixtures. In comparison with existing isotope separation methods, laser schemes
could yield more isotope enrichment per stage, consume less power, and save
in capital investment. The requirement on the laser is, however, fairly stringent.
Since the future development of laser technology is unpredictable, it is difficult
to know for certain how profitable future large-scale laser isotope separation
can be, Comparison of different laser isotope separation schemes is also a
complicated matter, particularly because many details of these laser separation
schemes are yet o be worked cut. For example, in the photoionization method,
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even though selective photoienization of a certain isotopic species may not be a
problem, extraction and collection of the resulting ion plasma may eventually
limit the output.

In the case where the desired amount of specific isotopes is small, laser
isotope separation schemes can be of great advantage because of the relatively
cheap capital investment. In other cases where existing separation methods are
not very satisfactory because of their limited selectivity, laser schemes can be
most useful, This applies to the separation of less abundant isotopes and of
transuranium elements. To a large extent, the general success of laser isotope
separation depends on advances in laser technology.
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Surface Nonlinear Optics

Research in nonlinear optics has also been extended from the bulk to the
surface. This i3 most interesting and exciting since it allows the field of
nonlinear optics to be in close contact with the growing field of surface science.
While a full exploration of this new area has not yet been carried oui, a few
initial attempts have proven to be very successful. As in the bulk case, research
in surface nonlinear optics has proceeded along two lines: first, 1o obtain a
better understanding of the nonlinear optical effects occurring at surfaces or
interfaces, and second, to look into the possibility of applying surface nonlin-
ear optics to surface and interfacial studies. The latter can lead to the
development of new surface probes very different from, but complementary to,
the conventional ones.

25.1 GENERAL DESCRIPTION

A question that often arises in the discussion of nonlinear optical effects is how
the boundary surfaces of the media affect the results. In Section 6.4 we saw
that a boundary surface not only modifies the transmitted sum-frequency
generation but also yields a reflected sum-frequency wave. In the derivation
there, however, we neglected the fact that the surface atomic or molecular
layers generally have very different optical properties from the bulk. This is a
good approximation in many cases, vet if we are interested in problems more
specific to the surface, we must recognize the distinction between the surface
microscopic layer and the bulk,

In the usual simplified approach, the surface microscopic laver is assumed
to have a characteristic thickness with optical constants different from the
bulk. Twe such surface Jayers normally exist at an interface, as illustrated in
Fig. 25.1. Because the linear transmission and reflection of light at the
boundary surface usually are domimated by the bulk properties, the surface
layers have little effect on the linear wave propagation. As far as nonlinear
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£, Xy Meadium 1

Y 1
Mt N

€, X, Medium 2

Fig. 25.1 A model of an interface between two media.

optical effects are concerned, we can assume that the surface layers have the
same linear refractive indices as the adjoining bulk media, but their nonlinear
optical susceptibilities are different from the bulk, Unlike the linear case, the
surface tayers can strongly affect the nonlinear optical output in some cases. It
is often convenient to characterize the nonlinear optical response of the surface
layers by a surface nonlinear susceptibility x5 instead of the usual volume
nonlinear susceptibility x3". The two are related by

= f . (25.1)

The integration here runs across the surface layers along the surface normal.
The surface contribution to the overall nonlinear optical signal becomes
nonnegligible if {x3*| is comparable to |x™"/.| from the bulk, where [, is the
effective length of the nonlinear optical interaction in the bulk. With some
modification, the discussion here can also apply to the case of a thin-film layer
a4 an interface.

Let Ny and N be the surface density (per unit arca} and the bulk density {per
unit volume) of atoms or melecules, respectively. In order to have |x5%|
comparable 10 [x ™. lpug, 006 must have [x¥T}/N; larger than [x™{/N, and
the surface layer thickness smaller than I by no more than a few orders of
magnitude. The former is possible if X' is resonantly cnhanced but x™" of
the bulk is not. It is also possible if, as a result of their different symmetry
properties, [x 3| is allowed and |x™"| forbidden for a certain nonlinear optical
process, or for a certain combination of input and output polarizations, For
example, second-order processes are forbidden in centrosymmetric media, but
they are always allowed at the surface layers. The effective interaction length
{4, on the other hand, can also be limited in a number of ways. For mixing
processes with a phase mismatch Ak, Iy ~ 7/]Ak{ can be limited by de-
liberately choosing a maximum JAk|. In an absorbing medium, /. is limited by
the attenuation length. If total reflection of the pump field occurs at the
boundary, £,; is limited by the penetration depth of the field. Finally, surface
electromagnetic waves can be propagated on a boundary surface in some cases,
and /., corresponds to the penetration depth of the surface wave into the bulk.
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Nonlinear optics involving surface waves is an interesting subject in its own
right, First, since the surface wave is confined to a thin layer of the order of a
wavelength at the boundary, its propagation characteristic is surface-specific.
This means that it can be very sensitive to small perturbations on the surface.
Then, if a large fraction of the incoming laser energy can be coupled into a
surface wave, the field intensity of the surface wave can be very high.
Consequently, nonlinear optical effects arising from the surface wave interac-
tion can be readily observable. With these in mind, one may wonder if
nonlinear optical effects involving surface waves can even be sensitive enough
10 be used as surface probes. In the following section we dwell on this question
after a general discussion of the surface wave interaction. We then discuss in a
subsequent section how a second-order nonlinear process, being surface-specific
by symmetry, can be an effective 100l for surface studies even without the help
of surface wave interaction.

252 NONLINEAR OPTICS WITH SURFACE
ELECTROMAGNETIC WAYES

Surface Electromagnetic Waves

The term surface electromagnetic waves here refers to em waves propagating
along an interface between two media with their amplitudes decaying exponen-
tially away from the interface. Sometimes they are known as surface polari-
tons. The existence of surface em waves was predicted by Sommerfeld as early
as 1909.! They appear in a variety of circumstances. The ground wave
propagation on earth is just one example. Here we are concerned with surface
em waves on condensed matter.

Let us consider the simple case of a plane interface between two semi-
infinite cubic or isotropic media (Fig, 25.2). In this case, the surface em wave

Medium a

Medium &
Fig. 25.2 Schematic describing a surface cleclromagnetic wave propagating on the
interface between media g and b. The field penetration depths into the twe media are
a; ' and a; !, respectively.
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must be transverse magnetic (TM). This is seen as follows. We start by
assuming that the surface em wave would exist for both TE and TM polariza-
tions. In the TM case, the surface wave propagating along £, in the ceordinate -
system of Fig. 25.2, can be described by

E = (%&,, + 14, )eX =" forz >0
E a:) (25.2)

&, + 28, )eREre o0 forz <0,
Note that in order to satisfy the wave equation, X and o must be related by

K*— o= (wfc)e, inmediuma(z >0}

3 (25.3)
K=ol = (w/e)e, inmediumb(z <0}
To match the boundary conditions at z = 0, we must have
Eax = &1 and &, = €5, {25.4)
Since ¥ +E = 0in both media, (25.4) can be transformed into
gax = gbx
and (25.5)

e (iK/0,)E,, = e ~iK/ 0y} &y,

For &,, and &, to be nonvanishing, the determinant of this set of coupled
algebraic equations should vanish. This leads to

€0, + e, = 0, (25.6}

which, with the help of (25.3), yields the dispersion relation for the surface
wave

K= (-“63)1:—:"% {25.7)

For the surface wave 10 exist, a, and &, must be positive and real (assuming
for the moment Ime = 0), and hence K > {w/c)’e,, (w/c)’e,. As seen from
(25.7), this can be true only if ¢, < 0 and |¢,| > g, o &, < G and |¢, > &,. In
other words, one of the two media must have a negative dielectric constant.
There actually exist a number of such media in nature; crystals with either
phonon or excition restrahlung bands are good examples. The more commonly
used media for propagation of surface em waves are, however, the metals.
Below the plasma frequency, the dielectric constant of a metal is aiways
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negative. Surface em waves on a metat surface are aften known as surface
plasmon waves, The preceding calculation and discussion can be repeated for
the TE wave (E along #), but it is easy to show that in this case no dispersion
relation for surface em waves can result. This indicates that no TE waves can
propagale as surface em waves.

Equation (25.3) shows that the wavevector K of the surface em wave is
always larger than that of the bulk em wave. This is seen explicitly in Fig. 25.3,
where the dispersion curves of the bulk and surface waves appear o intersect
only at the point where £,(w} — — oo, Because of the wavevector mismatch, it
is not possible for a bulk em wave to cxcite a surface em wave at the interface
between two semi-infinite media, Conversely, a surface wave is not capable of
sadiating either. One can, however, borrow the various excitation schemes used
in integrated optics for coupling Light in and out of waveguides. We consider
here the prism coupling methed, Either the Otto configuration,? shown in Fig.
25.4a, or the Kretschmann configuration,® in Fig, 25.45, can be effective. The
refractive index of the prism must be large enough so that by adjusting the
incident angle, the incoming wave through the prism can have a wavevector
component along the surface equal o the wavevector of the surface wave.
Then, if the film thickness in Fig. 25.4a, or the air gap in Fig. 25.45 is properly
chosen, the excitation of the surface em wave can be efficient. An example is
given in Fig, 25.5, where it is shown that wsing the Kretschmann geometry,
nearly 100% of the incoming light can be coupled into the surface mode.

Strictly speaking, the prism would modify the dispersion curve of the
surface wave. In practice, however, the change often is not appreciable. A more
rigorous description of the surface wave excitation by the prism coupling
method follows the analysis of a light wave incident on a thin film sandwiched
between two semi-infinite media.* In the Kretschmann geometry of Fig. 25.4b,
for example, the incoming TM wave Eq = (£ — 2k, /ky, )&, explik, x + ikg,z

w [+
Ve
e, =0
£p = o
0 ‘K

Fig. 253 Dispersion curve of a surface electromagnetic wave following {25.7).
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<0 e>6>0 € <0, ¢h>ep>0
€2
vv - €
aé_,e. 6
€2
{a) b

Fig. 254 (a) Ouo configaration and {b) Kretschmann configuration lor linear excita-
tion of surface polaritons.

— fwt}in the prism yields the following transmitted and reflected waves:

E; = (& = 3k /ky, ) Erexp(ik, x + ihey,z — iwt), (258)
Eg = (& + He fko, ) S oxplik x — ik z — fwt) '
with
& = [tatyexp(iky d)] (k3 e0/k3, 0, ) 60,/ D, (25.9)
Opy = {’m + JI'1:.‘7*"1:’("2k1z'5i)]“Lﬂux/‘D, '
10
08
£ os
3
= 04
T<T,
o2 (T=6730°C)  § (1=68007C
o L L BY 1 ]
a8 S0 52 54 56 56 60

Angle of Incidence, 8, (degrees)

Fig. 255 Reflectivity curves from 2 liquid erysial medium in the Kretschmaan
geometry versus the angle of incidence §; at T< 7, and T > T, where T, is the
isotropic-mesomorphic transition temperature. The solid curves are theoretical curves
obtained by nenlinear least square fitting, [After N. M. Chao, K. C. Chu, and Y, R,
Shen, Molec. Cryst. Lig. Cryst. 67, 261 {1981).]
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and

D=1+ ry + rpexp(izk,,d)
where ry), 13, t, and 1), are the Fresnel coeflicient

Ty = (Ejki'z - Eika)/(f;k.‘z + Eak,z)

(25.10)
4= e ks (eks, + ek, )

iz iz

and 4 is the film thickness. The subindices 0, 1, and 2 refer to the prism, the
film, and the dielectric medium above the film, respectively. Equation (25.9)
shows that the sclution is in resonance when D = 0. This is possible only if &,,
is imaginary or g, < (t (assuming Ime, = 0), suggesting that the resonance here
corresponds to a surface mode. In fact, it ¢can be shown that D = 0 can be
rewritien in the form

+
tanhpyd - AT D _ {25.11)
gi + doda

which is the dispersion relation for surface waves on the thin fitm. Here,
B, =ik, and g, = k. /¢, = [(w/c)%; — k21 /E,. In the limit of B4 = 1,
(25.11) reduces to

2

“ £qE;

ki_(_)L
cl g tg

We then recognize that the two faciors in (25.12) give exactly the dispersion
relations for the two surface em waves at the interfaces between media 0 and 1
and between 1 and 2, respectively. This is what one expects physically when
the film with g < 0 is so thick that waves on the two sides are unable to
communicate.

In the practical case, the dielectric constant of the fiim is a complex
quantity, so that the resonant denominator in (25.9) is always finite, and (25.9}
can be used to find the intensity of the excited surface wave. The example in
Fig. 25.5 corresponds to a silver film ~ 500 A thick. This film thickness is near
optimum for coupling of an incident wave into a surface wave, but it is also
large enough te have the dispersion relation of (25.11) fairly well approximated
by (23.12). The field amplitude of the surface wave is then greatly enhanced
from that of the incoming wave. The enhancement is limited by the loss in the
film, described by the imaginary part of K,. Among all metals, silver films
appear 1o be best for surface wave propagation in the visible because of their
low loss,

cl g t+e

K —(9)2i&] -0 (25.12)
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The fietd distribution in the film can also be found from the solutien of the
wave equation. For 0 € z < o, we have

E, = {#[Acoskyz + Bsinky,z] + 2(rk, /K, )[ - Asinky,z + Beosk,,z]}
xexp(ik,x — iwt) (25.13)
with
A=(1+ ’01){1 + rygexp(i2ky.d)] &,,/D
and

B = (1 rg M1 — rpenp(i2k, d)] (egky, /1Ko, ) G0/ D.

Surface waves can exist in general in a multilayer system. Their dispersion
relation can be derived in a way similar to the solution of linear wave
propagation.

Noulinear Optical Interaction Involving Surface Electromagnetic Waves

Nonlinear optics involving surface et waves can be easily understood if we
realize that strface waves are nothing bul propagating waves of a special class
of modes.* The general theory of nonlinear optics developed in earlier chapters
can be applied here with little modification. We consider only cptical mixing in
this section.

The wave equation governing the optical mixing process is

[v x(v %) = (u2/¢) e )| E(w,) = (dma/c? )P () (25.14)

where £ is assumed to be scalar. The output field E(w,) can be either a surface
or a bulk wave, and so are the pump Gelds inducing P¥(w,). The procedure
for finding the solution of {25.14) is the same as that outlined in Section 6.4.
The pump waves are initially specified, and hence the expression for PM'(e,) is
known. Pump depletion is negligible in the present case. Therefore, the
homogeneous and particular sclutions of (25.14) can be obtained in a straight-
forward way. Finally, the amplitudes of the homogeneous waves and the
wavevectors of all waves can be fixed by the boundary conditions.

As an illustration, we consider the case of nonlinear wave interaction at the
plane boundary between two semi-infinite media 1 (z < 0) and 2 (z > 0). For
simplicity, we assume that PP(w,)=0 in medium 1 and PNl(a,)=
2PN (w) + 2PN (w,) @ exp(ik,, «r — fw;?)} in medium 2. The solution of
(25.14) takes the form

k
E (w)= (J‘c + 2;—”-]dlhe"""‘"‘h"“” forz <0
1z

Ey(w,)=

k
% - ékx )gne.(k,ukuz—m) + )?(},IXPXNL 4 szPzNL)
T

T

8y, PM 4y PN forz >0 (25.15)
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where
4wk,
El(kzlJ - k%) ,
dok Ky, .

R ey

_4n(k3, .~ k1)

52( 3= k3 ),

YXX =

s

and
kls.x = kx‘

The ampiitudes, &, and &1, of the homogeneous waves are obtained by
matching of the fields at z = 0:

Fry = Oy = 1 BT + v, BT
k, k,
El(k )‘flu + Ez( P )g'l'x = 52(')':.19’;: + Y:zg,M)
1z
Here, #M" is the amplitude of PML. The preceding set of equations yields

& (ki ke N e + ¥u ) = ko, (v, P + 1, 2NY)

Fr, = = ,
E1klz(Yxx“?XNL + sz‘ga!NL) + El(klszz/k.r)(sz‘?xNL + Y:z‘?:NL)
i = - .
D
D' = ek, + £k, (25.16)
o &y — £ w B Ey ]
(82 + &) ek, — E2""”) El & t+e

Therefore, the output generated by PN is completely determined.

We discuss here the generation of a bulk wave by nonlinear interaction of
sucface waves or surface and bulk waves, and then the generation of a surface
wave by interaction of bulk waves, or surface and bulk waves, or all surface
waves. In the first case, because the purmnp fields involve surface waves, only the
boundary media within the penetration depth of the surface waves contribute
effectively to the nonlinear polarization PN, Therefore, the process should be
fairly surface-specific. As an example, we consider here second-harmonic
generation by a surface em wave at the boundary between a metal and a
nonlinear dielectric. We assume that the metal nonlinearity is negligible, The
nonlinear polarization induced in the dielectric medium ¢z > 0) by a surface
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wave B{w) = (&4, + i, )exp(ik,x — Bz} is

PO(20) = x@: (%€, + 1& Yexp(izk,x — 28z — i2wr), (25.17)

which we assume 1o have only % and 2 components. With P given, the
second harmonic wave generated in the dielectric is explicitly given by E,(w,
= 24) in (25.15) with media 1 and 2 referring to the metal and the dielectric,
respectively. Since k {2w) = k,, (2w} = 2k_(w), the homogeneous part of the
solution appears as a well-collimated propagating bulk wave when |&,(2w)| =
2w/ cHe(2w)| > 2k, (w)|. The same output appears as a surface wave if
k(26| < 2k (@)l

Second-harmonic generation by a surface em wave al a metal-dielectric
interface is easily observable. The Kretschmann geometry can be used to
launch the surface wave ai the metal-dielectric interface. The surface wave
intensity is much higher than the incoming beam intensity if a sizable fraction
of the input is coupled into the surface mode and the surface wave attenuation
is small. Since the second-harmonic output depends quadratically on the
fundamental input intensity, it becomes easily detectable, even though the
interaction region is limited to a boundary layer of the order of a wavelength,
and by the attenuation length of the surface wave (< 10 pm in the visible). The
process was first demonsiraled by Simon et al.® A ruby Yaser with 1 MW in
power, 20 nsec in pulsewidth, and 1 cm? in cross section at a quartz-silver
interface could yield a second-harmonic signal of ~ 10* photons/pulse® In
fact, even second-harmonic generation by surface waves at an air-silver
interface was easily observed.® In this latter casc, the nonlinearity of silver was
responsible for the nenlinear process. The cutput from the prism side in all
these cases was found to be highly collimated with the predicted wavevector
k(2w) = 2k (@)% + [(dw?/cP)e(2w) — (2k,)’i2 in the prism. When two
counterpropagating surface em waves of the same frequency were used in
second-harmonic generation, an output appeared along the surface normal, as
required by the wavevector relation k  {(2w}=k (w)—k (w)=0. This
peculiar effect resulting from the surface boundary condition is a special
feature characteristic of surface or guided wave interaction.

While surface waves can interact to generate bulk waves, bulk waves can
also interact at an interface to generate surface waves.” The latter is possible if
the sum of the pump wavevectors has a component along the interface equal to
the wavevector of the generated surface wave. The solution given in (25.15) and
(25.16) is still applicable here. With &, {(w,} = k {w,) > k(w,}, the homoge-
neous part of the solution in (25.15) appears as a surface wave, which,
according 1o (25.16), is resonantly excited by the nonlinear wave mixing via
PN(w,, k,) when

Re[k! - K? =0 (25.18)

where K2 = (K’ + iK")? = («?/c?) g6,/ (¢, + &3) is the dispersion relation
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for the surface em waves. The surface wave generated here with a wavevector
k{w) =k, (w) (not necessarily equal to K’} actually corresponds to a
driven wave.” In general, there should also exist at the interface a free surface
wave with a wavevector K (w,). Its amplitude is determined by the condition
of field continuity in the interfacial plane. In the infinite plane wave approxi-
mation, however, the free wave can be neglected.

To illustrate the feasibility of nonlinear excitation of surface em waves, we
use second-harmonic excitation of surface exciton-pclaritons at a Zn0-liquid
He interface as an exampte.® The experimental setup is seen in Fig. 25.6. The
fundamental wavevector component k («) along the interface can be varied
by varying the incident angle of the input laser beam. The penerated surface
excitom-polariton at the second-harmonic frequency can be detected either by
the prism coupling method or simply through surface roughness scattering.
From (25.16} and (25.18), we expect that the output signal should exhibit the
resonant structure described by

~1

S {2k, (w) - k) + K] (25.19)

as 2k {w) scans over K (2c). This was actually observed in the experiment, as
shown in Fig. 25.7 at four different frequencies. From the positions and widths
of the resonant peaks at different frequencies, K (2w} and K *(2¢) could be
deduced. They were compared with the theoretical dispersion curve in Fig. 25.8
calculated from a dispersion relation somewhat different from (25.7) because of
anisotropy of Zn0. In another example, difference-frequency generation of
surface phonon-polaritons at an air—GaP interface was demonstrated.” The
measured dispersion curve was also in good agreement with the theoretical
prediction. We note that unlike the linear excitation of surface waves, the
nonlinear excitation raethod has the advantage that it can be used to excite and

Ruby Dye I
Lasar Laser I3

Fig. 256 Experimental setup for observing second-harmonic generation of surface
exciton-pelariton on ZnQ. The inset shows. the wavevector relation. (After Ref. 8)
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study surface polaritons at the interface of two semi-infinite media, or at an
interface of a multilayer medium that cannot be reached by linear excitation.

Surface wave excitation by nonlinear mixing of surface waves is also
possible. We consider here the problem of surface coherent anti-Stokes Raman
scattering (CARS) at a metal-dielectric interface.'® The process is interesting
for many reasons:

It is an all-surface wave process,

It is phase-matchable in the surface plane.

It can be used to study Raman resonances of the dielectric medium,

The small field penetration depth (of the order of a wavelength) renders the
process surface-sensitive,

5 The high surface wave intensity allows such a third-order surface process to
be easily detectable.

L A

We can again use the solution given by (25.15) and {25.16) to describe the
anti-Stokes output. For simplicity, the nonlinear polarization is assumed to be
dominated by that in the dielectric:

POa, ) = x N0, = 2u) — @) ()E(w )EX(w,)  (25.20)

where both E, and E, are surface waves with wavevectors k; (w,) and
k;, (@), respectively, and the nonlinear susceptibility x * can be decomposed
into a resonant and a nonresonant term

O = @ 4+ x@ (25.21)
with
xR = Ao — 0y —w,) +iT].

Then (25.15) and (25.16) show that the anti-Stokes output is a surface wave if
K, (w)| = 2k, y — k, | is larger than (“"a/c)I/E_l' This surface wave is reso-
nantly excited when k; (e} = K’(w,). Since the cutput is proportional
to |PP(w,)|? and hence [x@|, it is also resonantly enhanced when (s, — w;)
approaches w,,.

Surface CARS has been demonstraied using the experimental arrangement
in Fig. 25.9."" The Kretschmann geometry was adopted to launch the pump
surface waves al a silver—benzene interface. The wavevectors of the pump
waves could be adjusted to satisfy the surface phase-matching condition
2K, — kg =k, (w,) = K{w,). The anti-Stokes signal coupled out by the
prism appeared as a highly collimated beam along k,{w,). The result as a
function of (w2, — ;) is shown in Fig, 25.10, in comparison with a theoretical
plot of [x™(w, ~ w,)|* for benzene. The resonant peak here corresponds to
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Surfoce CARS
sample cel!

Bu'k CARS
sample cell

Fig. 259 Experimensal setup for surface CARS measurements; (z) the prism-metal-
liquid assembly; (&) wavevectors in the glass prism with their compoenents in the
xy-plane phase matched; (¢} block diagram of the experimental arrangement. (After
Ref. 10.)

the 992-cm™ ! breathing mode of benzene. The signal level was fairly high.
With the two input pulses having 0.5 and 5 mJ, respectively, in a 30-nsec
pulsewidth and in a (.5-cn? beam cross section at the interface, the output at
the resonant peak was 2 X 10° photons/pulse, which was readily detectable.
This shows that the process can be a valuable spectroscopic technique for
probing thin flms, overlayers, and perhaps even adsorbed molecutes, The
highly directional output allows the detection of CARS even in the presence of
a strong luminescence background. Moreover, the attenuation length, 1/K”,
of the surface waves is of the order of 10 e in the visible, indicating that the
surface CARS signal will not be hurt very much by absorption in the dielectric
medium as long as the absorption fength is longer than 1/K". Thus surface
CARS can be useful in spectroscopic studies of absorbing and Juminescent
materials,

The signal strength of surface CARS depends on the input pump fields as

§a 1w {e)AT (25.22)

where f{w,), f(w,) are the pump intensities, A the beam cross section, and T
the pulsewidth. It is abvious that to increase S we should increase [, However,
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Fig. 25.10 Anti-Stokes output in surface CARS versus w, — w; around the 992 cm™ !
Raman resonance of benzene. The solid curve is a theoretical curve.

the maximum laser intensity on the surface often is limited by optical damage.
It happens that the damage may have a fluence {energy /unit area} threshold
rather than an intensity threshold. Then, according to (25.22), shorter pump
pulses should yield much stronger signals below the damage thresheld. As an
example, if we use 10-psec input pulses with 10 pJ/pulse instead of the
nanosecond pulses in the above-mentioned experiment on the silver-benzene
interface, we can oblain a signal of ~ 10" photons/pulsc from a focal spot of
0.15 mm? at the interface. Realizing that the signal comes essentially from a
benzene boundary layer ~ 1000 A thick, the preceding estimate suggests that
surface CARS with picosecond pulses can have a sensitivity of detecting a
submonolayer or molecules at the interface. Unfortunately, in such circum-
stances x¥ from the metal may dominate x& from the molecules. Some sort
of background suppression techniques must be invented before surface CARS
can be used for spectroscopic studies of monolayer adsorbates.

253 NONLINEAR OPTICAL EFFECTS AS SURFACE PROBES

The possibility of applying lasers Lo surface studies has opened up a new area
of tesearch in surface scicace. Laser annealing, for example, has aroused a
great deal of imerest for both scientific and technical reasons. Lasers have also
been used to probe molecule—surface interaction by detecting and analyzing
molecules desorbed or scattered from surfaces,!' and 1o yield vibrational
specira of adsorbed molecules by laser desorption or photoacoustic spec-
troscopy. 2 In this section we discuss the problem of exploiting nonlinear
optical effects, particularly second-harmonic generation (SHG), for surface
studies® Unlike the conventional surface probes, which rely on emission,
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absorption, or scattering of massive particles, nonlinear optical techniques are
applicable to interfaces between twe dense media and therefore may offer some
unique and intriguing possibilitics.

We saw in the previous section that surface CARS can have a submenolayer
sensitivity and may become a useful surface spectroscopic tool. Another
coherent Raman technique that can be used for monolayer spectroscopy is the
stimulated Raman gain spectroscopy discussed in Section 10.6. Heritage and
Allara'® showed that by using CW mode-locked lasers as the pump and probe,
the sensitivity of the technique could be greatly improved and a Raman gain
smalier than 10~ could be measured. Since 2 100-W pump laser focused 10 2
spot of 10 pm on a monolayer of molecules with a Raman cross section of
10-2 em?/sterad can yield a Raman gain of ~2X 107¢, the technique
should have a sensitivity high enough for monolayer spectroscopy. Indeed,
Heritage and Allara were able to obtain a monolayer specirum of p-nitroben-
zoic acid adsorbed on sapphire, as shown in Fig. 2511 The technique,
however, required 1wo extremely stable dye lasers and a low-noise detection
system to observe the weak Raman gain. Small residual absorption and
thermal Auctuations in the substrate could easily mask the spectrum.

A GAIN ARB

1570 1590 1610 1630

AV em™
Fig. 25.11 Raman spectrum of a monolayer of p-nitrobenzoic acid (PNBA) on a thin
film of aluminum oxide supported by sodium fluoride obtained by stimulated Raman
gain spectroscopy. Three Raman peaks are marked. (After Ref. 14.)
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Among the few nonlinear optical techniques that have been considered for
surface studies, the second-harmonic and sum-frequency generation processes
are probably most attractive. They are particularly useful for probing inter-
faces between media with inversion symmetry for the following reason. These
processes are forbidden by symmetry in media with an inversion center but are
allowed on surfaces because of the lack of inversion symmetry of the surface
layers. They are therefore highly surface-specific and can be used as surface
probes. In comparison with surface CARS and stimulated Raman gain tech-
niques, SHG or sum-frequency generation has the advantages of being much
simpler in the experimental arrangement and much stronger in the signal
output.

The theory of SHG or sum-frequency generation from an interface modeled
after Fig. 25.1 follows closely the theory discussed in Section 6.4, except that
we now have a multilayer nonlinear medium. The general solution of this
problem was worked out by Bloembergen and Pershan.!® Here we consider the
case of SHG from the interface between two isotropic media shown in Fig,
25.12. The linear dielectric constant of the surface layer is taken to be the same
as that of the medium at z > 0 for simplicity. The second-order nonlinearity of
the surface layer is described by the surface nonlinear susceptibility x§h those
of the bulk media vanish in the electric dipole approximation, but become
finite if the electric quadrupole and magnetic dipole contributions are taken
into account. The electric quadrupole and magnetic dipole contributions

LT ] e, %, 2 €2,72
2w
/
|
0
—=1 d L—

0 z
Fig. 2512 Skewch of second-harmonic generation from an interface between two
isotropic media. The interfacial layer of thickness ¢ is specified by a lincar dielectric
constani £, and a second-order surface nonlinear susceptibility x &
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originate from the nonlocal response of the media to the field; they are
proportional to the first spatial derivative of the field. By symmetry, the
induced second-order polarization in an isotropic medium can be writien as

PP2w) = x? E(w)VE(w)
= ofE(u) - V]E(w) + BE(w)] 7 - E(w)] (25.23)
+i(2w/e)y[E(w) X B(a})].

The first two terms on the right are of the electric quadmpole character and the
last term is magnetic dipole.

With the nonlinear polarizations of both the surface layer and the bulk
media specified, the solution of the wave equation for SHG from the boundary
surface is fairly straightforward, although it is rather tedious. Two appreaches
can be taken. One uses the solution in Ref. 15 for a three-layer system; the
middle layer corresponding to the surface layer has a thickness 4 approaching
zero. The other assumes no clear boundary between the surface layer and
medium 2 (z > (), but uses a combined P®(2w) to deseribe the nonlinear
polarization induced in the surface layer and the substrate:

P2(20w) = a,{E- V]E + B,E[ v -E] + (22w/c}1,(E % B]

24
+xP8(z):EE (25.24)
where 8§(z) is a 8-function at z = 0*. The solution of the problem is then the
same as the one described in Section 6.4 for SHG from a single interface,
except that the presence of the dipole layer, x8(z): EE at z = 0%, changes
the boundary conditions of the ficlds to'®

dr @ W
AE, = TG Pu  AB= —dni 2)e,,
47 3 fw
ME, = =g Py 8B, ani( 21p,, (25.25)
4r d [
AEZ = — o - EZ(E,-X‘P” + -EPU), ABZ =0

with AE = E(z =07 — E{z = 07) and P, = x?: EE. Both approaches yield
the same result, In the present case, where a single fundamental beam is
assumed, the & and § terms in (25.24) should vanish, while x @ for an isotropic
surface layer has only the following nonzero elements: x&,,, x@,; = xPiz
and x@... (i = x, y). The result is then greatly simplified. For the second-
harmenic output in the refiected direction, for example, the intensity has the
expression'®
320 %w?sec?d,, o® o (P2
I(2a) (2] (20) les x P ee,| 12(w) (25.26)
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where ey = L() - &g, with &, denoting the unit polarization vector at frequency
£ in medium 2 (z = 0); L is the Fresnel factor for the field, which has the
diagonal elements

_ 2ek,,
Lax = gk, + gky,’
2k,
Ly, = m, (25.27)
2e.ky,

L= gk, + ek,
and the effective surface nonlinear susceptibility x £, is defined as

£,(2w)
[Xg’:rt] = Xt ez(Zw} N Y

2
2 @ &3(20)g(w) _
[xg.eff]zzz XS zze El(zw)ef(w} T Y

[xgz,"er[] I x‘sz.]iz.-

The above solution shows that the s-polarized second-harmonic outpat,
proportional to [x$,,|%, is gencrated entirely from the surface layer, while the
p-polarized output, having contributions from all the x (% elements, is gener-
ated [rom both the surface layer and the bulk. Here, however, only the
magnetic dipole part appears in the bulk contribution. Generally, with two
input kaser beams, or in crystalline bulk media having inversion symmetry, the
electric quadrupole part can also appear as a bulk contribution. To cstimate
the relative importance of the bulk versus the surface in SHG, we note that the
electric quadrupole and magnetic dipole part of a susceptibility is usually
about ka times smaller than the allowed electric dipole part, where g is the size
of atoms or unit cells. Therefore, since ' for the surface layer is always
electric dipole allowed, we have |x@/x2)| ~ d/ka, with d being the surface
layer thickness. For SHG by reflection from a surface, it was mentioned in
Section 6.4 that the bulk contribution comes essentially from a layer of A/2x
thick near the surface. Then the relative contribution of surface 1o bulk in
SHG is about [x§ /%A 2m)|2 ~ (d/a)?, which is larger than or of the
order of unity. This ratio can be further enhanced through resenances or
polarization selection if the structure of x§ is sufficiently different from x@,
The foregoing discussion indicates that surface SHG may be used for the
probing of interfaces between two centrosymmetric media. Yet we must still
show that the signal strength of SHG from a surface monolayer is strong
enough for detection. Assuming |x§?| ~ 107" esu for the surface monolayer,
and a pump laser pulse with a pulsewidth of 10 nsec and an energy of 20

{25.28)
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m)/pulse at 1.06 pm focused to 0.2 cm?, we fnd, from (25.26), a second-
harmenic output of ~ 10¢ photons/pulse. Such a signal should be readily
detectable.

Surface SHG is clearly a viable method for studying adserbates at inter-
faces. In this case, the surface susceptibility can be written as

x@=x@ +x8 ' (25.29)

where x ) denotes the part arising from adsorbed atoms or moelecules, and x
from the surface layers of the adjoining media. If [x§4| = (x| or by some
means, the contribution of x{¥ can be suppressed or subtracted, then surface
SHG can be used to probe the adsorpticn. This happens, for example, with
molecular adsorbates having a large second-order nonlinearity so that x**
from the molecules dominates in 7. We assume here that this is the case and
consider the various possibie applications of surface SHG 1o studies of surface
adsorbates.

The experimental arrangement of surface SHG is fairly simple. As seen in
Fig. 25.13, it basically involves the direction of a laser beam onte a sample and

PMT and
gated electrometer

f

Collection aptics
and spectrometer

—

L

Vg

fnput iaser —=
P _ %Sampia

L]

FT
Fig. 25.13 Experimental schematic for second-harmonic generation by reflection from
a sample.
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the collection of second-harmonic output from the interface by an appropriate
detection system. The polarizer and the analyzer atlow the selection of polari-
zations of the input and output fields. Because pulsed lasers are used, time-
resolved in situ probing of adsorbates is possible.

The high sensitivity of the surface SHG to adsorbates is clearly demon-
strated in Fig. 25.14, in which the variation of SHG from a silver elsctrode
during an oxidation-reduction cycle in a 0.1 M KCl electrolyte is presented.!?
The signal rises sharply as AgCl begins to form on the electrode and drops
precipitously when the last layers of AgCl are reduced. From the measured
amount of charge transfer at the electrode at various times, we can arrive at the
conclugion that the better part of the abrupt change in the SH signal corre-
sponds to a deposition or removal of a single adsorbed layer. The bulk lavers

I
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- |- Agrcr i
ol AgCl+e | AgtCl J
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Fig. 2514 Current and diffuse SH as a function of time during and after an
electrolytic cycle. The voltages listed in the lower curve are Vo with respect to a
standard electrode in the cell. Pyridine (.05 M) was added 1o the 0.1 M KCl solution
following the completion of the electrolytic cycle. With Vo, adjusted 1o —1.1 V, a
sudden rise of the SH signal was observed, corresponding to the adsorption of pyridine
molecules on the Ag electrode. (After Ref. 17)
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of AgCl do not appear to contribute appreciably to the SHG. With 0.05 M
pyridine in the electrolyle and with a sufficiently negative bias on the Ag
electrode, a menolayer or submonolayer of pyridine molecules can be adsorbed
on the electrode. This is also manifested by a dramatic increase of the SHG in
Fig. 25.14. The curve in the figure was obtained with a Q-switched YAG laser
of only 0.2 mJ/pulse in 0.2 cm?, and the SH signal from the adsorbed pyridine
was already as high as 8 X 10° photons/pulse. This signal strength is several
orders of magnitude larger than the one estimated from (23.26}. It is the result
of local-field enhancement on the rough surface structure of the Ag electrode.
Because of the local plasmon resonance at the surface and the pointing rod
effect, the local fields on the tips of the local Ag structures can be much larger
than the incoming field and can lead to an enhancement of ~ 10* in the SH
output.'® The signal level given above indicates that even without surface
ephancement, as in the case of a smootk surface, SHG from a monolayer of
adsorbates lke AgCl and pyridine should be easily detectable using a laser of
—~ 10 mJ/pulse.

If a tynable pump laser is used in the surface SHG, then spectroscopic data
of adsorbates can be obtained from the resonant feature of the signal when
either @ or 2w hits a transition. This is illustrated in Fig. 25.15, in which the

S )
30,000 cm! —1—2— 28,800 e
(1]
5 |
19,600 cm’ L 18,900 ¢m™
A 2w
o
HsCoNH 0 FMHC Hy
W HiC CHy
COzCzHs
.
|
So Y
Rhodamine 10 Rhodamine 66

Fig. 25.15 () Energy level diagrams for rhodamine 110 and rhodamine 6G dissolved
in ethanol. (&) Normalized SH intensity for p-polarized excitation of half-monolayer
samples of rhodamine 110 and rhodamine 6G on fused silica as a fanction of the SH
wavelength in the region of the S, — 5, transition. (After Ref. 19.)
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SH signal from a hall monolayer (~ 5 x 10° molecules/en’) of rhodamine
6G and rhodamine 110 on a smooth fused quartz plate versus 2w is plotted.”
The two peaks correspond to the 2« resonant excitation of the 55— 5,
transition in the two dyes. The resonantly enhanced signal was very strong,
with 10-nsec, 1-mJ pump pulses focused to 107 cm? on the sample, ~ 10*
photons,/pulse were generated. This was several orders of magnitude stronger
than the SH signal from the quartz substrate. It therefore shows that studies of
adsorbates at much lower coverage than a monolayer should not pose major
difficulties.

The submonolayer sensitivity of SHG allows us to measure the adsorption
isotherm.”® An example is given in Fig. 25.16, where the adsorption isotherm
of p-nitrobenzoic acid (PNBA) on fused quartz immersed in an ethanol : PNBA
solution is shown, From the adsorption isotherm, a free energy of adsorption
for PNBA at the ethanol -quartz interface can be deduced. The result here also
provides an example that surface SHG can be used to probe adsorbates at
interfaces between two dense media.

With input and output beam polarizations and geometry properly chosen,
the various elemenis of x &' can be selectively measured by the surface SHG.
The symmetry of x§ in the (2-§) plane is a reflection of the symmetry of the
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Fig. 25.16 Isotherm for the adsorption of p-nitrobenzoic acid to fused silica from
ethanolic solution, measured by the surface second-harmonic generation technique.
(After Ref. 20.)

average molecular anangement at the interface. Therefore, surface SHG can
aiso be used to probe the structural symmetry of the molecular monolayer
adsorbed at an interface, For example, it was found that the surface SHG
signal from the adsorbed monolayer of dye or PNBA molecules on a fused
guartz substrate remained unchanged when the substrate was rotated around
its surface normal; this indicated that the molecules were randomly or isoiropi-
cally distributed on the substrate.'*

The surface susceptibility tensor x also reflects the average orientation of
the adsorbates in the following sense.” If the local-field correction is neglected,
then x ' and the second-order malecular polarizability «®) are related by the
equation

X8 = V(T e, {25.30}

Here, Ny is the surface density of the adsorbates, and T, represents the
coordinate transformation between the molecular (&, 7, {) system and the lab
(x, y, 2) system. The average of T‘-j‘ * over the molecular orientations, denoted
by (Tj} *Y, is then a description of the average orientation of the adsorbates.
To find (T} }, we need 10 know both x§),; and of2), in general. While x£,
can be measured by the surface SHG, af, are unfortunately difficult to obtain.
This makes the determination of average orientation difficult. In some cases,
however, measurements of only the ratios of various clements of x§, can
already yield some information about the orientation of the adsorbates. This is
illustrated by the example of PNBA adsorbed on fused quartz below.”
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The nonlinearity of PNBA molecules is dominated by a signal element o}
in a®, and the molecular distribution on fused guartz is isotropic. These
molecules can therefore be considered as long rods defined by the {-axis; their
orientation at the interface is specified by the angle & between 7 and {. The
ratio of two independent elements of x §? can then give the weighted average of
#, for example,

XPu _ _ NeCeos'eflt e’y (25.31)
x@..  tNo(cosBsin?@)afl  {cosfsin’d)’ |

The average orientation of PNBA on fused quartz has been determined in this
fashion at solid-air and solid-ethanol interfaces. Assuming a sharply peaked
orientation distribution, # was found to be ~ 40° in ethancl and ~ 70° in air.

The surface SHG technique can certainly be extended to sum- and
difference-frequency generation. With a tunable infrared radiation and a
visible laser as the pumps, the sum-frequency generation should permit the
study of vibrational transitions of adsorbates and facilitate the determination
of molecular orientation. If tunable picosecond lasers are available, then the
technique can also be used to study the dynamic properties of adsorbates at
interfaces in the picosecond time regime.

In comparison with the conventional surface probes, the second-order
nonlinear optical processes have a2 number of important advantages: the
experimental setup is relatively simple, in situ probing of interfaces between
two dense media is possible, studies of dynamic properties of interfaces with a
subpicosecond time resolution can become a reality, and information about
molecular arrangement and molecular orientation at interfaces may be ob-
tained in a fairly straightforward way. The technique, however, is slill in the
developmental stage. How well it can apply 1o varicus substrates and ad-
sorbates is yet to be tested. In many ways, the limitation of the technique will
also depend on our theoretical understanding of linear and nonlinear optical
properties of interfaces. ’
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26

Nonlinear Optics
in Optical Waveguides

In the development of fiber and integrated optics for communications and data
processing, nonlinear optical effects in waveguides have played a unique role,
On the one hand, such effects impose a limit on the power that can be
transmitted through an optical fiber or waveguide. On the other hand, they
have led to the construction of novel optical devices potentially useful not only
in optical signal processing but also in other applications. The characteristic
features of nonlinear optics in waveguides are the high field intensities resulting
from the beam confinement and the long interaction length achievable in
low-loss fibers or waveguides. Both are important factors in the buildup of
nonlinear wave interaction, making nonlinear optical effects in waveguides
casily observable even with CW lasers, This chapter outlines the general theory
of wave interaction in optical waveguides, and briefly describes the experimen-
tal observations. Pulse propagation in a long fiber is discussed as a special
topic of interest.

26.1 GENERAL THEORY

We consider first linear wave propagation in a waveguide." A guided wave is
generally defined as a propagating wave that is confined in the transverse
dimensions. The surface em wave discussed in Chapter 25 is an example.
Waves propagating in thin films and fibers are other examples. In all cases, the
wave in a specific waveguide mode can be described by the field

) A
E¥ = [A]exp(i!(“)z - fwt)

‘J‘D(f)

S
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with
D‘”=fd2PF("'(P)'F(”(P)- (26.1)

Here the direction of wave propagation is chosen as 3, the superindex [ denotes
the waveguide mode, F'”(p) is the normalized field distribution of the ith
mode in the transverse plane, A4} is the amplitude of the wave, and K¢ is the
wavevector. Both K and F“¥(p) can be determined by solving the wave
equation with the proper boundary conditions in the transverse directions. The
function F*(p) describes the confinement of the field in the transverse plane.
For a waveguide with a close boundary in the transverse plane, two indices are
generally needed to specify a waveguide mode. If the waveguide is open in one
dimension, one index is sufficient to specify a mode. For the special case of
surface em waves propagating along an interface between two semi-infinite
media, no index is needed since for  given « only one surface wave mode can
exist (Section 25.1),

The theory of wave interaction in a waveguide is essentially the same as that
deveioped in earlier chapters for plane waves in a bulk medium. The difference
is merely in the fact that guided waves now play the role of plane waves. The
equation is, of course, the same in all cases:
4w’

2

W' NI,
vX(vXE)-—E= P (26.2)
<

where, for the nth order nonlinear process,
PNL(N) =P No)=x"w=w +w + -+ w,,)
By (0 JEy (@) B, (w, ).

For the waveguide case, we notice that E®) in {26.1} with a constant A" is a
homogeneous sotution of (26.2). In the presence of PN, the amplitude A% is
expected {0 change with the propagation distance z. Then, in the slowly
‘varying amplitude approximation (see Section 3.3), (26.2) can be transformed
into a first-order differential equation for A7(z):

(26.3)

w m? .
[F {0} iAm = i72—1"'“::};]:!(—J'K")z + iwt). (26.4)

ypo | dz Kic?

Multiplication of botk sides by F{p), followed by an integration over p,
yields®
iA\'f)— i2r0t 1

3z T g2 I

f d% Fp) - PNlexp( —iK Oz + twr). (26.5)
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Equation (26.5) can now be used to describe how the guided wave varies with z
under the action of the nonlinear polarization P,

For Mustration, we consider here three different cases: optical mixing,
parametric amplification, and stimulated Raman scattering, In the first case, let
us use four-wave mixing as an example. For simplicity, we assume that the
pump depletion is negligible. The nonlinear polarization induced by the three
pump waves, cach in a specific waveguide mode, is

PO w) = xPw = 0 + 0 + @) BV JED (@ JEP (wy)

_ %P AMFR ) ADFD(p) AMFR ()
[DODBpE |12

Xexp[i(l((l) + K® 4 K(]))z - iwrl.

{26.6)

Equation (26.5) for the output field in the fth waveguide mode can then be
written as

2wt

g KO (f12334M 4D ADexp(i AK 2) (26.7)
C

Iy T
HZA

where

dpF(p) - x: F")(p)Fm(P)Fm(P)
[ DVplp@pH]/2

AR=KV+ K@ KO - KD,

iy =f

and x ™, in general, is a function of p. The preceding equation cun be readily
solved to yield 4! and hence, an outpul power in the fth mode at z =/,

enth?
200 = |A(J‘)l
(26.8)
_ |(f123)| lA“’AmA‘”Psm (AKI/z)
” ! (AK 172)?

assuming n'* = K¢/w, and A = 0 at z = 0. This result is very similar to
that of the plane wave case (see Section 14.2). In fact, if the pump beam
intensities, the beam cross sections, the nonlinearity of the medivm, and the
length were assumed to be the same in the two cases, the output powers would
be comparable. In practice, however, because of the beam confinement, a
waveglide allows a much longer wave interaction length, hence resulting in
much stronger nonlinear optical effects.

The long interaction length also makes the four-wave parametric amplifica-
tion process possible in a waveguide. We consider here the amplification of the
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signal and idler waves at w, and w; by the parametric pumping of Iw, = w, + w,,
assuming each wave in a definite waveguide mode. Using {26.5), we find the
following coupled equations for the amplitudes of the coupled waves:?

[ 2wl
T??Am = }T)Z(PPPP)\AU’PAM’
aizA(fl - K"’ 3 [(55PP)A(:)|A(p>|2 + (sppiSAPIAPA KT (26.9)
aizAw —Kf” 2 [(“Pp)u( VLA + (ipps )AL ALY gi0g 10K ]
where
(kimn =fdzpF(k)' x @ ; PR FLn

Byt [l pn 1172
[ DEBUDm D)

and AK = 2K, — K, — K, In the equation of A'”, we neglected the pump
depletion effect, but included the term corresponding to an effective refractive
index change induced by the pump field. With }A'#)| taken 1o be a constant,
the pump amplitude has the form

A(z) = AP (0)exp(i 8K, z) (26.10)

with 8K, = (2wal /K Fc*) pppp 3| AP|%. Then, by the substitution of &) =
A"’exp(—-x 8K, z) and & = AVexp(—i 8K, z), with 8K, = ((2mei)/
KW ssppd ><|A""’]2 and 3K, = (277:.\:1/K(')u:2)(zrpp)|A“"'|2 the set of
equations for A4'* and A in (26. 9) becomes

d

= (sppl){A“’)((})] s i
dz K( ot (26.11)
3 e . ’ﬂ'w,- N 2 ~tyz
T = i sy (AP Oy e

where v = AK + 28K, — 8K, — 8K, Except for the coupling coefficients,
(26,11) is the same as the equation obtained in Section 9.1 for parametric
amplification. The solution has the form
WO(z) = (Ce’ + Coe™ )",
S (2) = (Cye® + Cye e/

(26.12)

where

4wuw

Wl(sppl)l Aato) —(Y/?-)l
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and the € can be easily obtained in terms of & *(0) and &7 '{0)*. Note that if
| W )2 = |V (0)]2, and & ¢)(0) = 0, the result here should reduce to that
of four-wave mixing discussed earlier, The parametric gain is a maximum when
y = 0. For Re{gz) > 1, both & (z) and &/ ?(z) grow exponentially.

The foregoing derivation for parametric amplification applies equally well 10
the case of coupled Stokes—anti-Stokes generation in stimulated Raman
scattering if W, W= Ty i5 mear a Raman resonance. The nonlinear
susceptibility x"’ is then a complex quantity. The Stokes and anti-Stokes
waves are effectively decoupled if the overall phase mismatch v is large. In that
case, the Stokes amplitude in the waveguide is simply described by

3 s
—a—z-A( 1= K(” 2(5spp}|A”’)\2A( ) (26.13)

With negligible pump depletion, (26.13) yields
|AC(2)[* = | 4430} "exp( Gr2) (26.14)

where the stimulated Raman gain is

Gp = lm(:spp)m“” (26.15)

47w
K(;) 2
As expected, this result is the same as the one given in {10.13) for the plane
wave case with Im(sspp |47 |? replacing tm x 3] |

These examples show that most nonlinear optical processes can be expected
in a waveguide, with a theoretical description not much different from that of
the plane wave case. The phase mismatch AKX for a particular process depends
on the dispersion of the waveguide modes. For a single-mode waveguide, it is
difficult, in general, to have AK approach zero. For a multimode waveguide,
however, there exists the flexibility in appropriating various waves to various
modes, and then it is possible 10 make AK nearly vanishing. In principle, a
coherent length larger than a few meters would be achievable. In practice,
because of structural imperfecyion, AK could vary aleng a waveguide, thus
limiting the effective coherent length,

26.2 EXPERIMENTAL STUDIES

Nonlinear optical effects have been studied in both thin-film waveguides and
optical fibers. Thin-film waveguides are the key element in integrated optics.
By epitaxial growth, it is possible to construct a thin-film waveguide out of a
crystalline medivm with no inversion center. In such a waveguide. second-order
nonlinear processes are allowed and can be easily observed. Second-harmouic
pacranoe kas acmallv heen demoestrawed 2 oveoves TyaTwe Fhe s
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Note, however, thai although a guided wave is generally confined to the core
region of a waveguide, the tail portion of its transverse distribution does
penetrate into the boundary media over a distance of the order of a wave-
length. Therefore, if the boundary media are nonlinear, they can also contrib-
ute to the nonlinear optical process. In the theoretical description, as illustrated
by the examples in the preceding section, this is taken into account by the
spatial variation of the nonlinear susceptibility in the transverse dimensions. A
second-order nonlinear optical process, therefore, can still be appreciable if the
waveguide film is centrosymmetric but the substrate is not. Indeed, second-
harmonic generation has been observed in such a waveguide structure.

Phase matching often is important for optimizing the efficiency of a nonlin-
ear optical process. The wavevector of a wave in a waveguide mode generally
depends on the dimensions of the waveguide and on the refractive indices of
the waveguide and the surrounding materials. For a thin-flm waveguide, it is
possible to vary the relative magnitudes of K(«) and K(2«) by adjusting the
film thickness or by immersing the film waveguide in a liquid and adjusting the
refractive index of the liquid. Phase matching, K(2w} = 2K{w), of second-
harmonic generation can in fact be achieved this way, as has been demon-
strated experimentally.* With phase matching, even CW second-harmonic
generation in the uv has been observed with an input laser power of only
~ 0.5 We

There are, however, some difficuities which prevent the thin-film waveguide
from being a practical second-harmonic generator. First, the film thickness can
hardly be made uniform. As a result, the phase-matching condition cannot be
satisfied over the entire length of the waveguide. To have a coherent length
targer than 1 mm, the variation of the film thickness should be less than a few
percent.’ Surface imperfection of the waveguide then can result in sirong
attenuation of the guided waves and limil the propagation distance.* Even if
better waveguides can be designed and fabricated, there still exist the difficul-
lies of efficiently coupling the waves in and out of the waveguide, and avoiding
high-power laser damage of the waveguide.

Note, that the nonlinear output generated by P™" need not always be a
guided wave, although our discussion thus far has been limited to the guided
wave case, More generally, the output can also be a bulk wave propagating
into a medium adjoining the waveguide. The boundary condition requires the
wavevector components of PM' and the bulk wave along the boundary surface
be maiched; consequently, the propagation direction of the bulk wave is
specified. This is very similar to the case of bulk wave generation by surface
wave mixing discussed in Section 25.2. Experimentally, second-harmenic gen-
esation of bulk waves by guided waves in a thin-film waveguide can be easily
demonstrated.®

While thin-fiim waveguides are often used for second-harmonic or second-
order sum- and difference-frequency generation, optical fibers are more suit-
able for other types of nonlinear optical processes. The latter are usually made
of glassy materials possessing an inversion symmetry. Therefore, the lowest-
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order nonlinear processes allowed in such a medium are the third-order
processes, However, unlike the thin-film waveguides, optical fibers are structur-
ally more perfect. They can have an attenuation constant as low as 0.2 dB/km
and a coherent length for phase-matched wave interaction longer than a few
meters. Because of the very long interaction length, third-order nonlinear
optical effects can be readily cbserved in a fiber even with CW lasers. These
include stimulated Raman scattering, ’ stimulated Brillouin scatering,® °
four-wave mixing, 9 four-wave parametric amplification," optical Kerr effect,”?
and self-phase modulation,*>*

Stimulated Raman scaitering in optical fibers is a subject that has been
extensively studied. Both ordinary glass and liquid-core fibers have been used.
The latter allows selection of an appropriate liquid as the Raman scatlerer in
the fiber® with a relatively large peak Raman cross section. The Raman shift
can be varied by varying the liquid medium. The former has a much lower
Raman cross section per unit frequency, but it has the advantage of having a
very broad Raman spectrum,'® as shown in Fig. 26.1. This allows tuning of
stimulated Raman output over a broad range of frequencies. With the help of
an optical cavity (Fig. 26.2), tunable Raman oscillation can be achieved.'® In
the case of Fig. 26.2 where a 100-m fused silicate fiber with a 17 dB/km loss
was pumped by a CW argon laser, the Raman oscillator was found to be
{unable over 80 A. The tuning range could be larger if pulsed lasers were used.
Higher-order Stokes radiation may also appear at the output of a fiber Raman
oscillator. In the example of Fig. 26.2, four orders of Stokes radiation were
observed. They could be used to extend the output funing range over 350 A in
the visible.

The Stokes convession efficiency of a fiber Raman oscillator can be higher
than 20%.!7 Therefore, as a tunable light source, the fiber Raman oscillator is
an attractive alternative to CW dye lasers. Yet it has the disadvantage of
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Fig. 26.1 Raman gain curve for a fused silica fiber. (After Ref. 7.)



512 Noalinear Optics in Optical Waveguides

having a relatively large output linewidth (z 10 GHz), which cannot be
narrowed by the insertion of an etalon in the cavity.

As mentioned in Section 11.1, the steady-state Brillouin gain in a condensed
medium is generally larger than the Raman gain. One would expect backward
stimulated Brillouin scattering to appear before stimulated Raman scattering
in an optical fiber, at least in the CW case. It would then be difficult 1o obtain
Raman oscillation in a fiber without a Brillouin cutput. However, because the
Raman gain spectrum of a fiber is much broader than the Brillouin gain
spectrum, a laser beam with a linewidth larger than the Brillouin spectral width
can efficiently pump the Raman oscillator but not the Brillouin oscillator. In
that case, the threshold for Raman oscillation can appear lower than that for
Briliouin oscillation, With a sufficiently narrow linewidth, however, Brillouin
osciliation will indeed dominate. Figure 26.3 describes the arrangement of a
Brillouin ring oscillator.'® A single-mode CW Ar* laser, with a linewidth less
than the 150-MHz Brillouin width of silica, was used 10 pump the ring
oscillator consisting of a single-mode silica fiber of 2.4 pm in diameter and 9.5
m in length. The osciliator had a pump threshold of 25.0 mW and an output of
20 mW at a pump input of 750 mW. A conversion efficiency of ~ 20% could
be obtained if the mirror reflectivities of the cavity were optimized.

More efficient pumping of a Brillouin oscillator has been achieved by a
two-mirror straight Brillouin cavity in which the input mirror is also the output
mirror of the Ar* pump laser.’”® At high pump powers, higher-order Stokes
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Fig. 262  Schematic of the experimental configaration used for the multiresonant fiber
oscillator, £, and L, are AR-coated 20X microscope objectives; M Is the output mirror
of the argon jon kaser and common mirror of the Raman escillator; My, M;, M, and M,
are used to refiect the pump, first, second, and third Stekes; P, §), S;, and S, are the
difiracted spots for the pump, first, second, and third Stokes, respectively. {(After Ref.
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Fig. 263 Schematic of Brillovin ring oscillator apparatus. The ring conmsists of the
optical fiber together with the beam paths defined by the 4% and 50% partial reflectors.
(After Ref. 18.)

components would show up, as illustrated in Fig. 26.4. Up to 21 orders of
Stokes Iines have actually been observed, with an overall Stokes shift of 714
GHz in frequency. Anti-Stokes lines can also be generated. Phasc locking of
the many Stokes and anti-Stokes lines can yield an cwtput in the form of
mode-locked pulses.®

The anti-Stokes generation is only a special case of four-wave mixing with
@, = 2w; — &, In general, (w, — «,) does not have to be in resonance with a
transition in the fiber medium. For a small frequency diflference between w,
and w,, phase maiching is nearly fulfilied if all waves are propagating in the
same direction. The coherent length can be larger than 2 km in a silica fiber
with , — @, = 1 cm™". For larger (w, — «,), however, the color dispersion of
the medium becomes increasingly significant. Consequently, phase matching of
four-wave mixing in a fiber can be realized only if the color dispersion can be
canceled by the modal dispersion of the fiber. This is possible at discrete
frequencies when a multimode fiber is used. In practice, an optical fiber is
often not perfect; the effective coherent length for four-wave mixing under the
optimum phase-matching condition is usually limited by imperfection, such as
variation of the fiber diameter along the length. By having the pump in the
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same two modes as the Stokes and anti-Stokes, one can show that the
phase-matching condition becomes less sensitive to the variation of the fiber
diameter.’ 2 The effective coherent length can then be as long as 10 m at
@, — w, = 3000 cm™', With such a long interaction length, even parametric
four-wave amplification starting from noise becomes possible. It has been
observed in a silica fiber using a 5320-A pump pulse with a peak power no
more than a few hundred watts.”

Seme third-order nonlinear optical effects originate from the optical-field-
induced refractive index change Ar. In a glass medium, An is usually small,
with n, = 24n/1E|? of the order of 107" esu. Yet a guided wave propagating
through a long fiber can still have a large accumulated phase change resulting
from An. As seen in (26.10), the phase change is given by

Ag{l) = 8K, 1. (26.16)
For an order-of-magnitude estimate, we can approximate (26.16) by
Ap{l) ~ {w/c)Anl. (26.17)

1f a 100-mW green beam is propagated through a fiber 3.5 wm in diameter and
100 m in length, one would find A¢(f) ~ 1 radian. This indicates that the
optical Kerr effect, that is, birefringence induced by a linearly polarized pump
beam, should be easily observable in a fiber. The ordinary fiber is, unfor-
tunately, not perfect: an input beam would have its polarization stale change
continuously along the fiber. This makes the optical Kerr effect difficult to
observe. The effect is, however, observable in a birefringent fiber, in which an
input pump beam with a polarization along the birefringent axes can retain its
polanization in the propagation. The additional birefringence induced by the
pump field can then be detected by the induced pelarization change on a probe
beam initially polarized away from the birefringent axes, Optical Kerr effect in
a birefringent fiber has been demonstrated,'* und has been suggested as &
means for optical switching and pulse shaping,™

If an intense light pulse is prepagated through a fiber, the field-induced
phase change on the pulse shoyld be time-dependent. This means that the
transmitted light should now experience a self-phase modulation described by
A1) = 8K, (1)l @ |4'7(r}|*, according 1o (26.10). The situation here is very
similar to that of self-phase modulation of light in a trapped filament discussed
in Section 17.7. An immediate consequence of the phase modulation is 2
spectral broadening on the transmitted light. As shown in Section 17.7, the
broadened spectrum is expected te have a semiperiodic structure. The number
of peaks in the broadened spectrum is determined by the integer that is closest
to, but smaller than, A¢,. /27, and the farthest peaks on the two sides have
their frequency shifts given by [d¢/9¢|,,.,. This has been demenstrated in an
experiment in which mode-locked Ar* laser pulses of ~ 150-psec pulsewidth
were propagated through a silica fiber of a few pm in diameter and ~ 100 m in
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length.** The spectral broadenings observed with various input power levels are
shown in Fig. 26.5. They agree well with the theoretical specira expected from
the predicted self-phase modulation. As discussed briefly in Sectien 17.7, a
self-phase-modulated pulse can be significantly compressed when it is sent
through a suitable dispersive delay line, such as a grating pair. The principle
behind the pulse compression is as follows. In Fig. 26.6, it is scen that the
frequency modulation on the middle section of the seli-phase-modulated lLight
pulse can be approximated by a linear shift Aw & (¢ — 1,); the leading part of
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Fig. 26.5 Photographs of input pulse shape and the output spectrum from a 3.35-um
silica-core fiber, Spectra are labeled by the maximum phase shift, which is proportional
o peak power. (After Ref. 14.)
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Fig. 266 A 6-psec pulse experiencing a self-phase modulation propostional to the
instantaneous pulse intensity. (a) Pulseshape of the 6-psec puise. (&) Frequency
medulation propertional to the derivative of the pulse shape. {Aller Ref. 28.)

the pulse is at lower frequency. If, in passing through a dispersive delay line.
the low-frequency part is delayed and the high-frequency part advanced by an
appropriate amount, then the pulse should appear significantly compressed.”®
As a self-phase modulator, a single-mode optical fiber has the advantage of
imposing 2 uniform phase modulation on a guided wave over its eniire
transverse profile. In addition, the induced A in glass is of electronic origin
and should respond instantaneously to even subpicosecond pulses. Therefore,
together with a dispersive delay line, an optical fiber can be an effective
compressor for short pulses.”* Actually, for picosecond and subpicosecond
pulse propagation in a fiber, because of the appreciable spectral width of the
pulse, color dispersion of the fiber alone can already cause the pulse to deform
significantly. The interplay between the color dispersion and the nonlinearity
in the fiber can lead to very interesting results: a short pulse propagating
through a fiber can be appreciably broadened or compressed depending on the
pulse intensity and frequency. This is the subject we discuss next.

263 PULSE PROPAGATION IN A FIBER

Pulse propagation in a fiber is a subject of great imperiance in many respects.
From the basic point of view, study of the problem can yield information
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aboul pulse propagation in a nonlinear medium over a long distance that
cannot be ebtained otherwise. Theoretically, the problem is interesting because
it is governed by a nonlinear wave equation that belongs to the same class of
partial differential equations as the nonlinear Schradinger equation and the
Landau-Ginzberg equation. From the practical point of view, pulse broaden-
ing is an important factor that may limit the data transmission rate through a
fiber.

We consider here only the simple case of pulse propagation in a single-mode
fiber. The modal dispersion (which is important for a multimode fiber) is
absent in this case, and we only have to consider the effects of color dispersion
and field-induced refractive index change on the pulse propagation. Color
dispersion leads to a group velocity dispersion, du,/dw = — 7 8°K/8w, such
that even in the linear case, a pulse propagating over a dlstance is cxpected to
experience a pulse broadening. This is, of course, a well-known phenomenon.
With the presence of a field-induced An, the sitvation is more complicated.
Depending on the circumstances, a pulse propagating in a fiber can undergo
broadening, shrinkage, deformation, or even splitting into multiple pulses.

The formal description of pulse propagation in a single-mode fiber is
governed by a nenlinear wave equation in which the rnonlinear term arises from
the field-induced An. With the field E‘? given by {26.1) and using the slowly
varying amplitude approximation (see Section 3.5), the nonlinear wave equa-
tion can be transformed into the amplitude equation®®

*l

4 .13
8

v 2
+7—)AM(Z ()= -inle @
3z Uy 8

12'4(') KAV AT {26.18)

where K; = (2mwy /K Wc™)(iiil) and we assume An = (Kye/@)|AD)7. The
first term on the right of {26.18) comes from the group velocity dispersion,
while the second term comes from the field-induced &n. By the following
change of variables

[
s=T 1(:—1), £ =] T2,
vy dw
and 1/2 (26.19)
K2 1)
a=T o A
Bav, /9
{26.18) can be reduced to the dimensionless form®
do,
‘?" - ( /‘ ] + o). {26.20)

Here, m {26.19), T is a measure of the input pulsewidth, If aug/é‘u > 0, (26.20}
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is in the same form as the nonlinear Schrixlinger equation, It is also of the
same type of partial differential equations that govern pulse formation and
propagation in a wide variety of physics problems.® Although the general
solution of the equation is not available, the particular solution has been found
and is sketched briefly below. Reference 26 provides more detail.

We consider first, in physical terms, the combined action of a group velocity
dispersion du,/dw > 0 and a field-induced An on the pulse deformation. As
we described in Section 26.2, the field-induced An imposes a frequency
modulation on the propagating pulse. The leading part of the pulse appears to
have a lower frequency than the lagging part. This is skeiched in Fig. 26.6.
If the pulse experiences at the same time a group velocity dispersion du,/dw >
0, the leading part of the pulse wilt travel more slowly than the lagging part,
and the pulse will shrink. This pulse narrowing effect is opposite to the pulse
broadening effect from the group velocity dispersion alone. The narrowing -
action arising from Ar is expected te increase as the pulse intensity increases.
First, the pulse broadening is reduced from the linear case. Then, if the pulse
has the right amplitude and the night shape, the narrowing action may just
balance the broadening action, and the pulse can propagate without any
change in shape. Such a pulse is often known as a fundamental soliton, which
appears quite generally in nonlinear pulse propagation in a wide variety of
physical cases.” At even higher pulse amplitudes, the pulse narrowing action
can overcome ihe broadening action, and the pulse may shrink. In propagating
along the fiber, the pulse shape may change continuously, undergoing repeated
narrowing and expansion before arriving at a stable form,

This physical picture is supported by the detailed solution of (26.18) with
du,/dw > 0.2 [n addition, the calculation shows that the fundamental soliton
selution has a hyperbolic secant pulse shape, @ = sech(s), with a definite puise
area s7,. Here a pulse area is defined by & = [ A4'” de. If the input pulse has
a pulse shape a = Nsech(¢/T), with N being an integer larger than 1 (&=
Naiy), then the solution of {26.20) is periodic in £ with a period &5 = = /2. For
N = 2, the pulse shrinks to a minimum width at ¢ = 1€, and then expands to
the original width at £ = £,. For A = 3, it shrinks to a minimum width at £
= 1, as it expands, it splits into two pulses of equal strength at § = 1£,.
Finally, the twe pulses merge back into the original pulse at £ = £;. The soliton
solutions with ¥ =1, 2, 3 are illustrated in Fig. 26.7. A more detailed pulse
evolution of the N = 3 soliton case is shown in Fig, 26.8. For N = 4, the pulse
undergoes a threefold splitting at § = 4£,. The theoretical calculation also
shows that an input pulse with the wrong amplitude and shape may evolve,
over a long distance, inte a pulse variation which is the same as that given by
an input pulse a = Nsech(r/T). For example, if #,/2 <@/ < 3,/2, the
input pulse should evolve into an exact fundamental soliton. This recalls
the picture of self-induced transparency discussed in Section 21.6. Indeed, the
pulse developed in self-induced transparency can also be identified as a sofiton.

We can use the theory 1o estimate the length of the fiber and power of the
laser pulse needed for observing the soliten effect. From ¢26.19) and a =



520 Nonlinear Optics in Optical Waveguides

& ZiZy =%, %
: !
30+
Z/2, =%
ZiZ, =0, l
20— l
o NN

Zy = ane soliton period
Fig. 26.7 Theoretical behavior of solitons as they propagate down a fiber. The
fundamental solitor (top) propagates without change in shape or amplitude; higher-
order solitons, ¥ = 2 {middle) and N = 3 (bottom), exhibit more corplex behavior,
undergoing sequences of narrowing and splitting, [After L. F. Molienaer, R. H. Stolen,
and J. P. Gordon, Phys. Rev. Ler, 45, 1095 (1980).]

sech(s), we find, in terms of the lab parameters, the soliton period to be

aT2| 07t
= 3| fa621)
and the peak intensity of the fundamental soliton to be
- L (2622)

T

The group velocity dispersion of silica fibers, du,/dw, usually changes from
negative to positive at A = 1.3 pm. If we choose A =155 pm at which
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o7t /AN = (2me/N)du; /8w = —16(psec,/nm)/km, and T = 4 psec corre-
sponding to an input pulse of 7 psec full width at half maximum, we find
zg = 1260 m. The linear and nonlinear refractive indices for the fiber are
ny =145 and n; = LI X 0™ esu (K, = ban,/c), Then (26.22) yields
£, = 1% 10° W /cn?, and for an effective beam cross section of 107% cm?® in
the fiber, a critical peak power of 1 W for the fundamental soliton. Such a
picosecond pulse is readily obtainable from an infrared picosecond laser
system.

The experiment has actually been carried out by Mollenauer et al. using a
picosecond mode-locked color center laser operating at 1.35 pm,* The silica
fiber used in the first experiment was only 700 m long, but it had a correspond-
ing £ larger than #/4, and therefore the pulse narrowing and pulse splitting
phenomena could still be observed. The autocorrelation traces, [ It +
7} dr versus 7, for the transmitted pulses through the fiber were measured for
various input peak powers. The results are presented in Fig. 26.9. At low input
power, P = 0.3 W, the output pulse is clearly broader than the input pulse. At
P =12 W, the output pulse is about the same as the input pulse, suggesiing
that the critical power for the fundamental soliton has just been reached, This
agrees with the predicted value of Py=1 W, At P=35 W (- N?P, with
N = 2) the output pulsewidth reduces to nearly a minimum with a full width
of ~ 2 psec. Then, at P = 114 W (~ 3°F;) and P =125 W {~ 47P)), the
autocorrelation traces exhibit three and five peaks, respectivety, indicating that
the pulse has split into two and thres in the respective cases. With a longer

INTENSITY

Fig. 268 Pulseshape at various points along a fiber for the N = 3 soliton. {After R. H.
Stolen, L. F. Mollenauer, and W. . Tomlinsen, Ops. Lezt. 8, 186 (1983).]
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optical Kerr effect; {4} {requency modulation on the square pulse. (After Ref. 28.)
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fiber (£ ~ £, = =/2) the return of the transmitted soliton pulse shape to the
input form has also been observed.*

The study of solitons is a field in which theoretical calculations abound, but
quantitative experiments are rare. Optical fibers provide an ideal opportunity
for soliton studies. Here, in a fiber, both theoretical and experimental details
for soliton propagation can be worked out. Soliton—soliton interaction and
soliton Teflection and transmission at a boundary can also be investigated.
They are among the problems that have fascinated many researchers in the
field. The pulse narrowing effect of soliton propagation can be used in practice
1o compress picosecond pulses. As seen in Fig, 26.7, for the ¥ = 3 soliton, the
output pulse at { = /8 and 37,/8 can have its pulsewidth reduced by an order
of magpitude in comparison with the input pulse. Experimentally, using this
method, a 30-fold compression of a picosecond pulse with a high soliton
number, N = 10, has actually been demonstrated.”’

The nontinear pulse propagation in an optical fiber behaves very differently
if du,/dw < 0.2 Figure 26.10a and b reproduces the sketch in Fig. 26.6 for a
short input pulse and the frequency modulation on it arising from the
field-induced An. Since the higher frequency part travels more slowly than the
lower frequency par, the group velocity dispersion in the present case tends Lo
stretch the pulse, flatten the central peak, and sharpen the leading and lagging
edges. At appropriate pulse intensities or fiber lengths, the pulse can be

5.9 psec,2kW 10 psec —f

QUTPUT PULSE

I psec

CUTPUT PULSE
i & 55 cm OPTICAL FIBER s ;(\
o
/‘ff;/ N

&= -
DIFFRACTION
—|— 20 tsec, 01w GRATING
(FREQUENCY TUNABLE) PRISM

COMPRESSED PULSE #2
Fig. 26.11 Schematic diagram of a two-stage optical pulse compressor. {After Ref. 31.)
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deformed into a nearly square pulse with more than 90% of the pulse assuming
a linear frequency modulation, as in Fig. 26.10c and 4. Such a pulse, in passing
through a properly adjusted linearly dispersive delay line, such as a grating
pair, can be greatly compressed, with more than 90% of the cnergy contained
in the narrow peak. This physical picture has been substantiated by the
numerical solution of (26.18).

Fxperiments bave indeed demonstrated that thisis a viable method for short
pulse compression. In the initial trial, 10-W, 3-psec pulses passing through 2
70-m silica fiber together with a dispersive delay line were compressed to 1.5
psec.® In other experiments, 7KW, 90-fsec pulses were compressed 10 30 fsec
using a 15-em silica fiber,? and 1-kW, 5.4-psec pulses were compressed to 450
fsec using a 30-m fiber.® With two stages of pulse compression, a total
compression factor of 63 has been achieved.® The experimental arrangement

5.9 paec
PULSEWIDTH

e anE

BASELINE T

O 4sec
WIDTH'

COMPRESSED PULSE #i
Fig. 16.12 Autocorrelation traces of (2) input pulse; {b) compressed pulse from the
first stage of the optical pulse cOMPIEssoT, and (¢) compressed pulse from the second
stage of the optical pulse compressor. {After Ref. 31}
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of the last experiment is shown in Fig. 26.11. The prism-grating pairs act as the
dispersive delay lines. In the first stage, 2-kW, 5.9-psec pulses from a dye laser
system were compressed to 20 kW and 200 fsec. In the second stage, the pulses
were further compressed to 10 kW and 30 fsec. The measured autocorrelation
traces of the input and compressed pulses are seen in Fig. 26.12. This pulse
compression scheme has the advantage of being simple and applicable to
tunable picosecond dye laser systems. It is therefore expected to be an
extremely useful tool in extending picosecond optical studies to the subpicosec-
ond regime.
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Optical Breakdown

Optical breakdown here refers to the catastrophic evolution of damage inflicted
in a transparent medium by a strong laser field. It results from avalanche
ionization initiated by a laser and is different from the laser-induced thermal
breakdown which arises from direct laser heating. The process is critical in
high-power laser technology as it limits the amount of laser power that can be
transmitted through a medium. Generally speaking, optical breakdown is a
consequence of the rapid energy deposition into a medium by a laser. The very
strong optical excitation together with the subsequent highly complex plasma
formation due to avalanche ionization makes a rigorous solution of the
problem extremely difficult. This chapter is meant to give only a short
{ntroduction to the subject. Emphasis is on physical understanding,

271 GENERAL DESCRIPTION

A laser field as strong as the Coulomb field in an atom can certainly rip the
valence electrons away from an atom. We already saw in Section 22.5 that
multiphoton ionization of nearly all atoms and molecules can readily take
place in a laser beam with an intensity 10" W /cm? or higher. This, however, is
a process involving only single atoms or molecules; ionization of one atom
does not affect that of the others. It happens when the gas pressuse is low (e.g.,
< 1073 torr) and the laser pulse is short (< 107% sec) in comparison with the
time interval between atomic collisions (= 10-° sec). The electron mean free
path (;z 10.cm) should also be much longer than the dimensions of the focal
volume (< 10~ 2cm), so that the secondary effect of ionization by electron
collisions with atoms can be neglected. Under such conditions, multiphoton
ionization is the only operating mechanism for jonization of a gas medium.
Optical breakdown, however, refers 1o an ienization progess with a subse-
quent plasma formation in a relatively dense gas medium or in condensed
matter. It commonly occurs when a @-switched laser puise of = 0.1-11 is
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General Description 529

focused into a medium, This phenomenon was discovered as early as 1962,
right after the laser was invented.! Because of its importance in high-power
laser applications, it has attracted the attention of many researchers ever since.
Optical breakdown is generally signified by & visible flash or spark in the
medium, resulting from the formation of a plasma. In gases, the spark can
extend over a long distance. A record spark length of 60 m was reported by a
Soviet group using a 160-J pulsed Nd: glass laser beam weakly focused in air.?
In condensed matter, plasma formation usually leads 1o the appearance of a
damage spot (or series of spots) in solid, or the appearance of a cavity (or
cavities) in liquid.

Plasma formation in optical breakdown is the result of an electron avalanche
process. It starts with a small number of free clectrons {or quasi-free electrons
in solid) foating in space. These electrons may initially happen to be there, or
they may be generated by laser-induced (multiphoton) ionization. Electron
avalanche ionization can develop if the electrons can gain energy from the laser
field, since they can then attain enough energy to ionize an atom in collision,
and repetitions of the process can lead to a rapid multiplication of electrons.
From the requirement of energy and momentum conservation, an clectron can
absorb a photon from a laser field only if it is colliding with an atom or ion.
This is just the inverse of the so-called bremssirahlung process and is known as
inverse bremsstrahlung.’ Apparently such a process is effective only in a
relatively dense medium in which electrons can have frequent collisions with
atoms. From inverse bremsstrahlung, the electrons can absorb photon by
photon and gain enovgh energy to allow eleciron impact ionization 10 occur.
Cascade ionization or electron avalanche follows, with the resultant formation
of a plasma.’® As soon as the level of ionization becomes appreciable, the
incoming light can be readily absorbed by electrons via free—free transitions in
the field of ions. This causes intense heating of the electron plasma and a
consequent rapid hydrodynamic expansion of the plasma in the form of a
shack wave.* The final result is the appearance of a spark in the gas case and
visible damage in the condensed matter case.

In many respects optical breakqﬁwn is similar te dc or microwave break-
down.’ Both arise from electron avalanche induced by a field although the
creation of initial electrons and the detailed dynamics of the two processes are
different. Optical breakdown is, however, categorically different from laser-
induced thermal breakdown. In the latter case, the medium absorbs energy
from the laser beam and quickly converts it into heat. The resultant tempera-
ture rise may then cause impact ionization in the gas case and eventually lead
to plasma formation. In the solid case, laser heating can effect melting of the
solid and is the basis of laser anneaking, With excess heating, vaporization of
the matter can result. A dense plasma can be formed at the solid surface,
leading to a fireball emitting visible, uv, and even x-ray radiation.® Laser-
induced thermal breakdown is an important process in laser science and
technology but is not a subject of discussion of this chapter. Here we are
concerned only with optical breakdown,
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Optical breakdown in gases and in condensed matter have many features in
common. Theoretically, both result from electron avalanche jonization and
involve the absorption of more than one (sometimes many) photons per
electron created. Experimentally, they also run into similar problems. In both
cases the early experiments encountered a great deal of difficulty in establish-
ing reproducible breakdown thresholds for various materials. The irreproduci-
bility is often caused by the following factors. First, being a highly nenlinear
phenomencn, optical breakdown has a threshold depending critically on laser
intensity variations. To find reproducible results, single-mode (both longitudi-
nal and transverse} lasers with well-defined intensity profiles must be used.
Second, the threshold can be significantly fowered if there are absorbing
particles, or impurities with low ionization energies, present in the transparent
medium, because they would then provide the primary electrons in the
avalanche ionization. Only in a pure material can we expect to observe an
intrinsic breakdown threshold. Third, self-focusing (see Chapter 17) of the
laser beam leads to an apparent breakdown threshold which is significantly
lower than the true breakdown threshold. It is important to avoid self-focusing
if one intends to measure the intrinsic breakdown threshold.

Gases and solids are nonetheless very different, and should exhibit very
different breakdown characteristics. In the following sections we discuss optical
breakdown in gases and in solids separately. There is no discussion of optical
breakdown in liquids, since little is known about the subject. The material
presented here was taken from the review articles listed in the bibliography.
Research on optical breakdown is still going strong, although basic under-
standing of the process was mostly achieved before 1975. ’

27.2 OPTICAL BREAKDOWN IN GASES

Initiation of optical breakdown in a gas relies on [wo steps: creation of the
prime electrons and development of the avalanche jonization process.” In the
absence of free electrons initially, the prime electrons in the laser focal volume
can be created only by multiphoton ionization of atoms or molecules. This
fequires a very strong laser intensity if the number n in the r-photon ionization
process is high. If absorbing submicroscopic particles or impurity atoms or
molecules are present, then the laser intensity required to create the first few
electrons would be much lower. The prime electrons control the initiation of
avalanche ionization, However, the development of clectron avalanche joniza-
tion comes from an interplay between gain and loss of electrons and electron
energy. First, the ionization rate is directly proportional to the rate of net
electron energy gain, which is the difference between energy gain by the
electrons via inverse bremsstrahlung and energy loss by the electrons due to
collisions. Then there is loss of electrons due to diffusion out of the interaction
region or binding to atoms and ions. Avalanche ionization can lead 1o optical
breakdown only if the net rate of electron multiplication is so fast that it is
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above a threshold value necessary for plasma formation during the laser pulse.
Since the rate of electron emergy gain is propostional to the laser intensity,
while the loss is rore or less independent of the field, one expects to find for a
given laser pulsewidth a threshold faser intensity for avalanche ionization.

Quantification of this qualitative description of optical breakdown is dif-
ficult, especially if the quantum nature of avalanche ionization is to be
considered. Here we limit ourselves to a classical description using a very
simple model.* We assume that creation of prime electrons and avalanche
multiplication of elecirons are two successive independent processes. 1f the
prime electrons are created by one-step s-photon ionization, then they have a
density

po = AI° (271)

where 7 is the laser intensity, and 4 is proportional 1o the laser pulsewidth.
With absorbing particles or casily ionizable impurities present in the pas
medium, A would be much larger and » smaller. It is also possible to use
preionization to provide the prime electrons; in that case, we would have a
prescribed value for p,.

We now assume that the electron multiplication process would start with an
initial value of electron density p,. Let the ionization rate be » and the electron
loss rate be g. The resultant electron multiplication rate is

‘;—f ={n-2gle (27.2)

and hence we have
o(1) = pexpl(n — g)1]. (273)

For optical breakdown, p must yeach a critical value, p, (~ 10%/cnr’), signify-
ing the initial stage of plasma formation during the laser pulse. If the laser
pulsewidth is 7,, the optical breakdown threshold is characterized by a threshold
jonization rate 1. Note that 1 should be proportional 1o the laser intensity 1,
and g independent of I; consequently, %, means that there is a threshold
intensity /,, for breakdown. From (27.3), we have

fa=g+ Tp_llog,(&). (27.4)
Po

In order to relate 1, to I, we use a classical free-electron model. The rate of

energy gain of an eleciron is given by

d¢  e}Elr

—_ = — 2.5
i (L + ) 273)
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where £ is the optical field at frequency w, 7 is the momentum transfer
collision time, and e and m are the electron charge and mass, respectively. If
the ionization energy of the atoms or melecules is £;, then the ionization raie is

e?|E|’r
==l 276
" mé& (1 + wir?) (276)

Frem (27.4) to (27.6), we find

med, (1 + w*r?) 1 2
= Sy L (21, 217
2oe’r 8 T Be Po @7}

The last equation allows us to sec explicitly how the breakdown threshold
depends on the various physical parameters.

Before we discuss the implications of (27.7), we should realize that the
equation provides only a crude description of the process. In a more general
sense, Yablonovitch suggested the use of a similarity principle to describe
optical breakdown.” It states that n/p, with p being the gas pressure, satisfies a
scaling law of the form

n/p =[x} (27.8)

where x = |E|/p(1 + w?r?)*% Since 7 @ 1/p, we notice that (27.6} actually
has the form of {27.8), with f(x} & x% The experimental result on helium,
however, seems to confirm this similarity principle with an f{x) function much
steeper than x%. The preceding theoretical description is actually a simple
extension of the classical theory of microwave cascade jonization.” One may
question the validity of such a description considering that it requires the
amount of energy acquired between collisions, T #6731, to be much larger than
the photon energy Aw. In the case of optical breakdown, we usually have
188/8t ~ 0.01 eV, while i is around 0.1-1 €V therefore, the quantum effect
is clearly important. An analysis of the problem using the quantum Boltzmann
wransport equation to describe the dynamic electron distribution in the cascade
process, however, shows that (27.6) or, more correctly, {27.8) roughly holds.®

We now use (27.7) to discuss how the threshold intensity for optical
breakdown varies with different parameters. We consider first the effect of
prime electrons. To initiate avalanche-ionization, we need at least one prime
electron in the laser focal volume. This means that we must have py = P =
1/V;, where ¥ is the focal volume. For ¥, ~ 10~7 e, the corresponding .
is 107 /em?, 1f'py & py,. the chance of finding an electron in Vi is very small,
and the avalanche process is not likely to occur. If p;  pyp, then the reverse
is true. Let I7, be the laser fiuence required to generate py,. We can conclude
that if I,, is larger than £, of (27.7) with pp = P, the threshold of optical
breakdown is determined by I,,. On the other hand, if I, > [, then the
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breakdown threshold is given by I, As mentioned earlier, 7, can be very large
if Py 18 created by multiphoton ionization. However, I, can be drasticalty
lowered if absorbing particles or easily ionizable impurities are present in the
gas. In experiments designed to eliminate the effect of generation of prime
electrons, the gas medium can be preionized Lo give a prescribed py much
larger than p,,-> In that case, the subsequent optical breakdown in the gas is
solely controlled by the development of avalanche ionization. Experiments
have indeed shown that when a transparent gas with an ionization energy &,
much larger than ke is purified, the optical breakdown threshold becomes
much higher; it also becomes more irreproducible since the initiation of the
avatanche process is more strongly affected by the statistics of finding the
prime electrons in the focal volume.? The latter is also true when the focal
volume is reduced.

We now assume I, > I,, so that the breakdown is controlled by the
avalanche process. From (27.7), it is seen that I, should still depend on p,.
This is actually demonstrated by the experimental results shown in Fig, 27.1,
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Fig. 27.1 Breakdown threshold in helium versus ¢lectron density prescribed by pre-
ionization. The solid points correspond to no preionization. The data were oblained us-
ing a CO, TEA laser a1 10.6 um with four different focusing parameters. (After Ref. 9.)
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where p, was prescribed by preionization. The breakdown threshold I appears
to decrease as p, increases. The results in Fig. 27.1 also depend on the focal
diameter. For a smaller focal diameter, corresponding to a smaller focal
volume, the electron loss due to diffusion out of the focal volume during the
laser pulse is expected to be more. Then, according to (27.7), the loss rate g is
larger, and hence the breakdown threshold should be higher. At high pg, the
electron diffusion loss is less imponant because the diffusion process becomes
more ambipolar and less rapid. As a result, the dependence of I, on the focal
diameter is no longer so obvious.

Equation (27.7) also predicts the dependence of /. on the gas pressure p,
since 7 & 1/p. We have I« 1/p when w?r® > 1 at low pressures, and
I, p when w’r? <1 at high pressures. This prediction was qualitatively
confirmed by the experimental results given in Fig. 27.2a.'° For comparison,
Fig. 27.26 shows the microwave breakdown thresholds as a function of
pressure for the various gases.® The curves in the two figures have the same
qualitative behavior except that the minimum breakdown threshold in the

3 T T Ty T T T T T T
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108 Lo a gl o sl et
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Fig. 272 (a) Optical breakdown threshold versus pressure in Ar, He, and N,. A
s0-nsec ruby laser pulse focused to a diamster of 100 pim was used. (After Ref. 10)) (#)
Microwave breakdown threshold versus pressure in air, N;, and O,. Microwave
frequency used was 0,994 GHz, and the diffusion length of discharge volume was 1.51
cm. (After A. D, MacDonald, Microwave Breakdown in Gases (Wiley, New York,
1966).]
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Fig. 27.2 (Contimied).

microwave case is at 8 much lower pressure. This can be easily understood
from (27.7) knowing that the minimum of £, versus p should appear at w7 ~ 1,
and 7 is proportional to p ™,

After the initial breakdown, the electrons in the plasma can readily absorb
more energy from the laser field in the presence of ions. The rapidly heated
plasma soon leads to the formation of an expanding shock wave and the
simultaneous appearance of a,spark.’ Then the incoming laser beam is inter-
cepted and preferentially absarbed by the shock wavefront propagating toward
the laser. As a result, the laser energy is continuously fed into the shock
wavefront, and the spark appears to propagate toward the laser.! With
sufficient laser energy in the pulse, the spark can propagate over a very long
distance.? A more quantitative description of how a laser beam heats up a
plasma and gives rise to & long propagating spark is certainly very difficult.
This is a problem of great importance in the field of laser interaction with
plasmas,” but it is outside the scope of this book. Readers are referred to the
bibliography and the references therein.

Optical breakdown in gases has found applications in a number of areas
The rapid formation of plasma and the subsequent blocking of the incoming
laser light by the plasma (see Fig. 27.3) can act as a fast optical switch
Laser-induced plasma via optical breakdown is clearly a means to generale 2
high-temperature, dense plasma. Such a plasma can be used as a light source of
very high brightness. The possibility of sustaining a laser-induced plasma by :
CW laser and the more imaginative applications of the optical discharge have
been reviewed by Raizer (see bibliography).
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50 nsec /div

Fig. 273 Oscilloscope traces of (a) an input CO, laser pulse 200 nsec pulsewidth
(FWHM), and (&) the output pulse after optical breakdown in air. [After D. C. Smith,
Appl. Phys. Lem. 19, 405 (1971)]

273 OPTICAL BREAKDOWN IN SOLIDS

Although opticat breakdown in gases and in solids were discovered at the same
time,! optical breakdown in solids was not well understood untik much later
because of experimental difficulties intrinsic to solids. Unlike the gas case,
optical breakdown in a solid leaves permanent damage in the solid. Then the
measurement is nonrepeatable, unless one can find a large piece of solid with
extremely high uniformity or many pieces of identical quality. The quality
control of the solid sample is actually a major problem in the optical break-
down experiment. Absorbing inclusions in a solid can drastically lower the
apparent breakdown threshold, since local heating at the inclusions can readily
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lead to thermal breakdown in the solid. Only if these absorbing inclusions are
avoided or eliminated can we expect to find reproducible optical breakdown
thresholds, 1t has been found that normal optical breakdown leads to a
funnel-shaped damage track while inclusion breakdown gives a spherical
damage spot. Therefore, by examining the Jamage tracks, one may distinguish
the two breakdown mechanisms.!* Another experimental difficulty is the effect
of self-focusing, which occurs more readily in a transparent solid than in a
transparent gas. With self-focusing, the observed breakdown threshold would
be determined by the self-focusing thresheld (see Section 17.5). The difficulty,
however, can be more or less ¢liminated by using a tightly focused laser beam
such that the effect of self-focusing becomes negligible.’® We consider here
only the case of optical breakdown in a pure transparent solid induced by a
tightly focused single-mode laser pulse.

The physical mechanism governing optical breakdown in solids is basically
the same as in the gas case.* The conduction electrons here play the role of
free electrons, and excitation of valence electrons to the conduction bands is
equivalent to ionization of atoms in a gas. Again, the laser-induced avalanche
jonization process in a solid should start from a few prime conduction
electrons in the laser focal volume.? In the present case, the prime elecirons
could be created by thermal excitation of electrons out of the donar levels.
Except for ultrapure crystals, the electron density in the conduction bands can
easily be 108 /em® at room temperature, Then, in a focal volume of 1077 end,
the average number of prime electrons is certainly more than 1, and the
development of avalanche ionization is clearly possible, The avalanche process
is again governed by (27.2). Following the same classical model used to derive
the ionization rate n in (27.6), we arrive at the expression for the breakdown
threshold J_, in {27.7). Therefore, al least the qualitative behavior of avalanche
jonization in solids shopld be similar 1o that in gases.

As in the gas case, {27.7) suggess that the optical breakdown threshold is
directly connected to the dc breakdown threshold by the relationship

0
I = 55 gy Fel 0 ) @9)

In solids, the collision lifetime 7 is estimated 1o be — 10~ sec.!® Equation
(27.9) predicts that for « < 777, the threshold is nearly independent of w.'’
Experimentatly, the observed thresholds for alkali halides do seem t0 remain
roughly the same from dc w A =1 pm and show a slight increase at higher
A 131718 The dependence of the breakdown threshold on the laser pulsewidth 7,
is also specified in (27.7). If the loss rate g is negligible, J, is inversely
proportional to 1, and the breakdown process should have a fluence
{energy/emt?) threshold rather than an intensity threshold. If g dominaltes in
(27.7), then the breakdown should have an intensity threshold. Experimental
results on NaCl with a 1.06-um laser light show that the breakdown threshold
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field changes from 2 X 10° v/cm for 7, = 107* sec 10 2 X 107 v/em for
7, = 107" sec.'”® This indicates that it is neither strictly intensity dependent
nor strictly fluence dependent.

Optical breakdown in solids is also characterized by the rapid buildup of the
plasma density. This is experimentally evidenced by the sudden cutoff in the
transmitted laser intensity, as seen in Fig. 27.4. The oscilloscope traces in Fig-
27,4 also reveal the statistical nature of the breakdown process. The four traces
were taken with input laser pulses of the same shape and magnitude. In the top
three, breakdown occurred at slightly different times, and in the bottem trace,
no breakdown occurred at all. The statistica! fluctuations came in because the
number of prime electrons in the focal region was, after all, quite small. In
more careful studies, one should use a probability distribution to characterize
the breakdown threshold.™ It is customary to define the breakdown threshold
as the value at which the breakdown occurs in 50% of the pulses.

We assumed here that multiphoton excitation of electrons to the conduction
bands is negligible. This is certainly true at room temperature if the laser
photon energy Aw is much smaller than the energy gap of the solid, because
even at the breakdown intensity, the number of electrons excited by multipho-

Fig. 274 Oscilloscope traces describing the
transmiited TEMy, mby laser pulse through a
NaCl crystal. The laser palse with an energy of
0.3 mJ was focused into the crystal by a lens of
14-mm focal length. (g} Optical breakdown
occurs at the peak of the pulse. (b) Breakdown
occurs before the peak at the energy &y =
0.8%6 &, (¢) Breakdown occurs after the
peak at £y = 0.954 1, - () Three consecu-
tive pulses without breakdown. [After D. W.
Fradin, E Yablenovitch, and M. Bass, App/.
10 nsec Opr. 12, 700 {1973).]




Referetices 539

ton excitation is much smaller than the number of prime electrons created by
thermal excitation. If, however, Aw is comparable with the energy gap, then the
multiphoton excitation process can become so important that it may even
appear to be the dominamt mechanism in determining the breakdown
threshold.”” Equation (27.2) should then be modified to take the form

oooa(l, o

where (p/9t),; denotes the rate of increase of the conduction electron density
due to multiphoton excitation, One expects that as w increases, {dp/91 )y
becomes increasingly important, and can eventually dominate the initial
buildup of the electron avalanche process. This results in a transition from
avalanche ionization to multiphoton excitation as the leading mechanism
controlling the breakdown threshold.

Optical breakdown can also occur on solid surfaces. The physical process
should be the same as in the bulk, and ene would expect the same breakdown
threshold for the surface as for the bulk. Experimentally, however, it was found
that the surface breakdown threshold was usually much lower. In most cases,
this was due to contamination of the surface by absorbing dust particles. For a
clean surface, the breakdown threshold could be lower because of the existence
of scratches and pores on the surface.” It is well known that the local field
around a local surface structure with a sharp curvature can be significantly
higher than the average field in the bulk. Consequently, optical breakdown is
more likely to occur at such local stmctures, leading to an apparently lower
breakdown threshold for the surface. The surface imperfections can be removed
by superpolishing. It has been demonstrated that a superpolished surface can
indeed have a breakdown threshold approaching that of the bulk.*? Another
method of eliminate the high field strength at local surface structure is to
construct a surface layer with a graded refractive index.® The breakdown
threshold for such 2 surface also approaches that of the bulk.

The relevance of optical breakdown in solids te high-power lasers and
applications is obvious. Laser damage limits the maximum laser power one can
hope to obtain from a high-power laser system. It also limits the laser power
one can transmit through windows, lenses, and other optical components. The
subject is of such technical importance that there have been annual conferences
on it since 1970. The readers should consult the conference proceedings for
details and advances in this field.*

REFERENCES

1 P. D. Mzker, R. W. Terhune, and C. M. Savage, in P. Grivet and N. Bloembergen, eds., Proc.
Third nternarional Conference of Quantum Electronics (Paris, Dunod, 1964), p. 1559,

2 Y. N. Parfenov, L. N. Pakhomov, ¥. Yu Petrun’'kin, and ¥. A. Podlevskii, Sor. Tech. Phys.
Lerz. 3, 286 (1976).



10
11
12

21
F]

Optical Breakdown

Ya. B. Zel'dovich and Yu. P. Raizer, JETP 20, 772 {1965); Yu. P. Raizer, Uspekhi B, 650
(1965).

Yu. P. Raizer, JETP 21, 1009 {1965).

See, for example, A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York,
1966), H. Racther, Electron Avalenches and Breakdown in Guses {Butterwosth, Washington
D.C., 1964).

R. V. Ambartzumian, N. G. Basov, V. A, Boiko, V. §. Zuev, 0. N. Krokhin, P. G. Kryukov,
Yu. V. Senat-skii, and Yu. Yu. Stolov, JETP 21, 1061 {1965); W. 1. Linlor, Appl. Phys. Leit.
3, 210 (1963).

E. Yablonovitch, Appl. Phys. Let. 23,121 (1973).

N. M. Kroll and . M. Waison, Phys. Rev. A 5, 1883 {1972).

R T. Brown and D. C. Smith, Appl. Phys. Leut. 22, 245 (1973).

D. H. Gill and A. A. Dougal, Phys. Rev. Leit. 15, 845 (1965).

5. A Ramsden and W. E. R. Davis, Phys. Rev. Lett. 13, 227 (1964).

H. J. Schwarz and H. Hora, eds., Laser fareraction and Related Plasma Phenomena, $ vols.
(Plenum, New York, 1971, 1573, 1975, 1977, 1979); C. Yamanaka and H. J. Schwarz, eds.,
Laser nteraction with Matter (Tapan Society for Promotion of Science, Tokyo, 1973).

E. Yablonovitch, Appl. Phys. Lett. 19, 495 (1871).

A. Wasserman, Appl. Phys. Lett. 10, 132 (1967); G. M. Zverev, T. N. Mikhailova, V. A,
Pashkov, and N. M. Solov'eva, JETP 26, 1053 (1968).

E. Yablonovitch and N. Bloembergen, Phys. Rev. Let. 29, 907 (1972).

F. Seitz, Phys. Rev. 16, 1376 (1949).

N. Bloembergen, fEEE J. Quant. Electron. QE-10, 375 (1974).

D. W. Fradis, E. Yablonoviich, and M. Bass, Appl. Opt. 12,700 (1973); D. W. Fradin and M.
Bass, Appl. Phys. Ler. 22, 206 (1973}

D. W. Fradin, N. Bloembergen, and J. P. Leteilicr, Appl. Phys. Lete. 22, 635 (1973).

M. Bass and H. H. Bartett, App!. Opr. 12, 690 {(1973); JEEE J. Quant. Electron. QE-8, 338
(1972); M. Bass and D. W. Fradin, I[EEE J. Quant, Electron. QE-9, 8% (1573).

N. Bloembergen, App!. Opr. 12, 661 (L973).

C. R Giuliano, Appi. Phys. Leit. 21, 39 (1972); D. W. Fradin and M. Bass, Appi. Phys. Led.
22, 157 (1573).

W. H. Lowdermilk and D. Milam, Appi. Phys. Lett. 36, 891 (1980); W. H. Lowdermilk, in
Handhoak of Laser Science and Technology, vol. 3: Optical Materiafs (CRC Press, Boca Raton,
Fla.), in press.

Sympaosium on Laser Damage and Optical Materials, Boulder, Colo. (NBS Spevial Publications,
1970-1980).

BIBLIOGRAPHY

Bloembergen, N., JEEE J. Quant. Electron. QE-10, 375 (1974).

DeMichelis, C., FEEE J. Quant. Electron. QE-5, 183 (1969).

Grey-Morgan, C., Rep. Prog. Phys. 38, 621 (1975},

Krokhin, O. N, in F. T. Arecchi and E. O. Schalz-Dubois, eds., Laser Herdbook {North Holland

Publisking Co., Amsterdam, 1972), p. 1371

Raizer, Yu. P, Uspekhi 8, 650 (1963).
Raizer, Yu. P., Uspekhi 23, 789 (1981).




28

Nonlinear Optical Effects
in Plasmas

Plasma is 2 highly nonlinear optical medium, With high-power pulsed lasers,
nonlinear optical effects in plasmas are easily observable. They are in fact
hardly avoidable in laser heating of plasmas and in laser-induced fusion work.
A thorough understanding of such effects is therefore necessary for progress in
these areas. Nonlinear interaction of Nght in a plasma is also a very interesting
subject in its own right. As a charged fluid, a plasma is readily perturbed by
external fields. Tts extremely strong and complex response to intense laser fields
can yield many fascinating nonlinear optical phenomena, but quantitative
interpretations of these phenomena appear 10 be difficult. Here we restrict
ourselves to a basic formulation of the theory and a brief description of some
experimental observations.

28.1 THEORETICAL DESCRIFTION

That a plasma can be a highly nonlinear optical medium was known early in
the development of nonlinear optics. Various nonlinear optical effects in
plasmas, such as harmonic generation, parametric amplification, and stimu-
lated Raman scattering, were predicted in the 1960s.! Experimentally, however,
they were not studied with any concerted effort until the 1970s. The immense
research activities in this area started only when the importance of laser-
induced fusion in future technology was recognized, Understanding nonlinear
optical effects in plasmas is essential since they have direct influcnce on laser
heating of ptasmas. In most cases, one is concerned with a gas plasma created
by focusing of a laser pulse on a solid target. While the plasma is being
created, the same laser pulse also induces the nonlinear optical effects. The
high complexity of the laser-induced plasma growth process and the strong
nonlinearity of the expanding plasma make the problem very difficult to
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analyze. We consider here only the basic theory of nonlinear laser interaction
with plasmas. For this purpose, we assume a fully ionized stationary plasma
with a given density profile, under the excitation of quasi-monochromatic
infinite-plane waves,

The basic formalism for laser interaction with a plasma was described in
Section 1.4 in connection with second-harmonic generation from a free-elec-
tron plasma. Here we simply expand the formalism to include plasma damp-
ing, and apply it to the case of a two-component (electron-ion) plasma. Let the
electron and ion densities in the plasma be

N(r.1)= Ny +p, and N(rt)=Ng+p (28.1)

where p, and p, are the induced changes in the electron and ion densities away
from their unperturbed values N,, and N,y The subindices ¢ and i refer to
electrons and ions, respectively. The dynamic equations governing the plasma
are: (1) the continuity equations for electrons and ions

d

P T NE) 4 = 0,

5 (28.2)
“c"i% + v {Ny)+vp,=0

where v is the velocity and v is the effective collision frequency responsible for
damping, and {2) the equations of motion for electrons and ions

v, _ 1 ap, qe 1
5t vi= N, ap!}v.u,+m!(l:+c\rrx]a;],
(28.3)
dv; _ 1 dp; 4 1
T +Hwe vy = M,M(ap,)vpf+m,{E+cv'XB)

where p is the pressure, M is the mass, and ¢ is the charge. The quamiity 3p/dp
can be related to the temperature of the plasma at equilibrium by dp/dp =
vk zT, with y being the adiabatic exponent and & ; the Boltzmann constant. As
10 the fields E and B, they are governed by the Maxwell equations driven by
the charge density

Py = 4P + q.0; (28-4)
and the current density
J=Ngy ~ Nagy. {8.35)

The foregoing set of coupled equations (28.2)-(28.5), together with the Maxwell
equations, formally describes all the possible optical effects in the idealized




Theoretical Description 543

plasma. In practice, for relatively high-frequency optical fields, the (q./m }E
+ v, X B/c] term can be neglected because of the heavy ion mass. The plasma
is then driven only by the electric and Loremiz forces on electrons. The
respense of ions to the field is coupled to that of ¢lectrons mainly through
interaction with the field via the Gauss law

v -E=4r(pq. + o). (28.6)

Optical nonlinearities of a plasma arise from the (v- ¥)v terms and the
Lorentz force on electrons in (28.3).

Second harmonic generation from a plasma has already been discussed in
Section 1.4. At optical frequencies, the ionic contribution to the nonlinearity is
negligible. The second-order current density responsible for the second-
harmonic generation can be derived from (28.2) and (28.3) by iterative expan-
sion. It takes the form

(TN, EE

1- wf,,/uz

Py §
I220) = ’;Z;S{QN,OV(EI-EJ + } (28.7)

where w,o = (47N,,q2/m ¥/, E, is the fundamental field, and v, has been
neglected. As pointed out in Section 14, for a single incoming laser beam,
JD(24:) cannot radiate in the bulk of a uniform plasma, but it is responsible
for the second-harmonic generation at the surface of a uniform plasma or in
the bulk of a nonuniform plasma, Extension of the calculation to sum- and
difference-frequency generation and higher-order mixing processes is straight-
forward but tedious. The principle is, however, very much the same: the
nonlinear optical effects arise from the nonlinear response of individual
particles to the applied ﬁe!ds.

Plasma waves exist in a plasma. They are collective excitations of electrons
and ions in a plasma. Nonlinear optical effects can also result from coupling of
light with plasma waves. The plasma wave equations for a two-component
uniform plasma can be derived from (28.2) and (28.3) 1ogether with (28.6). We
find, by eliminating dv/d: in the equations,

]

3 1(3p.) 2 d o ot
[arl m,(ape)v RCETH L L

ﬂ.)+V'Fp

e

2 1dpY 5 3| _ |4 4 ]
{Bﬁwm,(aﬂj v +P,E P,—w,gz [ Py o |,
and ] {28.8)
_ 4 o oy
Fo=omnBaNlns v vy,

+Ne[ r;"c]vf xB
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where wjy = 4mN,g2/m, We neglect the ¥ - F, term in the equation for p,
because of the heavy ion mass and the slow ion velocity. As shown in (28.8),
the two wave equations for p, and p; are not independent but are linearly
couped. The dispersion curve of the plasma waves is obtained from the
resonant structure of the coupled wave equations. It has an optical branch and
an acoustic branch.? Since m, 3 m,, the following approximations can be
used in describing the two branches.® For the optical modes, only electrons in
the plasma can effectively respond to the rapid oscillation. The density
variation of the ions is negligible. Therefore, the corresponding plasma wave
equation, from (28.8), is simply

a2 1 {dp
[F ( E» )V + oy + 7, 6:]P’ = +F,. (28.9)

The dispersion: relation for the optical plasma waves is

1{édp),,
wse =l + E(Tp:)k . (28.10)

The quantity w,, is usually knowa as the electron plasma resonance frequency.
For acoustic modes, the charge neutrality condition p,q, + p,g, = 0 is ap-
proximately satisfied, because electrons can easily follow the slow motion of
ions in the plasma. The plasma wave equation is derived by first combining the
two wave equations in (28.8) with the elimination of the (p, — |4,/g,|p;} terms,
and then replacing p, by |¢,/4.|p;. Neglecting #°p,/d¢* in comparison with
(m,/m,)ya%,/ 0%, we find

2
i,VZV +y;) (&)V‘Fﬂ

ar? i
vie @)%r}ﬁ & (ap,)‘
i aPi m;l g, ap, (28-11)
and
v, =¥ +( ) q'
4,

The dispersion relation for the ion-acoustic plasma waves is
w;,, = V23 (28.12)

where w,, is the ion-acoustic plasma resonance frequency. In all the above
wave equations, (28.8), (28.9), and (28.11), the optical fields act as the driving
sources through ¥ - F,. Since p, and v, in ¥ + F, are both induced by the
optical fields [via {28.6} and (28.3)], the plasma waves appear to be driven
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nonlinearty by the fields. The optical waves propagaling in the plasma, in turn,
are influenced by the plasma variation as governed by the wave squation

1 7 dg @
Vx(vxE)+FEFE———;EJ (28.13)
with J given by (28.5), which depends on p and v. Coupling of (28.13) with the
plasma wave equations gives rise o a number of interesting nenlinear optical
effects in plasmas, including stimulated Raman and Brillouin scattering
processes and parametric instabilittes. They are of practical importance in the
consideration of laser heating of a plasma.

Consider first the stimulated Raman scattering process.! Here the Raman
process refers to the scattering of light by the electron plasma resonance. As
noted in Section 10.3, stimulated Raman scattering can be considered a
parametric process resulting from coupling of a pump wave at w,, a Stokes
wave al w,, and a material excitational wave at w; — w, = w,,. In the present
case, the material excitational wave is the optical plasma wave with a resonant
frequency «,, = ©,,. The theory, therefore, closely follows the one developed
in Section 10.3. First, we should write down explicitly the wave equations for
the three waves, From (28,5} and (28.13), we find, for the pump wave,
Ew,) = &exp(ik, 1 — iw;t), and the Stokes wave, B(w,) = Eexplik, T -
j,1), in a uniform plasma, the following wave equations

wie | 4w
(9 ot = = 5 o= )

dma, gt

= (—4"2 )p.(w, - w,JE(w,}
mwe

and (28.14)

wid Amalgl
(72 28 o) = [ 255 et
et

Then, from (28.9), we can write the optical plasma wave equation as®

< €

=v- |:Neﬂ‘?e(ve X B)

me

L op, s, .
[~ L 2oyt (ol )

(28.15)

[N,u(k, - k) g

m,

11‘:(“’:)5‘(%)

assuming, for simplicity, that E(w,) and F(w,)} are linearly polarized in the
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same direction. The solution of such a st of coupled wave equations, (28.14)
and (28.15), was illustrated many times in Chapters 9 to 11, and is not repeated
here. We note that in the limit of negligible pump depletion, the Stokes
intensity should grow exponentially. The maximum exponential gain is

2
_ ArNoqi(k, + &, ) eI E (w1

G 3.3
L klk:w!wtﬂvz

. (28.16)

max

which occurs when the Stokes scattering is in the backward direction and
(@, — w,) equals the electron plasma resonance frequency w,,. For a weakly
dampled plasma with w,g/», ~ 100, the above result predicts a strong Stokes
backscattering from the focal region of a }-GW laser beam. Generatien of
Stokes and anti-Stokes radiation of many orders should also be possible in a
plasma, assuming a sufficiently long and uniform interaction length. The
calcuiation can be extended to a plasma with a density gradient and special
boundary conditions.*

The electron plasma wave in the above stimulated scattering process can be
replaced by an ion-acoustic plasma wave. We then have the stimulated
Brillouin scattering process. The theory of stimulated Brillouin scattering is
essentially the same as that of stimulated Raman scattering, except that instead
of (28.9), we now have (28.11), which can be rewritten in the form

[-¥2v2 —(0— ) — i(w, - 0,)7] 0

(28.17)

E(w,) EXaw,).

milq.| 3,

_ _( m.g, ){N,u(k,— BA

In this case, because of the linear dispersion relation of (28.12) for the
ion-acoustic plasma waves, the situation is very similar to that of an ordinary
stimulated Ballouin scattering process discussed in Section 11.1

‘We have not included the Stokes attenuation in this calculation because we
neglected the loss terms in the equations of motion in (28,3), so that the linear
dielectric constant e{w} of the plasma appears as a real gquantity. More
generally, we should have, at optical frequencies,

2
Wep

elw) =1~ wlw+il,)

{28.18}

where I, is the damping rate of the electron velocity. The dielectric constant is
now a complex quantity. Only when the Stokes gain G is larger than the linear
attenuation {w,/cye(w, } )Im[e{w,)] can the stimulated scattering process actu-
ally take place. We should also note that since light waves with w < w, cannot



Theoretical Description 547
propagate in a plasma, the pump wave in stimulated Raman scattering must
have a frequency o at least two times larger than w,, since otherwise
w, = w; — w,g would be smaller than w,q. There is no such restriction for
stimulated Briliouin scattering because w, < w@;.

In this discussion, stimulated Raman or Brillouin scattering was treated as a
three-wave parametric process, in which the signal is an optical wave and the
idter is a plasma wave. The process can certainly be generalized to the case
where both the signal and the idler are plasma waves. This case is generally
known as a plasma parametric decay process of patametric instability.>* It
usually has a threshold lower than stimulated Raman scattering in a plasma.
We consider here the parametric process involving an electron plasma wave
and an ion-acoustic plasma wave with @, =@, + @, k, =k, + k,, «, =
wpelk,) > 0, = (ko) and k, = —k,. In the limit of negligible pump
donietion, it can be described by the coupled equations (28.9) and (2811).
With appropriate approximations, they reduce to the form’

. . . 4;
[+ el > —9) = fo]no) = —i{ 2| &l Bporen)
and {28.19)
. . 4.
[—mﬁ + wr{k, —iv)+ |mavq]p}‘(w,) = t;‘(ka <E)*p,(w,).
Following the same derivation used in Section 9.1 for parametric amplification,
we can find from (28.19) that the threshold pump intensity for the parametric

instability is

4
a

2 2
o e e %H&) .

I gl @, dp,

Above the threshold, the pump wave can effectively feed energy into the
plasma, and the plasma waves grow exponentially. It is also possible to have a
parametric process generate two eleciron plasma waves. In this case, the two
plasma wavevectors, k, and k., generally satisfy the relations k, + k., = k,
and |kl = K.z} = |k}, where k, is the pump wavevector. Therefore, the
frequencies of the two plasma waves should be nearly equal.

Four-wave mixing and other third-order nonlinear optical processes can
also occur in a plasma, Some of them result from an optical-field-induced
refractive index change in the plasma. A third-order iterative calculation (sec
Section 1.4) using (28.2-28.6) can lead to a formal expression of J¥w) in the
form JU(a) = o™ E(w)|2E(w). Since 0P (w) = —iox®(w), the refractive
index n(s) = ny + An has a field-induced term An(w) = X E(w)*/2n,.
More physicaily, the plasma considered as a uniform dietectric medium can
have a refractive index change induced by a field intensity gradient via
electrostriction {see Section 16.2). To minimize the free energy of the system,

(‘?—f’]] (28.20)

dp;
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the electrons and ions will redistribute themselves so as to increase the
refractive indices in regions of higher field intensities. Laser heating of the
plasma can also produce a refractive index change via (Jn/87T)AT with AT
depending on the laser intensity. This laser-induced thermal effect reinforces
the electrostrictive effect in a plasma since it tends to expand the plasma and
therefore increase the refractive index in the higher-intensity region. (Noite that
at optical frequencies n® = 1 — 4w N, 07 /m,w’) As a result of An(|E}%),
self-focusing and seif-phase modulation can occur in a plasma.® Degenerate
four-wave mixing should also be possible. These processes, however, can be
very complicated in a real plasma, which is often highly nonuniform, partially
ionized, and strongly nonstationary.

2382 EXPERIMENTAL STUDIES

The experimental situation of nonlinear opiics in plasmas is far more com-
plicated than the theoretical picture just presenied. The main reason is that a
real plasma is often far from the ideal plasma we assumed. For a thorough
understanding of nonlinear laser interaction in a real plasma, it is necessary 1o
know the detailed initial characteristics of the plasma: the degree of ionjzation,
the electron and ion density distributions, the temperature distribution, the
variation with time, and so on. The laser puise used should also be well
characterized in its pulse shape and intensity profile. Then the experimental
results properly measared may be compared with the numerical sclution of the
appropriate set of coupled equations. Unfortunately, information about a real
plasma is never so complete. This is particularly true for a laser-induced
high-density plasma, We must therefore be satisfied with only a very qualita-
tive description of the experimental observations,

Harmonic Generation

Optical second-harmonic generation from a plasma was first attempted using
metals as the samples.”® It was believed that a highly conductive metal might
behave like a very dense electron plasma. The plasma is uniform and second-
harmonic generation can occur only at the surface. The second-harmonic
reflection from a metal surface could indeed be easily detected. However,
whether the signal was dominated by free-electron or bound-electron contribu-
tions could not be determined.® The experiments could also be badly affected
by surface contamination. For reliable and reproducible results, clean metal
surfaces located in an ultrahigh vacuum chamber are clearly needed. The laser
frequency should be well below the interband transitions to avoid the
bound-electron effect.

Second-harmonic radiation has also been detected in refiection from a
laser-induced gas plasma.” The plasma was created by a laser pulse focused on
a solid target. Being an expanding plasma, it was highly nonuniform. The
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second harmonic can then be generated in the bulk of the plasma. Quantitative
analysis, however, requires a good characterization of the laser-induced
plasma,'®

Generation of higher harmenics in a laser-induced plasma has also been
observed.!! The most surprising result occurred when a high-energy CO, laser
pulse was focused on a target {for example, a 100-J, 1-nsec pulse focused to
~ 8 X 10'* W /om? ). Harmonics as high as the forty-sixth could be seen in the
output, with little difference in their production efficiencies.!? Some examples
are shown in Fig. 28.1. Clearly, this cannot be explained by the usual
perturbation theory. Bezzerides et al. showed theoretically that when resonant
absorption (& ~ ,o) takes place in a steep plasma density profile, the plasma
restoring force is strongly anharmonic.” It then gives rise t0 a strongly
anharmonic oscillator system which radiates the high harmonics. The emission
apparently originates from the critical surface in the steep density profile, If
the measurement has enough resolution in space and time, it can be used 1o
locate the temporal position of the critical surface in an expanding plasma.
There is no basic reason why this process cannot occur with a higher-frequency
laser excitation. This then opens the possibility of producing intense vacuum
uv to soft x-ray radiation by simply irradiating metal surfaces with intense
laser light.

Stimulated Raman and Brillonin Scattering and Parametric Processes

Both stimulated Raman and stimulated Brillouin scattering have been ob-
served in laser-induced plasmas with high-energy pulsed laser excitation {2 101
W /cm?®). Since the latter involves a less dispersive plasma wave than the
former [V in (28.11) is much smaller than (8p,/8p,)/m, in (28.9)], it can be
better phase matched in the backward direction. Consequently, stimulated
Brillouin scattering usually appears (o have a lower threshold and can be more
readily observed."* The backscattered Brillovin radiation is characterized by an
initial red shift of a féw angstrom units, which corresponds to the jon-acoustic
plasma {requency, a linear polarization in the same direction as the incoming
laser beam, a ray path retracing the incoming beam path, and an exponential
rise followed by saturation in the backscattered energy above an input threshold
energy (se¢ Fig. 28.2). As much as several percent of the input emergy can
appear in the backward Brillouin output. The process is presumably responsi-
ble for the observed intensity-dependent reflection from a target. From the
laser-plasma-heating or laser-fusion point of view, this is a detrimensal process
since it decreases the laser energy deposited into the plasma. To prevent this
from happening, one can use a broadband laser source as the pump beam to
raise the stimulated Brillouin threshold significantly.

With higher pump intensities, stimulated Raman scattering can also occur
in a plasma.!® It appears later than the Brillouin scattering,'® and has a
maximum gain in the backward direction. The output is characterized by a
frequency shift proportional to the square root of the electron density {Aw =
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w0, = [47N 4q2/m_]'/?), and a sharp rise followed by saturation in the output
energy above an input intensity threshold (see Fig. 28.3). In a magnetically
confined plasma column with a CO;, laser excitation, a Raman conversion
efficiency as high as 0.7% hgs been reported.’ The efficiency is much lower
{~ 107} in a laser-induced plasma.'” The saturation comes in mainly because
of the nonlinear damping effect:'® hot electrons are created in the plasma by
heating via the stimulated Raman process. They are effective in increasing the
Landau damping on the plasma oscillation, The balance between the increase
of the Raman gain and the ingrease of the Landau damping with the pump
intensity leads to the ohserved saturation, The spectrum of the Raman cutput
is usvally very broad, reflecting the variation of the electron density in the
plasma.

Stimulated Raman scattering generates the electron plasma wave, which is
then dissipated into heat in the plasma. This suggests that the process can be
used for heating of a plasma. The efficiency is, however, very poor. One may
increase the heating efficiency by using optical mixing to produce the electron
plasma oscillation.” In that case, two input laser beams at «; and w,, with

w; — W, = ©,,, are used (o resonanily excite the plasma wave, 1f the generated
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plasma wave is probed by a third beam, we then have effectively a four-wave
mixing process, the output of which should reflect the characteristics of the
electron plasma. The same mixing prooess can be used to excite the ion-acous-
tic wave in 2 plasma if @, — @, = @,

Parametric instability, lmweve.r offers a more efficient way to heat a plasma,
since the incoming photons participating in the process are completely con-
verted into plasmons. This has been carefully studied using microwave pump-
ing on a low-density cold plasma.’® With laser pumping, parametric instability
has also been observed.”* It actually has a lower threshold than stimulated
Raman scattering. While parametric instability generally involves the paramet-
ric photon decay into either two eleciron plasmons of the same frequency, or
one eieciron and one ton-acousiic plasmon, the former seems to be more easily
detectable. The generated electron plasma waves al w,, = w;/2 can radiate or
coherently scatter the incoming beam at o, leading to the appearance of «,/2,
3w,/2, and possibly other higher subbarmonics in the reflected light®®
Parametric instability may produce highly energetic electrons in a laser-induced
plasma. It may then cause preheating of the target core in laser-fusion
experiments.
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Fig. 283 Raman reflectvity as a funciion of incident laser intensity. The experiment
was conducted using 2 long-pulse CO, laser beam focused by an £/15 mirror into a
magneticatly confined, laser-heated, hydrogen plasma column. The circles represent the
average measured reflectivitics from numerous laser shots. Error bars indicate the
standard deviation. The dashed curves are theoretical curves with two different values
of a parameter A, taking into account nonlinear damping on the plasma wave, {After
Ref. 16.)
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Self-Focusing

Experiments on self-focusing due to intensity-dependent refractive index change
in a plasma are usually difficult. The initially existing refractive index variation
arising from the density distribution in a nonuniform plasma always tends Lo
confuse the observed results. This is particularly true in a laser-induced
plasma.

The earlier observations on self-focusing plasmas were carried out with
optical breakdown in air.?' Time-integrated photographs of the laser focal
volume showed the appearance of bright filaments at breakdown. These
filaments were only ~ 5 gm in diameter, which was 10 times smaller than the
focal diameter. They were formed by the very bright breakdown spots moving
in the backward direction. This is characteristically the same as that happens
with self-focusing in solids (see Section 17.5). Spectroscopic studies showed
that the scattered radiation from the breakdown region was spectralky broad-
ened, presumably because of self-phase modulation. The difficulty of such
experiments was that one could not be sure if the optical nonlinearity of the
plasma was the sole contributor to the refractive index variation. In many
cases, it was likely that seli-focusing was simply due 1o the piasma density
gradient ereated in the dynamic formation of the plasma.™

The self-focusing effect can be enhanced by the excitation of electron
plasma resonance via laser mixing.” The large pondermotive force of the
excited plasma waves then effectively creates a depression of the plasma
density on the beam axis, and the resultant refractive index change causes the
laser beam to self-focus. With a CO, laser beam of only 5 x 10° W /em? in
intensity and a plasma density of 0.6% of the critical density (¥, =
m i /4mq?), self-focusing was readily observed when the plasma wave was
resonanly excited by optical mixing.™

Nonlinear optical process will undoubtedly occur in laser compression of a
fusion target. They can predominantly affect the way energy is deposited onto
the target, They can also play an important role in producing uv and x-ray
radiation from a laser-induced plasma. The problems are, however, extremely
complex. In generating and heating a plasma, the laser irradiation creates such
chaos that all imaginable processes could take place. Difficulties in attaining a
guantitative understanding of the problems may seem insurmountable. Yet the
history of science has witnessed many such successes. Through perseverance
and intelligence, one can always hope to find order in chaos. It is in fact the
creation of order out of disorder that brings joy and excitement to devoted
scientists.
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