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Preface

When I began thinking about and working on this second edition, it became
clear early on that substantive additions to the first edition were in order.
Although the optical principles upon which the earlier text was based have not
changed, the ingenuity and resourcefulness of astronomers in the intervening
years have led to many exciting new instrumental developments. These devel-
opments, in turn, have meant a greatly increased efficiency in gathering data from
celestial sources. As one example to illustrate this change, note the use of optical
fibers to feed light from a hundred or more galaxies at a time into a spectrometer,
rather than the traditional one galaxy at a time approach.

Other dramatic developments within the past decade include implementing or
planning for techniques of adaptive optics to compensate for the atmosphere, and
the almost total adoption of solid-state detectors arrays. But the biggest change of
all is only starting to become reality, that of a significant number of ground-based
telescopes of near diffraction-limited quality and apertures greater than six meters
in diameter. This greatly increased light gathering power will undoubtedly
revolutionize observational astronomy.

In view of these developments, and in response to the many comments I
received on the first edition, my thrust in this rework has been two-fold. First,
many portions of the text were rewritten or amended to make the explanations
more clear and to correct errors. In some cases this meant adding additional
material, such as spot diagrams or wavefront maps; in other cases words and
figures were removed. Second, new sections were added to many chapters and
one new chapter, on adaptive optics, was added. The overall format of the first

Xiii



Xiv Preface

edition has not been changed, and [ hope the reader will find the changes in this
edition to be positive ones.

As in the first edition, my intent is to emphasize basic principles of optics and
how these principles are used in the designs of specific types of instruments. The
treatment is limited to telescopes and cameras that use near-normal incidence
optics and spectrometers with dispersive elements or interferometers. Numerous
examples of system characteristics are given to illustrate the optical performance
that can be expected. An outline of the topics covered is given in Chapter 1.

The level of presentation and approach are appropriate for a graduate student
in astronomy approaching the subject of astronomical optics for the first time.
Although the basic principles of optics are discussed, it is assumed that the reader
has the equivalent of an intermediate-level optics course at the undergraduate
level. This book should also serve as a useful reference for active researchers.

Because the presentation is not simply a compilation of types of telescopes
and spectrometers, the reader should consult the original sources for details on
specific instruments or telescopes. I have given an expanded bibliography and list
of references, including conference proceedings, to facilitate further exploration. I
have also added a table of symbols and their meanings as an aid to the reader.

A number of persons contributed directly or indirectly to the writing of the first
edition and this revision. First and foremost I thank Arthur Code, who gave me
the opportunity of participating in the development of the Wisconsin Experiment
Package of the first Orbiting Astronomical Observatory. Since that time I have
been privileged to draw upon his wealth of knowledge and to teach jointly with
him on one occasion a course on astronomical optics. For his contributions I am
especially grateful. My thanks also to Arthur Hoag, Robert Bless, and Donald
Osterbrock for their help and support over the years, and to Robert O’Dell for his
encouragement to take part in NASA’s Hubble Space Telescope Project.

Although many persons contributed to this rework, I mention only a few by
name. Robert Lucke gave several pedagogical suggestions, especially on my
discussion of distortion, that have been incorporated into the text. Derek Salmon
asked some questions about misaligned telescopes and that section has been
greatly expanded in this edition. The excellent book Reflecting Telescope Optics 1
by Raymond Wilson has been an important resource during the revision process.
For their input, and the numerous other comments I have received, I am grateful.

Finally, and most importantly, I acknowledge the support, encouragement, and
patience of my wife LaVern while I worked on both editions of this book.

Daniel J. Schroeder
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Chapter 1 Introduction

The increasing rate of growth in astronomical knowledge during the past few
decades is a direct consequence of the increase in the number and size of
telescopes and the efficiency with which they are used. Most celestial sources are
intrinsically faint and observations with small refracting telescopes and insensi-
tive photographic plates that required hours of observing time are now done in
minutes with large reflecting telescopes and efficient solid-state detectors. The
increased efficiency with which photons are collected and recorded by modern
instruments has indeed revolutionized the field of observational astronomy.

1.1. A BIT OF HISTORY

Early in the 1900s the desire for larger light gathering power led to the design
and construction of the 100-in Hooker telescope located on Mount Wilson in
California. This reflecting telescope and its smaller predecessors were built
following the recognition that refracting telescopes, such as the 36-in one at
Lick Observatory in California and the 40-in one at Yerkes Observatory, in
Wisconsin, had reached a practical limit in size. With the 100-in telescope, it was
possible to start systematic observations of nearby galaxies and start to attack the
problem of the structure of the universe.

Although the 100-in telescope was a giant step forward for observational
astronomy, it was recognized by Hale that still larger telescopes were necessary
for observations of remote galaxies. Due largely to his efforts, work began on the
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2 1. Introduction

design and construction of a 200-in (5-m) telescope in the late 1920s. The Hale
telescope was put into operation in the late 1940s and remained the world’s largest
until a 6-m telescope was built in Russia in the mid-1970s.

The need for more large telescopes became acute in the 1960s as the
boundaries of observational astronomy were pushed outward. Plans made
during this decade and the following one resulted in the construction of a
number of optical telescopes in the 4-m class during the 1970s and 1980s in
both hemispheres. These telescopes, equipped with efficient detectors, fueled an
explosive growth in observational astronomy.

Large reflectors are well-suited for observations of small parts of the sky,
typically a fraction of a degree in diameter, but they are not suitable for surveys of
the entire sky. A type of telescope suited for survey work was first devised by
Schmidt in the early 1930s. The first large Schmidt telescope was a 1.2-m
instrument covering a field about 6° across, and put into operation on Palomar
Mountain in the early 1950s. Several telescopes of this type and size have since
been built in both hemispheres. The principle of the Schmidt telescope has also
been adapted to cameras used in many spectrometers.

While construction of telescopes was underway during the 1970s and 1980s,
astronomers were already planning for the next generation of large reflectors. In
the quest for still greater light-gathering power, attention turned to the design of
arrays of telescopes and segmented mirrors, and to new techniques for casting
and figuring single mirrors with diameters in the 8-m range. The fruits of these
labors became apparent in the late 1990s with the coming online of a significant
number of telescopes in the 8- to 10-m class.

The array concept was first implemented with the completion of the Multiple-
Mirror Telescope (MMT) on Mount Hopkins, Arizona, a telescope with six 1.8-m
telescopes mounted in a common frame and an aperture equivalent to that of a
single 4.5-m telescope. Beams of the separate telescopes were directed to a
common focal plane and either combined in a single image or placed side-by-
side on the slit of a spectrometer. Although the MMT concept proved workable,
advances in mirror technology prompted the replacement of the separate
mirrors with a single 6.5-m mirror in the same telescope structure and
building.

The segmented mirror approach was the choice for the Keck Ten-Meter
Telescope (TMT), with 36 hexagonal segments the equivalent of a single filled
aperture. This approach requires active control of the positions of the segments to
maintain mirror shape and image quality. Even before the first TMT had been
pointed to its first star, its twin was under construction on Mauna Kea, Hawaii,
and together these two telescopes are obtaining dramatic observational results.
Another segmented mirror telescope is the Hobby-Eberly Telescope designed
primarily for spectroscopy.



1.1. A Bit of History 3

Although it seemed in the 1980s that multiple and segmented mirrors were the
wave of the future, new techniques for making large, “fast” primary mirrors and
controlling their optical figure in a telescope led to the design and construction of
several 8-m telescopes. Among these are the Very Large Telescopes (VLT) of the
European Southern Observatory, the Gemini telescopes, Subaru, and Large
Binocular Telescope (LBT). Used singly or as components of an interferometric
array (for the VLT and LBT), observations are possible that could only be
dreamed of in the 1970s.

Instrumentation used on large telescopes has also shown dramatic changes
since the time of the earliest reflectors. Noting first the development in spectro-
meters, small prism instruments were replaced by larger grating instruments at
both Cassegrain and coude focus positions to meet the demands for higher
spectral resolution. In recent years many of these high resolution coude instru-
ments have, in turn, been replaced by echelle spectrometers at the Cassegrain
focus. On the largest telescopes, such as the TMT and VLT, most large
instrumentation is at the Nasmyth focus position on a platform that rotates
with the telescope. Nearly all spectrographic instruments and imaging cameras
now use solid-state electronic detectors of high quantum efficiency that,
coupled with these telescopes, make possible observations of still fainter celestial
objects.

Although developments of ground-based optical telescopes and instruments
during the last three decades of the 20th century have been dramatic, the same can
also be said of Earth-orbiting telescopes in space. Since the first Orbiting
Astronomical Observatory in the late 1960s, with its telescopes of 0.4-m and
smaller, the size and complexity of orbiting telescopes have increased markedly.
The 2.4-m Hubble Space Telescope (HST), once its problem of spherical
aberration was fixed, has made observations not possible with ground-based
telescopes. Although its light gathering power is significantly smaller than that of
many ground-based telescopes, its unique capability of observing sources in
spectral regions absorbed by our atmosphere and of imaging to the diffraction
limit are leading the revolution in astronomy.

Because of the high cost of a telescope in space, there has been significant
effort to improve the quality of images of ground-based telescopes. These efforts
include controlling the thermal conditions within telescope enclosures and
incorporating active and adaptive optics systems into telescopes. With these
techniques it becomes possible to obtain images of near-diffraction-limited
quality, at least over small fields and for brighter objects.

This brief excursion into the development of telescopes and instruments
up to the present and into the near future is by no means complete. It is
intended only to illustrate the range of tools now available to the observational
astronomer.



4 1. Introduction

1.2. APPROACH TO SUBJECT

Most of the optical principles that serve as the starting point in the design and
use of any optical instrument have been known for a long time. In intermediate-
level optics texts these principles are usually divided into two categories:
geometrical optics and physical optics. Elements from both of these fields are
required for full descriptions of the characteristics of optical systems.

The theory of geometrical optics is concerned with the paths taken by light
rays as they pass through a system of lenses and/or mirrors. Although the ray
paths can be calculated by simple application of the laws of refraction and
reflection, a much more powerful approach is one that starts with Fermat’s
Principle. With the aid of this approach it is possible to determine both the first-
order characteristics of an optical system and deviations from these character-
istics. The latter leads to the theory of aberrations or image defects, a subject to be
discussed in detail.

The theory of physical optics includes the effects of the finite wavelength of
light and such topics as interference, diffraction, and polarization. Analyses of the
characteristics of diffraction gratings, interferometers, and telescopes such as the
Hubble Space Telescope require an understanding of these topics. The basics of
this theory are introduced prior to our discussions of these types of optical
systems.

The approach, therefore, is to emphasize the basic principles of a variety of
systems and to illustrate these principles with specific designs. Although the
specifics of telescopes and instruments have changed, and will continue to
change, the basic optical principles are the same.

1.3. OUTLINE OF BOOK

The 17 chapters that follow the Introduction can be grouped into six distinct
categories. Chapters 2 through 5 cover the elements of geometrical optics needed
for the discussion of optical systems. The first three chapters of this group are an
introduction to this part of optics seen from the point of view of Fermat’s
Principle, with Chapter 5 a detailed treatment of aberrations based on this
principle.

Chapters 6 through 11 cover the characteristics of a variety of telescopes and
cameras, including auxiliary optics used with them. The characteristics of
diffraction-limited telescopes are covered in the last two chapters of this group,
with application to the Hubble Space Telescope.



1.3. Outline of Book 5

Chapters 12 through 15 are a discussion of the principles of spectrometry and
their application to a variety of dispersing systems, with the emphasis on
diffraction gratings. In this group Chapter 14 is the counterpart of Chapter 5, a
treatment of grating aberrations from the point of view of Fermat’s Principle.

The remaining three chapters (16, 17, and 18) are distinct in themselves with
each chapter drawing upon results given in preceding chapters and applying these
results to selected types of observations for both ground-based and space-based
systems.

A closer look at the contents of each chapter is now in order. Chapter 2 is an
introduction to the basic ideas of geometrical optics, and the reader who is well
versed in these ideas can cover it quickly. One topic covered in this chapter, not
part of the usual course in optics, is the definition of normalized parameters for
two-mirror telescopes.

Chapter 3 is an introduction to Fermat’s Principle with a number of examples
illustrating its utility, including a brief discussion of atmospheric refraction and
atmospheric turbulence. Chapter 4 is an introduction to aberrations, with
emphasis on spherical aberration. The concept of aberration compensation is
introduced and applied to two optical systems.

The discussions of the preceding three chapters set the stage for an in-depth
discussion of the theory of third-order aberrations in Chapter 5. The results of the
analysis are summarized in tables for easy reference.

In Chapter 6 we draw on the results from Chapter 5 to derive the characteristics
of a number of types of reflecting telescopes. Comparisons of image quality are
given for several of these types, including examples of image quality for
misaligned two-mirror telescopes. Chapter 7 covers the characteristics of Schmidt
systems, including a discussion of the achromatic Schmidt and solid and semi-
solid cameras.

Chapter 8 covers various types of catadioptric systems, including Schmidt-
Cassegrain telescopes and cameras with meniscus correctors substituted for
aspheric plates. The following chapter (9) is a discussion of various types of
auxiliary optics used with telescopes, including field lenses, field flatteners, prime
and Cassegrain focus correctors, focal reducers, atmospheric dispersion correc-
tors, and fiber optics.

In Chapter 10 we discuss the basics of diffraction theory and aberrations and
the characteristics of perfect and near-perfect images. Perfect and near-perfect
images are discussed in terms of classical and orthogonal aberrations in Chapter
10, followed by a discussion in terms of transfer functions in Chapter 11. The
results are illustrated with a discussion of the optical characteristics of the Hubble
Space Telescope, both expected before launch and as measured after launch.

Chapter 12 covers the basic principles of spectrometry, followed by application
of these principles to a variety of dispersing elements and systems in Chapter 13.
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The following two chapters are devoted entirely to the diffraction grating, with
Chapter 14 an analysis of grating aberrations and concave grating mountings and
Chapter 15 the application of these results to a variety of plane grating
instruments.

Chapter 16 is an introduction to adaptive optics and the approach to correction
of wavefront distortion due to atmospheric turbulence to restore image quality. In
Chapter 17 we discuss detectors in terms of transfer functions and Nyquist
sampling, signal-to-noise ratio (SNR), and the detection limits that are reached at
a given SNR level for several types of observations. The final chapter is two
separate topics: residual errors of real mirrors and effects of these errors on image
quality, and diffraction-limited images given by telescope arrays.

The reader approaching the topic of astronomical optics for the first time is
encouraged to work through the basic theory. This exercise will facilitate the
understanding of its application to a specific optical system and the bounds within
which this system is usable. Other readers, on the other hand, will be interested
only in specific systems and their characteristics. We hope that their needs are met
with the tables and equations that are given. Whatever the motivation, a selected
bibliography is given at the end of each chapter for additional reading.

A more complete understanding of any optical system is achievable if an
analysis using the basic theory is supplemented with data from one of the many
optical design packages now available. Such packages generally provide a large
number of analysis tools and can give the user a detailed picture of how an optical
system will perform. Tasks ranging from simple tracing of rays to complete
diffraction analysis are essential in the design of complex optical systems.

In preparing the figures in this book, we have made extensive use of the optical
design program ZEMAX from Focus Software, Inc. of Tucson. As a help to the
reader, many of the optical systems used as examples in our discussions are
available from the public free download part of the web site www.focus-
software.com. An interested reader is encouraged to use the supplied design
files as a starting point for further self-study of the examples in the text.



Chapter 2 Preliminaries: Definitions and Paraxial

Optics

The analysis of any optical system generally proceeds along a well-defined
route. First one arrives at a basic layout of optical elements: lenses, mirrors,
prisms, gratings, and such, by using first-order or Gaussian optics. Such an
analysis establishes such basic parameters as focal length, magnification, and
locations of pupils, among others. The next step often involves using a ray-trace
program on a digital computer to trace rays through the system and calculate
aberrations of the image. Such an analysis might dictate changes in the basic
layout in order to achieve image quality within certain specified limits. Ray trace
and optical analysis programs are now quite sophisticated and are particularly
useful in systems with many optical elements. Tracing of rays is especially useful
in optimizing system performance.

In order to efficiently use the results generated by a ray-trace program it is
necessary to understand the theory of third-order aberrations. In subsequent
chapters we go into considerable detail on the nature of these aberrations and how
they can be eliminated or minimized in different kinds of optical systems. In
many cases an analysis of aberrations is a useful intermediate step following the
setup of the basic system and the analysis using a ray-trace program. Details of
how such programs work are not discussed.

Each of the steps along this route requires a systematic approach to measure-
ments of angles and distances. In this chapter we define the sign conventions used
and determine the equations of first-order optics. We apply these equations to
several systems including two-mirror telescope systems.

7



8 2. Preliminaries: Definitions and Paraxial Optics

2.1. SIGN CONVENTIONS

The coordinate system within which surface locations and ray directions are
defined is the standard right-hand Cartesian frame shown in Fig. 2.1. For a single
refracting or reflecting surface the z-axis coincides with the optical axis, with the
origin of the coordinate system at the vertex O of the surface. For an optical
system in which the elements are centered, the optical axis is the line of symmetry
along which the elements are located. In a system in which one or more of the
elements is not centered, the optical axis for such an element will not coincide
with that for a different element, a complication that is dealt with later. In the
following discussion only centered systems are considered.

Figure 2.1 illustrates refraction at a spherical surface with an incident ray
directed from left to right. Rays from an initial object are always assumed to travel
in this direction. The indices of refraction are » and »’ to the left and right of the
surface, respectively, with points B, B’, and C on the optical axis of the surface.
The line PC is the normal to the interface between the two media at point £, and a
ray directed toward B is refracted at P and directed toward B’.

The unprimed symbols in Fig. 2.1 refer to the ray before refraction, while the
primed symbols refer to the ray after refraction. The slope angles are u and «/,
measured from the optical axis, and the angles of incidence and refraction,
respectively, are i and i’, measured from the normal to the surface. The symbols s
and s’ denote the object and image distances, respectively, and R represents the
radius of curvature of the surface, measured at the vertex.

The sign convention for distances is the same as for Cartesian geometry.
Hence distances s, s’, and R are positive when the points B, B’, and C are to the
right of the vertex, and distances from the optical axis are positive if measured

Fig. 2.1. Refraction at spherical interface. All angles and distances are positive in diagram; see
text for discussion.



2.2. Paraxial Equation for Refraction 9

upward. The sign convention for angles is chosen so that all of the angles shown
in Fig. 2.1 are positive. Slope angles « and ' are positive when a counter-
clockwise rotation of the corresponding ray about B or B’ brings the ray into
coincidence with the z-axis. The angles of incidence and refraction, i and i’, are
positive when a clockwise rotation of the corresponding ray about point P brings
the ray into coincidence with the line PC. All rotations are made through acute
angles.

The advantage of these conventions for distances and angles is that both
refracting and reflecting surfaces can be treated with the same relations. As we
show, formulas for reflecting surfaces are obtained directly by letting »' = —n in
the formulas derived for refracting surfaces. The meaning of a negative index of
refraction is discussed in Section 2.3.

The sign conventions for distances and angles are similar to those used by
Born and Wolf (1980) and by Longhurst (1967). Although the conventions for
angles may at times seem awkward, they have the advantage of universal
applicability and are especially appropriate in third-order analysis of complex
systems.

2.2. PARAXIAL EQUATION FOR REFRACTION

In this section we develop some of the basics needed for a first-order analysis
of an optical system. It is worth noting that our discussion is not intended as a
comprehensive one, and should more details be needed the reader should refer to
any of a number of excellent texts in optics. Examples of such texts are those by
Longhurst (1967), Hecht (1987), or Jenkins and White (1976). You should be
aware, however, that the sign conventions used in the latter two of these books
differ from that used here.

With the help of Fig. 2.1 we can easily determine the relation between s and s’
when the distance y and all angles are small. By small we mean that point P is
close enough to the optical axis so that sines and tangents of angles can be
replaced with the angles themselves. In this approximation any ray is close to the
axis and nearly parallel to it, hence the term paraxial approximation.

The exact form of Snell’s law of refraction is

nsini = n'sini’, 2.2.1)
which in the paraxial approximation becomes #i = n’i’. From Fig. 2.1 we find

i+u=a, i'+u = ¢. (2.2.2)
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Solving these relations for i and i’, and substituting into the paraxial form of
Snell’s law gives

W —nu = (n' —n)o. (2.2.3)

Applying the paraxial approximation to the distances, we get ¢ = y/R, u =y/s,
and ' = y/s’. Substituting, and canceling the common factor y, we get

" n_n-n

s s R
The points at distances s and s’ from the vertex are called conjugate points, that is,
the image is conjugate to the object and vice versa. If either s or s’ = 00, then the
conjugate distance is the focal length, that is, s = f when s = 00 and s’ = f’
when s = oc.

(2.2.4)

2.2.a. POWER

In Eq. (2.2.4) we see that the right side of the equation contains factors relating
to the surface and surrounding media, and not to the object and image. It is useful
to denote this combination by P, where P is the power of the surface. The power is
unchanged when the direction of light travel in Fig. 2.1 is reversed, provided n
and »’ are interchanged and each is made negative. This invariance of P to the
direction of light travel makes it a useful parameter. Note also that s and s’ change
places when the light is reversed in Fig. 2.1, and Eq. (2.2.4) is unchanged.

Combining Eq. (2.2.4) with the defined focal lengths and power we get

" n n-—n n n

ST TR _P_f,__ 7 (2.2.5)
This is the first-order or Gaussian equation for a single refracting surface and is
the starting point for analyzing systems that have several surfaces. For multi-
surface systems the image formed by a given surface, say the ith one, serves as
the object for the next surface, the (i + 1)st in this case. A surface-by-surface
application of Eq. (2.2.5), starting with the first surface, will be illustrated in
examples to follow.

Equation (2.2.5) does not contain height y and hence applies to any ray passing
through B before refraction, provided of course the paraxial approximation is
valid. This equation also applies to object and image points that are not on the
optical axis, provided these points are close to B and B’ and lie on a line passing
through point C. This is illustrated in Fig. 2.2, where Q and Q’ denote an object
and image point, respectively, for a case where B and B’ lie on opposite sides of
the surface vertex. In Fig. 2.2 the line QCQ’ can be thought of as a new axis of
the spherical surface, where Q and Q’ are conjugate points along the new axis just
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Fig. 2.2. Conjugate points in the paraxial region. Here B and B, Q and (' are pairs of conjugate
points. See Eq. (2.2.7) for definition of transverse magnification.

as B and B’ are conjugate points on the original axis. If the angle ¢ in Fig. 2.2 is
small, then the line segments BQ and B’(Q)’ can be taken perpendicular to the
original axis. In general, of course, BQ and B’(Q’ are short arcs of circles whose
centers are at C.

2.2.b. MAGNIFICATION

The geometry in Fig. 2.2 can be used to determine the transverse or lateral
magnification m, defined as the ratio of image height to object height. In symbols
we have m = k' /h, where

h =—( — R)tan ¢, h=—(s—R)tan ¢, (2.2.6)

and the sign convention has been applied to each quantity. Note that the paraxial
approximation has not been applied in Eq. (2.2.6) in order to emphasize the fact
that for this definition the object and image lie in planes perpendicular to the axis.

In Fig. 2.2 we have s and R > 0 and s and ¢ < 0, hence 4 and 4’ have
opposite signs. Therefore

W §—R ns
m—=—-—= = —,
h s—R ws

2.2.7)

where the final step follows by substitution of Eq. (2.2.4). Because 4 and 4’ have
opposite signs in Fig. 2.2, the transverse magnification is negative for the case
shown. If m < 0, as in Fig. 2.2, the image is inverted relative to the object; in the
case where m > 0 the image is said to be erect.

In Fig. 2.3 a ray joining conjugate points B and B’ has slope angles « and /.
The angular magnification M is defined as tan «'/ tan u, where from the geometry
of Fig. 2.3 we see that y = stanu = s’ tanu’. Therefore

tany’ s n nh

(2.2.8)

" tanu & wm Wk’
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Fig. 2.3. Angular magnification. See Eq. (2.2.8) for definition.

Equation (2.2.8) relates the transverse and angular magnification for a pair of
conjugate planes. Rewriting this relation we get

nhtanu = n'h' tand/, 2.2.9)

which in the paraxial approximation becomes
nhu = n'h'u . (2.2.10)

If, as is customary, we let H = nhtanu, then Eq. (2.2.9) states that H before
refraction is the same as H after refraction. Thus in any optical system containing
any number of refracting (or reflecting) surfaces, H is an invariant. This follows
because the combination n'h’u’ for the first surface is nhu for the second surface,
and so on. Called the Lagrange invariant, H is important in at least one other
respect; the total flux collected by an optical system from a uniformly radiating
source of light is proportional to H?. Its invariance through an optical system is
thus a consequence of conservation of energy.

2.3. PARAXIAL EQUATION FOR REFLECTION

With the aid of Fig. 2.4 we now find the Gaussian equation for a reflecting
surface in the paraxial approximation. Applying the sign conventions to the
symbols shown gives distances s, §', and R, and angles i, ¢, u, and &’ as negative.
The law of reflection is i = —i', hence the angle of reflection i’ is positive in Fig.
2.4. From the geometry shown we get

. y ’ Yy y r_ Y
i=¢—u, i"'=¢—u, ¢=E’ u=":, W=5.
Substituting into the law of reflection, i = —i’, gives
I 1 2
—t—=_. 2.3.1
7TITR (2.3.1)

As in the case of Eq. (2.2.4), this relation applies generally to any object position
provided we use the appropriate signs for the distances. At this point it is
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- /

Fig. 2.4. Reflection at spherical surface. Here B and B’ are conjugate axial points.

important to point out that the law of reflection follows directly from Snell’s law
of refraction if we make the substitution »' = —n. Specifically, note that this
substitution into Eq. (2.2.4) gives Eq. (2.3.1) directly. The fact that the relations
for reflecting surfaces are thus directly obtained is very useful because we need
only consider relations for refracting surfaces and simply put #’ = —» as needed.
As an example we apply this substitution to Eqs. (2.2.5) and (2.2.7) and get

11 2 P 1 1
TSRS TR (2.3.2)
m=—2. (2.3.3)

S

Using Eq. (2.3.2) it is easy to verify that P > 0 for a concave mirror and P < 0
for a convex mirror, where a mirror is concave or convex as seen from the
direction of the incident light. Note, however, that the focal length of a concave
mirror changes sign when the direction of the incident light is reversed. This is
expected because the reversal of Fig. 2.4, left for right, changes the signs of s and
s’. But because n also changes sign in this reversal, P is invariant.

The meaning of a negative index of refraction simply means that the light is
traveling in the direction of the -z-axis, or from right to left. Consistent use of this
convention, together with the other sign conventions in Eq. (2.2.2), allows one to
work with any set of refracting and/or reflecting surfaces in combination.

In many situations it is convenient to take f > 0 for a concave mirror and
S < 0 for a convex mirror, independent of the direction of the incident light. We
will adopt this convention for convenience, keeping in mind that it violates the
strict sign convention. The sign convention for s, s’, and R will always be
observed.
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2.4. TWO-SURFACE REFRACTING ELEMENTS

We now apply the results of Section 2.2 to several systems with two refracting
surfaces, a thick lens, a thin lens, and a thick plane-parallel plate. We first
consider a thick lens, a lens in which the second refracting surface is distance d to
the right of the first surface.

2.4.a. THICK LENS

A schematic cross-section of a thick lens is shown in Fig. 2.5. If we assume the
lens has index n and is located in air, then n, =n5 =1, and n| =n, =n.
Applying Eq. (2.2.5) to each surface gives

1 -1 1 I -
2=t —p, -2="_p, (2.4.1)
s1s R, sh 5 R,

where 5, = 5] — d.

With this system we find only the net power P or, equivalently, the effective
focal length f”, where P = 1/f”. Figure 2.5 shows a ray with 5, = oo intersecting
the first surface at height y, and the second surface at height y,. From similar
triangles in Fig. 2.5 we get

o_si—d_s (2.4.2)
» s S
n=1 n'=ny=n ny'=1
R
yl } 4 S~
—
y -~
] 2 \\\‘ s
| —f—;— 52'——-»\
L—d . Sp — 1
S|I

Fig. 2.5. Cross section of thick lens. See Eq. (2.4.3) for lens power. In the thin lens limit,
f=s5=4.
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We can now find the effective focal length by setting s; = co and s, = 5| —d in
Eq. (2.4.1) and combining the result with Eq. (2.4.2). After a bit of algebra we get

n 1 n
- ==
1 s s§y—d

1 1 /sh —d n s —d
P=—=—(*—")=(P,+— (2 )
7 s'z( s, ) (”s&—d)( s )

Multiplying out the preceding equation we finally get the result sought in the
form

P =%/ =P +P, - (g)Ple. (2.4.3)
In the steps leading to Eq. (2.4.3), both n and d are positive. If the directions of
the arrows in Fig. 2.5 are reversed, the foregoing derivation reproduces Eq.
(2.4.3), with P; and P, exchanging roles. In this case both d and n change sign
and the ratio (d/n) is unchanged in sign. Thus P in Eq. (2.4.3) is the same for
either direction of light. Note that the effective focal length /" in Fig. 2.5 is
measured from the intersection of two extended rays, the incident ray to the right
and the refracted ray to the left.

2.4.b. THIN LENS

A thin lens is defined as one in which the separation of the two surfaces is
negligible compared to other axial distances, that is, s, = s/ effectively. For a thin
lens in air, Eqs. (2.4.1) apply directly. Letting s; = s and 53, = s, the addition of
these equations gives

1 1 1 1 1 i

The net power of a thin lens is simply the reciprocal of its focal length and is the
same as that of a thick lens with d = 0, as expected. Although a thin lens has two
surfaces, it is of interest to note that the Gaussian relations that describe the lens
are actually somewhat simpler than those for a single refracting surface.

The transverse magnification of each surface is given by Eq. (2.2.7) with the
results m; = s} /ns, and m, = ns},/s,. The net transverse magnification of a thin
lens is then m = mym, = s'/s.

As a final item for thin lenses, we note that Eq. (2.4.3) also applies to two thin
lenses separated by distance d, where » = 1 in the space between the lenses. The
simple analysis showing this is left to the reader.
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2.4.c. THICK PLANE-PARALLEL PLATE

A thick plane-parallel plate, as shown in Fig. 2.6, has a zero power but also has
an image that is displaced laterally along the optical axis relative to the object.
Applying Eq. (2.2.5) at each surface gives #|/s| =n,/s, and n}/s) = n,/s;.
Assuming the plate of index n is in air, n; = n, = 1, n| = n, = n, and noting
that s, =] — d, we get 5| = ns|, 55 =s, — (d/n). The distance from object to
image is A = s, —s, +d, or

A =d[l —(1/n). (2.4.5)

Note that the displacement A is independent of the object distance and, as is true
in all cases in the paraxial approximation, independent of height y. For a typical
glass with n = 1.5, we see that A = d/3.

In the paraxial approximation an optical system is free of any aberrations, that
is, an object point is imaged precisely into an image point. When the exact form
of Snell’s law is used however, most systems will have some form of aberration.
A thick plate is a good example of a simple system with aberration, that is, it fails
to take all rays from a single object point into a single image point. This is easily
shown by applying Snell’s law in its exact form at each surface. With the
intermediate steps left to the reader, the geometry of Fig. 2.6 leads to

A= d(l _ °°S".,>. (2.4.6)
ncosi
A comparison of Eqs. (2.4.5) and (2.4.6) gives
d cosi Vdm? —1)
A _ N 1) 21 2.4.
exact Apa.r n (1 cos ll;) 2s%n3 s ( 7)
n|=| n|’=n2=n n2=|
\h —_—
* h\&\f\ —_——
| lz \\ -2
$ ‘{ - A
52’
s/’ N\
L d s, A—

Fig. 2.6. Image shift A for plane-parallel plate of thickness d and index » in air. See Egs. (2.4.5)—
(2.4.7) for discussion.
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hence the image position depends on the ray height at the first surface. We
consider the aberrations of a thick plate in more detail later.

2.5. TWO-MIRROR TELESCOPES

We now apply the results of the preceding sections to the general class of two-
mirror systems. In this section we are concerned only with the paraxial properties

y
L
| = z
M~ |
52' 52’ S
Y d%

, N

- fi - Dﬂ*‘

(b)

Fig. 2.7. Schematic diagrams of two-mirror reflecting telescopes: (a) Cassegrain; (b) Gregorian.
Designated parameters are y; and y,, height of ray at margin of primary and secondary, respectively; D,
telescope diameter = 2|y, |; 2|y, |, diameter of secondary mirror; R, and R,, vertex radius of curvature
of primary and secondary mirror, respectively; s, and s5, object and image distance of intermediate
object (located at focal point of primary) measured from the secondary mirror vertex; f;, focal length
of primary mirror; and d, distance from primary to secondary, d < 0. See Table 2.1 for definitions of
normalized parameters.
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of such systems, and will limit our discussion to the case where s; = co. Two
examples of particular two-mirror systems are shown in Fig. 2.7, the so-called
Cassegrain and Gregorian types, of which the Cassegrain is the more common
type for an optical telescope.

Symbols in Fig. 2.7 are defined in the legend. Note that subscript 1 refers to
the first mirror (primary) and 2 refers to the second mirror (secondary) in the
optical train. For convenience, the sign of f; is taken positive when the primary is
concave. Following the sign convention, y; and y, have the same signs for a
Cassegrain and opposite signs for a Gregorian.

2.5.a. NORMALIZED PARAMETERS

It is very helpful to describe any two-mirror system in terms of a set of
dimensionless or normalized parameters, defined as given in Table 2.1. Among
the things to note for the entries in Table 2.1 are: (1) the focal ratios are defined as
positive quantities; and (2) the dimensionless parameters do not change sign
when the diagrams in Fig. 2.7 are reversed left for right.

In Fig. 2.7 we have § > 0 when the focal point lies outside the space between
the primary and secondary. Depending on whether the system is Cassegrain or
Gregorian, the signs of some of these dimensionless parameters differ. In
particular, k¥ and m are each positive for a Cassegrain and negative for a
Gregorian, hence the product mk is positive for each of the telescopes shown
in Fig. 2.7.

The relationships between these parameters are obtained with the aid of Eqgs.
(2.3.1) and (2.3.3) applied to the secondary, and the relation s, = kR/2. The
steps are as follows:

12 2 20 N _ikepy 1
s R, kR, R \p k) s\ p )] ms,

Table 2.1

Normalized Parameters for Two-Mirror Telescopes

k = y,/y; = ratio of ray heights at mirror margins,
p = Ry /R, = ratio of mirror radii of curvature,
m = —s5 /s, = transverse magnification of secondary,
18 = Dn = back focal distance, or distance from vertex of primary mirror to final focal point,
B and #, back focal distance in units of f; and D, respectively,
F, = | fi}/D = primary mirror focal ratio,
W = (1 — k) f; = distance from secondary to primary mirror,
= location of telescope entrance pupil relative to the secondary when the primary mirror is the
aperture stop,
F = | f|/D = system focal ratio, where f is the telescope focal length.
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Solving for m, and for p and £ in turn, we get

p mk p(m—1)
=—, =—, k=—=. 5.
m ok P p— ” (2.5.1a)
We also find
l+B=k(m+ 1), n=Fp. (2.5.1b)

It should be kept in mind that the relations in Eq. (2.5.1a,b) apply specifically to
the case where the original object is at infinity. Given this caveat we will see that it
is convenient to describe telescope characteristics in term of these parameters,
especially system aberrations.

The net power of a two-mirror telescope is found by using Eq. (2.4.3), which

can be rewritten as
P, d
P=Pll+=—-(-)P,}.
(1+2-()m)

From Eq. (2.3.2) we find P, = -2/R,, P, = 2/R,, hence P,/P, = —1/p. In
using Eq. (2.3.2) note that » = 1 for the primary and » = —1 for the secondary,
according to the sign convention. For the arrangements shown in Fig. 2.7, both d
and n are negative; the light is traveling from right to left and the secondary
mirror is to the left of the primary. Hence d/r is positive. In terms of the
dimensionless parameters from Eq. (2.5.1), we find that d/n = (1 — k)P, and

P =P[l — (k/p)] = P,/m, (2.5.2)

hence the telescope power is positive for a Cassegrain telescope and negative for
a Gregorian. In accord with our convention for single mirrors, we take telescope
focal length positive for a Cassegrain and negative for a Gregorian. In terms of
the focal lengths and focal ratios, therefore,

m=f/f,, F=|mF,. (2.5.3)

The difference in sign between the focal lengths of a Cassegrain and Gregorian,
and their magnifications, requires some discussion.

Consider the rays reflected from the secondary in Fig. 2.7(a). If these rays are
extended to the left until they intersect their corresponding incident rays, the
distance between the intersection plane and the focal point, measured along the
axis, is the focal length. The focal point lies to the right of the intersecting rays,
hence the focal length is positive. This is similar to the situation shown in Fig. 2.5
for a thick lens. Following the same procedure for the Gregorian in Fig. 2.7(b),
the incident rays and the rays reflected from the secondary must be extended to
the right to locate the intersection plane, hence the focal length is negative.

As for the magnification, its sign according to our convention is positive if the
image made by the secondary has the same orientation as the object for the
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secondary. This is the case for the secondary mirror in a Cassegrain telescope as
shown in Fig 2.7(a). But this telescope has a final image that is inverted with
respect to the original object on the sky. This is because the image given by the
primary is inverted, hence the final image is also inverted. For the Gregorian
telescope the final image is erect relative to the object on the sky because each
mirror inverts its object. Thus these two types of telescopes might simply be
characterized as follows:

Cassegrain: f > 0, m > 0, final image inverted;
Gregorian : f < 0, m < 0, final image erect.

2.5.b. OTHER TELESCOPE CHARACTERISTICS

Given our introduction of normalized parameters for two-mirror telescopes, it
is appropriate to discuss other characteristics in terms of them. Among these are
telescope scale, effect of secondary mirror displacement on focal surface location,
secondary mirror to focal point separation, diameter of secondary mirror as a
function of field size, and overall telescope length.

We are limiting our discussion here to optical systems for which the original
object is effectively at an infinite distance, hence it is not possible to give a useful
formula for the magnification of the system. Rather it is the telescope scale that
provides a useful parameter of the telescope. For a telescope of focal length f; the
scale is
206265
f(mm)’
where the units of arc-sec/mm are those most often used. For conversion to radian
measure the identities 0.206 arc-sec = 1 prad and 3.44 arc-min = 1 mrad can be
used. Equation (2.5.4) applies to a telescope with any number of mirrors.

For a given pair of primary and secondary mirrors the location of the telescope
focal surface depends on the location of the secondary, as given by Eq. (2.5.1). If
the secondary is moved along the optical axis, then both m and & are changed, and
so also is the position of the focal surface.

Let ds’ be the displacement of the focal surface, or focal surface shift, when
the secondary is displaced by ds,. Differentiating Eq. (2.3.1) while holding R,
constant, we find that

S(arc-sec/mm) = (2.5.4)

dsy = —m?ds,, (2.5.5)

where ds, < 0 when the secondary is moved closer to the primary.
The displacement given by Eq. (2.5.5) is measured relative to the secondary,
which is now in a new position. Relative to the object at the focal point of the
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primary, or relative to the primary, the focal surface has moved by
dsy — ds; = —(m? + 1)ds,. This relation can easily be checked by working
with the dimensionless parameters. From Eq. (2.5.1) we have

ﬁ:k(m+1)—l=k(2p_kk)—l,

s P (2.5.6)
dk— (p — ky’

+1=m+1,

where dk = —ds,/f;, and dff = shift of focal surface relative to the primary
mirror vertex in units of f].

Although Eq. (2.5.6) does not set any apparent limit on how far the secondary
can be moved, there is a limit set by the onset of aberrations. Two-mirror
telescopes generally have a mirror separation set to make the on-axis aberration
zero. For a different secondary position the on-axis aberration is no longer zero,
and its size sets a practical limit to the amount of secondary displacement. These
limits will be considered during our discussion of telescope aberrations.

Both Cassegrain and Gregorian telescopes, especially the former, can have a
long overall focal length in a mechanical structure that is many times shorter.
From Fig. 2.7 we see that a typical Cassegrain telescope has a secondary mirror to
focal surface separation comparable to f;, or about m times smaller than f. More
precisely, the secondary mirvor-focal surface distance is fi(1+ f —k), or
1 + B — k in units of f;. Using Eq. (2.5.1) we get

secondary-focal surface distance = mkf, 2.5.7)

a relation that applies to both Cassegrain and Gregorian types. We show in
Chapter 6 that a Gregorian telescope is significantly longer than a Cassegrain if
both telescopes have the same values of |m] and £}, hence the same focal length.
The advantages of a relatively short structure from an engineering point of view
are obvious because there will be less flexure in a short telescope than in a long
one.

Another difference between these two types of telescopes is the size of the
secondary required to accept all of the light reflected from the primary. Each
diagram in Fig. 2.7 shows a secondary mirror whose diameter is |k|D, the
minimum required for a single point source. To cover a field on the sky of angular
diameter 20 without vignetting any light from the primary, the secondary must be
larger by 20(1 — k) f; = 20F,(1 — k)D. Thus the full diameter of the secondary is

D, = D[|k| + 20F,(1 — k)]. (2.5.8)

Because k£ < 0 for a Gregorian, the diameter D of the Gregorian secondary is
larger for the same 6 and F, hence it blocks a larger fraction of the light headed
for the primary.
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These two-mirror designs have the added feature that the system focal length is
easily changed simply by putting in a different secondary mirror, without
changing the physical length by a large factor. As an example, consider a
Cassegrain telescope with parameters F; =3, f=0.25, and m =3. Using
Egs. (2.5.1) we find £k = 0.3125 and the normalized secondary mirror-focal
surface separation is 0.9375. If we choose to increase the telescope focal length
by a factor of three, hence making m =9, while keeping f = 0.25, then
k = 0.125 and mk = 1.125. The modified telescope is only 1.2 times longer
than the original one.

A final, and very significant, advantage of two-mirror systems is the additional
freedom provided for controlling image quality. With proper choices of surface
parameters it is possible to have the aberrations of the primary canceled, entirely
or in part, by those of the secondary, thus giving a system with better image
quality. We discuss these considerations in detail in subsequent chapters.

2.6. STOPS AND PUPILS

We now turn our attention to the important topic of stops and pupils. Our
discussion, although brief, will cover the essential points. For a more complete
discussion the reader should consult any of the intermediate-level texts listed in
the bibliography at the end of the chapter.

2.6.a. DEFINITIONS AND BASICS

The aperture stop is an element of an optical system that determines the
amount of light reaching the image. This stop is often the boundary of a lens or
mirror, although it may be a separate diaphragm. In addition to controlling the
amount of light entering the system, it also is one of the determining factors in the
sizes of system aberrations. For most telescopes the primary mirror serves as the
aperture stop, although in many infrared telescopes the secondary mirror is the
aperture stop.

The field stop is an element that determines the angular size of the object field
that is imaged by the system. In most systems the boundary of the field stop is the
edge of the detector, although it may also be a separate diaphragm in an image
plane ahead of the detector.

In a general optical system the image of the aperture stop formed by that part
of the system preceding it in the optical train is called the entrance pupil. For two-
mirror telescopes in which the primary mirror is the aperture stop, as well as for
prime focus (single mirror) and refracting telescopes, no imaging elements
precede the aperture stop. In this case the entrance pupil coincides with the
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aperture stop. For infrared telescopes the aperture stop (secondary mirror) is
preceded by the primary mirror. In this case the entrance pupil is the same
diameter as the primary mirror, an exercise left for the reader.

The image of the aperture stop formed by that part of the system following it is
called the exit pupil. The significance of the exit pupil is that rays from the
boundary of the aperture stop approach the final image point as if coming from
the boundary of the exit pupil, for all incidence angles at the aperture stop
boundary. If the secondary mirror is the aperture stop, then there are no telescope
optics following the aperture stop and the telescope exit pupil coincides with the
stop.

2.6.b. PUPILS FOR TWO-MIRROR TELESCOPES

We now apply these definitions to telescopes of the type shown in Fig. 2.7.
Taking the aperture stop at the primary, at distance W = (1 — k) f; from the
secondary, the exit pupil is the image of the primary formed by the secondary.
Figure 2.8 shows the exit pupil location for a Cassegrain telescope; for a
Gregorian the exit pupil is located between the primary and secondary mirrors.

Applying Eq. (2.3.1) to the geometry in Fig. 2.8, with fjJ defined as the
distance from the exit pupil to the telescope focal point, and converting to
normalized parameters, gives

mk  m(1+p)

= = 2.6.1
0 m+k—1 m*+p° @6.1)

where 4 > 0 when the focal surface of the system lies to the right of the exit
pupil, as shown in Fig. 2.8. Although Eq. (2.6.1) was derived from the diagram

exit aperture
pupil stop
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Fig. 2.8. Location of exit pupil for Cassegrain telescope. The exit pupil is closer to the secondary
than is the primary focal point. See Eq. (2.6.1).
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for a Cassegrain, it also applies to a Gregorian telescope. The distance from the
secondary mirror to the exit pupil, in normalized parameters, is mk — 6. From
Eqgs. (2.5.7) and (2.6.1) we find

k(k —
secondary-exit pupil distance = _'(_ . 3 —f. (2.6.2)
Using Eqs. (2.3.3) and (2.2.3) we find that the exit pupil diameter is
D, = DI|é/m| = f1|6/F)|. (2.6.3)

Because the centers of the aperture stop and exit pupil are on the axis of the
telescope, the so-called chief ray appears to come from the center of the exit pupil
after reflection from the secondary. The chief ray is defined as the ray that passes
through the center of the aperture stop. If the angle of incidence of the chief ray at
the primary is 0, its angle with respect to the telescope axis is Y after reflection
from the secondary. The relation between these angles is easily derived from the
geometry shown in Fig. 2.9, where the focal length of a thin-lens refracting
telescope equivalent to a Cassegrain type is f. From Fig. 2.9

Yf16 =f0 = mf,0, (2.6.4)

hence /0 = m/5. Because ¢ is generally of order unity, the chief ray angle at the
focal surface is of order m larger than the incident chief ray angle.

If the secondary mirror is the aperture stop, then the exit pupil coincides with
the stop. In this case 6 = mk, and /0 = 1/k, or again of order m because mk is
usually of order unity in size.

2.6.c. EXAMPLES OF PUPILS

The importance of stops and pupils is especially evident when auxiliary optics
following the telescope are used to improve overall image quality. In both of the
examples discussed here, one or more optical elements reimages the exit pupil of
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Fig. 2.9. Relation between incident and final chief ray angles, 0 and ¥, respectively, in two-mirror
telescope. Here L is the lens of equivalent refractor, EP the exit pupil, FP the focal plane. See Eq.
(2.6.4).
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the telescope on to an optical element whose main function is improvement of the
image quality. Generally there are additional optical requirements for these
optical elements, but these are not relevant to our discussion of pupils.

The most dramatic example of the improvement of image quality was the
“fix” of the spherical aberration (SA) present in the images produced by the
Hubble Space Telescope (HST) when it was launched in 1990. We will discuss
this aberration and the nature of the optical fix in detail in subsequent chapters; at
this stage we consider only the role played by pupils in the fix.

The SA present in the HST images was attributed to a primary mirror that had
been incorrectly figured. Although the mirror is of superb quality, its shape is less
curved than that of the optical prescription, with the maximum difference of
about 2y at the edge of the mirror. The approach adopted to compensate for this
error was to place a pair of mirrors (we will call them M1 and M2) into the
converging beam near the telescope focus and to make M2 with a corresponding
difference, but more curved rather than less. Each point on mirror M2 must be in
one-to-one correspondence with a point on the primary, hence must be located at
a pupil. The purpose of mirror M1 is to reimage the exit pupil of the telescope on
to M2, that is, the exit pupil of the HST is the object for M1 with the image
placed on M2.

Another example showing the importance of pupils occurs in the case of
adaptive optics, the compensation in realtime of the degrading effects of the
Earth’s atmosphere on starlight passing through it. (A discussion of the principles
of adaptive optics follows in later chapters.) At this point we simply point out that
the light reaching the primary mirror of a ground-based telescope is distorted by
the atmosphere in a random way on a timescale of milliseconds. Although this
mirror may be capable of producing a near-perfect image, to the remaining optics
in the telescope it is as if the light from the primary is coming from a “rubber”
mirror with everchanging shape on a small scale. The “fix” in this case is
auxiliary optics that must reimage the telescope exit pupil on to a flexible mirror,
sense and measure the distortion in the incoming light, and transmit the distortion
to the flexible mirror in a reversed form to effect compensation.

These two examples are really quite similar. In both cases the exit pupil is
reimaged on to a mirror that compensates for a distortion preceding it in the
optical train. The major difference is that the correction is static in one case and
dynamic in the other.

2.7. CONCLUDING REMARKS

The material in this chapter, based as it is on paraxial optics, is only an
introduction to a much larger subject area. We have included topics deemed
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essential for further discussion of telescopes and auxiliary instruments used with
them, but left out topics such as principal planes, nodal points, and the methods
of ray tracing. Any of the intermediate texts listed in the following bibliography
should be consulted for an all-inclusive look into ray optics. A thorough
presentation of the exact tracing of rays through an optical system is given by
Welford (1986).

Our discussion of two-mirror telescopes is also only a beginning into an
analysis of telescopes generally. We limited our presentation to an introduction of
normalized parameters and their utility in describing the properties of two broad
classes of two-mirror telescopes. In the following chapters we will go into much
more detail, especially on aberrations and image characteristics of many types of
telescopes within these classes, as well as for other types. Thorough discussions
of the properties of telescopes are given by Wilson (1996) at an advanced level
and by Rutten and van Venrooij (1988) at an intermediate level.
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Chapter 3 Fermat’s Principle: An Introduction

A very powerful method in dealing with geometrical optics, the analysis of
optical systems by tracing rays, is a principle ascribed to Fermat. For a single
plane reflecting or refracting surface it states that the actual path that a light ray
follows, from one point to another via the surface, is one for which the time
required is a minimum. For this particular case, Fermat’s Principle can be called
the principle of least time.

Although the principle as stated here is correct for a single surface, it must be
modified for application to a general optical system. In its modern form Fermat’s
Principle states that the actual path that a ray follows is such that the time of travel
between two fixed points has a stationary value with respect to small changes of
that path. In other words, the path of a ray from one point to another is such that
the time taken has no more than an infinitesimal difference of second order from
the time taken in traveling along other closely adjacent paths between the same
points. Hence, to a first approximation, the travel time of the actual ray is equal to
that along a closely adjacent path.

We first look at some of the consequences of this statement from a general
point of view. The discussion involving calculus of variations can be skipped on a
first reading, though results derived for the atmosphere are important for
observations with ground-based telescopes. In subsequent sections we look at a
number of other specifics that follow from this principle.

27
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3.1. FERMAT’S PRINCIPLE IN GENERAL

The simplest case illustrating Fermat’s Principle is shown in Fig. 3.1. A surface
2 lies between two points, P, and P;, with a ray joining these points consisting of
straight line segments. The solid line is the actual ray path and the dashed line
some other path. If the time of travel from P, to P, is denoted by 7, then the
condition that T have a stationary value for the actual path is

dr/ox = at/oy = 0, (3.1.1)

where x, y are the generalized coordinates of the point where the ray intersects the
surface.

An equivalent statement of Fermat’s Principle is obtained by replacing the
words time of travel with optical path length. If dt is an infinitesimal time of
travel, then cdt is the corresponding optical path length, where ¢ is the velocity of
light in vacuum. The optical path length (hereafter denoted by OPL) is expressed
in terms of the geometrical path length and index of refraction as follows:

d(OPL) =cdt = (c/v)vdt = nds,

(3.1.2)
OPL:cht: Jn ds,

where v is the speed of light in the medium of index n. The general statement of
Fermat’s Principle is either 67 = 0 or (OPL) = 0, where »n can be a function of
all the coordinates that specify the position.

We now consider the two-dimensional (2D) case where the index of refraction
n = n(y,z) and ds = \/dy? + dz2. Letting y’ = dy/dz, Fermat’s Principle gives

P
5,[1) n(y, 2)v/(1 +y?)dz = 0, 3.1.3)

Fig. 3.1. Possible ray paths through interface between different optical media.
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where ds has been replaced by dz,/(1 +y"2). Letting F(y,y’, z) represent the
integrand in Eq. (3.1.3) we get

P, P,
5J F(y,y/’z)dZ: J 5F(y,y’,z)dz=0, (314)

PO PO
where

oF oF oF oF d
OF = — 08y +— 08y’ = — 0y + ——(dy).
8yy+8y,y 8nyr(,,y,a,z(y)

Substituting for 6F in Eq. (3.1.4) and integrating the term containing y’ by parts,
we get

PraF F
J g—5ydz+a—(5y

Poo P g (o
— —|— oy dz=0. 3.1.5
P, O & J ( )yz @.13)

P, PO dZ By /

The second term in Eq. (3.1.5) is zero because Jy is zero at the endpoints.
Therefore we can write Eq. (3.1.5) as

P
[oF d [oF
Lo[a‘aé(w)]‘w“‘)'

This expression must vanish for an arbitrary dy and therefore

OF d [oF
5_ECV):Q (3.1.6)

which is the equation required to satisfy Fermat’s Principle.

We now take Eq. (3.1.6), replace F with the expression it represents, and carry
out the differentiations indicated. As noted following Eq. (3.1.3) we have
F =n(y, 2)/(1 +y?). Noting that y’ is not an explicit function of y, nor is n a
function of y’, we get

 dz| J(1+y?)
an d y' vy dn
_Jasoan_ 4 - Z_0. @17
e e R

Although Eq. (3.1.7) is a rather formidable equation in appearance, it is easily
simplified after making some trigonometric substitutions. Figure 3.2 shows a
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¥ P ="
L/ﬁ7/”—
e —

Fig. 3.2. Small segment of curved ray path in inhomogeneous medium. Dashed line is tangent to
ray at point P.

segment of the ray path with the dashed line tangent to the path at point P. At this
point

tana:dlzy’, sina:ﬂz—y,———,
dz N (ST
iz ! d (3.1.8)
cosa=£=—m, Esma:cosaE.
Using Eqgs. (3.1.8) and noting that
dn on ,on
& ut
we write Eq. (3.1.7) as
on . Om o
cosoca—y—smocg—ncosa—ggzo. 3.1.9)

As a final item we note that the curvature i of a path in space is defined as

da_duds o dy
Tds dzds O %az
Substitution of this result into Eq. (3.1.9) gives
d d d
mc:ncoscx—azcosa—n—sina—n. (3.1.10)
dz dy oz

The result in Eq. (3.1.10) gives the local curvature of a light ray subject to
Fermat’s Principle in a medium in which the index of refraction is a smoothly
varying function of position. Note that this relation applies to a ray in the yz-plane
with n = n(y, z).

As a special case of Eq. (3.1.10), assume that index n is constant. In this case
the partial derivatives on the right side of Eq. (3.1.10) are zero and hence the
curvature is zero. Thus the path of a light ray in a homogeneous medium is a
straight line.
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We now apply these results in turn to optical surfaces separating homogeneous
media, such as air and glass, and to one inhomogeneous medium, the Earth’s
atmosphere.

3.2. FERMAT’S PRINCIPLE AND REFRACTING SURFACES

In this section we consider several examples of refracting surfaces and
approach them from the point of view of Fermat’s Principle. In doing this we
will rederive some of the results of Chapter 2 as well as find some new ones. For
all of the cases discussed we assume that homogeneous media are separated by a
surface across which the index changes abruptly.

3.2.a. LAWS OF REFRACTION AND REFLECTION
Fermat’s Principle can be used to derive Snell’s law at a plane interface where

the index changes from n to »n’, as shown in Fig. 3.3. For this situation the
condition that the path is stationary is, from Eq. (3.1.2), given by

Py Py
o nj ds+n’J ds| =0,
P, P,

which, upon evaluation of the integrals, gives

5{n\/(z% +y3)+n’\/[z§+(yz—yo)2]} =0. (3.2.1)

Fig. 3.3. Ray through plane interface between two homogeneous media with different indices of
refraction.
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This is, as expected, simply the sum of two optical lengths. Our variable is y, and
differentiating Eq. (3.2.1) gives

d d
{nam*ﬂl Eo 23+ (&, _)’0)2]}5)/0 —0

The expression in braces in this relation is independent of 8y, and therefore we
set the expression equal to zero. Doing the differentiation gives

n Yo _n/ Y2 —Yo
VE) 2+ 007

Examination of Fig. 3.3 shows that the factors multiplying » and n’ are sin7 and
sini’, respectively, and hence Eq. (3.2.2) is simply Snell’s law of refraction,
nsini = n'sini’. The law of reflection follows directly if we let n’ = —n, in
which case we also have i’ = —i.

The nature of this stationary condition can be examined further by differ-
entiating Eq. (3.2.2) with respect to y, and looking at the sign of the result.
Because the sign is positive, the path taken by the ray in going from one fixed
point to another is such that its time of travel or OPL is a minimum.

=0. (3.2.2)

3.2.b. SPHERICAL INTERFACE

Although we have already derived the paraxial equation for refraction at a
spherical interface in Section 2.2, we will repeat the exercise using Fermat’s
Principle. The spherical surface separating two homogeneous media, along with
conjugate points B and B’, is shown in Fig. 3.4. With due regard for signs
according to the Cartesian convention, the optical length L from B to B’ via point
P is given by L = —nl + n’l’, where from the law of cosines

| = —\/RZ + (R —5)> — 2R(R — 5) cos ¢,

/' = \/R2 +(s' — R)* + 2R(s’ — R) cos ¢.

Fig. 3.4. Refraction at spherical interface.
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Substituting / and /’ into L, we have an expression in which ¢ is the variable. We
apply Fermat’s Principle and find the stationary condition by setting dL/d¢ = 0.
This gives

dL __nR(R — 5)sin ¢ B n'R(s' —R)singp

7= ; ; 0. (3.2.3)

In the paraxial limit / =5 and /" = s’. Substitution of these into Eq. (3.2.3)
immediately leads to Eq. (2.2.5).

3.2.c. FOCAL LENGTH OF THIN LENS

As an example of a slightly more complex system, we use Fermat’s Principle
to find the focal length of a thin lens of index », with radii of curvature R, and R,
as shown in Fig. 3.5.

To find the focal length we make use of the fact that Fermat’s Principle must
apply to every ray between two conjugate points of a focusing system. For
example, in Fig. 3.4 we see that a ray from B to B’ along the z-axis must have an
OPL that is stationary with respect to closely adjacent paths. But each of these
adjacent paths is itself stationary, hence the OPL is the same along all paths
between two conjugate points, at least to a first approximation, provided the rays
pass through the system. Stated differently, the OPL (or time of travel) between
two conjugates of a perfect focusing system is neither a minimum nor a maximum.

Returning to the thin lens shown in Fig. 3.5, we find the OPL for each of two
rays. For the ray coincident with the z-axis we get

Ly = [BO\] + n[0,0,] + 17,

d->

Fig. 3.5. Cross-section of thin lens (not to scale). By sign convention z; > 0, z, < 0.
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while for the ray at height y in the paraxial range
L, =[BO\|+z, +n[P\P)] —z; +1,

where z, < 0 and / is measured from the y, axis. Although the distance [BO,] is
infinite, this is of no consequence because on setting L, equal to L, this distance
drops out, and we get

nd+f =zy+nld—z +2,) —z, + 1. (3.2.4)
In Eq. (3.24) we have substituted d =[0,0,], d —z; +z; = [P,P,]. Re-
arranging Eq. (3.2.4) leads to
I—f'=(m—-1)z —z). (3.2.5)
The radii of curvature, R, and R,, are given by

R =y¥+@R —z) =R+ — 2Rz,
R =33+ (—R, +22)2 =R3+)* — 2Rz,

where y; = y, = y for a thin lens in the paraxial range. In this approximation we
get z, = */2R, and z, = y*/2R,.

From Fig. 3.5 we see that /2 = y? + f? = f?(1 +)?/f"). Taking the square
root and using the binominal expansion gives / —f' =)?/2f’. Taking these
results, substituting for z;, z,, and / —f’ in Eq. (3.2.5), and canceling common

factors gives
1 1 1
—,=(n_1)(_—_)v
S R, R

a result already seen in Eq. (2.4.4). A similar approach can be used to find s and
s’ in terms of f’, an exercise left to the reader.

3.2.d. DISPERSING PRISM

As our final example in this section we consider a glass prism as shown in Fig.
3.6. Because n = n(4) the angle of deviation 6 is also a function of 4, where 1 is
the wavelength of light. With rays incident as shown in Fig. 3.6, there is some
wavelength whose rays in the prism follow paths parallel to the prism base. For
these rays the diagram is symmetric about the vertical bisector of the prism, and
hence s, =5, =5, ¢, =@, =¢,and a; = a, = a.

Applying Fermat’s Principle to this symmetric situation we get

2Lcos @ = nt, (3.2.6)



3.2. Fermat’s Principle and Refracting Surfaces 35

Fig. 3.6. Dispersing prism of base ¢ and opposite angle y.

where the left side of Eq. (3.2.6) is the OPL of the upper ray and the right side is
the OPL of the lower ray in Fig. 3.6. We are interested in seeing how 6 changes
with wavelength. Differentiating Eq. (3.2.6) with respect to wavelength gives

dods
dedi’

d d .
td—z = —2Lsing ¢ _ —2Lsin ¢

= (3.2.7)

From Fig. 3.6 we see that Lsing =a, 8 =1 — 7y — 2¢, from which we get
do/di = —1/2. Substituting into Eq. (3.2.7) we get

do t\dn
0 (E)E’ (3.2.8)
where ¢/a is the ratio of the base length to the beam width.

The index of refraction of most optical glasses can be expressed approximately
in the form

n(d) = A+ (B/4%), (3.2.9)

where 4 and B are constants. Differentiating Eq. (3.2.9) and combining with Eq.

(3.2.8) we get
do 2 B
EIZ_<Z1)(F)' (3:2:10)

The negative sign indicates that 8 decreases as A increases, hence blue light is
deviated more than red light. We also note that d0/d2, angular dispersion, is
numerically larger for shorter wavelengths.
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3.3. WAVE INTERPRETATION OF FERMAT’S PRINCIPLE

Fermat’s Principle is a statement about the behavior of light rays in terms of
optical path length. The statement does not in any way make use of the fact that
light is an electromagnetic wave capable of undergoing constructive and
destructive interference. By treating light as a wave we can give a physical
interpretation of Fermat’s Principle in terms of destructive interference of waves

(a) T L L
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Fig. 3.7. (a) Optical path difference for ray in Fig. 3.3. See text, Section 3.3, for defined
coordinates. (b) Greatly magnified view near minimum in (a).
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following different paths. This is most easily done by means of a specific
example.

If, in Fig. 3.3, we choose n = 1, n’ = /5/2, then the stationary path is that
for which P, is at (2, 2) when P, is at (0, —1) and P, is at (1, 0). The optical path
length between P; and P, is then a minimum. In order for another wave
originating at P, to reach P, half a cycle after the wave following the minimum
path, we need Ay, of 1475 wavelengths for light of 500 nm, when the coordinates
of the points are given in meters. One-half cycle difference for two waves
corresponds to destructive interference.

Stated in another way, the extra path length introduced when y; is changed by
1475 wavelengths (or 0.7375 mm) is only a half of a wavelength when the change
is in the neighborhood of the stationary path. If, on the other hand, we choose P,
at (1.2, 0), then the path from P, to P, is not a stationary one. In this case a half
wavelength change in OPL is introduced when Ay, is about 2.8 wavelengths. The
variation in OPL as a function of y, is shown in Fig. 3.7a,b.

Fermat’s Principle can therefore be thought of as giving the path through
which the highest transmission of light is possible. This path is the one that
presents to the light waves the largest area without significant destructive
interference for waves that pass through that area.

3.4. FERMAT’S PRINCIPLE AND REFLECTING SURFACES

The application of Fermat’s Principle to a spherical refracting interface and
thin lens in Section 3.2 gives results that apply in the paraxial domain. In these
examples the surface shapes were specified (all spherical), with the result that the
derived equations are strictly true only for paraxial rays. In this section on
reflecting surfaces we adopt a different procedure and require that rays over the
entire aperture satisfy Fermat’s Principle. We then find the appropriate surface
shape needed to satisfy this requirement.

3.4.a. CONCAVE MIRROR, ONE CONJUGATE AT INFINITY

We first consider the concave mirror shown in Fig. 3.8. Parallel rays are
incident from the left with all rays focused at a distance f from the mirror vertex.
For convenience we let f, /, and A be positive quantities. Applying Fermat’s
Principle to a ray on the optical axis and a ray at height y, we see that equal OPLs
require 2f =1+ (f —A),or I =f+ A

From the geometry in Fig. 3.8 we see that

P =y +(f -NMN (3.4.1)
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y

R\ A

Fig. 3.8. Rays from distant point source incident on concave reflector, where / is the distance from
P, to B'. Image at B’ is point for surface given by Eq. (3.4.3).

Eliminating [ in Eq. (3.4.1) gives y* = 4fA, which in terms of z is
V= —4f. (3.4.2)

Equation (3.4.2) is the equation of a parabola whose vertex is at (0, 0). The
paraboloid, or paraboloidal surface of revolution, is obtained by rotating the
parabola about the z-axis; its equation is found by replacing y* by x* + %. Using
Eq. (2.3.2) we can express f in terms of R which, upon applying the sign
convention to R, gives

3* = 2Rz. (3.4.3)

R is the radius of curvature at the mirror vertex, and both R and z are negative in
Fig. 3.8.

3.4.b. CONCAVE MIRROR, BOTH CONJUGATES FINITE

Figure 3.9 show a concave mirror with an object point at B and the
corresponding image point at B’, both on the z-axis. Here we adopt the sign
convention for s and s’ at the outset, while choosing /, /', and A as positive
quantities. Given s and s < 0 in Fig. 3.9, the application of Fermat’s Principle to
the two rays leaving B gives

I+ =—(s+5s)),
P =y 4 (—s— AP, I? =32 + (—=s' — A
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Fig. 3.9. Rays between conjugates at finite distances via concave reflector, where /(') is the
distance from P, to B(B’). Imagery is perfect for surface given by Eq. (3.4.4).

Eliminating / and I’ between these relations, and letting A = —z as in Eq. (3.4.2),
leads to the relation

4

ss’ SS
—4 4 422 = 0. 3.4.4
yz Zs—+—S/ (S+S/)2 ( )

This is the equation for an ellipse with center (0, a), with a and b the semimajor
and semiminor axes, respectively. We can easily put Eq. (3.4.4) into the standard
form of an ellipse equation if we choose 2a = s + s/, b? = ss’. The standard
equation for an ellipse with center (0, a) is

c-a’ »*

a? »

1,

which can be written as

b2 B>
V' —=2z2— 4275 =0. (3.4.5)
a a?

The choice of a and b as given in the preceding follows directly from a
comparison of Egs. (3.4.4) and (3.4.5). It is not surprising that Fermat’s Principle
leads to an ellipse as the appropriate curve with the two conjugate points at the
foci of the ellipse, considering the standard technique for drawing an ellipse with
pencil, string, and two pins. A rotation of the ellipse about the z-axis gives an
ellipsoid, with the surface equation given by Eq. (3.4.5) after replacing y* by
x? 432

Note that the sphere is a special case of an ellipsoid in which s = s" and a = b.
Note also that the parabola given by Eq. (3.4.2) is a special case of Eq. (3.4.4) in
which s = oo and 5" = —f.
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3.4.c. CONVEX MIRROR, BOTH CONJUGATES FINITE

Figure 3.10 shows a convex mirror with a virtual object point at B and the
conjugate image point at B’, both on the z-axis. As with the ellipse, we adopt the
sign convention for s and s’ but choose /, I/, and A as positive quantities. The
dashed arc in Fig. 3.10 is a circular arc whose center is at B. Applying Fermat’s
Principle to the two rays heading toward B gives

I+ =25,
while the geometry of Fig. 3.10 gives
d* =32 + (=s — A, I+d=s"—s, I =32 + (s + A

Eliminating /, /', and d between these relations, and putting A = —z, leads to

14

ss’ s
—4 47 =0, 3.4.6
¥ T Gty (3.4.6)

an equation identical to Eq. (3.4.4). There is, however, an important difference
between Eq. (3.4.4) and Eq. (3.4.6). In the former equation s and s’ have the same
sign because both conjugates are on the same side of the mirror vertex; in the
latter equation s and s’ have opposite signs. As is easily demonstrated, Eq. (3.4.6)
is the equation of a hyperbola.

The standard equation for a hyperbola with a vertex at (0, 0) is

- 7 _

a? b2

Fig. 3.10. Rays between conjugates at finite distances via convex reflector. Imagery is perfect for
surface given by Eq. (3.4.6).
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which can be rewritten as

2 b2
V22— -2 =0. (3.4.7)
a a?

Equations (3.4.6) and (3.4.7) agree if we choose b? = —ss’, and 2a = 5 + s’. As
before, the replacement of % by x? + 12 gives a hyperboloid of revolution about
the z-axis.

The case of a convex mirror with one conjugate at infinity is left as an exercise
for the reader. The appropriate surface for this situation is a paraboloid.

3.5. CONIC SECTIONS

Each of the surface cross sections derived in the preceding section is a conic
section and it is therefore appropriate to find a single equation describing the
family of such curves with the vertex at the origin. We proceed by working with
Eq. (3.4.4) for an ellipse. From Eq. (2.3.1) we get

ss’ R

=— 3.5.1
s+s 2 ( )

where this relation applies in the paraxial region, hence R is the vertex radius of
curvature. For an ellipse the eccentricity e is defined as e = c¢/a, where ¢ is the
distance from one of the foci to the center of the ellipse and ¢? = a? — b%.
Substituting in terms of s and s’ we get

2

Ass’ o
- = e2=(i—f—)7. (3.5.2)
(s+s') (s +s')
Substituting Egs. (3.5.1) and (3.5.2) into Eq. (3.4.4) gives
¥ —2Rz+ (1 — ) =0. (3.5.3)

Although derived from the ellipse equation, the relation in Eq. (3.5.3) describes
the family of conic sections, provided we choose e appropriately. In the literature
one often sees a conic section described in terms of a conic constant K, where

K = —¢€?%. In terms of both e and K the various conic sections are as follows:
oblate ellipsoid: 2 <0 K=>0
sphere: e=0 K=0
prolate ellipsoid: O<ex<l -1<K<0
paraboloid: e=1 K=-1

hyperboloid: e>1 K< -1
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In all of the discussion to follow, we use K to describe the conic sections.
Rewriting Eq. (3.5.2) in terms of the magnification m by substituting Eq. (2.3.3)
into Eq. (3.5.2) gives

=_(m+1)2

m. (3.5.4)

Transforming Eq. (3.5.3) to get the equation for the surface of revolution gives
¥ —2Rz+(1+K)Z =0, (3.5.5)

where ¥ = x* + 2.
At this point it is instructive to calculate R, the local radius of curvature at a
point (7, z) on the mirror surface. The relation for radius of curvature is

Re =1+,

where z' = dz/dr, ' = d*z/dr?. Solving Eq. (3.5.5) for z and carrying out the
calculation gives

R =l =K /R
= R[l — K(2/16F))]*72, (3.5.6)

where ' = | f|/D and r = eD/2, with 0 < ¢ < 1.

For K = 0 we get R,, = R, as expected. As we go through the family of conic
surfaces from sphere to ellipsoid to paraboloid to hyperboloid, we see that R,_ gets
progressively larger for a given » and R. Alternatively the local curvature, 1/R,,.,
gets progressively smaller. As the point on the surface approaches the vertex,
hence r — 0, we see that R;, — R. Near the vertex all of the surfaces have nearly
the same shape and, in the paraxial approximation, are identical. We will return to
a further discussion of Eq. (3.5.6) and its ramifications in the fabrication of large
mirrors in Chapter 18.

In summary, then, we see that conic surfaces used as mirrors provide perfect
imagery for a single pair of conjugates. A given conic mirror, however, will not
strictly satisfy Fermat’s Principle at any other pair of conjugates. As we will see,
this failure to image a point into a point implies the presence of aberrations, a
subject we explore in detail in subsequent chapters. In spite of this apparent
limitation, the family of conic surfaces is the basis for most multi-mirror systems.

3.6. FERMAT’S PRINCIPLE AND THE ATMOSPHERE

In this section we consider some of the effects of the Earth’s atmosphere,
refraction and its variation with zenith angle and wavelength, and the effect of
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time-varying index changes on the path of a light ray. Our discussion is only an
introduction to further illustrate the utility of Fermat’s Principle; more specifics on
each of these topics will follow in subsequent chapters.

3.6.a. ATMOSPHERIC REFRACTION

Assume that the atmosphere is a flat, layered medium with the index » = n(z)
only, hence the curvature of the atmosphere is neglected. In this case Eq. (3.1.10)
becomes

do dn
K = — = —sina— 3.6.1

n ncosadz smadz, ( )
where the z-axis points toward the center of the Earth. The change in the index of
the atmosphere from the top (n = 1) to the surface (n = 1.00029) is small, hence
the path of a ray from a star is not deviated appreciably for a not close to 90°.
Integrating Eq. (3.6.1) with the assumption that « is nearly constant, hence cos «
and sin o brought out from the integral, gives

oo = —tanay on = —(n — 1) tan oy (3.6.2)

where a is the angle of incidence at the top of the atmosphere, or zenith angle,
and on is the change in index.

For a ray passing downward through the atmosphere én = (n — 1) > 0, and
hence da < 0. Thus the angle the ray makes with the z-axis decreases as the ray
proceeds down through the atmosphere, that is, the ray is bent “toward” the z-
axis. That the effect is small is seen by taking, for example, o, = 45° and finding
the ray deviation éa = 0.00029 radians or about 1 arc-min.

The index of refraction of the atmosphere is a function of wavelength, as
shown by the entries in Table 3.1, hence the deviation du is not the same for
different wavelengths. The parameter R, in Table 3.1 is the constant of refraction,
the index difference én expressed in units of arc-seconds.

The change d(da) is the differential atmospheric refraction, with

d(da) = —tanay d(0n) = —(ny — n) tanay (3.6.3)

and d(én) = n, — n;, the change in index between two wavelengths 1, and 4,.
From the values in Table 3.1 we see that the index changes more rapidly at shorter
wavelengths, hence differential refraction could adversely affect certain types of
observations in the near ultraviolet at large zenith angle. As an example using the
entries in Table 3.1, d(da) in arc-seconds is about 1.38 tan «, over the range from
320 to 400nm, and 2.48tana, over the range from 320 to 550nm. With
tana, > 1, for example, the visible image of a star centered on a small aperture
could result in no ultraviolet light passing through the aperture.
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Table 3.1

Index of Refraction of Atmosphere®

A (nm) n—1 R, (arc-sec)
320 3.049E-4 62.86
400 2.982 61.48
550 2.929 60.38
700 2.907 59.93

1000 2.890 59.58

2 Values of n from Allen (1973). Index
given at T = 0°C, pressure = 760 mm
Hg, water vapor pressure = 4 mm Hg.

3.6.b. ATMOSPHERIC TURBULENCE

The assumption that n = n(z) neglects variations in index that are present in a
turbulent atmosphere at constant height due primarily to temperature fluctuations.
Consider a ray that enters the atmosphere from directly overhead, with the
deviation of the ray from a vertical path denoted by a. Assuming a <« 1 we can
write Eq. (3.1.10) as

n(d0,/dz) = on/dy, (3.6.4)

where the term in sina is dropped because o is small. Letting n = 1 + dn, Eq.
(3.6.4) becomes (to first order)

da/dz = d(6n)/dy, (3.6.5)

where Jn is the fluctuation in the index of refraction from the local mean. In the
general case there are corresponding equations in which x replaces y. Integrating
Eq. (3.6.5) from the top of the atmosphere (z = 0) through a distance s gives

A

a,(s) = Jo[a(én)/ay]z dz. (3.6.6)
The deviation given by Eq. (3.6.6) is, of course, a function of time, with random
variations in time for «, and o,. Because (dn) is zero, where () denotes an
average over time, the time-averages of the deviations are also zero. The mean-
square deviations, however, are not zero, and the net result is a ray that wanders

randomly about a mean position.
The net effect of these variations leads to the phenomenon called seeing. In a
small telescope the effect is seen as a star image in motion with excursions
typically of a few arc-seconds. In a large telescope the cumulative effect of seeing

is to give a blurred image with little or no motion of the image as a whole.
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Although the approach using Fermat’s Principle shows the origin of seeing
effects, the statistical processes that lead to the effects described make it
impractical to proceed further with this approach. Selected results based on a
statistical approach to atmospheric turbulence are given in Chapter 16.

3.7. CONCLUDING REMARKS

3.7.a. RAYS AND WAVEFRONTS

The application of Fermat’s Principle to find conic surfaces that are perfect
mirrors makes use of rays and optical path lengths. A different way of looking at
what a focusing system does is in terms of wavefronts. A wavefront is simply a
surface on which every point has the same optical path distance from a point
source of light. In a homogeneous medium this surface is obviously a sphere
whose center is the point object. In this same medium rays are radial lines
directed outward, and at each point on a wavefront a ray is perpendicular to the
wavefront. If a source is effectively at infinity, as for a star, then the resulting
wavefront is plane.

Examples of wavefronts are shown in Fig. 3.11a,b, with a vertical chief ray at
the center of each wavefront in this representation. The wavefront designated
random is a plane wave plus point-by-point variations using a random number
generator. This wavefront might, at least approximately, represent a plane wave
after passing through a slightly turbulent atmosphere.

A perfect optical system that satisfies Fermat’s Principle is one that converts a
spherical wavefront centered on a point object (or plane wavefront for a distant
object) to a spherical wavefront centered on the conjugate point image.

Conversely, if Fermat’s Principle is not satisfied for all rays from a point object
over a large aperture, then the wavefront converging toward the image is no
longer spherical and the image has aberrations. The connection between ray and
wavefront aberrations is established in the discussion in Chapter 5.

3.7.b. HOW PERFECT IS “PERFECT”?

Fermat’s Principle as used thus far is concerned only with rays and ignores the
wave nature of light. Because of the wave character of light, no image is perfect in
the sense that it is a point of infinitesimal size. The question to be addressed
therefore, albeit not from a rigorous point of view here, is the minimum size of an
image given an otherwise perfect optical system.

Consider an optical system L that is perfect according to Fermat’s Principle, as
shown schematically in Fig. 3.12. Light from two distant point sources, 4 and B,
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Fig. 3.11. Schematic diagrams of wavefronts: (a) spherical, (b) randomly distorted plane.

with angular separation 0, fills the aperture of diameter D. According to wave
theory, two image points cannot be resolved or separated if the difference in light-
time travel of rays to them from opposite edges of the aperture is less than
approximately one period of the wave. Equivalently, the points cannot be resolved
if the optical path difference, or OPD, between these rays is less than approxi-
mately one wavelength. In Fig. 3.12 the OPD between these rays is A with the
resolution limit set by A & A From the geometry we see that

O, ~ 2/ D. (3.7.1)

From the angular resolution limit in Eq. (3.7.1) we can infer that the individual
images A’ and B’ must each have an angular diameter 6 = 1/D, as seen from L. If
the angular diameter of each image was substantially smaller than A/D, then the
images would be resolved, contrary to the limit set by Eq. (3.7.1).
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Fig. 3.12. Schematic of perfect optical system from which approximate diffraction limit is
derived. See Eq. (3.7.1) and Section 3.7.

The reasoning used to arrive at Eq. (3.7.1) and an estimate of the minimum
possible image size is not a rigorous procedure, nor does it tell how the light is
distributed within the image. A more rigorous approach requires analysis using
diffraction theory, a topic we consider in some detail in Chapter 10.
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Chapter 4 Introduction to Aberrations

Thus far our discussion of optical systems has proceeded along two different
lines. In Chapter 2 we developed the paraxial equations for spherical refracting
and reflecting surfaces, and noted that in the paraxial limit there is a one-to-one
correspondence between object and image point. In Chapter 3 we turned our
attention to Fermat’s Principle and reflecting surfaces of conic cross section. Our
analysis led to the result that for a given pair of conjugate object and image points
there is a conic surface that gives a perfect image, independent of the paraxial
approximation.

In this chapter we begin to examine what happens when Fermat’s Principle is
not strictly satisfied in the range outside of the paraxial approximation. We will
see that the geometrical image in this case is no longer a point but becomes a blur.
An optical system that produces a blurred image, where the blur is in addition to
the diffraction blur noted in Section 3.7, is a system with aberrations.

To illustrate the onset of aberrations we consider a very simple optical system,
a single conic mirror. After calculating the aberrations of several such mirrors for
selected object points, we introduce the topic of aberration compensation. By this
we mean that the aberrations of one optical element can be offset, wholly or
partially, by those of another element. The two systems considered in this chapter
are the Schmidt camera and the family of Cassegrain telescopes. This discussion
is only an introduction; a more complete description of aberrations and compen-
sation follows in Chapter 5.

48
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4.1. REFLECTING CONICS AND FOCAL LENGTH

We begin by calculating the focal length of a concave mirror or, more
specifically, the distance from the mirror vertex to the point where a reflected
ray from a distant object intersects the optical axis. Figure 4.1 shows a ray parallel
to the optical axis striking a mirror at height », where r is defined by Eq. (3.5.5).
Contrary to our normal convention, the light from the object proceeds from right
to left, a choice made for convenience. With this choice distances to the right of
the mirror vertex measured along the z-axis are positive. We also take the angle ¢
mn Fig. 4.1 positive when » > 0.

From the geometry of Fig. 4.1 we see that f = z + z,, where

LT _ (1 —tan® §)
®tan2¢  2tan¢
From Fig. 4.1 we also note that tan ¢ is simply dz/dr, the negative of the slope of

the normal to the mirror.
From Eq. (3.5.5) we find the relation

dz ¥

4.1.1)

ST RCATE A+ = tan ¢.
Substituting this into Eq. (4.1.1) gives
r[R—(1+K)z r
== - . 4.1.2
% 2[ r R—(1+K)z] “.1.2)
Putting Eq. (4.1.2) into f = z + z, gives
R (1—-K)z r?

(4.1.3)

S =3t T T — T K

)

2¢
>

7 —»1
k—f—————————)‘

Fig. 4.1. Geometry of ray from distant object reflected from concave mirror.
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Because the surface equation (3.5.5) is quadratic in z, the solution for z contains a
square root, as will Eq. (4.1.3) when z is eliminated. We proceed, therefore, by
expanding the square root as a power series in small quantities before substituting
into Eq. (4.1.3). Solving Eq. (3.5.5) for z gives

R r 12

r2 "4 2 r6
=—+(1+K)-—=+10+K
2R (+ )8R3+( +K) 16R°
Substituting Eq. (4.1.4) into Eq. (4.1.3) gives

f_g_(l + K)r? _(1+K)03 + K)rt B
2 4R 16R3 ’

Examination of Eq. (4.1.5) shows that f = R/2 for K = —1, a paraboloid.
Although higher power terms are not included in Eq. (4.1.5), this statement
about a paraboloid is true when all terms are included. This is easily verified by
setting K = —1 prior to making the foregoing substitutions.

For a sphere or ellipsoid the conic constant K > —1 and ' < R/2, while for a

hyperboloid ' > R/2. As expected, Fermat’s Principle is strictly satisfied, hence f°
is constant for any r, only for a paraboloid when the object is at infinity. For any
other conic the change in focal length Af as a function of r is
. (1+K)r* Q+K@+KH*
Af = f(r) — f(paraxial) = AR 16K e
Thus for any conic surface other than a paraboloid the image of a distant object
on the optical axis is blurred. Examination of Eq. (4.1.6) shows that Af is
independent of the sign of #, hence the blur is symmetric about the z-axis. Note
also that a change in the sign of R changes the sign of Af, as it should.

+oe (4.1.4)

(4.1.5)

(4.1.6)

4.2. SPHERICAL ABERRATION

We now examine in detail the nature of the aberration for the case of an object
on the optical axis, an aberration called spherical aberration. Of particular
interest is the size of the blur, measured perpendicular to the optical axis, at or
near the paraxial focus.

4.2.a. TRANSVERSE AND LONGITUDINAL

We define the transverse spherical aberration (TSA), as the intersection of a
ray from height » on the mirror with the paraxial focal plane, as shown in Fig. 4.2.
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It is conventional to define the longitudinal spherical aberration (LSA), as the
distance from the paraxial focal plane to the point where a ray from height »
crosses the z-axis. In Fig. 4.2 we see that LSA is simply Af. From similar
triangles there we find

TSA/LSA = r/(f — 2),

where both TSA and LSA are negative in Fig. 4.2. Using Eqgs. (4.1.4)—(4.1.6),
applying the binomial expansion, and retaining all terms through fifth order, gives

3 »

TSA = ~(1+K) 725~ 31 + K)B + K) gz + -+ @.2.1)

Each term is designated according to the power of r. The first term is the third-
order transverse spherical aberration (TSA3); the second term is fifth-order
transverse spherical aberration (TSAS). For K = 0, a spherical surface, each
term in Eq. (4.2.1) is negative for » > 0, and positive for r < 0. The sign of TSA
indicates where a given ray crosses the paraxial focal plane, in accord with the
sign convention established for distances measured perpendicular to the z-axis.
Because of the presence of the factor (1 + K) in Eq. (4.2.1), the sign of TSA for a
hyperboloid is opposite that for a sphere or ellipsoid. Note also that the sign of
TSA is independent of the sign of R.

The relative size of the two terms in Eq. (4.2.1) for rays from the edge of the
aperture is given by

TSAS 33 +K)r? 33 +K)

TSA3 4R 64F2
r‘ /
I
I TSA
l { -
- f >
Af——l\l\ '3_
! R
2

Fig. 4.2. Transverse spherical aberration (TSA) at paraxial focus. See Eqs. (4.1.6) and (4.2.1).
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where F is the focal ratio. For a sphere TSAS5 is 10% of TSA3 when F = 1.19.
Thus it is sufficient to neglect the TSAS term for all but very fast mirrors, that is,
those with small focal ratios.

We can also find the spherical aberration for the case shown in Fig. 4.2 by
working directly with surface equations, one for a paraboloid and one for a
surface with conic constant K. From Eq. (4.1.4) we find the difference between
the surfaces, through terms in 4, given by

4
Az:zp—z(K)=—(1+K)§%3—-.-, (4.2.2)

where the subscript p denotes the paraboloid. From Fig. 4.3 we see that the path
difference between two rays, one incident on the paraboloid and one on the other
surface at the same height, is approximately 2 Az, provided the angles ¢ and ¢,
are small.

We also see from Fig. 4.3 that the directions of the reflected rays differ by
2(¢, — @), where ¢ = dz/dr, ¢, = dz,/dr, in the paraxial approximation. From
Eq. (4.1.4) we find

d P
2Ap, — ) = 5 Az) = —(1 +K) o3 (4.2.3)

We now relate this difference in ray directions to TSA.

4.2.b. ANGULAR

This difference in direction between the reflected rays is the angular spherical
aberration (ASA). Because Eq. (4.2.3) is only taken to third order, it is
appropriate to say ASA3 for the difference in direction given in Eq. (4.2.3).

"z
I’ 2¢p
/ 2¢

Fig. 4.3. Path difference between ray refiected from paraboloid (solid curve) and conic (dashed
curve). Size of Az, given in Eq. (4.2.2), is greatly exaggerated in the diagram.
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From the geometry in Fig. 4.4 we see directly the relation between transverse
and angular aberration, which is

»3

7 (4.2.4)

TSA3 = (R/2)(ASA3) = —(1 + K)

where, as before, we assume the angle ¢, is not too large. This result is the same
as the first term in Eq. (4.2.1).

We need to review briefly the steps taken in arriving at Eq. (4.2.4) and the
approximations used. In stating that the path difference between the two rays is
2 Az, we replaced any cosine factors present in the exact difference by unity. In
effect, we used the paraxial approximation in making this statement. The same
approximation was made in writing the relation between TSA3 and ASA3 in Eq.
(4.2.4). This approximation is quite good, even for a mirror as fast as f /2. In this
case we find tan¢ = 0.25 and cos¢ = 0.97, hence our third-order result is
accurate to a few percent. If we wanted to use the same method to find the fifth-
order term, we could not use the paraxial approximation but would need to retain
higher power terms in the expansions of tangents and cosines of angles. But, as
already noted, third-order aberration results suffice for reflecting surfaces in most
optical systems.

The procedure followed to get the third-order result in Eq. (4.2.4) can be
generalized to any pair of object and image conjugates. All that is needed is Az,
the difference between the reflecting surface that images that object without
aberration and the actual surface, with the paraxial approximation used in the
same way as in the preceding. The relations are

d
ASA3 = 1(2 Az), TSA3 = — (2 A2). 4.2.5)
dr dr

Fig. 4.4. Relation between TSA and angular difference between ray paths after reflection. See Eq.
(4.2.3).
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Equations (4.2.5) apply specifically to reflecting surfaces in air in which the
mirror is oriented as shown in Fig. 4.1. In general the optical path difference,
which includes the index of refraction, is required by Fermat’s Principle and the
calculation of Az. The more general discussion of Eq. (4.2.5), including the index
of refraction, is given in Chapter 5.

The importance of the procedure outlined in the paragraph preceding Eq.
(4.2.5) lies in its utility when applied to optical systems with more than one
surface. In Chapter 5 we develop the method by which Az can be determined in a
general way for any optical system with any object location. Once Az is known, it
is then a straightforward matter to calculate the angular and transverse aberra-
tions.

4.2.c. EXAMPLE: SPHERE WITH FINITE CONJUGATES

As an illustration of the utility of Egs. (4.2.5) we consider an object point at a
finite distance and an ellipsoid with the correct conic constant needed to form a
perfect image. If a sphere is used in place of the ellipsoid, aberration is present in
the image. Following the preceding prescription, we find the difference Az
between these two surfaces. From Eq. (4.1.4) we get

Az =z, —z, = K, /8R?,
through the terms of interest. Therefore Eqgs. (4.2.5) give
ASA3 = K,(r*/R®), TSA3 = K, (r*/R)s, (4.2.6)

where the range of K, for the ellipsoid is —1 < K, < 0 for real conjugates. It is
convenient to rewrite Egs. (4.2.6) in terms of the transverse magnification m.
Eliminating s between Eqgs. (2.3.1) and (2.3.3) gives s'/R = (1 — m)/2. Substitut-
ing this and Eq. (3.5.4) for K we get

2
1 3
ASA3 = —(m’"—J_“ 1) e (4.2.7a)
1)? 3
TSA3 = +("’7J:—1)—5rﬁ. (4.2.7b)

These relations give the spherical aberration of a sphere used at magnification m.
Note that m < 0 for real conjugates, hence TSA for a concave spherical mirror
always has the same sign for a given r, independent of the sign of R. This sign is
such that the focus for marginal rays, those rays reflected from the edge of the
mirror, is closer to the vertex than the paraxial focus, as shown in Fig. 4.2. Note
that the substitution of m = 0 into Eqgs. (4.2.7) gives the same ASA3 and TSA3
as when K = 0 is substituted into Egs. (4.2.3) and (4.2.4), as expected. As a final
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comment, note that the spherical aberration is zero when m = —1. For this

magnification s = &', and the sphere is the perfect surface according to Fermat’s
Principle.

4.2.d. DISTRIBUTION OF RAYS NEAR FOCUS

As given by the preceding relations, TSA is a measure of the image size of a
point object at the paraxial focus. The distribution of rays near the paraxial focus
is such that the image has a minimum size between paraxial focus and the focus
for marginal rays. Here we consider the ray distribution as seen in cross section,
both along and perpendicular to the optical axis.

A cross section of the image along the z-axis near paraxial focus is shown in
Fig. 4.5 for a spherical mirror with m = 0 and focal ratio F = 2. The paraxial
focus is at the origin of the (¥, Z) coordinate frame. Each ray is drawn so that it

:
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Fig. 4.5. Ray distribution near paraxial focus for image with spherical aberration. Paraxial focus is
at (0, 0). See Eq. (4.2.8) for definition of parameters.
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crosses the z-axis at a distance LSA3 (or Af) from the paraxial focus and
intersects the paraxial focal plane at height TSA3. These coordinates are

¥ =—r/2R?, at 7 =0, (4.2.8a)
7 = —r*/4R, at ¥ =0, (4.2.8b)

where ¥ = TSA3 from Eq. (4.2.4) and Z = Af from Eq. (4.1.6). Note that the
vertical scale in Fig. 4.5 is stretched relative to the horizontal scale. It is easy to
see in Fig. 4.5 that the image width at the blur of minimum diameter is about four
times smaller than TSA3 at the paraxial focus. The image at its minimum size is
called the disk or circle of least confusion (clc). The location of the clc, Z(cle), is
given by Z(clc) = 0.75 Z/(marginal), hence r?(clc) = 0.75 #*(marginal) from Eq.
(4.2.8D). It follows that (clc) = 0.866 r(marginal), a result we use in our analysis
of a Schmidt camera in Section 4.4 of this chapter. Analytical calculations, such
as those given by Welford (1986) support these graphical conclusions.

Image cross sections perpendicular to the optical axis, commonly called spot
diagrams, are shown in Fig. 4.6. From a point source at infinity, a set of rays
distributed uniformly over the aperture of this mirror is traced through the system.
The cuts through the bundle of rays are shown equally spaced between the
marginal focus on the left and the paraxial focus on the right. Note that the
concentration of rays in the center of the image is somewhat smaller in the middle
image in Fig. 4.6, even though the overall image diameter is larger than at the clc.

MF PF

t IMA

THROUGH FOCUS SPOT DIRAGRAM

Fig. 4.6. Spot diagrams near paraxial focus for image with spherical aberration. Images are
equally spaced between marginal focus (MF) at the left to paraxial focus (PF) at the right.
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We show in Chapter 10 that this image, the one midway between paraxial and
marginal focus, is the one with the minimum root-mean-square (rms) wavefront
erTor.

From our discussion we see that the diameter of the circle of least confusion is
|¥* /4R?| when the object is at infinity. At the mirror this blur subtends an angle «
where

a=r /2R = 1/128F>. 4.2.9)

As the focal ratio F increases, the subtended angle o decreases. A point is
reached, however, where the image diameter no longer decreases but reaches the
limit set by diffraction according to Eq. (3.7.1). The smallest F for which a
spherical mirror used to image a distant object is approximately diffraction-
limited is found by equating « in Eq. (4.2.9) to 6 in Eq. (3.7.1). The result is
D ~ 128AF3, in general, or D ~ 0.007F3, for / = 550 nm. As examples, for
green light, we find F ~ 11 for D = 10 cm, and F = 24 for D = 1 m. Thus, in
spite of spherical aberration, a spherical mirror in collimated light is effectively
diffraction-limited, provided the focal ratio is large enough.

An interesting exercise left to the reader is to take D = 128F>, solve for A,
and substitute the result into Eq. (4.2.2). Setting K = 0 we find that Az, the
difference between a paraboloid and a “diffraction-limited” sphere at the margins,
is approximately 4/8. Hence the path difference between two marginal rays from
the two mirrors is =~ A/4. Alternatively, the wavefront emerging from the
spherical mirror is no longer spherical but differs from the spherical wavefront
emerging from the paraboloid by 1/4 at the margin. Although this limit is found
here in a special case, it turns out that this is a useful criterion for establishing
when any optical system gives images that are approximately diffraction-limited.

4.3. REFLECTING CONICS AND FINITE OBJECT DISTANCE

The analysis in Section 4.1 leading to Eq. (4.1.6) and an expression for
spherical aberration in Eq. (4.2.1) is restricted to an object at infinity. For
completeness we extend this procedure and consider an object at a finite distance.
We outline the method by which s and TSA through fifth-order can be
determined, and give the derived relations.

Consider a concave mirror with an object located on the optical axis at a finite
distance s. The geometry of a ray intersecting a mirror at height » from the optical
axis is shown in Fig. 4.7. From the triangles in Fig. 4.7 we get

i tanqs:ZZ——f— 4.3.1)

tano = — tan ff = —
- ’ - r R—(1+K)’

s—z s —z
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~

Fig. 4.7. Geometry of ray from point source at finite distance reflected from a concave mirror.

where ¢ =y +a = f — 7. Solving for s we find

, _ r [l +tan¢(2tana — tan §)]
§ —Z_tan(2¢—oc)_r2tand)—tanoc(l —tan? @) “432)

The procedure now is to take each tan function in Eq. (4.3.2), expand it as a
power series in r/R, and substitute for z with Eq. (4.1.4). After considerable
algebra we find that the resulting lateral spherical aberration LSA or As’ is given

by
L, r? 2 m+1\°
As' =5 "SO—_E(’”—I) [K+<m_——l)]

r2
x {1+W[K+3+2m(K+1)]}, (4.3.3)

where s;, is the paraxial image distance.

We now proceed to the transverse spherical aberration. From Fig. 4.7 we see
that TSA = LSAtan § = r As’/(s’ — z). Using Eq. (4.3.3) and the expansion of
Eq. (4.3.2) we find

TSA = —ss(,%)3[1<+ (Z—J—r:)z]{l +%(£)2[K : (%?)](]434)

Equations (4.3.3) and (4.3.4) can be used as given, but when comparing results
from these equations with those given by ray-tracing programs it is necessary to
express r in terms of y, the height on the tangent plane to the mirror of the
incident ray. The geometric relation between r and y follows from Fig. 4.7. Using
the relation for tana in Eqgs. (4.3.1) and noting that tanx = y/s, we get

,=y<1_§ﬁ)=y(1_(;n_’§_l)£), 43.5)
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Substituting Eq. (4.3.5) into Eq. (4.3.4) we find

sa—=a(3) [ () T3 () Te- (2=)])

(4.3.6)

where TSA = TSA3 + TSAS. Note that choosing K in Eq. (4.3.6) according to
Eq. (3.5.4) gives zero TSA, as expected. It is left as an exercise for the reader to
verify that Eq. (4.2.7b) follows from Eq. (4.3.6) with K = 0.

Comparing the third-order terms in Eqgs. (4.3.4) and (4.3.6) we see that they
are the same if » = y. In the paraxial approximation the height of a ray at the
surface is always the same as its projection on the tangent plane to the surface. It
turns out in general that all third-order aberrations can be expressed entirely in
terms of paraxial (or first-order) parameters. This is not true for aberrations of
higher order which are affected by the size of those of lower order. This effect is
evident here in the fifth-order terms in Eqs. (4.3.4) and (4.3.6). Fortunately, third-
order aberration results usually suffice when analyzing an optical system.

4.4. OFF-AXIS ABERRATIONS

We now turn our attention briefly to off-axis aberrations, those aberrations
present when the object point does not lie on the optical axis. In this section we
want only to indicate the nature of these aberrations; a general discussion of this
subject is the topic of the next chapter.
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Fig. 4.8. Collimated beam at angle 8 with optical axis incident on paraboloid. Here O is the
origin of the rotated coordinate system; point C lies on both the z and 2z’ axes.
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To illustrate the source of off-axis aberrations we consider a special case, a
paraboloid in collimated light. Figure 4.8 shows a cross section of a paraboloid
with optical axis z and vertex at O. The image at B is, of course, a perfect one
geometrically. The same paraboloid images a distant point object at angle 6 from
the z-axis at point B’, where the distance BB’ is approximately f6.

To determine the kinds of aberrations present in the image at B’, we find a
system that takes the rays at angle 6 and forms a perfect image at B’. This system
is obviously a paraboloid whose optical axis is parallel to the incident beam and
passes through B’, with its vertex at distance ffrom B’. The coordinate system for
this paraboloid is shown in Fig. 4.8; the optical axis is denoted by z’ and the
vertex is at O’. We then find the distance Az between these two paraboloids in the
yz plane and use Eq. (4.2.5) to find the third-order aberrations.

Omiitting the details of these steps we find

6 0
AA3 = 3al%+2a2%+a303, (4.4.1)

where AA3 represents angular aberration to third-order.

The terms in Eq. (4.4.1) represent different aberrations: The first is coma, the
second is astigmatism, and the last is distortion. The character of each aberration
is quite different because of the different way in which each depends on y and 0.
Our following description of each aberration is limited to the yz-plane and is,
therefore, incomplete. A complete description, based on rays over the entire
aperture, is given in Chapter 5.

Coma is proportional to y*0 and hence is changed in sign when 6 changes
sign. Coma is invariant to the sign of y and therefore rays from opposite sides of
the mirror are on the same side of the central ray in the vicinity of the paraxial
focus.

Astigmatism is proportional to y92 and hence is unchanged by a sign change in
f. A change in the sign of y changes the sign of the astigmatism and therefore
rays from opposite sides of the mirror are on opposite sides of the central ray near
paraxial focus.

Distortion is proportional to 6 and does not depend on y. Thus this aberration,
if it is the only one present, does not affect the image quality, only its position.
For a set of point objects equally spaced perpendicular to the optical axis, the set
of images would not be equally spaced if distortion is present.

There is one final aberration that is present in Fig. 4.8 (it does not appear in
Eq. (4.4.1)); the aberration is called curvature of field. Its character is most easily
seen by noting that the transformation that takes the origin from O to O’ is
essentially one of a rotation about the center of curvature C. Thus the motion of
point B in Fig. 4.8 to B’ is along a circular arc whose center is C. The foci for
different 6, in the absence of other aberrations, are located on a curved surface,
hence the name curvature of field.
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At this stage five third-order aberrations have been identified: spherical
aberration, coma, astigmatism, distortion, and curvature of field. The first of
these is independent of field angle, but all others depend on some power of 6. The
first three aberrations in this list affect image quality, while the last two affect only
image position.

From Egs. (4.2.7b) and (4.4.1) we see that the transverse aberrations depend
on aperture radius y (or r) and field angle 8 according to the relation

transverse aberration o y"6", (4.4.2)

where n+m = 3. Hence each of these aberrations is called a third-order
aberration. The main task in the analysis of the image quality in any optical
system is the determination of how much of each of these aberrations is present,
and then eliminating or reducing the amount of each by proper selection of
system parameters.

4.5. ABERRATION COMPENSATION

In Section 3.7 we noted that a perfect optical system is one in which the
wavefront emerging from the final surface is spherical. From the discussion in
this chapter it is evident that there is a close relation between deviations from a
spherical wavefront and the appearance of aberrations. Along any ray the actual
wavefront may be behind or in front of the ideal wavefront, depending on whether
that portion of the wavefront has been retarded or advanced.

Although the analysis so far has been limited to aberrations of a single mirror
optical system, it should be evident that compensation of aberrations, wholly or in
part, should be possible in systems with more than one surface. In terms of
Fermat’s Principle, exact compensation means that a wavefront advance intro-
duced by one or more surfaces is canceled by an equal wavefront retardation
introduced by other surfaces. As far as the final wavefront is concerned, it is only
the net advance or retardation that determines the size of any image defect.

In this section we examine two systems, a Cassegrain telescope and a Schmidt
camera, for each of which the net third-order spherical aberration is zero. Each
system is composed of two optical elements chosen so that a wavefront advance
due to one element is balanced by an equal retardation introduced by the other.
The object point for each is a distant point source on the optical axis.

4.5.a. CASSEGRAIN TELESCOPE

The configuration of mirrors in a Cassegrain telescope is shown in Fig. 2.7a.
Based on the discussion in Section 3.4, one pair of mirrors for which the spherical



62 4, Introduction to Aberrations

aberration is zero is a paraboloidal primary and a hyperboloidal secondary. The
former is the perfect mirror for a point object at infinity, while the latter is perfect
for finite conjugate points on opposite sides of the mirror. From Eq. (3.5.4) we
find the conic constants

_(m+ 1)?

S e

@.5.1)

where m is the magnification of the secondary. Choosing a value of f sets the
normalized distance from the vertex of the primary to the final focal point. With
the values of m and f chosen, the paraxial relations in Egs. (2.5.1) are used to
find the values of k& and p. If, for example, m =5 and B =0.2, then
k=02, p=0.25, and K, = —2.25. The telescope specification, specified so
far only in terms of normalized parameters, is completed when the primary mirror
diameter and focal length are chosen.

The paraboloid-hyperboloid combination specified in Eq. (4.5.1) is called a
classical Cassegrain. We now show how this configuration can be changed into a
different one by changing the conic constants of both the primary and secondary
mirrors. This is done in a way that keeps the net third-order spherical aberration
(SA3) zero, hence a change in K| is accompanied by a change in K, such that the
wavefront advance at one mirror is equal to the wavefront retardation at the other,
to third-order. Stated in terms of Fermat’s Principle, the OPL from the object to
the image along any ray does not change.

Starting with the classical Cassegrain configuration in Fig. 4.9, each surface is
changed into a different conic by “bending” the original surface. If the new
surfaces lie to the left of the original surfaces, as shown in Fig. 4.9, then the
wavefront has been advanced at the primary and retarded at the secondary. The
advance and retardation are 2 Az, and 2 Az,, where Az, and Az, are the surface
differences at the primary and secondary, respectively. Using Eq. (4.1.4) each
surface has z as follows:

i

z,(original) = ——

2R,’
z,(new) =2i1é1+(1 +K1)%,
z,(original) = 5%+ [1 - (gi—i)z] %,
Z5(new) = 2—)22—+ a +K2)8y—1§3'
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Fig. 4.9. Cassegrain telescope schematic. Classical Cassegrain has mirrors shown by solid curves;
modified Cassegrain has mirrors shown by dashed curves. The R, R,, m, and k are the same for both
telescopes. Surface differences are given in Eqgs. (4.5.2).

Therefore
4
_ b4 (4.5.2a)
2Az, = (1 +K)=,
1 ( + 1)4R{J
m+1\*] 44
Az, — nT 22 (4.5.2b)
28 [K”(m—l)]uez’

where R, and R, are held constant. Applying the condition that the advance
equals the retardation requires 2 Az; = 2 Az,. Note that this is equivalent to
stating that the optical distance from object to image is unchanged, hence
Fermat’s Principle is satisfied for all rays from a distant point source.

Applying this condition gives

4 p3 2 4 2
Vo Ry m+1 I's m+1

As an example, take the values of the paraxial parameters already given here for
the classical Cassegrain and choose K, =0. From Eq. (4.5.3) we get
K, = —0.7696. This combination of an ellipsoidal primary and a spherical
secondary is called a Dall-Kirkham telescope. Another possible choice is
K, = —1.02 and, from Eq. (4.5.3), K, = —2.4453. It turns out that this choice
of conic constants gives a telescope called the Ritchey—Chretien telescope.

The solutions of Eq. (4.5.3) represent the family of Cassegrain telescopes for
which SA3 of a distant point source is zero. For a given set of k, m, and p there is
an infinity of combinations of K; and X, that satisfy Eq. (4.5.3). In practice the
choice of K| and K, from this set depends on other considerations, such as off-
axis aberrations and the ease with which the mirrors can be made and tested. In
the case of a Dall-Kirkham, for example, the separate mirrors are easily tested but
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large coma results in a small usable field. On the other hand, the Ritchey—
Chretien telescope has zero coma but hyperboloidal mirrors that are more difficult
to make and test. Discussions of the aberrations of Cassegrain and other two-
mirror telescopes are given in Chapter 6.

It is important to note here that Eq. (4.5.3) and the procedure used to derive it
do not ensure that higher-order spherical aberration is also zero. Except for the
two-mirror telescope with conic constants given by Eqgs. (4.5.1), other two-mirror
telescopes generally have higher-order spherical aberration.

4.5.b. SCHMIDT CAMERA

A Schmidt camera is composed of three elements: a concave spherical mirror,
an aperture stop whose center is located at the center of curvature of the mirror,
and a refracting plate in the plane of the stop, as shown schematically in Fig. 4.10.
For the moment ignore the refracting plate and consider only the mirror and stop.
Placement of the stop at the center of curvature gives a system that is effectively
axis-free. Rays through the stop from an off-axis object point “see” an optical
system, a portion of the spherical mirror, which is the same as that for rays from
an on-axis point. In effect, any line through C from an off-axis point is equivalent
to the z-axis. This axis-free character is, of course, true only for the sphere
because of its constant curvature. Therefore the aberrations of an image of any
object point, for this arrangement of mirror and stop, are just those of an on-axis
image, namely, spherical aberration. Because of the rotational symmetry about
point C, the image surface is spherical and curvature of field is present but, as
already noted, this aberration does not affect image quality.

Because this very simple optical system is free of astigmatism and coma, it is
the basis for cameras and telescopes that are designed for wide-field applications.

aperture
stop i_)‘

Fig. 4.10. Schmidt camera configuration. Center of curvature C of spherical mirror is at center of
aperture stop. Surface figure on glass plate at stop is given by Eq. (4.5.5).
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Note that freedom from these aberrations is true for objects at any point to the left
of the stop in Fig. 4.10, not just for collimated beams from distant point sources.

The remaining optical element, the refracting plate or corrector, serves the
function of correcting the spherical aberration due to the mirror, where the
wavefront advance at the mirror is compensated by an equal wavefront retardation
by the corrector. To find the required wavefront advance we take a distant object
point, the only case considered here, and find Az between the sphere and a
reference paraboloid. The latter surface is, of course, the surface that would give a
perfect on-axis image.

From Eq. (4.2.2) we find for K = 0 that the wavefront advance at the mirror is

2Az = —r*/4R%. 4.5.4)

Consider a plane-parallel plate of thickness # and index n. At any height y near
one surface of this plate we remove a layer of air of thickness 7 and replace it with
a layer of glass of optical thickness nt. The net change in optical path due to this
change is (n — 1)t for a ray parallel to the z-axis. Because the light is “slowed
down” in the glass, this optical path difference is the required retardation and

(n— 1Dt =2Az=—r"/4R%. (4.5.5)
Defining # = r/ry where rg is the radius of the aperture stop, and noting that
f=—R/2, gives
e
2m—1f3  512(n— 1DF*

(4.5.6)

For an otherwise flat plate Eq. (4.5.6) defines the surface figure on one face
required to correct the spherical aberration of the mirror. From the point of view
of Fermat’s Principle it does not matter whether the figured surface faces the
mirror or the incident light. In either orientation rays at the edge of the aperture
are retarded relative to those near the axis. Note also that Eq. (4.5.6) applies only
to the case where the perfect reference surface is a paraboloid. For objects whose
distance is not effectively at infinity the appropriate reference surface is an
ellipsoid, but the procedure for finding 7 is the same.

We now consider how the corrector plate has caused the compensation of the
spherical aberration of the mirror. Rays through the corrector near its center are
essentially undeviated and hence are focused at the paraxial focal point of the
mirror. Rays farther out on the corrector are deviated away from the z-axis
because in cross section the corrector is a thin prism. If the effective prism angle
is y, as shown in Fig. 4.11, then the net ray deviation in the paraxial approxima-
tion is (n — 1)y. Because of this deviation both the point at which the ray strikes
the mirror and its angle of incidence are changed, and the reflected ray is directed
toward the paraxial focus. From the center of the corrector outward the angle
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n
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Fig. 4.11. Small section of corrector plate near edge, in cross section. Net ray deviation is
(n—1)y.

increases as #* and is a maximum at the edge; thus the marginal rays are deviated
by the largest amount.

If the corrector had a constant index of refraction it would affect rays of any
wavelength in the same way but, of course, this is not the case. Because # is not
constant the deviation is also a function of wavelength. Denoting the deviation by
4, a simple differentiation gives

dd/dA = ydn)dA. 4.5.7)

Thus rays of different wavelength are directed in slightly different directions with
the effect largest at the edge of the corrector. A system corrected at one
wavelength is no longer corrected at other wavelengths and the image now has
the aberration called chromatic spherical aberration. This image defect is always
present when the corrector is a single element, but it can be minimized by
selecting a different focal point for the system.

Looking at Fig. 4.5 or 4.6 we see that the blur is smallest at the circle of least
confusion. At this distance from the mirror neither the paraxial rays nor the
marginal ones intersect the z-axis but, as noted following Egs. (4.2.8), the rays
from the zone at 0.866r are in focus on the axis. It is also evident from Fig. 4.5
that the maximum deviation necessary to bring all rays to this same focus is less
than that required to bring the marginal rays to the paraxial focus. The reference
surface needed to minimize the overall ray deviation is a paraboloid whose focal
point is at the circle of least confusion in Fig. 4.5, hence it has a radius of
curvature different from the one used to derive Eq. (4.5.4).

The required change in R is 2 Af where, from Eq. (4.2.8b), we find

7 = Af = —(0.866r,)* /4R = —3r}/16R,
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hence
R —R=2Af = —3r2/8R, (4.5.8)

where R’ is the radius of curvature of the modified paraboloid. Substituting Eq.
(4.5.8) into Eq. (4.1.4) gives

211 3rdr?

With reference to the new paraboloid the wavefront advance at the spherical
mirror is

3rirr 4
= - 4.5.1
24z 8R3  4R3 (4.5.10)
Equating the wavefront advance and retardation gives the surface figure as
3 2.2 4 4 3
S L A | 11—, (4.5.11)
8(m—DR® 4(n— DR®  512(n — 1)F* 2n?

where 7 < 0 over the entire corrector aperture. In contrast to the corrector whose
profile is given by Eq. (4.5.6), this corrector is thickest at its center. Comparing
Eq. (4.5.11) to Eq. (4.5.6) we also see that an additional term has been introduced
into the surface figure, one that amounts to including a radius term. Rewriting Eq.
(4.5.11) we get

» o

" 45.12
"TOR. T an- R (4.5.12)

where R, the radius of curvature of the modified corrector, is

_4(n— DR

R =
¢ 3ri

(4.5.13)

Throughout the analysis leading to Eq. (4.5.12), we have carefully followed the
sign conventions established in Chapter 2. From the diagram in Fig. 4.10 we see
that R < 0, hence R, < 0 as well. In absolute terms 7 has its largest value when
r = 0.866r2, as is easily verified by setting dt/dr = 0 and solving for 7. The rays
for which the deviation is a maximum are those for which dt/dr is largest in an
absolute sense, which occurs at # = 0.5 and n = 1. The shapes of the corrector
profile and the emerging wavefront, greatly exaggerated, are shown in Fig. 4.12.

As a final item for the Schmidt camera we calculate the chromatic TSA present
when the index » differs from the one used in the design profile. The starting
point is the wavefront retardation of the corrector, (n’ — 1), where r’ is the
variable. The change in retardation as a function of a change in index is tdn,
where 6n = n’ — n and n is the design index. Equivalently, ton is the optical path
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incident retarded
wavefront wavefront

[ ] Yo

Fig. 4.12. Profiles, greatly exaggerated, of corrector and emerging wavefront. Ray shown at height
+/3/2 of full aperture is undeviated.

difference (OPD) for index »’. Substitution of the OPD for 2 Az in Eq. (4.2.5) and
setting ' = f gives the chromatic aberration. The result is

d dt fnién 3
TSA3 =f—(@on) =fon—=———{1—-— ). 4.5.14
S fdr(T m=f " 64(n — 1)F3 4n? ( )
Putting in # = 0.5 or 1 gives the chromatic TSA for the rays that have the
maximum deviation or largest effective prism angle. The two values of # give the
same TSA value in magnitude and the result in absolute terms is

[ on
TSA3 = 56— 1’ (4.5.15)
which is effectively the radius of the chromatic image.

The prescription of the corrector profile required to correct the spherical
aberration of a spherical mirror used in collimated light is correct through fourth-
order terms in ». As noted in Eq. (4.2.1) there are higher-order terms in the
expression for spherical aberration and Eq. (4.5.12) can be extended to eliminate
their presence. The term in SAS is significant for cameras of small focal ratio and
is considered in Chapter 7. For further details on aberrations of fifth and higher
order, the reader should consult the books by Bouwers (1946) and Linfoot (1955).

The introduction of the refracting corrector element gives an optical system
with excellent image quality over a large field, with chromatic aberration setting
the limit on the image quality. It should also be noted that the corrector does have
an axis and therefore the camera is no longer axis-free. As a result there will be
off-axis aberrations, though these aberrations are relatively small because the
corrector is nearly a plane-parallel plate and is generally quite thin. For details on
the magnitude of these off-axis effects the reader should consult an excellent
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article by Bowen (1960). This article is also of interest in showing how the
aberrations of a Schmidt camera can be calculated without recourse to Fermat’s
Principle.

The two systems treated in this section have only been examined in part. Our
intent here has been to use Fermat’s Principle as a tool to facilitate the analysis of
optical systems and to demonstrate its power in the process, at least for on-axis
aberrations. The full capability of this tool, including analysis of off-axis
aberrations, will be evident after the treatment in the following chapter.
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Chapter 5 Fermat’s Principle and Aberrations

At this point the stage is set for a general application of Fermat’s Principle to a
surface of revolution and the derivation of its aberrations. The theory of
aberrations, generally called the Seidel theory, is a classical subject and has
been treated in detail by many authors, including Born and Wolf (1980), and
Welford (1986). Excellent introductions to the theory of aberrations are given by
Longhurst (1967) and Mahajan (1998). The treatment here leads to nothing new,
but the approach is one that leads to results that can be easily applied to optical
systems of specific interest to astronomers, such as telescopes, cameras, and
spectrometers. Rather than simply citing results derived from the Seidel theory,
we start with Fermat’s Principle and derive the desired relations in a systematic
way. These aberration relations are then reduced to specific forms appropriate to
given surface types, such as conic mirrors, spherical refracting surfaces, and
aspheric plates as used in Schmidt cameras and telescopes.

5.1. APPLICATION TO SURFACE OF REVOLUTION

A sketch of a general surface of revolution about the z-axis is shown in Fig.
5.1, with the origin of the coordinate system at the vertex of the surface. The
homogeneous medium to the left of the surface has index »; the medium to the
right has index #’. The object and image points are at Q and Q’, respectively, and
an arbitrary ray from Q intersects the surface at B(x, y, z). Because the surface is
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5.1. Application to Surface of Revolution 71

Fig. 5.1. Path of arbitrary ray through refracting surface. Points Q and @’ lie in the yz plane; point
B is on the surface. The chief ray passes through the origin of the coordinate system.

symmetric about the z-axis, there is no loss of generality in placing @ and Q' in
the yz-plane. The surface equation is a generalized form of Eq. (4.1.4) through
fourth-power terms of » as follows:

r rt brt

Ty o P

ST R T T
» HT1l+K b »o ot

__ — - — _ .1.1
2R+8[ I3 n’—n] TR G-1

where « represents the quantity in brackets, and r? = x? 4+ ?. The term in b
explicitly includes the type of aspheric term required for corrector plates, one
example of which is discussed in Section 4.5. The form of the b term in Eq.
(5.1.1) is chosen to simplify its appearance in the aberration relations. In Fig. 5.1,
the center of the aperture stop is located at the origin of the coordinate system.
The case for an aperture stop displaced along the z-axis is considered later in this
chapter.
Applying Eq. (3.1.2) to the ray shown in Fig. 5.1 gives

OPL = n[QB] + n'[BQ'], (5.1.2)

where [OB] and [BQ’] are the segments of the ray to the left and right of point B,
respectively. From the geometry in Fig. 5.1 we have

[OB] =[(y — h)* + (zg — z)? + 2212

(5.1.3)
BO1=[(y — ) + (2 — z¥ +x°]'/%.
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The dashed line in Fig. 5.1 from Q to Q' passes through the center of the aperture
stop and intersects the surface at its vertex. This line represents the chief ray
through the system with angles 6 and 6 with respect to the z-axis. The OPL
measured along the chief ray is simply —ns + »'s’, where s is negative and s’ is
positive by the sign convention.

The signs of other quantities in Fig. 5.1 are as follows: 6, &, , and z, are
positive, and /4 and z, are negative. The signs of 6 and &' are the same as those of i
and i’ in Fig. 2.1. With due regard for these signs, we have

h =ssin0, zo = scosf, s2=z(2)+h2,
(5.1.4)
A =ssin, zy =5 cos @, §? =22+ h2

Substituting the relations in the first line of Eq. (5.1.4) into [QB] gives

2y . (1 cosf Al 12
[QB]**S[I—;SIHQ-F?(;—T)+E(F—O€SCOSB>] .

The relation for [BQ’] is similar in form except that # replaces 8, s' replaces s,
and the leading minus sign is dropped. The expression for [QB] is now
transformed by applying the binomial expansion and retaining all terms through
fourth order, with the result

_ . ¥ (cos?® cosB\ xZ[1 cosf
[QB]“{S—”““”E( 5 —T)+7(§‘T)

3 2
+x—zzsin9 1 cosb +7 sinof € 0 cosb
s R 2s s

2s
+ﬁ 1 /1 (I1+K)cosf) 1/(1 cos6 Z_bcos(?
81 R2\ s R s\s R n—nll

A similar relation follows for [BQ’] once the changes noted in the preceding are
made. The substitution of these relations for [QB] and [BQ'] into Eq. (5.1.2) then
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gives the OPL for this general ray, as follows:

OPL = (—ns + s’y — (' sin@’ — nsin 0)

2

Y[ cos?d ncos’@ n'cos® —ncosh
s’ K R

s s R

B x_z)_z nsinf (1 cosf n sin @’ 1 cos o'
2 s ) R s s R

_ )_131 nsinf [ cos? 6 _cosf n'sin@ (cos:td cosé
2 s s R s s R

AT (n 1 0\’
— n——ﬁ—(1+K)(n'cosf)'—ncos0) +2(--2
R s\s R

x_zl:n’ n n’cos@'—ncos()]
2

w1 cost\* b , ,
——/(—,— ) - (0’ cos @ —ncos@)]. (5.1.5)
s\ s R n—n

Although Eq. (5.1.5) is a formidable equation in appearance, the application of
Fermat’s Principle simplifies it considerably. We begin by noting that the first set
of parentheses denotes the OPL for the chief ray. Because Fermat’s Principle is
concerned with optical path differences and stationary values, as given in Eq.
(3.1.1), it is appropriate to remove this term by defining @ as the OPD between
the general ray and the chief ray. Given this definition we have

@ = OPL — OPL(chief ray)
= Agy + 4,y + 457 + Ay + A5y + Ay, (5.1.6)

where the A4,’s are the multiplying factors in Eq. (5.1.5). Applying Fermat’s
Principle in the form §(OPL) = 0 to Eq. (5.1.6) gives
d oD d a0
—(OPL) = — =0, —(OPL)=—=0. 5.1.7
—(OPL) = — 5 OPD = (5.17)
Equation (5.1.7) is satisfied for x = y = 0 only if 4, = 0, hence #’ sin ' = nsin#,
which is simply Snell’s law for the chief ray.
Before proceeding to a detailed analysis of the various terms in Eq. (5.1.5) we
look at each term in an approximate form. Consider first the terms in x> and y?. In
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the paraxial approximation each cosine is replaced by one and the terms are zero
by Eq. (2.2.5). In the next level of approximation each cosine is replaced by
1 — ¢?/2, where ¢ is 8 or &', and the terms are of the form x*>¢? and y?¢?. Thus
terms 4,)” and Aix? in Eq. (5.1.6) represent astigmatism, as noted in the
discussion accompanying Eqs. (4.4.1) and (4.4.2). For the next two terms,
those in x?y and y?, each cosine is replaced by one and each sine by its angle.
The corresponding terms in Eq. (5.1.6), 4,)° and 45x?y, represent coma, with
A, = A} in this level of approximation. The final term in Eq. (5.1.6), with all
cosines replaced by one, is spherical aberration.

Returning to Eq. (5.1.5) we see that one or the other of the terms proportional
to the square of the distance from the surface vertex can be made zero by a proper
choice of s’. The term in )? is zero if

n'cos? ncos’® n'cos® —ncos

— = 5.1.8
s s R ’ ( )

where s, is the location of the fangential astigmatic image. As we will see, this
image is a line image oriented perpendicular to the plane defined by the z-axis
and the chief ray. Alternatively the term in x? is zero if

n” n ncos® —ncosh

L r_r/|mr o (5.1.9)

ss R

where s/ is the location of the sagittal astigmatic image. This image is also a line
but lying in the plane containing the z-axis and the chief ray. A sketch of these
images as defined by selected rays is shown in Fig. 5.2. Note that s; = s, in the
paraxial approximation where cos = cos@ =1, and both Egs. (5.1.8) and
(5.1.9) reduce to Eq. (2.2.5), as expected.

The separation between the two astigmatic images is found by solving Egs.
(5.1.8) and (5.1.9) for 1/s; and 1/s,, respectively, and taking the difference
between the two expressions. The result is

As  tan? @ [n’ cos —ncosf n ( n' ):I
== + 1 )

sis; n R s

where As' = s, — /. To terms through 6” this expression reduces to
As n?* (1 1
s n \ns ns

In Eq. (5.1.10) s’ suffices to locate the image if As’ << s; or s;. Note that the
separation of the astigmatic images, and thus also the lengths of the line images,
is proportional to 6?. Derivation of the image length follows in the next section.

At this point our analysis of Eq. (5.1.6) by means of Fermat’s Principle has
given Snell’s law and the locations of the astigmatic images. In the next section
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Fig. 5.2. Location and orientation of astigmatic line images. Tangential and sagittal images are
denoted by T and S, respectively.

we use these results to evaluate the remaining coefficients in Eq. (5.1.6), which, if
non-zero, determine the magnitude and type of aberration present in an image.

5.2. EVALUATION OF ABERRATION COEFFICIENTS

For an optical system that satisfies Eq. (5.1.7) for any (x,y) within the
aperture, each of the coefficients in Eq. (5.1.6) must be zero and the system is
perfect. If one or more of these coefficients is nonzero, then aberrations are
present. Not surprisingly, the size of a given aberration is directly proportional to
the corresponding coefficient in Eq. (5.1.6).

Before we evaluate each coefficient it is important to note that this analysis is
limited to finding third-order angular and transverse aberrations only. As evident
from the discussion following Eq. (5.1.7), this means retaining only those terms
for which the sum of powers of § and r, x, or y is not greater than four. Thus A4; is
independent of 6, 4, and 4 are each proportional to ¢, and 4, and 4 are each
proportional to 6°.
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Using Snell’s law and Eq. (2.2.5) to simplify the terms in Eq. (5.1.5) we get

1[K 1 1N/ 1 1
A3_—_—-§!:—3(n —n)+b]—§<;—1—e) (;?‘n_s) (5.2.1)

il 1 1 1
A=A, =0—[ - —= —_— 2.2
2 =4 02 (s R)(n’s’ ns)’ (5:2.2)

where the first term in brackets in Eq. (5.2.1) represents the contribution from the
nonspherical part of the surface. Note that there is no term in Eq. (5.2.2)
involving K or b and thus any nonspherical surface component does not
contribute to the aberration associated with this coefficient, provided the aperture
stop is at the surface as in Fig. 5.1. We will see later that this statement about Eq.
(5.2.2) is not true when the aperture stop is displaced from the surface.

The evaluation of the remaining coefficients 4, and 4] depends on the image
distance chosen. For example, choosing s’ = 5| makes 4] = 0, and the coefficient
A, is evaluated by substituting s’ = s;, into 4, in Eq. (5.1.5). The result to second
order in 0 is

n (1 1
A = -6 — -—} 5.2.3
! 2 ( n's’  ns ) ( )
If, on the other hand, the choice were s’ = s}, then 4, = 0 and
2701 1
4 =02 (—-=), 5.2.4
! 2 ( n's' ns ) ( )
hence A; = —A4. In either case terms involving K or b are absent but, as with 4,,

they will be present when the aperture stop does not coincide with the surface.

The difference in sign between 4, and A4} is a measure of the differences
between the marginal rays at the ends of each of the line images. As seen in Fig.
5.2, the marginal rays in the yz-plane intersect the chief ray before reaching the
sagittal image, while the marginal rays in the xz-plane reach the chief ray after
passing through the tangential image. In terms of transverse aberrations at the two
images, the magnitudes are the same but the signs are opposite.

Although the details are not given here, it is worth noting that choosing s’ as
the midpoint between the line images leads to the result that 4, = —4} with each
one-half as large as the values given in Eqs. (5.2.3) and (5.2.4). A look at Fig. 5.2
midway between the sagittal and tangential images shows that this result is
expected. A series of spot diagrams for an image with astigmatism as its only
aberration is shown in Fig. 5.3. As expected, the image blur midway between the
line images is circular in cross section and the images outside of the region
between the line images are elliptical in cross section.
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Fig. 5.3. Spot diagrams for image with astigmatism. The 7 and S images are to the right and left,
respectively, of the astigmatic blur circle. Mirror has s=s' =R =1000mm, y = 100 mm.

Because of the close relationship between 4, and 4}, it does not matter which
s’ is chosen to characterize the astigmatism present in an image. Our choice is
s = s or A} = 0, hence Eq. (5.2.3) is the relation used in subsequent discussions.

The direct way in which 4, is a measure of the astigmatism is seen in a
comparison of Egs. (5.2.3) and (5.1.10), from which it follows that

As'[s? = —24,/n. (5.2.5)

Using Eq. (5.2.5) it is a simple matter to derive an expression for the transverse
astigmatism at the sagittal image. Defining the transverse astigmatism (abbre-
viated TAS) as one-half the length of the line image, we find from the geometry
of Fig. 5.2 that

TAS = —(As'/s") = 24,y5' /n, (5.2.6)

where TAS < 0 at the sagittal image in Fig. 5.2 when y > 0, as required by the
sign convention. The diameter of the astigmatic blur circle midway between
the line images is |TAS|. Using the mirror parameters given in Fig. 5.3,
with 8 =0.5°, we get A = —152 um and TAS = —15 um for the images
shown.

The final coefficient to consider is 4,, which, from Eqgs. (5.1.5) and (5.1.6), is

Ay = —(n' sin§’ — nsin ). (5.2.7)
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Instead of setting 4, = 0, which defines the exact path of the chief ray, we follow
the standard procedure of finding the angular difference in direction after
refraction between the actual and paraxial chief rays for plane object and
image surfaces. In the steps that follow, note that the usual statement for the
paraxial approximation #'6" = nf is not sufficient. In order to preserve the exact
direction from which the chief ray approaches the center of the stop, and the
object and image surfaces as planes, it is necessary to express sines and tangents
of angles through third order.
From Egs. (5.1.4) we get tan = h/z, and tan 6§’ = #’/z}. To third order

ho1 n
0:___3 o
230 0=

1 /3
- = 5.2.8
30 (5.2.8)
where 0 = tan~!(h/z;), 0’ = tan!(#'/Z,). We now expand Eq. (5.2.7) to third
order, substitute Egs. (5.2.8), and find

3 2
_ _,,9_(1 _r%) (5.2.9)

where the first two terms cancel by Eq. (2.2.7). Note that s and s’ in Eq. (2.2.7) are
Zy and zj in the notation of this chapter. Note also that 4o =0 for ' = —n, a
reflecting surface.

At this point let us summarize our findings. We have relations for the
aberration coefficients and, in the case of 4, have its relationship to a transverse
aberration. The next step is to find the connection between the remaining
coefficients and their respective transverse aberrations. This is done by first
establishing the connection between nonzero terms in Eq. (5.1.6) and deviations
of the wavefront converging on the image point from the spherical shape
produced by a perfect system.

5.3. RAY AND WAVEFRONT ABERRATIONS

An optical system free of aberrations takes light from an object point O, for
which the wavefront is a sphere with center at (), and images it at the Gaussian
image point Q'. The wavefront of the light converging toward Q' is a sphere
whose center is at @', and the OPL along any ray through the system is constant.
Thus @ in Eq. (5.1.6) is zero. This spherical wavefront is taken as our reference
and designated X,.
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Fig. 5.4. Cross sections of reference and aberrant wavefronts, 2, and Z, respectively. Radius of
curvature of the reference wavefront is s'.

For a system with aberrations the wavefront converging toward Q" is no longer
spherical and, depending on the sign of @, is either advanced or retarded at each
point on the wavefront. A schematic cross section of an aberrant wavefront
designated X, is shown in Fig. 5.4, with it and the ideal wavefront X, in contact
at their centers where ® = 0. At any other point on the actual wavefront, @ is the
OPD between X, and X,. The geometrical distance along any ray between the
wavefronts is @/n" and designating this distance as A we have

A=PED L5 )~ 2 ) (53.1)
For the situation shown in Fig. 5.4 we have #' > 0, hence A and ® have the same
signs. When A > 0 the actual wavefront is retarded with respect to the reference
wavefront; the actual wavefront is advanced when A < 0.
Differentiating Eq. (5.3.1) gives
A 130 1 /09X, 3Z,
'y _n’< ady )
with a similar relation in which x replaces y. The quantity in parentheses in Eq.
(5.3.2) is the difference in slopes between the reference and aberrant wavefronts
in a slice parallel to the yz-plane. Because rays are perpendicular to wavefronts,
this is also the difference between the slopes of the ray for a perfect system and
the actual ray, each at point (x,y) on the respective wavefronts. Given this
difference in slopes, there is a consequent transverse aberration in the y-direction

at the image, as shown in Fig. 5.5. A similar result follows in the x-direction from
Eq. (5.3.2) with x in place of y. From the geometry in Fig. 5.5 we get

PA_S00 A S
dy n dy ax n ox

(5.3.2)

TA, = s (5.3.3)
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Fig. 5.5. Geometry of wavefront slope difference and transverse aberration in the image. See Eq.
(5.3.3).

where the subscripts x and y on TA denote transverse aberrations in the x- and
y-direction, respectively.
Substituting Eq. (5.1.6) into Egs. (5.3.3) gives

!

TA, = %[A0 + 24,y + A, (2 + 3P) + 447, (5.3.4)
Sl

TA, =~ [24x + 24,xp + 44,%7). (5.3.5)

We have now established the connection between the aberration coefficients and
the geometrical transverse aberrations. The corresponding angular aberrations,
denoted by AA, are given by

TA, = 5AA,,  TA,=sAA,. (5.3.6)

We now examine briefly the specific aberrations in Eq. (5.3.4) and relate each to
the corresponding wavefront aberration.

The term with 4; is a measure of spherical aberration. As noted in the
discussion following Eq. (4.3.6), we replace r with y for third-order aberrations.
The resulting TSA3 changes sign when y changes sign, as shown clearly in Fig.
4.5. The corresponding wavefront aberration map is shown in Fig. 5.6, where the
concave surface represents the advance of the spherically aberrant wavefront
relative to the reference wavefront. The z-axis of the optical system in Fig. 5.6 is
directed vertically upward and passes through the center of the diagram, origin O
in Fig. 5.5 is at the center of the surface in Fig. 5.6, and the x-axis is to the right.
Note that an unaberrated wavefront is a plane in this type of map, with the
deviation from this plane proportional to A of Eq. (5.3.1).

The term in Eq. (5.3.4) with A4, represents astigmatism, as discussed in the
previous section, and the wavefront aberration map for the circular astigmatic blur
in Fig. 5.3 is shown in Fig. 5.7. Note that this map shows a wavefront that is both
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WAVEFRONT FUNCTION

Fig. 5.6. Wavefront aberration map for image with spherical aberration. The image is located at
the paraxial focus. See Figs. 4.5 and 4.6 for ray and spot diagrams.

advanced and retarded. The portion that is advanced is higher than the center,
while the retarded part is lower. A useful exercise for the reader is to correlate the
ray directions in Fig. 5.2 with the shape of the wavefront map in Fig. 5.7.

The coefficient 4, is a measure of coma. A sketch showing the asymmetric
form of this aberration is given in Fig. 5.8. Note that the marginal rays on the

WAVEFRONT FUNCTION

Fig. 5.7. Wavefront aberration map for the circular astigmatic image in Fig. 5.3.
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‘Y

Fig. 5.8. Sketch of comatic Image profile. Here TC and SC are tangential and sagittal coma,
respectively. TC=3.SC.

y-axis meet at a point three times farther from the Gaussian image, compared with
the corresponding point for the marginal rays on the x-axis. The source of this
difference between the tangential and sagittal coma is evident by inspection of
Eq. (5.3.4). Coma is fully specified by giving either transverse sagittal coma
(TSC) or transverse tangential coma (TTC), with TTC = 3 TSC.

The distribution of light rays over the comatic image is not uniform, there
being a greater density of rays near the point of the comatic image. A spot
diagram for a comatic image is shown in Fig. 5.9 with the chief ray at the point of
the image. About 80% of the energy is within a distance equal to TSC from the
Gaussian focus. Unlike the case of spherical aberration, a shift along the chief ray
does not improve the image quality. The wavefront map for a comatic image is
shown in Fig. 5.10. (For clarity the map in Fig. 5.10 is rotated by 90° relative to
the spot diagram in Fig. 5.9, with the y-axis to the right.) In this case the
asymmetry is clearly shown by the general downward slope from left to right in
Fig. 5.10. A careful study of ray directions in Fig. 5.8 and slopes in Fig. 5.10
(suitably rotated) is suggested.
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Fig. 5.9. Through-focus spot diagrams of image with coma.

The remaining coefficient 4, is a measure of distortion. If 4, is nonzero the
effect is to displace the chief ray and change the position of the final image but
not its quality. Any straight line in the object plane that does not pass through the
z-axis is imaged as a curved line if distortion is present. Thus a square in the
object plane centered on the z-axis will appear distorted in the image plane. If

WAVEFRONT FUNCTION

Fig. 5.10. Wavefront aberration map for the comatic image in Fig. 5.9. The map is rotated by 90°
relative to the spot diagram in Fig. 5.9.
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Ay > 0 the reimaged square resembles a pincushion; if 4, < 0 the result is barrel
distortion. See Born and Wolf (1980), or Welford (1986), for schematic diagrams
of distortion.

For a mirror the paraxial equation is exact, and hence there is no distortion
when the stop is at the surface. Distortion generally is present when the stop is
displaced from the surface of a mirror.

Finally, we have not yet considered curvature of field, the final aberration
noted in Section 4.4. Characteristics of this aberration are given in Section 5.7 of
this chapter.

For more details on the nature of aberrations and wavefront maps, the reader
should consult Born and Wolf (1980), and Welford (1986). An especially
thorough discussion of aberrations is given by Mahajan (1998).

5.4. SUMMARY OF ABERRATION RESULTS, STOP AT SURFACE

It is now appropriate to bring together all of the important results on aberrations
and present them in a set of tables for convenient reference. Following are two
tables of aberration coefficients, Table 5.1 for a general refracting surface and Table
5.2 for a reflecting surface. Because many of the applications considered in
subsequent chapters involve single or multiple mirror systems, it is convenient
to include a separate table for mirrors. The next two tables summarize the results
for transverse aberrations, Table 5.3 for a general refracting surface and Table 5.4
for mirrors. Explanations and definitions are included as needed.

All of the results in this section apply specifically to the case where the
aperture stop is at the surface. Because there are no optical surfaces either

Table 5.1

Aberration Coefficients for General Surface*?

11 o1
A=0—(-—x )l ———
2 2 (s R)(n’s’ ns)

¢ Entrance pupil is at surface.
® For a spherical refracting surface with no aspheric compo-
nent, the last two terms in A are absent.
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Table 5.2

Aberration Coefficients for Mirror Surface??

n m+1\] b
As—m[“(m)]‘g’ 4 =0

2
Az:_ﬁ<____”‘+l>, Al:ﬂ

RR\m-1 R

4 Entrance pupil is at surface.
bThe following relations apply to a mirror:

1_1_1 m+1 L_i__i
s RTR\m-1) n's ns  nR’

Table 5.3

Transverse Aberrations for General Surface®?

1 1 1V 1t K ¥
TSA=—z|n* (=== ) (=== )+ —m)+b
2[n (s R) (n’s/ ns)+R3(n m+ ] n
il 1 1 1\y0s 1
TsSC=" (- )= -— =>TTC
2 (s R)(n’s’ ns) n 3

1 1\’ s
TAS = —n?( — —— As' = ——TAS
" (n’s’ ns) n ¥

n{ n? s
Tbl=3 (—‘ 1)7

4 Entrance pupil is at surface.

® Angular aberrations are given by the above relations with the
final 5'/n’ divided out.

Table 5.4

Transverse Aberrations for Mirror Surface?

3 2

¥ m+1\7, b,
TSA = -2 T hedi
S R3|:K+<m—l):|s+2ns

¥ (m+1 1
TSC = —— }8s' ==-TTC
SC=r\m=1)% =3

2
TAS = —%st', TDI = 0

4 Entrance pupil is at surface.
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preceding or following this surface, the entrance and exit pupils are also located
at the surface.

5.4.a. DEFINITIONS, CHARACTER OF ABERRATIONS

Measures of the transverse aberrations are taken from Eq. (5.3.4). For
completeness a summary of the designations follows. Each aberration is desig-
nated by two letters: spherical aberration, SA; sagittal coma, SC; tangential coma,
TC; astigmatism, AS; and distortion, DI. If the aberration is transverse, a prefix T
1s attached; if the aberration is angular, a prefix A is attached.

With these designations the transverse aberration expressions are:
44,°s AyPs

nl

TSA = , TSC:T, TAS =

24,y5 Ays
P o (5.4.1)

—, TDI=

n n
Note that TSC is simply one-third of the tangential coma, where the latter is based
on the rays from the y-axis. All of the aberrations are computed using rays from
the y-axis, with the full aberrations given by Egs. (5.4.1) when the radius of the
surface is substituted for y.

It is not necessary to use Eq. (5.3.5) to find transverse aberrations in the x
direction because A is zero, given our choice s’ = s}, and the extent of the blur in
the x direction is known from results of Eqgs. (5.4.1). Thus all measures of
transverse aberrations given in what follows are in the y direction, that is,
measured in the plane defined by the chief ray and z-axis.

Results obtained by substituting from Tables 5.1 and 5.2 into Egs. (5.4.1) are
given in Tables 5.3 and 5.4. Although As’ is actually a longitudinal aberration, its
relation to TAS is included in Table 5.3 for completeness. All of the relations in
Tables 5.1 and 5.2 include the sign convention and thus these equations give
information about the character of the aberrations as well as their magnitudes. A
brief summary of the relation between the sign of the aberration coefficient and
image character follows, where the choice of sign is in accord with the figures
illustrating each of the aberrations. With 6 > 0,

Ay < 0: marginal rays cross chief ray between surface and Gaussian focus,

A, > 0: coma flare is directed away from z-axis, or Gaussian focus between
flare and axis,

A, < 0: tangential line image closer to surface than sagittal image, and

Ay > 0:  pincushion distortion.

For some purposes the sign of the aberration is of no consequence and the
magnitude is all that matters. In terms of magnitudes, each of the aberrations has
the following interpretation:
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|TAS| = half-length of astigmatic line image
= diameter of astigmatic blur circle,
3|TSC| = length of comatic flare
= 1.5 x width of comatic flare,
|TSA| = radius of blur at paraxial focus
= 2 x diameter of circle of least confusion.

All of these results assume, of course, that only a single aberration is nonzero. If
more than one aberration is present in an image, there is no simple way to
characterize the blur character or dimensions.

Inspection of the entries in Tables 5.1 and 5.2 shows that the aberration
coefficients are independent of the direction of incident light on a given surface.
Reversing the direction of incident light is equivalent to taking Fig. 5.1 and
reversing it left for right, thus changing the signs of », #’, 5, &', R, and 6. Thus the
transverse aberrations are also the same for either direction of incident light. This
result is expected because the direction of the incident light, left to right or vice
versa, cannot change the character of the image.

5.4.b. APLANATIC CONDITION AND OTHER EXAMPLES

We now examine the various terms in Tables 5.1 and 5.2 to find examples of
surfaces that have specific aberration characteristics. For a spherical surface with
b =0 the aberration coefficients 4, through A, in Table 5.1 are zero when
n's’ = ns. For a mirror n’ = —n and this condition is satisfied with s’ = —s. Using
the paraxial mirror equation (2.3.2) we find R = 00, hence the surface is a plane
mirror. This result is expected but not especially useful because a plane mirror has
ZEro power.

For a spherical refracting surface the condition n's’ = ns, together with the
Gaussian equation (2.2.2) gives

ns =n's' = R(n +n'). (5.4.2)

This defines the object and image positions for a so-called aplanatic sphere,
where the term aplanatic means the system has zero spherical aberration and
coma. A lens of this type is often used as the first element in high-power
microscope objectives. It has also been used as an element near the focus of a
Schmidt camera in a spectrograph to shorten the camera focal length, as noted by
Bowen (1960). In this application its chromatic aberration is not a serious
constraint in getting good image quality.

A paraboloid (K = —1) in collimated light (m = 0) has zero spherical
aberration but nonzero coma and astigmatism. Thus this type of mirror, though
perfect on-axis, has a limited field of view (FOV) when used as a telescope.
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Further discussion of the image characteristics of a paraboloid is presented in
Chapter 6.

For a conic mirror with b = 0, the condition for zero spherical aberration fixes
K in terms of m. Setting 4, = 0 in Table 5.2 gives the relation in Eq. (3.5.4), a
result used in Section 4.5 to establish the conic constant for the secondary mirror
of a classical Cassegrain telescope. Note that such a mirror has coma and
astigmatism.

From the entries in Table 5.2 we also see that a sphere (K =0) in a
configuration with m = —1, thus 5" = s = R, has zero spherical aberration and
coma, hence is an aplanat.

As a final example we point out that a sphere in collimated light has nonzero
aberrations both on- and off-axis. Although this would appear to limit the
usefulness of a spherical mirror, our discussion in Chapter 4 shows that this is
not the case when the aperture stop is separated from the mirror. This is our topic
for the next section.

5.5. ABERRATIONS FOR DISPLACED STOP

We now determine the aberration coefficients for a single surface with the
aperture stop displaced from the surface, as shown in Figs. 5.11 and 5.12. In Fig.
5.11 the stop defines the light bundle before refraction at the surface, and the
entrance pupil coincides with the stop. In Fig. 5.12 the stop follows the surface
and the entrance pupil, or image of the stop, is separate from the stop. In both
figures the chief ray is directed toward the center of the pupil at angle y with the
z-axis and intersects the surface at height L.

stop y

n
L
}

- |

Fig. 5.11. Portion of Fig. 5.1 with aperture stop displaced from surface. The chief ray makes angle
Y with the z-axis and intersects the surface of height L. The entrance pupil is at the stop. The relation
between parameters is given in Eq. (5.5.2). In this diagram W < 0,L > 0,y and 6 > 0.
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Fig. 5.12. Repeat of Fig. 5.11 with stop to right of surface. The stop is reimaged as the entrance
pupil EP. Equation (5.5.2) applies when W’ replaces W. In this diagram L < 0, W and ¥’ > 0.

Comparing these figures with Fig. 5.1 we see that an arbitrary ray that met the
surface at (x, y) in Fig. 5.1 now meets the surface at (x, y + L). Because a different
portion of the surface refracts the light bundle from Q when the stop is displaced,
it is expected that the image aberrations will differ from those derived for Fig. 5.1.
An example of this difference was previously noted in Section 4.5, where the
absence of coma and astigmatism for a sphere with stop at the center of curvature
of the sphere was the basis for the Schmidt camera. These aberrations are not zero
when the stop coincides with the surface, as is evident from Table 5.2. This one
example illustrates the importance of the stop position in controlling or eliminat-
ing aberrations.

5.5.a. STOP-SHIFT RELATIONS

We now proceed to find the general aberration relations for a displaced stop.
The procedure is simply one of putting y 4+ L in place of y in Eq. (5.1.6).
Collecting terms in various powers of x, y, or », and dropping all constants
independent of these variables, we get

® = p(dy + 2LA, + 3L°4, + 4L 45)
+ 24, + 3LA, + 6L245) + x* (4| + L4, + 2L%45)
+ 57 (4y +4LA5) + Xy dh + 4Lds) + Ayr®
= By + Bp? + Bjx? + B,(x*y + ) + By, (5.5.1)
where 4, = A, is used to combine the cubic terms.

Even before deriving the explicit form of the B;, there are several important
statements that follow from Eq. (5.5.1). These stop-shift relations are:
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(1) L does not appear in the r*-term and thus the spherical aberration
coefficient is independent of stop position.

(2) If A; = 0, the coma coefficient B, is independent of the stop position and
the coma is that given in Section 5.4.

(3) Ifboth 4, and A4; are zero, B, and B] are independent of the stop position,
and reduce to 4, and A4}, respectively.

The importance of these statements will become evident when specific systems
are discussed in the chapters that follow. Although they are deduced here for a
single surface, it turns out these statements also apply to a system made up of
many surfaces.

5.5.b. ABERRATION COEFFICIENTS

The process required to evaluate each B, is a straightforward one, though the
algebra is a bit messy at times and therefore omitted in the discussion to follow.
When the evaluation is more than simple substitution, as for astigmatism, a brief
outline of the procedure is given.

To begin, we note the following relations, valid in the paraxial approximation,
derived from the geometry in Fig. 5.11:

L=-Wy, 0=yl —(W/s)], (5.5.2)

where W is the distance from the surface to the entrance pupil, and both L and W
are governed by the same sign convention as other distances. Figure 5.12 shows
the geometry for the case where the stop follows the surface. In this case Eq.
(5.5.2) applies if W is replaced by W’. A glance at Eq. (5.5.2) and Fig. 5.11 shows
that, for a given 6, Y increases in size as s approaches W. There will come a point
where 1/ is large enough to make the paraxial result in Eq. (5.5.2) invalid, and
results derived using Eq. (5.5.2) will be incorrect. Unfortunately, no simple
statement can be made about where this breakdown occurs, and one must check
on a case-by-case basis as to the validity of results derived from third-order
aberration theory. Exact ray-tracing is generally used to check the results.

A final point to be made is in the choice of parameters used in presenting the
aberration coefficients. The choice made here is to eliminate L and 0, and to give
the results in terms of W, the entrance pupil position, and i, the chief ray angle.

With these preliminaries behind us, we proceed with the results; Table 5.5
gives the coefficients for a general surface, while Table 5.6 gives the results for a
mirror. The spherical term B; is taken from Tables 5.1 and 5.2 and is included
here for completeness. The term B, is derived from Eq. (5.5.1) and the entries in
Tables 5.1 and 5.2 by direct substitution, while B, follows from Eq. (5.5.1) and a
procedure similar to that used in arriving at Eq. (5.2.9).
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Table 5.5

General Aberration Coefficients, Centered Pupil®

2
B, = —%[F(%—%) +%(n'—n)+b:|
B, =%@[r(§—%)(%—%) +1-I§§(n'—n)+b:|

2 2
g =¥ [r(i—l) +1§(n’—n)+bjl

2 W R

WP (1 IN(1 11 1N (nr (1 IN/1 1Y
Bo=" [F(W"E)(W‘E+W‘§)+"(n7'1>(W_E)<W‘§)

¢ Entrance pupil at distance W from surface.

The derivation of B; is not one of direct substitution of the 4; but involves
going through the steps analogous to those used in Sections 5.1 and 5.2. First we
note that

B, =4, +3LQ, B) =4, + LQ, (5.5.3)

where Q = 4, + 2LA;, and 4, and 4] are the multiplying factors of y* and x2,
respectively, in Eq. (5.1.5).

Table 5.6

Mirror Aberration Coefficients, Centered Pupil®
n m+1)\* b
B=—|k+ (22} | -2
3 4R3[ +(m—1>] 8
_(mh K m+1 1 1 b
== [t w1 )\w &) T2V

2 2
5 =n " Kr (-5) |50

R |[RT\W R
K 1/1 1\/1 1 1 1\].b
BO:—n(W!//)s[F-FE(W—E)(-W—E+W—;)]+§(Wl//)3

2 Entrance pupil at distance W from surface.
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The choice of B; =0 or B} = 0 locates the tangential or sagittal images,
respectively. Corresponding to Egs. (5.1.8) and (5.1.9) we find

n’co/s2 0’_ncosZO=n’cos(9’——ncos(9_6LQ, (5.5.4)
s s R
n_n_noos§ —neosd_p g (5.5.5)
s s R

5

The relation analogous to Eq. (5.1.10), through terms in 6%, is

Ay _ (As ) _4Q (5.5.6)
W=0

S/Z s/2 n

where the first term to the right of the equal sign is given in Eq. (5.1.10).

The next step is to choose an image at which to evaluate the astigmatism and,
as in Section 5.2, the choice is the sagittal image. Solving Eq. (5.5.5) for ¢,
substituting the result into B, in Eq. (5.5.3), and evaluating to second-order in 0,
gives

nl AS/

B, :A1+2LQ:—E(S7) +2LQ. (5.5.7)
W=0

Note that 4, in the first part of Eq. (5.5.7) is the value at the sagittal image, hence
different from 4, in Eq. (5.5.3). From a comparison of Egs. (5.5.6) and (5.5.7) we
find

As'[s? = —2B,/n, (5.5.8)

a relation corresponding to Eq. (5.2.5). Thus B, is a measure of the astigmatism
when the entrance pupil is not at the surface. The entry for B, in Table 5.5 is
obtained by evaluation of Eq. (5.5.7).

The relations between the aberration coefficients and the transverse aberrations
are similar to those given in Egs. (5.4.1), but with B, replacing 4;.

4B,y .
Tsa =B pge B Lppe
e o 3 (5.5.9)
TAS =2 pp =227,
n n

The full aberration is obtained from Eq. (5.5.9) when y is replaced by the height
at which a marginal ray from O on the z-axis intersects the surface. Tables
analogous to 5.3 and 5.4 are left to the reader.
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5.5.c. EXAMPLES

At this point it is appropriate to illustrate the aberration relations with two
examples. Our choices are a sphere and a paraboloid, each illuminated with
collimated light, hence m = 0. We assume no aspheric component and set » = 0.

For the sphere we find 4; = B; = n/4R>, hence we expect that both B, and B,
will depend on the stop position. Inspection of the coefficients in Table 5.6 shows
that this is the case. When W = R, both B, and B, are zero; this stop position is
the starting point for the Schmidt camera.

Taking a sphere in collimated light with an aspheric component, we find
B; =0 when b = 2n/R>. This aspheric component could be put directly on the
mirror, but this does little good because now the mirror has nonzero coma
independent of W. The solution, of course, is to put the aspheric component on
another optical element located at W = R, as already shown in our discussion of
the Schmidt camera. The discussion of how aberrations are calculated for systems
with many surfaces is the topic of the next section.

Consider now the parabola with B; = 0. Setting m = 0 and K = —1 in B, we
see that the coma is independent of W. This is the expected result, based on the
stop-shift relations following Eq. (5.5.1). Because coma is not zero the astigma-
tism coefficient depends on W, hence a proper choice of W will mean zero
astigmatism. From B, in Table 5.6 we see that this choice is W = R/2, hence the
stop is at the focal surface.

5.6. ABERRATIONS FOR MULTISURFACE SYSTEMS

5.6.a. GENERAL FORMULATION

The real power of the approach to aberrations using Fermat’s Principle is
particularly evident when systems with many surfaces are analyzed. For any
surface in such a system, say the ith one, the object and image are at Q; and Q;’
located at distances s; and s;’, respectively, from the surface. Between the object
and image the OPD between an arbitrary ray and the chief ray is given by Eq.
(5.5.1), where W, is the position of the entrance pupil for the surface. If this same
ray is followed from the original object to the final image, then the OPD for the
system is

O, =0, +D,+--+ O =IO, (5.6.1)
where the subscript f denotes the last surface. Each term in Eq. (5.6.1) can be

replaced by Eq. (5.5.1), with the appropriate (x, y) at each surface. Before making
this substitution, note that a complete description of the aberrations according to
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Eq. (5.4.1) is obtained from rays in the yz-plane only. Therefore we set x = 0 in
Eq. (5.5.1), and the system OPD for rays in the yz-plane is

@, = Y (Byy; + Byt + Byy: + By )
=2 (Zsz‘J’in)’ Jj=0,1,2,3, (5.6.2)
7\

with the geometrical distance along an arbitrary ray between the actual and
reference wavefronts at the final surface given by

A =0,,)/n,. (5.6.3)

To find the transverse aberration at the final image, we proceed along the lines
followed in going from Eq. (5.3.1) to Eq. (5.3.3), but do so with only one of the
aberration terms, say the jth one. With reference to the last surface we get

A 1 80 1 i 9
—=——=— G+ )Y By’ L. (5.6.4)
by, oy m 2By %y

The partial derivative in Eq. (5.6.4) is easily evaluated with the aid of Fig. 5.13,
where two rays from an intermediate axial object point are shown passing through
several surfaces. Because each (; is imaged to Q,’, the ratio of the differential
change in y; to that of any other y, say the fth one, is simply the ratio y;/y;.
Substituting this into Eq. (5.6.4) and multiplying by s}, we can write the jth
transverse aberration in the y-direction as

S/- BCD s/ ) J+1 .
f s . Yi Jj
TA, ==—==(+ 1)[ B'i(—) ]y (5.6.5)
iy ndy  n ; T\ yy !
or
spo .

S

In Eq. (5.6.6) the representation of the sum in brackets in Eq. (5.6.5) is reduced to
a single symbol, with the subscript s denoting a system aberration coefficient.
Note the close correspondence between Eq. (5.6.6) and each of the terms
containing y in Eq. (5.3.4).

Calculation of the transverse aberration using Eq. (5.6.6) is based on the
marginal ray height at the last surface. In many cases it is convenient to express
the transverse aberration in terms of the marginal ray height at some other
surface, such as at the system entrance pupil. This is easily done by multiplying
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dy;

i i+l i+2

Fig. 5.13. Paths of two adjacent rays from @, through several surfaces, where Q; is an
intermediate axial object point. Differential heights dy; o y; at each surface.

and dividing Eq. (5.6.5) by the ray height at another surface, say the ith one,
raised to the j + 1 power. The results are

y V!
Bjs = ZBJI(_I) 3 (5.6.7)
i yl
S5 )
TA, =2 (&>(j+ 1B, y!. (5.6.8)
e NJr

Note that the terms in Eq. (5.6.7) depend on the choice of 1 but TA;, is, of course,
independent of this choice.

The formalism needed to calculate third-order aberrations for a multisurface
system is now complete. The necessary aberration coefficients are in Tables 5.5
and 5.6, and it is simply a matter of computing each one surface-by-surface and
substituting into Eqs. (5.6.7) and (5.6.8).

The relations given in Section 5.4 between the signs of the aberration
coefficients and the character of an image also hold for the coefficients in Eq.
(5.6.7) and the transverse aberrations in Eq. (5.6.8).

5.6.b. EXAMPLE: ABERRATION COEFFICIENTS OF TWO-MIRROR
TELESCOPES

As an example of the procedure in Section 5.6.a, consider either the
Cassegrain or Gregorian telescope shown in Fig. 2.7. We assume the stop is at
the primary, thus its aberration coefficients can be taken from Table 5.2. Setting
n=1,m=0, and b = 0 gives

0 0 1

By, =0, By =5, By, By =—
4R3

=, K +1). (5.6.9
R, R !
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For the secondary n = —1,b=0, and iy = —60 (from the law of reflection
i’ = —i). From Table 5.6 we get

3 1
=00 g () ()}
_ (wH)
e [ () ]

5.6.10
o= [ (221) (5 )] "
22 R% 2 R2 s
1 m+1
B,, = ———=I|K
i 4R%[ 2+(m—1)) |
With y, = y,, the marginal ray height at the primary, we get
By, = B; +Bj2()’2/yx)j+l2 Jj=0,1,23, (5.6.11)

where the subscripts 1, 2, and s on the B; refer to the primary, secondary, and
telescope, respectively.

In terms of the normalized parameters defined in Chapter 2 for a two-mirror
telescope we have k =y, /y,, p = Ry/R;, and W = (1 — k) f; = —(1 — k)R, /2.
For spherical aberration we then get

2
By, = 1[K1+1 /;4[K2+('"—H)“. (5.6.12)

m—1

Note that spherical aberration is zero when the expression in braces is zero, a
result previously given in Eq. (4.5.3). It was derived there by starting with a
classical Cassegrain and “bending” the mirrors subject to the requirement that
Fermat’s Principle be satisfied.

Given Eq. (5.6.12) it is now a simple matter to find TSA3. Using Egs. (2.5.3)
and (2.5.7) we find s, = mkf; = kf. Putting this and n} = 1 into Eq. (5.6.8) gives

3
TSA3 :f<1ye_ll) { }=_64fF13{ 5, (5.6.13)

where the quantity in braces is that in Eq. (5.6.12), and F| is the focal ratio of the
primary mirror. Note that the sign of R, makes the factor outside of the braces in
Eqgs. (5.6.12) and (5.6.13) negative.

Expressions for the other aberrations using Egs. (5.6.9) through (5.6.11) are
determined using the same procedure, but this development is left for Chapter 6
where the characteristics of telescopes are explored in detail.
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5.7. CURVATURE OF FIELD

The remaining third-order aberration to be considered is that of curvature of
field. As noted in Chapter 4 this aberration does not affect the image quality, but
given the usual case of a flat detector can adversely affect the image definition
over an extended field. For the Schmidt camera, for example, the focal surface has
a radius of curvature equal to the camera focal length. Matching the detector to
the focal surface requires either deforming it to the proper radius or using another
optical element to “flatten” the field. The former method is used with most large
Schmidt telescopes by bending photographic plates. The use of a field-flattener
lens is discussed later in this section.

We now consider the situation shown in Fig. 5.14 where an optical surface
whose vertex is at the origin of the (x, y, z) coordinate system images the curved
object surface X into a curved image surface X'. The surfaces T and ¥’ have radii
of curvature » and #, respectively, with the sign convention for each the same as
for a surface radius of curvature, thus » > 0 and # < 0 in Fig. 5.14. As a final
definition, let x denote the curvature of the image surface, with k¥ = 1/¢. It
should be noted here that our sign convention for » and #’ is opposite that of Born
and Wolf (1980), but we choose to preserve its universal character.

The diagram in Fig. 5.14 can apply to any individual optical surface within a
multi-surface system, where X is an intermediate object surface and X’ its
conjugate surface. In the discussion to follow we will not designate these surfaces
with specific indices, but will include them at the end as needed.

The procedure is one of finding s’ in terms of 6 and applying a general relation
between k and s’ to get the curvature of ’. A glance at Egs. (5.5.4) and (5.5.5)
shows that s’ can contain only even powers of 6 and &' when expanded in a power

> 3

Fig. 5.14. Curved object surface T imaged to surface X'. The radii of curvature of the object and
image surfaces are r and #/, respectively. The adopted sign convention has > 0 and # < 0 in the
diagram.
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series. Thus we can solve these equations for s’ and, after substituting n6 = n'6/,
get s’ through second order in the form

1/s' = ag + a,0™*. (5.7.1)

With this form of s’ it can be shown that the curvature x to zeroth order is given
by

K= —(ao + 202), (572)

hence « is constant and to this approximation the image surface is a section of a
sphere. (The relation between k and s’ in polar coordinates from which Eq. (5.7.2)
is derived can be found in the Mathematics Manual by Merritt, 1962.)

5.7.a. PETZVAL SURFACE

We first determine the curvature of a special surface called the Petzval surface.
This surface is the image surface in the special case where the astigmatism is
zero, hence s; = s; = s, where s), is the distance from the origin in Fig. 5.14 to
the Petzval surface. We can find s;, from either Eq. (5.5.4) or (5.5.5).

Given the condition that As’ = 0 in Eq. (5.5.8) we find 2LQ = —4, from Eq.

(5.5.7). Substituting this into Eq. (5.5.5) gives

W n ncost —ncos0
—=—f——+4,. (5.7.3)
s, 8 R

To put Eq. (5.7.3) into the form required by Eq. (5.7.1) means the usual power

series substitutions and using nf = #’'0’ to eliminate 0. In addition to the angles

that appear explicitly in Eq. (5.7.3), the distance s depends on 8. The relation

between s and @ is found using the geometry in Fig. 5.15, where the sag u of X is

Y s'sin’6
T 2r T 2r

u =scos 0 — z,,

and, solving for s, leads to

11 n?%”? L1
sz 2m2 \zy r)

Substituting this result for s in Eq. (5.7.3) and collecting terms gives

s, n'zy n'R 2

—_—— 5.74
n'nR n'zy nr ( )

1 n n-—n 0_/2I:(n’—n)2 n n’]
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)

Fig. 5.15. Sag u of the object surface, with u = 3?/2r. See the discussion following Eq. (5.7.3).

Equation (5.7.4) is in the form shown in Eq. (5.7.1) and we now find k = 1/
from Eq. (5.7.2). The result is

1 1 n—n
i ‘( "R ) (5.7.5)

The importance of Eq. (5.7.5) lies in the fact that the curvature of the Petzval
surface does not depend on the distances s and ', nor on the position of the
entrance pupil for this surface. This relation applies to each surface in a system
and, given that #'# for the ith surface is nr for the (i + 1)st surface, leads to a sum
over all surfaces given by

1 1 n—n
_ , 5.7.6
nerp Z,:( n'nR )i ( )

where 1 and frefer to the first and last surfaces, respectively. For a flat object field,
the most common situation, we get

n—n
K, = _’?/f > <m>l (5.7.7)

Thus for any optical system for which the object field is flat, the Petzval surface is
an invariant surface. If the system has astigmatism, each of the astigmatic image
surfaces will have its own curvature. But, as we now show, there are definite
relations between these curvatures, the amount of astigmatism, and the Petzval
curvature.
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5.7.b. CURVATURES OF ASTIGMATIC SURFACES

The procedure to find these curvature relations starts with the substitution of
Eq. (5.2.5) into Eq. (5.5.6), giving

As' s —s, 2
= Ss;s; = - = (4 +2L0).

Solving for 2L and substituting into Eq. (5.5.5) gives

n’_‘n_’_n’cosO’—ncosO_*_A +n’ s, — 5,
s, s R )

7 o
SeSt

where we see by comparison with Eq. (5.7.3) that the first three terms to the right
of the equals sign are simply »'/s,. With this substitution we get

2(s, ~ 55) = 55, — 51, (5.7.8)

where the factors in the denominator cancel because of their near equality.
Equation (5.7.8) can also be written as

s, — 8y = 3(s, — 55). (5.7.9)

The geometric interpretation of Eq. (5.7.9) is a simple one; at a given height y the
distance between the Petzval and tangential surfaces is three times the distance
between the Petzval and sagittal surfaces, with the sagittal surface always between
the other two. Because astigmatism is zero on-axis, the image surfaces are in
contact where they intersect the z-axis.

Note that Eq. (5.7.9) holds for any surface in an optical system and does not
depend on the object distance for that surface, nor does it depend on the entrance
pupil location. Hence it must also hold for the final image surfaces of a system
with many surfaces, and the relations to follow are taken at the final surfaces.

It is a simple matter to write Eqs. (5.7.8) and (5.7.9) in terms of surface
curvatures. From the geometry in Fig. 5.16 we get

Uy —Up = S, — 8§ (5.7.10)

where u is the surface sag and « and § denote any pair of image surfaces. We also
see that u = y?x/2 and thus

2 (s, —5p
Ky — Kg ZW( 7 ) (5.7.11)
from which it follows using Egs. (5.7.8) and (5.7.9) that

=K, = 2k, — k), Ky — K, = 3(K, — k). (5.7.12)

Ks
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Fig. 5.16. Sags of image surfaces « and B, where u, —uy = 5, — s} in the paraxial approxima-
tion.

Choosing o = s and = ¢ in Eq. (5.7.11) and substituting Eq. (5.5.8) we get
K, — Kk, = —4B, /', (5.7.13)

where B, is the system astigmatism coefficient from Eq. (5.6.7) with 1 = f. Note
that B, is referenced to the last surface in the system because 8’ is specified at the
last surface.

It is now a simple matter to combine Eqgs. (5.7.12) and (5.7.13) and solve for
the curvatures of the individual surfaces. The results are given in Table 5.7.
Included is an entry for the curvature x,, of the surface midway between the
S- and T-surfaces, that surface on which the astigmatic images are circular.

5.7.c. EXAMPLES

A few simple examples are now in order. Consider first a spherical mirror in
collimated light, hence m = 0. From Table 5.6 we get

2 2
w

B ="2(1-2Y,
R R

where ¥y =0 from Eq. (5.5.2). For a single reflecting surface we have
n' = —n, 0 = —6. Substituting into the entries in Table 5.7 leads to

2 2 2 W\ 2 6 w\
=2, k=22 (1=2Y, =22(1-2) . 5714
TR TR R( R) TR R( R) (57.14)

For W = R each of the curvatures in Eq. (5.7.14) is 2/R, as expected, because the
astigmatism is zero. For W = 0 we find k; = 0, k, = —4/R. Thus the Petzval and
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Table 5.7

Image Surface Curvatures

nW—n
— ’
" n/Xi:( n'nR ),.

2B, 6B,

Ky =Ky + ot K =Kp+ 07
2

K+ K ¥
Ky = =" 3 L Bls=zi:Bli(y_f’)

tangential surfaces have opposite curvatures with a flat sagittal surface between
them. Although collimated light was specified in the forementioned, note that
these results hold for any object distance because B, is independent of the
magnification m.

As a second example consider a Schmidt camera. As already noted here and in
Section 4.5, a spherical mirror with W = R has zero astigmatism but a curved
image surface with curvature 2/R. One way to flatien the image surface is to
introduce another element whose astigmatism is zero, to a first approximation,
and to choose its characteristics to make the Petzval curvature zero for the system.
This is done with a thin lens located near the image surface, as shown in Fig.
5.17. The contribution of the corrector plate is ignored in the analysis to follow
because R, >> R for any practical focal ratio, a result that is evident from Eq.
(4.5.13).

The Petzval curvature for the mirror-lens combination, derived from the

relation in Table 5.7, is
2 n—1 1 1
= — —_——— 5.7.15
“ R ( n )(Rl Rz) ( )
| A
§ v |
=

-

R ]1
Fig. 5.17. Schmidt camera with lens L near focal surface to give zero Petzval curvature. See Eq.
(5.7.15).
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where R; and R, are the radii of curvature of the first and second surfaces,
respectively, of the lens and the index » of the lens is positive. Setting R, = oo
gives a lens whose flat surface faces the image surface and, though this is not
required, we make this choice for convenience. Therefore the Petzval surface is
flat if

n—1

(5.7.16)

2
nR, R’

Because R of the mirror is negative, so also is R;, hence the lens is plano-convex
in cross section (thickest at the center) and has positive power. Though the
combination now has a flat Petzval field, the thin lens may introduce some
astigmatism. We show in Chapter 9 that the amount is small if the lens is close to
the image surface.

Our final example is that of a two-mirror telescope, either Cassegrain or
Gregorian. For light incident on the primary according to our usual convention we
have n; =1, n, = —1. The Petzval curvature is then

1 1 2 (1-p
= ——— )= = 7.1
“ 2<R2 Rl) R, ( P ) (5.7.17)

where p = R, /R, . For a Gregorian p < 0 and ,, is opposite in sign to that of R;.
Thus the Petzval surface for a Gregorian is convex as seen from the secondary.
For a Cassegrain the Petzval surface is concave as seen from the secondary,
provided p < 1. Discussion of the curvatures of the other astigmatic surfaces of
two-mirror telescopes is left to Chapter 6.

5.8. ABERRATIONS FOR DECENTERED PUPIL

The aberration results given to this point are correct for an optical system in
which all of the elements, including the aperture stop and pupils, are centered. By
centered we mean there is a single axis, designated the z-axis, about which the
system can be rotated without change, where the z-axis passes through the center
of each element. If one or more of these elements is displaced laterally from the z-
axis or rotated about a line perpendicular to the z-axis, the system is no longer
rotationally symmetric and aberrations are introduced. The lateral displacement is
commonly referred to as a decenter and the rotation as a #ilt. Decenter and/or tilt
of, for example, the secondary mirror in a two-mirror telescope is one important
case of this loss of symmetry, and is discussed in Chapter 6.



104 5. Fermat’s Principle and Abberrations
5.8.a. GENERAL FORMULATION

In this section we find the aberration coefficients for a general surface with its
associated pupil where the center of the pupil is displaced from the z-axis of the
surface. A cross section of this situation is shown in Fig. 5.18 where the pupil is
displaced in the y-direction by L". The chief ray passes through the center of the
pupil and makes angle i with the z-axis, the axis of symmetry of the surface. In
the paraxial approximation we find the following relations from the geometry in
Fig. 5.18:

L=L—wy, 9=¢<1—¥>+-Ls—', (5.8.1)

where W is the distance from the surface to the entrance pupil, and the signs of
each distance and angle are set by the sign convention (see caption to Fig. 5.18).
The relations in Eq. (5.8.1) are a generalization of those in Eq. (5.5.2).

The procedure of finding the aberration coefficients is the same as that
followed in Section 5.5, except that Eq. (5.8.1) is used instead of Eq. (5.5.2)
when substituting into Eq. (5.5.1). The results of carrying out these substitutions
for coma and astigmatism are given in Table 5.8 for a general surface and Table
5.9 for a mirror surface. Distortion is not included because the change in it is too
small to be significant. The spherical aberration is independent of L', hence
By = B; (cen).

Examination of the entry for B, in Table 5.8 shows that the part of the coma
coefficient that results from the decentering is not dependent on the angle of the
chief ray. Hence the effect of the decentering is to introduce constant coma over
the entire image field, in addition to any angle-dependent coma that is present.
The effect of the decentering on B, is to introduce a constant term and a term that

b=
[ —
=
-
=§

A . L
P e S A

Q N

Fig. 5.18. Sketch of chief ray through center of stop displaced by L’ from the z-axis of the surface.
The relation between parameters is given in Eq. (5.8.1). In this diagram L and L’ > 0,4 and 6 > 0.
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Table 5.8

General Aberration Coefficients, Decentered Pupil®

B, =Bz(cen)+%[£(l—l) —%(n’ —n) ——b]

R\s R

2
B, = B,(cen) —% [%4—%(# - n)+b]
2or)| & (5-7) 7@ —m -]

re2(L_1
n's’  ns

¢ B;(cen) are entries in Table 5.5, with i =1, 2.

Table 5.9

Mirror Aberration Coefficients, Decentered Pupil®

nl’ m+1Y bR
B, :Bz(cen)—i-F[K - (m) _H]

B, = B|(cen) + nL’z( Fe 7

+2nL’(W1//)(i_K+1 bRZ)

K+1 b)

R \w R " 2n

2 B;(cen) are entries in Table 5.6, with i =1, 2.

depends linearly on the angle of the chief ray. Hence astigmatism is also present
over the entire image field.

The calculation of the system aberration coefficients is carried out following
the procedure in Section 5.6. In all cases of interest, it turns out that the effect of a
decentered stop is much greater on coma than on astigmatism, hence the image
surface curvatures are not significantly affected and the results of Table 5.7 can be
used with By, (cen).

5.8.b. EXAMPLE: SCHMIDT CAMERA

At this point it is instructive to give an example of a system with decentered
stop. The example discussed is that of a Schmidt camera in which the axis of the
corrector plate is displaced from the mirror axis, as shown in Fig. 5.19. The
aperture stop of the system is the corrector plate, with collimated light incident.
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S

Fig. 5.19. Schmidt camera with axis of corrector z, displaced from mirror axis z,, by L'.

Because W = 0 for the corrector, its aberration coefficients from Table 5.5 are
B, =0, B, =0, By = —b/8, (5.8.2)

where R = oo is the choice for the radius of curvature of the corrector. (For a
corrector profile that minimizes chromatic aberration, R is finite as shown in
Section 4.5. However, as we show in Chapter 7, the aberration coefficients are
dominated by the term in b.)
The parameters for the spherical mirror are W = R,m =0,b=0,and n = 1,
in which case B,(cen) and B,(cen) are zero. From Table 5.9 we then find
L? L 1

=Fv BZ =ﬁ, B3 =ZF (583)

B,
With the ray heights at the corrector and mirror equal, the system aberration
coefficients according to Eq. (5.6.7) are simply the sums of corresponding terms
in Egs. (5.8.2) and (5.8.3). Putting these sums into Eq. (5.6.6) and dividing by s’
to get the angular aberration gives

AN 3 /L
=—(= TC=—— (=), 5.8.4
AAS 2F(R)’ ATC 16F2(R> (5.8.4)

for the angular astigmatism and tangential coma, respectively. Spherical aberra-
tion is zero provided b = 2/R°.

The relation for ATC in Eq. (5.8.4) can be used to find the largest permissible
L’ for a given ATC. If we choose a blur limit of 1 arc-sec, then the reader can
verify that L'/R, expressed in arc-seconds, cannot exceed 16F?/3. The value of
AAS for this value of L'/R is about 1000 times smaller and thus is negligible.

It is also instructive to take this same system and tilt the mirror with respect
to the corrector, as shown in Fig. 5.20. From the geometry in Fig. 5.20 we see
that L’ = —aR and = § — o, where « is the tilt angle of the mirror and V is the
angle of the chief ray relative to the mirror axis. The fact that y depends on « is of
no consequence here because B,(cen) and B,(cen) for the mirror are zero,
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Fig. 5.20. Schmidt camera with axis of mirror, denoted by dashed line, tilted by angle a with
respect to the z-axis of the corrector.

independent of . Hence Eqs. (5.8.2) through (5.8.4) are the same for this system,
with o replacing L'/R.

It is not surprising that the systems in Figs. 5.19 and 5.20 have the same
aberrations because they are, in fact, equivalent. The tilt, in effect, has offset the
center of curvature of the mirror by a distance L’ from the center of the corrector
and, because the sphere has no preferred axis, the systems are the same. Note that
this equivalence between a tilt and decenter does not hold for any surface that has
a unique axis.

Before leaving this system, it is worth examining Fig. 5.20 from the point of
view of Fermat’s Principle. For 6§ = 0, rays through the upper half of the corrector
are advanced at the mirror while those through the bottom half are retarded.
Hence an asymmetry is introduced into the reflected wavefront and the dominant
aberration in the image is coma.

5.8.c. EXAMPLE: EBERT-FASTIE MIRROR

As a final example we consider a single concave mirror in combination with an
intermediate plane mirror, as shown in Fig. 5.21. The beam from a point object
located off the z-axis is converted to a collimated beam by one side of mirror M
and returned to the other side of M by the plane mirror. The final image, like the
original object, is approximately one focal length from the tangent plane to M.
This optical arrangement is a so-called Ebert-Fastie system and is best known in
a type of grating spectrometer of that name. In the spectrometer a diffraction
grating replaces the plane mirror. Here we examine the aberration characteristics
with a plane mirror only; the details of this system as a spectrometer are left for
Chapter 15.

The system shown in Fig. 5.21 has an entrance pupil decentered by L) at
distance W, from the concave mirror M. The plane mirror is located at the focal
point of M, a choice made to preserve the symmetry above and below the z-axis in
Fig. 5.21. For the incident beam m = m, = oc; for the final beam m = m, = 0.
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Fig. 21. Ebert-Fastie configuration with spherical mirror M. Entrance pupil is at distance W] from
M and decentered by L. See the discussion preceding Eq. (5.8.5).

We consider first a special case, that in which the chief ray through the center of
the entrance pupil is parallel to the z-axis, hence ; = 0.

The entrance pupil is imaged by M and the plane mirror according to Egs.
(2.3.2) and (2.3.3). Applying those equations we find the entrance pupil for the
second reflection from M located at distance L) above the z-axis and distance #,
from M, where

wi 1 2 1
Li=-Li|=), —===--, W,=R-—W,. 8.5

2 1 ( W, ) iR W 2 1 (5.8.5)
With the condition that §, = 0 and, from the geometry in Fig. 5.21, y, = 2L/ /R,
we now find the aberration coefficients using Table 5.9. With b = 0, and B, (cen)
and B,(cen) zero for the first reflection, we find for this first reflection that

L/2 L/
B, =R_‘3(1<+1), By, =R_;(1<—1) (5.8.6)

Taking the entries from Tables 5.9 and 5.6, substituting Egs. (5.8.5), and doing a
bit of algebra, we find B, = B|; and By, = —B,, for y; =0.

We now find the system coefficients using Eq. (5.6.7). Because the beam size
does not change between reflections, the system coefficients are simply the sum
of the surface coefficients. Therefore

_ 2L7
s R3
Although the separate reflections have coma, their signs are opposite and the net
coma is zero. This is not surprising, given the symmetry on opposite sides of the
z-axis. On the other hand, we see that astigmatism is present except when
K = —1 and the mirror is a paraboloid. Thus a paraboloid, used as shown in Fig.
5.21, if free of third-order spherical aberration, coma, and astigmatism. Any
optical system for which this is true is called an anastigmat.

B,

(K+1), By =0. (5.8.7)
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Given this freedom from aberrations for the case with ¥, = 0, we now
consider what happens for a paraboloid when y, # 0. The differences in this
case are that B (cen) and B,(cen) are not zero for the first reflection, and that the
angle of the chief ray for the second reflection is ¥, = 2L /R — (W\/W|),.
With this result for i,, and using Eqgs. (5.8.5), we find

By, = —h

= - &+ 1. (5.8.8)

Thus the system has zero coma if the mirror is a paraboloid. Given this outcome
we find the astigmatism only for K = —1. The result is

2 ’
2W 2L
1 1 1Y1
;8 (1 ) +—5— = =B, (5.8.9)

hence the system astigmatism is also zero. There is no third-order spherical
aberration, coma, or astigmatism over the field spanned by . Although a
paraboloid in this configuration is anastigmatic, there are higher-order aberrations
that set the limit on image quality. Ray traces also show that the image surface is
tilted and curved relative to the chief ray coming from the paraboloid.

It is worth noting here that a spherical mirror in this configuration used in a
monochrometer mode (Y, = 0) has both spherical aberration and astigmatism.
This is not a serious problem provided the beam focal ratio is not too small.
Further discussion of this mode is given in Chapter 15.

5.9. CONCLUDING REMARKS

All of the results needed to calculate the aberrations of a general centered
optical system to third order are now in place. By centered we mean there is a
single axis of symmetry passing through the vertices of all the optical surfaces. It
is well to remember that these results are not exact, but for most systems used in
optical astronomy they are sufficient. Exact image characteristics derived from
ray-tracing can, of course, be used to supplement the third-order results.

A comparison of the form of the coefficients in this chapter with those in, for
example, the book by Born and Wolf (1980), shows a significant difference in
notation. The results given in Chapter 5 of their classic text are derived in terms of
Seidel variables, while our results are given in terms of actual variables. Though
the two approaches give the same final system aberrations, the representation we
have chosen is more convenient to use in practice. A comparison of the Seidel
results with those in this chapter is given in Appendix A.
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With the availability of sophisticated computer ray-tracing programs, the
reader may question the necessity of a detailed development of these analytical
results. From the point of view of an optical designer starting from scratch to
choose a suitable system for a particular application, the analytical results are
preferred because one can usually determine rather quickly whether a given type
of system is appropriate. Once a basic arrangement of optical elements has been
selected, a computer can be used to optimize the system and check image
characteristics.

Getting the required aberration relations has been a lengthy process. It would
have been sufficient simply to present the final results without the derivations, but
for the reader who is venturing into this field for the first time it is useful to see
the source of the results. Discussions in subsequent chapters are directed toward
finding the characteristics of systems, with the results provided here available for
reference.

We also have the results needed to calculate the aberrations introduced when
one or more of the optical elements in a system is decentered. The general
treatment is complicated when more than one element is decentered, and we limit
our following discussion to those cases in which one element is decentered.

There is one more topic of aberration theory, which is covered in a later
chapter. In Chapter 14 we use Fermat’s Principle as a starting point to derive the
characteristics of diffraction grating surfaces. These results, when combined with
those given here, will allow us to discuss the characteristics of a variety of
spectrographic instruments.

APPENDIX A: COMPARISON WITH SEIDEL THEORY

Some of the key results derived using Seidel theory are shown in the following
table. Of the five Seidel coefficients for spherical aberration, coma, astigmatism,
field curvature, and distortion, we present results for all but field curvature. The
interested reader should consult Chapter 5 in the text by Born and Wolf (1980) for
all of the results, including derivations.

Selected results from Table 5.5 in this chapter are in the left-hand column, with
corresponding Seidel terms in the other columns. The quantities in square
brackets represent the terms in brackets in Table 5.5.

Use Egs. (5.5.9), (5.6.7), and (5.6.8) to calculate the transverse aberrations
using the entries from Table 5.5.

Multiply each TA’ by (s'/n’h) to get the transverse aberrations using the Seidel
approach.
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Aberration Coefficients

Table 5.5 Seidel Coefficient' TA'123
8, = — (@] B=1h[,] Bp?
8,="V (o, FLER@) R
==y cojmrg) 20k
="y E-lmues  -m

Vh = —y/p; Hy, = —W. For multisurface systems the
Seidel coefficients are computed for each surface and
summed to get a single coefficient.

2TA’ is the transverse aberration in Seidel coordinates.
3 p is the height of the marginal ray at the pupil; y is the
height of the marginal ray at the surface.
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Chapter 6 Reflecting Telescopes

Reflecting telescopes and their associated instrumentation are the principal
tools of the observational astronomer. In this chapter we consider the character-
istics of the reflecting telescope in many of its various forms. Although refracting
telescopes are still in use, they are relatively few in number and do not compete in
light gathering power with the large reflectors. We choose to consider reflecting
telescopes only.

In the discussions to follow we consider the various kinds of reflectors, their
inherent aberrations for a distant object field, and their advantages and limitations.
Because of the aberrations there are definite field limitations, which are noted for
each type. The aberration calculations are based on the results of Chapter 5, with
the results of the calculations presented in terms of angular measure as seen on
the sky (or object field). These measures are given in both analytical and
numerical form, with the latter given in units of arc-seconds. Although close
attention is given to the sign convention in deriving the aberration formulas, the
final angular results are given without regard for sign. The one exception to this is
the field curvature for which the sign is essential.

In addition to giving the aberration characteristics of aligned two-mirror
telescopes, we discuss the effect of misalignment between their mirrors. The
trend in many of the recently designed large telescopes is to make them as short
as possible, hence a “fast” primary mirror. Aberrations introduced by misalign-
ments in such telescopes can be quite significant and much effort is devoted to
keeping these aberrations within acceptable limits on a near realtime basis.

112
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Descriptions of many of the types discussed here appear in the literature with
references given at the end of the chapter. An especially complete treatment is
given by Wilson (1996). In our discussion we cover a large number of telescope
types with a common notation to facilitate comparison between them. In this
chapter and succeeding ones our discussion assumes the reader has digested the
main themes in the preceding chapters. If this is not the case, then, at a minimum,
Section 2.5, Chapter 4, and Sections 5.4, 5.6, and 5.7 should be reviewed. Only
pure mirror systems are considered in this chapter, including discussions of three-
and four-mirror telescopes. Schmidt telescopes and systems with refracting
corrector systems are the subjects of Chapters 7-9.

6.1. PARABOLOID

The single-mirror paraboloid is the simplest telescope that is free from
spherical aberration, a result noted in Chapter 5. A paraboloid is almost always
used with the aperture stop at the mirror and thus the aberrations and field
curvatures can be taken directly from Tables 5.4 and 5.7. Results are given in
Table 6.1, where y is the height of a marginal ray at the mirror and the telescope
focal ratio F' = |R/4y|.

From the transverse aberrations given in Table 6.1 we find a coma flare
directed away from the center of the field (TSC > 0), and a tangential astigmatic
image lying closer to the mirror than the sagittal line image (TAS < 0). For the
angular aberrations, we divide each of the transverse aberrations by s and drop
any leading minus signs to get the results shown in Table 6.1. We choose this
approach for the angular aberrations because it is usually their absolute size that
is of primary concern.

Results for angular aberrations from Table 6.1 are shown in Fig. 6.1 for three
focal ratios. The principal item to notice in Fig. 6.1 is the dominance of coma for

Table 6.1

Aberrations of Parboloid Telescope

y2 ’ 2y2/

TSC:—EBS TAS:—EBS

_y2 _ 0 Y 2_92

ASC-—FG_—MF2 AAS—-R9 =5
_re

2
KPIE K, = —

2
m E U 2
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Angular aberration (arc-sec)

8 (arc-min)

Fig. 6.1. Angular aberrations of paraboloid in collimated light at selected focal ratios. Solid lines:
sagittal coma; dashed curves: astigmatism. Number on each curve is focal ratio. See Table 6.1.

small field angles, which sets the limit to the radius of the field over which the
image quality can be considered “good.” By “good” we mean an angular blur
size that is less than or equal to the blur given an otherwise perfect image by
atmospheric distortion. In our discussions we take the typical blur due to
atmospheric effects as 1 arc-sec.

A typical comatic image is shown in Fig. 5.9. Setting the total span of this
image equal to the atmospheric blur, we can use Fig. 6.1 and the relation between
tangential and sagittal coma to determine the limiting field radius for “good”
images. The results are given in Table 6.2 for a blur of 1 arc-sec, from which
it is clear that the paraboloid is limited to small fields, especially for small focal
ratios.

Table 6.2

Limiting Field Radius for
Good”® Images: Paraboloid

Telescope
F 0 (arc-min)
1.42
8 5.69
10 8.89

“Good defined as tangential
coma that measures 1 arc-sec.
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With coma as the aberration that limits the size of the field, the placement of
the aperture stop at any other position does not improve the image quality. Coma
is independent of stop position when spherical aberration is zero, as noted in
Section 5.5, and reducing astigmatism has little effect on the overall blur size.

The remaining items in Table 6.1 are related to field curvature. Here Kps Kpps
and u,, are, respectively, the Petzval curvature, median curvature, and sag of the
median surface midway between the tangential and sagittal focal surfaces. Given
the limiting field radii in Table 6.2, the reader can verify that for any practical
focal length f the median image surface is essentially flat.

In summary, then, the paraboloid telescope is limited to small fields with coma
setting the field limit. All other aberrations are negligible over this field.

6.2. TWO-MIRROR TELESCOPES

We introduced the topic of two-mirror telescopes in Chapter 2 with schematic
diagrams of two types, Cassegrain and Gregorian, in Fig. 2.7, as well as a set of
definitions of normalized parameters with which to describe any two-mirror
telescope. Selected items from Section 2.5 and Table 2.1 are summarized in Table
6.3 for convenient reference.

It is instructive to study the relations between the normalized parameters in
Table 6.3 because they define the bounds on the parameters for each of the
possible telescope types. For all types we require that the final image is real.

If the primary is concave, hence f; positive, the requirement of a real final
image means mk > 0. If m and k are positive the telescope type is Cassegrain; if

Table 6.3

Normalized Parameters for Two-Mirror Telescopes

k = y, /y| = ratio of ray heights at mirror margins

p = R, /R, = ratio of mirror radii of curvature

m = —sb /s, = f/f, =transverse magnification of secondary

Jf1B = Dn = back focal distance, or distance from vertex of primary mirror to final focal point

f and 7, back focal distance in units of /| and D, respectively

F| = | f1|/D = primary mirror focal ratio

W = (1 — k) f, = distance from secondary to primary mirror = location of telescope entrance pupil
relative to the secondary when the primary mirror is the aperture stop

mkf; = distance from secondary to focal surface

F = | f|/D = system focal ratio, where f is telescope focal length

p mk 1+ 8
= ="M p=_TF
" p—k P m—1 m+1
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their signs are negative the telescope type is Gregorian. In both cases |k| < 1 to
ensure that some light reaches the primary.

If the primary is convex, hence f; negative, then a real final image requires that
mk is negative. In this case the secondary must be larger than the primary, hence
k > 1, and m is negative. This type of telescope, with its concave secondary, is
the so-called inverse Cassegrain.

The different combinations of m, k, and p are summarized in Table 6.4. It is
worth noting here that among the Cassegrains with concave secondary and the
inverse Cassegrains are the so-called Couder and Schwarzschild designs that will
be discussed later in this chapter. The Cassegrain with flat secondary is not
included in the analysis and discussion to follow.

We now proceed to find the aberration relations for two-mirror telescopes
using Egs. (5.6.11) and the aberration coefficients of the primary and secondary
in Egs. (5.6.9) and (5.6.10). Before writing the system aberration coefficients, W
is written in terms of the normalized parameters: W /R, = (k — 1)/2p, and
W /s, = (k — 1)/k. With these substitutions, and after straightforward but tedious
algebra, the two-mirror aberration coefficients given in Table 6.5 are found. Note
that these coefficients apply to any pair of conic mirrors, including pairs for
which the spherical aberration is not zero. It is worth noting that B, is the only
aberration coefficient affected by the conic constant of the primary mirror. An
error in K, such as for the Hubble Space Telescope, has no effect on the off-axis
aberrations.

We can also use the condition for zero spherical aberration and rewrite the
aberration coefficients in terms of K. Setting B;, in Table 6.5 equal to zero we
find, after more algebra, the results given in Table 6.6. These results are based on
a choice of locating the aperture stop at the primary mirror. When spherical
aberration is zero, coma is independent of the stop location; when both SA and
coma are zero, astigmatism is independent of the stop position. We will comment
further on these conditions when discussing specific types of telescopes.

Table 6.4

Parameter Combinations for Two-Mirror Telescopes®

m k p Type Secondary
>1 >0 >0 Cassegrain convex
=1 >0 00 Cassegrain flat

Otol >0 <0 Cassegrain concave
<0 <0 <0 Gregorian concave
<0 >1 >0 Inverse Cassegrain concave

TBorm=1,k=(l+p)2
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Table 6.5

General Aberration Coefficients for Two-Mirror Telescopes

1 (m—1P(1+p m+1\\| 1
Bﬁs“m[’““‘ wlm+ 1) (K”(m—l))}“i?ﬁ[—}

0 m—17m-p) m+1\"\|_ 6
st_mzRfl:1+ 2m(m + 1) (K2+(m—1) )]_Z}_f[_:l

_ @ (m —1)(m~ B) (m = 1)*(m— p) P
B'S_m_lil[l+ D) N\ T ami+ B &+ D T

_Pm—pm* —1)
& g3+ B

m—1\? 5
-+ p)om+ )+ (27 0= B

The choice of parameters used in Tables 6.5 and 6.6 is arbitrary and different
combinations may be more convenient, depending on the application. The
advantage of expressing the system coefficients in terms of m and f is that
certain important conclusions are more easily deduced.

Getting from the system coefficients in Tables 6.5 and 6.6 to the transverse
aberrations requires substituting each B; in turn into Eq. (5.6.8) where, as noted
in Section 5.6, s5/n, = kf and y,/y, = 1/k. Take care to note that Eq. (5.6.8)
gives tangential coma; our results are given for sagittal coma. To get the angular
aberration as an angle projected on the sky, the transverse aberration is divided by
f and any leading minus signs are dropped. Angular aberrations are given in
Table 6.7, with quantities in brackets taken from Table 6.5 or 6.6.

Table 6.6

Aberration Coefficients for Two-Mirror Telescopes with By, = 0°

_ 0 m*(m — B) _ 0
Bz:‘m—zie?[‘*m“‘l“)]‘w[“]

| m B mm—pY ¢
B“_m_Rl[m(Hﬁ)_4(1+ﬁ)2(K‘+1) N

_Pm—pm* -1 m(m — By’
b= gy " T s pee &Y

“In terms of m and B, spherical aberration is zero according to
the relation

_(m=-1D)’0+p m+ 1\
K=o DOED (o (221))
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Table 6.7

Angular Aberrations of Two-Mirror Telescopes®
1(y 3 1
Al = = — - = 1 —
s=i(2) [-]-aml -]
TS 8 1
ASC_Z(?) =1~ —EATC
2
pTE2NY I U -
AAs_ez(f)[ ]‘21«"[ ] ADI = By,

“Terms in square brackets are taken from Table 6.5
or 6.6.

Before discussing the characteristics of specific telescope types we give the
general relations for the image surface curvatures based on the results in Section
5.7. As noted following Eq. (5.7.13), the coefficient B,, and the angle 6 are
referenced to the last surface in the system, hence the secondary mirror. The
relation between this 6 and the field angle @ is derived by noting that the focal
surface to secondary distance is & times smaller than f. Hence a point on the
image surface, which subtends angle 8 on the sky, subtends angle 8/ at the
secondary.

The coefficient B, referenced to the secondary is calculated using the relation
in Table 5.7. The relation between this result, denoted B (sec), and that given in
Table 6.5 or 6.6, denoted B, (pri), is k*B,,(sec) = B,,(pri). Therefore

B,(sec)/0” = B,,(pri)/0°,
3[m(m—ﬂ> —(m+ 1)]

" TR m(1 + B)
2 [m=2)m— P +mm+1) mim—p)
'"'m_Rl[ m(1 + f) C 231+ ) (K‘H)]'
(6.2.1)

With all of the necessary relations now in hand, we turn our attention to a
discussion of the characteristics of specific two-mirror telescopes. The categories
considered in greatest detail are the so-called classical telescopes, those for which
the primary mirror is a paraboloid, and the aplanatic telescopes, those with zero
coma. We also discuss less widely used types, such as the Dall-Kirkham with its
spherical secondary, a two-mirror version with spherical primary mirror, and
several variants of the aplanat.
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6.2.a. CLASSICAL TYPE

This category of two-mirror telescopes is one for which K; = —1. The
condition for zero spherical aberration then requires that the conic constant of
the secondary is

2

K, = —(’”—“L—l) . (6.2.2)
m—1

For the Cassegrain, m > 0 and the secondary is a hyperboloid; for the Gregorian

and inverse Cassegrain, m < 0 and the secondary is a prolate ellipsoid.

With the substitution of K; = —1 in Eq. (6.2.1) and the formulas in Tables 6.6
and 6.7, the aberration expressions are much simplified. For convenient reference,
these relations are given in Table 6.8.

The first thing to note about the relations in Table 6.8 is that the coma is
exactly the same as that of a paraboloid of the same focal ratio, as given in Table
6.1. Note also that this is true for either a Cassegrain or Gregorian, hence neither
type has an advantage with respect to this aberration.

To evaluate the astigmatism, we note that f is typically a small positive
number of the order of a few tenths, while |m]| is typically ten or more times
larger. A good measure of the astigmatism is thus obtained by setting f = 0, with
the result that AAS = m6?/2F. A comparison of this result with AAS in Table
6.1 shows that a classical telescope whose focus is at the primary mirror vertex
has astigmatism |m| times larger than that of a paraboloid of the same F. As in the
case of coma, there is no discriminant due to astigmatism between Cassegrain and
Gregorian types.

The astigmatism for f = 0 can also be written as AAS = 6?/2F 1- Thus the
astigmatism in this case depends only on the focal ratio of the primary mirror. A
comparison of the tangential coma blur size with the astigmatic blur diameter

Table 6.8

Aberrations of Classical Two-Mirror Telescopes

ASC = 0
167
O [m+B
oF [m(l +ﬂ)]
app < 07 = B — D(m +3p)

4m2(1 + )
. = 2 [(m2 —2D(m— P+ mim+ 1)]
"R m*(1+ B)
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shows that coma is almost always the aberration that sets the limiting field size for
good images, as the reader can verify by constructing a diagram similar to that of
Fig. 6.1. Spot diagrams for an /10 Cassegrain with m =4 and = 0.25 are
shown in Fig. 6.2. The images for a classical Gregorian are very similar.

Looking at the curvature of the median image surface in the case ff = 0, we
see that it is approximately 2(m + 1)/R;. This relation is not exact, but it
illustrates three features of the image surface. First, the sign of k,, is opposite
for the Cassegrain and Gregorian types; the surface of best images for the
Cassegrain (Gregorian) is concave (convex) as seen from the secondary. Second,
the curvature is larger for the Cassegrain than for the Gregorian. And, third, the
median image surface is more strongly curved for larger |m|. This, however, is
rarely a limitation because the field covered is usually smaller in angle when m is
larger.

In summary, the classical two-mirror telescope is limited to small fields with
coma setting the field limit for good images. Compared to the paraboloid the
astigmatism is larger, but for small fields this is rarely a limiting factor. With
coma as the dominant aberration, and independent of the stop location when
spherical aberration is zero, the location of the aperture stop could be changed, if
necessary, without significantly changing the character of the images. Thus it is
acceptable to locate the aperture stop at the secondary mirror, as is often done in
infrared telescopes.
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Fig. 6.2. Spot diagrams for 1.2-m f/10 classical Cassegrain with m = 4 and f§ = 0.25. Box width
is 2 arc-sec.
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Because of the small field size, distortion is typically a few thousandths of an
arc-second and thus much smaller than the atmospheric blur. Compared to the
asymmetry of a comatic image, as seen in Fig. 6.2, distortion is not important,
The only differences between the Cassegrain and Gregorian of the classical type
are the sign and magnitude of the image surface curvature but, given the relatively
small usable fields, these differences are usually of little consequence.

6.2.b. APLANATIC TYPE

The classical telescope is clearly limited in field coverage by the presence of
coma in the off-axis images. In this section we consider the category of telescopes
for which, to third order, coma is zero. As noted in Section 5.4, any optical
system in which both spherical aberration and coma are absent is called an
aplanat. In recent years the aplanatic Cassegrain telescope, or Ritchey-Chretien
as it is commonly called, has been the overwhelming choice of builders of large
telescopes of 2-m aperture or larger, including the 2.4-m Hubble Space Tele-
scope. Thus this class of telescope has been carefully studied and merits our close
attention. An extensive article by Wetherell and Rimmer (1972) is an additional
source of information on aplanatic telescopes, as is the text by Wilson (1996).

It should not be surprising that both spherical aberration and coma can be
eliminated in a system with two conic mirrors. A glance at the condition for zero
spherical aberration in Table 6.6 shows that there are two free parameters, the
conic constants of the mirrors. One conic constant is chosen to make B,, in Table
6.6 zero, after which the condition for zero spherical aberration sets the other.
Thus we find that the conditions for an aplanatic telescope are

B 20+ P)
Ky=-1- w2 — )’ (6.2.3)
_ (m+1 2_ 2m(m + 1)
K, = (m — 1) BT (6.2.4)

For the Ritchey-Chretien (RC) the primary is now a hyperboloid, as is the
secondary. The conic constant for the secondary of the RC is more negative than
for the classical Cassegrain. For the aplanatic Gregorian (AG) the primary is now
an ellipsoid. The conic constant for the secondary of the AG is more negative
than that of the classical Gregorian, provided |m| > 1, but the conic is still
ellipsoidal.

In each case the two mirrors have been “bent” in the same direction in the
manner shown in Fig. 4.10. However, the direction of deformation for the mirrors
of the RC is opposite that for the AG, as the reader can easily verify.
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Table 6.9

Aberrations of Aplanatic Two-Mirror Telescopes

AAS = E | om 1 B

_ 93(’" - B) 2 2
= 4-4'"2(1 s [m(m* —2) + 3m* - 2)]

" _i[_(’ff_‘)_
" =R L2 + B)

6 [m(2m + 1D+ /3]

(m* — Bm — 1))]

Substitution of Eq. (6.2.3) into Eq. (6.2.1) and the coefficients in Table 6.6
gives the aberrations for the aplanatic telescopes, with the results given in Table
6.9.

As with the classical telescopes, we choose = 0 to determine the approx-
imate magnitudes of the aberrations. The results are

AAS—G—Z( +l ADI—9—3( 2_2) K —3( +1). (6.2.5)
=sF\m*3) =g m , ,,,_le . (6.2
Compared to the classical type at the same focal ratio, the astigmatism for the RC
is larger while that of the AG is smaller. At a given R,, the curvature of the
median image surface is larger for the RC than for the AG, with the curvatures
again of opposite sign. A comparison of k,, with k,, in Eq. (6.2.1) shows a median
surface more strongly curved than the Petzval surface for the RC, but less
strongly curved for the AG.

The distortion is the same for both types of aplanatic telescope, and is slightly
less than for a classical type with f = 0. At the edge of the usable field of an
aplanatic telescope the distortion is usually a few hundredths of an arc-second,
and may need to be taken into account in certain types of observations.

Spot diagrams for an /10 RC telescope with m = 4 and f = 0.25 are shown
in Fig. 6.3. Note that the field size shown in Fig. 6.3 is twice that of the classical
Cassegrain in Fig. 6.2 and that at the edges of their respective fields the image
quality of the RC is significantly better. Note also that the image blur due to
astigmatism is symmetric and therefore the centers of the images can be located
more accurately. Because both coma and spherical aberration are zero, the
location of the stop does not affect the astigmatism.

In summary, the aplanatic two-mirror telescope has a field limit for good
images set by astigmatism. Given the symmetric images and significantly larger
field of the RC compared to the classical Cassegrain, it is not surprising that the
RC has become the telescope of choice in Cassegrain telescopes. Further
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Fig. 6.3. Spot diagrams for 1.2-m f/10 Ritchey-Chretien telescope with m = 4 and f = 0.25.
Box width is 2 arc-sec. Off-axis field angles are two times larger than in Fig. 6.2.

comparison of aplanatic and classical telescopes follows a brief discussion of
other selected two-mirror telescope types.

6.2.c. OTHER TWO-MIRROR TELESCOPES

In addition to the classical and aplanatic two-mirror telescopes, there are other
less common types that deserve comment. Because each of these types has one or
more serious drawbacks, our discussion of each is brief. In this section we
consider in turn the Dall-Kirkham, two-mirror with spherical primary, two kinds
of anastigmatic telescopes, and a flat-field aplanat.

The Dall-Kirkham telescope is one in which the secondary is spherical
(K, = 0) and the primary is ellipsoidal, with the appropriate value of K; found
from the relation for zero spherical aberration in Table 6.6. It is straightforward to
find the coma coefficient by setting K, = 0 in B, of Table 6.5 and, for similar
normalized parameters, compare its value with that of a classical Cassegrain. For
B = 0 the Dall-Kirkham has coma that is (m? + 1)/2 times larger than that of the
classical Cassegrain, hence the field of good images for the Dall-Kirkham is
smaller by this same factor. All other aberrations are negligible over this field.

Although the Dall-Kirkham is severely limited in its field coverage, the mirrors
are relatively easy to build and test, as discussed in Section 18.1, and several
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telescopes of this type have been built. One other advantage of the Dall-Kirkham
is that its on-axis image quality is relatively insensitive to misalignments between
the mirrors, as compared to the classical and aplanatic types.

Another type of two-mirror telescope that has some attractive features is one
with a spherical primary mirror (SP). The main advantages of the SP design are
ease of fabrication and testing of large spherical mirrors, and the possibility of
making very large segmented primaries by using a number of smaller spherical
mirrors. Designs for SPs with primaries as large as 25 m in diameter have been
proposed. Zero spherical aberration with an SP design requires a convex oblate
ellipsoidal secondary (K > 0) in the Cassegrain version and a concave hyperbo-
loid (K < —1) in the Gregorian version, as the reader can verify.

The drawbacks of SP designs are the large off-axis aberrations. This is easily
verified by setting K; = 0 in the coefficients in Table 6.6 and comparing the
results with those found for a classical type with K; = —1. For § = 0 these ratios,
SP to classical, are (m*+2)/2 for coma and (m* +4)/4 for astigmatism.
Choosing m = 4 we find a coma ratio of 33 and an astigmatism ratio of 5.
Relative to a classical Cassegrain the off-axis aberrations are indeed very large.
The situation for off-axis aberrations is only slightly better for an SP Gregorian.

Given these characteristics, SP types are limited to very small fields or
additional optical elements must be added to achieve a reasonable field size. If,
for example, additional mirrors were added in the vicinity of the secondary, then
the aberrations of the overall system could presumably be reduced to acceptable
levels. But in this case it is no longer a two-mirror telescope.

The remaining two-mirror telescopes considered are variations of the aplanatic
type, specifically those for which another aberration is corrected. Because the
conic constants of the mirrors in an aplanat are chosen to give zero spherical
aberration and coma, elimination of another aberration will put restrictions on the
remaining normalized parameters. The available choices are easily found by
setting each expression in Table 6.9 equal to zero in turn, with a specific
combination of m and § now required. This combination, in turn, places
restrictions on the remaining parameters.

The zero-distortion type is of little practical importance because distortion is
quite small in two-mirror telescopes with small fields of view, and we will not
discuss this type. The remaining choices are the zero-astigmatism type, or
anastigmatic aplanat, and the flat-field aplanat.

For the anastigmatic aplanat the pertinent relations between the parameters are

B =-m@2m+1), k=1-2m, mk = m(1 — 2m). (6.2.6)

The condition for a real final focus requires magnification in the range
0 < m < 0.5 when the primary is concave. For any m in this range, the secondary
is also concave and the focal surface is located between the mirrors. This type of
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telescope, the so-called Couder, therefore suffers from the problem that the focal
surface is relatively inaccessible. For a reasonable choice of m, say 0.25, it also
has a relatively large secondary obscuration compared to the Ritchey-Chretien.
One final thing to note is that the telescope focal length, in general, is one-half the
distance between the primary and secondary mirrors. A diagram of a Couder
design is shown in Fig. 6.4.

Another type of anastigmatic aplanat is found if the primary is convex and
k > 1. From Eq. (6.2.6) we find m < 0, hence there is a real final focus and the
configuration is that of an inverse Cassegrain. For m in the range —0.5 < m < 0,
the focal surface lies between the mirrors because f§ > 0. (Recall that ff; is the
back focal distance, as defined in Section 2.5, with the focus outside of the space
between the mirrors when ff; > 0. For an inverse Cassegrain, f; < 0 and the
focus is outside of the mirrors when § < 0.) A sketch of this configuration with
B > 0 shows that a blocking plate must be centered in the incident beam to
prevent the focal surface from seeing the incident light directly. This configura-
tion also has the problem that a significant fraction of the incident light is
reflected back through the hole in the secondary.

For m < —1 some of the light reflected from the secondary passes outside the
boundary of the primary, and if m is sufficiently negative a significant fraction
reaches the focus. A feasible configuration of this type is one in which each
mirror is a sphere. Substituting § = —m(2m + 1) into Eqgs. (6.2.3) and (6.2.4),
and setting K; = K, = 0, gives m = —(1 + ./5)/2. The resulting configuration is
the concentric Schwarzschild anastigmat, with the mirrors and curved focal
surface having the same center, as shown in Fig. 6.5. The reader can verify that
the fraction of light vignetted by the primary is 0.2 for this telescope.

Because the secondary mirror is larger than the primary, and because of
problems with vignetting and unwanted light reaching the focal surface, this
configuration is not really practicable for a telescope. However, it has been used
as the basis for cameras in spectrographs.

(1-k) f,

— '1— mkf|

Fig. 6.4. Couder anastigmat with m = 0.25 and k = 0.5.
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Fig. 6.5. Schwarzschild concentric anastigmat with C the center of curvature of surfaces.
Parameters are m = —(1 + /5)/2 and k =2 + /5.

The flat-field aplanat is defined by k,, = 0, with the relations for selected
parameters given by

m? m(m* +m — 1)

mk=——5——<

6.2.7
m—1’ m2 —1 (6.2.7)

p=

An analysis of these relations leads to two possible types: Cassegrain with
concave secondary and focus between the mirrors, and inverse Cassegrain. Each
of these types suffers from the same problems of image inaccessibility and
relatively large vignetting as the corresponding anastigmat.

And, finally, it is worth noting that a solution for a flat-field anastigmat can be
found by equating the relations for f in Egs. (6.2.6) and (6.2.7) and solving for m.
The result of this exercise is m = £1/,/2. It is left for the reader to show that
only the negative solution gives a configuration with a real final image. In this
case the primary mirror is again convex with the secondary (1 + ,/2) times larger
in diameter than the primary, hence not practical as a telescope.

For more details on all of these variations of the aplanat, the reader should
consult the article by Wetherell and Rimmer (1972). A thorough discussion of all
the telescopes covered in this section is also given by Wilson (1996).

6.2.d. COMPARISON OF CLASSICAL AND APLANATIC TYPES

From the discussion in the preceding sections it should be clear that a two-
mirror classical or aplanatic telescope can be most easily tailored to meet the
varied observing demands of astronomers. There is great flexibility in these
designs to provide the required magnification and image surface accessibility
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with generally acceptable vignetting of the incoming beam by the secondary
mirror. Some of the shortcomings of these telescopes can be overcome with
additional optical elements. Examples include flattening a curved focal surface or
increasing the usable field size. These topics are discussed in Chapter 9.

It is therefore appropriate at this stage to take a specific set of parameters and
show all of the characteristics of each type of classical and aplanatic telescope.
The parameters chosen are characteristic of those for a typical two-mirror
telescope with = 0.25 selected to give an accessible focal surface. Each
telescope has the same primary mirror and overall focal ratio. A listing of
these parameters, including the conic constants, is given in Table 6.10.

The important characteristics of each telescope type, using the parameters in
Table 6.10, are given in Table 6.11. In addition to the angular aberrations, entries
are included that provide a normalized measure of the size of each telescope

type.

Table 6.10

Parameter for Two-Mirror Telescopes®

Parameter CC CG RC AG
K, —1.000 —1.000 —1.0417 —0.9632
K, —2.778 —0.360 —3.1728 —0.4052

“CC, Classical Cassegrain; CG, Classical Gregorian; RC,
Ritchey-Chretien; AG, Aplanatic Gregorian; F| = 2.5, |F| = 10,
B=0.25, |ml =4.

Table 6.11

Characteristics of Two-Mirror Telescopes™®

Parameter CC CG RC AG
m 4.00 —4.00 4.00 —4.00
k 0.25 —-0.417 0.25 —-0.417
1—k 0.75 1.417 0.75 1.417
mk 1.000 1.667 1.000 1.667
ATC 2.03 2.03 0.00 0.00
AAS 0.92 0.92 1.03 0.80
ADI 0.079 0.061 0.075 0.056
KnR) 7.25 -4.75 7.625 —5.175
KR, 4.00 —8.00 4.00 —8.00

“ Parameters are those of telescopes in Table 6.10. Aberra-
tions are given at a field angle of 18 arc-min in units of arc-
seconds.

b Coma is given in terms of tangential coma.
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From the results in Table 6.11 we can deduce the approximate field angle at
which the dominant angular aberration is equal to the diameter of a star image
blurred by atmospheric effects or “seeing.” If the blur diameter is 1 arc-sec, the
field angle at which the aberration blur equals the “seeing” blur is about 9 arc-
min for the classical telescopes dominated by coma, about 18 arc-min for the RC,
and about 20 arc-min for the AG. Thus the field diameter is roughly a factor
of two larger for the aplanatic type of telescope and the field area is 4 times
larger.

From the astigmatic surface curvatures in Table 6.11 we find that, in absolute
value, the median surfaces have greater curvature and the Petzval surfaces have
smaller curvature for the Cassegrain types, as compared with the Gregorian types.
The median surface curvature is also somewhat larger for the aplanatic type
compared to its classical counterpart. Because R, < 0, the astigmatic surfaces as
seen from the secondary are concave and convex for the Cassegrain and
Gregorian types, respectively.

If aberrations were the only discriminant of the four telescope types in Table
6.11, the aplanatic Gregorian would emerge as the preferred choice. Other
factors, however, strongly favor the RC and it is this type that has been the
overwhelming choice for new large telescopes over the past three decades. The
reasons for this choice are to be found in rows 2—4, Table 6.11.

Recall that k is the ratio of the secondary-to-primary diameter for an on-axis
light bundle, and thus k2 is the minimum fractional area of the primary obscured
by the secondary. The parameter (1 — k) is the separation of the primary and
secondary in units of f;, while mk is the distance from the secondary to the final
focal surface in the same units.

Obstruction of the light by the secondary in the Gregorian is clearly larger than
in the Cassegrain, hence the latter has the edge. Comparing values of (1 — k) for
the Cassegrain and Gregorian types we find that the primary-secondary separation
is almost 1.9 times larger for the Gregorian. We also find that the distance from
the secondary to the focal surface is nearly 70% larger for the Gregorian. Thus for
a given focal length and primary and final focal ratio, the physical length of the
Gregorian is substantially greater.

This greater length has two very significant impacts on the choice of a
telescope and the cost of an observatory facility. First, the cost of a building
and dome needed to house the telescope is significantly greater for a larger
telescope. For a large telescope the building costs are usually comparable to the
cost of the telescope. Second, the cost of the Gregorian telescope itself is greater
because the framework supporting the mirrors is longer and more massive. This
framework must keep the mirrors in proper alignment if the image quality is to be
held to the values given in Table 6.11. In Section 6.3 to follow we consider the
effects of misalignment of the primary and secondary and show that significant
aberrations can be introduced if the mirrors are not properly aligned.
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The one feature of the Gregorian that might be important for certain types of
observations 1s its real exit pupil. A physical stop located here will act to suppress
stray light scattered from the support structure of the telescope. Unless this
specific feature of the Gregorian is an essential one, the smaller and less
expensive RC is preferred.

Given the preference for a Cassegrain telescope over a Gregorian, it is also
instructive to compare the characteristics of Cassegrain telescopes with the same
diameters, focal lengths, and back focal distances. We choose to make this
comparison for RC telescopes, with the results shown in Table 6.12. Note
especially the shorter overall telescope length, and thus the expected ease of
mirror alignment when the primary mirror is “faster.” We also see that the
astigmatism is somewhat larger for the faster primary mirror. In spite of the larger
astigmatism at the same field angle, the advantages of a shorter telescope are
substantial.

The choice between the Ritchey-Chretien and classical Cassegrain is not as
clearcut as that between Cassegrain and Gregorian. For most large telescopes
intended for stellar observations, the Ritchey-Chretien has been the favored type,
although the classical Cassegrain was the choice for the Keck 10-m telescopes.
The discussion in the following section indicates one possible reason for
choosing the classical configuration.

6.2.e. HYBRID TYPES

To take advantage of the design flexibility of Cassegrain telescopes, many
are provided with interchangeable secondaries with each primary-secondary

Table 6.12

Comparison of f/10 Ritchey-Chretien Telescopes

Parameter Ref¢ RC, RC, RC,
m 4.00 6.00 7.00 8.00
F, 2.50 1.67 1.43 125
Si/f(xeh) 1.00 0.667 0.571 0.500
B 0.25 0.375 0.438 0.500
k 0.25 0.196 0.180 0.167
mhf, /f; (ref) 1.000 0.786 0.719 0.667
AAS? 1.03 135 1.49 1.62
KR, 7.63 9.65 10.53 11.34

“Parameters of reference RC telescope in Tables 6.10 and
6.11.

b Astigmatism is given at a field angle of 18 arc-min in units
of arc-seconds.
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combination giving a different telescope focal length and focal ratio. With a
secondary other than the one designed for the Cassegrain focus, the telescope
focus is usually located at a different physical position. For a telescope in an
equatorial mount plane mirrors redirect the light, with the final beam directed
along the polar axis of the telescope to the so-called Coude focus. For a telescope
in an altitude-azimuth (alt-az) mount a plane mirror directs the light along the
altitude axis to the so-called Nasmyth focus. In both cases m and f§ are usually
larger than at the Cassegrain focus.

For a classical telescope the conic constant of the secondary is given by Eq.
(6.2.2) for each m selected, and the telescope is still of the classical type. The
relations in Table 6.8 apply, with the normalized parameters for the Cassegrain
replaced by the new values.

A Ritchey-Chretien primary in combination with a different secondary, on the
other hand, is no longer aplanatic and the results in Table 6.9 do not apply. This
type of telescope is not a Ritchey-Chretien and we choose to call it a hybrid
telescope. The aberration coefficients given in Table 6.6 apply to hybrid
telescopes, provided K, for the original RC primary is used. Denoting the
parameters for the RC as m, and fi.,, the conic constant of the primary is,
according to Eq. (6.2.3), given by

K =-1- 20 +5) (6.2.8)

m%(mc - Bc) ’

The conic constant of the secondary is set by the condition that the spherical
aberration of the hybrid telescope is zero. Substituting K, from Eq. (6.2.8) into
the zero spherical aberration relation in Table 6.6 gives

2
K, = _(m + 1) 2mim+1) (1+8,) 62.9)

m—1)  (m— 1’1+ pymi(m,—B.)’

where m and f are parameters for the hybrid. Substituting K, from Eq. (6.2.8)
into the coma and astigmatism coefficients in Table 6.6 gives

0 m\:(m—B\({1+8.
P [‘ -() (59) G- ﬂ)]' o210

O Mg om (m—B\ 1+,
B‘*‘“?[muw)*ﬁz(wﬁ) ()| 2w

where f is the focal length of the hybrid telescope.
It is evident from Eqs. (6.2.10) and (6.2.11) that the aberrations are different
from those of the aplanatic telescope and that coma is not zero. A good measure
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of the amounts of coma and astigmatism present is found by setting both § and f5,
to zero, with the results

asc= - (mY ans =2 L(my’ 6.2.12
For typical values of m/m,, three or more, the coma of the hybrid telescope is
much larger than that of the classical type of the same focal ratio and, although
the astigmatism is also larger, the size of the usable field is set by coma.

Dropping the one in the expression for ASC in Eq. (6.2.12), ignoring the
minus sign, and substituting ¥ = mF,;, we can write ASC = F0/16(m F \)’. Fora
given ASC at the edge of the usable field, 8 and hence /8 is a constant for a
given RC primary. Because /8 is the linear radius of this field at the hybrid focus,
the larger the magnification of the hybrid secondary the smaller is the usable field
in angular measure. Although the field size is smaller, the observations made at a
Coude or Nasmyth focus are most often made on or near the axis where coma is
not significant.

6.2.f AFOCAL TYPES

As a final class of two-mirror telescope we consider those that are afocal,
hence the output beam is collimated and the final image is at infinity. One
possible application of such a telescope is as a beam reducer, if the secondary
mirror is smaller than the primary, or as a beam expander if the secondary is
larger. An even more important application is as the input end of a three- or four-
mirror telescope. In Section 6.4 of this chapter we discuss selected designs of
three-mirror telescopes. In anticipation of that section, it is convenient to
determine the characteristics of afocal two-mirror telescopes and include them
with other two-mirror telescopes.

We begin by noting that an afocal telescope is one for which m, the
magnification of the secondary mirror, is infinite. Thus we can take previously
derived relations and have them apply after letting m — co. Because f, the
normalized back focal distance, also becomes infinite in this limit, it is convenient
to express f in terms of m and & before taking this limit. Following this procedure
for the aberration coefficients in Table 6.5, we get the results shown in Table 6.13.
Also included is the Petzval curvature from Eq. (6.2.1).

Examination of the entries in Table 6.13 show that the obvious choices for
conic constants are K; = —1 and K, = —1, hence both mirrors are paraboloids.
With these choices we see that the afocal two-mirror telescope is free of spherical
aberration, coma, and astigmatism, and hence is an anastigmatic aplanat. We
point out that the same conclusions can be reached by taking Egs. (6.2.3) and
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Table 6.13

General Aberration Coefficients for Afocal Two-
Mirror Telescopes

1
B3s=—R;[K1+1—k(K2+1)]=— 3[ -1

32
1—k
=+ )] = ,zl ]
6*T(1—k)
B|:=—IT][—(K2+U] y[]
03(1
By, = [(1 + 0B+ k) + (1 — kK

03(1 — k(1 +3k)
4k2

K_2<l—k)
PR\ K

(6.2.4), and AAS from Table 6.9, and letting m — oo. Note that in the afocal
limit there is no difference between the classical and aplanatic types.

We now determine some of the characteristics of pupils and chief ray
directions. From Table 6.3 we see that mk is the normalized distance from the
secondary to the focal point, while from Eq. (2.6.1) we find that the normalized
distance from the exit pupil to the focal point is . For an afocal telescope the
ratio 6/mk = 1, or 8/m = k. Substituting this result into Eq. (2.6.3) we see that
¥, the chief ray angle after reflection from the secondary, is given by ¥ = 0/k.
With the aperture stop at the primary mirror, it is left as an exercise for the reader
to show that the distance from the secondary mirror to the exit pupil of an afocal
telescope is given by W' = —k(1 — k)f;. It is also straightforward to show that
the diameter of the exit pupil is |kD|, where D is the diameter of the primary.

As a final comment about this type of telescope, we note that it follows from
the stop-shift relations in Section 5.5 that the location of the aperture stop is
arbitrary in this type of telescope. That is, spherical aberration, coma, and
astigmatism are zero for any position of the aperture stop. This freedom to
move the stop and make use of the stop-shift relations will help in the analysis of
some of the three-mirror telescopes discussed in Section 6.4.

,for Ky = —1

6.3. ALIGNMENT ERRORS IN TWO-MIRROR TELESCOPES

We now consider the consequences of an error in the position of the secondary
mirror relative to the primary in a two-mirror telescope. This position error can be
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a decenter and/or tilt of the secondary, either of which is a misalignment between
the axes of the mirrors. The error can also be an axial displacement of the
secondary toward or away from the primary, in which case the error is called
despace. In the discussion to follow, aberrations introduced by misalignment are
treated separately from those resulting from despace.

6.3.a. TILT OR DECENTER MISALIGNMENT

In analyzing the effect of misalignment, we begin by noting that the aperture
stop of the telescope is the primary and the reference axis for the secondary is the
axis through the vertex of the primary. We consider both coma and astigmatism in
our general discussion of misalignment, but apply our results for astigmatism
only to the case of the aplanatic telescope. For the classical telescope the
astigmatism due to misalignment has little effect on the overall image quality
and can generally be ignored.

A possible layout of a misaligned secondary is shown in Fig. 6.6, where the
secondary is decentered by an amount / in the y direction and tilted through an
angle a about a line perpendicular to the plane of the diagram and tangent to the
mirror at its vertex. In this particular case the displacement of the center of the
stop from the axis of the secondary, its symmetry axis, is simply the sum of the
separate displacements due to decenter and tilt. In the general case the displace-
ments at the stop due to decenter and tilt are not colinear and must be combined
by vector addition. We consider only the case shown in Fig. 6.6, however,
because compensation of coma, specifically, due to misalignments, requires
colinear displacements as shown in Fig. 6.6.

Pri T

Fig. 6.6. Secondary (Sec) in two-mirror telescope decentered by / and tilted by angle o with
respect to axis of the primary (Pri). The relation between parameters is given in Eq. (6.3.1).
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From the geometry of Fig. 6.6 we see that
L =—(1+aW), ¥ =—(0+a), 6.3.1)

where L’ is the distance from the center of the stop to the axis of the secondary
and ¢ is the angle between the reflected chief ray and the secondary axis.
Substitution of Eq. (6.3.1) into the coefficients in Tables 5.6 and 5.9 gives

1[1 m+1 m+1
B = oo+ e[ [l - (55) ] -<(525) )

= B,,(sec) + By, (mis), (6.3.2)

1 1\ ! w 1 (1 2wo

B,=8B - —)+20{a+—}{1-}+K,— (-
2 12(5e¢) R, [(a * Rz) - (oz - Rz)( Rz) T R, (Rz R, )}
= B|,(sec) + B|,(mis) (6.3.3)
where n = —1 for the secondary. The factors B,,(sec) and B|,(sec) are the coma

and astigmatism coefficients, respectively, from Eq. (5.6.10) and are the coeffi-
cients for a properly aligned secondary. We are interested primarily in the effects
of the terms in Eqgs. (6.3.2) and (6.3.3) denoted by B,(mis) with i =1, 2.

We take Egs. (6.3.2) and (6.3.3), substitute into Eq. (5.6.11), and get

By, = By(cen) + k° By, (mis), (6.3.4)
B,, = B, (cen) + k*B,,(mis), (6.3.5)

where B, (cen) are the coefficients for an aligned telescope from Table 6.6. Note
that Eqs. (6.3.4) and (6.3.5) apply specifically to the situation shown in Fig. 6.6,
that is, along the y-axis. Generalization to an arbitrary point on the image is
considered later in this section. A thorough discussion of the effects of alignment
errors across the image field is given by Shack and Thompson (1980).

6.3.b. IMAGE SHIFT FROM MISALIGNED SECONDARY

In addition to the introduction of coma and astigmatism, a misaligned
secondary will shift the image field perpendicular to the z-axis in Fig. 6.6. For
tilt « and no decenter, the chief ray from an on-axis object point is reflected from
the secondary at angle 2« relative to the z-axis. Hence the transverse shift of the
chief ray at the image is 2amkf], a shift in the positive y-direction for a Cassegrain
or Gregorian telescope with mk and o > 0. For decenter / and no tilt, the on-axis
chief ray emerges from the secondary at angle 2¢ relative to the z-axis, where
¢ =I/R, is the slope of the surface normal at the point where the chief ray
hits the secondary. The transverse shift of this chief ray at the image is
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2¢mkf; = —I(m — 1). For I > 0 this shift is in the negative y-direction for m > 0
(Cassegrain) and in the positive y-direction for m < 0 (Gregorian).

For a chief ray in the yz-plane making angle 8, with the z-axis, as shown in
Fig. 6.6, the angular shift projected on the sky, i, is given by

, 1\ _ (m-11
¢_6y+2k<a+R—2>—0y+2k(oc o f). (6.3.6)

’

The corresponding transverse shift is found from the product ' or mf;yr

6.3.c. COMA FROM MISALIGNED SECONDARY

The amount of transverse coma introduced in a two-mirror telescope with a
misaligned secondary is easily found by combining Eqgs. (6.3.2) and (6.3.4), and
substituting B, into Eq. (5.6.8). To get the angular coma as an angle projected on
the sky, the transverse coma is then divided by the telescope focal length. The
general result along the y-axis in Fig. 6.6 is

3
ATC = ATC(cen) - 3(116;2ﬁ) |:Jé (2r?1 +ll;) (K2 - (%J—F—D) o= 1)]

(6.3.7)

The principal feature of Eq. (6.3.7) is that the coma due to misalignment is
independent of the field angle 0, hence it is constant over the field.

For an aplanatic telescope ATC(cen) = 0 and, after substitution for K, from
Eq. (6.2.4), we get

_ 3 +Ppm-—D]  Im 1
ATC = ——[a fk{1+———(m_ﬁ)(m_1)}]. (6.3.8)

For a classical telescope we take ATC(cen) from Table 6.8, substitute for K, from
Eq. (6.2.2), and find

ATC =

30, 3(1+pm—1) [a ! '"] (6.3.9)

16F2 16F2 [k

From Egs. (6.3.8) and (6.3.9) it is apparent that coma due to misalignment can be
made zero by a proper combination of tilt and decenter.

To illustrate the effects of misalignment, we take the set of telescopes whose
parameters are given in Table 6.10 and evaluate the relations in Egs. (6.3.8) and
(6.3.9) for each type. Setting § = 0 for the classical telescopes, and scaling the
telescopes by choosing D = 3.6 m, we get the results shown in Table 6.14 for
! =3 mm and « = 3 arc-min. The entries in Table 6.14 retain the signs given by
the relations in Eqgs. (6.3.8) and (6.3.9).
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Table 6.14

Angular Tangential Coma for Misaligned Secondary®®

cC CG RC AG
ATC(dec) 1.93 1.93 2.10 2.02
ATC(tilt) ~127 2.11 -1.27 211

“ Angular coma is given in units of arc-seconds. Parameters
of telescopes are given in Table 6.10 with D = 3.6 m.
b4 = 0.05° = 3.0 arc-min; / = 3 mm = | f|/1.2E4.

From the results in Table 6.14 we sece that the secondary in the chosen
Gregorians is more sensitive to tilt than is the secondary in the Cassegrains. There
is little difference between the coma introduced by decenter, although the
aplanatic types have slightly larger values. Recall, however, that the Gregorian
1s significantly longer than the Cassegrain and hence the required tolerances are
more easily met with a Cassegrain.

It is important to note that coma contributions due to the separate misalign-
ments can be significantly larger in a telescope with a faster primary mirror.
Taking the telescope labeled RC; in Table 6.12 we find, for the same tilt and
decenter, that ATC(tilt) is 2.8 times larger and ATC(dec) is nearly 8 times larger
than for the RC telescope in Table 6.14.

We return now to the aplanatic telescope. From Eq. (6.3.8) we find ATC = 0 if

Im

1
‘ﬁll = BYm = 1)}'

o (6.3.10)

For an RC telescope with m > 1, and k and f > 0, we see from Eq. (6.3.10) that o
and / have the same sign, while for an aplanatic Gregorian their signs are
opposite. The importance of the result in Eq. (6.3.10) is that, even if the primary
and secondary mirrors are not aligned, there is a tilt that compensates for decenter
and gives an image free from coma due to misalignment.

Any combination of tilt and decenter is equivalent to a rotation of the
secondary around an axis that is perpendicular to the axis of the primary and
intersects it. For the particular combination of o and / in Eq. (6.3.10) the
intersection of these two axes is called the neutral point, and its location on
the primary mirror axis depends on the type of telescope. Denoting d,, as the
distance from the secondary mirror to the neutral point, we find from Eq. (6.3.10)

1 o
dnp=—’€f1{1+m(~m_—1)} = (6.3.11)
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The sign convention applies to d,, in Eq. (6.3.11). For a typical RC telescope
and / have the same sign and the neutral point lies to the left of the secondary
mirror in Fig. 6.6. For an aplanatic Gregorian the neutral point is to the right of
the concave secondary. Because the quantity multiplying 4f; is less than unity, the
neutral point is between the secondary mirror and the focal point of the primary
for an aplanatic telescope. The existence of a neutral point can be used to
advantage if the secondary is deliberately displaced to bring a different source on
to a fixed detector as, for example, is done with many infrared telescopes.

We now turn our attention to a classical telescope and Eq. (6.3.9). The
situation is more complicated than for an aplanatic telescope because the
condition for zero coma from Eq. (6.3.9) has three independent parameters,
Gy, a, and /. We choose, therefore, to find the combination of these parameters
that makes ATC zero for an image on the axis of the primary mirror.

Setting i’ = 0 in Eq. (6.3.6), solving for 6,, and substituting for 6, in Eq.
(6.3.9), we find

ATC (on-axis) = — l:oc(mz +1)— —];—(nf - 1)}. (6.3.12)

3k
16F2
Setting Eq. (6.3.12) to zero and solving for « we find

m(m” + 1) 1)} __! (6.3.13)

m3—1 o

dnp = _Iq‘l{

The directions of the neutral point from the secondary mirror for classical
telescopes are to the left and right, respectively, for the Cassegrain and Gregorian
versions. Because the quantity in curly brackets in Eq. (6.3.13) is greater than
unity, the distance to the neutral point is slightly larger than |f;|, the distance
from the secondary to the focal point of the primary mirror.

It is worth noting that the condition for zero coma on the axis of the primary
gives a different relation between « and / than obtained by setting 6, = 0 in Eq.
(6.3.9) and finding the combination of tilt and decenter that then makes ATC = 0
for an object point on the primary mirror axis. In this latter case the point of zero
coma is shifted from the axis of the primary and the neutral point is at the focal
point of the primary.

Representative combinations of o and / that make coma zero are given in Table
6.15 for both types of Cassegrain telescopes. In all cases / =3 mm, with 6,
chosen to represent the two cases discussed in the preceding.

As a final note, recall that Eqgs. (6.3.4) and (6.3.9) apply along the y-axis as
they are written. We can generalize Eq. (6.3.4) for a classical telescope and have it
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Table 6.15

Zero Coma Combinations for Cassegrain Telescopes™”

oarc-min) O(arc-min) V' (arc-min)
RC 4.99 not relevant
CC (zero coma for image on primary mirror axis)
4.25 —1.26 0
CC (zero coma for object on primary mirror axis)
4.58 0 1.43

“ Parameters of telescopes are given in Table 6.10 with D = 3.6 m.
b =3 mm=|f|/1.2E4.

apply at an arbitrary image point for a tilt and decenter combination shown in Fig.
6.6. The result is

str =

| .
4f2|+4f—2{ -+ B)(m— I)I:cx———]}], (6.3.14)
where i and j are unit vectors along the x- and y-axes, respectively. The magnitude
of B, is found from the components in the usual way, while the direction of the
coma flare is along the line from the image point to the point on the y-axis where
the coma is zero.

6.3.d. ASTIGMATISM FROM MISALIGNED SECONDARY

Misalignment of the mirrors in a two-mirror telescope also introduces
astigmatism in addition to that already present, as shown by Egs. (6.3.3) and
(6.3.5). In this section we consider the nature of this added astigmatism and how
it affects the inherent astigmatism already present.

In our analysis we consider only the situation where coma due to misalignment
is zero. Applying this condition to Eq. (6.3.2) gives

/ m—1

Substituting Eq. (6.3.15) into Eq. (6.3.3), expressing W and R, in terms of
normalized parameters, and rearranging terms, gives the astigmatism coefficient
for the telescope as

N, (m-1)>» ! m
= () Gy [0 ) €219
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For a given decenter we see from Eq. (6.3.16) that the astigmatism due to
misalignment is /inear in the angle 6, over the field. The subscript is applied to
this angle, as it is in our discussion of coma, because we are considering
specifically the case shown in Fig. 6.6.

There is also a term in Eq. (6.3.16) that is constant over the field. In many
instances this constant term is negligible compared to the linear term, especially
near the edge of the usable field. Each case must be analyzed individually to
determine whether the constant term can be ignored.

From this point on we consider only aplanatic telescopes. We do this because it
is coma that largely determines the image quality in Cassegrain telescopes, as
shown in Fig. 6.2. A change in the astigmatism due to mirror misalignment will
have little noticeable effect on the usable field of a Cassegrain unless the values of
o and / are unreasonably large.

For aplanatic telescopes we get

P mCm+ D+ 1 (1), (m—1) ! m
B““?[ () ]‘?(i)KZ ET)) [9y+fz(m—/3)<m—1)]’

(6.3.17)

O mCem+ D+l L (1), (m—1) ! m
AAS__EF[ 2m(1 4 f) ]_if(f)Kz a+p) [Gy +fz(m—ﬁ)(rn—l)]’

(6.3.18)

where we can write ¢* = 0 + 05.

We now evaluate Eq. (6.3.18) for the RC telescope in Table 6.10 with the tilt
and decenter combination in Table 6.15. With 6, and 0, expressed in units of arc-
min, Eq. (6.3.18) becomes

AAS (arc-sec) = —3.16E-3[62 + 02 — 5.420, — 0.276]. (6.3.19)

Note that the constant term contributes less than 0.001 arc-sec, a negligible
amount. We now take a cut along the y-axis by setting 6, = 0 and get the
resulting AAS shown in Fig. 6.7. Also shown are AAS with / = 0 and the linear
AAS due solely to misalignment. From Fig. 6.7 and Eq. (6.3.19) we find
AAS =0 at 6, =0 and ¢, = 5.42 arc-min. We also see from Fig. 6.7 that the
effect of the addition of linear astigmatism is to shift the curve for aligned mirrors
and to put the minimum in the curve at a point midway between the corrected
points, that is, the shifted curve appears symmetric on either side of 0, = 2.71
arc-min.

Through-focus spot diagrams at selected values of 6, are shown in Fig. 6.8
relative to a focal surface whose curvature is computed from the relation in Table
6.9. From Figs. 6.7 and 6.8 we see that AAS in the range 0 < 6, < 5.42 arc-min
is of opposite sign to AAS outside of this range. In the range given, the sagittal
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Fig. 6.7. Angular astigmatism (solid line) for Ritchey-Chretien telescope misaligned along y-axis.
The AA is the sum of astigmatism for aligned telescope (dotted line) and linear astigmatism (long
dashed line). Parameters of the telescope are given in Table 6.10; tilt and decenter parameters are given
in Table 6.15. See the discussion following Eq. (6.3.18).

image (along the y-axis) is closer to the secondary mirror than the tangential
image; outside of this range the sagittal image is farther from the secondary.

We also see in Fig. 6.8 that the astigmatic blur circles midway between the line
images are displaced by differing amounts from the curved focal surface. This
suggests that the proper curved focal surface for the misaligned case is both
shifted and tilted relative to the focal surface for aligned mirrors. If the vertex of
the aligned focal surface is offset by 45.5 mm (2.71 arc-min plus ' from Eq.
(6.3.6) over the telescope scale of 0.0955 arc-min/mm), displaced by 0.18 mm in
the -z direction, and tilted about the x-axis by 0.79°, the through-focus spot
patterns are then those shown in Fig. 6.9. The symmetry of the blur circles on
opposite sides of 6, = 2.71 arc-min is now apparent.

We now take Eq. (6.3.19) and rewrite it as

AAS (arc-sec) = —3.16E-3[62 + (8, — 2.71)* — 7.07]. (6.3.20)

From Eq. (6.3.20) we see that AAS can be expressed in terms of 8 = 6 + 6,2,
where (9} = Gy — 2.71, and a constant term. When written in this form we see that
the center of symmetry of the astigmatic patterns along the y-axis has shifted to
0; = 0. Thus, for example, sagittal images far from the symmetry point will fall
on lines through the symmetry point. Examples of this are shown in Fig. 6.9.
It is instructive to evaluate Eqs. (6.3.15) and (6.3.18) for the RC; telescope
with its f/1.25 primary in Table 6.12. For a decenter of 3 mm the tilt required to
give zero coma is 14.0 arc-min and, in Eq. (6.3.20), 0; = Hy — 9.84 arc-min, the
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Fig. 6.8. Through-focus spot diagrams for misaligned Ritchey-Chretien telescope. Scale bar on
upper left is 1 arc-sec long. See the caption of Fig. 6.7 for source of the parameters.

constant in square brackets is 96.8, and the multiplier is —4.96E-3. Astigmatism
due to misalignment for this telescope is substantially larger.

It is clear from our discussion that correcting coma in an aplanatic telescope by
a tilt and decenter combination satisfying Eq. (6.3.15) does affect the astigma-
tism, with the principal effect a decentered and tilted astigmatic focal surface. It is
also evident from Fig. 6.7 that the effect of linear astigmatism leads to differences
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that are largest at the edge of the usable field. McLeod (1996) describes how
observations of the astigmatic images at the edge of the field can be used to find
the tilt and decenter. It is then a straightforward procedure to reduce the values of
o and / while maintaining zero coma. These effects on astigmatism due to
misalignment have also been discussed by Wilson and Delabre (1997) in
connection with the ESO “New Technology Telescope” (NTT).
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6.3.e. DESPACE ERROR

We now turn our attention to the aberrations that appear when the error in
placement of the secondary is one of despace. If the secondary is not at its
nominal design position, then spherical aberration and coma are introduced and
images at all points in the image field are degraded. Although spherical aberration
is larger than coma, results are given for both aberrations. Astigmatism is also
introduced but its size is negligible by comparison.

The starting point for the calculation of spherical aberration resulting from
despace is B, from Table 6.5 and ASA from Table 6.7, with the terms in square
brackets in B, substituted into the relation for ASA. If m is expressed in terms of
k and p, the only variable parameter remaining is k. The position of the secondary
relative to the focal point of the primary is given by s, = —&f}, hence a change in
k means an axial shift of the secondary.

Taking the derivative of ASA with respect to &, and resubstituting for £ and p
in terms of m, we find

2
%(ASA): 1 [m(m2_1)—(m—1)3[1<2+(2—f1>“. (6.3.21)

16F3 1

If dk is the change in k starting from the position of the secondary where the
spherical aberration is corrected, then d(ASA) is the angular spherical aberration
resulting from the despace, or simply ASA.

It is now a simple matter to evaluate this relation for different types of
telescopes and determine the sensitivity to despace. Using the relations for K, in
Egs. (6.2.2) and (6.2.4) for classical and aplanatic telescopes, respectively, the
results are

. B m(m* — 1) ds,
ASA (classical) = T6FS —jT’ (6.3.22a)
. m(m? — 1) 2 dsy
ASA (aplanatic) = 1 —=. 3.
(aplanatic) T6F3 [ + = Dm — ﬁ)] 7 (6.3.22b)

A comparison of the relations in Egs. (6.3.22) shows that aplanatic telescopes are
somewhat more sensitive to despace error than are the classical type, though only
by 10—15% for typical parameter values such as in Table 6.10. Comparing ASA
for the aplanatic telescopes in Table 6.16 shows that the Ritchey-Chretien is more
sensitive by a few percent to error in secondary position.

A final thing to note about Egs. (6.3.22a,b) is that, to a good approximation,
ASA is inversely proportional to the cube of primary mirror focal ratio. Hence a
telescope with a “faster” primary is more sensitive to despace error. A similar
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Table 6.16

Angular Aberrations for Despaced Secondary®”

RC AG
ASA 0.912 0.846
ATC 0.252 0.174

“dk = ds,/f, = 0.001.

b Aberrations are given in units of arc-seconds,
ATC is given at a field angle of 18 arc-min, and
parameters of telescopes are given in Table 6.10.

conclusion was already noted here for secondary misalignments. In general, a
telescope with a faster primary is more sensitive to alignment errors of any kind.

The calculation of coma introduced by a despaced secondary proceeds in a
similar way. We start with the coma coefficient B, in Table 6.6 and ATC from
Table 6.7, express all variables in terms of k and p, and differentiate with respect
to k. The result for the aplanatic telescope is

30 [(2mz—1)(m—ﬁ)+2m(m+1)_1+ﬁ]gs_2
16F?2 (1+p) m—Bl 7

Corresponding results for other two-mirror telescopes are of little importance
because the coma already present in the off-axis images is dominant over that
introduced by despace.

A comparison of the relative sizes of ASA and ATC for aplanatic telescopes
with despaced secondary is given in Table 6.16, with the parameters of the
telescopes taken from Table 6.10.

ATC = (6.3.23)

6.4. THREE-MIRROR TELESCOPES

With the addition of a third mirror to a reflecting system there are additional
degrees of freedom to minimize or eliminate aberrations. It is possible, for
example, to design systems free of third-order spherical aberration, coma, and
astigmatism with flat image surfaces. Such three-mirror flat-field anastigmats can
be found in a variety of practical configurations, unlike the case for two mirrors
where there is only one possible configuration.

The general analysis of a three-mirror system in terms of aberration coeffi-
cients is considerably more complicated than that of a two-mirror system.
Because of this complexity, we will only outline the procedure and apply it to
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some relatively simple examples, those in which there is collimated light between
the secondary and tertiary mirrors. Such three-mirror systems are generally
referred to as Paul-Baker telescopes. For a discussion of the general approach
to the design of three-mirror telescopes the reader should consult the article by
Robb (1978). An especially thorough discussion of the many possible three-
mirror configurations is given by Korsch (1991). The interested reader should
also consult the text by Wilson (1996).

6.4.a. GENERAL FORMULATION

Setting up the general relations that describe a three-mirror system is a
straightforward extension of results given in Chapter 5. The system aberration
coefficients, referenced to the primary, are

y J+1 y faz!
Bjs=3j1+Bj2(j) +Bj3(y—?> . j=0,1,2,3, (6.4.1)

where the subscripts 1, 2, and 3 refer to the primary, secondary, and tertiary
mirrors, respectively. Note that Eq. (6.4.1) is simply an extension of Eq. (5.6.11).
The other relation of interest is that for the Petzval curvature, which, from Table
5.7, is given by

11
K, = 2(L -+ —). (6.4.2)
Rl

The general procedure is now one of selecting the system configuration, mirror
separations and radii of curvature, and adjusting the conic constants to eliminate
third-order aberrations. This procedure is best carried out with optimization
routines available in ray-tracing software. We will not pursue this general
approach but instead discuss some special cases. In our analysis we will make
use of some of the special properties of afocal two-mirror telescopes.

6.4.b. EXAMPLE: PAUL-BAKER TYPE

The starting point for the Paul-Baker telescope, hereafter denoted PB, is a
Cassegrain afocal telescope of the type discussed here in Section 2.f. The mirror
pair consists of two paraboloids, a concave primary and a convex secondary,
whose focal points coincide. This combination, shown in Fig. 6.10, converts an
input beam of diameter D into a collimated output beam of diameter kD, where
k=y,/y1 =f/fi = Ry/R,. As shown in Section 2.f of this chapter this afocal
reducer has zero spherical aberration, coma, and astigmatism.
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Fig. 6.10. Afocal beam reducer. Ratio of beam diameters = k = f, /f;.

We now add to the afocal reducer a concave spherical tertiary mirror whose
center of curvature is at the vertex of the secondary mirror, as shown in Fig. 6.11.
Note that the placement of the tertiary is similar to that of the spherical mirror in a
Schmidt camera. Because we have added a spherical mirror in collimated light the
system now has spherical aberration and, to compensate, the paraboloidal
secondary is replaced by a sphere, which introduces spherical aberration of
opposite sign. If R; = R,, these two contributions of spherical aberration are
equal in absolute magnitude and the system is again free of spherical aberration.
It was first noted by Paul in 1935 that this system is also free of third-order coma
and astigmatism with a focal surface whose curvature k = 2/R,.

The fact that this three-mirror system is free of third-order aberrations can be
shown in two ways. The first way is to evaluate Eq. (6.4.1) for j =1, 2,3 and

Y

]

le— 28, —>

Fig. 6.11. Paul-Baker three-mirror telescope with focal length f = f; /.
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show directly that B, = 0, B,, = 0. Substitutions needed in the j = 1, 2 coeffi-
cients for the tertiary are

0 W, R, (1—k
U, a my =0, R, +R3( 3 ) (6.4.3)

This method is straightforward but tedious and does little to show the elegance of
the original Paul system and its variants.

A more insightful approach is to make use of the stop-shift relations and draw
on our discussion of the Schmidt camera in Chapter 4. In our analysis of the
afocal telescope given here in Section 2.f we pointed out that the third-order
aberrations, though derived for the stop at the primary, are zero for any position
of the aperture stop, a result that follows from the stop-shift relations in Chapter
5. Therefore let us place the aperture stop at the secondary. We now have a system
in which the tertiary spherical mirror is illuminated with collimated light from a
stop at its center of curvature, a combination optically similar to a Schmidt
camera.

As noted in Chapter 4, a spherical mirror plus aperture stop at the center of
curvature has no preferred axis and is free of coma and astigmatism. The
spherical aberration of the mirror is eliminated by an aspheric plate located at
the stop; the wavefront advance at the mirror is compensated by an equal
wavefront retardation from the aspheric plate. Because this plate is located at
the stop, it does not introduce coma or astigmatism.

Returning now to the PB system, the wavefront advance at the spherical
tertiary mirror is compensated by an equal wavefront retardation introduced by
changing the paraboloidal secondary to a sphere. But this change of the
secondary is entirely equivalent to introducing an aspheric plate, as seen by
comparing the #* terms in Eq. (5.1.1). Hence no coma or astigmatism is
introduced into the PB design by changing the conic constant of the secondary.

This conclusion is especially important because it means that the original Paul
design with R; = R, can be generalized to systems with R; # R,, provided two
conditions are met: (1) the center of curvature of the spherical tertiary is located at
the vertex of the secondary; and (2) the conic constant of the secondary is chosen
to give zero spherical aberration for the complete system.

The family of variants of the original Paul design is easily found by starting
with the relation for spherical aberration obtained from Eq. (6.4.1). Substituting
the spherical aberration coefficients for the secondary and tertiary mirrors from
Table 5.6 into Eq. (6.4.1) gives

1
By, =k (L Kl 9), (6.4.4)
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where k = y,/y, = 3/¥,. The choice of parameters that makes B;, = 0 includes

2 | (R
= ==|(Z2) -1 6.4.5
K, =0, b Rg[(&) ] (6.4.52)

R 3
b=0, K,=-1+ (—2) . (6.4.5b)

These choices are, of course, equivalent through terms in * in Eq. (5.1.1), as
substitution of Eqgs. (6.4.5a) and (6.4.5b) in turn demonstrates. The first of these
combinations can be described as an aspheric figure on a spherical mirror, the
other as an ellipsoidal mirror. With either combination it is a straightforward
exercise to verify directly that coma and astigmatism are zero, but with our use of
the stop-shift relations it is not necessary to do so. For fast systems the solutions
given by Egs. (6.4.5a,b) must be supplemented by aspheric terms of higher order
on the mirrors to control fifth and higher-order aberrations.

We now take the general Paul design and add the condition for zero Petzval
curvature, an analysis first done by Baker (1969). Writing Eq. (6.4.2) in terms of

k gives
2 1 Rz)]
K,=—|1—=(1==1}] (6.4.6)
PR [ k( R,

Setting x, = 0 gives R,/R; = 1 — k.

Additional relations for Paul-Baker telescopes are given in Table 6.17. Note in
particular that the choice of the primary mirror focal ratio and any two from
among the mirror separation ratio, obscuration ratio k, or R;/R, set the basic
parameters of the telescope. Once these parameters are selected and a field size is
chosen, the diameters of the secondary and tertiary mirrors and the effective
obscuration ratio can be computed.

Table 6.17

General Relations for Paul-Baker Telescopes”

Mirror separation ratio: 322_& 2k
P T-2 R \I—%

- F_f R
Focal ratios and lengths: F=7"R
Diameter of secondary: D, = D[k + 2F,0(1 — k)}
Diameter of tertiary: Dy = D[k + 2F,0(1 — k) + 4F 0]
Effective obscuration ratio: X'D = D3 + 4kFD

R 1
“For flat-field Paul-Baker telescopes use 173 1"
, —
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The first telescope of the PB type built is the CCD/transit instrument
described by McGraw et al. (1982), and located at the Steward Observatory of
the University of Arizona. This telescope has a 1.8-m f/2.2 primary with
k = 0.32, and near-diffraction-limited images over a 1° field of view. Because
of the baffles required to prevent light reflected directly from the primary or
tertiary from reaching the detector, the vignetting by the central obscuration is
approximately 22%. For further details, the reader should consult the article by
McGraw et al. (1982).

There are several examples of PB designs in the literature. One example is a
PB telescope with an f/1 primary and f/2 final focal ratio, and excellent image
quality over a 1° diameter field, by Angel, Woolf, and Epps (1982). In their
design, aspheric terms are put on the secondary and tertiary mirrors. The nominal
parameters of the design are & = 0.168 and R;/R, =2, hence the mirror
separation ratio from the relation in Table 6.17 is 0.808.

Willstrop (1984) has published designs of PB telescopes with curved focal
surfaces and one with a flat focal plane. One particular design with a curved focal
surface has a field of view of 4° diameter, with //1.6 for both the primary mirror
and overall telescope. He chooses to place the focal surface at the vertex of the
primary mirror, thus the mirror separation ratio = 2 and £ = 0.5. By allowing
higher-order aspherics on each of the three mirrors, Willstrop is able to achieve
image diameters under 0.31 arc-sec over a 4° field. For further details the
interested reader should study the articles by Willstrop.

Because of the excellent image quality achievable with the PB system, a more
detailed look into the characteristics of a representative PB is in order. We choose
a flat-field version with an f/1.575 primary and & = 0.28 covering a field of 1.6°
diameter, as shown in Fig. 6.12, with surface parameters given in Table 6.18.
With the addition of aspheric terms in y° and 3® to the secondary and tertiary
mirrors, and the application of an optimization algorithm in a raytrace package to
these terms, the diameters of images range from about 0.25 arc-sec diameter near
the center of the field to 0.5 arc-sec at the edge. No attempt was made to further
improve the image quality by letting other parameters vary, although improve-
ment is expected. If aspheric terms are added to all of the mirrors, then image
diameters are 0.1 arc-sec or less over the entire flat field.

Given the excellent image quality that can be obtained with the Paul-Baker
design, it is legitimate to wonder why more telescopes with this configuration
have not been built. Factors that could be considered shortcomings for this type of
telescope are: (1) limited volume available for instrumentation behind the focal
surface; (2) relatively large vignetting because of baffles required to shield
the tertiary mirror from extraneous light; (3) effect of additional optics, such as
a filter or atmospheric dispersion corrector, on image quality; and (4) constraint
on the overall focal length and focal ratio. We will discuss each of these
briefly.
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Fig. 6.12. Flat-field Paul-Baker telescope with f/2.19 overall and field diameter of 1.6°. See
Table 6.18 for the mirror parameters.

With the focal surface located midway between the secondary and tertiary
mirrors, much of the volume behind the focal surface is taken up by light
traveling to and from the secondary. Although there is enough space for detectors
used for direct imagery, the same cannot be said for slit spectrographs. Using a
telescope such as this for spectroscopy would require optical fibers feeding a
bench spectrograph.

The focal surface is in the focal plane of the tertiary, hence this mirror must be
shielded from starlight from sources outside of the nominal field-of-view (FOV).
At a minimum this means a circular obstacle behind the secondary of the size
shown in Fig. 6.12. The size of this obstacle is the diameter of the tertiary needed
to accept all light from the primary within the FOV plus an annulus that excludes
light from within the FOV from entering the telescope aperture and going directly
to the tertiary. This diameter is given in Table 6.17 as &’D, along with the

Table 6.18

Parameters for Flat-Field Paul-Baker Telescope”

Surface R(mm) K Separation(mm)
Primary —11025 -1
—3939
Secondary —3087 —0.62675
4287.5
Tertiary —4287.5 0

“D=35m, k=028, F =1575 F =2.1875.
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diameters of the secondary and tertiary mirrors. For & = 0.28, F = 2.1875, and
0 = 0.8°, the computed value of £’ = 0.468 and, at a minimum, the fraction of
the incident light lost before reaching the primary is about 0.22.

There are two possible locations for additional optical elements, such as filters
or an atmospheric dispersion corrector (ADC), one in the collimated light beam
in the plane of the focal surface, the other in the convergent beam just before the
focal plane. In the former location the beam diameter is about 1.2 m for a 3.5-m
telescope. Making a filter or ADC of this size and holding it in position would be
a formidable task. Such an element would also give additional vignetting of the
converging beam from the primary and increase the fraction lost to about 0.31.

Thus any additional optics would likely be placed in the converging beam near
the focal plane. A plane-parallel plate in this beam will shift the focus by an
amount given by Eq. (2.4.5) and introduce both coma and spherical aberration.
Using the aberration coefficients for such a plate from Eqgs. (7.2.11) and (7.2.12),
we find that the transverse aberrations of a glass plate of index » and thickness ¢
are

n—1 t n? —1 t
TSA={——)— = —_— . 4.
( o ) Yk TTC 39( e ) YV (6.4.7)

The blur introduced by a 6-mm plate of BK7 glass in our representative PB
telescope is of the order of 0.2 arc-sec. Hence the monochromatic image quality
at best focus is only slightly degraded.

A more serious consequence of introducing a plate into the converging beam
is longitudinal chromatic aberration or LCA, the change in focus with wave-
length. We can determine the approximate LCA by computing how A in Eq.
(2.4.5) changes with wavelength. The result for a plate of thickness ¢ is

dA dAdn ¢t dn

H—Eﬁ—n_zﬁ’ (6-4.8)
hence
LCA = 0A = —om, (6.4.9)
(n)

where JA is the change in focus for an index difference dn and average index (n).
The blur size is a minimum at the midpoint between the extreme focus positions,
with the blur diameter =0A/2F. For a 6-mm BK?7 plate transmitting from 400 to
700 nm, we find on = 0.018, (n) = 1.52, LCA =47 um, and a blur diameter
projected on the sky of approximately 0.3 arc-sec. The combined effects of TSA
and LCA over this wavelength range give an effective blur of about 0.4 arc-sec.
Willstrop (1984) has designed an ADC for an f/1.6 beam and points out the
substantial amount of LCA that is an inevitable part of such a system.
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The final limitation of the Paul-Baker telescope, at least in comparison with a
two-mirror telescope, is the lack of freedom in choosing the final focal ratio.
From Table 6.17 we see that F is tied to F| by the choice of mirror radii. We also
see that for the same field size the effective obscuration ratio k&’ increases as F and
F, increase, hence all proposed designs are based on a fast primary mirror with a
final focal ratio that is significantly smaller that for a typical Cassegrain.

Thus the Paul-Baker design, in spite of its excellent image quality over a field
significantly larger than that of a Ritchey-Chretien telescope, has not been the
choice for large telescope systems.

6.4.c. OTHER THREE-MIRROR TELESCOPES

If the constraint of collimated light between the secondary and tertiary mirrors
is removed, then many three-mirror telescope designs with excellent image
quality are possible. In this section we present only a few such designs to
illustrate some of these possibilities.

A design by Korsch (1972) has a slowly converging beam between the
secondary and tertiary mirrors and a flat focal surface just outside of the space
between the mirrors. The layout is shown in Fig. 6.13 for an f/3 primary, f/4.5
overall, and a field diameter of 1.2°, with the parameters given in Table 6.19.
Note that each of the mirrors is hyperbolic in cross section. Image quality is
excellent with 0.1 arc-sec diameters over the flat field. Although the focal surface
is now easily accessible, the price paid is relatively large obscuration by the
tertiary of the converging beam from the primary, with the fraction of light lost at
about 0.35.

Another flat-field design by Korsch (1977) is shown in Fig. 6.14 with the
system parameters scaled to a 3.5-m telescope given in Table 6.20. Image sizes
over a 1.5° diameter field are at the 0.1 arc-sec level or less. This /12 design

Fig. 6.13. Flat-field Korsch telescope with f/4.5 overall and external focus of diameter 1.2°. See
Table 6.19 for the mirror parameters.
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Table 6.19

Parameters for Korsch Flat-Field Telescope®

Surface R(mm) K Separation(mm)
Primary —21000 —1.26294

—7875
Secondary —5833.3 —2.84322

3365.4

Tertiary —8076.9 —1.40148

—3432.7
Image oo

“D=35m, F, =3.0, F=45.

features a fold mirror located at the exit pupil in the space between the primary
and tertiary mirrors, thus giving a large accessible focal plane. Because of the
fold mirror the center of the field is totally vignetted and a portion around the
center is partially vignetted. Unlike the other three-mirror telescopes discussed,
this design has a relatively large final focal ratio. Korsch points out that an
advantage of this type of configuration is a focal surface free from stray light
without an extensive system of baffles. This advantage is typical of what is called
a 2-axis configuration.

The final example presented in this section is a design by Robb (1978), a flat-
field f/5 system with the focal plane located near the vertex of the primary, as
shown in Fig. 6.15. Image diameters over a field spanning 2° are 0.2 arc-sec or
smaller. The parameters given by Robb show that each of the mirrors is
hyperbolic in cross section, with additional aspheric terms added to the primary
and secondary. For the field size shown in Fig. 6.15 we see that the vignetting by
the focal plane of the beam heading toward the tertiary is quite substantial.

Fig. 6.14. Flat-field 2-axis Korsch telescope with /12 overall and external focus of diameter 1.5°.
See Table 6.20 for the mirror parameters.
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Table 6.20

Parameters for Korsch 2-Axis Flat-Field Telescope”

Surface R(mm) K Separation(mm)
Primary —15400 —0.969825

—6483.4
Secondary —2962.16 —1.739743

10481.3

Tertiary —3620.02 —0.558565

—3573
Image o]

“D=35m,F, =22, F=12.

—
—

Fig. 6.15. Flat-field Robb telescope with /5 overall and field diameter of 2°.

6.5. FOUR-MIRROR TELESCOPES

As astronomers push for telescopes larger than 10-m diameter, it is likely that
conventional designs suitable for telescopes in the 4- to 8-m class will no longer
be appropriate for what we will call giant telescopes. The principal reason for this
is the expected change from monolithic primary mirrors, quite satisfactory for 8-
m class telescopes, to segmented primaries such as in the 10-m Keck telescopes.

Segmented mirrors can, in principle, be made for any aspheric shape, but it
seems likely that giant segmented primary mirrors will be spherical. Although the
Keck mirrors are parabolic in cross section, and do the job quite well, polishing
off-axis aspheric segments to the required accuracy is a nontrivial and costly task.
The advantages of spherical segments include ease of polishing to the required
accuracy and complete interchangeability of segments within the primary mirror
array. These advantages, in turn, translate into lower cost.

Among the telescope systems considered so far in this chapter, the two-mirror
telescope with spherical primary and zero overall spherical aberration has an
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unacceptably small field because of large coma. For two-mirror telescopes, in
general, two aberrations can be corrected with the proper choices of the conic
constants on the mirrors, leading to the aplanatic designs with zero spherical
aberration and coma discussed in Section 6.2. If, however, the primary mirror is
spherical, then the remaining conic constant can, in general, be set to make only
one aberration zero, specifically spherical aberration. Although two mirrors can
be configured to correct for more than two aberrations, as in the anastigmat or
flat-field aplanat discussed in Section 6.2, such designs are constrained to
particular combinations of normalized parameters and are of limited usefulness.

With three mirrors it is possible, in general, to correct for three aberrations
with the proper choices for the conic constants. For the three-mirror telescope
designs based on the Paul-Schmidt concept the choices are a paraboloidal
primary and spherical tertiary with the conic constant of the secondary tailored
to the layout of the mirrors. If, in addition, a flat field is required, then the system
parameters are again constrained to certain combinations. Other three-mirror
designs are similarly limited to particular combinations of conic constants and
system parameters when more than three aberrations are corrected. As with two-
mirror telescopes, requiring a spherical primary in a three-mirror system removes
one variable from the parameters available for correction of aberrations and leads
to no practical designs.

It is for these reasons that we consider, at least briefly, some of the possibilities
with four mirrors. In our analysis we will follow the excellent discussion on four-
mirror telescopes by Wilson (1996), with an emphasis on the principles leading to
practical designs of such systems with a spherical primary mirror. We will also
consider only 2-axis designs, largely because of the problems with vignetting in
single-axis systems.

6.5.a. EXAMPLES

As a starting point in an analysis leading to a practical four-mirror telescope
we return to Table 6.13 and the aberration coefficients for afocal telescopes. The
first three coefficients are zero when the mirrors are paraboloids, our starting
point for the Paul-Baker designs. Consider instead choosing K; =0 and
K, = —1 for the afocal arrangement. From Table 6.13 we see that coma and
astigmatism are still zero although, of course, spherical aberration is not zero.
These results are expected because the coefficients were derived with the aperture
stop at the primary mirror, and coma and astigmatism are independent of the
conic constant when the pupil is at the surface. Thus the beam from this modified
afocal system has zero coma and astigmatism, but large spherical aberration from
mirror M,. Given the nonzero spherical aberration, the exit pupil is fixed at a
distance —k(1 — k) f; relative to mirror M,.
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This afocal pair is now used as the feeder for a third mirror. Following the
Paul-Schmidt concept, mirror M, is spherical and its center of curvature coincides
with the center of the exit pupil of the afocal feeder. Mirror M, in turn, reimages
the exit pupil on to the fourth mirror of the system, M,, where the conic constant
K, is chosen to zero the spherical aberration of the system. Because M, is the
source of most of the spherical aberration, the large wavefront advance at the
primary will be compensated by an approximately equal wavefront retardation at
M,. Note that M, will introduce some coma and astigmatism into the design, but
adjusting K, will not introduce additional amounts of these off-axis aberrations.

At this point we make the crucial observation that the mirror arrangement
described in the preceding paragraph is possible only with a 2-axis system.
Mirror M, reimages the exit pupil back on itself when the pupil is a distance R,
from the mirror, but the light is intercepted by M, and no light reaches the
reimaged pupil. Hence the beam must be folded between mirrors M, and M;, with
the obvious choice that the fold mirror be located where the beam is smallest,
near the focal point of M; where an intermediate image is formed. A layout of
such a four-mirror configuration is shown in Fig. 6.16.

Following Wilson we will choose a 16-m telescope with an f/1.5 primary and
k = 0.25. We choose to set M; at a distance 1.25 times farther from the secondary
than is the primary. With the position of M; established, its radius of curvature
and the position of M, are easily found. The final parameter to be set is the
position of the final focus from which the radius of curvature of M, can be found.
For our example we choose the magnification of the intermediate image
m, = —2. The nominal parameters for this telescope are given in Table 6.21
and can serve as the starting point for an optimization analysis. The value of F;
follows from the focal ratio relation in Table 6.17, with the overall F = |my|F;.

The nominal value of K, in Table 6.21 is found by substituting the spherical
aberration coefficients for M, and M, from Table 5.2 into Eq. (5.6.7) and setting
the sum to zero. This gives

(RN (ma+ 1Y
k() (et oD

or about —13.6 for the parameters in Table 6.21. Thus mirror M, is strongly
hyperbolic, as expected.

The parameters allowed to vary in an optimization process include the conic
constants and aspheric terms of sixth order and higher for M; and M,. In order to
work on the coma and astigmatism introduced by M,, the locations of these
mirrors relative to the secondary are also allowed to vary. The radii of curvature of
all the mirrors and the shapes of M, and M, are generally held constant. We will
not give the detailed results of our analysis, but simply note that the final mirror is
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Fig. 6.16. A four-mirror 2-axis telescope configuration based on the Paul-Schmidt principle. See
Table 6.21 for nominal parameters and discussion following Eq. (6.5.1).

Table 6.21

Nominal Parameters for Four-Mirror 2-Axis Telescope®

Surface R(m) Separation(m) K
Primary —48 0
—18
Secondary —12 -1
225
Tertiary -27 0
-27
Fourth Image 18 —13.6
27

“D=16m, F| = 1.5, F; =3.375, F = 6.75. Signs of
radii and separations apply to unfolded 1-axis telescope.
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strongly hyperbolic and the tertiary is approximately parabolic. Image diameters
are 0.2 arc-sec or less over a flat field of 18 arc-min diameter.

Wilson and Delabre (1997) have analyzed this type of system in great detail
and point out that the secondary M, can also be made spherical rather than
parabolic. For their specific design with K, =0, they find K; = —0.951 and
K, = —11.12. They point out that the second axis can be positioned favorably to
coincide with the altitude axis of an alt-az mounting, and that two identical
“Nasmyth-type” foci are possible. The reader should consult their papers for
further details.

The design in Fig. 6.16 has collimated light between mirrors M, and M;, and
an intermediate focus and fold mirror between M, and M,. Another possibility is
a reversal of these roles, an intermediate focus and fold mirror between M, and
M;, and collimated light between M; and M,. A layout of this type of
configuration with an f/1.5 primary is shown in Fig. 6.17. Wilson and Delabre
have also examined this type of system in detail and find that excellent image
quality is achieveable over a 30 arc-min diameter field, comparable to that for the
configuration in Fig. 6.16.

Fig. 6.17. A four-mirror 2-axis telescope configuration based on the Paul-Schmidt principle with
intermediate focus between the secondary and tertiary mirrors.



6.5. Four-Mirror Telescopes 159

These two examples will suffice to introduce the reader to possibilities for
practical four-mirror telescopes with spherical primaries. Wilson (1966) discusses
other four-mirror configurations; the interested reader should consult his text for
specifics.

6.5.b. PUPIL ALIGNMENT

In Section 6.3 we discussed the consequences of a misaligned secondary
mirror in a two-mirror telescope and showed that an error in its position (tilt,
decenter, and/or despace) introduced aberrations. In this section we consider the
consequences of a misaligned pupil and show that aberrations are again the result.
In the case of a four-mirror telescope with its entrance pupil at M, the pupil is
misaligned if the optics between mirrors M; and M, do not properly image the
entrance pupil on to M,. Pupil misalignment is, of course, a consequence of the
incorrect placement of the optics between M, and M, , but our emphasis here is
on the misalignment of the pupil, not on the error in location of preceding optics.

We assume that the error at the entrance pupil is entirely fixed third-order
spherical aberration (SA3) and not a more complicated type of wavefront error,
either static or dynamic. (Correction of dynamic wavefront error is discussed
under the headings of active and adaptive optics.) The assumption that the error is
entirely SA3 is often true in practice. The best known case is that of the error in
the Hubble Space Telescope (HST) primary where an undetected error in an
optical test fixture was propagated into a surface error on the mirror. Numerous
other primary mirrors have also had residual errors of this type that went
undetected until put into operation in telescopes. In the case of HST, the “fix”
was put on an optical element at a reimaged entrance pupil and careful attention
was paid to possible pupil misalignment. A discussion of HST in the context of
this section follows our general analysis.

We begin by designating the entrance pupil by %, and the exit pupil by . We
also assume that the pupil imaging optics has negligible spherical aberration,
hence the amount of SA3 wavefront error added to the shape of the optic at X is
equal in magnitude but opposite in sign to that present at X,. The two effects we
consider quantitatively are pupil magnification and pupil shear, with a brief
qualitative discussion of pupil aberration. Our analysis of these effects parallels a
detailed discussion of this topic by Meinel and Meinel (1992).

Let Q and Q' denote the magnitudes of the wavefront errors added at the exit
pupil 2 and reimaged by the intermediate optics, respectively. The general forms
of these errors for SA3 are

Q=4 Q = ay™, (6.5.2)

The difference between the wavefronts is the residual error AQ. For an aligned
pupil y’ = y and there is no residual error.
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Pupil magnification occurs when the reimaged entrance pupil has a different
size than the wavefront error added at X. In this case y’ = (1 + ¢)y and the error is

AQ,, = 4y* — A(1 + &)Yy* = —44ey*
= —4¢Q, (6.5.3)

plus terms in higher powers of ¢ that are negligible for ¢ <« 1. The residual error
in this case is spherical aberration. Note that the size of the residual error is
proportional to the error at the entrance pupil. In a four-mirror telescope this
effect is controlled by proper spacing of mirrors M, and M; with their as-built
radii of curvature.

Pupil shear occurs when the reimaged entrance pupil is decentered on the exit
pupil. In this case y’ = y + dy and the residual error for pupil shear is

AQ, = Ay* — A(y + 6y)* = —44)® Oy
= —4Q(oy/y), (6.5.4)

plus terms in higher powers of Jy that are negligible for dy « y. The residual
error in this case has the form of coma, which we designate by CM3. Note that
larger spherical aberration at the entrance pupil requires a tighter tolerance on
pupil centering for the same coma residual. Coma due to pupil shear is constant
across the image field.

As examples of the tolerance of pupil misalignment we consider two
examples, the nominal four-mirror telescope in Fig. 6.16 and Table 6.21, and
HST with the two-mirror correction system called Corrective Optics, Space
Telescope Aberration Recovery (COSTAR).

From Table 6.21 we get R, = —48 m and y; = 8 m at the edge of the primary,
giving a surface error of 9.26 mm or about 1.463E4 waves at a wavelength of
633 nm. Assuming an allowable surface error of six waves in Egs. (6.5.3) and
(6.5.4) we find the following approximate limits: |¢] < 1E-4, [dy/y| < 1E-4. The
first of these limits leads to the requirement that the ratio of the actual to the
expected magnification differs from unity by no more than [¢|. The second limit
gives a tolerance on pupil shear of 0.0001y at mirror My, or about 0.2 mm. The
residual error of six waves gives angular coma of about 0.3 arc-sec, a reasonable
limit for a ground-based telescope. Given the tight tolerance on Jdy in a telescope
of this size, active monitoring and control of pupil shear would be necessary.

Turning now to HST, the COSTAR system of two mirrors was an addition to
the original telescope following the recognition that the HST primary had the
wrong conic constant. The COSTAR mirrors M| and M, were designed to act
much like mirrors M; and M, in a four-mirror telescope, with M, reimaging the
HST exit pupil on to M,. In the case of HST, however, the COSTAR mirrors are
small compared to the HST primary, with each mirror about 25 mm in diameter.
The surface error at the edge of the HST primary is about 2.2 pm or about 3.5
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waves at 4 = 633 nm. The wavefront error, in turn, is about 7 waves. Given the
requirement that the corrected HST should be diffraction-limited leads to an
allowable residual wavefront error of about 0.2 waves. Putting these numbers into
Eq. (6.5.4) gives a tolerance of +90 um for pupil shear. Because of this stringent
requirement, mechanisms for aligning the mirrors were an essential part of the
COSTAR package.

The two effects considered so far assume that the reimaged pupil is at the
surface of the optical element correcting SA3 at the entrance pupil. If the
reimaged pupil lies in front of or behind the correcting surface, then there is
no longer a one-to-one correspondence between points on the entrance pupil and
correcting surface. In this case rays from a single point on the entrance pupil land
on an area on the correcting surface, a larger area for a wider field of view, and the
best that can be done is to provide an average correction. Coma and astigmatism
will also enter into the analysis when the projected entrance pupil is not at the
correcting surface.

The discussion in this section is intended to illustrate the consequences of
pupil misalignment when a wavefront error at the entrance pupil is corrected
farther along in the optical train. We have considered only the simplest error to
correct, that of SA3. If the primary mirror is segmented rather than monolithic,
then piston or tilt errors of individual segments must also be considered. The
interested reader should consult the article by Meinel and Meinel (1992) for a
discussion of these effects.

6.6. CONCLUDING REMARKS

The discussion of the image characteristics in this chapter is based entirely on
the geometric theory derived with the aid of Fermat’s Principle, without taking
into account the limit set by diffraction. Characteristics of images in the
diffraction limit where geometric aberrations are negligible is discussed in
detail in Chapter 10. The relations in this chapter are derived assuming the
mirror surfaces are essentially perfect, thus the figure on the surface of each
mirror is according to the prescription given by Eq. (5.1.1). Real mirrors are not
perfect and polishing errors give rise to scattered light and image degradation. We
discuss this topic in Chapter 18.

We have devoted most of our discussion to two-mirror telescopes because
nearly all large reflectors are of this type. It should be evident, however, from our
discussion of the Paul-Baker designs that families of three-mirror telescopes with
excellent image characteristics can be found, given the additional free parameters
with another mirror. Although many three-mirror designs have been published,
they have common problems of image surface accessibility and larger vignetting
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of the incident beam, compared to two-mirror telescopes. With careful attention
given to these problems, however, practical three-mirror designs with excellent
image characteristics can be found.

Although practical configurations of four-mirror telescopes have been
proposed, none of these designs have yet been built. The push to build giant
ground-based telescopes with moderate fields and excellent image quality makes
this type of telescope a viable contender to more conventional designs.

Finally, there are innovative telescope designs not discussed here. One of these
is the 9-m Hobby-Eberly telescope with a segmented spherical primary and a
four-mirror, all-reflecting Gregorian corrector located at prime focus. The
corrector removes the very large spherical aberration of the f/1.45 primary.
Another design not considered is the 6.5-m replacement for the Multiple-Mirror
Telescope. This telescope has an f/5 Cassegrain focus at which a field diameter
of 1° is obtained with an all-refractive corrector located near the Cassegrain
focus. Both of these telescopes are primarily used with fiber-fed spectrometers.
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Chapter 7 Schmidt Telescopes and Cameras

Typical ground-based two-mirror telescopes without correctors have usable
field diameters of a fraction of a degree. In Chapter 9 we show that larger fields
are obtained with the addition of a corrector system to such telescopes, reaching
about 1° at prime focus and up to 3° at Cassegrain focus. Still larger fields require
a telescope of the Schmidt type, or one of the many members of the family of
telescopes based on the principle of the Schmidt. This principle is basically one of
using a corrector plate to compensate for the spherical aberration of the reflecting
optics and locating the plate and aperture stop to give zero coma and astigmatism
for the system, at least to third order.

In this chapter we consider in more detail the classical Schmidt system first
introduced in Chapter 4, including solid and semisolid Schmidt systems in which
all or part of the air between the optical surfaces is replaced by glass. We discuss
derivatives of the Schmidt design, such as Schmidt-Cassegrain and Bouwers-
Maksutov systems in Chapter 8.

The classical Schmidt is the choice for a wide-field telescope if an aperture of
1 m or more is required. The principal reasons are its relative simplicity, only two
large optical elements, and the smaller chromatic aberration of the aspheric
corrector compared to that of the corrector in other types. In smaller apertures the
choices for a wide-field instrument are a folded Schmidt or one of the two-mirror
types. Whether the intended use is as a spectrograph camera or a telescope for
visual observation, the requirement of an accessible focal surface is of overriding
importance in this case.

164
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7.1. GENERAL SCHMIDT CONFIGURATION

The Schmidt camera in its usual configuration is a corrector plate located at
the center of curvature of a spherical mirror, as shown in Fig. 4.10. This
arrangement was discussed in Section 4.5, where it was introduced to illustrate
the application of Fermat’s Principle to cancel the on-axis aberration of the mirror
in collimated light. The importance of locating the aperture stop at the center of
curvature of the mirror to eliminate off-axis aberrations was also noted there.

In this section we extend these discussions and consider the Schmidt config-
uration in a more general way. This is done to show the range of possibilities for
placement of the aperture stop and corrector.

Consider the system of spherical mirror, corrector plate, and aperture stop
shown in Fig. 7.1, with the object surface at distance s to the left of the mirror.
The corrector plate is located a distance d to the left of the mirror, and the
aperture stop is distance g to the left of the corrector. The distances s, d, and g in
Fig. 7.1 are negative according to the sign convention. We choose #n, to denote the
index of the medium for the rays incident on the mirror and reserve » and »’ for
the media before and after the aspheric correcting surface.

Defining k£ = y,/y,, the ratio of the beam height at the mirror to that at the
corrector, we see from Fig. 7.1 that k = s/(s — d).

The aberration coefficients for the corrector and mirror are found in Table 5.5
and Table 5.6, respectively, with only the b terms taken for the corrector.
Substituting these results into Eq. (5.6.7) to get the system coefficients gives

2
2 2
Bls=—%—|:bg2 -ei(1-%) ] (7.13)

where W = d + g. From the system aberration coefficients, and the requirement
that each be zero, we can determine what freedom, if any, there is in their
locations.

Setting Eq. (7.1.1) to zero, putting the result for 4 into Eqs. (7.1.2) and (7.1.3),
and setting each equal to zero gives the condition,

1 m+1 1 4
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— TV ,
' W
f s /

Fig. 7.1. Schmidt camera with stop at distance g from corrector and object at distance s from
mirror.

Using the relation between R and m in Table 5.2 and substituting for W and & in
terms of s, d, and g, we find

gR—s)=(s~d)R~—d—g).

Solving this equation for d gives two solutions: d = R and d = s — g. The first of
these solutions places the corrector at the center of curvature of the mirror, the
same location as in the earlier discussions. The second solution gives # = s,
hence the stop is at the object surface. This result is untenable and is discarded
because it violates the condition that ¥ is small, as is evident by putting W = s
into Eq. (5.5.2).

Withd = R, hence W = R+ g, we find k = —(m — 1)/(m + 1), and therefore
the aspheric factor is

2n, fm—1 2
b2 (221, 019
For collimated light m = 0 and b = 2n,/R>, the result given in Section 5.5. For
the configuration shown in Fig. 7.1, n, = 1, m < 0 and |m| < 1. Thus the factor
in parentheses in Eq. (7.1.5) is larger than one, and b for noncollimated light is
larger than for collimated light.

The upshot of this analysis is that for either collimated or noncollimated light
the corrector plate must be located at the center of curvature of the mirror, but the
location of the stop is arbitrary, provided W /s is not close to unity. Note that if an
optical system precedes the Schmidt camera, the stop is the exit pupil of the
preceding system.

This result is important because in some configurations using a Schmidt
camera the stop or pupil is necessarily displaced from the corrector. An example
of this is a camera in a spectrograph where the pupil is usually at the prism or
grating and different wavelengths leave the dispersing element in different
directions. It is worth noting here that when the stop is displaced from the
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corrector, the corrector is larger and its chromatic effects are also larger. To
minimize the chromatic effects, therefore, the pupil should be at the corrector or
as close as can be arranged. We discuss the relation between the pupil location
and the chromatic effect in a following section.

7.2. CHARACTERISTICS OF ASPHERIC PLATE

The aspheric plate is obviously the key to a correctly configured Schmidt
system and we now consider its aberration characteristics in some detail. In this
section we consider the finite thickness of a real plate and its effect on the
aberrations, and the effect of the radius term introduced in Section 4.5 to
minimize the chromatic aberration of the plate. We also discuss chromatic
aberration in more detail than in Section 4.5, and give relations for fifth-order
spherical aberration of an aspheric plate and spherical mirror in collimated light.

The equation for an aspheric surface is given by an extension of Eq. (5.1.1),
with K = —1, as follows:

z=

2wt e
— =_—— + Er* + F¥S, 7.2.1
R TBw —m 6w —m) 2R, T T (7.2.1)

where the latter form in Eq. (7.2.1) is that usually used in ray-tracing programs.
We include the terms in ° in anticipation of the section on fifth-order spherical
aberration.

The difference between setting K = —1 versus K =0 is of no practical
consequence for a refracting plate. If K =0 the added terms, */8R? and
r®/16R3, are each several orders of magnitude smaller than the terms in b and
b, respectively, for any practical plate. For the corrector plate example in Section
7.3, the effect of these added terms is to change the thickness at the margin by
less than 0.3 nm.

7.2.a. CHROMATIC ABERRATION

One approach to finding the chromatic properties of an aspheric plate is given
in Section 4.5.b, where the analysis gives a relation for the minimum chromatic
spherical aberration in Eq.(4.5.15). In this section we determine the chromatic
properties in a more general way, including the effect of a stop displaced from the
aspheric plate.
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We first consider the Schmidt system shown in Fig. 4.10 with the aspheric
figure on the surface facing the mirror. The plate of index # is located in air. For a
plate of radius r, the profile of the aspheric surface can be written as

—ardr?), (7.2.2)

where f = —R/2 and a is an arbitrary parameter. Note that this relation is simply
Eq. (4.5.11) written with a/4 replacing 3/8 in the term containing r3.

For a ray parallel to the z-axis, the angle of deviation & at height » at the
aspheric surface is given by & = i(n — 1), as shown in Fig. 7.2. The angle of
incidence i at the aspheric surface is i = —dz/dr, where dz/dr is the slope of the
normal to the surface. Thus

dz

0=—n-1g = 16f

—— (argr — 27°). (7.2.3)
From Eq. (7.2.3) we see that 6 = 0 when r = 0 and » = ry+/a/2, where the latter
value defines the radius of the neutral zone.

Inside the neutral zone the ray deviation is a maximum at the inflection zone,
defined as that r for which dé/dr = 0, while outside the neutral zone r is a
maximum at the edge of the plate. The characteristics of the aspheric surface at
these zones, expressed in terms of g, are given in Table 7.1.

From the entries in Table 7.1 it is evident that the deviations at the inflection
zone and edge have opposite signs for a < 2. As a increases from zero, 9 at the
inflection zone increases while ¢ at the edge decreases. The net deviation across
the plate is a minimum when the values of J at these two radii are equal in

magnitude. This is obtained with the choice a = 1.5 and the resulting magnitude
of = r3/32f? at these radii. The neutral zone is then at r = rj/3/2 = 0.866r,.

Fig. 7.2. Angle of deviation § at wedge-shaped section of aspheric plate.
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Table 7.1

Deviations at Zones of Asperic Plate

Zone Radius Deviation
) an 1/2 r(3) an 3/2
Inflection o (E) s (g)
172
Neutral I (E) 0
Edge ¥, 73 (a-2)
g 0 16f3

Differentiating Eq. (7.2.1) and setting it equal to zero, substituting for r at the
neutral zone, and solving for R, gives

_8(n’—n)_ 1

R, .= = - , 7.2.4
¢ 3br} 3Er3 (724

where n’ = 1 for the configuration in Fig. 4.10.

The sign of b depends only on the character of the plate. From Eq. (7.1.5) we
see that b < 0 for a plate in a Schmidt camera because n, and R are always of
opposite sign. As shown in Section 4.5.b and Fig. 4.11, a Schmidt plate has a
“turned-up” edge. Conversely, b > 0 for a plate with a “turned-down” edge. The
sign of E, on the other hand, depends on whether the aspheric is on the first or
second surface of the corrector, and on the direction of light through the plate.
Note also from Eq. (7.2.4) that £ and R, always have opposite signs in order to
place the neutral zone at the desired radius.

The chromatic blur is obtained by finding the variation of d with changing n.
Using Eq. (7.2.3) we get

b_ i s
dn~  dr n-=-1

(7.2.5)

Figure 7.3 shows two rays for different values of » leaving a point on the aspheric
surface and intersecting the mirror a distance R dé apart. The point on the
aspheric surface can, in effect, be considered an object point at distance R that is
reimaged at the corrector. Hence the blur at the focal surface for these two rays is
f do. Substituting the values of ¢ at the inflection zone and edge into Eq. (7.2.5)
gives a blur diameter of 2f dd. Hence

f dn
CSA = s \n 1) (7.2.6)
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»9
\

fd3

Fig. 7.3. Paths of rays of different wavelength through Schmidt camera. See Egs. (7.2.5) and
(7.2.6).

where CSA is the chromatic spherical aberration and F is the focal ratio of the
mirror. This result is, as expected, equivalent to that given in Eq. (4.5.15).

The results so far are appropriate for a corrector with aperture stop at the plate.
When the stop or pupil is displaced from the plate, as shown in Fig. 7.4, the
radius of the plate must be larger by a factor I" to accept all of the light without
vignetting. If r, is the radius of a collimated beam at the plate, then
=14+ W0/ry, and all of the results in Table 7.1 apply to the enlarged plate
if ry is replaced by I'rg.

The chromatic effects are again minimized by choosing a = 1.5, hence the
neutral zone is at » = 0.866(I'7,). The deviations at the inflection zone and edge
are now larger by the factor I'%, as is the blur diameter in Eq. (7.2.6). It is clear
from this result that the placement of the stop or pupil at the corrector is the
preferred choice to minimize chromatic effects. As a final item note that the
relations for R, in Eq. (7.2.4) apply to a plate of radius I'r; with the substitution
of I'ry for ryy.

6 _

I'ro

fo

boA

P

Fig. 7.4. Corrector size required to cover field when stop is displaced from plate.
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7.2.b. ABERRATION COEFFICIENTS

We now determine the effect of the plate thickness and radius R_ on the
aberration coefficients of a real plate in collimated light. Consider a plate of index
n and thickness ¢, as shown in Fig. 7.5. Its first surface is plane and its second
surface has a radius of curvature R, and an aspheric term b, with the pupil for the
plate located a distance W; to the left of the first surface. The image of the pupil
by the first surface is W] from this surface and W, from the second surface.
Because collimated light is incident on the plate, the beam heights at the two
surfaces are equal.

The aberration coefficients for the first surface are zero when the light is
collimated. The coefficients for the second surface from Table 5.5 are

2 2
W- b
By =~ 205(1- ) 50w

R.) 2
r b
By = —‘/’2 2 (1 ) + = (W,), (7.2.7)
r b n*(n —1)
By =~— 81322 g =7 (Rc ’
where
=020 =W = (7.2.8)
EP AS
!
Pl .
2
wl P em——
p—— = ’
T W=
w
| l :

Fig. 7.5. Cross section of aspheric plate with stop AS and pupil EP. See Eq. (7.2.8).
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Substituting Eq. (7.2.8) into Eqgs. (7.2.7), and assuming that W, < R, for all
configurations using an aspheric plate, we find the following aberration coeffi-
cients for the corrector:

*(n—1) bo 12
Bie=—"r— -5 (m-2)
_On(n—1) bO t
Be="gm— 5 (M=) (7.2.9)
b nP(n—1
=Tyt TaRy

Substituting Eq. (7.2.4) for one R, in B;, of Egs. (7.2.9), we find that the right-
hand term is of order (#, /Rc)2 smaller than the first term. For any practical plate
¥o < R, and the right-hand term in B, is negligible.

For the remaining coefficients in Eq. (7.2.9) we see that the contribution of the
aspheric term in each is zero when W, = t/n. The remaining terms are simply
those for a plano-convex lens in collimated light. If Eq. (7.2.4) is substituted into
B,. and B, and W — t/n is replaced by ¢, the coefficient B, is dominated by the
term in R, when ¢ is small. For B,_, on the other hand, the term in & dominates
when |g| > rg /R, hence the coma coefficient is sensitive to small changes in &.
This result can be used to minimize the effect of coma in a Schmidt system by
adjusting the plate location.

Relations of a comparable form to those in Eq. (7.2.9) are obtained for an
aspheric plate with its figured surface facing the incident light, with the principal
change one of substituting W, for W, —t/n. The comments in the previous
paragraph on the dependence of B,, and B,,. on small values of W, hold without
change.

If the incident light is coming from a source at a finite distance, then there is an
additional contribution to each of the aberration coefficients from the plate
thickness. These effects are easily derived with the aid of the geometry in Fig. 7.6
for a plane-parallel plate, with the coefficients for each surface taken from Table
5.1 with b = 0 and R = co. When these relations are substituted into Eq. (5.6.7),
an exercise left to the reader, we find for a plate p

O3(n? — 1)t
By, = s (7.2.10)
91(”2 — l)t
By, = T (7.2.11)
2
-1
B, =" =t (7.2.12)

P 8nst



7.2. Characteristics of Aspheric Plate 173

n=| n n=|
y
Y| 2
u 6 ) 2
ot
S t
| 2

Fig. 7.6. Cross section of plane-parallel plate of index # in air.

The importance of these coefficients for an aspheric plate in noncollimated light
depends on the specifics of a given configuration. In most configurations it turns
out that their contributions are of little significance, with the details best left to
computer ray-trace analysis.

Although the term in R, in B;, of Eq. (7.2.9) is negligible, the value of R, does
affect the optimum choice of b required to zero the third-order spherical
aberration of the system. With the addition of a radius term the corrector
becomes, in effect, a weak positive lens with an aspheric figure. The effect of
the lens part of the corrector is to convert the incident collimated light into a
slightly converging beam. Thus the marginal rays intersect the mirror at a slightly
smaller distance from the mirror vertex, as compared to the case where the
corrector has no radius term. Omitting the detaiis of the derivation, the spherical
aberration coefficient for a Schmidt system in collimated light is given by

By —— 4o [1 —%(r—")z], (7.2.13)

R

for the case where R, is chosen according to Eq. (7.2.4). Setting B;, equal to zero

gives
2n, 3 rrp\? 2n, 3
b="5 [1 ~(3) ] = [1 32F2}. (7.2.14)
For typical values of F the result is a reduction of 1 or 2% in the magnitude of b
needed to cancel the spherical aberration of the mirror.

With the exception of the correction given by Eq. (7.2.14), the effects of the
plate thickness and radius of curvature on the aberration coefficients of an
aspheric plate are usually small compared to those of terms containing b.
Therefore the usual approach to the analysis of a system that includes one or
more aspheric plates is to include only terms in b and let this description serve as
the starting point for a ray-trace analysis.
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Table 7.2
Fifth-Order Spherical Aberration Results®

Surface B ASAS
. v 3
Aspheric 16 -5

5
Spherical mirror :8;% gZ—" (%)

“Results valid for collimated light only.
ASAS = 6Bsr°.

7.2.c. FIFTH-ORDER SPHERICAL ABERRATION

The prescription of a Schmidt corrector plate usually includes higher-order
aberration terms. Fifth-order spherical aberration is the most significant of these
terms and we give here, without derivation, the necessary relations for a spherical
mirror and aspheric corrector in collimated light.

The fifth-order spherical aberration coefficients, denoted by Bs, are obtained
after a lengthy analysis paralleling that in Chapter 5, but with § set equal to zero.
The results of this analysis are given in Table 7.2, with the entry for ASAS of the
mirror derived from Eq. (4.2.1).

The calculation of the system aberration coefficient Bs; for the combined
aspheric and spherical mirror is carried out using Eq. (5.6.7) with j = 5. Because
the ray heights at the corrector and mirror are equal in a first approximation, Bs, is
simply the sum of the coefficients in Table 7.2. Setting the sum equal to zero
gives b’ = 6n,/R; with this choice of &’ the fifth-order spherical aberration of the
system is zero.

7.3. SCHMIDT TELESCOPE EXAMPLE

We now apply the preceding results to an example of a 1-m Schmidt telescope
with F = 2.5. The aspheric surface on the corrector plate faces the mirror; the
plate material is SiO, and its thickness is 10 mm at the vertex. The parameters
R, E, and F in Eq. (7.2.1) are calculated at A = 548 nm, at which wavelength the
plate index is 1.460. Values of the telescope parameters are given in Table 7.3,
with b given both for R, = oo and according to Eq. (7.2.14). The depth of the
corrector at the neutral zone, calculated from Eq. (7.2.1), is 0.1534 mm.

Results from a ray-trace analysis are given in Table 7.4, with all aberrations
given in angular terms in units of arc-seconds. Various combinations of
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Table 7.3

Parameters of 1-m Schmidt Telescope®

R = —5000 mm ro = 500 mm
b=2/R? = —1.60E-11 E = 4.34785E-12
b =6/R° =—192E-18 F =2.6087E-19

R. = —1/3Er} = —306 667
From Eq. (7.2.14)
b= —1.576E-11 E = 4.2826E-12

“Values of E and F are computed using n = 1.46.

parameters from Table 7.3 are used to illustrate the effect of each of the
parameters on the angular aberrations. Note that the on-axis angular aberrations
of the mirror without corrector, given in arc-seconds, are ASA3 =206.3, and
ASAS =4.64, while the off-axis aberrations are zero in the third-order approx-
imation.

Examination of the results in Table 7.4 clearly shows the improvement in the
on-axis image quality when a fifth-order term is included in the aspheric and the
third-order aspheric term is calculated from Eq. (7.2.14). We also see that there
are small but nonzero off-axis aberrations that appear when the radius term is
included on the corrector. These aberrations are a result of the terms in R, in Eq.
(7.2.9). The presence of these off-axis aberrations limits the field size, and ray
traces of the final system in Table 7.4 gives an image blur diameter of about 1 arc-
sec at a field angle of 3.5°.

Values for the angular chromatic spherical aberration, computed from Eq.
(7.2.6), are shown in Table 7.5, where the indices are those of SiO,. Because the
index of refraction rises more steeply at shorter wavelengths, the chromatic blur
increases rapidly for blue and ultraviolet wavelengths.

Table 7.4

Ray-Trace Results for 1-m Schmidt Telescope™®

System Parameters

—b —b' -R, ASA3 ASAS ATC AAS
1.60E-11 0 o0 <0.01 4.76 0.000 0.000
1.60E-11 0 306667° 3.09 4.69 0.010 0.048
1.60E-11 1.92E-18 306667 3.09 0.02 0.010 0.048
1.576E-11 1.92E-18 3066677 0.01 0.02 0.010 0.048

“Telescope scale =82.5 arc-sec/mm or 12.1 pm/arc-sec.

®Ray traces at A = 548 nm with § = 1°. Angular aberrations are given in arc-seconds.
¢ Shift of 9.38 mm from paraxial focus; see Af in Eq. (4.5.8).

9 Shift of 9.41 mm from paraxial focus.
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Table 7.5

Image Diameters for 1-m Schmidt Telescope”

A (nm) n ACSA?
350 1.47689 3.78
400 1.47012 2.26
450 1.46577 1.24
548 1.46000 0.00
650 1.45650 0.79
700 1.45523 1.08

“Image diameters are given in arc-sec.
b ACSA= angular chromatic spherical aberration.

From the results in Table 7.5 it is evident that a single corrector does not give
good images at all wavelengths over an extended spectral range. One alternative is
to have several correctors, each designed to give good images over a selected
range of wavelengths. Although this option is practical for a small telescope or
camera, it is not considered practical for a Schmidt telescope of the 1-m class.

A different alternative, suggested by Bowen (1960), is to design the corrector
for a wavelength near the short end of the desired range and to use a flat glass
plate of appropriate thickness to partially correct the chromatic aberration of the
corrector at longer wavelengths. This plate, usually a filter to remove shorter
wavelengths, is placed in the converging beam close to the focal surface. For
details on this approach the reader should consult the reference by Bowen. A final
alternative is to use an achromatic corrector made of two different glasses, the
subject of the next section.

The Schmidt telescope example in this section is intended primarily to
illustrate the application of the theory to the design of a wide-field telescope.
The focal surface is curved and further refinement of the design might include the
addition of a field-flattener lens, as discussed in Section 5.7. Such a lens will
introduce spherical aberration over the entire field and coma near the edge of the
field, hence the parameters of the corrector will have to be adjusted to get an
optimum system. The process of optimization is best carried out with a computer
ray-trace program and will not be pursued here. For a theoretical discussion of the
aberrations of a field-flattened Schmidt camera the reader should consult the
reference by Linfoot (1955).

A final point worth noting is the increasing importance of higher-order
aberrations for smaller focal ratios. The importance of fifth-order spherical
aberration is evident in our example, but in faster cameras it is necessary to
consider the effects of still higher orders. In addition, fifth-order off-axis
aberrations become important and attention must be given to their effects in
the design of a fast camera.
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7.4. ACHROMATIC SCHMIDT TELESCOPE

The wavelength range over which a Schmidt telescope with a single element
corrector gives images of acceptable size is set by the dispersive characteristics of
the corrector. This range can be extended by replacing the single-element plate
with a two-element corrector, with each element a glass of different dispersive
characteristics and plate parameters to make the combination achromatic. In this
section we outline the procedure for making an achromatic corrector and apply
the results to an example of a 1-m Schmidt telescope.

A cross section of a two-element corrector is shown in Fig. 7.7, with the plane
surfaces of the elements in contact and the aspheric surfaces facing outward. The
differential deviation for each element is given by Eq. (7.2.5), which can be
written as

d51 = 51/V1, déz = 52/V2, (74.1)
where
plmz oy _mi ol (1.4.2)
n—n ny —n,

In Eq. (7.4.2) V is the Abbe number and (n) is the mean of the indices in the
denominator for each glass. The primed indices are taken at a shorter wavelength,
by convention, hence V' is positive.

The achromatic condition requires that dé, = —dd,, hence a change in
deviation with wavelength in one glass is compensated by a change of opposite
sign in the other glass. Therefore

51/V1 - "‘(Sz/Vz. (743)

n N2

- - —

|

Fig. 7.7. Cross section of portion of achromatic corrector. The net deviation § is the sum of the
deviations of individual elements.
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Because the Abbe numbers are positive, the deviations of the two elements are
opposite in sign and one plate has a “turned-up” edge, as for a normal Schmidt
plate, while the other has a “turned-down” edge, as shown in Fig. 7.7.

Assuming that the deviation at the plane interface is negligible, the net
deviation of the achromatic plate is

d=20,+0, =0 (V‘ — Vz). (7.4.4)
4
Given that the achromatic plate is a replacement for a single plate, the deviation
given by Eq. (7.4.4) must be the same as that in Eq. (7.2.3).

From Eqgs. (7.4.3) and (7.4.4) we see that both 4, and J, are larger than ¢ in
magnitude, hence each aspheric surface has a larger local slope than on the single
plate at the same ray height. If the achromatic plate is oriented as shown in Fig.
7.7, 6 and &, have opposite signs and from Eq. (7.4.4) we find V| < V,. Thus the
element with the turned-up edge is the one with the larger Abbe number, a result
true for either orientation of the corrector.

It is evident from Egs. (7.4.3) and (7.4.4) that the ratios J,/6 and J,/0 are
independent of ray height r for a given set of glasses. Substituting Eq. (7.2.1) into
Eq. (7.2.3) we see that each J has the form

8; = —(n; — 1)(c;r + 4E;> + 6F;r°), (7.4.5)

where ¢; is the vertex curvature. If the ratio of one § to another is independent of
r, then it follows that the ratios of corresponding plate parameters must also have
a common value. Substituting Eq. (7.4.5) into Eq. (7.4.4) and applying this

condition gives
@ _E_F_(In=1)( ¥ 749
¢ E F (n)) =1\, =", )’ o

where the unsubscripted parameters are those of the single element corrector.
Note the reversed order of the factors in the difference of the Abbe numbers
between Egs. (7.4.4) and (7.4.6), a consequence of the sign difference between &
and J,. Using Eq. (7.4.3) we find

Cy E2 FZ nll_nl
¢, E, T F np—ny

(7.4.7)

All of the relations needed to specify an achromatic plate are now in hand, and
their application is straightforward once a suitable pair of glasses is chosen.
We choose two glasses from the Schott catalog, UBK7 and LLF2, the former a
crown glass and the latter a light flint. Both glasses have good internal
transmittances in the near ultraviolet, with values of 0.85 and 0.74 at
A =320 nm for a 10-mm thickness of UBK7 and LLF2, respectively. The pair
of chosen wavelengths at which to make the plate achromatic are 320 and
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880 nm, with the indices at these wavelengths and Abbe numbers shown in Table
7.6.

Given the results in Table 7.6 and the discussion following Eq. (7.4.4), LLF2
and UBK?7 are the glasses for elements 1 and 2, respectively, of the corrector
shown in Fig. 7.7. The mean index (n) in Table 7.6 is approximately the index at
A = 420 nm for each glass. We use this wavelength to calculate the parameters of
a single element SiO, plate needed in Eq. (7.4.6).

The Schmidt telescope used in the following comparison is the same one used
in the previous section, with Eqs. (7.4.6) and (7.4.7) used to calculate the
parameters of the achromatic plate. The calculated parameters for both the single
and achromatic plate are found in Table 7.7. The sags at the neutral zone for the
LLF2 and UBK?7 elements are 0.2765 and 0.4268 mm, respectively.

Ray traces of a 1-m Schmidt telescope with an achromatic plate specified by
the parameters in Table 7.7 show a well-corrected system at 320 and 880 nm, with
the blur diameter on-axis set primarily by residual fifth-order spherical aberration.
The blur diameters for on-axis images over the range 320-1000 nm is shown by
the solid curve in Fig. 7.8. Although the correction is excellent at the ends of the
range shown, the image diameters in the blue and near ultraviolet are larger than
desired.

The corrector as specified provides the proper correction at the chosen
wavelengths, but gives too large a correction over much of the range. This is
easily remedied by making the aspherics on each surface slightly weaker. The

Table 7.6
Indices and Abbé Numbers for UBK7 and LLF2*

n (320 nm) n (880 nm) n—n n—1 vV
UBK7 1.54634 1.50935 0.03699 0.52784 14.27
LLF2 1.58789 1.53081 0.05708 0.55935 9.799

“Indices of refraction taken from Schott catalog.

Table 7.7

Parameters of Single and Achromatic Correctors

R, E F
Siog —312067  4.2085E-12  2.5636E-19
LLF2 —170120  7.7201B-12  4.7026E-19
UBK7  —110240  1.I913E-11  7.2567E-19

“Parameters for SiO, plate are similar to those in Table
7.3, but computed with » = 1.46810.
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Fig. 7.8. Image diameters for f/2.5 achromatic Schmidt camera. Solid curve: parameters in Table
7.7; dashed curve: parameters adjusted as noted in text, Section 7.4.

dashed curve in Fig. 7.8 shows the image diameters when the values of £ and F'
for the elements of the achromatic plate in Table 7.7 are reduced by 0.25%, with
the values of R, increased by the same amount. The overall improvement in on-
axis image quality over much of the range is evident from a comparison of the
two curves.

The quality of the off-axis images is acceptable for the modified corrector,
provided it is moved about 30 mm away from the mirror. This shift reduces the
coma to near negligible levels and ray traces give symmetrical images of
acceptable size over a field diameter of 6°. Spot patterns are shown in Fig. 7.9
at five wavelengths and three field angles, in addition to the images on axis.

As in the design of any Schmidt system, computer optimization is used to
balance the various aberrations and find the best overall set of parameters. For a
discussion of this process and the results found for an f/3.5 achromatic Schmidt,
the reader should consult the reference by Buchroeder (1972). Results for a
Schmidt camera in an echelle spectrometer are given in the reference by
Schroeder (1987).

In summary, the Schmidt telescope with an achromatic corrector has the
advantage of an extended wavelength range over which good images are
obtained. With the availability of several glasses that transmit well into the
ultraviolet, the choice of an achromatic corrector over a standard one is a viable
option.
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Fig. 7.9. Spot diagrams for 1-m f/2.5 achromatic Schmidt camera at selected wavelengths and
field angles. Scale bar at the upper left is 2 arc-sec long. See Section 7.4 for the parameter values.

7.5. SOLID- AND SEMISOLID-SCHMIDT CAMERAS

A common use of the standard Schmidt camera is as the camera in a
spectrograph. In this application different wavelengths are in focus at different
places on the focal surface, and it is no longer necessary that the camera be
strictly achromatic. It is therefore possible to modify the standard air-Schmidt to
achieve improvements that are otherwise not possible.

One such modified Schmidt is the so-called solid-Schmidt, one in which the
space between the corrector and mirror is filled with glass, as shown in Fig. 7.10.
In this design the aspheric surface is on one end of the glass block and the mirror
is on the other end. If the length of the block is equal to the radius of curvature of
the mirror, then third-order off-axis aberrations are zero, just as for an air-
Schmidt. The condition for zero spherical aberration and minimum chromatic
aberration is given by Eq. (7.2.14), where n, = n, the index of the glass block.
Compared to an air-Schmidt, the aspheric figure is » times stronger and the radius
R, is n times smaller.

From Fig. 7.10 we see that a chief ray entering the block at angle makes angle
0/r with the z-axis inside the block. Because this ray is reflected back on itself,



182 7. Schmidt Telescopes and Cameras

n

9‘;

Fig. 7.10. Solid-Schmidt camera of index n and effective focal length f/n. The aspheric figure
and mirror are on opposite ends of the block.

the height # of the corresponding image is f0/n from the z-axis. Thus the
effective focal length /7 of the solid-Schmidt is f/n, where f is the focal length of
the equivalent air-Schmidt.

The reduction in focal length by a factor of » is significant for several reasons.
First, the focal ratio is reduced by this factor and thus the “speed” of the camera
is effectively larger by a factor of n?. The term “speed” for a spectrograph is
defined in Chapter 12; at this point it is sufficient to note that exposure time to a
given level is inversely proportional to the speed. Second, the off-axis aberrations
present in an optimized air-Schmidt camera are smaller by a factor of #? in a
solid-Schmidt. As a consequence, a solid camera will have comparable image
quality at a field angle that is » times larger than that of an air-Schmidt of the
same size. Alternatively, a solid-Schmidt will cover the same field as that of an
air-Schmidt, where the former is n times shorter.

Given height A = f0/n, we find the variation of # with changing index is given
by

dh = —0f dn/n*. (7.5.1)

If, for example, we take the values of » for SiO, from Table 7.5 at 400 and
700 nm, and assume f = 500 mm, then dh = 61 pm for a field angle of 1°. A
lateral shift of this amount is not acceptable in direct imagery because a point
source would be imaged as a short spectrum, with its length proportional to the
field angle. In a spectrograph camera, on the other hand, each image of the slit is
quasi-monochromatic and the lateral shift is simply an offset without additional
blurring.

The effect of index » on the aberrations is most easily seen from an example.
Ignore for the moment the aspheric term on the surface of the solid-Schmidt and
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consider only the radius term. Because the stop is at the surface, the astigmatism
coefficient is that given in Table 5.1. For s = co we find

2
mz_%C‘s. (71.5.2)

2
n‘R,

The corrector for the air-Schmidt, in the absence of the aspheric term, is a plano-
convex lens of thickness d. The astigmatism coefficient of the lens is the sum of
the surface coefficients.

With the convex surface facing the incident light, and the stop at this surface,
we find that the astigmatism coefficient of the lens for d « R, is given by

2
&=_%Cgv. (7.5.3)

c

In comparing Eqgs. (7.5.2) and (7.5.3) it is important to note that Eq. (7.5.2)
applies to the solid-Schmidt and R, is » times smaller than in Eq. (7.5.3).
Therefore A, for the solid-Schmidt is » times smaller than B, for the air-Schmidt.
Substituting each of these coefficients into Eq. (5.6.6) we see that the transverse
aberration for the solid-Schmidt is smaller by another factor of n. Hence the net
reduction in the astigmatism due to the radius term on the corrector is smaller by
a factor of n?, as already stated here. The same factor is found in a comparison of
the coma coefficients.

The fabrication of the solid-Schmidt is obviously difficult because the curved
focal surface lies in the center of the block. To avoid the complication of
preparing this surface in a hole in the block, an alternative is the so-called
semisolid- or thick-mirror Schmidt. This camera is one in which glass fills the
space between the focal surface and the mirror, with a conventional aspheric plate
in front of the block, as shown in Fig. 7.11. Except for the curved focal surface,
the face of the block toward the corrector is plane.

From Fig. 7.11 we see that the location of the corrector is such that the chief
ray, after refraction at the surface of the block, appears to come from the center of

fo—m

Fig. 7.11. Semisolid-Schmidt camera with center of curvature at C. Focal length = f/n.
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curvature of the mirror. Because the refracted chief ray makes angle 6/n with the
z-axis, the distance from the axis to the image point is the same as that of the
solid-Schmidt. Hence the focal length of the thick-mirror Schmidt is the same as
that of the solid-Schmidt and all of the preceding comments also apply. The
aspheric figure and radius R, are also the same as those for the solid-Schmidt.
Ray traces of a solid-Schmidt and thick-mirror Schmidt, with a & aspheric
term added to control fifth-order spherical aberration, show very similar image
characteristics. For F = 2.5, the focal ratio of the equivalent air-Schmidt, the
image blur diameters are 1 arc-sec at a field angle of 5°. Compared with the f/2.5
design example in Section 7.3, the field is about n times larger, as expected.
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Chapter 8 Catadioptric Telescopes and Cameras

In this chapter we discuss various derivatives of the Schmidt type of telescope,
including Schmidt-Cassegrain, Baker-Schmidt, and Bouwers-Maksutov systems.
Each of these is a type of catadioptric telescope in which a full-aperture
refracting element provides the aberration correction needed to get good imagery
over a wide field. Given this definition, the classical Schmidt telescope is also of
this type.

The Schmidt-Cassegrain, as the name suggests, is a two-mirror system with an
aspheric corrector in the collimated beam ahead of the primary mirror. Baker-
Schmidt systems are a subclass of the Schmidt-Cassegrain with a flat focal
surface, of which examples of two specific types are given. The Bouwers-
Maksutov type is one in which the aspheric corrector is replaced by a meniscus
lens with spherical surfaces. This type of corrector, in combination with one or
two mirrors, is the basis for a wide variety of wide-field systems. The design
parameters are given for selected examples of systems using a meniscus corrector.

8.1. SCHMIDT-CASSEGRAIN TELESCOPES

The Schmidt-Cassegrain telescope, hereafter designated SC, is a two-mirror
telescope with a corrector plate in the collimated beam, as shown in Fig. 8.1.
Compared to an all-reflective Cassegrain, the principal differences are the
addition of an aspheric plate to compensate for the spherical aberration of the
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Fig. 8.1. Schematic of Schmidt-Cassegrain telescope with stop at corrector plate. Distance from
stop to primary = of;.
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mirrors and the shift of the aperture stop from the primary to the corrector. With
these changes there are additional free parameters available for the elimination of
other aberrations, and a host of wide-field SC systems are possible.

In this section we outline the procedure by which the aberration characteristics
of a general SC are found. Rather than exploring the features of the general SC,
however, we choose to apply these results to a selected number of SC types to
illustrate their basic features. The types considered include the flat-field anastig-
mat, the SC with spherical mirrors, and the * short” SC with the corrector
approximately a distance f, from the primary. For further details on these and
other types of SC systems, the reader should consult the work by Linfoot (1955).
A thorough discussion of a variety of Schmidt-Cassegrain systems is also given
by Wilson (1996).

8.1.a. GENERAL PARAMETERS

The notation used in writing the aberration coefficients for each surface is the
same as that used for two-mirror telescopes. The subscripts 1 and 2 refer to the
primary and secondary mirrors, respectively, while the subscript ¢ is used for the
corrector. For a concave primary, the only type considered, the focal length f] is
positive.

The relative locations of the mirrors and focal surface of the SC are described
in terms of the normalized parameters in Table 6.3 used for two-mirror
telescopes. An additional normalized parameter introduced for the SC is o, the
location of the aspheric plate relative to the primary in units of the primary focal
length. According to our sign convention, the distance #, from the primary to the
stop is negative and we therefore choose to define ¢ = —W,/f; to make ¢
positive.
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Table 8.1

Aberration Coefficients for SC Primary

g
By = [1 -2 (K + 1)
Ki+1
B, =
TR

With the stop at the corrector, hence W, = 0, the only nonzero aberration

coefficient for the corrector is By, = —b/8. In writing this result we ignore the
radius term added to minimize chromatic aberration.
For the primary mirror, the stop is at a distance W, = —af, the chief ray angle

Y, is the field angle 6, and the magnification m is zero. Substituting these results
into the equations in Table 5.6 gives the coefficients for the primary, in the form
shown in Table 8.1. Note that » = 1 for the primary.

To find the aberration coefficients for the secondary, we first determine the
location of the pupil for the secondary using the paraxial relations. As shown in
Fig. 8.2, the primary images the stop at a distance W| = fi6/(1 — o), where W] is
negative when ¢ > 1. The location of the pupil relative to the secondary is
W, =W +T, where T = (1 — k)f; is the separation between the primary and
secondary.

To find the chief ray angle ¥/, for the secondary, we see from Fig. 8.2 that the
chief ray is directed toward the center of pupil after reflection from the primary.

AS

P
| .

1 ¥

—~—F— Y

W T

T I WII 7
{ Wl

Fig. 8.2. Geometry of aperture stop AS, pupil P, and chief ray angles for Cassegrain telescope.
See Eq. (8.1.1) and preceding discussion.
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Table 8.2

Aberration Coefficients for SC Secondary
Nw—nz(m)z ( ;ny
By, = — — ) K41 ——=
1 PR, pR;) ? PR
L) G0 -5%)
By, = — K+ | — {1 ——
270R Y LR \m =1/ 7R,
1 m+1\?
By, =— 7 [ K2+ ( — )
4(pRy) m—1

W, _1+ka-1)
PR~ 2p(c—1)

Therefore Wy, = Wy,, where ¥, is the chief ray angle for the secondary.
Substituting for ¥, and W gives

hmto—p, Mo _Ltie=n__am

fi c—1 R,

The resulting aberration coefficients for the secondary, taken from Table 5.5, are
shown in Table 8.2. Note that n = —1 for the secondary and that R, has been
replaced by pR, in writing these relations.

The system aberration coefficients are found by applying Eq. (5.6.11) to
corresponding sets of surface coefficients. After substitution of Egs. (8.1.1) into
the coefficients in Table 8.2, and following some straightforward algebra, we get
the system coefficients for a general SC given in Table 8.3. Also given in Table
8.3 is the curvature of the median astigmatic surface. The derivation of this
curvature relation follows from the discussion preceding Eq. (6.2.2).

Before proceeding to apply these aberration results to selected examples, we
develop some additional useful relations between the normalized parameters.
From Section 2.5 we find n = BF| = BF/m, where 7 is the back focal distance in
units of the telescope diameter D. Using the relations in Table 6.3 we write £ in
terms of p, n, and F, with the result

KBF —kFQp+1)+p(F+3)=0

Solving this relation for & we get

(8.1.1)

k=p+i-(pp+i_rn . (8.1.2)
2 4 F ’ o
where the minus sign in front of the radical is chosen to ensure that £ < 1. From
Eq. (8.1.2) we see that a specification of p, #, and F sets the value of &, which in
turn fixes the values of m and F,. Note that k is independent of F when n = 0.
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Table 8.3

Aberration Coefficients for General SC

02
B, = m(92a2 - 20,6+ Q)

0
By ='27%(Ql - Q0)
B - b
*T 4RI R

2
Q, = 4—1;—3[(2p+ 11—k + (1 — kPK,)
k2
Q =2- ;;[(2,) —b2p+ 11—k — k1 — bK;]

k2
Qz=1+K1"p—3(20—k)2—k2K2]

2 /1-p\ 1
=k (7) + g @0 =200 +Q)

It is also important to determine the sizes of the primary and secondary
required to cover a given field without vignetting. If D is the diameter of the
aperture stop, then from the geometry in Fig. 8.3 we find that D, the diameter of
the primary, is given by

D, = D(1 + 200F)), (8.1.3)

where 6 is the angular radius of the field.

I — ot —7!J

Fig. 8.3. Geometry showing primary mirror diameter needed to cover field of angular radius 6
without vignetting. See Eq. (8.1.3).
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Fig. 8.4. Geometry of secondary mirror diameter needed to cover field of radius 8 without
vignetting at outer edge. See Eq. (8.1.4).

To determine the size of the secondary, we use the geometry in Fig. 8.4. The
diameter D, , expressed in terms of the diameter of the corrector, is given by

D, = D[k + 26F,(k(c — 1) + 1)]. (8.1.4)

Note that Eqgs. (8.1.3) and (8.1.4) with ¢ = 0 apply to the two-mirror telescopes
discussed in Chapter 6. Note also that D, and D, can be expressed in terms of #
and F with the substitution F; = F(p — k)/p. We now apply the results in this
section to some specific types of SC telescopes.

8.1.b. FLAT-FIELD ANASTIGMATIC SCHMIDT-CASSEGRAIN

An anastigmatic optical system, as noted in Section 5.8.c, is one with zero
astigmatism, coma, and spherical aberration. The condition for a flat field for an
anastigmat is zero Petzval curvature; the surface of best images is a plane. From
Eq. (5.7.17) it follows that Petzval curvature is zero when p = 1. Setting p = 1
also fixes m in terms of £. From Table 6.3 we get m = 1/(1 — k).

Applying the anastigmatic condition to the aberration coefficients in Table 8.3
gives

Q, =09, Q, = 09, bR} =2Q,. (8.1.5)

The first step in the procedure for solving the relations in Egs. (8.1.5) to find the
system parameters is to calculate & from Eq. (8.1.2) for selected # and F.
Substituting this value of & into Q, = o€, gives a relation between ¢ and K,, and
one can be found after the other is specified. With ¢ and K, now known, K] is
computed using Q, = ¢Q,. Finally, using the known values of the conic
constants, b is calculated using the last relation in Eq. (8.1.5). Carrying out the
first step for F = 3 and selected values of #, we get the results shown in Table 8.4.



8.1. Schmidt-Cassegrain Telescopes 191

Table 8.4

Parameters of f/3 Flat-Field Anastig-
matic Schmidt-Cassegrain

n k m F,

—-0.10 0.3672 1.580 1.899
—0.05 0.3745 1.599 1.876
0.00 0.3820 1.618 1.854
0.05 0.3894 1.638 1.832
0.10 0.3970 1.658 1.809

Note that # < 0 places the focal plane between the primary and secondary
mirrors.

Using the values of £ from Table 8.4 we now find the characteristics of two
specific systems, first analyzed by Baker (1940). The first is the so-called Baker A
design with ¢ = 1; the second is the Baker B design for which K, = 0. Baker
also gave the results for two other flat-field systems; the Baker C design has
K, =0 and the Baker D design is free of distortion. The parameters of the C
design are little different from those of the B design, while those of the D design
lie between those of the Baker A and B systems. For specifics on these other
versions, see the reference by Linfoot (1955).

For the Baker A design, the solution of the relations in Egs. (8.1.5) gives

2(1 +k
Ky =1+ 2k, K,=-1+ (kj ), (8.1.6)
and for the Baker B
2(1 — k)? 4— K23 — k)?
=Kd=h - A-EC 8.1.7)
4-K3B -k 2-k2-Kk3B—-k)

Table 8.5 gives the parameters of the Baker A design, including the radius of the
secondary needed to cover a field 0.1 radians in diameter. Table 8.6 gives the
results for the Baker B design.

From the tabulated data in Tables 8.5 and 8.6 it is evident that there is a
significant difference between the two designs. The mirrors in the Baker A design
are strongly elliptical, while the primary in the other system differs only slightly
from a sphere. The diameter of the secondary needed to cover the given field is
about 15% smaller for the A version, hence there is about 30% less vignetting in
this design. This difference is a direct consequence of the difference in lengths
between the two designs, about a factor of two.

The most significant difference between the two designs is in the size of Q,,
which is approximately 3 times larger for the A version. As seen from Egs.
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Table 8.5
Parameters of f/3 Baker A Design®

n K, K, Q, D,/D m? Q,

—0.10 1.7343 19.284 2.0245 0.557 7.99
—0.05 1.7491 18.597 2.0125 0.562 8.23
0.00 1.7639 17.944 2.0000 0.567 8.47
0.05 1.7789 17.322 1.9870 0.573 8.73
0.10 1.7940 16.729 1.9735 0.578 9.00

“Field radius 6 = 0.05 radians.

Table 8.6
Parameters of /3 Baker B Design®

n K, ¢ Q, D,/D mQ,

—0.10 0.01761 2.1581 0.6582 0.638 2.60
—0.05 0.01809 2.1644 0.6475 0.644 2.65
0.00 0.01858 2.1708 0.6366 0.650 2.70
0.05 0.01906 2.1775 0.6256 0.657 2.75
0.10 0.01954 2.1843 0.6146 0.663 2.80

?Field radius @ = 0.05 radians.

(8.1.5), this means that the aspheric term b is larger by this factor, as are the
chromatic effects. This is most easily seen by noting that CSA in Eq. (7.2.6) is
proportional to b, the aspheric parameter. By definition, CSA is proportional to
the slope of the surface at the edge of a corrector configured for minimum
chromatic aberration. Putting Eq. (7.2.4) into Eq. (7.2.1), setting r = r;, and
ignoring the term in &', we find

dz brg
ar 80 —n) (8.1.8)
Hence larger b means larger CSA in direct proportion, and the chromatic
aberration of the Baker A design is about 3 times that of the B design.

It is also important to compare the chromatic properties of each SC system
with that of a standard Schmidt of the same final focal ratio. The ratio of the
chromatic aberrations is simply the ratio of the corresponding b terms, hence

CSAGSC) 20,R*
CsASS) ®R 2 " %, (8.19)
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where SS denotes a standard Schmidt and m is the magnification of the Schmidt-
Cassegrain. Values of the relative chromatic aberration from Eq. (8.1.9) are found
in the rightmost columns in Tables 8.5 and 8.6. It is evident from these results that
a single element corrector in a Schmidt-Cassegrain as fast as f/3 has chromatic
aberration that is significantly larger than that of a standard Schmidt, especially
for the Baker A version.

Ray traces of the Baker B system, with the addition of a &’ aspheric parameter
to control fifth-order spherical aberration, show acceptable images to a field
radius of about 3° at the design wavelength. An acceptable image is defined as
one for which the blur diameter is no larger than 15 pm for an overall focal length
of 2700 mm. This diameter corresponds to an angular blur of about 1 arcsec for
this focal length.

Ray traces of the Baker A design give acceptable on-axis images, as defined
here, only with the addition of aspheric parameters of still higher order to the
corrector plate profile. This is not surprising given that the spherical aberration of
the pair of highly elliptical mirrors is significantly larger than for the Baker B
mirror pair, especially SA5 and SA7. The field radius for acceptable images is
less than one-half that of the Baker B design. Thus the A version, in spite of its
shorter length and smaller vignetting by the secondary compared to the B version,
is probably not a viable option as a wide-field telescope.

An analysis of the general solution of the relations in Egs. (8.1.5) shows that
the product ¢€2, decreases slowly as K, decreases. As can be verified from Q, in
Table 8.3 together with the first of Egs. (8.1.5), a change in K, from 10 to zero
gives a decrease in 6€, of roughly 30%. For this same decrease in K, the factor
Q, decreases by a bit over a factor of 2 while ¢ increases by about a factor of 1.6.
Hence there is a tradeoff between chromatic aberration and vignetting of the
secondary, with a reasonable balance achieved when the conic constants of the
MirTors are near zero.

Compared to a standard Schmidt, the Baker B design has the advantages of a
flat, focal surface, and a shorter length by about 40%. If these advantages more
than outweigh the disadvantages of larger chromatic aberration and vignetting by
the secondary of 40% or more, then this system is a viable alternative to the
Schmidt. To be competitive with a standard Schmidt over a wide spectral range
would, however, require an achromatic corrector of the type described in Section
7.4.

8.1.c. SCHMIDT-CASSEGRAIN WITH SPHERICAL MIRRORS

An alternative to the flat-field anastigmatic SC is the family in which both
mirrors are spherical and the focal surface is curved. The analysis of this type of
SC proceeds in a way very similar to that in the last section. Putting K; =K, =0
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in the relations in Table 8.3, the system aberration factors take the following
simplified form

P’y = 4p> —K2Q2p + 1 — k),
Q=20 —K2Q2p - k)Q2p+1—k), (8.1.10)
P’ =p — K Q2p— k).

If we require that the system be anastigmatic, then the relations in Eq. (8.1.5)
apply. The only solution from these relations is 2p = 1 + k. Substituting for p in
Eqgs. (8.1.10) gives Q, = 2Q, = 4Q,, hence ¢ = 2 by Egs. (8.1.5). Writing p in
terms of R, and R,, we find the relation R, — R; = (1 — k)f;. Hence the two
mirrors have a common center of curvature with the vertex of the corrector at this
common point. This is the so-called concentric Schmidi-Cassegrain. Because the
mirrors are concentric, so also is the Petzval surface, the focal surface when the
astigmatism is zero.
Substituting 2p = 1 + k into Eq. (8.1.2) we find

_1+41/F
T 3—y/F’

The magnification of the secondary is m = (1 + k)/(1 — k) and the Petzval
curvature from Eq. (5.7.17) is

2 (1—k\ 1 7
== (=) =—(1-1). 8.1.12
K R1<l+k) Rl( F) (8.1.12)

Parameters for several concentric SCs are given in Table 8.7. Comparison with
the parameters for the Baker B systems in Table 8.6 shows that the chromatic
spherical aberration of the concentric SC is approximately 2 times larger. Thus
the simplification of having only spherical mirrors is offset by larger chromatic
aberration and a curved focal surface.

Another system with only spherical mirrors is the aplanatic spherical Schmidt-
Cassegrain, a system in which spherical aberration and coma are zero but
astigmatism is not. In this case only the first and last of the relations in Eqgs.
(8.1.5) hold. With astigmatism not equal to zero, we choose to set k,,, the
curvature of the median image surface to zero. Combining the relations for B
and x,, in Table 8.3, and setting x,, = 0, gives

0* (1-p
B,=——|— 1.1
s 2R1( p )’ 6.1.13)

(8.1.11)

hence

6> (1 —
AAS = 2B,y = ’Z_F (T”>. (8.1.14)
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Table 8.7

Parameters of f/3 Schmidt-Cassegrains with Spherical Mirrors

Concentric Design (o = 2)
n k P m Q, mQ,

-0.10 0.3187 0.6593 1.936 0.6457 4.69
0.00 0.3333 0.6667 2.000 0.6250 5.00
0.10 0.3483 0.6742 2.069 0.6041 5.35

Aplanatic Design (p = 0.95)

i k 4 m Q, mQ,
—0.10 0.3618 2.198 1.615 0.6388 2.69
0.00 0.3765 2214 1.657 0.6163 2.80
0.10 0.3913 2.231 1.700 0.5943 2.92

It is evident from Eq. (8.1.14) that it is necessary to have ( near one to keep the
astigmatism small. If, for example, we choose p =0.95, m = 1.7, and F = 3,
then AAS is approximately 1 arc-sec when 0 = 1.5°.

Table 8.7 gives the calculated parameters for several aplanatic SCs with
spherical mirrors. Note that chromatic aberration, the main discriminant between
the two spherical mirror designs, is significantly smaller for the aplanat. We also
see that CSA for the aplanat and the Baker B design are comparable, a result that
1S not surprising given mirrors that are similar.

Ray traces of the aplanat in Table 8.6, with the addition of a 4’ parameter to
control fifth-order spherical aberration, show that astigmatism limits the field
diameter to about 3°, as compared with roughly twice this value for the Baker B
design. Thus the Baker B system, with its substantially larger field, has a clear
edge over the aplanat.

8.1.d. COMPACT SCHMIDT-CASSEGRAIN WITH SPHERICAL PRIMARY

We have limited our discussion of the Schmidt-Cassegrain in the preceding
sections to those designs that are possible alternatives to the standard Schmidt,
that is, designs with wide field and relatively fast focal ratios. If these conditions
are changed to smaller field, on the order of 1° in diameter, and Cassegrain focal
ratios ~ 10, then a family of aplanatic SC designs is found with ¢ ~ 1 and
tolerable astigmatism. Although various combinations of K| and K, are possible,
the usual choice is a spherical primary. With this choice the secondary is
ellipsoidal and m ~ 5. Small telescopes of this type are available from several
manufacturers and are popular choices among amateur astronomers.
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The characteristics of “short” aplanatic SC telescopes of this type are found
by applying the general theory given in the preceding. In this section we outline
the approach and give results for a typical set of parameters. We consider only the
case where the primary is spherical, hence K; = 0.

The aplanatic condition is zero coma and spherical aberration, hence B,, and
B;, in Table 8.3 are set to zero. From the zero coma condition we find

K2[1+k(0—1)]=—(mn11)3+<:ti)[ e —1)('”“)] (8.1.15)

where p has been expressed in terms of m and & using the relations in Table 6.3.
Putting the zero coma condition into the first equation in Table 8.3 we find

e e

(8.1.16)

There are an infinite number of possible combinations, but we are only interested
in “short” versions and choose ¢ = 1. Equations (8.1.15) and (8.1.16) are now
much simpler, but analysis of this special case will illustrate the general
characteristics of this type of telescope.

Substituting ¢ = 1 and expressing & in terms of m and § from Table 6.3 gives

92 m+ 1 1+ 8 m—1\*
B, = <1+ﬂ)[1+(m+1>_2< - )] (8.1.17)

where f§ is the normalized back focal distance. As an example let m = 5 and
B =0.2. From Eq. (8.1.15) we get K, = —0.4531 (K, is independent of f) and
from Eq. (8.1.17) we get B, = —0.40(02/4R1). Inserting B, into Eq. (5.6.6) and
dividing by §' to get the angular aberration gives AAS = 0.39 arc-sec for
0 =0.5° and F; =2. Thus, for the chosen parameters, the astigmatism is
undetectable over a 1° field diameter with a ground-based telescope for practi-
cally all atmospheric conditions. It is worth noting that a choice of m = 4.5, with
the other parameters unchanged, gives astigmatism that is about 10 times smaller
at the same field angle. An increase in the field diameter to 2° is possible in this
case.

For configurations with negligible astigmatism the field curvature is essentially
Petzval curvature only. For m =4.5 and f=0.2 we find £ =0.218 and
p =0.281. Thus the Petzval curvature is 5.12/R; and the focal surface is
rather strongly curved. As Wilson notes, this curvature is of little consequence
for visual use but would require a field flattening lens for photography to get the
best image definition over a wide field.
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It is left as an exercise for the reader to determine the chromatic properties of
the corrector plate for a short SC. The result for m = 4.5 is Q, = 0.80 and
m>Q, = 73. Although this latter value is large compared to those in Tables 8.6 or
8.7, it should be noted that for the short SC the comparison is with a standard
Schmidt whose focal ratio is of order 10, not 3 as in the tables cited. If, instead,
we compare an f /9 SC ( f/2 primary mirror for m = 4.5) with an f/3 Schmidt of
the same diameter, then the ratio from Eq. (8.1.9) is 2.7. Thus the chromatic
aberration due to a single corrector plate is tolerable in a short SC with m = 5.

8.1.e. CONCLUDING REMARKS

The SC designs discussed in the preceding sections are either anastigmats or
aplanats with the stop located at the corrector plate. Because both spherical
aberration and coma are zero in all of these designs, it follows from the discussion
in Section 5.5 that both coma and astigmatism are independent of the stop
position. Thus all of the results given, except the chromatic aberrations, are valid
for an arbitrary stop position. If the stop is displaced from the corrector, the
chromatic effects increase by the factor I'*, as described in Section 7.2. Given the
already large chromatic effects in the SC compared to those of the standard
Schmidt, it is evident that an SC with a stop displaced from the corrector is of
limited usefulness.

Of all of the designs considered in this section, only the Baker B version can
be considered a contender with a standard Schmidt in the 1-m class, and then only
if the corrector plate is achromatic. The Baker B design has a flat field, a factor in
its favor, but larger vignetting because of its larger central obscuration, a factor
against it.

The short Schmidt-Cassegrain design, so popular with amateur astronomers, is
really a competitor with two-mirror Cassegrain telescopes of the type discussed in
Chapter 6 and not with Schmidt telescopes. With an accessible focal surface (a
requirement for visual and photographic use) and excellent image quality (an
aplanat with negligible astigmatism if properly designed), the compact Schmidt-
Cassegrain is often the telescope of choice in apertures of 0.4 m or smaller.

8.2. CAMERAS WITH MENISCUS CORRECTORS

We now turn our attention to another type of wide-field camera, one in which
the aspheric corrector is replaced by a meniscus lens. The purpose of the
meniscus is the same as that of the corrector, to compensate for the spherical
aberration of the following mirror(s). The theory of the meniscus corrector was
developed independently by Bouwers (1946), Maksutov (1944), and Baker
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(1940) with their names attached to various versions of meniscus cameras. In this
section we consider a subset of the many types of meniscus cameras that have
been described in the literature. The reader should consult the references at the
end of the chapter, including the monograph by Maxwell (1972), for details on
these and other designs. Another excellent discussion of cameras of this type is
given by Wilson (1996).

8.2.a. CONCENTRIC MENISCUS CORRECTOR

A type of meniscus lens is one in which the two surfaces of the lens are
concentric with the surface of a spherical mirror, as shown in Fig. 8.5. If an
aperture stop is placed at the common center of curvature, as in a standard
Schmidt, then the system has no unique axis and all off-axis aberrations are zero.
The Petzval surface is also concentric with the other surfaces and the image
surface is curved, as in a standard Schmidt. The characteristics of the images are
determined entirely by the spherical aberration and any chromatic aberration
introduced by the meniscus.

The complete analysis of the spherical aberration of the system shown in Fig.
8.5 involves the application of Eq. (5.6.7) with j = 3 together with the corre-
sponding coefficients from Tables 5.5 and 5.6. The result of this exercise, with all
surfaces concentric, is a cubic equation involving the thickness and location of
the meniscus. Although the solutions of this equation gives results in good
agreement with those derived from ray traces, the form of the equation is quite
complicated and gives little insight into the workings of the meniscus lens. It is
more instructive to follow the approach by Bouwers and we choose to use his
method.

The starting point in the Bouwers method is the assumption that the spherical
aberration coefficient of the meniscus is that of a thin lens for which the source is
at infinity. Although the derivation of this result is straightforward using the

c/ R‘M -7
\ ]
Rz |

'[ n
Fig. 8.5. Bouwers concentric camera with meniscus corrector. All surfaces are spherical with
common center of curvature C.
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results in Chapter 5, we take the expression given by Bouwers and convert it into
the desired coefficient. The result is

1 n N\ f (2n+1 N\ (n+2
By =2 L L : 8.2.1
3 8f3|:n—1) Rl(n—1)+(R1) n ( )
where £ is the focal length of the lens and R, is the radius of curvature of its first
surface. For a concentric lens, as we show in what follows, f >> R, and to a good

approximation
IRV AY Ry
=g (1 ()] 822

The focal length of a thick lens is found by substituting P, and P, in Eq. (2.4.1)
into Eq. (2.4.3), with the result

1 1 1 d(n—1)*

The condition for a concentric lens is d = R; — R,, where d > 0 and the radii are
negative according to the sign convention. Rewriting Eq. (8.2.3) in terms of d we
find that the focal length of a concentric lens is given by

1 d (n—1
j—":_RlR2< . ) (8.2.4)

Practical values of d are 10 or more times smaller than R,, hence f is typically 30
times or more larger than R,. Thus we are justified in taking Eq. (8.2.2) for the
spherical aberration coefficient of the lens.

Note that the concentric meniscus lens has a large negative focal length and is
therefore a weak diverging lens. Thus the lens is thicker at the margin than at the
center, the same as that of an aspheric corrector without an added radius term, and
the signs of the spherical aberration coefficients of the lens and aspheric plate are
the same.

To find the system spherical aberration coefficient we simply add Eq. (8.2.2) to
that of a spherical mirror in collimated light from Table 5.2. The result, after
substitution of Eq. (8.2.4), is
_(n=Dn+2) d 1

— 8.2.5
8n? R3R, * 4R3 ( )

BSs

where R is the radius of curvature of the mirror. Note that by adding the
coefficients to get Eq. (8.2.5), we have ignored the divergence of the beam from
the lens and taken the same ray heights at the mirror and lens. This is similar to
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the procedure followed for the Schmidt telescope and is acceptable here in view
of the other approximations made.
At this point we express d, R;, and R, in terms of R as follows:

d = —CR, Rl - XR’ RZ = (X + C)Rv

where y and { are positive. Setting Eq. (8.2.5) equal to zero, substituting in terms
of R, and solving for {, we find

-1
(= [(-"—:M - x3] . (8.2.6)

2n?

Taking n = 1.46, values of { for a selected set of y values are found in Table 8.8.
Note that {, the normalized thickness of the meniscus, increases rapidly as the
lens is placed farther from the stop.

The values of x and { in Table 8.8 serve as the starting point for ray-trace
analysis of the meniscus camera. Results from ray traces of a series of f/3
systems with these nominal parameters are given in Table 8.8. In view of the
approximations made in this approach by Bouwers, it is not surprising that the
image quality is unacceptable for the calculated combinations of y and (.
Analysis of these images shows the presence of both residual third-order
spherical aberration and a significant amount of fifth-order spherical aberration.

Acceptable image quality is achieved by holding y constant and adjusting { to
give the monochromatic image diameter its smallest possible value. The results
found from this analysis for f/3 systems are shown in Table 8.9. Note that for
larger y the values of { derived by this procedure are significantly larger than
those from Eq. (8.2.6). By changing { at a given y, third-order spherical
aberration of an amount approximately equal in magnitude but opposite in sign
to that of the fifth-order contribution for rays at the margin can be introduced. The

Table 8.8

Nominal Parameters for Concentric Meniscus Lens”

X { Blur’
0.200 0.00438 32
0.225 0.00708 45
0.250 0.01092 8.7
0.275 0.01622 11.7
0.300 0.02339 154

“Values of y and { derived from Eq. (8.2.5) with
n = 1.46.

Image diameter at best focus, in units of arc-
seconds, for £/3 systems.
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Table 8.9

Parameters for Optimized Concentric Meniscus Cameras®

x ¢ /R BFD/R Blur®
0.200 0.0043 0.492 0.508 2.8
0.225 0.0076 0.489 0.511 2.0
0.250 0.0128 0.485 0.515 1.6
0.275 0.0209 0.481 0.519 1.2
0.300 0.0338 0.475 0.525 1.0

“Results derived from ray traces with { adjusted to minimize
image blur diameter; f. = camera focal length; BFD = dis-
distance from mirror to focal surface.

blmage diameter at best focus, in units of arc-seconds, for
f/3 systems.

result is an image diameter that is significantly smaller. Hence a significant
improvement is achieved by balancing the spherical aberration contributions.

Note also that the camera focal lengths decrease and the back focal lengths
increase as the lens thickness increases. This is a consequence of the changing
focal length of the concentric lens, as is evident from examination of Eq. (8.2.4).

Although the monochromatic image size is acceptable for a meniscus camera
with a thick lens, such as for y = 0.3, the polychromatic image size is
unacceptable. This is a consequence of the change in focal length of the lens
with changing wavelength, or longitudinal chromatic aberration. From Eq.
(8.2.4) we find that the focal length of the lens changes with index according
to the relation

df /f = —dn/n(n — 1). (8.2.7)

Because the rays incident on the mirror appear to come from the focal point of the

lens, a shift of this point translates into a shift of the camera focal point. Denoting

the camera focal length by £, and applying Eq. (2.5.5) we find df, = —m? df,

where m is approximately —f./f, the magnification due to the mirror.
Combining these results with Eqgs. (8.2.4) and (8.2.7) we find

Yoo, £ dn (8.2.8)

£ 22nt
where df, is the axial shift of focus with changing index. For the balanced system
with y =0.275, {=0.0209, dn =0.0018, and » = 1.46, Eq. (8.2.8) gives
df./f. = 0.000117. The diameter of the image over the range of wavelengths
spanned by this change of index (510 to 590 nm for an SiO, lens) is nearly 9
arc-sec, a significant increase over the monochromatic diameter of 1.2 arc-sec.
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Thus the concentric meniscus corrector lens is not a viable option because of
longitudinal chromatic aberration.

There are two methods for reducing the chromatic aberration of the meniscus.
One, proposed by Bouwers, is an achromatic meniscus made of two different
glasses cemented together. In this case the cemented interface cannot be made
concentric with the outer surfaces, and the system is no longer strictly concentric.
If, however, the two glasses have the same index of refraction but different Abbe
numbers, then the cemented lens is still very nearly concentric. This possibility is
discussed by Wilson (1996). For further details the reader should also consult the
references by Bouwers (1946) and Maxwell (1972).

A second method, first proposed by Maksutov (1944), is an achromatic
meniscus corrector made of a single glass with f invariant to a change in
index. To achieve this condition, however, it is necessary to depart from the
concentric lens surfaces. We examine briefly the characteristics of this type of
corrector in the next section.

8.2.b. MAKSUTOV ACHROMATIC CORRECTOR

The achromatic corrector proposed by Maksutov is one in which the focal
length is invariant to a change in index. This condition is easily derived by taking
f for a thick lens and setting df /dn = 0. Applying this condition to Eq. (8.2.3) we
find

n?
d=(R, — R2)<2—). (8.2.9)
n? —1
Relative to a concentric lens, we see from Eq. (8.2.9) that this lens is roughly 2
times thicker. Using Eq. (8.2.9) we can find the separation Az between the centers
of curvature of the surfaces of the meniscus, with the result

Az = (R, — R,) —d = —d/n?, (8.2.10)

where the minus sign indicates that the center of curvature of surface 2 is closer to
the mirror than that of surface 1. It is evident from Eq. (8.2.10) that the surfaces
of the meniscus are more nearly concentric for small d.

We are not going to discuss all of the details in the design of a Maksutov
camera, but instead will illustrate the general characteristics with one example.
For a mirror of radius of curvature R we take d = —0.02473 R as a constant and
vary R,,R,, and the lens-mirror separation until spherical aberration of the
marginal rays is balanced. The value of R,, of course, is tied to that of R; by
Eq. (8.2.9). The axial position of the stop is then altered until coma is balanced,
with the parameters of the final system shown in Table 8.10. Note that the stop is
near the first surface of the meniscus lens.
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Table 8.10

Parameters of a Maksutov Achromatic Camera®

Distance from Mirror

Stop 0.5947|R|
Surface 1 of lens 0.5914|R|
Surface 2 of lens 0.5667|R|
Image 0.5129 R

“Index n used in Eq. (8.2.8) is 1.46, d =
0.0248|R, R, =02087R, R, =0.2219R.
Radius of curvature of image surface = 0.538 R.

Ray traces for an f /3 system with parameters given in Table 8.10 show an on-
axis image whose angular diameter is about 3 arc-sec, and a slow increase in
image size to 5 arc-sec at a field radius of 2°. This on-axis image diameter is
about 10 um for a camera whose focal length is 750 mm. The chromatic effects of
the corrector are much smaller than those of the concentric meniscus, as expected,
with df. some thirty times smaller than that given by Eq. (8.2.7). For an SiO,
corrector the on-axis image diameters on a fixed focal surface do not exceed 4
arc-sec over the wavelength range from 400-700 nm.

Although this system was not given a detailed optimization, it is evident that
its image quality is quite satisfactory, provided the camera is not too large.
Compared to the concentric meniscus camera, the Maksutov achromatic camera
is clearly superior in its chromatic characteristics.

8.2.c. CONCLUDING REMARKS

The discussion of meniscus lens cameras in the preceding sections is only an
introduction to cameras based on this type of corrector. Among other types are
those in which the meniscus is split, with part of it preceding the aperture stop. In
addition, the meniscus on either side of the stop may itself be split into two
separate pieces of glass. There are also so-called hybrid systems in which an
aspheric plate located at the stop is used in conjunction with a meniscus corrector
and others in which an aspheric surface is put on one of the surfaces of the
meniscus.

A widely used hybrid system is the Super-Schmidt or Baker-Nunn camera
used for wide-field photography to record trails of meteors and artificial satellites.
This type of camera has a double concentric meniscus, half on either side of the
stop, with a doublet Schmidt plate at the stop. The light reflected from the mirror
passes through the meniscus nearer the mirror a second time before coming to the
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Y

Fig. 8.6. Maksutov Cassegrain telescope with achromatic meniscus corrector. The secondary
mirror shown is an aluminized circular area on the back face of the corrector.

curved focal surface. Because the design is based on the concentric principle, an
angular field diameter of about 50° with good imagery is achieved.

A meniscus lens can also be used in place of an aspheric corrector in a
Cassegrain camera, as shown schematically in Fig. 8.6. The secondary mirror in
this type of system can be a separate mirror or a centered reflecting area on the
back surface of the meniscus lens.

For more details on these and other meniscus lens systems, the reader should
consult the references at the end of the chapter, with those by Bouwers (1946) and
Maxwell (1972) a good introduction.

8.3. ALL-REFLECTING WIDE-FIELD SYSTEMS

The discussion in this chapter and the preceding one is intended to show the
basic characteristics of so-called wide-field cameras and telescopes. It is evident
from this discussion that there are many designs capable of good imagery over
fields of several degrees, with chromatic effects generally setting the limit to the
range of wavelengths that can be covered.

The principles used for these catadioptric designs also apply to all-reflecting
wide-field systems. One obvious use of such a system is a space-based ultraviolet
telescope. In these systems a reflecting aspheric corrector replaces the refracting
plate and chromatic effects are absent. To separate the incident beam from the
beam reflected from the corrector, the corrector axis is tilted by angle 6 relative to
the mirror axis. The angle between the incident and reflected chief ray at the
corrector is then 20.

The main complication of a tilted corrector is that its surface figure must be
modified so that a collimated beam from the center of the field “sees” a circular
profile on the corrector. This is achieved by placing an elliptical figure on the
corrector with 72 in Eq. (7.2.1) given by r? =xcos?0 +)?% instead of
r> = x* +3?. The other change required is to replace z in Eq. (7.2.1) by
zcos 0; this ensures that the OPD introduced by the tilted corrector is the same
as that of an untilted plate. An aspheric plate with an elliptical figure is obviously
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more difficult to make than one with a circular figure, and no large systems of this
type have been made. We do not discuss this type of system in detail here; the
interested reader should consult the paper by Schroeder (1978).
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Chapter 9 Auxiliary Optics for Telescopes

Telescopes are often used for direct imaging without extra optics in the light
beam, but there are many observations for which auxiliary optics are required.
Examples of some types of observations that require additional optics are
spectroscopy and photometry. In the case of photometry this is often no more
than a field lens to reimage the exit pupil of the telescope onto a detector. For
spectroscopy the extra optics may be as simple as a prism or diffraction grating
placed in the light beam, or a separate spectrograph with many optical elements
whose entrance aperture is at one of the telescope foci. The characteristics of
spectrometers are discussed in Chapters 14 and 15.

Even for direct imaging, it may be important to enhance the characteristics of
an existing telescope by adding optical elements to widen the field, flatten the
image surface, compensate for atmospheric refraction, or reimage at a different
focal ratio. For a new telescope it is now customary to include such optics in the
early design stages and often to design the telescope with its auxiliary optics as a
system in itself.

The kinds of auxiliary optics discussed in this chapter include field lenses and
field flatteners, corrector systems for both prime and Cassegrain focus, focal
reducers for Cassegrain telescopes, and atmospheric dispersion correctors. There
is also a brief discussion of elements used in fiber optics. Attention is given to the
aberration characteristics of these systems, with examples given for each type of
system considered.

206
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9.1. FIELD LENSES, FLATTENERS

A field lens is an element that is placed at or near an image plane in an optical
system. One application for such a lens, as noted in Section 5.7, is that of
flattening a curved image surface. Before discussing this application, and others,
we consider the aberrations introduced when an object or image lies close to an
optical surface.

9.1.a. ABERRATIONS

The aberration coefficients for a general surface are given in Table 5.5. For an
object close to the surface, take I" from Table 5.5, replace s” using Eq. (2.2.4), and
let s << R. The result obtained is

2
r=3<"—,2—1). ©.1.1)
S \n

Given the condition that s is small, the dominant terms in the coefficients in Table
5.5 are those containing the factor I'. Taking only the dominant terms, putting the
coefficients into Eq. (5.5.9), and letting s'/n’ = s/n, gives

a5 =2 (1P
2

2
TAS:—slpz(f)(l—%) A, A=S,5—1.

Because y/s is finite for all s, each of the transverse aberrations in Eq. (9.1.2)
goes to zero as s approaches zero and the image is free of aberrations in this limit.
This result is not surprising because s — 0 as s — 0, and the image and object
coincide when s = 0.

For a real lens placed at an image surface, s cannot be zero for both surfaces,
but it is small enough for each surface so that its contributions are usually of little
consequence.

(9.1.2)

9.1.b. FIELD-FLATTENED RITCHEY-CHRETIEN TELESCOPE

As an example, we consider a lens placed near the Cassegrain focus of a
Ritchey-Chretien telescope, as shown in Fig. 9.1. The lens parameters are chosen
so that the median astigmatic surface of the telescope-lens combination is flat,
thus

K,(RC) + x,,(lens) = 0. 9.1.3)
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Fig. 9.1. Ritchey-Chretien telescope with field flattener lens FF. The lens parameters are given in
Eq. (9.1.4).

The relation for the first term in Eq. (9.1.3) is given in Table 6.9. We find the
second term by noting that a thin lens with s &~ 0 has negligible aberrations
according to Eg. (9.1.2), hence x,, = ,,.

The Petzval curvature of a lens is derived from the relation in Table 5.7, with
the choice R, = oo so that the distance between the flat image and lens can be
made as small as desired. Substituting the derived result into Eq. (9.1.3) gives

(n — 1)/nR, = K,(RC), (9.1.4)

where R, is the radius of curvature of the lens surface facing the secondary.
Because «,, for a Ritchey-Chretien is negative (the image surface is concave as
seen from the secondary), the lens has R; < 0 and is plano-concave in cross
section, as shown in Fig. 9.1.

Using the parameters of the RC telescope in Table 6.10 and letting
R; = —6000 gives R; = —248 for n = 1.46, the index of SiO, at a wavelength
of 548 nm. The aberrations of the telescope with and without the field flattener
lens are given in Table 9.1, with the results taken from a computer ray-trace
program.

Note that the field lens does change the system aberrations, but only slightly.
Because the lens has zero astigmatism, the assumption that x,, = x,, for the lens
is not quite true, and the image surface curvature is not zero. However, this
assumption is a good first approximation, and a change of R, to —260 gives a flat
image surface.

9.1.c. FIELD-FLATTENED SCHMIDT CAMERA

As a second example we consider a field-flattener lens placed near the curved
focal surface of a Schmidt camera. In Section 5.7 we derived the condition for a
flat Petzval surface for the combination of a spherical mirror and thin lens, with
Eq. (5.7.16) giving the required condition for a plano-convex lens. The spherical
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Table 9.1

Aberrations for Field-Flattened Ritchey-Chretien Telescope™®

With lens

Without lens R, = -248 R, = -260

ASA 0.000 0.002 0.002
ATC 0.000 0.039 0.037
AAS 1.025 0.913 0.924
KR 7.625 —0.393 ~0.003
f 12000 12101 12096

“Lens: plano-concave shape; thickness at vertex = 6; back focal
distance: = 0.43. Telescope: R; = —6000. Other parameters in
Table 6.10.

& Aberrations are given at a field angle of 18 arc-min in units of
arc-seconds.

aberration of the mirror alone is canceled by an aspheric plate with b chosen
according to Eq. (7.1.5) with m = 0.

Choosing R = —1000 and R, = oo gives b = —2.E-9 and R| = —157.5 for
n = 1.46. The aberrations of the camera with and without the flattener lens are
shown in Table 9.2, with F = 2.5 for the camera without the lens. Note that the
lens flattens the field, but introduces significant aberrations, especially coma and
spherical aberration.

Table 9.2

Aberrations for Field-Flattened Schmidt Camera®?

With lens

Without lens W/R=1.0 W/R = 0.979

ASA 0.002 2.807 2.807
ATC 0.000 2.247 0.010
AAS 0.000 0.208 0217
K, R 2.000 —0.0004 —0.0004
f 500.0 494.2 494.2
“Lens: plano-concave shape; R; = —157.5; thickness at

vertex = 5; back focal distance = —0.53. Mirror:
R = —1000. Corrector: b = —2E-9, R, = oo, thickness at
vertex = 10.

® Aberrations are given at a field angle of 1° in units of arc-
seconds.
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The coma due to the field flattener lens can be largely removed by reducing the
corrector-mirror separation by about 2%, but this displacement does not, of
course, affect the spherical aberration. For this example it turns out that higher-
order aberrations are not negligible. Fifth-order spherical aberration compensates
in part for third order and the result from ray tracing is an on-axis blur diameter of
about 1.4 arc-sec. This blur can be reduced to a negligible value by adding an
aspheric term of higher order to the corrector, as noted in Section 7.2.

Comparing the effects of the flattener lens in these two examples, it is evident
that the aberrations it introduces are significantly larger for the Schmidt camera.
For spherical aberration this is entirely a consequence of the different focal ratios,
F = 2.5 for the camera and F = 10 for the RC telescope, where y/s = 1/2F in
Eq. (9.1.2). For astigmatism and coma the different pupil position for the lens is
also a factor. For the RC telescope the pupil location is given by Eq. (2.6.1), from
which we find W /R, ~ 15. For the Schmidt camera the mirror images the
aperture stop back on itself and W /R, ~ 3. Substitution of these results into the
relations in Eq. (9.1.2) accounts for the relative sizes of the aberrations introduced
by the field lens.

In two other applications of a field lens its primary purpose is to reimage the
exit pupil of the telescope. For a photometer an aperture at the telescope focus
passes the light of a single star and a field lens at the aperture images the
telescope exit pupil on the photosensitive surface of a detector. If the star should
wander in the aperture because of atmospheric effects, the effect is not seen by the
detector because the reimaged exit pupil does not wander on its surface. Such a
lens is often called a Fabry lens. When the instrument on a telescope is a
spectrograph a lens is often placed at the entrance aperture so that the lens, in
combination with the spectrometer collimator, reimages the exit pupil onto the
grating or prism that follows the collimator in the spectrometer.

9.2. PRIME FOCUS CORRECTORS

A large Ritchey-Chretien telescope is generally equipped with interchangeable
secondaries to provide a range of focal ratios, as noted in Section 6.2. The focal
ratio at the Cassegrain focus is usually the smallest, typically 6 to 8, which for a
4-m telescope gives an image scale of about 7 arc-sec/mm. With this scale the
typical blur diameter of a star image is often not well matched to the size of a
detector resolution element, usually an individual pixel in a solid state detector. A
better match between image and pixel size is achieved if the focal ratio is smaller,
which in a Cassegrain configuration means a larger secondary and more
obscuration. An alternative approach to getting a smaller focal ratio is to use
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the primary mirror only, which, in combination with a corrector system, can
provide a usable field at a focal ratio of 2 or 3.

9.2.a. ASPHERIC PLATES

The simplest prime focus corrector system is a single aspheric plate in the
converging beam near the image surface, as shown in Fig. 9.2. The aperture stop
is the primary mirror and the plate is distance g from the focus, hence W = f — g
for the plate. The aberration coefficients for the primary are taken from Table 5.2,
with m = 0, and the coefficients for the corrector are taken from Table 5.5, using
only the terms in /. Substituting these results into Eq. (5.6.7) and choosing

Y, =y, we get

2 2
BISZ_H_[HMJ,

2f f
0 2b6(f — g)g’
B, - - l:l 3 (ff 2)g :l (9.2.1)
1 [K+1  bgt
m= g+ )

where y = —0 and y,/y, = g/f have been substituted. For a given K there are
two free parameters, b and g, in Egs. (9.2.1) and two of the coefficients can be set
to zero. The dominant aberrations at small field angle, for any primary other than
a paraboloid, are spherical aberration and coma. Setting these coefficients to zero
gives

K+ Df g _(K+1
b= f_(——K_1>. (9.2.2)

lf«—c : f\\w

—

Fig. 9.2. Aspheric plate prime-focus corrector for hyberboloidal primary at distance g from the
focal surface.
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It is evident from Eqs. (9.2.2) that the location of the plate is set by the conic
constant of the primary and this, in turn, sets the value of 5. Because g and f are
each positive, so is b for K < —1. Note also that the condition g > 0 means that
correction of both spherical aberration and coma with a single plate is not
possible for an ellipsoidal primary.

Taking b from Eq. (9.2.2) and substituting into B, we find

(K
Comparing the astigmatism given by Eq. (9.2.3) with that of the primary only, we
see that, depending on the value of K, the radius of the usable field is limited to a
few arc-minutes. From Eq. (9.2.3) we also see that the larger is K for the
hyperboloid in absolute terms, the smaller is the astigmatism at a given field angle
and the larger is the usable field. A larger difference also means a greater distance
between the plate and the focus, and a larger plate size, as seen from Eq. (9.2.2).
As pointed out by Gascoigne (1973), these conclusions also hold for more
complex corrector systems.

The final parameter of interest for this system is the curvature of the median
image surface. Following the procedure in Section 6.2 we find

k? B\ (cor) = By,(pri), 0 =k0,

where k = g/f. Using these relations we get

1/K-1\ 1
K =7 (K—-H) = (9.2.4)

hence the focal surface of best images is strongly curved, and is concave as seen
from the primary.

An example of these results applied to an f/3 Ritchey-Chretien primary is
shown in Table 9.3. The conic constant chosen is that for an RC telescope with
m =25 and  =0.25 at the Cassegrain focus. The plate has a diameter-to-
thickness ratio of 25 and its radius of curvature is chosen to give minimum
chromatic effect. The radius of the plate r is chosen to cover a field radius of
about 0.12°,

From the results in Table 9.3 we see that the coma and spherical aberration of
the primary have been largely but not entirely eliminated. The size of the
residuals depends on plate thickness and orientation. Although ASA for the
example in Table 9.3 can be reduced to zero either by moving the plate closer to
the primary or adjusting the value of b, ray-trace results show that spherical
aberration and coma of higher order are not negligible. These aberrations are
reduced to negligible levels by including a fifth-order aspheric coefficient b’ and
adjusting the aspheric parameters and plate position, details that are omitted here.
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Table 9.3

Characteristics of a Prime Focus Corrector™?

With plate
Without plate theory actual®
ASA 21.221 0.000 0.850
ATC 7.500 0.000 0.057
AAS 0.105 0.696 0.707
Kpf 1.000 12.25 12.20

“Primary: diameter = 4.0m; f = 12.0 m; K = —1.17778.
Plate: b =5.792E-10; R = —52800 mm; r, =200 mm,
n = 1.46; thickness =16 mm; g = 0.08163f; W =11, 000
mm.

% Aberrations are given at a field angle of 0.1° in units of arc-
seconds.

¢ Values in “actual” columns are from ray-trace program.

This example illustrates a general procedure in the design of any system in
which one or more of the elements is an aspheric plate. The procedure is one of
taking only the aspheric terms in the aberration coefficients to get a first-order
design and using computer analysis to refine the design. In this way one reduces
the effort required in the theoretical analysis leading to the original design and
uses the computer to help arrive at the final design.

Although the single-plate corrector makes the prime focus of a Ritchey-
Chretien primary usable, the surface of best images is sufficiently curved so that a
field flattener lens is also needed. The sag of the image surface at a field angle of
6 arc-min is about 220 um. This sag, in combination with blur already present in
the off-axis image, gives an unacceptably large blur on a flat detector in focus on
the on-axis image. Wilson (1971) gives spot patterns for an aspheric plate—field
flattener combination for the ESO 3.6-m telescope, with acceptable image quality
over a field diameter of about 0.25°.

Before going on to other prime-focus correctors, it is worth noting that a single
plate will not improve the images of a paraboloidal primary. Putting a corrector in
the beam will, for example, introduce spherical aberration and astigmatism of
unacceptable amounts if b is chosen to eliminate coma. The verification of this
statement using Eqgs. (9.2.1) is left as an exercise for the reader.

Getting a larger and flatter image field at prime focus requires more complex
correctors, of which many are discussed in the literature. Here we consider briefly
a few of these, but without the detail given to the single-plate corrector. One kind
of system that has been explored in detail is a set of corrector plates in series in
the converging beam, as shown in Fig. 9.3 for three plates. Taking the aberration
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Fig. 9.3. Schematic of three-plate prime focus corrector.

coefficients for the mirror from Table 5.2 and those for the correctors from Table
5.5, it is a straightforward step to the system coeflicients. The results are

02 272
B, =— 2(f+>:ka)
9 1 ,
Ba =3 572 — T6 7k (9.2.5)
(K +1 .
By, =— <4f3 +Zbk)

where the ith corrector is a distance W, from the primary, g; from the image
surface, and k; = g;/f.

For two plates there are four free parameters, by, g,, b,, g5, and each of the
coefficients in Eq. (9.2.5) can be made zero for a hyperboloidal primary. In this
case the signs of the aspheric coefficients are opposite, with b > 0 for the plate
nearer the primary. For the same primary mirror parameters as in Table 9.3, ray-
trace analysis of a two-plate corrector shows that the field of acceptable images is
about two times larger in diameter than that of a single-plate system. The
curvature of the median image surface is about 10 times smaller for the two-
plate system, though its curvature is significant over the larger field. As noted by
Gascoigne (1973), a paraboloid with a two-plate corrector has image blurs and
surface characteristics comparable to those of a hyperboloid with a single-plate
corrector.

The design for a three-plate corrector, first proposed by Meinel (1953), has
been described in the literature and the reader should consult the references at the
end of the chapter for details. The field is larger than that achieved with the two-
plate corrector by about a factor of two but, as noted by Wilson, the complete
corrector set is not easy to manufacture because of the several large aspheric
surfaces required. Wilson points out that the optical performance of the three-
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plate corrector system is no better than that of three-lens systems with spherical
surfaces, a type we consider briefly in the next section.

9.2.b. WYNNE TRIPLETS

An alternative approach to prime focus correctors is to use lenses with
spherical surfaces, such as the Wynne corrector for a hyperboloidal primary
shown in Fig. 9.4. Designs of this type give fields of good images up to 50 arc-
min in diameter for an f/2.7 mirror and a somewhat larger field for a slower
primary. The major advantages of this type, compared to the multiplate type, are
case of fabrication, flatter fields, and more compact size. For the corrector shown
in Fig. 9.4 the length L is approximately 0.06f, less than that of aspheric plate
systems, and hence the diameters of the separate lenses are less than those of the
aspheric plates.

Wynne has also shown that a three-lens corrector with a paraboloidal primary
gives fields of comparable size and image quality. A schematic of this type of
corrector, given by Wynne for an f/3.25 primary, is shown in Fig. 9.5. The
correctors shown in Figs. 9.4 and 9.5 are drawn to the same scale for ease of
comparison. Although the general forms of the corresponding lenses in the two
correctors are similar, there are obvious differences in shape and spacing. The
interested reader should consult the papers by Wynne (1972, 1974) for further
details on these types of correctors.

An excellent summary of the characteristics of prime focus lens correctors,
including spot patterns, is given by Wilson (1996). He also compares the
chromatic properties of three-plate aspheric systems with Wynne three-lens
systems and notes that the latter have somewhat better image quality over an
extended wavelength range.

L
)

Fig. 9.4. Wynne triplet corrector for prime focus of hyperboloidal primary. See the article by
Wynne (1972) for characteristics of the lens elements for an f/3.25 primary.
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Fig. 9.5. Wynne triplet corrector for prime focus of paraboloidal primary. See the article by
Wynne (1974) for characteristics of the lens elements for an f/3.25 primary.

9.3. CASSEGRAIN FOCUS CORRECTORS

Of the common two-mirror telescopes discussed in Chapter 6, the Ritchey-
Chretien type has the largest field at the Cassegrain focus. To third order, the only
significant aberrations are astigmatism and field curvature. It was first shown by
Gascoigne that the placement of an aspheric plate in the Cassegrain beam
removes the astigmatism without introducing a significant amount of coma and
spherical aberration. This plate also reduces the field curvature because, as noted
in Section 6.2, the median image surface is more strongly curved than the Petzval
surface. In this section we discuss the characteristics of this type of corrector for
the Cassegrain focus.

9.3.a. ASPHERIC PLATE

A diagram of an RC telescope with aspheric plate in the Cassegrain beam is
shown in Fig. 9.6, with the plate located a distance g from the focus and W from
the telescope exit pupil. The aberration coefficients of the system, referenced to

the primary, are
b(g 4 blg 3
By =—32 (7) , By =35 (7) (W),

G_Z[m(Zm-{- 1)+ﬁ} b(g

2
2
(15 ) 7) Fy

(9.3.1)

Bl: 2

s - Zf

where the astigmatism coefficient for the telescope is taken from Table 6.6, with
Eq. (6.2.3) substituted for (K; + 1).
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-

Fig. 9.6. Aspheric corrector for Cassegrain focus of Ritchey-Chretien telescope. The aspheric
figure is similar to that of a Schmidt plate.

To evaluate the coefficients we first express W and ¥ in terms of the telescope
parameters and plate location. The location of the telescope pupil is given by Eq.
(2.6.1),and W = g — f,6, where W is negative for the plate. The relation between
Y and 6, given by Eq. (2.6.4), is y = 68(m/d). In terms of the telescope parameters
we get

9.3.2)

Wt//:—f@[l g ’”2+/3]

Cfm+p)
A good first approximation to zero astigmatism is obtained by assuming that

g/f « 1, substituting Wiy = —f60 into Eq. (9.3.1), and setting B;; = 0. The
relation found is

m@2m+1)+p
T e — A, 9.3.3)

This is one relation between b and g, with the other relation found by requiring
that the coma at a given field angle does not exceed a specified amount.
Substituting Eq. (9.3.3) into B,, and B;, we find the following angular aberra-

tions:
OA 2
ATC = 29A g), ASA = D (}e’) (9.3.4)

bfe® = —

8F2 16F3

As an example we take the parameters for the RC telescope in Table 6.10 and,
from Eq. (9.3.3), find A = 3.625. Assuming that ATC = 0.25 arc-sec at § = 0.3°,
we find from Egs. (9.3.4) that g/f = 0.01703 and ASA =0.014 arc-sec. Putting
this value of g/f into Wi in Eq. (9.3.2), and substituting W into Eq. (9.3.1), we
get better values for the off-axis aberrations. The results in arc-seconds are
ATC =0.236 and AAS = 0.056, and all of the aberrations are clearly at a tolerable
level.
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The one remaining calculation is that of finding b using Eq. (9.3.3). Because
b < 0, the plate has the shape of a Schmidt plate. With a radius added to the plate
to minimize chromatic aberration, from Eq. (7.2.4), a ray-trace analysis of the
plate in this example shows that the image diameters are 1 arc-sec or less over a
field diameter of about 1.2°. Through-focus spot diagrams at 4 = 550 nm and
spot patterns at best focus for several wavelengths are shown in Figs. 9.7 and 9.8,
respectively. It is instructive to compare the spot patterns for an uncorrected RC
telescope in Fig. 6.3 with those in Fig. 9.7. Note especially the significantly larger
field for the corrected RC and the presence of coma in its images. A close look at
the off-axis images in Fig. 9.8 shows a lateral displacement away from the center
of the field as the wavelength increases. This effect is a consequence of the plate
thickness, in this case 10 mm, and will not degrade image quality under normal
seeing conditions.

Because the plate in this example is in an f/10 beam, higher-order aberrations
are negligible. The curvature of the median image surface found from ray traces is
K, = 4.69/R,, a value about 10% larger than the Petzval curvature calculated
from ray tracing.
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Fig. 9.7. Through-focus spot diagrams at A = 550 nm for system shown in Fig. 9.6. Scale bar on
the upper left is 2 arc-sec long. See the discussion following Eqgs. (9.3.4).
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Fig. 9.8. Spot diagrams at selected wavelengths for system shown in Fig. 9.6. Box width is 2 arc-
sec. See the discussion following Egs. (9.3.4).

9.3.b. MODIFIED RITCHEY-CHRETIEN TELESCOPE

The effectiveness of an aspheric plate in the Cassegrain beam suggests that
still larger fields are possible if the telescope plus plate are designed as a system.
In this case the conic constants of the primary and secondary are also adjustable
parameters, and all of the aberrations can be made zero. Examples of such
designs are the 1.0- and 2.5-m telescopes described by Bowen and Vaughan
(1973) and located at Las Campanas Observatory in Chile. The design of the 1.0-m
telescope has the additional feature of a flat Petzval field, thus the need for
bending a photographic plate or arranging arrays of CCD detectors to match a
curved median image surface is avoided. Well-corrected fields over 2° in diameter
are achieved with these designs.

The first step in the procedure for designing a flat-field Ritchey-Chretien to
cover a wide field is to specify zero Petzval curvature for the telescope. Thus
p =1, as is evident from Eq. (5.7.17). This condition, in turn, requires that

m* —1=m(l+ p). (9.3.5)

Substitution of Eq. (9.3.5) into Eqs. (6.2.3) and (6.2.4) gives the conic constants
of the mirrors, and all of the telescope parameters are now specified. If, for
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example, we choose f§ = 0.2, then m = 1.7762, K|, = —1.4912, K, = —26.905,
and k = 0.4338. From these results we see that the mirrors, especially the
secondary, are strongly hyperbolic and that the obscuration of the secondary is
larger than that of the typical RC telescope.

The next step in the design is simply one of substituting m, 5, and a choice of
g into Eq. (9.3.3) and finding a first-order solution for b. The telescope parameters
and the values of b and g are then the starting point for computer optimization of
the complete system, telescope plus corrector plate.

9.4. CASSEGRAIN FOCAL REDUCERS

A focal reducer is an optical system whose function is to change the focal ratio
of a telescope. It is most often used at the Cassegrain focus to reduce the focal
ratio so that a given field can be placed on a detector of smaller area. In this
section we discuss the general characteristics of focal reducers used at the
Cassegrain focus. With the exception of a Schmidt camera example for a
Ritchey-Chretien telescope, we omit the details of specific designs.

9.4.a. GENERAL CONFIGURATION

A schematic of a Cassegrain focal reducer is shown in Fig. 9.9. Its components
include a field lens at the Cassegrain focus to image the exit pupil of the telescope
onto the aperture stop of the focal reducer, a collimator to render the light parallel,
and a camera. Other optical elements, such as a grating or filter, can be put in the
space between the collimator and camera. Because such elements are located in a
collimated beam, they introduce no additional aberrations.

The diameters of the focal reducer components depend on the field to be
covered. If the angular radius of the field on the sky is 8, then the diameter of the
field lens is 20, where f is the telescope focal length. The diagram in Fig. 9.10

FL Lc Lc’

f, | d ey

Fig. 9.9. Schematic of focal reducer where ¢ and ¢’ denote collimator and camera, respectively,
and FL is the field lens at the telescope focus.
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Fig. 9.10. Schematic of focal reducer in relation to telescope exit pupil EP. See text, Section 9.4,
for definitions of symbols.

shows the chief ray from the center of the telescope exit pupil for an object at the
edge of the field. Assuming the aperture stop of the focal reducer is at the
collimator lens, the angle o at which this chief ray enters the collimator is given
by

ofe = Yf,0 = f0, 9.4.1)

where £, is the focal length of the collimator, f, is the focal length of the primary,
and Eq. (2.6.4) is substituted to eliminate .

We also see from Fig. 9.9 that D, the diameter of the collimator lens, is £, /F.
Therefore

/0 = f/f, = D/D,. (9.4.2)

For a real lens pair the stop is often located in the space between the lenses, but
the distance d in Fig. 9.9 is usually small compared to f, and, to a good
approximation, the stop is effectively at the collimator. If 4 is small, the diameters
of the collimator and camera lens are nearly equal, and Eq. (9.4.2) can be used to
find the diameter of either.

For a given D and 0, we see from Eq. (9.4.2) that a smaller D, implies a larger
. A larger value of a, in turn, generally means that the design of the lenses in the
focal reducer is more difficult. We also see that the size of the focal reducer scales
directly with the size of the telescope for a given a and 0.

The focal length of the telescope-focal reducer combination is f of the
telescope times the magnification of the focal reducer. The reader can verify
that the magnification of the focal reducer is the ratio of the camera to collimator
focal lengths or focal ratios, hence / of the combination is the diameter D of the
telescope times the focal ratio of the camera.

As an example, let 8 = 0.5°, o = 20°, and D = 1 m. Substituting these values
into Eq. (9.4.2) gives D, = 25 mm, and a well-designed commercial camera lens
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is appropriate for the camera lens of the focal reducer. If F = 10 for the telescope,
then f, = 250 mm is the focal length of the collimator, and the constraints on its
design are relatively modest compared to those on the camera lens. With the same
telescope magnification and angles, but D = 4 m, the dimensions of the lenses
are 4x larger and their design and mounting is a more difficult problem.

9.4.b. TYPES OF FOCAL REDUCERS

A variety of focal reducer types have been analyzed by a number of
investigators, with a good summary of these given by Wilson (1971). His
paper includes examples of multilens systems that convert an f/8 telescope
beam to f/3 with good image quality of a field 0.9° in diameter. The main
difficulty with lens systems, as noted by Wilson, is the chromatic aberration over
an extended wavelength range.

Catadioptric systems have the advantage of smaller chromatic aberration but
the disadvantage of obstruction due either to the detector or one of the mirrors.
Wilson describes briefly some catadioptric systems that have been proposed for
focal reducers, such as the standard Schmidt, Bouwers-Maksutov, and Schmidt-
Cassegrain cameras, where each is used with a field lens to reimage the telescope
exit pupil. The text by Wilson (1996) should be consulted for further details and
references.

Meinel, Meinel and Wang (1985) have described a four-mirror focal reducer
for the Nasmyth focus of a large telescope with good imagery over a field radius
of 8 arc-min. Their paper should be consulted for details.

9.4.c. EXAMPLE: SCHMIDT CAMERA

To illustrate the approach to the design of a focal reducer, we consider a
Schmidt camera modified for the required conditions. The basic configuration
adopted, field lens plus camera, is shown in Fig. 9.11. The field lens images the
telescope exit pupil on the aspheric plate with the chief ray shown entering the
camera at angle , where /0 = f/d for a telescope of focal length f with field
angle 0. We assume a Ritchey-Chretien telescope and adjust the camera para-
meters to eliminate the astigmatism present at the RC focal surface.

The RC telescope is free of coma and spherical aberration, while the aspheric
plate has no coma and astigmatism when it is at a pupil. Thus the coma of the
system is that of the mirror only, with the coma coefficient given in Table 5.6.
Setting this coefficient to zero gives

w m—1\1"
E:[I_K(—mH)] , (9.43)
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Fig. 9.11. Schematic of Schmidt focal reducer. See text, Section 9.4, for discussion.

where K is the conic constant of the mirror. As we will show shortly, K must be
chosen nonzero to eliminate the telescope astigmatism.

The system spherical aberration is that of the aspheric plate and mirror, while
the astigmatism is that of the telescope and focal reducer mirror. Taking the
appropriate coefficients for the corrector and mirror from Tables 5.5 and 5.6, and
the telescope astigmatism from Table 6.6, we get

mp w\? w2
B, = B,(RC) + — 1) [(F) K+ (1 _F) ] (9.4.4)
2
B, = ’g(f) +m[’<+ (—Zf i) } 94.5)

where the subscripts 1, 3, and 4 refer to the telescope primary, aspheric plate, and
camera mirror, respectively, and » = 1 for the mirror. In writing these system
coefficients we assume the field lens and aspheric plate thickness and radius do
not contribute to the aberrations.

The terms in Eqgs. (9.4.4) and (9.4.5) are simplified by noting that y, /y, = d/s,
va/y1 = s/f, and ¥ = 0( f/d), where s is the distance from the field lens to the
camera mirror.

The procedure is now one of substituting Eq. (9.4.3) into Eq. (9.4.4), setting
Eq. (9.44) to zero, and solving for K in terms of B;(RC). Letting
B{(RC) = —92F/2f , where I is the quantity in brackets in AAS in Table 6.9,

the result is
TR (m+ 1\? R\
K=—|—— 1——) . 9.4.6
7 () (1) 049

The value of K from Eq. (9.4.6) is substituted into Eq. (9.4.3) to find W /R, which,
in turn, is used to find the ratio d/s. In terms of the camera parameters we find

d_ _W_y_m(imy (9.4.7)
) K R\m—1
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Values derived from Egs. (9.4.6) and (9.4.7) are substituted into Eq. (9.4.5),
which is solved for b after setting B, to zero.

All of the relations needed to specify the Schmidt focal reducer (SFR) are now
in hand. For the telescope we take the design parameters of the 1.5-m f/8
telescope shown in Table 9.4. For the SFR we assume a final focal ratio of 2.67,
hence m = —1/3 for the camera, with s = —2000 mm and R = —1000 mm.

With these parameters we find ' =2.67, K = —0.025, W = 1.053R,
d/s =0.4737, b = —8.937E-9 for an SiO, corrector at A = 500 nm. A listing
of all the SFR parameters, including the field lens, is shown in Table 9.5.

Ray traces of the system with the nominal SFR parameters given in Table 9.5
show an image diameter of about 1 arc-sec at a field angle of 0.5° and wavelength
of 500 nm. With a 2-mm change in the corrector location and a 10% increase in
the focal length of the field lens, the image diameter is reduced to approximately
0.25 arcsec at the same field angle and wavelength. Over the range from 320 to
1000 nm, the image diameter is 0.5 arcsec or smaller at the edge of the field,
hence the broadband image quality is satisfactory. The image surface is curved
with a radius of curvature of —950 mm.

Although this type of camera would appear to be an obvious choice for a focal
reducer, it has several disadvantages. One problem is its curved focal surface, but
a field flattener lens can be added to remove this curvature. A much more serious
problem is the location of the focal surface inside the camera. It is not possible to
locate large detector systems such as cooled solid-state arrays at an internal focus
without vignetting most of the light before it reaches the mirror. One way of
getting an external focus is a folded Schmidt camera with a tilted plane mirror
between the corrector and sphere, as shown in Fig. 15.7, and the detector behind a
hole in the plane mirror. The size of the hole and the position of the detector
determine the amount of vignetting, and for a large field this is significant.
Schmidt-Cassegrain cameras of the type described in Chapter 8, modified to
reimage an object surface at a finite distance, also have an external focus, but
vignetting by the camera’s secondary mirror can be a shortcoming of this type of
focal reducer. An example of a Schmidt-Cassegrain focal reducer with field-
flattening optics is described by Opal and Booth (1990).

Table 9.4

Parameters of 1.5-m Ritchey-Chretien Telescope

Overall: m = 2.667, k=0.3273, f=0.2
f=120m, F=8
Primary: R; = —9000 mm, K, =—1.1368

Secondary: R, = —4712.7 mm, K, = —-6.5524
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Table 9.5

Parameters of Schmidt Focal Reducer

Overall: m = —0.333, s = —2000 mm
Mirror: R = —1000 mm, K =-0.025
W = 1.053R (nominal)
= 1.055R (optimized)

Corrector: b = —8.937E-9, E =2416E9
R, = —35320 mm, thickness = 10 mm
Field Lens: plano-convex, thickness = 18 mm
R, = —380 mm (nominal)

= —420 mm (optimized)
Lens and corrector material: Si0O,

9.5. ATMOSPHERIC DISPERSION CORRECTORS

We now turn our attention to a different type of corrector, one that compen-
sates for the dispersion of the Earth’s atmosphere. This effect, discussed in
Section 3.6.a under the name of differential atmospheric refraction, is a
consequence of the wavelength-dependent index of refraction of the atmosphere.
A curve of the differential refraction at 45° zenith angle over the wavelength
range 340—1000 nm is shown in Fig. 9.12. This curve is based on a relation from
Allen for the atmospheric conditions given in Table 3.1. The scale on the vertical
axis in Fig. 9.12 is set to zero at A = 435 nm, a choice approximately centered in
the range shown. For other zenith angles the scale is simply expanded or
contracted according to Eq. (3.6.3).

The device that compensates for this effect is called an atmospheric dispersion
corrector or ADC. In the absence of an ADC the image of a star with a ground-
based telescope is a short, vertical spectrum, especially noticeable if the angle
between the telescope axis and zenith is large. With an ideal ADC this same
image shows no dispersion at any zenith angle, as well as no large displacement
from a nominal position on the detector. Thus there are two basic requirements
for an ADC: (1) variable dispersion to compensate that of the atmosphere at a
given zenith angle; and (2) zero-deviation at some mean wavelength, denoted by
A, within the range of interest for all zenith angles.

The first of these requirements suggests counterrotating prisms with dispersion
a maximum (minimum) when the apex angles of the prisms are in the same
(opposite) directions. Two prisms are sufficient to satisfy this requirement, but
they cannot satisfy the zero-deviation condition unless each prism by itself is a
zero-deviation unit, a pair of prisms with different dispersions and oppositely
directed apex angles. Thus an ADC is a set of four prisms paired to satisfy the
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Fig. 9.12. Differential atmospheric refraction at a 45° zenith angle. See Table 3.1 for the
atmospheric conditions and Section 3.6 for discussion.

given requirements. Because the required dispersion is small, each prism in an
ADC can be considered “thin” and the paraxial approximation is adequate for the
analysis. Schematic diagrams of an ADC, with angles exaggerated for clarity and
the doublet pairs separated, are shown in Fig. 9.13. The dispersion of the ADC is
a maximum in Fig. 9.13a and zero in Fig. 9.13b.

(@ (b)

Fig. 9.13. Schematic diagrams of atmospheric dispersion correctors: (a) maximum dispersion, (b)
zero dispersion. Angles are exaggerated for clarity.
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For a single thin prism of index »n the deviation 6 = (n — 1)y, as shown in Fig.
4.12. The condition for zero deviation for a pair of prisms is

(ny = Dyy = (ny = )y, 9.5.1)

where both apex angles are taken positive. The prisms in each doublet in Fig.
9.13 are cemented, both for mechanical stability and ease of handling and for
maximum light transmission.

From Eq. (9.5.1) we see that the choice of two glasses with the same indices of
refraction at 4, gives equal apex angles and plane-parallel opposite faces. In this
case light of one wavelength is neither deviated nor displaced laterally, hence the
pointing of the telescope is unaffected by inclusion of the ADC in the light beam.
In practice it is difficult to find suitable glasses to satisfy this condition. The usual
approach, and the one followed here, is to take glasses with adequate transmission
in the near ultraviolet and a large difference in dispersive powers, and to accept a
small amount of lateral displacement at the detector.

9.5.a. EXAMPLE: ADC IN COLLIMATED LIGHT

As an example we consider the glasses UBK7 and LLF6 from the Schott
catalog. We choose the wavelength of zero deviation 4, = 435 nm and find the
indices n(UBK7) = 1.52675 and n(LLF6) = 1.54559. Given these indices we
use Eq. (9.5.1) to find the ratio of the prism angles. The selection of the individual
prism angles depends on the telescope and configuration in which the ADC is
used; for this example we choose 1.506° and 1.454° for the UBK7 and LLF6
prisms, respectively. These angles are the same as those used by Wynne (1984) in
the design of an ADC for the 4.2-m William Herschel telescope.

Our chosen layout of each of the doublet prisms in Fig. 9.13a,b is UBK7 on
the left, facing the incident light, with the interface between the prism pairs
perpendicular to the axis of a telescope. To ensure maximum light transmission,
the doublet prisms are placed in contact, with an oil film between them to allow
rotation of one relative to the other. Each individual prism is given a central
thickness of 10mm and collimated light incident on the ADC is focused by a
perfect thin lens with £ = 1000 mm following the ADC.

Results of ray traces for selected wavelengths are shown in Fig. 9.14 for the
ADC configuration in Fig. 9.13a. Note that the wavelengths are spaced at
constant intervals of 70nm, with decreasing dispersion as the wavelength
increases, similar to that of the atmosphere as shown in Fig. 9.12. Not shown
in Fig. 9.14 is the lateral displacement for 4, of about 0.5 mm, a consequence of
the wedge angle of 0.052° for each half of the ADC. If the configuration of the
ADC is changed to that of Fig. 9.13b, then all wavelengths are superposed at 4 in
Fig. 9.14 and the lateral displacement is nearly zero.



228 9. Auxiliary Optics for Telescopes

+ @.4350
x @8,3650
. s 0.5050
* 2.5750
" 0.6450
2
E *
o
=
l. L]
| SURFACE: M
FULL FIELO SPOT DIAGRAM
AOC PRISN -
FRI FEB 5 1999 UNITS ARE NICRONS
FIELD
RIS RADTUS 164.322
G0 .182
SCRLE BR REFERENCE ! CHIEF RAY

Fig. 9.14. Ray traces of wavelengths at 70 nm intervals of collimated light through ADC shown in
Fig. 9.13(a). Glasses are UBK7 and LLF6. See the text for prism parameters and discussion.

The example here is simply to illustrate how an ADC is configured and to give
dispersion results for typical glasses and angles. In practice, an ADC is designed
to match a particular telescope such that maximum dispersion is obtained at the
maximum desired zenith angle. At smaller zenith angles the two separate doublet
prisms are rotated in opposite directions to reduce the net dispersion but maintain
a vertical direction for this dispersion. The net dispersion is simply the vector sum
of the separate dispersions of the individual prism pairs. As an example, if each
pair is rotated 45° from the configuration for maximum dispersion, the net
dispersion is reduced by a factor of /2.

9.5.b. EXAMPLE: ADC IN CONVERGENT LIGHT

The preceding example with collimated light illustrates the principles of an
ADC without the complications of aberrations. Most often, however, an ADC is
located in a convergent beam as, for example, in a Cassegrain telescope. In this
case aberrations are introduced by the prisms and a more detailed analysis of the
telescope plus ADC is required to ensure that image quality over the desired field
is not seriously degraded. An example of such a detailed analysis is given by
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Wynne and Worswick (1986) for the f/11 Cassegrain beam of the William
Herschel telescope; the interested reader should consult their paper.

Here we are interested in the aberrations introduced by the ADC without the
added complication of telescope aberrations. We take the same UBK7-LLF6
combination as in the previous example and locate the incident face of this ADC
in a converging f /4 beam 500 mm from focus. Ray traces with the orientation of
the ADC prism pairs at maximum dispersion give the spot patterns shown in Fig.
9.15 for three field angles and four wavelengths. Figure 9.16 shows spot patterns
for the configuration of minimum dispersion.

There are several features of interest in Figs. 9.15 and 9.16, and we consider
them in turn. First, and most obvious, is the variation of image size with
wavelength, hence a chromatic focal error. Second, asymmetry due to coma is
evident at off-axis field positions for both configurations. The final feature worth
noting is that on-axis images are symmetric in the case of minimum dispersion
but slightly comatic in the configuration for maximum dispersion. The source of
these asymmetries is discussed in the following section.

The chromatic focal error is most clearly seen in through-focus spot diagrams,
as shown in Fig. 9.17 at zero field angle for the ADC set for maximum
dispersion. As shown by Wynne and Worswick, this error is eliminated by
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Fig. 9.16. Spot diagrams for selected wavelengths and field angles of f/4 beam through ADC
with minimum dispersion. See the text for prism parameters and discussion.

putting a slight curvature on the interface between the zero-deviation units. For
this example, putting a radius of curvature of 5m on each of the oiled contact
surfaces gives the through-focus patterns shown in Fig. 9.18. The first prism pair
of the ADC is a weak converging lens and the second is a weak diverging lens.
Because of the power added to each half of the ADC, a refocus of about 1 mm is
also required.

It is also worth comparing the linear dispersions at the detector for these two
examples. The angular dispersion of the ADC is constant, but the linear
dispersion is directly proportional to the effective lever arm, 1000mm in the
first example and 500 mm in the second.

9.5.c. ABERRATIONS OF PRISMS IN CONVERGING BEAM

We now consider the aberrations introduced when prisms are placed in a
converging beam and examine, in turn, a single prism, a doublet prism, and a
complete ADC at different dispersion orientations. For either a single prism or
prism combinations, the effects due to thickness and angles can be separated as
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435, 500, and 650 nm.
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any prism is essentially a plane-parallel plate plus a thin wedge. The effect due to
the thickness is considered first.

The aberration coefficients for a plane-parallel plate of thickness ¢ and index n
are given in Egs. (7.2.10)—(7.2.12), with 8, the angle of the chief ray at the first
surface. Substituting these relations into Eq. (5.4.1) gives the results in Table 9.6,
transverse aberrations for a plate in a converging beam. It is evident from the
results in Table 9.6 that the aberrations are more significant for thicker plates (and
multiple prisms as in an ADC) and faster beams.

The aberrations of a single thin wedge are derived in Section 15.6 and we take
the important results from that discussion. Note that the coefficients for a wedge
given in Eqgs. (15.6.5) and (15.6.6) are simply the sum of the surface coefficients
because the wedge is thin and the beam size is the same at both surfaces. Note
also that these coefficients are expressed in terms of ¢ and y, where the angle of
incidence at the wedge of angle y is 8, = ¢y.

We substitute the coefficients in Egs. (15.6.6) and (15.6.5) into Eq. (5.4.1) to
get transverse coma and astigmatism, with these relations given in Table 9.7. Note
that the relation for coma in Table 9.7 is independent of &, hence it does not
depend on the orientation of the wedge. Astigmatism, on the other hand, does
depend on the wedge orientation.

The procedure used to find the aberration coefficients for a single prism is
easily extended to that of a cemented double prism. As with a single prism, the
pertinent coefficients are those of coma and astigmatism from Table 5.1, now
written for each of the three surfaces. Because the wedge pair is thin, the sum of
the surface coefficients is the coefficient for the wedge. We outline this procedure
for coma.

Table 9.6

Transverse Aberrations of Plane-Parallel
Plate in Converging Beam

2
_ 3/_(” _1) AW
TSA = 4dy,y’s = T2 (<)s
’ 3("2—1) t ’
TTC = 3,07 = 0, =0 —)s

2
2 (n" —1) 1y,
TAS = 24,5’ = 0 S ‘)s

Table Symbols: ¢t =thickness of plate of
index n; s’ = s; F = 5/2y = focal ratio of
converging beam.
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Table 9.7

Transverse Aberrations of Single Thin
Prism in Converging Beam

3t -1
TTC = 34,,°s = —y SnE? s
2-1) 2
TAS = =D (2
S = 24,,.ys ¥y oF 1 . K

Table Symbols: y = angle of wedge; angle of
incidence =¢ey; F = s/2y=focal ratio of
converging beam; s’ = distance from prism
to focus.

Let the indices of refraction and wedge angles for the first and second prisms
be denoted by n,,7,, and #,, y,, respectively, and let the surfaces in order be
numbered 1 through 3. The coma coefficient for the prism pair in air is

2 2 2
A, (pair):ﬁ(1 2"‘) + Mo ("1 2"2) +m0%02 9.5.2)

2 2 2
253 nj 2s5 n 283

where s, = ns; and s; = n,s;. Although Eq. (9.5.2) can be evaluated for an
arbitrary angle of incidence at the first surface and an arbitarary prism pair, we
consider only the special case where 0, =y, — v,, 0, = —(n,/n,)y,, 0; =0, and
Eq. (9.5.1) applies. The prism described by these restrictions is the first half of the
ADC shown in Fig. 9.13a,b. Evaluating Eq. (9.5.2) with these conditions gives
the coma coefficient for a zero-deviation doublet prism as

_nalmy —n)n, — 1)

A, =
z 2n,n,s?

zZ

, (9.5.3)

where the subscript z denotes zero-deviation. Following the same procedure for
the astigmatism gives

— V%("z —n)np — 1)

4y,
! ny(n; — 1)s,

(9.5.4)

Evaluation of Eq. (9.5.2) for an arbitrary angle of incidence gives Eq. (9.5.3) for
any angle within the range over which the paraxial approximation is valid. A
similar analysis for astigmatism gives a relation in which the dependence on the
orientation of the prism pair is a factor. It turns out on further analysis that this
dependence is only a minor factor for the range of angles likely to be encountered
for an ADC in a typical telescope, hence Eq. (9.5.4) is acceptable as a measure of
the astigmatism coefficient for all small angles of incidence.
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Following the usual procedure of substituting the aberration coefficients into
Eq. (5.4.1) we get the transverse aberrations for a zero-deviation doublet prism in
Table 9.8. It is worth noting again that the contributions of coma and astigmatism
given in Table 9.8 for a single doublet prism are constant over the field and do not
include the prism thickness.

We are now in a position to determine coma and astigmatism for a full ADC.
Consider first the coma due to the prism effect. When the dispersions add, as in
the configuration in Fig. 9.13a, the comas of the pairs add and the resultant is
twice that given in Table 9.8. When the configuration is that shown in Fig. 9.13b
the comas of the pairs have opposite signs and the coma due to the wedge effect is
zero. At other dispersions the coma is reduced from its maximum value by an
amount equal to the fractional reduction in the dispersion.

For astigmatism due to the prism effect the aberration is a maximum when the
configurations are as shown in Fig. 9.13a,b, and is zero when the prism pairs are
at right angles with respect to one another.

9.5.d. DISCUSSION OF ABERRATION RESULTS

For actual thin prisms, such as those used in the preceding examples, the net
aberrations are simply the sum due to both thickness and wedge effect. For an
ADC configured as in Fig. 9.13a, the net transverse coma is the sum of TTC from
Table 9.6 and 2 TTC from Table 9.8. A similar sum gives the net astigmatism for
an ADC in this configuration.

We now calculate the various transverse aberrations at A = 435nmand 0 = 1°
for the ADC giving the spot patterns shown in Fig. 9.15. All of the following
results are given in microns. For a total central thickness of 40mm we find

Table 9.8

Transverse Aberrations of Zero-Deviation
Doublet Prism” in Converging Beam

TTC = 3,25 = —y, 22 =M =1

8n,n, F?

(ny —ny)(ny = 1)

TAS =24, y5’ =2 21272 /¢
12Ys =72 n(ny — DF

9 zero-deviation condition:
(ny = Dy = (m — Dy,
Table Symbols: F = s/2y=focal ratio of
converging beam; s’ = distance from prism to

focus. Angular aberration subtended on
sky =TA/f, f =telescope focal length.
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TSA =14.6, TTC = —6.0, TAS = 0.6; for the wedge effect we get TTC = —2.6
and TAS =2.0. The only difference for the spot patterns in Fig. 9.16 is that
TTC =0 for the wedge effect.

From these numbers we see that coma due to thickness is more significant than
that due to the wedge effect. We can use the signs and relative sizes of the coma
numbers to account for the differences between positive and negative 8 seen in
Figs. 9.15 and 9.16. We also see that spherical aberration is a factor in this /4
beam, but that astigmatism is relatively unimportant.

The sizes of the computed aberrations suggest that the example ADC could be
used in a beam faster than f/4 without undue image degradation. This is not the
case, however, because the elimination of the chromatic focal error by putting a
radius of curvature at the oiled contact introduces a significant amount of
spherical aberration, as is evident from the images at best focus in Fig. 9.18.
Because of this curvature factor, the use of an ADC with plane outer faces in a
converging beam is limited to beams no faster than f/5 or f/6, with detailed
analysis based on ray traces required over the entire range of wavelengths to
ensure adequate image quality.

9.5.e. EXAMPLE: ADC IN RITCHEY-CHRETIEN TELESCOPE

The previous examples illustrate the principles of an ADC in a collimated
beam and a converging beam, but do not relate the characteristics of an ADC,
angles and locations in the beams, to the correction of atmospheric dispersion.
Doing the latter requires selecting a telescope and maximum zenith angle at
which atmosphere refraction is corrected. We choose a 3.6-m RC telescope with
the parameters given in Table 6.10, but with F; = 1.5 and F = 6, and a maximum
zenith angle oy = 68.2° (tano, = 2.5). We again use UBK7 and LLF6 glasses.

With the needed parameters in hand, we proceed to match an ADC to the
chosen telescope. From Fig. 9.12 we get a differential atmospheric refraction of
1.40 arc-sec between 400 and 650 nm when the zenith angle is 45°. Scaling this to
the maximum zenith angle by using Eq. (3.6.3) gives a maximum difference in
refraction of 3.5 arc-sec between 400 and 650 nm. The telescope in this example
has a focal length f = 21.4 m and a scale of 105 um/arc-sec. Thus the ADC in
the Cassegrain beam must give a maximum separation at the focal surface of
about 366 um between these wavelengths to compensate for the atmospheric
dispersion.

Our previous example, located 500mm from focus, gives a separation of
150 pm between 400 and 650 nm. Increasing this by the required factor of 2.44
means either: (a) an increase in the prism angles by this factor with no change in
distance from focus, (b) an increase in distance from focus by this factor with no
change in angles, or (c) some combination of the two. Choosing between these
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options requires analysis of image quality over the desired field, an exercise not
done here.

For this example we choose option (b) and place the first surface of our
example ADC at 1220 mm from the nominal telescope focus. Because the ADC
is farther from focus, hence larger in diameter, we give each prism a central
thickness of 20 mm. From ray traces we find that a radius of curvature of 15m at
the interface between the doublet prisms eliminates the chromatic focal error. The
resulting spot patterns at three field angles and four wavelengths are shown in Fig.
9.19. Spot patterns for the telescope without an ADC are roughly comparable to
those for 4 = 500 nm. Although the images with an ADC are larger than those of
a bare telescope, the latter is restricted to small zenith angles or narrowband filters
to achieve comparable image quality.

9.5.f. CONCLUDING REMARKS

For faster beams, such as at prime focus, spherical aberration and coma due to
the thickness of the prisms makes the images unacceptably large. Wynne (1986)
has pointed out that it is possible to design an acceptable ADC if each equivalent
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Fig. 9.19. Spot diagrams for selected wavelengths and field angles for a 3.6-m RC telescope with
an ADC in the f/6 Cassegrain beam. Box width is 1 arc-sec. See the text for discussion.
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plane-parallel plate is replaced by a meniscus lens. Except for the wedge added to
make each lens a prism, the curved surfaces of these lenses have a common center
of curvature at the on-axis focus of the telescope. The interested reader should
consult the article by Wynne for further details. A design of an ADC in an /1.6
beam in a wide-field 3-mirror telescope has been given by Willstrop (1987).

Finally, it is important to note that the differential dispersion produced by an
ADC is not generally a mirror image of that due to the atmosphere. As a
consequence the exact compensation at a pair of wavelengths may leave residual
dispersions at other wavelengths. Wynne and Worswick show that the residual
dispersion for the UBK7-LLF6 combination is approximately 0.4 arc-sec for a
zenith angle oy = 71.6°. This residual scales as the tangent of the zenith angle
and is 0.13 arc-sec at ay = 45°.

9.6. FIBER OPTICS

With the development of high-efficiency optical fibers to pipe light from one
point in space to another, astronomers have found a tool that is revolutionizing
spectroscopy. Individual fibers placed on stellar sources at a telescope focal
surface have their opposite ends aligned along the slit of a spectrometer, and the
result is multiple-object spectroscopy (MOS). By this means, the observing
efficiency of a telescope is increased dramatically. In this section we outline
the characteristics of optical fibers, especially those of importance to astronomers.
Our discussion follows an excellent review article by Barden (1995).

The type of fiber most often used is a multimode, stepped-index fiber. This
kind of fiber consists of a high index of refraction glass core surrounded by a
sheath of a lower index glass called a cladding. Core diameters used in MOS are
generally in the range of 50 to 500 um, and the thickness of the cladding is
typically about one-tenth that of the core. Light is guided through the core by
total internal reflection that takes place at the interface between the core and
cladding. A plastic outer coating called a buffer protects the glass fiber. A
common way of giving the size of a fiber is core/cladding/buffer in um, such as
200/220/240. Characteristics of particular interest in MOS are spectral transmit-
tance, focal ratio degradation, and image scrambling. We now consider each of
these in turn.

Transmission as a function of wavelength depends in large part on the OH
content of the fiber core. Fibers with high OH content, so-called wet fibers, have
poor transmittance in the red and near-infrared but are good transmitters in the
near-ultraviolet. Dry fibers with low OH content have excellent transmittance in
the 1-2 um range, but are not suitable for wavelengths shorter than about 500 nm.
It has been found that hydrogen-doped dry fibers have good transmittance from
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the infrared and to wavelengths as short as 400 nm. Typical fiber lengths required
with large telescopes are in the 20-m range. The total transmittance over this
length, including a reflection loss of 4% at each end, is about 90% for a dry fiber
at 1 pm. Curves of transmittance as a function of wavelength can be found in the
cited article by Barden.

The transfer of the light from a star at the focus of a telescope via a fiber to a
spectrometer is most efficient if the output focal ratio from the fiber (F,,,) is equal
to the input focal ratio at the telescope focus (Fi,). It turns out that all fibers tend
to increase the cone angle of the output beam compared to the input beam, that is,
Fo < Fy, an effect called focal ratio degradation (FRD). This degradation
depends on several factors, including mechanical stresses induced by bending
that deforms the cylindrical shape of the fiber. An excellent review of FRD,
including a discussion of the mechanisms responsible for FRD, is given by
Ramsey (1988).

Extensive measurements of FRD on a variety of fibers show that faster input
focal ratios are more nearly preserved than slower ones. Figure 9.20 shows typical
results for F,, plotted as a function of F;,. Each curve indicates the fraction of
light collected by the collimator of a spectrometer for different input focal ratios.
It is clear from the results in Fig. 9.20 that the normal design of a spectrometer
with F; = F, is not appropriate for a fiber-fed spectrometer. The options are to
increase the diameter of the collimator to capture most of the light from the fiber
or live with substantially less dispersed light because of light loss at the
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Fig. 9.20. Representative curves for focal ratio degradation (FRD). F(in) is the beam focal ratio at
a fiber input; F(out) is the focal ratio of the emerging beam for different fractions collected at that focal
ratio. Fraction collected: Lowest curve, 1.0; Dot-dot curve, 0.95; Upper solid curve, 0.90.
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collimator. As pointed out by Ramsey, either represents a loss for spectroscopy. A
full discussion of the effect of FRD on resolution-throughput products is found in
Section 12.3.

The final characteristic we consider is that of image scrambling, the mixing of
the input light both radially and azimuthally by a fiber to produce a uniform
output beam. In effect, the output from a fiber has no memory of the distribution
of light on the input end of the fiber. This is especially important for spectro-
meters used to measure wavelengths to very high precision, as in the search for
planets and other faint stellar companions from measures of changing radial
velocities. The interested reader should consult the excellent review by Heacox
(1995).

This section is a brief introduction to a large topic. The work in this field is
well covered in conference proceedings edited by Barden (1988) and cited at the
end of this chapter.
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Chapter 10 Diffraction Theory and Aberrations

The discussion of telescopes and their aberrations in previous chapters is
entirely from the point of view of geometric optics. This approach is one in which
the ray is a well-defined entity, with the wavelength in the geometric optics limit
effectively zero. The paths of rays through an optical system are governed by
Fermat’s principle and aberrations occur when rays do not pass through the
paraxial image point. An aberration-free image in the geometric optics limit is,
according to Fermat’s principle, a true point image. It was pointed out in Section
3.7, however, that the wave nature of light sets the image size for an otherwise
perfect or diffraction-limited optical system, with the analysis there intended only
to give an estimate of the size of the diffraction image.

In this chapter and the next the emphasis is on the character of the perfect
image from the point of view of diffraction theory. Because no optical system is
strictly perfect, we also consider the effect of the aberrations of a nearly perfect
optical system on the diffraction image. Our analysis proceeds along two lines. In
this chapter the starting point is Huygens’ principle and the superposition of
waves from points on a wavefront. In the following chapter the analysis is in
terms of transfer functions, with application to the imaging capability of the
Hubble Space Telescope (HST) expected before its launch.

As part of our discussion of the near-perfect image, we generalize our
representation of its characteristics in terms of transverse aberrations and
introduce orthogonal aberrations in terms of Zernike polynomials. With this
representation we find that giving image quality in terms of root mean square
(rms) wavefront error is especially informative. Our discussion includes a

240
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comparison between image size for the near-perfect image found by diffraction
theory and that from geometric aberration theory as given in Chapter 5.

Before discussing the nature of a perfect image as formed by a telescope with a
circular or annular aperture, we discuss Huygens’ principle and its extension by
Fresnel. This principle is the basis for diffraction theory and the Fresnel-
Kirchhoff diffraction integral. We first apply this theory to a rectangular aperture.
The mathematics is a bit simpler in this case and the results, although of interest
in their own right, are especially useful in situations where the rectangular
aperture reduces to a narrow slit, as in many types of spectrometers.

Our analysis is limited to the special case of Fraunhofer diffraction and
parallels that given in most optics texts, such as those by Hecht (1987) or Born
and Wolf (1980), with the notation basically that of the latter authors.

10.1. HUYGENS-FRESNEL PRINCIPLE

The initial statement of Huygens’ principle was made in an attempt to
understand the laws of reflection, refraction, and the propagation of light. He
started with the assumption that light was a wave and could be described in terms
of wavefronts. From the point of view of Fermat’s principle, a wavefront is a
surface on which every point has the same optical path distance from a point
source of light. Viewed as a wave, a wavefront is a surface on which every point
has the same phase. Huygens postulated that at a given time each point on a
primary wavefront acts as a source of secondary spherical wavelets, and that the
envelope of these wavelets at a slightly later time is the new primary wavefront.
He further stated that these secondary wavelets propagate with a speed and
frequency equal to that of the primary wave.

This statement suffices to account for the laws of reflection and refraction, and
the approximately straightline propagation of light through large apertures, but it
fails to account for diffraction, the deviations from exact straightline propagation
of light. Fresnel extended Huygens’ principle by assuming that the secondary
wavelets interfere with one another according to the principle of superposition.
His statement postulated that each unobstructed point on a wavefront is a source
of spherical wavelets, and that the amplitude of the wave at any point ahead of the
wavefront is the superposition of all of these wavelets. In adding these wavelets it
is necessary to include the amplitude and phase of each wavelet. The Huygens-
Fresnel principle was put on a firm theoretical basis by Kirchhoff and expressed
as an integral derived from the wave equation. Details of the derivation of the
Fresnel-Kirchhoff diffraction integral can be found in Born and Wolf (1980) or
any intermediate optics text.
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For our purposes we are interested only in the special case of Fraunhofer
diffraction, that in which the source of light and the field point of interest are
effectively at infinity relative to the aperture. In practice this is accomplished in a
lab by collimating the light from a point source, passing that light through an
aperture, and observing the diffraction pattern in the focal plane of a lens
following the diffracting aperture. Thus the image of a star formed by a telescope
or, equivalently, the converging spherical wave diffracted by the exit pupil of the
telescope, is a Fraunhofer diffraction pattern.

10.1.a. FRAUNHOFER DIFFRACTION: RECTANGULAR APERTURE

The layout for a rectangular aperture is shown in Fig. 10.1, with a spherical
wavefront W of radius of curvature R emerging from the aperture of sides 2a and
2b. An arbitrary point Q on the spherical wavefront has coordinates (¢, , {), with
the origin of this coordinate system at the center of the rectangle. An arbitrary
field point P has coordinates (x, y, z) with the origin O of this system at distance R
along the { axis. The wave amplitude U at point P is the sum of all amplitude
contributions from each area dS on the wavefront. For all cases of interest we
assume the dimensions of the rectangle and the distance of point P from the
origin of its coordinate system are small compared to R. When these conditions
are satisfied, the sum of the contributions from each dS is a simple scalar sum
given by

U(P) = CJ exp [ik(s — R)]dS, (10.1.1)

w

(a,b)

vl ,
/ ﬂ’?\s\w p )

{z

w

e

Fig. 10.1. Coordinate frames at exit pupil (£, #, {) of rectangular aperture and image surface
(x,y, z) of optical system. W is a spherical wavefront of radius R centered at O. See Eq. (10.1.1).
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where k = 27/4, s is the distance from Q to P, C is a constant proportional to the
amplitude at (, and the integration is over the unobstructed wavefront.

As noted in the foregoing, the center of curvature of the wavefront is at point
O. For this particular point P we have s = R for all points Q on the wavefront,
hence all waves are in phase at O. Therefore the argument in Eq. (10.1.1) is zero
and the integral gives the area of the rectangle. Because all waves are in phase at
O, the amplitude U(O) is a maximum. For any other P the path and phase
differences are (s — R) and k(s — R), respectively, and the amplitude at P is less
than that at O.

Expressing s in terms of the coordinates of O and P, relative to the origin at O,
we get

S =C-0"+ -+ -2,
=R —2(x¢ +yn + 20), (10.1.2)
where all squared terms in x, y, and z are negligible. With s nearly equal to R,

given our assumption about distances in the preceding, we have s> — R? =
(s — R)(s + R) = 2R(s — R). Substituting this relation into Eq. (10.1.2) gives

xE+yn+z{
s—R=_22T=
R
B Y PR (10.1.3)
- R 2R2 | o

At this point we define p = x/R, ¢ = y/R, where p and q are the direction cosines
of a line from the center of the rectangle to P. Setting z = 0 to limit our analysis
to the paraxial focal plane, we substitute the remaining terms into Eq. (10.1.1)
and get

a b
UP) = CJ_ J_b exp (—ik(p¢ + qm)dé dn

- cr exp (~ikpe)at |

—a

b
exp (—ikqn)dn. (10.1.4)

~b

Evaluating the integral we get

UP) = m(smkpa) (Sinkqb) = CA(Sin—v") (Sm—”y) (10.1.5)

kpa kqb v v

x y
where 4 =4ab is the area of the rectangular aperture, and v, and v, are
dimensionless variables.

The intensity at point P of an image is the absolute square of the time-
averaged amplitude of the electromagnetic wave at P, while the point spread
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function (PSF) at P is the intensity normalized to unity at the point where the
intensity is a maximum. Denoting the intensity at the center of the image by I,
and the PSF at point P by i(P), we get

. . 2 : 2
M%J?=GE%(Eﬂ>’ (10.1.6)
0 Uy vy

where I, = C242.

A two-dimensional (2D) surface plot of i(P) for a square aperture is shown in
Fig. 10.2, with i{(P) > 0.1 removed to enhance the secondary peaks. A semilog
plot of the function X = (sinv,/ vx)2 is shown in Fig. 10.3. Note that the function
X is zero when v, = *nm, where n is any nonzero integer. Hence the plot in Fig.
10.3 of X versus v,/n shows the minima at integer values.

Of particular interest is the minimum with » = 1 adjacent to the principal
maximum. At this minimum v, = © = (2n/4) pa, hence

pr=x/R=1/2a. (10.1.7)

From Eq. (10.1.7) we see that the linear distance between minima on opposite
sides of the main peak is 2x,. We also find that the full-width-half-maximum
(FWHM) of the principal peak is approximately 0.9x,. The corresponding angular
distances are 2p; and 0.9p,, where the latter is the angle subtended by the FWHM
at the aperture.

The importance of Eq. (10.1.7) in angular terms cannot be overemphasized.
For a point source, the angular FWHM in a given direction is approximately the
wavelength divided by the width of the aperture in that direction. The larger is the
width, the smaller is the angular size. The only difference between apertures of

0.10~
.08
0.06

0.04

0.02

0.00

Fig. 10.2. Surface plot of i(P) < 0.1 for a square aperture.
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Fig. 10.3. Slice of i(P) for a square aperture along the x-axis.

different shape is the numerical factor of order unity that multiples wave-
length/width.

The decrease in the PSF in the wings of the diffraction pattern beyond a few
bright fringes is best described in terms of a locally smoothed PSE. Across a
fringe the average value of sin? v = 0.5, hence along the x-axis

, 1 1 (A\*1
(i{(P))y = Yok aw (5) 7 (10.1.8)

with a similar relation along the y-axis. In the case of a square aperture of side 24,
the average PSF along the diagonal of the diffraction pattern x = +y is

. 1 1 (2\*1
({(P))x=y = e (‘27;) et (10.1.9)

For a circular or annular aperture the decrease in the PSF is proportional to 1/,
where o is the field angle. It is an interesting exercise to compare the average PSF
in the wings of an image for a circular aperture, given in Eq. (10.2.12), with that
of a square aperture, and consider the possible advantages of using the latter in
the search for faint stellar companions.

The enclosed energy EE is defined as the fraction of the total energy E within
an area of sides (2x, 2y) centered on the PSF, where E is proportional to the
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integral of i(P) over the entire receiving plane. In terms of dimensionless
variables we have
o0

EE = J% vao i(P)dv, dv, ” i(P)dv, dv,. (10.1.10)

—v 40,
» —o0

For a square aperture of side 2a we take a square area of side 2x at the PSF. To
find EE for the principal maximum we have x = x,, v, = v, = 7. Substituting
for i(P) from Eq. (10.1.6) and evaluating Eq. (10.1.10) at these limits, we find
EE = 0.815 for the principal maximum. Within a square enclosing the FWHM we
get EE=0.52.

The final item of interest for a rectangular aperture is the case where a < b,
hence a narrow slit in the y direction. In the limiting case where the slit is
effectively infinite in length, it is appropriate to consider the distant source as a
line rather than a point and the wavefront W in Fig. 10.1 as cylindrical. As a result
there is no dependence on y and the resulting diffraction pattern is the x-part only
of Eq. (10.1.6). The pattern consists of a series of bright and dark fringes parallel
to the source and slit.

10.2. PERFECT IMAGE: CIRCULAR APERTURE

We now apply the Fresnel-Kirchhoff diffraction integral to the case of a
circular aperture with a central obscuration, as is the usual case for a telescope.
Our analysis is done for an annular aperture with an obscuration of diameter eD,
from which results for a clear aperture follow with ¢ set to zero.

As shown in the previous section, the characteristics of the image of a point
source object formed by a perfect optical system are completely described by the
point spread function (PSF) and quantities derivable from the it. One of the
quantities derived from the PSF is the encircled energy fraction (EE); for a
circular or annular aperture this is the fraction of the total energy in the image
within a circle of a given radius centered on the PSE. The intensity in units of flux
per unit area at a point on the image is directly proportional to the PSF, while the
average intensity over a centered portion of an image depends on both the PSF
and EE. Derivation of each of these items in this section parallels that for the
rectangular aperture.

10.2.a. POINT SPREAD FUNCTION

Consider the exit pupil of an optical system with radius a, as shown in Fig.
10.4, with a spherical wavefront # of radius of curvature R emerging from the
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pupil. As in Fig. 10.1, an arbitrary point Q on the wavefront in Fig. 10.4 has
coordinates (&, 7, {) and is a distance pa from the z-axis at angle ¢ with the &
axis. For an annular aperture with central obscuration of radius ¢a, p is in the
range ¢ to 1. An arbitrary field point P is a distance » from the z-axis at angle
with the x axis. Relative to the origin at O, the coordinates for points 0 and P are

¢ =apcos, X =rcosy,
n = apsin @, y =rsiny, (10.2.1)

{=—V(R*—a’p?).

For all systems of interest we assume the distances z, r, and a are small compared
to R. When these conditions are satisfied, the sum of the contributions from each
dS on the wavefront is given by Eq. (10.1.1), where the distance s from g to P is
given by Eq. (10.1.2).

Substituting Egs. (10.2.1) into Eq. (10.1.2) gives

1 2
s-R:—“Tf’rcos(<p—://)+z[1—§(%) ] (10.2.2)

where { in Eqgs. (10.2.1) is transformed by the binomial expansion. Following
Born and Wolf, we define dimensionless variables # and v in the form

2n ra\? 2n ra
U= (1_3) z, v=— (E>r (10.2.3)
Substituting Eqs. (10.2.3) into Eq. (10.2.2) gives
2 2
k(s — R) = —uvp cos (¢ — ) — % + u(g) : (10.2.4)

The introduction of these dimensionless variables is made for convenience in
relations involving aberrations to follow in subsequent sections.

n 9
Q y v
i3 Se———— 1
ap .
sZ
] . >
R
Ay

Fig. 10.4. Coordinate frames at exit pupil (£, #, {) of circular aperture and image surface (x, y, z)
of optical system. W is a spherical wavefront of radius R centered at O. See Eq. (10.2.1).
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At this point we set ¥ = 0 and evaluate U(P) in the paraxial focal plane.
Noting that the area element dS = a?p dp d¢, the amplitude in the paraxial focal
plane is given by substituting Eq. (10.2.4) with # = 0 into Eq. (10.1.1). The result
is

21 ¢l
U(P) = Ca* J J exp[—ivpcos (o — Y)]p dp deo. (10.2.5)
0 Je
To carry out the integration over ¢ we note that U(P) is independent of i because
the system is symmetric about the z axis. Therefore we can choose any convenient
value for y; we choose ¥ = n. Carrying out the integration over ¢ involves
substituting the integral representation of J,, the Bessel function of order zero,
with the result

1 2 ZC 1
UP) = 2na2CJ Jo(vp)p dp = ";’2 J d[vpJ, (vp)]. (10.2.6)

€ &

The second step in Eq. (10.2.6) follows after substituting one of the recurrence
relations for Bessel functions found in tables of mathematical functions (see, e.g.,
“Tables of Integrals and Other Mathematical Data” by Dwight (1961)). Integra-
tion of Eq. (10.2.6) gives

UpP) = naZC[zJ ‘v(”) el (8”)],

Ev

(10.2.7)

where J; is a Bessel function of order one. The ratio 2J;(w)/w approaches one as
w approaches zero, hence U(0) = na?C(1 — €?).
Using this result, we write the PSF at point P as

AP 1 [ 2@
'(P)‘T_(l—sz)z[ v e ]

where I(P) = |U(P)|? and i(P) = PSF. It is convenient to represent the intensity
in this form to facilitate comparison of intensity profiles for apertures with
different central obscurations. As examples, semilog plots of PSFs are shown in
Fig 10.5 for ¢ = 0, a clear aperture, and ¢ = 0.33, the obscuration of the Hubble
Space Telescope. Note that the ordinate in Fig. 10.5 is v/n. A 2D surface plot of
i(P) for a clear aperture is shown in Fig. 10.6, with i(P) > 0.1 removed to
enhance the rings around the main peak.

The PSF given by Eq. (10.2.8) and shown in Figs. 10.5 and 10.6 is in the
paraxial focal plane and characterizes the so-called Airy pattern. The intensity is a
maximum at the paraxial image point at v = 0, and the pattern is a central bright
disk, the Airy disk, surrounded by concentric bright and dark rings. For a clear
aperture the peak intensity of successive bright rings decreases monotonically as
v increases; for an obstructed aperture the intensity of successive bright rings
decreases in a cyclic manner, depending on the specific value of ¢.

(10.2.8)
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Fig. 10.5. Point spread function of perfect image for obscuration ratios ¢ = 0 (solid line) and
& = 0.33 (dashed line).
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Fig. 10.6. Surface plot of i(P) < 0.1 for a circular aperture with &£ = 0.
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The radii of the dark rings in the Airy pattern are found by setting i(P) = 0.
Radii for the first three dark rings are given in Table 10.1 for several values of ¢.
Note that the radius of the first dark ring, which encloses the Airy disk, decreases
as ¢ increases, while the radius of the second dark ring is a maximum near ¢ = 0.3
and decreases for larger obscurations.

One important descriptor of the Airy pattern is the radius of the first dark ring.
Substituting v; from Table 10.1 with ¢ = 0 into Egs. (10.2.3) gives

7 A

r = 122iF, o = 7 =127, (10.2.9)

where #; and «, are the linear and angular radii, respectively, of the Airy disk, f is
the system focal length, D is the diameter of the entrance pupil, and F is the focal
ratio. Substituting f/D for R/2a assumes the point source object is effectively at
infinity, and replaces exit pupil distances with those of the entrance pupil. This
substitution also defines the angular radius of the first dark ring as an angle
projected on the sky. For other values of &, the factor 1.22 in Eq. (10.2.9) is
replaced by the corresponding numerical factor in the w, column in Table 10.1.

For a distant point source, the variable v is related to the system parameters and
a dimensionless radius w by the relations

nr nDa
= —_— 10.2.10
v=wn T TR ( )

where » and « are linear and angular radii, respectively. The radii w for the first

and second dark rings, and the radius at which i(P) = 0.5 are shown in Fig. 10.7
for a range of &.

Table 10.1

Radii of Dark Rings in Airy Pattern®?

g w, w, ws

0.00 1.220 2233 3.238
0.10 1.205 2.269 3.182
0.20 1.167 2.357 3.087
0.33 1.098 2.424 3.137
0.40 1.058 2.388 3.300
0.50 1.000 2.286 3.491
0.60 0.947 2.170 3.389

“Subscript on w is the number of the
dark ring starting at the innermost
ring.
b

w=v/T.
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Fig. 10.7. Dimensionless radii at first two dark rings and one-half of peak intensity as a function
of obscuration ratio. Linear radius =wAF; angular radius =wi/D.

10.2.b. AVERAGE PSF IN AIRY WINGS

The description of the PSF in the wings of the Airy pattern beyond a few
bright rings is derived by using the following asymptotic relation for the function
g,

n

2\ 2 T T
Mm:&ﬂ m@—T—ﬁ. (10.2.11)

This approximation is good to 1% or better for § > 15. Choosing » =1 and
B = v or ev, as appropriate, Eq. (10.2.8) becomes

3 2
i(P) = m (—i—) |:cos(v —?) - «/Ecos(sv —%T—t):' .



252 10. Diffraction Theory and Aberrations

Squaring and expanding the factor in brackets, we find a locally smoothed PSF by
setting each of the cos? terms to one-half and the cross term to zero, with the
result

(i(P)) = (10.2.12)

41+e) 1 41+ (A)1
w1 =)V mh(l— ) (D) @’
where « is the field angle in radians. The quantity (i(P)) is a good measure of the
average intensity over one or two Airy rings in the range where the asymptotic
relation for J; is a good approximation. For ¢ = 0.33, for example, Eq. (10.2.12)
is valid beyond the tenth bright ring.

From Eq. (10.2.12) we see that the average intensity in the wings of the Airy
pattern is larger for larger values of &. It is apparent that the effect of the central
obscuration is to transfer some of the energy from the disk and nearest bright
rings into the wings. A quantitative measure for the fraction of the energy in the
wings of the Airy pattern is developed in the following section.

10.2.c. ENCIRCLED ENERGY

The encircled energy EE is defined as the fraction of the total energy E in the
image enclosed within a circle of radius r centered on the PSF peak. Following
Born and Wolf we have

21 pry
EE = lJ J I(P)r dr dy (10.2.13)
E 0 0
1 —¢* ¥
= J I(P)v dbv, (10.2.14)
2l Jo

where v, is a dimensionless radius, and /(P) is given by Eq. (10.2.8). The
transformation of Eq. (10.2.13) into Eq. (10.2.14) follows from substitution of v
for r using Eq. (10.2.3), and substitution of [, for E according to

EA _ nE(1 — &)

— (242 —
h=Ct = ="p

, (10.2.15)

where C is the constant in Eq. (10.1.1), 4 = na®(1 — £?) is the area of the annular
aperture, f is the focal length, and F is the focal ratio. Further discussion of Eq.
(10.2.15) follows in the next section.
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We first evaluate Eq. (10.2.14) for the clear aperture, and find

Vo 2
EE(vy) = ZJ <JI—IEU—)) vdv

0
(]
= - | @i + s
0
=1 — J¢(vy) — JE(vy). (10.2.16)
The intermediate step in Eq. (10.2.16) follows after substitution of a recurrence
relation. When v, is taken at a dark ring, J;(v) is zero and the fraction of the
energy outside the dark ring is given by JZ(vo).

Following the same procedure for the obstructed aperture, Eq. (10.2.14)
becomes

BB(w0) = 1 1 = 80aw) = S2a0) + 01 = o) = )

_28JUOJ1(£U)2J I(U)dv]. (10.2.17)
0 v

Results derived from these relations for EE are shown in Fig. 10.8 for ¢ = 0 and
¢ = 0.33. Encircled energy values within each of the first three dark rings are
given in Table 10.2, with data for the first two dark rings plotted in Fig. 10.9. Also
shown in Fig, 10.9 are EEs within the radii at which the intensity is one-half of
the peak.

Examination of the results in Table 10.2 and Fig. 10.9 shows that there is a
significant transfer of energy from the Airy disk to the first bright ring with
increasing &. We also see that EE in the disk and first bright ring combined
decreases very slowly as ¢ increases from zero to 0.35. From Fig. 10.9 it is also
evident that noticeable energy transfer to the second bright ring begins when ¢ is
approximately equal to 0.4.

Returning to Eq. (10.2.17), we note that the value of the integral in this relation
is equal to £ + 6 for vy > 1, with § < &. As an example, with ¢ = 0.33 we find
6 < 0.01 for v, > 15. Therefore a good approximation to EE for large v, is found
by substituting ¢ for the integral in Eq. (10.2.17), and Eq. (10.2.11) for J, and J;.

Combining the terms involving the Bessel functions, we find

JB) + 1 (B) = 2/np,
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Fig. 10.8. Encircled energy fraction for obscuration ratios ¢ = 0 (solid line) and ¢ = 0.33 (dashed
line), for perfect image.
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Table 10.2
Encircled Energy Fraction within Airy
Dark Rings®
€ EE, EE, EE,
0.00 0.838 0.910 0.938
0.10 0.818 0.906 0.925
0.20 0.764 0.900 0.908
0.33 0.654 0.898 0.904
0.40 0.584 0.885 0.903
0.50 0.479 0.829 0.901
0.60 0.372 0.717 0.873

“Subscript on EE is number of dark

ring starting at innermost ring.
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Fig. 10.9. Encircled energy fraction within first and second dark rings and within one-half of peak
intensity. Results are given as a function of obscuration ratio.

where f is either v, or ev,y. Therefore
I S

(1 — &)vy n*(1 — ¢)Da’ (10.2.18)
OE(vy > 1) =1 — EE(yy > 1).

EE(v, > 1) =1

where OE is the fraction of the energy outside radius v,. Examination of Eq.
(10.2.18) shows that the larger ¢, the larger is the fraction of the energy outside a
given large radius.

10.2.d. IRRADIANCE AND INTENSITY

The PSF defined in Section 10.2.a is a dimensionless measure of the intensity
or irradiance of the Airy pattern, but it is also necessary to give physical units to
the PSE. In this section we give relations for the irradiance and intensity at the
center of the Airy pattern and discuss the average irradiance over the Airy disk.
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The terms intensity and irradiance are often interchanged in usage. The
definition of irradiance is the energy incident on a surface per unit area per
unit time, with units watts/m? (W/m?). Physicists commonly use the word
intensity for the flow of energy per unit area per unit time through a surface.
Astronomers, however, generally follow the definition that intensity is the energy
per unit time in a certain direction per unit solid angle, with units watts/steradian
(W/sr). We follow this latter usage of intensity. The symbol / is often used to
represent both intensity and irradiance, and we follow this convention. The
interested reader should consult the reference by Mahajan (1998) for a thorough
discussion of the radiometry of imaging.

The relation given in Eq. (10.2.15) is derived by Born and Wolf (1980).
Replacing the energy £ in Eq. (10.2.15) by the energy per unit time, or flux %,
we have the irradiance J; at the peak of the PSF as

_FiD*(1-¢) nF(1-#¢)
T a4

(10.2.19)

It is instructive to compute the peak irradiance for a specific case. Consider a
perfect Hubble Space Telescope (HST) with D =2.4 m, F = 24, ¢ = 0.33, and
area A = 4.03 m?. Taking the canonical value for the photon flux as 1E4
photons/(sec cm? nm) for a zero-magnitude star at A =550 nm, we get
&% = 4.03E8 photons/(sec nm) = 1.46E-10 W/nm, for the photon and energy
flux per nm in the image of the HST with unit transmittance. Substituting the
given values into Eq. (10.2.19), we find I, = 1.63E18 photons/(sec m> nm )=
0.59 W/(m? nm) = 5.9E-13 W/(um? nm), for a zero-magnitude star.

Another quantity of interest is the average irradiance over the Airy disk, that
part of the image enclosed by the first dark ring. The average irradiance (/(disk))
is the flux in the disk divided by its area, and is given by

oF oF

I(disk)y = 2% = 9%
ik = o = s 22AF )

(10.2.20)
where o is the fraction of the total flux in the Airy disk, r, is the radius of the Airy
disk, and y is a numerical factor such that 1.22y = v, from Table 10.1 for an
annular aperture. The value of ¢ also depends on ¢, as noted in the discussion of

encircled energy in the previous section.
Dividing Eq. (10.2.20) by Eq. (10.2.19), we get

(/(disk)) _ 40 _ o
Iy  (1.22my)°(1 — ) 0.272 P2(1 —g2)’

(10.2.21)

Taking ¢ = 0 and ¢ = 0.33, we use the results in Table 10.1 and find y = | and
y = 0.9, respectively, and from Table 10.2 we get ¢ = 0.838 and o = 0.654,
respectively. Putting these values into Eq. (10.2.21) gives (/(disk))/, = 0.228
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and 0.246 for the apertures with ¢ = 0 and ¢ = 0.33, respectively, hence a smaller
Airy disk roughly compensates for the smaller encircled energy fraction.

For another example assume a passband of 100 nm centered at 4 = 550 nm,
and a star of apparent magnitude 25 imaged by HST. In this case we find a photon
flux of 4.03 photons/sec passing through the HST aperture and 2.63 photons/sec
on the Airy disk. Assuming a reflectance of 0.9 for the primary and secondary
HST mirrors, a more accurate flux value is approximately 2.1 photons/sec for a
star of apparent magnitude 25 at the f/24 focus of HST. The detected photon
flux, of course, depends on the efficiency of the optics and detector in a reimaging
camera.

As a final item we note that Born and Wolf also define I, = EA/A?, hence units
are those of intensity rather than irradiance. In this case the integral in Eq.
(10.2.13) is over the solid angle subtended by the image at the aperture instead of
the area of the image.

10.2.e. RESOLUTION LIMIT

A telescope is often used at or near its angular limit of resolution, the
minimum angular separation between two point sources of approximately equal
brightness which can be seen as two separate images, or just resolved. Following
the criterion first put forth by Lord Rayleigh, we say two stars of equal brightness
are just resolved when the peak of one Airy disk falls on the first dark ring of the
other Airy disk. Therefore the angular limit of resolution is

(AB),.. = 1.22y4/D, (10.2.22)

min
where 1.22y = , from Table 10.1 to account for the decreasing diameter of the
Airy disk with increasing obscuration.

At the point midway between the PSF peaks, the normalized intensity of the
sum is 2i(w,/2) and ranges from about 0.74 at ¢ =0 to 0.81 at ¢ = 0.33. A
detector with several pixels spanning an Airy disk will easily resolve the separate
images in this case and the condition of “just resolved” is somewhat smaller than
given in Eq. (10.2.22). The actual limit of resolution in practice depends on the
brightness ratio of the stars and the characteristics of the detector. The convention
adopted for convenience, however, does not consider these details and Eq.
(10.2.22) gives the accepted limit.

10.3. THE NEAR PERFECT IMAGE

An image is perfect if the wavefront emerging from the exit pupil is spherical;
if there are any deviations of the wavefront from a sphere the resuit is a less-than-
perfect image. These wavefront deviations may be due to the presence of
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geometric aberrations of the type discussed in Chapter 5, but also arise from
random variations in optical surface quality as a result of the polishing process.
Each of these wavefront deviations is characterized by a different scale at the exit
pupil. Geometric aberrations vary slowly across the aperture and are specified in
functional form, while random variations occur on a much shorter scale and are
usually treated with statistical models.

Wavefront errors may also arise if the shape or orientation of the wavefront
changes with time, where such time-dependent errors may be regular or random,
and on a slow or fast time-scale. An example of a slow, regular time-dependent
error is the change in focus of a Cassegrain telescope due to temperature changes.
The error could be eliminated by periodically adjusting the secondary mirror and
refocusing the telescope. Correction of slow time-dependent errors comes under
the heading of active optics. An example of a rapid, random time-dependent error
is the oscillation of an image centroid about its mean position due to atmospheric
effects. Correction of rapid fluctuations in the shape of a wavefront is done with
adaptive optics. These latter types of errors are also best treated with a statistical
approach, with an introduction to this approach given in the next chapter.

In this section we consider geometric aberrations and their effects on image
quality. Our discussion is only an introduction to a large subject matter, and the
interested reader should consult some of the references listed at the end of the
chapter for more extensive discussions.

10.3.a. DIFFRACTION INTEGRAL WITH ABERRATIONS

A cross section of a wavefront with aberrations and the reference sphere are
shown in Fig. 5.3, where A, as given in Eq. (5.3.1), is the geometrical path
difference between the wavefront and reference sphere. In the notation of Fig.
10.1 the center of curvature O of the reference sphere is the location of the
Gaussian image for a perfect system. The coordinate systems used to locate
points on the wavefront and near the image are given in Eq. (10.2.1) for a circular
aperture.

To include aberrations in the diffraction integral given in Eq. (10.1.1), we
substitute (s — R + ®@) for (s — R), where © is the optical path difference between
the aberrated wavefront and reference sphere. If we consider only third-order
aberrations, then from Eq. (5.5.1) we get

® = Byy + B))? + B\x* + By +37) + By (x* + %) (10.3.1)

We choose, as in Chapter 5, to describe the astigmatism at the sagittal image,
hence B{ = 0. To make the notation in ® consistent with that used in this chapter
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for a circular aperture, we replace x and y in Eq. (10.3.1) by £ and #, respectively,
using Eq. (10.2.1). The result is

@ = Byap sin ¢ + B,a*p? sin? ¢ + B,a*p®sing + B3a4p4
= May psin ¢ + ayp® sin® ¢ + as, p° sin @ + agp®), (10.3.2)

where the a coefficients include the radius of the exit pupil and are dimensionless.
Note that the dimensions of @ are included in the wavelength 4 in Eq. (10.3.2).
The factors in Eq. (10.3.2) represent, in turn, distortion, astigmatism, coma, and
spherical aberration, as follows:

ia“ = Boa, },azz = Blaz, 2[131 = B2a3, Aa40 = B3a4, (1033)

with each corresponding a coefficient giving the amount of aberration in units of
waves.

Note that the subscripts on the a coefficients are changed from those in the
previous line with the first subscript the power of p and the second the power of
sin ¢. This is done to bring our notation in line with that commonly used as, for
example, by Mahajan (1998). It is also important to note that Eq. (10.3.2) is the
optical path difference in a simplified case, that in which the incident chief ray is
in the yz plane, as shown in Fig. 5.1. If we had chosen the xz plane instead, Eq.
(10.3.2) would have cos ¢ rather than sin ¢.

The diffraction integral for a circular exit pupil, including aberrations, is found
by substituting the sum of Eq. (10.2.4) and & times Eq. (10.3.2) for k(s — R) in
Eq. (10.1.1). The result is

2n pl
U(P) = Ca? J J exp [i(k® — vp cos (¢ — W) —up?/Dlp dp de. (10.3.4)
0 Je
Note that the term u(R/a)* in Eq. (10.2.4) is not included in Eq. (10.3.4). This
term does not depend on the variables of integration, is removed from the
integral, and does not appear in |U(P)[%.

A complete analysis of Eq. (10.3.4) is beyond the scope of our treatment. For
such an analysis the interested reader should consult the references by Born and
Wolf (1980), Mahajan (1991, 1998), and Wetherell (1980) given at the end of this
chapter. We do present selected results after discussing the effect of aberrations
on peak intensity.

10.3.b. PEAK INTENSITY AND AVERAGE WAVEFRONT ERROR

Before discussing specific aberrations, it is important to show the relation
between the peak intensity and the average wavefront error. We take point P at the
center of the reference sphere, hence u = v = 0, and assume the aberrations are
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small. Given that i(P) = |U(P)|? is normalized to unity for a perfect image, we
find

1 2

21 ¢l
(1= ) J J exp (ik®)p dp do

0 Je

i(0) =

21 ¢l 2
=C3 J J[1+ik<1>+(ikcb)2/2+~-]p dp do
0

€

. (10.3.5)

where Cy = 1/n(1 — £2). We now define (®") as the average of the nth power of
&, where

27 pl
(®") = COJ J ®"p dp do. (10.3.6)

0 Je
Neglecting all factors in k@ higher than second power in Eq. (10.3.5), we can
write the approximate intensity at the center of the reference sphere as

7(0) = |1 + ik(®) — k2 (D?)/2}?
=1 -k [DY) — ()] =1 — Kw?, (10.3.7)

where 7 is used to indicate that this is an approximation to /. The parameter « is
the root-mean-square (rms) or rms wavefront error given by

o = [(®%) — (D)2 (10.3.8)

The rms wavefront error is a useful parameter for characterizing a high-quality
optical system because its value can be calculated once the type and magnitude of
aberrations are known. We see from Eq. (10.3.7) that the normalized intensity at
the location of the nominal focal point is independent of the type of aberration,
with the decrease from unity proportional to w? in this approximation.

In the presence of aberrations, the normalized intensity #'(0) is often used as
one measure of image quality. This normalized intensity, by convention, is called
the Strehl intensity or Strehl ratio. A common convention is to consider a system
as diffraction-limited if the Strehl ratio is greater than or equal to 0.8. Given this
convention we find that «» = 0.07124 == 1/14 for a system that is just diffraction-
limited.

The Strehl ratio given by Eq. (10.3.7) is an approximation to the normalized
peak intensity valid for small w. It was shown by Mahajan (1983) that a better
approximation for the Strehl ratio S is given by

S =i'(0) = exp (—k*w?). (10.3.9)

A comparison between i(0) calculated directly from Eq. (10.3.5) with S from Eq.
(10.3.9) shows that the latter agrees with the former with an error of less than
10% for S greater than 0.3. This limit corresponds approximately to w = 4/5.7.
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Table 10.3

Classical Aberrations and RMS Wavefront Errors™?

Aberration RMS Wavefront Error
. [a40! 2 4 6 8y1/2
Spherical aqpt A4 — 2 — 6% — 5+ 4B/
P 40P 3 «/3( )
. Jasz| 2,4, 612
Coma ay; p° sin Bla+d +e +68HY
310 (4 \/g ( )
Asigmatism ayp*sin’ @ Ia4il(l +eH1?
la] 2
Defocus ayp? 22 (1—¢
200 3 \/5( )
. . . lay | 23172
Distortion ay psing T(l +¢%)

“RMS error is given in units of wavelength. For linear measure,
multiply by the wavelength.

® Error for astigmatism is given at sagittal focus; other errors given at
paraxial focus.

10.3.c. CLASSICAL ABERRATIONS AND WAVEFRONT ERROR

The classical third-order aberrations are those given in Eq. (10.3.2). Substitut-
ing each in turn into Eq. (10.3.6), it is a straightforward matter to calculate the rms
wavefront error for each, with the results given in Table 10.3. These expressions
for o are appropriate for the specific image locations used to derive the aberration
coefficients in Chapter 5: at the nominal paraxial or Gaussian focus for spherical
aberration, coma, and distortion, and at the sagittal image for astigmatism. Note
an additional aberration in Table 10.3, that of pure defocus.

Numerical calculations of i(P) using Eq. (10.3.4) including focus shift show
that the Strehl ratio is not a maximum at these image locations. In the presence of
spherical aberration only, for example, the “best” image is not at the paraxial
focus but between the paraxial and marginal foci, as a glance at Fig. 4.5 shows.
The distance between these two foci is 2F TSA, where F = §'/2a and TSA is
given in Eqgs. (5.5.9). After substituting for B; from Eqgs. (10.3.3) we get the
separation between the paraxial and marginal foci as 161a,, F2.

Calculations with ¢ = 0 show that i(0) is largest at a point half way between
these two foci and the corresponding rms wavefront error is a minimum at this
point. The dependence of w and peak intensity on focus shift for ¢ = 0 is shown
in Fig. 10.10; in this case the value of  at the paraxial focus is 4 times larger than
at the point where the peak intensity is a maximum.
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Fig. 10.10. Normalized rms wavefront error ' and Strehl ratio S for image with spherical
aberration as a function of image surface location. § is given for o’ = 1, ® = 0.0751 at 7/ = 1. The
normalized focus shift is 2. P, paraxial focus; M, marginal focus; C, circle of least confusion.

Following a similar procedure, it turns out that a system with astigmatism has
a minimum  and maximum i(0) at a point half way between the sagittal and
tangential line images for any value of ¢. The distance between the line images is
2F TAS, where TAS is given in Eqs. (5.5.9). After substituting B, from Eqgs.
(10.3.3) we find the separation between the line images as 81a,, F?. The
dependence of w and peak intensity on focus shift is shown in Fig. 10.11 for
an astigmatic image. For a clear aperture the value of © at either line image is
about 20% larger than at the midway point.

For both spherical aberration and astigmatism, the point of maximum i(0) is on
the axis defined by v = 0. For coma and distortion i(0) is a maximum for a point
displaced transversely from the paraxial image point and v is not zero. For a
single aberration, the point at which the peak intensity is a maximum is called the
diffraction focus. Table 10.4 gives the shifts from the foci specified in Table 10.3
to the diffraction focus for each of the classical aberrations. In the following
section we outline the procedure by which these shifts are calculated.



10.3. The Near Perfect Image 263

L=line image
B=blur circle
2F S
106
L sag L tang
w’ S
B {04
I b 4102
00 05 1.0

7

¥4

Fig. 10.11. Normalized rms wavefront error ' and Strehl ratio S for astigmatic image as a
function of image surface location, with 2/ = 0, 1 at line images. S is given for ' = 1, w = 0.0754 at
blur circle B. The normalized focus shift is 2.

Table 10.4

Coordinate Shifts to Diffraction Focus®

Along

Aberration y-axis z-axis
Spherical 0 8a,y /(1 + 2)F?
Coma day AF (14 +¢&* 0

3 1+ ¢
Astigmatism 0 4a,,\F?
Defocus 0 8a,0AF?
Distortion (tilt) 2a,AF 0

“For starting point of shift for each aberration, see Table 10.3.
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10.3.d. ORTHOGONAL ABERRATIONS AND ZERNIKE POLYNOMIALS

As seen from Table 10.4, the location of the diffraction focus depends on the
type and magnitude of aberration present. Because of this dependence, it is
appropriate to restructure the classical aberration terms and include explicitly the
required image shift to place the diffraction focus at ¥ = v = 0. These modified
terms are called orthogonal aberrations, with the polynomials in p and ¢ calied
Zernike polynomials. A list of Zernike polynomials needed for third-order
aberrations of an unobstructed circular aperture is given in Table 10.5. Note
the presence of both sin and cos factors in Table 10.5, hence the representation of
coma and astigmatism of arbitrary orientation in an xy coordinate frame is
possible. Table 10.6 lists the third-order orthogonal aberration terms for an
annular aperture, along with expressions for the rms wavefront errors at the
diffraction focus. For a detailed discussion of the properties of the orthogonal
aberrations, including derivations, consult the references by both Mahajan and
Born and Wolf.

The importance of representing the total aberration of a system as the sum of
orthogonal aberrations is that each term in the sum is optimally chosen to give a
minimum rms error over the exit pupil. In addition, the mean square error (MSE)
of the total aberration is the sum of the MSE of the individual orthogonal
aberrations. Thus it is straightforward to find the overall rms wavefront error once
the separate a,,, in Eq. (10.3.3) are known.

Choosing an orthogonal aberration in an optimal way is done by adding one or
more classical aberrations. We note, for example, that the spherical aberration
terms in Tables 10.5 and 10.6 show a term in p2, a focus shift term, added to that
of p*. A focus shift term is also evident in the entry for astigmatism in Table 10.6.
In the case of coma, the added term is proportional to p sin ¢, which is effectively
a tilt. We also see constant terms in the entries for spherical aberration and focus

Table 10.5

Zernike Polynomials for Circular Aperture

Term Z(p, @) Descriptor

0 1 constant

1 pCcos @ x-tilt

2 psing y-tilt

3 2p7 — 1 focus shift

4 p?cos2p x- Or y-astigmatism
5 p?sin2¢ 45°-astigmatism

6 (3p* —2)pcoso x-coma

7 (3p? —2)psing y-coma

8 6p* —6p° + 1 spherical
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Table 10.6

Orthogonal Aberrations and RMS Wavefront Errors”

Orthogonal Aberration RMS Wavefront Error
Spherical:
” Fp4 (L + ) +1(1 142 +£4)] lagol (1 — &)
L 6 65
Coma:
r 2 4 2 2 4 12
a, p3_2(1+8 +8)p]sin(o lay | (1 8)(1+4€12+8)
i 3(1 4+ €2) 62 (1 + &)/
Astigmatism:
M,/ 1 lag,|
2 2 22 172
a sin“ @ — = 1+ +¢
2 _P ( @ 2)] 2 f( )
Defocus:
[ 1 |asgl
2 2 20
a —=(1+e 1-
20 _P 2( )] 5 f( &)
Distortion: aypsing IGTM (1 + 6572

“Each expression is given in units of wavelength. For linear measure,
multiply by wavelength.

in Tables 10.5 and 10.6. These constant terms are chosen to make the average
wavefront error (®) = 0 for these aberrations, without changing the rms error.
The proof that adding a constant term to ® does not change the rms error is left as
an exercise for the reader.

We now outline the procedure by which an orthogonal aberration is
constructed, taking as an example spherical aberration for a clear aperture. The
starting point is to write the wavefront error as classical spherical plus a variable
focus shift,

® = Aayy(p* — ap?). (10.3.10)
Substituting Eq. (10.3.10) into Eq. (10.3.6) with ¢ = 0 gives

1 1 2
(@) = Aay (g - g) (‘Dz) = (/1‘140)2 (g - % + %),

4 o?
= (Aaqy)* | — —
(A440) (45 6" 12)
Setting the derivative of ? with respect to o equal to zero and solving for « gives

a=1, ® = Aay(p* — p?), and w*(min) = (1a,)*/180. The relation between «
and the linear focus shift is found by noting that £ times the term in « in Eq.

(10.3.11)
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(10.3.10) equals —up?/2 in Eq. (10.3.4), hence a = Az/(8Aa,oF?) where Az is
the shift from paraxial focus. The constant term added to @ is —(®) with o = 1.
This general procedure can be used to verify the entries in Tables 10.4 and 10.6,
starting with the classical aberrations in Table 10.3.

10.3.e. EXAMPLES

As illustrations of the effects of aberrations on the PSE, we take two examples:
a perfect image subject to defocus and an image with spherical aberration at the
diffraction focus. The results were obtained by numerical integration of Eq.
(10.3.4) and apply to an unobstructed aperture.

Figure 10.12 shows image profiles for the disk and the first two bright rings of
an image with different amounts of defocus. Note that the ring structure, clearly
visible for a,; = 0.25 or w = A/14, is essentially absent when a,, > 0.5. The
effect of defocus is clearly one of transferring energy from the disk to the nearby
rings and filling in the dark rings. Though not shown in Fig. 10.12, the intensity
i(0) = 0 when a,, = 1. In general, the peak intensity is zero for an image with
pure defocus when |ay| = 1/(1 — &?). Surface plots of defocused PSFs are
shown in Figs. 10.13 and 10.14 for a,, = 0.25 and 0.75, respectively.

Figure 10.15 shows image profiles for an image at the diffraction focus with
different amounts of spherical aberration. In this case the separate rings remain
relatively well-defined, but the energy within them grows at the expense of the

vin

Fig. 10.12. Point spread function of perfect image with defocus. The aperture is unobstructed and
the shift from diffraction focus = 8a,yAF?. See Fig. 10.5 for PSF of perfect image.



10.3. The Near Perfect Image

267

HUYGENS POINT SPREAD FUNCTION

FS_CONIC

FRI FEB 5 1999

2.5@e@ TO @.50@@ MICRONS AT @.02e8 QEG.
IMAGE SIZE IS 29.5@0 MICRONS SQUHR

= 0.25

STREHL RATID: ©.813

Fig. 10.13. Surface plot of perfect image with defocus; ayy = 0.25.

HUYGENS POINT SPREAD FUNCTION

F&_C

FRI FEB 5 1999

2.500@ TO @.50@0@ MICRONS AT @.0@@88@ DEG.
IMAGE SIZE IS 29,50 MICRONS SQURRE.

a = 0.75

STREHL RATIO: @.@95

Fig. 10.14. Surface plot of perfect image with defocus; a,, = 0.75.
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Fig. 10.15. Point spread function of image with spherical aberration at diffraction focus. The
aperture is unobstructed. See Fig. 10.5 for PSF of perfect image.
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Fig. 10.16. Surface plot of spherically aberrant image at diffraction focus; a4 = 1.
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Fig. 10.17. Surface plot of spherically aberrant image at diffraction focus; ay = 3.

Table 10.7

EE and o for Images with Aberrations

Fig. 10.12 Fig. 10.15
ay EE, w ayg EE, w
0.25 0.733 0.072 1.0 0.668 0.075
0.50 0.490 0.144 2.0 0.324 0.149
0.75 0.248 0.217 3.0 0.094 0.224
1.00 0.105 0.289 4.0 0.068 0.298

disk. Surface plots of spherically aberrant PSFs are shown in Figs. 10.16 and
10.17 for a4y = 1 and 3, respectively.

The rms wavefront errors and encircled energy in the Airy disk for the profiles
in Figs. 10.12 and 10.15 are given in Table 10.7. The results for EE, were
obtained by numerical integration of Eq. (10.2.13). It is evident from these entries
that encircled energy fraction within the Airy disk drops dramatically with
increasing rms wavefront error.
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10.4. COMPARISON: GEOMETRIC ABERRATIONS
AND THE DIFFRACTION LIMIT

It is important to compare aberrations as computed from geometric optics, as
done in Chapter 5, with those found using diffraction optics, as done in this
chapter. We make this comparison in terms of angular aberrations because these
are especially significant for telescopes. Our discussion is intended to give the
reader an idea of when geometric aberration calculations are sufficient and when
it is necessary to use diffraction theory for accurate results.

The relations for geometric angular aberrations are given in Table 10.8 in
terms of the two sets of coefficients used to characterize aberrations. Coefficients
for two-mirror telescopes found in Tables 6.5 and 6.6, for example, can be
substituted for B,_; in Table 10.8 to give the corresponding a,,, for the classical
aberrations. These values of a,,, can, in turn, be used to find the rms wavefront
errors from Table 10.3.

As an example of this procedure we take the Ritchey-Chretien design for the
Hubble Space Telescope. The principal aberration for nonzero field angles is
astigmatism, with the angular astigmatism according to geometric theory given in
Table 6.9. Substituting the values of m and f in Table 11.2 into AAS in Table 6.9
gives AAS = ['0?/2F = 2B,a, where I' = 8.609, B, is the astigmatism coeffi-
cient, 6 is the field angle, and a is the radius of the aperture stop.

From Eq. (10.3.3) or Table 10.8 we get Aay, = B,a?, hence a,, = ['0°D/8AF.
We now find the rms wavefront error at the diffraction focus of the astigmatic
image by substituting ¢ = 0.33 and a,, into w for astigmatism in Table 10.6. The
result, with 6 expressed in arc-minutes, is

wysr(um) = 0.001976* (arc-min),

5 (104.1)
wyst (Waves) = 0.001976 (arc-min)/A(um).

Choosing w < /14, we find from Eq. (10.4.1) that HST is diffraction-limited for
0 < 4.8 arc-min at 633nm with smaller 0 at shorter wavelengths. Thus, for
example, an instrument aperture at 3.6 arc-min off-axis is illuminated by images

Table 10.8

Geometric Angular Aberrations

Spherical ASA = 4B8,a> = 4lay/a
= angular diameter at diffraction focus
Coma ATC = 3B,a> = 3lay, /a

= angular length of coma flare
2Bja = 2la,y,/a
angular diameter at diffraction focus

Astigmatism AAS
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that are diffraction-limited for visible and near ultraviolet wavelengths. For an
aperture at larger field angles, on the other hand, the residual astigmatism of the
HST must be corrected by the optics following the aperture.

If we approach the angular size of an image from the point of view of
diffraction theory, then an image that is diffraction-limited has an approximate
diameter for the Airy disk of 2.444/D or 1.224/a for a clear aperture. Contrary to
predictions from geometric optics, an image cannot be smaller than that given by
diffraction theory. It is instructive to take the top four entries for wavefront error
in Table 10.3, set ¢ = 0, equate each to w/4 = 1/14, and solve for a,,,. The result
is |a,,| & 0.25 for each of these coefficients, hence the maximum optical
difference ® ~ A/4 for each aberration. This corresponds to the result given in
Section 4.2 and is often called Rayleigh’s quarter-wavelength criterion for the
amount of aberration that is tolerable in an imaging system.

If we apply the same procedure to the orthogonal aberrations in Table 10.6,
with ¢ set to zero, we get |ay =~ 0.96, |as;| =~ 0.60, |a,] =~ 0.35, and
layg| &~ 0.25. Not surprisingly, the balancing of a classical aberration with a
focus shift for spherical aberration and astigmatism, and a tilt for coma, gives a
somewhat larger tolerance on the corresponding coefficients.

We now compare the size of the Airy disk with a geometrical image whose
size is computed using the tolerance on a4,. Substituting a,y, = 0.25 into ASA in
Table 10.8 we get ASA = A/a = 21/D, and the geometric blur size is comparable
to the diameter of the Airy disk. For values of a,, comparable to the tolerance
limit or smaller, diffraction calculations are necessary, while for substantially
larger values of a4, the geometric blur size is an accurate measure of the image
size.

It should be evident, therefore, that diffraction theory is required when the
aberrations are small and the separate rms wavefront errors are comparable to the
diffraction limit. If any one aberration has an rms error substantially larger than
A/14, then geometric aberration analysis is adequate. Fortunately, ray-tracing
programs can easily do both types of calculations, thus facilitating the choice of
the theory appropriate for the task.

10.5. DIFFRACTION INTEGRALS AND FOURIER THEORY

The starting point for our discussion of diffraction, including aberrations, is
Eq. (10.1.1). We applied this to rectangular and annular apertures, and derived
expressions in closed form for the point spread function and encircled energy
fraction for aberration-free images. There is, of course, no limit placed on the
shape of the aperture, for example, a spider structure supporting a secondary
mirror in a Cassegrain telescope added to an annular aperture. With such an
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addition Eq. (10.1.1) is still easily solved in closed form for a perfect image, as
illustrated in Eq. (10.5.1) to follow. The solution of the diffraction integral for
more complicated apertures is best done using the formalism of Fourier theory, a
subject area we introduce here and discuss briefly.

10.5.a. APERTURE FUNCTION

Writing Eq. (10.1.1) with explicit reference to the coordinates of the aperture
and image plane we get

oo

Ur.y) = C ” A, ) exp [ik(pE + qn)ldé dn, (10.5.1)

—00

where p and ¢ are functions of x and y, respectively, and A(&, ) is the amplitude
distribution in the aperture or aperture function. Aberrations can be incorporated
by including a term of the form exp (ik®) in A(&, ). Although the limits of
integration extend over an infinite plane, A(E, 77) is nonzero only over the aperture.

With the diffraction integral rewritten as Eq. (10.5.1), we have an integral in
the form of a 2D Fourier integral or Fourier transform. We state, without proof,
that the amplitude distribution in the Fraunhofer diffraction pattern is the Fourier
transform of the aperture function. Conversely, from Fourier theory, there is an
inverse transform such that the amplitude distribution in the aperture (or pupil)
of an optical system is the Fourier transform of the amplitude in the image plane.
Thus there is a Fourier transform pair connecting the aperture and the Fraunhofer
image plane.

10.5.b. EXAMPLE: SPIDER IN CASSEGRAIN TELESCOPE

The entrance pupil of most two-mirror telescopes is an annulus plus a four-
legged spider structure, as shown in Fig. 10.18. Therefore the aperture function is
a clear aperture of radius a, a central obscuration of radius &a, and two bars of
length 2a (one along ¢ and one along #) less two bars of length 2¢a. Each
obscuration is given a minus sign because it subtracts from the clear aperture.
With this aperture function Eq. (10.5.1) becomes

—&a a

h
U(P) = Eq. (10.2.5) — CJ_;, exp (—iﬁ)dn“

—a

exp (—ip)dé + J

£

exp (—iy)d¢ ]

a

-C J: exp (—iv)dil J - exp (—if)dn + J

—a ca

exp (—iﬂ)dn],
(10.5.2)
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Fig. 10.18. Entrance pupil of typical two-mirror telescope with spider structure. See the text for
discussion.

where y = kpé and f = kgyn. The integral on the first line of Eq. (10.5.2) is the
horizontal part of the spider; the integral on the second line is the vertical part.
Evaluating these integrals we get

U(P) = Eq. (10.2.7) — 4ab(1 — g)C[Sin (kgb) sin (kpd/2) (kp (1 + e)a)

kgb kpd /2 2
sin (kpb) sin (kqd /2) 1+¢
+ Tob kad2 cos (kq(T)a)], (10.5.3)

where d = (1 — ¢)a is the length of each of the four bars in the spider and 25 is
the width of each bar. Note that part of the argument of the cosine is the distance
from the center of the aperture to the midpoint of each of the bars, (1 + ¢)a/2.

With U(P) from Eq. (10.5.3), it is now straightforward to find I(P) = |U(P)|>.
The amplitude at the peak I, = |U(O)*>, where U(O) = Clna*(1 — &%) —
8ab(1 — ¢)] = C times the area of the open aperture.



274 10. Diffraction Theory and Aberrations
10.5.c. ARRAY THEOREM

The spider in the previous section consists of two pairs of bars with each bar
displaced from the center of the aperture. As noted following Eq. (10.5.3), the
amount of this displacement from the center is explicitly part of U(P). If each
cosine in Eq. (10.5.3) is written in terms of complex exponentials using Euler’s
relations, then each bar has a factor representing its displacement in either the
positive or negative direction along one of the axes. This association between
displacement and a complex exponential suggests a closer look at identical
multiple apertures or multiple obstacles within some larger aperture.

Consider a large screen containing N identical apertures with the designated
center of each at (&;, #;) in the (£, ) coordinate frame. Let (¢, 1) be the local
coordinates of each aperture relative to its center, hence { = £; + &= n+n.
With this aperture Eq. (10.5.1) becomes

U®) = ¢ 3 || 4. rexp [i(ple + €) + a4 1)) a2 an - 1059

—0

where 4(¢, ') is the aperture function for a single hole.
Factoring exp [ik(p¢; + gn;)] from each integral in Eq. (10.5.4) we get

o0

N
UP) =C ” A 1) explik(pe + an)Ed x 3 exp k(o2 + a1,

=
—-00

(10.5.5)

where each term in the sum locates the center of one of the N apertures.

Equation (10.5.5) is a statement of the array theorem: the amplitude at point P
in the Fraunhofer diffraction pattern of an array of identical apertures (or
obstacles) is the Fourier transform of an individual aperture function times a
function representing the positions of the aperture centers in the diffracting
screen.

In our example of a spider on an annular aperture there are two aperture
functions, a horizontal bar of length (1 — ¢)a and width 25 and a vertical one of
the same dimensions, with each displaced by +(1 + ¢)a/2 along its long
dimension. The net result is the pattern shown in Fig. 10.18. The reader can
verify that applying Eq. (10.5.5) to this example gives U(P) in Eq. (10.5.3).
Another example showing the utility of the array theorem is that of the HST
pupil, the pupil shown in Fig. 10.18 plus three circular pads near the outer edge of
the primary. The HST pupil, with coordinates and dimensions, and U(P)
calculated from Eq. (10.5.5) are found in a paper by Schroeder and Golimowski
(1996).
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The array theorem is useful in any case where there are multiple diffracting
apertures or obstacles. We make use of the array theorem in discussing telescope
arrays in Chapter 18.

10.5.d. CONCLUDING REMARKS

The reciprocal nature of the integrals in a Fourier transform pair is a
mathematical consequence of the fact that the propagation of light through an
optical system is reversible. The utility of Eq. (10.5.1) and its inverse transform
were strikingly evident when the first aberrated images from HST were examined.
An amplitude distribution derived from the observed PSF could be used to find
the aberration part of the aperture function. Conversely, a host of aberration
functions could be inserted into Eq. (10.5.1) and the computed I(P) for each
compared to the observed PSF. These calculations led the way to recognition of
the significant spherical aberration in the HST primary. We give some of the
quantitative results from this analysis in Chapter 11.

We also see Fourier transform pairs occurring in our discussion of transfer
functions, the first topic of Chapter 11. The proofs of these statements, along with
extensive discussions of the connection between Fourier theory and optics, can be
found in many intermediate optics texts, for example, by Hecht (1987). The text
by Gaskill (1978) is also a useful source of information on Fourier optics.
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Chapter 11 Transfer Functions; Hubble Space

Telescope

The results in the preceding chapter provide a complete description of the
characteristics of a perfect or near-perfect image of a distant point object. The
response of an optical system to a set of point objects or, more generally, an
arbitrary intensity distribution was not considered in that analysis. Clearly this
response depends on factors in addition to the PSF such as, for example, blurring
due to image motion or detector pixel size. Factors such as these are most easily
included by using the theory of transfer functions to describe the system response
and image characteristics.

11.1. TRANSFER FUNCTIONS AND IMAGE CHARACTERISTICS

This approach to image analysis makes use of a complex function called the
optical transfer function or OTF, with the real part of the OTF called the
modulation transfer function or MTF. One advantage of this approach is that
each independent component of a complete system, from the atmosphere to the
detector, has its own OTF, and the system OTF is the product of the separate
OTFs. This separation also applies to different types of wavefront error, with
separate OTFs for geometric aberrations, random wavefront errors, and blurring
due to image motion. The response of the system to an incident wavefront is
determined by the system OTF comprising all these factors.

277
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In this section, following a discussion of basic concepts, we draw upon results
derived from the theory of transfer functions and show how they are used to
determine image characteristics. For derivations and discussion of the theory, the
reader should consult references given at the end of the chapter.

11.1.a. DEFINITION OF THE TRANSFER FUNCTION

The concept of the transfer function is most easily seen by assuming a specific
object intensity distribution. Consider a set of equally spaced line sources whose
intensity in a direction perpendicular to the lines varies sinusoidally, as shown in
Fig. 11.1(a). Two parameters that describe this source are the spacing between the
lines and the contrast. We let p, denote the spacing, or spatial period, where
vy = 1/pg is the spatial frequency in cycles per unit length. The contrast C, of the
object, in the notation of Fig. 11.1(a), is defined as

I —1I.
¢ — e (11.1.1)
max min

where C, is assumed independent of v,.

Assuming an optical system of constant magnification, the image of this object
is also a sinusoidal intensity distribution, as shown in Fig. 11.1(b). Because each
object point is imaged as a blur given by the PSF (or line spread function in one
dimension), the image intensity is the superposition of all the individual spread
functions. This addition of intensities assumes the illumination is incoherent.

We let p and v denote the spatial period and frequency, respectively, at the
image surface. The contrast C; in the image is defined according to Eq. (11.1.1),
with maximum and minimum intensities substituted. For a system with magni-
fication m, we have p = pym and v = vy/m. If the object distance is infinite, the
spatial period and frequency of the object become angular period and frequency,
with corresponding angular units. The image can also be described in angular
terms in this case.

The modulation transfer function T is a measure of the change in contrast
between the object and image, defined as

C; _ contrast in image at v

11.1.2
C, contrast in object ( )

T(v) =

Given that each object point is imaged as a blur described by the point or line
spread function, we expect T(v) < 1 for all spatial frequencies. We also expect to
find that 7(v) — 1 as v — 0 and T'(v) — 0 as v approaches the resolution limit
set by the width of the PSE. The spatial frequency at which contrast in a perfect
image goes to zero is called the cutoff frequency v,.. All information at frequencies
higher than the cutoff frequency is lost.
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Fig. 11.1. (a) Object sine wave intensity; (b) image intensity profile, unshifted; and (c) image
intensity profile, shifted.
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To determine the approximate cutoff frequency we apply the Rayleigh criterion
of resolution to diffraction-limited images whose profiles are given by Eq.
(10.2.8). As given in Section 10.2.e, this criterion states that two images of
equal intensity are just resolved when the peak of one coincides with the first
minimum of the other. For annular apertures Eq. (10.2.22) gives the angular limit
of resolution as 1.22y4/D, or approximately 1/D. The sum of two profiles like
that in Fig. 10.5 at this separation gives an intensity midway between the peaks of
approximately 0.8 that of either peak, and the peaks are “just resolved.” For a
rectangular or square aperture, the corresponding angular separation of peaks of
equal brightness that are just resolved is 4/b, where b is the aperture dimension
parallel to the line joining the peaks of the PSFs. The intensity midway between
the peaks is again approximately 0.8 that of either peak.

For an object at infinity, the angle A/D corresponds to a linear separation of
f4/D at the image surface, or a spatial frequency of 1/AF. A rigorous derivation
shows that the cutoff frequency v, = 1/AF, in linear units, with a corresponding
cutoff frequency in angular units of D/A. A good introduction to the theory of
transfer functions, including derivation of the cutoff frequency, is given by Smith
(1963). It is convenient to define the normalized spatial frequency v, as

v, = V/V. = Vo /Yo (11.1.3)

where the range of this parameter is zero to one. Comparisons of different optical
systems, or the same system at different wavelengths, are most often made in
normalized units.

In addition to reduced contrast, the intensity pattern may also be shifted
laterally on the image surface, as shown in Fig. 11.1.c. This shift occurs if
asymmetric aberrations, such as coma, are present. If the linear shift on the image
surface is J, the phase transfer function @, is defined as

®, = 2nd/p. (11.1.4)

A combination of Egs. (11.1.2) and (11.1.4) leads to the definition of the complex
optical transfer function Y(v) as

Y(v) = T(v) exp[i®,(v)], (11.1.5)

where each independent component of a system has its own Y(v). The two
mirrors of a Cassegrain telescope, for example, are considered a single compo-
nent because the image quality is determined by the mirror combination.

Given these definitions it is possible, in principle, to determine the response of
a system to any object intensity distribution. From the theory of Fourier analysis,
one finds that any such distribution can be synthesized by some combination of
sinusoidal functions of different frequencies. The transformation of each harmo-
nic component of the object into the corresponding harmonic part of the image is
determined by Y at that frequency.
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An alternative method of finding the OTF is by calculating the autocorrelation
of the pupil or aperture function. The pupil function for a perfect system is the
transmittance, usually constant, within the boundaries of the exit pupil and is zero
outside. For a system with aberrations, the pupil function is complex and includes
aberrations, as noted in Section 10.5. The autocorrelation integral is essentially
one that gives the area of overlap between two pupil functions, with one shifted
relative to the other by an amount proportional to the spatial frequency. The
reader should consult the references by both Born and Wolf and by Wetherell
cited throughout this book for discussion of this approach to calculating the OTF.

The discussion in this section is intended as an introduction to the basic
characteristics of the transfer function. We now turn our attention to the relation
between the transfer function and image characteristics for the important case
where the PSF is symmetric about the system axis.

11.1.b. POINT SPREAD FUNCTION AND ENCIRCLED ENERGY

The relations between image characteristics and the transfer function are
derived using the theory of Fourier transforms. Given a PSF computed by the
methods described in Section 10.2, the OTF is defined as the Fourier transform of
the PSF. Because the PSF and OTF are a Fourier transform pair, the former can be
calculated if the latter is known. For our purposes, we consider only the case
where the phase transfer function @, is zero and the OTF reduces to the MTE.
This limitation rules out the treatment of asymmetric aberrations such as coma.

In rectangular coordinates the MTF is given by

T(vy,vy) =4 ” i(x, y)yexp [—2mi(v,x + v,p))dx dy, (11.1.6)

where v, = vcosy, v, =vsiny, x and y are given in Eq. (10.2.1), and 4 is a
normalization factor chosen to give =1 at v = 0.
In polar coordinates the corresponding relation to Eq. (11.1.6) is

2n poo
T(v,y) = Jo Jo i(r, ) exp [—2mivr cos (f — y)ir dr dy, (11.1..7)

where y can be assigned any convenient value for the special but important case
where the PSF is symmetric about the system axis. Letting y = 7, the integration
over ¥ in Eq. (11.1.7) is one of substituting the integral form of J,, as done with
Eq. (10.2.6).
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Given a symmetric PSF and a circular aperture with a central obscuration, the
methods of Fourier transforms give the following relations between the PSF, EE,
and MTF:

T(v) = ”2(12_—;)1)2 J:o i) Jo(2mvo)a do, (11.1.8)
PSF(«) = 82 J T(v) Jp(2nvo))y dv (11.1.9)
T (1-&)D? ), ° ’ o
EE(x) = 274 J T(v)J,(2nva)dv, (11.1.10)
0

where v is the frequency in angular units, « is the angular radius of the image, and
Jy and J, are Bessel functions. Because v is given in angular units, the cutoff
frequency v, in these units is D/A. Equations (11.1.8)—(11.1.10) can be written in
linear units by substituting /v (linear) for v (angular) and r for o, where r = fo.
The factors outside the integrals in Egs. (11.1.8)—(11.1.10) are normalization
factors, with 7(0) = 1 and PSF(0) = 1 for a perfect image, and EE(c0) = 1.

Note the reciprocal relationship between Eqgs. (11.1.8) and (11.1.9). Given the
point spread function i(a) we can find 7(v) or, conversely, given T(v) we can
compute i(a).

For ease of calculation and comparison of results for different systems or
wavelengths, it is useful to rewrite these relations in terms of the normalized
frequency v,,. The results are

2 00
T(v,) = ”(I—_SZ)J i) Jo2rv, wyw dw, (11.1.11)
2 0
8 1

PSF(W) = m JO T(vn)J0(2n:v,,w)vn dv,,, (1 1112)

1
EE(w) = 2an T(v,)J,2nv,w)dv,, (11.1.13)

0

where w = aD/A = av,.. Comparing the argument of each Bessel function with
Eq. (10.2.10), we see that wn = v, the dimensionless parameter used in Section
10.2.

For calculations of PSF and EE, all that is needed is the MTF. The general
expression for the MTF of a perfect circular pupil with a central obscuration,
taken from Appendix B of the reference by Wetherell (1980), is given in slightly
modified form in Table 11.1. For a clear circular aperture the factors B and C are
zero. Substituting 24/ from Table 11.1 into Eq. (11.1.12), it is a simple
calculation to verify that PSF(0) =1 for a clear aperture, as required by
normalization.
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Table 11.1

Modulation Transfer Function for Perfect Lens with Central Obscuration

_2(A+B+0)
T(v,.)—7Z a—2)
A=[ecos™! v, —v,(1-v))'7%, 0<v,<1
2 —1{Vn Vn Vn 2 2
B =ecos (:)‘(;)[1‘(7)] ’ O<vyse
v, > €
=O,
0<v,<(l—¢g)y2
C = i, < (1—¢)y
1
= —ne? + ssin;(—l-l(l+sz)—(l—82)t;an"l ( +E)tanl R (I-e)<2v,=(l1+¢
2 (I—g) 2
=0, 2v, > (1 +¢)
— cos! 1462 — a2
x= 2¢

Modulation transfer functions for selected values of ¢ are shown in Fig. 11.2.
The main effect of a larger central obscuration is a decrease in the MTF in the
middle of the frequency range. This is expected because the effect of the
obscuration on the PSF is to put more energy into the first bright ring of the
Airy pattern, and the contrast in the image of an extended object is reduced
because of the larger fraction of energy in this ring. For spatial frequencies near
the cutoff frequency, on the other hand, the MTF is slightly larger when the pupil
has an obscuration. This is also expected because the FWHM of the Airy disk is
smaller for larger ¢, and the “sharper” peak implies a smaller limit of resolution
according to the Rayleigh criterion.

When 7(v,) from Table 11.1 is substituted into Eqgs. (11.1.12) and (11.1.13),
and the equations are integrated numerically, results like those shown in Figs.
10.5 and 10.8 are obtained. For a perfect image it is obviously easier to use Egs.
(10.2.8) and (10.2.17) to find the PSF and EE, respectively, but in the presence of
aberrations it is usually easier to use the MTF approach.

The calculation of MTFs in the presence of symmetrical aberrations is done by
either evaluating the autocorrelation integral, with the aberrations included in the
pupil function, or integrating Eq. (11.1.11) with i(w) for the aberrated image from
Eq. (10.3.4). For images with defocus computed from Eq. (10.3.4), as shown in
Figs. 10.12-10.14, the MTF curves are shown in Fig. 11.3. For a spherically
aberrated image, as shown in Figs. 10.15-10.16, MTF curves at selected foci are
shown in Fig. 11.4.
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Fig. 11.2. Normalized modulation transfer function for several obscuration ratios calculated from
relations in Table 11.1.
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Fig. 11.3. Modulation transfer functions for perfect system (¢ = 0) with defocus calculated from
Eq. (11.1.11). The rms wavefront error w is given in units of waves.
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Fig. 11.4. Modulation transfer functions for unobstructed system (¢ = 0) with spherical aberra-
tion calculated from Eq. (11.1.11). Curves are given for paraxial, diffraction, and marginal foci.

11.1.c. MODULATION TRANSFER FUNCTIONS FOR OTHER
WAVEFRONT ERRORS

In addition to wavefront errors due to classical aberrations, often called figure
errors, we noted in the preceding that random errors on a finer scale due to the
polishing process may also be present. Another source of image degradation is
motion of an image due to effects from outside the optical system. Each of these
nonfigure error contributions can be modeled with a factor in the MTF that is a
statistical average of the effect. In this section we give an overview of some of
these MTF models and their effects on the PSF and EE.

The proscribed way of including additional, independent MTF factors is to
write the system MTF as a product of independent factors in the form

T =T,T,T,T, (11.1.14)
where T is the system MTF, 7, is the MTF for a perfect system, as given in Table
11.1, and the remaining factors are degradation functions. The subscripts f, r, and
p denote, in turn, contributions due to figure, random, and pointing errors. It is at
this point where the advantage of Fourier transforms and the transfer function
approach is most evident. If a degradation of the wavefront can be described
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mathematically, then its MTF can be computed and included in the system MTF
by a simple multiplication, provided this degradation is independent of all others.
Complex wavefront degradation can therefore be reduced to a relatively simple
set of separate contributions.

In considering random errors on a wavefront, we assume that all figure errors
have been subtracted from the wavefront map at the exit pupil. Figure error is
usually taken to be those components with spatial frequencies less than
Scycles/radius over the pupil. We also assume that the remaining wavefront
errors of higher spatial frequency are distributed in a random fashion over the
residual wavefront. The choice for the upper limit to the spatial frequency
depends on the size of the spatial period selected. For the 2.4-m primary
mirror of the Hubble Space Telescope, a spatial period of 1 mm corresponds to
a spatial frequency of 1200 cycles/radius. Random error in this middle range of
spatial frequencies is often termed ripple.

A statistical analysis of this type of error has been made by O’Neill (1963).
The result of this analysis is an MTF degradation factor in the midfrequency
range of the form

T, = exp {—k’w3[l — c(v)I} (11.1.15)

where k = 2n/2, w,, is the rms random wavefront error for midfrequencies, and
¢(v,) is the normalized autocorrelation function of the residual pupil function.
The characteristics of ¢(v,,) are such that ¢(0) = 1 and ¢(v,) — 0 for a large shift
of the residual wavefront in the autocorrelation integral. If the function c(v,) is
modeled as a Gaussian of the form c(v,) = exp (—4v2/I?), as given by Wetherell
(1980), the degradation function 7,, has the form shown in Fig. 11.5. The
parameter / is the normalized correlation length and is a measure of the structure
on the wavefront. To a rough approximation, the spatial period of the dominant
structure is 1//cycles/diameter. For discussion of other forms of ¢(v,) and
comparison with measured results, the reader should consult the reference by
Wetherell cited here.

Wavefront errors with high spatial frequencies, those larger than ones
associated with ripple, are ascribed to microstructure on an optical surface, and
often called microripple. The degradation function for high-frequency micro-
ripple follows directly from Eq. (11.1.15) if we let / — 0 in the autocorrelation
function. In this limit

T, = exp (—k*w? (11.1.16)
h h

at all spatial frequencies except v, = 0, where w,, is the rms wavefront error due
to microripple. The product of Egs. (11.1.15) and (11.1.16) is the degradation
function 7, in Eq. (11.1.14).

Degradation of an image due to random motion has been discussed by several
authors, including Mahajan (1978) and Wetherell (1980). The starting assumption



11.1. Transfer Functions and Image Characteristics 287

I .O T T T T

l

Ol
ooryrr e 02 ]

—— 03
08 7

N
o7 O\ ]
06t 1
Of2 Of4 OTG 08 10

Yn

Fig. 11.5. Midfrequency degradation factor T,, with Gaussian correlation factor calculated from
Eq. (11.1.15). The rms ripple error is 0.1 waves; / is the normalized correlation length.
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Fig. 11.6. Pointing degradation factor T, for several normalized rms pointing errors calculated
from Eq. (11.1.18).
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of this analysis is an image motion that is rotationally symmetric and described by
the unnormalized probability function

P(r) = exp (—a?/20"), (11.1.17)

where ¢’ is the standard deviation and « is radius of the excursion of the image
from the mean position, both in angular units. If we normalize ¢’ by multiplying

by the cutoff frequency D/ 4, then the pointing degradation function, as shown by
Mabhajan, is

T,(v,) = exp (—2n262vi). (11.1.18)

Because 7, decreases as v, increases, it is evident that the effect of this
degradation function is to depress the MTF more at higher spatial frequencies.
Figure 11.6 shows the pointing degradation function for several values of ¢. For
an otherwise perfect system, the product of curves in Figs. 11.2 and 11.6 gives
the system MTF with random pointing error.
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Fig. 11.7. Point spread function for obstructed system (¢ = 0.33) with rms midfrequency error @
and / = 0.04. Results are calculated from Eq. (11.1.12).
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11.1.d. EXAMPLES

We now illustrate the results of the previous section by giving examples of
PSFs and EEs calculated from Eqs. (11.1.12) and (11.1.13) with different
degradation factors multiplying 7, the diffraction MTFE. All of the results
given are for ¢ = 0.33, the obscuration ratio of the HST, with zero figure error.
A more complete discussion of the expected image characteristics of HST, with
all factors taken together, follows in the next section.

Figures 11.7 and 11.8 show PSF and EE for a pupil wavefront with random
error of the type described by Eq. (11.1.15), for three values of w. The
approximate correlation length assumed for these calculations is 0.04 cycles/dia-
meter. Relative to the PSF for a perfect system, given in Fig. 10.5, the effect of
this error is to depress the disk and inner ring and raise the outer rings. The Strehl
intensity is given by Eq. (10.3.9). The transfer of energy outward from the center
of the Airy pattern is clearly shown in Fig. 11.8. Taking values of EE at the right-
hand side of Fig. 11.8, we see that nearly five times as much energy is outside the
fourth bright ring when @ = 0.14, compared to a perfect image.
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Fig. 11.8. Encircled energy fraction for obstructed system (¢ = 0.33) with rms midfrequency
error @ and / = 0.04. Results are calculated from Eq. (11.1.13).
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Fig. 11.9. Point spread function for perfect system (¢ = 0.33) with pointing error. The o is the
normalized rms Gaussian error. Results are calculated from Eq. (11.1.12).

When high-frequency microripple is present, as described by Eq. (11.1.16),
the effect is to depress the PSF by the factor 7, at all image radii. This occurs
because T, is independent of spatial frequency, hence it can be taken out of the
integral in Eq. (11.1.12). The effect of microripple on EE is similar, for the same
reason. In theory, therefore, the energy scattered by microripple error disappears;
in practice the energy is scattered at angles large compared to the Airy disk
diameter.

Figures 11.9 and 11.10 show PSF and EE for a perfect system with pointing
error described by Eq. (11.1.18), for three values of g. The effect of increased
pointing error is clearly one of reducing the Strehl intensity, smoothing the PSF
pattern, and distributing a given fraction of the encircled energy over a larger
area. For the values of ¢ shown, the redistribution of energy takes place largely
between the disk and first bright ring. With specific reference to HST, the curve
with ¢ = 0.1 corresponds to an rms pointing error ¢’ on the sky of 0.005 arc-sec,
at A = 580 nm, with ¢’ = a(4/D). Because ¢ is inversely proportional to 4 for a
given ¢’, the curve with ¢ = 0.3 corresponds to the same pointing error at
A = 190 nm. As expected, a given pointing error on the sky has a greater effect on
a “sharper” image.
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Fig. 11.10. Encircled energy fraction for perfect system (¢ = 0.33) with pointing error. The o is
the normalized rms Gaussian error. Results are calculated from Eq. (11.1.13).

With these examples it should be clear that the MTF approach is a powerful
technique, especially when errors other than figure errors are present. We
conclude our introduction to the MTF approach in Section 11.4 following a
discussion of the Hubble Space Telescope.

11.2. HUBBLE SPACE TELESCOPE, PRELAUNCH EXPECTATIONS

NOTE: This section on the Hubble Space Telescope is essentially unchanged
from the version that appeared in the st edition of this book. What was presented
there, and is repeated here, represented the best estimates of the expected optical
performance of HST following its launch. As is well known, HST did not perform
up to expectations because of a primary mirror with the wrong conic constant. As
is also well known, HST was given an optical “fix” that corrected for the
spherical aberration introduced by the primary and the performance was
restored, or nearly so, to that of prelaunch expectations. With this fix the results
given here are again valid, hence the reason for leaving this section largely
unchanged. A discussion of the postlaunch reality of HST follows in Section 11.3.
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The HST will be the first large astronomical observatory in space with a
resolution capability an order of magnitude better than is possible with ground-
based telescopes in the visible and near ultraviolet. This unique facility will
enable astronomers to make observations not possible from the ground and obtain
data needed to answer many fundamental astronomical questions. Given this
promise, a brief description of HST and the expected image characteristics is in
order.

11.2.a. BASIC CONFIGURATION

The HST is a 2.4-m Cassegrain telescope of the Ritchey-Chretien type, with
the nominal parameters given in Table 11.2. The performance goals set by NASA
at the start of the project include spectral coverage from 115nm to the far
infrared, with diffraction-limited performance at visible wavelengths. Analysis of
the completed system shows that HST is expected to meet or exceed the stated
goal of 4/20 rms wavefront error at A = 633 nm on the axis of the f/24 focal
surface.

The complete observatory includes the following complement of instruments:
wide-field/planetary camera (WFPC), faint object camera (FOC), faint object
spectrograph (FOS), high-resolution spectrograph (HRS), and high speed photo-
meter (HSP). The fine guidance system (FGS) of the telescope will also be used
for astrometric observations. For details on these instruments and their observing
modes, the reader should consult the references at the end of the chapter,
especially the Instrument Handbook distributed by the Space Telescope Science
Institute.

11.2.b. ON-AXIS IMAGE CHARACTERISTICS

In this section we describe the expected on-axis image characteristics at the
[ /24 focal surface. All of the results presented assume the mirrors are clean with
no scattering due to dust.

Table 11.2

Nominal Design Parameters of Hubble Space Telescope

Primary: D = 2400mm, R; = —11040mm, //2.30
K, = —1.0022985

Secondary: R, = —1358mm, K, = —1.496

Overall: m = 10435, f = 02717, k = 0.1112, f/24, obscuration ratio ¢ = 0.33
scale = 3.58 arc-sec/mm = 279 um/arc-sec
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Analysis of HST performance proceeds along the lines described in the
previous section. Each independent component is described by an MTF degrada-
tion function, and the product of these functions and the diffraction MTF is used
as the basis of calculations of the image characteristics. Contributors to 7; in Eq.
(11.1.14) include the aberrations of the mirrors, misalignments of the mirrors,
thermal changes in orbit, ground-to-orbit changes, and errors of the optical
system used to measure the wavefront in orbit. The errors that remain after figure
errors are removed from the wavefront map are used to calculate 7,, in the form
given in Eq. (11.1.15). Surface errors derived from measurements on small parts
of the mirrors are modeled as high-frequency errors in the form given in Eq.
(11.1.16). The product of these functions, to which the figure error is the largest
contributor, gives the system degradation function in the absence of pointing
error. This combination leads to an overall rms system wavefront error of
approximately 1/21 at a wavelength of 633 nm.

The product of the system degradation function with the diffraction MTF and
the pointing degradation factor given in Eq. (11.1.18) gives the rotationally
symmetric system MTF used in Egs. (11.1.12) and (11.1.13). All of the following
results are derived from calculations using these relations, with a nominal rms
pointing error of 0.007 arc-sec assigned to image motion.

Figures 11.11 and 11.12 show PSFs at a number of wavelengths, with EE for
each of these wavelengths shown in Figs. 11.13 and 11.14. It is evident from
these curves that the PSFs show progressive degradation at shorter wavelengths.
The ring structure in the Airy pattern, clearly seen in the visible and infrared
wavelengths, is absent at the shortest wavelengths. This is a result both of
pointing error and nonfigure contributors to the degradation function. We also see
that the level of the PSF decreases in the ultraviolet, a consequence of the mid-
and high-frequency components in the degradation function.

The Strehl ratio S and the FWHM of the image peak are shown in Fig. 11.15.
The most notable feature of the FWHM curve is the limiting core diameter of
about 0.023 arc-sec at the shortest wavelengths. Figure 11.16 shows the peak
intensity I, as a function of wavelength, normalized to unity at A = 633 nm,
assuming equal flux at each wavelength. The intensity at the peak is given by Eq.
(10.2.19) with S included for a degraded image. Therefore

() _ S (633)°
70633 Sep\ 1) (1120

wher 4 is in nanometers and S is given in Fig. 11.15. Also shown in Fig. 11.16 is
the average intensity over an area enclosing 60% of the total energy. These results
are derived using Eq. (10.2.20) with # = 0.6 and image radii taken from Figs.
11.13 and 11.14. The curves in Fig. 11.16 would show a A~% dependence for a
perfect image; the actual curves show a peak in the ultraviolet.
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Fig. 11.11. Predicted PSF