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Introduction

With the invention of the laser [1, 2] in general, and with the realization of the ruby
laser by Maiman in 1960 [3] in particular, the field of optics soon entered the new
era of nonlinear optics in 1961 [4]. In this regime, the optical properties of materials
are no longer independent of the intensity of light – as was believed for hundreds of
years before – but rather change with the light intensity, giving rise to a wealth of new
phenomena, effects and applications. Today, nonlinear optics has entered our everyday
life in many ways and has also been the basis for numerous new developments in
spectroscopy and laser technology. Indeed, from the moment of birth of nonlinear
optics, laser physics and nonlinear optics have been intimately related to each other.

1.1 “Traditional” Nonlinear Optics – Extreme Nonlinear Optics

Within “traditional” nonlinear optics, the absolute changes of the optical properties
are tiny if one follows them versus time on a timescale of a cycle of light. This simple
fact is the basis of many concepts and approximations of “traditional” nonlinear
optics – as described in a number of excellent textbooks [5–10]. Over the years,
however, lasers have improved in many ways, especially in terms of the accessible
peak intensities and in terms of the minimum pulse duration available. These days,
about 40 years after the invention of the laser, the shortest optical pulses generated are
about one and a half cycles of light in duration (see Fig. 1.1). This comes close to the
ultimate limit of a single optical cycle. By virtue of mode-locking [11] and specifically
of self-mode-locking [12] of solid-state lasers, such pulses can even be generated
directly from the laser oscillator. Moreover, thanks to the concept of chirped-pulse
amplification (CPA) [16, 17], amplified laser pulses with focused peak intensities in
the range of 1022 W/cm2 [18] are available in some laboratories (see Fig. 1.2). In ten
years from now, this gigantic number could possibly be further increased by another
several orders of magnitude. As a result of this, today’s light intensities can lead to
substantial or even to extreme changes on the timescale of light. We will see later in
this book that this somewhat vague statement can be specified by saying:
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Fig. 1.1. Development of the minimum available laser pulse duration tFWHM versus year
(schematically). The ruby laser came into operation in 1960 (arrow) and only five years later,
10-ps pulses were available. Thereafter, the pulse duration decayed almost exponentially for
two decades. Not too much happened in terms of duration after the 1987 world record of
Shank et al. [13] based on a dye laser and a dye amplifier. However, the subsequent solid-state
revolution [14, 15] led to an enormous progress in terms of reliability. The shortest possible
optical pulse duration of 2.4 fs is indicated (this is equivalent to 1.3 cycles of light at 2.25 eV
center photon energy, see Problem 2.2). In this figure, we do not consider sub-femtosecond
extreme ultraviolet pulses generated via high-harmonic generation (see Example III).

Whenever an energy associated with the light intensity becomes com-
parable to or even larger than a characteristic energy of the material or
system under investigation, the laws of “traditional” nonlinear optics fail
and something new is expected to happen.

We want to call this regime extreme nonlinear optics or carrier-wave nonlinear op-
tics. The latter is more precise, the notion extreme nonlinear optics is popular as it
sounds more “sexy”. Depending on the problem and/or system under consideration,
the energy associated to the light intensity, I , can be one of the five energies:

• Rabi energy ��R ∝ √
I

• Ponderomotive energy 〈Ekin〉 ∝ I

• Bloch energy ��B ∝ √
I

• Cyclotron energy �ωc ∝ √
I

• Tunneling energy ��tun ∝ √
I .

The characteristic energy of the system under investigation can be one of the three
energies:

• Carrier photon energy �ω0 (or transition energy ��)
• Binding energy Eb
• Rest energy m0c

2
0 .
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Fig. 1.2. Development of the maximum available focused laser intensity I versus year (schemat-
ically). A focused ruby laser in 1960 (see arrow) led to approximately ten million W/cm2. The
birth of chirped-pulse amplification (CPA) in 1985 is indicated. Thereafter, the intensity has
increased approximately exponentially for nearly two decades. Further increase is expected in
the future.

The following table gives an overview.

��R 〈Ekin〉 ��B �ωc ��tun

�ω0 3, 7.1, 7.2 4.2, 7.3 4.3 4.4, 4.5, 8.2 5.2, 5.3, 5.4, 8.1
Eb 5.2, 5.3, 5.4, 8.1

m0c
2
0 4.4, 4.5, 8.2 4.5

For example, the case 〈Ekin〉 � �ω0 will be discussed in Sects. 4.2 and 7.3. Missing
entries correspond to irrelevant cases.

This book would not have been written if the resulting modifications of “tradi-
tional” nonlinear optics had turned out to be minor corrections or details. Quite in
contrast to this, qualitatively new effects arise in extreme nonlinear optics. Let us
briefly address some of them here to give a first flavor of what this book is about.

Example I

In most of today’s green pump “lasers”, the green light is not actually generated di-
rectly by a laser. Instead, a near-infrared laser is doubled in its light frequency using
a so-called second-harmonic generation (SHG) crystal. Within “traditional” nonlin-
ear optics, such frequency doubling is only possible if the medium lacks inversion
symmetry. It would, e.g., not work in glass. In extreme nonlinear optics, we carefully
have to distinguish between the notions of frequency doubling on the one hand and
second-harmonic generation on the other hand. Whenever one of them interferes with
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another contribution, the distinction between the two becomes actually relevant. Both
can occur in media with inversion symmetry.

Frequency doubling refers to a peak in the spectrum at twice the laser carrier
frequency. It can, e.g., occur in semiconductors excited by intense few-cycle light
pulses via third-harmonic generation in the disguise of second-harmonic generation.
Experimentally, this mechanism can be as intense as “traditional” frequency doubling
via SHG. Another corresponding mechanism is carrier-wave Rabi flopping. Here,
a sideband of the laser carrier frequency can spectrally coincide with the second
harmonic.

Second-harmonic generation always leads to frequency doubling but it is more
stringent than frequency doubling. It requires that the carrier frequency of the radiation
is given by twice the laser carrier frequency. Conical second-harmonic generation
can lead to true SHG with a particular conical emission profile in isolators with
inversion symmetry or in gases. Another mechanism leading to true second-harmonic
generation in the presence of inversion symmetry is addressed in Example IV.

Example II

Most laser pulses are well described by a (slowly varying) temporal envelope and a
carrier-wave oscillation. The phase in between the two, the so-called carrier-envelope
offset phase, is practically irrelevant in “traditional” nonlinear optics. Why is this? As
we have argued above, the nonlinear optical changes are tiny on a timescale of a cycle
of light in “traditional” nonlinear optics and, hence, one can forget about the carrier-
wave oscillation and describe everything exclusively in terms of the envelope. Clearly,
at this point the carrier-envelope offset (CEO) phase drops out of the picture. As the
instantaneous light intensity is proportional to the square modulus of the electric-field
envelope, one can express most aspects of “traditional” nonlinear optics in terms of
the light intensity. This procedure is not valid in the regime of extreme nonlinear
optics and, thus, in this sense, it is meaningful to say that the electric field governs
the behavior rather than the light intensity. Hence, the CEO phase has a substantial
influence on the outcome of an experiment. It will, e.g., allow us to distinguish between
mere frequency doubling and true second-harmonic generation (see Example I). One
could, alternatively, also turn the story around and define extreme nonlinear optics by
a dependence of the nonlinear optical signals on the CEO phase.

We will see that the pulse-to-pulse change of the CEO phase, which is proportional
to the CEO frequency, has turned out to be a key in building optical clocks. Such
optical clocks can be so precise (relative precision around 10−15) that one might be
able to observe the change of fundamental “constants” – a discussion that started with
a 1937 paper of Dirac [19]. One could, e.g., possibly measure the variation of the fine
structure “constant” in the laboratory (via spectroscopy of hydrogen) on a laboratory
timescale rather than on a cosmological scale [20, 21].

Example III

As already pointed out above, optical pulses with a duration of less than an optical
cycle are generally not possible. For example, for red light with about 2 eV photon
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energy, a cycle of light corresponds to a period of about two femtoseconds. If one
wants to generate yet shorter pulses, the carrier frequency must be larger, bringing
us into the ultraviolet (UV) or extreme UV region. Unfortunately, laser oscillators in
this regime (apart from free electron lasers) are not readily available today. One of
the success stories of extreme nonlinear optics is the generation of high harmonics
in gases. At this point, “high” refers to the 101st or to the 247th harmonic of a laser.
Under appropriate conditions, such high harmonics can lead to single attosecond
pulses or pulse trains. Amazingly, corresponding experimental setups can even fit into
a regular-size laboratory, in turn allowing such pulses to be applied in spectroscopy
or, possibly, in extreme UV lithography of future computer chips.

Example IV

The interaction of a light wave with an electron in vacuum does not lead to any
nonlinear optical response within “traditional” nonlinear optics. In extreme nonlinear
optics, the cyclotron energy associated with the light field can become comparable
to the carrier photon energy, in which case the magnetic part of the Lorenz force
becomes important and relativistic effects occur. For example, true second-harmonic
generation (see Example I) can arise – even though an electron in vacuum clearly has
inversion symmetry.

Example V

Traditional nonlinear optics invalidates the superposition principle of light waves in
nonlinear optical media. Yet, in vacuum, the superposition principle of the Maxwell
equations still holds. This statement is no longer correct in extreme nonlinear optics.
Here, photogeneration of electron–positron pairs can lead to an effective photon–
photon interaction and, hence, to third-harmonic generation or even to Rabi oscilla-
tions, i.e., to a momentary inversion of the Dirac sea.

Range of intensities

To get a feeling for the involved laser intensities, let us consider the enormous
span of orders of magnitude shown in Table 1.1 ranging from the very dim to
the extremely bright. Here, the light intensity I covers more than fifty orders of
magnitude from I = 10−23 W/cm2 to I = 10+30 W/cm2. The visible part of the
black-body radiation at room temperature sets a lower bound as to how dark it can
get in a room (see Problem 1.1). The sun’s light intensity on the earth is 22 orders of
magnitude larger than that. Ten Watts of power from a continuous-wave laser with
a one-millimeter beam diameter, corresponding to a light intensity of 103 W/cm2,
hurt if you stick your finger in the beam. Try it! Another nine orders of magnitude
above, extreme nonlinear optics in solids starts. Yet another two orders of magnitude
further and extreme nonlinear optics in atoms takes place. Another three orders of
magnitude bring us to relativistic effects of electrons in vacuum. Five more orders
of magnitude might lead to the observation of nonlinear optics in vacuum, yet five
orders of magnitude more to the generation of Unruh radiation, which is somewhat
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Table 1.1. Light intensities I (in units of W/cm2) from the very dim to the extremely bright.

10+30 → generation of real electron–positron pairs from vacuum
10+28 → electron acceleration by light comparable to edge of black hole
10+26

10+24 → nonlinear optics of the vacuum ?
10+22

10+20 → photonuclear fission – light splits nuclei
10+18 → relativistic nonlinear optics of vacuum electrons
10+16

10+14 → electrostatic tunneling of electrons from atoms
10+12 → Rabi flopping in semiconductors becomes optical
10+10

10+8

10+6 → laser intensity in the first experiment on nonlinear optics in 1961
10+4

10+2 → a continuous-wave laser of that intensity hurts
1 → total intensity of the sun on the earth’s surface (10−1 W/cm2)

10−2 → thermal radiation from a human
10−4

10−6

10−8

10−10 → total intensity of the cosmic 2.8 K background radiation
10−12

10−14

10−16

10−18

10−20

10−22 → visible intensity in a “dark” room at 300 K (10−23 W/cm2)

similar to Hawking radiation from the edge of a black hole. At the gargantuan
intensity of I = 1030 W/cm2, the Schwinger intensity, the potential drop of the laser
electric field over the electron Compton wavelength is comparable to the electron
rest energy.

Problem 1.1. Calculate the light intensity in a “dark” room held at room temperature
(T = 300 K).

1.2 How to Read this Book?

Within this book, we will describe these and other phenomena starting from a rather
elementary level. Even readers not familiar with “traditional” nonlinear optics at
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all should be able to follow the lines of argument as crucial results of “traditional”
nonlinear optics are repeated.

You can read this book from the beginning to the end. But there are alternative
ways to use it. For example, some readers might be familiar with the Lorentz oscillator
model and the Drude model, which are frequently used to describe the linear opti-
cal properties of materials on an elementary level. The two self-contained chapters
on “The Lorentz Oscillator Model and Beyond ...” describing bound–bound transi-
tions and on “The Drude Free-Electron Model and Beyond ...” on unbound–unbound
transitions start from these simple models and gradually and pedagogically guide
the reader into extreme nonlinear optics using pretty “harmless” mathematics. The
following chapter “Lorentz Becomes Drude: ...” discusses the mixed case of bound–
unbound transitions. A number of examples and problems help the reader to become
familiar with the concepts and the relevant quantities and numbers. Depending on
your background, an introduction into few-cycle laser pulses and their properties can
be found in the chapter on “Selected Aspects of Few-Cycle Laser Pulses and Nonlin-
ear Optics”. More advanced readers might already be familiar with these basics and
decide to jump to later chapters. There, we have attempted to give a rather concise
overview about experiments on extreme nonlinear optics in various systems, ranging
from electrons bound in solids to electrons bound in atoms to electrons in vacuum.

It is strongly recommended to consider the problems while progressing with the
text in order to test whether you are actually familiar with the material. These problems
are an integral part of this book. Some of them are easy, others are rather difficult,
some ask for a qualitative answer, others require a few pages of mathematics. Required
fundamental constants can be found in the list of symbols. The detailed solutions of
all problems are given at the end of this book.

Whenever you become lost with any of the mathematical symbols, the list of
symbols at the end of the book comes to the rescue. We have avoided the use of the
same symbol for different quantities as much as possible. Note that, as a result, some
symbols are not identical to what is most commonly used in a specific community.
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Selected Aspects of Few-Cycle Laser Pulses and
Nonlinear Optics

The basic principle of a laser is simple: It consists of a resonator (see Fig. 2.1) and a
light amplifier – the gain medium. For the purpose of this book, the quantum optical
aspects of the light field are not important, hence, it is sufficient to consider the
well-known Maxwell equations of electrodynamics [22].

L

�

Fig. 2.1. Scheme of a laser resonator, consisting of two mirrors separated by length L. A
snapshot of a single mode (N = 4) of the electric field at wavelength λ is shown.

2.1 Maxwell Equations

In S.I. units the Maxwell equations are given by

∇ · D = ρ (2.1)

∇ × E = −∂B

∂t
(2.2)

∇ · B = 0 (2.3)

∇ × H = +∂D

∂t
+ j . (2.4)



10 2 Selected Aspects of Few-Cycle Laser Pulses and Nonlinear Optics

ρ is the electric charge density and j the electric current density. In media, the relation
between the E-field and the D-field is given by1

E = 1

ε0
(D − P ) , (2.5)

with the macroscopic polarization P , and, similarly, for the B-field and the H -field
the relation

B = µ0 (H + M) , (2.6)

with the magnetization M . For the materials relevant in the context of this book,
M = 0 holds, and (2.6) simplifies to

B = µ0 H . (2.7)

In linear optics, one has
P = ε0χE , (2.8)

with the linear optical susceptibility χ . In this case, (2.5) simplifies to

D = ε0 ε E , (2.9)

with the relative dielectric function ε = 1 + χ . The Maxwell equations can be
rewritten into the known wave equation2 for the E-field

�E − 1

c2
0

∂2E

∂t2
= +µ0

∂2P

∂t2
, (2.10)

or, using (2.8), into

�E − 1

c2

∂2E

∂t2
= 0 , (2.11)

with the medium velocity of light c = c0/n, which is slower than the vacuum velocity
of light c0 = 1/

√
ε0 µ0 = 2.998 × 108 m/s by a factor identical to the (generally

complex) refractive index n with

n = √
ε . (2.12)

2.2 The Light Intensity

Our eyes and most detectors are not sensitive to the electric field itself but to the
number of photons that hit the detector per unit time. In other words, classically
speaking: They are sensitive to the cycle-average of the modulus of the Poynting

1 ε0 = 8.8542 × 10−12 A s V−1m−1 and µ0 = 4π × 10−7 V s A−1m−1 .
2 Coming from Karlsruhe, we just have to remind you that it was Karlsruhe where H. Hertz

found the first experimental evidence for electromagnetic waves in the year 1887.
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vector S = E ×H . For plane waves in vacuum one has |B| = |E|/c0 or equivalently

|E| = |H |
√

µ0
ε0

, with the vacuum impedance

√
µ0

ε0
= 376.7301 � , (2.13)

leading to

S = |S| =
√

ε0

µ0
|E|2 , (2.14)

which generally varies with time. For an electric field according to, e.g.,

|E(t)|2 = Ẽ2
0 cos2(ω0t + φ) , (2.15)

the light intensity I , which is defined as the cycle-average3 of the modulus of the
Poynting vector, becomes4

I = 〈S〉 = 1

2

√
ε0

µ0
Ẽ2

0 . (2.16)

Note that the intensity I does not depend on φ.

� Example 2.1. An electric field of Ẽ0 = 4 × 109 V/m in vacuum corresponds to an
intensity of I = 2.1 × 1012 W/cm2. For comparison: This intensity corresponds to
concentrating the power of a thousand power plants with a power of 2 GW each onto
an area comparable to your finger tip – for a very short time. For the same electric
field, the peak of the B-field envelope is B̃0 = µ0

√
ε0/µ0 Ẽ0 = Ẽ0/c0 = 13.3 T.

�

Problem 2.1. A light field with Ẽ0 = 4×109 V/m propagates from air into a dielec-
tric with ε = 10.9. Suppose that reflections are completely suppressed via an ideal
antireflection (AR) coating. What is Ẽ0 inside the dielectric?

2.3 Electric Field in a Laser Resonator

Solutions of the wave equation (2.11) are, e.g., plane waves with

E(r, t) = E0 cos (Kr − ωt − φ) = E0

2
exp (i (Kr − ωt − φ)) + c.c. , (2.17)

which have to obey the dispersion relation of light

3 Remember that 〈cos2(ω0t + φ)〉 = 1/2.
4 Within a dielectric, ε0 has to be replaced by ε0 ε in this relation.
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ω

|K| = c = c0

n(ω)
(2.18)

for the frequency ω and the wavevector of light K .
For the resonator shown in Fig. 2.1, we have the superposition of left-going and

right-going waves, i.e., a standing wave, such that the electric field has nodes at the
two mirrors, E(z = 0, t) = E(z = L, t) = 0. Thus, the length L of the resonator
has to be an integer multiple, let us say N , of half the wavelength of light λ:

L = N
λ

2
. (2.19)

With the dispersion relation of light (2.18) and with |K| = 2π/λ, this can be rewritten
into

ωN = N �ω , (2.20)

with the mode spacing

�ω = c
π

L
. (2.21)

� Example 2.2. For a resonator with length L = 1.5 m and with c = c0 we obtain
�ω = 2π × 100 MHz, which is within the radio-frequency (RF) regime. �

The superposition principle tells us that any linear combination of these eigen-
solutions is also a solution of the resonator problem and we can write the general
solution of standing waves in the resonator as

E(r, t) =
∞∑

N=1

2 EN
0 sin(KNz) sin(ωN t + ϕN) . (2.22)

Details depend on the amplitudes EN
0 , the phases ϕN of the modes with N = 1–∞ and

also on the dispersion relation (2.18) that connects the KN and the ωN . Let us consider
three cases, (a)–(c) in Fig. 2.2, in which we study one component of the electric-field
vector, E(t) = Ex,y(r = const., t), at a fixed point in space within the cavity. For
the sake of simplicity we assume that the mode amplitudes are either constant or
zero (which mimics the finite bandwidth of the gain medium), i.e., EN

0 = E0 for all
frequencies in the interval [ω0 − δω/2, ω0 + δω/2] and EN

0 = 0 else. We choose
δω/ω0 = 0.6.

In (a) we consider many modes N with random phases ϕN , c = const. This leads
to an electric field that looks like noise with some average intensity (Fig. 2.2(a)). This
situation corresponds to a multimode continuous-wave (cw) laser – a bad cw laser.
We conclude that a good cw laser must only work on a single mode.

In (b) all the phases ϕN are equal – they are locked – in which case we can set
them to zero, c = const. A periodic train of identical pulses results (Fig. 2.2(b)). The
duration of the individual pulses is inversely proportional to the width of the frequency
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Fig. 2.2. Electric field versus time t in the middle of the laser cavity according to (2.22). (a)
Random phases ϕN , c = const., (b) ϕN = 0 for all N , c = const., (c) ϕN = 0 for all N ,
c = c(ωN) �= const. Note that (b) and (c) have been demagnified with respect to (a) in the
vertical direction by a factor of about 106.

interval δω. How can one realize this locking of the modes experimentally? By active
or passive modulation of the resonator properties with frequency �ω, which is called
mode-locking! Such modulation of the mode with frequency ωN leads to sidebands
at ωN + �ω = ωN+1 and ωN − �ω = ωN−1 for all N . This couples all the modes,
hence it locks their phases ϕN , and it leads to a perfectly equidistant spacing of the
modes in frequency space.

In (c) we give up the unrealistic assumption of a constant velocity of light c in
the resonator, but the modes will still be equidistant in frequency. The corresponding
time-domain behavior of (2.22) is schematically shown in Figs. 2.2(c) and 2.3. The
pulses are not identical under these conditions. In one roundtrip, a shift of the phase
between the envelope and the carrier wave results from the fact that the group velocity
vgroup at frequency ω0 (the velocity of the envelope)

vgroup = dω

dK
, (2.23)

with K = |K| and the phase velocity vphase (the velocity of the carrier wave at
frequency ω0)

vphase = c = ω

K
(2.24)



14 2 Selected Aspects of Few-Cycle Laser Pulses and Nonlinear Optics

��

Fig. 2.3. Magnification of the electric field versus time from the RHS of Fig. 2.2(c). The gray
area corresponds to the electric-field envelope. In this example, the CEO phase is φ = +π/2,
which corresponds to a pulse-to-pulse phase shift of �φ = +π/2 in Fig. 2.2(c).

are no longer identical. We can define a corresponding carrier-envelope offset fre-
quency fφ that is generally different from the repetition frequency fr = 1/tr =
�ω/(2π). From Fig. 2.2(c) it becomes clear that the electric field according to (2.22)
can alternatively be expressed5 as

E(t) =
+∞∑

N=−∞
Ẽ(t − N tr) cos

(
ω0(t − N tr) + N �φ + φ

)
. (2.25)

The cosine-term is the carrier-wave oscillation with carrier frequency ω0, the pref-
actor Ẽ is called the envelope of the pulse (gray areas in Fig. 2.2). tr is the roundtrip
time, �φ the pulse-to-pulse phase slip, and φ an overall phase. (N�φ + φ) is under-
stood as mod 2π , i.e. for all integers N , the term is an element of the interval [0, 2π ].
Later, we will only consider one pulse out of the pulse train according to (2.25), e.g.,
the one with N = 0, which leads to an electric field of

E(t) = Ẽ(t) cos(ω0t + φ) , (2.26)

with the so-called carrier-envelope offset (CEO) phase6 φ. The CEO phase of a single
pulse has to be distinguished from the well-known relative optical phase between two
beams or pulses, e.g., in a Michelson interferometer.

5 Note that the choice of the carrier frequency ω0 is somewhat arbitrary, especially if the
pulses are chirped. Often, one chooses ω0 as the center of mass of the frequency spectrum
of the laser pulses.

6 The CEO phase is sometimes also called the absolute optical phase.
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What is the frequency-domain analogue of this behavior? We compute the Fourier
transform of the electric field, E(ω), via

E(ω) = 1√
2π

∫ +∞

−∞
E(t) e+iωt dt (2.27)

= 1√
2π

∫ +∞

−∞

+∞∑
N=−∞

Ẽ(t − N tr) cos
(
ω0(t − N tr) + N �φ + φ

)
e+iωt dt .

The cosine-term can be written according to

cos(ω0t + ...) = 1

2

(
e+i(ω0t+...) + e−i(ω0t+...)

)
. (2.28)

The exponential with the “minus” sign leads to a peak in E(ω) at positive frequencies
ω, the term with the “plus” sign to a peak at negative ω. The latter is omitted at this
point (the range of validity is discussed in Example 2.4) and we get

E(ω) = 1√
2π

∫ +∞

−∞

+∞∑
N=−∞

Ẽ(t − Ntr)
1

2
e−i(ω0(t−N tr)+N �φ+φ) e+iωt dt

= 1

2

( +∞∑
N=−∞

e−i(N(�φ−ω0tr)+φ)

(
1√
2π

∫ +∞

−∞
Ẽ(t − Ntr) e+i(ω−ω0)tdt

))

= 1

2

( +∞∑
N=−∞

e−i(N(�φ−ω0tr)+φ) e+iN(ω−ω0)tr

)

×
(

1√
2π

∫ +∞

−∞
Ẽ(t ′) e+i(ω−ω0)t

′
dt ′
)

︸ ︷︷ ︸
=: Ẽω0(ω − ω0)

= e−iφ

2

( +∞∑
N=−∞

e−iN(�φ−ωtr)

)
Ẽω0(ω − ω0) . (2.29)

From the second to the third line we have substituted t ′ = (t − Ntr). Ẽω0(ω − ω0)

is the envelope of the optical spectrum7. With an optical spectrometer8 one usually

7 In order to distinguish this envelope at carrier frequency ω0 from other envelopes that will
occur in this book, we have introduced the index ω0.

8 The full width at half-maximum (FWHM), δω, of the intensity spectrum multiplied by the
FWHM of the temporal intensity profile, δt , is the duration–bandwidth product δω δt . One
obtains δω δt ≥ 2π ×0.4413 for a Gaussian, i.e., for a exp(−t2) pulse, δω δt ≥ 2π ×0.8859
for a sinc2(t) = (sin(t)/t)2 pulse, δω δt ≥ 2π ×0.3148 for a sech2(t) = 1/cosh2(t) pulse,
and δω δt ≥ 2π × 0.1103 for a one-sided exponential, i.e., for a �(t) exp(−t) pulse [23].
The latter is the absolute minimum of the product δω δt for any pulse shape. For all these
cases, the equality applies for zero chirp.
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measures the intensity spectrum ∝ |Ẽω0(ω − ω0)|2 (which neither depends on φ nor
on �φ). The spectrum is modulated by the sum over the exponentials in the last line
of (2.29). The significant values of ω in this sum are those for which the terms for,
e.g., N and (N + 1) add constructively, i.e., for which we have (ωtr − �φ) = M 2 π

with integer M . This yields an equidistant ladder of angular frequencies ωM with

ωM = M
2 π

tr
+ �φ

tr
. (2.30)

Finally, we can convert from angular frequencies to frequencies via ωM = 2π fM

and obtain

fM = M fr + fφ , (2.31)

with the repetition frequency fr = 1/tr = �ω/(2π) (see (2.21))

fr = c

2 L
(2.32)

and the carrier-envelope offset frequency

fφ = fr
�φ

2π
≤ fr . (2.33)

If fφ �= 0, this frequency comb has a certain offset frequency [24–28]. If one can ar-
range for fφ = 0, on the other hand, the eigenfrequencies form a ladder of equidistant
frequencies starting at zero frequency with M = 0. These findings are summarized
in Fig. 2.4.

E(f)

0
0 fr f

f
�

Fig. 2.4. Scheme of the frequency-domain analogue, E(f ), of the temporal behavior, E(t),
shown in Fig. 2.2(c). The spectrum exhibits peaks at the frequencies fM = M fr + fφ with
integer M , i.e., the equidistant frequency comb is upshifted by the carrier-envelope offset
frequency fφ . The actual E(f ) corresponding to Fig. 2.2(c) contains more than 106 densely
spaced peaks within the optical spectrum (indicated by the gray area).

� Example 2.3. Let us compute the carrier-envelope offset frequency fφ for the fol-
lowing parameters: L = 1.5 m, vgroup = 99.9999% c0, vphase = c0, �ω0 = 1.5 eV
⇔ 2π/ω0 = 2.8 fs. The difference, �t , between the round-trip group delay time and
the phase delay time is �t = 2L/vgroup − 2L/vphase. With 1/(1 − x) ≈ (1 + x) for
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x 
 1 we get �t ≈ 2L/c0 × ((1 + 10−6) − 1) = 10 ns × 10−6 = 10 fs. This leads
to �φ = (10 fs/(2.8 fs) × 2π) mod 2π = (3.57 × 2π) mod 2π = 0.57 × 2π . With
(2.33) and with fr = 100 MHz from Example 2.2 ⇒ fφ = 57 MHz. �

The time standard for one second within the S.I. system is related to a frequency
of 9 192 631 770 Hz ≈ 9 GHz. This frequency can rather easily be locked to the
repetition frequency fr of the oscillator, which is typically around 100 MHz (see
Example 2.2). If the pulse-to-pulse phase shift �φ can be stabilized to �φ = 0
(Sect. 2.6), the frequency comb starts at zero frequency and looks much like a ruler
for frequencies where one simply counts the number of millimeter markers to mea-
sure a length. This allows us to connect the time standard for one second in the GHz
regime to optical frequencies at hundreds of THz. Previously, this required a very (!)
complicated procedure (see references given in Refs. [26, 28]). The corresponding
important implications for metrology (i.e., for using femtosecond lasers as frequency
standards) are nicely discussed in rather recent review articles [26–28]. Some authors
even speculate that this increased precision in measuring time might lead to exper-
iments in which one could possibly observe the temporal variation of fundamental
“constants” versus time on laboratory timescales [29–31]. If one could, e.g., measure
the atomic Rydberg constant with increased frequency precision (relative precision
of 10−15 or better), this value could be related to the fine-structure constant. Per-
forming such an experiment today and comparing it to the result one year or several
years later might reveal a difference. Strange but true: The ultrafast becomes useful
for the ultraslow or ultraprecise, respectively. Relative precisions down to 10−18 are
anticipated [32].

Let us finally note that one must be cautious with the choice of the electric-field
envelope Ẽ(t) according to (2.26). In actual experiments, the optical spectrum does
not contain zero-frequency (dc) components. According to the Maxwell equations,
zero-frequency components are not radiated at all, low-frequency components are not
efficiently radiated. Furthermore, they correspond to very large wavelengths, which
do not propagate into the optical far-field because of diffraction. Zero dc component
is equivalent to a vanishing time-average of the electric field, i.e., to the condition

∫ +∞

−∞
E(t) dt = 0 (2.34)

for any value of the CEO phase φ. The Ẽ(t) ∝ sinc(t) pulses (see, e.g., Fig. 2.4) we
have discussed above and that we will frequently use below, do fulfill this condition
for arbitrary values of φ. Generally, in the theory, however, one can get significant
tails in the optical spectrum towards zero frequency for certain envelopes (which are
well localized in time or that have steeply rising/falling edges) and values of φ. In
this case, the electric-field envelope must not be assumed to be independent of φ.
If one assumes a fixed envelope anyway, the light–matter interaction loses its gauge
invariance [33] and unphysical results are expected.
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� Example 2.4. For what pulse duration, measured in terms of the number of cycles in
the pulse, do we expect unphysical results from the decomposition of the field into an
envelope and a carrier-wave oscillation? Let us consider a Gaussian pulse according
to E(t) = Ẽ(t) cos(ω0t + φ) with Ẽ(t) = Ẽ0 exp(−(t/t0)

2). Its temporal full width

at half-maximum of the intensity profile is given by δt = t0 2
√

ln
√

2 ≈ 1.177 × t0.
Taking advantage of the mathematical identity∫ +∞

−∞
e−ax2+bx+c dx =

√
π

a
exp

(
b2

4 a
+ c

)
, (2.35)

the Fourier transform of the electric field, E(ω), results as

E(ω) = 1√
2π

∫ +∞

−∞
E(t) e+iωt dt

= Ẽ0 t0

2
√

2

(
e− 1

4 t2
0 (ω−ω0)

2
e−iφ + e− 1

4 t2
0 (ω+ω0)

2
e+iφ

)
(2.36)

=: E+(ω) + E−(ω) .

For later use, we have defined E+(ω) and E−(ω) as that part of the spectrum corre-
sponding to the maximum at positive and negative frequencies ω, respectively. For
φ = π/2, the spectrum contains strictly no dc component for any value of ω0t0, i.e.
E(ω = 0) = 0. For φ = 0 on the other hand, the spectrum does contain an unphys-
ical dc component. If the pulse contains a single optical cycle (see Fig. 3.1), i.e., if
δt = 2π/ω0, thus ω0t0 ≈ 0.85 × 2π , the dc component is merely 1.6 × 10−3 relative
to the global maximum of the spectrum and is expected to have negligible effect. For
a half-cycle pulse, δt = π/ω0, on the other hand, the dc component makes up about
one third of the peak, which is definitely nonsense.

A related artifact that comes into play for such half-cycle pulses is that the spectral
center of gravity of the positive-frequency part of |E(ω)|2 according to (2.37) is no
longer identical to ω0 and shifts by as much as 20% depending on the CEO phase φ.
This shift is due to the high-frequency tail of the maximum centered at ω = −ω0,
which extends up to positive frequencies ω. For a single-cycle pulse, this shift is still
negligible and we have E(ω) ≈ E+(ω) for ω > 0. We will take advantage of this
approximation at several points of this book.

Other pulse envelopes than Gaussians can be slightly more “forgiving”, but one
should generally be very cautious with pulses shorter than one cycle of light. Usually,
single-cycle pulses are unproblematic in terms of defining an envelope. �

Problem 2.2. What – in principle – are the shortest optical pulses achievable?



2.4 A Brief Look at Phenomenological Nonlinear Optics 19

2.4 A Brief Look at Phenomenological Nonlinear Optics

In order to proceed to measuring the carrier-envelope offset frequency fφ in Sect. 2.6,
we need a little mathematical background on nonlinear optics. Some readers may
want to skip this section. We do take the opportunity, however, to precisely define
what we mean by, e.g., second-harmonic generation.

In many textbooks one finds that

P(t) = ε0

(
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...

)
, (2.37)

is the generalization of the linear optical polarization, (2.8), for large electric fields
[5,22]. This is nothing but a Taylor expansion of the optical polarization P in terms of
the laser electric field E. What else could one do without getting into the details ? The
coefficients χ(N �=1) are the nonlinear optical susceptibilities of order N , χ(1) = χ

is the linear optical susceptibility. Vectors are omitted for simplicity at this point.
In vectorial form, the susceptibilities would become tensors of rank N . The range
of validity of (2.37) is limited. It obviously assumes an instantaneous response of
P(t) with respect to E(t), equivalent to no or negligible frequency dependence of the
χ(N). This is only justified “far away” from a resonance of the material. Also, (2.37)
is only really meaningful if the terms become rapidly smaller with increasing order
N , i.e., if the electric field is not too large – if it is within the perturbative regime (see
Problem 3.6).

The second temporal derivative of the polarization in (2.37) is the source term
on the RHS of the wave equation (2.10). Consider the second-order contribution that
– via the wave equation – gives rise to a second-order nonlinear contribution to the
electric field E(2)(t). Ignoring propagation effects at this point, it is given by

E(2)(t) ∝ χ(2) ∂2

∂t2
E2(t) (2.38)

= χ(2) ∂2

∂t2

(
Ẽ2(t) cos2(ω0t + φ)

)
= χ(2) ∂2

∂t2

(
Ẽ2(t)

1

2

(
1 + cos(2ω0t + 2φ)

))
.

The “1” in the last line reflects so-called optical rectification or the photogalvanic
effect. It is not of much interest in this book because its second temporal derivative
obviously vanishes. In other words: dc components do not lead to propagating elec-
tromagnetic waves. The other contribution has carrier frequency 2ω0 and phase 2φ.
We want to call it second-harmonic generation (SHG).
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Similarly, the third-order susceptibility leads to a third-order contribution to the
electric field

E(3)(t) ∝ χ(3) ∂2

∂t2
E3(t) (2.39)

= χ(3) ∂2

∂t2

(
Ẽ3(t) cos3(ω0t + φ)

)
= χ(3) ∂2

∂t2

(
Ẽ3(t)

1

4

(
3 cos(ω0t + φ) + cos(3ω0t + 3φ)

))
,

which contains one contribution with carrier frequency ω0 and phase φ and another
one with carrier frequency 3ω0 and phase 3φ. The latter is called third-harmonic gen-
eration (THG). The term at carrier frequency ω0 resulting from completely neglecting
the temporal derivatives of the envelope Ẽ3(t) is called self-phase modulation (SPM).
For few-cycle pulses, however, the derivative of the envelope can become compara-
ble in magnitude to that of the carrier wave. The additional term that results from
accounting for a single derivative of the envelope only (∝ Ẽ2(t) ∂Ẽ/∂t) is often
called self-steepening.

Note that the SPM is proportional to Ẽ3(t). If, e.g., the electric-field envelope
Ẽ(t) is a Gaussian with Ẽ(t) = Ẽ0 exp(−(t/t0)

2), its third power is again a Gaussian
but narrower in time by a factor of

√
3 as we have

Ẽ3(t) =
(

Ẽ0 e
−
(

t
t0

)2
)3

= Ẽ3
0 e

− 3
(

t
t0

)2

= Ẽ3
0 e

−
(

t

t0/
√

3

)2

. (2.40)

Correspondingly, its spectral width is larger by factor
√

3 – SPM broadens the spec-
trum. We can easily generalize this result for Gaussian pulses: The spectral width of a
contribution of order N is larger than that of the fundamental by factor

√
N . For other

shapes of the envelope, the numerical factor is different but the qualitative behavior
is the same (also see Problem 2.3).

Finally, the χ(4) susceptibility leads to

E(4)(t) ∝ χ(4) ∂2

∂t2
E4(t) (2.41)

= χ(4) ∂2

∂t2

(
Ẽ4(t) cos4(ω0t + φ)

)
= χ(4) ∂2

∂t2

(
Ẽ4(t)

1

8

(
3 + 4 cos(2ω0t + 2φ) + cos(4ω0t + 4φ)

))
.

We again get optical rectification and second-harmonic generation. The contribution
with carrier frequency 4ω0 and phase 4φ is called fourth-harmonic generation.

Note that our definition of a harmonic of order N is solely based on the carrier
frequency and the phase. It makes no reference to the position of that contribution
in the optical spectrum and does not necessarily scale with the N -th power of the
incoming light (compare, e.g., SHG from a χ(2) or from a χ(4) process). While the
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carrier frequency is neither uniquely defined nor directly measurable, the phase of
the N -th harmonic can be accessed via interference experiments. This aspect will
be further discussed in Sect. 3.4. If a resonance comes into play, the phase of, e.g.,
the third harmonic can be shifted from 3φ to 3φ + δ. The factor of “3” in front of φ,
however, still uniquely defines third-harmonic generation. This is all we need to know
in order to be able to follow the discussion on the carrier-envelope offset frequency
in Sect. 2.6.

Frequently, nonlinear optics is discussed in terms of the so-called (i) nonlinear
refractive index and (ii) the two-photon absorption coefficient. Both are directly
related to the nonlinear optical susceptibilities. (i) Inserting the self-phase-modulation
contribution of the third-order nonlinear polarization according to (2.37) on the RHS
of the wave equation (2.10), bringing it to the LHS and lumping it into an effective
refractive index n leads to n = n0 + n2I . Here we have introduced the intensity
I according to (2.16) and have performed a Taylor expansion with respect to I .
n0 is the linear refractive index and n2 the nonlinear refractive index. The latter is
connected to the third-order susceptibility according to χ(3) = 4/3 c0n

2
0ε0n2. (ii) The

linear absorption coefficient α is proportional to the imaginary part of the complex
linear refractive index. Thus, one anticipates the general intensity-dependent
form α = α0 + α2I in analogy to the nonlinear refractive index. To get there
systematically, however, one needs to introduce a more general complex form for
the nonlinear optical susceptibilities than we have done in (2.37) (where they are
real). This effectively allows phase shifts between the electric field and the nonlinear
polarization to be described. The two-photon absorption coefficient then turns out to
be proportional to the imaginary part of the complex third-order nonlinear optical
susceptibility. Readers interested in more details on these aspects of traditional
nonlinear optics are referred to the excellent textbooks [5, 6].

Problem 2.3. Consider the generation of the N -th harmonic via a χ(N) process by a
few-cycle optical pulse in the limit N � 1. Show that the shape of the N -th harmonic
spectrum is approximately a Gaussian with width ∝ √

N for arbitrary “well-behaved”
incident pulse shapes.

2.5 Even-Harmonic Generation and Inversion Symmetry

Let us slow down for a moment and see how second-harmonic generation and even-
harmonic generation in general are connected to the symmetry of the material or
medium under investigation. This might avoid some confusion that could arise later
in this book otherwise. Indeed, one often encounters misconceptions at this point.

Consider space inversion, i.e., we have to replace r → −r . Thus, we replace
E(t) → −E(t) and P(t) → −P(t) in (2.37). As (−E(t))2 = E2(t), (−E(t))4 =
E4(t), ... it follows that χ(2) = χ(4) = ... = 0, while χ(1), χ(3), ... can be nonzero. In
the previous section we have seen that second-harmonic generation requires that some
χ(N) with even N is nonzero. From this it follows that second-harmonic generation
is only possible in media without inversion symmetry.



22 2 Selected Aspects of Few-Cycle Laser Pulses and Nonlinear Optics

Have we really proven this statement? No, we have not! The nonlinear optical
polarization P according to (2.37) depends on the electric field – but not on the
magnetic field. Isn’t this surprising? Wouldn’t one generally expect that P is a function
of both E and B? After all, the light field from a laser has an electric component and
a magnetic component and the two are proportional to each other. As a result of the
laser field, charged particles experience a force – the Lorentz force

F = q (E + v × B) , (2.42)

where q is the charge of the particle and v its velocity. This force gives rise to a
displacement of the particle with respect to some fixed opposite charge, hence to
a polarization, which depends on both electric and magnetic field of the light. The
details will be discussed in Sect. 4.49. It is clear, however, that v is proportional to E to
the lowest order. Thus, the force and the displacement and the polarization vector are
parallel to the vector product E×B. For a free and nonrelativistic charge, v and E are
shifted in time by 90 degrees. Having noticed all this, we have to rewrite the expression
for the nonlinear optical polarization. For simplicity, we consider excitation with a
plane wave with constant light intensity at this point, where E = E0 cos(ω0t + φ)

and B = B0 cos(ω0t + φ), hence v = v0 sin(ω0t + φ). Under these conditions, we
anticipate the more general form10

P (t) = ε0

(
χ(1)E0 cos(ω0t + φ)

+ χ(2)E2
0 cos2(ω0t + φ) + χ(3)E3

0 cos3(ω0t + φ) + ...

+ χ
(2)
L E0 × B0 sin(2ω0t + 2φ) + ...

)
. (2.43)

The last contribution ∝ E0 × B0 in this sum is new as compared to what we have
in (2.37). It obeys the relation E ⊥ P ⊥ B. As the wavevector of light K follows
E ⊥ K ⊥ B, we have P ||K – i.e., a longitudinal polarization. This is in sharp
contrast to the other terms that are transverse, i.e., which obey P ⊥ K . According to
our above discussion, the term ∝ E0 × B0 sin(2ω0t + 2φ) corresponds to second-
harmonic generation as it has carrier frequency 2ω0 and phase 2φ ± π/2. The sign
depends on whether the prefactor χ

(2)
L is positive or negative. Can χ

(2)
L be nonzero in

an inversion symmetric medium?
For space inversion we again have to replace r → −r , E → −E, P → −P

but (watch out here!) B → +B, because the magnetic field vector is an axial vector.
Consequently, we have to replace E × B → −E × B. Hence, χ

(2)
L can be nonzero

in an inversion symmetric medium and second-harmonic generation can also occur
in the presence of inversion symmetry11.

9 There, we will see that the nonlinear optical polarization contains yet another strange term,
namely one that, for constant light intensity, grows linearly in time t according to P =
... + χ

(0)
L (E0 × B0) t , the so-called “photon-drag” current.

10 Remember that sin(ω0t + φ) cos(ω0t + φ) = 1
2 sin(2ω0t + 2φ).

11 An optically induced magnetization M can also lead to SHG in a centrosymmetric material,
for example see Ref. [34].
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Even if χ(2) = χ(4) = ... = χ
(2)
L = ... = 0 should hold, we generally cannot

conclude that frequency doubling is only possible without inversion symmetry. Here,
we define the phenomenon of frequency doubling by a peak or a strong contribution in
the optical spectrum at the spectrometer frequency ω given by ω = 2ω0. In Sect. 3.4
we will see that frequency doubling can even arise from the simple two-level system in
the regime of extreme nonlinear optics. Moreover, it turns out that peaks at ω/ω0 = N

with even integers N are the rule rather than the exception within the two-level system.

2.6 Principle of Measuring the Carrier-Envelope Frequency

In Sect. 2.3 we have seen that the carrier-envelope phase φ and the carrier-envelope
offset frequency fφ are important parameters of a mode-locked laser oscillator. If one
wants to stabilize or control fφ , one obviously first needs to be able to measure fφ ,
equivalent to determining the pulse-to-pulse change of the CEO phase �φ. How can
one measure φ of a laser pulse E(t) according to (2.26)? It drops out when measuring
the intensity (see Sect. 2.2), it does not affect the optical spectrum, it does not show
up in usual intensity autocorrelations or field autocorrelations. Generally, in order to
observe a phase, one needs to compare the unknown field with a “reference”.

The idea: If one had another field that contained a phase 2φ rather than 1φ of
the electric field itself, the interference of the two contributions (the beat note) would
oscillate with the difference, i.e. with (2 − 1) × φ = φ. This procedure is called
self-referencing and was first introduced by Hänsch and coworkers [35].

Such “reference” can be generated by sending the laser electric field E(t) =
Eω0(t) = Ẽ(t) cos(ω0t + φ) onto a suitable nonlinear optical material, e.g., a SHG
crystal. Let us consider the resulting interference of the fundamental and the second
harmonic with E2ω0(t) ∝ Ẽ2(t) cos(2ω0t + 2φ) in frequency space. The Fourier
transforms of the cosine-terms of the different electric field contributions have maxima
at positive and at negative frequencies. As in Sect. 2.3, we focus on the measurable
positive frequency components (corresponding to the minus sign in the exponent).
For a train of pulses, the resulting intensity from the interference can be written as

Iω0,2ω0(ω) ∝ ∣∣e−iφẼω0(ω) + e−i2φẼ2ω0(ω)
∣∣2 (2.44)

= ∣∣Ẽω0(ω)
∣∣2 + ∣∣Ẽ2ω0(ω)

∣∣2
+ 2 |Ẽω0(ω) Ẽ2ω0(ω)

∣∣× cos(φ) .

The cos(φ)-term delivers the desired and anticipated dependence on φ. In order to ac-
tually observe this contribution in an experiment, at least the following two conditions
have to be fulfilled.

• The amplitudes Ẽω0(ω) and Ẽ2ω0(ω) must be comparable in absolute value, oth-
erwise the two constant, i.e., φ-independent, terms in (2.44) completely dominate
the measured intensity Iω0,2ω0 . This condition can generally be fulfilled at some
frequency ω in the optical frequency interval [ω0, 2ω0].

• The product term must exhibit appreciable absolute strength in order not to be
covered by noise in the experiment.
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Fig. 2.5. Scheme of the laser spectrum (gray area) of a sinc2(t) pulse covering slightly more
than one octave in width (⇔ δω/ω0 = 2/3, see Problem 2.2) and its second harmonic (not to
scale). In the region of overlap (see arrow) the two contributions interfere and a dependence
on the CEO phase φ results.

It turns out that the second condition is more difficult to fulfill than the first (see
Fig. 2.5). From Sect. 2.3 it is clear that a modulation according to

Iω0,2ω0 = ... + ... cos(φ) (2.45)

leads to a peak at frequency fφ in the RF spectrum [26, 28, 35–37]. Similarly, an
interference of the third harmonic with phase 3φ and the fundamental with phase φ

leads to a modulation with

Iω0,3ω0 = ... + ... cos(2φ) , (2.46)

equivalent to a peak at frequency 2fφ in the RF spectrum, which is most prominent
somewhere in the optical frequency interval [ω0, 3ω0]. We will return to both types
of interferences in Sects. 3.4 and 7.2.

When performing corresponding experiments, one often measures the RF power
spectrum (as, e.g., in Sects. 7.1.3 or 7.2). Let us have a quick look at the details. The
beat signal I (φ), i.e., I (φ) = Iω0,2ω0(φ) from (2.45) or I (φ) = Iω0,3ω0(φ) from
(2.46) or some more complicated general form, can be detected by a photomultiplier
tube, which delivers a proportional voltage signal U(t). Assuming an integer ratio of
repetition frequency and CEO frequency for simplicity at this point, i.e., fr/fφ = r

with integer r , the signal voltage (which is illustrated in Fig. 2.6) can be written as

U(t) = U0

+∞∑
Nφ=−∞

r−1∑
Nr=0

INr δ
(
t − [Nφtφ + Nrtr]

)
, (2.47)

with the integers Nφ and Nr, the abbreviation

INr = I (φ = Nr
2π

r
) , (2.48)

the carrier-envelope offset period tφ = 1/fφ , and the (unimportant) prefactor U0.
Here we have approximated the actual temporal response of the photomultiplier by a
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Fig. 2.6. (a) Scheme of the output voltage U(t) (linear scale) of a photomultiplier detecting
an optical beat signal I (φ) = Iω0,2ω0 (φ) = ... + ... cos(φ) according to (2.45). The ratio of
repetition frequency to carrier-envelope offset frequency is fr/fφ = r = 4 (⇔ �φ = π/2,
see Fig. 2.3). (b) Corresponding RF power spectrum SRF(f ) on a logarithmic scale. The 50%
modulation of U(t) due to φ in (a) corresponds to peaks in the RF power spectrum at frequencies
fφ and (fr − fφ) that are 2 × 3 dB = 6 dB smaller than the fr peak and the f = 0 peak.

δ-function. If this voltage signal is fed into an RF spectrum analyzer, the RF power
spectrum SRF(f ) versus RF frequency f is measured. It is defined by

SRF(f ) =
∣∣∣∣ 1√

2π

∫ +∞

−∞
ei2πf t U(t) dt

∣∣∣∣2 . (2.49)

Inserting (2.47) into (2.49), the δ-functions in (2.47) select only contributions with
t = [Nφtφ + Nrtr] from the integral and we obtain

SRF(f ) = U2
0

2π

∣∣∣∣∣
+∞∑

Nφ=−∞

r−1∑
Nr=0

INr ei2πf [Nφtφ+Nr tr]
∣∣∣∣∣
2

(2.50)

= U2
0

2π

∣∣∣∣∣
r−1∑
Nr=0

INr ei2πf Nr tr

∣∣∣∣∣
2

×
∣∣∣∣∣

+∞∑
Nφ=−∞

ei2πf Nφtφ

∣∣∣∣∣
2

.

The nonvanishing values of the last sum correspond to those frequencies f , for which
the terms for, e.g., Nφ and (Nφ + 1) add constructively, i.e., for which we have
2πf Nφtφ = M 2π , thus

f = M/tφ = M fφ , (2.51)

with integer M . This means that the RF power spectrum consists of a series of δ-peaks
at integer multiples of the CEO frequency fφ . The height of these peaks is given by
the value of the first term in the second line of (2.50), i.e., by∣∣∣∣∣∣

r−1∑
Nr=0

INr ei2πf Nr tr

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣

r−1∑
Nr=0

INr ei2πM fφNr tr

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣

r−1∑
Nr=0

INr ei2πMNr/r

∣∣∣∣∣∣
2

.

(2.52)
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In general, some of the peaks with label M may not occur because they have zero
height. It is obvious that replacing M by (M + r) on the RHS of (2.52) delivers the
same value, i.e., the height of the peak at, e.g., frequency fφ is exactly the same as the
height of the peak at frequency (fr +fφ). In other words: All relevant information of
the RF power spectrum is contained in the frequency interval [0, fr]. Along the same
lines, the peaks at fφ and (fr −fφ), respectively, have the same height as well (replace
M by (r − M) on the RHS of (2.52)). The mixing products (fr − fφ), (fr − 2fφ)

or (fr + fφ) ... essentially originate from the fact that the light intensity – and not
the electric field itself – is subject to a Fourier transformation in an RF spectrum
analyzer. The Fourier transform of the laser electric field itself has been discussed in
(2.29).

Equations (2.51) and (2.52) allow us to compute the RF power spectrum from
a known beat signal I (φ). An example is given in Fig. 2.6. In a real experiment,
the photomultiplier does not exhibit a δ-response. In this case, the actual voltage
signal can be written as the convolution of (2.47) with the response function of
the photomultiplier. In the frequency domain, this convolution translates into the
product of the “ideal” result with the power spectrum of the photomultiplier response
function, i.e., there is an overall decay towards large RF frequencies f . Finally, real
laser systems have noise, which shows up as a pedestal in the RF power spectrum.
Typically, this noise is not white noise (which would be a constant in frequency
space) but is rather roughly proportional to 1/f . This sometimes makes, e.g., the
frequency interval [2fr, 3fr] advantageous as compared to [0, fr] in the experiment
– although the intervals are equivalent in theory.

Problem 2.4. Suppose you have a source of very short pulses with a fluctuating CEO
phase φ. Can you come up with an all-optical scheme delivering (longer) pulses with
a stable CEO phase?

Problem 2.5. Somebody provides you with a complicated laser electric field of a
single pulse for CEO phase φ = 0, E(t), which cannot easily be decomposed into
an envelope Ẽ(t) and a carrier-wave oscillation cos(ω0t + φ). This problem occurs
for practically any actual experimental pulse shape. Can you still compute the corre-
sponding E(t) for CEO phase φ �= 0?

Problem 2.6. A pulse impinges from vacuum onto a dielectric halfspace withvphase �=
vgroup ≥ 0. How are the peak electric field and the intensity within the dielectric related
to their counterparts in vacuum? For clarity, neglect reflection of electromagnetic
energy from the interface (see Problem 2.1) and absorption.
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The Lorentz Oscillator Model and Beyond ...

The bulk of this chapter is concerned with extreme nonlinear optics of two-level
systems. Sections 3.3 to 3.6 give an overview based on exact numerical solution.
Two simple approximative schemes, the “static-field approximation” and the “square-
wave approximation” allow for analytical solutions and, thus, help to understand the
underlying physics.

A reader familiar with two-level systems in general might want to go to Sect. 3.3
directly. For pedagogical reasons, however, we start our discussion with the classical
Lorentz oscillator model, and show that its linear optical properties are identical
to those of the quantum-mechanical two-level system. The latter is motivated and
introduced in a way suitable for experimentalists. This is followed by a brief reminder
on the “traditional” nonlinear optics of two-level systems.

3.1 Linear Optics: Revisiting the Lorentz Oscillator Model

Consider a one-dimensional harmonic oscillator with displacement x with respect to
some fixed positive charge. It consists, e.g., of an electron with charge −e and mass
me subject to a Hooke spring with spring constant D, and is excited by some laser
electric field E(t). Under these conditions, Newton’s second law reads

meẍ(t) + Dx(t) = −e E(t) . (3.1)

The dots denote the derivative with respect to time t . The optical polarization P

is given by the product of the number of oscillators Nosc per volume V times the
individual dipole moment −e x, i.e., P = −e (Nosc/V ) x. Equation (3.1) is easily
solved by Fourier transformation. This leads to the optical polarization P versus
spectrometer frequency ω

P(ω) = ε0χ(ω)E(ω) , (3.2)

with the linear optical susceptibility χ(ω) given by
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χ(ω) = e2Nosc

ε0V me

1

�2 − ω2

= e2Nosc

ε0V me

1

2�

(
1

� − ω
+ 1

� + ω

)
. (3.3)

� = √D/me is the harmonic oscillator eigenfrequency or transition frequency.
Clearly, the susceptibility (see Fig. 3.1) has poles at the two frequencies ω = +�

and ω = −�. One is tempted to argue that the negative frequency pole is irrelevant
for experiments. Indeed, only the positive frequency part can be measured using a
spectrometer. Thus, the negative frequency pole is not important for linear optics. We
will see, however, that the corresponding contribution of the polarization at ω < 0
can be the origin of unusual nonlinearities. Multiphoton absorption and carrier-wave
Rabi flopping within the two-level system are just two examples of this (also, see
Problem 3.4).

Fig. 3.1. Linear dielectric function ε(ω) = 1+χ(ω) versus spectrometer frequency ω according
to (3.3) with transition frequency �. The gray areas illustrate |E(ω)| (see Example 2.4), i.e., the
modulus of the Fourier transform, of a single-cycle Gaussian laser pulse E(t) = Ẽ(t) cos(ω0t+
φ)with envelope Ẽ(t) = Ẽ0 exp(−(t/t0)2) and carrier frequencyω0 = � (resonant excitation)
[268].

In order to approach the mathematical form of the description in terms of two-level
systems, it is instructive to rewrite the harmonic oscillator equation (3.1) slightly. Let
us define the dimensionless normalized displacement u via

u = x/x0 , (3.4)

where x0 is some characteristic lengthscale of the problem. This leads to the equation
of motion

ü + �2u = 2 � �R(t) , (3.5)

where we have introduced the quantity �R(t) given by

��R(t) = dE(t) . (3.6)
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�R(t) obviously has the dimensions of a frequency and is called the Rabi frequency.
d has the dimensions of a dipole and is given by d = −e�/(2me x0 �). We will see
in a moment that d is the classical analogue of the dipole matrix element of the two-
level system. Note that the Rabi energy ��R can be interpreted as the electrostatic
energy of a static electric dipole with dipole moment d in the electric field of the laser.

Problem 3.1. Evaluate the group velocity vgroup(ω) for the Lorentz oscillator model
with Stokes damping γ . Can the group velocity be superluminal, i.e., vgroup(ω) > c0?
What are the implications for a short/long pulse propagating through the medium?
What do you conclude from these findings in terms of the concept of the group
velocity?

3.2 Two-Level Systems and Rabi Energy

The simplest nontrivial quantum-mechanical model of light–matter interaction is the
two-level system [7]. For a single level, the system would simply be in its corre-
sponding eigenstate forever and nothing would happen. Moreover, no optical dipole
moment would exist, thus no coupling to the light field occurs.

The latter aspect becomes different for the two-level system. Let us, for example,
consider the two lowest energy states of an electron in a box of width L with infinite
potential walls1. The LHS wall shall be at x = 0, the RHS one at x = L. The cor-
responding two lowest energy solutions of the time-dependent Schrödinger equation
are the (normalized) wave functions

ψ1(x, t) =
√

2

L
sin

(
1 π

L
x

)
e−i�−1E1t = ψ1(x) e−i�−1E1t (3.7)

ψ2(x, t) =
√

2

L
sin

(
2 π

L
x

)
e−i�−1E2t = ψ2(x) e−i�−1E2t . (3.8)

E1 = �
2(1π/L)2/(2me) and E2 = �

2(2π/L)2/(2me) are the corresponding
eigenenergies, ψ1(x) and ψ2(x) the corresponding eigenfunctions of the stationary
Schrödinger equation. Note that the charge density corresponding to state 1, which is
proportional to −e |ψ1(x, t)|2, is constant in time. Thus, light neither is emitted nor
absorbed. The same argument holds for state 2. It is only for a superposition state
such as, e.g., the normalized wave function

ψ(x, t) = 1√
2

(
ψ1(x, t) + ψ2(x, t)

)
(3.9)

that the charge density ρ with

1 While the potential well is just a toy model at this point, it actually describes intersubband
transitions in semiconductor quantum wells rather well [40].



30 3 The Lorentz Oscillator Model and Beyond ...

Fig. 3.2. Grayscale image of the probability density |ψ(x, t)|2 (linear scale) of an electron in
a two-level system versus x coordinate and time t according to (3.9). The solid black curve
reveals the expectation value 〈x〉 of the electron displacement with 〈x〉/L = 1

2 − 16
9π2 cos(�t)

(also see Problem 3.2). The transition frequency � is given by �� = E2 − E1 [268].

ρ(x, t) = −e |ψ(x, t)|2 = −e
1

2
|ψ1(x, t) + ψ2(x, t)|2 (3.10)

oscillates in time. Figure 3.2 illustrates this oscillation. One gets a harmonic oscillation
along x with the transition frequency � given by

�� = E2 − E1 . (3.11)

The analogy to the classical harmonic oscillator discussed in the previous section is
more than obvious.

What is the minimum set of variables we need in order to describe the dynamics
of the two-level system? We clearly want to know the occupancy of the levels 1 and
2. Let us call them f1 and f2. As the total occupation of electrons in the two levels is
one, i.e., f1 + f2 = 1, we can introduce the inversion w given by w = f2 − f1. If we
know w, f1 and f2 follow immediately. Furthermore, we have seen that the oscillating
dipole is intimately related to the superposition state. To make an optical transition
from level 1 to level 2, one first needs to excite the superposition state – as only this
superposition state couples to the light. Thus, we anticipate that the mathematical
description must not only contain the inversion w but also describe the superposition
state. As we could add a complex prefactor in front of ψ2 in (3.10), we need two
additional real quantities, encoding amplitude and phase of the superposition state.
Altogether, we expect that the mathematical description of the two-level system will
invoke three real quantities forming the Bloch vector.

Let us derive the equation of motion of this Bloch vector. The coupling of laser
light and matter is often well described within the so-called dipole approximation.
Here one takes advantage of the fact that the wavelength of light is typically much
larger than the size of a dipole or larger than the lattice constant in a solid. This means
that the frequency of light can be considered as small, hence, the rules of electrostatics
apply. In electrostatics, the interaction energy of a dipole d in a static electric field E
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is given by −dE. In quantum mechanics, d becomes the dipole matrix element, i.e.,

d =
∫ +∞

−∞
ψ∗

2 (x)(−e x) ψ1(x) dx , (3.12)

where ψ1(x) and ψ2(x) are the (normalized) solutions of the stationary Schrödinger
equation. In what follows, we will assume that d is real. In addition to this interaction
energy we have the energy of the two-level system itself, which is given by the
occupation of level 1 times its energy E1 plus the occupation of level 2 times energy
E2.

In “second quantization” this corresponds to the model Hamiltonian

H = E1 c
†
1c1 + E2 c

†
2c2 − d E(r, t)

(
c

†
1c2 + c

†
2c1

)
. (3.13)

The creation c† and annihilation c operators create and annihilate electrons in states
number 1 or 2, respectively. c

†
1c1 counts the occupation of level 1, c

†
2c2 that of level

2. The expectation values 〈c†
1c1〉 = f1 and 〈c†

2c2〉 = f2 are the occupation numbers

of levels 1 and 2. c
†
2c1 annihilates an electron in level 1 and creates one in level 2,

c
†
1c2 promotes an electron from level 2 to level 1. This is clearly related to optical

transitions, and hence related to the optical polarization. We define the Bloch vector
(u, v, w)T via ⎛

⎝ u

v

w

⎞
⎠ :=

⎛
⎜⎝ 〈c†

1c2〉 + 〈c†
2c1〉

−i (〈c†
1c2〉 − 〈c†

2c1〉)
〈c†

2c2〉 − 〈c†
1c1〉

⎞
⎟⎠ . (3.14)

It is straightforward to calculate the equation of motion of the Bloch vector by eval-
uating the operators in the expectation values via the Heisenberg equation of motion
for an arbitrary operator O according to

−i�
∂

∂t
O = [H, O] . (3.15)

Employing the usual anticommutation rules for fermions, i.e.,

[c1, c
†
1]+ = 1 , [c2, c

†
2]+ = 1 , (3.16)

and that all other anticommutators are zero, leads us to the well-known Bloch equa-
tions [51, 52] in matrix form

⎛
⎝ u̇

v̇

ẇ

⎞
⎠ =

⎛
⎝ 0 +� 0

−� 0 −2 �R(t)

0 +2 �R(t) 0

⎞
⎠
⎛
⎝ u

v

w

⎞
⎠ . (3.17)

Here we have introduced the Rabi frequency �R(t) according to
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��R(t) = d E(t) (3.18)

with the laser electric field

E(t) = Ẽ(t) cos(ω0t + φ) . (3.19)

Note that the definition of the Rabi energy, (3.18), is identical to that introduced for
the classical Lorentz oscillator, (3.6), except for a different expression for d in the
classical case. Finally, considering that we have a number N2LS of two-level systems
per volume V , the optical polarization is given by

P(r, t) = N2LS

V
d u . (3.20)

The Bloch vector parametrically depends on r (we suppress this dependence for
clarity). The (3 × 3) matrix in the equation of motion (3.17) of the Bloch vector only
leads to rotations: The Bloch vector rotates with the transition frequency � in the uv-
plane and with 2�R(t) in the vw-plane. This looks quite simple. Note, however, that
the Rabi frequency �R(t) itself oscillates with the carrier frequency of light ω0 and
periodically changes sign. It is this aspect that makes the behavior so rich. Together
with ω we have the four important frequencies of the problem

• Spectrometer frequency ω

• Transition frequency �

• Rabi frequency �R(t) with peak �R
• Carrier frequency of light ω0

Let us have a brief look at the limit of linear optics. It is defined by only a
negligible amount of electrons being promoted from level 1 into level 2, hence we
can approximate the inversion as w = −1. Inserting w = −1 into the first line
of (3.17), taking its temporal derivative and introducing the second line for v̇, we
recover (3.5). We conclude that we can interpret the component u of the Bloch vector
as the analogue of the normalized displacement of the Lorentz oscillator. Indeed, as
u is proportional to the optical polarization P , u contains all the information on the
optical properties of the material.

Problem 3.2. Compute the dipole matrix element d corresponding to an optical tran-
sition between states 1 and 2 of the simple model of an electron in a box with infinite
potential walls.

Problem 3.3. Consider resonant excitation of a two-level system in the incoherent
limit. Specifically, compute the steady-state inversion, w, of the two-level system
via the optical Bloch equations (3.17) for the Bloch vector (u, v, w)T and account
for dephasing according to u̇ = ... − u/T2 and v̇ = ... − v/T2. T2 is called the
dephasing time or transverse relaxation time. The latter notion originates from nuclear
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magnetic resonance (NMR) [51, 52], where the components u and v of the Bloch
vector correspond to the real space x and y-components of the magnetization. x and
y are perpendicular (transverse) to the static magnetic field, which is usually oriented
along the z-direction.

3.3 Carrier-Wave Rabi Flopping

Let us now jump right into nonlinear optics in the following fashion: First, we discuss
the simplest case, namely resonant excitation of a two-level system (�/ω0 = 1)
for Rabi frequencies approaching the carrier frequency of light, i.e., �R/ω0 ≈ 1.
We will encounter some famous examples from traditional nonlinear optics on the
way and arrive at carrier-wave Rabi flopping. For off-resonant excitation such as,
e.g., �/ω0 = 2, the behavior is quite different and we will, for example, encounter
“third-harmonic generation in the disguise of second-harmonic generation”. Only for
the limit �/ω0 � 1, are our expectations from phenomenological nonlinear optics
(Sect. 2.4) recovered. For yet larger Rabi energies, �R/ω0 > 1 or even �R/ω0 � 1,
high harmonics are generated. We will see that spectral peaks at even integer multiples
of the laser carrier frequency are generally connected with points of commensurability
of the three involved frequencies: ω0, � and �R.

If a two-level system is excited by a resonant light field (�/ω0 = 1), electrons
absorb photons that pump them from the ground state into the excited state (see
Fig. 3.3). It is sometimes stated that one cannot reach inversion by optical pumping in
a two-level system. This statement is, however, only true in the incoherent steady-state
case, where one can only reach transparency indeed, i.e., 50% of the electrons are in
the ground state, 50% are in the excited state, the inversion is w = 0. In contrast to this,
if the system remains fully coherent in the quantum-mechanical sense – as discussed
in the previous section – complete inversion can be reached. If the light field remains
switched on, stimulated emission brings the electrons back into the ground state. This
oscillation of the inversion is known as Rabi oscillation or Rabi flopping [8, 22, 53].
Note that one must not interpret the dots in Fig. 3.3 as the electrons. Remember that
the electrons are in a superposition state of state 1 and state 2. One can, however,
interpret the dots as a measure of the occupation of levels 1 and 2, respectively.

Fig. 3.3. Scheme of a Rabi oscillation in a two-level system versus time t . The lower horizontal
lines represent the ground state, the upper lines the excited state. The dots symbolize the electron
occupation numbers [268].
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Fig. 3.4. Illustration of (a) conventional Rabi flopping and (b) carrier-wave Rabi flopping. In
(a), the exciting box-shaped electric field pulse E(t) contains N = 20 cycles of light and is
weak, i.e., the peak Rabi frequency is given by �R/ω0 = 1/20 ⇒ �̃ = 2π . As a result, the
inversion w (illustrated by the insets) nearly reproduces the classical result of Rabi according to
w(t) = −cos(�̃Rt). A closer inspection does, however, reveal a small superimposed, staircase-
like structure (the Bloch–Siegert oscillation) which is due to deviations from the rotating-wave
approximation used by Rabi. These minor structures become large and prominent qualitative
changes in (b), where we depict the behavior for a N = 2 cycle long, intense pulse with
�R/ω0 = 1 ⇒ �̃ = 4π (shown on a stretched timescale). Here, both the inversion w(t) as
well as the optical polarization P(t) ∝ u(t) exhibit significant dynamics on the timescale of
one cycle of light – in contrast to conventional Rabi flopping (a). For example, for a photon
energy of �ω0 = 1.5 eV, a cycle of light has a period of 2.8 fs and the pulse envelope (gray
area) in (b) corresponds to a duration of 5.6 fs. Figure reprinted from Ref. [54] by permission
of O. D. Mücke.

An actual solution of the Bloch equations in the regime of traditional nonlinear
optics is depicted in Fig. 3.4(a). The evolution of the Bloch vector is shown on the
top LHS of Fig. 3.4. The inversion versus time (Fig. 3.4(a)) exhibits a slow oscillatory
behavior with a rapid and very weak oscillation superimposed. The latter is sometimes
referred to as the Bloch–Siegert oscillation [55]. In the original approach of nobel prize
winner I. I. Rabi2, he used the so-called rotating-wave approximation in which only
resonant contributions are accounted for (he left aside the pole at negative frequencies
discussed in Sect. 2.3). This neglects the small ripples and leads to the simple closed

2 Actually, Rabi discussed a magnetic dipole in a rotating magnetic field.
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form for the inversion

w(t) = −cos(�̃Rt) , (3.21)

where we have assumed that the system is in its ground state at time t = 0. The
quantity �̃R is the envelope Rabi frequency and is given by

��̃R(t) = dẼ(t) . (3.22)

Note that the envelope Rabi frequency no longer oscillates with the carrier frequency
of light. The pulse depicted in Fig. 3.4(a) is called a 2π -pulse as it leads to one
complete Rabi oscillation within the pulse. One also says that the (envelope) pulse
area is 2π . Similarly, a �̃-pulse has an envelope pulse area of

�̃ =
∫ +∞

−∞
�̃R(t) dt . (3.23)

The modulation of the optical polarization with the Rabi frequency in the time
domain clearly corresponds to sidebands in the Fourier domain. The smaller the
period of the Rabi oscillation, the larger the separation of the sidebands in the optical
spectrum. Indeed, Mollow [56–59] showed (within the rotating-wave approximation
as Rabi) that, for constant light intensity, one gets a triplet, the famous Mollow triplet,
consisting of three lines at spectrometer frequencies ω = �, ω = � + �̃R and
ω = � − �̃R. This triplet can also be seen in the exact numerical solutions of the
Bloch equations shown in Fig. 3.5 (around ω/ω0 = 1 on the horizontal axis and for
�R/ω0 
 1 on the vertical axis). The Mollow triplet is simply the resonant analogue
of self-phase modulation for off-resonant excitation (see Sect. 2.4). Both broaden the
incoming laser spectrum. The shape of the resulting spectrum is different, however.
We will see in the next section that there is a continuous transition between the Mollow
triplet and self-phase modulation when changing �/ω0.

� Example 3.1. For an electric field with Ẽ0 = 4 × 109 V/m and for GaAs parameters
(d = 0.5 e nm, with the elementary charge e = 1.6021×10−19 A s), we obtain ��R =
2 eV, which is comparable to the photon energy of �ω0 = 1.42 eV corresponding to
the GaAs bandgap (see Sect. 7.1.1). �

The notion carrier-wave Rabi flopping has been introduced by Hughes [60, 61]
in 1998 (also see Refs. [62–66]) and refers to a situation in which the Rabi frequency
becomes comparable to the laser carrier frequency. An intuitive understanding can
be obtained from the top of Fig. 3.4. For conventional Rabi flopping, (a), the Bloch
vector rapidly orbits around the equatorial plane with the transition frequency and
slowly rotates from the south pole to the north pole and back down again with the
Rabi frequency. When the two frequencies become comparable, (b), the trace of the
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Fig. 3.5. Grayscale plots of the radiated light intensity Irad (i.e., normalized square modulus of
the Fourier transform of the second temporal derivative of the optical polarization P(t) ∝ u(t)

from the Bloch equations) versus spectrometer frequency ω. (a) Position of the peaks of the
fundamental and the third-harmonic Mollow triplet versus peak Rabi frequency �R in units
of the laser carrier frequency ω0 for �/ω0 = 1 with �ω0 = 1.5 eV and for a N = 30-cycle
long box-shaped optical pulse (see center inset for N = 3). (b) Dependence on the integer
number of cycles N = 1, 2, ...30 in the pulse for fixed �R/ω0 = 0.5. Note the occurrence of
additional side maxima for few-cycle pulses [269].

Bloch vector looks rather complicated and, as a result, the optical polarization ∝ u(t)

no longer oscillates sinusoidally (see Fig. 3.4(b)). This clearly leads to harmonics in
the Fourier domain. This can be seen in Fig. 3.5(a) around ω/ω0 = 3 on the horizontal
axis and starting above �R/ω0 = 0.1 on the vertical axis where another triplet occurs.
We will call it the (third-harmonic) carrier-wave Mollow triplet. It consists of three
peaks, approximately at spectrometer frequencies ω = 3�, ω = 3� + �R and
ω = 3� − �R (we will see in Sect. 3.6 that deviations from this form occur for
yet larger Rabi frequencies). For a laser intensity corresponding to �R/ω0 = 1, the
high-frequency peak of the fundamental Mollow triplet and the low-frequency peak
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of the third-harmonic carrier-wave Mollow triplet meet at spectrometer frequency
ω/ω0 = 2 – frequency doubling in an inversion symmetric medium. Following our
discussion in Sect. 2.6 on measuring the carrier-envelope offset phase, we expect that
the resulting interference of the fundamental with phase φ and the third-harmonic with
phase 3φ leads to a beating with difference phase 3φ−φ = 2φ. As φ changes with the
carrier-envelope offset frequency fφ , we anticipate a contribution at frequency 2fφ

in the radio-frequency spectrum. We will come back to corresponding experiments
in Sect. 7.2.

Another consequence of carrier-wave Rabi flopping is that the inversion w also
behaves unusually. A �̃ = 2π envelope pulse area in Fig. 3.5(a) indeed leads to one
complete Rabi flop, i.e., after the pulse the system comes back to its ground state with
w = −1. This statement is true for any carrier-envelope phase φ. For (b), this is not
the case (see w(t) and especially u(t) after the pulse), even though the envelope pulse
area of �̃ = 4π suggests that. We conclude that the concept of the envelope pulse
area loses its immediate meaning in the regime of carrier-wave Rabi flopping. As a
consequence of this, the so-called area theorem of nonlinear optics also no longer
applies as it is directly based on the envelope pulse area. The area theorem refers to
the propagation of an optical pulse through an inhomogeneously broadened ensemble
of two-level systems along the z-direction within the rotating-wave approximation
and within the slowly varying envelope approximation (see Sect. 6.2). It makes the
following statement about the envelope pulse area

d�̃

dz
= −α

2
sin(�̃(z)) , (3.24)

which means that pulses with envelope areas �̃ = N 2π with integer N propagate
through the medium without changing their area. The pulse shape can still change.
Solutions with �̃ = N π and odd integer N turn out to be unstable. In the linear
optical limit, the area theorem reduces to Beer’s law describing an exponential decay
along z with the intensity absorption coefficient α, because there sin(�̃) ≈ �̃.

Let us just mention that, as a result of the failure of the envelope-area concept,
the inversion after the pulse, i.e., w(t → ∞), exhibits a dependence on the carrier-
envelope offset phase φ of the pulse. This inversion determines the photocurrent in
a hypothetical photodetector based on two-level system optical transitions and one
would directly obtain a photocurrent depending on φ. We come back to this aspect in
Sect. 3.5.

Problem 3.4. We have seen in Fig. 3.4 that, for resonant excitation, the two-level
system inversion w(t) exhibits a component that oscillates with twice the carrier
frequency of light (see, e.g., the staircase-like structure in (a)). Give an intuitive
explanation (no calculation!) based on Fig. 3.1.
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3.4 Frequency Doubling with Inversion Symmetry

Let us come back to our statement of the previous section that the Mollow triplet is
simply the resonant analogue of self-phase modulation. Figure 3.6(c) exhibits a clear
Mollow splitting around the fundamental, i.e., around ω/ω0 = 1 on the horizontal
axis for �/ω0 = 1 on the vertical axis. Going upwards towards larger values of
�/ω0 reduces the contribution on the left and on the right of the laser until only
tails remain, e.g., for �/ω0 = 2. This example is indeed highlighted by the white
curve, which is plotted on a linear scale. Where exactly this transition from resonant
to off-resonant occurs is determined by the width of the laser spectrum (see gray
areas on the RHS). In addition, not surprisingly, a peak at ω/ω0 = 3 also occurs,
which is simply third-harmonic generation. In Figs. 3.6(a) – (c), this white curve is
qualitatively well described by the phenomenological off-resonant perturbative self-
phase modulation and third-harmonic generation discussed in Sect. 2.4. For yet larger
Rabi frequencies, however, the behavior changes here as well and a peak evolves at
a spectrometer frequency ω/ω0 = 2. This peak becomes the most prominent feature
in the optical spectrum for (d) where �R/ω0 = 2. Let us have a closer look at
this frequency-doubling contribution in Fig. 3.7, where �R/ω0 = 0.76. Fixing the
transition frequency to �/ω0 = 2 in (b), allows us to study the dependence on the
carrier-envelope offset phase φ. On the LHS and RHS of the spectrometer frequency
ω/ω0 = 2, a modulation versus φ with a period of π can be seen. We already suspect
that both contributions arise as a result of the interference of the fundamental and the
third-harmonic, giving rise to a difference in phase of 2φ, hence to a beat period of
π (rather than 2π ).

To better understand this unusual frequency-doubling contribution, we fix the
CEO phase to φ = 0 in Fig. 3.7(c) and vary the pulse duration tFWHM from 5 fs to
10 fs. Under these conditions, the frequency-doubling peak disappears at around pulse
durations of 8 fs and we conclude that this unusual contribution requires both short and
intense laser pulses. Intuitively, this behavior arises from the enormous broadening
of the peak centered around the third harmonic, which, at some point, exhibits a
significant overlap with the resonance at ω/ω0 = 2 = �/ω0. This can indeed nicely
be seen in Fig. 3.7(c). The resonance picks up this contribution and amplifies it by
orders of magnitude. Short pulses quite obviously broaden the spectrum. Moreover, at
large Rabi frequencies, higher and higher order contributions come into play (also see
Fig. 3.8). For example, for a Gaussian laser pulse, the spectral width of the N -th order
contribution scales as

√
N (as discussed in Sect. 2.4). The combination of the two

aspects – short pulses and high intensities – makes this effect appreciable in strength.
As the two-level system has inversion symmetry, the frequency doubling cannot be

due to a χ(2) effect. It is rather due to third-harmonic generation (THG) that looks like
second-harmonic generation (SHG) at first sight, thus, it has been named “THG in the
disguise of SHG”. We will describe corresponding experiments on semiconductors
in Sect. 7.2.

Problem 3.5. Consider a sinc2-pulse with �ω0 = 1.5 eV exciting a narrow two-level
resonance at �/ω0 = 2. What is the maximum pulse duration tFWHM that leads to
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Fig. 3.6. Grayscale image of |P |2 (normalized) versus ω and versus �, both in units of ω0
with �ω0 = 1.5 eV. The peak Rabi frequency �R of the exciting sinc2(t) pulses with duration
tFWHM = 5 fs and φ = 0 is parameter. (a) �R/ω0 = 0.10, (b) �R/ω0 = 0.25, (c) �R/ω0 =
0.50, and (d) �R/ω0 = 2.0 [269].
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Fig. 3.7. As Fig. 3.6 but for a Rabi frequency of �R/ω0 = 0.76. (a) |P(ω)|2 versus transition
frequency � for a fixed CEO phase φ = 0 and tFWHM = 5 fs. The white curve is a cut through
the data at �/ω0 = 2 (linear scale). The laser pulse spectrum is shown as the gray area on the
RHS. (b) |P(ω)|2 versus pulse duration tFWHM for fixed �/ω0 = 2 and φ = 0. (c) |P(ω)|2
versus φ for fixed �/ω0 = 2 and tFWHM = 5 fs. Reprinted with permission from T. Tritschler
et al., Phys. Rev. Lett. 90, 217404 (2003) [67]. Copyright (2003) by the American Physical
Society.
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Fig. 3.8. As Fig. 3.7, but as a function of peak Rabi energy �R in units of the laser carrier
frequency ω0 for fixed �/ω0 = 2, φ = 0 and tFWHM = 5 fs. Around �R/ω0 ≈ 1.7 on the
vertical axis, a Rabi flop is completed even though the excitation is off-resonant for one-photon
absorption [269].

third-harmonic generation in the disguise of second-harmonic generation in the χ(3)

limit?

Problem 3.6. Consider far off-resonant excitation (�/ω0 � 1) of a two-level sys-
tem in the perturbative limit (�R/� 
 1). Try to recover the form for the optical
polarization P(t) = ε0(χ

(1)E(t)+χ(2)E2(t)+χ(3)E3(t)+ ...) according to (2.37).
What can you say about the third-order susceptibility? Hint: Introduce transverse and
longitudinal damping along the lines of Problem 3.3.

3.5 Quantum Interference of Multiphoton Absorption

So far, we have concentrated on the behavior of the optical polarization, i.e., on the
component u of the Bloch vector. In this section we focus our attention on the inversion
w and its dependence on the carrier-envelope offset phase φ. The inversion versus
time on the timescale of a cycle of light is not really an observable – at least by today’s
standards. However, what one can measure is the inversion remaining after the optical
pulse, i.e., w(t → ∞). This can be accomplished by sweeping out the electrons in
the upper state in the static electric field of a photodetector and detecting the resulting
photocurrent, or, alternatively, by an additional optical probe pulse at times well
after the excitation pulse. This weak probe pulse would see a reduced absorption
or even experience stimulated emission depending on the value of w(t → ∞). Let
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Fig. 3.9. A two-level system with transition frequency � is excited with a tFWHM = 5 fs sinc2-
shaped optical pulse with carrier photon energy �ω0 = 1.5 eV and CEO phase φ. The peak Rabi
frequency is given by �R/ω0 = 1, the dephasing time is T2 = 50 fs and T1 = ∞. The resulting
occupation of the upper state long after the pulse, i.e., f2 = f2(t → ∞) = 1

2 (w(t → ∞)+1),
normalized by the average of f2 with respect to φ, 〈f2〉φ , is plotted on a grayscale versus �/ω0
and φ. Note the π periodicity versus φ. The upper plot shows the average 〈f2〉φ on a logarithmic
scale. The maximum relative modulation of f2/〈f2〉φ is on the order of a few per cent. Reducing
the peak Rabi frequency from �R/ω0 = 1 down to �R/ω0 = 0.5 leads to a rather similar
qualitative scenario (Fig. 3.10), however, with a maximum relative modulation enormously
reduced to about ±10−4. Also compare with Fig. 3.4 [270].

us remind ourselves that within the concept of the envelope pulse area (traditional
nonlinear optics), strictly no dependence of w(t → ∞) on φ is expected at all. There,
w(t → ∞) solely depends on the envelope pulse area �̃.

We have already seen in Sect. 2.6 as well as in the preceding section that a de-
pendence on φ arises from the interference of different pathways. In the language of
quantum optics, two examples of pathways from the ground state towards the excited
state of the two-level system are one-photon absorption and two-photon absorption.
The one-photon process has phase φ, the two-photon absorption has phase 3φ be-
cause it can be expressed as a χ(3) process. Thus, the interference of one-photon and
two-photon absorption leads to a dependence on the CEO phase φ with period π . This
statement is true for a single sufficiently intense few-cycle optical pulse, as illustrated
in Figs. 3.9 and 3.10. Here, very loosely speaking, one-photon absorption of photons
from the high-energy end of the laser spectrum interferes with two-photon absorption
of photons from the low-energy end. Note that the dependence on φ changes phase
depending on �/ω0. For example, for �/ω0 = 2.0 one has a maximum at φ = π/2
and minima at φ = 0, π , whereas for �/ω0 = 1.7 the situation is reversed. Thus,
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Fig. 3.10. As Fig. 3.9, but for �R/ω0 = 0.5 instead of �R/ω0 = 1.0 [270].

integration over a certain range of transition frequencies �/ω0 (as one would have for
band-to-band transitions in a semiconductor photodetector, where Eg ≤ �� < Emax
with the bandgap energy Eg and some effective cutoff energy Emax) reduces the
degree of modulation with respect to the CEO phase φ.

In order to understand and discuss the complex behavior in Fig. 3.9 in some
more detail, we consider two simple and instructive examples that can be treated
analytically: Two-color excitation and box-shaped pulses.

Two-color excitation

Suppose that the incident electric field is given by the sum of two monochromatic
contributions, i.e., by

E(t) = Ẽ1 cos(ω1t + ϕ) + Ẽ2 cos(ω2t + ϕ) , (3.25)

with phase ϕ. Note that ϕ does not just shift the time axis but rather leads to inequiva-
lent electric fields for ω1 �= ω2 and nonzero amplitudes Ẽ1 and Ẽ2. Loosely speaking,
the two frequencies ω1 and ω2 can be viewed as two components out of the broad
spectrum of a short laser pulse3. Alternatively, we can consider the special case Ẽ1 =

3 Excitation of semiconductors with a field of the form E(t) = Ẽ1 cos(ω1t + ϕ1) +
Ẽ2 cos(ω2t + ϕ2) with ω2 = 2ω1 has recently been discussed in a series of theoretical
and experimental papers, which explicitly exploit the lack of inversion symmetry. This al-
lows for the independent control of optically induced charge currents [68–70] as well as of
spin currents [71–73] via variation of the difference phase (ϕ2 − 2ϕ1) and the light polar-
izations with respect to the crystallographic axes. The underlying physics is related to but
yet distinct from that of this section (note that we discuss the case ϕ2 = ϕ1 = ϕ). Also see
Ref. [74] for application to measuring the carrier-envelope offset frequency.
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Ẽ2 = Ẽ0. Using the mathematical identity cos(a) + cos(b) = 2 cos( a+b
2 ) cos( a−b

2 ),
the electric field according to (3.25) can be rewritten as

E(t) = Ẽ0 cos(ω1t + ϕ) + Ẽ0 cos(ω2t + ϕ)

= Ẽ(t) cos(ω0t + φ) , (3.26)

where we have introduced the effective envelope Ẽ(t) = 2 Ẽ0 cos(ω1−ω2
2 t) (the

difference-frequency oscillation – a pulse train) and the effective carrier frequency
ω0 = ω1+ω2

2 (the sum-frequency oscillation). The CEO phase φ of the effective pulse
centered around t = 0 is given by

φ = ϕ . (3.27)

Solving the two-level system Bloch equations (3.17) in a perturbational approach
in terms of orders of the incident electric field starting from the ground state, the
inversion is w(t) = −1 to zeroth order in the field. The first order of the components u

and v of the Bloch vector clearly comprise the frequencies ω1 and ω2, because they are
driven directly by −2�R(t) w(t) ≈ +2�R(t) (see (3.17)). The lowest nontrivial order
of the inversion w is the second order (one-photon absorption) because w is driven
by the product 2�R(t) v(t). This second order contains the frequency components
ω1 ± ω2, 2ω1, 2ω2, ω1 − ω1 and ω2 − ω2. Only the latter two have a nonvanishing
cycle-average 〈...〉 and lead to a net increase of the upper-state population f2 =
(w + 1)/2 after some time, provided that the transverse damping is finite (otherwise
〈�R(t) v(t)〉 ∝ 〈cos(ω1,2t) sin(ω1,2t)〉 = 0). All other contributions merely lead to
an oscillatory component (also see w(t) in Fig. 3.4(a)). To fourth order, w contains
the frequencies 4ω1, 4ω2, 2ω1 +ω1 −ω1 = 2ω1, 2ω2 +ω2 −ω2 = 2ω2, 2ω1 − 2ω1,
2ω2 − 2ω2, 2ω1 − ω1 ± ω2 = ω1 ± ω2, 3ω1 ± ω2, and 3ω2 ± ω1. The components
2ω1 − 2ω1 and 2ω2 − 2ω2 have a finite cycle-average but do again not lead to a
dependence on the phase ϕ, since their phase is given by 2ϕ − 2ϕ = 0. These
terms are proportional to Ẽ4

1 and Ẽ4
2 , respectively, hence they are proportional to

the square of the light intensity of beam 1 and 2, respectively, and correspond to
two-photon absorption4. In contrast, the component 3ω1 − ω2 oscillates with phase
3ϕ − ϕ = 2ϕ and has a finite cycle average if the condition ω2/ω1 = 3 is fulfilled
(in terms of bandwidth this would correspond to a subcycle pulse, which has not
been achieved to date, also see Problem 2.2). This contribution to the fourth-order
inversion is proportional to Ẽ3

1 Ẽ2 and leads to an oscillation of the inversion versus
ϕ with period π . It can be interpreted as an interference of one-photon (ω2) and two-
photon (ω1) absorption. Similarly, for an arbitrary even order N ≥ 4, the inversion
w has a contribution at frequency (N

2 + 1) ω1 − (N
2 − 1) ω2, which becomes dc if

ω2

ω1
= N + 2

N − 2
→ 1 for N → ∞ . (3.28)

4 This type of two-photon absorption is distinct from that discussed in most textbooks. There,
mostly transitions are considered that have a vanishing dipole matrix element d, i.e., where
one-photon absorption is absent. There, E2 drives the transition and, thus, two-photon
resonance occurs at � = 2ω0 rather than at � = 3ω0 for the case discussed here.
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Its phase is again (N
2 +1) ϕ−(N

2 −1) ϕ = 2ϕ. For example, for N = 6, this contribu-
tion occurs for ω2/ω1 = 2 (one octave). It can be interpreted as an interference of two-
and three-photon absorption. From (3.28) we expect that the frequency components
ω1 and ω2 have to be less separated in energy for large orders N , i.e., we anticipate that
“shorter” (“longer”) pulses require lower (higher) laser intensities to lead to a depen-
dence on the phase ϕ. Also, the N -th–order contributions (N

2 +M) ω1 − (N
2 −M) ω2

with integer M < N/2 and phase (N
2 +M) ϕ − (N

2 −M) ϕ = 2Mϕ exist, which lead
to interference components of w versus ϕ with period π/M rather than π , provided
the driving frequencies follow the relation ω2/ω1 = N+2M

N−2M
. For example, N = 6 and

M = 2 could be interpreted as an interference of one- and three-photon absorption.
It should be clear that the amplitudes of the various contributions depend strongly

on the resonance conditions, i.e., on the ratios �/ω1 and �/ω2 (also see dependence
on �/ω0 in Figs. 3.9 and 3.10).

This reasoning has shown that, for few-cycle laser pulses, interference of different
multiphoton pathways and a corresponding dependence of the inversion w after the
pulse on the CEO phase φ only occurs at high orders N perturbation theory in the
incident electric field. For a pulse spectrum covering one octave, we have N ≥ 6.
For the parameters of Figs. 3.9 and 3.10, the laser spectrum supports a maximum
ratio of ω2/ω1 ≈ 1.65. This means that the modulation occurs in N ≥ 10th-order
perturbation theory according to (3.28) because 10+2

10−2 = 1.5 < 1.65. As the strength
of these high orders must be comparable to that of the lower orders to make the
interference contrast appreciable in magnitude, we conclude that the nonperturbative
regime with �R/ω0 ≈ 1 has to be reached to obtain sizable effects. This finding is
consistent with the numerical calculations. Indeed, going from a peak Rabi frequency
of �R/ω0 = 1 (Fig. 3.9) down to �R/ω0 = 0.5 (Fig. 3.10) reduces the relative
modulation depth by a factor of a few hundred.

Box-shaped pulses

The carrier-envelope phase dependence of the inversion does, however, also strongly
depend on the shape of the pulse envelope. Box-shaped envelopes containing an
integer number of optical cycles (see, e.g., Fig. 3.4 where φ = 0) are an exceptional
and somewhat unrealistic but not unphysical case (the dc component is strictly zero),
which actually turns out to be instructive. Let us consider a single-cycle pulse starting
at t = 0, i.e., �R(t) = �R sin(ω0t + φ) for t in the interval [0, 2π/ω0] and 0 else.
For small Rabi frequency �R, we can treat the light field as a perturbation and solve
the Bloch equations (3.17) starting from the ground state up to second order in the
incident field, equivalent to one-photon absorption. The mathematical procedure is as
for the two-color excitation. Transverse as well as longitudinal damping are neglected.
A straightforward calculation gives the upper-state occupation f2 = f2(t → ∞) =
f2(2π/ω0) = (w(2π/ω0) + 1)/2 after the pulse

f2 = 4 �2
R �2(

�2 − ω2
0

)2 sin2
(

π
�

ω0

) [
1 + ω2

0 − �2

�2
sin2

(
π

�

ω0
+ φ

)]
. (3.29)



46 3 The Lorentz Oscillator Model and Beyond ...

Again, the periodicity of f2 versus CEO phase φ is π . Note that the relative modu-
lation depth does not depend on the Rabi frequency although f2 itself is obviously
proportional to the intensity of light. The modulation depth does depend on the tran-
sition frequency � and changes sign when � crosses the carrier frequency ω0. For
box-shaped pulses containing an integer number N of cycles of light, each π in (3.29)
has to be replaced by Nπ . Amazingly, the CEO-phase dependence survives for arbi-
trary N = 1, 2, 3, ... Thus, for box-shaped optical pulses, a CEO-phase dependence
is expected even for a very weak (�R/ω0 → 0) optical pulse containing many cycles
of light (N → ∞).

This seemingly surprising result is a consequence of the discontinuous jumps in
the incident electric field E(t) for all φ except for φ = 0, π, 2π, .... In the Fourier
domain, broad spectral wings result and the maximum centered at ω = ω0 interferes
with that at ω = −ω0. Consequently, even the laser spectrum |E(ω)| itself strongly
depends on the CEO phase for these pulses (also, see Example 2.4). Hence, the CEO
phase could simply be determined with a spectrometer. The two-level system just acts
as a spectral filter that picks out a certain frequency range. Smoothing of the temporal
jumps reduces the relative modulation depth and gradually brings one back towards
the more realistic and more meaningful behavior for the pulse envelopes discussed
above, where the laser spectrum does not depend on φ.

More details on the CEO-phase-dependent inversion can be found in Refs. [75–
78].

3.6 High Harmonics from Two-Level Systems

We now want to approach yet larger Rabi frequencies, in which case the response
tends to become rather complex. The simplest and cleanest situation is given when
the envelope Rabi frequency is either constant or zero, as was the case in Fig. 3.5. Let
us start our discussion with such box-shaped optical pulses (illustrated in Fig. 3.4(a)),
which are N = 30 optical cycles in duration (e.g., for �ω0 = 1.5 eV, this would
roughly correspond to a 90-fs long pulse). Damping is irrelevant under the condi-
tions of this section unless the damping rate becomes comparable to the transition
frequency, in which case no resonance exists at all. For our numerical calculations, we
chose a transverse relaxation time T2 corresponding to �ω0 T2 = 1.5 eV 50 fs. Longi-
tudinal damping is neglected (T1 = ∞). To get an overview we can either fix �/ω0
and depict the radiated intensity versus �R/ω0 and ω/ω0 (Fig. 3.11) or, alternatively,
fix �R/ω0 and plot the signals versus �/ω0 and ω/ω0 (Fig. 3.12).

For �R/ω0 
 1 on the vertical axis of Fig. 3.11(a), where �/ω0 = 1 (resonant
excitation), conventional Rabi flopping [53] occurs and the well-known Mollow triplet
[56] can be seen at ω/ω0 = 1 on the horizontal axis. At larger �R/ω0 approaching
unity, carrier-wave Rabi flopping takes place and additional carrier-wave Mollow
triplets appear around odd integers ω/ω0. Beyond �R/ω0 = 1, the Mollow sidebands
are “repelled” by the central peaks of the adjacent Mollow triplets. They oscillate
around even integer values of ω/ω0 and finally converge towards these values in the
limit �R/ω0 � 1. On the way, they periodically cross at even integers ω/ω0 with a
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Fig. 3.11. Grayscale image of the radiated intensity Irad ∝ |ω2 u(ω)|2 from exact numerical
solutions of the two-level system Bloch equations (3.17) versus peak Rabi frequency �R and
spectrometer frequency ω for two fixed values of the transition frequency �, all in units of the
laser carrier frequency ω0. The exciting box-shaped optical pulses according to Fig. 3.4(a) are
N = 30 cycles long. (a) �/ω0 = 1, (b) �/ω0 = 5. Compare with Fig. 3.5. Reprinted with
permission from T. Tritschler et al., Phys. Rev. A 68, 033404 (2003) [79]. Copyright (2003)
by the American Physical Society.
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Fig. 3.12. As Fig. 3.11, but versus transition frequency � and spectrometer frequency ω for
two fixed values of the peak Rabi frequency �R, all in units of the laser carrier frequency ω0.
(a) �R/ω0 = 1, (b) �R/ω0 = 10. Compare with Figs. 3.7 and 3.6. Reprinted with permission
from T. Tritschler et al., Phys. Rev. A 68, 033404 (2003) [79]. Copyright (2003) by the American
Physical Society.
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period versus �R/ω0 of π/2 for �R/ω0 � 1 (whereas the first crossing occurs at
�R/ω0 ≈ 1. For off-resonant excitation, e.g. �/ω0 = 5 in Fig. 3.11(b), the behavior
is different for �R/ω0 < 1 and �R/ω0 ≈ 1, but becomes similar to Fig. 3.11(a) for
�R/ω0 � 1.

The other way to look at the parameter space is to fix the Rabi frequency �R/ω0.
For large �/ω0 but not too large peak Rabi frequencies �R/ω0 in Fig. 3.12, well-
separated high harmonics are observed, as expected from our discussion on phe-
nomenological nonlinear optics in Sect. 2.4. On the diagonal, where ω = �, very
large resonant enhancement effects are observed. This is also true for the adjacent
harmonics at spectrometer frequencies ω = � ± 2Mω0 with integer M , which alto-
gether leads to a band of enhancement around the diagonal in Fig. 3.12. Especially
note that large contributions can occur at the spectral positions of even harmonics,
as already discussed for Fig. 3.11. These contributions are especially pronounced for
even integer values of �/ω0 [67].

For more realistic smoothed box-shaped optical pulses the overall behavior re-
mains the same. If, e.g., the electric-field envelope is switched on and off by Fermi
functions rising and decaying within a few optical cycles, respectively, the behavior
of Fig. 3.12 is slightly smeared out and the contributions at spectrometer frequen-
cies ω = � ± 2Mω0 decay more rapidly for large values of �/ω0 as compared to
box-shaped optical pulses.

For other pulse envelopes, the envelope Rabi frequency is not constant within
the pulse, which effectively averages along the vertical axis of Fig. 3.11. This is
further illustrated in Fig. 3.13 for the example of Gaussian pulses with an electric-
field envelope given by Ẽ(t) = Ẽ0 exp(−(t/t0)

2). The temporal full width at half-

maximum (FWHM) of the intensity profile is given by tFWHM = t0 2
√

ln
√

2 and
translates into a FWHM of N = tFWHM/(2π/ω0) optical cycles in Fig. 3.13. In (a),
where N = 30 and φ = 0, the anticipated averaging can be seen clearly. As a result,
the contributions at odd integers ω/ω0 have almost disappeared in favor of even
contributionss. This is exactly opposite to what one might have expected intuitively.
For N = 30 and φ = π/2 (not shown), the behavior is similar – apart from fine details,
which are hardly visible on this scale. For few-cycle optical pulses (Fig. 3.13(b)), the
various contributions get largely broadened spectrally and their mutual interference
leads to rather “messy” spectra, which have lost all of the beautiful fine details of
Fig. 3.11. It is clear that this interference also introduces a dependence on the carrier-
envelope phase φ as discussed in more detail in Sects. 7.1 and 7.2.

One might be tempted to argue that the peaks at even integers ω/ω0 in the optical
spectra at large �R/ω0 arise from the fact that the complete system, i.e., two-level
system plus light field, no longer has inversion symmetry at large electric fields. This
reasoning is, however, not consistent with the Bloch equations. Space inversion means
that we have to replace r → −r . As a result, the dipole matrix element transforms
as d → −d and the electric field as E(t) → −E(t). Hence, we have �

−1dE(t) =
�R(t) → +�R(t) and the Bloch equations (3.17) remain completely unchanged
under space inversion. Thus, the solution for the Bloch vector (u(t), v(t), w(t))T

is also unchanged. Finally, the macroscopic optical polarization, which is given by
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Fig. 3.13. As Fig. 3.11(a), but for Gaussian optical pulses with CEO phase φ = 0 and with a
full width at half-maximum of tFWHM = N 2π/ω0. (a) N = 30, (b) N = 3. Reprinted with
permission from T. Tritschler et al., Phys. Rev. A 68, 033404 (2003) [79]. Copyright (2003)
by the American Physical Society.
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P(t) = N2LS/V d u(t) transforms according to P(t) → −P(t). Consequently, in
an expansion of the polarization in terms of powers of the electric field up to infinite
order, strictly no even orders occur – even for arbitrarily large electric fields. Thus,
we deliberately avoid to call a peak at, e.g., ω/ω0 = 2, second harmonic generation
(SHG). As discussed in Sect. 2.5, a strict definition of SHG must be based on its carrier
frequency or its phase, which are 2ω0 and 2φ, respectively. The peaks at ω/ω0 = 2
from the two-level system are not consistent with this definition. Thus, we rather use
the notion “third-harmonic generation in disguise of second-harmonic generation”
for this unusual contribution. A similar argument obviously holds for all the other
even integers ω/ω0, which must not be called even harmonics in the framework of
nonlinear optics. In some of the literature – written before the importance of the
carrier-envelope phase φ was fully appreciated – these peaks are nevertheless called
even harmonics.

Exact numerical solutions of the two-level system Bloch equations (3.17) – as
discussed in this chapter so far – are actually very simple and quick with the computers
and software packages at hand today. Thus, there is no need for simplified numerical
treatments. The spirit of the following approximate schemes rather is to give additional
insight into the physics or to deliver “handy” analytical expressions.

3.6.1 The “Static-Field Approximation”

Is there anything that can easily be evaluated on a piece of paper rather than on a
computer? For times much shorter than a cycle of light, 2π/ω0, we can employ the
“static-field approximation”, i.e., we approximate �R(t) = �R as constant in time.
In this limit, the “optical” transitions can obviously be thought of as originating from
electrostatic tunneling of electrons from the ground state into the excited states and
vice versa. We will see below, for which field amplitudes or Rabi frequencies this
limit becomes meaningful. Within this limit, it is straightforward to solve the Bloch
equations (3.17) analytically [22] (also see Problem 3.7). This leads to the Bloch
vector ⎛

⎝ u(t)

v(t)

w(t)

⎞
⎠ = M(t)

⎛
⎝ u(0)

v(0)

w(0)

⎞
⎠ , (3.30)

with the (3 × 3) rotation matrix

M(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4�2
R + �2cos(�eff t)

�2
eff

�

�eff
sin(�eff t)

2��R

�2
eff

(cos(�eff t) − 1)

− �

�eff
sin(�eff t) cos(�eff t) −2�R

�eff
sin(�eff t)

2��R

�2
eff

(cos(�eff t) − 1)
2�R

�eff
sin(�eff t)

�2 + 4�2
Rcos(�eff t)

�2
eff

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.31)
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Obviously, the optical polarization P(t) ∝ u(t) as well as the other two compo-
nents of the Bloch vector oscillate with the effective frequency �eff , which is given
by

�eff =
√

4 �2
R + �2 . (3.32)

Remember that this “static-field approximation” is only justified for times t 

2π/ω0, hence it is relevant in the limit �eff � ω0. It can be viewed as the op-
posite of the rotating-wave approximation (see Sect. 3.3). There, almost nothing is
supposed to happen on the timescale of light, whereas here all the significant dynam-
ics takes place within an optical cycle. For �R � �, we have �eff = 2 �R, which
means that twice the peak Rabi frequency is the largest occurring frequency, hence,
the highest harmonic generated, the cutoff, is given by

Ncutoff = 2
�R

ω0
(3.33)

(compare black areas on the lower RHS in Figs. 3.11 (a) and (b)).
Starting from the ground state, i.e., from Bloch vector (0, 0, −1)T at time t = 0,

the inversion according to (3.30) and (3.31) is given by

w(t) = − �2 + 4 �2
Rcos(�eff t)

�2
eff

. (3.34)

Thus, the two-level system can even perform Rabi flopping for far off-resonant con-
ditions, i.e. for � � ω0, if the intensity is so large that it roughly corresponds to a
Rabi frequency of �R = �. With (3.32), this leads to �eff = √

5 �R, hence

w(t) = −1

5
− 4

5
cos

(√
5 �Rt

)
. (3.35)

The maximum inversion is w = +3/5, corresponding to f2 = 80% occupation of
the excited state. In a quantum optical description of the light field, this behavior can
be interpreted as carrier-wave Rabi flopping due to multiphoton absorption. For yet
larger intensities, i.e., in the limit �R � �, (3.34) simplifies to

w(t) = −cos(2�Rt) , (3.36)

and even 100% maximum inversion results. Equation (3.36) obviously resembles
Rabi’s famous result obtained within the rotating-wave approximation, i.e., (3.21)
with the envelope Rabi frequency �̃R replaced by 2�R.

Rabi flopping within the static-field limit will soon reappear when discussing
electron–positron pair generation in vacuum in Sect. 4.5. Moreover, we will re-
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encounter the static-field or high-intensity limit several times below, e.g., in the
context of the Keldysh parameter and field-ionization of atoms in Sects. 5.2 and 5.3
or for the dynamic Franz–Keldysh effect in Sect. 7.3.

Problem 3.7. Show that (3.30) together with (3.31) and (3.32) holds under these
conditions. To get there, first express the Bloch equations (3.17) for �R(t) = �R =
const. as two coupled harmonic oscillator equations for the optical polarization u and
the inversion w.

3.6.2 The “Square-Wave Approximation”

The Bloch equations (3.17) describe rotations of the Bloch vector on the Bloch sphere.
Within the regime of extreme nonlinear optics, the behavior becomes “enriched” by
the fact that one of the rotation frequencies, namely 2�R(t), itself oscillates with the
carrier frequency of light and periodically changes sign. This oscillation is sinusoidal,
yet, one might ask whether it is really so important that it is sinusoidal. Having in
mind what we have said about the “static-field approximation” in Sect. 3.6.1, it is
straightforward to extend this result to piecewise constant electric fields E(t) or Rabi
frequencies �R(t), respectively [79]. This leads us to investigating the “square-wave
approximation” in which we approximate the Rabi frequency for a constant envelope
via

�R(t) = �R cos(ω0t + φ) → 2

π
�R sgn(cos(ω0t + φ)) , (3.37)

where the signum function is defined as sgn(x) = +1 for x > 0, sgn(x) = −1 for
x < 0 and sgn(x) = 0 for x = 0. The prefactor 2/π ensures that the average Rabi
frequency within half an optical cycle is the same for the “square-wave approximation”
and the exact problem. In that half of the optical cycle where the Rabi frequency is
positive (negative), the Bloch vector rotates via the matrix M+ (M−), where M±
results from M by replacing �R → ± (2/π) �R in (3.31) and (3.32). For more than
half an optical cycle, the dynamics of the Bloch vector is described by⎛

⎝ u(t)

v(t)

w(t)

⎞
⎠ = Mtot(t)

⎛
⎝ u(0)

v(0)

w(0)

⎞
⎠ , (3.38)

where the total matrix Mtot is a product of simple analytical (3×3) rotation matrices:
For times t after the optical pulse with integer number of cycles of light N , where
�R(t) = 0, we have

Mtot(t) = M0

(
t − N

2π

ω0

) (
M−

(
π

ω0

)
M+

(
π

ω0

))N

, (3.39)

where M0 results from M by replacing �R → 0 in (3.31) and (3.32). M0 describes
only a rotation in the uv-plane with the transition frequency � and can be simplified
to
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M0(t) =
⎛
⎝ cos(� t) + sin(� t) 0

− sin(� t) cos(� t) 0
0 0 1

⎞
⎠ . (3.40)

Within the optical pulse, we obtain for times t with �R(t) > 0

Mtot(t) = M+
(

t − Nt

2π

ω0

) (
M−

(
π

ω0

)
M+

(
π

ω0

))Nt

, (3.41)

and for times t with �R(t) < 0

Mtot(t) = M−
(

t −
[
Nt + 1

2

]
2π

ω0

)
M+

(
π

ω0

) (
M−

(
π

ω0

)
M+

(
π

ω0

))Nt

.

(3.42)
Here we have introduced the integer number of cycles Nt completed up to time t ,
which is given by

Nt = int

(
ω0t

2π

)
. (3.43)

The value of the integer function int(x) is given by the largest integer ≤ x.
We first test the “square-wave approximation” by depicting its solutions in

Fig. 3.14. Parameters are identical to those of the exact numerical calculations in
Fig. 3.11, which allows for a direct comparison. The overall qualitative agreement is
amazing, especially for the (a) parts. There, �/ω0 = 1 (resonant excitation), which
is just the generalization of Rabi flopping and Mollow triplets. For instance, the pe-
riodically occurring constrictions of the repelling Mollow sidebands at even integers
ω/ω0 versus �R/ω0 with period π/2 (see discussion in Sect. 3.6) are very nicely
reproduced. For off-resonant excitation (�/ω0 = 5) in (b), the square-wave approx-
imation is less convincing. This aspect can be understood intuitively. For resonant
excitation (�/ω0 = 1), the transition frequency resonantly enhances those frequency
components of the square-wave with frequency ω0. Thus, the artificial higher harmon-
ics of the square-wave at frequencies 3ω0, 5ω0, ... are relatively suppressed. Clearly,
the “square-wave approximation” does not properly recover the limit of linear optics,
in the sense that u(t) is not sinusoidal in that limit (as it should be), equivalent to
higher harmonics of the carrier frequency ω0 in the Fourier domain. Thus, the lower
RHS of Figs. 3.14(a) and (b) (which is dark in Figs. 3.11(a) and (b)) is an obvious
artifact of the “square-wave approximation”. This artifact is unimportant because we
are rather interested in the regime of extreme nonlinear optics.

The simplest cases of commensurability of the frequencies ω0, �, and �R within
the “square-wave approximation” are given by

�eff
π

ω0
= M 2π , (3.44)

with integer M , for which we have

M+
(

π

ω0

)
= M−

(
π

ω0

)
=
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ . (3.45)
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Fig. 3.14. As Fig. 3.11, but based on the analytical solution of the two-level system Bloch
equations within the “square-wave approximation”. (a) �/ω0 = 1, (b) �/ω0 = 5. Reprinted
with permission from T. Tritschler et al., Phys. Rev. A 68, 033404 (2003) [79]. Copyright
(2003) by the American Physical Society.
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Under these conditions, an integer number of Rabi flops is completed after half an
optical cycle π/ω0. Inserting

�eff =
√

4

(
2

π
�R

)2

+ �2 (3.46)

into (3.44), we get that commensurability occurs for specific Rabi frequencies given
by the relation

�R

ω0
= π

2

√
M2 − 1

4

(
�

ω0

)2

, (3.47)

with M = 1, 2, 3, ... For these Rabi frequencies, peaks at even integers

ω

ω0
= �eff

ω0
=
√

16

π2

(
�R

ω0

)2

+
(

�

ω0

)2

= 2 M (3.48)

are observed in the optical spectrum – apart from the less interesting peaks at odd
integers ω/ω0, which also occur in traditional nonlinear optics. These peaks at even
integers ω/ω0 form the bright band in Fig. 3.14, whereas the other even integers
ω/ω0 are absent in the spectrum. This bright band also occurs in the exact numer-
ical solutions (Fig. 3.11). There, in contrast to the “square-wave approximation”,
the instantaneous Rabi frequency �R(t) varies within half an optical cycle (some-
what similar to a “chirped” optical pulse), which also introduces peaks at other even
integers ω/ω0. This shows that the constrictions formed by the crossing Mollow
triplets in Fig. 3.11 can be interpreted as points of commensurability of the carrier
frequency of light ω0, the transition frequency �, and the peak Rabi frequency �R.
Here an integer number of Rabi flops is completed after half an optical cycle and,
thus, peaks at even integers ω/ω0 occur in the optical spectrum. For example, for
M = 1 and �/ω0 = 1 in (3.47), we get �R/ω0 = √

3 π/4 ≈ 1.36 (Fig. 3.14), which
roughly agrees with �R/ω0 ≈ 1 in the exact numerical calculations (Fig. 3.11).
For integers M � �/ω0 we get �R/ω0 = M π/2. This period of π/2 is also
precisely found in the exact numerical calculations (Fig. 3.11). For large Rabi fre-
quencies, commensurability is easily achieved and these “even harmonics” become
the rule rather than the exception – despite the fact that the two-level system has
inversion symmetry. In between these points of commensurability, it takes some op-
tical cycles to again approach the initial state. In the Fourier domain, this obviously
corresponds to nearby sidebands around those even integers ω/ω0 (see Figs. 3.11
and 3.14).
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3.6.3 The Dressed Two-Level System: Floquet States

Floquet’s theorem [80] generally allows us to translate any time-dependent Hamil-
tonian that is strictly periodic in time to an effective time-independent Hamiltonian
represented by an infinite matrix [81]. Starting from this point, all known approxi-
mative schemes for stationary Hamiltonians can be applied.

Let us derive the corresponding time-independent matrix for the two-level system.
First, we make the obvious ansatz

ψ(t) = a1(t) ψ1 + a2(t) ψ2 , (3.49)

where ψ1 and ψ2 are the ground and excited state of the two-level system, respectively
(see Sect. 3.2). With this ansatz, the Schrödinger equation i�ψ̇(t) = Hψ(t) can be
expressed in (2 × 2) matrix form as

i�
∂

∂t

(
a1
a2

)
=
(

E1 −��R(t)

−��R(t) E2

) (
a1
a2

)
= H

(
a1
a2

)
, (3.50)

where the time-dependent Rabi frequency (see (3.18) and (3.19)) is again given by

�R(t) = �R cos(ω0t + φ) = �R

2

(
e+i(ω0t+φ) + e−i(ω0t+φ)

)
. (3.51)

For continuous-wave excitation, �R is constant in time. Along the lines of our dis-
cussion in Sect. 3.6, we expect that the coefficients an(t) comprise harmonics of the
laser carrier frequency ω0. This leads us to the ansatz

an(t) = e−iωt
+∞∑

N=−∞
an,N e−iN(ω0t+φ) (3.52)

for the two levels n = 1, 2. Introducing this ansatz into (3.50) and ordering the terms
according to their exponentials immediately delivers an infinite set of coupled linear
equations for the time-independent coefficients an,N . Ordering them into a vector
according to

ψ ′ = (..., a1,−1, a2,−1, a1,0, a2,0, a1,1, a2,1, a1,2, a2,2, ...)
T , (3.53)

inserting the transition energy �� = (E2 − E1) from (3.11) and choosing E1 = 0
without loss of generality, leads to the eigenvalue problem

H′ψ ′ = �ω ψ ′ , (3.54)

with the stationary, infinite Floquet matrix
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H′ = �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

... ... ... ... ... ... ... ... ... ...

... +ω0 0 0 −�R

2
0 0 0 0 ...

... 0 � + ω0 −�R

2
0 0 0 0 0 ...

... 0 −�R

2
0 0 0 −�R

2
0 0 ...

... −�R

2
0 0 � −�R

2
0 0 0 ...

... 0 0 0 −�R

2
−ω0 0 0 −�R

2
...

... 0 0 −�R

2
0 0 � − ω0 −�R

2
0 ...

... 0 0 0 0 0 −�R

2
−2ω0 0 ...

... 0 0 0 0 −�R

2
0 0 � − 2ω0 ...

... ... ... ... ... ... ... ... ... ...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.55)

The zero in the fourth row and fourth column corresponding to n = 1 and N = 0
is highlighted. For small Rabi frequencies �R, i.e., in the perturbative regime, the
eigenfrequencies ω are approximately given by the diagonal elements of this matrix,
namely by the frequencies 0, ±ω0, ±2ω0, ±3ω0, ..., �, � ± ω0, � ± 2ω0, etc. We
have already encountered them in Fig. 3.12(a). For larger Rabi frequency, the off-
diagonal elements lead to couplings, hence the eigenfrequencies are modified. This
especially leads to a variety of avoided crossings [55,82], which we have also already
seen in Figs. 3.11 and 3.12(b) and that are illustrated schematically in a different way
in Fig. 3.15. The eigenvectors of this stationary matrix (3.55) are often referred to
as Floquet states – the eigenstates of the two-level system “dressed” by the light.
Sometimes an expansion in terms of these Floquet states can be useful.

Within a quantum optical description of the light field in terms of a single
quantized mode, the analogue of our classical treatment is the Jaynes–Cummings
model [8, 83]. There, without two-level-system–photon interaction, e.g., the state
with energy �� + 2�ω0 can be interpreted as “one electron in the excited state plus
two photons”. With interaction, one again gets mixed states.

Problem 3.8. Draw the level diagram as in Fig. 3.15 for the case � = 3 ω0.

Problem 3.9. Arrange the two-level system Schrödinger equation (3.50) into the form
of the known Riccati nonlinear differential equation, i.e., into the form

dR
dt

= A0(t) + A1(t) R + A2(t) R2 , (3.56)
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Fig. 3.15. Illustration of the eigenfrequencies of the Hamilton matrix (3.55) for resonant ex-
citation, i.e., for � = ω0. For example, the four optical transitions from the lowest energy
doublet towards the highest energy doublet on the RHS (see arrows and gray ellipses) – two
of which are degenerate – lead to the third-harmonic Mollow triplet, which we have already
discussed in Sect. 3.3 and shown in Figs. 3.5 and 3.11(a).

with the complex function R(t) and the coefficients A0(t), A1(t), and A2(t). In this
form, the equation of motion can still not be solved analytically in general, but the
Riccati equation has quite some interesting mathematical properties that can be taken
advantage of.
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The Drude Free-Electron Model and Beyond ...

4.1 Linear Optics: The Drude Model

A free electron with mass me and charge −e, driven by the laser electric field E(t)

obeys Newton’s second law according to

meẍ(t) = −e E(t) , (4.1)

where the coordinate x is again the electron displacement with respect to some fixed
positive charge. This is simply (3.1) without a restoring force, i.e., with D = 0
(compare Figs. 3.1 und 4.1). Thus, the linear optical susceptibility follows from (3.3)
directly by setting D = � = 0. With the number of electrons Ne (replacing Nosc) per
volume V we have

χ(ω) = − e2Ne

ε0V me

1

ω2
= − ω2

pl

ω2
. (4.2)

Here we have introduced the plasma frequency ωpl given by

ωpl =
√

e2Ne

ε0V me
. (4.3)

Note that the plasma frequency increases with the square root of the electron density
Ne/V . In a dielectric material, ε0 has to be replaced by ε0 → εε0, with the relative
dielectric constant ε.

If we have just an individual charge rather than a homogeneous gas of electrons,
the oscillatory acceleration of the charge leads to Thomson scattering. It is analogous
to Rayleigh scattering on an electric dipole – which makes the sky blue. Note that
the frequency of the scattered light is identical to that of the incoming light, linear
Thomson scattering is elastic scattering. The well-known radiation pattern of linear
Thomson scattering is shown in Fig. 4.5(a).
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Fig. 4.1. Scheme of the linear dielectric function ε(ω) = 1 + χ(ω) versus spectrometer
frequency ω according to the Drude model, (4.2). ωpl is the plasma frequency [268].

Can we associate a relevant energy to the intensity of the light field driving the
electron? If yes, this energy would be the analogue of the Rabi energy for the two-
level system. Let us consider a laser electric field E(t) with constant envelope Ẽ0,
polarized along the x-direction, i.e.,

E(t) = Ẽ0 cos(ω0t + φ) . (4.4)

Inserting this expression into Newton’s law (4.1) together with the initial condition
v(0) = 0 delivers the electron velocity v(t) = ẋ(t) according to

v(t) = − eẼ0

meω0
sin(ω0t + φ) . (4.5)

Averaging the classical electron kinetic energy Ekin(t) = me

2
v2(t) over an optical

cycle, 2π/ω0, and remembering that 〈sin2(ω0t + φ)〉 = 1/2, we obtain the pondero-
motive energy (also known as wiggle or quiver energy)

〈Ekin〉 = 1

4

e2Ẽ2
0

meω
2
0

. (4.6)

Obviously, the ponderomotive energy is directly proportional to the light intensity I

(∝ Ẽ2
0 , see (2.16)). The peak kinetic energy is twice the ponderomotive energy.

� Example 4.1. For Ẽ0 = 4 × 109 V/m and GaAs parameters (me = 0.07 × m0, with
the free electron mass m0 = 9.1091 × 10−31 kg and �ω0 = E GaAs

g = 1.42 eV)

one obtains 〈Ekin〉 = 2.16 eV. For Ẽ0 = 6 × 109 V/m and ZnO parameters (me =
0.24 × m0 and �ω0 = 1.5 eV) we get 〈Ekin〉 = 1.27 eV.
By the way: For Ẽ0 = 4 × 109 V/m and GaAs parameters, the peak acceleration of
the crystal electron, a0

e , is given by |a0
e | = e/me Ẽ0 = 1.0 × 1022 m/s2 = 1021 × g

with the gravitational acceleration constant near the earth’s surface g = 9.81 m/s2 .
Compared with this, the maximum acceleration of a Formula–1 race car, which is on
the order of 101 × g, is really negligible. �
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Problem 4.1. What are the peak (classical) charge displacements, x0, for an electric
field of Ẽ0 = 4×109 V/m for (a) Rabi oscillations and (b) free motion of an electron
in a typical semiconductor ? How does x0 scale with Ẽ0 for the two cases ?

4.2 Electron Wave Packets Driven by Light

Quantum mechanically, the problem of an electron in a laser electric field (oscillating
in time) is analogous to that of the light field with carrier frequency ω0 in a
mode-locked laser oscillator (see Sect. 2.3). There, the electromagnetic wave packet
(the laser pulse) periodically oscillates back and forth between the laser mirrors (with
the roundtrip frequency fr). This leads to sidebands of ω0 – the frequency comb.
These sidebands are rigidly upshifted by the carrier-envelope offset frequency fφ as
a result of the phase slip �φ of the electromagnetic wave packet from one roundtrip
to the next according to (2.33).

4.2.1 Semiclassical Considerations

In analogy to this, semiclassically speaking, the electron wave packet in a periodic
laser field acquires a quantum phase in one optical cycle, �φe, which is given by the
cycle-average1

�φe = 〈2π

(
vphase − vgroup

) 2π

ω0

λe
〉 , (4.7)

with the electron de Broglie wavelength λe = 2π/kx and the period of light 2π/ω0.
With the dispersion relation of, e.g., vacuum electrons or crystal electrons in a solid
within the effective-mass approximation

Ee(kx) = �ωe(kx) = �
2 k2

x

2 me
, (4.8)

and with vphase = ωe/kx and vgroup = dωe/dkx , we obtain the phase slip of the
oscillating electron wave packet from one optical cycle to the next

�φe = 〈2π

(
�kx

2 me
− 2

�kx

2 me

)
2π

ω0

2π/kx

〉

= − 2π

〈�
2k2

x(t)

2 me
〉

�ω0

= − 2π
〈Ekin〉
�ω0

. (4.9)

1 Note that λe, vphase, and vgroup vary in time via kx = kx(t).
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Note that the minus sign is due to the fact that the electron group velocity is larger
than its phase velocity, while for photons the situation is usually reversed, i.e., their
group velocity is smaller than their phase velocity.

According to (4.9), the phase slip becomes appreciable in magnitude if the pon-
deromotive energy approaches the carrier photon energy, i.e., if

〈Ekin〉
�ω0

≈ 1 . (4.10)

Note that this ratio scales as 1/ω3
0. Furthermore, in analogy to the light field in a laser

cavity, we expect that the density of states of the combined system electron and light
field exhibits photon sidebands of the electron density of states at ±N �ω0 (with
integer N ), which – in analogy to (2.33) – are upshifted in energy [86–88] according
to

�ω0
|�φe|

2π
= 〈Ekin〉 , (4.11)

i.e., upshifted by 〈Ekin〉. Thus, the ponderomotive energy 〈Ekin〉 for electrons is
analogous to the carrier-envelope offset frequency fφ for photons.

4.2.2 Quantum-Mechanical Treatment: Dressed Electrons

This reasoning is nice, simple and intuitive – but ignores one aspect of the problem,
i.e., that the electron group velocity depends on frequency: We have a finite group
velocity dispersion and anticipate a temporal broadening of any spatially localized
wave packet. In order to address this aspect we have to solve the one-dimensional
time-dependent (nonrelativistic) Schrödinger equation for the electron with charge
−e, given by

i�
∂

∂t
ψ(x, t) = 1

2me
(px + eAx)

2 ψ(x, t) + V (x, t) ψ(x, t) , (4.12)

with the momentum operator

px = −i�
∂

∂x
. (4.13)

From basic electrodynamics we know that the laser electric field E(x, t) is related
to the vector potential A(x, t) and the electrostatic potential φ(x, t) (with V (x, t) =
−eφ(x, t)) via

E(x, t) = − ∂A(x, t)

∂t
− ∂φ(x, t)

∂x
. (4.14)

This gives us two attractive options: (i) the radiation gauge, i.e., φ(x, t) = 0, and
(ii) the electric-field gauge, i.e., set Ax = 0. We discuss both in the following. We
will see later that – depending on the conditions and on the electric-field amplitude
– either of these choices can be more adequate. However, one must not mix these
gauges. The charm of the electric-field gauge is that one can employ analogies to static
electric fields, e.g., tunneling of electrons. In the relativistic regime (see Sect. 4.5),
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the radiation gauge (Lorentz gauge) should be used. A detailed discussion on these
gauge issues can be found in Ref. [89].

(i) Radiation gauge

The first possibility to introduce the laser electric field E into the Schrödinger equation
(4.12) is to set V (x) = −eφ(x) = 0. In the same spirit as the dipole approximation
in Sect. 3.2, we assume that the relevant lengthscales are much shorter than the wave-
length of light, in which case we can approximate the laser electric field as constant
in space – but oscillating in time. Suppressing the spatial dependence of E and A, we
get

E = − ∂A

∂t
. (4.15)

For an electric field linearly polarized along x and with constant intensity according
to E(t) = Ẽ0 cos(ω0t + φ), we obtain

Ax(t) = − 1

ω0
Ẽ0 sin(ω0t + φ) , (4.16)

with the CEO phase φ. This leads to the time-dependent Schrödinger equation

i�
∂

∂t
ψ(x, t) = 1

2me

(
−i�

∂

∂x
− eẼ0

ω0
sin(ω0t + φ)

)2

ψ(x, t) . (4.17)

Following our above semiclassical discusssion, we make the ansatz

ψ(x, t) = eikxx
+∞∑

N=−∞
aN e−i(ωN t+Nφ) , (4.18)

with the frequencies ωN given by

�ωN = �
2k2

x

2me
+ 〈Ekin〉 + N �ω0 , (4.19)

i.e., we have a comb of equidistant frequencies, upshifted by the ponderomotive en-
ergy. The term �

2k2
x/(2me) may be viewed as the initial kinetic energy of the electron.

The ansatz (4.18) together with (4.19) can be verified by inserting it into the time-
dependent Schrödinger equation (4.17). This, furthermore, delivers the amplitudes
aN . Let us, however, go through the details of the mathematics exclusively for the
special case kx = 0 (for kx �= 0 see Problem 4.2). This leads us to
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eikxx
+∞∑

N=−∞
�ωN aN e−i(ωN t+Nφ) = 1

2me

e2Ẽ2
0

ω2
0

sin2(ω0t + φ) ψ(x, t) (4.20)

= 〈Ekin〉 (1 − cos(2ω0t + 2φ)) ψ(x, t) .

Inserting ψ(x, t) according to (4.18) on the RHS, shifting the cosine into the sum,
rearranging the sums and comparing the coefficients of the sums gives

N �ω0 aN = −〈Ekin〉
2

(aN+2 + aN−2) . (4.21)

This relation connects the amplitudes aN with even integer N to the other even
integers, as well as the odd integers to the other odd integers. It does not couple even
and odd integers. At this point one needs some inspiration. We guess that

aN = J− N
2

( 〈Ekin〉
2 �ω0

)
for even integer N, aN = 0 else (4.22)

holds, where JN is the N -th–order Bessel function of the first kind. Inserting this guess
into (4.22), defining X = 〈Ekin〉/(2 �ω0) and replacing −N/2 = M , we obtain

2M

X
JM(X) = JM+1(X) + JM−1(X) , (4.23)

a mathematical identity [80] that holds for Bessel functions of the first kind for
arbitrary M (integer or half-integer). The amplitude aN of a given order N depends
solely on the ratio of the ponderomotive energy and the carrier photon energy – as
already anticipated from our above semiclassical discussion. Without a laser field,
i.e., for 〈Ekin〉 = 0, we must recover the usual electron plane waves, i.e., a0 = 1
and all other amplitudes are zero. Indeed, we have a0 = J0(0) = 1. For nonzero
integer indices of the Bessel function, equivalent to even integer order N , we indeed
get J−N/2(0) = 0. For positive odd integer values of N , equivalent to negative half-
integer values of the Bessel function index, on the other hand, J−N/2(0) diverges.
Thus, all amplitudes aN with odd integer value of N must be zero – a consequence of
inversion symmetry for kx = 0. At this point, we have verified all aspects of (4.22).

For the more general case kx �= 0, the amplitudes of the sidebands are given by

aN = e+i π
2 N

+∞∑
M=−∞

JM

( 〈Ekin〉
2 �ω0

)
JN−2M

(
−kxẼ0e

meω
2
0

)
. (4.24)

The argument of the second Bessel function can alternatively be expressed as

− kxẼ0e

meω
2
0

= −sgn(kx) 2
√

2

√
�

2k2
x

2me
〈Ekin〉

�ω0
, (4.25)
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i.e., as the geometrical average of the initial kinetic energy and ponderomotive energy
divided by the carrier photon energy. For finite values of this ratio, i.e., for finite kx ,
Volkov sidebands at even and odd orders N occur – in contrast to the case of kx = 0.
Note that the sign of aN for kx > 0 and kx < 0, respectively, is different: The
initial electron momentum kx breaks the inversion symmetry of the free electron. For
kx = 0, (4.24) simplifies to (4.22). In order to actually verify (4.24), it is much more
convenient to express the laser electric field as a sine rather than as a cosine (this
book), because no complex numbers occur in the equation for the coefficients [90].
At the end, one can shift the time axis, which leads to the phase factor exp(+i π

2 N)

in (4.24). Also, see Problem 4.2.
The states according to (4.18) together with (4.19) and (4.22) or (4.24) are called

Volkov states [91, 92]. They have a sharp wave number kx and are completely delo-
calized in real space: The corresponding charge density ρ(x, t) ∝ −e|ψ(x, t)|2 is
constant versus x for all times t . The Volkov states are stationary states. They are often
refered to as dressed electron states because the influence of the light field modifies
the “naked” electron dispersion. (4.18) describes exactly those wave packets that we
have already discussed in the above semiclassical part. The properties of the Volkov
states are visualized in Fig. 4.2.

In more than one dimension and for arbitrary linear polarization of the laser
electric field, the term kxẼ0 in the argument of the second Bessel function in (4.24)
has to be replaced by k · Ẽ0 and the wave function ψ(x, t) → ψ(x, y, z, t) has to be
multiplied by the phase factor ei(kyy+kzz).

One should note that the Volkov states of vacuum electrons do not introduce
any nonlinear optics at all. The Volkov states are, however, an important starting
point for discussing extreme nonlinear optics of intraband effects in semiconductors
or extreme nonlinear optics of atoms. There, a transition into a N -photon sideband
of the electron can be viewed as a N -photon absorption process. From the Volkov
wave function (4.18) we immediately see that the corresponding phase is N times the
CEO phase φ. Interference of, e.g., one- and two-photon absorption will thus again
introduce a dependence on the CEO phase φ of the exciting laser pulses.

In the perturbative regime, i.e., for 〈Ekin〉
�ω0


 1, we can take advantage of the

expansion JM(X) ≈ ( 1
2 X)M/�(M + 1) valid for X 
 1 and for positive M .

�(M + 1) is the gamma function with �(M + 1) = M! for positive integer M .
Together with J−M(X) = (−1)M JM(X) for integer M = −N/2 with (4.22) for
kx = 0, we obtain

|aN |2 ≈
(

1

(|N |/2) !
)2 ( 〈Ekin〉

4 �ω0

)|N |
∝ I |N | . (4.26)

This result could have been anticipated intuitively: The probability to have N photons
forming a sideband is proportional to the probability to find one photon to the power of
N . This translates into a corresponding scaling with laser intensity I of the N -photon
absorption process. Note that |aN |2 decreases dramatically with increasing |N |. For
example, for 〈Ekin〉/(�ω0) = 0.1 
 1 we get |a0|2 = 1, |a±2|2 = 6.2 × 10−4,
|a±4|2 = 9.8 × 10−8, etc.
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Fig. 4.2. Dispersion relation ωN versus wave number kx of Volkov states for a ponderomotive
energy of 〈Ekin〉

�ω0
= 0.1, 〈Ekin〉

�ω0
= 0.5 and 〈Ekin〉

�ω0
= 5.0 (as indicated) according to (4.18) and

(4.24). The grayscale corresponds to the square modulus of the amplitude, i.e., to |aN |2, on a
linear scale. A normalized wavevector with k2

x = 4 corresponds to an actual electron kinetic

energy of �2k2
x

2me
= 4 �ω0 [268].
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Note that the ratio 〈Ekin〉
�ω0

diverges for ω0 → 0, i.e., the Volkov states are not useful
in electrostatics.

� Example 4.2. Suppose we are interested in the case that the N -photon sideband of
the Volkov states acquires a maximum amplitude |aN | – obviously a nonperturbative
situation. Let us consider kx = 0 and �ω0 = 1.5 eV. What is the laser intensity I or
ponderomotive energy 〈Ekin〉 required for this? For even N � 1, the Bessel function
|J− N

2
(X)| in (4.22) has its first maximum (the largest maximum) roughly at around

X ≈ N/2. This leads us to 〈Ekin〉 ≈ N �ω0. For a vacuum electron this translates
into a laser intensity of (see (2.16) and (4.6))

I = N × 3 × 1013 W/cm2 ; N � 1 .

This result will become relevant in Sect. 5.3, where we discuss multiphoton ionization
of atoms. �

(ii) Electric-field gauge

Choosing Ax = 0 as the second option, the laser electric field corresponds to a poten-
tial energy V (x, t) = +x e E(t) of the electron. Thus we have the partial differential
equation

i�
∂

∂t
ψ(x, t) = − �

2

2me

∂2

∂x2
ψ(x, t) + x e Ẽ0 cos(ω0t + φ) ψ(x, t) . (4.27)

The RHS of this special form of the time-dependent Schrödinger equation (4.27)
is a quadratic form with time-dependent coefficients. Such a form can generally be
solved analytically by means of path integrals [93] for the initial condition ψ(x, t =
0) = δ(x) (the Green’s function or the “propagator” of the problem). This solution
is, however, lengthy and not helpful in the context of this book. It is actually simpler
to directly numerically solve the Schrödinger equation (4.27). Note that for such a
form of the Hamiltonian, the Ehrenfest theorem tells us that the expectation values
〈x〉(t) and 〈v〉(t) are strictly identical to the classical observables x(t) and v(t).
An example of additional information provided by quantum mechanics is how the
initially localized wave packet disperses and broadens in time.

This is shown in Fig. 4.3 for Re(ψ(x, t)). We chose to depict the real part of the
electron wave function here, because it is the counterpart of the electric field of the
light, whereas the electron probability density |ψ(x, t)|2 would be the analogue of the
light intensity. The simulated region in Fig. 4.3 is significantly larger than the depicted
one in order to avoid artificial reflections from the boundaries. The simulation starts at
t = 0 with a real Gaussian electron wave packet centered at x = 0. Its initial velocity
is zero. The wave packet is accelerated by the positive laser electric field towards
negative x and its center of mass returns to x = 0 after one optical cycle at time t =
2π/ω0 = 2.8 fs. At this point (not shown), the wave packet has broadened enormously
due to group-velocity dispersion. This effect is well known from elementary quantum
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Fig. 4.3. Real part of the electron wave function, Re(ψ(x, t)), obtained from numerical solution
of (4.27). Time t runs from 0 to 1.4 fs, the x-coordinate from −3 nm to +1 nm. The initial
condition at t = 0 is ψ(x, 0) = exp(−(x/σ0)2), i.e., a resting Gaussian electron wave packet
with 〈x〉(0) = 0 and 〈v〉(0) = 0. σ0 = 0.2 nm corresponds to about four times the hydrogen
Bohr radius. The other parameters are: φ = 0, �ω0 = 1.5 eV equivalent to 2π/ω0 = 2.8 fs
period of light, me = m0, and Ẽ0 = 3 × 1010 V/m. This electric field corresponds to a laser
intensity of I = 1.1 × 1014 W/cm2 and a ratio of ponderomotive energy to carrier photon
energy of 〈Ekin〉

�ω0
= 5 . Compare with Fig. 4.2.

mechanics: The narrower the initial wave packet in real space, the broader is its
momentum distribution according to the uncertainty relation and the more it disperses
with time. Even after 1.4 fs (the end of the depicted timescale) corresponding to just
half a cycle of light, this broadening is quite prominent. Furthermore, note that the
wave packet is strongly “chirped”, i.e., its wavelength depends on x and that the
phase between a hypothetical envelope of the wave packet and its “carrier” oscillation
changes with time t . This is expected from our above semiclassical reasoning. Indeed,
for the parameters of Fig. 4.3, the phase changes by 5 × 2π for one cycle of light.

Notably, Fig. 4.3 and Fig. 4.2 for 〈Ekin〉
�ω0

= 5 strictly describe the identical physical
situation – in two different gauges as well as in different spaces: One in the Fourier
domain, the other one in real space and time.

The static-field limit, i.e., ω0 = 0 = φ, is discussed separately in Sect. 7.3. The
corresponding electron wave functions are given by Airy functions.

Problem 4.2. Verify (4.24) for the amplitudes aN of the Volkov states according to
(4.18) for the general case of arbitrary initial wave number kx �= 0.
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4.3 Crystal Electrons

For a given intensity of light I , the ponderomotive energy of electrons in semicon-
ductors according to (4.6) is usually much larger than for vacuum electrons, because
typical effective electron masses are about an order of magnitude smaller than the
free electron mass m0 (see Table 4.1). For crystal electrons, however, the concept
of the ponderomotive energy is only meaningful within the range of validity of the
effective-mass approximation, which fails for large values of 〈Ekin〉, often already
above several 0.1 eV (see Fig. 7.1). This limits the importance of the ponderomotive
energy for optical (i.e., �ω0 = 1.5 to 3.0 eV) excitation of semiconductors under ex-
treme conditions. For infrared excitation with small photon energies �ω0, on the other
hand, one can fulfill the condition 〈Ekin〉 ≈ �ω0 < 0.1 to 0.2 eV, in which case the
regime of extreme nonlinear “optics” can be reached within the range of validity of
the effective-mass approximation. We will come back to corresponding experiments
and their description in Sect. 7.4.

Table 4.1. Effective electron mass me (in units of the free electron mass m0 = 9.1091 ×
10−31 kg) for a few selected semiconductors. Values taken from Ref. [94].

GaAs AlAs ZnSe ZnO ZnTe CdS Ge

me 0.0665 0.124 0.13 0.24 0.2 0.2 0.0815 (⊥), 1.588 (||)

The failure of the concept of the ponderomotive energy in solids for large laser
intensities calls for a more general quantity that reflects the kinetic energy of the elec-
trons within the bands without employing the effective-mass approximation. Within
the acceleration theorem, the crystal-electron momentum, �kx , obeys Newton’s sec-
ond law according to �k̇x = F . Inserting the laser electric field E(t) into the force
F = −eE(t), we can easily rewrite the acceleration theorem according to

a
∂

∂t
kx(t) = − �B(t) , (4.28)

where we have introduced the instantaneous Bloch frequency �B(t) with

��B(t) = a e E(t) . (4.29)

At any given time t , the Bloch energy ��B(t) is obviously just the potential drop
over one unit cell of the crystal lattice with lattice constant a. Note that the Bloch
frequency �B(t) oscillates in time and periodically changes sign in the same way as
the Rabi frequency �R(t) according to (3.18).

4.3.1 Static-Field Case

In order to get an intuitive understanding of the meaning of the Bloch frequency, we
consider a static electric field E(t) = Ẽ0 [95, 96]. In this case, we can easily solve
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(4.28) together with the initial condition kx(0) = 0 and obtain

kx(t) = − t �B/a . (4.30)

At time t = π/�B, the electron hits the end of the first Brillouin zone, i.e., we have
kx = −π/a. This leads to Bragg reflection of the crystal electron to the other end of the
first Brillouin zone with kx = +π/a. After another time span of π/�B, the electron
is back to its initial state, kx = 0, and one oscillation period 2π/�B is completed.
This oscillation in wave-number space leads to an oscillation of the electron along
the x-direction in real space, which is known as a Bloch oscillation. Note that its
frequency, the Bloch frequency, does not depend on the particular dispersion relation
(the band structure) of the crystal electron.

What is the appropriate quantum-mechanical picture? Without an electric field,
the electron wave functions of the atoms forming the solid overlap, which lifts their
degeneracy, leading to delocalized electron wave functions and bands in the first place.
In the presence of a strong electric field, i.e., for | − a e E| large compared with the
width of the band (typically a few electron Volts), the potential drop over one lattice
constant, −a e E, lifts the degeneracy and the wave functions become localized again.
The corresponding eigenenergies, EM , are evenly separated in energy according to
the Wannier–Stark ladder [97–99]

EM = M a e E , (4.31)

with integer M = −∞, ..., −1, 0, 1, +∞. An electronic wave packet is a super-
position of these Wannier–Stark states and leads to a quantum beating between these
states in time. This quantum beating is the quantum-mechanical analogue of the Bloch
oscillations. Thus, the Bloch frequency �B is given by

��B = EM+1 − EM = a e E . (4.32)

This quantum-mechanical result is identical to that of the semiclassical reasoning,
(4.29). Note that (4.31) is analogous to the frequency comb of mode-locked laser
oscillators (see Sect. 2.3), where �B/2π plays the role of the repetition frequency fr
(see (2.31)).

4.3.2 High Harmonics from Carrier-Wave Bloch Oscillations

Let us discuss the spectrum of light radiated from a crystal-electron wave packet
within a one-dimensional tight-binding band with energy dispersion

Ee(kx) = �ωe(kx) = −� cos(kxa) (4.33)

(see Fig. 7.1) semiclassically. 2� is the width of the band. We consider continuous-
wave excitation, i.e., E(t) = Ẽ0 cos(ω0t + φ), which is equivalent to

�B(t) = �B cos(ω0t + φ) (4.34)
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with the peak Bloch frequency �B = a eẼ0/�. The ratio �B/ω0 is sometimes called
the dynamical localization parameter. Furthermore, we neglect any type of damping
and use the single-particle approximation. The intensity spectrum Irad(ω) radiated by
this wave packet via its intraband motion is proportional to the square modulus of the
Fourier transform of the group acceleration, equivalent to Irad(ω) ∝ |ω vgroup(ω)|2.
The electron group velocity vgroup at wave number kx results from

vgroup = dωe

dkx

, (4.35)

hence

vgroup(t) = a �

�
sin(kx(t) a) . (4.36)

With the initial condition kx(0) = 0 and for CEO phase φ = 0, we obtain the electron
wave number kx(t) from (4.28)

kx(t) = − �B

a ω0
sin(ω0t) . (4.37)

Inserting (4.37) into (4.36) leads to

vgroup(t) = −a �

�
sin

(
�B

ω0
sin(ω0t)

)
(4.38)

= −a �

�
2

∞∑
M=0

J2M+1

(
�B

ω0

)
sin
(
(2M + 1) ω0t

)
.

In the last step we have employed one of the useful mathematical identities for N -th–
order Bessel functions JN of the first kind (see formula 9.1.43 in Ref. [80]). Finally,
from (4.38) the peak heights of the odd harmonics in the radiated intensity spectrum
immediately result as

Irad(Nω0) ∝ (Nω0)
2 J 2

N

(
�B

ω0

)
. (4.39)

The radiated intensity spectrum is illustrated in Fig. 4.4. The zeros of the Bessel
functions in (4.39) give rise to the nodes. For �B/ω0 
 1, the first sine in (4.38)
can be approximated by its argument and the group velocity becomes a harmonic
oscillation at the carrier frequency ω0, i.e., vgroup ∝ −sin(ω0t). This limit recovers
our previous result obtained within the effective-mass approximation in Sect. 4.2. For
�B/ω0 ≈ 1, the behavior deviates from this and odd harmonics of ω0 appear in the
Fourier domain via the sin(... sin(...t)) behavior that stem from the nonparabolicity
of the band. For �B/ω0 � 1 and at around times t with ω0t = 0, π, ..., the second
sine can be approximated by its argument, hence the crystal electron harmonically
oscillates with the peak Bloch frequency, i.e., vgroup ∝ ∓sin(�Bt). This represents
the static-field limit, which we have already discussed above. As the peak Bloch
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Fig. 4.4. A crystal-electron wave packet in a one-dimensional tight-binding band (see Fig. 7.1)
is driven by an intense continuous-wave laser. The radiated intensity spectrum, Irad according
to (4.39), is plotted on a logarithmic grayscale versus spectrometer frequency ω and peak
Bloch frequency �B in units of the laser carrier frequency ω0. It is interesting to compare the
harmonic spectra for the carrier-wave Bloch oscillations shown here with those of carrier-wave
Rabi flopping shown in Fig. 3.11 [269].

frequency is the largest frequency in the system within this limit, it determines the
cutoff harmonic order, which is approximately given by

Ncutoff = �B

ω0
.

This cutoff (visible as the black “triangle” on the lower RHS in Fig. 4.4) is closely
similar to that of the two-level system in the high-field limit (see (3.33) in Sect. 3.6). In
contrast to the two-level system, however, only peaks right at spectrometer frequencies
ω = N ω0 with odd integer N occur (no sidebands, compare Fig. 4.4 with Fig. 3.11).

Apart from the prefactor, the shape of the intensity spectrum Irad(ω) depends
neither on the width of the tight-binding band, 2�, nor on the lattice constant a. It
is rather solely determined by the dynamical localization parameter �B/ω0 and is
universal in that sense. Note, however, that we have neglected any type of damping
(scattering). This approximation becomes questionable when the electron is high in
the band, where it has many channels to relax into if � is on the order of electron
Volts. More advanced theoretical approaches for harmonic generation from band
electrons are based on the Boltzmann equation [100–103]. Additionally accounting



4.4 Extreme Nonlinear Optics of Relativistic Electrons 75

for scattering within a relaxation time approximation [103] leads to similar results
(compare Fig. 3 in Ref. [103] with Fig. 4.4).

Third-harmonic generation from artificial semiconductor superlattices has been
observed experimentally [104]. In these experiments, a n-doped GaAs/AlAs super-
lattice with a = 4.85 nm is excited by the radiation from a free-electron laser at
0.7 THz frequency (�ω0 = 2.9 meV). Under these conditions, �B/ω0 = 1 ⇔
Ẽ0 = 6 × 105 V/m or I = 2 × 105 W/cm2, both quoted within the GaAs using
ε = 10.9 (see Problem 2.1).

In the optical regime and for real crystals, much larger intensities are required
to meet the condition �B/ω0 = 1. For example, for �ω0 = 1.5 eV and the GaAs
lattice constant of a = 0.5 nm, this condition is equivalent to Ẽ0 = 3 × 109 V/m or
I = 4 × 1012 W/cm2, both quoted again within the GaAs using ε = 10.9. For GaAs,
we accidentally have �B = �R (compare Example 3.1). We will see in Sect. 7.1
that the condition �B/ω0 = �R/ω0 ≈ 1 within GaAs is just barely compatible with
typical GaAs damage thresholds. At this point, nothing special is expected from the
carrier-wave Bloch oscillations shown in Fig. 4.4.

In this section, we have only accounted for the intraband contribution of the
optical polarization. In addition, the intraband driving can also modify the interband
optical polarization in which case one generally expects a complicated mixture of
carrier-wave Rabi oscillations (see Sects. 3.3 and 7.1.4) and carrier-wave Bloch
oscillations.

Problem 4.3. Extend our semiclassical discussion of high-harmonic generation to
the case of an additional dc-field, such that �B(t) = �B cos(ω0t) + �dc

B .

4.4 Extreme Nonlinear Optics of Relativistic Electrons

Let us come back to classical real electrons – but consider the relativistic regime. Our
treatment in Sect. 4.1 has accounted for the electric-field component of the light field.
But what about the magnetic component? What about the fact that the light field is
not constant in space but is rather a wave oscillating in space and time?

� Example 4.3. For Ẽ0 = 8×1012 V/m, �ω0 = 1.5 eV and free electrons (me = m0 =
9.1091 × 10−31 kg) we get a ponderomotive energy of 〈Ekin〉 = 540 keV from (4.6),
which is comparable to the relativistic rest energy m0 c2

0 = 512 keV of the electron.
Thus, the nonrelativistic expression of the kinetic energy (4.6) no longer applies.
The corresponding intensity is 9 × 1018 W/cm2. Thus, we anticipate an appreciable
influence of relativistic effects already at intensities around 1018 W/cm2. �

In order to study these effects, we have to consider a more complete version of
Newton’s second law for an electron driven by the light field

d(mev)

dt
= F (r, t) = − e (E(r, t) + v(t) × B(r, t)) , (4.40)



76 4 The Drude Free-Electron Model and Beyond ...

with the laser electric field E = (Ex, 0, 0)T, the laser magnetic field B = (0, By, 0)T,
wavevector of light K = (0, 0, Kz)

T and

Ex(z, t) = Ẽ0 cos(Kzz − ω0t − φ) (4.41)

By(z, t) = B̃0 cos(Kzz − ω0t − φ) . (4.42)

Here we have assumed a constant field envelope for simplicity and have neglected ra-
diation damping. If the electron velocity v should become relativistic, we furthermore
have to account for the relativistic mass

me = me(t) = m0√
1 − v 2(t)

c 2
0

. (4.43)

m0 = 9.1091 × 10−31 kg is the electron rest mass.
We have seen in Sect. 4.1 that the electron velocity is proportional to the electric

field. Thus, the v × B term in (4.40) is quadratic in the laser-field amplitude and
can be neglected in linear optics. Moreover, the electron does not move along the
propagation direction of light in this limit. Hence, its z-coordinate is fixed and we can
suppress the z-dependence of the field. Furthermore, for velocities small compared
to the speed of light, we can set me = m0. With these steps altogether we recover the
simple form of Newton’s law (4.1). Hence, all results based on this are correct within
these limits.

Significant deviations from this behavior are expected if the magnetic component
of the Lorentz force becomes comparable to the electric component. Using Ẽ0/B̃0 =
c0 (see Sect. 2.2), this point is equivalent to the condition |v0|/c0 ≈ 1. With the
peak velocity v0 = −eẼ0/(m0ω0) from Newton’s second law (with me → m0 and
B̃0 ≈ 0), this is, furthermore, equivalent to stating that the dimensionless parameter
|E |, which is given by

E = −e Ẽ0

m0 ω0 c0
, (4.44)

becomes comparable to unity.
If we had just the magnetic-field component of the laser field and if it were a static

field, a nonrelativistic electron would simply orbit in circles around the magnetic-field
axis with the cyclotron frequency ωc given by

ωc = eB̃0

m0
. (4.45)

Introducing (4.45) into (4.44) we get

|E | = �ωc

�ω0
. (4.46)
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Thus, we can equivalently say that something special is expected to happen if the
cyclotron energy �ωc becomes comparable to the carrier photon energy �ω0. Yet
another equivalent form for E based on the ponderomotive energy 〈Ekin〉 and the
electron rest energy m0 c2

0 is given in (4.76).

� Example 4.4. In vacuum, for electrons with rest mass m0 = 9.1091 × 10−31 kg,
carrier photon energy �ω0 = 1.5 eV and with the fundamental constants e and c0, we
have

|E | = 1 (4.47)

⇔
Ẽ0 = 3.9 × 1012 V/m

⇔
B̃0 = 1.3 × 104 T

⇔
I = 1.9 × 1018 W/cm2 .

�

To get rid of the various constants and to make the mathematics more transparent,
we employ the normalized electric-field strength E and, furthermore, introduce the
normalized coordinates x̃ = x ω0/c0 and z̃ = z ω0/c0, normalized dimensionless
time t̃ = t ω0, as well as the usual relativistic parameters β = v/c0 and

γ = me

m0
= 1√

1 −
(

v

c0

)2
= 1√

1 − β2
x − β2

y − β2
z

. (4.48)

It is then straightforward to rewrite Newton’s law (4.40) for CEO phase φ = 0 in
components as

d(γβx)

dt̃
= E (1 − βz) cos(z̃ − t̃ ) (4.49)

and

d(γβz)

dt̃
= E βx cos(z̃ − t̃ ) . (4.50)

The force along y is zero.
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4.4.1 Second-Harmonic Generation and Photon Drag

We will discuss the complete problem intuitively and mathematically in a moment.
It is instructive, however, to first consider a perturbative approach, which leads us to
two interesting effects already: The photon drag and second-harmonic generation on
free electrons. As discussed above, for low intensities, we have γ ≈ 1, βz 
 1 and
z̃ 
 t̃ , in which case (4.49) reduces to

dβx

dt̃
= E cos(t̃) . (4.51)

With the initial conditions βx(0) = 0 and x̃(0) = 0, the solution is

βx(t̃) = E sin(t̃) and x̃(t̃ ) = E
(
1 − cos(t̃)

)
. (4.52)

Introducing this expression for βx on the RHS of (4.50) (again with γ ≈ 1 and z̃ 
 t̃)
in the spirit of a perturbation expansion leads to

dβz

dt̃
= E2 sin(t̃) cos(t̃) = E2 1

2
sin(2 t̃ ) . (4.53)

With the initial conditions βz(0) = 0 and z̃(0) = 0, the solution is

βz(t̃) = E2

4

(
1 − cos(2 t̃ )

)
and z̃(t̃ ) = E2

4

(
t̃ − 1

2
sin(2 t̃ )

)
. (4.54)

The plots of (4.52) and (4.54) for E = 0.1 are indistinguishable (within the line
thickness) from those of the exact analytical calculation, which are shown on the
LHS and RHS of Fig. 4.6(a), respectively. It can be seen that the motion along the
z-direction contains two contributions: (i) A constant drift and (ii) an oscillation with
twice the laser carrier frequency. Let us have a closer look at both of them.

(i) The drift motion has a velocity 〈βz〉 = E2/4 (0.25% of the speed of light in
Fig. 4.6(a)) and is directed along the propagation direction of light. It corresponds to
a constant electrical current density, the so-called photon-drag current jpd, which is
proportional to the light intensity (I ∝ Ẽ2

0 ∝ E2) – “the photons push the electron”.
Translating back into physical units, the photon-drag current density under these
conditions is given by

jpd = −eNe

V
c0〈βz〉 = − Ne e3

4 V m2
0 c0 ω2

0

Ẽ2
0 . (4.55)

Note that the sign of this unusual current depends on the sign of the charge of the
particle because jpd is proportional to the cube of the charge. For example, in an
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isotropic semiconductor, the hole photon-drag current would be opposite to the elec-
tron contribution to the current. Both electrons and holes are, however, pushed into
the direction of the wavevector of light. The current jpd ∝ 1/ω2

0 obviously increases
with decreasing photon energy �ω0. This is the basis for using the photon-drag current
in commercially available semiconductor infrared photodetectors, see Sect. 7.4.

One might be tempted to argue that a constant light intensity cannot accelerate an
electron as the RHS of (4.50) and (4.53) do not contain any dc component under these
conditions. This is indeed true. So how does the electron acquire its drift velocity? It is
accelerated when the light intensity is ramped up. The exact value of the drift velocity
does depend on the way the light intensity is ramped up, i.e., it is not a unique function
of the instantaneous light intensity. Our result, (4.54), corresponds to particular initial
conditions, namely r(0) = v(0) = 0 (also see Problem 4.4). When the light intensity
in the pulse decreases in time, the electron slows down again.

(ii) The second component of the motion is an oscillation of the electron displace-
ment z(t), hence also of the optical polarization Pz(t), with twice the laser carrier
frequency, i.e., z(t) ∝ Pz(t) ∝ sin(2 ω0t) when translated back to physical units. This
is simply second-harmonic generation – despite the fact that an electron in vacuum
has inversion symmetry. Note that the electron oscillation is along the z-direction, i.e.,
it is perpendicular to E as well as perpendicular to B, thus parallel to the wavevector
of light K . Lumping all prefactors together in a second-order susceptibility χ

(2)
L , we

indeed get (2.43). There, we have already discussed the symmetry properties of this
contribution with respect to space inversion. The corresponding radiation pattern of
the second harmonic from a single electron is illustrated in Fig. 4.5(b). The corre-
sponding trajectory of the electron is a figure-of-eight motion in the xz plane (see
Fig. 4.5) because it oscillates with frequency ω0 along x and with frequency 2ω0
along z.

Fig. 4.5. (a) Radiation pattern according to linear Thomson scattering (carrier frequency ω0)
on free electrons. (b) Corresponding second-order nonlinear Thomson scattering (not to scale)
with carrier frequency 2ω0 in the perturbative regime (E2 
 1). The vectors of the electric field
E, the magnetic field B and the wavevector of light K are also depicted. Note that no second
harmonic is emitted into the propagation direction of light. The center shows the figure-of-eight
trajectory of the electron in the xz-plane in a frame moving with the electron drift velocity along
the z-direction (photon drag) [269].
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Fig. 4.6. Relativistic motion (laboratory frame) of a free electron in vacuum under the influence
of a strong laser field according to (4.56)–(4.58). The light propagates along z with E and B

being polarized along x and y, respectively. E is the normalized electric field strength given
by |E | = ωc/ω0. (a) E = 0.1, ζ0 = 0; (b) E = 1, ζ0 = 0; (c) E = 10, ζ0 = 0; and (d) E = 10,
ζ0 = π/2. Note the different vertical and horizontal scales. In (a), the oscillation period of
z̃(t̃ ) is π , equivalent to a motion of z(t) with frequency 2ω0, which leads to second-harmonic
generation. In (b) and (c), the period of x̃(t̃ ) becomes larger than 2π , equivalent to an oscillation
frequency of x(t) smaller than ω0 due to the relativistic Doppler redshift. Indeed, z̃(t̃ ) ≈ t̃ in
(c) is equivalent to a drift velocity along z close to the speed of light c0. The trajectories as well
as the periods also depend on the initial condition of the electron. For example, the period of
x̃(t̃ ) in (c) is 26×2π , while it is 76×2π in (d) – although the laser intensity is the same [267].
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Problem 4.4. In semiconductors or metals, the situation is different from vacuum
electrons because crystal electrons are usually subject to scattering, which can be
described by adding a Stokes-damping term in Newton’s law to a first approxima-
tion. In this case, the steady-state photon-drag current does not depend on the initial
conditions – in contrast to what we have found for vacuum electrons. Show this.

4.4.2 Nonperturbative Regime

We could in principle continue along these lines of perturbation theory (valid for
E2 
 1) and insert the expression for βz into (4.49), which leads to third-harmonic
generation with a polarization alongx, which then leads to fourth-harmonic generation
polarized along z, etc.

Let us rather discuss the exact nonperturbative solution, which allows us to address
laser intensities approaching the condition E2 ≈ 1 or even E2 � 1. This leads us
to relativistic nonlinear Thomson scattering on free electrons (theory: [105–109],
experiment: [110]) – sometimes also referred to as Larmor radiation. As the light
intensity increases, the drift velocity along z also increases, at some point becoming
comparable to the vacuum speed of light c0. Three aspects become important as
a result of this: (i) The spatial dependence of the incident fields, i.e., Ex(z, t) =
Ẽ0 cos(Kzz − ω0t − φ) and By(z, t) = B̃0 cos(Kzz − ω0t − φ), has to be accounted
for – “the electron rides on the electromagnetic wave like a surfer”. (ii) The laser
frequency becomes Doppler redshifted from the perspective of the electron, and (iii)
the relativistic mass according to (4.43) changes with time. Let us have a closer look at
(i)–(iii). Aspect (iii) is certainly an additional source of optical nonlinearities, hence a
source of high harmonics. It is loosely related to the nonparabolicity of the dispersion
relation of crystal electrons discussed in Sect. 4.3.2. Aspects (i) and (ii) are related.
For relativistic electron velocities, the “source” of the incident electromagnetic wave
(the laser) and the “observer” (the electron) move away from each other due to the
relativistic drift velocity of the electron (which is parallel to the light wavevector). This
leads to a relativistic Doppler redshift. Thus, the electron “feels” a driving frequency
that is smaller than ω0. Note, however, that this frequency cannot simply be calculated
from the usual textbook (longitudinal) Doppler effect formulae that would only apply
if the electron was a system of inertia – which it is not. In the “surfer picture”, the
electron rides along with the wave and “moves up and down” slower than a fictitious
electron fixed at some position z.

To see the details, we have to solve the relativistic version of Newton’s law. At
first sight, it seems hopeless to solve (4.40) with the relativistic mass (4.43) under
these conditions exactly. Nevertheless, and quite amazingly, for a plane wave with a
constant light intensity, an exact analytical implicit solution can be given in terms of
a parameter ζ . Assuming a CEO phase φ = 0 and using the normalized coordinates
and time introduced above, one gets [108, 111]

x̃(ζ ) = E
(
(cosζ0 − cosζ ) − (ζ − ζ0) sinζ0

)
, (4.56)

z̃(ζ ) = t̃ − ζ , (4.57)
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t̃ (ζ ) = (ζ − ζ0)

[
1 + E2

2

(
1

2
+ sin2ζ0

)]

+ E2

2

[
− sin(2ζ )

4
+ 2 cosζ sinζ0 − 3 sin(2ζ0)

4

]
. (4.58)

Here, the initial electron velocity v is assumed to be zero at time t = 0. The parameter
ζ0 in (4.56) and (4.58) results from the initial position of the electron at t = 0 and
is given by z̃(t̃ = 0) = −ζ0 (see (4.57)). It can be interpreted as the initial phase of
the electron and is equal to the CEO phase φ at this point, but not identical to it in
general: For a cloud of electrons with an extent along the z-direction comparable to or
even larger than the wavelength of light 2πc0/ω0, one has a distribution of values for
ζ0. A similar effect can occur in the actual focus of a lens where the phase fronts are
not plane everywhere. Selected examples of electron trajectories are given in Fig. 4.6.
In each of the plots, ζ runs from 0 to 4π .

In the limit E2 
 1 (see Fig. 4.6(a)), one has t̃ = ζ − ζ0, thus z̃ = −ζ0 = const.,
while the x-coordinate oscillates harmonically with time, i.e., x(t) ∝ cos(ω0t) – as
explained above. In Fig. 4.6(b) where E = 1, the excursion along the x-direction is
already on the order of x̃ = 1, corresponding to an actual value of about x = 0.1 µm
for �ω0 = 1.5 eV. In order to make our model of isolated electrons in vacuum realistic,
residual scatterers (e.g. ionized atoms) in the vacuum should have a number Natom
per volume V of less than (1/x)3 = 1015 cm−3 = 1021 m−3. With the equation of
state of ideal gases from thermodynamics, i.e., PV = NatomkBT with Boltzmann’s
constant kB = 1.3804 × 10−23 J/K, this density translates into a maximum residual
pressure of P = 1021 m−3 kBT = 4 Pa at T = 300 K, which is easy to achieve.

Deep in the relativistic regime, i.e., for E2 = 102 � 1 in Fig. 4.6(c), the x-
coordinate versus time (LHS of Fig. 4.6(c)) exhibits pronounced sharp maxima. They
arise as a result of the fact that – at these points – the oscillatory part of the motion
along z is opposite to the drift motion along z, thus βz is relatively small (it is even
zero at these points for E2 
 1, see above perturbative approach). Moreover, the
x-component of the velocity, βx , is strictly zero right at these maxima. Consequently,
the relativistic factor γ = γ (βx(t), βz(t)) is closer to 1, the electron becomes “light”,
hence the electron acceleration (the curvature of the displacement versus time) is large
– and a sharp tip in x(t) results. Another striking aspect is that the electron oscillation
frequency, ωe

0, is smaller than ω0 by a factor of 26 in Fig. 4.6(c) – as anticipated
from our above qualitative reasoning based on the Doppler effect. Mathematically,
ωe

0 can easily be derived from (4.58). For one oscillation cycle, the parameter ζ

increases by 2π . Thus, the normalized time t̃ according to (4.58) changes by �t̃ =
2π (1 + E2

2 ( 1
2 + sin2ζ0)), hence the real time t = t̃/ω0 by the period �t = �t̃/ω0.

The electron oscillation frequency ωe
0 = 2π/�t results as

ωe
0

ω0
= 1

1 + E2

2

(
1

2
+ sin2ζ0

) ≤ 1 . (4.59)
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For example, for E = 10 and ζ0 = 0, corresponding to Fig. 4.6(c), we obtain a factor
of 1/26 from (4.59). Note that the electron oscillation frequency as well as the shape of
the electron trajectory not only depend on the laser intensity via the normalized field
strength |E | but generally also on the initial condition ζ0, as exemplified in Figs. 4.6(c)
and (d). Here E = 10 is fixed and ζ0 is varied from ζ0 = 0 in (c) to ζ0 = π/2 in (d).
With E = 10 and ζ0 = π/2, (4.59) indeed delivers a factor of 1/76.

The acceleration of the charged electron is the source of electromagnetic radiation.
As the electron motion is periodic (apart from the constant drift velocity) but not
harmonic at all, we expect that the intensity spectrum I (ω) – as detected with a
spectrometer fixed in the laboratory frame – consists of a series of equidistant peaks,
separated by ω̃0, i.e.,

I (ω) =
∞∑

N=1

IN δ(ω − N ω̃0) , (4.60)

where the order N covers odd and even harmonics of the fundamental emission
frequency ω̃0. Figure 4.7 schematically illustrates the intensity spectrum for some
detection direction. In general, ω̃0 is neither identical to the laser carrier frequency
ω0 nor identical to the electron oscillation frequency ωe

0. In order to evaluate the
fundamental emission frequency ω̃0, one has to consider the relativistic Doppler
effect one more time: Suppose that we detect light in a backscattering geometry, i.e.,
in the −z direction. During the electron oscillation, the electron (the “source”) moves
along z, hence away from the spectrometer (the “observer”). This leads to a Doppler
redshift with respect to the redshifted electron oscillation frequency. In contrast to
this, for detection in the forward direction, the electron moves towards the “observer”,
thus we anticipate a blueshift of the electron oscillation frequency – which itself is
redshifted with respect to the laser carrier frequency ω0.

Mathematically, the fundamental emission frequency ω̃0 can be related to ω0
via the following reasoning: The detection direction is along the vector K̃0, which
includes an angle θ with the z-axis (propagation direction of the laser). The modulus

0 ���
�

1 2 3 4 5

lo
g
(I

)

Fig. 4.7. Scheme of the intensity spectrum I (ω) of light emitted by an electron in vacuum
driven by a strong laser field at carrier frequency ω0 according to (4.60) with ω̃0/ω0 ≈ 0.9
corresponding to |E | ≈ 0.6 and ζ0 = 0. Note that the ratio ω̃0/ω0 depends on the intensity E2,
on the electron initial phase ζ0 (see Fig. 4.6) as well as on the detection direction.
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of K̃0 be the fundamental emission wave number of light, following the dispersion
relation ω̃0/|K̃0| = c0. During one electron oscillation period �t (see above), the
parameter ζ in (4.56) and (4.57) increases by 2π and the electron experiences a
displacement �r . This displacement is given by

�r =
⎛
⎝�x

�y

�z

⎞
⎠ = c0

ω0

⎛
⎜⎜⎝

− 2π E sinζ0
0

2π
E2

2

(
1

2
+ sin2ζ0

)
⎞
⎟⎟⎠ . (4.61)

For constructive interference of the emission from one cycle and that of the next (and
for all subsequent ones), the condition

|K̃0 · �r − ω̃0�t | = 2π (4.62)

has to be fulfilled. ω̃0 immediately follows from this condition for any value of ζ0.
For the special case ζ0 = 0, where �x = 0, we obtain the simple formula for the
fundamental emission frequency ω̃0

ω̃0

ω0
= 1

1 + E2

4
(1 − cos θ)

≤ 1 . (4.63)

For forward scattering (θ = 0), this leads to ω̃0/ω0 = 1, for backscattering (θ = π ) to
ω̃0/ω0 = 1/(1+E2/2) – as expected from our above qualitative reasoning. Detection
perpendicular to the laser beam (θ = ±π/2) gives ω̃0/ω0 = ωe

0/ω0 = 1/(1 +
E2/4). Generally, the fundamental emission frequency ω̃0 additionally depends on
the electron phase ζ0 (and/or the CEO phase φ).

The peak heights IN also depend on E2, ζ0 and on the detection direction. Gen-
erally, they can be evaluated numerically based on the usual relativistic formula for
the far-field emission of an accelerated charge from electromagnetism [114] via the
Lienard–Wichert potentials. This gives rise to complicated radiation patterns, which
no longer resemble those shown in Fig. 4.5 for N = 1 and N = 2. A simple analyti-
cal approximate expression for the coefficients IN has been derived [112,113] in the
high-field limit, i.e., for |E | � 1, for ζ0 = 0 and for detection in the backscattering
direction. Here, the intensities IN for odd N are given by

IN ∝ E4 N

Nmax
exp

(
− N − Nmax

Nmax

)
. (4.64)

This dependence starts with a linear increase in the harmonic order N for N 
 Nmax,
followed by a maximum at N = Nmax given by

Nmax ≈ 0.32 × |E |3 . (4.65)

For N well above Nmax, IN decays exponentially with N . For example, for E = 10
(see Fig. 4.6(c)), we have Nmax = 320 and ω̃0/ω0 = 1/51 from (4.63). This translates
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Fig. 4.8. Nonlinear Thomson backscattering intensity (linear scale) versus spectrometer fre-
quency ω in units of the laser carrier frequency ω0 from (4.60), (4.64) and (4.65). ζ0 = 0;
E = √

10 and E = 10 as indicated. For clarity, the curve for E = √
10 has been stretched ver-

tically by a factor of ten. E = 10 corresponds to an actual laser intensity of 1.9 × 1020 W/cm2

for �ω0 = 1.5 eV [269].

into a maximum at spectrometer frequency ω = 320
51 ω0 ≈ 6 ω0. It is more than likely

that this large number of densely spaced harmonics will merge into a continuous
spectrum in an actual experiment. This is illustrated in Fig. 4.8. Note that no sharp
cutoff in the harmonic order N occurs, whereas a cutoff has been discussed above for
high harmonics from two-level systems in Sect. 3.6.1 and will again appear below for
high-harmonic generation from atoms in Sect. 5.4.1 (also see Problem 4.3).

Finally, remember that we have discussed the “very simple” case of a light
field corresponding to a plane wave with constant intensity in time, interacting
with an isolated electron initially at rest. An interesting extension is the case
of finite or even relativistic initial electron velocity (see Sect. 8.2). For pulsed
excitation, E and thus also ω̃0 are expected to vary in time, the transverse (and
longitudinal) beam profile in the focal spot of a lens leads to a dependence on the
spatial coordinate. All these aspects modify the nonlinear Thomson scattering spectra.

Problem 4.5. Consider second-harmonic generation from relativistic nonlinear
Thomson scattering for continuous-wave excitation with E2 = 1 and ζ0 = 0. We
have seen that the SHG tends to be redshifted with respect to 2ω0. Hence, we detect
the SHG with a filter or a spectrometer in a narrow spectral interval centered around,
e.g., 0.985×2ω0. What is the shape of the emission pattern that you expect to detect?



86 4 The Drude Free-Electron Model and Beyond ...

4.5 Extreme Nonlinear Optics of Dirac Electrons

We have to distinguish between a classical and a quantum-mechanical treatment of
the electron on the one hand, and between nonrelativistic and relativistic behavior on
the other hand. Table 4.2 refers to those three cases that we have already discussed in
this chapter. The fourth entry is the (special) relativistic quantum-mechanical case,
which we want to discuss in what follows.

Table 4.2. A vacuum electron interacts with a light field of constant intensity. Overview about
the cases discussed in this chapter. The specifics of crystal electrons are discussed in Sect. 4.3.
Effects of general relativity will be touched on in Sect. 4.6

Classical Quantum mechanical

Nonrelativistic Sect. 4.1 Sect. 4.2
Relativistic Sect. 4.4 this section

It was one of Einstein’s discoveries that the energy E of a vacuum electron with
momentum p in the relativistic regime is given by the relation

E2 = (m0c
2
0)

2 + (p c0)
2 . (4.66)

It is then usually argued that E = +√
RHS, which leads to his famous result

E = +
√

(m0c
2
0)

2 + (p c0)2 = +mec
2
0 . (4.67)

me is the relativistic electron mass according to (4.43). For small momenta p, Taylor
expansion immediately leads us back to the classical kinetic energy

Ekin = E − m0c
2
0 = p2

2m0
= m0

2
v2 , (4.68)

with the electron rest energy m0c
2
0. The mathematically possible alternative solution

E = −
√

(m0c
2
0)

2 + (p c0)2 = −mec
2
0 (4.69)

has to be discarded as in classical relativistic physics electrons could “disappear”
towards minus infinity in energy, which is considered to be unphysical. Both branches
(“+” and “−”) are visualized in Fig. 4.9.

Note that our discussion on nonlinear Thomson scattering in Sect. 4.4 referred to
the dynamics of an electron in the upper branch subject to the laser field. The lower
branch did not occur at all.
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Fig. 4.9. Relativistic quantum-mechanical dispersion relation of electrons in vacuum, i.e.,

E = ±
√

(m0c2
0)2 + (p c0)2, and dispersion relation of photons (dashed straight lines with

E = ±p c0). The vacuum corresponds to a fully occupied lower band and an empty upper band
as indicated by the dots. An unoccupied state in the lower band is called a positron, an occupied
state in the upper band is called an electron. Compare with Fig. 7.1. The arrows indicate the
generation of an electron–positron pair by many photons from two counterpropagating light
beams (not to scale). Actually, around 106 laser photons with �ω0 ≈ 1 eV are necessary as
2 m0c2

0 = 1.024 MeV [267].

When P. M. Dirac quantized relativistic mechanics some years later, the exact same
problem re-appeared. In quantum mechanics, however, these negative energy states
are less problematic and Dirac courageously postulated in 1930 that all of the negative
energy states are occupied (this is an infinite number even if the universe is finite in
size) – the so-called Dirac sea (see dots in Fig. 4.9). The Pauli exclusion principle
then guarantees that normal electrons – which are the occupied states on the upper
branch – do not disappear. The vacuum is not empty – on the contrary, it is half full.
As long as the electrons on the lower branch stay in their branch, they remain almost
undetectable to the observer. But Dirac also recognized that one could promote an
electron from the lower branch into the upper branch by providing a minimum energy
of 2 m0c

2
0 = 1.024 MeV. In this case, an electron in the upper branch and a missing

electron in the lower branch would be generated – an electron–positron pair. This
theoretical prediction eventually led to the discovery of the positron, the antiparticle
partner of the electron.

Can a single photon corresponding to a plane wave generate an electron–positron
pair? In such a process, momentum and energy conservation have to be fulfilled
simultaneously. The dispersion relation of the photon ω/|K| = c0 is equivalent to

E = p c0 , (4.70)
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which is also depicted in Fig. 4.9 (dashed diagonal lines). It is obvious that one can
shift the photon dispersion upwards and/or sideways, but one can never get it to
cross with both the lower and the upper electron branch – the photon momentum
is too large. This problem can be circumvented by using counterpropagating laser
beams with an effective photon momentum equal to zero (or by considering other
four-particle processes). Such a “zigzag” multiphoton transition is also depicted in
Fig. 4.9.

Mathematically, we have to solve the Dirac equation for vacuum electrons. With
potential φ(r, t) and vector potential A = (A1, A2, A3)

T = (Ax, Ay, Az)
T it is given

by

i�
∂

∂t
ψ(r, t) =

(
β̂m0c

2
0 − eφ(r, t) +

3∑
n=1

c0α̂n

(
−i�

∂

∂xn

+ eAn(r, t)

))
ψ(r, t).

(4.71)
The (4 × 4) Dirac matrices α̂n and β̂ can be expressed as

α̂1 =

⎛
⎜⎜⎝

0 0 0 +1
0 0 +1 0
0 +1 0 0

+1 0 0 0

⎞
⎟⎟⎠ , α̂2 =

⎛
⎜⎜⎝

0 0 0 +i
0 0 −i 0
0 +i 0 0
−i 0 0 0

⎞
⎟⎟⎠ , (4.72)

α̂3 =

⎛
⎜⎜⎝

0 0 +1 0
0 0 0 −1

+1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ and β̂ =

⎛
⎜⎜⎝

+1 0 0 0
0 +1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ .

ψ = (ψ1, ψ2, ψ3, ψ4)
T is a 4-vector, representing the four possibilities: electron spin

up/down and upper/lower band, respectively.
Finding solutions of the Dirac equation under realistic conditions is not a simple

task at all. Notably, Volkov recognized in 1935 [91] that the Dirac equation can be
solved exactly in the field of an electromagnetic plane wave. (The nonrelativistic limit
of this result, the Volkov states, has been discussed in Sect. 4.2.) Here, we only consider
the very simple although instructive static limit. We have encountered this “static-
field approximation” previously in the context of two-level systems (see Sect. 3.6.1).
Suppose we have φ(r, t) = 0 (radiation gauge, Sect. 4.2) and that the vector potential
corresponding to the standing-wave pattern of two counter-propagating (along z) laser
beams in an antinode is given by A = Ã0 (1, 0, 0)T at some instant in time. As the
photon drag discussed in Sect. 4.4 is absent here, we can assume that the electron
momentum is zero, i.e., the spatial derivatives in (4.71) vanish at this point in time.
Under these conditions, ψ1 couples only to ψ4 (and ψ2 only to ψ3) and the Dirac
equation (4.71) simplifies to

i�
∂

∂t

(
ψ1
ψ4

)
=
(+m0c

2
0 c0eÃ0

c0eÃ0 −m0c
2
0

) (
ψ1
ψ4

)
. (4.73)
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and a similar form for the 23-subspace.
This immediately reminds one of the two-level system physics discussed in

Sect. 3.2. Indeed, in matrix form (see (3.50)) it can be expressed as

i�
∂

∂t

(
a2
a1

)
=
(

E2 −��R
−��R E1

) (
a2
a1

)
. (4.74)

The transition energy is �� = (E2 −E1). We have seen in Sect. 3.6.1 that the “static-
field approximation” is justified for ��R � �ω0 and Rabi oscillations could even
occur for �� � �ω0 if ��R ≈ �� or ��R � ��.

In analogy to the two-level system, we can say that the “static-field approximation”
is justified for |c0eÃ0| � �ω0 and that Rabi oscillations [115] can even occur for
2m0c

2
0 � �ω0 if |c0eÃ0| ≈ 2m0c

2
0 or |c0eÃ0| � 2m0c

2
0. With Ã0 = −Ẽ0/ω0 from

E = −Ȧ − ∇φ with E(t) = Ẽ0 cos(ω0t) in a spatial antinode, this can equivalently
be expressed by saying that the “static-field approximation” is justified for |ξ | � 1
with the dimensionless parameter

ξ = c0eÃ0

�ω0
= −c0eẼ0

�ω2
0

. (4.75)

If, for example, the carrier photon energy is �ω0 = 1.5 eV, |ξ | = 1 ⇔ Ẽ0 =
1×107 V/m, equivalent to a laser intensity of I = 2×107 W/cm2 – a rather low value.
This means that the “static-field approximation” is usually fulfilled. Furthermore, Rabi
oscillations are expected to occur for |E | ≈ 2 or |E | � 2 with

E2 = 4
〈Ekin〉
m0c

2
0

. (4.76)

This form can easily be verified by inserting E from (4.44) and the ponderomotive
energy 〈Ekin〉 from (4.6). Thus, we can equivalently say that Rabi oscillations of
the Dirac sea are expected if the (nonrelativistic) ponderomotive energy becomes
comparable to the electron rest energy. |E | = 10 � 2 corresponds to the rather large
laser intensity of I = 1.9 × 1020 W/cm2 (see Example 4.4).

Note that such excitation of electron–positron pairs in vacuum would correspond
to nonlinear optics in vacuum, i.e., such effects would violate the superposition prin-
ciple following from the Maxwell equations in vacuum. Corresponding effects have
not yet been observed in experiments. If one were to find optical nonlinearities of
the vacuum, a sensitive question is whether one is able to make sure that they do
not originate from residual gas atoms in the (ultrahigh) vacuum. As their nonlinear
optical susceptibilities are many orders of magnitude larger than those of the vacuum,
even the signal from minute atom densities might still overwhelm that of the vacuum.
Direct detection of the created electron–positron pairs after a short optical pulse is not
easy either because the Rabi oscillation at, e.g., E = 2, has a period a million times
(2m0c

2
0/(�ω0)) shorter than the period of light, i.e., of order 10−21 s. As a result,
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the probability to find an electron–positron pair after the pulse is ridiculously low.
This situation can be compared to that of looking for a CEO-phase dependence of the
inversion w of a two-level system after an optical pulse containing 106 optical cycles
(see Sect. 3.5).

Things look better for shorter periods of light (larger photon energies). Indeed,
electron–positron pair production by inelastic light-by-light scattering of GeV photons
with laser photons (�ω0 = 2.35 eV and I = 1.3 × 1018 W/cm2) has been observed
experimentally in the laboratory [116].

Real electron–positron pairs

Electron–positron pairs can also be generated in the laser field of a single propagating
plane wave at yet larger intensities, as pointed out by Schwinger in 1951 [117–
119]. Remember that vacuum fluctuations of the radiation field constantly generate
virtual electron–positron pairs. We have discussed above that energy and momentum
conservation cannot be fulfilled simultaneously in such a process. However, energy
conservation can be violated for a short time span �t determined by “time–energy
uncertainty”. Suppose that a photon from a vacuum fluctuation generates an electron
with energy 2m0c

2
0. “Time–energy uncertainty” leads to �t 2m0c

2
0 ≈ �. Due to

momentum conservation, the electron is recoiled in one direction with a velocity v

near the speed of light, i.e., v ≈ c0. In the time interval �t , the electron thus moves
by a distance �x = v�t = λc/(4π). Here we have introduced the electron Compton
wavelength

λc = 2π�

m0c0
= 2.4262 × 10−12 m . (4.77)

After time �t , the virtual electron–positron pair again annihilates and the photon is
re-emitted. If, within that time span �t , the electron is accelerated so much by the
laser field that its energy is on the order of the rest energy m0c

2
0, equivalent to saying

that the potential (energy) drop over length �x, i.e., −eẼ0 �x, becomes of order
m0c

2
0 (the other m0c

2
0 comes from the positron, which is accelerated into the opposite

direction), the virtual electron becomes a real electron and a real electron–positron
pair has been created. In contrast to the case of counterpropagating laser beams, this
pair would remain after an optical pulse. Such a process approximately happens at
the Schwinger field Ẽ0 given by the relation

∣∣∣∣∣−eẼ0λc

m0c
2
0 4π

∣∣∣∣∣ = 1 . (4.78)

Note that Ẽ0 is solely determined by the fundamental constants m0, e, c0 and �.
With (2.16), the resulting Schwinger field of Ẽ0 = 2.6 × 1018 V/m translates into
a Schwinger intensity of I = 1 × 1030 W/cm2. It has been estimated [120] that
a single 10-fs pulse focused to a focal volume of (1 µm)3 with that peak intensity
would generate about 1024 electron–positron pairs. This number reduces to one pair
at I = 1 × 1027 W/cm2.
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Problem 4.6. Show that we can equivalently say that the laser cyclotron energy �ωc
equals the rest energy for the Schwinger field Ẽ0, i.e.,

�ωc

2 m0c
2
0

= 1 . (4.79)

This viewpoint emphasizes the magnetic rather than the electric-field component of
the laser light.

4.6 Unruh Radiation

Zetta2- and Exawatt lasers with focused intensities around I = 1026 to 1028 W/cm2

might become accessible around the year 2010 and beyond. At such intensities, the
peak electron acceleration a0

e becomes truly colossal (also see Example 4.1). For
example at an intensity of I = 1028 W/cm2 ⇔ Ẽ0 = 2.7 × 1017 V/m and B̃0 =
1.7 × 106 T in vacuum, and describing the electron in its instantaneous frame, one
gets an acceleration of |a0

e | = e/m0 Ẽ0 = 4.7 × 1028 m/s2 = 4.8 × 1027 × g. This
acceleration would be comparable to the gravitational acceleration near the edge of
a black hole. In the latter case, the large gravitational acceleration is the origin of the
so-called Hawking radiation [121], the theoretically predicted energy-loss channel
of a black hole. The Unruh radiation [122–124] would be the analogue of that for
acceleration by the laser electric field [120]. If the acceleration ae was constant,
thermal radiation according to Planck’s law would result, with a temperature T given
by the relation

kBT = �

2π

ae

c
. (4.80)

For example, for ae = 1028 m/s2, c = c0 and Boltzmann’s constant kB = 1.3804 ×
10−23 J/K, one arrives at a temperature of T = 42 × 106 K. Obviously, this Unruh
radiation has to be distinguished from Bremsstrahlung, as usual originating from
accelerated charges in the Maxwell equations (2.4).

2 One Zettawatt=1 ZW=1021 W, one Exawatt=1 EW=1018 W.
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Lorentz Becomes Drude: Bound–Unbound Transitions

In the previous chapters we have discussed the interaction of intense laser fields
with bound electrons, promoting them from one bound state into another bound state
(two-level system Bloch equations). Furthermore, we have treated free, i.e., unbound,
electrons interacting with intense light fields (e.g., Volkov states). In this section, we
come to the mixed case in which bound electrons are promoted into a continuum of un-
bound states by the light. The concepts developed for the field ionization of atoms are
then further applied to other systems, such as photonuclear fission or photoemission
from metal surfaces.

Before we get into all of that, we first give some simple motivation along the lines
of the phenomenological approach introduced in Sect. 2.4. This already brings us to
attosecond pulse trains or single attosecond pulses via high-harmonic generation from
atoms. It turns out that the carrier-envelope offset phase φ again plays an important
role.

5.1 High-Harmonic Generation: Phenomenological Approach

Macroscopically, any gas has inversion symmetry and only odd harmonics N can
occur (see Sect. 2.4). What happens if, e.g., the 21st, 23rd, 25th, ... harmonic, which
are evenly separated by twice the laser carrier frequency ω0, interfer? In analogy to
what we have said about mode-locking in Sect. 2.3, we anticipate a periodic train
of pulses with a repetition period π/ω0. The width of an individual pulse in that
train is inversely proportional to the number of high harmonics interferring. This
scenario, which has first been predicted in Refs. [125, 126], is illustrated in Fig. 5.1.
Here, the duration of the individual pulses is about 350 attoseconds (one attosecond
= 1 as = 10−18 s). We will discuss corresponding experiments in Sect. 8.1.

In Sect. 2.6 we have seen that the interference of the fundamental with the second
harmonic or the interference of the fundamental with the third harmonic can lead to
a dependence on the CEO phase φ. In analogy to this, we also expect an influence
of the CEO phase on the interference of, e.g., the ..., 79st, 81rd, 83th, ... harmonic
and thus also on the shape of the train of attosecond pulses. Mathematically, we can
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2.8fs

350as

Fig. 5.1. Scheme of the electric field versus time of a train of attosecond pulses. It arises from
the superposition of the 21st, 23rd, 25th, ... 31st harmonic of the fundamental wave with carrier
photon energy �ω0 = 1.5 eV, equivalent to a fundamental light period of 2π/ω0 = 2.8 fs. All
harmonics are assumed to have equal amplitude and phase, the envelope of the fundamental is
taken as constant in time. Note that the period of the electric field of the pulse train is 2.8 fs,
whereas that of the intensity would be 1.4 fs.

closely follow along the lines of Sect. 2.6. This leads to the general form for the
high-harmonic intensity spectrum (compare with Iω0,2ω0(ω) in (2.44))

Iω0, 3ω0, ...,79ω0, 81ω0, 83ω0, ...(ω) ∝
∣∣∣∣∣ ∑
N, odd

e−iNφ ENω0(ω)

∣∣∣∣∣
2

. (5.1)

ENω0(ω) is the Fourier transform of the N -th harmonic with carrier frequency Nω0 re-
sulting from a single laser pulse (rather than from a pulse train in Sect. 2.6). It depends
on the details, e.g., on the electron dynamics. In order to get a feeling for the overall
qualitative behavior, let us consider the simplest possible case and assume an instanta-
neous response according to the nonlinear optical susceptibilities in (2.37), such that
the polarization P(t) is a sum over terms ∝ EN(t) with E(t) = Ẽ(t) cos(ω0t + φ).
For example, for a Gaussian envelope with Ẽ(t) = Ẽ0 exp(−(t/t0)

2), the positive-
frequency part of the Fourier transform of any power N of the envelope is again a
Gaussian, i.e.

ENω0(ω) = ω2 ηN e
−
(

ω − Nω0

σNω0

)2

. (5.2)

(Remember that Problem 2.3 has shown that the N -th harmonic of any “well-behaved”
pulse shape becomes a Gaussian for N � 1.) The coefficients σNω0 in the denomi-
nator of the exponent are given by

σNω0 = 2
√

N/t0 . (5.3)

Note that the spectral width is proportional to σNω0 and scales as ∝ √
N , which

substantially increases the spectral overlap of adjacent high harmonics (see Sect. 2.4).
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Fig. 5.2. Scheme of the intensity spectrum of high harmonics and its dependence on CEO phase
φ according to (5.1) and (5.2). Here we have set N2ηN = const. for N = 1, 3, 5, ..., 87 =
Ncutoff and 0 else, �ω0 = 1.5 eV. The pulse duration of the incident Gaussian pulses is

tFWHM = t0 2
√

ln
√

2. (a) tFWHM = 5 fs, (b) tFWHM = 20 fs. The two curves in each
figure correspond to φ = 0, π, 2π, ... and φ = π/2, 3π/2, ..., respectively. The latter has
been stretched vertically by a factor of 4 for clarity in (a). Note that the various peaks at odd
harmonics in (a) merge for “cos” 5-fs pulses, whereas the individual peaks are clearly separated
for “sin” 5-fs pulses. No influence of the CEO phase is visible on this scale for 20-fs pulses,
see (b). Compare with Fig. 5.6 [267].

Our reasoning implies an optically thin medium, the ω2 factor stems from the Fourier
transform of the second temporal derivative on the RHS of (2.10). The prefactors ηN

depend on intensity and can be calculated in principle. The resulting dependence on
the CEO phase φ is illustrated in Fig. 5.2(a) for 5-fs excitation pulses. For CEO phase
φ = 0, π, 2π, ..., the tails of the different odd harmonics add up constructively, leading
to a smooth total spectrum. The Fourier transform of this smooth spectrum is a single
attosecond pulse in the center of the optical pulse. For CEO phase φ = π/2, 3π/2, ...,
the tails of two adjacent odd harmonics interfere destructively, leading to deep valleys
in between them in the spectrum. The corresponding time-domain behavior is a train
of attosecond pulses. For 20-fs pulses (see Fig. 5.2(b)), the latter is true for any value
of the CEO phase, because here the spectral tails of the different high harmonics
hardly interfere at all (also see Fig. 5.1).
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Another way to obtain attosecond pulses is to consider just one very high harmonic
as, e.g., the N = 101st harmonic of a 5-fs Gaussian optical pulse with �ω0 = 1.5 eV.
We have seen that the spectral width of a Gaussian to the power of N scales as
∝ √

N , hence, the temporal width scales as ∝ 1/
√

N . Thus, the temporal width
of the N = 101st harmonic is reduced by a factor of

√
101 ≈ 10, leading to a

5 fs/10 = 500 as short pulse with a carrier photon energy of N �ω0 = 151.5 eV.
Experiments showing such single X-ray pulses will be discussed in Sect. 8.1.

This altogether shall be sufficient motivation to have a closer look at the micro-
scopic physics behind high-harmonic generation from atoms.

5.2 The Keldysh Parameter

We will see that the light intensities necessary to rapidly ionize an atom are on the
order of I ≈ 1014–1016 W/cm2, which is well within the nonrelativistic regime (we
have seen in Sect. 4.4 that the relativistic regime starts around 1018 W/cm2). Thus, we
can ignore the laser magnetic field for the moment and focus on the laser electric field.
If it were a static electric field, one could simply apply the usual rules of quantum-
mechanical tunneling through potential barriers. Figure 5.3 visualizes this situation
for an electron bound in the Coulomb potential of a nucleus (assumed to be much
more massive or fixed in space). Here we have already tacitly used the electric-field
gauge (see Sect. 4.2).

Can we really use the concept of electrostatic tunneling for light fields oscillating
with a few femtoseconds period? It depends. Let us look at the problem semiclassically
and call the time the electron spends within the barrier the electron tunneling time
ttun. The inverse of this time shall be the tunneling “frequency” �tun. This frequency
must not be confused with the tunneling (or ionization) rate, related to the tunneling
probability1. If the tunneling time is shorter than the period of light, the laser electric
field can indeed be viewed as a static field along x that parametrically changes its
instantaneous value. Let us estimate the tunneling time, which is given by the width
of the barrier divided by the electron velocity in the barrier: The total potential energy
is V (x) = U(x) + x eE(t), where U(x) is the (Coulomb) binding potential. The
latter is approximated by a rectangular potential well with finite walls (see Fig. 5.4) –
a rather crude approximation (see Problem 5.1). The width of the potential barrier, l,
depends on the instantaneous value of the electric field E(t). The potential drop over
length l is identical to the electron binding energy Eb. At the peak of the field, where
E(t) = Ẽ0, this leads to l eẼ0 = Eb, equivalent to

l = Eb

e Ẽ0
. (5.4)

From energy conservation, i.e., me
2 v2 + V (x) = Ee, we see that the electron velocity

v is purely imaginary within the barrier, where the potential energy V (x) > Ee.

1 Actually, the notion tunneling “frequency” is irritating because nothing oscillates here. One
should rather call it tunneling rate – but this notion is reserved already.
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2.8 fs

Fig. 5.3. Electric field E(t) = Ẽ(t) cos(ω0t + φ) of a Gaussian tFWHM = 5 fs linearly
polarized laser pulse with carrier photon energy �ω0 = 1.5 eV and φ = 0 versus time and
(two-dimensional) scheme of the resulting electric potential experienced by an electron initially
bound in an atom at three characteristic points in time. The large “tilt” along the electric-field
vector axis in the center of the pulse can lead to tunneling of the electron out of its binding
potential through the potential barrier. If the barrier height is lowered below the binding energy,
above-barrier ionization can occur. For circularly polarized light, the “tilt” stays constant but
its axis rotates in time [267].

l

E
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V(x)

U(x)

U
0

L

E
e

Fig. 5.4. Illustration of tunneling of an electron out of a potential well U(x) (LHS) of width L

and depth U0 subject to an instantaneous electric field E(t) > 0 leading to a total potential V (x)

(RHS). The resulting potential barrier width l and the binding energy (or ionization potential)
Eb are indicated. Note that in Chap. 3 on two-level systems, we have discussed excitations
within such a potential well.
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Its modulus is given by |v(x)| = √
2 (V (x) − Ee)/me. Hence, the electron velocity

|v| within the barrier is large if the potential barrier is high. At the same time, the
tunneling rate is low. Intuitively: “The more the electron violates energy conservation
within the barrier, the shorter it wants to be there.” At the maximum of the barrier,
where (V (x) − Ee) = Eb, the electron velocity is given by |v| = √

2Eb/me. While
propagating through the barrier, the electron slows down and when it has traversed
the barrier, we have V (x) = Ee and its kinetic energy (and the velocity) is zero. Thus,
the average electron velocity in the barrier is roughly the mean, i.e.,

〈|v|〉 = 1

2

(√
2Eb/me + 0

)
= √

Eb/(2me) . (5.5)

We obtain the tunneling time

ttun = l

〈|v|〉 =
√

2meEb

eẼ0
. (5.6)

To summarize, the “static-field approximation” is strictly justified for

�tun

ω0
� 1 , analogous to

�R

ω0
� 1 , (5.7)

with the peak tunneling “frequency” �tun = 1/ttun given by

�tun = e√
2meEb

Ẽ0 , analogous to �R = d

�
Ẽ0 . (5.8)

On the RHS of the last two equations, we have repeated the results of the two-level
system model from Sect. 3.2 with the peak Rabi frequency �R. The analogy between
tunneling “frequency” and Rabi frequency is more than obvious. Both are proportional
to the laser electric field and both have to be large as compared to the carrier frequency
of light in order to reach the electrostatic regime2.

The dimensionless ratio

γK = ω0

�tun
= ω0

√
2meEb

e Ẽ0
=
√

Eb

2 〈Ekin〉 (5.9)

is the famous Keldysh parameter γK [127] introduced by L. V. Keldysh in 1965. For
γK 
 1, the picture of electrostatic tunneling applies. On the RHS of (5.9), we have
alternatively expressed the Keldysh parameter using the ponderomotive energy 〈Ekin〉,
which can easily be verified by insertion of (4.6) into (5.9). Thus, we can equivalently
say that something special is expected to happen if the peak kinetic energy 2 〈Ekin〉,
added to the electron by the laser electric field, becomes comparable to the electron
binding energy Eb.

2 We will see in Chap. 7 that �R is indeed nearly identical to �tun for semiconductors.
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� Example 5.1. For an electron in the 1s state of a hydrogen atom, Eb is identical to
the Rydberg energy of 13.6 eV (also see Table 5.1), me = m0. With a carrier photon
energy of �ω0 = 1.5 eV, equivalent to 2π/ω0 = 2.8 fs period of light, unity Keldysh
parameter corresponds to

γK = 1 (5.10)

⇔
ttun = 0.44 fs

⇔
Ẽ0 = 2.8 × 1010 V/m

⇔
I = 1.0 × 1014 W/cm2 .

For the same parameters, we have the barrier width l = 0.5 nm and the average
electron velocity in the barrier 〈|v|〉 = 1 × 106 m/s 
 c0 = 3 × 108 m/s. The latter
inequality shows that our nonrelativistic treatment is meaningful indeed. �

Table 5.1. Ionization potential Eb (in units of eV) of selected relevant gases (for single ioniza-
tion).

H He Ne Ar Kr Xe

Eb 13.598 24.587 21.564 15.759 13.99 12.127

It is instructive to compare the peak laser electric field Ẽ0 of Example 5.1 with
the electric field attracting the electron to the nucleus. For the 1s state of a hydrogen
atom, we have

|E|H, 1s = e

4πε0 r2
B

. (5.11)

With the hydrogen Bohr radius of rB = 0.053 nm, we obtain an electric field of

|E|H, 1s = 5.17 × 1011 V/m . (5.12)

Thus, the peak laser electric field matches the inner-atomic field, i.e., Ẽ0 = |E|H, 1s,
for γK = 0.05 
 1, equivalent to an intensity of I = 3.4 × 1016 W/cm2.

5.3 Field Ionization of Atoms

Within the “static-field approximation”, the ionization rate �ion(t) (or tunneling
rate) depends exponentially on the instantaneous barrier width l(t) because the elec-
tron wave function is decaying exponentially in the barrier according to ψ(x) ∝
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exp(−|kx(x)| x). The probability of tunneling through the barrier is ∝ |ψ(l)|2. Ap-
proximating |kx(x)| → 〈|kx |〉 with �〈|kx |〉 = me〈|v|〉 using (5.5) and inserting
l(t) = Eb/(e |E(t)|) analogous to (5.4), we expect the general behavior

�ion(t)

�0
ion

= e
−

√
2meEb

�
l(t) = e

−
1
�e

√
2me E

3/2
b

|E(t)| = e
−

Eexp

|E(t)| . (5.13)

This dependence is illustrated in Fig. 5.5. It exhibits a threshold behavior, i.e.,
above a certain value of the instantaneous laser electric field |E(t)|, the ionization
rate increases steeply3. Based on this finding, we expect a strong dependence of the
ionization on the CEO phase φ of the exciting laser pulses, as schematically depicted
in Fig. 5.6. Note that this finding is consistent with the expectation from the above
phenomenological approach (compare with Fig. 5.2). For few-cycle pulses, electrons
generated by above-threshold ionization are primarily emitted towards one side for
φ = 0 and to the other side for φ = π , while they go to both sides with equal
probability for CEO phase φ = ±π/2. This effect, which clearly disappears for
pulses containing many cycles of light, has also been observed experimentally [128].
Further related experiments with few-cycle laser pulses are discussed in Sect. 8.1.
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Fig. 5.5. Illustration of the instantaneous ionization rate �ion(t) versus the instantaneous laser
electric field |E(t)| in the “static-field approximation” according to (5.13). The effect of the
indicated “threshold” is illustrated in Fig. 5.6. The inset illustrates the laser carrier-wave oscil-
lation and the ionization rate �ion(t) versus time [267].

3 Note that the electric fields with |E(t)|/Eexp < 0.1 in Fig. 5.5 are barely compatible with the

electrostatic limit as γK = �ω0
Eb

Eexp
|E(t)| is about unity for |E(t)|/Eexp = 0.1, Eb = 13.6 eV,

me = m0 and �ω0 = 1.5 eV (Eexp = 2.6×1011 V/m). Nevertheless, the depicted behavior
is qualitatively correct. Mathematically, the two limits |E(t)|/Eexp 
 1 and γK 
 1 can
strictly be fulfilled simultaneously for Eb � �ω0.
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t
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f = 0 f p= /2

threshold

threshold

Fig. 5.6. For excitation of an atom with laser pulses E(t) = Ẽ(t) cos(ω0t + φ) with, e.g.,
Gaussian envelope Ẽ(t) = Ẽ0 exp(−(t/t0)2), the actual peak electric field can be above the
ionization threshold (see Fig. 5.5) for CEO phase φ = 0 (LHS column), while it is below the
threshold for φ = π/2 (RHS column). This effect is expected to be pronounced for short laser
pulses (upper part) and a minor detail for long pulses (lower part). The gray areas indicate the
pulse envelopes. Compare with Fig. 5.2 [267].

One can still use the concept of electron tunneling for γK ≥ 1 or even γK � 1,
but there the potential changes during the tunneling process. Thus, simple tunneling
formulae are no longer available. We can, however, employ numerical solutions of
the time-dependent Schrödinger equation. Let us, for simplicity, again consider its
one-dimensional version

i�
∂

∂t
ψ(x, t) =

(
− �

2

2me

∂2

∂x2
+ U(x) + x e E(t)

)
ψ(x, t) . (5.14)

with the laser electric field

E(t) = Ẽ(t) cos(ω0t + φ) (5.15)

and the binding potential U(x). We again choose U(x) to be a simple potential well,
i.e., U(x) = −U0 for |x| ≤ L/2 and U(x) = 0 else. The simulated region is
significantly larger than the one depicted in Fig. 5.7. Starting with the ground state
wave function of the finite potential well at t = 0 in Fig. 5.7, the real part of the electron
wave function oscillates with a frequency given by Eb/� as expected from elementary
quantum mechanics (Eb ≈ U0 for L = 0.6 nm). As the instantaneous electric field
E(t) increases from E(t = 0) = 0 towards its peak E(t = 0.7 fs) = Ẽ0 in Fig. 5.7,
the bound part of the wave packet is shifted towards the left. This motion of charge
corresponds to optical transitions within the well and has been discussed extensively
on the basis of the two-level system Bloch equations in Sect. 3.2. A comparison
with Fig. 3.2 shows that the wave function in the well exhibits more structure in
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Fig. 5.7. Real part of the electron wave function, Re(ψ(x, t)), versus x-coordinate and time t

from numerical solution of the time-dependent Schrödinger equation (5.14) within the electric-
field gauge. x runs from −3 nm to +1 nm, t from 0 to 1.0 fs. The electron is initially (t = 0) in
the ground state of a potential well U(x) of depth U0 and width L (also see Fig. 5.4). Parameters
are φ = −π/2, �ω0 = 1.5 eV equivalent to a 2.8-fs period of light, me = m0, L = 0.6 nm and
U0 = 15 eV ≈ Eb. The constant electric field envelope of Ẽ0 = 3 × 1010 V/m corresponds
to an intensity of I = 1.1 × 1014 W/cm2 or to 〈Ekin〉

�ω0
= 5 and to a Keldysh parameter of

γK ≈ 1. Compare with Fig. 4.3 for a free vacuum electron and with Fig. 3.2 where only two
bound states are accounted for.

Fig. 5.7, indicating that not only transitions from the ground state to the next excited
state are involved but also transitions into and/or between higher excited states of
the well. In addition to this, the wave function also reveals contributions outside the
binding potential that correspond to tunneling out of the well. These contributions
are accelerated by the electric field (also compare Fig. 4.3 for free electrons) and
eventually give rise to high-harmonic generation, which will be discussed below. Note
the delay between the maximum of the electric field at t = 0.7 fs and the emission of
the electron wave packet to the left (the end of the depicted timescale is 1.0 fs). This
delay is due to the tunneling time ttun. Indeed, the numbers of Example 5.1 (which
imply a constant electric field) are roughly consistent with the numerical simulation.
Also, as expected from the above semiclassical threshold discussion, tunneling is
largely suppressed if the peak electric field Ẽ0 is reduced by just a factor of two (see
Fig. 5.8).

What can be done for γK � 1 apart from “brute-force” numerical calculations ?
At this point it can be advantageous to switch from the electric-field gauge to the ra-
diation gauge (see Sect. 4.2). Indeed, it is attractive mathematically and has been used
for γK � 1 [129–131]. This brings us into the regime of multiphoton absorption. The
laser electric field is not too strong and we are interested in transitions from the bound
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Fig. 5.8. As Fig. 5.7, but for Ẽ0 → Ẽ0/2, thus γK ≈ 2. Note that tunneling out of the well is
significantly reduced with respect to Fig. 5.7.

state into the unbound states. The influence of the laser field on the bound state can be
ignored to a first approximation. Furthermore, the unbound states become identical
to Volkov states if we neglect the influence of the Coulomb binding potential on
them. As discussed in Sect. 4.2, the Volkov states consist of a series of N -photon
sidebands, which gain weight as the laser intensity increases. Remember that, within
the Volkov states, the influence of the laser electric field is incorporated nonpertur-
batively. The two regimes of electrostatic tunneling (γK 
 1) on the one hand and
multiphoton absorption (γK � 1) on the other hand are illustrated in Figs. 5.9 (a) and
(b), respectively.

(a) (b)

Fig. 5.9. Illustration of ionization of atoms via (a) electrostatic tunneling at large laser fields
(Keldysh parameter γK 
 1) and (b) multiphoton absorption at weak laser electric fields
(γK � 1). According to Example 5.1, γK = 1 corresponds to a laser intensity of 1014 W/cm2

for typical parameters [267].
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It is interesting to compare the numbers from Example 5.1 on the electrostatic
limit with those from Example 4.2 on Volkov states. In the latter example, we have
estimated that the amplitude of the N -photon sideband of a free vacuum electron has
a maximum around an intensity of I = N × 3 × 1013 W/cm2 for N � 1. For the
parameters of Example 5.1, i.e., Eb = 13.6 eV and �ω0 = 1.5 eV, the integer N would
have to be Eb/(�ω0) = 13.6/1.5 > 9 to make a real transition from the bound 1s state
into the ionization continuum. N = 10 yields an intensity of I = 4 × 1014 W/cm2,
which is amazingly close to I = 1 × 1014 W/cm2 corresponding to γK = 1 from
Example 5.1: Two rather different estimates and physical pictures give consistent
results.

� Example 5.2. The interaction of intense light with nuclei [132] can either be direct
or can be mediated by atomic electrons that are accelerated to MeV ponderomotive
energies by the laser field (see Sects. 4.4 and 4.5). Here, we only consider the first
case because it is similar to the photoionization of atoms. By analogy, we anticipate
photonuclear “ionization”, i.e., fission. In contrast to the atomic Coulomb potential,
however, the potential U an α-particle experiences in the nucleus is composed of
the binding part arising from the strong interaction and a repulsive part due to the
Coulomb repulsion of the positively charged α-particles. As a result, even without
a laser field, the α-particle can tunnel out of the nucleus – the normal radioactive
α-decay. For large laser electric fields, we can ignore these “details” to lowest order
and use the Keldysh parameter from (5.9), replacing me → mα , with the α-particle
mass mα = 6.7 × 10−27 kg to estimate the relevant fields and intensities. For �ω0 =
1.5 eV and a typical binding energy of Eb = 5 MeV (still, v 
 c0 according to
(5.5)), unity Keldysh parameter corresponds to a peak of the laser electric field
of Ẽ0 = 1 × 1015 V/m, equivalent to a peak intensity of I = 2 × 1023 W/cm2.
Thus, the electrostatic regime with γK 
 1 cannot be reached with current lasers.
The experimentally observed photonuclear fission at intensities ranging from I =
1019 W/cm2 [133] to I > 1020 W/cm2 [134], pulse durations of a few 100 fs and
�ω0 = 1.2 eV is rather mediated by atomic electrons in solid targets. �

Problem 5.1. In our discussion of electrostatic tunneling we have approximated the
binding potential as a rectangular potential well. For the actual Coulomb potential,
above-barrier ionization can take place (see Fig. 5.3). Estimate the laser electric field
at which this process appears. This field is called the barrier-suppression field [135].
What are the consequences for the ionization rate?

5.4 High-Harmonic Generation

Having solved the time-dependent Schrödinger equation for the ionization numeri-
cally in the previous section, we can in principle simply go ahead and compute the
atomic dipole moment from the known instantaneous wave function ψ(r, t) via the
expectation value 〈ψ(r, t)|−e r |ψ(r, t)〉. Multiplying by the density of atoms deliv-
ers the macroscopic optical polarization P , which enters into the Maxwell equations.
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Neglecting propagation effects, the radiated electric field is proportional to the second
temporal derivative of P . The square modulus of its Fourier transform delivers the
high-harmonic (intensity) spectrum. This can and has been worked out [136–138]. In-
deed, Fig. 5.2(b) can be viewed as a scheme of the resulting high-harmonic spectrum.
Typically, the intensity of the harmonic orders decays rapidly over several orders of
magnitude up to about order ten or twenty (not shown). This is followed by a plateau
region of more or less constant harmonic orders and a rapid fall for orders above the
cutoff order Ncutoff . The latter depends on the laser intensity and the atom or ion under
consideration.

5.4.1 Three-Step Scenario and Cutoff

It is, however, instructive and much more intuitive to discuss the problem semiclassi-
cally in terms of the so-called three-step scenario introduced by Corkum [139–142].
It turns out that the results are qualitatively identical and, moreover, that they do not
even depend much on the particular choice of the binding potential U(r).

Semiclassically, the atom is ionized at some instant in time (step # 1). According
to (5.13) and/or Fig. 5.5, the instantaneous ionization rate is going to peak when the
modulus of the laser electric field has a maximum. Let us consider linear polariza-
tion of the laser. Starting with zero velocity and potential energy Eb, the electron is
accelerated (step # 2) in the laser electric field and again decelerated when the field
changes sign in the following half-cycle (see Fig. 4.3). After a few femtoseconds it
can come back to its location of birth for the first time. At this point, its total en-
ergy Ee is the sum of the binding energy Eb and the kinetic energy acquired since
its birth. Classically, it will pass the nucleus. Quantum mechanically, it can emit a
photon, which takes all the electron energy, and fall back into the bound state (step
# 3). The maximum photon energy �ω = Ncutoff �ω0 = Ee to be expected is thus
directly related to the maximum electron energy Ee. Once the atom is ionized, the
Coulomb field of the nucleus can be neglected and the electron essentially acts like a
free electron. Following Sect. 4.1 on free electrons, we simply have to solve Newton’s
law, i.e., meẍ = −eE(t), with E(t) = Ẽ(t) cos(ω0t + φ) with φ = 0 for the initial
conditions that at the time of birth t0, the electron coordinate and velocity are zero,
i.e., x(t0) = 0 and v(t0) = 0. For a constant field envelope Ẽ(t) = Ẽ0, the solution
is

x(t) = eẼ0

meω
2
0

[(
cos(ω0t) − cos(ω0t0)

)
+ sin(ω0t0) (ω0t − ω0t0)

]
(5.16)

and

v(t) = − eẼ0

meω0

(
sin(ω0t) − sin(ω0t0)

)
, (5.17)

resulting in the electron kinetic energy at time t

me

2
v2(t) = 2 〈Ekin〉

(
sin(ω0t) − sin(ω0t0)

)2
. (5.18)
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Fig. 5.10. Grayscale image of the electron kinetic energy me
2 v2 in units of the ponderomotive

energy 〈Ekin〉 according to (5.18) versus time t and time of ionization t0 for an electric field
E(t) = Ẽ0 cos(ω0t) (see bottom). The unphysical range of t < t0 is hidden. The isoenergy lines
me
2 v2/〈Ekin〉 = 3.17 are shown by the six closed black curves. The condition x = 0 (position

of the nucleus) from (5.16) is depicted by the two white solid curves. The two equivalent points
of maximum electron kinetic energy, 3.17 〈Ekin〉, at the electrons first return to x = 0 are shown
by the dashed lines. On the RHS, regions of birth phases ω0t0 with no return to the nucleus at all
are indicated. The lower part shows the laser electric field with those birth phases ω0t0 giving
maximum kinetic energy as full gray dots. At the corresponding recollision phases ω0t , EUV
pulses (schematically) are emitted. This timing has been confirmed experimentally [143]. Note
that the different electron energies correspond to different harmonics and to slightly different
recollision phases. This introduces a certain chirp on the EUV pulse [268].

Here we have introduced the ponderomotive energy 〈Ekin〉 according to (4.6). For
example, for ω0t0 = 0, we recover (4.5) for φ = 0 and the peak electron kinetic
energy is 2〈Ekin〉, for ω0t0 = π

2 , the peak is 8〈Ekin〉. We, however, want to compute
the maximum kinetic energy at the time t = t1 > t0, when the electron comes back
to the nucleus at x = 0 = x(t1) for the first time. Because of the 2π periodicity,
it is sufficient to consider the interval [−π, +π ] of birth phases ω0t0. According
to (5.16), for ω0t0 in the interval [−π, −π

2 ], the electron comes back to x = 0,
for [−π

2 , 0] it never comes back, for [0, π
2 ] it does come back, for [π

2 , π ] it does
not. Numerical or graphical (see Fig. 5.10) solutions of (5.16) and (5.18) show that
the maximum electron kinetic energy at its first return to x = 0 occurs at time
ω0t = ω0t1 ≈ 1.3 for the birth phase ω0t0 ≈ −π + 0.3. An equivalent maximum
occurs at time ω0t1 ≈ 1.3 + π for ω0t0 ≈ +0.3. Inserting these numbers into
(5.18), we obtain a kinetic energy of 3.17 〈Ekin〉, the total electron energy at this
point is Ee = Eb + 3.17 〈Ekin〉 (see Fig. 5.11). At these birth phases, the electric
field is |E(t0)| = Ẽ0 |cos(ω0t0)| = Ẽ0 × 0.96, thus the instantaneous ionization rate
according to (5.13) is rather high. For example, for ω0t0 = 0, where the ionization
rate has its absolute peak, the electron returns at ω0t = ω0t1 = 2π , leading to zero
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3.17 Ekiná ñ
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Fig. 5.11. Electron kinetic energy mev
2(t)/2 versus its coordinate x(t) according to (5.18)

and (5.16) starting at the time of ionization t0 at x = 0. For the depicted birth phase of
ω0t0 = 0.3, the kinetic energy at the first (in this case the only) return of the electron to the
nucleus at x = 0 has the maximum of 3.17 〈Ekin〉. The resulting emitted harmonic photon
energy �ω = Ncutoff�ω0 = Eb + 3.17 〈Ekin〉 is indicated by the thick arrow. The lower part
shows the Coulomb binding potential [267].

kinetic energy. The scenario just described is periodic in time with frequency ω0.
Thus, the highest harmonic-order, the cutoff, is given by the odd integer nearest to

Ncutoff = Eb + 3.17 〈Ekin〉
�ω0

. (5.19)

Note that the cutoff harmonic is linear in the laser intensity I ∝ 〈Ekin〉. This is in
contrast to the corresponding expression for two-level systems, (3.33), where Ncutoff
is proportional to

√
I ∝ �R in the “static-field limit”. Both approaches do, however,

agree in that a cutoff does exist. This is not a priori obvious at all. One could have
expected a continuous decrease of the strength of the harmonics with harmonic order
N rather than a sharp cutoff. Indeed, e.g., for high-harmonic generation via relativis-
tic nonlinear Thomson scattering on free electrons (see Sect. 4.4.2) no such cutoff
appears.

� Example 5.3. For a peak laser intensity of I = 4 × 1014 W/cm2 (⇔ γK = 0.5
or Ẽ0 = 5.6 × 1010 V/m from Example 5.1), thus 〈Ekin〉 = 27.2 eV in vacuum,
�ω0 = 1.5 eV, the 1s state of hydrogen with Eb = 13.6 eV, and me = m0, (5.19)
results in a cutoff of Ncutoff = 67. This is equivalent to a maximum photon energy of
100.5 eV or a minimum wavelength of 12.3 nm.
The corresponding electron trajectory according to (5.16) for the birth phase ω0t0 =
0.3 exhibits an excursion after ionization and before the first return to the nucleus of
eẼ0/(m0ω

2
0) × 1.2 = 2.4 nm. This is 46 times the hydrogen Bohr radius of rB =

0.053 nm. �
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If one is interested in making Ncutoff as large as possible, (5.19) favors large
binding energies (ionization potentials, see Table 5.1) for the price of larger ionization
thresholds according to (5.13). At some point, however, the electron motion becomes
relativistic (as |v| ∝ √

Eb according to (5.5)) and high harmonics with wavelengths
less than 0.1 nm occur in numerical studies [144]. For a given type of atoms, hence
fixed Eb, the cutoff obviously increases with increasing ponderomotive energy. Note,
however, that we have tacitly assumed in our above semiclassical reasoning that the
atom has not been ionized yet. Thus, for pulsed excitation, 〈Ekin〉 in (5.19) has to
be interpreted as the electron ponderomotive energy in the first optical cycle after
ionization. This introduces an implicit dependence on pulse duration: For long and
weak pulses, the atom is ionized in the center of the pulse and the ponderomotive
energy is small, hence the cutoff is low. For long and intense pulses the atom is
ionized well before the maximum of the pulse envelope is reached (see Fig. 5.12(a))
and, again, the ponderomotive energy is low. For short and intense pulses, the atom is
ionized near the center of the pulse where the intensity and the ponderomotive energy
are large, thus, the cutoff is shifted towards high harmonics.

Mathematically, the degree of ionization can simply be obtained by integration
of the tunneling or ionization rate (5.13), which has followed from our semiclassical,
electrostatic reasoning (also see Problem 5.1). Considering single ionization only,

Fig. 5.12. Degree of ionization, Ne(t)/N
0
atom, according to (5.20) and (5.13), versus time t .

(a) Gaussian optical pulses with tFWHM = 5 fs and φ = 0 (black curve) and φ = ±π/2 (gray
curve), (b) corresponding 100-fs pulses (dependence on φ vanishes within the line thickness).
The gray areas illustrate the pulse intensity, note the different timescales. All other parameters
are identical, especially the peak intensity is the same, i.e., Ẽ0/Eexp = 0.5, �ω0 = 1.5 eV,

and �0
ion = 5/fs. Nevertheless, this figure should be viewed as a schematic rather than as a

quantitative calculation. Note that in (b) essentially all of the atoms are already ionized when
the peak intensity and hence the peak ponderomotive energy are reached in the center of the
pulse at t = 0. This inhibits efficient generation of high-harmonic orders for (b) – in sharp
contrast to (a), even though the pulse energy is 20 times lower in (a). By the way: Note that
the degree of ionization long after the pulse in (a) shows no significant dependence on φ (see
Problem 5.3). It is interesting to compare the latter aspect with Figs. 3.9 and 3.10 [269].
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and starting from a number of atoms N0
atom prior to excitation, the number of ionized

atoms equals the number of free electrons Ne(t) ≤ N0
atom, thus the remaining number

of atoms that are not ionized is given by Natom(t) = N0
atom − Ne(t). Together with

the instantaneous ionization rate �ion(t) ≥ 0 according to (5.13), we have

dNe

dt
= �ion(t) Natom(t) . (5.20)

The formal solution is

Ne(t) = N0
atom

[
1 − exp

(
−
∫ t

−∞
�ion(t

′) dt ′
)]

. (5.21)

The degree of ionization, a number that monotonously increases from zero to some
value ≤ 1, is given by Ne(t)/N

0
atom. The numerical solutions shown in Fig. 5.12

confirm our above qualitative reasoning. Note that the electrostatic approximation
underlying (5.13) becomes questionable in the wings of the pulses, where the electric
field is low, hence the Keldysh parameter is large. Indeed, numerical solutions of the
time-dependent Schrödinger equation (not shown) tend to exhibit a yet more drastic
dependence on the pulse duration.

Problem 5.2. In the semiclassical treatment of ionization and high-harmonic gen-
eration, we have considered linear polarization of light. What changes for circular
polarization?

Problem 5.3. Notably, the degree of ionization for t → ∞ in Fig. 5.12(a) exhibits no
significant dependence on the CEO phase φ. This appears to contradict our expectation
from Fig. 5.6 together with Fig. 5.5 for few-cycle pulses. Can you resolve this riddle?

Problem 5.4. Discuss the physics described in Figs. 5.7 and 5.8 with γK ≈ 1 and
γK ≈ 2, respectively, in terms of the validity of the two-level system approximation
for transitions between the ground state and the first excited state of the potential well.

Problem 5.5. Compare Figs. 3.4 and 5.12. w(t) in Fig. 3.4 addresses the inversion of
a two-level system versus time, Fig. 5.12 the corresponding degree of ionization of
an atom. They both exhibit an oscillatory component with twice the carrier frequency
of light and an overall increase on a longer timescale. However, there are distinct
differences as well: The rapid oscillation in Fig. 3.4 can lead to an instantaneous
decrease, in Fig. 5.12 we have a strictly monotonous increase. The envelope in Fig. 3.4
can decrease (the Rabi flopping), whereas it monotonously increases with time in
Fig. 5.12. We have discussed the mathematics. Try to give an intuitive explanation for
these qualitative differences.

5.5 Application to Photoemission from Metal Surfaces

A laser electric-field vector with a significant component parallel to the normal of a
metal/vacuum interface can lead to photoemission of electrons (see Fig. 5.13). Here,
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the binding energy (ionization potential) of the atom, Eb, has to be replaced by the
metal work function W – the difference between the vacuum level and the metal Fermi
energy EF, or, in other words, the minimum work that needs to be supplied to rip a
crystal electron out of the metal. Typical electron effective masses me are close to the
free electron mass m0, typical values for W lie in the range of 2–5 eV (see Table 5.2).
Provided that the carrier photon energy follows �ω0 < W , linear photoemission
cannot occur. For example, for W = 3 eV, me = m0 and �ω0 = 1.5 eV, unity Keldysh
parameter γK corresponds to a peak laser intensity of I = 2 × 1013 W/cm2, which
is just barely compatible with typical damage thresholds. Hence, the electrostatic
regime (γK 
 1) can hardly be reached.

Table 5.2. Work function W (in units of eV) of selected metals. Values taken from Ref. [145].

Na Cs Cu Ag Au Fe Al W

W 2.35 1.81 4.4 4.3 4.3 4.31 4.24 4.5

Fig. 5.13. Schematic illustration of photoemission from a metal/vacuum interface, e.g., corre-
sponding to the cathode of a photomultiplier tube. Upper part: The linearly polarized few-cycle
optical pulse with carrier photon energy �ω0 � W/2, wavevector K and electric-field vector
E impinges under nearly grazing incidence. Lower part: An electron at the Fermi energy EF of
the metal experiences an energy barrier of height W – the metal work function. Inside the metal,
the large electron density efficiently screens the laser electric field except for a thin surface
layer. The gray area represents the Fermi sea. After ionization, the electron moves towards the
LHS. Its trajectory Ee(x) as obtained from (5.16) and (5.18) with ω0t0 → φ for φ = −π/4
and γK ≈ 3 is depicted (compare with Fig. 5.11 for ω0t0 = +0.3) [269].
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We can now take advantage of our discussion on electron “return” or “no return” in
Fig. 5.10 in order to qualitatively discuss the dependence of the photoemission on the
CEO phase φ within the multiphoton regime (γK � 1). In this regime, the tunneling
time exceeds the period of light, hence the carrier-wave oscillation is averaged out
and the photoelectron emission peaks at the maximum of the electric field envelope
of the pulse. Let us assume that this maximum lies at time t = 0 and discuss an
electron freed right at this time. In order to eventually contribute to the photocurrent,
the freed electron has to arrive at the anode (or the first dynode) at some point, i.e., it
must not return to the metal surface. As soon as the electron is in vacuum, it is subject
to the instantaneous laser electric field E(t), which depends on the CEO phase φ.
Thus, we can reinterpret the birth phase ω0t0 in Fig. 5.10 by the CEO phase φ, i.e.,
replace ω0t0 → φ (to get the correct sign, Fig. 5.6 might help). As discussed above
(Sect. 5.4.1), the emitted electrons move towards the LHS and do not come back tox =
0 (the metal surface) for the φ-interval [−π

2 , 0] – the photocurrent is large. Note that
the metal/vacuum interface breaks the inversion symmetry with respect to the surface
normal (x-direction). Thus, the upper region of “no return” in Fig. 5.10 does not apply
here, because the electric force would lead to a motion of the electrons towards the
RHS (see Fig. 5.11), i.e., the electrons would be pushed into the metal. A density
fluctuation in the metal results – the photocurrent is low. Altogether, we anticipate
that the time-integrated photocurrent has a component that oscillates versus φ with
period 2π . For a constant pulse envelope, this dependence would completely average
to zero, whereas for few-cycle pulses, the temporal variation of the envelope within
one optical cycle leads to a finite modulation. Theoretical calculations [146] based on
the jellium model show that such φ-dependence does indeed occur. It turns out that
for 5-fs pulses with a carrier photon energy of �ω0 = 1.5 eV and a Keldysh parameter
of γK ≈ 2−3, the absolute photocurrent as well as the relative modulation depth have
appreciable magnitude. Maximum photocurrent is predicted at φ = −π

4 , the middle
of the interval [−π

2 , 0] (see trajectory in Fig. 5.13). Corresponding experiments using
a commercial photomultiplier cathode (Hamamatsu R 595) within the multiphoton
regime (gold cathode, I ≈ 2 × 1012 W/cm2, 4-fs pulses, �ω0 = 1.65 eV) have been
reported in Refs. [147] and [148].

At the end of Sect. 2.3 we have seen that any optical pulse has to obey the condition∫ +∞
−∞ E(t) dt = 0, i.e., the average force on the electron is zero. Consequently, the

electron velocity is zero long after the pulse and the electron never actually arrives at
the first dynode (which is typically rather far away) unless one applies an additional
bias voltage – as is, of course, done in these experiments for the multiplication process
anyway.

Alternatively, we can think about the electron current towards the LHS (x < 0)
as transitions from electron states within the metal into those vacuum Volkov states
with kx < 0. The latter condition breaks inversion symmetry. Indeed, in Sect. 4.2
we have seen that the N -photon Volkov sideband (see Fig. 4.2) has a phase Nφ

(see (4.18)). Thus, loosely speaking, e.g., for 3 �ω0 > W > 2 �ω0, two-photon
absorption (N = 2) from the high-energy part of the laser spectrum can interfere with
three-photon absorption (N = 3) from the low-energy part (somewhat analogous to
our discussion in Sect. 3.5, except for the symmetry). This leads to a beating with
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difference phase φ, hence to a period of 2π . In contrast, for kx = 0 and according
to (4.22), only even-order Volkov sidebands would occur, hence the beating would
have difference phase 2 φ, thus the oscillation period would equal π rather than 2π .
Thus, the breaking of the inversion symmetry in this geometry is important, as already
pointed out above.



6

Accounting for Propagation Effects

For realistic calculations it is often not only necessary to know the nonlinear optical
polarization but to actually consider the light field emitted by some gas or sample.
This emission can also be influenced by group-velocity dispersion, reabsorption ef-
fects, reflections from interfaces and resulting standing-wave effects, phase matching,
cascade processes, self-focusing or defocusing, diffraction, the Gouy phase, etc. Usu-
ally, exact analytical solutions are not available. In the following we first discuss two
approaches in a one-dimensional plane-wave approximation: Exact numerical calcu-
lations using a finite-difference time-domain (FDTD) algorithm and the usual slowly
varying envelope approximation (SVEA) [5,6], which can be somewhat generalized
under certain conditions [154]. The SVEA is well known from traditional nonlinear
optics, FDTD calculations are generally suitable for extreme nonlinear optics. Exam-
ples of one-dimensional FDTD calculations will be given in Sects. 7.1.2 and 7.2 for
semiconductor experiments, phase-matching issues are, e.g., discussed in Sect. 7.5
for conical harmonic generation and in Sect. 8.1 for high-harmonic generation on the
basis of the SVEA. Finally, we discuss the influence of the transverse (Gaussian)
beam profile on the carrier-envelope offset phase of few-cycle pulses via the Gouy
phase in Sect. 6.3. The implications for the amplitude spectrum and the pulse envelope
are discussed in Sect. 6.4.

6.1 Numerical Solution of the Nonlinear Maxwell Equations

It is the aim of this brief section to show that – at least in one dimension – exact
numerical solutions of the nonlinear Maxwell equations are actually rather simple. A
more complete overview on numerical solutions of the Maxwell equations based on
finite-difference time-domain (FDTD) algorithms can, e.g., be found in Ref. [155].

For a plane electromagnetic wave propagating along the z-direction with the
electric field E polarized along x, the magnetic field B is directed along y. Under
these conditions, Maxwell’s equations (2.4) reduce to the two coupled first-order
partial differential equations
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z

EM-1,N EM,N EM+1,N

�z

HM-1/2,N+1/2 HM+1/2,N+1/2 HM+3/2,N+1/2

HM-1/2,N-1/2 HM+1/2,N-1/2 HM+3/2,N-1/2

EM-1,N+1 EM,N+1 EM+1,N+1

�t

t

Fig. 6.1. Illustration of the one-dimensional finite-difference time-domain (FDTD) discretiza-
tion and iteration scheme. The spatial step size is �z, the temporal step size �t , M and N are
integers. The electric field E is parallel to the x-direction, the magnetic field H parallel to y

(pointing out of the plane), and the wave is propagating along z.

∂E(z, t)

∂z
= − ∂B(z, t)

∂t
(6.1)

∂H(z, t)

∂z
= − ∂D(z, t)

∂t
. (6.2)

In a nonmagnetic medium we, furthermore, have B(z, t) = µ0 H(z, t) and D(z, t) =
ε0 E(z, t) + P(z, t), with the medium polarization P(z, t).

In order to implement this initial-value problem on a computer, we discretize
space and time according to

EM,N = E(M �z, N �t) , (6.3)

HM,N = H(M �z, N �t) , (6.4)

and P correspondingly. M and N are integers, the step sizes �z and �t have to be
sufficiently small. Their actual choice will be discussed below. The central idea of
Ref. [156] is to displace the positions of the electric and magnetic field by �z/2 in
space and �t/2 in time, respectively (see Fig. 6.1). This leads to a simple iterative
scheme: Replacing the partial derivatives in (6.1) by finite fractions immediately
delivers

H
M+ 1

2 ,N+ 1
2

= H
M+ 1

2 ,N− 1
2

− �t

µ0�z

(
EM+1,N − EM,N

)
. (6.5)
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At some point in time, the initial value of the electric as well as magnetic field must
be known at all positions z. If the magnetic field on the RHS of (6.5) is, e.g., known
at time t = (N − 1

2 )�t and the electric field is known at time t = N�t , the magnetic
field at time t = (N + 1

2 )�t at all coordinates z = (M + 1
2 )�z can directly be

calculated from (6.5). Accordingly, (6.2) leads to

EM,N+1 = EM,N (6.6)

− �t

ε0�z

(
H

M+ 1
2 ,N+ 1

2
− H

M− 1
2 ,N+ 1

2

)
− 1

ε0

(
PM,N+1 − PM,N

)
.

On the RHS of (6.6), the magnetic field at time t = (N + 1
2 )�t and the polarization

and electric field at time t = N�t are known at this point of the calculation. EM,N+1
and PM,N+1 have to be calculated for all coordinates z = M�z. In vacuum, P = 0
holds and EM,N+1 can again be directly calculated. The same holds for a linear
optical material with P = ε0χE, in which case ε0 has to be replaced by ε0 → ε ε0
and P disappears. In nonlinear optics, P is generally a nonlinear functional of E.
If, for example, we have a χ(2)-medium with P = ε0χ

(2)E2, we obtain PM,N+1 =
ε0χ

(2)E2
M,N+1, and (6.6) is a quadratic equation in EM,N+1 allowing the electric

field at time t = (N + 1)�t for all coordinates z = M�z to be determined. This
then allows calculation of the magnetic field at time t = (N + 3

2 )�t via (6.5), etc.,
which completes the iterative scheme. The knowledge of the electric field E and the
magnetic field H delivers the Poynting vector |S| = |E × H | = EH , hence also the
light intensity I (see Sect. 2.2).

Typically, the step size �z should be chosen smaller than one tenth of the smallest
medium wavelength. �t should be smaller than �z/vmax

phase, where vmax
phase is the largest

(anticipated) phase velocity of the problem.
In practice, one has to be careful not to obtain artifacts from the spatial bound-

aries of the simulated region. The artificial reflections from these boundaries can, in
principle, be delayed to very long times by making the simulated region sufficiently
large. This “brute force” approach can, however, be rather CPU-time consuming. A
faster and more elegant approach is to suppress these reflections by so-called absorb-
ing boundary conditions [157] or by a projection-operator technique [158]. The latter
has been used for some of the calculations presented in this book. It also allows for
injection of the optical pulses from one side.

Complete FDTD solutions of the three-dimensional vectorial Maxwell equations
for the focus of a laser in the regime of extreme nonlinear optics have not been
published. They do, however, seem in reach with the computers at hand today.
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6.2 Slowly Varying Envelope Approximation

In traditional nonlinear optics, the variations of the envelope of the optical polariza-
tion on the timescale of a period of light are small. This fact has already been the
basis for the rotating-wave approximation. Moreover, the variations of the optical po-
larization envelope are also usually small on the spatial scale of a wavelength of light
in traditional nonlinear optics – a statement that, however, depends on the density
of dipoles in the medium under consideration. This slow variation in both time and
space translates into a slow variation of the electric-field envelope versus time and
space according to the wave equation (2.10).

Let us briefly recapitulate the resulting well-known form of the wave equation,
again in its one-dimensional version for propagation of a plane wave along the z-
direction. We introduce the ansatz

E(z, t) =
∞∑

N=1

1

2
ẼN (z, t) ei(KNz−Nω0t−Nφ) + c.c. (6.7)

into (2.10) and replace c0 → c(Nω0) there, which takes care of the linear part
of the optical polarization. Generally, this leads to an infinite set of coupled wave
equations. If, however, we assume that the N -th harmonic results primarily from the
fundamental laser field (and not from cascade processes, i.e., from a mixing of other
harmonics), and if we assume that the optical polarization can be expressed in terms
of the nonlinear optical susceptibilities according to (2.37) with the fundamental field
E(z, t) = Ẽ1 cos(K1z−ω0t−φ), and if we assume that absorption of the fundamental
and the harmonics can be neglected, the situation simplifies drastically. Furthermore,
the spirit of the slowly varying envelope approximation specifically is to neglect as
many spatial and temporal derivatives of the envelopes ẼN as possible without getting
a trivial result. Accounting only for the first spatial derivative of the envelope ẼN on
the LHS of the wave equation and neglecting all temporal derivatives of the envelopes
on the RHS, this leads to

2 iKN eiKNz ∂ẼN

∂z
(z, t) = − µ0 (Nω0)

2 ε0χ̃
(N) ẼN

1 eiNK1z , (6.8)

with the dispersion relation

c(Nω0) = Nω0

KN

. (6.9)

Here we have lumped all contributions of nonlinear susceptibilities χ(M) (with M =
N, N + 1, ...) leading to a harmonic of order N into an effective susceptibility
χ̃ (N). Note that the CEO phase φ has dropped out. This is expected as the above
approximations imply that the spectral components of the various harmonics N must
not overlap in frequency space. Thus, a dependence on the CEO phase φ cannot occur.

With the initial condition ẼN (z = 0, t) = 0 for N ≥ 2 and assuming that
the fundamental wave Ẽ1 propagates undistorted and undepleted, the straightforward
solution of (6.8) leads to the intensity IN of the N -th harmonic emitted from a medium
of thickness l for an incident laser intensity I according to (2.16)
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IN = 1

2

√
ε0

µ0
|ẼN (z = l, t)|2

=
(

µ0
(Nω0)

2

2KN

ε0χ̃
(N)

)2 (
2
√

µ0

ε0

)N−1

IN l2 sinc2
(

�Kl

2

)
, (6.10)

with the sinc-function sinc(X) = sin(X)/X and the wavevector mismatch

�K = NK1 − 1KN = Nω0

(
1

c(ω0)
− 1

c(Nω0)

)
. (6.11)

If the phase velocities c(ω0) and c(Nω0) are equal, we have �K = 0, i.e. phase
matching, and the harmonic intensity increases quadratically with the medium thick-
ness l because sinc(0) = 1. If this condition is not fulfilled, the harmonic intensity
first increases with l, but then it drops again for �Kl ≈ π . For �Kl = 2π , it is
strictly zero. This is a result of destructive interference between contributions of the
N -th harmonic generated in front of the sample, which have propagated with phase
velocity c(Nω0) to the end of the sample on the one hand, and contributions gen-
erated at the end by a fundamental field that had to propagate with phase velocity
c(ω0) from the front towards the end on the other hand. This condition defines the
coherence length of the N -th harmonic

lcoh(N) = π

|�K| . (6.12)

In the semiconductor experiments on “THG in the disguise of SHG” discussed in this
book is can be as low as just a few µm (Sect. 7.2), for high harmonics from gas jets
it depends on the gas pressure and is typically several tens of µm (see Example 8.1).
In gas-filled glass capillaries with tailored dispersion (Sect. 8.1.2), it may approach
millimeters, for quasi phase-matching in modulated capillaries, it can effectively
become centimeters (see Sect. 8.1.3).

6.3 Gouy Phase and Carrier-Envelope Phase

So far in this chapter, we have discussed propagation in a one-dimensional plane-
wave approximation. In the focus of a lens, however, the transverse beam profile
can also lead to interesting and relevant effects. Here, we only discuss the resulting
modifications of few-cycle laser pulses, especially the influence on their CEO phase
– which is relevant for extreme nonlinear optics – in terms of linear optics. Unlike in
Sect. 2.3, where the variation of the CEO phase originated from material dispersion,
the effects to be discussed now are purely topological, i.e., the variation of the CEO
phase does also occur in vacuum. We first revisit the physics underlying the “well-
known” Gouy phase and then discuss its implications on the CEO phase.
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A reminder on the Gouy phase

As usual, when focusing a laser propagating along the z-direction with a lens or
a spherical mirror, the transverse profile of the transverse component (e.g., the x-
component) of the electric field at frequency ω for the fundamental Gaussian mode
(see Fig. 6.2) in the Fresnel approximation follows [159]

E(r, t) = Ẽ0

2

w0(ω)

w(z, ω)
exp

(
i
|K|
2

x2 + y2

R(z, ω)

)
ei(|K|z−ωt−ϕG(z,ω)) + c.c. (6.13)

Here, the complex radius of curvature R(z, ω) is related to the real radius of curvature
R(z, ω) and the “width” w(z, ω) of the transverse Gaussian profile via

1

R(z, ω)
= 1

R(z, ω)
+ i

1

w2(z, ω)

2

|K| , (6.14)

with

R(z, ω) = z + z2
R(ω)

z
(6.15)

and

w2(z, ω) = w2
0(ω)

(
1 +

(
z

zR(ω)

)2
)

. (6.16)

w(0, ω) = w0(ω) is the beam waist and

zR(ω) = w2
0(ω)

2c0
ω (6.17)

the Rayleigh length at frequency ω. The normalization in (6.13) has been chosen such
that Ẽ0 is the peak electric field in the focus at r = 0, which leads to

∫ +∞

−∞

∫ +∞

−∞
〈E2(r, t)〉 dx dy = 1

4
Ẽ2

0 πw2
0(ω) =

⎛
⎝ Ẽ0

2
√

ln(
√

2)

⎞
⎠2

π r2
HWHM

(6.18)
for all z, where 〈...〉 is again the cycle average. In the last step we have introduced the
half-width at half-maximum (the “radius”) of the Gaussian intensity profile rHWHM
for later use (see Sect. 7.1). Finally, and most importantly, the phase shift in (6.13)

ϕG(z, ω) = arctan

(
z

zR(ω)

)
(6.19)

is the so-called Gouy phase, which has been known for more than a century [160,161].
Still, it tends to remain a puzzle [162]. Intuitively, the narrow beam waist in the focus
at z = 0 (see Fig. 6.2) corresponds to a broad distribution of transverse momenta of
light via the “uncertainty” relation. As the modulus of the wavevector of light |K| =
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Fig. 6.2. Top: Variation of the CEO phase φ versus propagation coordinate z in units of the
Rayleigh length zR(ω0) according to (6.22). φ0 = φ(0) is a phase offset. Middle: Scheme of
the Gaussian beam profile according to (6.16) on the same scale. Bottom: Illustration of the
resulting electric field E(t) = Ẽ(t) cos(ω0t + φ) for φ0 = 0 at the three on-axis positions
z = −zR, z = 0 and z = +zR, respectively. Over ± one Rayleigh length, the CEO phase
changes by ±π/4. Such a π/2 change in phase can make all the difference (see, e.g., Figs. 5.2
and 5.6). The gray areas are the pulse envelope Ẽ(t) [269].

√
K2

x + K2
y + K2

z = ω/c0 is constant for any given ω, this effectively reduces its z-

component Kz. When the beam spreads in the transverse direction, while propagating
along z, the transverse momentum distribution narrows down and Kz(z) increases
and finally approaches Kz(z) = |K| for |z| → ∞. The z-component, appropriately
averaged [162] over the transverse beam profile, is called the propagation constant
Keff

z (z). Thus, on propagation from −∞ to z, the wave acquires a phase relative to a
plane wave given by ∫ z

−∞

(
|K| − Keff

z (z′)
)

dz′ = ϕG(z, ω) . (6.20)

Impact on the carrier-envelope phase

In other words: ϕG(+∞, ω) − ϕG(−∞, ω) = π means that the phase of the wave
propagates from −∞ to +∞ faster than a plane wave by half a cycle of light –
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the phase velocity is superluminal, especially near to the focus1. The average group
velocity, on the other hand, is luminal. It is again the difference between phase and
group velocity that leads to a shift of the carrier-envelope offset phase φ (see Sect. 2.3).

In order to proceed, one first needs to specify the boundary conditions: To evaluate
the CEO phase φ(z) via ϕG(z, ω) we need zR(ω) for which we need w0(ω), which
depends on the width of the beam in front of the lens, w(zf , ω) = wf(ω), at focal
length zf � zR(ω0). Here, we distinguish between the three cases summarized in
Table 6.1.

Table 6.1. Overview of the three cases discussed in the following.

Beam waist w0 Beam at lens wf Rayleigh length zR In focal plane

(i) ∝ 1/ω ∝ const. ∝ 1/ω vgroup = vphase ≥ c0

(ii) ∝ 1/
√

ω ∝ 1/
√

ω ∝ const. vgroup = c0 ≤ vphase

(iii) ∝ const. ∝ 1/ω ∝ ω vgroup ≤ c0 ≤ vphase

Case (i) corresponds to a frequency-independent beam width in front of the lens
– an “ideal” laser beam [163]. The mode of case (ii) [164–166] has a frequency
dependence, but when this mode spreads in size, the relative frequency distribution
does not change – unlike in cases (i) and (iii) – because the Rayleigh length is frequency
independent. While it may seem like a mathematical curiosity at first sight, it has been
argued [166] that this case corresponds to the natural spatiotemporal mode of an open
electromagnetic cavity: In order for a short pulse to periodically bounce back and forth
between two spherical mirrors of a cavity, the radius of curvature R of all frequency
components at the mirror has to match the radius of curvature of the mirror. Equation
(6.15) leads to zR(ω) = const. and with (6.17) we get the beam waist w0(ω) ∝ 1/

√
ω.

The beam waist for case (iii) [167] does not depend on frequency – an “ideal” focus.
If, for example, one sends a laser pulse through a spatial filter, a pinhole, and reimages
this beam, one comes close to (iii).

To compute the variation of the on-axis (x = y = 0) electric field versus propaga-
tion coordinate z, we just have to sum (6.13) over the different frequency components.
We obtain

E(0, 0, z, t) = 1√
2π

∫ ∞

0

E+(ω)√
1 +

(
z

zR(ω)

)2
ei(|K|z−ωt−ϕG(z,ω)) dω + c.c. ,

(6.21)
where E+(ω) is the positive-frequency part of the Fourier transform of the electric
field in the focus at r = 0. Here we have tacitly assumed that the decomposition

1 Such superluminal phase velocity also occurs for a wave propagating through a subwave-
length aperture (“photon tunneling”) or through any empty waveguide close to its cutoff
frequency.
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into carrier wave and envelope remains meaningful (see Example 2.4). For E(t) =
Ẽ0 cos(ω0t + φ0) we get E(ω) = E+(ω) + E−(ω) = Ẽ0

2

√
2π (e−iφ0δ(ω − ω0) +

e+iφ0δ(ω+ω0)), which recovers (6.13) for ω = ω0 and φ0 = 0. Generally, (6.21) has
to be worked out numerically. For case (ii), where zR(ω) = zR(ω0), thus ϕG(z, ω) =
ϕG(z, ω0), it is immediately clear (see Sect. 2.3, Example 2.4, Problem 2.5, or the
two-color case in Sect. 3.5) that the phase factor directly determines the CEO phase
φ(z) of the pulse at position z, i.e.,

(φ(z) − φ0) = ϕG(z, ω0) = arctan

(
z

zR(ω0)

)
, (6.22)

where φ0 = φ(0) is a phase offset that depends on the initial conditions. This depen-
dence is illustrated in Fig. 6.2. Beautiful corresponding animations can be found in
Ref. [168].

There is no terribly large difference for cases (i) and (iii). Apart from reshaping
of the pulse envelope via the amplitude spectrum (see next section), the Gouy phase
for all ω, hence the CEO phase, is strictly the same for z = −∞, 0, and z = +∞
for (i)–(iii). Differences occur only in the precise shape of (φ(z) − φ0) in the focal
region. To avoid numerical calculations at this point, we have a closer look at phase
and group velocity, respectively. From (6.20) we get the general expression for the
phase velocity

vphase(z) = ω

Keff
z

= ω

ω

c0
− ∂

∂z
ϕG(z, ω)

. (6.23)

At the carrier frequency ω0 and for all three cases, this leads to

vphase(z) = c0

1 − c0

zR(ω0) ω0
L(z)

≥ c0 , (6.24)

with the abbreviation

L(z) = 1

1 +
(

z

zR(ω0)

)2
, (6.25)

a Lorentzian form with L(0) = 1.

� Example 6.1. Suppose that we have a width of the beam in front of the lens of
wf = 1 mm, a focal length of zf = 10 cm and a carrier wavelength of λ = 0.8 µm =
2πc0/ω0. This leads to a beam waist of w0 = 25.5 µm and a Rayleigh length of
zR(ω0) = 2.5 mm. The phase velocity in the focus at z = 0 according to (6.24) is
5 × 10−5 above the vacuum speed of light, i.e., vphase/c0 = 1.00005. �
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The general expression for the group velocity is

vgroup(z) = ∂ω

∂Keff
z

= 1
∂

∂ω

(
ω

c0
− ∂

∂z
ϕG(z, ω)

) . (6.26)

Upon working out the derivatives at the carrier frequency ω0 we get

vgroup(z) = c0

1 − F c0

zR(ω0) ω0
L(z) (1 − 2L(z))

, (6.27)

with the factor F = −1, 0, and +1 for case (i), (ii), and (iii), respectively (also
see RHS of Table 6.1). These dependences are illustrated in Fig. 6.3. For cases (i)
and (iii), the group velocity crosses the vacuum velocity of light c0 at the positions
z/zR(ω0) = ±1. Altogether, we expect that the slope of φ(z) in the focal plane at
z = 0 is different for the three cases (i)–(iii). For cases (i) and (iii), the group velocity
changes with z such that the group delay from z = −∞ to +∞ is strictly identical
to that of a plane wave, which is luminal. This can be seen from the fact that all
frequency components experience a π phase shift according to (6.19) when going
from z = −∞ to +∞, which is simply a flip in sign of E(t) – equivalent to a π shift
of the CEO phase.

0-10 +10

z z/ R

vphase

vgroup

vgroup

vgroup

(i)

(ii)

(iii)

(i) - (iii)

c0

-1 1

Fig. 6.3. Illustration of the phase and group velocities versus propagation coordinate z in
units of the Rayleigh length zR(ω0) according to (6.24) and (6.27), respectively, for the three
cases (i)–(iii) (see Table 6.1). The dashed horizontal lines indicate the vacuum velocity of
light c0, the maximum relative deviation from c0 is given by the dimensionless parameter
c0/(zR(ω0) ω0) 
 1, see Example 6.1.
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This π phase shift has directly been observed in the time domain for single-cycle
THz pulses [169], also see Ref. [170]. In the optical regime, the variation φ(z) has
recently been observed [171] in experiments employing above-threshold ionization
of atoms (see Chap. 5). The variation of φ versus z has to be considered if a nonlinear
medium, the thickness of which exceeds the Rayleigh length, is brought into the
focus of a few-cycle pulse. It obviously leads to an averaging with respect to the
CEO phase that smears out CEO-phase effects and, e.g., reduces the height of the
peak at the carrier-envelope offset frequency fφ in the RF spectrum. These effects
of the Gouy phase are not very important for most of the solid-state experiments
outlined in Chap. 7 as the samples there are much thinner than the Rayleigh length
(with the notable exception of, e.g., the thick ZnO crystals in Sect. 7.2). They can be
relevant for high-harmonic generation from gas jets (Sect. 8.1.1) or from relativistic
nonlinear Thomson scattering (Sect. 8.2). In both cases, the extent of the gas jet is
typically comparable to the Rayleigh length. A related effect also influences the phase-
matching condition in gas-filled hollow waveguides (Sect. 8.1.2). In the language of
the present section, the Gouy phase is simply linear in z in that case, equivalent to a z-
independent propagation constant Keff

z in Sect. 8.1.2 (see (6.20)). The variation φ(z)

of the CEO phase also has to be considered if a laser pulse impinges onto a surface
at an angle with respect to the surface normal as, e.g., for the photoemission from
a metal surface (see Sect. 5.5). The difference in the fundamental Gouy phase and
that of the N -th harmonic can also severely influence the phase-matching condition
– even in traditional nonlinear optics [9].

The detailed theoretical description of actual experiments can be more involved
than our treatment. Often, in order to get small foci, one overilluminates the aperture of
the lens (or spherical mirror). Consequently, one has a truncated transverse Gaussian
profile right after the lens [172] rather than a Gaussian according to (6.13). In this
case the symmetry with respect to the focal plane at z = 0 is broken [172]. Also note
that we have completely neglected effects of spherical or chromatic abberations of
the lens.

6.4 Reshaping of the Amplitude Spectrum

We now have a closer look at the change of the amplitude spectrum via the 1/
√

...

factor in (6.21), which leads to a variation of the temporal envelope of the pulse versus
z as well. Furthermore, one generally also gets a variation versus the radial coordinate
r = √

x2 + y2. We start with the latter aspect.

Case (i)

w(zf , ω) = wf at focal length zf � zR(ω0) is frequency independent, hence we can
write the beam waist as

w0(ω) = zf 2c0

wf ω
= w0(ω0)

ω0

ω
=: w0

ω0

ω
. (6.28)
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Let us first consider the example of an incident Gaussian pulse. The positive-frequency
part of the Gaussian laser spectrum in front of the lens on the optical axis be (see
Example 2.4)

E+(ω) = Ẽ0

σ
√

2
e
− (ω − ω0)

2

σ 2 e−iφ , (6.29)

corresponding to E(t) = Ẽ(t) cos(ω0t +φ) with envelope Ẽ(t) = Ẽ0 exp(−(t/t0)
2)

in the time domain. σ = 2/t0 is the spectral width. The spectrum in the focal plane
(z = 0) results as

E+(r, ω) = Ẽ0

σ
√

2

wf

w0(ω)
e
− r2

w2
0(ω) e

− (ω − ω0)
2

σ 2 e−i(φ+ π
2 ) (6.30)

= Ẽ0

σ
√

2

wf ω

w0 ω0
e
− (ω − ω̃0(r))

2

σ̃ 2(r) exp

⎛
⎜⎜⎜⎝− r2

w2
0

× 1

1 + r2 σ 2

w2
0 ω2

0

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
only a function of r

e−i(φ+ π
2 ) .

Here we have accounted for the shift of the CEO phase via the Gouy phase. In the
last step we have introduced the abbreviations

1

σ̃ 2(r)
= 1

σ 2

(
1 + r2 σ 2

w2
0 ω2

0

)
(6.31)

and

ω̃0(r) = ω0

1 + r2 σ 2

w2
0 ω2

0

≤ ω0 . (6.32)

Obviously, the effective center frequency ω̃0(r) of the Gaussian shifts towards lower
frequencies with increasing r . This effect is large for large values of σ 2/ω2

0, i.e., it is
important for short laser pulses. The fact that E+(r, ω) ∝ ω somewhat counteracts
this effect and tends to shift the spectrum towards higher frequencies on the optical
axis. At the same time, the effective spectral width σ̃ (r) decreases when going away
from the optical axis at r = 0.

The quantity |√r E+(r, ω)| is illustrated in Fig. 6.4 for a single-cycle optical

pulse ⇔ σ/ω0 = 2/(t0 ω0) = 2
√

ln
√

2/π = 0.3748 (compare Example 2.4). We
choose to depict this quantity, because its square, integrated with respect to r in polar
coordinates, is proportional to the total power spectrum. In other words: In this way
one can assess the actual weight of the radial contributions. Figure 6.5 shows the same
dependence for an incident octave-spanning box-shaped laser spectrum.
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Fig. 6.4. Modulus of the electric field, |√r E+(r, ω)|, in the focal plane (z = 0) of a Gaussian
beam profile of a Gaussian laser pulse versus spectrometer frequency ω in units of the laser
carrier frequency ω0 and radial coordinate r in units of the beam waist w0 = w0(ω0). The
parameter isσ/ω0 = 0.3748, equivalent to a single-cycle optical pulse. Note that the spectrum is
slightly blueshifted with respect to ω/ω0 = 1 at r/w0 = 0, whereas it is significantly redshifted
with respect to ω/ω0 = 1 at r/w0 = 2. The radial variation of the spectrum disappears for
pulses containing many cycles of light and is already hardly visible for a two-cycle Gaussian
pulse (not shown).
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Fig. 6.5. Same as Fig. 6.4, but for an octave-spanning box-shaped incident spectrum. Here, the
spectral reshaping is yet more obvious.

Intuitively, these fairly small effects again simply arise from the frequency depen-
dence of diffraction. It is clear that the radial variation of the fundamental spectrum in
the focal plane leads to a variation of the harmonics as well. This can also influence de-
tails of autocorrelation measurements of laser pulses or so-called frequency-resolved
optical gating (FROG) – even if very thin SHG crystals are used.
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Case (ii)

For a Gaussian pulse as in (i), one gets

σ̃ (r) = σ (6.33)

and

ω̃0(r) = ω0

(
1 − 1

2

r2σ 2

w2
0ω

2
0

)
, (6.34)

i.e., the qualitative behavior is the same as in (i). As the Rayleigh length is frequency
independent, there is strictly no change of the shape of the on-axis electric field
envelope or spectrum versus propagation coordinate z.

Case (iii)

A frequency-independent beam waist w0 in the focus clearly means that the pulse
envelope varies with the radial coordinate for the incident Gaussian laser beam in front
of the lens (as for case (ii)). With this assumption, one eliminates (by construction)
the radial variation of the pulse envelope in the focus, but the variation of the on-
axis electric field along z remains (see 1/

√
... factor in (6.21)). This dependence is

illustrated in Fig. 6.6 for an octave-spanning box-shaped spectrum in the focus at
r = 0. Its low-frequency end is at ω = 2/3 ω0, its high-frequency end at ω = 4/3 ω0.
Thus, over one Rayleigh length zR(ω0), the relative on-axis intensity changes by a
factor of (

√
1 + (3/2)2 /

√
1 + (3/4)2 )2 = 52/25 ≈ 2 when going from the low- to

the high-frequency end. Still, this hardly changes the FWHM of the temporal intensity
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Fig. 6.6. Modulus of the on-axis electric field |E+(0, 0, z, ω)| (linear scale) according to
(6.21) versus propagation coordinate z in units of the Rayleigh length zR(ω0) and spectrometer
frequency ω in units of the carrier frequency ω0 for an octave-spanning box-shaped spectrum
in the focus at r = 0.
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profile (check this!) but it does change the shape of the pulse in its wings. For high-
order processes, however, only the central part of the pulse really matters (see, e.g.,
Problem 2.3).

For a discussion of wave propagation including transverse effects in terms of
an approximative scalar first-order propagation equation suitable for the regime of
extreme nonlinear optics, we refer the reader to Ref. [135]. Such a treatment is relevant
for high-harmonic generation from atoms.



7

Extreme Nonlinear Optics of Semiconductors
and Isolators

In a solid, the atoms are arranged in the form of a periodic lattice with lattice constant
a. The overlap of the electronic wave functions lifts the degeneracy of the discrete
atomic energy levels and leads to energy bands. The wave functions become Bloch
waves, which have a particular dispersion relation. Figure 7.1 schematically shows this
dispersion relation for a direct-gap semiconductor with bandgap energy Eg. At zero
temperature, the valence band is fully occupied and the conduction band is completely
empty. Light can couple to the crystal electrons in two ways: via interband transitions
and via intraband transitions.

conduction band

valence band

E
g


�/a 0 ��/a k

E

Fig. 7.1. Scheme of the valence and the conduction band of a direct gap semiconductor in the
first Brillouin zone, i.e., for wave numbers, k, in the interval [−π/a, +π/a], a is the lattice
constant (actually, a tight-binding band structure is shown). At each k, the optical interband
transition resembles that of a two-level system with transition energy �� = Ec(k) − Ev(k).
Close to the center of the Brillouin zone, the bands are nearly parabolic and the effective-mass
approximation is justified. Eg is the bandgap energy.
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Interband transitions

Light can promote an electron from an occupied state in the valence band into an empty
state in the conduction band – provided the dipole moment is nonzero. Note that the
photon wavelength (µm) is much larger than typical lattice constants (a = 0.5 nm).
Consequently, the photon wavevector is a thousand times smaller than the electron
wavevector at the edge of the first Brillouin zone, π/a, and such a transition looks
very nearly vertical in the band structure. Thus, a state with wavevector k in the
valence band is coupled to a state with the same wavevector k in the conduction
band. Looking at these two states with transition frequency �(k) only, this problem
is perfectly similar to what we have said about two-level systems in Sect. 3.2. On this
level of description, semiconductor interband extreme nonlinear optics is just that
of an ensemble of uncoupled two-level systems. Indeed, in Chap. 3 we have often
plotted the emitted signals versus transition frequency �, allowing for applying these
results to semiconductors as well. There are, however, deviations from this simplistic
picture, which have to be discussed (Sect. 7.1.4). In any case, the important energy
scale associated with the light field is the Rabi energy ��R. If it becomes comparable
with the transition energy ��, the regime of extreme nonlinear optics starts and effects
like carrier-wave Rabi flopping (see Sect. 7.1) and “third-harmonic generation in the
disguise of second-harmonic generation” (see Sect. 7.2) are expected.

In order to actually evaluate the peak Rabi energy ��R = dcvẼ0, one needs to
know the dipole matrix element for a transition from the valence (v) to the conduction
(c) band at wavevector k. Within k · p perturbation theory [22], the dipole matrix
element dcv is approximately wavevector independent and can be estimated on the
basis of known material parameters by the following “rule of thumb”

|dcv|2 = �
2e2

2Eg

(
1

me
− 1

m0

)
, (7.1)

with the effective electron mass me and the free electron mass m0 = 9.1091 ×
10−31 kg.

It is interesting to relate the Rabi energy on the basis of (7.1) and the Keldysh
parameter γK (see Sect. 5.2) from (5.9) at this point. Quoting a Keldysh parameter in
this context means that we interpret a transition from the valence to the conduction
band as laser-field-induced tunneling of a crystal electron through the bandgap, in
which case the binding energy Eb in (5.9) is given by the bandgap energy Eg. This
allows us to write

��R

�ω0
γK =

√
1 − me

m0
, (7.2)

with the carrier photon energy �ω0. Equation (7.2) can easily be verified by inserting
�R with dcv from (7.1) and γK from (5.9) with Eb → Eg and assuming that dcv is
real. For GaAs parameters, me/m0 = 0.067 and the square root on the RHS of (7.2)
is 0.97 ≈ 1. This is also true for many other typical semiconductors, especially for
those to be discussed below. We obtain the simple relation
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�R

ω0
≈ 1

γK
, (7.3)

which connects two seemingly rather different quantities, i.e. �R and γK. Moreover,
following Sect. 5.2 and (5.9), we can interpret the Rabi frequency �R ≈ �tun as the
tunneling “frequency” �tun. Indeed, we have already noticed in Sect. 5.2 that the two
quantities, �R and �tun, are generally analogous.

Intraband transitions

The light field can also influence the states in the conduction (valence) band. Classi-
cally, this corresponds to the acceleration of an electron in the band. Near the center
of the Brillouin zone, the bands can often be approximated by parabolas and the
resulting physics is that of Volkov states (see Sect. 4.2). Extreme nonlinear optics
starts if the Volkov sidebands acquire appreciable strength. This happens if the pon-
deromotive energy 〈Ekin〉 becomes comparable to the carrier photon energy �ω0. The
bands develop a series of sidebands, separated by �ω0 (see Fig. 4.2). For a given laser
intensity, the electron ponderomotive energy is usually much larger than the hole pon-
deromotive energy, because the electron effective mass is typically smaller than the
hole effective mass by a factor of order ten. Inspection of Fig. 4.2 shows that a factor
of ten in 〈Ekin〉/�ω0 makes a very (!) large difference. We anticipate that the optical
spectrum also develops sidebands separated by �ω0, leading to oscillatory features in
the optical spectrum. The low-energy sidebands lie in the gap of the semiconductor
and lead to induced absorption below the gap. This altogether constitutes the dynamic
Franz–Keldysh effect.

When do interband or intraband transitions, respectively, dominate?

Recall that the Rabi energy is proportional to the square root of the laser intensity
I and that the ponderomotive energy is directly proportional to I . With increasing
laser intensity, either of the two conditions ��R/�� ≈ 1 or 〈Ekin〉/�ω0 ≈ 1 is met
first and, consequently, either interband or intraband transitions dominate the physics.
Remember that the ratio 〈Ekin〉/�ω0 is inversely proportional to ω3

0. Thus, intraband
effects are expected to dominate for infrared excitation, where �ω0 ≈ 0.1 eV. The
same scaling makes the ratio 〈Ekin〉/�ω0 usually smaller than ��R/�� at accessible
intensities and for optical frequencies ω0, where �ω0 = 1.5 to 3.0 eV. We will discuss
both cases in this chapter.

Another facet related to intraband transitions and to the ponderomotive energy is
the occurrence of relativistic effects. They become really large if the ponderomotive

energy is comparable to the rest energy, i.e., if |E | = 2
√

〈Ekin〉/(mec
2
0) ≈ 1 for

crystal electrons with effective rest mass me. While this condition is typically only
met at very much larger laser intensities than the above condition 〈Ekin〉/�ω0 ≈ 1,
the associated effects, for example the photon-drag effect, are so unique and specific
that they can be identified anyway – even if the electron velocities are not really
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relativistic yet. Again infrared excitation wavelengths are favored because the ratio

2
√

〈Ekin〉/(mec
2
0) scales inversely with the carrier frequency ω0 itself.

Apart from these examples, which can be understood in terms of noninteracting
electrons, excitons can exhibit a physics closely similar to what we have said about
extreme nonlinear optics of atoms in Chap. 5. After an interband transition, the opti-
cally generated, negatively charged electron in the conduction band and the remaining
positively charged hole in the valence band attract each other via the Coulomb in-
teraction, which can form a bound state similar to that of an electron in a hydrogen
atom. This bound state is called an exciton. While the equations are identical to those
introduced in Chap. 5, the numbers are very different. Excitons in semiconductors
have typical binding energies Eb on the order of ten meV as opposed to ten eV for
atoms. Thus, unity exciton Keldysh parameter γ x

K is reached at fairly low intensities
for infrared excitation. This mechanism competes with the above Volkov sidebands
in the infrared regime.

7.1 Carrier-Wave Rabi Flopping

The phenomenon of carrier-wave Rabi flopping refers to Rabi flopping under condi-
tions where the Rabi frequency �R becomes comparable with the carrier frequency ω0
of the exciting laser pulses. Rabi flopping occurs for resonant excitation of a two-level
system with transition frequency �, i.e., for �/ω0 = 1. We will see below that the
transitions near the semiconductor bandgap dominate the nonlinear optical response.
Thus, the model semiconductor GaAs with a bandgap energy of Eg = 1.42 eV is well
suited for such experiments using pulses from a Ti:sapphire laser with �ω0 ≈ Eg.
The bandgap energy of 1.42 eV translates into a light period of 2.9 fs. The anticipated
signatures of carrier-wave Rabi flopping have already been discussed in Sect. 3.3: If
the Rabi energy becomes comparable to the carrier photon energy �ω0 = ��, the
third-harmonic peak splits into the carrier-wave Mollow triplet, consisting of a set of
peaks at the three energies 3�, 3�+�R and 3�−�R. For not too large Rabi energies,
only the outer two peaks are visible. With increasing Rabi energy, they separate more
and more, until the 3�−�R peak of the third harmonic meets the �+�R peak of the
fundamental Mollow triplet at the spectral position of the second harmonic at a Rabi
energy given by �R/� = �R/ω0 = 1. The interference of the two contributions
with phase φ and 3φ, respectively, can lead to a dependence on the carrier-envelope
offset phase φ.

Laser systems

However, the condition Rabi frequency �R equal to the carrier frequency of light
ω0 corresponds to a large intensity by solid-state standards. While it is possible to
reach this condition with pulses of several tens of femtoseconds in duration in terms
of available lasers, it is not very likely that the semiconductor samples will survive
the large deposited energy (= intensity × duration). Thus, it is favorable to study
excitation with very short pulses, ideally with only one or two cycles of light in
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Fig. 7.2. Experiment: (a) measured laser spectrum, (b) measured interferometric autocorre-
lation. The gray curve in (b) is the autocorrelation computed from the laser spectrum under
the assumption of a constant spectral phase (no chirp). The inset in (b) depicts a 4.8-fs full
width at half-maximum real-time intensity profile computed under the same assumption. Figure
reprinted from Ref. [54] by permission of O. D. Mücke.

duration with minimum deposited energy. For a discussion on laser-induced damage
of dielectrics see Refs. [173–176].

These criteria can be met by excitation with 5-fs linearly polarized optical pulses
directly from a mode-locked laser oscillator operating at fr = 81 MHz (= 1/12 ns)
repetition frequency [177]. The typical average output power of such a laser lies in
the range from 120 to 230 mW. Figure 7.2(a) shows a typical laser spectrum, which
has been obtained via Fourier transform of an interferogram taken with a pyroelectric
detector, which is spectrally extremely flat. The Michelson interferometer used at this
point is carefully balanced and employs beam splitters fabricated by evaporating a
thin film of silver on a 100-µm thin glass substrate. The Michelson interferometer
is actively stabilized by means of the Pancharatnam screw [178], which allows for
continuous scanning of the time delay while maintaining active stabilization. The
remaining fluctuations in the time delay between the two arms of the interferometer
are around ±0.05 fs. The spectral wings that can be seen in Fig. 7.2(a) result from
the spectral characteristics of the laser output coupler. The measured interferometric
autocorrelation depicted in Fig. 7.2(b) is very nearly identical to the one computed
from the spectrum (Fig. 7.2(a)) under the assumption of a constant spectral phase. This
shows that the pulses are nearly transform limited. The intensity profile computed
under the same assumption is shown as an inset in Fig. 7.2(b) and reveals a duration of
about 5 fs. As a result of the strongly structured spectrum (a square-function to zeroth
order), the intensity envelope versus time shows satellites. Using a high numerical
aperture reflective-microscope objective [179], these pulses can be focused tightly to
a profile that is very roughly Gaussian with rHWHM = 1 µm radius (defined in (6.18)),
as measured by a knife-edge technique at the sample position (see Fig. 7.5(a)). This
sample position is equivalent to that of the second-harmonic generation (SHG) crystal
used for the autocorrelation in terms of group-delay dispersion. From the known
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peak laser intensity I , the peak of the electric-field envelope Ẽ0 can be calculated
with (2.16). To estimate the Rabi frequency and/or the envelope pulse area �̃, one,
furthermore, needs the dipole matrix element dcv of the optical transition from the
valence (v) to the conduction (c) band. From the literature for GaAs one finds dcv =
0.3 e nm [180] and dcv = 0.6 e nm. k · p perturbation theory according to (7.1) for
GaAs parameters (Eg = 1.42 eV and me = 0.067 × m0) delivers dcv = 0.65 e nm.
In what follows, dcv = 0.5 e nm is used for GaAs.

Samples

Experiments have been performed on different types of GaAs samples. One is a 0.6-
µm thin film of GaAs clad between Al0.3Ga0.7As barriers, grown by metalorganic
vapor phase epitaxy on a GaAs substrate. The sample is glued onto a 1-mm thick
sapphire disk and the GaAs substrate is removed. Finally, a λ/4-antireflection coating
is evaporated. This sample design [181] guarantees extremely high quality of the GaAs
film. We will see below, however, that the experiments on this sample suffer from
propagation effects to a certain extent. The other set of samples consists of a GaAs
layer of thickness l (25, 50 and 100 nm) directly grown on a sapphire substrate in a
molecular-beam epitaxy machine [182]. Although these samples are not comparable
in linewidth with the above GaAs/Al0.3Ga0.7As double heterostructure, the l = 100-
nm thin GaAs film on sapphire substrate does exhibit a band edge in linear optical
transmission experiments at room temperature (not shown). As the relevant energy
scales in these experiments are larger than 0.1eV anyway, linewidth is not much of an
issue. A relevant drawback of this sample geometry is that surface SHG effects play
a certain role.

7.1.1 Experiment

Let us first discuss results for single pulses exciting the GaAs double heterostructure.
The light emitted by the sample is prefiltered and spectrally dispersed in a con-
ventional grating spectrometer. Figure 7.3 shows spectra at the third harmonic of the
GaAs bandgap for different pulse intensities I in multiples of I0. Here, I0 is defined as
I0 = 0.6×1012 W/cm2. One complete Rabi flop is expected [181] for I = 0.601×I0.
One Rabi flop within two optical cycles clearly corresponds to �R/ω0 = 1/2. At
low intensity, i.e., for I = 0.017 × I0, we observe a single maximum around 300 nm
wavelength that is interpreted as the usual third-harmonic generation, resonantly en-
hanced by the GaAs band edge. With increasing intensity, this single peak splits and
a second maximum is observed emerging on the long-wavelength side. This splitting
qualitatively resembles the outer two peaks of the third-harmonic carrier-wave Mol-
low triplet discussed in Sect. 3.3. We will see below that the central peak of this triplet
is hardly visible under these conditions in theory as well.

To get some insight into the underlying dynamics, additional experiments with
pairs of pulses are interesting. Such pairs can be obtained from the same balanced
Michelson interferometer that is used to record the interferometric autocorrelation.
The time delay between these two pulses is called τ . Notably, the envelope pulse area
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Fig. 7.3. Experiment: Spectra of light emitted into the forward direction around the third
harmonic of the GaAs bandgap frequency. The spectra are shown on a linear scale, vertically
displaced and individually normalized (from top to bottom: maxima correspond to 5664, 439, 34
and 4 counts/s). Excitation with 5 fs pulses. The intensity I of the pulses is indicated. Reprinted
with permission from O. D. Mücke et al., Phys. Rev. Lett. 87, 057401 (2001) [181]. Copyright
(2001) by the American Physical Society.

�̃ is the same for τ = 0 and, e.g., for τ equal to two optical cycles – because the two
optical fields simply add. Yet, the corresponding Rabi frequency is larger for τ = 0 by
about a factor of two. For low intensities (Fig. 7.4(a)), i.e., for small Rabi frequency
as compared to the light frequency, the third-harmonic spectrum is simply modulated
as a function of τ due to interference of the laser pulses within the sample leading
to a period of about 2.9 fs. In contrast to this, for higher intensities (Fig. 7.4(b)–(d)),
where the Rabi frequency becomes comparable to the light frequency, the shape of the
spectra changes dramatically with time delay τ . For example, for τ = 0 in Fig. 7.4(b),
the two pulses simply interfere constructively and the same spectral double-maximum
structure as in the single-pulse experiments (Fig. 7.3) is found. For larger τ , i.e., after
one or two optical cycles, this double maximum disappears and is replaced by one
prominent and much larger maximum. For the highest intensity, i.e., for Fig. 7.4(d)
– which corresponds to an estimated envelope pulse area �̃ of more than 4 π – the
behavior is quite involved with additional fine structure for |τ | < 1 fs. Note that the
spectra for τ = 0 nicely reproduce the behavior seen in Fig. 7.3.

Further experiments have been performed, deliberately introducing positive or
negative group-velocity dispersion by moving one of the extracavity CaF2 prisms
in or out of the beam with respect to the optimum position [181]. Obviously, this
leaves the amplitude spectrum of the laser pulses unaffected. One quickly gets out of
the regime of carrier-wave Rabi flopping, i.e. both, the splitting at τ = 0 as well as
the dependence of the shape on the time delay τ , quickly disappear with increasing
pulse chirp. This demonstrates that it is not just the large bandwidth of the pulses
but the fact that they are short and intense, which is important for the observation of
carrier-wave Rabi flopping.
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Fig. 7.4. Experiment: Same as Fig. 7.3, however, using pairs of phase-locked 5-fs pulses. The
signal around the third harmonic of the bandgap is depicted versus time delay τ in a grayscale
plot (note the saturated grayscale on the right hand side). (a) – (d) correspond to different
intensities I as indicated. I refers to one arm of the interferometer. Reprinted with permission
from O. D. Mücke et al., Phys. Rev. Lett. 87, 057401 (2001) [181]. Copyright (2001) by the
American Physical Society.

It is clear that one also expects large induced transparency at the GaAs bandgap
as a result of the Rabi flopping. Figure 7.5(a) schematically shows the experimental
geometry. To vary the excitation intensity without having to introduce filters, the sam-
ple is moved along the z-direction through the fixed focus (z = 0) of the microscope
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Fig. 7.5. (a) Scheme of the z-scan experiment (the measured radii are fitted with the formula
r(z) = rHWHM

√
1 + (z/zR)2 with rHWHM = 0.97 µm and Rayleigh length zR = 2.9 µm,

see Sect. 6.3), (b) transmitted light intensity on a logarithmic scale versus sample position z

for an intensity of I = 1.752 × I0 (referring to z = 0). Figure reprinted from Ref. [54] by
permission of O. D. Mücke.

objective. To enhance the visibility of the changes in transmission shown in Fig. 7.5,
the differential transmission, �T/T , is defined as

�T

T
= It(z) − It(z = −∞)

It(z = −∞)
, (7.4)

where It(z) is the transmitted light intensity at sample position z. The condition
z = −∞ actually corresponds to z = −20 µm in the experiment, where the profile
is so large that one can safely assume that linear optics applies.

Figure 7.6 shows corresponding results for three different incident light intensi-
ties I in units of I0 as defined above. First, all results are closely symmetric around
z = 0, which indicates that changes in absorption dominate. Changes in the refrac-
tive index might lead to focusing or defocusing of the beam that would result in an
asymmetric dependence on z (similar to the known so-called z-scan technique, e.g.,
described in Ref. [183]). Secondly, one can see a large increase in transmission for
wavelengths shorter than the GaAs band edge (approximately 870 nm) around z = 0
(Fig. 7.6(a)). z = 0 corresponds to the highest intensity in each plot. The maximum
around 670 nm wavelength results from bleaching of the bandgap of the Al0.3Ga0.7As
barriers of the GaAs double heterostructure that accidentally coincides with the pro-
nounced maximum in the laser spectrum (Fig. 7.2(a)) also around 680 nm. For larger
intensity, Fig. 7.6(b), the transmission maximum around z = 0 flattens and we ob-
serve pronounced induced absorption for wavelengths longer than the GaAs band
edge. For the highest intensity (Fig. 7.6(c)), this increased absorption becomes the
dominating feature throughout most of the spectral range. Note that little if any in-
duced transparency is observed for wavelengths between 780 nm (170 meV above the
unrenormalized bandgap Eg = 1.42 eV) and 700 nm (350 meV above the unrenor-
malized bandgap) while the laser spectrum (Fig. 7.2) still has significant amplitude
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Fig. 7.6. Differential transmission �T/T as a function of the sample coordinate z for three
different incident intensities I (referring to z = 0). (a) I = 0.145 × I0, (b) I = 0.518 × I0,
(c) I = 1.752 × I0. Figure reprinted from Ref. [54] by permission of O. D. Mücke.

there. This indicates that these states high up in the band-to-band continuum of GaAs
must experience a much (!) stronger damping (phase relaxation) and/or energy re-
laxation than the states near the bandgap under these conditions. This finding is an
important input for the theoretical modeling.
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7.1.2 Theory

Before proceeding to further experiments, we want to see how far theory for a semi-
conductor is able to reproduce these experimental findings. Neglecting the Coulomb
interaction of carriers, any type of intraband optical processes at this point, phonons
and their coupling to the carriers, suppressing spin indices and using the dipole ap-
proximation for the optical transitions from the valence (v) to the conduction (c) band
at electron wavevector k we have [22] , we have the Hamiltonian

H =
∑
k

Ec(k) c
†
ckcck +

∑
k

Ev(k) c
†
vkcvk (7.5)

−
∑
k

dcv(k)E(r, t)
(
c

†
ckcvk + c

†
vkcck

)
.

Here Ec,v(k) are the single-particle energies of electrons in the conduction and
valence band, respectively (the band structure), which are schematically shown in
Fig. 7.1. dcv(k) is the (real) dipole matrix element for an optical transition at electron
wavevector k. The creation c† and annihilation c operators create and annihilate
crystal electrons in the indicated band (c,v) at the indicated momentum (k). The
optical polarization is given by

P(r, t) = 1

V

∑
k

dcv(k) (pvc(k) + c.c.) + Pb(r, t) , (7.6)

where the optical transition amplitudes

pvc(k) = 〈c†
vkcck〉 (7.7)

depend on time t as well as parametrically on the spatial coordinate r . As usual,
the sum in (7.6) can be expressed via the combined density of states Dcv(E) as∑

k ... → ∫
Dcv(E)...dE → ∑

n Dcv(En)...�E, which neglects all anisotropies.
Sometimes, the background polarization Pb(r, t) = ε0χb(z)E(r, t) = ε0(εb(z) −
1)E(r, t) is employed, which approximately accounts for all “very” high-energy
optical transitions not explicitly accounted for in (7.5). It can be expressed in terms
of the background dielectric constant εb(r). We will not use it in this section.

The dynamics of pvc(k), as well as those of the occupation numbers in the con-
duction band

fc(k) = 〈c†
ckcck〉 (7.8)

and in the valence band
fv(k) = 〈c†

vkcvk〉 (7.9)

are easily calculated from the Heisenberg equation of motion for any operator O
according to (3.15). Employing the usual anticommutation rules, i.e.

[cck, c
†
ck′ ]+ = δkk′ , [cvk, c

†
vk′ ]+ = δkk′ , (7.10)
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and that all other anticommutators are zero, this leads to the well-known semicon-
ductor Bloch equations for the transition amplitude(

∂

∂t
+ i �(k)

)
pvc(k) +

(
∂

∂t
pvc(k)

)
rel

= i�−1 dcv(k)E(r, t) (fv(k) − fc(k)) ,

(7.11)

with the optical transition energy

��(k) = Ec(k) − Ev(k) , (7.12)

and for the occupation in the conduction band

∂

∂t
fc(k) +

(
∂

∂t
fc(k)

)
rel

= 2�
−1 dcv(k)E(r, t) Im (pvc(k)) . (7.13)

Here we have again assumed a real dipole matrix element. (1 − fv(k)) can be inter-
preted as the occupation of holes and obeys an equation similar to fc(k). The terms
with subscript “rel” have been added phenomenologically and describe dephasing
and relaxation, respectively. For a state-of-the-art description of scattering processes
see Refs. [22, 184–190]. For very short timescales, they are not too important. Note
that the transition amplitude pvc(k) and the occupation factors fc(k) and fv(k) are
easily connected to the components of the Bloch vector (u, v, w)T, which we have
extensively used in Chap. 3, via⎛

⎝ u

v

w

⎞
⎠ :=

⎛
⎝ 2 Re(pvc(k))

2 Im(pvc(k))

fc(k) − fv(k)

⎞
⎠ , (7.14)

with the equation of motion (3.17) (d → dcv) and the Rabi frequency �R(t) with

��R(t) = dcvE(r, t) . (7.15)

For semiconductors in general, one gets additional contributions to the Rabi fre-
quency as a result of the Coulomb interaction of electrons and holes [22, 191–198].
This modified or renormalized Rabi frequency can be interpreted as an internal field,
which adds to the external laser field. Furthermore, the Coulomb interaction leads
to scattering and dephasing as well as to energetic shifts of the states in the bands.
Whether or not these aspects are relevant depends on the problem under consid-
eration. An overview in terms of traditional nonlinear optics can be found in the
textbooks [22, 199].

Let us first connect to the calculations shown in Sect. 3.3 by repeating them for
parameters more suitable to the above GaAs experiments (Fig. 7.7). Here, ω again
denotes the spectrometer frequency, ω0 the laser carrier frequency and � = �(k) =
�

−1(Ec(k) − Ev(k)) the transition frequency of one transition within the band. All
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Fig. 7.7. Theory: Grayscale plot of the intensity (square modulus of pvc) as a function of
spectrometer frequency ω and transition frequency � (see Fig. 7.1). The carrier frequency ω0
of the optical pulses (see gray areas on the RHS) is centered at the bandgap frequency, i.e.,
�ω0 = Eg. The spectrum for a transition right at the bandgap, i.e., �� = Eg, is highlighted by
the white curve. The diagonal dashed line corresponds to � = ω. Excitation with sech2-shaped
5-fs pulses. The envelope pulse area �̃ increases from (a) to (d) [269].
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states are assumed to have the same dipole matrix element and the same phenomeno-
logical relaxation in (7.11) according to(

∂

∂t
pvc(k)

)
rel

= pvc(k)

T2
, (7.16)

with the dephasing time T2 = 50 fs. Relaxation for the occupation numbers is ne-
glected. Without bandgap renormalization, it is clear that there are no states below the
bandgap energy (dashed horizontal line); nevertheless, we depict these data. Again,
the laser carrier frequency is centered at the bandgap energy, i.e., we have �ω0 = Eg.
The laser spectrum is shown on the right-hand side lower corner as the gray-shaded
area. The spectrum for �ω0 = �� = Eg is also depicted by the white line. It corre-
sponds to the result of a single resonantly excited two-level system. For small envelope
pulse area, �̃ = 0.5π , we find a single rather narrow maximum around ω/ω0 = 3
and �/ω0 = 1. Its width correlates with the width of the laser spectrum. This single
maximum is just the usual, yet resonantly enhanced, third-harmonic generation. It
experiences a constriction for �̃ = 1.0π , which evolves into a shape that resem-
bles an anticrossing for �̃ = 2.0π . Here, two separate peaks are only observed in
a rather narrow region around �� = �ω0 = Eg, while for larger �� only a single
maximum occurs. Also, we find that the contribution of larger frequency transitions
is by no means small. For example, for �� = 2 eV transition energy, the signal is
actually larger than for the bandgap, i.e., for �� = 1.42 eV. This trend continues
for yet larger pulse areas (see �̃ = 4.0π in Fig. 7.7(d)). While there is considerable
resonant enhancement (as can be seen from Fig. 7.7(a)), this enhancement becomes
less important at large pulse areas because the resonant transitions are completely
saturated.

The actual spectra are the integral over the individual contributions, multiplied
by the combined density of states, over the relevant range of transition energies. The
bands themselves clearly have contributions even at �� = 5 eV. If one would sum
up all these contributions at, e.g., �̃ = 4.0π (Fig. 7.7(d)), one no longer gets two
maxima but rather a single maximum around ω/ω0 = 3, which would no longer be in
agreement with the experiments. The above transmission experiments (Fig. 7.6) have,
however, already suggested that the dephasing/relaxation of the high-energy states is
much faster. Thus, their nonlinear response is suppressed. On the low-energy end
one has to account for the fact that bandgap renormalization becomes significant at
these very large carrier densities. If one, e.g., integrates the spectra from 1.2 to 1.6 eV
transition energy �� with a constant density of states (not shown), the experimental
behavior is reproduced quite well. In particular, one gets a gradual growth of a second
spectral maximum rather than the sudden splitting observed for a single two-level
system.

Another crucial aspect is to check for the importance of propagation effects (see
Chap. 6). In order to do this in a realistic manner, an ensemble of two-level systems is
employed, which fits the known and measured shape of the linear dielectric function
of GaAs according to Ref. [201] (reproduced in Fig. 7.8(d)). This means that the
high-frequency transitions are not treated via a background dielectric constant, which
would correspond to an instantaneous response but rather is their finite response time
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Fig. 7.8. |E(ω)|2 (normalized to the maximum of the incident electric field spectrum) as a
function of �ω and z, φ = 0. Note the strong variation as a function of z. (a) sinc2-shaped
5.6-fs pulses, Ẽ0 = 3.5 × 109 V/m, the GaAs cap layer thickness is dcap = 30 nm. (b)
As (a), but for sech2-shaped 5-fs incident optical pulses with Ẽ0 = 3.5 × 109 V/m, and
dcap = 10 nm. (c) As (a), but for incident pulses that are fitted [200] to the experiment (see
Fig. 7.2(a)), Ẽ0 = 2.5×109 V/m, dcap = 10 nm. (d) The real (circles) and imaginary (squares)
part of the linear dielectric function of GaAs (full) and Al0.3Ga0.7As (open), respectively, are
shown for comparison. The symbols are the experimental data from Ref. [201], the full curves
correspond to our modeling. Reprinted with permission from O. D. Mücke et al., Phys. Rev.
Lett. 89, 127401 (2002) [202]. Copyright (2002) by the American Physical Society.
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properly accounted for. The linear dielectric function of GaAs exhibits two strong
resonances, the so-called E1 and E2 resonance, which are due to the particular shape
of the band structure. In substantial regions of the Brillouin zone the bands move
in parallel, which leads to a large combined density of states. Following our above
discussion on high-energy transitions, only the optical nonlinearities of the band-edge
transitions are accounted for, the other transitions are assumed to be linear. Mathe-
matically, this is accomplished by setting their occupation to zero. The corresponding
coupled Maxwell–Bloch equations in one dimension with phenomenological dephas-
ing rates are solved numerically without further approximations [202]. This is a rather
demanding numerical task. Results for the GaAs double heterostructure discussed
above are shown in Fig. 7.8 for (a) 5.6-fs sinc2-shaped pulses, (b) 5-fs sech2-shaped
pulses, and (c) for pulses that match the experimental spectrum (see Fig. 7.2(a)) and
that have no chirp (corresponding to the gray curve in Fig. 7.2(b)) [200]. The layer
structure of the sample is shown on the RHS. While propagating through the sample,
the fundamental spectrum becomes significantly distorted, which leads to a length-
ening of the pulse in time, and, thus to a reduction of the field amplitude and the
Rabi frequency. This effect is most pronounced for pulses corresponding to the ex-
periment (see Fig. 7.8(c)), where especially the sharp high-energy peak of the laser
spectrum is largely affected. The effect is close to negligible for sech2-shaped pulses
(Fig. 7.8(b)). The dispersive effects due to the linear dielectric function (Fig. 7.8(d))
further enhance the pulse distortions. Both effects lead to a reduction of the splitting
of the Mollow sidebands around the third harmonic (compare Figs. 7.8(c) and 7.7).
This explains the much (factor of two) smaller splitting seen in Fig. 7.3 as compared
to the simple modeling (see white curves in Fig. 7.7). This reduced splitting between
the Mollow sidebands obviously largely suppresses the anticipated interference term.
Thus, the GaAs double heterostructure is not suitable for observing a dependence on
the CEO phase. Also, it becomes obvious from Fig. 7.8 that the signal around the
third harmonic varies very strongly with propagation coordinate z. This is mainly due
to the fact that the absorption coefficients (for the third harmonic) of both, GaAs and
Al0.3Ga0.7As, are on the order of 1/(10 nm), which can easily be estimated from the
corresponding linear dielectric functions shown in Fig. 7.8(d). As a dramatic result,
the detected signal does not stem from the 600-nm thick GaAs layer sandwiched
between Al0.3Ga0.7As barriers – which was initially believed [181] – but rather from
the thin GaAs cap layer initially employed as an antioxidation layer. The band edge
of the Al0.3Ga0.7As barriers leads to an (almost) off-resonant nonlinear signal that is
expected from the dependence on detuning shown in Fig. 7.7.

Having noticed the relevance of propagation effects, it is interesting to see at
what point the “intrinsic” response is recovered. Figure 7.9(a) shows the calculated
spectra of light emitted into the forward direction of a thin layer of GaAs that has
no Al0.3Ga0.7As barriers for various values of the CEO phase φ. With such thin
films, the meeting of the different Mollow sidebands can be observed. Furthermore,
it becomes clear from the intensity dependence shown in Fig. 7.9(b) that it is not simply
the interference of the tail of the laser spectrum itself (which is roughly equal to a
box function) with the third-harmonic signal, but rather the interference of different
Mollow sidebands. Figure 7.10 exhibits the same data as Fig. 7.9, but represented as
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Fig. 7.9. (a) Signal intensity (linear scale, normalized to the maximum intensity, Imax, of the
incident laser spectrum) emitted into the forward direction versus spectrometer frequency ω in
units of the laser carrier frequency ω0 for different values of the CEO phase φ. The GaAs film
with L = 20 nm thickness on a substrate with εs = const. = (1.76)2 has no Al0.3Ga0.7As
barriers on either side, but a front-side antireflection (AR) coating, Ẽ0 = 3.5×109 V/m, 5.6-fs
sinc2-shaped pulses. The inset illustrates the interference of the different Mollow sidebands
as the Rabi frequency �R = �

−1 dcv Ẽ increases. (b) As (a), but signal intensity (normalized)
on a logarithmic scale for fixed φ = 0 and for different incident electric-field amplitudes (in
units of 109 V/m) as indicated. Reprinted with permission from O. D. Mücke et al., Phys. Rev.
Lett. 89, 127401 (2002) [202]. Copyright (2002) by the American Physical Society.

a grayscale image. Obviously, the central peak of the third-harmonic Mollow triplet
is much weaker than the outer two in such a rather realistic calculation.

Figure 7.11(a) depicts the intensity spectra of light emitted into the forward di-
rection versus CEO phase φ for a L = 100-nm thin GaAs film on a substrate with
εs = (1.76)2 (e.g., sapphire). Note the dependence on φ with large visibility around
ω/ω0 = 2.05 to 2.25 (this is a 284-meV or 38-nm broad interval) and the period of π

according to (2.46) (rather than 2π according to (2.45)) resulting from the inversion
symmetry of the problem. In other words: The signal does not depend on the sign
of the electric field. (b) Same for L = 20 nm, indicating that one already has some
distortions in (a) due to the finite thickness of the sample as a result of different group
and phase velocities – the high-energy transitions do not react instantaneously as
would be the case for the background dielectric constant. (c) As (b), but introduc-
ing a front-side λ/4-antireflection (AR) coating designed for the fundamental laser
frequency ω0. Note that (b) and (c) are shifted with respect to each other horizon-
tally, because the incident optical pulses, and thus also φ, are distorted as a result of
multiple reflections. (d) As (c), but for a different incident electric-field amplitude
Ẽ0. This variation also leads to a horizontal shift, which is both interesting as well
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Fig. 7.10. Grayscale image of the emitted light intensity into the forward direction versus
field amplitude of the incident pulses, corresponding to the inset in Fig. 7.9. Parameters as in
Fig. 7.9(a). (a) φ = 0, (b) φ = π/2. Figure reprinted from Ref. [54] by permission of O. D.
Mücke.

Fig. 7.11. Grayscale image of the emitted intensity as a function of ω and φ for a thin GaAs
film with thickness L without Al0.3Ga0.7As barriers on a substrate with dielectric constant εs.
(a) L = 100 nm, Ẽ0 = 3.5 × 109 V/m, and εs = (1.76)2, (b) as (a) but L = 20 nm, (c) as
(b) but with an additional front-side antireflection coating (as in Fig. 7.9), (d) as (c) but for an
electric-field amplitude of Ẽ0 = 4.0×109 V/m. Reprinted with permission from O. D. Mücke
et al., Phys. Rev. Lett. 89, 127401 (2002) [202]. Copyright (2002) by the American Physical
Society.
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as disturbing. It is interesting on the one hand because no such intensity dependence
occurs in off-resonant perturbative nonlinear optics. It is disturbing on the other hand,
because in order to use the effect to determine the CEO phase, one needs to calibrate
the incident electric-field amplitude, or, more precisely, the Rabi frequency. This is,
however, possible in principle via the measured splitting of the Mollow sidebands.

7.1.3 Dependence on the Carrier-Envelope Phase

Let us come back to the experiment and connect to those sample designs just discussed
in the theory. Figure 7.12 shows the spectra of light emitted into the forward direction
for a l = 100-nm GaAs film epitaxially grown on a sapphire substrate. (a) corresponds
to low excitation intensity, (b) to high excitation. The cuts through these data sets at

Fig. 7.12. Experiment: Spectra of light (linear scale) emitted into the forward direction by a
l = 100-nm thin GaAs film on sapphire substrate resonantly excited by a pair of 5-fs pulses
with time delay τ . The CEO phase φ of the laser pulses is not stabilized. (a) Excitation intensity
I = 0.24 × 1012 W/cm2, (b) I = 2.8 × 1012 W/cm2 (both arms at τ = 0). The contribution
centered around λ = 425 nm wavelength is due to surface SHG. The single peak in (a) centered
around λ = 300 nm wavelength (the third harmonic of the GaAs bandgap) evolves into three
peaks in (b), which are attributed to the carrier-wave Mollow triplet. The corresponding three
black lines are a guide to the eye. The white curve at the top of (b) (another guide to the eye)
indicates the position of the high-energy peak of the fundamental Mollow triplet. For (b) we
estimate that the peak Rabi energy within the GaAs film (and accounting for reflection losses
at the air/GaAs interface) is given by �R/ω0 = 0.76. Figure reprinted from Ref. [54] by
permission of O. D. Mücke.
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Fig. 7.13. Experiment (solid curves): Spectra of light (logarithmic scale) emitted into the
forward direction by a l = 100-nm thin GaAs film on sapphire substrate excited by 5-fs pulses
(cuts through Fig. 7.12 at τ = 0). For low excitation intensity I = 0.24 × 1012 W/cm2 (lower
curve), well-separated peaks at the second harmonic and the third harmonic of the laser occur.
When increasing the intensity to I = 2.8 × 1012 W/cm2 (upper curve, shown on the same
absolute scale), the deep valleys between the second harmonic and the third harmonic as well
as between the fundamental and the second harmonic are filled and additional maxima are
observed. We estimate that a “high” intensity of I = 2.8 × 1012 W/cm2 translates into a
peak electric field inside (!) the sample of Ẽ0 = 2.1 × 109 V/m. Theory (dashed curves):
Corresponding spectra calculated from the semiconductor Bloch equations for “high” (Ẽ0 =
1.65 × 109 V/m) – also compare Fig. 7.16 – and “low” (Ẽ0 = 0.23 × 109 V/m) excitation,
respectively. Reprinted with permission from Q. T. Vu et al., Phys. Rev. Lett. 92, 217403
(2004) [182]. Copyright (2004) by the American Physical Society.

τ = 0 are depicted in Fig. 7.13. At high excitation (Fig. 7.12(b)), the emitted light
intensity around the third harmonic of the GaAs bandgap splits and overlaps with the
second-harmonic generation (SHG) signal. From the dependence on l (not shown)
we conclude that the SHG has a large surface contribution (or is even completely
generated at the two GaAs surfaces), while the third harmonic is consistent with a
bulk effect. At τ = 0 , the spectrum exhibits three peaks around the third harmonic
that evolve with time delay τ . The solid lines are guides to the eye and indicate
that the splitting decreases with increasing |τ |. These three peaks are interpreted as
the carrier-wave Mollow triplet. Note also that a contribution from the fundamental
moves into the picture from the top. Following the above theory, this is expected to be
the high-energy peak of the fundamental Mollow triplet. The data of the l = 50 nm
sample (not shown) are compatible with the l = 100 nm sample data (Fig. 7.12(a)
and (b)), however – as already discussed above – the second-harmonic contribution is
more prominent with respect to the third harmonic in the l = 50 nm case as compared
to the l = 100 nm case due to a larger surface contribution. This significantly reduces
the visibility of the low-energy peak of the third-harmonic Mollow triplet.
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Fig. 7.14. Experiment: Radio-frequency power spectra (logarithmic scale), 10 kHz resolution
and video bandwidth, for various optical detection wavelengths λ and two GaAs film thick-
nesses l as indicated. The spectra are vertically displaced for clarity. The excitation intensity is
comparable to that in Fig. 7.12(b), τ = 0. The peaks at the CEO frequency fφ and at (fr −fφ)

are highlighted by gray areas. Figure reprinted from Ref. [54] by permission of O. D. Mücke.

Fig. 7.14 shows measured radio-frequency (RF) power spectra (also see Sect. 2.6)
of the signals corresponding to Fig. 7.12(b), τ = 0 for 20-nm broad wavelength
intervals centered around the quoted center wavelength. The peak in the RF spectra at
81 MHz arises from the repetition frequency fr of the laser oscillator. From the optical
spectra depicted in Figs. 7.12 and 7.13 one expects an optimum interference of the
high-energy fundamental Mollow triplet with the surface SHG around λ = 465 nm
and an optimum interference of the surface SHG with the low-energy third-harmonic
Mollow triplet around λ = 340 nm. At these wavelengths, Fig. 7.14 does indeed show
peaks at the CEO frequency fφ and at difference frequency (fr − fφ). The value of
fφ changes from measurement to measurement because the intracavity prism near
the high-reflector is moved intentionally to demonstrate the influence of intracavity
dispersion on the results. For other detection wavelengths shown in Fig. 7.14, no
corresponding peaks are observed, even though the absolute signal levels are larger
(see larger fr peak). Note that the fφ and (fr − fφ) peaks in the RF power spectrum
are less than 8 dB smaller than the fr peak, indicating that the relative modulation
depth of the beat signal versus time is as large as 40%. Similar results are observed
for the l = 50-nm thin sample (see lowest data set in Fig. 7.14).
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7.1.4 Semiconductor Bloch Equations

The measured experimental spectra in Fig. 7.13 are in good agreement with mi-
croscopic calculations [182] on the basis of the semiconductor Bloch equations,
depicted as dashed curves in Fig. 7.13. In these many-body-system calculations, a
full tight-binding band structure (see Fig. 7.1) rather than the effective-mass approx-
imation is employed, the Coulomb interaction among the carriers is treated on a
Hartree–Fock level, the rotating-wave approximation is not used and the energy- and
carrier-density-dependent relaxation and dephasing processes are accounted for on
a semiphenomenological footing. In particular, the dephasing rate roughly increases
with the third root of the carrier density [186, 190] and, furthermore, increases with
increasing electron momentum because of a much larger final density of states –
qualitatively similar to Landau’s Fermi liquid theory. Propagation effects as well as
the (extrinsic) surface SHG, on the other hand, are neglected. Thus, experiment and
theory can only be compared directly around the third harmonic. Furthermore, in-
traband processes (see Sect. 4.2) are neglected. Indeed, at the peak electric field of
Ẽ0 = 1.65×109 V/m used in the calculations of Figs. 7.13 and 7.16, the electron pon-
deromotive energy is 〈Ekin〉 = 0.37 eV, thus 〈Ekin〉

�ω0
= 0.27 (compare Example 4.1),

which has to be compared with ��R
�ω0

= 0.60 for dcv = 0.5 e nm. This comparison
might justify this approximation. From the agreement between experiment and the-
ory in Fig. 7.13 – also note the absolute values of the peak electric field Ẽ0 – we
conclude that our above simple and intuitive discussion of the peaks around the third
harmonic in terms of the carrier-wave Mollow triplet remains correct in the presence
of energy bands (rather than discrete energy levels) in a semiconductor. The center
of this triplet is redshifted with respect to the photon energy �ω = 3Eg = 4.26 eV
because of renormalization effects.

An intuitive understanding for the case of band-to-band transitions can be ob-
tained for continuous-wave excitation, which is illustrated in Fig. 7.15. Figure 7.15(a)
again shows the (fundamental) two-level system Mollow triplet. For excitation within
the bands of a semiconductor it has to be replaced by the two-band Mollow triplet
arising from light-induced gaps [203–206]. These gaps are highlighted by the gray
areas in Fig. 7.15(b). The light-induced gap in, e.g., the conduction band arises because
the original conduction band and the one-photon sideband of the valence band lead
to an avoided crossing. The corresponding Hopfield coefficients [182] determine the
amount of conduction band admixture. It is crucial to note that this admixture can
be finite even far away from the fictitious crossing point. This statement becomes
particularly important for Rabi energies ��R approaching the photon energy �ω0,
while it can be neglected for small Rabi energies. Importantly, as a result of this finite
admixture, optical transitions between the induced bands are possible throughout
an appreciable fraction of momentum space. Consequently, the transitions acquire
considerable spectral weight. Two out of the four sets of possible optical transitions
are energetically degenerate and a triplet results. The optical transitions corresponding
to the low-energy peak of the two-band Mollow triplet in Fig. 7.15 lead to induced
absorption well below the original bandgap energy, which is qualitatively consistent
with the experimental observations shown in Fig. 7.6.
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Fig. 7.15. (a) Scheme of the two-level system Mollow triplet for resonant excitation, i.e.,
� = ω0. Also compare with Fig. 3.15. (b) Light-induced gaps (gray areas) are the analogue
for interband transitions in a semiconductor. The square modulus of the Hopfield coefficients
of the four resulting bands (frequency versus electron wave number) is superimposed onto
them by a grayscale: Black corresponds to 1, white to 0. GaAs parameters are used, the Rabi
energy is given by ��R/Eg = 0.5, and �ω0/Eg = 1.1. The dashed curves show the original
conduction and valence band, respectively. Both (a) and (b) assume monochromatic excitation
as well as negligible damping and are based on the rotating-wave approximation. Reprinted
with permission from Q. T. Vu et al., Phys. Rev. Lett. 92, 217403 (2004) [182]. Copyright
(2004) by the American Physical Society. It is interesting to compare (b) with the case of
intraband excitation shown in Fig. 4.2 (note the inverted grayscale).

Figure 7.16 shows the calculated inversion versus time for various optical excess
energies with respect to the unrenormalized bandgap Eg (as indicated). Parameters
are identical to “high” excitation in Fig. 7.13. Structures with twice the frequency of
light due to the carrier-wave oscillation are clearly visible. As discussed above, these
structures are intimately related to the third-harmonic generation. At small excess
energies (close to the band edge), the inversion nearly performs a complete Rabi
flop during the first half of the pulse (t < 0). A second Rabi flop roughly between
t = −1 fs and t = 6 fs is already very heavily damped. At later times, dissipative
rather than coherent kinetics dominates and the low-energy states are filled from
above. At large excess energies, where the dephasing is stronger, only an irreversible
increase of the inversion is left after the pulse has passed. Note that the computed
electron–hole pair density after the pulse is as large as neh = 1.1 × 1020 /cm3 –
the material changes from a semiconductor at t ≈ −7 fs in Fig. 7.16 into a metal at
t ≈ −4 fs within just one cycle of light.
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Fig. 7.16. Semiconductor Bloch equations: Inversion for various excess energies ε (as indicated)
versus time t for a peak electric field of Ẽ0 = 1.65×109 V/m. The carrier photon energy of the
7-fs pulses with Gaussian envelope is �ω0 = 1.38 eV, the CEO phase is φ = 0. The resulting
laser electric field E(t) is illustrated in the lower part. Compare with Fig. 7.13. For t = 20 fs,
the carrier density is as large as neh = 1.1 × 1020 /cm3. Reprinted with permission from Q. T.
Vu et al., Phys. Rev. Lett. 92, 217403 (2004) [182]. Copyright (2004) by the American Physical
Society.

7.2 “THG in the Disguise of SHG”

Another striking effect of extreme nonlinear optics is the occurrence of frequency
doubling from two-level systems. This phenomenon can even occur in a medium
with a center of inversion. We have seen in Sect. 3.4 that it is most pronounced for a
transition frequency � around twice the carrier frequency of light, i.e., for �/ω0 = 2.
For a carrier photon energy of �ω0 = 1.5 eV, we are looking for a transition energy
around 3 eV. In a medium without inversion symmetry, this mechanism of “THG in
the disguise of SHG” adds to the usual SHG via a χ(2) process.

Samples

The direct gap semiconductor ZnO has a room temperature bandgap energy of Eg =
3.3 eV. Amazingly, the precise value of the bandgap energy of ZnO was subject of
scientific discussions until rather recently [207]. ZnO has a c-axis without inversion
symmetry and is birefringent (E||c and E ⊥ c are inequivalent). For ZnO single-
crystal platelets (here about 100 µm thick), the c-axis lies within the plane of the
platelet, while for the 350-nm thin ZnO epitaxial film discussed in this book, the c-
axis is perpendicular to the film. The ZnO interband dipole matrix element is smaller
than for GaAs. From k · p perturbation theory according to (7.1) we obtain the ZnO
dipole matrix element of dcv = 0.19 e nm.
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Experiment

In the ZnO experiments [208] the same 5-fs laser system with �ω0 ≈ 1.5 eV, the
same stabilized Michelson interferometer and the same focusing optics as in the
GaAs experiments are used. Also, the reference intensity I0 = 0.6 × 1012 W/cm2

(one arm of the interferometer) has the same definition and the same value. The light
emitted by the samples into the forward direction is spectrally filtered (3 mm Schott
BG 39) to remove the prominent fundamental laser spectrum and is sent into a 0.25-
m focal length grating spectrometer connected to a charge-coupled-device (CCD)
camera. Alternatively, the light is sent through a combination of filters (3 mm Schott
BG 39, 3 mm Schott GG 455, and Coherent 35-5263-000 480 nm cutoff interference
filter for the 100-µm ZnO single crystal and Coherent 35-5289-000 500 nm cutoff
interference filter for the 350-nm epitaxial film, respectively) onto a 50-�-terminated
photomultiplier tube (Hamamatsu R 4332, Bialkali photocathode), connected to an
RF spectrum analyzer (Agilent PSA E4440A).

Figure 7.17 shows measured optical spectra in the spectral region energetically
above the laser spectrum (which has its short wavelength cutoff above 650 nm) and
below the bandgap of ZnO of Eg = 3.3 eV for (a) low excitation and (b), (c) large
excitation intensity versus time delay τ of the interferometer. Note that (b) and (c)
are the same data plotted with different levels of saturation in order to reveal details.
The measured intensity is given in actual counts per second (one count corresponds
to about two photons). All spectral components shown in Fig. 7.17 are also easily
visible with the naked eye. If the ZnO sample is moved out of the focus by some tens
of micrometers, all the spectral components shown in Fig. 7.17 completely disappear,
indicating that none of them comes directly out of the laser. Polarization-dependent
experiments under these conditions show that all these spectral components have the
same linear polarization as the laser pulses. In (a), the light around 390–470 nm wave-
length is due to second-harmonic generation (SHG), the components above 500 nm
are due to self-phase modulation (SPM). Interestingly, the independently measured
interferometric autocorrelation of the laser pulses (using a thin beta barium borate
(BBO) SHG crystal, see curve labeled IAC in Fig. 7.17(b)), is closely reproduced
by a cut at 395 nm wavelength (see white curve in Fig. 7.17(c)). This indicates that
the pulses are not severely broadened in the ZnO crystal due to, e.g., group velocity
dispersion. Furthermore, the spectral width of the SHG contribution indicates that
phase-matching effects do not play a major role, which is not surprising considering
the short Rayleigh range of the microscope objective of only several micrometers (see
Fig. 7.5(a)). For higher intensities, the spectral overlap of SPM and SHG becomes
immediately obvious from the spectra in Fig. 7.17(c) and a rich fine structure as a
function of τ appears in this spectral region. Feeding the spectral components of this
interference region into an RF spectrum analyzer, we find clear evidence for a peak
at the carrier-envelope offset frequency fφ (Fig. 7.18) that arises because φ changes
from pulse to pulse of the mode-locked laser oscillator due to different group delay
and phase delay times per round trip of the laser cavity (see Sect. 2.3). To further
check this assignment, we also depict the RF spectrum for a slightly different laser
end mirror position, which shifts the fφ peak as well as the mixing product (fr −fφ)
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Fig. 7.17. Experiment: Spectra of light emitted by the 100-µm thick ZnO single crystal into the
forward direction versus time delay τ of the Michelson interferometer, E||c. (a) I = 0.15×I0,
(b) I = 2.04 × I0, and (c) as (b), but different saturation of the grayscale. The light intensities
decay near the ZnO bandgap of Eg = 3.3 eV. The white curve in (b) labeled IAC is the
independently measured interferometric autocorrelation using a BBO crystal, the black curve
in (c) is a cut through the ZnO data at 395 nm wavelength (see arrow). Reprinted with permission
from O. D. Mücke et al., Opt. Lett. 27, 2127 (2002) [208]. Copyright (2002) by the Optical
Society of America.

(see labels in Fig. 7.18). In the 350-nm thin ZnO film (Fig. 7.18(b)), both, the fφ peak
as well as the 2fφ peak are still visible. Interestingly, the 2fφ peak is even larger than
the fφ peak. The fact that the relative height of the 2fφ peak is much smaller for the
ZnO single crystal (which is much thicker than the Rayleigh length, see Fig. 7.5(a))
than for the 350-nm film, is likely due to the variation of the CEO phase along the
propagation direction arising from the Gouy phase (see Sect. 6.3). This effect, which
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Fig. 7.18. Experiment: RF spectra, 10 kHz resolution and video bandwidth, τ = 0 fs (equivalent
to an average total power of 64 mW in front of the sample). (a) 100-µm thick ZnO single crystal,
E||c, corresponding to Figs. 7.17 (b), (c), optical filter roughly corresponds to 455–480 nm,
(b) 350-nm thin ZnO epitaxial layer, E ⊥ c, optical filter roughly corresponds to 455–500 nm.
The peaks at the repetition frequency fr , the carrier-envelope offset frequency fφ , its second
harmonic 2fφ and the mixing products (fr − fφ) and (fr − 2fφ) are labeled. The black and
gray data correspond to slightly different laser end mirror positions. When removing intracavity
prism material (CaF2), the fφ and 2fφ ((fr −fφ) and (fr −2fφ)) peaks shift to the left (right).
Reprinted with permission from O. D. Mücke et al., Opt. Lett. 27, 2127 (2002) [208]. Copyright
(2002) by the Optical Society of America.

clearly affects the 2fφ peak more strongly than the fφ peak, is negligible for the
350-nm thin ZnO film.

If one is interested not only in determining a dependence on the CEO phase φ but
rather interested in measuring φ of the incident pulse itself, it is obviously relevant to
ask whether φ changes while propagating through the sample (as we have done for
the GaAs case in Sect. 7.1.2). Apart from the Gouy phase just mentioned, two effects
can change the CEO phase within the sample: Linear optical propagation effects and
nonlinear optical effects. The magnitude of the linear optical propagation effects is
much easier to estimate for the ZnO case as compared to the GaAs case because of
the off-resonant excitation conditions. In other words: Absorption plays no role here.
Under these conditions, for a carrier frequency ω0 and a center vacuum wavelength
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λ0 = 2πc0/ω0, the change of φ of the pulse, δφ, as a result of propagation over a
length l results from the different group and phase velocities according to

δφ = 2π

(
l

vgroup
− l

vphase

)
2π/ω0

(7.17)

= − 2π
dn

dλ
(λ0) l ,

with the vacuum-wavelength-dependent refractive index n(λ). From the first to the
second line in (7.17) a few straightforward mathematical manipulations are necessary.
For many materials, the dependencen(λ) is parametrized using the so-called Sellmeier
formula1 according to

n2(λ̃) = ε(λ̃) = A + B λ̃2

λ̃2 − C2
+ D λ̃2

λ̃2 − E2
(7.18)

with λ̃ = λ/(0.1 nm). For the relevant wavelengths λ, the refractive index according
to (7.18) is real. Sun and Kwok [209] determined the fit parameters A = 2.0065,
B = 1.5748 × 106, C = 108, D = 1.5868, and E = 2606.3 for ZnO, E ⊥ c. This
fit is applicable to the visible part of the spectrum only. With (7.17) for λ0 = 826 nm
(⇔ �ω0 = 1.5 eV) and after some tedious mathematics, this finally delivers

δφZnO, λ0=826 nm = 0.013 × 2π l/100 nm . (7.19)

For the above experiments with 100-µm thick ZnO single crystals, the effective in-
teraction length l is given by the depth of focus (see Fig. 7.5(a)) that is on the order
of five micrometers, in which case we have δφ = 0.7 × 2π – a significant change of
the CEO phase within the sample. For the l = 350 nm thin ZnO epitaxial film, δφ is
merely 4.6% of 2π , which might be sufficiently small for many applications.

Theory

From our discussion in Sect. 2.6 it is clear that the peaks in the RF spectra at fφ

originate from an interference of the fundamental with the second harmonic, while
the peaks at 2fφ and the mixing products (fr − 2fφ) in Fig. 7.18 stem from an
interference of the fundamental and the third harmonic. This is really amazing! The
centers of the fundamental and the third harmonic are separated by twice the laser
carrier frequency – yet, they do interfere. Is a simple description of the nonlinear
optical polarization in terms of nonlinear optical susceptibilities according to (2.37)
going to work at all? To see how it works, we solve (2.37) together with the one-

1 This is simply the dielectric function of the sum of two resonances as, e.g., from the optical
Bloch equations, plus a constant.
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dimensional Maxwell equations (see Sect. 6.1) numerically, i.e., we do not employ
the slowly varying envelope approximation and work with the real electric laser field
E(z, t) [200] and with the actual layer structure of the sample, i.e., a l = 350 nm thin
layer of ZnO on a semi-infinite sapphire substrate. The latter has a dielectric constant
of εs = (1.76)2 (compare Sect. 7.1.2, i.e., its optical nonlinearities are neglected2. For
the description of the ZnO layer we use the nonlinear optical suceptibilities χ(2) and
χ(3) [67]. Terms of order four and higher are neglected. On this level of modeling,
the optical spectra of the experiment are nicely reproduced (not shown). Inspection
of the corresponding calculated RF power spectrum (calculated on the basis of (2.50)
and (2.52)) shows a peak at frequency fφ but no contribution at frequency 2fφ (not
shown), while in the experiment the 2fφ peak is even larger than the fφ peak (see
Fig. 7.18(b)). Thus, we conclude that the 2fφ peak in the RF power spectra of ZnO
can definitely not be explained on the basis of perturbative off-resonant nonlinear
optics.

The solution [67] to the “riddle of the 2fφ peak” has already been visible in
Figs. 3.7 and 3.8. The signal contribution around the � = ω line in Fig. 3.7 exhibits a
constriction, the exact position of which depends on the Rabi frequency. Let us start
the discussion with the part above this constriction and consider a transition frequency
� on the vertical axis at the second harmonic of the laser carrier frequency ω0, i.e., at
�/ω0 = 2 in Fig. 3.7(a). Here we observe a well-defined peak in the optical spectra
right at the spectrometer frequency ω = 2ω0 (see white curve in Fig. 3.7(a) that is
a cut through the data at �/ω0 = 2 plotted on a linear scale). What is the origin
of this peak? A part of it is the resonant enhancement way down in the low-energy
tail of the third harmonic of the laser photon energy. For pulses containing many
cycles of light, this contribution would disappear because of negligible overlap of
the third-harmonic response function and the resonance – it is specific for the regime
of few-cycle pulses (see dependence on pulse duration depicted in Fig. 3.7(b)). This
third-harmonic contribution is expected to be associated with a phase 3φ – even though
it peaks right at the spectrometer frequency ω = 2ω0. Its signal strength roughly scales
with the third power of the laser intensity. The part of the � = ω signal contribution
below this constriction can be interpreted as the resonantly enhanced SPM due to
absorption of photons from the high-energy tail of the laser spectrum with phase
1φ. Its signal strength is roughly proportional to the intensity itself. Thus, the upper
part gains relative weight with respect to the lower part for increasing intensity or
increasing Rabi energy �R in Figs. 3.6 and 3.8.

Figure 3.7(c) shows the dependence on the CEO phase φ for a selected transition
frequency of �/ω0 = 2. All other parameters are as in Fig. 3.7(a). It becomes obvious
that a part of the interference occurs in between the fundamental, i.e., ω/ω0 = 1, and
ω/ω0 = 2. Note that the period of the signal versus φ is π rather than 2π , equivalent
to a peak at frequency 2fφ in the RF spectrum. The usual SHG would appear in the
same region in the optical spectra as the third harmonic in the disguise of a second
harmonic, but its phase is 2φ rather than 3φ, thus, it leads to a peak at frequency fφ in

2 Indeed, no measurable nonlinear signal of the sapphire substrate itself occurs in independent
additional experiments.
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the RF spectra when beating with the fundamental. Another part of the interference
in Fig. 3.7(c) occurs in between ω/ω0 = 2 and ω/ω0 = 3. This shows that the peak
around ω/ω0 = 2 in Fig. 3.7(a) is indeed a mixture of resonantly enhanced SPM and
resonantly enhanced THG.

Figure 3.6 illustrates the dependence on Rabi energy. For large Rabi energies (d),
the “THG in the disguise of SHG” becomes the dominating feature in the optical
spectrum (black curve at �/ω0 = 2). The unusually small contribution of P around
the laser carrier frequency, i.e., at ω/ω0 = 1 in Fig. 3.6(d) is due to carrier-wave Rabi
flopping (see Sect. 3.3). Indeed, the inversion w starts at −1, reaches values near +1
in the maximum and comes almost back to −1 after the pulse – even though the
excitation is “off-resonant” with �/ω0 = 2. This illustrates the fact that the detuning
of the carrier frequency from resonance becomes negligible if the Rabi energy is
larger than the detuning.

If one interprets the transition energy �� in Fig. 3.7(a) as the bandgap energy
Eg of a semiconductor, the lower RHS triangle formed by the � = ω line experi-
ences strong reabsorption in the semiconductor band-to-band continuum, while the
upper LHS triangle is in the transparency regime of the semiconductor. “THG in
the disguise of SHG” overlaps with this line. In order to study corresponding re-
absorption and phase-matching effects, we now present numerical solutions of the
coupled Maxwell–Bloch equations in one dimension without using the rotating-wave
approximation and without using the slowly varying envelope approximation and
accounting for the actual sample geometry, i.e., we model a 350-nm thin film of ZnO
on a sapphire substrate with dielectric constant εs = (1.76)2 using a one-dimensional
finite-difference time-domain algorithm. Furthermore, for a semiconductor, one does
not have a single two-level system but rather a band continuum, i.e., one needs to
integrate P along the vertical axis in Fig. 3.7(a). To be close to the experiment, we
fit an ensemble of 45 two-level systems (3.3–7.9 eV) to the known measured linear
dielectric function of ZnO over a broad frequency regime [210] (see Fig. 7.19). How-
ever, the optical transitions at large photon energies do not contribute to the signal at
the spectrometer frequency ω/ω0 = 2 (for example, see �� = 4–6 eV on the RHS
vertical axis of Fig. 3.7(a), where we have chosen �ω0 = 1.5 eV). On the other hand,
they do contribute to THG and SPM – they essentially still act as an off-resonant
χ(3) susceptibility under these conditions. We have seen that a χ(3) susceptibility
(together with a χ(2) susceptibility) is unable to reproduce the experimental data. We
conclude that the high-energy transitions can only have a minor contribution to the
nonlinear optical response. This is consistent with our findings for the GaAs case (see
Sect. 7.1.2), where also predominantly transitions close the bandgap contributed to
the nonlinear optical response (as a result of Coulomb correlations and much stronger
damping/relaxation of high-energy states). Consequently, in the ZnO modeling, op-
tical transitions from the bandgap at Eg = 3.3 eV up to 0.1 eV above the gap are
treated via the complete Bloch equations (using the ZnO dipole matrix element of
dcv = 0.19 e nm, T1 = ∞, and T2 = 34 fs), whereas the nonlinearity of the transitions
at higher energies is suppressed by setting their inversion in the Bloch equations to
−1 (as in the GaAs case). In this fashion, linear optical propagation effects are still
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Fig. 7.19. Dielectric function of ZnO versus (spectrometer) photon energy �ω. The dots repre-
sent the data measured in Ref. [210], the full curve is a “fit” using an ensemble of 45 two-level
systems with different transition frequencies �. This ensemble is used for the calculations
presented in Fig. 7.20 [269].

accounted for exactly. In addition to this, ZnO has no inversion symmetry and shows a
nonzero χ(2) susceptibility. For simplicity, we describe this aspect by an effective bulk
frequency-independent χ(2) = 1×10−13 m/V (remember that we have E ⊥ c for the
350-nm ZnO film and that surface SHG can become important for such thin films).
Furthermore, we employ excitation with a pair of collinearly propagating identical
pulses with time delay τ . The pulses are taken directly from the experiment [200] (see
Sect. 7.1.2). The ratio of the pulse repetition frequency fr and the CEO frequency fφ

is set to fr/fφ = 5, with fr = 81 MHz.
In Fig. 7.20(a) we depict the calculated optical spectra versus time delay τ . Note

that none of the spectral components originate from the incident pulses directly, all
of them are rather generated in the 350-nm thin ZnO layer. The spectral components
above about 520 nm wavelength are predominantly due to SPM, those in the range
from 365 nm to 455 nm wavelength are mainly due to a combination of conventional
SHG and “THG in the disguise of SHG”. In between the two regions, interference
leads to a dependence on the CEO phase φ. Indeed, filtering out this region and
computing the corresponding RF spectrum delivers peaks at the CEO frequency fφ

and at 2 fφ (Fig. 7.20(b)) as expected from our above reasoning.
Figure 7.21 shows the experimental results corresponding to Fig. 7.20. The agree-

ment is good, both for the optical spectra as well as for the RF spectra. In particular,
note that the heights of the peaks at frequencies fφ and 2 fφ in the RF spectra are
comparable, both for theory and experiment, indicating that “THG in the disguise
of SHG” is comparable in magnitude to conventional SHG under these conditions.
Furthermore, the nodal lines in the optical spectra indicated by the thin white lines
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Fig. 7.20. Theory, Ẽ0 = 8 × 109 V/m (in air) at τ = 0. (a) Grayscale image of the light
intensity (normalized) emitted into the forward direction versus spectrometer photon energy
�ω (linear wavelength scale) and time delay τ . The data are averaged over φ = 0 to 2π . The
thin white lines are a guide to the eye. The white curve labeled IAC is the interferometric
autocorrelation of the laser pulses. (b) Radio-frequency power spectrum SRF of the intensity
at the spectral position indicated by the arrow on the LHS in (a), τ = 0 [269].

in Fig. 7.21(a) qualitatively match those obtained for the complete modeling (see
Fig. 7.20(a)). These nodal lines, however, are closely similar if the nonlinear response
is described by an off-resonant perturbative χ(3) process (not shown). In contrast, the
narrow peak centered around 520 nm wavelength near τ = 0 (where the peak inten-
sity from the interferometer is maximum) does not occur (not shown) if the Bloch
equations are replaced by an off-resonant perturbative χ(3) process. Thus, this spec-
tral peak, which appears in both experiment (Fig. 7.21(a)) and theory (Fig. 7.20(a)),
is another signature of extreme nonlinear optics under these conditions.
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Fig. 7.21. Experiment on the 350-nm ZnO film, Ẽ0 = 6 × 109 V/m (in air) at τ = 0. (a)
Grayscale image of the light intensity (normalized) emitted into the forward direction versus
spectrometer photon energy �ω (linear wavelength scale) and time delay τ . φ is not stabilized.
The thin white lines are a guide to the eye. The white curve labeled IAC is the interferometric
autocorrelation of the laser pulses, obtained from an independent measurement using a β-
barium borate SHG crystal. (b) Radio-frequency power spectrum SRF of the intensity in the
spectral interval indicated by the gray area on the LHS in (a), τ = 0. Note the good agreement
with the theory calculated under the same conditions (Fig. 7.20). Reprinted with permission
from T. Tritschler et al., Phys. Rev. Lett. 90, 217404 (2003) [67]. Copyright (2003) by the
American Physical Society.

7.3 Dynamic Franz–Keldysh Effect

Let us first briefly remind ourselves about the normal static Franz–Keldysh effect
and then come to the dynamic Franz–Keldysh effect, another example of extreme
nonlinear optics, which was observed in experiments rather recently.

Static-field aproximation

The main [212] theoretical prediction by Franz [211] and Keldysh in 1958 was that
applying a static electric field on the order of 107 to 108 V/m to a bulk direct-gap semi-



162 7 Extreme Nonlinear Optics of Semiconductors and Isolators

conductor, results in an exponential absorption tail below the fundamental bandgap.
Later, additional spectral features above the bandgap were discovered. All these fea-
tures can be understood in terms of photon-assisted tunneling of electrons from the
valence to the conduction band: In the presence of the static electric field Ẽ0 > 0
along the x-direction, the stationary one-dimensional Schrödinger equation becomes

− �
2

2me

∂2

∂x2
ψ(x) + x e Ẽ0 ψ(x) = Ee ψ(x) , (7.20)

with the electron energy Ee. Substituting

X = x

(
2meeẼ0

�2

)1/3

− 2meEe

�2

(
2meeẼ0

�2

)−2/3

(7.21)

leads to the standard (nonlinear) differential equation

d2ψ

dX2
(X) = X ψ(X) . (7.22)

Its solution is ψ(X) = Ai(X) with the Airy function Ai(X), which decays exponen-
tially for X → +∞ and that oscillates with a wavelength proportional to 1/

√|X| for
negative X. Additional properties of the Airy function can be found in mathematical
handbooks [80]. The important aspect for our purposes is that this wave function has
a tail that extends into the gap of the semiconductor. This is illustrated in Fig. 7.22.
For an electron wave function and a hole wave function separated in energy by less
than the gap energy Eg, the probability to find and electron and a hole at the same
position has become finite. The larger the applied electric field, the larger the overlap.
This allows for optical transitions at photon energies �ω < Eg below the gap energy
Eg. The resulting shape of the absorption spectrum α(�ω) within the effective-mass
approximation is given by [199]

α(�ω) ∝ |Ẽ0|1/3
(
ω̃
(
Ai(−ω̃)

)2 + (
Ai′(−ω̃)

)2)
, (7.23)

Fig. 7.22. Illustration of the electron and hole (me → mh) wave function for an optical
transition at photon energy �ω in a semiconductor subject to a static electric field Ẽ0. Room
temperature GaAs parameters are used. Eg = 1.42 eV, �ω = 1.3 eV. (a) Ẽ0 = 2 × 106 V/m,
(b) Ẽ0 = 2 × 108 V/m (same scale). The gray areas represent the tilted bands [268].
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Fig. 7.23. Absorption spectra of a three-dimensional semiconductor subject to a static electric
field according to (7.23) versus normalized spectrometer frequency ω̃ according to (7.24). For
example, for Ẽ0 = 108 V/m (equivalent to an intensity of I = 1.3 × 109 W/cm2) and GaAs
parameters, i.e. exciton binding energy Eb = 4 meV and exciton Bohr radius rB = 20 nm, a
change of ω̃ equal to 1 corresponds to a change in the actual photon energy �ω of 0.25 eV.
ω̃ = 0 ⇔ �ω = Eg. The gray areas illustrate the zero-field absorption spectrum according to
(7.25). (a) and (b) show the universal behavior α(ω̃) on two different scales [268].

with the derivative of the Airy function Ai′(X) and the normalized spectrometer
frequency

ω̃ = �ω − Eg

Eb

(
Eb

e rB |Ẽ0|
)2/3

. (7.24)

Here, Eb is the exciton binding (or Rydberg) energy and rB the exciton Bohr ra-
dius. We have taken advantage of the fact that, in a semiconductor with inversion
symmetry, the sign of Ẽ0 does not matter. The absorption spectrum is depicted in
Fig. 7.23. It consists of an exponential tail for frequencies ω below the bandgap (the
Franz–Keldysh effect) and an oscillatory behavior above the gap. The visibility of the
oscillations decreases with increasing frequency. This has to be compared with the
usual (zero-field) absorption spectrum

α(�ω) ∝ �(�ω − Eg)

√
�ω − Eg (7.25)

of a three-dimensional semiconductor within the effective-mass approximation (gray
area in Fig. 7.23).

If one applies a “slowly varying” harmonic electric field rather than a true static
field, i.e., Ẽ0 → Ẽ0 cos(ω0t +φ), the absorption changes during an oscillation cycle
2π/ω0 and the optical field at frequencyω sees a cycle-averaged absorption coefficient
〈α(�ω)〉. This effectively averages over different values of the electric field and tends
to smear out spectral structures.

In the strict static-field case, where ω0 = 0, the ratio of the ponderomotive energy
and the carrier photon energy is infinity, 〈Ekin〉/�ω0 = ∞. For small ω0 still within
the static-field approximation, this ratio can easily be very large compared to unity
even for moderate values of the peak electric field Ẽ0, i.e., the limit of extreme
nonlinear “optics” is easily reached here.
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Dynamic Franz–Keldysh effect

Up to what carrier frequencies ω0 is the above static-field approximation valid? In
Sect. 4.2 we have seen that Volkov states (rather than the Airy wave functions mul-
tiplied by exp(−i�−1Eet)) are solutions of the time-dependent Schrödinger equa-
tion within the effective-mass approximation for a harmonically varying electric
field [213]. The energy spectrum of these Volkov states consists of a set of equidis-
tant parabolas of energy versus electron momentum, separated by the carrier photon
energy �ω0 (see Fig. 4.2). Thus, for sufficiently large ω0, these sidebands should
also show up in the absorption spectrum by a series of equidistant absorption on-
sets [86, 87]. In practice, this will only be the case if (at least) the following four
conditions are fulfilled simultaneously. (i) �ω0 has to be much larger than some char-
acteristic broadening �/T2 in the optical spectrum. For room-temperature conditions,
�/T2 is typically on the order of 10 meV or larger. This favors large ω0. (ii) The
sidebands only acquire appreciable strength if the ratio 〈Ekin〉/(�ω0) is of order unity
or larger. This strongly favors small ω0. (iii) Interband transitions must not occur,
which translates into the conditions �ω0/Eg 
 1 for the carrier frequency (again
favoring small ω0) and ��R/Eg 

 1 for the intensity. Otherwise, multiphoton
interband transitions can occur (see Sects. 3.5 and 3.6.1). Using (7.3), this is equiv-
alent to stating that the Keldysh parameter γK obeys the relation γK �� �ω0/Eg,
which is fulfilled for γK � 1. (iv) At the same time, the ponderomotive energy 〈Ekin〉
must not significantly exceed values of order 0.1 eV, otherwise the effective-mass
approximation for the electrons is no longer valid. As the hole effective masses are
typically much larger than that of the electrons, the hole ponderomotive energy can be
neglected to a first approximation and a single valence-band parabola results. If both
�ω0 and 〈Ekin〉 are on the order of a few tenths of an electron Volt (midinfrared), the
conditions (i)–(iv) are fulfilled for typical semiconductors. This also largely avoids
direct excitation of longitudinal optical phonons, which would decay into acoustic
phonons and eventually heat the sample, also leading to induced absorption below the
bandgap. For example, the longitudinal optical phonon energy in GaAs is 36 meV.

Samples

Experiments have been reported for l = 350 µm thick crystalline, semi-insulating
bulk GaAs (Eg = 1.42 eV), for l = 3 mm polycrystalline ZnSe (Eg = 2.7 eV) and
crystalline ZnTe (Eg = 2.3 eV), all at room temperature [88]. Such rather thick sam-
ples lead to large reduced transmission below the bandgap. Above the gap, however,
these samples are completely opaque and the resulting changes in absorption can-
not be measured. Other authors [214] have employed a much thinner, l = 2 µm,
crystalline bulk GaAs sample.

Laser systems

In order to excite the semiconductor in the midinfrared and simultaneously probe
the resulting changes in sample transmission at optical frequencies near the semicon-
ductor bandgap, 100-fs long laser pulses from a regeneratively amplified Ti:sapphire
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laser oscillator can be used to generate a white-light continuum in a sapphire plate,
serving as the optical probe. In addition, another part of these pulses can be sent
into an optical parametric amplifier. Subsequent difference-frequency mixing with
the original pulses delivers tunable and intense midinfrared pulses for excitation with
a duration on the order of 1 ps. At, e.g., 6 µm wavelength (⇔ �ω0 = 0.2 eV), this
duration corresponds to 50 cycles of “light”.

Experiment

The anticipated changes in transmission due to the dynamic Franz–Keldysh effect
should only be present if pump and probe temporally overlap in the sample. Heating
effects, on the other hand, would remain if the optical probe comes after the midin-
frared pump by some time delay τ . This important check has been performed [88],
and heating effects could be ruled out. Figure 7.24 shows measured [214] transmis-
sion spectra for the l = 350 µm thick GaAs sample. The linear transmission spectrum
(dashed curve) exhibits > 40% transmission below the bandgap, which is expected
from accounting for the reflections on the two (uncoated) GaAs/air interfaces (each
about 30%). With excitation (full curve), significant induced absorption is found for
photon energies well below the GaAs absorption edge. Such an absorption into the
N = −1 parabola of the Volkov states (see Fig. 4.2) is simply two-photon absorp-
tion, where an optical photon energy �ω plus a midinfrared photon energy �ω0 is
larger than Eg. Under the conditions studied, this two-photon absorption is not pro-
portional to the midinfrared intensity, as would be expected within the perturbative
regime, but is rather governed by the amplitudes aN of the Volkov sidebands in the
regime 〈Ekin〉 ≈ �ω0. However, no clear direct indication of the anticipated side-
bands from the Volkov states is visible. This is in agreement with theory based on
the Volkov states [88]. Keep in mind that sharp sidebands would only be expected
for continuous-wave excitation or for box-shaped pulses. The sidebands are smeared
out for Gaussian pulses analogous to what we have said in Sect. 3.6. For bulk semi-

Fig. 7.24. Measured transmission spectra of bulk, l = 350 µm thick GaAs with (full) and
without (dashed) midinfrared excitation at �ω0 = 0.2 eV (equivalent to 6.2 µm wavelength)
for an intensity of I = 3 × 109 W/cm2 corresponding to 〈Ekin〉 ≈ �ω0. [269], schematically
after Ref. [88].
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conductors, the onsets of N -photon absorption associated to the Volkov sidebands
are generally not very pronounced anyway. Comparison with Fig. 7.23(b) shows that
even the static-field approximation is able to qualitatively describe these experimental
findings. Further experiments have been performed on thinner GaAs samples [214].
Here, the differential transmission �T/T is measured that is defined by the difference
of the optical transmission with the midinfrared pump on minus that for pump off,
divided by the transmission for pump off. Additional increased transparency above
the bandgap has been observed [214] (not shown) – an aspect that cannot easily be
understood within a perturbative approach. In the framework of the Volkov states,
it is due to the upshift of the fundamental N = 0 parabola by the ponderomotive
energy 〈Ekin〉 (see Fig. 4.2). Such induced transparency (reduced absorption) above
the original bandgap does, however, also occur in the static-field approximation (see
Fig. 7.23(b)).

For midinfrared excitation but for yet much larger intensities on the order of
1011 W/cm2, mixing of optical and midinfrared photons as well as high (up to N = 7)
harmonics of �ω0 have been observed [215]. Under these conditions, the ponderomo-
tive energy is so large (several electron Volts) that the effective-mass approximation
no longer applies. Furthermore, at these intensities, the condition ��R/Eg 
 1 is not
really fulfilled any longer, equivalent to saying that interband multiphoton transitions
come into play (see our discussion on two-level systems in Sects. 3.5 and 3.6.1).

If the excitation carrier photon energy �ω0 comes close to the 1s → 2p exciton
transition, excitonic effects can become prominent. In GaAs quantum wells (where
Eb ≈ 10 meV), this has indeed been shown at THz frequencies (�ω0 = 0.5–20 meV)
[216] and at around unity exciton Keldysh parameter γ x

K.

7.4 Photon Drag or Dynamic Hall Effect

In Sect. 4.4.1 we have seen that the photon-drag effect simply arises from the magnetic
component of the Lorentz force in Newton’s second law and that it can be viewed as a
precursor of relativistic extreme nonlinear optics of free electrons. Loosely speaking,
the photons push the electrons along the wavevector of light (for a discussion of
“radiation pressure” see Refs. [217–219]). However, one should be aware that for
constant intensity of light no electron acceleration results, but rather a constant drift
velocity. Alternatively, the photon drag can be interpreted as the dynamic version
of the Hall effect [220], where a static electric field together with a perpendicular
static magnetic field lead to a motion of charges perpendicular to both of them. A
nonrelativistic quantum-mechanical treatment of the photon drag gives the same result
[221]. The photon-drag current must not be confused with the longitudinal component
of the purely displacive photogalvanic current – both of which are proportional to
the intensity of light. The latter results from the motion of charges due to optical
rectification (see Sect. 2.4). In an inversion symmetric medium, the photogalvanic
current is strictly zero, while the photon-drag current is generally nonzero (see our
discussion in Sect. 2.5 on χ(2) and χ

(2)
L ).
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In Problem 4.4 we have further seen that the inevitable damping of crystal elec-
trons, due to the microscopic scattering processes in solids, only leads to a modified
prefactor. In the perturbative regime (where E2 
 1), the resulting photon-drag cur-
rent density jpd according to (4.55) is proportional to the intensity of light and scales
as E2 (the dimensionless field strength E is defined in (4.44)). As E2 ∝ 1/ω2

0 and
E2 ∝ 1/m2

e , the effect is large for infrared carrier frequencies ω0 and for semiconduc-
tors with small effective electron (rest) masses me (see Table 4.1). In this regime, the
photon-drag effect is used in commercially available, high-speed, room-temperature,
infrared germanium photodetectors, which do not require an external bias voltage.
Typically, they are sold for the 10.6 µm wavelength of CO2 lasers.

Note that one is indeed restricted to the perturbative regime E2 
 1 in semicon-
ductors. For example, for me/m0 = 0.1 and independent of the laser carrier frequency
ω0, E2 = 10−4 would correspond to a ponderomotive energy of 〈Ekin〉 = 1.27 eV
according to (4.76) (here we have to replace m0 by me). This value is already compa-
rable to the width of the conduction band and certainly no longer compatible with the
effective-mass approximation (see Sect. 4.3). Thus, long before one approaches the
nonperturbative regime with E2 ≈ 1, one rather either enters the case of carrier-wave
Bloch oscillations described in Sect. 4.3.2 or one gets beyond the damage threshold
of the sample.

The total photon-drag current density in a semiconductor is the sum of the electron
and the hole contribution. According to (4.55), the two have opposite sign, because
the current density is proportional to the cube of the charge. Furthermore, introducing
a finite (normalized) damping time τ for electrons (e) and holes (h) according to
Problem 4.4, we obtain

jpd =
(

− τ 2
e

1 + τ 2
e

Ne e3

2 V m2
e c0 ω2

0︸ ︷︷ ︸
≥0

+ τ 2
h

1 + τ 2
h

Nh e3

2 V m2
h c0 ω2

0︸ ︷︷ ︸
≥0

)
Ẽ2

0 � 0 (7.26)

in analogy to (4.55). Thus, if the first term in (7.26) cancels with the second one, the
total current density jpd would clearly be zero – a coincidence, which does not occur
in practice, because usually doped samples are employed (see Fig. 7.25) in which one
component overwhelms the other. To actually measure the current, Ohmic contacts
have to be fabricated on the surfaces of a crystal and short-circuit conditions have to
be employed. On the other hand, under open-circuit conditions, the photon drag leads
to a spatial separation of electrons and holes, hence to a build-up of an electric field,
the so-called drag field.

The drag field or the drag current, respectively, are not always parallel to the
wavevector of the exciting light [223]. Microscopically, this effect arises because of
the anisotropy of the electron and hole effective masses. This anisotropy is exemplified
for me of germanium in Table 4.1. Loosely speaking, the electron or hole drift direc-
tion becomes a compromise between the wavevector of light and directions of small
effective mass. The general mathematical form for the photon-drag current-density
vector is given by (see Problem 7.2)
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Fig. 7.25. Measured responsitivity of eight different germanium photon-drag photodetectors
(dots) versus electron concentration under open-circuit conditions. The LHS corresponds to
p-type material, the RHS to n-type. Reprinted from Ref. [222] by permission of the American
Institute of Physics.

jpd =
⎛
⎝ j1

j2
j3

⎞
⎠ with ji =

3∑
j,k,l=1

Tijkl K̂j ẼkẼl , (7.27)

where K̂ = K/|K| is the unit wavevector of light, T is a tensor of rank four and the
linearly polarized laser electric-field vector is expressed as

E(t) =
⎛
⎝ Ẽ1

Ẽ2

Ẽ3

⎞
⎠ cos(ω0t + φ) . (7.28)

For example, in a cubic medium with inversion symmetry (such as germanium), the
only nonvanishing elements of the photon-drag tensor are [224]

A = T1111 = T2222 = T3333 ,

B = T1122 = T1133 = T2233 = T3311 = T3322 = T2211 ,

C = T2323 = T3131 = T1212 , (7.29)

and Tijkl = Tjikl = Tij lk = Tjilk . Taking advantage of the fact that the electric-field
vector and the wavevector of light are perpendicular to one another, i.e., Ẽ · K̂ = 0,
(7.27) simplifies to

ji = K̂i

(
B
(
Ẽ2 − Ẽ2

i

)
+ (A − 2 C) Ẽ2

i

)
, (7.30)

with Ẽ2 = Ẽ2
1 + Ẽ2

2 + Ẽ2
3 . We are left with only the two independent material

parameters B and (A − 2 C).
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Let us consider two examples of geometries. (i) For K̂ = (0, cosϕ, sinϕ)T and
our “usual” choice of Ẽ = Ẽ (1, 0, 0)T, we immediately obtain jpd||K for any
value of ϕ, B, and (A − 2 C). (ii) For the geometry K̂ = (0, cosϕ, sinϕ)T and Ẽ =
Ẽ (0, sinϕ, −cosϕ)T we get⎛

⎝ j1
j2
j3

⎞
⎠ = Ẽ2 B

⎛
⎝ 0

cosϕ
(
cos2ϕ + D sin2ϕ

)
sinϕ

(
sin2ϕ + D cos2ϕ

)
⎞
⎠ , (7.31)

where we have introduced the dimensionless parameter D = (A − 2 C)/B. For ϕ

equal to 0, π/4, π/2, ... , we again obtain jpd||K for any value of D. Generally, the
photon-drag current and the wavevector of light include an angle θ , which depends
only on D for a given value of ϕ. The angle θ can be determined via the dot product
jpd · K = |jpd| |K| cos θ . For D = 1, we obtain θ = 0 (⇔ jpd||K) for all ϕ. For
D → 0, the maximum angle is θ = 0.340 (19.5 degrees) for, e.g., ϕ = 0.478 (27.4
degrees). For D → ∞, θ = π/2 is possible mathematically, i.e., the photon-drag
current can in principle even be perpendicular to the wavevector of light. For p-type
germanium, actual angles as large as θ = 0.157 (9.0 degrees) have been determined
on the basis of experimental data [224].

We have already seen in Sects. 2.5 and 4.4 that the photon drag is closely connected
with a “longitudinal” component of the optical polarization oscillating at carrier fre-
quency 2ω0. In a crystal with reduced symmetry, in analogy to the photon drag in
(7.27), this contribution can be generalized according to

P (t) =
⎛
⎝ P̃1

P̃2

P̃3

⎞
⎠ sin(2ω0t + 2φ) with P̃i =

3∑
j,k,l=1

T̃ijkl K̂j ẼkẼl . (7.32)

Here we have assumed negligible damping. With damping, an additional phase
shift comes into play. This form of the optical polarization can even exhibit a
transverse component of second-harmonic generation in an inversion-symmetric
crystal, because P and K may include an angle θ .

Problem 7.1. Discuss (7.27) under space inversion.

Problem 7.2. Derive (7.27) from Newton’s second law in analogy to our discussion in
Sect. 4.4.1 but using an electron (hole) effective-mass tensor rather than an isotropic
effective mass.

7.5 Conical Second-Harmonic Generation

The “longitudinal” contribution to second-harmonic generation (SHG) associated
with the photon drag allows for SHG in an isotropic solid. A distinct mechanism that
does the same thing is conical harmonic generation [225]. In contrast to the photon
drag, it is mediated by a χ(5) process to lowest order. Here, the difference-frequency
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mixing of four photons from the fundamental wave with carrier frequency ω0 and one
photon from the SHG field with carrier frequency 2ω0 leads to a contribution of the
optical polarization at frequency 4ω0 − 2ω0 = 2ω0. This contribution is proportional
to the fourth power of the fundamental envelope and proportional to the envelope of
the SHG field itself and drives the SHG field via the wave equation. Within the slowly
varying envelope approximation (see Sect. 6.2), we can closely follow along the lines
of (6.7), (6.8) and (6.9), which assume negligible depletion for the fundamental wave
(N = 1). We obtain for the SHG with N = 2

2 iK2 eiK2z
∂Ẽ2

∂z
(z, t) = − µ0 (2ω0)

2 ε0χ
(5)
SHG Ẽ4

1 ei4K1z Ẽ∗
2 e−iK2z . (7.33)

Here we have introduced χ
(5)
SHG = χ(5) 5/25 with χ(5) defined via (2.37). In the case

of phase matching, i.e., �K = 4K1 − 2K2 = 0 equivalent to c(ω0) = c(2ω0), this
leads to

∂Ẽ2

∂z
= + i g Ẽ∗

2 , (7.34)

where we have lumped the various prefactors into the real coefficient g ∝ χ
(5)
SHGẼ4

1 .
It is straightforward to find the general solution

Ẽ2(z, t) = A+ (1 + i) e+gz + A− (1 − i) e−gz . (7.35)

The real coefficients A+ and A− can be determined from the initial condition
Ẽ2(0, t) = (A+ +A−)+ i(A+ −A−). For the special case A+ = A−, this simplifies
to

Ẽ2(z, t) = Ẽ2(0, t)
(
cosh(gz) + i sinh(gz)

)
. (7.36)

In any case, for large propagation coordinates z with |gz| � 1, we get an exponential
growth of the SHG field envelope Ẽ2, as well as of the SHG intensity ISHG(l) ∝
|Ẽ2(z = l, t)|2 with medium thickness l. For the special case A+ = A− we obtain

ISHG(l) = ISHG(0)
(
cosh2(gl) + sinh2(gl)

)
. (7.37)

This is in sharp contrast to the usual quadratic growth ISHG ∝ l2 of phase-matched
SHG from a χ(2) process in the low pump depletion approximation (see (6.10)). For
Ẽ2(0, t) = 0, i.e., without any seed of the SHG at the front of the sample, the SHG
would still be strictly zero. Any small seed, on the other hand, enables appreciable
SHG signals for large gain, i.e., for |gl| � 1. In a quantum optical treatment, quantum
fluctuations may provide such seeding.

Note, however, that the phase-matching condition c(ω0) = c(2ω0) is generally not
fulfilled in dispersive media. Usually, one rather has c(ω0) > c(2ω0). In traditional
nonlinear optics, birefrigence comes to the rescue, which is obviously absent for
isotropic media. Still, the condition 4K1 −2K2 = 0 can be fulfilled if the wavevectors
K1||(0, 0, 1)T with |K1| = ω0/c(ω0) and K2 with |K2| = 2ω0/c(2ω0) are not
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parallel, but rather include an angle θ . If their z-components obey the condition
4(K1)z − 2(K2)z = 4|K1| − 2 |K2| cos θ = 0, this immediately translates into

cos θ = c(2ω0)

c(ω0)
, (7.38)

which can be fulfilled if the RHS ≤ 1 but not if the RHS > 1. This means that the
SHG lies on a cone with opening angle θ along the wavevector of the fundamental,
hence the name “conical SHG”. At the exit surface of the material, one expects a
bright ring. This is illustrated in Fig. 7.26.

In general, such conical phase matching allows for any odd or even harmonic of
order N from a χ(2N+1) susceptibility via the difference-frequency mixing of the sum
of 2N fundamental photons with one N -th harmonic photon.

Conical SHG has not been observed, while conical third-harmonic generation
via a χ(7) process has indeed been observed [225]. Here, χ(3)-based third-harmonic
generation (not phase matched) delivers the required seed. In these experiments, sap-
phire is excited by 10-µJ energy, 50-fs duration pulses centered at 1.5 µm wavelength,
leading to an opening angle θ of 12 degrees. Estimating a spot radius of 10 µm on
the basis of Ref. [225], these numbers correspond to a peak intensity on the order of
I = 6 × 1013 W/cm2, equivalent to Ẽ0 = 2 × 1010 V/m in vacuum.

Fig. 7.26. Illustration of the emission characteristics of conical second-harmonic generation
(SHG) in an isotropic material. The SHG wavevector K2 includes an angle θ with the funda-
mental wavevector K1 (central axis). The depicted angle of θ = 0.35 (20 degrees) corresponds
to c(2ω0) = 0.94 c(ω0). To lowest order, conical SHG is a fifth-order process.
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Extreme Nonlinear Optics of Atoms and Electrons

The theoretical basis for the extreme nonlinear optics of atoms, free electrons, and the
vacuum has already been laid in Sects. 5.4, 4.4 and 4.5, respectively. We have seen
that, for atoms, the regime of extreme nonlinear optics is entered if the ponderomotive
energy becomes comparable to the binding energy (⇔ γK ≈ 1). For free electrons,
the ponderomotive energy needs to approach the electron rest energy (⇔ |E | ≈ 1). To
generate real electron–positron pairs from vacuum, the electron rest energy has to be
matched by the potential drop over the Compton wavelength. Corresponding typical
laser intensities have turned out to be 1014, 1018, and 1030 W/cm2, respectively.

Laser systems

To reach such intensities, amplified laser systems are necessary. In particular, the
concept of chirped-pulse amplification has led to enormous progress [16,17]. Without
this “trick”, the laser intensity (not the pulse energy) soon reaches a point at which
it destroys the optical components on the way. In chirped-pulse amplification, the
pulses are thus first stretched in time by a few orders of magnitude (ideally, this
leaves their amplitude spectrum unaffected), then amplified to large pulse energies
while keeping the peak intensity below the damage threshold of the gain medium,
and finally recompressed in time.

8.1 High-Harmonic Generation From Atoms

In Sect. 5.4 we have seen that the interaction of atoms with laser pulses can lead to
the generation of high harmonics up to harmonic orders N of several hundreds. These
high harmonics can result in attosecond pulses [226, 227] or attosecond pulse trains
[228, 229] of extreme ultraviolet (EUV) radiation. Figure 8.1 shows three different
geometries that are used in experiments. For a direct comparison with microscopic
calculations, e.g., on the basis of the time-dependent Schrödinger equation, one would
prefer isolated dipoles and try to avoid propagation effects as much as possible. For a
dilute gas, geometry (a) in Fig. 8.1 can come near to this goal. In contrast to this, if one



174 8 Extreme Nonlinear Optics of Atoms and Electrons

Fig. 8.1. Geometries for high-harmonic generation from atoms (schematically, not to scale).
(a) The laser pulse interacts with the atoms of a gas jet (a geometry used by many authors),
(b) the atoms in a hollow gas capillary [230, 231] enabling phase matching or (c) with the
atoms in a modulated capillary [232] allowing for quasi phase-matching. � is the modulation
period [269].

is rather interested in obtaining a maximum EUV intensity, large interaction lengths
are desired. We have already seen in our discussion based on the one-dimensional
version of the slowly varying envelope approximation in Sect. 6.2 that the coherence
length lcoh(N) according to (6.12) sets an upper limit. In practice, additional effects
such as, e.g., reabsorption, self-defocusing or the dispersion of the Gouy phase further
reduce the effective coherence length. It has been argued on the basis of detailed
calculations [135] that geometry (a) is still advantageous for few-cycle pulses, whereas
for longer pulses geometries (b) or (c) are more appropriate. Still, present typical best
high-harmonic conversion efficiencies are around 10−5. This has to be compared
with the near-unity conversion efficiency achieved for second-harmonic generation
in traditional nonlinear optics.

Let us have a closer look at geometry (a) in Sect. 8.1.1, at (b) in Sect. 8.1.2 and at
(c) in Sect. 8.1.3

8.1.1 Gas Jets

Figure 8.2 gives one example of a high-harmonic spectrum from helium excited by
200-fs pulses, revealing many well-resolved harmonic orders. The cutoff harmonic
order (here Ncutoff ≈ 95) discussed in Sect. 5.4.1 is clearly visible. More experimental
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Fig. 8.2. Example of high-harmonic generation. Here, helium at 20 000 Pa (200 mbar) pressure
is excited by 200-fs pulses at �ω0 = 1.6 eV and I = 3 × 1015 W/cm2. The geometry corre-
sponds to Fig. 8.1(a). The harmonics are labeled by their order N . The small unmarked peaks
result from second-order diffraction of the grating of the spectrometer. Reprinted figure with
permission from K. Miyazaki and H. Takada, Phys. Rev. A 52, 3007 (1995) [242]. Copyright
(1995) by the American Physical Society.

examples can be found in Refs. [233–244] and in the reviews [245, 246]. Using
helium, large photon energies [243, 244] have been generated with �ω ≈ 0.5 keV
(2.5 nm wavelength) at �ω0 = 1.5 eV laser carrier photon energy, corresponding to a
harmonic order of N ≈ 333. This is consistent with the anticipated linear dependence
of the cutoff harmonic order Ncutoff versus ionization potential Eb according to (5.19)
and the fact that helium has the largest ionization potential of the gases shown in
Table 5.1. The occurrence of harmonic orders much larger than those in Fig. 8.2 at
lower pulse intensities is enabled by the fact that the authors [243, 244] have used
much shorter pulses. According to our discussion in Sect. 5.4.1, this allows for large
electron ponderomotive energies 〈Ekin〉 in the first optical cycle after ionization at low
ionization degrees (compare with Fig. 5.12 and (5.19)). More recently, even photon
energies larger than 0.7 keV have been obtained from helium [247] by (partial) phase
matching via the frequency-dependence of the Gouy phase (see Chap. 6.3).

To understand the shape of the high-harmonic spectra in detail and to optimize
conversion efficiencies, one has to consider phase-matching effects. We start from
our discussion in Sect. 6.2, which is based on a one-dimensional version of the slowly
varying envelope approximation. We have seen that the coherence length of the N -th
harmonic (see (6.12))

lcoh(N) = π

|�K| (8.1)
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is related to the mismatch �K of the fundamental wavevector of light and that of the
N -th harmonic according to (6.11). This expression can easily be rewritten in terms
of the refractive index n(ω) as

�K = Nω0

c0
(n(ω0) − n(Nω0)) . (8.2)

The total mismatch �K comprises a contribution �Katom of atoms that are not ion-
ized, a free-electron part �Ke for the electrons of ionized atoms and – in the case
that a waveguide is used – the properties of the empty waveguide �Kwg. Math-
ematically, strictly speaking, one needs to add up the three corresponding linear
optical susceptibilities χi and then compute the total refractive index difference in
(8.2) from that. This procedure can be simplified by the fact that all relevant indi-
vidual refractive indices are very close to unity, in which case we can approximate
n(ω) = √

ε(ω) = √
1 +∑

i χi(ω) ≈ 1 + ∑
i χi(ω)/2 ≈ 1 + ∑

i (ni(ω) − 1).
Correspondingly, the wavevector mismatch can be written as the sum

�K = �Katom + �Ke + �Kwg . (8.3)

Here, we have tacitly assumed that the refractive index of the atoms and/or of the
free electrons does not influence the waveguide properties, consistent with the above
approximation. The refractive index of the atoms that are not ionized is given by
natom = √

ε = √
1 + χ . This susceptibility χ generally consists of a series of res-

onances. Equation (3.3) (also see Fig. 3.1) considers just one at transition frequency
�. Typically (ω0 < � < Nω0), the index is larger than unity for the fundamental
and very close to unity for the high harmonics. Thus, we usually have

�Katom > 0 . (8.4)

The magnitude of this contribution obviously increases with increasing gas pressure
(∝ Natom = Nosc in (3.3)). For a given gas pressure, it decreases with increasing
degree of ionization of the atoms, i.e., with increasing light intensity. At the same time,
the free-electron contribution increases in magnitude. Its refractive index ne = √

ε =√
1 + χ can be computed via the free-electron or Drude susceptibility χ according

to (4.2) (also see Fig. 4.1). Typically, the electron density is below 1020 /cm3 and the
plasma frequency ωpl from (4.3) is still much smaller than the fundamental carrier
frequency ω0, hence 0 < ε < 1 and the refractive index of the fundamental is real,
positive and smaller than unity. The index is again very nearly unity for the high
harmonics. Consequently, we have

�Ke < 0 . (8.5)

If one is interested in generating very high harmonics, the cutoff order Ncutoff has to
be large, thus large ponderomotive energies 〈Ekin〉 ∝ I or intensities I are required
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according to (5.19), hence many atoms are ionized and this free-electron contribution
can become quite prominent, especially for pulses containing several or many cycles
of light (see Fig. 5.12). Note that the free-electron density increases with time during
the pulse, which means that the phase-matching condition changes with time as well.

� Example 8.1. Suppose that the free-electron contribution in (8.3) dominates. We con-
sider an electron density Ne/V = 1018 /cm3, which corresponds to a plasma energy
(4.3) of �ωpl = 0.037 eV. For a fully singly ionized gas, the corresponding gas
pressure would be 4141 Pa (41 mbar) at T = 300 K according to the ideal gas equa-
tion (see corresponding discussion in Sect. 4.4.2). The harmonic order of interest be
N = 101 and �ω0 = 1.5 eV. With (4.2) this leads to a fundamental refractive index
of ne(ω0) = 0.9997 and a high-harmonic index of ne(Nω0) = 1.00000. Thus, we
obtain a coherence length of lcoh(101) = 13.6 µm. For N � 1, this value scales
∝ 1/N . �

Two additional effects that are beyond our one-dimensional plane-wave approxi-
mation also influence the high-harmonic spectra. Above, we have already mentioned
the dispersion of the Gouy phase, which has been discussed in Sect. 6.3. The under-
lying physics is related to that of the gas capillaries, which we will discuss below.
Furthermore, the transverse (e.g., Gaussian) distribution of the beam in the focus
leads to large electron densities in the center – where the intensity and the degree of
ionization are high – and low densities in the wings. Thus, the free-electron refractive
index is lower in the center than in the wings, which leads to defocusing of the beam.
This mechanism effectively reduces the interaction length.

8.1.2 Hollow Waveguides

Let us distinguish between two cases, (i) and (ii). For (i), the free-electron contribution
in (8.3) will be negligible with respect to the atomic contribution, i.e. |�Katom| �
|�Ke|. This is realistic if one only wants to generate rather “low” harmonic orders. In
contrast to this, the free-electron contribution will be much larger than the atomic one
for (ii), i.e. |�Katom| 
 |�Ke|, corresponding to high intensities and high harmonic
orders N . (i) is discussed in this section, (ii) in the next.

In case (i), the waveguide dispersion has to compensate for the positive atomic
contribution, i.e., �Katom > 0 has to be cancelled by some �Kwg < 0 to give
�K = 0 or at least �K ≈ 0. This can be accomplished by using a hollow gas
capillary (see Fig. 8.1(b)). The light propagating in such a capillary is not really
confined to the waveguide – the waveguiding is lossy. Nevertheless, in the language
of geometrical optics, rays impinging onto the glass capillary (typical refractive index
equals 1.5) under nearly grazing incidence can be reflected with just a few per cent loss
per reflection. To compute the field distribution and, more importantly, to discuss the
dispersion relation of light propagating along such a waveguide, one needs to employ
a wave picture. This electromagnetic problem was solved many years ago [248]. The
resulting solutions can be expressed in terms of Bessel functions.

Intuitively, we can closely follow along the lines of our reasoning for the Gouy
phase in Sect. 6.3: The transverse confinement of the waveguide mode leads to a
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spread in transverse momentum via the “uncertainty” relation. This, together with

the fact that the modulus |K| =
√

K2
x + K2

y + K2
z = ω/c0 is constant, reduces Kz,

the component along the capillary axis. Appropriately averaging over the transverse
wavefront delivers an effective Keff

z , the propagation constant. The effective refractive
index nwg of the empty waveguide results from the dispersion relation of light

ω

Keff
z

= c = c0

nwg(ω)
. (8.6)

As Keff
z < |K|, we can conclude that nwg(ω) < 1 ∀ ω – the phase velocity of light

in the waveguide is larger than the vacuum speed of light c0. Indeed, the complete
calculation [248] delivers a frequency dependence according to

nwg(ω) = 1 − ω2
crit

ω2
. (8.7)

For large frequencies ω, corresponding to wavelengths much smaller than the diam-
eter of the capillary, the light field hardly “feels” the waveguide (this is the limit of
geometrical optics), hence we have nwg(ω → ∞) → 1. Inserting the index according
to (8.7) into (8.2), we obtain

�Kwg < 0 . (8.8)

The modulus of �Kwg can be tailored by the radius of the capillary, rcap, because
ω0 � ωcrit ∝ 1/rcap. Remember that the atomic contribution �Katom > 0 depends
on the gas pressure. Thus, the phase-matching condition �K = �Katom +�Kwg = 0
can be achieved by pressure tuning. This is schematically illustrated in Fig. 8.3.

40 80

0

GAS PRESSURE (mbar)

0

N=31

K=0� �K>0�K<0�K=�Kwg

WAVE VECTOR MISMATCH

I31

Fig. 8.3. Intensity (linear scale) of the N = 31st harmonic versus argon gas pressure in a hollow
waveguide (see Fig. 8.1(b)). The pressure tuning curve is drawn schematically after Ref. [230].
They used 20-fs pulses at �ω0 = 1.55 eV and I = 2 × 1014 W/cm2 to excite argon within a
150-µm diameter capillary a few centimeters in length l. Naively, one might expect to observe

the side lobes of the ∝ sinc2
(

�Kl
2

)
phase-matching function according to (6.10), where

�K according to (8.3) is a linear function of the pressure. However, the combined effect of
absorption and varying levels of ionization smears out these structures and broadens the peak.
Hence, the �K quoted on the top have to be interpreted as effective average quantities.



8.1 High-Harmonic Generation From Atoms 179

It has been shown that by using such hollow waveguides, the spatial coherence of
the high harmonics also improves [249].

8.1.3 Quasi Phase-Matching in Modulated Capillaries

For the conditions of very high harmonic generation, the free-electron contribution
�Ke becomes very prominent and overwhelms �Katom (case (ii) from Sect. 8.1.2).
�Ke < 0 can clearly not be cancelled by a hollow waveguide with �Kwg < 0.
This would only make matters worse. Only two years after the birth of the Ruby
laser, i.e., in 1962, Bloembergen and coworkers [250] introduced the concept of quasi
phase-matching, which comes to the rescue. Suppose that we can not get rid of a
finite wavevector mismatch �K < 0. If the fundamental and the harmonic wave
have propagated over length l, the acquired phase difference equals �K l. For the
coherence length l = lcoh, this phase difference is π . If one lets the waves propagate
over the next length l = lcoh under the same conditions, the harmonic intensity would
be strictly zero thereafter (see (6.10)). If, however, one could reverse the sign of the
nonlinearity for the next length l = lcoh, i.e., replace χ̃ (N) → −χ̃ (N), constructive
interference is recovered. The resulting spatial period

� = 2 lcoh (8.9)

can then be repeated infinitely. This was the original idea of quasi phase-matching. It
does not work here. A related idea that does work, although less efficient, is to periodi-
cally modulate the magnitude of high-harmonic generation [232]. In Sects. 5.1 and 5.3
we have seen that high-harmonic generation is extremely sensitive with respect to the
laser intensity and/or the CEO phase φ. Thus, even a minor modulation in the radius
of the gas capillary can essentially switch on and off the high-harmonic generation
(see Fig. 8.1(c)). This behavior is inherently nonperturbative (see Sect. 5.3) and can-
not really be described by nonlinear optical susceptibilities. Still, if the fundamental
envelope Ẽ1 in (6.8) is reduced by merely 2%, the term χ̃ (N) ẼN

1 changes by a factor
of 29 for the harmonic order N = 167. Suppose that Ẽ1 ≈ const. for propagation
over length l = lcoh, hence high harmonics are generated. For the next length l = lcoh,
ẼN

1 ≈ 0, thus the high-harmonic intensity does not grow in the second half of the
period but the phase difference after one period � = 2 lcoh equals π + π = 2π and
constructive interference is recovered. From integration of (6.8) with ẼN

1 = ẼN
1 (z)

it can easily be seen that this idea also works for an arbitrary periodic dependence
Ẽ1(z) as long as the period is given by � = 2 lcoh. For a fixed modulation period �,
the condition � = 2 lcoh can be course-adjusted by the gas pressure via the depen-
dence of lcoh = π/|�K| on the density of atoms, hence of free electrons. As already
pointed out above, the number of free electrons Ne(t) increases monotonically with
time t during the pulse (see Fig. 5.12) and the condition � = 2 lcoh(Ne(t)/V ) is met
only for a small time interval within the laser pulse. In principle, this allows isolated
attosecond EUV pulses to be generated rather than pulse trains (compare Fig. 5.1)
even with optical pulses containing many cycles of light.
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Using such modulated waveguides, Ref. [251] has recently demonstrated rather
efficient generation of photon energies up to �ω = 250 eV from highly ionized argon
corresponding to a harmonic order of about N = 167 at �ω0 = 1.5 eV. This also
takes advantage of the fact that the ionization potential of Ar+ ions (Eb = 27.6 eV)
is larger than that of Ar (Eb = 15.8 eV). According to (5.19), this leads to a larger
cutoff. They [251] use incident pulses of 22 fs duration with a peak intensity of
I = 1.3 × 1015 W/cm2, a gas pressure of 933 Pa (9 mbar) and a modulation period
of � = 250 µm. Typically, the diameter of the capillary is modulated by 5–10% only
(see Fig. 8.1(c)).

8.1.4 Dependence on the Carrier-Envelope Phase

High-harmonic generation from few-cycle optical pulses depends on the value of the
carrier-envelope offset (CEO) phase φ. We have already seen that this dependence can
be understood on different levels of sophistication. It appears within the phenomeno-
logical approach based on nonlinear optical susceptibilities via an interference of
spectrally adjacent harmonics (see Fig. 5.2). Within the electrostatic tunneling ap-
proximation in Sect. 5.3, the CEO-phase dependence arises from different values of
the actual instantaneous laser electric field (see Fig. 5.6). Historically, a dependence
on the CEO phase has been addressed theoretically in Refs. [252,253] and was later
observed experimentally in Ref. [254].

Laser systems

In these experiments [254], the authors used a CEO-phase stabilized mode-locked
laser oscillator, amplified the pulses to few mJ pulse energy, generated a “white-
light” continuum via self-phase modulation in a hollow-core waveguide filled with
neon, recompressed the resulting pulses and used these 5-fs pulses for excitation of a
2-mm-long sample of neon gas at intensities around I = 7×1014 W/cm2. Amazingly,
the CEO phase of these excitation pulses turns out to be also fixed if the CEO phase of
the mode-locked oscillator is fixed with a relative jitter of merely 50 mrad, equivalent
to less than 1% of 2π . The actual value of φ, on the other hand, changes by several
times 2π from the oscillator towards the gas sample.

Experiment

Measured high-harmonic spectra are depicted in Fig. 8.4. The observed behavior is
periodic in φ with π (rather than 2π ) periodicity because of the inversion symmetry
of the gas. For CEO phase φ = 0, π (see (b)), the high-harmonic peaks on the high-
energy end of the spectrum (120–130 eV) merge into a continuum as expected from
Fig. 5.2, whereas they are clearly separated for CEO phases φ = ±π/2. In contrast
to Fig. 5.2, however, the peaks at lower photon energy do not merge for any value
of φ in Fig. 8.4. Indeed, Fig. 5.6 reminds us that the photon energies near the cutoff
are special in that they are almost exclusively generated in the central cycle of the
pulse. Also note that the peaks between 90 and 120 eV move with φ, i.e., they are not
always centered at photon energies �ωN = N �ω0 with odd integer N . As a result,
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Fig. 8.4. Measured EUV spectra from neon at 16 000 Pa (160 mbar) pressure. Excitation is
with 5-fs pulses around �ω0 = 1.5 eV and at an estimated intensity of I = 7 × 1014 W/cm2.
(a)–(d) correspond to different but fixed CEO phases (called ϕ in this work) as indicated, in
(e) the CEO phase is not stabilized. The phase offset ϕ0 is not known. Compare with Figs. 5.2
and 5.6. Reprinted by permission from Nature [254] copyright (2003) Macmillan Publishers
Ltd.
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the peaks are smeared out if φ is not stabilized (see Fig. 8.4(e)). On the other hand,
the peaks are equidistant with a spacing close to 2 �ω0 = 3 eV and we can express
the high-harmonic peak positions1 with odd N as

ωN = N ω0 + �N(φ) , (8.10)

where the frequency shift �N(φ) depends on the CEO phase φ and on the harmonic
order N . For the special case of �N(φ) = ω0, one obviously gets peaks at the spectral
positions of even harmonics (also see Sect. 3.4). This behavior (8.10) immediately
reminds us of the equidistant frequency comb of a mode-locked laser oscillator (see
Sect. 2.3) that can be shifted by the CEO frequency fφ according to (2.31). In the
time domain, the shift �N(φ) means that the subsequent attosecond pulses are not
identical (as, e.g., in Fig. 5.1) but the phase of the attosecond carrier oscillation with
respect to the attosecond envelope, say φas, changes from one attosecond pulse to
the next – in strict analogy to what we have discussed for laser pulses in Sect. 2.3
(compare with Figs. 2.2(a) and (b)). This is equivalent to saying that the phases of
the individual high harmonics generated in one half of an optical cycle are different
from those generated in the next half of the optical cycle. Given the fact that the entire
conditions change dynamically during ionization and propagation – depending on φ –
this might be expected intuitively. In any case, this behavior has been predicted on the
basis of numerical solutions of the atom ionization (see Sect. 5.3) using Ammosov–
Delone–Krainov ionization rates (see Problem 5.1) coupled to a three-dimensional
wave-propagation model in the paraxial approximation [255]. It is also reproduced
by the simulations shown in Ref. [254], which account for propagation effects as
well.

More recently, CEO-phase effects have also been reported using multicycle optical
pulses [256], which are not stabilized in terms of their CEO phase, in a single-shot
mode. Here, an interference occurs, e.g., around harmonic order 20 in the wings of
the 19th and the 21st harmonic for argon excited by 20-fs pulses at �ω0 = 1.55 eV.
Also, Rydberg atoms excited by radio-frequency pulses [257] have recently shown a
CEO-phase dependence.

1 The authors of Ref. [254] avoid calling the peaks in Fig. 8.4 high harmonics. Note, however,
that according to the definition of a harmonic of order N used in this book (see Sect. 2.4)
they are high harmonics indeed. This does not necessarily mean that they occur at any
particular spectrometer frequency ω. Also, see the corresponding discussion in Sect. 3.4 on
“third-harmonic generation in the disguise of second-harmonic generation”.
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8.2 Relativistic Nonlinear Thomson Scattering

In Sect. 8.1.3, we have seen that the linear optical contribution of free electrons orig-
inating from the ionization of atoms by the laser field can significantly influence
the phase matching of high harmonics. Still, at the intensities of I < 1016 W/cm2

discussed there, the normalized field strength according to (4.44) follows |E | < 0.1
and nonlinearities due to these free electrons from relativistic nonlinear Thomson
scattering discussed in Sect. 4.4 are negligible. For light intensities yet one or two
orders of magnitude larger, the situation reverses and the nonlinear response is dom-
inated by these free electrons in vacuum. From (4.44) and (2.16) and by inserting the
fundamental constants we get the convenient form

|E | = 8.55 × 10−10 λ

µm

√
I

W/cm2
, (8.11)

which directly relates the field parameter to the intensity in units of W/cm2. λ is
the vacuum wavelength corresponding to the laser carrier frequency ω0 and approxi-
mately equals the laser center wavelength for pulses containing many cycles of light.
Ref. [258] argues that the remaining Coulomb attraction to the positively charged
ions can be neglected.

Experiment

While early experimental work on the interaction of free electrons with light has found
harmonics including SHG [259–261], the characteristic emission pattern for each har-
monic order N = 1, 2, 3 of relativistic nonlinear Thomson scattering (see discussion
in Sect. 4.4.1) has first been observed experimentally in Ref. [110]. Note that the ra-
diation pattern depicted for the nonrelativistic regime and N = 2 in Fig. 4.5(b) is dis-
torted for relativistic electron motion. Qualitatively, the radiation pattern is stretched
along the electron-drift direction parallel to the wavevector of light (analogous to syn-
chrotron emission) and, in addition, the cylindrical symmetry around the wavevector
of light is broken, because the electric-field vector accentuates the x-direction. Fur-
thermore, note that in Sect. 4.4 we have discussed the nonlinear emission from single
electrons only. For a homogeneous gas of electrons excited by a plane electromag-
netic wave, phase matching (see Sect. 6.2) is usually not fulfilled and the harmonic
intensity is generally strictly zero. In a finite geometry like a laser focus, however, a
small but finite contribution remains. The shape of its radiation pattern corresponds
to that of the single-electron emission and is sometimes referred to as the incoherent
background. Figure 8.5 shows results obtained on a helium jet. The pedestal of the
pulse already completely ionizes the gas such that the main part of the pulse interacts
predominantly with free electrons. Each dot in the polar diagram corresponds to a
single pulse. The mere occurrence of second-harmonic generation is evidence for non-
linear Thomson scattering, the dependence on the azimuthal angle ϕ is a consequence
of relativistic effects.
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Fig. 8.5. Relativistic nonlinear Thomson scattering on free electrons. Polar diagrams showing
the variation of second-harmonic generation (N = 2) versus azimuthal angle ϕ (the angle
between the x-axis and the projection of the detection direction onto the xy-plane). Remember
that, according to the nomenclature used in this book, the laser electric-field vector E is
polarized along x and that the incident wavevector of light K is along z, as illustrated in
Fig. 4.5. The angle included by K and the detection direction, θ , equals (a) 90 degrees and
(b) 129 degrees. The full symbols correspond to the experiment, the curves to theory (along
the lines of Sect. 4.4.2). The open symbols and the dashed curve in (b) correspond to the
fundamental (N = 1), which can be compared with Fig. 4.5(a). The experimental parameters
are I = 3.5 × 1018 W/cm2, �ω0 = 1.2 eV (1.053 µm wavelength), hence |E | = 1.5 [110],
400 fs pulse duration (0.8 J pulse energy) from a Nd:glass laser system and an electron density
of Ne/V = 6.2 × 1019 /cm3. Reprinted by permission from Nature [110] copyright (1998)
Macmillan Publishers Ltd.

In contrast to this incoherent background, phase-matched conical third-harmonic
generation from relativistic electrons has also been observed experimentally [262]
(also see Sect. 7.5).

More recently, many even harmonics up to order N = 30 [263] at I =
1 × 1019 W/cm2 have been observed. At yet larger intensities and using a forward
scattering geometry, broad continuous spectra have been measured [264] (compare
Fig. 4.8 for backscattering). In the latter case, 30-fs pulses with 1.5 J energy from
a Ti:sapphire laser system have been focussed on the front of a supersonic helium
gas jet to 6-µm spot diameter, leading to an estimated normalized field strength of
|E | = 5.6 or I = 0.7 × 1020 W/cm2. The actual intensities are possibly yet larger
(|E | ≈ 10) due to relativistic self-focusing. The electron densities are estimated to be
in the range from Ne/V = 1018 /cm3 to a few 1019 /cm3. Under these conditions, the
authors have observed a peak emission around 150 eV photon energy and a significant
contribution in the tail of the spectrum up to �ω = 2 keV.
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Theory

Even attosecond pulses have been predicted on different levels of sophistication. Lee
et al. [258] suggests attosecond X-ray pulses for |E | ≈ 10 on the basis of numer-
ical solutions of the relativistic version of Newton’s law (4.40) for optical pulses
of finite duration. Naumova et al. [265] performed particle-in-cell simulations that
self-consistently solve Maxwell’s equations and the relativistic equations of motion of
electrons and ions for |E | ≈ 3. In particular, they predict efficient (≈ 10%) generation
of single attosecond pulses from the mJ to the Joule level.

Let us finally note that our discussion starting from (4.56) – (4.58) up to this point
is based on the assumption of zero initial electron velocity. The corresponding more
general expressions for finite or even relativistic initial electron velocity can, e.g., be
found in Ref. [113]. This case, which corresponds to Compton scattering, offers the
interesting possibility to transfer momentum and energy from the electron towards
the emitted photons. Using “moderate” laser intensities corresponding to |E | = 1, a
counterpropagating beam of relativistic electrons and the backscattering geometry,
large X-ray powers can possibly be generated [112].

Compact sources of extreme UV or soft X-ray radiation from atoms or from free
electrons might find applications in nanometer lithography, in femtosecond X-ray
crystallography [266], or in high-resolution imaging.



Solutions

Problems of Chapter 1

1.1 In a “dark” room held at room temperature, one still has the unavoidable blackbody
radiation. The corresponding intensity I of electromagnetic radiation is given by
Planck’s law

I =
∫ ∞

0

h

c2
0

f 3

ehf/kBT − 1
df = h

c2
0

(
kBT

h

)4
π4

15
.

For T = 300 K one gets I = 0.7 × 10−2 W/cm2. Only a very (!) small fraction
of this intensity, however, is visible light (photon energies hf in the interval 1.5–
3.0 eV). To roughly estimate this fraction, we remember that most of the light stems
from the long-wavelength end of the visible spectrum, let us say from the interval
1.5–1.6 eV. The center frequency of that interval is f = 3.7 × 1014 Hz, its width is
df = 2.4×1013 Hz. This leads to an estimated intensity of visible light at T = 300 K
of I = 10−23 W/cm2. This value corresponds to a flux of about one photon through
your finger tip in six hours time – it does not get any darker at room temperature.

Note that it takes 22 orders of magnitude to get from the intensity of a “dark” room
to that of the sun on the earth. We will go another 29 orders of magnitude upwards in
this book.

Problems of Chapter 2

2.1 Under these conditions, the intensity I ∝ √
ε Ẽ2

0 (see (2.16)) is the same in air
and in the dielectric. In air ε = 1, in the dielectric ε = 10.9. ⇒ Ẽ0 in the dielectric
is given by 4 × 109 V/m/

√√
10.9 = 2.2 × 109 V/m.

2.2 There is no unique answer to this imprecise question ... The most stringent way
to interpret the question is that all frequency components of the pulse must lie in
the visible, i.e., roughly in the photon energy interval 1.5–3.0 eV, one octave. Let us
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assume that all frequency components have the same amplitude and the same phase,
which leads to the shortest pulse. This “box-spectrum” with a FWHM of �δω =
1.5 eV, ⇔ δω = 2.28 /fs, leads to sinc2(t)–pulses of δt = 2π×0.8859/δω = 2.44 fs
in duration (for the duration–bandwidth product δω δt see footnote in Sect. 2.3). With
a carrier frequency of �ω0 = 2.25 eV, ⇔ 2π/ω0 = 1.84 fs period of light, these
pulses contain 1.3 optical cycles. The electric field of these pulses with δω/ω0 = 2/3
is very nearly similar to that depicted in Fig. 2.3, where δω/ω0 = 0.60 has been
chosen.

By the way: The number of locked modes is given by the width of the spectrum
devided by the distance between adjacent modes, i.e., by the ratio δω/�ω. With
�ω = 2π × 100 MHz from Example 2.2 and δω = 2.28 /fs this leads to 3.6 × 106

locked modes.

2.3 We want to compute the Fourier transform (FT) of the N -th harmonic from a χ(N)

process, which is proportional to the FT of (Ẽ(t))N cos(Nω0t + Nφ). The envelope
Ẽ(t) ought to be “well behaved”. We specify that it may contain maxima/minima of
different heights, the largest maximum of which shall be centered around t = 0. The
key is to realize that the N -th power of Ẽ(t) highlights a narrow time window around
t = 0. If, for example, the envelope has decreased to 90% of the peak, the 51st power
has already dropped to the negligible amount of 0.951 = 0.0046. This allows for a
truncated Taylor expansion of the envelope around t = 0, i.e.,

(
Ẽ(t)

)N =
(

Ẽ0 + 1

1!
dẼ

dt
(0)︸ ︷︷ ︸

= 0

t + 1

2!
d2Ẽ

dt2
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=: −C Ẽ0 ≤ 0

t2 + ...

)N

≈
(
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)N

= ẼN
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 N

(
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)n

≈ ẼN
0

∞∑
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(
−NCt2
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for N → ∞

= ẼN
0 e−NCt2

.

The temporal width of this Gaussian obviously scales ∝ 1/
√

NC and is solely deter-
mined by the parameter C ≥ 0, which is proportional to the curvature of the envelope
at the maximum. The FT of this Gaussian is also Gaussian with width ∝ √

NC. Note
that our reasoning fails for box-shaped1 or flat-top pulse envelopes where C = 0.

1 The N -th power of a box-shaped pulse is again box-shaped for arbitrary N . Thus, all
harmonics strictly have the identical sinc2-shape in the intensity spectrum.
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Hence, we have to add C �= 0 to our above checklist for “well behaved” pulses. For
example, sinc, Lorentzian or sech-envelopes Ẽ(t) with/without additional temporal
satellite pulses of whatever shape would fall into the category “well behaved”.

Alternatively, one can argue within the frequency domain to obtain the same result:
The N -th harmonic spectrum is proportional to the N -fold convolution of the laser
spectrum with itself, which, for large N , again leads to a Gaussian shape.

2.4 We start from a sequence of pulses (not necessarily a periodic train of pulses),
the CEO phase φ of which might fluctuate randomly. The pulse envelope and hence
the spectrum, on the other hand, are assumed to be stable. This sequence of pulses
could also be replaced by a sequence of pulses that has previously been spectrally
broadened by SPM – which does not change their CEO phase. The idea: If we could
take advantage of a difference-frequency mixing process with phase φ − φ = 0, the
phase would obviously drop out. In order to get there, let us filter out two contributions
from the original spectrum, one at the low-frequency end, with carrier frequency ω1,
and another one at the high-frequency end, with carrier frequency ω2. They correspond
to temporal pulse envelopes Ẽ1(t) and Ẽ2(t), respectively. Each of these pulses is
clearly longer than the original one, but they both have the same CEO phase φ (or,
depending on the choice of the carrier frequencies ω1 and ω2, a CEO phase given by
φ plus some constant offset – which is omitted for clarity). Sending the two pulses
onto a χ(2) medium generates the electric field E(2)(t) given by (see (2.39))

E(2)(t) ∝ χ(2) ∂2

∂t2

(
Ẽ1(t) cos(ω1t + φ) + Ẽ2(t) cos(ω2t + φ)

)2

= χ(2) ∂2

∂t2

(
Ẽ1(t)Ẽ2(t) cos((ω2 − ω1) t + (φ − φ)) + ...

)
≈ − χ(2) ω2

DFG Ẽ1(t)Ẽ2(t) cos(ωDFGt + 0) + ...

= ẼDFG(t) cos(ωDFGt + 0) + ... .

Here we have again ignored propagation effects within the nonlinear medium and we
have omitted all terms except for the difference-frequency generation (DFG) at carrier
frequency ωDFG = (ω2 −ω1) from the second line on. Towards the third line we have
neglected the temporal derivatives of the envelopes. In the fourth line we have lumped
all prefactors into an effective DFG envelope ẼDFG(t). Obviously, the phase of the
resulting pulse is zero, hence constant – even for fluctuating φ. This contribution can
be separated from SHG and sum-frequency generation via its wavevector of light.
If the original pulse spans more than one octave, i.e., if ω2 > 2ω1, the difference
frequency (ω2 − ω1) > ω1 even lies within the original spectrum.

A corresponding scheme using a seeded optical parametric amplifier has been
discussed in Ref. [38]. This scheme is useful for amplified laser pulses. Experiments
using pulses directly from a laser oscillator, spectrally broadened via self-phase mod-
ulation, have also been reported [39].

2.5 The laser pulse Eφ=0(t) in the time domain corresponds to a spectrum Eφ=0(ω)

in the Fourier domain (also see Example 2.4). We can take advantage of the fact that
the CEO phase φ corresponds to a phase factor in the spectral domain, i.e.,
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Eφ=0(ω) → Eφ �=0(ω) = Eφ=0(ω) e−iφ for ω ≥ 0 ,

and
Eφ=0(ω) → Eφ �=0(ω) = Eφ=0(ω) e+iφ for ω ≤ 0 .

Transforming back into the time domain delivers the desired laser electric field
Eφ �=0(t). Note that this procedure requires just two (numerical) Fourier transforma-
tions and does not explicitly decompose the pulse into an envelope and a carrier-wave
oscillation. We do not even have to specify the carrier frequency ω0. This procedure
does, however, tacitly assume that the positive and negative frequency components
do not overlap. This condition is usually fulfilled even for single-cycle pulses (see
Example 2.4). A notable exception are the box-shaped pulses discussed in Sect. 3.5.

2.6 Within the narrow-band or long-pulse limit, the shape as well as the tempo-
ral duration of the pulse, �t , remain unchanged when going from vacuum into the
dielectric. For a plane wave propagating along the z-direction, the duration is con-
nected to the longitudinal extent of the pulse envelope in vacuum and in the dielectric
medium via �zvac = c0 �t and �zmed = vgroup �t , respectively. Thus, within the
dielectric, the factor vgroup/c0 ≤ 1 compresses the pulse in real space and its en-
ergy density increases: As usual, the electromagnetic energy per volume is given by
1
2 (D · E + B · H ) = ε0εE

2. If we neglect absorption and reflection of electromag-
netic energy at the air/dielectric interface, the total energy is the same if the pulse is
either entirely in vacuum or entirely in the dielectric. Thus, we have

ε0Ẽ
2
0,vac �zvac = ε0εẼ

2
0, med �zmed

= ε0Ẽ
2
0, vac c0 �t = ε0εẼ

2
0, med vgroup �t ,

where Ẽ0, vac and Ẽ0, med are the peak of the field envelope in vacuum and in the
dielectric medium, respectively. Solving for Ẽ2

0, med we get

Ẽ2
0, med = 1

ε

c0

vgroup
Ẽ2

0, vac .

For the corresponding peak intensities I ∝ √
ε Ẽ2

0 according to (2.16) this leads to

Imed = 1√
ε

c0

vgroup
Ivac = vphase

vgroup
Ivac .

It is straightforward to additionally account for reflection losses, which, in the narrow-
band limit, only depend on ε(ω0) via the Fresnel coefficients (and not on vgroup). For
“slow light”, i.e., for vgroup → 0, the peak electric field and the intensity within the
dielectric can become much larger than in vacuum, enhancing the effective optical
nonlinearities. For the special case vgroup = vphase = c0/

√
ε, we recover Imed = Ivac

and Ẽ0, med = Ẽ0, vac/
√√

ε (see Problem 2.1).
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Problems of Chapter 3

3.1 Introducing a Stokes damping γ into Newton’s second law (3.1) leads to the
real part of the refractive index

n(ω) = Re
(√

1 + χ(ω)
)

,

with the susceptibility

χ(ω) = e2Nosc

ε0V me︸ ︷︷ ︸
:= ω2

pl

1

�2 − ω2 − iγω

(compare (3.3)). The absorption coefficient is

α(ω) = 2
ω

c0
Im
(√

1 + χ(ω)
)

.

As usual, phase and group velocities are given by

vphase(ω) = ω

K
= ω

ω

c0
n(ω)

= c0

n(ω)

and

vgroup(ω) = dω

dK
= 1

d

dω
K

= 1
d

dω

(
ω

c0
n(ω)

) = c0

n(ω) + ω
dn

dω

via the frequency ω and the real part of the wave number K . The group velocity
shown in Fig. 3.16 exhibits a rather complex behavior, whereas the index profile n(ω)

is as usual. Close to resonance, ω ≈ �, we have anomalous dispersion with dn
dω

< 0.
This reduces the denominator in the expression for vgroup(ω) below unity and leads to
superluminal group velocities. For large negative slopes, even the group velocity itself
becomes negative. Let us focus our discussion on frequencies ω with vgroup(ω) > c0
or vgroup(ω) < 0 (dark gray area in Fig. 3.16). Be aware that this spectral region
experiences strong absorption. For example, under the conditions of Fig. 3.16 and for
�� = 1.5 eV, the absorption length would be merely 0.2 µm. For a long Gaussian
pulse whose spectrum is narrow and centered in this region, and for a medium that
is only few absorption lengths in thickness, the pulse actually seems to travel with a
speed exceeding c0, while approximately maintaining its shape (we give an intuitive
explanation below) – but the amplitude of the pulse decays exponentially during
propagation. This is the Garrett and Mc Cumber effect [41,42] that has been observed
experimentally [43]. For a short Gaussian pulse whose spectrum encompasses the
resonance, some frequency components propagate with superluminal velocity. Other
parts of the spectrum propagate with luminal or subluminal velocity and with much
less attenuation. Thus, one obtains substantial spectral reshaping of the pulse. Under
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�c0

��	

n( )�

1

0

0 2

vgroup( )�


c0

� �( )

0

1

subluminal

Fig. 3.16. Group velocity vgroup(ω) of the Lorentz oscillator model. The upper two curves show
the absorption spectrum α(ω) and the refractive index n(ω) spectrum, respectively. The dashed
horizontal lines correspond to α = 0 and n = 1, respectively. Parameters are: γ /� = 0.1
and ω2

pl/�2 = 0.05. With decreasing damping γ /�, the dark gray region (corresponding to
anomalous dispersion) shrinks in width.

these broadband conditions, the group velocity at a particular frequency – for instance
at the carrier frequency vgroup(ω0) – loses its meaning. Remember that the concept
of the group velocity is usually introduced by a Taylor expansion of the dispersion
relation K(ω) or by considering the beating of two nearby frequency components.

Under broadband Gaussian conditions, the pulse centrovelocity vcentro [44] is a
helpful extension. It is related to the average energy flow of an optical pulse in a
dispersive medium and is distinct from the energy transport velocity [45]. For a plane
wave with a wavevector K directed along the z-coordinate and with E and H polarized
along x and y, respectively, we define

vcentro = z

t̄(z)
,

where the “center of mass” time t̄ (z) for propagation from 0 (e.g., the front of a
sample) towards coordinate z (e.g., the end of a sample) is defined as

t̄ (z) =

∫ +∞

−∞
t S(z, t) dt∫ +∞

−∞
S(z, t) dt

.
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S(z, t) is the z-component of the Poynting vector. Note that the pulse centrovelocity
refers to a possible measurement. It can be shown [44] that the delay t̄ (z) consists
of two contributions: A net group delay, essentially the average of the group delay
z/vgroup(ω) weighted with the pulse spectrum, and a so-called reshaping delay arising
from the frequency-dependent transmission. According to our above discussion, the
reshaping delay vanishes for spectrally narrow pulses and samples with a thickness
of only a few absorption lengths, thus vcentro = vgroup(ω0). On the other hand, for
broadband pulses, vcentro �= vgroup(ω0). A corresponding discussion, exemplified on
the Lorentz oscillator model, can be found in Ref. [44].

Let us now give the promised intuitive explanation for the Gaussian narrow-band,
thin-sample limit for which the time delay t̄ (z), the pulse centrovelocity, and the group
velocity can all become negative (see numerically exact solutions shown in Fig. 3.17).
According to the above definition, a negative time delay t̄ (z) occurs when the “center
of mass” of the transmitted pulse emerges from the sample at an instant before the

z=0

z=l/2

z=l

(a) (b)

�4

�40

0 TIME t 0 TIME t

Fig. 3.17. Electric field E(z, t) versus time t at three positions: z = 0, z = l/2, and z = l.
(a) Propagation in vacuum, i.e., vgroup(ω0) = c0 = vphase(ω0), for reference. (b) Propagation
through a resonant Lorentz oscillator medium under conditions of negative group velocity,
i.e., vgroup(ω0) < 0, and also vcentro < 0. The electric field is obtained numerically via
E(z, t) ∝ ∫∞

0 E+(0, ω) exp(i ω
c0

√
1 + χ(ω) z−iωt) dω + c.c. Here, E+(0, ω) is the positive-

frequency part of the spectrum of the Gaussian pulse at z = 0 given by E+(0, ω) ∝ exp(−(ω−
ω0)2/σ 2) (see Example 2.4). The oscillator parameters are: ω2

pl/�2 = 0.05 and γ /� = 0.1
(see Fig. 3.16). The pulse parameters are: ω0/� = 1 and σ/ω0 = 0.02. The medium has a
thickness of l = 20 c0/ω0. Under the above conditions, this corresponds to about 12 absorption
lengths, i.e., α(ω0) l ≈ 12. At this point, one can already see distortions of the Gaussian pulse
shape. The curves in (b) are multiplied by the indicated factors to compensate for the exponential
attenuation.
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“center of mass” of the incident pulse enters the sample. This appears to violate
causality, even though the result is based on the (causal) Maxwell equations. Let
us discuss this situation in the time domain: First, remember that absorption occurs
if the oscillator follows the excitation with a π/2 phase shift. As a resonant pulse
with ω0 ≈ � approaches the sample surface, its leading edge excites oscillators in
the medium. On a timescale roughly determined by the inverse damping rate γ , the
oscillators have a phase shift different from π/2 and some light can pass the sample.
For longer times approaching the “center of mass” of the incident pulse, a π/2 phase
shift evolves and light is heavily absorbed. This effectively “chops off” the center as
well as the trailing edge of the incident pulse. The “center of mass” of the emerging
pulse stems from the leading edge of the incoming pulse. All the rest is absorbed.
There is no problem with causality. The fact that the pulse shape does not appear to be
distorted – even though it is strongly distorted – is a particularity of Gaussian pulses
(or pulses close to a Gaussian) in the long-pulse, thin-sample limit [41].

This overall reasoning is justified for samples with a thickness of ten absorp-
tion lengths or less [41, 43]. For many more absorption lengths, sometimes called
the asymptotic (z → ∞) description or the “mature dispersion limit”, the oscilla-
tors at the end of the sample no longer experience the incident field but rather a
strongly modified driving field. Be aware that even a very narrow incident Gaus-
sian spectrum E+(0, ω) ∝ exp(−(ω − ω0)

2/σ 2) with ω0 = � and σ 
 γ at
z = 0 can experience a huge (� σ ) spectral redshift of its intensity spectrum
∝ |E+(z, ω)|2 = |E+(0, ω)|2 exp(−α(ω) z) if z corresponds to hundreds or thou-
sands of absorption lengths. If one starts on the high-energy wing of the absorption
line, one gets a huge blueshift. Thus all of the relevant frequency components of the
pulse eventually (z → ∞) lie in the region of subluminal group velocity where the
absorption is lower and the pulse propagates slower than c0. Readers who wish to
speculate about implications on the speed of information transfer over “long” dis-
tances should keep this in mind. In any case, the light emerging from the sample is
attenuated by tens of orders of magnitude. The asymptotic limit z → ∞ has been
discussed for the narrow-band Gaussian case [46], for box-shaped pulses [47], and
for pulses with a steep rising edge [48]. The “mature” spectral chirp acquired during
propagation over such long distances leads to the Sommerfeld and the Brillouin pre-
cursor [45, 49] in the time domain. By the way: The very intuitive acoustic analogue
is discussed in Ref. [50].

3.2 With the definition of the dipole matrix element

d =
∫ +∞

−∞
ψ∗

2 (x)(−e x) ψ1(x) dx ,

and with the wave functions

ψ1(x) =
√

2

L
sin

(
1 π

L
x

)

ψ2(x) =
√

2

L
sin

(
2 π

L
x

)
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we obtain

d = −2e

L

∫ L

0
sin

(
2π

L
x

)
x sin

(π

L
x
)

dx

= −2e

L

L2

π2

∫ π

0
sin(2X) X sin(X) dX︸ ︷︷ ︸

=−8/9

= 16

9π2
eL ≈ 18% eL .

This is no surprise – the dipole matrix element is proportional to the width of the box
L. Also, it can already be seen from Fig. 3.2 that d has to be substantially smaller
than eL because the excursion of the electron center of mass is much smaller than L.

Similarly, the dipole moment d for a transition from the ground state to an arbitrary
state number N in the well is zero for all odd integer N . We obtain, e.g., d ≈ 1.4% eL
for N = 4 and d ≈ 0.4% eL for N = 6. Obviously, the transition from the ground
state to the first excited state has a much larger dipole moment than all other transitions.
This a posteriori justifies the two-level system approximation for this model problem.

3.3 The complete optical Bloch equations including dephasing read

u̇ = + � v − u/T2

v̇ = − � u − 2 �Rw − v/T2

ẇ = + 2 �Rv .

In the stationary limit we have ẇ = 0. From the third line it follows that v = 0, hence
v̇ = 0. Inserting v = 0 into the first line we, furthermore, get u = 0. From the second
line with v̇ = u = v = 0 we finally get w = f2 − f1 = 0, i.e., with f2 + f1 = 1,
the occupation of the excited state and of the ground state are both 50%, the system
is transparent. Note that the only point at which the strong dephasing assumption has
entered is the existence of a stationary limit. According to the equations of motion
for u and v, this limit is reached on a timescale comparable to T2.

If the inversion additionally experiences relaxation towards the ground state, i.e.,
towards w = −1, according to ẇ = −(w + 1)/T1, with the occupation relaxation
time or longitudinal relaxation time T1, the steady-state inversion is generally smaller
than zero, i.e., −1 ≤ w ≤ 0. In the limit T1 → 0, we get w = −1 (⇔ f2 = 0
and f1 = 1) from the third line of the optical Bloch equations, i.e., from ẇ = 0 =
+ 2 �Rv − (w + 1)/T1 ≈ − (w + 1)/T1.

3.4 From Fig. 3.1 we see that the positive frequency part of the laser spectrum
resonantly (ω0 = �) excites the positive frequency pole of the two-level system
resonance indeed. The maximum of the laser spectrum at negative frequencies, on
the other hand, has a detuning of 2ω0 = 2�. This leads to a beat note with that
detuning, which is the origin of the rapidly oscillating component of the inversion
w(t) in Figs. 3.4(a) and (b).
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3.5 In order to obtain a nonvanishing “THG in the disguise of SHG” contribution,
the low-frequency end of the THG spectrum needs to overlap with the spectrometer
frequency 2ω0. For sinc2-pulses and within the χ(3) limit, the width of the THG
spectrum with carrier frequency 3ω0 is three times that of the fundamental spectrum,
i.e., it is given by 3 δω. This leads to the condition 2ω0 = 3ω0 − 3 δω/2 ⇔ δω/ω0 =
2/3, equivalent to a spectral width of one octave (see solution of Problem 2.2). With
the duration–bandwidth product of δω δt = 2π × 0.8859 for an unchirped sinc2-
pulse (see footnote in Sect. 2.3 or solution of Problem 2.2) and with �ω0 = 1.5 eV,
this corresponds to a maximum pulse width of tFWHM = δt = 3.6 fs. Note, however,
that the “THG in the disguise of SHG” signal would still be arbitrarily small at this
point. Thus, the 5-fs pulses discussed in Sect. 7.2 can only lead to significant “THG
in the disguise of SHG” deep inside the nonperturbative regime.

3.6 In order to arrive at an instantaneous response according to (2.37), the two-level
system must clearly react instantaneously. In other words: The time derivative of
the Bloch vector must be approximately zero (adiabatic following). For a harmonic
oscillator, this is fulfilled if the transition frequency � is much larger than the driving
frequency ω0, i.e. for �/ω0 � 1. The inversion also follows adiabatically if the
longitudinal damping 1/T1 is large. In these limits, the Bloch equations (also see
Problem 3.3) become

0 = + � v − u/T2

0 = − � u − 2 �R(t)w − v/T2

0 = + 2 �R(t)v − (w + 1)/T1 .

Solving the first line for u, inserting this result into the second line, solving for v and
inserting into the third line delivers

w(t) = − 1

1 + T1/T2

�2 + 1/T 2
2

4 �2
R(t)

and

u(t) = − 2 �R(t) �

�2 + 1/T 2
2

w(t) .

In the perturbative limit, i.e., for �R/� 
 1, we can expand the expression for w(t)

in a Taylor series using 1/(1+x) ≈ (1−x) for x 
 1. With the macroscopic optical
polarization P according to (3.20), this immediately leads to

P(t) = N2LS

V
d u(t)

= N2LS

V
d

2 �R(t) �

�2 + 1/T 2
2

(
1 − T1/T2

�2 + 1/T 2
2

4 �2
R(t) + ...

)

= ε0

(
χ(1)E(t) + χ(3)E3(t) + ...

)
.
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From the second to the third line we have inserted for the Rabi frequency ��R(t) =
dE(t) and lumped all prefactors into χ(1) and χ(3). This form is obviously identical
to (2.37), with χ(2) = 0 because of inversion symmetry. χ(3) is negative. Note that, in
the limit � → ∞, the linear susceptibility scales as χ(1) ∝ 1/� and the third-order
susceptibility according to χ(3) ∝ 1/�3. Also note that χ(3) → 0 for T2 → ∞,
i.e., if we had not introduced a finite transverse damping 1/T2 at the beginning, χ(3)

would have been zero.
We summarize for the odd-order nonlinear optical susceptibilities χ(N) of the

two-level system in the far off-resonant perturbative limit

∣∣χ(N)
∣∣ ∝

(
�

ω0

)−N

for
�

ω0
� 1 and

�R

�

 1 .

3.7 Taking the temporal derivative of the first line of the Bloch equations (3.17) and
inserting v̇ from the second line gives

ü + �2u = −2��Rw .

Similarly, we obtain with the third and the second line

ẅ + 4�2
Rw = −2��Ru .

The physics is simply that of two coupled harmonic oscillators with “displacements”
u and w. Without the coupling on the RHS, one oscillator would have eigenfrequency
�, the other one 2�R. The ansatz that u(t) and w(t) both oscillate as a sine or cosine
with frequency �eff solves the above equations for

�eff =
√

4�2
R + �2 .

This is just (3.32). The desired initial condition (u(t0), v(t0), w(t0))
T of the Bloch

vector at time t0 = 0 can be fulfilled by a linear combination of these solutions. With
some patience, this leads to (3.31).

3.8 The level diagram is schematically shown in Fig. 3.18.

3.9 Introducing the ratio R = a2/a1, it is easy to arrive at the Riccati-type equation
of motion [84, 85]

dR
d (ω0t)

= i
�R(t)

ω0
− i

�

ω0
R − i

�R(t)

ω0
R2 ,
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Fig. 3.18. Scheme of the eigenfrequencies ω of the Hamilton matrix (3.55) for off-resonant
excitation, i.e., for � = 3 ω0. Note that, for a given Rabi frequency �R/�, the splitting is much
smaller here as compared to the case of resonant excitation, where � = ω0 (see Fig. 3.15).

with A2(t) = −A0(t). The inversion w of the two-level system, for example, results
as

w = |a2|2 − |a1|2 = |R|2 − 1

|R|2 + 1
,

where we have used the normalization condition |a1|2 + |a2|2 = 1.

Problems of Chapter 4

4.1 (a) The dipole moment of one oscillator is (d u) (see (7.6) and (7.14)) or (−e x).
The peak value of u = 1 is reached for a Rabi oscillation with Ẽ0 = 4 × 109 V/m in
GaAs, hence, e.g., for d = 0.5 e nm (GaAs) we obtain x0 = 0.5 nm ≈ a ∝ (Ẽ0)

0.
(b) From Newton’s law we get the peak electron displacement

x0 = eẼ0

meω
2
0

∝ (Ẽ0)
+1. For ZnO parameters (me = 0.24 × m0, �ω0 = 1.5 eV) we obtain x0 =

0.56 nm ≈ a.
Even for laser intensities around I = 2 × 1012 W/cm2, ⇔ Ẽ0 = 4 × 109 V/m

(see Example 2.1), the classical crystal-electron displacements stay on the order of
one lattice constant a.

4.2 As pointed out above, it is convenient to express the laser electric field as a sine
at this point, i.e., E(t) = Ẽ0 sin(ω0t + φ′). With φ′ = φ + π/2, this is equivalent
to the form otherwise used in this book, i.e., E(t) = Ẽ0 cos(ω0t + φ) with the CEO
phase φ. The vector potential becomes Ax(t) = −Ẽ0/ω0 cos(ω0t + φ′) . Inserting
the ansatz (4.18) into the Schrödinger equation in the radiation gauge, and after some
straightforward algebra, we obtain the relation for the coefficients aN
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2N aN = −eẼ0kx

meω
2
0︸ ︷︷ ︸

=: u

(
aN+1 + aN−1

)
+ 〈Ekin〉

�ω0︸ ︷︷ ︸
=: 2v

(
aN+2 + aN−2

)
.

Note that this relation contains real quantities only. Reiss [90] introduced the gener-
alized Bessel functions

JN(u, v) =
+∞∑

M=−∞
JM(v) JN−2M(u) ,

which fulfill the mathematical identity ((B10) in that paper)

2N JN(u, v) = u
(
JN+1(u, v) + JN−1(u, v)

)
+ 2v

(
JN+2(u, v) + JN−2(u, v)

)
.

Comparison of the coefficients delivers aN = JN(u, v). Switching back to
our definition of the laser electric field, we obtain aN → exp(i π

2 N) aN =
exp(i π

2 N) JN(u, v), which is simply (4.24).

4.3 Following the lines of Sect. 4.3.2, it is easy to arrive at

vgroup(t) = −a�

�
sin

(
�B

ω0
sin(ω0t) + �dc

B t

)
.

Upon using the identity sin(X +Y ) = sin(X) cos(Y )+ cos(X) sin(Y ) we further get

vgroup(t) = −a�

�

{
sin

(
�B

ω0
sin(ω0t)

)
cos(�dc

B t)

+ cos

(
�B

ω0
sin(ω0t)

)
sin(�dc

B t)

}

= −a�

�

{[
2

∞∑
M=0

J2M+1

(
�B

ω0

)
sin
(
(2M + 1) ω0t

)]
cos(�dc

B t)

+
[
J0

(
�B

ω0

)
+ 2

∞∑
M=1

J2M

(
�B

ω0

)
cos
(
2Mω0t

)]
sin(�dc

B t)

}
.

In the last step, we have employed two of the mathematical identities for Bessel
functions (see formulae 9.1.42 and 9.1.43 in Ref. [80]). For �dc

B = 0, we re-
cover (4.38). Let us discuss just one aspect of the case �dc

B �= 0: Not only
odd, but also even, N = 2M , harmonics occur in the radiated intensity spectrum
Irad(ω) ∝ |ω vgroup(ω)|2. This effect simply arises from the breaking of the inver-
sion symmetry via the dc field and is fairly robust against damping (scattering), also
see [103]. Second-harmonic generation from a biased n-doped GaAs/AlAs superlat-
tice has indeed been observed experimentally at �ω0 = 2.9 meV [104].
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4.4 With Stokes damping and within the nonrelativistic regime, we have the equation
of motion for the velocity component βx

dβx

dt̃
+ βx

τ
= E cos(t̃) .

Here we have introduced the (normalized) damping time τ . With the initial condition
βx(0) = β0

x , the solution is

βx(t̃) = E τ

1 + τ 2

(
cos(t̃) + τ sin(t̃) − e−t̃/τ

)
+ β0

x .

Introducing this expression for βx on the RHS of the equation of motion of the velocity
component βz leads to

dβz

dt̃
+ βz

τ
= Eβxcos(t̃) = E

[
E τ

1 + τ 2

(
cos(t̃) + τ sin(t̃) − e−t̃/τ

)
+ β0

x

]
cos(t̃) .

Only the term ∝ E2 cos2(t̃) on the RHS has a nonvanishing time average. With
〈cos2〉 = 1/2 and for times t̃ � τ we obtain the steady-state drift velocity 〈βz〉 with

〈βz〉 = E2

2

τ 2

1 + τ 2
.

Note that this result neither depends on the initial condition βx(0) nor on βz(0). If,
for example, the damping time is really as short as 5 fs and we have �ω0 = 1.5 eV,
τ = ω0 5 fs = 11.2 and the factor τ 2/(1 + τ 2) = 0.99, which is only slightly less
than 1 for the limit τ → ∞.

4.5 We have seen that the fundamental emission frequency ω̃0 for initial condition
ζ0 = 0 follows the simple form of (4.63). Thus, our spectrometer or filter frequency
of 0.985 × 2ω0 = 2ω̃0 immediately gives the condition for the angle θ included by
the wavevector of light and the detection direction

cos θ =
(

1 − 1

0.985

)
4

E2
+ 1 ,

which leads to θ = 20 degrees for E2 = 1. This means that you will only detect a SHG
signal on a cone around the wavevector of light with opening angle θ (for illustration
of this cone see Fig. 7.26). Other spectrometer frequencies and/or other values of E2

merely change the value of θ . Due to relativistic effects, the intensity on this cone is
modulated with the azimuthal angle ϕ. For ζ0 �= 0, one still gets a cone, however, its
axis is no longer parallel to K (see (4.61) and (4.62)), but lies in the xz-plane.

4.6 Inserting Ẽ0/B̃0 = c0 from Sect. 2.2 into (4.78) and introducing the cyclotron
frequency ωc according to (4.45) immediately leads to (4.79) for the Schwinger field
Ẽ0.
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Problems of Chapter 5

5.1 The total potential V (x) resulting from the binding potential U(x) plus the
contribution of the laser electric field is shown in Figs. 5.3 and 5.9. In contrast to the
rectangular potential well (see Fig. 5.4), the barrier height is also significantly reduced
for the Coulomb potential. Indeed, for a certain field, the barrier-suppression field,
the peak of the barrier on the LHS is as low as −Eb. A simple and straightforward
curve discussion shows that, for the hydrogen potential, this happens at a peak laser
electric field given by

Ẽ0 = E2
b

4 e

4πε0

e2
= 3.2 × 1010 V/m .

This field is comparable to that for unity Keldysh parameter, i.e., Ẽ0 = 2.8×1010 V/m
from Example 5.1 for �ω0 = 1.5 eV. Thus, for increasing intensity of light one actu-
ally has a transition from multiphoton absorption directly to above-barrier ionization
(rather than to tunneling) for the hydrogen atom under these conditions. This is, how-
ever, not true for all types of atoms. For hydrogen atoms and mid-infrared excitation
with, e.g., �ω0 = 0.15 eV, one would have the scenario: multiphoton absorption →
electrostatic tunneling → above-barrier ionization.

As not only the barrier width is reduced with increasing laser electric field but
also the barrier height, the ionization rate is drastically influenced for �ω0 = 1.5 eV.
Hence, (5.13) largely underestimates the actual rate for the hydrogen atom, which
can be obtained from exact numerical solutions of the time-independent Schrödinger
equation or by the approximative Ammosov–Delone–Krainov theory [149–153] (also
see discussion in Ref. [135]). Essentially, the prefactor �0

ion in (5.13) is replaced by
a function of the atomic quantum numbers and the ionization potential as well as by
a power of the instantaneous laser electric field E(t). The exponential dependence

�ion(t) ∝ e
− Eexp

|E(t)|
remains, however, with Eexp ∝ Eb.

5.2 We consider a “+” or “−” circularly polarized laser electric field propagating
along z (spatial dependence suppressed) according to

E(t) = Ẽ(t)

⎛
⎝+ cos(ω0t + φ)

± sin(ω0t + φ)

0

⎞
⎠ .

For constant envelope Ẽ(t) = Ẽ0, we have |E(t)| = Ẽ0 = const., thus the ionization
rate according to (5.13) is constant in time and does not oscillate with the carrier
frequency of light ω0. After ionization of the atom, Newton’s law tells us that the
electron never returns to the nucleus at r = (0, 0, 0)T. Consequently, no harmonics
are generated along the lines of our reasoning for linear polarization.
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5.3 The somewhat arbitrary threshold in Fig. 5.5 lies around |E(t)|/Eexp = 0.05,
which is ten times lower than for the peak electric field Ẽ0 in Fig. 5.12. If one reduces
Ẽ0 in the calculation (according to (5.20) and (5.13)) to Ẽ0/Eexp = 0.05 (all other
parameters as in Fig. 5.12), one indeed gets nearly 100% modulation of Ne(t →
∞) versus φ. However, the absolute electron yield becomes ridiculously low, i.e.,
Ne(∞)/N0

atom = 3 × 10−8 for φ = 0. Also note that one leaves the electrostatic
regime for too low values of Ẽ0 (see footnote in Sect. 5.3).

5.4 For the parameters of Figs. 5.7 and 5.8, the dipole moment d for a transition
from the ground state of the well to its first excited state is given by d ≈ 18% eL =
0.11 e nm (see Problem 3.2). With the peak laser electric field of Ẽ0 = 3 × 1010 V/m
corresponding to γK ≈ 1 and with �ω0 = 1.5 eV, this translates into �R/ω0 =
2.2. At this point, the two-level system approximation fails because of the massive
tunneling out of the well visible in Fig. 5.7, whereas tunneling is of minor importance
in Fig. 5.8 where γK ≈ 2 and �R/ω0 = 1.1. Thus, for the conditions of Fig. 5.7,
the two-level system approximation fails if the peak Rabi frequency �R exceeds the
carrier frequency of light ω0. The validity of the two-level system approach would
obviously extend for larger well widths L as γK remains unchanged whereas �R
increases proportional to L. In any case, this reminds us that there are nonlinear
optical contributions from internal excitations of the well that are not at all accounted
for by our semiclassical treatment of high-harmonic generation.

5.5 Figure 3.4 refers to transitions from one discrete state #1 into another discrete
state #2, while Fig. 5.12 describes transitions from a discrete state into a continuum of
unbound states. Thus, the two-level system coherence in Fig. 3.4, i.e., the amplitude
of the superposition state composed of the two eigenstates ψ1 and ψ2 (see Sect. 3.2),
oscillates with a single frequency, namely the transition frequency �. In contrast to
this, for the ionization of atoms, we have a broad distribution of transition frequen-
cies, which interfere destructively and lead to a partial apparent loss of coherence
(Fig. 5.12). Hence, e.g., Rabi flopping no longer occurs.

Problems of Chapter 7

7.1 For space inversion, i.e. r → −r , the LHS of (7.27) transforms as jpd → −jpd.
As the wavevector K → −K and the electric field E → −E, the RHS of (7.27)
→ −RHS. Thus, the photon-drag tensor T can be nonzero in an inversion-symmetric
material. This is consistent with our reasoning in Sect. 2.5, where we have argued with
the magnetic field of the laser. A similar reasoning holds for the SHG polarization in
(7.32).

7.2 In the perturbative regime and within the range of validity of the acceleration
theorem [145], Newton’s second law together with the Lorentz force for an isotropic
semiconductor with (constant) effective electron mass me and electron charge −e

r̈ = v̇ = −e
1

me
(E + v × B)
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turns into
r̈ = v̇ = −e M−1

e (E + v × B)

for reduced symmetry. Here we have introduced the (velocity-independent) 3 × 3
inverse effective-mass tensor M−1

e with components [22, 145]

(
M−1

e

)
ij

= 1

�

∂vi

∂kj

(0) = 1

�2

∂2Ee

∂ki∂kj

(0) .

k is the electron wavevector. For example, for cubic symmetry, a possible energy
dispersion relation – which is parabolic for any given direction of k – is

Ee(k) = �
2k2

2 m

(
1 + W

k2
xk

2
y + k2

yk
2
z + k2

z k
2
x

k4

)
,

where the mass m and the dimensionless warping W are material parameters (see
Fig. 7.27). Such a form can indeed be derived for the valence band from k · p pertur-
bation theory [22] in the limit of small |k|.

kx

ky

Fig. 7.27. Energy dispersion with cubic symmetry (warping parameter W = −3) versus kx

and ky for kz = 0. Such a “warped” dispersion relation is typical for the valence band of many
semiconductors. According to our reasoning in Sect. 7.4, the photon-drag current would still
be parallel to the wavevector of light if the latter is oriented along the principal cubic axes or
along the diagonals, i.e., if ϕ = 0, π/4, π/2, ...
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Again using linear polarization of light according to

E(t) = Ẽ cos(ω0t + φ) =
⎛
⎝ Ẽ1

Ẽ2

Ẽ3

⎞
⎠ cos(ω0t + φ) ,

we obtain to first order in the laser electric field (see Sect. 4.4.1)

v = − e

ω0
M−1

e Ẽ sin(ω0t + φ) .

Note that, for reduced symmetry, v and E are generally no longer parallel to each
other. To second order in the laser electric field, taking advantage of the fact that, for
a plane wave according to the second Maxwell equation, the vectors E, B, and K

follow

B(t) = 1

ω0
K × E(t) = 1

c
K̂ × E(t) ,

with the unit wavevector of light K̂ = K/|K| and the medium dispersion relation of
light |K| = ω0/c, we have to solve the equation of motion

r̈ = v̇ = −e M−1
e

[(
− e

ω0
M−1

e Ẽ

)
×
(

1

c
K̂ × Ẽ

)]
sin(ω0t + φ) cos(ω0t + φ)︸ ︷︷ ︸

= 1

2
sin(2ω0t + 2φ)

.

For the initial conditions v(0) = 0 and r(0) = 0 (see Sect. 4.4.1), we obtain

v(t) = + e2

4ω2
0c

M−1
e

[(
M−1

e Ẽ
)

×
(
K̂ × Ẽ

)] (
1 − cos(2ω0t + 2φ)

)
and

r(t) = + e2

4ω2
0c

M−1
e

[(
M−1

e Ẽ
)

×
(
K̂ × Ẽ

)] (
t − 1

2ω0
sin(2ω0t + 2φ)

)
.

Again, the motion consists of a constant drift, the photon-drag effect, and second-
harmonic generation (SHG). But: For reduced symmetry, both are no longer neces-
sarily parallel to the wavevector of light K . Details depend on the precise form of the
inverse effective-mass tensor M−1

e . It is clear, however, that the components of both,
the photon-drag current as well as of the SHG are generally linear forms in K̂ and
quadratic forms in Ẽ. Thus, lumping all the prefactors into the coefficients Tijkl , we
can express the components of the photon-drag current-density vector according to

ji = −eNe

V
〈vi〉 =

3∑
j,k,l=1

Tijkl K̂j ẼkẼl ,

which is identical to (7.27). In analogy, the contribution of the optical polarization
Pi = −eNe/V ri corresponding to SHG leads to (7.32). The reasoning for the hole
contributions is analogous. It is the anisotropy of the hole dispersion that is actually
relevant in the experiments on germanium [224].



Symbols

a, lattice constant of a crystal
a0

e , peak electron acceleration
α, absorption coefficient
A(r, t), vector potential
Ã0, peak of the vector potential envelope

B(r, t), B–field or magnetic field
B̃0, peak of magnetic field envelope
β =(βx, βy, βz)

T =v/c0, relativistic velocity

c, medium speed of light
c0, vacuum speed of light with c0 = 2.9979 × 108 m/s
χ = χ(1), linear optical susceptibility
χ(N �=1), nonlinear optical susceptibilities

d, dipole matrix element
dcv, dipole matrix element for valence band to conduction band

transitions
D(r, t), D–field
D, Hooke’s spring constant
δω δt , duration–bandwidth product, e.g., δω δt = 2π × 0.8859

for sinc2(t)-pulses
�K , wavevector mismatch in harmonic generation
�ω, mode spacing in a mode-locked laser oscillator
�φ, pulse-to-pulse phase slip of the light field

e, elementary charge with e = +1.6021 × 10−19 A s
e, Euler’s number with e = 2.7183
E(r, t), electric field
Ẽ(t), electric-field envelope
Ẽ0, peak of electric-field envelope
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Eb, binding energy (or ionization potential)
Ee, electron energy
Eg, semiconductor bandgap energy
〈Ekin〉, ponderomotive energy (note that 〈...〉 in this book can mean

either the classical cycle average or the quantum-mechanical
expectation value, depending on the context)

ε, material dielectric function
εb, background dielectric constant
ε0, vacuum dielectric constant with

ε0 = 8.8542 × 10−12 A s V−1m−1

E , normalized electric-field strength (relativistic regime)

f , frequency
f1, f2, occupation numbers of the two-levels of a two-level system
fe, fh, electron and hole occupation numbers, respectively
fφ = 1/tφ , carrier-envelope offset (CEO) frequency
fr = 1/tr, repetition frequency
F , force vector
φ, carrier-envelope offset (CEO) phase
φ(r, t), electrostatic potential
ϕG, Gouy phase

g, gravitational acceleration near the earth’s surface with
g = 9.81 m/s2

g, gain coefficient
γ , relativistic factor
γK, Keldysh parameter
�ion, ionization rate

�, Planck’s constant h/(2π), with � = 0.6582 eV fs or
� = 1.0545 × 10−34 J s

H (r, t), H–field
H, Hamiltonian

i, imaginary unit
I , light intensity
Irad, radiated light intensity
I0, reference intensity

j , electrical current density
jpd, photon-drag current density

k = (kx, ky, kz)
T, electron wavevector

kB, Boltzmann’s constant with kB = 1.3804 × 10−23 J/K
K = (Kx, Ky, Kz)

T, wavevector of light
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l, length (tunneling barrier width or sample thickness)
lcoh, coherence length
L, length of the laser resonator
λ, wavelength of light
λc, electron Compton wavelength with

λc = 2.4262 × 10−12 m
λe, electron de Broglie wavelength
�, modulation period in quasi phase-matching

m0, free electron (rest) mass with m0 = 9.1091 × 10−31 kg
me, effective crystal-electron mass or relativistic vacuum electron mass, respec-

tively
mh, effective hole mass
M , integer
M(r, t), magnetization
µ0, vacuum permeability with µ0 = 4π × 10−7 V s A−1 m−1

n, refractive index
n2, nonlinear refractive index
neh, electron hole density
N , integer
Ne, number of electrons

O, arbitrary quantum mechanical observable
ω, spectrometer frequency
ω̃, normalized spectrometer frequency
ω0, carrier frequency of laser pulse
ω̃0, fundamental emission frequency in nonlinear Thomson scattering
ωe

0, electron oscillation frequency in the relativistic regime
ωc, cyclotron frequency
ωe, electron frequency
ωpl, plasma frequency
�, optical (interband) transition frequency
�B, peak Bloch frequency
�B(t), instantaneous Bloch frequency
�R, peak Rabi frequency
�R(t), instantaneous Rabi frequency
�̃R(t), instantaneous envelope Rabi frequency
�tun, peak tunneling “frequency”

p, electron momentum
pvc, transition amplitude for valence band to conduction band transitions
P (r, t), optical polarization
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r = (x, y, z)T, coordinate vector
rB, Bohr radius
R, radius of curvature of Gaussian spherical beam profile
ρ, electrical charge density

S(r, t), Poynting vector
SRF, spectral radio-frequency power density
σ , spectral “width” of a Gaussian

t , time
tFWHM = δt , full width at half-maximum of the temporal pulse intensity profile
ttun, tunneling time
τ , time delay of a Michelson interferometer
T , temperature
T1, longitudinal relaxation time
T2, transverse relaxation time
θ , angle included by the wavevector of light and the detection direction
�, pulse area
�̃, envelope pulse area

(u, v, w)T, Bloch vector
U(t), photomultiplier voltage
U(x), binding potential (energy)

v, velocity vector
V , volume
V (x), potential energy

w, inversion
w(z), “width” of transverse Gaussian profile
w0, beam waist

x, classical displacement
x0, peak classical displacement
ξ , dimensionless parameter proportional to the laser electric field

z, coordinate
zf , focal length
zR, Rayleigh length
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Ẽ(t) – which would not be possible analytically anyway. Also, see Problem 2.5.

201. D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat: J. Appl. Phys. 60, 754 (1986)
202. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner: Phys. Rev. Lett.

89, 127401 (2002)
203. V. F. Elesin: Sov. Phys. JETP 32, 328 (1971)
204. C. Comte and G. Mahler: Phys. Rev. B 34, 7164 (1986)
205. S. Schmitt-Rink, D. S. Chemla, and H. Haug: Phys. Rev. B 37, 941 (1988)
206. F. Jahnke and K. Henneberger: Phys. Rev. B 45, 4077 (1992)
207. V. Skrikand, and D. R. Clarke: J. Appl. Phys. 83, 5447 (1998)
208. O. D. Mücke, T. Tritschler, M. Wegener, U. Morgner, and F. X. Kärtner: Opt. Lett. 27,

2127 (2002)
209. X. W. Sun and H. S. Kwok: J. Appl. Phys. 86, 408 (1999)
210. K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, Ch. Ino, Y. Igasaki, and M. Horie: J.

Appl. Phys. 87, 7820 (2000)
211. W. Franz: Z. Naturforschg. A 13, 484 (1958)
212. L. V. Keldysh: Sov. Phys. JETP 34, 788 (1958)
213. Y. Yacobi: Phys. Rev. 169, 610 (1968)
214. A. Srivastava and J. Kono: International Conference on Quantum Electronics and Laser

Science (QELS), Baltimore (USA), June 1–6 2003, paper QFD2, conference digest (2003)
215. A. H. Chin, O. G. Calderon, and J. Kono: Phys. Rev. Lett. 86, 3292 (2001)
216. K. B. Nordstrom, K. Johnsen, S. J. Allen, A.-P. Jauho, B. Birnir, J. Kono, T. Noda, H.

Akiyama, and H. Sakaki: Phys. Rev. Lett. 81, 457 (1998)
217. J. P. Gordon: Phys. Rev. A 8, 14 (1973)
218. R. Peierls: Proc. R. Soc. Lond. A 347, 475 (1976)
219. R. Peierls: Proc. R. Soc. Lond. A 355, 141 (1977)
220. H. M. Barlow: Nature 173, 41 (1954)
221. W. Lehr and R. von Baltz: Z. Phys. B 51, 25 (1983)
222. A. F. Gibson, M. F. Kimmitt, and A. C. Walker: Appl. Phys. Lett. 17, 75 (1970)
223. A. M. Danishevskii, A. A. Kastal’skii, S. M. Ryvkin, and I. D. Yaroshetskii: Sov. Phys.

JETP 31, 292 (1979)
224. A. C. Walker and D. R. Tilley: J. Phys. C 4, L376 (1971)
225. K. D. Moll, D. Homoelle, A. L. Gaeta, and R. W. Boyd: Phys. Rev. Lett. 88, 153901

(2002)
226. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B.

Corkum, and F. Krausz: Science 291, 1923 (2001)
227. M. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P.

Corkum, U. Heinzmann, M. Drescher, and F. Krausz: Nature 414, 509 (2001)
228. N. A. Papadogiannis, B. Witzel, C. Kalpouzos, and D. Charalambidis: Phys. Rev. Lett.

83, 4289 (1999)
229. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, Ph. Balcou, H. G. Muller, and P.

Agostini: Science 292, 1689 (2001)
230. A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and

H. C. Kapteyn: Science 280, 1412 (1998)
231. C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn:

Phys. Rev. Lett. 83, 2187 (1999)



216 References

232. A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane,
H. C. Kapteyn, and S. Backus: Nature 421, 51 (2003)

233. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and
C. K. Rhodes: J. Opt. Soc. Am. B 4, 595 (1987)

234. M. Ferray, A. L’Hullier, X. F. Li, A. Lompre, G. Mainfray, and C. Manus: J. Phys. B 21,
L 31 (1988)

235. X. F. Li, A. L’Hullier, M. Ferray, L. A. Lompre, and G. Mainfray: Phys. Rev. A 39, 5751
(1991)

236. N. Sarukura, K. Hata, T. Adachi, R. Nodomi, M. Watanabe, and S. Watanabe: Phys. Rev.
A 43, 1669 (1991)

237. Y. Akiyami, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, and K.
Toyoda: Phys. Rev. Lett. 69, 2176 (1992)

238. J. J. Macklin, J. D. Kmetec, and C. L. Grodon III: Phys. Rev. Lett. 70, 766 (1993)
239. A. L’Huillier and Ph. Balcou: Phys. Rev. Lett. 70, 774 (1993)
240. K. Miyazaki, H. Sakai, G. U. Kim, and H. Takada: Phys. Rev. A 49, 548 (1994)
241. J. G. W. Tisch, R. A. Smith, J. E. Muffett, M. Ciarocca, J. P. Marangos, and M. H. R.

Hutchinson: Phys. Rev. A 49, R 28 (1994)
242. K. Miyazaki and H. Takada: Phys. Rev. A 52, 3007 (1995)
243. Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn: Phys. Rev. Lett.

79, 2967 (1997)
244. Ch. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M.

Lenzner, P. Wobrauschek, and F. Krausz: Science 278, 661 (1997)
245. P. Salieres, A. L’Huillier, P. Antoine, and M. Lewenstein: Adv. At., Mol., Opt. Phys. 41,

83 (1999)
246. C. J. Joachain, M. Dörr, and N. J. Kylstra: Adv. At., Mol., Opt. Phys. 42, 225 (2000)
247. E. Seres, J. Seres, F. Krausz, and C. Spielmann: Phys. Rev. Lett. 92, 163002 (2004)
248. E. A. J. Mercatili and R. A. Schmeltzer, Bell System Tech. J. 43, 1783 (1964)
249. R. A. Bartels, A. Paul, H. Green, H. C. Kapteyn, M. M. Murnane, S. Backus, I. P. Christov,

Y. Liu, D. Attwood, and C. Jacobsen: Science 297, 376 (2002)
250. J. Armstrong, N. A. Bloembergen, J. Ducuing, and P. S. Pershan: Phys. Rev 127, 1918

(1962)
251. E. A. Gibson, A. Paul, N. Wagner, R. Tobey, S. Backus, I. P. Christov, M. M. Murnane,

and H. C. Kapteyn: Phys. Rev. Lett. 92, 033001 (2004)
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vector 31, 140

Bloch–Siegert oscillation 34
Bohr radius 99, 107
Boltzmann equation 74
box-shaped pulse 34, 36, 43, 46, 49, 189
box-shaped spectrum 124
Brillouin precursor 194
Brillouin zone 72, 129–131, 144

capillary 173, 177
carrier

frequency 14
photon energy 2, 64, 94
wave 13, 14

carrier-envelope
offset frequency 4, 16, 17, 23, 63, 149,

155
offset phase 4, 14, 41, 43, 44, 46, 108,

111, 117, 144, 146, 155, 156, 180, 181
carrier-wave Bloch oscillation 74, 75
carrier-wave Rabi flopping 28, 34, 35, 37,

46, 52, 74, 130, 132, 142
CdS 71
centrovelocity 192
chirp 15, 70, 133, 135, 153
chirped-pulse amplification 1, 173
coherence length 117, 174
Compton scattering 185
Compton wavelength 90, 173
conduction band 139
conical harmonic generation 169, 184
conical SHG 170
conversion efficiency 174
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Corkum, P. B. 105
cosh 170
Coulomb

interaction 132, 139, 140, 150
potential 96, 103, 104, 107

Cs 110
Cu 110
cubic symmetry 203
cutoff 175
cutoff order 52, 74, 85, 105
cycle-average 11, 63, 118, 163
cyclotron

energy 2, 5, 76, 91, 200
frequency 76, 91, 200

damage threshold 110, 133, 173
damping 73, 74, 81, 196, 197, 199, 200
de Broglie wavelength 63
defocusing 113, 137, 177
degree of ionization 109
density of states 64, 142
dephasing 32, 140, 142, 195
detuning 195
dielectric function 10, 142
differential transmission 138, 166
diffraction 113, 125
dipole approximation 30, 65, 139
dipole matrix element 134
Dirac equation 88
Dirac sea 5, 88
dispersion relation 12, 72, 84, 116
displacement 198
Doppler effect 80–83
drag field 167
dressed electron 64
dressed two-level system 58
Drude model 61
duration–bandwidth product 15
dynamical localization parameter 74

effective electron mass 63, 71, 110,
129–131, 139

effective-mass approximation 63, 71, 73,
129, 139, 150, 162–164, 166, 167

effective-mass tensor 203
Ehrenfest theorem 69
electric-field gauge 64, 69, 96, 102
electron rest energy 2, 71, 75, 86, 89
electron wave packet 63, 70

electron–positron pair 5, 87, 90
envelope 11, 13–15, 23, 24, 94, 96, 133,

156
envelope pulse area 142
envelope Rabi frequency 35, 46
excess energy 151, 152
extreme nonlinear optics 2–5, 53, 67, 71,

113, 115, 117, 127, 130–132, 152, 161,
166, 173

extreme ultraviolet 173, 185

FDTD algorithm 113, 114, 158
Fe 110
Fermi energy 110
Fermi sea 110
few-cycle pulses 1, 18, 36, 42, 45, 49, 100,

101, 110, 133, 157, 189
field ionization 93
Floquet states 57–59, 198
Floquet theorem 57
focus 117, 119, 133, 137, 153, 156, 177,

183
Franz, W. 161
Franz–Keldysh effect

dynamic 164
static 161

frequency comb 16
frequency doubling 4
frequency metrology 17
Fresnel approximation 118
fundamental “constants” 17

GaAs 62, 71, 74, 132, 164
Garrett and Mc Cumber effect 191
gas capillary 173, 177
gauge invariance 17
Gaussian beam profile 119, 125
Gaussian pulse 15, 18, 20, 28, 38, 49, 50,

94, 97, 101, 108, 152, 189
germanium 71, 167–169, 204
gold 110, 111
Gouy phase 117, 118, 123, 124, 177
group velocity 13, 64, 120, 135, 145, 191,

192, 199

Hänsch, T. W. 23
Hall effect

dynamic 166
Hartree–Fock 150
Hawking radiation 91
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Heisenberg equation of motion 31, 139
helium 99, 174, 175, 183, 184
Hertz, H. 10
high harmonics 5, 33, 81, 93, 95, 108, 173,

181, 189
hollow waveguide 173, 177
Hopfield coefficient 150, 151
Hughes, S. 35
hydrogen atom 99, 107

induced absorption 131, 137, 138, 150,
164, 165

induced transparency 136, 137, 166
intensity 2, 11
interference 21, 23, 24, 37, 38, 42, 44, 45,

49, 84, 93, 117, 132, 135, 144, 145,
149, 153, 156, 179, 180

interferometric autocorrelation 133, 153,
154

intersubband transitions 29
inversion 30, 32–34, 37, 41, 42, 44, 45, 52
inversion symmetry 19, 21, 38, 49, 145
ionization 108
ionization potential 97, 99, 108, 110

Jaynes–Cummings model 58
jellium 111

Keldysh parameter 98, 99, 103, 130, 164,
166

Keldysh, L. V. 98, 161
kp perturbation theory 130, 203
krypton 99

Larmor radiation 81
laser 1, 9, 12
laser spectrum 15, 133
lattice constant 30, 71, 72, 129, 130, 198
Lienard–Wichert potentials 84
light intensity 2, 11
light-induced gap 150, 151
longitudinal relaxation 195
longitudinal SHG 22, 78
Lorentz force 22, 76
Lorentz oscillator 27, 29, 32, 191–193
luminal 29, 120, 191

Maiman, T. H. 1
many-body system 150

Maxwell equations 9, 10, 88, 157
Maxwell–Bloch equations 144
metal 81, 109–111, 151
Michelson interferometer 14, 133, 153
mode 9, 12, 13
mode-locking 1, 10, 13, 63
modulation depth 45, 46, 111, 149
Mollow

sidebands 144, 145, 147
triplet 35, 36, 46, 54, 56, 132, 134, 145,

147–150
Mollow, B. R. 35
multiphoton absorption 42, 45, 52, 103,

201

Na 110
Nd:glass 184
neon 99, 180, 181
nonlinear optics

in vacuum 88
nonlinear refractive index 21
nonparabolicity 73, 81

occupation numbers 139
octave 24, 45, 119, 124, 187, 189, 196
off-resonant excitation 152, 157
optical axis 124
optical polarization 10, 19, 32, 139
optical rectification 19
optical susceptibility

linear 10, 176, 177
nonlinear 19, 94, 156, 179, 188

optical transition energy 140

Pancharatnam screw 133
perturbative 19
phase matching 117, 158, 170, 175, 183
phase slip 14, 63
phase velocity 13, 64, 120, 145, 156, 191
photodetector 41, 43, 79, 167, 168
photoemission 110
photogalvanic effect 19, 166
photomultiplier tube 24–26, 110, 111, 153
photon drag 78, 79, 88, 131, 166
photon–photon interaction 5, 90
photonuclear fission 104
plasma frequency 61, 176, 177
ponderomotive energy 2, 62, 64, 75, 98,

105, 106, 108, 131, 150, 163, 173
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potential barrier 96–100, 110, 134, 137,
145, 146

potential well 29, 96, 97, 101, 102, 104,
109

Poynting vector 11
pressure tuning 178
propagation constant 119, 123, 178
propagation effects 146
pulse envelope 14

quasi phase-matching 173, 179
quiver energy 62

Rabi
energy 2, 29, 32, 140
flopping 33, 132
frequency 28, 31, 32, 135, 140, 144
oscillation 33

of the Dirac sea 88
period 132

Rabi, I. I. 34
radiation damping 76
radiation gauge 64, 65, 88, 103
radiation pattern 61, 79, 84, 183, 184
Rayleigh length 118, 119
Rayleigh scattering 61
refractive index 10
relativistic nonlinear Thomson scattering

81, 183, 184
repetition frequency 16, 133
resonant excitation 133
rest mass 77
RF

power spectrum 24, 25, 157
spectrum analyzer 153

Riccati differential equation 58, 197
rotating-wave approximation 34, 35, 37,

52, 116, 150, 158
Rydberg energy 71

scattering 74, 75, 81, 140, 167, 199
Schwinger field 90, 200
Schwinger intensity 90
Schwinger, J. 90
sech 15, 141, 143, 144, 189
second harmonic 19, 153, 156
second-harmonic generation 4, 5, 78–80,

85, 125, 133, 148, 153, 169, 171, 174,
183, 184, 199, 200

self-mode-locking 1
self-phase modulation 20, 21, 35, 38, 153,

157
self-referencing 23
self-steepening 20
Sellmeier formula 156
semiconductor 64, 129, 132, 140, 151
semiconductor Bloch equations 140, 150
sidebands 63, 64
signum function 53
sinc 15, 143–145, 188, 189
single-cycle pulse 1, 18, 28, 45, 123–125,

190
sinh 170
slowly varying envelope approximation 4,

37, 113, 157, 158
Sommerfeld precursor 194
square-wave approximation 53, 54, 56
standing wave 12
static-field approximation 52, 53, 70, 88,

89, 98, 100, 107, 163, 164, 166
Stokes damping 81, 200
subluminal 29, 191
superlattice 75, 199
superluminal 29, 120, 122, 191

Taylor expansion 19, 21, 188
THG in the disguise of SHG 38, 158, 159
third harmonic 75, 136, 144, 156
Thomson scattering 61, 79, 83, 85, 173
three-step scenario 105
Ti:sapphire 132, 165, 184
tight-binding band 72, 73, 150
traditional nonlinear optics 1–5, 7, 113,

116, 123, 140, 170
transition amplitude 139
tunneling 51, 64, 96–98, 100, 101, 103,

104, 108, 201
tunneling frequency 2, 98, 131
tunneling time 96, 98, 99, 102, 111
two-band Mollow triplet 150
two-color excitation 43
two-level system 23, 27–33, 132
two-photon absorption 21, 42, 44, 67, 165

Unruh radiation 91

vacuum impedance 11
valence band 139
valence band warping 203
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velocity of light
medium 10
vacuum 10

Volkov states 65–68, 70, 93, 103, 104, 112,
131, 164–166

Volkov, D. M. 88

W 110
Wannier–Stark ladder 72
wave equation 10
wave function 29, 67, 70, 72, 99, 101, 102,

104, 129, 162
delocalized 72
localized 72

waveguide 178–180

wavevector
of electron 139
of light 12, 81

wiggle energy 62
work function 110

X-ray pulses 185
train of 93

xenon 99

z-scan 137
ZnO 62, 71, 152
ZnSe 71, 164
ZnTe 71, 164
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