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Self-assembly of molecules and supramolecules is one of the fundamental phenomena in chemistry, physics, biology
and material science. For example biological systems, like lipid bilayers of cell membranes and tertiary protein
structures are formed by spontaneous self-assembly. Conformation and properties of these assemblies can be affected
by changing the local environment of the structures. In the case of biological molecules, such an example would be
protonation or deprotonation by changes in pH. When changing the conformation, one often changes the collective
properties of the molecular assemblies.

In this thesis, the formation of functional nanoscale devices is approached from the self-assembly of molecules and
metallic monolayer capped nanoparticles into superstructures consisting of numerous nanoparticles. Stabilisation of
the individual nanosized particles is based on bonding between noble metals and thiol ligands. The desired chemical
characteristics and functionality of the nanoparticles is achieved by choosing the capping ligand layer and thus,
directing the interactions between the nanoparticles.

Both formation and functionality of the superstructures are studied in this thesis. Syntheses of silver and gold
nanoparticles capped with different ligands are included. Both the individual nanoparticles and the colloidal
superstructures formed by them were characterised by transmission electron microscopy (TEM), dynamic light
scattering (DLS), zeta-potential measurements and UV-vis spectroscopy. Characterisation of the electrical properties
of the self-assembled structures were carried out by scanning electrochemical microscopy (SECM).

The thesis is divided in three parts, considering first the formation of colloidal nanoparticle superstructures in
solution, then a photoresponsive switching nanoparticle structure and finally electron transport processes in nanoscale
films. In the first part, formation of nanoparticle aggregates via chemical and electrostatic interactions are studied.
The second part consists of assembly and characterisation of a nanoswitch built from nanoparticles and
photoisomerisable azobenzene molecules. In the last section of the thesis, electron transport processes in two
self-assembled nanoscale films are studied with SECM. The first system is a molecular self-assembled monolayer and
the second a film consisting of gold nanoparticles.
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Molekyylien itsejärjestäytyminen eli molekyylirakenteiden spontaani muodostuminen on hyvin keskeinen
luonnontieteilijöitä kiinnostava ilmiö. Itsejärjestymistä esiintyy muun muassa biologisissa systeemeissä, esimerkkeinä
voidaan pitää vaikkapa lipidien asettumista levymäiseksi kaksikerrosrakenteeksi solukalvon muodostuessa sekä
proteiinien tertiäärisiä rakenteita. Muuttamalla tällaisten molekyylirakenteiden ympäristöä, biologisissa systeemeissä
esimerkiksi pH:ta, voidaan molekyylien konformaatiota eli avaruusrakennetta muuttaa. Konformaationmuutokset
johtavat tyypillisesti myös molekyylirakenteen kollektiivisten ominaisuuksien muuttumiseen.

Tässä väitöskirjassa tutkitaan toiminnallisten nanomittakaavan rakenteiden muodostamista itsejärjestäytymisen
avulla. Tutkitut systeemit ovat metallisista, orgaanisella ligandikerroksella stabiloiduista nanopartikkeleista
muodostuneita rakenteita. Ligandikerroksen kemiallinen luonne vaikuttaa rakenteiden muodostumiseen ja
toiminnallisuuteen ja se voidaan valita sovellukseen riippuen tilanteeseen sopivaksi. Tutkimuksessa käsitellään sekä
yo. rakenteiden muodostumista että niiden toiminnallisia ominaisuuksia.

Menetelminä itsejärjestäytyneiden yksikerrosten sekä nanopartikkelisysteemien sähköisten ominaisuuksien
tutkimisessa käytettiin sähkökemiallista pyyhkäisymikroskopiaa (SECM). Optisten ominaisuuksien tutkimisessa
käytettiin spektrofotometriaa sekä valonsirontamittauksia (DLS). Sekä yksittäisten nanopartikkelien että niistä
muodostuneiden rakenteiden muodosta ja koosta saatiin tietoa transmissioelektronimikroskopian (TEM) ja
valonsironnan avulla.

Väitöskirjan ensimmäinen osa käsittelee kolloidisten nanopartikkelirakenteiden muodostumista, kun nanopartikkelien
välillä on kemiallisia tai sähköstaattisia vuorovaikutuksia. Yhteenvedon toisessa osassa keskitytään optiseen
nanokytkimeen, joka on muodostettu sitomalla nanopartikkeleita toisiinsa fotoisomeroituvan
atsobentseenijohdannaisen avulla. Isomeroitumisreaktiossa partikkeleja sitovan molekyylin avaruusrakenne muuttuu,
jolloin myös partikkelien välinen etäisyys muuttuu. Väitöskirjan kolmannessa osassa tutkitaan
elektroninsiirtoprosesseja kahdessa erityyppisessä nanorakenteessa; atsobentseenijohdannaisen muodostamassa
molekulaarisessa yksikerroksessa sekä yksikerroksella stabiloiduista kultaklustereista muodostetussa kerroksessa.
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chemistry, Prof. José Manzanares for hosting my stay in Valencia, Hannu Revitzer

for making the chemical analysis in some of the studies and Dr. Benjamin Wilson

for proof-reading the manuscript of the thesis.

The whole group of researchers, teachers, students and other members of FyKe

have earned my compliments for the atmosphere they have created to the laboratory.

The discussions and support from the fellow members of FyKe has really made the

time spent at the Laboratory of Physical Chemistry and Electrochemistry worth

remembering. Finally, I thank my family and friends for supporting me in my

choices and their endless patience with me.

This thesis was made out of enthusiasm for research and science.
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1 Introduction

Self-assembly of chemical structures has attracted a great interest throughout the

history of nanotechnology. Good examples of self-assembled systems are biological

forms like cell membranes where the lipids assemble due to amphiphilic and steric

interactions and form a bilayer able to support the interiors of the cell. Similar

spontaneous self-assembly has been applied in nanotechnology to form new struc-

tures and the principle is commonly called the ’bottom-up’ approach. In this thesis,

simple metal nanoparticle superstructures and molecular monolayers formed by the

bottom-up approach are investigated. The formation and fundamental properties of

single nanoparticles are not the focus of this thesis, but the interest is on assemblies

formed of numerous particles and their properties. The emphasis is on controlling

the optical and electrical interactions between the nanoparticles embedded in the

superstructures, for instance by changing the conformation of the superstructure

in a controlled way. In addition, changes in the interparticle interactions lead to

changes in the properties of the whole superstructure.

The collective properties of metal nanoparticle superstructures have been ap-

plied in the development of different types of sensors. Sensors based on films of

nanoparticles linked to each other are typically chemiresistors, with their conduc-

tance dependant on the adsorption of certain chemical species into the film. [1] These

kinds of sensors may also be used as colourimetric sensors, if the sensing is based on

changes in interparticle distances, which also has an effect on the optical properties

of the nanoparticle assemblies. [2] Another sensor type is based on the enhance-

ment of the signal due to electrical or optical properties of the nanoparticles, e.g.

surface enhancement of Raman scattering (SERS) near nanopatterned silver sur-

faces. [3] SERS is based on the strong local electromagnetic field near the surfaces

of periodic nanostructures and allows even single molecule detection. Yet another

type of signal magnification occurs in hybrid materials consisting of biomolecules

and metal nanoparticles, for example, the signal obtained from a glucose-oxidase

enzyme has been enhanced by one order of magnitude. [4] This thesis consists of
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studies considering the optical and electrical interactions in assemblies formed of

metal nanoparticles, thus introducing some of the fundamental properties behind

the function of above mentioned devices.

Metallic nanoparticles do not only provide an inert template for various chem-

ical functionalities but there are peculiar properties embedded in these nanomateri-

als themselves. [5] The most important properties, specific for metal nanoparticles,

are their low melting temperature (thermodynamic properties) [6], surface plasmon

absorption (optical properties) [7], room-temperature quantised charging (electri-

cal properties) [8], catalytic [9] and magnetic properties. [10] Also interesting are

the interparticle interactions and their effects on the superstructure properties. In

this thesis, a series of physicochemical studies on the collective optical and elec-

trical properties of superstructures consisting of silver and gold nanoparticles are

presented.

The first chapter considers the formation of colloidal nanoparticle superstruc-

tures driven by the interaction between the individual nanoparticles. Aggregation

of nanoparticles is induced by either chemical (publication I) or electrostatic (pub-

lication II) interactions. The nature of the interaction affects both the time-scale

of the superstructure formation and the final structure of the aggregate. [11] On

the other hand, the coagulation of the nanoparticles is often unwanted and thus the

basic knowledge of the cluster formation process is necessary.

The second part of this work introduces the basis for the optical properties

of both single nanoparticles and interacting particle clusters. The optical spectrum

of silver nanoparticles and nanoparticle clusters are examined in order to explain

the changes in plasmon absorption arising from the particle-particle interaction.

In publication III, a photoresponsive nanoswitch is built from silver nanoparticles

and azobenzene functionalised molecules. The most studied applications of the plas-

monic coupling of nanoparticles are different types of sensors [12] and the phenomena

they are based on, are described in this section.

The third part of the thesis is about the electrical properties of nano-scale films

and application of scanning electrochemical microscopy (SECM) [13] on studying
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them. Two different approaches are presented; the first one (publication IV) shows

how to characterise and manipulate barrier properties of a self-assembled monolayer

built on Au(111) surface. The second approach (publication V) presents a study of

lateral conductivity of a film consisting of gold nanoclusters. The uniqueness of the

latter study is on controlling the film potential without electrical contacts.

Before closing the introductory section, the rather broad concept of a nanopar-

ticle needs to be clarified. Any particle from a metallic nanocrystal to biological

assembly, such as a liposome, having a size in the nanometre scale, can be consid-

ered as a nanoparticle. In this thesis however, the term nanoparticle has been used

exclusively to address particles having a metallic core and a capping monolayer of

some ligand surrounding the surface. [5,8] In publications I, II and III the particles

having 3-4 nm diameters have been called simply ’nanoparticles’ (NPs), whereas

the very small particles having a well defined core structure in publication V have

been referred to as either ’monolayer protected clusters’ (MPCs) or ’nanoclusters’

(NCs). [8, 14,15]
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2 Colloidal nanoparticle superstructures via

self-assembly

2.1 Dithiol induced nanoparticle cluster formation

Nanoparticles and especially architectures constructed from nanoparticles are of

great interest for the possibility of making nanoscale devices by self-assembly tech-

niques. [2, 16–19] A well known method to form self-assembled nanoparticle struc-

tures is to cross-link nanoparticles with α,ω-functionalised ligands [20], such as dithi-

ols (see figure 2.1). Materials formed in this way maintain many of the unusual

properties of their original nanosized components because the MPCs remain seg-

regated. [18, 21] Some of the properties depend on the particle-particle separations

and are thus tunable, because the distance separating the particles is well defined by

the choice of the linker molecule. Both noncovalent [22–31] and covalent [1, 32–46]

thiol-bonding induced self-assembly of nanoparticles has been studied widely, with

most of the published work focussing on the electrical and optical properties of the

nanoparticle materials formed.

In publication I, aggregation of thiol stabilised 2.9 nm silver nanoparticles in-

duced by 1,6-hexane dithiol (figure 2.1 b) was studied by dynamic light scattering

(DLS). While in situ observation of direct thiol exchange seems unreachable, aggre-

gation caused by cross-linking of nanoparticles can easily be monitored. By linking

the aggregation rate of the nanoparticles to the rate of the thiol exchange reaction

on their surfaces, the kinetics of the thiol exchange can be probed indirectly with

DLS. Another way to study formation of nanoparticle clusters would be to monitor

their size microscopically, where samples must be taken and the reaction quenched

at appropriate time intervals. With DLS, one can follow the evolution of colloid

size in the same sample without the tedious work required to prepare one sample

for each time step. The reaction scheme for the aggregation process is presented in

figure 2.2. (Assumptions of the model are discussed in more detail later on in this

section.)
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Figure 2.1: Examples of α,ω-functionalised molecules. (a) Mercaptoundecanoic
acid, (b) 1,6-hexanedithiol and (c) azobenzene derivatised dithiol (AZO2)

DLS measures the diffusion motion of the clusters, allowing the measurement

of the diffusion coefficient, from which the hydrodynamic radius can be extracted.

In publication I, an instrument based on the backscattering of light from the sample

was employed. Collecting the back scattered light avoids multiple scattering from

the particles and facilitates the measurement of strongly absorbing colloids. For

small metallic nanoparticles (diameter < 10 nm ), absorption dominates the extinc-

tion spectrum (see section 3.2), which lowers the intensity of scattered light and

causes difficulties in conventional light-scattering measurements. With instruments

based on back scattering one can characterise sizes even smaller than 2 nm. [47,48]

Another advantage of measuring back scattered light is the non-destructive nature

of the method compared to the conventional light scattering measurements. The

interaction between the nanoparticles and the 633 nm laser of the DLS instrument

was neglected, since the dodecanethiol capped silver nanoparticles employed in the

measurements do not absorb light at this particular wavelength.

In all of the measurements (figure 2.3), a rapid growth stage followed by lev-
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Figure 2.2: A reaction scheme describing the two-step reaction of the nanoparticles
and dithiols. In phase I, thiol-functionalised nanoparticles are formed. In phase two,
the functionalised particles react further with the other functionalised particles thus
forming an aggregate. (Reprinted with permission from The American Chemical
Society)

elling out of the hydrodynamic radius was observed. After 60 minutes, a stable size

was reached when the solution was depleted of nanoparticles. The final hydrody-

namic radius was between 100 and 160 nm in all of the measurements. This size did

not change noticeably even after 24 hours, indicating that aggregates do not have

the tendency to coalesce to form larger structures in the time-scale considered.

A monomer-aggregate growth mechanism was assumed to allow the application

of a mathematically simple model. In the model, dithiol-functionalised particles are

denoted as the monomers, which are attached to the aggregates, thus forming larger

nanoparticle clusters (see figure 2.2). According to the Fick’s first law, the diffusion

flux Ji of a species in spherical coordinates is defined as the product of the diffusion

coefficient Di and the concentration gradient of the species.

Ji = Di
dc

dr
(2.1)

When comparing the fluxes of the individual nanoparticles and the nanoparticle

clusters, the ratio of the fluxes stays rather high throughout the whole experiment,

because of the slow diffusion of the large clusters. In addition the number of clusters
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Figure 2.3: Evolution of the hydrodynamic radius of the nanoparticle aggregate:
experimental results (dots) and calculated values (solid lines). The dithiol:NP ra-
tio was 94 (a), 47 (b) and 9 (c). Temperature was set to 10 � (filled circles), 25
� (open circles) and 40 � (triangles). Arrhenius plot (d) is shown for the same cal-
culations. The dithiol:NP ratio was 94 (triangles), 47 (open circles) and 9 (filled
circles). (Reprinted with permission from The American Chemical Society)

is assumed to be constant throughout the experiment and thus, it is much lower than

the number of single nanoparticles at the beginning of the experiment and the growth

by combination of aggregates can be neglected. The combination of aggregates over a

longer time-scale was not part of this study. Dependence of the diffusion coefficient

on the cluster/aggregate size can be approximated from Stokes-Einstein relation

(equation 2.2), where kB is the Boltzmann constant, T is the temperature, η is the

viscosity of the medium and r is the radius of the particle. From this relation,

corresponding radii values for measured diffusion coefficients can be obtained. The
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values of diffusion coefficients of single nanoparticles with ∼ 3 nm radii are the order

of 10−6 cm2s−1 whereas for nanoparticle clusters of 150 - 200 nm in diameter they

are two orders of magnitude lower.

D =
kBT

6πηr
(2.2)

Furthermore, all aggregates are assumed to be spherical and of the same size. While

there certainly will be a distribution in size, this assumption simplifies the model

greatly and reduces the number of parameters required. As mentioned above, si-

multaneous nucleation meaning a fixed number of nucleation points throughout the

experiment was assumed. A detailed description of the model is presented in pub-

lication I.

Despite all the simplifications, the model shows a good correlation with the

measured data. The rate constants for the thiol exchange, monomer desorption

and adsorption were used as the free parameters in fitting. Values corresponding to

monomer attachment and desorption were found to have only a minor effect on the

shape of the fitted curves and thus could not be fitted accurately. However, the rate

constant for the apparent thiol exchange reaction was found to vary between 0.6

and 4.0× 10−4 s−1 and to follow the Arrhenius equation, from which the activation

energy of 46 ± 10 kJ mol−1 was calculated (figure 2.3 d).

To conclude publication I, new information of the formation of stable clusters

of thiol capped silver nanoparticles could be obtained by measuring the evolution of

aggregate size with dynamic light scattering. Under diffusion control, stable aggre-

gates of around 140 nm were reproducibly obtained via dithiol cross-linking of the

nanoparticles. The main objective of the study was to obtain kinetic information

about the thiol exchange reaction from an approach that combines the growth pro-

cess of a nanoparticle superstructure to the functionalisation of the nanoparticles

with dithiol molecules. The main assumptions in the model were that the reaction is

considered to proceed with dithiol-functionalised nanoparticles attaching to a grow-

ing nanoparticle cluster and that the cluster-cluster growth does not occur in the
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same time-scale. In summary, we have demonstrated that dynamic light scatter-

ing provides a simple and effective means of probing the kinetics of place-exchange

reactions on nanoparticle surfaces.

2.2 Enhancing the stability of aqueous nanoparticle colloids

In water, coagulation of colloidal nanoparticles typically occurs due to the elec-

trostatic interaction between the nanoparticles’ ligand shells or their complexation

to each other. [24] Among the most studied applications for nanoparticle coagu-

lation are sensors, where the aggregation process of nanoparticles is induced by

DNA- [49–52] or other molecule recognition. [53,54] Aggregation for instance, causes

changes in the optical spectrum of the particles and increases electrical conductiv-

ity of a particle assembly (discussed in sections 3.2 and 4.2), which gives a way

to monitor specific interactions between molecules and nanoparticles. However, in

many cases, coagulation of the nanoparticles is not desirable and ways to avoid it

are needed. For instance, when studying the properties of individual nanoparticles,

the collective behaviour of nanoclusters in aggregates may affect the observed prop-

erties. Also when using nanoparticles in biological systems, for instance for target

amplification in biochips, [55,56] non-specific coagulation is unwanted.

Typically small water-soluble nanoclusters are capped with carboxylic acid

terminated ligands and their solubility is highly dependant on the solution they are

immersed in. At low pH, the nanoparticles agglomerate due to protonation and

hydrogen bonding. [57] At high pH, the acid groups deprotonate and stabilise the

particle dispersion through electrostatic repulsion and prevent the aggregation of

the particles. Overlapping of the electrical double layers surrounding the particles

prevents them from approaching each other and agglomerating by attractive van der

Waals forces, thus determining the distance of closest approach of the nanoparticles.

The thickness of the electrical double layer surrounding the particles depends on the

salt concentration of the solution and a schematic of the structure of the electrical

double layer for a acid-capped nanoparticle is shown in figure 2.4.
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Figure 2.4: Structure of the electric double layer at the surface of a nanoparticle
capped with mercaptoundecanoic acid. (Reproduced with permission from Wiley-
VCH Verlag GmbH & Co. KGaA)

It is well known that the electrical double layer surrounding a colloid con-

tracts as the salt concentration of the embedding solution increases. When the ionic

strength exceeds a limit known as the critical coagulation concentration (CCC), the

double layer is contracted so much and the surface potential decreased to so low that

the colloidal particles coagulate. [58] This limit is strongly dependant on the charge

of the counter-ion [59] and to a lesser extent on the structure and size of the ion.

Typically the critical concentration is much lower for multivalent counter-ions [59]

than for univalent counter-ions. A common theory for describing the stability of

colloidal systems of this type is the Derjaguin-Landau-Verwey-Overbeek (DLVO)

theory [11, 59], which works well in a qualitative manner for most systems, but

needs modifications at very small length scales. [60,61]

The role of the electric double layer structure in the stability of colloids is

of major importance. [62] The focus of publication II was to study the effect of

different sized ions on the position of the so called slipping plane (see figure 2.4).

The slipping plane includes the volume of specifically adsorbed ions of the Stern

layer (Area I in figure 2.4) and the diffusive double layer (Area II in figure 2.4), in
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which the distribution of the electrolyte compensates the potential induced by the

nanoparticle surface. In practice, the slipping plane includes the electrolyte that

moves with the particle, when subjected to external electric field. The potential

at the slipping plane is called ζ-potential and is a measurable quantity. In publi-

cation II, the stability of mercaptoundecanoic acid (MUA, see figure 2.1) capped

Au-nanoparticles in the presence of different ions was studied. Hydroxides with

different sized cations were used to set the pH to the range where the particles

were soluble in water. Counter-ions used were sodium (Na+) and three different

quaternary ammonium ions; tetramethylammonium (TMA+), tetraethylammonium

(TEA+) and tetrabutylammonium (TBA+), which have radii of 0.95, 2.85, 3.48 and

4.37 Å respectively. The size of the counter ion was assumed to change the distance

of closest approach of the nanoparticles, thus affecting their tendency to coagulate.

Stability of the nanoparticles in aqueous solutions with varying ion strengths

and counter-ions was determined by measurement of the particle sizes by DLS and

by analysing the double layer structure from the measured ζ-potentials. With Na+

as the counter-ion, the particles precipitated in the concentration range of 70 - 90

mM, whereas with quaternary ammonium hydroxides the particles were stable even

in concentrations exceeding 1 M. The increased concentration range obtained with

TEAOH was also used to facilitate thiol exchange between MUA and mercapto-

succinic acid (MSA) at the nanoparticle’s surface. In a basic solution, with rather

low salt concentrations, the electrostatic repulsion between the monovalent MUA

and bivalent MSA would be very high and no place-exchange reactions would oc-

cur. By increasing the salt concentration of the solution, the surface potential of

the nanoparticles could be lowered and thus the place-exchange could proceed. By

using TEAOH, the ligand exchange could be facilitated to an extent, which would

have been impossible to do in NaOH solutions.

The interactions between the colloidal particles was approximated with the

simple DLVO theory. Total interaction potential was assumed to be the linear

superposition of the repulsive and attractive potentials. [62] Repulsive potential was

calculated from the electrostatic repulsion between two charged particles: [63]
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Vrep = 4πa2(ψ0)2
(RT
F

)2 e−κh

2a+ h
(2.3)

where a is the radius of a particle, ψ0 is the surface potential, R is the gas con-

stant, T is the absolute temperature, F is the Faraday constant, κ is the reciprocal

Debye length and h is the surface-to-surface separation of the nanoparticles. The

electrostatics of the colloidal nanoparticles are discussed further in Publication II,

where an approximation of the potential distribution surrounding the nanoparticle

is derived in detail.

The attractive potential between the particles was calculated from the attrac-

tive van der Waals forces:

Vattr = −AH

6

[
2a2

h2 + 4ah
+

2a2

(h+ 2a)2
+ ln

h2 + 4ah

(h+ 2a)2

]
(2.4)

where AH is the Hamaker constant describing the dielectric properties of the disper-

sant and the particles. The value 4.53 × 10−19 J (corresponding to 100 kBT ) was

used for the gold nanoparticles. [64] Simulations showing the interaction energy of

two spherical particles as a function of the distance between the particles are plot-

ted in figure 2.5. The salt concentration of the solution is varied and a significant

decrease in the interaction energy is seen as the concentration is increased. Finally,

all the repulsive interactions are lost as concentration exceeds 1 M. This means that

according to DLVO theory, in electrolyte concentrations exceeding 1 M, the colloid

is no longer stable but some interaction at molecular level, such as a specifically ad-

sorbed layer of ions, results in extra colloid stabilisation. Since the colloid stability

increases as the counter ion size increases, the extra stabilisation is probably due to

steric effects.

As demonstrated in publication II, the choice of electrolyte should be carefully

considered when using this type of nanoparticles in aqueous environments, especially

in biological systems. This study widens the use of metallic nanoparticles as labels

in DNA recognition, since the electrolyte concentrations in biological systems range
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Figure 2.5: Simulated interaction energy between two spheres in different salt
concentrations. (a) 1 mM, (b) 10 mM, (c) 30 mM, (d) 90 mM and (e) > 1 M.
(Reproduced with permission from Wiley-VCH Verlag GmbH & Co. KGaA)

over several hundreds of mM rather than below 100 mM, which is the CCC limit

determined for NaOH. A simple modification of the system gives greatly enhanced

stability and even allows surface reactions that would otherwise not proceed. This

study shows the advantage of multidisciplinary physichochemical approach on a

matter of great interest to both chemists and biologists.
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3 Building a nanoswitch via self-assembly of

nanoparticles

3.1 Photoisomerisation of azobenzene derivatised silver

nanoparticles

Molecules having bistable nature are often considered as molecular switches. In

order to work as a switch, a molecule has to have a reversibly switching property

controllable by external stimuli. A typical example of a molecular switch is a photoi-

somerisable molecule, whose conformation can be varied between two stable states,

e.g. trans and cis states. The actual property changed in the isomerisation reaction

is the conformation of the molecule but also changes in the molecular conductance

can occur simultaneously (discussed in detail in chapter 4.1). [65–67] Several types

of molecular switches including those based on changes in conformation or conduc-

tance [68–71] have been recently described.

Azobenzene compounds have gained much attention because of the ability to

control both the conformation [67] and conductance [66] of the molecule by photoiso-

merisation. Light energy is transformed to mechanical work in the photoisomerisa-

tion process of the azobenzene group. [72] Although the photoisomerisation reaction

has been known for a long time, the excitation mechanism and optical properties of

the azobenzene chromophore are still under investigation. [73, 74] The azobenzene

group is isomerised from the more stable trans to the cis ground state by UV light

of 366 nm and back to the trans conformer with blue light or thermal relaxation

(See figure 3.1). [75] The photoswitchable azobenzene moiety has been utilised, for

instance, in controlling the properties of functional polymeric materials [76], in data

storage [77,78] and other self-assembling systems. [39,79]

In publication III, photoisomerisation of azobenzene molecules attached to

silver nanoparticles via thiol bonding was studied. The aim was to find out if

any interactions between the chromophore and the nanoparticle occur during the

photoisomerisation process. It was assumed that transfer of energy between the
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Figure 3.1: Photoisomerisation reaction of an azobenzene derivatised thiol (AZO1).

azobenzene group and the nanoparticle brought to very close proximity could occur

because the molecular orbital of azobenzene overlaps with the plasmon band of the

Ag-nanoparticles. The concept of the plasmon band is clarified in chapter 3.2. Pho-

toisomerisation was followed by UV-vis spectrometry, since trans and cis isomers

of azobenzene absorb UV and visible light at different wavelengths (figure 3.2 a).

Spectra of the trans and cis isomers of the azobenzene monothiol AZO1 (figure 3.1)

free in toluene solution and attached to the 3.7 nm Ag-nanoparticles were recorded

and a comparison made (figure 3.2). A difference in the spectral changes during

the photoisomerisation was observed around the plasmon absorption wavelength (∼

460 nm) of thiol capped silver nanoparticles, which was considered as evidence of

interaction between the azobenzene chromophore and the nanoparticle.

The intensity of the plasmon band of the functionalised nanoparticles decreased

as the azobenzene derivatised ligand was photoisomerised from trans to cis state,

whereas for the free azobenzene molecule intensity near 440 nm increased as the

photoisomerisation occurred. This enhancement of the absorbance of trans azoben-

zene functionalised nanoparticles is likely due to the change in the conductance of

the azobenzene ligands through the conformational change. [66] This means that the

free electrons of the nanoparticles are spread further from the core when the ligand

is in trans conformer. Thus, it seems that the trans AZO1 can be considered as
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Figure 3.2: (a) Left axis: Spectra of the trans conformer (solid black line) and
the cis conformer (dashed black line) of the free AZO1 in toluene. Right axis: The
difference spectrum of the conformers (gray line). (b) Left axis: Spectra of silver
nanoparticles functionalised with trans AZO1 (solid black line). Spectrum after
photoisomerisation of the ligand to the cis conformer (dashed black line). Right
axis: The difference spectrum of the azobenzene functionalised nanoparticles (gray
line).
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an antenna when attached to the surface of a Ag-nanoparticle and by changing the

state of AZO1, the dielectric properties of the nanoparticle can be tuned by light.

As a conclusion, by attaching an interacting switchable molecule to a nanoparticle,

it is possible to turn the whole nanoparticle into a switch.

3.2 Optical properties of nanoparticle clusters at quasi-static

region

In this section a survey of the optical properties of superstructures consisting of

metallic nanoparticles is made. Simplified approximations describing the UV-vis

spectrum of a silver nanoparticle and a nanoparticle pair are derived. In addition,

the effect of the interparticle distance of the nanoparticles on the optical response of

these superstructures is discussed. In publication III, clusters of silver nanoparticles

were formed by cross-linking the particles with an azobenzene containing dithiol.

The effect of photoisomerisation of the linker molecule on the structure of the formed

superstructures was analysed from UV-vis spectra. Measured changes were then

compared to the above mentioned model to extract the result of photoisomerisation

in the interparticle distance of the nanoparticles.

A theory that considers scattering and absorption of light by small spherical

particles is based on classical electrodynamics and was first published by Mie in

1908. [80] Mie theory provides an exact result for scattering and extinction cross-

sections, from which the absorption cross-section can be calculated:

Cext = Cabs − Csca (3.1)

Similar models involving different particle geometries have also been derived. [81,82]

The major problem of the classical theories is the dependence of the optical constants

on the wavelength of light. This means that a complex dielectric function of the

particles must be known. The generalised form of the complex dielectric function is

presented in equation 3.2:
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ε(ω) = ε1(ω) + iε2(ω) =
(
Ñ(ω)

)2
(3.2)

where ε1 and ε2 are the real and imaginary parts of the dielectric function re-

spectively. The relation between the dielectric function and the complex index of

refraction, Ñ , is also expressed in the equation. The problem of finding the cor-

rect dielectric function for nanosized objects is significant, since below a certain size

limit, the dielectric function becomes size-dependant and thus deviates from the

bulk properties. Modification of the bulk dielectric function has been considered in

the literature, for instance, by taking into account the reduced mean free path of

the electrons, the spill-out of electrons and development of the dielectric function

from a quantum-mechanical point of view. [7]

When looking for a suitable form of the dielectric function for very small

particles, some simplifications to the mathematical treatment can be made. When

comparing nanoparticles below 10 nm in diameter to the wavelength of visible light,

it can be shown, that the particles are so small that there are no fluctuations of the

electromagnetic field due to the presence of the nanoparticles. This is called the

quasi-static approximation and it applies to every wavelength where λ >> r and is

widely used in the modelling of small clusters. [7, 82]

In metal and semiconductor crystals there are electrons that can be consid-

ered to move rather freely in the crystal lattice and free electrons respond to the

oscillation of an external electromagnetic field in a collective way. The wavelength

at which the free-electron plasma resonates is called the plasmon resonance and

its wavelength depends on the material and the environment of the particle. The

contribution of the free electrons and the electrons bound to the crystal lattice to

the optical spectrum can be distinguished from each other so that the plasmon res-

onance phenomenon can be examined independently from the quantum-mechanical

contributions of the metal core. [83] For some transition metal nanoparticles, like

gold, silver and copper, plasmon resonance appears in the visible region of wave-

lengths and can be observed as an absorbance band in the optical spectrum. [7] The
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angular frequency of the surface plasmon ωp of a free-electron metal, such as silver,

can be approximated from the following equation: [84]

ωp =

√
Ne2

ε0me

(3.3)

where N is the density of electrons, e is the elementary charge, ε0 is the permit-

tivity of vacuum and me is the effective mass of an electron. The real position of

the plasmon absorption of colloidal nanoparticles differs from this approximation

because here only free-electron contributions are considered and the effects of size

and geometry have not been taken into account. [85, 86] The layer of the capping

ligand also shifts towards higher wavelengths and dampens the plasmon band of

individual nanoparticles. [84,87]

When two particles are brought to a short enough distance from each other, the

plasmon resonances of individual particles couple. [2,24,88,89] This coupling is seen

as a longitudinal plasmon band at a higher wavelength, i.e. lower in energy, than

the primary plasmon resonance. An approximation of the optical spectrum of two

attached nanoparticles can be calculated using a simplified model describing the vi-

brational coupling of plasmon resonances of two clusters in close proximity. [7,82,90]

This model takes into account the changes in the local field near the neighboring

clusters due the irradiation by light. It is assumed that no tunneling of electrons oc-

curs between the clusters, which means that the clusters remain electrically isolated

in the aggregates.

In Publication III, Drude-theory was used as the starting point for modelling

the complex dielectric function (equation 3.4). Drude-theory considers only free-

electron contributions in metals, which means that the response to the electromag-

netic field is mainly due to the transitions of the electrons in the conduction band,

i.e. intraband transitions. [7] Drude-theory is applicable for nanoparticles made of

alkali metals and some noble metals like silver and it was chosen here for its sim-

plicity. [7] However, the dielectric function of the 3.7 nm silver nanoparticles was

corrected by substituting the bulk relaxation constant Γ∞ in the Drude dielectric

19



function with a radius dependant quantity Γ(R) (equation 3.5). [7, 91] This correc-

tion is called the free-path effect and it is based on the fact that the nanoparticle

dimensions are smaller than the mean free-path of electrons in bulk metal. Thus

the size of the nanoparticle is actually restricting the movement of electrons in the

nanoparticle.

ε(ω) = 1−
ω2

p

ω2 + iΓ∞ω
+ i

ω2
pΓ∞

ω(ω2 + Γ2
∞)

(3.4)

ε(ω, r) = εbulk(ω) + ω2
p

(
1

ω2 + Γ2
∞
− 1

ω2 + Γ(r)2

)
+ i

ω2
p

ω

(
Γ(r)

ω2 + Γ(r)2
− Γ∞
ω2 + Γ2

∞

)
(3.5)

where the corrected relaxation constant is:

Γ(r) = Γ∞ + A
vF

r
(3.6)

where r is the radius of a nanoparticle, vF is the Fermi velocity in bulk metal. Since

the radius of the particles investigated here is smaller than the mean free path in

the bulk metal, the particle radius has been taken as the mean free path to calculate

the dielectric function of the particles. A is a model-dependant factor and can be

taken as 1 for spherical particles. [7] The dielectric function for bulk silver was

calculated from optical constants obtained by Quinten. [92] Bulk plasma frequency

was calculated from equation 3.3 assuming the effective mass of an electron to be

0.96 times the mass of an electron. [90] Simulated dielectric functions of different

sized silver nanoparticles are presented in figure 3.3. The radius of the particles was

varied from 1 nm to 10 nm and the bulk dielectric function was plotted as well to

illustrate the size effect of the free-path corrected model.

When measuring the optical spectra of nanoparticle superstructures, one often
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Figure 3.3: Simulated complex dielectric functions for different sized nanoparticles.
(a) Real part of the dielectric function and (b) imaginary part of the dielectric
function.

observes broadening or even splitting of the original plasmon absorption band into

two new bands. This phenomenon is called plasmon coupling and it is due to the

electromagnetic interaction between the oscillating plasmas of two nanoparticles

when the particles are brought close to each other. The simplest coupled system is

a pair of particles with similar dimensions and such a system is considered here. An

approximative approach to model the spectrum of a nanoparticle pair is made by

considering the coupling of polarisabilities of single nanoparticles. [7] Considering

only the transversal and longitudinal in-phase modes of a cluster pair, the component

of the aggregate polarisability parallel to the external field of a pair consisting of

two particles of equal size is given by:

〈α‖pair〉 =
8πε0εmηr

3

3

(
1

1 + Γ−η
+

2

1 + Γ+η

)
(3.7)

where εm is the dielectric constant of the embedding medium, Γ+ and Γ− are the

eigenvalues of the aggregate modes and d is the centre-to-centre particle separation.
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The polarisability η of a single nanoparticle is defined as:

η =
ε(ω, r)− εm

ε(ω, r) + 2εm

(3.8)

According to equation 3.1, the contribution of absorbance to the total extinction

spectrum is resolved by subtracting the scattering cross-section from the extinction

cross-section. Under quasi-static conditions, the extinction cross-section Cext and

scattering cross-section Csca simplify to following forms. [82]

Cext = 2πnmIm{〈α‖pair〉} (3.9)

Csca =
8π3n4

m

3
|〈α‖pair〉|2 (3.10)

where nm is the refractive index of the embedding medium, the square root of

εm. Simulations of the spectra of nanoparticle pairs are shown in figure 3.4. The

particle-to-particle separations are expressed as the dimensionless ratio of the centre-

to-centre distance of the particles to the nanoparticle radius d/D. This ratio was

varied from 1.1 to 2.0 for nanoparticle radii 1 nm (figure 3.4 a) and 3 nm (figure

3.4 b). As can be seen, the separation of the two absorption bands, the plasmon

band and the longitudinal plasmon band, depends on the distance between the

nanoparticles. It has actually been proposed that there is a universal dependence

between the band separation and the ratio d/D, which is independent of the absolute

size of the particles. [88] On the other hand the intensity of the bands increases by

two orders of magnitude as the particle size increases from 1 nm to 3 nm, leading to

more intense absorption bands. In figure 3.4 the spectra are presented in normalised

form.
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Figure 3.4: Simulated absorption cross-sections of nanoparticle pairs with varying
separation/diameter ratios. Particle radii are 1 nm (a) and 3 nm (b). Note that the
spectra are presented on arbitrary scale.

3.3 Optical switching of coupled plasmons of Ag-nanoparticles

by photoisomerisation of an azobenzene ligand

In publication III, the possibilities of forming switching nanoparticle superstruc-

tures by cross-linking them with azobenzene dithiol (AZO2, figure 2.1 c) were stud-

ied. The coupling of optical plasmons in nanoparticle aggregates depends critically

on the interparticle distance [24, 49, 88] and hence, it was of interest to see if the

optical response could be controlled by the photoisomerisation reaction. The ap-

pearance and position of the coupled longitudinal plasmon band were monitored

for particle clusters linked with trans and cis azobenzene molecules. In addition,

the photoisomerisation of the AZO2-linked structures were studied to see if the

particle-to-particle separation in a nanoparticle superstructure could be altered by

irradiation of light. The optimal system consisting of two nanoparticles linked with

an adjustable linker molecule is illustrated in figure 3.5. In reality, there is a cap-

ping ligand layer surrounding the particles and probably more than one molecule

bridging the particles into clusters consisting more than two nanoparticles.
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Figure 3.5: Schematic diagram of an idealised system of nanoparticle pair linked
with a dithiol molecule. (Reproduced by permission of the PCCP Owner Societies)

A red-shift of the plasmon band due to the appearance of a coupled longitudinal

plasmon band was observed resulting from the formation of nanoparticle clusters

after cross-linking with the cis AZO2. The maximum absorbance wavelength of

this secondary plasmon band could be changed by isomerisation of the linker to the

trans conformer and the spectral changes observed were in rather good agreement

with theory and earlier results obtained for gold nanoparticles. [24,88] In the case of

nanoparticles linked with the trans isomer of azobenzene dithiol, the isomerisation

did not influence the appearance of the coupled plasmon band, which implies a rigid

structure, where the conformational changes of the linker were restricted.

The surface-to-surface separation of the 3.7 nm AZO2-linked Ag-nanoparticles

was approximated from the equilibrium conformation of the molecule obtained with

simple chemistry software and assuming that the ligand stands normal to the par-

ticle surface. According to this approximation the separation of the surfaces of

cis AZO2-linked particles would be 6.8 Å and trans AZO2-linked particles 17 Å.

According to the model presented above these values correspond to 36 and 17 nm

plasmon band shifts respectively. The experimentally observed 50 nm shift for the

cis-linked nanoparticles correspond to a surface-to-surface separation of 4 Å, slightly

lower than the expected value. Nevertheless, the model applied in publication III

gives a rather good estimation of the observed changes in the optical spectra of the

silver nanoparticles functionalised with an azobenzene dithiol. However, the model
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does not take into consideration the chemically bound ligand shell surrounding the

particles. The effect of the ligands has been studied in literature and is most likely

to affect the optical properties of metal nanoparticles. [87]

In publication III, the main goal was to create a switching assembly of silver

nanoparticles and azobenzene ligands. The choice of these particular materials was

done by their optical properties. According to the experiments performed it was

quite obvious that some energy transfer related interaction between the azobenzene

chromophore and the plasma surrounding the nanoparticles was obtained. In the

case of the dithiol-linked nanoparticle assemblies, changes in the optical spectrum

of the nanoparticles were observed after photoisomerisation and could be related to

changes in particle-particle separations by a simple theoretical model.
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4 Electron transport processes in nano-scale films -

characterisation with SECM

4.1 Photoswitching electron transport properties of an azoben-

zene containing self-assembled monolayer

Molecular wires are an important field of research as potential components in future

electrical circuits. Thus, electron transfer via molecular wires plays an important

role in nano-scale research. Conventionally single molecule conductance has been

studied from the long-range electron transfer through molecular bridges in donor-

acceptor systems. [65, 93, 94] Conductance of a molecule has been extracted from

charge separation along these donor-acceptor type molecules. [95] More recently,

microscopic methods, such as scanning tunneling microscopy (STM), have been

successfully employed for measuring charge transfer through single molecules. [96–

99] These techniques require molecules with simple terminal groups such as dithiols

(see Figure 2.1 b and c) that can be used as contact points. In this chapter, an

alternative method for determination of the molecular conductance is presented. In

the method considered here, electrical properties of a monolayer consisting of the

molecules under interest are studied instead of measuring the properties of a single

molecule.

For electrochemists, spontaneous formation of self-assembled monolayers

[100, 101] of thiol-terminated molecules on Au(111) surface provides a way for the

measurement of molecular conductance. SAMs of thiol molecules have been studied

both with conventional electrochemistry [102–104] and with scanning electrochemi-

cal microscopy (SECM). [105–108] Previous studies have considered the conductance

of both saturated and unsaturated thiolates, but also thiols containing redox centers

have been investigated. [106, 109–111] In publication IV SAMs containing azoben-

zene derivatised thiol (AZO3, figure 4.1 a) were studied. Conductances of SAMs

having different fractions of AZO3 and 2-phenylethylthiol (PET, figure 4.1 b) were

determined by measuring the rate of electron transfer through the monolayers.

26



Figure 4.1: Thiols used in the experiments. (a) AZO3, (b) PET.

In publication IV, the barrier properties of mixed monolayers constructed from

different amounts of AZO3 and PET were studied by SECM and variable angle ellip-

sometry. Conformational changes caused by photoisomerisation of the azobenzene

groups in the SAMs were also investigated. The thiol monolayers were formed via

self-assembly and an Au(111) surface was used as the substrate material to obtain

a well defined and smooth surface. Since the self-assembly process from solution to

a solid surface is an equilibrium reaction, the final ratio of AZO3 and PET could be

determined by their molar ratio in the solution in which the sample was immersed.

AZO3/PET concentration ratio was varied so that the AZO3 content of the solution

was 100, 80, 60, 40, 20 and 0 %. All the samples were studied both in trans and cis

conformations. Photoisomerisation was carried out by irradiating the sample with

366 nm UV-light and blue light as explained previously in chapter 3.1.

In SECM, an ultramicroelectrode (UME) is immersed in an electrolyte solution

containing a redox mediator and moved in close proximity to the surface of interest.

In the so called feedback mode, the potential of the electrode is controlled and the

current caused by the electrochemical reaction of the redox mediator at the electrode

surface is recorded. This mode of SECM is the most commonly used and was
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employed in publications IV and V to study the electron transport processes in thin

films. Information on the surface properties were extracted from approach curves

where the tip current was recorded as a function of the tip-substrate separation.

Different theoretical approaches to solve the diffusion problem of the redox

mediator for different electrode sizes and geometries have been made in literature.

[112–114] Generally speaking, for each electrode type, the tip current profile depends

on the electrochemical activity of the substrate and there are theoretical extremes

for totally insulating and conductive substrates between which the measured current

curves vary (see figure 4.2). Current response increases when a conductive substrate

is approached, because the electrochemical reaction at the substrate recovers the

mediator used at the electrode. At an insulating substrate, no such feedback is

obtained, since there is no recovery of the reacted mediator at the substrate surface.

Hence current actually decreases because the electrode hinders the diffusion of the

mediator when the gap to the substrate becomes very small.

In publication IV the rate of the electron transfer between the redox mediator,

ferrocenemethanol (FcMeOH0/+), and the gold substrate coated with a monolayer

of azobenzene molecules was measured. The tip was held at a potential where the

reduction of FcMeOH is diffusion limited and the reaction occurring at the substrate

surface was assumed to be irreversible. [13, 112, 115] Since diffusion at nanometre-

scale is very fast [105] the concentration of the redox mediator at the electrode

surface is essentially zero. The mediator was also chosen so that its reaction at the

electrode was fast enough for the reaction at the surface to limit the overall reaction

rate, which can be extracted from the measured currents.

In figure 4.3, a schematic of the tip geometry is presented. A typical SECM

tip is a metal wire embedded in an insulating glass sheath. The very end of the tip

is polished carefully so that the cross-section of the tip is circular and the ratio of

the total radius rg and the electrode radius re is well defined, typically an integer

value, such as 10 or 5. Dimensionless coordinates and parameters used in SECM

simulations are explained in terms of the dimensional variables in table 4.1. The

general time-dependant diffusion problem at the electrode can be formulated in
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Figure 4.2: Simulated approach curves with Keff values 0.01, 0.1, 1.0 and 10. Solid
and dotted lines are the approach curves for insulating and conductive surfaces
respectively.

cylindrical coordinates in the following form:

∂Ci
∂T

=
∂2Ci
∂Z2

+
∂2Ci
∂R2

+
1

R

∂Ci
∂R

(4.1)

where T is the dimensionless time, Ci is the dimensionless concentration of species

i, Z is the dimensionless distance normal to the electrode surface and R is the radial

dimensionless distance.

There are several ways to obtain the theoretical tip current. In publication IV

the approach from Amphlett et al. was applied. [114] The tip-substrate dependency

of the tip current for insulating substrate, I ins
T , and a conductive substrate, IC

T , are

found from analytical approximations for the long time limit of the time-dependant

diffusion problem and are expressed in equations 4.2 and 4.3 for RG = 5.1:

I ins
T =

[
0.48678 +

1.17706

L
+ 0.51241exp

(
− 2.07873

L

)]−1

(4.2)

and
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Figure 4.3: Geometry of an SECM tip. Dimensionless coordinates and parameters
are explained in table 4.1.

IC
T = 0.72035 +

0.75128

L
+ 0.26651exp

(
− 1.62091

L

)
(4.3)

where L is the dimensionless tip-substrate separation. For the irreversible

substrate kinetics, the tip current within the range 0.1 ≤ L ≤ 1 is given by equation

4.4: [116]

Ik
T =

[
0.78377

L
(

1 + 1
Λ

) +
0.68 + 0.3315exp(−1.0672

L
)

1 + F (L,Λ)

]
×

[(
1− I ins

T

IC
T

)
+ I ins

T

]
(4.4)

with

F (L,Λ) =
11 + 7.3Λ

Λ(110− 40L)
(4.5)

where Λ is the dimensionless kinetic parameter. From Λ, the dimensionless rate

constant for electron transfer, Keff , can be extracted (see table 4.1). Some previous

30



Table 4.1: Dimensionless variables used in SECM.

Dimensionless variable

Concentration C = cRed

cbRed+cbOx
= cRed

cb

Conductivity Σ = σkBT∆z
e2reDicbNA

Current i = I
Ilim

= I
4nFDcbre

Distance normal to the surface Z = z
re

Electrochemical potential µ̃ = µ−µ0

kBT

Electrode shape factor RG = rg
re

Kinetic parameter Λ = keffz
Di

= Keffz

Radial distance R = r
re

Standard rate constant K0 = k0re
Di

Time T = tDi

r2
e

Tip-substrate separation L = z
re

numerical solutions have been published for the diffusion problem in steady-state

conditions but they do not consider the so called back diffusion, i.e. diffusion of the

redox mediator from behind the plane of the electrode. [112,115]

Simulated approach curves with varying Keff values are shown in figure 4.2.

As Keff is increased from 0.01 to 10 a clear change from negative feedback (current

decreasing towards the substrate) to positive feedback (current increasing towards

the substrate) is observed. Only values of Keff corresponding to current curves

between the extreme negative and positive feedbacks can be used. Consequently,

this limits the rate constants that can be measured with this method. However, Keff

depends on the rate constant of electron transfer and the diffusion coefficient of the

redox mediator (table 4.1) and thus the limits of the accessible values of keff can be

affected by the choice of the redox mediator.

In publication IV, the measured data was normalised by dividing the measured

current with the limiting current obtained far from the surface (see table 4.1). The
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Figure 4.4: (a) Electron transfer rate constants measured for the trans SAMs
(filled circles), the cis SAMs (open circles) and PET SAM (filled triangle). The
error bars represent the standard deviation of the apparent rate constants. (b)
Differences between the rate constants for trans and cis SAMs. (Reproduced by
permission of the PCCP Owner Societies)

dimensionless current was then fitted to the theoretical approach curve by varying

the value of the dimensionless rate constant, Keff from which the effective appar-

ent rate constant keff [106] for the electron transfer reaction between the mediator

and the substrate was determined. Over 15 measurements were performed on each

sample to gain a data set representative of the whole sample. The molecular con-

ductance of each monolayer was obtained in terms of the decay constant β, that

describes the tunneling rate of electrons through the monolayer.

β = −dlnkET

dr
(4.6)

where kET is the heterogeneous rate constant of electron transfer through the mono-

layer and r is the thickness of the monolayer.

The measured electron transfer rate constants keff are presented in figure 4.4

a. Since the monolayers did not include any electrochemically active sites, keff
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corresponds to the rate constant of electron transfer, kET, across the SAM. [106]

The values for kET obtained in publication IV are significantly larger than those

measured for monolayers of alkanethiols [106, 108] because both AZO3 and PET

are conjugated and rather highly conductive. [65, 94, 110, 111] A clear decrease of

kET with increasing surface molar fraction of AZO3 is observed implying to the

exponential dependence of electron tunneling rate on the layer thickness expressed

in equation 4.6, when assuming that the layer thickness scales linearly with the

amount of AZO3.

Differences in the heterogeneous rate constants measured for both isomers are

shown in figure 4.4 b and a trend between the increasing difference and the SAM

composition is observed. This can be explained by considering the steric hindrance

in the monolayers. As the relative concentration of the shorter spacer molecules is

increased, more pronounced conformational changes of AZO3 are allowed to occur

as the free space in the SAM is increased, thus leading to larger differences in the

electron transfer rates. The effects of the monolayer composition and the photoi-

somerisation on the layer thickness were confirmed with ellipsometry. The linear

dependence of the thicknesses of the SAM on its composition and the linear depen-

dence of lnkeff on the layer thickness are presented in figure 4.5. From the slopes in

figure 4.5 b, β values 0.12 Å−1 and 0.17 Å−1 for the trans SAM and the cis SAMs

were obtained respectively. The lower value of β for trans SAM implies a higher

conductance through the monolayer.

There are two possible reasons for the higher conductance of the trans SAMs.

One is the difference in conductances of the two isomers of azobenzene, which has

been predicted and measured by Zhang et al. [66, 67] The smaller conductance of

cis conformer is rationalised in terms of the molecular electronic structure, with the

conductance of cis azobenzene lower due to the loss of molecular orbital symmetry

on isomerisation. [65] Another explanation for the differing barrier properties of the

SAMs after conformational changes is the difference in permeation rates of the redox

mediator through the monolayers as discussed by Walter et al. [117]

As the main result of publication IV, it was demonstrated that photoisomeri-
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Figure 4.5: (a) The measured thicknesses of the trans SAMs (filled circles) and cis
SAMs (open circles) as a function of the molar fraction of AZO3. The lines are linear
fits to the measured data. (b) Dependence of the logarithm of the rate constant for
electron transfer on the thickness of the SAM for the trans (filled circles) and cis
(open circles) conformers of AZO3. The thickness scale has been calculated from
the linear regression of the results in figure 4.5 a. (Reproduced by permission of the
PCCP Owner Societies)

sation leads to measurable changes in the barrier properties of AZO3/PET mixed

monolayers. By varying the composition of the SAM, both the effective thickness

and the extent of isomerisation could be controlled. It was shown that it is possible

to measure the effect of photoisomerisation on the conductance of a SAM contain-

ing azobenzene-terminated thiols employing SECM. Combining ellipsometry with

SECM allows one to estimate the influence of both the layer thickness and SAM

conformation on the barrier properties separately.

4.2 Electrochemical gating in scanning electrochemical

microscopy

In publication V the electronic properties of a film formed of monolayer protected

clusters (MPCs) were investigated. As MPCs are considered as potential building
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blocks for future nanoscale devices, there is considerable interest in their electronic

properties. [5,8,101] Monolayer protected clusters are metallic particles coated with

an organic shell and they are of particular interest due to their room-temperature

quantized charging. [5,8] In practice, it means that MPCs act as multi-valent redox

species [8, 14,15,118–122] or as diffusing nanoelectrodes. [123] Films of MPCs have

been proposed for sensing applications [1,25–30,34,46,124–129] since their electron

transport properties are determined by the length and saturation of the protecting

ligands and the interparticle separation. [130, 131] In addition the core size and

dispersity affect the film conductivity.

Murray and co-workers have demonstrated that for MPC films, electron trans-

port occurs by a bimolecular, electron self-exchange reaction, whose rate is con-

trolled by the tunneling barrier due to the alkanethiolate ligands between the metal

cores and the charge state z of the MPC cores. [129] For mixtures of particles with

z = 0 and z = 1, the conductivity was reported to be proportional to the prod-

uct [MPC0][MPC+] and goes through a maximum when these concentrations are

equal. [129] This quantised double layer charging is due to Coulomb blockade, which

gives rise to periodic metal-insulator transitions at integer values of the average

charge state of the particles. [132,133] Thus far, all reported data on Coulomb block-

ade in MPC films has been obtained using techniques where an electrical connection

to the film is a prerequisite to measuring the conductivity. [1,28–30,34,46,125,129]

Such films have been prepared either by drop-casting the particles onto a metal elec-

trode for conventional electrochemical experiments or onto an interdigitated array

electrode for solid-state conductivity measurements. In the latter case, the [MPC0]

to [MPC+] ratio was controlled by ex situ chemical oxidation of the particles prior

to drop-casting the film. [129, 134] The effect of pinholes in the film, counter-ion

permeation into thick films and the contact resistance between the film and the

electrode are all factors that influence the extracted film conductivity. In the exper-

iments performed in publication V, the film is drop-cast onto an insulating substrate

and the measured SECM response is due solely to the film and not any underly-

ing metal electrode. It is shown that the conductance of the film can be measured
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Figure 4.6: (a) Schematic of the experimental setup and the three electron trans-
port processes occurring at the film-electrolyte interface and in the film. (b) Energy
level diagram of the experiment. The equilibrium electrochemical potential in the
film is set by the nature (standard potential) of the redox couple and the concentra-
tion ratio of the oxidised to reduced species. (Reprinted with permission from The
American Chemical Society)

as a function of the electrochemical potential without actually connecting it to an

external power source.

In publication V, the film conductance was measured by probing the lat-

eral electron transport in a thin MPC film. Although SECM has been utilised

in lateral conductivity studies of MPC films and conductive polymer films be-

fore, [31, 124, 135–141] some new aspects on these measurements are outlined in

publication V. Generally, SECM provides a local, non-invasive probe for the sample

conductivity with the added benefit of not having to externally contact the sam-

ple. [137, 142] This avoids problems with the contact resistance between the film

and the electrical contacts and the resulting ambiguity in the film potential. In a
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typical SECM experiment, the film potential is fixed by the equilibrium potential

of the redox mediator to a single potential value. [31,124,135–141] In publication V

however, the interest was on the dependence of the film conductivity on its poten-

tial. The electrochemical potential of the thin film of hexanethiolate protected gold

nanoparticles was varied through the Nernst equation (equation 4.7) by controlling

the ratio of the two forms of the redox mediator in the solution. Also the standard

potential of the mediator was varied by using different mediators. The equilibrium

potential of the film is given by:

Eeq = E0 +
RT

F
ln

(
cb

Ox

cb
Red

)
(4.7)

where E0 is the standard redox potential of the redox mediator and cb
Ox and cb

Red

are the bulk concentrations of the oxidised and reduced forms of the redox species.

In figure 4.6, the principle of the electrochemical gating in the SECM experi-

ment is presented. Since the MPC film is conductive, recovery of the reacted species

occurs at the film surface (process 1, drain). In addition, the MPCs are packed quite

close to each other in the film so there is also electron transport between them. As

a consequence of the feedback from the redox mediator between the electrode and

the surface driven by the tip potential, a potential gradient in the film is formed.

This gradient causes electron transport in the film (process 2) in the radial direction

and leads to a reverse redox reaction between the mediator and the surface (process

3, source). The potential gradient is analogous to the bias difference applied be-

tween the source and the drain electrodes in a traditional transport experiment. At

the same time, the tuning of the electrochemical potential through the choice and

concentration ratio of the redox couple is analogous to gating in the usual three-

terminal measurements. Conceptually similar electrochemical gating has been used

earlier to gate semiconducting nanoparticle films and carbon nanotubes. [143–145]

Setting the equilibrium potential of the film via the electrochemical potential of the

solution redox couple is illustrated schematically in figure 4.6 b. The average charge

state of the MPCs depend on their potential, and thus can be adjusted by the nature
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and concentration ratio of the reduced and oxidised forms of the redox couple.

The studied film was prepared by drop-casting on a glass substrate and con-

sisted of monodisperse hexanethiolate protected Au MPCs having diameter of 1.6

nm. [15,120] The SECM experiments were conducted using the feedback mode, dis-

cussed earlier in section 4.1. Families of approach curves were measured by keeping

the ratio of the bulk concentrations of oxidised and reduced forms of the redox cou-

ple, Cb (= cb
Red/c

b), constant and varying the total concentration of the solution, cb.

Two redox couples, ferrocene methanol (FcMeOH0/+, E0 = 0.21 V vs. Ag/AgCl)

and ferrocene trimethyammonium (FcTMA+/2+, E0 = 0.42 V vs. Ag/AgCl) were

used as the aqueous redox mediators. As oxidised forms of the redox couples are

not readily available commercially, they were prepared by chemical oxidation of the

ferrocene derivatives with Na2S2O8. [146] Substrate potential was taken as the equi-

librium potential of the mediator in solution determined by cb
Red/c

b
Ox via the Nernst

equation.

Using model that has been described previously, the experimental approach

curves could be fitted to yield a quantitative estimate on the electrical conductance

of the MPC film. [137] With this model, electron transport in the film is described

by equation 4.8, in dimensionless radial coordinates, assuming Ohmic conduction

and Gerischer model for electron transfer kinetics [137]

∂2µ̃

∂R2
+

1

R

∂µ̃

∂R
− K0

Σ

((
1− C

)
eµ̃/2 − Ce−µ̃/2

)
= 0 (4.8)

µ̃ is the dimensionless electrochemical potential of the electrons in the film, K0 is

the dimensionless standard rate constant of the electron transfer reaction between

the solution redox couple and the nanoparticle film, C the dimensionless concentra-

tion of the reduced form of the solution redox couple, and Σ is the dimensionless

conductivity in the film.

Outside the tip-substrate gap, the electrochemical potential of the electrons

in the MPC film reaches an equilibrium value, µeq, which is determined by the

concentration ratio of the oxidised and reduced forms of the redox couple. Using
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this model, families of simulated approach curves were generated using a commer-

cially available finite element simulation package (Comsol Multiphysics, Comsol Ab,

Sweden) for each value of µeq over a wide range of Σ values. As described in the

previous publications, [136, 137] the so-called back diffusion was included in the

model. Experimental curves were then compared with simulated curves and the

corresponding best fit was used to extract Σ. Film conductance was then obtained

from the slope of the plot of Σ versus the reciprocal total mediator concentration.

With ferrocene derivatives used in this study no kinetic limitations are observed and

consequently, all the simulations were carried out with a high value of K0 (= 10) to

give numerically undistinguishable results from K0 = ∞.

In order to validate the proposed method to control the applied potential,

approach curves were recorded over a range of total concentration of the redox

mediator cb with Cb (see table 4.1) fixed to value 0.45 while either reducing (figure

4.7 a) or oxidising (figure 4.7 b) the solution redox mediator at the SECM tip. The

observed feedback response in figure 4.7 is a combination of the diffusion flux in the

solution and the flux due to electron transport in the film. As the diffusion flux is

directly proportional to the total concentration of the redox mediator in solution,

the concentration has to be reduced sufficiently to observe electron transport. At

high redox couple concentrations, negative feedback due to hindered diffusion to the

SECM tip is observed. As the concentration is reduced, the relative contribution of

mediator regeneration due to electron transport in the film increases and deviation

from purely negative feedback will be observed. This effect is captured by the

dimensionless conductivity, Σ. The fitting results are shown in the insets of figure

4.7, where the extracted values of the dimensionless conductivity are plotted as a

function of the inverse of the total concentration cb of the solution redox mediator.

As expected, these plots are linear. Moreover, as the slope is proportional to the

conductance of the film, we measure the same value irrespective whether oxidation

or reduction is taking place at the tip.

The actual measurements of the film conductivity as a function of the film equi-

librium potential were carried out by varying the concentrations of the oxidised and
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Figure 4.7: Experimental SECM approach curves (dotted lines) along with the fits
to simulations (solid grey lines) for the same ratio of the reduced to oxidised forms
of the solution redox mediator (Cb = 0.45) at different total concentrations cb and
tip potentials corresponding to either reduction (a) or oxidation (b) at the SECM
tip. Insets: Linear regression of the dimensionless conductivity Σ as function of
1/cb. The resulting conductance σ∆z is 1.58 Ö 10−10 Ω−1 for the reduction reaction
and 1.55 Ö 10−10 Ω−1 for the oxidation of the mediator. (Reprinted with permission
from The American Chemical Society)

reduced forms of the solution redox couple and by using two different redox couples

with differing standard potentials. With the chosen mediators, the substrate poten-

tial could be varied between 137 mV and 460 mV vs. Ag/AgCl. The experimental

protocol was repeated for a range of concentration ratios of both redox couples and

the dimensionless conductivity was extracted from the slope of the corresponding

plots of Σ versus the reciprocal mediator concentration. The conductance values ob-

tained are plotted versus film potential in figure 4.8. Conductance has two maxima

with an overall variation of greater than a factor of two within the studied range of

electrochemical potentials. A simple model, discussed in publication V, was used to

describe the shape of the conductance. A fit to this model for a sum of two charge

states is shown by the dashed grey line in figure 4.8. Since the film was formed

by drop-casting, its thickness was not precisely controlled and thus variation in the

absolute value of conductance and the positions of the charging peaks were observed

for different samples. The observation of maxima is in qualitative agreement with

40



Figure 4.8: Conductance σ∆z extracted from the fits to the SECM approach curves
as a function of the equilibrium electrochemical potential of the MPC film. Redox
couple was FcMeOH (filled squares) or FcTMA (open squares). The error bars
correspond to the error in the slope of Σ vs. 1/cb as estimated by linear regression
analysis. Dashed grey line is a fit to a simple model describing the conductance.
(Reprinted with permission from The American Chemical Society)

the reported dependence of film conductance on the degree of mixed valency for

nominally identical MPCs. [129, 134] Separation of the maxima in the conductance

gives the charging energy of the MPCs in the film (185 meV), which is lower than

the value measured for MPCs dispersed in an organic solvent (260 meV). [120] This

difference can be attributed to the different dielectric environment of the particles

in the film or solution. [147]

As a summary of publication V, it can be stated that SECM can be used to

quantitatively measure the potential dependence of electron transport in nanopar-

ticle assemblies without requiring an external electrical connection to the assembly.

By using this type of electrochemical gating, issues with the resistance between the

film and the electrical contacts could be avoided. It was demonstrated that the con-

ductance of MPC films is strongly dependant on the film electrochemical potential

due to room-temperature single-electron charging of the individual MPCs.
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5 Conclusions

The main objective of this doctoral thesis was to study different types of self-

assembled nanoparticle superstructures and the collective properties of the nanopar-

ticles embedded in them. The thesis was divided into three parts, where the first

one considered formation of colloidal nanoparticle superstructures. In publication I,

formation of stable clusters of nanoparticles was obtained by chemically bonding sil-

ver nanoparticles together with hexanedithiol. The evolution of aggregate size could

be readily monitored by dynamic light scattering. After an initial growth period of

about 60 minutes, stable aggregates were reproducibly obtained if the reaction was

allowed to be under diffusion control. Kinetic information about the thiol exchange

reaction could be obtained with a simple model. In summary, it was demonstrated

that dynamic light scattering can be applied to study the kinetics of place-exchange

reactions on nanoparticle surfaces.

In publication II, the stability of basic aqueous solutions of MUA-capped gold

nanoparticles were studied by varying the counter-ions of the hydroxides used to de-

protonate the ligand shells of the nanoparticles. A significant difference in the colloid

stability was noted with quaternary ammonium ions in comparison to sodium, as

these ions did not induce particle coagulation even at very high concentrations. It

appeared that the choice of the electrolyte should be carefully considered when us-

ing this type of nanoparticles in aqueous environments. An easy modification of

the system gave a greatly enhanced stability and even allowed surface reactions

that would not proceed otherwise. The colloid stability and the factors affecting it

should be taken into account especially in biological applications and in situations

where one would rather have a single nanoparticle interaction instead of clusters of

electrostatically bound nanoparticles.

The second part of the thesis consisted of a study on nanoparticles function-

alised with photoresponsive azobenzene molecules. The optical spectrum of sil-

ver nanoparticles linked with azobenzene derivatised dithiol could be controlled by

changing the interparticle distance by photoisomerisation of the linker between the
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trans and cis states. From the results presented in publication III, it could be

concluded that photoisomerisation of the photoreactive linker resulted in measur-

able changes in the coupling of the particles plasmon resonances and that there was

interaction between the nanoparticles and the chromophores bound to their surfaces.

The thesis’ final part consisted of two studies on applying scanning electro-

chemical microscopy on studying electron transport processes in thin films. Char-

acterisation of a series of photoresponsive self-assembled monolayers, consisting of

azobenzene molecules and aromatic thiolates is presented in publication IV. Isomeri-

sation state of the azobenzene group was shown to affect the conductance across the

SAMs. The effect of isomerisation and chemical composition on the thickness of the

SAMs was analysed by ellipsometry. It was concluded that both the conformation

dependant molecular conductance of the azobenzene molecules and the interaction

between the SAM and the redox couple employed affected the conductance of the

SAMs.

A study on lateral conductivity of a gold nanocrystal film (publication V)

completes this thesis. The effect of the room-temperature quantised charging of the

nanoparticles on the film conductivity was observed by measuring the conductivity

in several different film potentials. Control on the film potential was achieved from

the electrochemical potential of the solution redox couple, which determines the

equilibrium potential of the film via the Nernst equation. The advantage of this

method was that there was no need for electrical contacts to the film, which usually

bring additional resistance to the measured conductivity and thus complicate the

analysis of film conductivity.

As a whole, this thesis presents a path from the origin of self-assembly of indi-

vidual nanoparticles to the collective properties of the formed assemblies. Different

approaches towards the use of nanoparticles as building blocks of superstructures

were performed. The author hopes that this physicochemical approach, including

versatile characterisation and simple models, would give a picture of the inspiration

that the author had from the self-assembling functional nanostructures.
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