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Preface

Since the publication of the first edition of this book in 1989, the field of
nonlinear fiber optics has virtualy exploded. A major factor behind such a
tremendous growth was the advent of fiber amplifiers, made by doping silica
or fluoride fibers with rare-earth ions such as erbium and neodymium. Such
amplifiers revolutionized the design of fiber-optic communication systems, in-
cluding those making use of optical solitons whose very existence stems from
the presence of nonlinear effects in optical fibers. Optical amplifiers permit
propagation of lightwave signals over thousands of kilometers asthey can com-
pensate for all losses encountered by the signal in the optical domain. At the
same time, fiber amplifiers enable the use of massive wavelength-division mul-
tiplexing (WDM) and have led to the development of lightwave systems with
capacities exceeding 1 Th/s. Nonlinear fiber optics plays an increasingly im-
portant role in the design of such high-capacity lightwave systems. In fact,
an understanding of various nonlinear effects occurring inside optical fibersis
almost a prerequisite for alightwave-system designer.

Thethird edition isintended to bring the book up-to-date so that it remains
a unique source of comprehensive coverage on the subject of nonlinear fiber
optics. An attempt was made to include recent research results on al topics
relevant to the field of nonlinear fiber optics. Such an ambitious objective
increased the size of the book to the extent that it was necessary to split it
into two separate books. This book will continue to deal with the fundamental
aspects of nonlinear fiber optics. A second book Applications of Nonlinear
Fiber Opticsisdevoted to its applications; it isreferred to as Part B in thistext.

Nonlinear Fiber Optics, 3rd edition, retains most of the material that ap-
peared in the first edition, with the exception of Chapter 6, which is now de-
voted to the polarization effects relevant for light propagation in optical fibers.
Polarization issues have become increasingly more important, especially for
high-speed lightwave systems for which the phenomenon of polarization-mode

XV
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dispersion (PMD) has become a limiting factor. It is thus necessary that stu-
dents learn about PMD and other polarization effects in a course devoted to
nonlinear fiber optics.

The potential readership is likely to consist of senior undergraduate stu-
dents, graduate students enrolled in the M. S. and Ph. D. degree programs, en-
gineers and technicians involved with the telecommunication industry, and sci-
entists working in the fields of fiber optics and optical communications. This
revised edition should continue to be a useful text for graduate and senior-level
courses dealing with nonlinear optics, fiber optics, or optical communications
that are designed to provide mastery of the fundamental aspects. Some uni-
versities may even opt to offer a high-level graduate course devoted to solely
nonlinear fiber optics. The problems provided at the end of each chapter should
be useful to instructors of such a course.

Many individuals have contributed, either directly or indirectly, to the com-
pletion of the third edition. | am thankful to all of them, especialy to my stu-
dents whose curiosity led to several improvements. Several of my colleagues
have helped me in preparing the third edition. | thank them for reading drafts
and making helpful suggestions. | am grateful to many readers for their occa-
sional feedback. Last, but not least, | thank my wife, Anne, and my daughters,
Sipra, Caroline, and Claire, for understanding why | needed to spend many
weekends on the book instead of spending time with them.

Govind P. Agrawal
Rochester, NY



Chapter 1

| ntroduction

Thisintroductory chapter is intended to provide an overview of the fiber char-
acteristics that are important for understanding the nonlinear effects discussed
in later chapters. Section 1.1 provides a historical perspective on the progress
in the field of fiber optics. Section 1.2 discusses various fiber properties such
as optical loss, chromatic dispersion, and birefringence. Particular attention is
paid to chromatic dispersion because of its importance in the study of nonlin-
ear effects probed by using ultrashort optical pulses. Section 1.3 introduces
various nonlinear effects resulting from the intensity dependence of the refrac-
tive index and stimulated inelastic scattering. Among the nonlinear effects that
have been studied extensively using optical fibers as a nonlinear medium are
self-phase modulation, cross-phase modulation, four-wave mixing, stimulated
Raman scattering, and stimulated Brillouin scattering. Each of these effectsis
considered in detail in separate chapters. Section 1.4 gives an overview of how
the text is organized for discussing such awide variety of nonlinear effectsin
optical fibers.

1.1 Historical Perspective

Total internal reflection—the basic phenomenon responsible for guiding of
light in optical fibers—is known from the nineteenth century. The reader is
referred to a 1999 book for the interesting history behind the discovery of
this phenomenon [1]. Although uncladded glass fibers were fabricated in the
1920s [2]{4], the field of fiber optics was not born until the 1950s when the
use of a cladding layer led to considerable improvement in the fiber charac-
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2 Introduction

teristics [5]-{8]. The idea that optical fibers would benefit from a dielectric
cladding was not obvious and has a remarkable history [1].

Thefield of fiber optics developed rapidly during the 1960s, mainly for the
purpose of image transmission through abundle of glass fibers[9]. These early
fibers were extremely lossy (loss >1000 dB/km) from the modern standard.
However, the situation changed drastically in 1970 when, following an earlier
suggestion [10], losses of silica fibers were reduced to below 20 dB/km [11].
Further progress in fabrication technology [12] resulted by 1979 in aloss of
only 0.2 dB/km in the 1.55-um wavelength region [13], a loss level limited
mainly by the fundamental process of Rayleigh scattering.

The availability of low-loss silica fibers led not only to arevolution in the
field of optical fiber communications [14]-{17] but also to the advent of the
new field of nonlinear fiber optics. Stimulated Raman- and Brill ouin-scattering
processes in optical fibers were studied as early as 1972 [18]-{20]. This work
stimulated the study of other nonlinear phenomena such as optically induced
birefringence, parametric four-wave mixing, and self-phase modulation [21]—
[25]. Animportant contribution was made in 1973 when it was suggested that
optical fibers can support soliton-like pulses as aresult of an interplay between
the dispersive and nonlinear effects [26]. Optical solitons were observed in a
1980 experiment [27] and led to a number of advances during the 1980s in the
generation and control of ultrashort optical pulses[28]-{32]. The decade of the
1980s also saw the development of pulse-compression and optical-switching
techniques that exploited the nonlinear effects in fibers [33]-{40]. Pulses as
short as 6 fs were generated by 1987 [41]. Severa reviews and books cover
the enormous progress made during the 1980s [42]-{52].

The field of nonlinear fiber optics continued to grow during the decade
of the 1990s. A new dimension was added when optical fibers were doped
with rare-earth elements and used to make amplifiers and lasers. Although
fiber amplifiers were made as early as 1964 [53], it was only after 1987 that
their development accelerated [54]. Erbium-doped fiber amplifiers attracted
the most attention because they operate in the wavelength region near 1.55 um
and can be used for compensation of losses in fiber-optic lightwave systems
[55], [56]. Such amplifiers were used for commercial applications beginning
in 1995. Their use has led to avirtual revolution in the design of multichannel
lightwave systems [14]-{17].

The advent of fiber amplifiers also fueled research on optical solitons[57]—
[60] and led eventually to the concept of dispersion-managed solitons [61]—
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Figure1.1 Schematic illustration of the cross section and the refractive-index profile
of a step-index fiber.

[63]. In another development, fiber gratings, first made in 1978 [64], were de-
veloped during the 1990s to the point that they became an integral part of light-
wave technology [65]. Nonlinear effects in fiber gratings and photonic-crystal
fibers have attracted considerable attention since 1996 [66]—[71]. Clearly, the
field of nonlinear fiber optics has grown considerably in the 1990s and is ex-
pected to do so during the twenty-first century. It has led to a number of ad-
vances important from the fundamental as well as the technological point of
view. The interest in nonlinear fiber optics should continue in view of the
development of the photonic-based technol ogies for information management.

1.2 Fiber Characteristics

Initssimplest form, an optical fiber consists of acentral glass core surrounded
by a cladding layer whose refractive index n, is slightly lower than the core
index n;. Such fibers are generaly referred to as step-index fibers to dis-
tinguish them from graded-index fibers in which the refractive index of the
core decreases gradually from center to core boundary [72]-{74]. Figure 1.1
shows schematically the cross section and refractive-index profile of a step-
index fiber. Two parameters that characterize an optical fiber are the relative
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core-cladding index difference

A= (1.2.1)
ny
and the so-called V parameter defined as
V =kya(n? —nd)1/2, (1.2.2)

wherek, = 2 /2, a isthe core radius, and A is the wavelength of light.

TheV parameter determines the number of modes supported by the fiber.
Fiber modes are discussed in Section 2.2, where it is shown that a step-index
fiber supports a single mode if V < 2.405. Optica fibers designed to sat-
isfy this condition are called single-mode fibers. The main difference between
the single-mode and multimode fibers is the core size. The core radius a is
typically 25-30 um for multimode fibers. However, single-mode fibers with
A ~ 0.003 require a to be < 5 um. The numerical value of the outer radius b
isless critical as long as it islarge enough to confine the fiber modes entirely.
A standard value of b = 62.5 um is commonly used for both single-mode
and multimode fibers. Since nonlinear effects are mostly studied using single-
mode fibers, the term optical fiber in this text refers to single-mode fibers un-
less noted otherwise.

1.2.1 Material and Fabrication

The material of choice for low-loss optical fibers is pure silica glass synthe-
sized by fusing SiO, molecules. The refractive-index difference between the
core and the cladding isrealized by the selective use of dopants during the fab-
rication process. Dopants such as GeQ, and P,Og increase the refractive index
of pure silica and are suitable for the core, while materials such as boron and
fluorine are used for the cladding because they decrease the refractive index of
silica. Additional dopants can be used depending on specific applications. For
exampl e, to make fiber amplifiers and lasers, the core of silicafibersiscodoped
with rare-earth ions using dopants such as ErCl; and Nd,O,. Similarly, Al,O4
is sometimes added to control the gain spectrum of fiber amplifiers.

The fabrication of optical fibersinvolves two stages [75]. In the first stage,
a vapor-deposition method is used to make a cylindrical preform with the de-
sired refractive-index profile and the relative core-cladding dimensions. A typ-
ical preform is 1-m long with 2-cm diameter. In the second stage, the preform
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Figure 1.2 Schematic diagram of the MCV D process commonly used for fiber fabri-
cation. (After Ref. [75].)

is drawn into a fiber using a precision-feed mechanism that feeds it into a
furnace at a proper speed. During this process, the relative core-cladding di-
mensions are preserved. Both stages, preform fabrication and fiber drawing,
involve sophisticated technology to ensure the uniformity of the core size and
the index profile [75]{77].

Several methods can be used for making a preform. The three commonly
used methods are modified chemical vapor deposition (MCVD), outside vapor
deposition (OVD), and vapor-phase axia deposition (VAD). Figure 1.2 shows
a schematic diagram of the MCVD process. In this process, successive layers
of SO, are deposited on the inside of a fused silica tube by mixing the va-
pors of SiCl, and O, at atemperature of ~ 1800°C. To ensure uniformity, the
multiburner torch is moved back and forth across the tube length. The refrac-
tive index of the cladding layers is controlled by adding fluorine to the tube.
When a sufficient cladding thickness has been deposited with multiple passes
of the torch, the vapors of GeCl, or POCI, are added to the vapor mixture to
form the core. When all layers have been deposited, the torch temperature is
raised to collapse the tube into a solid rod known as the preform.

This description is extremely brief and is intended to provide a genera
idea. The fabrication of optical fibers requires attention to a large number of
technological details. The interested reader is referred to the extensive litera-
ture on this subject [75]{77].

1.2.2 Fiber Losses

An important fiber parameter is a measure of power loss during transmission
of optical signals inside the fiber. If R, is the power launched at the input of a
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Figure 1.3 Measured loss spectrum of asingle-modesilicafiber. Dashed curve shows
the contribution resulting from Rayleigh scattering. (After Ref. [75].)

fiber of length L, the transmitted power P; is given by
Pr = Pyexp(—ol) , (1.2.3)

where the attenuation constant ¢ is a measure of total fiber losses from all
sources. It is customary to express o in units of dB/km using the relation (see
Appendix A for an explanation of decibel units)

O = 10 log (P—T) = 4.343a, (1.2.4)
L Po
where Eq. (1.2.3) was used to relate oz and o.

As one may expect, fiber losses depend on the wavelength of light. Figure
1.3 shows the loss spectrum of a silica fiber made by the MCVD process [75].
This fiber exhibits a minimum loss of about 0.2 dB/km near 1.55 um. Losses
are considerably higher at shorter wavelengths, reaching alevel of afew dB/km
in the visible region. Note, however, that even a 10-dB/km loss corresponds to
an attenuation constant of only o ~ 2 x 107> cm™?, an incredibly low value
compared to that of most other materials.

Several factors contribute to the loss spectrum of Fig. 1.3, with material
absorption and Rayleigh scattering contributing dominantly. Silica glass has
electronic resonances in the ultraviolet (UV) region and vibrationa resonances
in the far-infrared (FIR) region beyond 2 um but absorbs little light in the
wavelength region 0.5-2 um. However, even a relatively small amount of
impurities can lead to significant absorption in that wavelength window. From
apractical point of view, the most important impurity affecting fiber lossisthe



Fiber Characteristics 7

OH ion, which has a fundamental vibrational absorption peak at ~ 2.73 um.
The overtones of this OH-absorption peak are responsible for the dominant
peak seen in Fig. 1.3 near 1.4 um and a smaller peak near 1.23 um. Special
precautions are taken during the fiber-fabrication process to ensure an OH-ion
level of lessthan one part in one hundred million [75]. In state-of-the-art fibers,
the peak near 1.4 um can be reduced to below the 0.5-dB level. It virtually
disappears in especialy prepared fibers [78]. Such fibers with low losses in
theentire 1.3-1.6 um spectral region are useful for fiber-optic communications
and were available commercially by the year 2000 (e.g., al-wave fiber).

Rayleigh scattering is a fundamental loss mechanism arising from density
fluctuations frozen into the fused silica during manufacture. Resulting local
fluctuations in the refractive index scatter light in al directions. The Rayleigh-
scattering loss varies as A~ and is dominant at short wavelengths. Asthisloss
isintrinsic to the fiber, it sets the ultimate limit on fiber loss. Theintrinsic loss
level (shown by adashed linein Fig. 1.3) is estimated to be (in dB/km)

og =Cr/A%, (1.2.5)

where the constant Cy, isin the range 0.7-0.9 dB/(km-um*) depending on the
constituents of the fiber core. As o = 0.12-0.15 dB/km near A = 1.55 um,
losses in silica fibers are dominated by Rayleigh scattering. In some glasses,
0 can be reduced to alevel ~ 0.05 dB/km [79]. Such glasses may be useful
for fabricating ultralow-loss fibers.

Among other factors that may contribute to losses are bending of fiber and
scattering of light at the core-cladding interface [72]. Modern fibers exhibit a
loss of = 0.2 dB/km near 1.55 um. Total loss of fiber cables used in optical
communication systemsis slightly larger (by ~ 0.03 dB/km) because of splice
and cabling losses.

1.2.3 Chromatic Dispersion

When an electromagnetic wave interacts with the bound electrons of a dielec-
tric, the medium response, in general, depends on the optical frequency .
This property, referred to as chromatic dispersion, manifests through the fre-
quency dependence of the refractive index n(). On afundamental level, the
origin of chromatic dispersion is related to the characteristic resonance fre-
guencies at which the medium absorbs the el ectromagnetic radiation through
oscillations of bound electrons. Far from the medium resonances, the refrac-
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Figure 1.4 Variation of refractive index n and group index ng with wavelength for
fused silica

tiveindex iswell approximated by the Sellmeier equation [72]
m B(DZ
20,0\ i%
n“() —1+§‘1wj2_w2,

(1.2.6)

where o; is the resonance frequency and B; is the strength of jth resonance.
The sum in Eqg. (1.2.6) extends over all material resonances that contribute
to the frequency range of interest. In the case of optica fibers, the parame-
ters B; and w; are obtained experimentally by fitting the measured dispersion
curves[80] to Eq. (1.2.6) with m = 3 and depend on the core constituents [74].
For bulk-fused silica, these parameters are found to be [81] B, = 0.6961663,
B, = 0.4079426, B; = 0.8974794, A, = 0.0684043 um, A, = 0.1162414 um,
and A3 = 9.896161 um, where 4; = 2nc/w; and c is the speed of light in
vacuum.

Fiber dispersion plays acritica role in propagation of short optical pulses
because different spectral components associated with the pulse travel at dif-
ferent speeds given by ¢/n(w). Even when the nonlinear effects are not impor-
tant, dispersion-induced pulse broadening can be detrimental for optical com-
munication systems. In the nonlinear regime, the combination of dispersion
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Figure 1.5 Variation of B, and d,, with wavelength for fused silica. The dispersion
parameter 3, = 0 near 1.27 um.

and nonlinearity can result in a qualitatively different behavior, as discussed
in later chapters. Mathematically, the effects of fiber dispersion are accounted
for by expanding the mode-propagation constant 3 in a Taylor series about the
frequency w, at which the pulse spectrum is centered:

B(@) =n(0) 2 = fot By~ @) + S fp(@— g oo, (127)
where 4
B = <dwﬁ> i (m=0,1,2,...). (1.2.8)

The parameters f3; and 3, arerelated to the refractive index n and its deriva-
tives through the relations

1 ng 1 dn
ﬁl_@_z_6<n+w%), (1.2.9)
1/_.dn d?n

where ng is the group index and vy is the group velocity. Physically speak-
ing, the envelope of an optical pulse moves at the group velocity while the
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Figure 1.6 Measured variation of dispersion parameter D with wavelength for a
single-mode fiber. (After Ref. [75].)

parameter 3, represents dispersion of the group velocity and is responsible for
pulse broadening. This phenomenon is known as the group-velocity dispersion
(GVD), and B3, isthe GVD parameter.

Figures 1.4 and 1.5 show how n, ng, and 3, vary with wavelength A in fused
silicausing Egs. (1.2.6), (1.2.9), and (1.2.10). The most notable feature is that
BB, vanishes at awavelength of about 1.27 um and becomes negative for longer
wavelengths. This wavelength isreferred to as the zero-dispersion wavelength
and is denoted as A,. However, note that dispersion does not vanishat A = 4.
Pulse propagation near this wavelength requires inclusion of the cubic termin
Eq. (1.2.7). The coefficient 3; appearing in that term is called the third-order-
dispersion (TOD) parameter. Such higher-order dispersive effects can distort
ultrashort optical pulses both in the linear [72] and nonlinear regimes [82].
Their inclusion is necessary only when the wavelength A approaches 4, to
within afew nanometers.

The curves shown in Figs. 1.4 and 1.5 are for bulk-fused silica. The dis-
persive behavior of actual glass fibers deviates from that shown in these figures
for the following two reasons. First, the fiber core may have small amounts of
dopants such as GeO, and P,O;. Equation (1.2.6) in that case should be used
with parameters appropriate to the amount of doping levels [74]. Second, be-
cause of dielectric waveguiding, the effective mode index isslightly lower than
the material index n(w) of the core, reduction itself being o dependent [72]—
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Figure 1.7 Variation of dispersion parameter D with wavelength for three kinds of
fibers. Labels SC, DC, and QC stand for single-clad, double-clad, and quadruple-clad
fibers, respectively. (After Ref. [84].)

[74]. Thisresults in a waveguide contribution that must be added to the mate-
rial contribution to obtain the total dispersion. Generally, the waveguide con-
tribution to S, is relatively small except near the zero-dispersion wavelength
Ap Where the two become comparable. The main effect of the waveguide con-
tribution is to shift Ay dightly toward longer wavelengths; Ay ~ 1.31 um for
standard fibers. Figure 1.6 shows the measured total dispersion of a single-
mode fiber [75]. The quantity plotted is the dispersion parameter D that is
commonly used in the fiber-optics literature in place of f3,. It is related to 3,
by the relation

_dB,  2mc A d%n

An interesting feature of the waveguide dispersion is that its contribution
to D (or B,) depends on fiber-design parameters such as core radius a and
core-cladding index difference A. This feature can be used to shift the zero-
dispersion wavelength A5 in the vicinity of 1.55 um where the fiber loss is
minimum. Such dispersion-shifted fibers [83] have found applications in opti-
cal communication systems. They are available commercialy and are known
by names such as zero- and nonzero-dispersion-shifted fibers, depending on
whether D =~ 0 at 1.55 um or not. Those fibers in which GVD is shifted to
the wavelength region beyond 1.6 um exhibit a large positive value of .
They are called dispersion-compensating fibers (DCFs). The slope of the curve
in Fig. 1.6 (called the dispersion slope) is related to the TOD parameter 3.
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Fiberswith reduced slope have been developed in recent years for wavelength-
division-multiplexing (WDM) applications.

It is possible to design dispersion-flattened optical fibers having low dis-
persion over arelatively large wavelength range 1.3-1.6 um. Thisis achieved
by using multiple cladding layers. Figure 1.7 shows the measured dispersion
spectra for two such multiple-clad fibers having two (double-clad) and four
(quadruple-clad) cladding layers around the core applications. For compar-
ison, dispersion of a single-clad fiber is also shown by a dashed line. The
quadruply clad fiber haslow dispersion (|D| ~ 1 ps’/km-nm) over awide wave-
length range extending from 1.25 to 1.65 um. Waveguide dispersion can aso
be used to make fibers for which D varies along the fiber length. An example
is provided by dispersion-decreasing fibers made by tapering the core diameter
along the fiber length [85], [86].

Nonlinear effects in optical fibers can manifest qualitatively different be-
haviors depending on the sign of the GVD parameter. For wavelengths such
that A < A, the fiber is said to exhibit normal dispersion as 3, > 0 (see Fig.
1.5). In the normal-dispersion regime, high-frequency (blue-shifted) compo-
nents of an optical pulse travel slower than low-frequency (red-shifted) com-
ponents of the same pulse. By contrast, the opposite occurs in the anomal ous-
dispersion regime in which B, < 0. As seen in Fig. 1.5, silica fibers exhibit
anomalous dispersion when the light wavelength exceeds the zero-dispersion
wavelength (A > A5). The anomalous-dispersion regime is of considerable in-
terest for the study of nonlinear effects because it isin this regime that optical
fibers support solitons through a balance between the dispersive and nonlinear
effects.

An important feature of chromatic dispersion is that pulses at different
wavel engths propagate at different speeds inside afiber because of amismatch
in their group velocities. This feature leads to a walk-off effect that plays an
important role in the description of the nonlinear phenomena involving two or
more closely spaced optical pulses. More specifically, the nonlinear interac-
tion between two optical pulses ceases to occur when the faster moving pulse
completely walks through the slower moving pulse. This feature is governed
by the walk-off parameter d,, defined as

dip = Br(Ay) — By(Ay) = Vg H(Ag) — Vg H(Ay), (1.2.12)

where A, and A, are the center wavelengths of two pulses and 3, at these
wavelengths is evaluated using Eq. (1.2.9). For pulses of width T, one can
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define the walk-off length L, by the relation
Ly =Ty /[dysl- (1.2.13)

Figure 1.5 shows variation of d;, with A, for fused silica using Eq. (1.2.12)
with A, = 0.532 um. In the normal-dispersion regime (8, > 0), a longer-
wavelength pulse travels faster, while the opposite occurs in the anomal ous-
dispersion region. For example, if apulse at A, = 1.06 pm copropagates with
the pulse at A, = 0.532 um, it will separate from the shorter-wavelength pulse
at arate of about 80 ps/m. This corresponds to a walk-off length L, of only
25 cm for T, = 20 ps. The group-velocity mismatch plays an important role
for nonlinear effects involving cross-phase modulation [47].

1.2.4 Polarization-M ode Dispersion

As discussed in Chapter 2, even a single-mode fiber is not truly single mode
because it can support two degenerate modes that are polarized in two or-
thogonal directions. Under ideal conditions (perfect cylindrical symmetry and
stress-free fiber), a mode excited with its polarization in the x direction would
not couple to the mode with the orthogonal y-polarization state. In real fibers,
small departures from cylindrical symmetry because of random variations in
core shape and stress-induced anisotropy result in a mixing of the two polar-
ization states by breaking the mode degeneracy. Mathematically, the mode-
propagation constant 3 becomes dlightly different for the modes polarized in
the x and y directions. This property is referred to as modal birefringence. The
strength of modal birefringence is defined as [87]

B = 1B =Byl _ Ing—ny, (1.2.14)
Ko
where n, and ny are the modal refractive indices for the two orthogonally po-
larized states. For a given value of By, the two modes exchange their powers
in a periodic fashion as they propagate inside the fiber with the period [87]

2 A
lp= —— = . (1.2.15)

® IB—Bl Bnm
The length L is called the beat length. The axis along which the mode index
issmaller is called the fast axis because the group velocity is larger for light
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propagating in that direction. For the same reason, the axis with the larger
mode index is called the slow axis.

In standard optica fibers, By, is not constant along the fiber but changes
randomly because of fluctuations in the core shape and anisotropic stress. As
aresult, light launched into the fiber with afixed state of polarization changes
its polarization in a random fashion. This change in polarization is typicaly
harmless for continuous-wave (CW) light because most photodetectors do not
respond to polarization changes of the incident light. It becomes an issue for
optical communication systems when short pulses are transmitted over long
lengths [15]. If an input pulse excites both polarization components, the two
components travel along the fiber at different speeds because of their differ-
ent group velocities. The pulse becomes broader at the output end because
group velocities change randomly in response to random changes in fiber bire-
fringence (analogous to arandom-walk problem). This phenomenon, referred
to as polarization-mode dispersion (PMD), was studied extensively during the
1990s because of itsimportance for long-haul lightwave systems [88]—{98].

The extent of pulse broadening can be estimated from the time delay AT
occurring between the two polarization components during propagation of an
optical pulse. For afiber of length L and constant birefringence B;,, AT is
given by

L L

@ — E =L|By, — B1y| =L6p,, (1.2.16)

where 63, = k,(dBn/dw) isrelated to fiber birefringence. Equation (1.2.16)
cannot be used directly to estimate PMD for standard telecommunication fibers
because of random changes in birefringence occurring along the fiber. These
changes tend to equalize the propagation times for the two polarization com-
ponents. In fact, PMD is characterized by the root-mean-square (RMS) value
of AT obtained after averaging over random perturbations. The variance of AT
isfound to be [90]

AT =

of = ((AT)?) = 2(A'l)?[exp(—L/lc) +L/lc — 1], (12.17)

where A’ is the intrinsic modal dispersion and the correlation length |; is de-
fined as the length over which two polarization components remain correlated;
typical values of |, are of the order of 10° m. For L > 0.1 km, we can use
| < L tofind that

o ~ A'V2,L=DyVL, (1.2.18)
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Figure 1.8 Variation of birefringence parameter B, with thickness d of the stress-
inducing element for four different polarization-preserving fibers. Different shapes of
the stress-applying elements (shaded region) are shownintheinset. (After Ref. [101].)

where D isthe PMD parameter. For most fibers, values of Dy, arein the range
0.1-1 ps/vkm. Because of its v/L dependence, PMD-induced pulse broad-
ening is relatively small compared with the GVD effects. However, PMD be-
comes alimiting factor for high-speed communication systems designed to op-
erate over long distances near the zero-dispersion wavelength of the fiber [92].

For some applications it isdesirabl e that fiberstransmit light without chang-
ing its state of polarization. Such fibers are called polarization-maintaining or
polarization-preserving fibers [99]-{104]. A large amount of birefringence is
introduced intentionally in these fibers through design modifications so that
relatively small birefringence fluctuations are masked by it and do not affect
the state of polarization significantly. One scheme breaks the cylindrical sym-
metry, making the fiber core elliptical in shape [104]. The degree of birefrin-
gence achieved by this technique is typically ~ 107, An aternative scheme
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Figure 1.9 Evolution of state of polarization along a polarization-maintaining fiber
when input signal islinearly polarized at 45° from the slow axis.

makes use of stress-induced birefringence and permits By, ~ 10~%. In awidely
adopted design, two rods of borosilicate glass areinserted on the opposite sides
of the fiber core at the preform stage. The resulting birefringence depends
on the location and the thickness of the stress-inducing elements. Figure 1.8
shows how By, varies with thickness d for four shapes of stress-inducing el-
ements located at a distance of five times the core radius [101]. Values of
Bm ~ 2 x 10~* can be achieved for d = 50-60 um. Such fibers are often
named after the shape of the stress-inducing element, resulting in whimsical
names such as “panda’ and “bow-tie” fibers.

The use of polarization-maintaining fibers requires identification of the
slow and fast axes before an optical signal can be launched into the fiber.
Structural changes are often made to the fiber for this purpose. In one scheme,
cladding is flattened in such a way that the flat surface is parallel to the slow
axis of the fiber. Such a fiber is caled the “D fiber” after the shape of the
cladding [104] and makes axes identification relatively easy. When the polar-
ization direction of the linearly polarized light coincides with the slow or the
fast axis, the state of polarization remains unchanged during propagation. In
contrast, if the polarization direction makes an angle with these axes, polariza-
tion changes continuously along the fiber in a periodic manner with a period
equal to the beat length [see Eq. (1.2.15)]. Figure 1.9 shows schematically the
evolution of polarization over one beat length of a birefringent fiber. The state
of polarization changes over one-half of the beat length from linear to eliptic,
éliptic to circular, circular to dliptic, and then back to linear but is rotated by
90° from the incident linear polarization. The process is repeated over the re-
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maining half of the beat length such that the initial state is recovered at z = Lg
and its multiples. The beat length is typically ~ 1 m but can be as small as
1 cm for astrongly birefringent fiber with By, ~ 1074

1.3 Fiber Nonlinearities

The response of any dielectric to light becomes nonlinear for intense electro-
magnetic fields, and optical fibers are no exception. On a fundamental level,
the origin of nonlinear response isrelated to anharmonic motion of bound elec-
trons under the influence of an applied field. Asaresult, the total polarization
P induced by electric dipoles is not linear in the electric field E, but satisfies
the more general relation [105]-{108]

P=¢, (x(l)-Eer(Z) EE+ O EEE+--->, (1.3.2)

where g, is the vacuum permittivity and x) (j = 1,2,...) is jth order suscep-
tibility. In general, ¥ isatensor of rank j+ 1. The linear susceptibility y(%)

represents the dominant contribution to P. Its effects are included through the
refractive index n and the attenuation coefficient o discussed in Section 1.2.
The second-order susceptibility (2 isresponsible for such nonlinear effects as
second-harmonic generation and sum-frequency generation [106]. However,
it is nonzero only for media that lack an inversion symmetry at the molecu-
lar level. As SiO, is a symmetric molecule, x? vanishes for silica glasses.

As a result, optical fibers do not normally exhibit second-order nonlinear ef-
fects. Nonetheless, the e ectric-quadrupole and magnetic-dipole moments can
generate weak second-order nonlinear effects. Defects or color centersinside
the fiber core can also contribute to second-harmonic generation under certain
conditions (see Chapter 10).

1.3.1 Nonlinear Refraction

The lowest-order nonlinear effects in optical fibers originate from the third-
order susceptibility (3, which is responsible for phenomena such as third-
harmonic generation, four-wave mixing, and nonlinear refraction [106]. Un-
less special efforts are made to achieve phase matching, the nonlinear pro-
cesses that involve generation of new frequencies (e.g. third-harmonic gen-
eration and four-wave mixing) are not efficient in optical fibers. Most of the
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nonlinear effectsin optical fibers therefore originate from nonlinear refraction,
a phenomenon referring to the intensity dependence of the refractive index. In
its simplest form, the refractive index can be written as

A(w,|E|?) = n(w) +n,|E|?, (1.3.2)

where n(w) isthe linear part given by Eq. (1.2.6), |[E is the optical intensity
inside the fiber, and n, is the nonlinear-index coefficient related to x° by the
relation (see Section 2.3)

3
Re(X5h): (133

n,—=—
27 8n

where Re stands for the real part and the optical field is assumed to be lin-
early polarized so that only one component %3 of the fourth-rank tensor
contributes to the refractive index. The tensorial nature of »3 can affect the
polarization properties of optical beams through nonlinear birefringence. Such
nonlinear effects are covered in Chapter 6.

The intensity dependence of the refractive index leads to a large number
of interesting nonlinear effects; the two most widely studied are self-phase
modulation (SPM) and cross-phase modulation (XPM). Self-phase modulation
refers to the self-induced phase shift experienced by an optical field during its
propagation in optical fibers. Its magnitude can be obtained by noting that the
phase of an optical field changes by

¢ = fikyL = (n+n,|E[P)k,L, (1.3.4)

where ky = 2r/A and L isthe fiber length. The intensity-dependent nonlinear
phase shift ¢, = nyk,L|E|? is due to SPM. Among other things, SPM is
responsible for spectral broadening of ultrashort pulses [25] and formation of
optical solitons in the anomal ous-dispersion regime of fibers [26].

Cross-phase modulation refers to the nonlinear phase shift of an optical
field induced by another field having a different wavelength, direction, or state
of polarization. Its origin can be understood by noting that the total electric
field E in Eq. (1.3.1) isgiven by

E = 1R[E, exp(—iogt) + E,exp(—im,t) +c.c.], (1.3.5)

when two optical fields at frequencies w, and w,, polarized along the x axis,
propagate simultaneously inside the fiber. (The abbreviation c.c. stands for
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complex conjugate.) The nonlinear phase shift for the field at o, isthen given
by
O = NokoL(|Eq [+ 2, %), (1.3.6)

where we have neglected all terms that generate polarization at frequencies
other than @, and w, because of their non-phase-matched character. The two
terms on the right-hand side of Eg. (1.3.6) are due to SPM and XPM, respec-
tively. An important feature of XPM isthat, for equally intense optical fields
of different wavelengths, the contribution of XPM to the nonlinear phase shift
istwice that of SPM. Among other things, XPM isresponsible for asymmetric
spectral broadening of copropagating optical pulses. Chapters 6 and 7 discuss
the XPM-related nonlinear effects.

1.3.2 Stimulated Inelastic Scattering

The nonlinear effects governed by the third-order susceptibility ¥ are elastic
in the sense that no energy is exchanged between the electromagnetic field and
the dielectric medium. A second class of nonlinear effects results from stimu-
lated inelastic scattering in which the optical field transfers part of its energy
to the nonlinear medium. Two important nonlinear effects in optical fibersfall
in this category; both of them are related to vibrational excitation modes of
silica. These phenomena, known as stimulated Raman scattering (SRS) and
stimulated Brillouin scattering (SBS), were among the first nonlinear effects
studied in optical fibers [18]{20]. The main difference between the two is
that optical phonons participate in SRS while acoustic phonons participate in
SBS.

In asimple quantum-mechanical picture applicable to both SRSand SBS, a
photon of the incident field (called the pump) is annihilated to create a photon
at a lower frequency (belonging to the Stokes wave) and a phonon with the
right energy and momentum to conserve the energy and the momentum. Of
course, a higher-energy photon at the so-called anti-Stokes frequency can also
be created if aphonon of right energy and momentum isavailable. Even though
SRS and SBS are very similar in their origin, different dispersion relations
for acoustic and optical phonons lead to some basic differences between the
two. A fundamental difference isthat SBSin optical fibers occurs only in the
backward direction whereas SRS can occur in both directions.

Although a complete description of SRS and SBSin optical fibersis quite
involved, the initial growth of the Stokes wave can be described by a smple
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relation. For SRS, thisrelation is given by

dls

5= Orlpls, (1.3.7)

where |5 is the Stokes intensity, |, is the pump intensity, and gy is the Raman-
gain coefficient. A similar relation holds for SBS with g, replaced by the
Brillouin-gain coefficient g5. Both g; and gg have been measured exper-
imentally for silica fibers. The Raman-gain spectrum is found to be very
broad, extending up to 30 THz [18]. The peak gain g; ~ 7 x 10-14 m/w
at pump wavelengths near 1.5 um and occurs for the Stokes shift of ~ 13 THz.
In contrast, the Brillouin-gain spectrum is extremely narrow, with a band-
width of <100 MHz. The peak value of Brillouin gain occurs for the Stokes
shift of ~10 GHz for pump wavelengths near 1.5 um. The peak gain is
~ 6x 10~ m/W for anarrow-bandwidth pump [19] and decreases by afactor
of Avy/Avg for abroad-bandwidth pump, where Av, is the pump bandwidth
and Avg is the Brillouin-gain bandwidth.

An important feature of SRS and SBSis that they exhibit a threshold-like
behavior, i.e., significant conversion of pump energy to Stokes energy occurs
only when the pump intensity exceeds a certain threshold level. For SRSin a
single-mode fiber with oL > 1, the threshold pump intensity is given by [20]

I~ 16(0t/gg).- (1.3.8)

Typicaly Ig‘ ~ 10 MW/cm?, and SRS can be observed at a pump power ~ 1 W.
A similar calculation for SBS shows that the threshold pump intensity isgiven
by [20]

I ~ 21(0t/gg). (1.3.9)

As the Brillouin-gain coefficient gg is larger by nearly three orders of mag-
nitude compared with g, typical values of SBS threshold are ~1 mW. The
nonlinear phenomena of SRS and SBS are discussed in Chapters 8 and 9, re-
spectively.

1.3.3 Importance of Nonlinear Effects

Most measurements of the nonlinear-index coefficient n, in silicafibersyield a
valuein therange 2.2-3.4 x 10-2° m?/W (see Appendix B), depending on both
the core composition and whether the input polarization is preserved inside the
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fiber or not [109]. Thisvalueissmall compared to most other nonlinear media
by at least two orders of magnitude. Similarly, the measurements of Raman-
and Brillouin-gain coefficients in silicafibers show that their values are smaller
by two orders of magnitude or more compared with other common nonlinear
media [47]. In spite of the intrinsically small values of the nonlinear coeffi-
cients in fused silica, the nonlinear effects in optical fibers can be observed at
relatively low power levels. This is possible because of two important char-
acteristics of single-mode fibers—a small spot size (mode diameter < 10 um)
and extremely low loss (< 1 dB/km) in the wavelength range 1.0-1.6 um.

A figure of merit for the efficiency of a nonlinear process in bulk media
is the product IL 4 where | is the optical intensity and L is the effective
length of interaction region [110]. If light is focused to a spot of radius w,,
then | = P/(zw3), where P is the incident optical power. Clearly, | can be
increased by focusing the light tightly to reduce w,. However, this results
in a smaller Ly because the length of the focal region decreases with tight
focusing. For a Gaussian beam, Ly ~ 7w3/A, and the product

P\aw P
(ILett) puikc = (E—W%> TO == (1.3.10)
is independent of the spot size w,.

In single-mode fibers, spot size w, is determined by the core radius a. Fur-
thermore, because of dielectric waveguiding, the same spot size can be main-
tained across the entire fiber length L. In this case, the interaction length L«
is limited by the fiber loss .. Using 1(z) = l,exp(—az), where I, = P/(zwg)
and P isthe optical power coupled into the fiber, the product I Ly, becomes

(ILeff)ﬁber:/OLI(z)exp(—az)dz: [l-exp(—oLl)].  (1.3.11)

w30

A comparison of Egs. (1.3.10) and (1.3.11) showsthat, for sufficiently long
fibers, the efficiency of a nonlinear process in optical fibers can be improved
by afactor [110]

IL s
( eff)ﬂber _ 2’2 ’ (1312)
(Ieg)puk WG

where oL > 1 was assumed. In the visible region, the enhancement factor is
~ 10" for A = 0.53 um, Wy = 2 um, and o = 2.5 x 10~ cm~* (10 dB/km).
In the wavelength region near 1.55 um (o = 0.2 dB/km), the enhancement
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factor can approach 10°. It is this tremendous enhancement in the efficiency
of the nonlinear processes that makes silica fibers a suitable nonlinear medium
for the observation of awide variety of nonlinear effects at low power levels.
Relatively weak nonlinearity of silica fibers becomes an issue in applications
for which it is desirable to use a short fiber length (< 0.1 km). It is possible
to make fibers by using nonlinear materials for which n, is larger than silica
Optical fibers made with lead silicate glasses have n, values larger by about
afactor of ten [111]. Even larger values (n, = 4.2 x 1018 m2/W) have been
measured in chalcogenide-glass fibers[112]. Such fibers are attracting consid-
erable attention for making fiber devices such as amplifiers, tapers, switches,
and gratings, and are likely to become important for nonlinear fiber optics
[113]{117].

1.4 Overview

This book is intended to provide a comprehensive account of the nonlinear
phenomena in optical fibers. The field of nonlinear fiber optics has grown to
the extent that its coverage requires two volumes. This volume covers fun-
damental aspects whereas a separate volume is devoted to device and system
applications. Broadly speaking, Chapters 1-3 provide the background mate-
rial and the mathematical tools needed for understanding the various nonlinear
effects. Chapters 4—7 discuss the nonlinear effects that lead to spectral and
temporal changes in an optical wave without changing its energy. Chapters
8-10 consider the nonlinear effects that generate new optical waves through
an energy transfer from the incident waves.

Chapter 2 provides the mathematical framework needed for a theoretical
understanding of the nonlinear phenomena in optical fibers. Starting from
Maxwell’s egquations, the wave equation in a nonlinear dispersive medium is
used to discuss the fiber modes and to obtain a basic propagation equation sat-
isfied by the amplitude of the pulse envelope. The procedure emphasizes the
various approximations made in the derivation of this equation. The numeri-
cal methods used to solve the basic propagation equation are then discussed
with emphasis on the split-step Fourier method, aso known as the beam-
propagation method.

Chapter 3 focus on the dispersive effects that occur when the incident
power and the fiber length are such that the nonlinear effects are negligible.
The main effect of GVD isto broaden an optical pulse asit propagates through
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the fiber. Such dispersion-induced broadening is considered for several pulse
shapes with particular attention paid to the effects of the frequency chirp im-
posed on the input pulse. The higher-order dispersive effects, important near
the zero-dispersion wavelength of fibers, are also discussed.

Chapter 4 considers the nonlinear phenomenon of SPM occurring as a re-
sult of theintensity dependence of the refractive index. The main effect of SPM
isto broaden the spectrum of optical pulses propagating through the fiber. The
pulse shape is also affected if SPM and GV D act together to influence the opti-
cal pulse. The features of SPM-induced spectral broadening with and without
the GV D effects are discussed in separate sections. The higher-order nonlinear
and dispersive effects are also considered.

Chapter 5 is devoted to the study of optical solitons, atopic that has drawn
considerable attention because of its fundamental nature as well as potential
applications for optical fiber communications. The modulation instability is
considered first to emphasize the importance of the interplay between the dis-
persive and nonlinear effects that can occur in the anomalous-GVD regime
of optical fibers. The fundamental and higher-order solitons are then intro-
duced together with the inverse scattering method used to solve the nonlinear
Schrodinger equation. Dark solitons are also discussed briefly. Thelast section
considers higher-order nonlinear and dispersive effects with emphasis on the
soliton decay.

Chapters 6 and 7 focuses on the XPM effects occurring when two optical
fields copropagate simultaneously and affect each other through the intensity
dependence of the refractive index. The XPM-induced nonlinear coupling can
occur not only when two beams of different wavelengths are incident on the
fiber but also through the interaction between the orthogonally polarized com-
ponents of a single beam in a birefringent fiber. The latter case is discussed
first in Chapter 6 by considering the nonlinear phenomena such as the optical
Kerr effect and birefringence-induced pulse shaping. Chapter 7 then focuses
on the case in which two optical beams at different wavelengths are launched
into the fiber. The XPM-induced coupling between the two beams can lead
to modulation instability even in the normal-dispersion regime of the fiber. It
can also lead to asymmetric spectral and temporal changes when the XPM
effects are considered in combination with the SPM and GVD effects. The
XPM-induced coupling between the counterpropagating waves is considered
next with emphasis on its importance for fiber-optic gyroscopes.

Chapter 8 considers SRS, a nonlinear phenomenon in which the energy
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from a pump wave is transferred to a Stokes wave (downshifted by about 13
TH2) as the pump wave propagates through the optical fiber. This happens
only when the pump power exceeds athreshold level. The Raman gain and the
Raman threshold in silica fibers are discussed first. Two separate sections then
describe SRSfor the case of a CW or quasi-CW pump and for the case of ultra-
short pump pulses. In the latter case a combination of SPM, XPM, and GVD
leads to new qualitative features. These features can be quite different depend-
ing on whether the pump and Raman pulses experience normal or anomalous
GVD. The case of anomalous GVD is considered in the last section with em-
phasis on fiber-Raman soliton lasers. The applications of SRS to optical fiber
communications are also discussed.

Chapter 9 isdevoted to SBS, anonlinear phenomenon that manifestsin op-
tical fibersin away similar to SRS, but with important differences. Stimulated
Brillouin scattering transfers apart of the pump energy to acounterpropagating
Stokes wave, downshifted in frequency by only an amount ~10 GHz. Because
of the small bandwidth (~10 MHZz) associated with the Brillouin gain, SBS
occurs efficiently only for a CW pump or pump pulses whose spectral width
is smaller than the gain bandwidth. The characteristics of the Brillouin gain
in silica fibers are discussed first. Chapter 9 then describes the theory of SBS
by considering important features such as the Brillouin threshold, pump de-
pletion, and gain saturation. The instabilities associated with SBS are also
discussed. The experimenta results on SBS are described with emphasis on
fiber-Brillouin lasers and amplifiers. The last section is devoted to the impli-
cations of SBSfor optical fiber communications.

Chapter 10 focuses on nonlinear parametric processes in which energy ex-
change among several optical waves occurs without an active participation
of the nonlinear medium. Parametric processes occur efficiently only when
a phase-matching condition is satisfied. This condition is relatively easy to
satisfy for a nonlinear process known as four-wave mixing. The parametric
gain associated with the four-wave-mixing process is obtained by consider-
ing nonlinear interaction among the four waves. The experimental results and
the phase-matching techniques used to obtain them are discussed in detail.
Parametric amplification is considered next together with its applications. The
last two sections are devoted to second-harmonic generation in photosensitive
fibers. The phenomenon of photosensitivity has attracted considerable atten-
tion during the 1990s because of its potential technological applications and is
used routinely to make fiber gratings.
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Problems

11

12

13

14

15

Calculate the propagation distance over which theinjected optical power
is reduced by afactor of two for three fibers with losses of 0.2, 20, and
2000 dB/km. Also calculate the attenuation constant o (in cnit) for the
three fibers.

A single-mode fiber is measured to have 22(d?n/dA?) = 0.02 at 0.8 um.
Calculate the dispersion parameters 3, and D.

Calculate the numerical values of B, (in ps?/km) and D [in ps/(km-nm)]
at 1.5 um when the modal index varies with wavelength as n(1) =
1.45—s(A — 1.3 um)3, where s = 0.003 um=3.

A 1-km-long single-mode fiber with the zero-dispersion wavelength at
1.4 umis measured to have D = 10 ps/(km-nm) at 1.55 um. Two pulses
from Nd:YAG lasers operating at 1.06 and 1.32 um are launched si-
multaneously into the fiber. Calculate the delay in the arrival time of
the two pulses at the fiber output assuming that 3, varies linearly with
wavelength over the range 1.0-1.6 um.

Equation (1.3.2) is often written in the alternate form fi(w, 1) = n(®) +
nbl, where | is the optical intensity. What is the relationship between
n, and ny? Use it to obtain the value of n, in units of m 2/V2 if n}, =
2.6 x 10720 m?/W.
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Chapter 2

Pulse Propagation in Fibers

For an understanding of the nonlinear phenomena in optical fibers, it is neces-
sary to consider the theory of electromagnetic wave propagation in dispersive
nonlinear media. The objective of this chapter isto obtain abasic equation that
governs propagation of optical pulsesin single-mode fibers. Section 2.1 intro-
duces Maxwell’s equations and important concepts such as the linear and non-
linear parts of the induced polarization and the frequency-dependent dielectric
constant. The concept of fiber modes is introduced in Section 2.2 where the
single-mode condition is aso discussed. Section 2.3 considers the theory of
pulse propagation in nonlinear dispersive mediain the sowly varying envelope
approximation with the assumption that the spectral width of the pulseis much
smaller than the frequency of the incident radiation. The numerical methods
used to solve the resulting propagation equation are discussed in Section 2.4.

2.1 Maxwell’s Equations

Like all electromagnetic phenomena, the propagation of optical fieldsin fibers
is governed by Maxwell’s equations. In the International System of Units
(Systeme international d’unités or Sl), these equations are [1]

oB
VxE=—=", (2.1.1)
V x H :J+aa—'t3, (2.1.2)
V.D=p, (2.1.3)
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V.B=0, (2.1.4)

where E and H are electric and magnetic field vectors, respectively, and D and
B are corresponding electric and magnetic flux densities. The current density
vector J and the charge density p; represent the sources for the electromagnetic
field. In the absence of free charges in a medium such as optical fibers, J =0
and p; = 0.

The flux densities D and B arise in response to the electric and magnetic
fields E and H propagating inside the medium and are related to them through
the consgtitutive relations given by [1]

D = g,E+P, (2.1.5)
B=uH+M, (2.1.6)

where g, is the vacuum permittivity, u, is the vacuum permesbility, and P
and M are the induced electric and magnetic polarizations. For a nonmagnetic
medium such as optical fibers, M = 0.

Maxwell’s equations can be used to obtain the wave equation that describes
light propagation in optical fibers. By taking the curl of Eg. (2.1.1) and using
Egs. (2.1.2), (2.1.5), and (2.1.6), one can eliminate B and D in favor of E and

P and obtain
1 0°E 2%P

VXVXE:_?W_HOW’ (217)

where c is the speed of light in vacuum and the relation e, = 1/c? was used.
To complete the description, a relation between the induced polarization P
and the electric field E is needed. In general, the evaluation of P requires a
guantum-mechanical approach. Although such an approach is often necessary
when the optical frequency is near a medium resonance, a phenomenological
relation of the form (1.3.1) can be used to relate P and E far from medium
resonances. This is the case for optical fibers in the wavelength range 0.5—
2 um that is of interest for the study of nonlinear effects. If we include only
the third-order nonlinear effects governed by %%, the induced polarization
consists of two parts such that

P(r,t) =P (r,t) + Py, (r.t), (2.1.8)

where the linear part P, and the nonlinear part P, are related to the electric
field by the general relations [2]{4]

P(r,t) = go/w 2Vt —t)-E(rt)dt, 2.19)
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NLrt—Eo///X pt—tt—ty):

x E(r,t))E(r,t,)E(r,t3) dt, dt,dt,. (2.1.10)

These relations are valid in the electric-dipole approximation and assume that
the medium response is local.

Equations (2.1.7)—(2.1.10) provide a genera formalism for studying the
third-order nonlinear effectsin optical fibers. Because of their complexity, itis
necessary to make several simplifying approximations. In a major simplifica-
tion, the nonlinear polarization B, in Eq. (2.1.8) istreated as a small pertur-
bation to the total induced polarization. Thisis justified because the nonlinear
effects are relatively weak in silica fibers. The first step therefore consists of
solving Eq. (2.1.7) with Py, = 0. Because Eq. (2.1.7) isthen linear in E, it is
useful to write in the frequency domain as

2
VxVx E(r,w)—s(w)(g—zE(r,w) —0, (2.1.11)

where E(r, ) is the Fourier transform of E(r,t) defined as
E(r, o) :/ E(r,t) expliot)dt. 2.1.12)

The frequency-dependent dielectric constant appearing in Eq. (2.1.12) is
defined as
e(w)=1+7Y (o), (2.1.13)

where 71 (w) is the Fourier transform of y((t). As 7V(w) is in general
complex, soise(w). Itsreal and imaginary parts can be related to the refractive
index n(w) and the absorption coefficient a:(w) by using the definition

£ = (n+iac/2m)?. (2.1.14)
From Egs. (2.1.13) and (2.1.14), n and o are related to (Y by the relations
n(w) = 1+ 3Re[7M (w)], (2.1.15)
)

1
+3
o(w) = n Im[x( (w)], (2.1.16)

where Re and Im stand for the real and imaginary parts, respectively. The
frequency dependence of n and o has been discussed in Section 1.2.
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Two further simplifications can be made before solving Eq. (2.1.11). First,
because of low optical losses in fibers in the wavelength region of interest, the
imaginary part of () issmall in comparison to the real part. Thus, we can
replace £(w) by n?(w) in the following discussion of fiber modes and include
fiber loss later in a perturbative manner. Second, as n(w) is often independent
of the spatial coordinates in both the core and the cladding of step-index fibers,
one can use

VxVxE=V(V-E)- V% =-V?E, (2.1.17)

where the relation V- D = eV - E = 0 was used from Eqg. (2.1.3). With these
simplifications, Eqg. (2.1.11) takes the form

w2

2 E=o. (2.1.18)

VZE +n?(o)

This equation is solved in the next section on fiber modes.

2.2 Fiber Modes

At any frequency m, optical fibers can support afinite number of guided modes
whose spatial distribution E(r, ®) is a solution of the wave equation (2.1.18)
and satisfies all appropriate boundary conditions. In addition, the fiber can
support a continuum of unguided radiation modes. Although the inclusion of
radiation modes is crucia in problems involving transfer of power between
bounded and radiation modes [5], they do not play an important role in the
discussion of nonlinear effects. As fiber modes are covered in many text-
books [5]-7], they are discussed only briefly in this section.

2.2.1 Eigenvalue Equation

Because of the cylindrical symmetry of fibers, it is useful to express the wave
equation (2.1.18) in cylindrical coordinates p, ¢, and z:

’E 10E 1 9%6E 9% , =

—t =S5+ E=0 221

8p2+p8p+p28¢2+822+nk° ’ (@21)
wherek, = o/c = 2/ and E isthe Fourier transform of the electric field E,
ie,

E(r,t) = %/_Zﬁ(r,w) exp(—iot) do. 2.22)
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Similar relations exist for the magnetic field H(r,t). As E and H satisfy
Maxwell’s equations (2.1.1)—2.1.4), only two components out of six are inde-
pendent. Itis customary to choose E, and HZ asthe mdependent components
and express Ep, E Hp, and H in terms of E, and H,. Both E, and H, satisfy

Eg. (2.2.1). The wave equati on for E; is easily solved by using the method of
separation of variables, resulting in the following general form:

Ex(r, ) = A(w)F (p) exp(img) exp(iB2), (223

where A is a normalization constant, f3 is the propagation constant, mis an
integer, and F (p) is the solution of

d’F 1dF 5
d—p2+5dp < ks — B2 — >F 0, (2.2.4)

where the refractive index n=n, for p < afor afiber of core radius a but takes
the value n, outside the core (p > a).

Equation (2.2.4) is the well-known differential equation for Bessel func-
tions. Its general solution inside the core can be written as

F(p) = CyIm(xp) +CNm(xp), (2.2.5)
where J, isthe Besseal function, Ny, is the Neumann function, and
Kk = (k3 — B2)Y2. (2.2.6)

The constants C; and C, are determined using the boundary conditions. As
Nm(xp) hasasingularity at p = 0, C, = O for aphysically meaningful solution.
The constant C; can be absorbed in A appearing in Eq. (2.2.3). Thus,

F(p) =dm(xp), p<a (2.2.7)

In the cladding region (p > a), the solution F(p) should be such that it decays
exponentially for large p. The modified Bessel function K, represents such a
solution. Therefore,

F(p)=Knlvp), p=>a (2.2.8)

where
Y= (B*—nakd)Y/2. (2.2.9)
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The same procedure can be followed to obtain the magnetic field compo-
nent H,. The boundary condition that the tangential components of E and H
be continuous across the core-cladding interface requires thatE,, H,, E , and

H 0 be the same when p = aisapproached from inside or outside the core. The
equality of these field components at p = a leads to an eigenvalue equation
whose solutions determine the propagation constant 3 for the fiber modes.
Since the whole procedure is well known [5]-{7], we write the eigenvalue
equation directly:

[ In(xa) , 18 Ki(ra) ] _ <mﬁko(n§—n§)>2

Kdm(ka) N2 yKm(ya) an, k2y?

In(xa) | Kin(ra)
kIm(ka)  yKm(ya)

(2.2.10)
where a prime denotes differentiation with respect to the argument and we used
the important relation

K2+ 7 = (nf — n)K3. (2.2.11)

The eigenvalue equation (2.2.10) in general has several solutions for 3 for
each integer value of m. It is customary to express these solutions by By,
where both m and n take integer values. Each eigenvalue By corresponds
to one specific mode supported by the fiber. The corresponding modal field
distribution is obtained from Eq. (2.2.3). It turns out [5]{ 7] that there are two
types of fiber modes, designated as HEy, and EHpy,. For m = 0, these modes
are analogous to the transverse-electric (TE) and transverse-magnetic (TM)
modes of aplanar waveguide because the axial component of the electric field,
or the magnetic field, vanishes. However, for m > 0, fiber modes become
hybrid, i.e., al six components of the electromagnetic field are nonzero.

2.2.2 Single-Mode Condition

The number of modes supported by a specific fiber at a given wavelength de-
pends on its design parameters, namely the core radius a and the core-cladding
index difference n, —n,. Animportant parameter for each mode is its cut-off
frequency. This frequency is determined by the condition y = 0. The value
of ¥ when y = 0 for a given mode determines the cut-off frequency from Eq.
(2.2.11). It is useful to define anormalized frequency V by the relation

V = kea= kya(n? —ng)/2, (2.2.12)

where k; is obtained from Eqg. (2.2.11) by setting y = 0.
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The eigenvalue equation (2.2.10) can be used to determine the values of
V at which different modes reach cut-off. The procedure is complicated, but
has been described in many texts [5]{7]. Since we are interested mainly in
single-mode fibers, we limit the discussion to the cut-off condition that allows
the fiber to support only one mode. A single-mode fiber supports only the
HE,; mode, also referred to as the fundamental mode.  All other modes are
beyond cut-off if the parameter V <\, where \; is the smallest solution of
Jo(Ve) = 0o0r V. = 2.405. The actual value of V isacritical design parameter.
Typicaly, microbending losses increase as V /\;; becomes small. In practice,
therefore, fibers are designed such that V isclose to \L. The cut-off wavelength
A for single-mode fibers can be obtained by using k) = 2 /Ac and V = 2.405
in Eq. (2.2.12). For atypical value n; —n, = 0.005 for the index difference,
Ac= 1.2 umfor a= 4 um, indicating that such afiber supports a single mode
only for A > 1.2 um. In practice, core radius should be below 2 um for afiber
to support asingle mode in the visible region.

2.2.3 Characteristics of the Fundamental Mode

The field distribution E(r,t) corresponding to the HE ; mode has three non-
zero components E,, E¢, and E, or in Cartesian coordinates E,, Ey, and E,.
Among these, either E, or E, dominates. Thus, to agood degree of approxima-
tion, the fundamental fiber mode is linearly polarized in either x or y direction
depending on whether E; or E, dominates. In this respect, even a single-mode
fiber is not truly single mode because it can support two modes of orthogo-
nal polarizations. The notation LBy, is sometimes used to denote the linearly
polarized modes, which are approximate solutions of Eq. (2.2.1). The funda-
mental mode HE,; corresponds to LP,, in this notation [6].

The two orthogonally polarized modes of a single-mode fiber are degen-
erate (i.e., they have the same propagation constant) under ideal conditions.
In practice, irregularities such as random variations in the core shape and size
along the fiber length break this degeneracy dightly, mix the two polariza-
tion components randomly, and scramble the polarization of the incident light
as it propagates down the fiber. As discussed in Section 1.2.4, polarization-
preserving fibers can maintain the linear polarization if the light is launched
with its polarization aong one of the principal axes of the fiber. Assuming that
the incident light is polarized along a principal axis (chosen to coincide with
the x axis), the electric field for the fundamental fiber mode HE,, is approxi-
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mately given by
E(r,0) = X{A(@)F (x.y) explif(w)Z}, (22.13)
where A(w) isanormalization constant. The transverse distribution inside the
coreisfound to be
F(Xa y) = ‘]O(Kp)a P S a, (2214)

where p = (X% +y?)'/2 isthe radial distance. Outside the fiber core, the field
decays exponentialy as [5]

F(x,y)=(a/p)?)(xa)exp[-v(p—a)], p>a (2.2.15)

where Kn(vp) in Eq. (2.2.8) was approximated by the leading term in its
asymptotic expansion and a constant factor was added to ensure the equality
of F(x, y) a p =a. The propagation constant () in Eq. (2.2.13) is ob-
tained by solving the eigenvalue equation (2.2.10). Its frequency dependence
results not only from the frequency dependence of n and n, but also from the
frequency dependence of k. The former is referred to as material dispersion
while the latter is called waveguide dispersion. As discussed in Section 1.3,
material dispersion generally dominates unless the light wavelength is close to
the zero-dispersion wavelength. The evaluation of (w) generaly requires a
numerical solution of Eg. (2.2.10) although approximate analytic expressions
can be obtained in specific cases [5]. The effective mode index isrelated to 3
by et = B /ko-

Asthe use of modal distribution F(x,y) given by Egs. (2.2.14) and (2.2.15)
is cumbersome in practice, the fundamental fiber mode is often approximated
by a Gaussian distribution of the form

F(x,y) ~ exp[— (@ +y2) /w2, (2.2.16)

where the width parameter w is determined by fitting the exact distribution to
aGaussian form or by following avariational procedure. Figure 2.1 shows the
dependence of w/a on the fiber parameter V defined by Eq. (2.2.12). The com-
parison of the actual field distribution with the fitted Gaussian is aso shown
for aspecific valueV = 2.4. The quality of fit is generally quite good [8], par-
ticularly for V values in the neighborhood of 2. Figure 2.1 shows that w =~ a
for V = 2, indicating that the core radius provides a good estimate of w for
telecommunication fibers for which V ~ 2. Note that w can be significantly
larger than a for V < 1.8. The use of Gaussian approximation is of consider-
able practical value because of its relative smplicity.
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Figure 2.1 Variation of mode-width parameter w with V obtained by fitting the fun-
damental fiber mode to a Gaussian distribution. Traces on the right show the quality
of fit for V = 2.4. (After Ref. [8].)

2.3 Pulse-Propagation Equation

The study of most nonlinear effectsin optical fibers involves the use of short
pulses with widths ranging from ~10 ns to 10 fs. When such optical pulses
propagate inside a fiber, both dispersive and nonlinear effects influence their
shape and spectrum. In this section we derive a basic equation that governs
propagation of optical pulsesin nonlinear dispersive fibers. The starting point
is the wave equation (2.1.7). By using Egs. (2.1.8) and (2.1.17), it can be
written in the form
1 9%E %P, Py,

2
VE-Gor THge THhege (231)

where the linear and nonlinear parts of the induced polarization are related to
the electric field E(r,t) through Egs. (2.1.9) and (2.1.10), respectively.

2.3.1 Nonlinear Pulse Propagation

It is necessary to make several simplifying assumptions before solving Eg.
(2.3.1). First, P, istreated as a small perturbation to P . Thisis justified
because nonlinear changes in the refractive index are < 1078 in practice. Sec-
ond, the optical field is assumed to maintain its polarization along the fiber
length so that a scalar approach is valid. This is not redly the case, unless
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polarization-maintaining fibers are used, but the approximation works quite
well in practice; it will be relaxed later in Chapter 6. Third, the optical field
is assumed to be gquasi-monochromatic, i.e., the pulse spectrum, centered at
o, is assumed to have a spectral width Aw such that Aw/w, < 1. Since
® o~ 10% s71, the last assumption is valid for pulses as short as 0.1 ps. In the
slowly varying envelope approximation adopted here, it is useful to separate
the rapidly varying part of the electric field by writing it in the form

E(r,t) = 3X[E(r,t) exp(—iagt) +c.c], (2.3.2)

where X is the polarization unit vector, and E(r,t) isaslowly varying function
of time (relative to the optical period). The polarization components R and
Py can also be expressed in asimilar way by writing

PL(r,t) = 3R[P (r.t) exp(—iwyt) +c.C], (2.3.3)
P (r,t) = 2R[Py, (r,t) exp(—iwgt) +c.C.]. (2.3.4)

The linear component B can be obtained by substituting Eq. (2.3.3) in Eq.
(2.1.9) and is given by

 (r,1) —eo/ P ( E(r,t') explioy(t —t')]dt’
= / D (w)E(r,0— ) exp[—i(w — wy)t]dw, (2.3.5)

where E(r, w) isthe Fourier transform of E(r,t) and is defined similarly to Eq,
(2.1.12).

The nonlinear component R, (r,t) is obtained by substituting Eq. (2.3.4)
in Eg. (2.1.10). Considerable simplification occurs if the nonlinear response is
assumed to beinstantaneous so that the time dependence of x(® in Eq. (2.1.10)
is given by the product of three delta functions of the form §(t —t). Equation
(2.1.10) then reduces to

P (151) = gx® TE(r, E(r, DE(r, ). (2.3.6)

The assumption of instantaneous nonlinear response amounts to neglecting
the contribution of molecular vibrations to ¥(® (the Raman effect). In gen-
eral, both electrons and nuclei respond to the optical field in a nonlinear man-
ner. The nuclel response is inherently slower compared with the electronic
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response. For silica fibers the vibrational or Raman response occurs over a
time scale 60-70 fs. Thus, Eq. (2.3.6) is approximately valid for pulse widths
>1 ps. The Raman contribution isincluded later in this section.

When Eq. (2.3.2) is substituted in Eq. (2.3.6), P, (r.t) is found to have
a term oscillating at @, and another term oscillating at the third-harmonic
frequency 3w . The latter term requires phase matching and is generally neg-
ligible in optical fibers. By making use of Eq. (2.3.4), R, (r,t) isgiven by

PNL(rﬂt) ~ 8O‘QNLE(rat)a (237)
where the nonlinear contribution to the dielectric constant is defined as
EnL = ol E(1, D)2 (2.3.8)

To obtain the wave equation for the slowly varying amplitude E(r,t), it is
more convenient to work in the Fourier domain. Thisis generally not possible
as Eq. (2.3.1) isnonlinear because of the intensity dependence of &, . In one
approach, €, istreated as aconstant during the derivation of the propagation
equation [9], [10]. The approach is justified in view of the slowly varying
envelope approximation and the perturbative nature of R, . Substituting Egs.
(2.3.2)«(2.3.4) in Eq. (2.3.1), the Fourier transform E(r, o — o), defined as

E(r,o - o) =/°° E(r.t) expli(o — ay)t] dt, (2.39)
isfound to satisfy the Helmholtz equation
V2E 4+ ¢(0)K3E =0, (2.3.10)

where k, = w/c and

e(0) =1+ 7 (w) + &y, (2.3.11)
is the dielectric constant whose nonlinear part €y, is given by Eq. (2.3.8).
Similar to Eq. (2.1.14), the dielectric constant can be used to define the refrac-
tive index f and the absorption coefficient &¢. However, both i and & become
intensity dependent because of ¢, . It is customary to introduce

A=n+n|E?, &=a+o,lE% (2.3.12)
Using & = (fi+id/2ky)? and Egs. (2.3.8) and (2.3.11), the nonlinear-index
coefficient n, and the two-photon absorption coefficient o, are given by

3 3w,
ZRe(Z), o= 2Im(x3). (2.3.13)

n, =
27 8n X0 4nc
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The linear index n and the absorption coefficient o are related to the real and
imaginary parts of 5&) asin Egs. (2.1.15) and (2.1.16). As o, is relatively
small for silica fibers, it is often ignored. The parameter n, should not be
confused with the cladding index of Section 2.2 even though the same notation
has been used. From here onward, n, is ameasure of the fiber nonlinearity.

Equation (2.3.10) can be solved by using the method of separation of vari-
ables. If we assume a solution of the form

E(r,o —awp) =F(X,y)A(z o — ay) exp(iBy2), (2.3.14)

where A(z, w) is a slowly varying function of z and S, is the wave number
to be deternli ned later, Eg. (2.3.10) leads to the following two equations for
F(x,y) and A(z, 0):

2 2 ~
‘z_XEJF%—yEJF[g(w)kS—BZ]F =0, (2.3.15)
2i poaa_'i +(B?-pAA=o. (2.3.16)

A(z, ®) is assumed to be a slowly varying function of z. The wave number 3
is determined by solving the eigenvalue equation (2.3.15) for the fiber modes
using a procedure similar to that used in Section 2.2. The dielectric constant
e(w) in EQ. (2.3.15) can be approximated by

In obtaining Eq. (2.3.16), the second derivative 92A/97? was neglected since

£ = (N4 An)? ~ n? + 2nAn, (2.3.17)

where Anisasmall perturbation given by
ia
2k,
Equation (2.3.15) can be solved using first-order perturbation theory [11].
We first replace & with r? and obtain the modal distribution F(x,y), and the
corresponding wave number B(w). For a single-mode fiber, F(x,y) corre-
sponds to the modal distribution of the fundamental fiber mode HE,; given by
Egs. (2.2.14) and (2.2.15), or by the Gaussian approximation (2.2.16). Wethen
include the effect of Anin Eq. (2.3.15). In the first-order perturbation theory,

An does not affect the modal distribution F(x,y). However, the eigenvalue3
becomes

An=n,|E|*+ (2.3.18)

B(w) =p(w)+AB, (2.3.19
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where N X

ap = Sl o AN (ey)["dxdy
JIZLIF(xy)[> dxdy

This step completes the formal solution of Eq. (2.3.1) to the first order in

perturbation Py, . Using Egs. (2.3.2) and (2.3.12), the electric field E(r,t) can
be written as

(2.3.20)

E(r,t) = 3%{F(x,y)A(z,t) exp[i(By,z— wot)] +C.C.}, (2.3.21)

where A(zt) is the slowly varying pulse envelope. The Fourier transform

A(z, 0 — w,) of A(z 1) satisfies Eq. (2.3.16), which can be written as

9 1B () + a8~ oA (2322)

where we used Eq. (2.3.19) and approximated 52 — 82 by 2B,(5 — B,). The
physical meaning of this equation is clear. Each spectral component within the
pulse envelope acquires, as it propagates down the fiber, a phase shift whose
magnitude is both frequency and intensity dependent.

At this point, one can go back to the time domain by taking the inverse
Fourier transform of Eg. (2.3.22), and obtain the propagation equation for
A(zt). However, as an exact functiona form of B(w) is rarely known, it is
useful to expand B(w) in aTaylor series about the carrier frequency w, as

B(®) = By+ (0 — @) By + 3(0 — a0p)?By + £ (0 — 0p) 3P+, (2.3.23)

where

Bm = <ﬂ> (m=1,2,...). (2.3.29)

do™ 0=y

The cubic and higher-order terms in this expansion are generaly negligible
if the spectral width Aw < ay. Their neglect is consistent with the quasi-
monochromatic assumption used in the derivation of Eq. (2.3.22). If B, ~ 0for
some specific values of ay, (in the vicinity of the zero-dispersion wavelength
of the fiber, as discussed in Section 1.3.3), it may be necessary to include the
cubic term. We substitute Eg. (2.3.23) in Eg. (2.3.22) and take the inverse
Fourier transform by using

Azt) = % /_ ZZ\(z, ® — @) exp[—i(® — @y)t] do. (2.3.25)
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During the Fourier-transform operation, o — w,, isreplaced by the differential
operator i(d/dt). Theresulting equation for A(zt) becomes

JA _ , 0A i, %A

= = Prgr — 5 =7 TIABA (2.3.26)

The term with AB includes the effect of fiber loss and nonlinearity. By using
Egs. (2.3.18) and (2.3.20), AB can be evaluated and substituted in (2.3.26).

Theresult is

8A |[3282A a 2
2R at 2o+ S A= YA (2.3.27)

where the nonlinear parameter v isdefined as

_ Ny
CAgt

In obtaining Eq. (2.3.27) the pulse amplitude A is assumed to be normal-
ized such that |Al? represents the optical power. The quantity y|A|? is then
measured in units of M1 if n, is expressed in units of m?/W (see Appendix
B). The parameter A; is known as the effective core area and is defined as

(2.3.28)

A= (/= IF (xy)|Pcxdy)®
T LR y)[Adxdy

(2.3.29)

Its evaluation requires the use of modal distribution F (x,y) for the fundamen-
tal fiber mode. Clearly Ay depends on fiber parameters such as the core ra-
dius and the core-cladding index difference. If F(x,y) is approximated by a
Gaussian distribution as in Eq. (2.2.16), Ay = aw?. The width parameter w
depends on the fiber parameters and can be obtained using Fig. 2.1 and Eq.
(2.2.12). Typically, Ay can vary in the range 20-100 um? in the 1.5-um re-
gion depending on the fiber design. As a result, y takes values in the range
1-10 W=Ykm if n, a2 2.6 x 10720 m?/W is used (see Appendix B). In alarge-
effective-area fiber (LEAF), Ay isincreased intentionally to reduce the impact
of fiber nonlinearity.

Equation (2.3.27) describes propagation of picosecond optical pulse in
single-mode fibers. It is often referred to as the nonlinear Schrodinger (NLS)
equation because it can be reduced to that form under certain conditions. It
includes the effects of fiber losses through o, of chromatic dispersion through
B; and B,, and of fiber nonlinearity through y. The physical significance of
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the parameters 8, and 3, has been discussed in Section 1.2.3. Briefly, the
pulse envelope moves at the group velocity \y = 1/, while the effects of
group-velocity dispersion (GVD) are governed by f,. The GVD parameter
B, can be positive or negative depending on whether the wavelength A is be-
low or above the zero-dispersion wavelength A, of the fiber (see Fig. 1.5). In
the anomal ous-dispersion regime (A > Ap), B, is negative, and the fiber can
support optical solitons. In standard silica fibers, 8, ~ 50 ps?/km in the visi-
ble region but becomes close to —20 ps’/km near wavelengths ~ 1.5 um, the
change in sign occurring in the vicinity of 1.3 um.

2.3.2 Higher-Order Nonlinear Effects

Although the propagation equation (2.3.27) has been successful in explaining
alarge number of nonlinear effects, it may heed modification depending on the
experimental conditions. For example, EQ. (2.3.27) does not include the effects
of stimulated inelastic scattering such as SRS and SBS (see Section 1.3.2). If
peak power of theincident pulseisabove athreshold level, both SRSand SBS
can transfer energy from the pulse to a new pulse, which may propagate in the
same or the opposite direction. Thetwo pulsesinteract with each other through
the Raman or Brillouin gain and XPM. A similar situation occurs when two
or more pulses at different wavelengths (separated by more than individua
spectral widths) are incident on the fiber. Simultaneous propagation of multi-
ple pulses is governed by a set of equations similar to Eq. (2.3.27), modified
suitably to include the contributions of XPM and the Raman or Brillouin gain.

Equation (2.3.27) should aso be modified for ultrashort optical pulses
whose width is close to or < 1 ps [12]{22]. The spectral width of such
pulses becomes large enough that several approximations made in the deriva-
tion of Eg. (2.3.27) become questionable. The most important limitation turns
out to be the neglect of the Raman effect. For pulses with a wide spectrum
(> 0.1 THz), the Raman gain can amplify the low-frequency components of a
pulse by transferring energy from the high-frequency components of the same
pulse. This phenomenon is called intrapulse Raman scattering. As aresult of
it, the pulse spectrum shifts toward the low-frequency (red) side as the pulse
propagates inside the fiber, a phenomenon referred to as the self-frequency
shift [12]. The physical origin of this effect is related to the delayed nature of
the Raman (vibrational) response [13]. Mathematically, Eq. (2.3.6) cannot be
used in the derivation of Eq. (2.3.27); one must use the general form of the
nonlinear polarization given in Eq. (2.1.10).
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The starting point is again the wave equation (2.3.1). Equation (2.1.10) de-
scribes a wide variety of third-order nonlinear effects, and not al of them are
relevant to our discussion. For example, nonlinear phenomena such as third-
harmonic generation and four-wave mixing are unlikely to occur unless an
appropriate phase-matching condition is satisfied (see Chapter 10). Nonres-
onant, incoherent (intensity-dependent) nonlinear effects can be included by
assuming the following functional form for the third-order susceptibility [17]:

2Ottt -ty t —t5) = xOR{t —1,)8(t —t,) 5 (t —t3), (2.3.30)

where R(t) is the nonlinear response function normalized in a manner similar
to the delta function, i.e,, [~ R(t)dt = 1. By substituting Eq. (2.3.30) in Eq.
(2.1.10) the nonlinear polarization is given by

Py (r.t) = g VE rt/ R(t —t,)[E(r,t,)[2dt,, (2.331)

where it is assumed that the electric field and the induced polarization vectors
point along the same direction. The upper limit of integration in Eq. (2.3.31)
extends only up to t because the response function R(t —t,) must be zero for
t, >t to ensure causality.

The analysis of Section 2.3.1 can till be used by working in the frequency
domain. Using Egs. (2.3.2)«(2.3.4), E isfound to satisfy [18]

V2E + n?(0)K3E = —ikyo + ¢ / R(® — o,)
x E(wy,2)E (0,2 )E*(a)1+w2—a),z)da)1da)2, (2.3.32)

where R(w) isthe Fourier transform of R(t). Asbefore, one can treat the terms
on the right-hand side as a small perturbation and first obtain the modal distri-
bution by neglecting them. The effect of perturbation terms is to change the
propagation constant for the fundamental mode by Af asin Eq. (2.3.19) but
with a different expression for A. One can then define the slowly varying am-
plitude A(zt) asin Eq. (2.3.21) and obtain, after some algebra, the following
equation for pulse evolution inside a single-mode fiber [18]:
8A N i3, 92A By 03A

2zt ﬁl&t 2 Jt2 6 ot3

24!
y(l—i——oﬁ)( zt/ R(t) Azt —t')| dt>, (2.3.33)
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Figure 2.2 Temporal variation of the Raman response function h(t) obtained by
using the actual Raman-gain spectrum of silicafibers. (After Ref. [16].)

where v is the nonlinear parameter as defined in Eq. (2.3.28). In generad, the
effective core area Ay is also afunction of w because the mode distribution
F(x,y) is frequency dependent. However, the variation of Ay over the pulse
spectrum is typically negligible and can be included in a straightforward man-
ner [19]. The time derivative appearing on the right-hand side of Eq. (2.3.33)
results when Eq. (2.3.4) is used in Eq. (2.1.7) and the first-order time deriva-
tive of B isretained in the analysis used for ultrashort pulses. Thisterm is
responsible for self-stegpening and shock formation at a pulse edge and has
been discussed extensively since 1967 [23]-{37]. Thisterm also includes the
nonlinear energy loss resulting from intrapulse Raman scattering. Equation
(2.3.33) may be valid even when the slowly varying envelope approximation
does not hold and can be used for pulses as short as a few optical cycles if
enough higher-order dispersive terms are included [36], [37].

The response function R(t) should include both the electronic and vibra-
tional (Raman) contributions. Assuming that the electronic contribution is
nearly instantaneous, the functional form of R(t) can be written as [16]-{21]

R(t) = (1— f)8(t) + fihr(t), (2.3.34)

where fi, represents the fractional contribution of the delayed Raman response
to nonlinear polarization R, . The Raman response function hg(t) isresponsi-
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ble for the Raman gain whose spectrum is given by

w, ~
gr(A®) = # fox & Imlhg(A)], (2.3.35)
0

where Aw = @ — m, and Im stands for the imaginary part. The real part of
F]R(Aa)) can be obtained from the imaginary part by using the Kramers—Kronig
relations [3]. The Fourier transform of HR(Aw) then provides the Raman re-
sponse function hg(t). Figure 2.2 shows the temporal variation of hy(t) ob-
tained by using the experimentally measured spectrum (see Fig. 8.1) of the
Raman gain in silica fibers [16].

Attempts have been made to determine an approximate analytic form of the
Raman response function. In view of the damped oscillations seen in Fig. 2.2,

auseful formis[17]

2, 72
_ T+

h
R(t) T1’522

exp(—t/t,)sin(t/ty). (2.3.36)

The parameters 7, and 7, are two adjustable parameters and are chosen to
provide agood fit to the actual Raman-gain spectrum. Their appropriate values
aret) = 12.2fsand 7, = 32 fs[17]. Thefraction fy can aso be estimated from
Eq. (2.3.35). By using the known numerical value of peak Raman gain f; is
estimated to be about 0.18 [16]-{18].

Equation (2.3.33) together with the response function R(t) given by Eq.
(2.3.34) governs evolution of ultrashort pulses in optical fibers. Its accuracy
has been verified by showing that it preserves the number of photons during
pulse evolution if fiber lossisignored by setting oo = 0 [18]. The pulse energy
is not conserved in the presence of intrapulse Raman scattering because a part
of the pulse energy is absorbed by silicamolecules. Equation (2.3.33) includes
this source of nonlinear loss. It is easy to see that it reduces to the simpler
equation obtained in Section 2.3.1 [Eq. (2.3.27)] for optical pulses much longer
than the time scale of the Raman response function hy(t) because R(t) for
such pulses is replaced by the delta function §(t). Noting that h,(t) becomes
nearly zero fort > 1 ps (see Fig. 2.2), thisreplacement is valid for picosecond
pulses having widths much greater than 1 ps. As the higher-order dispersion
term (involving f3;) and the shock term (involving ;) are negligible for such
pulses, Eq. (2.3.33) reduces to Eqg. (2.3.27).

For pulses shorter than 5 ps but wide enough to contain many optical cycles
(widths > 10fs), we can simplify Eq. (2.3.33) using a Taylor-series expansion
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such that
Azt —t))? = |Az,t)[> -t/ —|A(z t)|%. (2.3.37)

This approximation is reasonable if the pulse envelope evolves slowly aong
the fiber. Defining the first moment of the nonlinear response function as

TR_/ tR(t)dt = f / the(t) dt = fRd('mh Rl (2339
d( ) Aw=0
and noting that [;°R(t)dt = 1, Eq. (2.3.33) can be approximated by
A, B A Py 0%A
Jz = 2 2 T2 6 0T3
. 20, 19 a2 J|A?
_|y<|A| A+ o T (IAPA) —TeA—=- ). (2.3.39)

where aframe of reference moving with the pulse at the group velocity \ (the
so-called retarded frame) is used by making the transformation

T=t—-z/yg=t—p,z (2.3.40)

A second-order term involving theratio T/ o, was neglected in arriving at Eq.
(2.3.39) because of its smallness.

It is easy to identify the origin of the last three higher-order terms in Eq.
(2.3.39). The term proportional to 3 results from including the cubic term
in the expansion of the propagation constant in Eq. (2.3.23). This term gov-
erns the effects of third-order dispersion and becomes important for ultrashort
pulses because of their wide bandwidth [30]. The term proportional to agl
results from including the first derivative of R, . It is responsible for self-
steepening and shock formation [23]{37]. The last term proportional to T in
Eg. (2.3.39) has its origin in the delayed Raman response, and is responsible
for the self-frequency shift [12] induced by intrapulse Raman scattering. By
using Egs. (2.3.35) and (2.3.38), T can be related to the slope of the Raman
gain spectrum [13] that is assumed to vary linearly with frequency in the vicin-
ity of the carrier frequency . Its numerical value has recently been deduced
experimentally [38], resulting in T, = 3 fs at wavelengths ~ 1.55 um. For
pulses shorter than 1 ps, the Raman gain does not vary linearly over the entire
pulse bandwidth, and the use of Eq. (2.3.39) becomes questionable for such
short pulses. In practice, one may still be able to use it if T is treated as a
fitting parameter.
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For pulses of width T, > 5 ps, the parameters (@, T,) ~* and T/ T, become
so small (< 0.001) that the last two terms in Eq. (2.3.39) can be neglected. As
the contribution of the third-order dispersion term is also quite small for such
pulses (aslong as the carrier wavelength is not too close to the zero-dispersion
wavelength), one can use the simplified equation

; 2
ig—i+ 'gA— %%—F}/WZA: 0. (2.341)

This equation can also be obtained from Eq. (2.3.27) by using the transforma-
tion given in Eq. (2.3.40). In the special case of a =0, EQ. (2.3.41) isreferred
to as the NLS equation because it resembles the Schrodinger equation with a
nonlinear potential term (variable z playing the role of time). To extend the
analogy further, Eq. (2.3.39) iscalled the generalized (or extended) NL S equa-
tion. The NLS equation is a fundamental equation of nonlinear science and
has been studied extensively in the context of solitons [39]{46].

Equation (2.3.41) is the simplest nonlinear equation for studying third-
order nonlinear effects in optical fibers. If the peak power associated with an
optical pulse becomes so large that one needs to include the fifth and higher-
order termsin Eq. (1.3.1), the NLS equation needs to be modified. A simple
approach replaces the nonlinear parameter v in Eq. (2.3.41) by

y= A
1+ bs|A?

where bs is the saturation parameter governing the power level at which the
nonlinearity begins to saturate. For silica fibers, byA|? < 1 in most practi-
cal situations, and one can use Eq. (2.3.41). If the peak intensity approaches
1 GW/cm?, one can use the approximation y = y,(1— bs|A|?) in Eq. (2.3.41).
The resulting equation is often called the cubic-quintic (or quintic) NLS equa-
tion [45] because it contains terms involving both the third and fifth powers of
the amplitude A. For the same reason, Eq. (2.3.41) isreferred to as the cubic
NLS equation. Fibers made by using materials with larger values of n, (such
as silicate and chalcogenide fibers) are likely to exhibit the saturation effects
at alower peak-power level. Equation (2.3.42) may be more relevant for such
fibers. It should also be useful for optical fiberswhose core is doped with high-
nonlinearity materials such as organic dyes [47] and semiconductors [48].
Equation (2.3.41) appears in optics in severa different contexts. For ex-
ample, the same equation holds for propagation of CW beamsin planar wave-
guides when the variable T is interpreted as the spatial coordinate. The 3,

~ 1p(1— bsA?), (2.3.42)



Numerical Methods 51

term in Eqg. (2.3.41) then governs beam diffraction in the plane of the waveg-
uide. This analogy between “diffraction in space” and “dispersion in time” is
often exploited to advantage since the same equation governs the underlying
physics.

2.4 Numerical Methods

The NLS equation [Eq. (2.3.39) or (2.3.41)] is a nonlinear partial differen-

tial equation that does not generally lend itself to analytic solutions except

for some specific cases in which the inverse scattering method [39] can be
employed. A numerica approach is therefore often necessary for an under-

standing of the nonlinear effects in optical fibers. A large number of numer-

ical methods can be used for this purpose [49]-{64]. These can be classified

into two broad categories known as: (i) the finite-difference methods; and (ii)

the pseudospectral methods. Generally speaking, pseudospectral methods are
faster by up to an order of magnitude to achieve the same accuracy [57]. The
one method that has been used extensively to solve the pul se-propagation prob-

lem in nonlinear dispersive media is the split-step Fourier method [51], [52].

Therelative speed of this method compared with most finite-difference schemes
can be attributed in part to the use of the finite-Fourier-transform (FFT) algo-

rithm [65]. This section describes various numerical techniques used to study

the pulse-propagation problem in optical fibers with emphasis on the split-step

Fourier method and its modifications.

24.1 Split-Step Fourier Method

To understand the philosophy behind the split-step Fourier method, it is useful
to write Eqg. (2.3.39) formally in the form

A ~ ~
% = (D+N)A, (24.)

where D isa differential operator that accounts for dispersion and absorption
inalinear medium and N isanonlinear operator that governs the effect of fiber
nonlinearities on pulse propagation. These operators are given by

iB, 92 B3 ® «

D= e 2 (242
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2
(JA]2A) —TRagﬁ_\' ) . (2.4.3)

Ingeneral, dispersion and nonlinearity act together along the length of thefiber.
The split-step Fourier method obtains an approximate solution by assuming
that in propagating the optical field over a small distance h, the dispersive and
nonlinear effects can be pretended to act independently. More specifically,
propagation from z to z+ h is carried out in two steps. In the first step, the
nonlinearity actsalone, andD = 0in Eq. (2.4.1). In the second step, dispersion
actsalone, and N = 0 in Eq. (2.4.1). Mathematically,

A(z+h, T) ~ exp(hD) exp(hN)A(z, T). (2.4.4)

The exponential operator exp(hD) can be evaluated in the Fourier domain us-
ing the prescription

exp(hD)B(z, T) = Fy texp[hD(iw)]FB(z T), (2.4.5)

where F; denotes the Fourier-transform operation, D(iw) is obtained from
Eq. (2.4.2) by replacing the differential operator d/dT by iw, and o is the
frequency in the Fourier domain. AsD(iw) is just a number in the Fourier
space, the evaluation of Eq. (2.4.5) is straightforward. The use of the FFT al-
gorithm [65] makes numerical evaluation of Eq. (2.4.5) relatively fast. Itisfor
this reason that the split-step Fourier method can be faster by up to two orders
of magnitude compared with most finite-difference schemes [57].

To estimate the accuracy of the split-step Fourier method, we note that a
formally exact solution of Eq. (2.4.1) is given by

A(z+h,T) = explh(D + N)]A(z, T), (2.4.6)

if N is assumed to be z independent. At this point, it is useful to recall the
Baker—Hausdorff formula[66] for two noncommuting operators & andb,
A ~ PO TS AP

exp(8) exp(b) = exp <a+ b+ E[a, b] + E[a— b,[4,b]] + - > ,  (24.7)
where[4,b] = ab— ba. A comparison of Egs. (2.4.4) and (2.4.6) shows that the
split-step Fourier method ignores the noncommutating nature of the operators
D and N. By using Eq. (2.4.7) with &= hD and b = hN, Ehe dominant error
term is found to result from the single commutator %hZ[D, N]. Thus, the split-
step Fourier method is accurate to second order in the step size h.
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Figure 2.3 Schematic illustration of the symmetrized split-step Fourier method used
for numerical simulations. Fiber length is divided into a large number of segments
of width h. Within a segment, the effect of nonlinearity is included at the midplane
shown by a dashed line.

Theaccuracy of the split-step Fourier method can be improved by adopting
a different procedure to propagate the optical pulse over one segment from z
to z+ h. In this procedure Eq. (2.4.4) is replaced by

A(z+h,T) ~ exp (glﬁ> exp (/ZHhN(i) dz’) exp (2'5> AzT). (24.8)

The main difference is that the effect of nonlinearity isincluded in the middle
of the segment rather than at the segment boundary. Because of the symmetric
form of the exponential operators in Eq. (2.4.8), this scheme is known as the
symmetrized split-step Fourier method [67]. The integra in the middle expo-
nential is useful to include the z dependence of the nonlinear operatorN. If the
step size hiis small enough, it can be approximated by exp(hN), similar to Eq.

(2.4.4). The most important advantage of using the symmetrized form of Eq.
(2.4.8) isthat the leading error term results from the double commutator in Eqg.
(2.4.7) and is of third order in the step size h. This can be verified by applying
Eq. (2.4.7) twicein Eq. (2.4.8).

The accuracy of the split-step Fourier method can be further improved by
evaluating the integral in Eq. (2.4.8) more accurately than approximating it by
hN(z). A simple approach is to employ the trapezoidal rule and approximate
the integral by [68]

z+h h - .
/Z R(2)dZ = N + Rz b)) (24.9)
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However, the implementation of Eg. (2.4.9) is not simple because N(z+ h)

is unknown at the midsegment located at z+ h/2. It is necessary to follow
an iterative procedure that is initiated by replacingN(z+ h) by N(z). Equation

(2.4.8) isthen used to estimate A(z+ h, T) which in turn is used to calculate the
new value of N(z+ h). Although the iteration procedure is time-consuming, it
can still reduce the overall computing time if the step size h can be increased
because of the improved accuracy of the numerical algorithm. Two iterations
are generally enough in practice.

The implementation of the split-step Fourier method is relatively straight-
forward. Asshownin Fig. 2.3, thefiber length isdivided into alarge number of
segments that need not be spaced equally. The optical pulse is propagated from
segment to segment using the prescription of Eq. (2.4.8). More specifically, the
optical field A(z, T) isfirst propagated for a distance h/2 with dispersion only
using the FFT algorithm and Eq. (2.4.5). At the midplane z+h/2, the field is
multiplied by a nonlinear term that represents the effect of nonlinearity over
the whole segment length h. Finally, the field is propagated the remaining dis-
tance h/2 with dispersion only to obtain A(z+ h, T). In effect, the nonlinearity
isassumed to be lumped at the midplane of each segment (dashed linesin Fig.
2.3).

The split-step Fourier method has been applied to awide variety of optical
problems including wave propagation in atmosphere [67], [68], graded-index
fibers[69], semiconductor lasers[70], unstable resonators [ 71], and waveguide
couplers [72], [73]. It is referred to as the beam-propagation method when
applied to the propagation of CW optical beams in nonlinear media where
dispersion is replaced by diffraction [69]{73].

For the specific case of pulse propagation in optical fibers, the split-step
Fourier method was first applied in 1973 [40]. Its use has become widespread
since then [74]-{91] because of its fast execution compared with most finite-
difference schemes [51]. Although the method is relatively straightforward
to implement, it requires that step sizesin zand T be selected carefully to
maintain the required accuracy. In particular, it is necessary to monitor the
accuracy by calculating the conserved quantities such as the pulse energy (in
the absence of absorption) along the fiber length. The optimum choice of step
sizes depends on the complexity of the problem. Although a few guidelines
are available [92]{97], it may sometimes be necessary to repeat the calcula
tion by reducing the step size to ensure the accuracy of numerical simulations.
The time window should be wide enough to ensure that the pulse energy re-
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mains confined within the window. Typically, window size is 10-20 times
the pulse width. In some problems, a part of the pulse energy may spread so
rapidly that it may be difficult to prevent it from hitting the window bound-
ary. This can lead to numerical instabilities as the energy reaching one edge
of the window automatically reenters from the other edge (the use of the FFT
algorithm implies periodic boundary conditions). It is common to use an “ab-
sorbing window” in which the radiation reaching window edges is artificially
absorbed even though such an implementation does not preserve the pulse en-
ergy. In general, the split-step Fourier method is a powerful tool provided care
istaken to ensure that it is used properly.

2.4.2 Finite-Difference Methods

Although the split-step Fourier method is commonly used for analyzing non-
linear effects in optical fibers, its use becomes quite time-consuming when
the NLS equation is solved for simulating the performance of wavelength-
division-multiplexed (WDM) lightwave systems. In such systems, the tempo-
ral resolution should be a small fraction of the entire bandwidth of the WDM
signal. For a 100-channd system, the bandwidth approaches 10 THz, requir-
ing a temporal resolution of ~10 fs. At the same time, the tempora window
should be typically 1-10-ns wide, resulting in more than 10° mesh points in
time domain. Even though each FFT operation is relatively fast, alarge num-
ber of FFT operations on a large-size array leads to an overall computation
time measured in hours (even days) on some of the fastest computers available
in 1999. For this reason, there has been renewed interest in finite-difference
methods in recent years.

Several different finite-difference schemes have been used to solve the
NLS equations [57], [64]; some of the common ones are the Crank—Nicholson
scheme and its variants, the hopscotch scheme and its variants, and the |eap-
frog method. A careful comparison of severa finite-difference schemes with
the split-step Fourier method shows that the latter is efficient only when the
field amplitude varies dlowly with time [64]. However, it is difficult to recom-
mend a specific finite-difference scheme because the speed and accuracy de-
pend to some extent on the number and form of the nonlinear terms included
inthe generalized NL S equation. A linearized Crank—Nicolson scheme can be
faster by more than afactor of five under certain conditions.

Anocther situation in which finite-difference schemes are useful corresponds
to propagation of ultrashort optical pulses whose width isso short that the pulse
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contains only a few optical cycles. The slowly varying envelope approxima-
tion does not always hold for such short pulses. In recent years attempts have
been made to relax this approximation, and many new numerical techniques
have been proposed [96]{104]. Some of these techniques require the use of
a finite-difference method in place of the split-step Fourier method. Finite-
difference techniques for solving the paraxia wave equation have developed
in parallel with the split-step Fourier method and are sometimes the method
of choice. They can be extended beyond the validity of the paraxial approx-
imation by using techniques such as the Lanczos orthogonalization [99] and
the Padé approximation [104]. Other extensions include algorithms that can
handle bidirectional beam propagation [103]. Most of these techniques have
been developed in the context of beam propagation in planar waveguides, but
they can be readily adopted for pulse propagation in optical fibers.

There are several limitations inherent in the use of the NL S equation for
pulse propagation in optical fibers. The slowly varying envelope approxima-
tion has already been mentioned. Another one is related to the fact that back-
ward propagating waves are totaly ignored. If the fiber has a built-in index
grating, apart of the pulse energy will be reflected backward because of Bragg
diffraction. Such problems require simultaneous consideration of forward and
backward propagating waves. The other magjor limitation is related to the ne-
glect of the vector nature of the electromagnetic fields. In essence, polarization
effects are completely ignored. As was seen in Section 1.2.4, optical fibers
exhibit birefringence. The inclusion of the birefringence effects requires con-
sideration of all components of electric and magnetic field vectors.

In the case of alinear medium, the algorithms that solve Maxwell’'s equa-
tions[Egs. (2.1.1)—2.1.4)] directly in the time domain by using finite-difference
methods have been developed for many years [105]-{109]. Such algorithms
have now been extended to the case of nonlinear media [110]-{115]. The de-
layed nature of nonlinear response was incorporated by using Egs. (2.3.31)
and (2.3.34) together with the functional form of the Raman response function
given in Eq. (2.3.36). Conceptualy, the main difference between the finite-
difference time-domain (FDTD) method and the split-step Fourier method is
that the former deals with all electromagnetic components without eliminat-
ing the carrier frequency w, in contrast with what was done in Section 2.3 in
deriving the NL S equation.

The FDTD method is certainly more accurate because it solves Maxwell’s
equations directly with a minimum number of approximations. However, im-
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provement in accuracy is achieved only at the expense of a vast increase in
the computational effort. This can be understood by noting that the time step
needed to resolve the optical carrier is by necessity a fraction of the optical
period and should often be < 1 fs. The step size along the fiber length is also
required to be a fraction of the optical wavelength. It may be necessary to
use this method for ultrashort pulses (T, <10 fs) whose width is comparable
to the optical period. In most applications of nonlinear fiber optics, pulses are
much wider than the optical period, and Eq. (2.3.33) and its approximate forms
such as Eq. (2.3.41) provide a reasonably accurate solution of the underlying
Maxwell’s equations.

Problems

2.1 Use Maxwell’s equations to express the field components E,, Ey Hp,
and H¢ inside the fiber core in terms of E; and H,. Neglect the nonlinear
part of the polarization in Eq. (2.1.8) for simplicity.

2.2 Derive eigenvalue equation (2.2.10) by matching the boundary condi-
tions at the core-cladding interface of a step-index fiber. Consult Refer-
ences [5]-{7] if necessary.

2.3 Usethe eigenvalue equation (2.2.10) to derive the single-mode condition
in optical fibers.

2.4 A single-mode fiber has an index step of 0.005. Calculate the coreradius
if the fiber has a cut-off wavelength of 1 um. Assume a core index of
1.45.

2.5 Derive an expression for the confinement factor I" of single-mode fibers
defined as the fraction of the total mode power contained inside the fiber
core. Use the Gaussian approximation made in Eq. (2.2.16) for the fun-
damental fiber mode.

2.6 Estimate the full width at half maximum (FWHM) of the spot size asso-
ciated with the fiber mode and the fraction of the mode power inside the
core when the fiber of Problem 2.4 is used to transmit 1.3-um light.

2.7 Derive Eg. (2.3.7) from Eq. (2.3.6). Explain the origin of the factor%1 in
the definition of g, . Verify that Eq. (2.3.13) for n, follows fromiit.
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2.8 Solve Eq. (2.3.15) by using perturbation theory to obtain the first-order
correction for the propagation constant when g, is small. Show that
this correction is given by Eq. (2.3.20).

2.9 Show that Eq. (2.3.27) can be obtained by taking the Fourier transform
indicated in Eq. (2.3.25) together with Eq. (2.3.22). Fill in al the miss-
ing steps.

2.10 Calculate the effective core area when the fiber of Problem 2.4 is used
to transmit 1.3-um light.

2.11 Takethe Fourier transform of the Raman response function given by Eq.
(2.3.36) and plot the real and imaginary parts as afunction of frequency.
What is the physical meaning of the resulting curves?

2.12 The Raman-gain spectrum of a fiber is approximated by a Lorentzian
profile whose FWHM is 5 THz. The gain peak is located at 15 THz
from the carrier frequency of the pulse. Derive an expression for the
Raman response function of this fiber.
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Chapter 3

Group-Velocity Dispersion

The preceding chapter discussed how the combined effects of group-velocity
dispersion (GVD) and self-phase modulation (SPM) on optical pulses propa
gating inside a fiber can be studied by solving a pulse-propagation equation.
Before considering the general case, it is instructive to study the effects of
GVD adone. This chapter considers the pul se-propagation problem by treating
fibers as alinear optical medium. In Section 3.1 we discuss the conditions un-
der which the GV D effects dominate over the nonlinear effects by introducing
two length scales associated with GVD and SPM. Dispersion-induced broad-
ening of optical pulses is considered in Section 3.2 for several specific pulse
shapes, including Gaussian and ‘sech’ pulses. The effects of initia frequency
chirping are also discussed in this section. Section 3.3 is devoted to the effects
of third-order dispersion on pulse broadening. An analytic theory capable of
predicting dispersive broadening for pulses of arbitrary shapesisalso givenin
this section. Section 3.4 discusses how the GVD limits the performance of op-
tical communication systems and how the technique of dispersion management
can be used to combat them in practice.

3.1 Different Propagation Regimes

In Section 2.3 we obtained the nonlinear Schriodinger (NL S) equation that gov-
erns propagation of optical pulses inside single-mode fibers. For pulse widths
>5 ps, one can use Eq. (2.3.41) given by

i JA _ i« B, 9°A

- = - -« ___ 2
o =~ AT 0 —YAPA, (3.1.1)
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where A is the dowly varying amplitude of the pulse envelope and T is mea-
sured in a frame of reference moving with the pulse at the group velocity
Vg (T =t—2/vg). Thethree terms on the right-hand side of Eq. (3.1.1) govern,
respectively, the effects of fiber losses, dispersion, and nonlinearity on pulses
propagating inside optical fibers. Depending on the initial width T, and the
peak power P, of the incident pulse, either dispersive or nonlinear effects may
dominate along the fiber. It is useful to introduce two length scales, known as
the dispersion length L and the nonlinear length L, [1]-{3]. Depending on
the relative magnitudes of Ly, L, , and the fiber length L, pulses can evolve
quite differently.
Let usintroduce atime scale normalized to the input pulse width T, as

_ T _t=z/y

312

At the same time, we introduce a normalized amplitude U as

= /Pyexp(—0z/2)U(z 1), (3.1.3)

where P, is the peak power of the incident pulse. The exponential factor in
Eq. (3.1.3) accounts for fiber losses. By using Egs. (3.1.1)—«3.1.3), U(z 1) is
found to satisfy

U sn(B) U ep(-a2),
o A o ™ UJ2U, (3.1.4)

where sgn(f3,) = -1 depending on the sign of the GVD parameter 3, and

¥, 1
|ﬁ2| NE Vpo'

The dispersion length Ly and the nonlinear length L, provide the length
scales over which dispersive or nonlinear effects become important for pulse
evolution. Depending on the relative magnitudes of L, Ly, and Ly, , the prop-
agation behavior can be classified in the following four categories.

When fiber length L is such that L < L, and L < L, neither dispersive
nor nonlinear effects play asignificant role during pulse propagation. This can
be seen by noting that both terms on the right-hand side of Eq. (3.1.4) can be
neglected in that case. (It is assumed that the pulse has a smooth temporal
profile so that 9°U /912 ~ 1) Asaresult, U(z 1) =U(0,7), i.e, the pulse

Ly = (3.1.5)
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maintains its shape during propagation. The fiber plays a passive role in this
regime and acts as a mere transporter of optical pulses (except for reducing
the pulse energy because of fiber losses). This regime is useful for optical
communication systems. For L ~ 50 km, L and Ly, should be larger than
500 km for distortion-free transmission. One can estimate T, and R, from Eq.
(3.1.5) for given values of the fiber parameters B, and y. At A = 1.55 um,
|B,| = 20 ps?/km, and y =~ 3 W~tkm~? for standard telecommunication fibers.
The use of these values in Eqg. (3.1.5) shows that the dispersive and nonlinear
effects are negligible for L < 50 kmif T, > 100 psand By ~ 1 mW. However,
Lp and Ly, become smaller as pulses become shorter and more intense. For
example, L, and Ly, are ~ 100 m for Ty~ 1 psand Py ~ 1 W. For such
optical pulses, both the dispersive and nonlinear effects need to be included if
fiber length exceeds a few meters.

When the fiber length is such that L < L, but L ~ Ly, the last term in
Eqg. (3.1.4) isnegligible compared to the other two. The pulse evolution isthen
governed by GVD, and the nonlinear effects play arelatively minor role. The
effect of GVD on propagation of optical pulses is discussed in this chapter.
The dispersion-dominant regime is applicable whenever the fiber and pulse
parameters are such that

Llp _ ?’POTO2

Ly 1Bl

Asarough estimate, Ry < 1 W for 1-ps pulses if we use typical values for the
fiber parameters y and |, at A = 1.55 um.

When the fiber length L is such that L < Ly but L ~ Ly, , the disper-
sion termin Eq. (3.1.4) is negligible compared to the nonlinear term (as long
as the pulse has a smooth temporal profile such that 92U /9% ~ 1). In that
case, pulse evolution in the fiber is governed by SPM that leads to spectral
broadening of the pulse. This phenomenon is considered in Chapter 4. The
nonlinearity-dominant regime is applicable whenever

Ly _ ?’F)OTO2

Lae 1B
This condition is readily satisfied for relatively wide pulses (T, > 100 ps)
with a peak power By ~ 1 W. Note that SPM can lead to pulse shaping in
the presence of weak GVD effects. If the pulse develops a sharp leading or

trailing edge, the dispersion term may become important even when Eq. (3.1.7)
isinitialy satisfied.

<1 (3.1.6)

> 1 (3.1.7)
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When the fiber length L is longer or comparable to both Ly and L, , dis-
persion and nonlinearity act together as the pulse propagates along the fiber.
The interplay of the GVD and SPM effects can lead to a qualitatively differ-
ent behavior compared with that expected from GVD or SPM aone. In the
anomalous-dispersion regime (3, < 0), the fiber can support solitons. In the
normal-dispersion regime (8, > 0), the GVD and SPM effects can be used
for pulse compression. Equation (3.1.4) is extremely helpful in understand-
ing pulse evolution in optical fibers when both dispersive and nonlinear effects
should be taken into account. However, this chapter is devoted to the linear
regime, and the following discussion is applicable to pulses whose parameters
satisfy Eq. (3.1.6).

3.2 Dispersion-Induced Pulse Broadening

The effect of GVD on optical pulses propagating in alinear dispersive medium
[4]-{17] are studied by setting y = 0 in EqQ. (3.1.1). If we define the normal-
ized amplitude U (z,T) according to Eq. (3.1.3), U(z T) satisfies the following
linear partia differential equation:
oYU _ B, oV
Jdz 2 0T?
This equation is similar to the paraxial wave equation that governs diffraction
of CW light and becomes identical to it when diffraction occurs in only one
transverse direction and f3, is replaced by —4/(2r), where A is the wave-
length of light. For this reason, the dispersion-induced temporal effects have a
close analogy with the diffraction-induced spatial effects[2].
Equation (3.2.1) is readily solved by using the Fourier-transform method.
If U(z, ») isthe Fourier transform of U (z, T) such that

(3.2.1)

U(zT)= %/w U(z o) exp(—ioT)do, (3.2.2)
then it satisfies an ordinary differential equation
i%—li =-18,0%0, (3.2.3)

whose solution is given by

U(z o) =U(0,0)exp <%B2w22> . (3.2.4)
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Equation (3.2.4) shows that GVD changes the phase of each spectral compo-
nent of the pulse by an amount that depends on both the frequency and the
propagated distance. Even though such phase changes do not affect the pulse
spectrum, they can modify the pulse shape. By substituting Eq. (3.2.4) in Eq.
(3.2.2), the general solution of Eq. (3.2.1) is given by

U(zT) = %/ZU(O, ) exp (%Bzwzz— ia)T) do, (3.2.5)

where U (0, w) is the Fourier transform of the incident field at z= 0 and is
obtained using

U(0,0) = / T U(0,T) explioT)dT. (3.2.6)

Equations (3.2.5) and (3.2.6) can be used for input pulses of arbitrary shapes.

3.2.1 Gaussian Pulses

As a simple example, consider the case of a Gaussian pulse for which the
incident field is of the form [8]

TZ
where T, is the half-width (at 1/e-intensity point) introduced in Section 3.1. In
practice, it is customary to use the full width at half maximum (FWHM) in
place of T,. For a Gaussian pulse, the two are related as

Tewem = 2(In2)Y2T, ~ 1.665T,,. (32.8)

By using Egs. (3.2.5)—«3.2.7) and carrying out the integration, the amplitude at
any point zalong the fiber is given by

T T2
e ) B

Thus, a Gaussian pulse maintains its shape on propagation but its width T
increases with zas
T,(2) = Ty[1+ (z/Lp) 3 Y2, (3.2.10)

where the dispersion length L, = TZ/|,|. Equation (3.2.10) shows how GVD
broadens a Gaussian pulse. The extent of broadening is governed by the dis-
persion length L. For agiven fiber ength, short pulses broaden more because
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Figure 3.1 Dispersion-induced broadening of a Gaussian pulse inside afiber at z=
2L and z= 4L . Dashed curve shows theincident pulse at z= 0.

of asmaller dispersion length. At z= L, a Gaussian pulse broadens by afac-
tor of /2. Figure 3.1 shows the extent of dispersion-induced broadening for
Gaussian pulses by plotting |U (2 T)[? at z=0, 2L, and 4L.

A comparison of Egs. (3.2.7) and (3.2.9) shows that although the incident
pulse is unchirped (with no phase modulation), the transmitted pulse becomes
chirped. This can be seen clearly by writingU (z T) in the form

U(zT)=|U(zT)|explio(z2,T)], (3.2.11)

where

0(2T) = -T2l Shan t(
D

_Son(By)(Z/Lp) T2 1 (2
ENCTINES A . (3.2.12)
The time dependence of the phase ¢(z T) implies that the instantaneous fre-
quency differs across the pulse from the central frequency w,. The difference
d® isjust the time derivative —d¢/dT [the minus sign is due to the choice
exp(—impt) in Eq. (2.3.2)] and is given by
_ 90 _ (B (2z/Ly) T

Equation (3.2.13) shows that the frequency changes linearly across the pulse,
i.e., afiber imposes linear frequency chirp on the pulse. The chirp 6 w depends
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onthesign of 3,. Inthe normal-dispersion regime (B, > 0), d is negative at
the leading edge (T < 0) and increases linearly across the pulse; the opposite
occurs in the anomal ous-dispersion regime (3, > 0).

Dispersion-induced pulse broadening can be understood by recalling from
Section 1.3 that different frequency components of a pulse travel at dightly
different speeds along the fiber because of GVD. More specificaly, red com-
ponents travel faster than blue components in the normal-dispersion regime
(B, > 0), while the opposite occurs in the anomal ous-dispersion regime (3, <
0). The pulse can maintain its width only if all spectral components arrive to-
gether. Any time delay in the arrival of different spectral components leads to
pulse broadening.

3.2.2 Chirped Gaussian Pulses

For aninitially unchirped Gaussian pulse, Eq. (3.2.10) shows that dispersion-
induced broadening of the pulse does not depend on the sign of the GVD pa
rameter B,. Thus, for a given value of the dispersion length Ly, the pulse
broadens by the same amount in the normal- and anomal ous-dispersion regimes
of the fiber. This behavior changes if the Gaussian pulse has an initial fre-
quency chirp [9]. In the case of linearly chirped Gaussian pulses, the incident
field can be written as [compare with Eq. (3.2.7)]

(1+iC) T2
2 T12)’

U(0,T)=exp <— (3.2.14)
where C is a chirp parameter. By using Eq. (3.2.11) one finds that the in-
stantaneous frequency increases linearly from the leading to the trailing edge
(up-chirp) for C > 0 while the opposite occurs (down-chirp) for C < 0. Itis
common to refer to the chirp as positive or negative depending on whether C
is positive or negative.

The numerical value of C can be estimated from the spectral width of the
Gaussian pulse. By substituting Eq. (3.2.14) in Eq. (3.2.6),U (0, ») is given by

o (2rT2\ Y2 0?12

The spectral haf-width (at L/e-intensity point) from Eq. (3.2.15) is given by

Ao = (1+CHY?/T,. (3.2.16)
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BROADENING FACTOR, T4/ Tgo

DISTANCE, z/Lp

Figure 3.2 Broadening factor for a chirped Gaussian pulse as a function of distance.
Dashed curve correspondsto the case of an unchirped Gaussian pulse. For 8, < 0, the
same curves are obtained if the sign of C isreversed.

In the absence of frequency chirp (C = 0), the spectral width is transform-
limited and satisfies the relation AwT, = 1. The spectral width is enhanced by
afactor of (1+C?)%2 in the presence of linear chirp. Equation (3.2.16) can be
used to estimate |C| from measurements of Aw and T,.

To obtain the transmitted field, U (0, ) from Eq. (3.2.15) is substituted in
Eg. (3.2.5). Theintegration can be carried out analytically with the result

T (1+iC)T?
T2—iBz(1+IC)2 P <_ 2[T2—iB,z(1+iC)]

U(zT)= > . (3.217)

Thus, even achirped Gaussian pulse maintains its Gaussian shape on propaga-
tion. The width T, after propagating a distance z is related to the initial width

T, by the relation [9]
CBz\?  (B,2\*
(1+ T02> +(T02

This equation shows that broadening depends on the relative signs of the GVD
parameter f3, and the chirp parameter C. Whereas a Gaussian pulse broadens
monotonically with z if 8,C > 0, it goes through an initial narrowing stage

1/2

T
To

(3.2.18)
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when B,C < 0. Figure 3.2 shows this behavior by plotting the broadening
factor T, /T, as afunction of z/Ly for C = 2. In the case B,C < 0, the pulse
width becomes minimum at a distance

C|

The minimum value of the pulse width at z= z_; | is given by

min TO
T = oo (3.2.20)
By using Egs. (3.2.16) and (3.2.10) one finds that at z = z_,,, the pulse width
is Fourier-transform-limited because Ao T'" = 1.

Initial narrowing of the pulse for the case 3,C < 0 can be understood by
referring to Eq. (3.2.13), which shows the dispersion-induced chirp imposed
on an initially unchirped Gaussian pulse. When the pulse is initialy chirped
and the condition B,C < 0 is satisfied, the dispersion-induced chirp isin op-
posite direction to that of the initial chirp. Asaresult the net chirp is reduced,
leading to pulse narrowing. The minimum pulse width occurs at a point at
which the two chirps cancel each other. With a further increase in the propa-
gation distance, the dispersion-induced chirp starts to dominate over the initial
chirp, and the pulse begins to broaden. The net chirp as a function of z can
be obtained from Eq. (3.2.17) by using Egs. (3.2.11) and (3.2.13); it showsthe
gualitative behavior discussed in the preceding.

3.2.3 Hyperbolic-Secant Pulses

Although pulses emitted from many lasers can be approximated by a Gaussian
shape, it is necessary to consider other pulse shapes. Of particular interest is
the hyperbolic-secant pulse shape that occurs naturally in the context of optical
solitons and pulses emitted from some mode-locked lasers. The optical field
associated with such pulses often takes the form

T iCT?
U(0,T) =sech <?0) exp (—?02> , (3.2.21)

where the chirp parameter C controls the initial chirp similarly to that of Eq.
(3.2.14). Thetransmitted fieldU (z, T) isobtained by using Egs. (3.2.5), (3.2.6),
and (3.2.21). Unfortunately, it is not easy to evaluate the integral in Eq. (3.2.5)
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Figure 3.3 Pulse shapes at z= 2L and z= 4L of a pulse whose shape at z = 0
(dashed curve) is described by a“sech” profile. Compare with Fig. 3.1 where the case
of aGaussian pulseis shown.

in aclosed form for non-Gaussian pulse shapes. Figure 3.3 shows the transmit-
ted pulse shapes calculated numerically at z= 2L and z= 4L ;, for the case
of unchirped pulses (C = 0). A comparison of Figs. 3.1 and 3.3 shows that the
gualitative features of dispersion-induced broadening are nearly identical for
the Gaussian and “sech” pulses. Note that T, appearing in Eq. (3.2.21) is not
the FWHM but is related to it by

Towuw = 2IN(1+V2) T, ~ 1.763T,. (3.2.22)

Thisrelation should be used if the comparison is made on the basis of FWHM.
The same relation for a Gaussian pulse is given in Eq. (3.2.8).

3.24 Super-Gaussian Pulses

So far we have considered pulse shapes with relatively broad leading and trail-
ing edges. As one may expect, dispersion-induced broadening is sensitive to
pulse edge steepness. In general, a pulse with steeper leading and trailing
edges broadens more rapidly with propagation simply because such a pulse
has awider spectrum to start with. Pulses emitted by directly modul ated semi-
conductor lasersfall in this category and cannot generally be approximated by
a Gaussian pulse. A super-Gaussian shape can be used to model the effects of
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Figure 3.4 Pulse shapesat z= L and z= 2L, of a pulse whose shape a z= 0
(dashed curve) is described by a super-Gaussian profile. Comparewith Fig. 3.1 where
the case of a Gaussian pulse is shown.

steep leading and trailing edges on dispersion-induced pulse broadening. For
asuper-Gaussian pulse, Eq. (3.2.14) is generalized to take the form [16]

. 2m
_1#ic <1> ] , (3.2.23)

U(0,T)=exp > =
0

where the parameter m controls the degree of edge sharpness. For m= 1 we
recover the case of chirped Gaussian pulses. For larger value of m, the pulse
becomes square shaped with sharper leading and trailing edges. If the rise
time T, is defined as the duration during which the intensity increases from 10
to 90% of its peak value, it is related to the parameter mas

T = (InQ)ZTT?] ~ In:' (3.2.24)
Thus the parameter m can be determined from the measurements of T and T,,.

Figure 3.4 shows the pulse shapes at z= 0, L, and 2L in the case of
an unchirped super-Gaussian pulse (C = 0) with m= 3. It should be com-
pared with Fig. 3.1 where the case of a Gaussian pulse (m = 1) is shown.
The differences between the two can be attributed to the steeper leading and

trailing edges associated with a super-Gaussian pulse. Whereas the Gaussian
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Figure 3.5 Variation of broadening factor o/o, with distance for several super-
Gaussian pulses with different values of m. The case m= 1 correspondsto a Gaussian
pulse. Pulse edges become steeper with increasing values of m.

pulse maintains its shape during propagation, the super-Gaussian pulse not
only broadens at a faster rate but also distorts in shape. Enhanced broaden-
ing of a super-Gaussian pulse can be understood by noting that its spectrum
is wider than that of a Gaussian pulse because of steeper leading and trailing
edges. Asthe GV D-induced delay of each frequency component is directly re-
lated to its separation from the central frequency ,, awider spectrum results
in a faster rate of pulse broadening.

For complicated pulse shapes such as those seen in Fig. 3.4, the FWHM
is not a true measure of the pulse width. The width of such pulses is more
accurately described by the root-mean-sgquare (RMS) width o defined as [8]

o =[(T?) —(T)?3)Y/2, (3.2.25)

where )
JZ. TP (2 T)PdT
Py —
(TP) T U@TRAT (3.2.26)
To see how pulse broadening depends on the steepness of pulse edges, Fig. 3.5
shows the broadening factor o/ q;, of super-Gaussian pulses as a function of
the propagation distance for values of mranging from 1 to 4. Here o, is the

initial RMS width of the pulse at z= 0. The case m = 1 corresponds to a
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Gaussian pulse; the pulse edges become increasingly steeper for larger values
of m. Noting from Eq. (3.2.24) that the rise time is inversely proportional to
m, it is evident that a pulse with a shorter rise time broadens faster. The curves
in Fig. 3.5 are drawn for the case of initially unchirped pulses (C = 0). When
the pulses are initialy chirped, the magnitude of pulse broadening depends
on the sign of the product 3,C. The qualitative behavior is similar to that
shown in Fig. 3.2 for the case of a Gaussian pulse (m= 1). In particular, even
super-Gaussian pulses exhibit initial narrowing when 8,C < 0. It is possible
to evaluate the broadening factor analytically using Egs. (3.2.5) and (3.2.23)—
(3.2.26) with the result [17]

/2
o [}, Ta/2mChz o o T2 1/2m) (ﬂ_> |

oy r(3/2m) T2 r(3/2m \ T2

(3.2.27)
whereT" is the gamma function. For a Gaussian pulse (m= 1) the broadening
factor reduces to that given in Eq. (3.2.18).

3.25 Experimental Results

The initial compression of chirped pulses has been observed experimentally
using pulses emitted from a directly modulated semiconductor laser. In one
experiment [10], the incident pulse at awavelength of 1.54 um was positively
chirped (C > 0). It compressed by about afactor of 5 after propagating 104 km
in the anomalous-GVD regime of afiber with 8, ~ —20 ps?/km. In another
experiment, the semiconductor laser emitted anegatively chirped pulse (C < 0)
at awavelength of 1.21 um [11]. After propagating adistance of 1.5 kminthe
normal-dispersion regime (8, = 15 ps?/km), the pulse width decreased from
190 to 150 ps. When the fiber length was increased to 6 km, the pulse width in-
creased to 300 ps, in agreement with the qualitative behavior showninFig. 3.2.
In adifferent experiment much shorter optical pulses (initiddl FWHM = 26 ps)
at 1.3 um were obtained from a distributed-feedback (DFB) semiconductor
laser by using the gain-switching technique [15]. As the pulses were nega-
tively chirped (C < 0), adispersion-shifted fiber was employed with a positive
GVD at 1.3 um (B, ~ 12 ps?/km). The pulse compressed by a factor of three
after propagating inside a 4.8-km-long fiber and then started to broaden with a
further increase in the fiber length.

Compression of chirped picosecond pulses through GVD in optical fibers
has been used to advantage in some experiments in which a gain-switched
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DFB semiconductor laser was used as a source of solitons [18]-{21]. Even
though arelatively broad optical pulse (duration 2040 ps) emitted from such
lasers is far from being transform limited, its passage through a fiber of opti-
mized length with positive GVD produces compressed optical pulses that are
nearly transform limited. In a 1989 demonstration of thistechnique [20], 14-ps
pulses were obtained at the 3-GHz repetition rate by passing the gain-switched
pulse through a polarization-preserving, dispersion-shifted, 3.7-km-long opti-
cal fiber with B, = 23 ps?/km at the 1.55-um operating wavelength. In another
experiment, a narrowband optical filter was used to control the spectral width
of the gain-switched pulse before its compression [21]. An erbium-doped fiber
amplifier then amplified and compressed the pulse simultaneoudly. It was pos-
sible to generate nearly transform-limited 17-ps optical pulses at repetition
rates of 6-24 GHz. Pulses as short as 3 ps were obtained by 1990 with this
technique [22].

In arelated method, amplification of picosecond pulses in a semiconduc-
tor laser amplifier produces optical pulses chirped such that they can be com-
pressed by using optical fibers with anomalous GVD [23]-{25]. The method
isuseful in the wavelength region near 1.5 um because silica fibers commonly
exhibit anomalous GVD in that spectra region. The technique was demon-
strated in 1989 by using 40-ps input pulses obtained from a 1.52-um mode-
locked semiconductor laser [23]. The pulse was first amplified in a semicon-
ductor laser amplifier and then compressed by about a factor of two by prop-
agating it through an 18-km-long fiber with 3, = —18 ps?/km. Such a com-
pression mechanism was useful for transmitting a 16-Gh/s signal over 70 km
of standard telecommunication fiber [24].

3.3 Third-Order Dispersion

The dispersion-induced pulse broadening discussed in Section 3.2 is due to
the lowest-order GV D term proportional to 8, in Eq. (2.3.23). Although the
contribution of this term dominates in most cases of practical interest, it is
sometimes necessary to include the third-order term proportional to 35 in this
expansion. For example, if the pulse wavelength nearly coincides with the
zero-dispersion wavelength Ay, B, ~ 0; the B, term then provides the dominant
contribution to the GVD effects [6]. For ultrashort pulses (width T, < 1 ps), it
is necessary to include the 3 5 term even when 3, # 0 because the expansion
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parameter Aw/w is no longer small enough to justify the truncation of the
expansion in Eq. (2.3.23) after the 8, term.

This section considers the dispersive effects by including both 3, and S,
terms while still neglecting the nonlinear effects. The appropriate propagation
equation for the amplitude A(z T) is obtained from Eq. (2.3.39) after setting
y=0. Using Eq. (3.1.3), U (z, T) satisfies the following eguation:

U B0  if;0°U

9z 2 09T2 ' 6 JT3

This eguation can a so be solved by using the Fourier technigque of Section 3.2.
In place of Eq. (3.2.5) the transmitted field is obtained from

(3.3.1)

UT) = % [ Za(o, ) exp <|§ﬁ2wzz+ (I—SB3w3z— in> do, (332)

where the Fourier transform U (0, ) of the incident field is given by Eq.
(3.2.6). Equation (3.3.2) can be used to study the effect of higher-order disper-
sion if the incident field U (0O, T) is specified. In particular, one can consider
Gaussian, super-Gaussian, or hyperbolic-secant pulses in a manner analogous
to Section 3.2. An analytic solution in terms of the Airy functions can be
obtained for Gaussian pulses [6].

3.3.1 Changesin Pulse Shape

As one may expect, pulse evolution along the fiber depends on the relative
magnitudes of 3, and 33, which in turn depend on the deviation of the optical

wavelength 4, from 4. At A5 = Ap, B, = 0, and typically 35 ~ 0.1 ps’/km.

However, |B,| ~ 1 ps/km even when 4, differs from A, by aslittle as 10 nm.

In order to compare the relative importance of the 8, and 3; terms in Eq.

(3.3.1), it is useful to introduce a dispersion length associated with the third-
order dispersion (TOD) term as

b =T5/IBsl- (3.3.3)

The TOD effects play a significant role only if Ly < Ly or Ty|B,/B;] < 1.
For a 100-ps pulse, this condition implies that 8, < 103 ps?/km when f, =
0.1 ps’/km. Such low values of f, are redlized only if 1, and A, differ by
<1072 nm! In practice, it is difficult to match Ay and Ay to such an accu-
racy, and the contribution of 5 is generally negligible compared with that of
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Figure 3.6 Pulse shapes at z= 5L, of an initially Gaussian pulse at z= 0 (dotted
curve) in the presence of higher-order dispersion. Solid curveis for the case of 4, =
Ap- Dashed curve shows the effect of finite B, inthe case of Ly = Lp,.

B,. Thiswas indeed the case in the experiments in which 1.32-um picosecond
pulses were propagated over afew-kilometer-long fiber [26], [27],. The situa-
tion changes completely for ultrashort pulses with widths in the femtosecond
range. For example, 3, can be aslarge as 1 ps/km for T, = 0.1 ps before the
contribution of 85 becomes negligible. As Ly ~ 10 m for such values of T,

the effect of TOD can be studied experimentally by propagating 100-fs pulses
across a few-meter-long fiber.

Figure 3.6 shows the pulse shapes at z= 5L, for an initialy unchirped
Gaussian pulse [C = 0in Eq. (3.2.14)] for 3, = 0 (solid curve) and for avalue
of B, such that L = Ly (dashed curve). Whereas a Gaussian pulse remains
Gaussian when only the 3, term in Eq. (3.3.1) contributes to GVD (Fig. 3.1),
the TOD distorts the pulse such that it becomes asymmetric with an oscillatory
structure near one of its edges. In the case of positive 35 shownin Fig. 3.6, os-
cillations appear near the trailing edge of the pulse. When f3; is negative, it is
the leading edge of the pulse that develops oscillations. When 3, = 0, oscilla-
tions are deep, with intensity dropping to zero between successive oscillations.
However, these oscillations damp significantly even for relatively small values
of B,. For the case Ly = L, shown in Fig. 3.6 (B, = B5/T,), oscillations have
nearly disappeared, and the pulse has along tail on the trailing side. For larger
values of B, such that L, < Lp, the pulse shape becomes nearly Gaussian as



Third-Order Dispersion 79

1.2

?Bz=0

1.0:- m=3 H
N E
= 08F
Lt 3 con 5
N 06F i 4
2 o4af = 3

0.22— ] J B 21|\,‘0

(0] 2w N 2o 1
20 10 0 40 200

Figure 3.7 Evolution of a super-Gaussian pulse with m = 3 along the fiber length
for the case of B, = 0 and 3; > 0. Higher-order dispersion is responsible for the
oscillatory structure near the trailing edge of the pulse.

the TOD plays arelatively minor role.

Equation (3.3.2) can be used to study pulse evolution for other pulse shapes
(with or without chirp). By way of an example, Fig. 3.7 shows evolution of
an unchirped super-Gaussian pulse at the zero-dispersion wavelength (8, = 0)
withC=0and m= 3in Eq. (3.2.23). It isclear that pulse shapes can vary
widely depending on the initial conditions. In practice, one is often inter-
ested in the extent of dispersion-induced broadening rather than details of pulse
shapes. Asthe FWHM is not a true measure of the width of pulses shown in
Figs. 3.6 and 3.7, we use the RMS width ¢ defined in Eq. (3.2.25). In the
case of Gaussian pulses, it is possible to obtain a simple analytic expression
of o that includes the effects of 8,, B;, and the initial chirp C on dispersion
broadening [9].

3.3.2 Broadening Factor

To calculate 6 from Eq. (3.2.25), we need to find the nth moment (T") of T
using Eq. (3.2.26). Asthe Fourier transformU (z, w) of U (z T) is known from
Eq. (3.3.2), it isuseful to evaluate (T") in the frequency domain. By using the
Fourier transform (z, ) of the pulse intensity |U (2, T)P,

(2 0) = /w U (zT)2exp(ioT)dT, (3.34)
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and differentiating it n times, we obtain

n

lim (2. 0) - (i)”/_ZT”|U(z,T)|2dT. (335)

Using Eq. (3.3.5) in Eq. (3.2.26) we find that

ny_ (=)0 9"
(T = N, (L'Lnoa nl(z,a)), (3.3.6)

where the normalization constant
ch/w |U(z,T)|2dTE/m |U(0,T)|?dT. (3.3.7)
From the convolution theorem
(2 0) = / “U(z0-0)0*(z o) do'. (338)

Performing the differentiation and limit operations indicated in Eq. (3.3.6), we
obtain

T — % /_ ZU*(z, a))%ﬂ (2 0) do. (3.39)

In the case of a chirped Gaussian pulse U(z o) can be obtained from
Egs. (3.2.15) and (3.3.2) and is given by

- 27 T2\"?  Tliw? iT i

U(zw) = <l+iC> [ <B2 1+|C> + 6B3a) Z] . (33.10)
If wedifferentiate Eq. (3.3.10) two times and substitute theresult in Eq. (3.3.9),
wefind that the integration over @ can be performed anaytically. Both (T) and

(T2) can be obtained by this procedure. Using the resulting expressionsin Eq.
(3.2.25), we obtain [9]

<1+§ﬁ22> +<%§> +(1+C?? 2<f§3> ] ., (33.11)

where o, istheinitial RMSwidth of the chirped Gaussian pulse (6, = T,/V/2).
As expected, Eq. (3.3.11) reduces to Eq. (3.2.18) for ;= 0.

Equation (3.3.11) can be used to draw severa interesting conclusions. In
general, both f8, and S5 contribute to pulse broadening. However, the depen-
dence of their contributions on the chirp parameter C is qualitatively different.

o
cy0
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Figure 3.8 Variation of broadening factor with propagated distance for a chirped
Gaussian pulse in the vicinity of A, such that L, = 2L. Dashed curve corresponds
to the case of A, = A sothat L isinfinite (8, = 0).

Whereas the contribution of 8, depends on the sign of ,C, the contribution of
jB; isindependent of the sign of both 35 and C. Thus, in contrast to the behav-
ior showninFig. 3.2, achirped pul se propagating exactly at the zero-dispersion
wavelength never experiences width contraction. However, even small depar-
tures from the exact zero-dispersion wavelength can lead to initial pulse con-
traction. This behavior is illustrated in Fig. 3.8 where the broadening factor
o /o, isplotted as afunction of propagation distance for C =2 and L, = 2Lp,.
Dashed curve shows for comparison broadening expected when 3, = 0. In
the anomal ous-dispersion regime the contribution of 3, can counteract the 3,
contribution in such away that dispersive broadening is less than that expected

when 8, =0 for z~ Lp. For large values of z such that z>> L, /|C|, Eq.
(3.3.11) can be approximated by
6/0,= (1+C*) Y1+ (Lp/2Lp) %Y 2(2/Lp), (3.3.12)

where we have used Egs. (3.1.5) and (3.3.3). The linear dependence of the
RMS pulse width on the propagation distance for large z is a general feature
that holds for arbitrary pulse shapes, as discussed in the next section.
Equation (3.3.11) can be generalized to include the effects of afinite source
bandwidth [9]. Spontaneous emission in any light source produces amplitude
and phase fluctuations that manifest as a finite bandwidth 6@ of the source
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spectrum centered at ay, [28]. If the source bandwidth 6 w is much smaller than
the pulse bandwidth Aw [given by Eq. (3.2.16) for chirped Gaussian pulses],
its effect on the pulse broadening can be neglected. However, for many light
sources used in optical communications [such as light-emitting diodes (LEDS)
and multimode semiconductor lasers] this condition is not satisfied, and it be-
comes necessary to include the effect of source bandwidth. In the case of a
Gaussian spectrum, the generalized form of Eq. (3.3.11) is given by [9]

2
() o (82) i ()
°(33.13)

whereV,, = 20,6, and o,, isthe RMSwidth of the Gaussian source spectrum.
This equation describes broadening of chirped Gaussian pulsesin alinear dis-
persive medium under quite general conditions. It can be used to discuss the
effect of GV D on the performance of fiber-optic communication systems.

3.3.3 Arbitrary-Shape Pulses

The formal similarity of Eq. (3.2.1) with the Schrodinger equation can be ex-
ploited to obtain an analytic expression of the RMS width for pulses of arbi-
trary shape while including the third- and higher-order dispersive effects [29].
For this purpose, we write Eq. (3.3.1) in an operator form as

8U

i =Hu, (3.3.14)

where the operator H includes, in its general form, dispersive effects to all
orders and is given by

- i 9\ B, 9% By 9°
H:_gﬂ <8_T> 2912 T 6 a9T3 (3319

Using Eq. (3.2.26) and assuming that U (z, T) isnormalized such that [~_ |U |2dT
= 1, the first and second moments of T are found to evolve with z as

aTy
e = |<[H,T]>, (3.3.16)

d(T?)
dz

= —([H,[H,T])). (3.3.17)
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where [H,T] = HT — TH stands for the commutator.

Equations (3.3.16) and (3.3.17) can be integrated analytically and result in
the following general expressions [29]:

(T) =ay+az (3.3.18)
(T?) = by+b,z+b,Z, (33.19)

where the coefficients depend only on the incident field Uy(T) = U (0, T) and
are defined as

8y = [ ZUE)‘ (T)TUy(T)dT, (3.3.20)
ay =i [ U3(T)A, TIUy(T) T, (3321)
b= [ Us(T)T2Uy(T) T, (3322)
b, =i _Zug(T))[ﬁ,Tz]uo(T)dT, (33.23)
b, =3 | Us(T)IAL A, T2Ug(T)dT. (33.24)

Physically, (T) governs asymmetry of pulse shape while (T?) isameasure
of pulse broadening. Higher-order moments (T3) and (T4) can also be calcu-
lated by this technique and govern the skewness and kurtosis of the intensity
profile, respectively. For initially symmetric pulses, a; = 0. If the effects of
third- and higher-order dispersion are negligible it is easy to show that &, is
aso zero. With (T) = 0 in that case, the pulse retains its symmetric nature
during its transmission through optical fibers when 3, dominates. Note that
02 = (T?) — (T)? varies quadratically aong the fiber length for pulses of arbi-
trary shape and chirp even when third- and higher-order dispersive effects are
included.

As a simple example, consider the case of an unchirped ‘sech’ pulse dis-
cussed in Section 3.2.3 numerically and retain only the effects of GVD (B =0
for m> 2). Using Uy(T) = (2T,)~?sech(t/T,) in Egs. (3.3.20)«3.3.24) one
can show that a, = a; = b, = 0 while

by = (7%/12)T, b, = B5/(3TS). (3.3.25)
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Noting that 6¢ = b, and 62 = b, + b,Z?, the broadening factor becomes

B2\ 2 1/2
N (6723> ] , (33.26)

where o, = (1/+/12) T, isthe RMSwidth of theinput pulse. Thisresult should
be compared with Eq. (3.3.11) obtained for aGaussian pulse after settingC =0
and B; = 0. Noting that /6 ~ 0.52, one can conclude that a “sech” pulse
broadens almost at the same rate and exhibits the same qualitative behavior
as a Gaussian pulse when the comparison is made on the basis of their RMS
widths.

The preceding analysis can readily be extended to chirped pulses. For a
chirped Gaussian pulse, al integralsin Egs. (3.3.20)—(3.3.24) can be evaluated
in aclosed form, and one recovers Eq. (3.3.11) for the broadening factor. For
a super-Gaussian pulse Eq. (3.2.27) is obtained when third-order dispersion is
neglected. It is possible to obtain 6/0, in aclosed form for a super-Gaussian
pulse even when both 3, and 3 5 are finite but the resulting expression is quite
complex [17].

The effect of third-order dispersion is to make the intensity profile asym-
metric and introduce a long oscillating tail similar to that seen in Fig. 3.6.
The quantity (T) provides a simple measure of this asymmetry. If we con-
sider again the example of a‘sech’ pulse, we find that (T) is zero initially but
changes linearly with z at arate given by a = B,/(6T¢). The same behavior
occurs for a Gaussian pulse but (T) changes at a different rate. These results
are in agreement with the numerically calculated pulse shapesin Fig. 3.6. As
seen there, pulse develops along tail on the trailing edge for positive values of
B, resulting in (T) > 0.

The most important conclusion that one can draw from Egs. (3.3.19) and
(3.3.26) isthat, for along fiber whose length L > L, the GV D-induced pulse
broadening scales as L /L, irrespective of the pulse shape. As the disper-
sion length L, = TZ/|B,| scales as TZ, it decreases rapidly as pulses become
shorter. As an example, Ly = 100 km for pulses with T, = 10 ps launched
into a dispersion-shifted fiber having |8,| = 1 ps?/km but becomes only 1 km
if pulse width is reduced to T, = 1 ps. Such a pulse will broaden by a factor
~100 in a 100-km-long fiber. Because L can exceed thousands of kilometers
for fiber-optic communication systems designed to transmit information over
transoceanic distances, it is evident that GV D-induced pul se broadening limits
the performance of most lightwave systems. The next section is devoted to the
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GV D-induced limitations and the dispersion-management schemes developed
to overcome them in practice.

3.3.4 Ultrashort-Pulse M easurements

As the GVD and TOD effects can change the shape and width of ultrashort
pulses considerably, one should consider how such pulses can be measured
experimentally. For pulses broader than 100 ps, pulse characteristics can be
measured directly by using a high-speed photodetector. Streak cameras can be
used for pulses as short as 1 ps. However, most of them work best inthevisible
spectral region and cannot be used at wavelengths near 1.55 um.

A common technique for characterizing ultrashort optical pulses is based
on the nonlinear phenomenon of second-harmonic generation. In this method,
known as the autocorrelation technique, the pulse is sent through a nonlinear
crystal together with adelayed (or advanced) replicaof itsown [30]. A second-
harmonic signal is generated inside the crystal only when two pulses overlap
in time. Measuring the second-harmonic power as afunction of the delay time
produces an autocorrelation trace. Thewidth of thistraceisrelated to the width
of the original pulse. The exact relationship between the two widths depends
on the pulse shape. If pulse shape is known a priori, or it can be inferred indi-
rectly, the autocorrelation trace provides an accurate measurement of the pulse
width. This technique can measure widths down to a few femtoseconds but
provides little information on details of the pulse shape. In fact, an autocor-
relation trace is always symmetric even when the pulse shape is known to be
asymmetric. The use of cross correlation, a technique in which an ultrashort
pulse of known shape and width is combined with the original pulse inside a
second-harmonic crystal, solves this problem to some extent. The auto- and
cross-correlation techniques can also make use of other nonlinear effects such
as third-harmonic generation [31] and two-photon absorption [32]. All such
methods, however, record intensity correlation and cannot provide any infor-
mation on the phase or chirp variations across the pulse.

Aninteresting technique, called frequency-resolved optical gating (FROG)
and developed during the 1990s, solves this problem quite nicely [33]{37]. It
not only can measure the pul se shape but can aso provide information on how
the optical phase and the frequency chirp vary across the pulse. The technique
works by recording a series of spectrally resolved autocorrelation traces and
uses them to deduce the intensity and phase profiles associated with the pulse.
It has been used to characterize pulse propagation in optical fiberswith consid-
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erable success [35]{37]. A related technique, known as time-resolved optical
gating (TROG), has been introduced recently [38]. In this method, the pulseis
passed through a dispersive medium (e.g., an optical fiber) whose GVD can be
varied over acertain range, and anumber of autocorrelation traces are recorded
for different GV D values. Both the intensity and phase profiles can be deduced
from such autocorrelation traces.

3.4 Dispersion Management

In afiber-optic communication system, information is transmitted over a fiber
by using a coded sequence of optical pulses whose width is determined by
the bit rate B of the system. Dispersion-induced broadening of pulses is un-
desirable as it interferes with the detection process and leads to errors if the
pulse spreads outside its alocated bit slot (T, = 1/B). Clearly, GVD limits
the bit rate B for a fixed transmission distance L [39]. The dispersion prob-
lem becomes quite serious when optical amplifiers are used to compensate for
fiber losses because L can exceed thousands of kilometers for long-haul sys-
tems. A useful measure of the information-transmission capacity is the bit
rate—distance product BL. This section discusses how the BL product is lim-
ited by fiber dispersion and how it can be improved by using the technique of
dispersion management.

341 GVD-Induced Limitations

Consider first the case in which pulse broadening is dominated by the large
spectral width o, of the source. For a Gaussian pulse, the broadening factor
can be obtained from Eq. (3.3.13). Assuming that the contribution of the 3,
term is negligible together with C = 0 and \,, > 1, the RM S pulse width & is
given by

0 = [0§ + (B,L0w)?]"/? = [6§ + (DLo, )72, (34.1)

where L isthe fiber-link length and o, isthe RMS spectral width of the source
in wavelength units. The dispersion parameter D isrelated to the GVD param-
eter B, asindicated in Eq. (1.2.11).

One can relate o to the bit rate B by using the criterion that the broadened
pulse should remain confined to its own bit slot (T = 1/B). A commonly used
criterionis4o < Tg [39]; for aGaussian pulse, at least 95% of the pulse energy
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remains within the bit slot when this condition is satisfied. Thelimiting bit rate
isobtained using 4Bo < 1. Assuming ¢, < o, this condition becomes

BL|D|o, < 1/4. (34.2)

As an illustration, consider the case of multimode semiconductor lasers [28]
for which o, ~ 2 nm. If the system is operating near A = 1.55 um using
standard fibers, D ~ 16 ps/(km-nm). With these parameter values, Eqg. (3.4.2)
requires BL < 8 (Gh/s)-km. For a 100-km-long fiber, GVD restricts the bit rate
to relatively low values of only 80 Mb/s. However, if the system is designed to
operate near the zero-dispersion wavelength (occurring near 1.3 pm) such that
|D| < 1 ps/(km-nm), the BL product increases to beyond 100 (Gb/s)-km.

Modern fiber-optic communication systems operating near 1.55 um re-
duce the GVD effects using dispersion-shifted fibers designed such that the
minimum-loss wavelength and the zero-dispersion wavelengths nearly coin-
cide. At the same time, they use lasers designed to operate in a single longi-
tudinal mode such that the source spectral width iswell below 100 MHz [28].
Under such conditions, V;, < 1in Eq. (3.3.13). If we neglect the 3, term and
set C =0, Eqg. (3.3.13) can be approximated by

o = [02 + (B,L/20,)%%2. (3.4.3)

A comparison with Eqg. (3.4.1) reveals amajor difference: Dispersion-induced
broadening now depends on the initial width . In fact, o can be minimized
by choosing an optimum value of 6,. The minimum value of o is found to
oceur for oy = (|B,|L/2)%2 and is given by ¢ = (|B,|L)¥2. The limiting bit
rate is obtained by using 4Bo < 1 or the condition

B(|B,|L)Y? < 1/4. (3.4.49)

The main difference from Eq. (3.4.2) is that B scales as L~%/2 rather than L.
Figure 3.9 compares the decrease in the bit rate with increasing L by choosing
D = 16 ps/(km-nm) and 5, =0, 1, and 5 nm. Equation (3.4.4) was used in the
case o, =0.

For alightwave system operating exactly at the zero-dispersion wavel ength,
B, =0in Eq. (3.3.13). AssumingV,, < 1 and C = 0, the pulse width is given
by

o = [02 + (BsL/403)HY>. (3.4.5)

Similar to the case of Eg. (3.4.3), ¢ can be minimized by optimizing the in-
put pulse width o;. The minimum value of o is found to occur for o, =
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Figure 3.9 Limiting bit rate as a function of the fiber length for 6, =0, 1 and 5
nm. The case o, = 0 corresponds to an optical source whose spectral width is much
smaller than the bit rate. Dashed line shows the case 3, = 0.

(IBs|L/4)Y/3. The limiting bit rate is obtained by using the condition 4B < 1
and is given by [39]
B(|B,/L)Y3 < 0.324. (3.4.6)

The dispersive effects are most forgiving in this case. For atypical value 35 =
0.1 ps®/km, the bit rate can be aslarge as 150 Gb/sfor L = 100 km. It decreases
to only 70 Gb/s even when L increases by a factor of 10 because of the L-1/3
dependence of the hit rate on the fiber length. The dashed line in Fig. 3.9
shows this dependence using Eq. (3.4.6) with f; = 0.1 psi/km. Clearly, the
performance of alightwave system can be considerably improved by operating
it close to the zero-dispersion wavelength of the fiber.

3.4.2 Dispersion Compensation

Even though operation at the zero-dispersion wavelength is most desirable
from the standpoint of pulse broadening, other considerations may preclude
such a design. For example, at most one channel can be located at the zero-
dispersion wavelength in a wavelength-division-multiplexed (WDM) system.
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Moreover, as discussed in Chapter 10, strong four-wave mixing occurring
when GVD is relatively low forces WDM systems to operate away from the
zero-dispersion wavelength so that each channel has afinite value of 8,. Of
course, GVD-induced pulse broadening then becomes of serious concern. The
technique of dispersion management provides a solution to this dilemma. It
consists of combining fibers with different characteristics such that the aver-
age GVD of the entire fiber link is quite low while the GVD of each fiber
section is chosen to be large enough to make the four-wave-mixing effects
negligible [40]. In practice, a periodic dispersion map is used with a period
equal to the amplifier spacing (typically 50-100 km). Amplifiers compensate
for accumulated fiber losses in each section. Between each pair of amplifiers,
just two kinds of fibers, with opposite signs of 3, are combined to reduce the
average dispersion to a small value. When the average GVD is set to zero,
dispersion is totally compensated.

Such a dispersion-compensation technique takes advantage of the linear
nature of Eq. (3.2.1). The basic idea can be understood from Eq. (3.2.5) repre-
senting the general solution of Eq. (3.2.1). For adispersion map consisting of
two fiber segments, Eq. (3.2.5) becomes

1 /- [ ,

where L = L, + L, isthe dispersion-map period, and j3, ] isthe GVD parame-
ter of the fiber segment of length L; (j = 1, 2). By using D; = —(271¢/A%),;,
the condition for dispersion compensation can be written as

AsA(Lm,t) = A(0,t) when Eq. (3.4.8) is satisfied, the pulse recoversitsinitial
width after each map period even though pulse width can change significantly
within each period.

Equation (3.4.8) can be satisfied in severa different ways. If two segments
are of equal lengths (L, = L,), the two fibers should have D; = —D,,. Fibers
with equal and opposite values of GVD can be made by shifting the zero-
dispersion wavelength appropriately during the manufacturing stage. How-
ever, a large quantity of standard fiber is aready installed in existing light-
wave systems. Because this fiber has anomalous GVD with D ~ 16 ps/(km-
nm), its dispersion can be compensated by using arelatively short segment of
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dispersion-compensating fiber (DCF), designed to have ‘norma’ GVD with
vaues of D > —100 ps/(km-nm).

The idea of using a DCF has been around since 1980 [41]. However, it
was only after the advent of optical amplifiers in 1990 that the development
of DCFs accelerated in pace [42]-{51]. There are two basic approaches to
designing DCFs. In one approach, the DCF supports a single mode, but it is
designed with arelatively small value of thefiber parameter V. Asdiscussed in
Section 2.2, the fundamental mode is weakly confined whenV =~ 1. Because
a large fraction of the mode propagates inside the cladding layer where the
refractive index is smaller, the waveguide contribution to the GVD is quite
different for such fibers, resulting in D ~ —100 ps/(km-nm). A depressed-
cladding design is often used in practice.

Single-mode DCFs suffer from several problems. First, 1 km of DCF com-
pensates dispersion for only 8-10 km of standard fiber. Second, DCF losses
arerelatively high in the 1.55-um wavelength region (o = 0.5 dB/km). Third,
because of arelatively small mode diameter, the optical intensity islarger at a
given input power, resulting in enhanced nonlinear effects. Most of the prob-
lems associated with a single-mode DCF can be solved to some extent by using
atwo-mode fiber designed with values of V' such that the higher-order modeis
near cutoff (V = 2.5). Such fibers have a most the sameloss as the single-mode
fiber but can be designed such that the dispersion parameter D for the higher-
order mode has large negative values [44]{46]. Indeed, values of D aslarge as
—770 ps/(km-nm) have been measured for dliptical-core fibers [46]. A 1-km
length of such a DCF can compensate the GVD of a 40-km-long fiber, adding
relatively littleto thetotal link loss. An added advantage of the two-mode DCF
isthat it allows for broadband dispersion compensation [44]. However, its use
requires a mode-conversion device capable of transferring radiation from the
fundamental to the higher-order mode supported by the DCF. Several such
all-fiber devices have been developed [52]-{54]. As an dternative, a chirped
fiber grating can be used for dispersion compensation [55].

3.4.3 Compensation of Third-Order Dispersion

When the bit rate of asingle channel exceeds 100 Gh/s, one must use ultrashort
pulses (width ~1 ps) in each hit slot. For such short optical pulses, the pulse
spectrum becomes broad enough that it is difficult to compensate GVD over
the entire bandwidth of the pulse (because of the frequency dependence of 3,).
The simplest solution to this problem is provided by fibers, or other devices,
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designed such that both 3, and 3; are compensated simultaneously [56]-{70].
The necessary conditions for designing such fibers can be obtained from Eq.
(3.3.2). For afiber link containing two different fibers of lengths L; and L,
the conditions for broadband dispersion compensation are given by

Byl + Brl, =0 and By Ly + B3, =0, (3.4.9

where 3,; and 3;; arethe GVD and TOD parameters for fiber of length L; (j =
1,2). It is generaly difficult to satisfy both conditions simultaneously over
a wide wavelength range. However, for a 1-ps pulse, it is sufficient to sat-
isfy Eq. (3.4.9) over a4-5 nm bandwidth. This requirement is easily met for
DCFs[56], especialy designed with negative values of 8, (sometimes called
reverse-dispersion fibers). Fiber gratings, liquid-crystal modulators, and other
devices can aso be used for this purpose [62]-{68].

Several experiments have demonstrated signal transmission over distances
~100 km at high bit rates (100 Gb/s or more) using simultaneous compen-
sation of both GVD and TOD. In a 1996 experiment, a 100-Gh/s signal was
transmitted over 560 km with 80-km amplifier spacing [57]. In a later ex-
periment, bit rate was extended to 400 Gb/s by using 0.98-ps optical pulses
within the 2.5-ps time slot [58]. Without compensation of the TOD, the pulse
broadened to 2.3 ps after 40 km and exhibited along oscillatory tail extending
over 5-6 ps (see Fig. 3.6). With partial compensation of TOD, the oscillatory
tail disappeared and the pulse width reduced to 1.6 ps. In another experi-
ment [59], a planar lightwave circuit was designed to have a dispersion slope
of —15.8 pg/nn? over a 170-GHz bandwidth. It was used to compensate the
TOD over 300 km of a dispersion-shifted fiber for which 5 ~ 0.05 ps/(km-
nm?) at the operating wavelength. The dispersion compensator eliminated the
long oscillatory tail and reduced the width of the main peak from 4.6 to 3.8 ps.
The increase in pulse width from its input value of 2.6 ps can be attributed to
the PMD effects.

The dispersion-compensation technique has also been used for femtosec-
ond optical pulses. For a pulse with T, = 0.1 ps, the TOD length L, is only
10 mfor atypical value B, =0.1 ps3/km. Such pulses cannot propagate more
than a few meters before becoming severely distorted even when f3, is com-
pensated fully so that its average value is zero. Nonetheless, a 0.5-ps pulse
(Tp = 0.3 ps) was transmitted over 2.5 km of fiber using a 445-m-long DCF
with B, =~ 98 ps?/km and 3, ~ —0.5 ps’/km [60]. The output pulse was slightly
distorted because 3; could not be fully compensated. In alater experiment, a
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Figure3.10 Experimentally observed shapes of a0.5-psinput pulse at the output of a
2.5-km GV D-compensated fiber link. The value of 3, was changed from 0.124 (left)
to —0.076 ps®/km (right) using aliquid-crystal modulator. (After Ref. [62].)

liquid-crystal modulator was used to compensate for the residual 85 [62], and
the pulse remained nearly unchanged after propagating over 2.5 km of the
dispersion-compensated fiber link. In a 1999 experiment [66], the use of the
same technique with a different DCF (length 1.5 km) permitted transmission
of a0.4-ps pulse (T, =~ 0.25 ps) over 10.6 km of fiber with little distortion in
the pulse shape. The main advantage of a liquid-crystal modulator is that it
acts as a programmabl e pulse shaper. It can even be used to enhance the TOD
effects artificially. Asan example, Fig. 3.10 shows the pul se shapes at the out-
put of a 2.5-km GV D-compensated fiber link when the effective value of 3,
changes from 0.124 to —0.076 ps’/km [62]. The observed pulse shapes are in
agreement with those predicted by Eq. (3.3.2) as long as the nonlinear effects
remain negligible.

When both 8, and B; are nearly compensated, propagation of femtosec-
ond optical pulses is limited by the fourth-order dispersive effects governed
by the parameter 3,. In a 1999 experiment, the combination of a DCF and
a frequency-resolved, programmable, dispersion compensator compensated
B,, B3, and B, simultaneously over a 30-nm-wide wavelength range [67]. This
scheme allowed transmission of a 0.2-ps pulse train with 22-nm bandwidth
over adistance of 85 km. In alater experiment, 0.25-ps pulses could be trans-
mitted over 139 km when dispersion up to fourth order was compensated using
a DCF with a negative slope [70]. Input pulses were prechirped appropriately
with a phase modulator. On the system level, a single high-speed channel at
640 Gb/s (obtained through time-division multiplexing) has been transmitted
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over 92 km by compensating 3, and f3; over the entire link consisting of
standard, dispersion-shifted, and reverse-dispersion fibers [69].

Problems

31

3.2

3.3

34

35

3.6

3.7

3.8

39

A dispersion-shifted fiber is measured to have D = 2 ps/(km-nm) at
1.55 um. It has an effective core area of 40 un?. Calculate the dis-
persion and nonlinear lengths when (i) 10-ps pulses with 100-mW peak
power and (ii) 1-ps pulses with 1-W peak power are launched into the
fiber. Are nonlinear effects important in both cases?

A chirped Gaussian pulse is well described by Eq. (3.2.14) withC =5
and T, = 50 ps. Determine the temporal and spectral widths (FWHM) of
this pulse.

Prove that for an unchirped Gaussian pulse of arbitrary width, the prod-
uct AvAt approximately equals 0.44, where At and Av are the temporal
and spectral widths (both measured as FWHM), respectively.

Repeat Problem 3.3 for an unchirped “sech” pulse and prove that AvAt
approximately equals 0.315.

Starting with Eq. (3.2.23), derive an expression for the RMS width of a
super-Gaussian pulse.

Show that a chirped Gaussian pulse is compressed initialy inside a
single-mode fiber when f,C < 0. Derive expressions for the minimum
width and the fiber length at which the minimum occurs.

Evaluate the integral in Eq. (3.3.2) numerically for an unchirped Gaus-
sian pulse with 1-pswidth (FWHM) assuming 8, =0and 3;=0.1 ps3/km.
Plot the pulse shapes for L = 2 and 4 km. What happens to the pulse
shape if the sign of 35 isreversed or the input pulse is chirped?

Calculate the RMS width of an unchirped Gaussian pulse using Egs.
(3.3.18)«3.3.24). Retainthe B, and f3; termsin Eq. (3.3.15) but neglect
all others.

Estimate the limiting bit rate for a 60-km single-mode fiber link at 1.3-
and 1.55-um wavelengths assuming transform-limited 50-ps (FWHM)
input pulses. Assume f3, = 0 and —20 ps’/km and 3, = 0.1 and 0 ps*/km
at 1.3 and 1.55 um wavelengths, respectively.
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3.10 An optical communication system is operating with chirped Gaussian

input pulses. Assume 8, =0 andV, <1 in Eq. (3.3.13) and obtain a
condition on the bit rate in terms of the parametersC, 3, and L.
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Chapter 4

Salf-Phase M odulation

An interesting manifestation of the intensity dependence of the refractive in-
dex in nonlinear optical media occurs through self-phase modulation (SPM), a
phenomenon that leads to spectral broadening of optical pulses [1]-[9]. SPM
is the temporal analog of self-focusing. Indeed, it was first observed in 1967
in the context of transient self-focusing of optical pulses propagating in a CS-
filled cell [1]. By 1970, SPM had been observed in solids and glasses by using
picosecond pulses. The earliest observation of SPM in optical fibers was made
with a fiber whose core was filled with CS, [7]. This work led to a system-
atic study of SPM in a silica-core fiber [9]. This chapter considers SPM as a
simple example of the nonlinear optical effects that can occur in optical fibers.
Section 4.1 is devoted to the case of pure SPM by neglecting the GVD effects.
The effects of GVD on SPM are discussed in Section 4.2 with particular em-
phasis on the SPM-induced frequency chirp. Section 4.3 extends the results to
include the higher-order nonlinear effects such as self-steepening.

4.1 SPM-Induced Spectral Broadening

A general description of SPM in optical fibers requires numerical solutions of
the pulse-propagation equation (2.3.39) obtained in Section 2.3. The simpler
equation (2.3.41) can be used for pulse widths T, > 5 ps. A further simplifi-
cation occurs if the effect of GVD on SPM is negligible so that the 3, term
in Eqg. (2.3.41) can be set to zero. The conditions under which GVD can be
ignored were discussed in Section 3.1 by introducing the length scales L and
Ly, [see Eq. (3.1.5)]. In general, the pulse width and the peak power should
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be such that Ly > L > L, for a fiber of length L. Equation (3.1.7) shows that
the GVD effects are negligible for relatively wide pulses (T, > 100 ps) with a
large peak power (R, > 1 W).

4.1.1 Nonlinear Phase Shift

In terms of the normalized amplitude U(z T) defined as in Eq. (3.1.3), the
pulse-propagation equation (3.1.4), in the limit 8, = 0, becomes
U ie*
dz Ly,

U|2U, (4.1.1)

where o accounts for fiber losses. The nonlinear length is defined as

Ly = (¥P) 7, (4.1.2)

where P, is the peak power and y is related to the nonlinear-index coefficient n,
as in Eq. (2.3.28). Equation (4.1.1) can be solved substituting U =V exp(id, )
and equating the real and imaginary parts so that

aV =0 a¢NL — LOCZ

Z7 2
>, =0 > I_NLV. (4.1.3)

As the amplitude V does not change along the fiber length L, the phase equation
can be integrated analytically to obtain the general solution

U(L,T)=U(0,T)expligy, (L, T)], (4.1.4)
where U (0, T) is the field amplitude at z= 0 and
O (L T) = U (0, T) [ (Lege/ L ), (4.15)
with the effective length L defined as
Lo = [1 —exp(—al)]/c. (4.1.6)

Equation (4.1.4) shows that SPM gives rise to an intensity-dependent phase
shift but the pulse shape remains unaffected. The nonlinear phase shift ¢, in
Eq. (4.1.5) increases with fiber length L. The quantity L« plays the role of an
effective length that is smaller than L because of fiber losses. In the absence of
fiber losses, oc = 0, and L& = L. The maximum phase shift ¢max Occurs at the
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pulse center located at T = 0. With U normalized such that U (0,0)| =1, itis
given by

The physical meaning of the nonlinear length Ly, is clear from Eq. (4.1.7)—it
is the effective propagation distance at which ¢max = 1. If we use a typical
value y=2 W-tkm~1 in the 1.55-um wavelength region, L, =50 km at a
power level By = 10 mW and decreases inversely with an increase in R,

The SPM-induced spectral broadening is a consequence of the time de-
pendence of ¢, . This can be understood by noting that a temporally varying
phase implies that the instantaneous optical frequency differs across the pulse
from its central value w,. The difference dw is given by

90w (L) 9 2
So(T)=——7== (LNL> TV, (4.1.8)

where the minus sign is due to the choice of the factor exp(—iwyt) in Eq.
(2.3.2). The time dependence of dw is referred to as frequency chirping. The
chirp induced by SPM increases in magnitude with the propagated distance.
In other words, new frequency components are generated continuously as the
pulse propagates down the fiber. These SPM-generated frequency components
broaden the spectrum over its initial width at z= 0.

The extent of spectral broadening depends on the pulse shape. Consider,
for example, the case of a super-Gaussian pulse with the incident field U (0,T)
given by Eq. (3.2.23). The SPM-induced chirp d(T) for such a pulse is

2mlyg [T\ )"
So(T)==——2f (—) exp | — (—) , (4.1.9)
ToLne \To To

where m= 1 for a Gaussian pulse. For larger values of m, the incident pulse be-
comes nearly rectangular with increasingly steeper leading and trailing edges.
Figure 4.1 shows variation of the nonlinear phase shift ¢,, and the induced
frequency chirp dw across the pulse at L, = L, in the cases of a Gaussian
pulse (m= 1) and a super-Gaussian pulse (m= 3). As ¢ is directly propor-
tional to |U (0, T)|? in Eq. (4.1.5), its temporal variation is identical to that of
the pulse intensity. The temporal variation of the induced chirp S has sev-
eral interesting features. First, d w is negative near the leading edge (red shift)
and becomes positive near the trailing edge (blue shift) of the pulse. Second,
the chirp is linear and positive (up-chirp) over a large central region of the
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Figure 4.1 Temporal variation of SPM-induced phase shift ¢, and frequency chirp
d for Gaussian (dashed curve) and super-Gaussian (solid curve) pulses.

Gaussian pulse. Third, the chirp is considerably larger for pulses with steeper
leading and trailing edges. Fourth, super-Gaussian pulses behave differently
than Gaussian pulses because the chirp occurs only near pulse edges and does
not vary in a linear fashion.

4.1.2 Changesin Pulse Spectra

An estimate of the magnitude of SPM-induced spectral broadening can be ob-
tained from the peak value of dw in Fig. 4.1. More quantitatively, we can
calculate the peak value by maximizing dw(T) from Eq. (4.1.9). By setting its
time derivative to zero, the maximum value of d w is given by

mf (m)

T Omax (4.1.10)

00 max =
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where ¢max is given in Eq. (4.1.7) and f(m) is defined as

f(m =2 <1 — %) 171/2mexp [— <1 — %)] . (4.1.11)

The numerical value of f depends on monly slightly; f =0.86 for m= 1 and
tends toward 0.74 for large values of m. To obtain the broadening factor, the
width parameter T, should be related to the initial spectral width A, of the
pulse. For an unchirped Gaussian pulse, Aw, = TO—1 from Eg. (3.2.16), where
Ay is the 1/e half-width. Equation (4.1.10) then becomes (with m = 1)

showing that the spectral broadening factor is approximately given by the
numerical value of the maximum phase shift ¢max. In the case of a super-
Gaussian pulse, it is difficult to estimate Aw, because its spectrum is not
Gaussian. However, if we use Eq. (3.2.24) to obtain the rise time, T = T,/m,
and assume that Aw, approximately equals T71, Eq. (4.1.10) shows that the
broadening factor of a super-Gaussian pulse is also approximately given by
O max- With ¢ max ~ 100 possible for intense pulses or long fibers, SPM can
broaden the spectrum considerably. In the case of intense ultrashort pulses, the
broadened spectrum can extend over 100 THz or more, especially when SPM
is accompanied by other nonlinear processes such as stimulated Raman scat-
tering and four-wave mixing. Such an extreme spectral broadening is referred
to as supercontinuum [4].

The actual shape of the pulse spectrum S(w) is obtained by taking the
Fourier transform of Eq. (4.1.4). Using S(») = |U (L, ®)|?, we obtain

B 2
o) = ‘/_WU(O,T)exp[iq)NL(L,T) +i(0—wy)TldT| . (4.1.13)

In general, the spectrum depends not only on the pulse shape but also on the
initial chirp imposed on the pulse. Figure 4.2 shows the spectra of an unchirped
Gaussian pulse for several values of the maximum phase shift ¢max. For a
given fiber length, ¢ max increases linearly with peak power B according to
Eq. (4.1.7). Thus, spectral evolution seen in Fig. 4.2 can be observed experi-
mentally by increasing the peak power. Figure 4.3 shows the experimentally
observed spectra [9] of nearly Gaussian pulses (T, ~ 90 ps), obtained from
an argon-ion laser, at the output of a 99-m-long fiber with 3.35-um core di-
ameter (parameter V = 2.53). The experimental spectra are also labeled with
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Figure 4.2 SPM-broadened spectra for an unchirped Gaussian pulse. Spectra are
labeled by the maximum nonlinear phase shift ¢max. (After Ref. [9].)

¢ max and should be compared with the calculated spectra of Fig. 4.2. Slight
asymmetry seen in the experimental traces can be attributed to the asymmetric
shape of the incident pulse [9]. The overall agreement between theory and the
experiment is remarkably good.

The most notable feature of Figs. 4.2 and 4.3 is that SPM-induced spec-
tral broadening is accompanied by an oscillatory structure covering the entire
frequency range. In general, the spectrum consists of many peaks, and the out-
ermost peaks are the most intense. The number of peaks depends on ¢max and
increases linearly with it. The origin of the oscillatory structure can be under-
stood by referring to Fig. 4.1 where the time dependence of the SPM-induced
frequency chirp is shown. In general, the same chirp occurs at two values of
T, showing that the pulse has the same instantaneous frequency at two dis-
tinct points. Qualitatively speaking, these two points represent two waves
of the same frequency but different phases that can interfere constructively
or destructively depending on their relative phase difference. The multipeak
structure in the pulse spectrum is a result of such interference [1]. Mathemat-
ically, the Fourier integral in Eq. (4.1.13) gets dominant contributions at the
two values of T at which the chirp is the same. These contributions, being
complex quantities, may add up in phase or out of phase. Indeed, one can use
the method of stationary phase to obtain an analytic expression of S(w) that is
valid for large values of ¢ max. This expression shows that the number of peaks
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Figure 4.3 Experimentally observed spectra for a nearly Gaussian pulse at the output
of a 99-m-long fiber. Spectra are labeled by the maximum phase shift ¢ max related
linearly to the peak power. (After Ref. [9].)

M in the SPM-broadened spectrum is given approximately by the relation [3]
max ~ (M — 1) 7. (4.1.14)

Equation (4.1.14) together with Eq. (4.1.12) can be used to estimate the
initial spectral width Aw,, or the pulse width T, if the pulse is unchirped [6].
The method is accurate however only if ¢max > 1. To obtain a more accurate
measure of spectral broadening, one should use the RMS spectral width A
defined as

A = (0 — @p)?) = (0 — ap))?, (4.1.15)

where the angle brackets denote an average over the SPM-broadened spectrum
given in Eqg. (4.1.13). More specifically,

Jou(0— ap)"S(w)do
[~.Sw)dw '

(0—ap)" = (4.1.16)
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Figure4.4 Comparison of SPM-broadened spectra for unchirped Gaussian and super-
Gaussian pulses at a peak power corresponding to ¢max = 4.57.

Using a procedure similar to that of Section 3.3, the spectral broadening factor
for a Gaussian pulse is given by [10]

AWrms
Ay

4 1/2
:<1+ﬁ¢max> : (4.1.17)

where Aa, is the initial RMS spectral width of the pulse.

4.1.3 Effect of Pulse Shape and Initial Chirp

As mentioned before, the shape of the SPM-broadened spectrum depends on
the pulse shape and on the initial chirp if the input pulse is chirped [11]. Fig-
ure 4.4 compares the pulse spectra for Gaussian (m= 1) and super-Gaussian
(m = 3) pulses obtained using Eq. (3.2.23) in Eg. (4.1.13) and performing
the integration numerically. In both cases, input pulses are assumed to be
unchirped (C = 0). The fiber length and the peak power are chosen such that
®max = 4.5m. The qualitative differences between the two spectra can be un-
derstood by referring to Fig. 4.1, where the SPM-induced chirp is shown for
the Gaussian and super-Gaussian pulses. The spectral range is about three
times larger for the super-Gaussian pulse because the maximum chirp from
Eg. (4.1.10) is about three times larger in that case. Even though both spec-
tra in Fig. 4.4 exhibit five peaks, in agreement with Eq. (4.1.14), most of the
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Figure 4.5 Effect of initial frequency chirp on SPM-broadened spectra of a chirped
Gaussian pulse for C =5 and C = —5. The two spectra should be compared with the
left spectrum in Fig. 4.4 where C =0. In all cases ¢max = 4.57.

energy remains in the central peak for the super-Gaussian pulse. This is so
because the chirp is nearly zero over the central region in Fig. 4.1 for such
a pulse as a consequence of the nearly uniform intensity of a super-Gaussian
pulse for |T| < T,. The frequency chirp occurs mainly near the leading and
trailing edges. As these edges become steeper, the tails in Fig. 4.4 extend
over a longer frequency range but, at the same time, carry less energy because
chirping occurs over a small time duration.

An initial frequency chirp can also lead to drastic changes in the SPM-
broadened pulse spectrum. This is illustrated in Fig. 4.5, which shows the
spectra of a Gaussian pulse with positive and negative chirps [C = + 5 in Eq.
(3.2.23)] under conditions identical to those of Fig. 4.4, i.e., ¢max = 4.5m. A
comparison of these spectra with the spectrum of the unchirped Gaussian pulse
(left plot in Fig. 4.4) shows how the initial chirp leads to qualitative changes
in SPM-induced spectral broadening. A positive chirp increases the number of
spectral peaks while the opposite occurs in the case of a negative chirp. This
can be understood by noting that the SPM-induced frequency chirp is linear
and positive (frequency increases with increasing T) over the central portion
of a Gaussian pulse (see Fig. 4.1). Thus, it adds with the initial chirp for
C > 0, resulting in an enhanced oscillatory structure. In the case of C < 0, the
two chirp contributions are of opposite signs except near the pulse edges. The
outermost peaks in Fig. 4.5 for C = —5 are due to the residual chirp near the
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leading and trailing edges.

For negative values of the chirp parameter C, pulse spectrum at the fiber
output can become narrower than that of initially unchirped pulses. Such a
spectral narrowing has been seen experimentally using 100-fs pulses (emit-
ted from a mode-locked Ti:sapphire laser operating near 0.8 ptm) and chirping
them with a prism pair before launching them into a 48-cm-long fiber [11].
The 10.6-nm spectral width of input pulses was nearly unchanged at low peak
powers but became progressively smaller as the peak power was increased. It
reduced to 3.1 nm at a 1.6-kW peak power. The output spectral width also
changed with the fiber length at a given peak power and exhibited a minimum
value of 2.7 nm for a fiber length of 28 cm at the 1-kW peak power. The
spectrum rebroadened for longer fibers. These results can be understood qual-
itatively by noting that the spectrum narrows as long as the SPM-induced chirp
compensates the initial chirp. For a quantitative modeling of the experimental
data it is necessary to include the effects of GVD for 100-fs pulses used in the
experiment. This issue is covered in Section 4.2.

4.1.4 Effect of Partial Coherence

In the preceding discussion, SPM-induced spectral broadening occurs only for
optical pulses because, as seen in Eq. (4.1.5), the nonlinear phase shift mim-
ics temporal variations of the pulse shape. Indeed, the SPM-induced chirp in
Eg. (4.1.8) vanishes for continuous-wave (CW) radiation, implying that a CW
beam would not experience any spectral broadening in optical fibers. This
conclusion, however, is a consequence of an implicit assumption that the in-
put optical field is perfectly coherent. In practice, all optical beams are only
partially coherent. The degree of coherence for laser beams is large enough
that the effects of partial coherence are negligible in most cases of practical
interest. For example, SPM-induced spectral broadening of optical pulses is
relatively unaffected by the partial temporal coherence of the laser source as
long as the coherence time T; of the laser beam is much larger than the pulse
width T,.

When the coherence time becomes shorter than the pulse width, effects
of partial coherence must be included [12]-[18]. In the case of a CW beam,
SPM can lead to spectral broadening during its propagation inside an optical
fiber. The physical reason behind such broadening can be understood by noting
that partially coherent light exhibits both intensity and phase fluctuations. The
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Figure 4.6 SPM-induced spectral broadening of a partially coherent CW beam for
several values of Z. The curve marked Z = 0 shows the input Gaussian spectrum.

SPM converts intensity fluctuations into additional phase fluctuations [see Eq.
(4.1.5)] and broadens the optical spectrum. Alternatively, SPM reduces the
coherence time T as the CW beam propagates inside the fiber, making it less
and less coherent.

The optical spectrum of partially coherent light at the fiber output is ob-
tained using the Wiener—Khintchine theorem [19]:

S(o) = / " I(z7)exp(ior) dr, (4.1.18)
where the coherence function I'(z, 1) is defined as
I(z7)=(U*(zT)U(z T +1)). (4.1.19)

The optical field U(z T) inside the fiber at a distance z is known from Eq.
(4.1.4). The angle brackets denote an ensemble average over fluctuations in
the input field U (0, T). The statistical properties of U(0,T) depend on the
optical source and are generally quite different for laser and nonlaser sources.

The average in Eq. (4.1.19) can be performed analytically for thermal
sources because both the real and imaginary parts of U(0, T) follow a Gaus-
sian distribution for such a source. Even though the laser light used commonly
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in nonlinear-optics experiments is far from being thermal, it is instructive to
consider the case of a thermal field. The coherence function of Eq. (4.1.19) in
that specific case is found to evolve as [13]

['(Z,7) =T(0,7)[14+ Z%(1—|1(0,7)|?)] 2, (4.1.20)

where Z = L /L, is the normalized propagation distance. For a perfectly co-
herent field, T'(0, ) = 1. Equation (4.1.20) shows that such a field remains per-
fectly coherent on propagation. In contrast, partially coherent light becomes
progressively less coherent as it travels inside the fiber. Such a coherence
degradation can be understood by noting that SPM converts intensity fluctua-
tions into additional phase fluctuations, making light less coherent.

The spectrum is obtained by substituting Eq. (4.1.20) in Eq. (4.1.18). The
integral can be performed analytically in some specific cases [12], but in gen-
eral requires numerical evaluation (through the FFT algorithm, for example).
As an example, Fig. 4.6 shows the optical spectra at several propagation dis-
tances assuming a Gaussian form for the input coherence function,

(0, 7) = exp[—(72/2T2)], (4.1.21)

where T is the coherence time of the input field. As expected, shortening of the
coherence time is accompanied by SPM-induced spectral broadening. Little
broadening occurs until light has propagated a distance equal to the nonlinear
length Ly, , but the spectrum broadens by about a factor of 8 at Z=15. The
spectral shape is quite different qualitatively compared with those seen in Fig.
4.2 for the case of a completely coherent pulse. In particular, note the absence
of a multipeak structure.

One may ask how the SPM-broadened spectrum of an optical pulse is
affected by the partial coherence of the optical source. Numerical simula-
tions show that each peak of the multipeak structure seen in Fig. 4.2 begins to
broaden when the coherence time becomes comparable to or shorter than the
pulse width. As a result, individual peaks begin to merge together. In the limit
of very short coherence time, the multipeak structure disappears altogether,
and spectral broadening has features similar to those seen in Fig. 4.6. The
SPM-induced coherence degradation and the associated spectral broadening
has been observed experimentally by using stimulated Raman scattering (see
Chapter 8) as a source of partially coherent light [14].
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4.2 Effect of Group-Velocity Dispersion

The SPM effects discussed in Section 4.1 describe the propagation behavior
realistically only for relatively long pulses (T, > 100 ps) for which the dis-
persion length Ly is much larger compared with both the fiber length L and
the nonlinear length Ly, . As pulses become shorter and the dispersion length
becomes comparable to the fiber length, it becomes necessary to consider the
combined effects of GVD and SPM [8]. New qualitative features arise from
an interplay between GVD and SPM. In the anomalous-dispersion regime of
an optical fiber, the two phenomena can cooperate in such a way that the pulse
propagates as an optical soliton (Chapter 5). In the normal-dispersion regime,
the combined effects of GVD and SPM can be used for pulse compression.
This section considers the temporal and spectral changes that occur when the
effects of GVD are included in the description of SPM [20]-[31].

421 PulseEvolution

The starting point is the nonlinear Schrodinger (NLS) equation (2.3.41) or Eq.
(3.1.4). The later equation can be written in a normalized form as

_dU 102U 5 znii2
|% —sgn(ﬁz)EW—N e *U|°U, (4.2.1)

where & and 7 represent the normalized distance and time variables defined as
and the parameter N is introduced by using

N2 — Lo — YR TS
Lae 1Bl
The physical significance of N will become clear in Chapter 5 where the integer
values of N are found to be related to the soliton order. The practical signifi-
cance of the parameter N is that solutions of Eq. (4.2.1) obtained for a specific
N value are applicable to many practical situations through the scaling law of
Eq. (4.2.3). For example, if N =1 for T, =1 ps and B, = 1 W, the calculated
results apply equally well for T, = 10 ps and By = 10 mW or T, = 0.1 ps and
P, =100 W. As evident from Eq. (4.2.3), N governs the relative importance
of the SPM and GVD effects on pulse evolution along the fiber. Dispersion

. (4.2.3)
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Figure 4.7 Evolution of pulse shapes (upper plot) and optical spectra (lower plot)
over a distance of 5L for an initially unchirped Gaussian pulse propagating in the
normal-dispersion regime of the fiber (8, > 0) with parameters such that N = 1.

dominates for N < 1 while SPM dominates for N > 1. For values of N ~ 1,
both SPM and GVD play an equally important role during pulse evolution. In
Eq. (4.2.1), sgn(B,) = +1 depending on whether GVD is normal (B, > 0) or
anomalous (B, < 0). The split-step Fourier method of Section 2.4 can be used
to solve Eq. (4.2.1) numerically.

Figure 4.7 shows evolution of the shape and the spectrum of an initially
unchirped Gaussian pulse in the normal-dispersion regime of a fiber using
N =1 and o = 0. The qualitative behavior is quite different from that ex-
pected when either GVD or SPM dominates. In particular, the pulse broadens
much more rapidly compared with the N = 0 case (no SPM). This can be un-
derstood by noting that SPM generates new frequency components that are
red-shifted near the leading edge and blue-shifted near the trailing edge of the
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Figure 4.8 Evolution of pulse shapes (upper plot) and optical spectra (lower plot) un-
der conditions identical to those of Fig. 4.7 except that the Gaussian pulse propagates
in the anomalous-dispersion regime (3, < 0).

pulse. As the red components travel faster than the blue components in the
normal-dispersion regime, SPM leads to an enhanced rate of pulse broadening
compared with that expected from GVD alone. This in turn affects spectral
broadening as the SPM-induced phase shift ¢, becomes less than that occur-
ring if the pulse shape were to remain unchanged. Indeed, ¢max =5at z= 5L,
and a two-peak spectrum is expected in the absence of GVD. The single-peak
spectrum for z/Ly =5 in Fig. 4.7 implies that the effective ¢max is below 7
because of pulse broadening.

The situation is different for pulses propagating in the anomalous-dispersion
regime of the fiber. Figure 4.8 shows the pulse shapes and spectra under con-
ditions identical to those of Fig. 4.7 except that the sign of the GVD parameter
has been reversed (B, < 0). The pulse broadens initially at a rate much lower
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Figure 4.9 Broadening factor of Gaussian pulses in the cases of normal (3, > 0) and
anomalous (3, < 0) GVD. The parameter N = 1 in both cases. Dashed curve shows
for comparison the broadening expected in the absence of SPM (N = 0).

than that expected in the absence of SPM and then appears to reach a steady
state for z> 4L. At the same time, the spectrum narrows rather than exhibit-
ing broadening expected by SPM in the absence of GVD. This behavior can be
understood by noting that the SPM-induced chirp given by Eq. (4.1.9) is pos-
itive while the dispersion-induced chirp given by Eq. (3.2.13) is negative for
B, < 0. The two chirp contributions nearly cancel each other along the center
portion of the Gaussian pulse when Ly = L, (N =1). Pulse shape adjusts
itself during propagation to make such cancelation as complete as possible.
Thus, GVD and SPM cooperate with each other to maintain a chirp-free pulse.
The preceding scenario corresponds to soliton evolution; initial broadening of
the Gaussian pulse occurs because the Gaussian profile is not the characteristic
shape associated with a fundamental soliton. Indeed, if the input pulse is cho-
sen to be a “sech” pulse [Eq. (3.2.21) with C = 0], both its shape and spectrum
remain unchanged during propagation. When the input pulse deviates from a
‘sech’ shape, the combination of GVD and SPM affects the pulse in such a
way that it evolves to become a ‘sech’ pulse, as seen in Fig. 4.8. This aspect is
discussed in detail in Chapter 5.
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4.2.2 Broadening Factor

Figures 4.7 and 4.8 show that the main effect of SPM is to alter the broadening
rate imposed on the pulse by the GVD alone. Figure 4.9 shows the broaden-
ing factor o/c, as a function of z/L for N = 1 when unchirped Gaussian
pulses are launched into the fiber. Here o is the RMS width defined by Eqg.
(3.2.25) and oy is its initial value. The dashed line shows for comparison
the broadening factor in the absence of SPM (N = 0). The SPM enhances
the broadening rate in the normal-dispersion regime and decreases it in the
anomalous-dispersion regime. The slower broadening rate for 8, < 0 is use-
ful for 1.55-um optical communication systems for which 8, ~ —20 ps2/km
when standard fibers (the zero-dispersion wavelength near 1.3-um) are used.
The performance of such systems is dispersion limited to the extent that the bit
rate—distance product BL is typically below 100 (Gb/s)-km for chirped pulses
with C = —5. It has been shown that the BL product can be nearly doubled by
increasing the peak power in the range 20-30 mW [26]. This enhancement is
due to the SPM-induced pulse narrowing seen in Fig. 4.8 for the case 3, < 0.
It is generally necessary to solve Eq. (4.2.1) numerically to study the com-
bined effects of GVD and SPM. However, even an approximate analytic ex-
pression for the pulse width would be useful to see the functional dependence
of the broadening rate on various physical parameters. Several approaches
have been used to solve the NLS equation approximately [32]-[39]. A varia-
tional approach was used as early as 1983. It assumes that the pulse maintains
a certain shape during propagation inside the fiber while its width or chirp can
change with z. In the case of a Gaussian pulse of the form of Eq. (3.2.14), the
parameters T, and C are allowed to vary with z. Their evolution equations can
be obtained using the variational principle [32] or the path-integral formula-
tion [33]. This method is quite powerful because it provides physical insight
in the evolution behavior even for initially chirped pulses. However, its valid-
ity is limited to values of N < 1 for which the pulse shape does not change
drastically. This approach is also useful for solitons as discussed in Chapter 5.
In a different approach [35], the NLS equation is first solved by neglecting
the GVD effects. The result is used as the initial condition, and Eq. (4.2.1)
is solved again by neglecting the SPM effects. The approach is similar to the
split-step Fourier method of Section 2.4 except that the step size is equal to the
fiber length. The RMS pulse width can be calculated analytically by following
the method discussed in Section 3.3. In the case of an unchirped Gaussian
pulse incident at the input end of a fiber of length L, the broadening factor is
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given by [35]

211/2
"] . (424

GEO = 1+\/§¢maxi + < 3\/—¢max> L2
where @max IS the SPM-induced maximum phase shift given by Eq. (4.1.7).
This expression is fairly accurate for ¢pmax < 1.

In another approach, Eq. (4.2.1) is solved in the frequency domain [36].
Such a spectral approach shows that SPM can be viewed as a four-wave-mixing
process [22] in which two photons at pump frequencies are annihilated to cre-
ate two photons at frequencies shifted toward the blue and red sides. These
newly created spectral components result in SPM-induced spectral broaden-
ing of the pulse. The oscillatory structure of the SPM spectra is due to the
phase-matching requirement of four-wave mixing (see Chapter 10). Although
in general the equation describing evolution of the spectral components should
be solved numerically, it can be solved analytically in some cases if the pulse
shape is assumed not to change significantly.

Another method that has been used with success studies evolution of the
pth moment (TP) as defined in Eq. (3.2.26), using the NLS equation (3.1.1)
or (4.2.1). If the fiber loss is neglected assuming that it is compensated using
optical amplifiers and Eq. (3.1.1) is first multiplied by TPA* and then integrated
over T, (TP) evolves as [37]

d(TP) 0By [ p(ax9°A A
7 —ow | TP A ST AT daT, (4.2.5)

where W = [~_|A(z, T)|?dT represents the pulse energy that does not change
along the fiber in the absence of losses. The integral on the right-hand side
of Eqg. (4.2.5) can be evaluated in a closed form if we use Eq. (4.1.4) as the
approximate solution for A(z,T). This is a major simplification because it
amounts to assuming that the pulse shape does not change along the fiber.

With the preceding simplification, evolution of the RMS width of the pulse,
defined as 6 = [(T?) — (T)?]*/?, is governed by

do _ vB:S, (4.2.6)

dz 20 %

where S, depends on both the shape and the peak power of the input pulse and
is defined as

4
S= W/ A(Q,T)["dT. (4.2.7)
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Figure4.10 Evolution of an initially unchirped Gaussian pulse for N =30at z/L 5 =
0.1 in the normal-dispersion regime of an optical fiber.

Equation (4.2.6) can be integrated readily to obtain
0%(2) = o¢ + 3¥B, 7, (4.2.8)

where o, is the RMS width of the input pulse at z= 0. This remarkably simple
result can be used for any pulse shape after S, is calculated from Eq. (4.2.7). It
provides a reasonably accurate estimate of the pulse width when its predictions
are compared with the numerical results such as those shown in Fig. 4.9. A
variant of the moment method has been used to include the effects of fiber
losses and to predict not only the pulse width but also the spectral width and
the frequency chirp [38]. The moment method can also be used for dispersion-
managed lightwave systems in which optical amplifiers are used periodically
for compensating fiber losses [39]. See Chapter 7 of Part B for further details.

4.2.3 Optical Wave Breaking

Equation (4.2.1) suggests that the effects of SPM should dominate over those
of GVD for values of N > 1, at least during the initial stages of pulse evolution.
In fact, by introducing a new distance variable as Z = N?& = z/Ly. . Eq. (4.2.1)
can be written as

dU  do%U

v vy ¥ 2
15~ 552 TIUPU, (4.2.9)
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where fiber losses are neglected and d = 3, /(yP,T¢Z) is a small parameter.
Using the transformation

UzT) = /p@T) exp <i/OTv(z,T)dT>, (4.2.10)

in Eq. (4.2.9), the pulse-propagation problem reduces approximately to a fluid-
dynamics problem in which the variables p and v play, respectively, the role
of density and velocity of a fluid [40]. In the optical case, these variables rep-
resent the power and chirp profiles of the pulse. For a square-shape pulse, the
pulse-propagation problem becomes identical to the one related to “breaking
of a dam” and can be solved analytically. This solution is useful for light-
wave systems using the NRZ format and provides considerable physical in-
sight [41]-[43].

The approximate solution, although useful, does not account for a phe-
nomenon termed optical wave breaking [44]-[50]. It turns out that GVD can-
not be treated as a small perturbation even when N is large. The reason is that,
because of a large amount of the SPM-induced frequency chirp imposed on
the pulse, even weak dispersive effects lead to significant pulse shaping. In the
case of normal dispersion (3, > 0), the pulse becomes nearly rectangular with
relatively sharp leading and trailing edges and is accompanied by a linear chirp
across its entire width [20]. It is this linear chirp that can be used to compress
the pulse by passing it through a dispersive delay line.

The GVD-induced pulse shaping has another effect on pulse evolution. It
increases the importance of GVD because the second derivative in Eq. (4.2.1)
becomes large near the pulse edges. As a consequence, the pulse develops a
fine structure near its edges. Figure 4.10 shows pulse evolution for N = 30
for the case of an initially unchirped Gaussian pulse. The oscillatory structure
near pulse edges is present already at z/L, = 0.06. Further increase in z leads
to broadening of the pulse tails. Figure 4.11 shows the pulse shape and the
spectrum at z/L, = 0.08. The noteworthy feature is that rapid oscillations
near pulse edges are always accompanied by the sidelobes in the spectrum.
The central multipeak part of the spectrum is also considerably modified by
GVD. In particular, the minima are not as deep as expected from SPM alone.

The physical origin of temporal oscillations near the pulse edges is related
to optical wave breaking [44]. Both GVD and SPM impose frequency chirp on
the pulse as it travels down the fiber. However, as seen from Egs. (3.2.13) and
(4.1.9), although the GVD-induced chirp is linear with time, the SPM-induced
chirp is far from being linear across the entire pulse. Because of the nonlinear
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Figure4.11 Shape and spectrum of an initially unchirped (C = 0) Gaussian pulse at
z/L = 0.08. All parameters are identical to those of Fig. 4.10. Spectral sidelobes and
temporal structure near pulse edges are due to optical wave breaking.

nature of the composite chirp, different parts of the pulse propagate at different
speeds [49]. In particular, in the case of normal GVD (B, > 0), the red-shifted
light near the leading edge travels faster and overtakes the unshifted light in the
forward tail of the pulse. The opposite occurs for the blue-shifted light near
the trailing edge. In both cases, the leading and trailing regions of the pulse
contain light at two different frequencies that interfere. Oscillations near the
pulse edges in Fig. 4.10 are a result of such interference.

The phenomenon of optical wave breaking can also be understood as a
four-wave-mixing process (see Section 10.1). Nonlinear mixing of two dif-
ferent frequencies w, and w, in the pulse tails creates new frequencies at
20, — w, and 2w, — w;. The spectral sidelobes in Fig. 4.11 represent these
new frequency components. Temporal oscillations near pulse edges and the
spectral sidelobes are manifestations of the same phenomenon. It is interest-
ing to note that optical wave breaking does not occur in the case of anomalous
GVD. The reason is that the red-shifted part of the pulse cannot take over the
fast-moving forward tail. Instead, the energy in the pulse tail spreads out, and
the pulse acquires a pedestal [49].

The results shown in Figs. 4.10 and 4.11 are obtained for an unchirped
pulse (C = 0). Pulses emitted from practical laser sources are often chirped
and may follow quite a different evolution pattern depending on the sign and
magnitude of the chirp parameter C [46]. Figure 4.12 shows the pulse shape
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Figure4.12 Pulse shape and spectrum under conditions identical to those of Fig. 4.11
except that the input Gaussian pulse is chirped with C = 20.

and the spectrum under conditions identical to those of Fig. 4.11 except for the
chirp parameter, which has a value C = 20. A comparison of the two figures
illustrates how much an initial chirp can modify the propagation behavior. For
an initially chirped pulse, the shape becomes nearly triangular rather than rect-
angular. At the same time, the spectrum exhibits an oscillatory structure in the
wings while the central SPM-like structure (seen in Fig. 4.11 for the case of
an unchirped pulse) has almost disappeared. These changes in the pulse shape
and spectrum can be understood qualitatively by recalling that a positive initial
chirp adds to the SPM-induced chirp. As a result, optical wave breaking sets in
earlier for chirped pulses. Pulse evolution is also sensitive to fiber losses. For
an actual comparison between theory and experiment it is necessary to include
both the chirp and losses in numerical simulations.

4.24 Experimental Results

The combined effects of GVD and SPM in optical fibers were first observed
in an experiment in which 5.5-ps (FWHM) pulses from a mode-locked dye
laser (at 587 nm) were propagated through a 70-m fiber [20]. For an input
peak power of 10 W (N = 7), output pulses were nearly rectangular and had a
positive linear chirp. The pulse shape was deduced from autocorrelation mea-
surements as pulses were too short to be measured directly (see Section 3.3.4).
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Figure 4.13 Output spectrum of 35-ps input pulses showing SPM-induced spectral
broadening. Initial pulse spectrum is also shown for comparison. (After Ref. [44].)

In a later experiment, much wider pulses (FWHM == 150 ps) from a Nd:YAG
laser operating at 1.06 um were transmitted through a 20-km-long fiber [23].
As the peak power of the input pulses was increased from 1 to 40 W (cor-
responding to N in the range 20-150), the output pulses broadened, became
nearly rectangular and then developed substructure near its edges, resulting in
an evolution pattern similar to that shown in Fig. 4.10. For such long fibers,
it is necessary to include fiber losses. The experimental results were indeed in
good agreement with the predictions of Eq. (4.2.1).

The evidence of optical wave breaking was seen in an experiment in which
35-ps (FWHM) pulses at 532 nm (from a frequency-doubled Nd:YAG laser)
with peak powers of 235 W were propagated through a 93.5-m-long polariza-
tion-maintaining fiber [44]. Figure 4.13 shows the experimentally observed
spectrum of the output pulses. Even though N ~ 173 in this experiment, the
formal similarity with the spectrum shown in Fig. 4.11 is evident. In fact, the
phenomenon of optical wave breaking was discovered in an attempt to explain
the presence of the sidelobes in Fig. 4.13. In a 1988 experiment [47], the fre-
guency chirp across the pulse was directly measured by using a combination of
a streak camera and a spectrograph. The spectral sidelobes associated with the
optical wave breaking were indeed found to be correlated with the generation
of new frequencies near the pulse edges. In a later experiment [48], rapid oscil-
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lations across the leading and trailing edges of the optical pulse were directly
observed by using a cross-correlation technique that permitted subpicosecond
resolution. The experimental results were in excellent agreement with the pre-
dictions of Eq. (4.2.1).

4.25 Effect of Third-Order Dispersion

If the optical wavelength A, nearly coincides with the zero-dispersion wave-
length A so that B, ~ 0, it is necessary to include the effects of third-order
dispersion (TOD) on SPM-induced spectral broadening [51]-[60]. The pulse-
propagation equation is obtained from Eq. (2.3.34) by setting 3, = 0 and ne-
glecting the higher-order nonlinear terms. If we introduce the dispersion length
Ly from Eq. (3.3.3) and define &’ = z/L, as the normalized distance, we obtain

U iU o 2

where )
N2 Lo _ 7T

Ly 1Bl

Similar to Eq. (4.2.1), the parameter N governs the relative importance of the
GVD and SPM effects during pulse evolution; GVD dominates for N <« 1
while SPM dominates for N > 1. Equation (4.2.11) can be solved numerically
using the split-step Fourier method of Section 2.4. In the following discussion
we assume f3; > 0 and neglect fiber losses by setting oz = 0.

Figure 4.14 shows the shape and the spectrum of an initially unchirped
Gaussian pulse at &’ =5 for the case N = 1. The pulse shape should be com-
pared with that shown in Fig. 3.6 where SPM effects were absent (N = 0). The
effect of SPM is to increase the number of oscillations seen near the trailing
edge of the pulse. At the same time, the intensity does not become zero at
the oscillation minima. The effect of GVD on the spectrum is also evident in
Fig. 4.14. In the absence of GVD, a symmetric two-peak spectrum is expected
(similar to the one shown in Fig. 4.2 for the case ¢max = 1.57) since @ max =5
for the parameter values used in Fig. 4.14. The effect of GVD is to introduce
spectral asymmetry without affecting the two-peak structure. This behavior is
in sharp contrast with the one shown in Fig. 4.6 for the normal-dispersion case
where GVD hindered splitting of the spectrum.

Pulse evolution exhibits qualitatively different features for large values of
N. As an example, Fig. 4.15 shows the shape and spectrum of an initially

. (4.2.12)
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Figure 4.14 Pulse shape and spectrum of unchirped Gaussian pulses propagating
exactly at the zero-dispersion wavelength with N = 1 and z=5L,.

unchirped Gaussian pulse at & = 0.1 for the case N = 10. The pulse devel-
ops an oscillatory structure with deep modulation. Because of rapid temporal
variations, the third derivative in Eq. (4.2.11) becomes large locally, and the
GVD effects become more important as the pulse propagates inside the fiber.
The most noteworthy feature of the spectrum is that the pulse energy becomes
concentrated in two spectral bands, a feature common for all values ofN > 1.
As one of the spectral bands lies in the anomalous-dispersion regime, the pulse
energy in that band can form a soliton [59]. The energy in the other spectral
band, lying in the normal-dispersion regime of the fiber, disperses with prop-
agation. The soliton-related features are discussed later in Chapter 5. The
important point to note is that, because of SPM-induced spectral broadening,
the pulse does not really propagate at the zero-dispersion wavelength even if
B, =~ Oinitially. In effect, the pulse creates its own 3, through SPM. Roughly
speaking, the effective value of 3, is given by

|B,| = B3| wmax /2], (4.2.13)

where & wmay is the maximum chirp given by Eq. (4.1.10). Physically, 8, is
determined by the position of the dominant outermost spectral peaks in the
SPM-broadened spectrum.

In dispersion-managed fiber links, B, is large locally but nearly vanishes
on average. The effects of TOD play an important role in such links, especially
for short optical pulses [61]. The spectral and temporal evolution depends on
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Figure4.15 Pulse shape and spectrum under conditions identical to those of Fig. 4.14
except that N = 10 and z/Lj, = 0.1.

whether the dispersion-compensating fiber (DCF) is placed before or after the
the standard fiber (pre- or postcompensation). In the case of postcompensation,
the pulse develops an oscillating tail because of TOD and exhibits spectral
narrowing. These features have been seen experimentally by transmitting 0.4-
ps pulses over a 2.5-km-long dispersion-compensated fiber link.

4.3 Higher-Order Nonlinear Effects

The discussion of SPM so far is based on the simplified propagation equation
(2.3.41). For ultrashort optical pulses (T, < 1 ps), it is necessary to include the
higher-order nonlinear effects through Eq. (2.3.39). If Eq. (3.1.3) is used to
define the normalized amplitude U, this equation takes the form

U iSQn(ﬁz) 9°U _sgn(B;) U
0z 2L, J1%2 6Ly o7°
Rl ST I 8|U|2)
+|—LNL (|U|U+|saf(|U|U) 75U 5 ) (4.3.1)

where L, Lp, and Ly, are the three length scales defined as

T2 T3
Ly =2, H=_9 L (4.3.2)
° 1B, SN NG
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The parameters s and 7z govern the effects of self-steepening and intrapulse
Raman scattering, respectively, and are defined as
1 T
@y To To
Both of these effects are quite small for picosecond pulses but must be consid-
ered for ultrashort pulses with T, < 0.1 ps.

(4.3.3)

4.3.1 Sef-Steepening

Self-steepening results from the intensity dependence of the group velocity
[62]-[65]. Its effects on SPM were first considered in liquid nonlinear me-
dia [2] and later extended to optical fibers [66]-[70]. Self-steepening leads to
an asymmetry in the SPM-broadened spectra of ultrashort pulses [71]-[75].
Before solving Eq. (4.3.1) numerically, it is instructive to consider the dis-

persionless case by setting 8, = B; = 0. Equation (4.3.1) can be solved ana-
lytically in this specific case if we also set 7; = 0 [64]. Defining a normalized
distance as Z = z/L,,, and neglecting fiber losses (ot = 0), Eq. (4.3.1) becomes

ou d 2 -

57 +s$(|u| U)=ilU|°U. (4.3.4)
Using U = V1 exp(i¢) in Eq. (4.3.4) and separating the real and imaginary
parts, we obtain the following two equations:

dl dl
99 90

Since the intensity equation (4.3.5) is decoupled from the phase equation (4.3.6),
it can be solved easily using the method of characteristics. Its general solution
is given by [66]

1(Z,7) = f(1—3812), (4.3.7)
where we used the initial condition 1(0,7) = f(t), where f(t) describes the
pulse shape at z= 0. Equation (4.3.7) shows that each point T moves along a
straight line from its initial value, and the slope of the line is intensity depen-
dent. This feature leads to pulse distortion. As an example, consider the case
of a Gaussian pulse for which

1(0,7) = f(1) = exp(—1?). (4.3.8)
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Figure 4.16 Self-steepening of a Gaussian pulse in the dispersionless case. Dashed
curve shows the input pulse shape at z= 0.

From Eq. (4.3.7), the pulse shape at a distance Z is obtained by using
1(Z,7) = exp[—(7 —3s12)3]. (4.3.9)

The implicit relation for I (Z, ) should be solved for each 7 to obtain the
pulse shape at a given value of Z. Figure 4.16 shows the calculated pulse
shapes at sZ = 0.1 and 0.2 for s= 0.01. As the pulse propagates inside the
fiber, it becomes asymmetric, with its peak shifting toward the trailing edge.
As a result, the trailing edge becomes steeper and steeper with increasing Z.
Physically, the group velocity of the pulse is intensity dependent such that the
peak moves at a lower speed than the wings.

Self-steepening of the pulse eventually creates an optical shock, analo-
gous to the development of an acoustic shock on the leading edge of a sound
wave [64]. The distance at which the shock is formed is obtained from Eq.
(4.3.9) by requiring that d1/dt be infinite at the shock location. It is given
by [67]

1/2 Ly,

zs= (g) L~ 0.39(Ly /9)- (4.3.10)

A similar relation holds for a “sech” pulse with only a slight change in the nu-
merical coefficient (0.43 in place of 0.39). For picosecond pulses with T, =1
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Figure4.17 Spectrum of a Gaussian pulse at a distance z=0.2L ,, /s, where s=0.01
and Ly, is the nonlinear length. Self-steepening is responsible for the asymmetry in
the SPM-broadened spectrum. The effects of GVD are neglected.

ps and Py ~ 1 W, the shock occurs at a distance zs ~ 100 km. However, for
femtosecond pulses with T, < 100 fs and B, > 1 KW, zs becomes < 1 m. As
a result, significant self-steepening of the pulse can occur in a few-centimeter-
long fiber. Optical shocks with an infinitely sharp trailing edge never occur in
practice because of the GVD; as the pulse edge becomes steeper, the disper-
sive terms in Eq. (4.3.1) become increasingly more important and cannot be
ignored. The shock distance zg is also affected by fiber losses o. In the dis-
persionless case, fiber losses delay the formation of optical shocks; if oz > 1,
the shock does not develop at all [67].

Self-steepening also affects SPM-induced spectral broadening. In the dis-
persionless case, ¢(z, t) is obtained by solving Eq. (4.3.6). It can then be used
to calculate the spectrum using

2

S(w) = ‘/_Z[l (7)Y explio(z,7) +i(0 — wy)7]d1] . (4.3.11)

Figure 4.17 shows the calculated spectrum at sz/L,, = 0.2 for s=0.01. The
most notable feature is spectral asymmetry— the red-shifted peaks are more
intense than blue-shifted peaks. The other notable feature is that SPM-induced
spectral broadening is larger on the blue side (called the anti-Stokes side in
the terminology used for stimulated Raman scattering) than the red side (or
the Stokes side). Both of these features can be understood qualitatively from
the changes in the pulse shape induced by self-steepening. The spectrum is
asymmetric simply because pulse shape is asymmetric. A steeper trailing edge
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Figure 4.18 Pulse shapes and spectra at z/L, = 0.2 (upper row) and 0.4 (lower row)
for a Gaussian pulse propagating in the normal-dispersion regime of the fiber. The
other parameters are o = 0, B; =0, s=0.01, and N = 10.

of the pulse implies larger spectral broadening on the blue side as SPM gen-
erates blue components near the trailing edge (see Fig. 4.1). In the absence
of self-steepening (s = 0), a symmetric six-peak spectrum is expected be-
cause ¢max = 6.4r for the parameter values used in Fig. 4.17. Self-steepening
stretches the blue portion. The amplitude of the high-frequency peaks de-
creases because the same energy is distributed over a wider spectral range.

4.3.2 Effect of GVD on Optical Shocks

The spectral features seen in Fig. 4.17 are considerably affected by GVD,
which cannot be ignored when short optical pulses propagate inside silica
fibers [76]-[83]. The pulse evolution in this case is studied by solving Eq.
(4.3.1) numerically. Figure 4.18 shows the pulse shapes and the spectra at
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Figure 4.19 Experimentally observed spectra of 40-fs input pulses at the output of a
7-mm-long fiber. Spectra are labeled by the peak intensity of input pulses. The top
spectrum corresponds to N = 7.7. (After Ref. [76].)

z/L, = 0.2 and 0.4 in the case of an initially unchirped Gaussian pulse propa-
gating with normal dispersion (8, > 0) and 3; = 0. The parameter N defined in
Eq. (4.2.3) is taken to be 10, resulting in Ly = 100L,, . In the absence of GVD
(B, = 0), the pulse shape and the spectrum shown in the upper row of Fig.
4.18 reduce to those shown in Figs. 4.16 and 4.17 in the case of sz/L, =0.2.
A direct comparison shows that both the shape and spectrum are significantly
affected by GVD even though the propagation distance is only a fraction of the
dispersion length (z/Ly = 0.2). The lower row of Fig. 4.18 shows the pulse
shape and spectrum at z/L, = 0.4; the qualitative changes induced by GVD
are self-evident. For this value of z/L;,, the propagation distance z exceeds the
shock distance z given by Eq. (4.3.10). It is the GVD that dissipates the shock
by broadening the steepened trailing edge, a feature clearly seen in the asym-
metric pulse shapes of Fig. 4.18. Although the pulse spectra do not exhibit
deep oscillations (seen in Fig. 4.17 for the dispersionless case), the longer tail
on the blue side is a manifestation of self-steepening. With a further increase in
the propagation distance z, the pulse continues to broaden while the spectrum
remains nearly unchanged.

The effect of self-steepening on pulse evolution has been seen experimen-
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tally in liquids and solids as a larger spectral broadening on the blue side com-
pared with that on the red side [4]. In these early experiments, GVD played
a relatively minor role, and the spectral structure similar to that of Fig. 4.17
was observed. In the case of optical fibers, the GVD effects are strong enough
that the spectra similar to those of Fig. 4.18 are expected to occur in practice.
In an experiment on pulse compression [76], 40-fs optical pulses at 620 nm
were propagated over a 7-mme-long fiber. Figure 4.19 shows the experimen-
tally observed spectra at the fiber output for several values of peak intensities.
The spectrum broadens asymmetrically with a longer tail on the blue side than
on the red side. This feature is due to self-steepening. In this experiment, the
self-steepening parameter s~ 0.026, and the dispersion length Ly ~ 1 cm if
we use T, = 24 fs (corresponding to a FWHM of 40 fs for a Gaussian pulse).
Assuming an effective core area of 10 um?, the peak power corresponding to
the top trace of Fig. 4.19 is about 200 kW. This value results in a nonlinear
length Ly, ~ 0.16 mm and N = 7.7. Equation (4.3.1) can be used to simu-
late the experiment by using these parameter values. Inclusion of the 5 term
is generally necessary to reproduce the detailed features of the experimen-
tally observed spectra of Fig. 4.19 [69]. Similar conclusions were reached in
another experiment in which asymmetric spectral broadening of 55-fs pulses
from a 620-nm dye laser was observed in a 11-mm-long optical fiber [77].

4.3.3 Intrapulse Raman Scattering

The discussion so far has neglected the last term in Eq. (4.3.1) that is respon-
sible for intrapulse Raman scattering. In the case of optical fibers, this term
becomes quite important for ultrashort optical pulses (T, < 1 ps) and should
be included in modeling pulse evolution of such short pulses in optical fibers
[79]-[83]. The effects of intrapulse Raman scattering are most dramatic in
the context of solitons, where they lead to new phenomena such as decay and
self-frequency shift of solitons (see Chapter 5). However, even in the case
of normal GVD, the inclusion of both self-steepening and intrapulse Raman
scattering is essential for an agreement between theory and experiments.
Figure 4.20(a) shows the experimentally recorded pulse spectrum after
109-fs “sech’ pulses (T, ~ 60 fs) with 7.4 KW peak power were sent through a
6-m-long fiber [83]. The fiber had j3,, ~ 4 ps?/km and f3, ~ 0.06 ps®/km at the
1260-nm wavelength used in this experiment. The three traces b—d show the
prediction of Eq. (4.3.1) under three different conditions. Both self-steepening
and intrapulse Raman scattering were neglected in the trace b and included in
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Figure 4.20 Experimental spectrum of 109-fs input pulses at the output of a 6-m-
long fiber (a) and predictions of the generalized NLS equation with (b) s= 75 =0, ()
s=0, and (d) both sand 7t nonzero. Letters (A)—(E) mark different spectral features
observed experimentally. (After Ref. [83].)

the trace d, while only the latter was included in the trace c. All experimen-
tal features, marked as (A)—(E), were reproduced only when both higher-order
nonlinear effects were included in the model. Inclusion of the fourth-order
dispersion was also necessary for a good agreement. Even the predicted pulse
shapes were in agreement with the cross-correlation traces obtained experi-
mentally.

The SPM and other nonlinear effects such as stimulated Raman scatter-
ing and four-wave mixing, occurring simultaneously inside optical fibers, can
broaden the spectrum of an ultrashort pulse so much that it may extend over
100 nm or more. Such extreme spectral broadening is called supercontinuum,
a phenomenon that attracted considerable attention during the 1990s because
of its potential applications [84]-[93]. Pulse spectra extending over as much as
300 nm have been generated using various types of optical fibers. Among other
applications, supercontinuum is useful for WDM lightwave systems because
its spectral filtering can provide an optical source capable of emitting synchro-
nized pulse trains at hundreds of wavelengths simultaneously [86]-[88].
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Problems

41

4.2

4.3
4.4

4.5

4.6

4.7

4.8

A 1.06-um Q-switched Nd:YAG laser emits unchirped Gaussian pulse
with 1-nJ energy and 100-ps width (FWHM). Pulses are transmitted
through a 1-km-long fiber having a loss of 3 dB/km and an effective
core area of 20 um?. Calculate the maximum values of the nonlinear
phase shift and the frequency chirp at the fiber output.

Use a fast-Fourier-transform algorithm to calculate the spectrum of the
chirped output pulse of Problem 4.1. Does the number of spectral peaks
agree with the prediction of Eq. (4.1.14)?

Repeat Problem 4.1 for a hyperbolic-secant pulse.

Determine the shape, width, and peak power of the optical pulse that
will produce a linear chirp at the rate of 1 GHz/ps over a 100-ps region
when transmitted through the fiber of Problem 4.1.

Calculate numerically the SPM-broadened spectra of a super-Gaussian
pulse (m= 3) for C = —5, 0, and 5. Assume a peak power such that
®max = 4.5m. Compare your spectra with those shown in Fig. 4.5 and
comment on the main qualitative differences.

Use the split-step Fourier method of Section 2.4 for solving Eq. (4.2.1)
numerically. Generate curves similar to those shown in Figs. 4.7 and 4.8
for a “sech’ pulse using N =1 and oc = 0. Compare your results with the
Gaussian-pulse case and discuss the differences qualitatively.

Use the computer program developed for Problem 4.7 to study numeri-
cally optical wave breaking for an unchirped super-Gaussian pulse with
m= 3 by using N = 30 and e = 0. Compare your results with those
shown in Figs. 4.10 and 4.11 for a Gaussian pulse.

Show that the solution (4.3.9) is indeed the solution of Eq. (4.3.4) for
an input Gaussian pulse. Calculate the phase profile ¢(Z,7) at sZ = 0.2
analytically (if possible) or numerically.
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Chapter 5

Optical Solitons

A fascinating manifestation of the fiber nonlinearity occurs through optical
solitons, formed as aresult of the interplay between the dispersive and nonlin-
ear effects. The word soliton refers to special kinds of wave packets that can
propagate undistorted over long distances. Solitons have been discovered in
many branches of physics. In the context of optical fibers, not only are soli-
tons of fundamental interest but they have also found practical applications in
the field of fiber-optic communications. This chapter is devoted to the study
of pulse propagation in optical fibers in the regime in which both the group-
velocity dispersion (GVD) and self-phase modulation (SPM) are equally im-
portant and must be considered simultaneously.

The chapter isorganized asfollows. Section 5.1 considers the phenomenon
of modulation instability and shows that propagation of a continuous-wave
(CW) beam inside optical fibersisinherently unstable because of the nonlinear
phenomenon of SPM and leads to formation of a pulse train in the anomal ous-
dispersion regime of optical fibers. Section 5.2 discusses the inverse-scattering
method and uses it to obtain soliton solutions of the underlying wave-propaga-
tion equation. The properties of the fundamental and higher-order solitons are
considered in this section. Section 5.3 is devoted to other kinds of solitons
forming in optical fibers, with emphasis on dark solitons. Section 5.4 consid-
ers the effects of external perturbations on solitons. Perturbations discussed
include fiber losses, amplification of solitons, and noise introduced by optical
amplifiers. Higher-order nonlinear effects such as self-stegpening and intra-
pulse Raman scattering are the focus of Section 5.5.
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5.1 Modulation Instability

Many nonlinear systems exhibit an instability that leads to modulation of the
steady state as a result of an interplay between the nonlinear and dispersive
effects [1]-{30]. This phenomenon is referred to as the modulation instability
and was studied during the 1960s in such diverse fields as fluid dynamics [2]—
[4], nonlinear optics [5]-{7] and plasma physics [8]-{11]. In the context of
optical fibers, modulation instability requires anomalous dispersion and man-
ifests itself as breakup of the CW or quasi-CW radiation into atrain of ultra-
short pulses. This section discusses modulation instability in optical fibers as
an introduction to soliton theory.

5.1.1 Linear Stability Analysis

Consider propagation of CW light inside an optical fiber. The starting point is
the simplified propagation equation (2.3.41). If fiber losses are ignored, this
equation takes the form
2
iaa—i = %%‘ — 7|AI2A, (5.1.1)

and is referred to as the nonlinear Schrodinger (NLS) equation in the soliton
literature. As discussed in Section 2.3, A(z, T) represents the amplitude of
the pulse envelope, B, is the GVD parameter, and the nonlinear parameter
v is responsible for SPM. In the case of CW radiation, the amplitude A is
independent of T at the input end of the fiber at z= 0. Assuming that A(z, T)
remains time independent during propagation inside the fiber, Eq. (5.1.1) is
readily solved to obtain the steady-state solution

A= \/Poexp(igy,), (5.1.2)

where P, is the incident power and ¢, = yP,z is the nonlinear phase shift
induced by SPM. Equation (5.1.2) implies that CW light should propagate
through the fiber unchanged except for acquiring a power-dependent phase
shift (and for reduction in power in the presence of fiber losses).

Before reaching this conclusion, however, we must ask whether the steady-
state solution (5.1.2) is stable against small perturbations. To answer this ques-
tion, we perturb the steady state slightly such that

A= (/Po+a)exp(igy,) (5.1.3)
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and examine evolution of the perturbation a(z, T) using alinear stability anal-
ysis. Substituting Eqg. (5.1.3) in Eq. (5.1.1) and linearizing in a, we obtain
da f,d% .
== 5W—yP0(a+a ). (5.1.9)
This linear equation can be solved easily in the frequency domain. However,
because of the a* term, the Fourier components at frequencies Q and —Q are
coupled. Thus, we should consider its solution in the form

a(z,T) =a, exp[i(Kz— QT)] + a, exp[—i(Kz— QT)], (5.15)

where K and Q are the wave number and the frequency of perturbation, re-
spectively. Equations (5.1.4) and (5.1.5) provide a set of two homogeneous
equations for a, and a,. This set has a nontrivia solution only when K and Q
satisfy the following dispersion relation

K = +3B,Q/[Q°+son(B,) QZ]"?, (5.1.6)
where sgn(3,) = +1 depending on the sign of 3,,
4yP 4
Q2=—"0___" (5.1.7)
1Bl Bl

and the nonlinear length L, is defined by Eq. (3.1.5). Because of the factor
expli(Byz— wyt)] that has been factored out in Eq. (2.3.21), the actual wave
number and the frequency of perturbation are 8,4 K and w4, respectively.
With this factor in mind, the two terms in Eq. (5.1.5) represent two different
frequency components, w,+ Q2 and w, — Q, that are present simultaneously.
It will be seen later that these frequency components correspond to the two
spectral sidebands that are generated when modulation instability occurs.

The dispersion relation (5.1.6) shows that steady-state stability depends
critically on whether light experiences normal or anomalous GVD inside the
fiber. In the case of normal GVD (B, > 0), the wave number K is rea for
al Q, and the steady state is stable against small perturbations. By contrast,
in the case of anomalous GVD (B, < 0), K becomes imaginary for |Q| <
Qc, and the perturbation a(z T) grows exponentialy with z as seen from Eq.
(5.1.5). Asaresult, the CW solution (5.1.2) isinherently unstable for 3, < O.
This instahility is referred to as modulation instability because it leads to a
spontaneous temporal modulation of the CW beam and transforms it into a
pulsetrain. Similar instabilities occur in many other nonlinear systems and are
often called self-pulsing instabilities [31]{34].
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Figure5.1 Gain spectra of modulation instability at three power levels for an optical
fiber with B, = —20 ps?/km and y = 2 W~1/km.

5.1.2 Gain Spectrum

The gain spectrum of modulation instability is obtained from Eq. (5.1.6) by
setting sgn(B,) = —1 and g(2) = 2Im(K), where the factor of 2 converts g to
power gain. Thegain exists only if |Q| < Q¢ and is given by

9(Q) = |B,Q|(QZ— QY2 (5.1.8)

Figure 5.1 shows the gain spectra at three power levels using parameter values
appropriate for standard silica fibers in the wavelength region near 1.55 um.
The gain spectrum is symmetric with respect to Q = 0 such that g(€2) vanishes
at Q = 0. The gain becomes maximum at two frequencies given by

Q¢ (Zypo> 12
Qo= +— =+ L8 , 5.19
ma =+ 5=+ 1y (519
with apeak value
Omax = 9(Qmax) = 51,/QZ = 2/, (5.1.10)

where Eq. (5.1.7) was used to relate Q¢ to R,. The peak gain isindependent of
the GVD parameter 3, and increases linearly with the incident power.
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The modulation-instability gain isaffected by the loss parameter o that has
been neglected in the derivation of Eq. (5.1.8). Themain effect of fiber lossesis
to decrease the gain along fiber length because of reduced power [15]-{17]. In
effect, Q¢ in Eq. (5.1.8) isreplaced by Qcexp(—az/2). Modulation instability
still occurs as long as oLy, < 1. The effect of higher-order dispersive and
nonlinear effects such as salf-steepening and intrapulse Raman scattering can
also beincluded using Eg. (2.3.39) in place of Eq. (5.1.1) as the starting point
[20]22]. The third-order dispersion 3, does not affect the gain spectrum
of modulation instability. The main effect of self-stegpening is to reduce the
growth rate and the frequency range over which gain occurs from the values
seeninFig. 5.1. Equation (5.1.8) provides asimple estimate of the modul ation-
instability gain in most cases of practical interest.

As discussed in Chapter 10, modulation instability can be interpreted in
terms of afour-wave-mixing process that is phase-matched by SPM. If aprobe
wave at afrequency @, = w,+ Q were to copropagate with the CW beam at
o, it would experience anet power gain given by Eq. (5.1.8) aslong as |Q2| <
Q.. Physically, the energy of two photons from the intense pump beam is used
to create two different photons, one at the probe frequency w, and the other at
the idler frequency 2w, — w,. The case in which a probe is launched together
with the intense pump wave is referred to as induced modulation instability.

Even when the pump wave propagates by itself, modulation instability can
lead to spontaneous breakup of the CW beam into a periodic pulse train. Noise
photons (vacuum fluctuations) act as a probe in this situation and are amplified
by the gain provided by modulation instability. Asthe largest gain occurs for
frequencies % Qmax, Where Qmg is given by Eq. (5.1.9), these frequency
components are amplified most. Thus, a clear-cut evidence of spontaneous
modulation instability at the fiber output is provided by two spectral sidebands
located symmetrically at +Qmac on each side of the central line at ;. In
the time domain, the CW beam is converted into a periodic pulse train with a
period Tm = 27/ Qumax.

One may wonder whether modulation instability can occur in the normal-
dispersion region of optical fibers under certain conditions. It turns out that
cross-phase modulation, occurring when two optical beams at different wave-
lengths or with orthogonal polarizations propagate simultaneously, can lead
to modulation instability even in normally dispersive fibers. This case is dis-
cussed in Chapters 6 and 7. Even a single CW beam can become unstable
in normally dispersive media if the medium response is sluggish. The gain
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Figure5.2 Autocorrelation trace and optical spectrum of 100-psinput pulses showing
evidence of modulation instability at a peak power of 7.1 W. (After Ref. [18].)

peak occurs at afrequency Qmax = TN—Ll, where T, isthe nonlinear response
time [30]. For silicafibers Ty, is so short (afew femtoseconds) and Qmax is
so large that even the use of the NLS equation becomes guestionable. How-
ever, when such fibers are doped with other materials (rare-earth ions, dyes, or
semiconductors), it may be possible to observe the effects of afinite nonlinear

response time.

5.1.3 Experimental Observation

Modulation instability in the anomalous-dispersion regime of optical fibers
was first observed in an experiment in which 100-ps (FWHM) pulses from
a Nd:YAG laser operating at 1.319 um were transmitted through a 1-km-
long fiber having B, ~ —3 ps?/km [18]. Figure 5.2 shows the autocorrelation
trace and the optical spectrum measured at the fiber output for a peak power
P, = 7.1 W. The location of spectral sidebands is in agreement with the pre-
diction of Eq. (5.1.9). Furthermore, the interval between the oscillation peaks
in the autocorrelation trace isinversely related to Qmax as predicted by theory.
The secondary sidebands seen in Fig. 5.2 are also expected when pump de-
pletion isincluded. In this experiment, it was necessary to use 100-ps pulses
rather than CW radiation to avoid stimulated Brillouin scattering (see Chapter
9). However, asthe modulation period is ~1 ps, the relatively broad 100-psin-
put pulses provide a quasi-CW environment for the observation of modulation
instability.

In arelated experiment, modulation instability was induced by sending a
weak CW probe wave together with the intense pump pulses [19]. The probe
was obtained from a single-mode semiconductor laser whose wavelength could
be tuned over a few nanometers in the vicinity of the pump wavelength. The
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Figure5.3 Autocorrelation traces showing induced modulation instability at two dif-
ferent probe wavelengths. The modulation period can be adjusted by tuning the semi-
conductor laser acting as a probe (after Ref. [18].)

CW probe power of 0.5 mW was much smaller compared with the pump-
pulse peak power of Ry =3 W. However, its presence led to breakup of each
pump pulse into a periodic pulse train whose period was inversely related to
the frequency difference between the pump and probe waves. Moreover, the
period could be adjusted by tuning the wavelength of the probe laser. Figure
5.3 shows the autocorrelation traces for two different probe wavelengths. As
the observed pulse width is < 1 ps, this technique is useful for generating
subpicosecond pulses whose repetition rate can be controlled by tuning the
probe wavelength.

When optical pulses with widths <100 ps are used, modulation instabil-
ity can be initiated by SPM. If spectral broadening induced by SPM is large
enough to exceed Qmax, the SPM-generated frequency components near Qmax
can act as a probe and get amplified by modulation instability. This phe-
nomenon is called SPM-induced modulation instability. One can estimate the
fiber length L at which the spectral width approaches Qmax by using 8 @ max
from Eqg. (4.1.9) and requiring that Qmax &~ 0 ® max. IN the case of a Gaussian
pulse this condition is satisfied when

L~ (2LpLy )Y, (5.1.12)

where L = TZ/|B,| isthe dispersion length introduced in Section 3.1. Numer-
ical solutions of Eg. (5.1.1) confirm the occurrence of SPM-induced modula-
tion instability [23]. In particular, the input pul se devel ops deep modul ations at
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the frequency Qmax/2m and the spectrum exhibits sidelobes at that frequency.
The SPM-induced modulation instability has also been observed experimen-
tally [23].

5.1.4 Ultrashort Pulse Generation

The linear stability analysis of the steady-state solution of Eq. (5.1.1) provides
only the initial exponential growth of weak perturbations with the power gain
given by Eq. (5.1.8). Clearly, an exponential growth cannot be sustained in-
definitely because the frequency components at @, + € grow at the expense
of the pump wave at w, and pump depletion slows down the growth rate.
Moreover, the sidebands at w,+ Q eventually become strong enough, and
the perturbation becomes large enough, that the linear stability analysis breaks
down. Evolution of the modulated state is then governed by the NL S equation
(5.1.1). A simple approach solves this equation in the frequency domain as a
four-wave mixing problem [29]; it is discussed in detail in Chapter 10. The
main disadvantage of this approach isthat it cannot treat generation of higher-
order sidebands located at wy,+mQ (m= 2,3,...) that are invariably created
when the first-order sidebands (m = 1) become strong.

The time-domain approach solves the NLS equation directly. Numerical
solutions of Eq. (5.1.1) obtained with the input corresponding to a CW beam
with weak sinusoidal modulation imposed on it show that the nearly CW beam
evolves into atrain of narrow pulses, separated by the period of initial modu-
lation [14]. The fiber length required to realize such atrain of narrow pulses
depends on the initial modulation depth and is typically ~ 5L5. With fur-
ther propagation, the multipeak structure deforms and eventually returns to the
initial input form. This behavior is found to be generic when Eq. (5.1.1) is
solved by considering arbitrary periodic modulation of the steady state [35].
The foregoing scenario suggests that the NL S equation should have periodic
solutions whose form changes with propagation. Indeed, it turns out that the
NLS equation has a multiparameter family of periodic solutions [35]{43]. In
their most general form, these solutions are expressed in the form of Jacobian
elliptic functions. In some specific cases, the solution can be written in terms
of trigonometric and hyperbolic functions [39].

From apractical standpoint, with a proper choice of fiber length, modula-
tion instability can be used for generating atrain of short optical pulses whose
repetition rate can be externally controlled. As early as 1989, 130-fs pulses at
a 2-THz repetition rate were generated through induced modulation instabil-
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ity [44]. Since then, this technique has been used to create optical sources ca-
pable of producing periodic trains of ultrashort pulses at high but controllable
repetition rates. Several experiments have used dispersion-decreasing fibers
for this purpose [45]—-{49]. Initial sinusoidal modulation in these experiments
was imposed by beating two optical signals. In a 1992 experiment [46], the
outputs of two distributed feedback semiconductor lasers, operating continu-
oudly at dlightly different wavelengths near 1.55 um, were combined in afiber
coupler to produce a sinusoidally modulated signal at a beat frequency that
could be varied in the 70-90 GHz range by controlling the laser temperature.
The beat signal was amplified to power levels ~0.3 W by using a fiber ampli-
fier and then propagated through a 1-km dispersion-shifted fiber, followed by a
dispersion-decreasing fiber whose GV D decreased from 10 to 0.5 ps/(km-nm)
over alength of 1.6 km. The output consisted of a high-quality pulse train at
70 GHz with individual pulses of 1.3-ps width. By 1993, this technique led to
generation of a 250-fs pulse train at repetition rates 80-120 GHz [49].

The use of a dispersion-decreasing fiber is not essential for producing
pulse trains through modulation instability. In an interesting experiment, a
comb-like dispersion profile was produced by splicing pieces of low- and high-
dispersion fibers [50]. A dual-frequency fiber laser was used to generate the
high-power signal modulated at a frequency equal to the longitudinal-mode
spacing (59 GHz). When such amodulated signal was launched into the fiber,
the output consisted of a 2.2-ps pulse train at the 59-GHz repetition rate. In
another experiment [51], aperiodic train of 1.3-ps pulses at the 123-GHz repe-
tition rate was generated by launching the high-power beat signal into a 5-km-
long dispersion-shifted fiber. The experimental results werein good agreement
with the numerical simulations based on the NL S equation.

The main problem with the preceding technique is that its use requires a
relatively long fiber (~5 km) and relatively high input powers (~100 mW)
for the pulse train to build up. This problem can be solved by enclosing the
fiber within a cavity. The gain provided by modulation instability converts
such adevice into a self-pulsing laser. As early as 1988, aring-cavity config-
uration was used to generate a pulse train through modulation instability [52].
Sine then, modulation instability occurring inside an optical resonator has at-
tracted considerable attention [53]-[57]. Mathematical treatment in the case
of a Fabry—Perot resonator is quite cumbersome because one must use a set of
two coupled NL S equations for the counterpropagating optical fields. It turns
out that modulation instability can occur even in the normal-dispersion regime
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of the fiber because of the feedback provided by cavity mirrors[54]. Moreover,
the relatively small feedback occurring at the fiber—air interface (about 4%) is
enough for this fundamental change to occur [55]. As a result, a self-pulsing
fiber laser can be made without actually using any mirrors. Numerical and an-
alytical results show that such alaser can generate ultrashort pulse trains with
repetition rates in the THz range by using CW pump beams with power levels
~10 mW [56].

5.1.5 Impact on Lightwave Systems

Modulation instability affects the performance of long-haul optical communi-
cation systems in which fiber loss is compensated periodically using optical
amplifiers [58]-{65]. Computer simulations showed as early as 1990 that it
can be a limiting factor for systems employing the nonreturn-to-zero (NRZ)
format for data transmission [58]. Since then, the impact of modulation in-
stability has been studied both numerically and experimentaly [63]. Physi-
cally, spontaneous emission of amplifiers can provide a seed for the growth
of sidebands through induced modulation instability. As aresult, signal spec-
trum broadens substantially. Since GV D-induced broadening of optical pulses
depends on their bandwidth, this effect degrades system performance. Exper-
imental results on a lightwave system operating at 10 Gh/s showed consider-
able degradation for atransmission distance of only 455 km[62]. Asexpected,
system performance improved when GVD was compensated partially using a
dispersion-compensating fiber.

The use of optical amplifiers can induce modulation instability through
another mechanism and generate additional sidebands in which noise can be
amplified in both the normal and anomalous GV D regime of optical fibers[59].
The new mechanism hasits origin in the periodic sawtoothlike variation of the
average power P, occurring along the link length. To understand the physics
more clearly, note that a periodic variation of R in zis equivalent to the cre-
ation of anonlinear index grating because the term ¥R in Eq. (5.1.4) becomes
a periodic function of z. The period of this grating is equal to the amplifier
spacing and is typicaly in the range 40-50 km. Such a long-period grating
provides a new coupling mechanism between the spectral sidebands located at
wy + Q and w, — Q and allows them to grow when the perturbation frequency
Q satisfies the Bragg condition.

Theanalysis of Section 5.1.1 can be extended to include periodic variations
of R,. If we replace R, in Eq. (5.1.4) by R,f(2), where f(z) is a periodic



M odulation I nstability 145

function, expand f(z) in a Fourier series as f(z) =3 cmexp(2rimz/L,), the
frequencies at which the gain peaks are found to be [59]

1/2
2nm _ m) / (5.1.12)

Boln B

where the integer m represents the order of Bragg diffraction, L, isthe spacing
between amplifiers (grating period), and the Fourier coefficient ¢, isrelated to
the fiber loss o as

_1- exp(—al,)

. . 5.1.13
ol,+2imr ( )

In the absence of grating, or when m= 0, Q, exists only for anomalous dis-
persion, in agreement with Eq. (5.1.9). However, when m # 0, modulation-
instability sidebands can occur even for normal dispersion (8, > 0). Physi-
cally, this behavior can be understood by noting that the nonlinear index grat-
ing helpsto satisfy the phase-matching condition necessary for four-wave mix-
ing when m # 0. Fortunately, this phenomenon is not likely to affect system
performance significantly because neither the amplifier spacing nor the fiber
parameters are uniform in practice.

With the advent of wavelength-division multiplexing (WDM), it has be-
come common to employ the technique of dispersion management to reduce
the GV D globally while keeping it high locally by using a periodic dispersion
map. The periodic variation of 3, creates another grating that affects modu-
lation instability considerably. Mathematically, the situation is similar to the
case already discussed except that 3, rather than R, in Eq. (5.1.4) isaperiodic
function of z. The gain spectrum of modulation instability is obtained follow-
ing asimilar technique [61]. The 8, grating not only generates new sidebands
but also affects the gain spectrum seen in Fig. 5.1. In the case of strong disper-
sion management (relatively large GVD variations), both the peak value and
the bandwidth of the modulation-instability gain are reduced, indicating that
such systems should not suffer much from amplification of noise induced by
modulation instability. This does not mean dispersion-managed WDM sys-
tems are immune to modulation instability. Indeed, it has been shown that
WDM systems suffer from a resonant enhancement of four-wave mixing that
degrades the system performance considerably when channel spacing is close
to the frequency at which the modulation-instability gain is strongest [65]. On
the positive side, this enhancement can be used for low-power, high-efficiency,
wavelength conversion [66]. Modulation instability has also been used for



146 Optical Solitons

measuring the distribution of zero-dispersion wavelength along a fiber by not-
ing that the instability gain becomes quite small in the vicinity of || = 0[67].

5.2 Fibe Solitons

The occurrence of modulation instability inthe anomal ous-GV D regime of op-
tical fibersis an indication of afundamentally different character of Eq. (5.1.1)
when 3, < 0. It turns out that this equation has specific pulselike solutions that
either do not change along fiber length or follow a periodic evolution pattern—
such solutions are known as optical solitons. The history of solitons, in fact,
dates back to 1834, the year in which Scott Russell observed a heap of water
in acanal that propagated undistorted over several kilometers. Here is a quote
from his report published in 1844 [68]:

| was observing the motion of aboat which wasrapidly drawn
along a narrow channel by a pair of horses, when the boat sud-
denly stopped—not so the mass of water in the channdl which it
had put in motion; it accumulated round the prow of the vessel in
a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large soli-
tary elevation, arounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without
change of form or diminution of speed. | followed it on horseback,
and overtook it still rolling on at arate of some eight or nine miles
an hour, preserving its original figure some thirty feet long and a
foot to afoot and ahalf in height. Its height gradually diminished,
and after a chase of one or two miles| lost it in the windings of the
channel. Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon which |
have called the Wave of Trandation.

Such waves were later called solitary waves. However, their properties
were not understood completely until the inverse scattering method was devel -
oped [69]. Theterm soliton was coined in 1965 to reflect the particlelike nature
of those solitary waves that remained intact even after mutual collisions [70].
Since then, solitons have been discovered and studied in many branches of
physics including optics [71]-{79]. In the context of optica fibers, the use
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of solitons for optical communications was first suggested in 1973 [80]. By
the year 1999, several field trials making use of fiber solitons have been com-
pleted [81]. The word “soliton” has become so popular in recent years that a
search on the Internet returns thousands of hits. Similarly, scientific databases
reveal that hundreds of research papers are published every year with the word
“soliton” in their title. It should be stressed that the distinction between a soli-
ton and a solitary wave is not always made in modern optics literature, and it
is quite common to refer to all solitary waves as solitons.

5.2.1 Inverse Scattering Method

Only certain nonlinear wave equations can be solved by the inverse scattering
method [71]. The NLS equation (5.1.1) belongs to this special class of equa-
tions. Zakharov and Shabat used the inverse scattering method in 1971 to solve
the NLS equation [82]. Thismethod issimilar in spirit to the Fourier-transform
method used commonly for solving linear partial differential equations. The
approach consists of identifying a suitable scattering problem whose potential
is the solution sought. The incident field at z= 0 is used to find the initial
scattering data whose evolution along zis easily determined by solving the lin-
ear scattering problem. The propagated field is reconstructed from the evolved
scattering data. Since details of the inverse scattering method are available in
many texts [71]-{79], only a brief description is given here.

Similar to Chapter 4, it is useful to normalize Eqg. (5.1.1) by introducing
three dimensionless variables

A z T
U= — = — = — 521
\/ﬁc)? 5 LD7 T T07 ( )
and writeit in the form
. JU 102U
— = ~Z — —NYU? 2.2
Iaigf Sgn(ﬁZ)z 81’2 |U| U’ (5 )

where P, is the pesk power, T, is the width of the incident pulse, and the
parameter N isintroduced as

Lp _ 7"301_02
I‘NL |ﬁ2| .

The dispersion length L and the nonlinear length L, are defined as in Eq.
(3.1.5). Fiber losses are neglected in this section but will be included later.

N2 = (5.2.3)
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The parameter N can be eliminated from Eq. (5.2.2) by introducing
u=NU = /7L, A (5.2.4)
Equation (5.2.2) then takes the standard form of the NL S equation:

2
ig—g+%%+|u|2u:o, (5.2.5)
where the choice sgn(f,) = —1 has been made to focus on the case of anoma-
lous GVD; the other case is considered in the next section. Note that an im-
portant scaling relation holds for Eq. (5.2.5). If u(§, 1) is a solution of this
equation, then eu(e2&, 1) is also a solution, where ¢ is an arbitrary scaling
factor. The importance of this scaling will become clear later.

In the inverse scattering method, the scattering problem associated with
Eq. (5.2.5) is[77]

.d
|% +uv, = §vy, (5.2.6)
.d
|a—\;2 +u'v; = =V, (5.2.7)

where v, and v, are the amplitudes of the two waves scattered by the potential
u(é, 7). The eigenvalue ¢ plays arole similar to that played by the frequency
in the standard Fourier analysis except that { can take complex values when
u # 0. Thisfeature can beidentified by noting that, in the absence of potential
(u=0), v, and v, vary asexp(+i{T).

Equations (5.2.6) and (5.2.7) apply for al values of . In the inverse scat-
tering method, they arefirst solved at £ = 0. For agiven initia form of u(0, 7),
Egs. (5.2.6) and (5.2.7) are solved to obtain the initial scattering data. The
direct scattering problem is characterized by a reflection coefficient r({) that
plays arole analogous to the Fourier coefficient. Formation of the bound states
(solitons) corresponds to the poles of r(&) in the complex ¢ plane. Thus, the
initial scattering data consist of the reflection coefficient r({), the complex
poles Cj, and their residues G, where j = 1to N if N such poles exist. Al-
though the parameter N of Eq. (5.2.3) is not necessarily an integer, the same
notation is used for the number of poles to stress that its integer values deter-
mine the number of poles.

Evolution of the scattering data along the fiber length is determined by us-
ing well-known techniques [71]. The desired solution u(&, 7) is reconstructed
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from the evolved scattering data using the inverse scattering method. This step
is quite cumbersome mathematically because it requires the solution of acom-
plicated linear integral equation. However, in the specific case in which r({)
vanishes for theinitial potential u(0, 7), the solution u(&, ) can be determined
by solving a set of algebraic equations. This case corresponds to solitons. The
soliton order is characterized by the number N of poles, or eigenvalues g (j=
1-N). The general solution can be written as[82]

N
j=1
where
A=\ /eiexp(igT+igfe), (5.2.9)
and ys3; is obtained by solving the following set of algebraic linear equations:
N AA
LZE + VY= (0} (5.2.10)
k=1 Cj o Ck
N AfA
W= Y iy = AL (5.2.11)
ot & G

The eigenvalues Cj are generally complex (ZCj = 6j +inj). Physically, thereal

part 5j produces a change in the group vel ocity associated with the jth compo-
nent of the soliton. For the Nth-order soliton to remain bound, it is necessary
that all of its components travel at the same speed. Thus, al eigenvalues { J-

should lie on aline paralld to the imaginary axis, i.e., 6J = ¢ for all j. This
feature simplifies the general solution in Eq. (5.2.9) considerably. It will be
seen later that the parameter § represents a frequency shift of the soliton from
the carrier frequency .

5.2.2 Fundamental Soliton

The first-order soliton (N = 1) corresponds to the case of a single eigenvalue.
Itisreferred to asthe fundamental soliton because its shape does not change on
propagation. Its field distribution is obtained from Egs. (5.2.8)—(5.2.11) after
setting j = k= 1. Noting that ys,, = A,(1+|4,|*/n?) 1 and subdtituting it in
Eq. (5.2.8), we obtain

U(E,7) = —2(A1)2(1+ Ay */n*) 7" (5.2.12)
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After using Eq. (5.2.9) for A, together with §; = (6 +in)/2 and introducing the
parameters s and ¢s through —c, /n = exp(n ts—i¢s), we obtain the following
general form of the fundamental soliton:

u(é,7) = nsech[n(t — s+ 8&)]expli(n®— 82 /2—idt+igg, (5.2.13)

where 11, 8, s, and ¢s are four arbitrary parameters that characterize the soli-
ton. Thus, an optical fiber supports a four-parameter family of fundamental
solitons, all sharing the condition N = 1.

Physically, the four parameters i1, 8, s, and ¢s represent amplitude, fre-
guency, position, and phase of the soliton, respectively. The phase ¢s can be
dropped from the discussion because a constant absol ute phase has no physical
significance. It will become relevant later when nonlinear interaction between
apair of solitons is considered. The parameter 75 can also be dropped because
it denotes the position of the soliton peak: If the origin of timeis chosen such
that the peak occursat T =0at & = 0, one can set 75 = 0. It is clear from the
phase factor in Eq. (5.2.13) that the parameter 6 represents afrequency shift of
the soliton from the carrier frequency . Using the carrier part, exp(—iw,t),
the new frequency becomes wg = @, + 6/T,. Note that a frequency shift also
changes the soliton speed from its original value \. This can be seen more
clearly by using 7 = (t — 3,2)/T, in Eq. (5.2.13) and writing it as

|u(&, 7) = nsech[n(t— B12) /Ty, (5.2.14)

where B; = B, + 6|B,|/T,. As expected on physical grounds, the change in
group velocity (vy = 1/,) is aconsequence of fiber dispersion.

The frequency shift 6 can also be removed from Eq. (5.2.13) by choosing
the carrier frequency appropriately. Fundamental solitons then form a single-
parameter family described by

u(&,7) = nsech(nt)exp(in¢/2). (5.2.15)

The parameter 1) determines not only the soliton amplitude but also its width.
In real units, the soliton width changes with n as T,/n, i.e., it scales inversely
with the soliton amplitude. This inverse relationship between the amplitude
and the width of a soliton isthe most crucial property of solitons. Its relevance
will become clear later. The canonical form of the fundamental soliton is ob-
tained by choosing u(0,0) = 1 so that n = 1. With this choice, Eq. (5.2.15)
becomes

u(&, ) = sech(t)exp(i&/2). (5.2.16)
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One can verify by direct substitution in Eg. (5.2.5) that this solution is indeed
asolution of the NLS equation.

The solution in Eq. (5.2.16) can also be obtained by solving the NLS equa-
tion directly, without using the inverse scattering method. The approach con-
sists of assuming that a shape-preserving solution of the NL S equation exists
and has the form

U(é,”L’) :V(T) eXp[I(P(é,T)], (5.2.17)

whereV isindependent of & for Eq. (5.2.17) to represent afundamental soliton
that maintains its shape during propagation. The phase ¢ can depend on both
& and 7. If Eq. (5.2.17) is substituted in Eq. (5.2.5) and the real and imaginary
parts are separated, one obtains two equations for V and ¢. The phase equation
shows that ¢ should be of the form ¢(&,7) = KE — 61, where K and 6 are
constants. Choosing 6 = 0 (no frequency shift), V() isfound to satisfy

d?v

— = (K-V?). 2.1

gz = V(K-V?) (5:218)
This nonlinear equation can be solved by multiplying it by 2(dV /dt) and
integrating over 7. Theresult is

(dV /d7)? = 2KVZ —V* 4-C, (5.2.19)

where C isaconstant of integration. Using the boundary condition that both V
and dV /dt vanish as|t| — e, Cisfound to be 0. The constant K is determined
from the condition that V = 1 and dV /d7 = 0 at the soliton peak, assumed to
occur a 7 =0. Itsuse providesK = % and hence ¢ = & /2. Equation (5.2.19)
is easily integrated to obtain V(1) = sech(7). We have thus recovered the
solution in Eq. (5.2.16) using a simple technique.

In the context of optical fibers, the solution (5.2.16) indicates that if a
hyperbolic-secant pulse, whose width T, and the peak power R, are chosen
such that N = 1 in Eq. (5.2.3), is launched inside an ideal lossess fiber, the
pulse will propagate undistorted without change in shape for arbitrarily long
distances. It isthisfeature of the fundamental solitons that makes them attrac-
tive for optical communication systems [80]. The peak power R required to
support the fundamental soliton is obtained from Eq. (5.2.3) by setting N = 1
and is given by

_ 1By 311B,|

o V1§ - YTévhm

(5.2.20)
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Figure 5.4 Temporal evolution over one soliton period for the third-order soliton.
Note pulse splitting near z, = 0.5 and soliton recovery beyond that.

where the FWHM of the soliton is defined using Tov ~ 1.76T, from Eq.
(8.2.22). Using typical parameter values, 8, = —1 ps?/km and y = 3 W~Y/km
for dispersion-shifted fibers near the 1.55-um wavelength, B is ~ 1 W for
Ty = 1 ps but reduces to only 10 mW when T, = 10 ps because of its TO—2
dependence. Thus, fundamenta solitons can form in optical fibers at power
levels available from semiconductor lasers even at ardatively high bit rate of
20 Gb/s.

5.2.3 Higher-Order Solitons

Higher-order solitons are also described by the general solution of Eq. (5.2.8).
Various combinations of the eigenvalues 1; and the residues ¢; generally lead
to aninfinite variety of soliton forms. If the soliton is assumed to be symmetric
about T = 0, the residues are related to the eigenvalues by the relation [83]

_TIi (nj+1y)

= . (5.2.21)
DT Iny -

This condition selects a subset of al possible solitons. Among this subset, a
special role is played by solitons whose initial shape at £ = 0 is given by

u(0, ) = Nsech(7), (5.2.22)
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Figure5.5 Spectral evolution over one soliton period for the third-order soliton.

wherethe soliton order N isan integer. The peak power necessary to launch the
Nth-order soliton is obtained from Eq. (5.2.3) and is N? times of that required

for the fundamental soliton. For the second-order soliton (N = 2), the field
distribution is obtained from Egs. (5.2.8)(5.2.11). Using § =i/2 and {, =

3i/2 for the two eigenvalues, the second-order soliton is given by [84]

_4[cosn(37) +3exp(4i&) cosh(7)] exp(i& /2)
u(e,7) = [cosh(47) + 4cosh(27) + 3cos(4&)] (5223)

An interesting property of the forementioned solution is that |u(&, 7) is
periodic in & with the period & = /2. In fact, this periodicity occurs for
all higher-order solitons. Using the definition § = z/L, from Eq. (5.2.1), the
soliton period z, in real units becomes

T2 T2
ML =20 o JFwhM (5.2.24)

=2 T 218 Y 2y

Periodic evolution of athird-order soliton over one soliton period is shown in
Fig. 5.4. Asthe pulse propagates along the fiber, it first contracts to a fraction
of itsinitial width, splitsinto two distinct pulses at z,/2, and then merges again
to recover the original shape at the end of the soliton period at z= z,. This
pattern is repeated over each section of length z,.

To understand the origin of periodic evolution for higher-order solitons, it
ishelpful tolook at changesin the pulse spectrashowninFig. 5.5 for theN =3
soliton. The temporal and spectral changes result from an interplay between
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SPM and GVD. The SPM generates a frequency chirp such that the leading
edge of soliton is red-shifted while its trailing-edge is blue-shifted from the
central frequency. The SPM-induced spectral broadening is clearly seen in
Fig. 5.5 for z/z, = 0.2 with its typical oscillatory structure. In the absence of
GVD, the pulse shape would have remained unchanged. However, anomalous
GVD contracts the pulse as the pulse is positively chirped (see Section 3.2).
Only the central portion of the pulse contracts because the chirp is nearly linear
only over that part. However, as aresult of a substantial increase in the pulse
intensity near the central part of the pulse, the spectrum changes significantly
as seen in Fig. 5.5 for z/z, = 0.3. It is this mutual interaction between the
GVD and SPM effects that is responsible for the evolution pattern seen in Fig.
54.

In the case of afundamental soliton (N = 1), GVD and SPM balance each
other in such away that neither the pul se shape nor the pulse spectrum changes
along the fiber length. In the case of higher-order solitons, SPM dominates
initially but GVD soon catches up and leads to pulse contraction seen in Fig.
5.4. Soliton theory shows that for pulses with a hyperbolic-secant shape and
with peak powers determined from Eq. (5.2.3), the two effects can cooperate
in such away that the pulse follows a periodic evolution pattern with original
shape recurring at multiples of the soliton period z, given by Eq. (5.2.24).
Near the 1.55-um wavelength, typically 8, = —20 ps?/km for standard silica
fibers. The soliton period is ~ 80 m for T, = 1 ps and scales as T2, becoming
8 km when T, = 10 ps. For dispersion-shifted fibers with 8, ~ —2 ps?/km, z,
increases by one order of magnitude for the same value of T .

5.2.4 Experimental Confirmation

The possibility of soliton formation in optical fibers was suggested as early
as 1973 [80]. However, the lack of a suitable source of picosecond optical
pulses at wavelengths >1.3 um delayed their experimental observation until
1980. Solitons in optical fibers were first observed in an experiment [85] that
used a mode-locked color-center laser capable of emitting short optical pulses
(Tewum = 7 ps) near 1.55 um, awavelength near which optical fibers exhibit
anomalous GV D together with minimum losses. The pulses were propagated
inside a 700-m-long single-mode fiber with a core diameter of 9.3 um. The
fiber parameters for this experiment were estimated to be f3, ~ —20 ps?/ km
and y~ 1.3 W-Ykm. Using To =4 psin Eq. (5.2.20), the peak power for
exciting afundamental solitonis~ 1W.
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Figure5.6 Autocorrelation traces (lower row) and pulse spectra (upper row) for sev-
eral values of input peak power P,. The corresponding traces for the input pulse are
shown inside the rectangular box. (After Ref. [85].)

In the experiment, the peak power of optical pulses wasvaried over arange
0.3-25 W, and their pulse shape and spectrum were monitored at the fiber out-
put. Figure 5.6 shows autocorrelation traces and pul se spectra at several power
levels and compares them with those of the input pulse. The measured spec-
tral width of 25 GHz of the input pulse is nearly transform limited, indicating
that mode-locked pulses used in the experiment were unchirped. At a low
power level of 0.3 W, optical pulses experienced dispersion-induced broaden-
ing inside the fiber, as expected from Section 3.2. However, as the power was
increased, output pulses steadily narrowed, and their width became the same as
the input width at By = 1.2 W. This power level corresponds to the formation
of afundamental soliton and should be compared with the theoretical value of
1 W obtained from Eqg. (5.2.20). The agreement is quite good in spite of many
uncertainties inherent in the experiment.

At higher power levels, output pulses exhibited dramatic changes in their
shape and developed a multipeak structure. For example, the autocorrelation
trace for 11.4 W exhibits three peaks. Such athree-peak structure corresponds
to two-fold splitting of the pulse, similar to that seenin Fig. 5.4 near z/z, = 0.5
for the third-order soliton. The observed spectrum also shows characteristic
features seen in Fig. 5.5 near z/z, = 0.5. The estimated soliton period for
this experiment is 1.26 km. Thus, at the fiber output z/z, = 0.55 for the 700-
m-long fiber used in the experiment. As the power level of 11.4 W is aso
nearly nine times the fundamental soliton power, the data of Fig. 5.6 indeed
correspond to the N = 3 soliton. This conclusion is further corroborated by
the autocorrelation trace for Ry = 22.5 W. The observed five-peak structure
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corresponds to three-fold splitting of the laser pulse, in agreement with the
prediction of soliton theory for the fourth-order soliton (N = 4).

The periodic nature of higher-order solitons implies that the pulse should
restore its origina shape and spectrum at distances that are multiples of the
soliton period. This feature was observed for second- and third-order solitons
in a 1983 experiment in which the fiber length of 1.3 km corresponded to
nearly one soliton period [86]. In a different experiment, initial narrowing of
higher-order solitons, seenin Fig. 5.4 for N = 3, was observed for values of N
up to 13 [87]. Higher-order solitons also formed inside the cavity of a mode-
locked dye laser operating in the visible region near 620 nm by incorporating
an optical element with negative GVD inside thelaser cavity [88]. Such alaser
emitted asymmetric second-order solitons, under certain operating conditions,
as predicted by inverse scattering theory.

525 Soliton Stability

A natural question iswhat happens if the initial pulse shape or the peak power
is not matched to that required by Eq. (5.2.22) so that the input pulse does
not correspond to an optical soliton. Similarly, one may ask how the soliton is
affected if it is perturbed during its propagation inside the fiber. Such questions
are answered by using perturbation methods developed for solitons and are
discussed later in Section 5.4. This section focus on formation of solitons
when the parameters of an input pulse do not correspond to a soliton.
Consider first the case when the peak power is not exactly matched and
the value of N obtained from Eq. (5.2.3) is not an integer. Soliton perturbation
theory has been used to study this case [84]. Because details are cumbersome,
only results are summarized here. In physical terms, the pulse adjusts its shape
and width as it propagates along the fiber and evolves into a soliton. A part of
the pulse energy is dispersed away in the process. This part is known as the
continuum radiation. It separates from the soliton as £ increases and its contri-
bution to soliton decays as £~1/2. For & > 1, the pulse evolves asymptotically
into a soliton whose order is an integer N closest to the launched value of N.
Mathematically, if
N=N+e, |e]<1/2 (5.2.25)

the soliton part corresponds to an initial pulse shape of the form

u(0,7) = (N4 2¢) sech[(1+ 2¢/N)1]. (5.2.26)
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The pulse broadens if € < 0 and narrows if € > 0. No soliton is formed when
N <1/2.

The effect of pulse shape on soliton formation can be investigated solving
Eq. (5.2.5) numerically. Figure 4.7 (Chapter 4) shows evolution of a Gaussian
pulse using the initial field u(0, 7) = exp(—12/2). Even though N = 1, pulse
shape changes along the fiber because of deviations from the ‘sech’ shape re-
guired for afundamental soliton. The interesting feature of Fig. 4.7 isthat the
pulse adjusts its width and evolves asymptotically into a fundamental soliton.
Infact, the evolution appears to be complete by z/L, = 5, adistance that corre-
sponds to about three soliton periods. An essentially similar evolution pattern
occurs for other pulse shapes such as a super-Gaussian shape. The final width
of the soliton and the distance needed to evolve into a fundamental soliton
depend on the exact shape but the qualitative behavior remains the same.

As pulses emitted from laser sources are often chirped, we should also con-
sider the effect of initial frequency chirp on soliton formation [89]{97]. The
chirp can be detrimental simply because it superimposes on the SPM-induced
chirp and disturbs the exact balance between the GVD and SPM effects neces-
sary for solitons. Its effect on soliton formation can be studied by solving Eq.
(5.2.5) numerically with an input amplitude

u(0, 7) = N'sech(t) exp(—iC1?/2), (5.2.27)

where C is the chirp parameter introduced in Section 3.2. The quadratic form
of phase variation corresponds to alinear chirp such that the optical frequency
increases with time (up-chirp) for positive values of C.

Figure 5.7 shows evolution of a fundamental soliton (N = 1) in the case
of arelatively low chirp (C = 0.5). The pulse compresses initially mainly be-
cause of the positive chirp; initial compression occurs even in the absence of
nonlinear effects. The pulse then broadens but is eventually compressed a sec-
ond time with the tail separating from the main peak gradually. The main peak
evolves into a soliton over a propagation distance £ > 15. A similar behavior
occurs for negative values of C. Formation of a soliton is expected for small
values of |C| because solitons are generally stable under weak perturbations.
However, a soliton is destroyed if |C| exceeds a critical value Cyr. For N =1,
asoliton does not form if C isincreased from 0.5to 2.

The critical value of the chirp parameter can be obtained using the inverse
scattering method [93]{95]. More specifically, Egs. (5.2.6) and (5.2.7) are
solved to obtain the eigenvalue { using u from Eq. (5.2.27). Solitons exist as
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Figure 5.7 Soliton formation in the presence of an initia linear chirp for the case
N=1andC=0.5.

long as the imaginary part of { is positive. The critical value depends on N
and is found to be about 1.64 for N = 1. It also depends on the form of the
phase factor in Eq. (5.2.27). From a practical standpoint, initial chirp should
be minimized as much as possible. Thisis necessary because, even if the chirp
is not detrimental for |C| < Cg, apart of the pulse energy is shed as dispersive
waves (continuum radiation) during the process of soliton formation [93]. For
example, only 83% of the input energy is converted into a soliton in the case
of C=0.5shownin Fig. 5.7, and this fraction reduces to 62% for C = 0.8.

It is clear from the preceding discussion that the exact shape of the input
pulse used to launch a fundamental (N = 1) soliton is not critical. Moreover,
as solitons can form for values of N intherange 0.5 < N < 1.5, even the width
and peak power of the input pulse can vary over awide range [see Eq. (5.2.3)]
without hindering soliton formation. It isthis relative insensitivity to the exact
values of input parameters that makes the use of solitons feasible in practical
applications. However, it is important to realize that, when input parameters
deviate substantialy from their ideal values, a part of the pulse energy isinvari-
ably shed away in the form of dispersive waves as the pulse evolves to form a
fundamental soliton [98]. Such dispersive waves are undesirable because they
not only represent an energy loss but can also affect the performance of soliton
communication systems [99]. Moreover, they can interfere with the soliton
itself and modify its characteristics. In the case of an input pulse with N close
to 1, such an interference introduces modulations on the pulse spectrum that
have also been observed experimentally [100].
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Starting in 1988, most of the experimental work on fiber solitons was de-
voted to their applications in fiber-optic communication systems [101]. Such
systems make use of fundamental solitons for representing “1” bitsin adigital
bit stream and are covered in Part B (devoted to applications of nonlinear fiber
optics). Inapractical situation, solitons can be subjected to many types of per-
turbations as they propagate inside an optical fiber. Examples of perturbations
include fiber losses, amplifier noise (if amplifiers are used to compensate fiber
losses), third-order dispersion, and intrapulse Raman scattering. These effects
are discussed later in this chapter.

5.3 Other Typesof Solitons

The soliton solution given in Eq. (5.2.8) is not the only possible solution of the
NLS equation. Many other kinds of solitons have been discovered depending
on the dispersive and nonlinear properties of fibers. This section describes
several of them, focusing mainly on dark and bistable solitons.

5.3.1 Dark Solitons

Dark solitons correspond to the solutions of Eq. (5.2.2) with sgn(j,) = 1 and
occur in the normal-GVD region of fibers. They were discovered in 1973 and
have attracted considerable attention since then [102]-{131]. The intensity
profile associated with such solitons exhibits a dip in a uniform background,
hence the name dark soliton. Pulse-like solitons discussed in Section 5.2 are
called bright to make the distinction clear. The NLS equation describing dark
solitonsisobtained from Eg. (5.2.5) by changing the sign of the time-derivative
term and is given by
2
ig—g—%%ﬂuﬁu:a (5.3.1)
Similar to the case of bright solitons, the inverse scattering method has
been used [103] to find dark-soliton solutions of Eg. (5.3.1) by imposing the
boundary condition that |u(&, t)| tends toward a constant nonzero vaue for
large values of |7|. Dark solitons can also be obtained by assuming a solution
of theformu(&, 1) = V(1) explio (&, 7)], and then solving the ordinary differ-
ential equations satisfied by V and ¢. The main difference compared with the
case of bright solitonsisthat V(1) becomes a constant (rather than being zero)
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Figure 5.8 Intensity and phase profiles of dark solitons for several values of the
blackness parameter B.

as|t| — . The general solution can be written as [77]
u(&, 7)] = V(1) = n{1—B’sech’[nB(r — w)]}"/, (532)
with the phase given by

Btanh(nBt)
B

The parameters 11 and 75 represent the soliton amplitude and the dip location,
respectively. Similar to the bright-soliton case, 75 can be chosen to be zero
without loss of generality. In contrast with the bright-soliton case, the dark
soliton has a new parameter B. Physically, B governs the depth of the dip
(IB| < 1). For |B| =1, the intensity at the dip center falls to zero. For other
values of B, the dip does not go to zero. Dark solitons for which |B| < 1
are called gray solitons to emphasize this feature; the parameter B governs
the blackness of such gray solitons. The |B| = 1 case corresponds to a black
soliton.

For a given value of 1, Eq. (5.3.2) describes a family of dark solitons
whose width increases inversely with B. Figure 5.8 shows the intensity and
phase profiles of such dark solitons for several values of B. Whereas the phase
of bright solitons [Eq. (5.2.15)] remains constant across the entire pulse, the

o(E, 1) = %nZ(S—BZ)éJrn\/l—BZr—Hanl( > (5.3.3)
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phase of dark soliton changes with a total phase shift of 2sin 1B, i.e., dark
solitons are chirped. For the black soliton (|B| = 1), the chirp is such that the
phase changes abruptly by z in the center. The phase change becomes more
gradual and smaller for smaller values of |B|. The time-dependent phase or
frequency chirp of dark solitons represents a major difference between bright
and dark solitons. One consequence of this difference isthat higher-order dark
solitons neither form abound state nor follow a periodic evolution pattern dis-
cussed in Section 5.2.3 in the case of bright solitons.

Dark solitons exhibit several interesting features [131]. Consider a black
soliton whose canonical form isobtained from Eq. (5.3.2), choosing n = 1 and
B =1, and given by

u(é, ) = tanh(7) exp(i&), (5.3.4)

where the phase jump of & a T = 0isincluded in the amplitude part. Thus, an
input pulse with “tanh” amplitude, exhibiting an intensity “hole” at the center,
would propagate unchanged in the normal-dispersion region of optical fibers.
One may ask, in analogy with the case of bright solitons, what happens when
the input power exceeds the N = 1 limit. This question can be answered by
solving Eq. (5.3.1) numerically with an input of the form u(0, ) = Ntanh(7).
Figure 5.9 shows the evolution pattern for N = 3; it should be compared with
Fig. 5.4 where the evolution of athird-order bright soliton is shown. Two pairs
of gray solitons appear and move away from the central black soliton as the
propagation distance increases. At the same time, the width of the black soli-
ton decreases [110]. This behavior can be understood by noting that an input
pulse of the form Ntanh() can form afundamental black soliton of amplitude
Ntanh(Nt) provided its width decreases by a factor of N. It sheds part of its
energy in the process that appears in the form of gray solitons. These gray
solitons move away from the central black soliton because of their different
group velocities. The number of pairs of gray solitonsisN' — 1, whereN’ = N

for integer values of N or the next integer close to it when N is not an integer.
The important feature is that a fundamental dark soliton is always formed for
N> 1.

Experimenta realization of dark solitons is possible only with a finite
background instead of the infinite background associated with ideal dark soli-
tons. In practice, a pulse with a narrow dip at its center is used to excite
a dark soliton. Numerical calculations show that dark solitons with a finite
background pulse exhibit propagation properties nearly identical to those with
infinite background if the background pulse is wider by afactor of 10 or more
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Figure 5.9 Evolution of a third-order dark soliton showing narrowing of the central
dip and creation of two pairs of gray solitons.

compared with the soliton width [109]. Several techniques have been used
to generate optical pulses with a narrow dip in the center [106]-{108]. Such
pulses have been used for observing dark solitons in optica fibers. In one ex-
periment [106], 26-ps input pulses (at 595 nm) with a 5-ps-wide central hole
were launched along a 52-m fiber. In another experiment [107], the input to a
10-m fiber was a relatively wide 100-ps pulse (at 532 nm) with a 0.3-ps-wide
hole that served as adark pulse. However, as the phase was relatively constant
over the hole width, such even-symmetry input pulses did not have the chirp
appropriate for a dark soliton. Nonetheless, output pulses exhibited features
that were in agreement with the predictions of Eq. (5.3.1).

The odd-symmetry input pulses appropriate for launching a dark soliton
were used in a 1988 experiment [108]. A spatial mask, in combination with a
grating pair, was used to modify the pulse spectrum such that the input pulse
had a phase profile appropriate for forming the dark soliton represented by Eq.
(5.3.4). Theinput pulses obtained from a 620-nm dye laser were ~ 2-ps wide
with a 185-fs hole in their center. The central hole widened at low powers but
narrowed down to its original width when the peak power was high enough to
sustain a dark soliton of that width. The experimental results agreed with the
theoretical predictions of Eqg. (5.3.1) quite well. In this experiment, the optical
fiber was only 1.2 m long. In a 1993 experiment [121], 5.3-ps dark solitons,
formed on a 36-ps wide pulse obtained from a 850-nm Ti:sapphire laser, were
propagated over 1 km of fiber. The same technique was later extended to
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transmit dark-soliton pulse trains at arepetition rate of up to 60 GHz over 2 km
of fiber. These results show that dark solitons can be generated and maintained
over considerable fiber lengths.

During the 1990s, several practical techniques were introduced for gen-
erating dark solitons. In one method, a Mach—-Zehnder modulator, driven
by nearly rectangular electrical pulses, modulates the CW output of a semi-
conductor laser [118]. In an extension of this method, electric modulation is
performed in one of the two arms of aMach—Zehnder interferometer. A simple
all-optical technique consists of propagating two optical pulses, with arelative
time delay between them, in the normal-GVD region of the fiber [119]. The
two pulse broaden, become chirped, and acquire a nearly rectangular shape as
they propagate inside the fiber. Asthese chirped pulses merge into each other,
they interfere. The result at the fiber output is a train of isolated dark soli-
tons. In another all-optical technique, nonlinear conversion of abeat signal in
adispersion-decreasing fiber is used to generate atrain of dark solitons [124].
The technique is similar to that discussed in Section 5.1 for generating a regu-
lar pulse train except that fiber GVD is chosen to be in the normal-dispersion
regime everywhere along the fiber length. A 100-GHz train of 1.6-ps dark
solitons was generated by using this technique and propagated over 2.2 km of
(two soliton periods) of a dispersion-shifted fiber. Optical switching using a
fiber-loop mirror, in which a phase modulator is placed asymmetrically, can
also be used to generate dark solitons [125]. In ancther variation, a fiber with
comblike dispersion profile was used to generate dark soliton pulses with a
width of 3.8 ps at the 48-GHz repetition rate [128].

An interesting scheme uses electronic circuitry to generate acoded train of
dark solitons directly from the NRZ datain electric form [126]. First, the NRZ
dataand its clock at the bit rate are passed through an AND gate. Theresulting
signal isthen sent to aflip-flop circuit in which all rising slopes flip the signal.
The resulting electrical signal drives aMach—Zehnder LiNbO,; modulator and
converts the CW output from a semiconductor laser into a coded train of dark
solitons. This technique was used for data transmission, and a 10-Gb/s signa
was transmitted over 1200 km by using dark solitons [127]. Ancther relatively
simple method uses spectra filtering of a mode-locked pulse train by using a
fiber grating [129]. This scheme has also been used to generate a 6.1-GHz
train and propagate it over a 7-km-long fiber [130].

Dark solitons remain a subject of continuing interest. Numerical simula-
tions show that they are more stable in the presence of noise and spread more
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slowly in the presence of fiber loss compared with bright solitons. They are
also relatively less affected by many other factors that have an impact on the
use of bright solitons (amplifier-induced timing jitter, intrapulse Raman scat-
tering, etc.). These properties point to potentia application of dark solitons for
optical communication systems. The reader is referred to Reference [131] for
further details.

5.3.2 Dispersion-Managed Solitons

The NLS equation (5.2.5) and its soliton solutions assume that the GVD pa
rameter 3, is constant along the fiber. As discussed in Section 3.5, the tech-
nique of dispersion management is often used in the design of modern fiber-
optic communication systems. This technique consists of using a periodic dis-
persion map by combining fibers with different characteristics such that the
average GVD in each period is quite low while the local GVD at every point
along the fiber link isrelatively large. The period of the dispersion map istyp-
ically 50-60 km. In practice, just two kinds of fibers with opposite signs of j3,
are combined to reduce the average dispersion to a small value. Mathemati-
caly, Eq. (5.2.5) isreplaced with

U @) o
|8§+ > 812+|u|u—0, (5.35)

where d(&) is aperiodic function of & with the period &map = Lmap/Lp. Here
Lmep isthe length associated with the dispersion map.

Equation (5.3.5) does not appear to be integrable by the inverse scattering
method. However, it has been found to have pulselike, periodic solutions.
These solutions are referred to as dispersion-managed solitons [132]-{135]. It
should be stressed that the term soliton is used loosely in this context because
the properties of dispersion-managed solitons are quite different from those of
the bright solitons discussed in Section 5.2. Not only the amplitude and the
width of dispersion-managed solitons oscillate in a periodic manner, but their
frequency also varies across the pulse, i.e., such solitons are chirped. Pulse
shape is aso close to being Gaussian rather than the “sech” shape of bright
solitons found for constant-dispersion fibers. Even more surprisingly, such
solitons can exist even when average dispersion along the fiber link is normal.
Dispersion-managed solitons are covered in Chapter 8 of Part B.
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5.3.3 Bistable Solitons

The discussion in this chapter is based on a specific form of the nonlinear
polarization in Eqg. (2.3.6), resulting in arefractive index that increases linearly
with the mode intensity |, i.e.,

A(l) =n+n,l. (5.3.6)

Such aform of refractive index is referred to as the Kerr nonlinearity. At very
high intensity levels, the nonlinear response of any material begins to saturate,
and it may become necessary to modify Eq. (5.3.6). For silicafibers, saturation
of the Kerr nonlinearity occurs at quite high intensity levels. However, if fibers
are made with other materials (such as chalcogenide glasses) or if asilicafiber
is doped with other nonlinear materials (such as an organic dye), the nonlinear
response can saturate at practical intensity levels. In that case, Eq. (5.3.6)
should be replaced with
A(l) =n+n,f(l), (5.3.7)

where f (1) is some known function of the mode intensity |.
The NL S equation (5.2.5) can be generalized to accommodate Eq. (5.3.7)
and takes the form [136]

& 20712
Equation (5.3.8) is not generaly integrable by the inverse scattering method.
However, it can be solved to find shape-preserving solutions by the method

outlined in Section 5.2. The approach consists of assuming a solution of the
form

+ f(JuP)u=0. (5.3.8)

u(c,7) =V(7)exp(iKg), (539
where K is a constant and V is independent of &. If Eq. (5.3.9) is substituted
in Eq. (5.3.8), V(1) isfound to satisfy

v

dr2
This equation can be solved by multiplying it by 2(dV /dt) and integrating
over 1. Using the boundary conditionV = 0 as || — oo, we obtain

= VK — f(V?)]. (5.3.10)

(dV /d7)? = 4 / K — f(V2)VaV. (5.3.11)
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This equation can be integrated to yield

v V2 -1/2
21=/0 (/0 [K—f(P)]dP) av. (5.3.12)

where P = V2. For a given functional form of f(P), we can determine the
soliton shape V(1) from Eq. (5.3.12) if K is known.

The parameter K can be related to the soliton energy defined as Es =
[*.V?dt. Using Eq. (5.3.11), Es depends on the wave number K as[136]

Ec(K) = %/OP"’[K _F(P)] V2dP (53.13)

where
1 P
F(P):E/O f(P)dP,  F(0)=0, (5.3.14)

and Py, is defined as the smallest positive root of F(P) = K; it corresponds to
the peak power of the soliton.

Depending on the function f(P), Eq. (5.3.13) can have more than one so-
lution, each having the same energy Es but different values of K and R;,. Typi-
cally, only two solutions correspond to stable solitons. Such solitons are called
bistable solitons and have been studied extensively since their discovery in
1985 [136]-{148]. For a given amount of pulse energy, bistable solitons prop-
agate in two different stable states and can be made to switch from one state
to another [137]. An analytic form of the bistable soliton has also been found
for a specific form of the saturable nonlinearity [142]. Bistable behavior has
not yet been observed in optical fibers as the peak-power requirements are ex-
tremely high. Other nonlinear mediawith easily saturable nonlinearity may be
more suitable for this purpose.

5.4 Perturbation of Solitons

Fiber-optic communication systems operating at bit rates of 10 Gb/s or more
are generaly limited by the GV D that tends to disperse optical pulses outside
their assigned bit slot. Fundamental solitons are useful for such systems be-
cause they can maintain their width over long distances by balancing the effects
of GVD and SPM, both of which are detrimental to system performance when
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solitons are not used. The use of solitons for optical communications was pro-
posed as early as 1973 [80], and their use had reached the commercia stage
by 2000 [81]. This success was possible only after the effects of fiber losses
on solitons were understood and techniques for compensating them were de-
veloped [149]{156]. The advent of erbium-doped fiber amplifiers fueled the
development of soliton-based systems. However, with their use came the lim-
itations imposed by the amplifier noise. In this section, we first discuss the
method used commonly to analyze the effect of small perturbations on soli-
tons and then apply it to study theimpact of fiber losses, periodic amplification,
amplifier noise, and soliton interaction.

54.1 Perturbation Methods
Consider the perturbed NLS equation written as

_du 18_2u

- — 2 :.
I&é t552 7T lul“u=ig(u), (54.1)

where g(u) is asmall perturbation that can depend on u, u*, and their deriva-
tives. In the absence of perturbation (e = 0), the soliton solution of the NLS
equation is known and is given by Eq. (5.2.13). The question then becomes
what happens to the soliton when € # 0. Several perturbation techniques have
been developed for answering this question [157]-{164]. They all assume that
the functional form of the soliton remains intact in the presence of a small
perturbation but the four soliton parameters change with & as the soliton prop-
agates down the fiber. Thus, the solution of the perturbed NLS equation can
be written as

u(§,7) = n(g)sech[n(5)(r—a(§))lexplio(§) —id(5)7l. (5.4.2)

The £ dependence of 17, 8,q, and ¢ is yet to be determined. In the absence of
perturbation (¢ = 0), n and § are constants but (&) and ¢ (&) are obtained by
solving the simple ordinary differential equations

W_ 5 W_1po_s) (5.4.3)
dé
The perturbation techniques developed for solitons include the adiabatic

perturbation method, the perturbed inverse scattering method, the Lie-trans-
form method, and the variational method [77]. All of them attempt to obtain a
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set of four ordinary differential equations for the four soliton parameters. As
an example, consider the variational method that makes use of the Lagrangian
formalism developed for classical mechanics and was applied to solitons as
early as 1979 [165]. It treats the soliton field u and its complex conjugate u*

as conjugate variables (similar to the position and the momentum of a parti-
clein classica mechanics). The perturbed NLS equation can be restated as a
variational problem by casting it in the form of the Euler—Lagrange equation

d ([ dlg d (dlLy dlg

JE (ax5> T (ax) ax O (544
where X represents either u or u*, the subscripts 7 and & denote differentiation
with respect to that variable, and the Lagrangian density is given by [166]

Lo = S —uru) — S(u— P iler e, (545)

5
It is easy to verify that Eq. (5.4.4) reproduces the NLS eguation (5.4.1) with
the choice X = u*.

The main step in the variational analysis consists of integrating the La-
grangian density over t as

g(n,6,0,9 / Lg(u,u*,7) (5.4.6)

and then using the reduced Eul er—L agrange equation to determine how the four
soliton parameters evolve with . Using Egs. (5.4.4)—5.4.6), this procedure
leads to the following set of four ordinary differential equations [77]:

3—2 —Re [ ie(u)u*(r)dr, (5.4.7)
9 _ im / u) tanh[n (7 — g)Ju*(7) d, (54.8)
3_2 5+ ni Re / e(u)(T-qu(r)dr, (5.4.9)

lm/ U){1/n — (1 —q)tanh[n (z — Q)] }u(7) d

dé
+im?-83)+ qﬁ, (5.4.10)



Perturbation of Solitons 169

where Re and Im stand for the real and imaginary parts, respectively. This set
of four equations can also be obtained by using adiabatic perturbation theory or
perturbation theory based on the inverse scattering method [157]-{164]. The
reader is referred to Reference [77] for a comparison of various perturbation
methods.

5.4.2 Fiber Losses

Because solitons result from a balance between the nonlinear and dispersive
effects, the pulse must maintain its peak power if it has to preserve its soliton
character. Fiber losses are detrimental simply because they reduce the peak
power of solitons along the fiber length [see Eq. (1.2.3)]. Asaresult, the width
of a fundamental soliton also increases with propagation because of power
loss. Mathematically, fiber losses are accounted for by adding a loss term to
Eqg. (5.1.1) so that it takes the form of Eq. (2.3.41). In terms of the soliton units
used in Section 5.2, the NL S equation becomes

Ju 19%u ., i
-z - =__T 4.11
|8§+28T2+|u|u 5T, (5.4.11)
where
I'=alp=oT¢/|B,- (5.4.12)

Equation (5.4.11) can be solved by using the variational method if I' <« 1
so that the loss term can be treated as a weak perturbation. Using e(u) =
—Tu/2 in Egs. (5.4.7)«5.4.10) and performing the integrations, we find that
only soliton amplitude 11 and phase ¢ are affected by fiber losses and vary
along the fiber length as[149]

nE) =exp(-Ig),  ¢(5) =9(0)+[1—exp(-2I¢)]/(4r), (54.13)

where we assumed that (0) = 1, §(0) =0, and q(0) = 0. Both 6 and qremain
zero along the fiber.

Recalling that the amplitude and width of a soliton are related inversely, a
decrease in soliton amplitude leads to broadening of the soliton. Indeed, if we
writen(t—q) inEq. (54.2) asT/T, and use T = T /T, T, increases along the
fiber exponentially as

T,(2) = Tyexp(T'E) = Tyexp(az). (5.4.14)
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Figure5.10 Variation of pulse width with distancein alossy fiber for the fundamental
soliton. The prediction of perturbation theory is aso shown. Dashed curve shows the
behavior expected in the absence of nonlinear effects. (After Ref. [167].)

An exponentia increase in the soliton width with z cannot be expected to
continue for arbitrarily large distances. This can be seen from Eg. (3.3.12),
which predicts alinear increase with zwhen the nonlinear effects become neg-
ligible. Numerical solutions of Eq. (5.4.11) show that the perturbative solution
is accurate only for values of z such that oz <« 1 [167]. Figure 5.10 shows
the broadening factor T, /T, as a function of & when afundamental soliton is
launched into a fiber with T" = 0.07. The perturbative result is acceptable for
up to T'¢ =~ 1. In the regime (& > 1), pulse width increases linearly with a
rate slower than that of a linear medium [168]. Higher-order solitons show a
qualitatively similar asymptotic behavior. However, their pulse width oscil-
lates a few times before increasing monotonically [167]. The origin of such
oscillations lies in the periodic evolution of higher-order solitons.

How can asoliton survive inside lossy optical fibers? Aninteresting scheme
restores the balance between GVD and SPM in a lossy fiber by changing
dispersive properties of the fiber [169]. Such fibers are called dispersion-
decreasing fibers (DDFs) because their GV D must decrease in such away that
it compensates for the reduced SPM experienced by the soliton as its energy
is reduced by fiber loss. To see which GVD profile is needed, we modify Eq.
(5.4.11) to alow for GVD variations along the fiber length and eliminate the
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loss term using u = vexp(—T'€ /2), resulting in the following equation:

v d(&) NV | _ i
|£+Tﬁ+e V[V = 2Fu, (5.4.15)

where d(&) = |B,(£)/B,(0)| is the normalized local GVD. The distance & is
normalized to the dispersion length Ly = TZ/|B,(0)|, defined using the GVD
value at the input end of the fiber.

Rescaling £ using the transformation &' = fé p(&)dé, Eq. (5.4.15) be-

comes
oV 10 eIt

98 292 T A
If the GVD profile is chosen such that d(&) = exp(—T¢), Eq. (5.4.16) reduces

to the standard NLS equation. Thus, fiber losses have no effect on soliton
propagation if the GVD of afiber decreases exponentialy along its length as

IV>v =0, (5.4.16)

B5(2)] = |B,(0) | exp(—0x2). (5.4.17)

Thisresult can be easily understood from Eqg. (5.2.3). If the soliton peak power
P, decreases exponentially with z, the requirement N = 1 can still be main-
tained at every point along the fiber if |B3,| were also to reduce exponentially.

Fibers with a nearly exponential GV D profile have been fabricated [170].
A practical technique for making such DDFs consists of reducing the core
diameter along fiber length in a controlled manner during the fiber-drawing
process. Variations in the core diameter change the waveguide contribution
to B, and reduce its magnitude. Typically, GVD can be changed by a factor
of 10 over alength of 2040 km. The accuracy redized by the use of this
technique is estimated to be better than 0.1 pg/km [171]. Since DDFs are not
available commercially, fiber loss is commonly compensated by amplifying
solitons. Thisisthe topic discussed next.

54.3 Soliton Amplification

As dready discussed, fiber losses lead to broadening of solitons. Such loss-
induced broadening is unacceptable for many applications, especially when
solitons are used for optical communications. To overcome the effect of fiber
losses, solitons need to be amplified periodically so that their energy is re-
stored toitsinitial value. Two different approaches have been used for soliton
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Figure5.11 (a) Lumped and (b) distributed-amplification schemes used for compen-
sation of fiber loss.

amplification [149]-{156]. These are known as lumped and distributed am-
plification schemes and are shown in Fig. 5.11 schematically. In the lumped
scheme [150], an optical amplifier boosts the soliton energy to its input level
after the soliton has propagated a certain distance. The soliton then readjusts
its parameters to their input values. However, it also sheds a part of its energy
as dispersive waves (continuum radiation) during this adjustment phase. The
dispersive part is undesirable and can accumulate to significant levels over a
large number of amplification stages.

This problem can be solved by reducing the spacing L, between amplifiers
such that L, < L. The reason is that the dispersion length L, sets the scale
over which a soliton responds to external perturbations. If the amplifier spac-
ing is much smaller than this length scale, soliton width is hardly affected over
one amplifier spacing in spite of energy variations. In practice, the condition
L, < L restricts L, typically in the range 20-40 km even when the dispersion
length exceeds 100 km [150]. Moreover, the lumped-amplification scheme be-
comesimpractical at high bit rates requiring short solitons (T, < 10 ps) because
dispersion length can then become quite short.

The distributed-amplification scheme uses either stimulated Raman scat-
tering [151]{154] (see Chapter 8) or erbium-doped fibers [172]-{176]. Both
require periodic pumping along the fiber length. In the Raman case, a pump
beam (up-shifted in frequency from the soliton carrier frequency by nearly
13 TH2) is injected periodically into the fiber. For solitons propagating in
the 1.55-um wavelength region, one needs a high-power pump laser operating
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near 1.45 um. In the case of erbium-doped fibers, the pump laser operates at
0.98 or 1.48 um. The required pump power isrelatively modest (~10 mW) in
the case of erbium doping but exceeds 100 mW for Raman amplification. In
both cases, optical gain is distributed over the entire fiber length. As aresult,
solitons can be amplified adiabatically while maintaining N =~ 1, afeature that
reduces the dispersive part aimost entirely [153].

Feasibility of the Raman-amplification scheme was first demonstrated in
1985 in an experiment in which soliton pulses of 10-ps width were propagated
over a 10-km-long fiber [152]. In the absence of Raman gain, the width of
solitons increased by ~ 50% because of loss-induced broadening. Thisisin
agreement with Eq. (5.4.14), which predicts T, /T, = 1.51 for z= 10 km and
o = 0.18 dB/km, the values relevant for the experiment. The Raman gain was
obtained by injecting a CW pump beam at 1.46 um from a color-center |aser
in the direction opposite to that of soliton propagation. The pump power was
adjusted close to 125 mW such that the total fiber loss of 1.8 dB was exactly
balanced by the Raman gain. In a 1988 experiment [154], 55-ps solitons could
be circulated up to 96 times through a 42-km fiber loop without significant
increase in their width, resulting in an effective transmission distance of >
4000 km.

The lumped-amplification scheme was used starting in 1989 [155]. Since
erbium-doped fiber amplifiers became available commercially after 1990, they
have been used almost exclusively for loss compensation in spite of the lumped
nature of amplification provided by them. To understand how solitons can
survive in spite of large energy variations, we include the gain provided by
lumped amplifiersin Eq. (5.4.11) by replacing T with aperiodic functionf“(é)
such that T'(¢) = I' everywhere except at the location of amplifiers where it
changes abruptly. If we make the transformation

S~
e —ep (-3 [F@0)wEn=a@uen. (6419

where a(&) contains rapid variations and v(&, 7) is a slowly varying function
of & and useit in Eq. (5.4.11), v(&, 1) isfound to satisfy

2
i—+——T+a2(§)|v|2v: 0. (5.4.19)
Note that a(&) is a periodic function of £ with a period & = L, /L, where

L, isthe amplifier spacing. In each period, a(§) = g,exp(—T'/2) decreases
exponentially and jumps to itsinitial value &, at the end of the period.
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The concept of the guiding-center or path-averaged soliton [177] makes
use of the fact that & (&) in Eq. (5.4.19) varies rapidly in a periodic fashion.
If the period £, < 1, solitons evolve little over a short distance as compared
with the dispersion length L. Over a soliton period, &(&) varies so rapidly
that its effects are averaged out, and we can replace & () by its average value
over one period. With this approximation, Eqg. (5.4.19) reduces to the standard
NLS equation:

0& 2012
The practical importance of the averaging concept stems from the fact that
Eq. (5.4.20) describes soliton propagation quite accurately when &, < 1[77].
In practice, this approximation works reasonably well for values up to £, as
large as 0.25.

From a practical viewpoint, the input peak power R of the path-averaged
soliton should be chosen such that (&(&)) = 1in Eq. (5.4.20). Introducing the
amplifier gain G = exp(T'&, ), the peak power is given by

+(@(8)) Vv =0. (5.4.20)

IéAPy GInG

Po=1— xp(—TE) ~ G-1 Py, (5.4.21)
where P, is the peak power in lossless fibers. Thus, soliton evolution in lossy
fibers with periodic lumped amplification isidentical to that in lossless fibers
provided: (i) amplifiers are spaced such that L, < L; and (ii) the launched
peak power is larger by afactor GInG/(G—1). Asan example, G = 10 and
P,, =~ 2.56F, for 50-km amplifier spacing and afiber loss of 0.2 dB/km.

Figure 5.12 shows pulse evolution in the average-soliton regime over a
distance of 10,000 km, assuming solitons are amplified every 50 km. When the
soliton width corresponds to a dispersion length of 200 km, the soliton is well
preserved even after 200 lumped amplifiers because the condition £, < 1is
reasonably well satisfied. However, if the dispersion length reduces to 25 km,
the soliton is destroyed because of relatively large loss-induced perturbations.

The condition £, < 1 or L, < Lp, required to operate within the average-
soliton regime, can be related to the width T, by using Ly, = TZ/|B,|. The
resulting condition is

To> VIBolLa- (5.4.22)

The bit rate B of a soliton communication system is related to T, through
Tg = 1/B = 2q,T,, where Ty is the bit slot and q, represents the factor by
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Figure5.12 Evolution of loss-managed solitons over 10,000 km for L = 200 (left)
and Ly = 25 km (right) when L, = 50 km, v = 0.22 dB/km, and 3, = 0.5 ps?/km.

which it is larger than the soliton width. Thus, the condition (5.4.22) can be
written in the form of a simple design criterion:

B%L, < (44|B,) % (5.4.23)

By choosing typical values 8, = —0.5 ps/km, L, =50 km, and g, = 5, we
obtain T, > 5 ps and B < 20 GHz. Clearly, the use of amplifiers for soliton
amplification imposes a severe limitation on both the bit rate and the amplifier
spacing in practice.

Optical amplifiers, needed to restore the soliton energy, also add noise orig-
inating from spontaneous emission. The effect of spontaneous emission is to
change randomly the four soliton parameters, n,6,q, and ¢ in Eq. (5.4.2),
at the output of each amplifier [161]. Amplitude fluctuations, as one might
expect, degrade the signal-to-noise ratio (SNR). However, for applications of
solitons in optical communications, frequency fluctuations are of much more
concern. The reason can be understood from Eqg. (5.4.2), and noting that a
change in the soliton frequency by 6 affects the speed at which the soliton
propagates through the fiber. If 6 fluctuates because of amplifier noise, soliton
transit time through the fiber also becomes random. Fluctuations in the arrival
time of a soliton are referred to as the Gordon—Haus timing jitter [178]. Prac-
tical implications of noise-induced timing jitter and the techniques developed
for reducing it (optical filtering, synchronous modulation, etc.) are discussed
in Part B in the context of soliton communication systems.
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5.4.4 Soliton Interaction

Thetimeinterval Tz between two neighboring bits or pulses determines the bit
rate of acommunication system as B = 1/Tg. It isthusimportant to determine
how close two solitons can come without affecting each other. Interaction be-
tween two solitons has been studied both analytically and numerically [179]—
[191]. This section discusses the origin of mutual interaction and its affect on
individual solitons.

Itisclear on physical grounds that two solitons would begin to affect each
other only when they are close enough that their tails overlap. Mathematically,
the total field u = u, +u,, where

u; (&,7)= njszech[nj (t— qj)] exp(id)j — iéSj T), (5.4.24)

with j = 1,2. It isu that satisfies the NLS equation, rather than v, and u,
individually. In fact, by substituting u = u, + u, in Eq. (5.2.5), we can obtain
the following perturbed NL S equation satisfied by the uy soliton:

8u 10%u
1+ i

35 2012 +|u1|2u1 = _2|u1| U, — U1U2 (5.4.25)

The NLS equation for u,, is obtained by interchanging v, and u,. The terms
on the right-hand side act as a perturbation and are responsible for nonlinear
interaction between two neighboring solitons.

Equations (5.4.7)—«5.4.10) can now be used to study how the four soliton
parameters nj,qj,éj, and ¢, (with j = 1,2) are affected by the perturbation.
Introducing new variables as

Ny =Mn,£n,, 0y =0y =0, (5.4.26)
8, =8,+6, by = O+ b, (5.4.27)

one can obtain after some algebra the following set of equations [163]:

dn, dn_

dé =0 aE =nSexp(-q_)sing_, (5.4.28)
dé, do_

Y‘O’ - n3 exp(—q_)cos¢_, (5.4.29)
dg_ do_

% =0, dd% 3N (5.4.30)
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Figure5.13 Relative spacing g between two interacting solitons as a function of fiber
length for several values of initial phase difference v, (in degrees) when q, = 4.

Equations for g, and ¢, are omitted since their dynamics do not affect soliton
interaction. Further, n, and 6, remain constant during interaction. Using
n . = 2 for two interacting fundamental solitons, the remaining four equations
can be combined to yield:
2 2
j_é‘; = —4e Xcos(2y), 2—5’2’ = 4e Asin(2y), (5.4.31)

where we introduced two new variables as q=q_/2 and y = ¢_/2. The
same equations are obtained using the inverse scattering method [180]. They
show that the relative separation g between two solitons depends only on their
relative phase. Two solitons may attract (come closer) or repel (move apart)
depending on the initial value of .

Equations (5.4.31) can be solved analytically under quite general condi-
tions [184]. In the case in which two solitons initially have the same ampli-
tudes and frequencies, the solution becomes [77]

(&) = gy + 2 In[cosh?(2E e~ % siny,) + cos*(2E e~ cosyy) — 1) (5.4.32)

where g, and y, are the initial values of q and v, respectively. Figure 5.13
shows how the relative separation q(£) changes aong the fiber length for two
solitons with different phases. For y, below a certain value, g becomes zero
periodically. This is referred to as a “collision” resulting from an attractive
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force between the two solitons. For values of y, larger than 7/8, q > ¢, and
increases monotonically with &. Thisisinterpreted in terms of a nonlinearity-
induced repulsive force between the two solitons. The specific cases y; =0
and 7 /2 correspond to two solitons that are initially in phase or out of phase,
respectively.

In the case of two in-phase solitons (y, = 0), the relative separation q
changes with propagation periodically as

q(&) =gy +In|cos(25e ). (5.4.33)

Because q(&) < q, for al values of £, two in-phase solitons attract each other.
In fact, g becomes zero after a distance

¢ = 1efocosi (%) ~ Z exp(p), (54.34)

where the approximate form is valid for @, > 5. At this distance, two solitons
collide for the first time. Because of the periodic nature of the q(&) in Eq.
(5.4.33) the two solitons separate from each other and collide periodicaly.
The oscillation period is called the collision length. In real units, the collision
length is given by

Leot = 5Lo €XP(0g) = Z5€XP(Gh), (5.4.35)

where z, is the soliton period given in Eq. (5.2.24). This expression is quite
accurate for q, > 3, asalso found numerically [181]. A more accurate expres-
sion, valid for arbitrary values of g, is obtained using inverse scattering theory
and is given by [187]

_ msinh(2q,) cosh(q,)

I-col
—= = > . 5.4.36
Lp 20, + sinh(2qy) ( )

In the case of two out-of-phase solitons (y, = /2), the relative separation
g changes with propagation as
(&) = gy + In[cosh(2& e %)]. (5.4.37)
As cosh(x) > 1 for al values of x, it is clear that g > g, and increases mono-
tonically with &.
Numerical solutions of the NLS equation are quite instructive and allow

exploration of different amplitudes and different phases associated with a soli-
ton pair by using the following form at the input end of the fiber:

u(0,7) = sech(t — q) 4 r sech[r (7 + q,)]€°?, (5.4.38)
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Figure5.14 Evolution of asoliton pair over 90 dispersion lengths showing the effects
of soliton interaction for four different choices of amplituderatio r and relative phase

0. Initial separation g, = 3.5in all four cases.

where r is relative amplitude, 6 = 2y, is the initial phase difference, and 2q,
istheinitial separation between the two solitons. Figure 5.14 shows evolution
of asoliton pair with aninitial separation ¢, = 3.5 for several values of param-
etersr and 6. In the case of equal-amplitude solitons (r = 1), the two solitons
attract each other in the in-phase case (6 = 0) and collide periodically along
the fiber length, just as predicted by perturbation theory. For 6 = /4, the soli-
tons separate from each other after an initia attraction stage in agreement with
the results shown in Fig. 5.13. For 6 = 7/2, the solitons repel each other even
more strongly, and their spacing increases with distance monotonically. The
last case shows the effect of dlightly different soliton amplitudes by choosing
r = 1.1. Two in-phase solitons oscillate periodically but never collide or move

far away from each other.
The periodic collapse of neighboring solitons is undesirable from a prac-

tical standpoint. One way to avoid the collapse is to increase soliton sepa-
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ration such that L., > Ly, where L; is the transmission distance. Because

L.y ~ 3000z, for q, = 8, and z, ~ 100 km typically, a value of g, = 8 is
large enough for any communication system. Several schemes can be used to
reduce the soliton separation further without inducing the collapse. The inter-
action between two solitons is quite sensitive to their relative phase 6 and the
relative amplitude r. If the two solitons have the same phase (6 = 0) but dif-
ferent amplitudes, the interaction is still periodic but without collapse [187].
Even for r = 1.1, the separation does not change by more than 10% during
each period if g, > 4. Soliton interaction can also be modified by other factors
such as higher-order effects [189], bandwidth-limited amplification [190], and
timing jitter [191]. Higher-order effects are discussed in the following section.

5.5 Higher-Order Effects

The properties of optical solitons considered so far are based on the NL S equa-
tion (5.1.1). Asdiscussed in Section 2.3, when input pulses are so short that
Ty < 5ps, it is necessary to include higher-order nonlinear and dispersive ef-
fects through Eq. (2.3.39). In terms of the soliton units introduced in Section
5.2, EQ. (2.3.40) takes the form

Jdu 192

ou uP
9E T 2072

. a3u d dlu
S+ lu2u= 18555 — 155 (Iul?) + 7u=5 - (5.5.1)

where the pulse is assumed to propagate in the region of anomalous GVD
(B, < 0) and fiber losses are neglected (o = 0). The parameters &5, s, and 1
govern, respectively, the effects of third-order dispersion (TOD), self-steepening,
and intrapulse Raman scattering. Their explicit expressions are

ﬁS 1 IR
S_ - — —.
= , TR= T,

Oy =
5 6|B,I Ty @ To

(5.5.2)

All three parameters vary inversely with pulse width and are negligible for
T, > 1 ps. They become appreciable for femtosecond pulses. As an example,
05~ 0.03, s= 0.03, and 73 =~ 0.1 for a 50-fs pulse (T, ~ 30 fs) propagating at
1.55 umin astandard silicafiber if wetake T, = 3 fs.



Higher-Order Effects 181

5.5.1 Third-Order Dispersion

When optical pulses propagate relatively far from the zero-dispersion wave-
length of an optical fiber, the TOD effects on solitons are small and can be
treated perturbatively. To study such effects as simply as possible, let us set
s=0and 73 = 0in Eq. (5.5.1) and treat the &, term as a small perturbation.
Using Egs. (5.4.7)—(5.4.10) with £(u) = &(d3u/d13), it is easy to show that
amplitude 7, frequency 6, and phase ¢ of the soliton are not affected by TOD.
In contrast, the peak position g changes as [77]

dg

i
For a fundamental soliton with n = 1 and 6 = O, the soliton peak shifts lin-
early with & as q(&) = ;. Physicaly speaking, the TOD slows down the
soliton and, as aresult, the soliton peak is delayed by an amount that increases
linearly with distance. This TOD-induced delay isnegligible in most fibers for
picosecond pulses for distances as large as & = 100 aslong as 3, is not nearly
zero.

What happens if an optical pulse propagates at or near the zero-dispersion
wavelength of an optical fiber such that 3, is nearly zero. Considerable work
has been done to understand propagation behavior in this regime [192]-{198].
The case B, = 0 has been discussed in Section 4.2 using Eq. (4.2.5). Equation
(5.5.1) cannot be used in this case because the normalization scheme used for it
becomes inappropriate. Normalizing the propagation distance to Li, = T3/| 85|
through &’ = z/L,, we obtain the following equation:

—5+8;n% (5.5.3)

au 2%u

Ju i%u o
I&é’ sgn(ﬁ3)68T3+|u| u=0, (5.5.9)

where u= NU, with N is defined by

G2 Lo YPTo
Lae 1Bl

Figure 5.15 shows the pulse shape and the spectrum at & = 3 for N = 2
and compares them with those of the input pulse at £ = 0. The most striking
feature is splitting of the spectrum into two well-resolved spectral peaks[192].
These peaks correspond to the outermost peaks of the SPM-broadened spec-
trum (seeFig. 4.2). Asthered-shifted peak liesin the anomalous-GVD regime,

(5.5.5)
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Figure5.15 Pulse shape and spectrum at z/Lp, = 3 of a hyperbolic secant pulse prop-
agating at the zero-dispersion wavelength with a peak power such that N = 2. Dotted
curves show for comparison the initial profiles at the fiber input.

pulse energy in that spectral band can form a soliton. The energy in the other
spectral band disperses away simply because that part of the pulse experiences
normal GVD. Itisthetrailing part of the pulse that disperses away with propa
gation because SPM generates blue-shifted components near the trailing edge.
The pulse shape in Fig. 5.15 shows along trailing edge with oscillations that
continues to separate away from the leading part with increasing . The im-

portant point to note is that, because of SPM-induced spectral broadening, the
input pulse does not really propagate at the zero-dispersion wavelength even if
B, =0initialy. In effect, the pulse creates itsown | 3,,| through SPM. The ef-

fective value of |B,| isgiven by Eq. (4.2.7) and islarger for pulses with higher
peak powers.

An interesting question is whether soliton-like solutions exist at the zero-
dispersion wavelength of an optical fiber. Equation (5.5.4) does not appear to
beintegrable by theinverse scattering method. Numerical solutions show [194]
that for N > 1, a“sech” pulse evolves over alength & ~ 10/N2 into a soliton
that contains about half of the pulse energy. The remaining energy is carried by
an oscillatory structure near thetrailing edge that disperses away with propaga-
tion. These features of solitons have a so been quantified by solving Eq. (5.5.4)
approximately [194]-198]. In general, solitons at the zero-dispersion wave-
length require less power than those occurring in the anomalous-GV D regime.
This can be seen by comparing Egs. (5.2.3) and (5.5.5). To achieve the same
values of N and N, the required power is smaller by a factor of Ty|B,/ | for
pulses propagating at the zero-dispersion wavel ength.

With the advent of wavelength-division multiplexing (WDM) and disper-
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sion-management techniques, special fibers have been developed in which 3,
is nearly zero over acertain wavelength range while |,| remains finite. Such
fibers are called dispersion-flattened fibers. Their use requires consideration
of the effects of fourth-order dispersion on solitons. The NLS equation then
takes the following form:

i@ 10%u uPu= 84u
€ T 297 O4 5

where 8, = B,/(24/B,|Tg).-

The parameter §, is relatively small for T, > 1 ps, and its effect can be
treated perturbatively. However, 3, may become large enough for ultrashort
pulses that a perturbative solution is not appropriate. A shape-preserving,
solitary-wave solution of Eq. (5.5.6) can be found by assuming u(&,t) =
V(1) exp(iK¢& ) and solving the resulting ordinary differential equation for V(7).
This solution is given by [199]

(5.5.6)

u(&,t) = 3b?sech?(br) exp(8ib?E /5), (5.5.7)

where b = (408,) /2. Note the sech?-type form of the pulse amplitude rather
than the usual “sech” form required for standard bright solitons. It should be
stressed that both the amplitude and the width of the soliton are determined
uniquely by the fiber parameters. Such fixed-parameter solitons are sometimes
called autosolitons.

55.2 Sef-Steepening

The phenomenon of self-steepening has been studied extensively [200]—{204].
Since it has already been covered in Section 4.3, itsimpact on solitons is dis-
cussed only briefly. To isolate the effects of self-stegpening governed by the
parameter s, it isuseful toset 6; = 0and 7z = 0in Eq. (5.5.1). Pulse evolution
inside fibers is then governed by

2u, 1%
9€ T 2972

As discussed in Section 4.3, self-steepening creates an optical shock on the
trailing edge of the pulse in the absence of the GV D effects. This phenomenon
is due to the intensity dependence of the group velocity that results in the peak
of the pulse moving slower than the wings. The GV D dissipates the shock and

+|u|2u+|saa (Juf?u) = 0. (5.5.8)
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Figure5.16 Pulseshapesat £ = 5and 10 for afundamental soliton in the presence of
self-steepening (s = 0.2). Dashed curve shows the initial shape for comparison. The
solid curves coincide with the dashed curve when s= 0.

smoothes the trailing edge considerably. However, self-steepening would till
manifest through a shift of the pulse center.

The self-stegpening-induced shift is shown in Fig. 5.16 where pul se shapes
a & =0,5, and 10 are plotted for s= 0.2 and N = 1 by solving Eq. (5.5.8)
numerically with the input u(0, 7) = sech(t). Asthe peak moves slower than
the wings for s 0, it is delayed and appears shifted toward the trailing side.
The delay is well approximated by a simple expression 7, = s& for s < 0.3.
It can also be calculated by treating the self-stegpening term in Eq. (5.5.8) as
a small perturbation. Although the pulse broadens dlightly with propagation
(by ~ 20% at & = 10), it nonetheless maintains its soliton nature. This feature
suggests that Eqg. (5.5.8) has a soliton solution toward which the input pulseis
evolving asymptotically. Such a solution indeed exists and has the form [166]

u(é,7) =V(t+M&)expli(KE —M1)], (5.5.9)

where M is related to a shift of the carrier frequency. The group velocity
changes as a result of the shift. The delay of the peak seen in Fig. 5.16 is
due to this change in the group velocity. The explicit form of V(1) depends
on M and s[204]. In the limit s= 0, it reduces to the hyperbolic secant form
of Eq. (5.2.16). Note aso that Eq. (5.5.8) can be transformed into a so-called
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INTENSITY

Figure 5.17 Decay of a second-order soliton (N = 2) induced by self-steepening
(s=0.2). Pulse evolution over five soliton periods is shown.

derivative NL S equation that isintegrable by the inverse scattering method and
whose solutions have been studied extensively in plasma physics [205]—208].

The effect of self-steegpening on higher-order solitons is remarkable in that
it leads to breakup of such solitons into their constituents, a phenomenon re-
ferred to as soliton decay [201]. Figure 5.17 shows this behavior for a second-
order soliton (N = 2) using s= 0.2. For this relatively large value of s, the
two solitons have separated from each other within a distance of two soliton
periods and continue to move apart with further propagation inside the fiber.
A qualitatively similar behavior occurs for smaller values of s except that a
longer distance is required for the breakup of solitons. The soliton decay can
be understood using the inverse scattering method, with the self-steepening
term acting as a perturbation. In the absence of self-steepening (s= 0), the
two solitons form a bound state because both of them propagate at the same
speed (the eigenvalues have the samerea part). The effect of self-stegpening is
to break the degeneracy so that the two solitons propagate at different speeds.
Asaresult, they separate from each other, and the separation increases almost
linearly with the distance [202]. The ratio of the peak heights in Fig. 5.17 is
about 9 and is in agreement with the expected ratio (n,/n,)?, where n, and
n, are the imaginary parts of the eigenvalues introduced in Section 5.2. The
third- and higher-order solitons follow a similar decay pattern. In particular,
the third-order soliton (N = 3) decays into three solitons whose peak heights
are again in agreement with inverse scattering theory.
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5.5.3 Intrapulse Raman Scattering

Intrapulse Raman scattering plays the most important role among the higher-
order nonlinear effects. Its effects on solitons are governed by the last term
in Eq. (5.5.1) and were observed experimentally in 1985 [209]. The need to
include this term became apparent when a new phenomenon, called the soli-
ton salf-frequency shift, was observed in 1986 [210] and explained using the
delayed nature of the Raman response [211]. Since then, this higher-order
nonlinear effect has been studied extensively [212]-{230].
To isolate the effects of intrapulse Raman scattering, it is useful to set
03 =0and s=0in Eq. (5.5.1). Pulse evolution inside fibers is then governed
by
2 2
ig—g + %% +|uPu= fRu%. (5.5.10)

Using Egs. (5.4.7)«5.4.10) with e(u) = —itu(d|ul?/d ), it is easy to see
that the amplitude n of the soliton is not affected by the Raman effect but its
frequency & changes as

dé

dé
Because 1 isaconstant, thisequation iseasily integrated withtheresult §(&) =
(81x/15)n*E. Usingn = land & = /L = | B,|z/T&, the Raman-induced fre-
guency shift can be written in real units as

8 4
T =N (5.5.11)

Awg(2) = —8|B,|Tyz/(15T3"). (5.5.12)

The negative sign shows that the carrier frequency is reduced, i.e., the soliton
spectrum shifts toward longer wavelengths or the “red” side.

Physically, the red shift can be understood in terms of stimulated Raman
scattering (see Chapter 8). For pulse widths ~1 ps or shorter, the spectral
width of the pulse is large enough that the Raman gain can amplify the low-
frequency (red) spectral components of the pulse, with high-frequency (blue)
components of the same pulse acting as a pump. The process continues along
the fiber, and the energy from blue components is continuously transferred to
red components. Such an energy transfer appears as ared shift of the soliton
spectrum, with shift increasing with distance. As seen from Eg. (5.5.12) the
frequency shift increases linearly along the fiber. More importantly, it scales
with the pulse width as T4, indicating that it can become quite large for short
pulses. As an example, soliton frequency changes at a rate of ~ 50 GHz/km
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Figure 5.18 Decay of a second-order soliton (N = 2) induced by intrapulse Raman
scattering (75 = 0.01).

for 1-ps pulses (T, = 0.57 ps) in standard fibers with g, = —20 ps?/km and
Tr = 3 fs. The spectrum of such pulses will shift by 1 THz after 20 km of
propagation. Thisis alarge shift if we note that the spectral width (FWHM)
of such asoliton is < 0.5 THz. Typically, the Raman-induced frequency shift
cannot be neglected for pulses shorter than 5 ps.

The Raman-induced red shift of solitons was observed in 1986 using 0.5-
ps pulses obtained from a passively mode-locked color-center laser [210]. The
pulse spectrum was found to shift as much as 8 THz for afiber length under
0.4 km. The observed spectral shift was called the soliton self-frequency shift
because it isinduced by the soliton itself. Infact, it wasin an attempt to explain
the observed red shift that the importance of the delayed nature of the Raman
response for transmission of ultrashort pulses was first realized [211].

The effect of intrapulse Raman scattering on higher-order solitons is simi-
lar to the case of self-steepening. In particular, even relatively small values of
T lead to the decay of higher-order solitons into its constituents [218]. Fig-
ure 5.18 shows such a decay for a second-order soliton (N = 2) by solving
Eq. (5.5.10) numerically with 7, = 0.01. A comparison of Figs. 5.17 and 5.18
shows the similarity and the differences for two different higher-order nonlin-
ear mechanisms. Animportant difference isthat relatively smaller values of 7,
compared with s can induce soliton decay over a given distance. For example,
if s=0.01 is chosen in Fig. 5.17, the soliton does not split over the distance
z = 5z,. This feature indicates that the effects of 1; are likely to dominate in
practice over those of self-steepening.
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Figure5.19 Pulse spectrum at z/z, = 5 for parameter valuesidentical to those of Fig.
5.18. Dashed curve shows the spectrum of input pulses.

Ancther important difference seen in Figs. 5.17 and 5.18 is that both soli-
tons are delayed in the case of self-steepening, while in the Raman case the
low-intensity soliton is advanced and appears on the leading side of the in-
cident pulse. This behavior can be understood qualitatively from Fig. 5.19
where the pulse spectrum at z = 5z, is compared with the input spectrum for
the second-order soliton (whose evolution is shown in Fig. 5.18). The most
noteworthy feature is the huge red shift of the soliton spectrum, about four
times the input spectral width for 7z = 0.01 and z/z, = 5. The red-shifted
broad spectral peak corresponds to the intense soliton shifting toward the right
in Fig. 5.18, whereas the blue-shifted spectral feature corresponds to the other
peak moving toward the left in that Figure. Because the blue-shifted compo-
nents travel faster than the red-shifted ones, they are advanced while the others
are delayed with respect to the input pulse. Thisis precisely what is seen in
Fig. 5.18.

A guestion one may ask is whether Eqg. (5.5.10) has soliton-like solu-
tions. It turns out that pulselike solutions do not exist when the Raman term
is included mainly because the resulting perturbation is of nhon-Hamiltonian
type [162]. This feature of the Raman term can be understood by noting that
the Raman-induced spectral red shift does not preserve pulse energy because a
part of the energy is dissipated through the excitation of molecular vibrations.
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Figure 5.20 Tempora intensity profiles of kink solitons in the form of an optical
shock for several values of 7. (After Ref. [227].)

However, akink-type topological soliton (with infinite energy) has been found
and is given by [227]

ué,r) = <f—TTR> [exp <i—:> + 1] 71/2exp (gl—é> . (5.5.13)

Kink solitons appear in many physical systems whose dynamics are gov-
erned by the sine-Gordon equation [71]. In the context of optical fibers, the
kink soliton represents an optical shock front that preserves its shape when
propagating through the fiber. Figure 5.20 shows the shock profiles by plot-
ting |u(&,1)|? for several values of 7,. Steepness of the shock depends on
Tr such that the shock front becomes increasingly steeper as 15 is reduced.
Even though the parameter N increases as 1 is reduced, the power level Ry
(defined as the power at T = 0) remains the same. This can be seen by ex-
pressing R, in terms of the parameter T using Egs. (5.2.3) and (5.5.2) so that
Py = 9|B,|/(16yTZ). Using typical values for fiber parameters, By ~ 10 kW.
It is difficult to observe such optical shocks experimentally because of large
power requirements.

The kink soliton given in Eq. (5.5.13) is obtained assuming u(&,t) =
V(7)exp(iK&), and solving the resulting ordinary differential equation for
V(7). The solution shows that kink solitons form a one-parameter family
for various values of K and exist even in the normal-dispersion region of the
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Figure 5.21 Evolution of pulse shapes and spectra for the case N = 2. The other
parameter values are §; = 0.03, s = 0.05, and 75, = 0.1.

fiber [228]. They continue to exist even when the self-steepening term in Eq.
(5.5.1) isincluded. The analytic form in Eq. (5.5.13) is obtained only for a
specific value K = 9/(873). When K < 73, the monotonically decaying tail
seen in Fig. 5.20 develops an oscillatory structure.

5.5.4 Propagation of Femtosecond Pulses

For femtosecond pulses having widths T, < 1 ps, it becomes necessary to in-
clude all the higher-order termsin Eq. (5.5.1) because al three parameters 6§,
s, and 7z become non-negligible. Evolution of such ultrashort pulses in optical
fibersis studied by solving Eq. (5.5.1) humericaly [231]-{234]. As an exam-
ple, Fig. 5.21 shows the pulse shapes and spectra when a second-order soliton
is launched at the input end of afiber after choosing 6; = 0.03, s= 0.05, and
7z = 0.1. These values are appropriate for a 50-fs pulse (T, ~ 30 fs) propa-
gating in the 1.55-um region of a standard silica fiber. Soliton decay occurs
within a soliton period (z, ~ 5 cm), and the main peak shifts toward the trail-
ing side at arapid rate with increasing distance. This tempora shift is due to
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the decrease in the group velocity g occurring as a result of the red shift of
the soliton spectrum. A shift in the carrier frequency of the soliton changes its
speed because vy = (df3/dw) =t isfrequency dependent. If we use T, = 30 fs
to convert the results of Fig. 5.21 into physical units, the 50-fs pul se has shifted
by almost 40 THz or 20% of the carrier frequency after propagating a distance
of only 15 cm.

When the input peak power islarge enough to excite a higher-order soliton
such that N > 1, the pulse spectrum evolves into several bands, each corre-
sponding to splitting of afundamental soliton from the origina pulse. Such an
evolution pattern was seen when 830-fs pulses with peak powers up to 530 W
were propagated in fibers up to 1 km long [232]. The spectral peak at the
extreme red end was associated with a soliton whose width was narrowest
(= 55 fs) after 12 m and then increased with a further increase in the fiber
length. The experimental results were in agreement with the predictions of Eqg.
(5.5.1).

The combined effect of TOD, self-stegpening, and intrapulse Raman scat-
tering on a higher-order soliton is to split it into its constituents. In fact, the
TOD can itself lead to soliton decay even in the absence of higher-order non-
linear effects when the parameter 6, exceeds a threshold value [233]. For a
second-order soliton (N = 2), the threshold value is 65 = 0.022 but reduces
to ~ 0.006 for N = 3. For standard silica fibers ; exceeds 0.022 at 1.55 um
for pulses shorter than 70 fs. However, the threshold can be reached for pulses
wider by afactor of 10 when dispersion-shifted fibers are used.

An interesting question is whether Eq. (5.5.1) permits shape-preserving,
solitary-wave solutions under certain conditions. Several such solutions have
been found using a variety of techniques [235]-{250]. In most cases, the so-
lution exists only for a specific choice of parameter combinations. For exam-
ple, fundamental and higher-order solitons have been found when 7z = 0 with
S= —26; or s= —66, [242]. From a practical standpoint, such solutions of
Eq. (5.5.1) arerarely useful because it is hard to find fibers whose parameters
satisfy the required constraints.

As successful as Eg. (5.5.1) is in modeling the propagation of femtosec-
ond pulsesin optica fibers, it isstill approximate. Asdiscussed in Section 2.3,
a more accurate approach should use Eq. (2.3.33), where R(t) takes into ac-
count the time-dependent response of the fiber nonlinearity. Inasimple model,
R(t) is assumed to obey Eq. (2.3.34) so that both the electronic (the Kerr ef-
fect) and molecular (the Raman effect) contributions to the fiber nonlinearity
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are accounted for [219]{222]. The delayed nature of the molecular response
not only leads to the soliton self-frequency shift but also affects the interac-
tion between neighboring solitons [223]. Equation (2.3.33) has been used to
study numerically how intrapulse stimulated Raman scattering affects evolu-
tion of femtosecond optical pulses in optical fibers [224]-{226]. For pulses
shorter than 20 fs even the use of this equation becomes questionable because
of the lowly varying envelope approximation made in its derivation (see Sec-
tion 2.3). Because such short pulses can be generated by modern mode-locked
lasers, attempts have been made to improve upon this approximation while still
working with the pulse envelope [251]-{253]. For supershort pulses contain-
ing only afew optical cycles, it eventually becomes necessary to abandon the
concept of the pulse envelope and solve the Maxwell equations directly using
an appropriate numerical scheme (see Section 2.4).

Problems

5.1 SolveEgq. (5.1.4) and derive an expression for the modul ation-instability
gain. What is the peak value of the gain and at what frequency does this
gain occur?

5.2 A 1.55-um soliton communication system is operating at 10 Gb/s using
dispersion-shifted fiberswith D = 2 ps/(km-nm). The effective core area
of the fiber is 50 um?. Calculate the peak power and the pulse energy
required for launching fundamental solitons of 30-ps width (FWHM)
into the fiber.

5.3 What is the soliton period for the communication system described in
Problem 5.2?

5.4 Verify by direct substitution that the soliton solution given in Eq. (5.2.16)
satisfies Eq. (5.2.5).

5.5 Develop acomputer program capable of solving Eqg. (5.2.5) numerically
using the split-step Fourier method of Section 2.4. Test it by comparing
its output with the analytical solution in Eg. (5.2.16) when afundamental
soliton is launched into the fiber.

5.6 Use the computer program developed in Problem 5.5 to study the case
of an input pulse of the form given in Eq. (5.2.22) for N = 0.2, 0.6, 1.0,
and 1.4. Explain the different behavior occurring in each case.
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5.7

5.8

5.9

Why should the amplifier spacing be a fraction of the soliton period
when lumped amplifiers are used for compensating fiber losses?

A soliton communication system is designed with an amplifier spacing
of 50 km. What should the input value of the soliton parameter N be
to ensure that afundamental soliton is maintained in spite of 0.2-dB/km
fiber losses? What should the amplifier gain be? |s there any limit on
the bit rate of such a system?

Study the soliton interaction numerically using an input pulse profile
givenin Eq. (5.4.38). Chooser =1, g, = 3, and vary 6 intherange 0 to
TT.

5.10 A soliton system is designed to transmit a signal over 5000 km at B =
5 Gb/s. What should the pulse width (FWHM) be to ensure that the
neighboring solitons do not interact during transmission? The dispersion
parameter D = 2 ps/(km-nm) at the operating wavelength.

5.11 What is intrapulse Raman scattering? Why does it lead to a shift in the
carrier frequency of solitons? Derive an expression for the frequency
shift using the Raman term as a perturbation. Calculate the shift for 1-
ps (FWHM) solitons propagating in a 10-km-long fiber with the GVD
D = 2 pg/(km-nm).

5.12 Verify by direct substitution that the solution given in Eq. (5.5.13) is
indeed the solution of Eq. (5.5.1) when 6; =0,s=0, and N = 3/(41g).
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Chapter 6

Polarization Effects

As discussed in Section 2.3, a mgjor simplification made in the derivation of
the nonlinear Schrodinger (NLS) equation consists of assuming that the po-
larization state of the incident light is preserved during its propagating inside
an optical fiber. Thisis not really the case in practice. In this chapter we fo-
cus on the polarization effects and consider the coupling between the two or-
thogonally polarized components of an optical field induced by the nonlinear
phenomenon known as cross-phase modulation (XPM). The XPM is always
accompanied by self-phase modulation (SPM) and can aso occur between two
optical fields of different wavelengths. The nondegenerate case involving dif-
ferent wavelengths is discussed in Chapter 7.

The chapter is organized as follows. The origin of nonlinear birefringence
is discussed first in Section 6.1 and is followed by the derivation of a set of
two coupled NLS equations that describes evolution of the two orthogonally
polarized components of an optical field. The XPM-induced nonlinear bire-
fringence has several practical applications discussed in Section 6.2. The next
section considers nonlinear polarization changes with focus on polarization in-
stability. Section 6.4 is devoted to the vector modulation instability occurring
in birefringent fibers. In contrast with the scalar case discussed in Section
5.1, the vector modulation instability can occur even in the normal-dispersion
regime of abirefringent fiber. Section 6.5 considers the effects of birefringence
on solitons. The last section focuses on polarization-mode dispersion (PMD)
occurring in fibers with randomly varying birefringence along their length and
itsimplications for lightwave systems.

203
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6.1 Nonlinear Birefringence

As mentioned in Section 2.2, even a single-mode fiber, in fact, supports two
orthogonally polarized modes with the same spatia distribution. The two
modes are degenerate in an idea fiber (maintaining perfect cylindrical sym-
metry along its entire length) in the sense that their effective refractive indices,
ny and ny, areidentical. In practice, al fibers exhibit some modal birefringence
(nx # ny) because of unintentional variations in the core shape and anisotropic
stresses along the fiber length. Moreover, the degree of modal birefringence,
Bm = |nx — ny|, and the orientation of x and y axes change randomly over a
length scale ~10 m unless special precautions are taken.

In polarization-maintaining fibers, the built-in birefringence is made much
larger than random changes occurring due to stress and core-shape variations.
As aresult, such fibers exhibit nearly constant birefringence along their en-
tire length. This kind of birefringence is called linear birefringence. When
the nonlinear effects in optical fibers become important, a sufficiently intense
optical field can induce nonlinear birefringence whose magnitude is intensity
dependent. Such self-induced polarization effects were observed as early as
1964 in bulk nonlinear media[1] and have been studied extensively since then
[2]-10]. In this section, we discuss the origin of nonlinear birefringence and
develop mathematical toolsthat are needed for studying the polarization effects
in optical fibers assuming a constant modal birefringence. Fibersinwhich lin-
ear birefringence changes randomly over their length are considered later in
this chapter.

6.1.1 Origin of Nonlinear Birefringence

A fiber with constant modal birefringence has two principal axes along which
thefiber is capable of maintaining the state of linear polarization of the incident
light. These axes are caled slow and fast axes based on the speed at which
light polarized along them travels inside the fiber. Assuming n, > ny, ny and
ny are the mode indices along the slow and fast axes, respectively. When low-
power, continuous-wave (CW) light is launched with its polarization direction
oriented at an angle with respect to the slow (or fast) axis, the polarization
state of the CW light changes aong the fiber from linear to elliptic, elliptic
to circular, and then back to linear in a periodic manner (see Fig. 1.9) over a
distance known as the beat length and defined as Lg = A /Bm. The beat length
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can be as small as 1 cm in high-birefringence fibers with By, ~ 1074, In low-
birefringence fibers, typically By, ~ 1078, and the beat length is ~1 m.
The electric field associated with an arbitrarily polarized optical wave can
be written as
E(r,t) = 3(REx+ JEy) exp(—iwgt) +c.C., (6.1.1)

where Ey and Ey are the complex amplitudes of the polarization components
of the field with the carrier frequency w,. The axial component E is assumed
to remain small enough that it can be ignored.

The nonlinear part of the induced polarizationt Py, is obtained by substi-
tuting Eq. (6.1.1) in EqQ. (2.3.6). In general, the third-order susceptibility is a
fourth-rank tensor with 81 elements. In an isotropic medium, such as silica
glass, only three elements are independent of one another, and the third-order
susceptibility can be written in terms of them as [10]

X5 = 1oy G180 + L5y BB T TisgneBi S (6.1.2)

where §; isthe Kronecker delta function defined such that 6;; = 1 wheni = j
and zero otherwise. Using this result in Eq. (2.3.6), B, can be written as

Py (F,t) = (P4 JR)) exp(—iagt) +c.c., (6.1.3)

with P, and R, given by
38 " "
=0 2 (HSVEEE + XShEEE + XGLEEE), (6149

wherei, j = x ory. From Eqg. (6.1.2), we also obtain the relation
13 = 28+ 2 + 1 (6.1.5)

where ;(@(X is the element appearing in the scalar theory of Section 2.3 and
used in Eq. (2.3.13) to define the nonlinear parameter n,,.

The relative magnitudes of the three components in Eq. (6.1.5) depend on
the physical mechanisms that contribute to ¥3). In the case of silica fibers,

the dominant contribution is of electronic origin [4], and the three components

1Polarization induced inside a dielectric medium by an electromagnetic field should not be
confused with the state of polarization of that field. The terminology is certainly confusing but
is accepted for historical reasons.
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have nearly the same magnitude. If they are assumed to be identical, the po-
larization components R and R, in Eq. (6.1.4) take the form

3¢, 1,
r=2oxa[(Er+ B0 Bt dEEE]. 619
38 1,
P - 40%)000( [(|Ey|2 _|EX|2) Ey+ 3(EyEX)Ex:| . (617)

Thelast termin Egs. (6.1.6) and (6.1.7) leads to degenerate four-wave mixing.
Its importance will be discussed later.

The nonlinear contribution Any to the refractive index is governed by the
term proportional to Ey in Eq. (6.1.6). Writing P, = £,¢]'"E; and using

g =&+ = (nk+An))?, (6.1.8)

where n'j- isthe linear part of the refractive index (j = x,y), the nonlinear con-
tributions Any and Any are given by

2 2
Ang=n, <|EX|2+ é|Ey|2> . Any=n, <|Ey|2+ §|EX|2> , (619

where n, is a nonlinear parameter as defined in Eq. (2.3.13). The physical
meaning of the two terms on the right-hand side of these equations is quite
clear. Thefirst termisresponsible for SPM. The second term results in XPM
because the nonlinear phase shift acquired by one polarization component de-
pends on the intensity of the other polarization component. The presence of
this term induces a nonlinear coupling between the field components E, and
Ey. The nonlinear contributions An, and Any are in general unequal and thus
create nonlinear birefringence whose magnitude depends on the intensity and
the polarization state of the incident light. In the case of CW light propagating
inside a fiber, nonlinear birefringence manifests as a rotation of the polariza-
tion ellipse [1].

6.1.2 Coupled-Mode Equations

The propagation equations governing evolution of the two polarization com-
ponents along a fiber can be obtained following the method of Section 2.3.
Assuming that the nonlinear effects do not affect the fiber mode significantly,
the transverse dependence of E, and E, can be factored out using

E;(r,t) =F(x.y)A(zt) exp(ifBy;2), (6.1.10)
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where F(x,y) is the spatial distribution of the single mode supported by the
fiber, A;(zt) is the slowly varying amplitude, and j3; is the corresponding
propagation constant ( j = X,y). The dispersive effects are included by expand-
ing the frequency-dependent propagation constant in a manner similar to Eq.
(2.3.23). The slowly varying amplitudes, A, and Ay, are found to satisfy the
following set of two coupled-mode equations:

8A Ay |ﬁ28AX o
ﬁlxat 2 at2+_AX

=iy<|Ax|2 IAy|2>AX+ ~AA exp(—2iABz),  (6.1.11)

8Ay 8Ay iB, 9°Ay N

Pyt ot T2 o T2
. iy, _
=y <|Ay|2+ §|Ax|2> A+ gAyA)Z(exp(ZIABZ), (6.1.12)

where
AB =[30X—[30y= (2m/A)Bm=2n/Lg (6.1.13)

isrelated to the modal birefringence of the fiber. Note that modal birefringence
also leads to different group velocities for the two polarization components
because 3, # By, in general. In contrast, the parameters 3, and y are the same
for both polarization components having the same wavelength A.

The last term in Egs. (6.1.11) and (6.1.12) is due to coherent coupling
between the two polarization components and leads to degenerate four-wave
mixing. Itsimportance to the process of polarization evolution depends on the
extent to which the phase-matching condition is satisfied (see Chapter 10). If
the fiber length L > Lg, the last term in Egs. (6.1.11) and (6.1.12) changes
sign often and its contribution averages out to zero. In highly birefringent
fibers (Lg ~ 1 cmtypically), the four-wave-mixing term can often be neglected
for thisreason. In contrast, thisterm should be included in weakly birefringent
fibers, especialy for short lengths. Inthat case, it is often convenient to rewrite
Egs. (6.1.11) and (6.1.12) using circularly polarized components defined as

A= (AHIA) V2, A= (A—IA)/V?2, (6.1.14)

where A, = Acexp(iABz/2) and Ay = A exp(—iABz/2). The A, and A_ rep-
resent right- and left-handed circularly polarized (o, and o_) states, respec-
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tively, and satisfy somewhat simpler equations:

JdA, Iﬁz A, «
oz £ g at 2 o Tt
"
—(AB)A, + ﬂ (A, 2+2A DA, (6.1.15)
oA . |ﬁ2 82A o
oz B at 2. o T2
= E(AB)A++? (IA_|2+2A, 12 A, (6.1.16)

where we assumed that f3;, ~ fB;, = B, for fibers with relatively low birefrin-
gence. Notice that the four-wave-mixing terms appearing in Egs. (6.1.11) and
(6.1.12) are replaced by a linear-coupling term containing AB. At the same
time, the relative strength of XPM changes from % to 2 when circularly polar-
ized components are used to describe wave propagation.

6.1.3 Elliptically Birefringent Fibers

The derivation of Egs. (6.1.11) and (6.1.12) assumes that the fiber is linearly
birefringent, i.e., it has two principal axes along which linearly polarized light
remains linearly polarized in the absence of nonlinear effects. Although this
isidedly the case for polarization-maintaining fibers, elliptically birefringent
fibers can be made by twisting afiber preform during the draw stage [11].

The coupled-mode equations are modified considerably for eliptically bire-
fringent fibers. This case can be treated by replacing Eq. (6.1.1) with

E(r,t) = 3(&Ex+8/Ey) exp(—impt) +C.C., (6.1.17)

where & and &, are orthonormal polarization eigenvectors related to the unit
vectors X and ¥ used before as[12]
N X+iry N rx—iy
= —=, = . 6.1.18
& V1412 E V1412 ( )
The parameter r represents the dllipticity introduced by twisting the preform. It
iscommon to introduce the ellipticity angle 6 asr =tan(6/2). Thecases 6 =0
and r/2 correspond to linearly and circularly birefringent fibers, respectively.
Following a procedure similar to that outlined here for linearly birefrin-
gent fibers, the slowly varying amplitudes A, and A, are found to satisfy the
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following set of coupled-mode equations [12]:
0A iy 0A |[32 82AX

9z TP or T or
= i7[(JAd®+ BJA[? )Ax+CA;A$e_2|AﬁZ

_AX

+ iyDIAAZEPZ 1 (IA) 2 + 2| Al Ay 4P (6.1.19)
8 8Ay |[328 Ay o
TPyt e T
= W[(|Ay|2+ BIA?) Ay‘*‘CA;Aer'AﬁZ]
+ iyD[AAZe 4PZ 1 (|A% 4 2|A |2 A P, (6.1.20)
where the parameters B,C, and D are related to the ellipticity angle 6 as
= ﬂ, = ﬂ, = w_ (6.1.21)
2+ cos?6 2-+cos?6 2+cos?6

For alinearly birefringent fiber (9 = 0), B=4%,C=1,D =0, and Egs. (6.1.19)
and (6.1.20) reduce to Egs. (6.1.11) and (6.1.12), respectively.

Equations (6.1.19) and (6.1.20) can be simplified considerably for optical
fibers with large birefringence. For such fibers, the beat length Lg is much
smaller than typical propagation distances. Asaresult, the exponential factors
in the last three terms of Egs. (6.1.19) and (6.1.20) oscillate rapidly, contribut-
ing little to the pulse evolution process on average. If these terms are neglected,
propagation of optical pulsesin an elliptically birefringent fiber is governed by
the following set of coupled-mode equations:

A 8AX iB, 9°Ax
0z +Pug at 2 ot?
A [ [32 %Ay
Jz By at 2 o
These equations represent an extension of the scalar NLS equation, derived
in Section 2.3 without the polarization effects [see Eq. (2.3.27)], to the vector
case and are referred to asthe coupled NL S equations. The coupling parameter
B depends on the dllipticity angle 6 [see Eq. (6.1.21)] and can vary from%
to 2 for values of 0 in the range 0 to n/2. For a linearly birefringent fiber,
06=0andB= % In contrast, B = 2 for a circularly birefringent fiber (6 =
n/2). Note also that B =1 when 6 ~ 35°. As discussed later, this case is
of particular interest because Egs. (6.1.22) and (6.1.23) can be solved by the
inverse scattering method only when B= 1 and oc = 0.

+ Ax iV(A? +BIAYP)A,  (6.1.22)

+ Ay_ly(|Ay|2—|—B|AX|) y- (6.1.23)
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6.2 Nonlinear Phase Shift

As seen in Section 6.1, a nonlinear coupling between the two orthogonally
polarized components of an optical wave changes the refractive index by dif-
ferent amounts for the two components. As a result, the nonlinear effects in
birefringent fibers are polarization dependent. In this section we use the cou-
pled NLS equations obtained in the case of high-birefringence fibers to study
the XPM-induced nonlinear phase shift and its device applications.

6.2.1 Nondispersive XPM

Equations (6.1.22) and (6.1.23) need to be solved numerically when ultra-
short optical pulses propagate inside birefringent fibers. However, they can
be solved analytically in the case of CW radiation. The CW solution is also
applicable for pulses whenever the fiber length L is much shorter than both the
dispersion length L = TZ/|B,| and the walk-off length Ly, = T,/|AB|, where
T, isameasure of the pulse width. Asthis case can be applicable to pulses as
short as 100 ps and sheds considerable physical insight, we discussit first.

Neglecting the terms with time derivatives in Egs. (6.1.22) and (6.1.23),
we obtain the following two simpler equations:

dAx

5 2Ax = i(|A® + BIAJ?) A, (6.2.1)
dAy 2
7+ sz = i7(|Ay? + BIA?) Ay (62.2)

These equations describe nondispersive XPM in birefringent fibers and extend
the scalar theory of SPM in Section 4.1 to the vector case. They can be solved
by using

Ac= P ®2d% A = /R e oH%d%, (6.2.3)

where P, and R, are the powers and ¢y and ¢y are the phases associated with
the two polarization components. It is easy to deduce that R and R, do not
change with z. However, the phases ¢y and ¢, do change and evolve as

d
dz dz
Since B, and R, are constants, the phase equations can be solved easily with
the result
Ox = Y(Pc+ BPR)L g, ¢y = Y(R + BP) L, (6.2.5)
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PUMP PUMP
POLARIZER DETECTOR

OPTICAL FIBER
PROBE

Figure 6.1 Schematic illustration of a Kerr shutter. Pump and probe beams are lin-
early polarized at 45° to each other at the input end. Polarizer blocks probe transmis-
sion in the absence of pump.

where the effective fiber length L = [1—exp(—oL )]/ isdefined in the same
way asin the SPM case [see Eg. (4.1.6)].

It is clear from EqQ. (6.2.5) that both polarization components develop a
nonlinear phase shift whose magnitude is the sum of the SPM and XPM con-
tributions. In practice, the quantity of practical interest is the relative phase
difference given by

APy = Ox— ¢y = YL (1 —B) (P —R)). (6.2.6)

No relative phase shift occurs when B = 1. However, when B #£ 1, arelative
nonlinear phase shift between the two polarization components occurs if input
light is launched such that B # R,. As an example, consider alinearly bire-
fringent fiber for which B = % If CW light with power R, is launched such
that it is Iinearly polarized at an angle 6 from the slow axis, R = P00052 0,
R, = P,sin®#, and the relative phase shift becomes

Ady = (YPyL/3) cos(20). (6.2.7)

This 6-dependent phase shift has several applications discussed next.

6.2.2 Optical Kerr Effect

Inthe optical Kerr effect, the nonlinear phase shift induced by an intense, high-
power, pump beam is used to change the transmission of aweak probe through
a nonlinear medium [4]. This effect can be used to make an optical shutter
with picosecond response times [6]. It was first observed in optical fibersin
1973 [13] and has attracted considerable attention since then [14]-{24].

The operating principle of aKerr shutter can be understood from Fig. 6.1.
The pump and probe beams are linearly polarized at the fiber input with a 45°
angle between their directions of polarization. A crossed polarizer at the fiber
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output blocks probe transmission in the absence of the pump beam. When
the pump is turned on, the refractive indices for the parallel and perpendicu-
lar components of the probe (with respect to the direction of pump polariza-
tion) become dlightly different because of pump-induced birefringence. The
phase difference between the two components at the fiber output manifests as
achange in the probe polarization, and a portion of the probe intensity istrans-
mitted through the polarizer. The probe transmittivity depends on the pump
intensity and can be controlled simply by changing it. In particular, a pulse at
the pump wavelength opens the Kerr shutter only during its passage through
the fiber. As the probe output at one wavelength can be modulated through
a pump at a different wavelength, this device is also referred to as the Kerr
modulator. It has potential applications in fiber-optical networks requiring all-
optical switching.

Equation (6.2.6) cannot be used to calculate the phase difference between
the x and y components of the probe because the pump and probe beams have
different wavelengths in Kerr shutters. We follow a dightly different approach
and neglect fiber losses for the moment; they can beincluded later by replacing
L with L. The relative phase difference for the probe at the output of a fiber
of length L can always be written as

A = (2r/A)(fx — fiy)L, (6.2.8)
where A isthe probe wavelength and
fiy = Ny + Any, fly = ny + Any. (6.2.9)

As discussed earlier, the linear parts ny and ny of the refractive indices are
different because of modal birefringence. The nonlinear parts An, and Any are
different because of pump-induced birefringence.

Consider the case of a pump polarized linearly along the x axis. The x
component of the probe is polarized parallel to the pump but its wavelength
is different. For this reason, the corresponding index change An, must be ob-
tained by using the theory of Section 7.1. If the SPM contribution is neglected,

Any = 2n,|Ep|%, (6.2.10)

where |Ep|? isthe pump intensity. When the pump and probe are orthogonally
polarized, only the first term in Eq. (6.1.4) contributes to An, because of dif-
ferent wavelengths of the pump and probe beams [9]. Again neglecting the
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SPM term, Any becomes
Any=2,bEp2, b=y /1. (6.2.11)

If the origin of ¥® is purely electronic, b = 1. Combining Egs. (6.2.8)—
(6.2.11), the phase difference becomes

A = Ad_+Ady, = (2rL/1) (AN, + Ny Epl?), (6.2.12)

where An_= ny — ny accounts for linear birefringence, and the Kerr coefficient
N,g IS given by

The probe transmittivity T, can now be obtained noting that probe light is
blocked by the polarizer when A¢ = 0 (see Fig. 6.1). When A¢ # O, fiber acts
asabirefringent phase plate, and some probe light passes through the polarizer.
The probe transmittivity is related to A¢ by the simple relation

Tp = 2|1—exp(iag)[? = sin*(A¢/2). (6.2.14)

It becomes 100% when A¢ = & or an odd multiple of =. On the other hand, a
phase shift by an even multiple of © blocks the probe completely.

To observe the optical Kerr effect, a polarization-maintaining fiber is gen-
eraly used to ensure that the pump maintains its state of polarization. The con-
stant phase shift A¢y resulting from linear birefringence can be compensated
by inserting a quarter-wave plate before the polarizer in Fig. 6.1. However, in
practice, A, fluctuates because of temperature and pressure variations, mak-
ing it necessary to adjust the wave plate continuously. An alternative approach
is to use two identical pieces of polarization-maintaining fibers, spliced to-
gether such that their fast (or slow) axes are at right angles to each other [18].
As An; changes sign in the second fiber, the net phase shift resulting from
linear birefringence is canceled.

Under ideal conditions, the response time of a Kerr shutter would be lim-
ited only by the response time of the Kerr nonlinearity (<10 fs for optical
fibers). In practice, however, fiber dispersion limits the response time to values
that can range from 1 psto 1 ns depending on the operating parameters [14].
A major limiting factor is the group-velocity mismatch between the pump and
the probe. The relative group delay is given by

Atg = |L/Vgg — L/Val. (6.2.15)
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It can easily exceed 1 nsfor a 100-m-long fiber unless specia precautions are
taken to reduce the group-velocity mismatch. One possibility isto choose the
pump and probe wavelengths on opposite sides of the zero-dispersion wave-
length.

Moda birefringence of the fiber sets another limit on the response time.
Because of theindex difference An , the orthogonally polarized components of
the probe travel at different speeds and develop arelative delay At, = LAn, /c.
For a 100-m-long fiber with An, = 5x 10>, At ~ 17 ps. It can be reduced by
using fibers with smaller birefringence. The use of two fibers spliced together
with their fast axes at right angles to each other can nearly eliminate At,. The
fundamental limit on the response time is then set by GVD that broadens the
pump pulse during its propagation inside the fiber. It can be reduced to 1 ps
or less either by reducing the fiber length or by bringing the pump wavelength
closer to the zero-dispersion wavelength.

The minimum pump power required for 100% probe transmission can be
estimated by setting A¢y = 0 (complete compensation) and A¢,, = 7 in Eq.
(6.2.12). Itisgiven by

Po = |Epl*Ags = AAg/(2055L), (6.2.16)

where A isthe effective core area. The effect of fiber loss can be included by
replacing L with the effective length L ; introduced earlier. Using n,g = 4.5x

1026 cm?/W, Ay = 10 um?, and A = 1.06 um, the pump power P, ~ 1 W for
a 100-m-long fiber. The power can be reduced by increasing fiber length, but
only at the expense of a slower response time limited by Eq. (6.2.15). In one
experiment [15], B, = 0.39 W was measured for L = 580 mand A = 22 um?.

In another experiment [21], the effective core area was reduced to 2 unv?, and

a semiconductor laser operating at 1.3 um was used as a pump. A phase shift
of 17° was realized at a pump power of only 27 mW. The estimated value of
PoL = 11 W-m for this experiment indicates that pump powers ~50 mW may
be sufficient for 100% probe transmission if 200-m-long fibers were used in
each arm of a Mach—Zehnder interferometer.

Equation (6.2.16) can be used to estimate the Kerr coefficient n,5. Most
measurements indicate n,; ~ 4 x 10~ ¢ cm?/W with an experimental uncer-
tainty of ~ 20% [13]{21]. Thisvalue isin agreement with Eq. (6.2.13) if we
use n, ~ 3 x 10 6 cm?/W and b = 1. The parameter b has been measured
in an experiment [18] designed to allow an independent measurement of the
susceptibility ratio indicated in Eq. (6.2.11). The measured value b = 0.34
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Figure6.2 Schematic diagram of an all-optical Kerr shutter used for optical sampling.
(After Ref. [16].)

suggests that the electronic contribution to ¥ dominatesin silicafibers. This
conclusion isin agreement with the measurements made using bulk glasses [5].

On the practical side, an al-fiber Kerr shutter has been used for optical
sampling [16]. Figure 6.2 shows the experimental set up schematically. A
Babinet—Soleil compensator was used to compensate for modal birefringence
of the fiber. A highly birefringent piece of fiber was used as a polarizer with
about 20-dB extinction ratio. It also served as afilter because fiber losses were
quite high at the 1.06-um pump wavelength. A laser diode at 0.84 um served
asthe probe. The sampled probe output was in the form of a sequence of pulses
whose separation and width were determined by pump pulses. In this exper-
iment, pump pulses were fairly long (~ 300 ps). In a different experiment,
30-ps probe pulses at a repetition rate of 1.97 GHz (obtained from a 1.3-um,
gain-switched, distributed feedback semiconductor laser) were demultiplexed
using 85-ps pump pulses from a mode-locked Nd: YAG laser [18].

In most experiments on Kerr shutters, it is generally necessary to use bulky
high-power lasers to realize optical switching in silica fibers, making practical
use of such devices difficult. As evident from Eq. (6.2.16), the product RL
can be reduced considerably if optical fibers made with a high-nonlinearity
material are used in place of silica fibers. Chalcogenide glasses offer such
an opportunity because their nonlinear parameter n, is larger by afactor ~100
compared with silica. Several experiments have shown that chalcogenide glass
fibers offer a solution to making practical nonlinear Kerr shutters operating
at high speeds [22]-{24]. In a 1992 experiment, a 1.319-um mode-locked
Nd:YAG laser in combination with a pulse compressor provided pump pulses
of widthsin the range 2.5-40 ps at the 100-MHz repetition rate [22]. The fiber
length was kept < 1 mto avoid large losses associated with the As,S;-based
chalcogenide fiber. In spite of such a small interaction length, the required
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pump power for optical switching wasonly ~ 5W.

In alater experiment, all-optical switching was achieved using a semicon-
ductor laser as a pump source [23]. Gain switching of a distributed feedback
semiconductor laser, in combination with pulse compression, provided 8.2-ps
pump pulses at the 100-MHz repetition rate. The peak power of pump pulses
was increased to 13.9 W using an erbium-doped fiber amplifier. For a 1-m-
long fiber the switched signal pulse had nearly the same width as the pump
pulse, demonstrating ultrafast switching on a picosecond time scale. Signal
pulses could be switched through the Kerr effect even when the signal wasin
the form of a 100-GHz pulse train, indicating the potential of a Kerr shutter for
demultiplexing a 100-Gb/s communication channel.

6.2.3 Pulse Shaping

Nonlinear birefringence induced by an intense pulse can be used to modify
the shape of the same pulse, even in the absence of a pump pulse, because its
transmission through a combination of fiber and polarizer isgenerally intensity
dependent. As aresult, such a device can block low-intensity tails of a pulse
while passing the central intense part of the same pulse. This phenomenon can
be used to remove the low-intensity pedestal associated with some compressed
pulses [25]-{27]. It can also be used to make fiber-optic logic gates [28].

The operating principle of an intensity discriminator is similar to that of
the Kerr shutter shown in Fig. 6.1. The main difference is that instead of a
pump, the signal pulse itself produces nonlinear birefringence and modifies its
own state of polarization. To understand the physics behind such a device as
simply as possible, let us neglect the GVD effects and use the nondispersive
XPM theory of Section 6.2.1. Consider the case of an input beam linearly
polarized at an angle 6 with respect to one of the principal axes (x axis) of
the fiber. The relative phase shift introduced between the two polarization
components is then given by Eqg. (6.2.7). This phase shift allows some power
to be transmitted through the polarizer when 6 # 0. The transmittivity T, is
obtained by noting that

A= /PycosOexp(irgy ),  Ay=/Pysing, (6.2.17)

where A¢,, is the nonlinear phase shift. Because the cross polarizer makes
an angle /2 + 6 from the x axis, the total transmitted field becomes A =
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Figure 6.3 Transmittivity Ty as a function of input polarizetion angle 6 for three
different peak powers corresponding to ¢max = 10, 20, and 30. (After Ref. [25].)

/Posin6 cosf[1— exp(iAdy, )]- Asaresult, T, is given by [25]
To(0) = |A|?/Py = sin?[(yP,L/6) cos(26)]sin?(26), (6.2.18)

where Eq. (6.2.7) was used. In the case of optical pulses propagating through
the fiber, the product yR,L is related to the maximum phase shift ¢mayx induced
by SPM [see Eq. (4.1.6)] and can also be related to the nonlinear length scale
Ly, through the relation

Pmax = YPoL = L /Ly, - (6.2.19)

Pulse shaping occurs because T, is power dependent at a given angle 6. If
the angle 6 is set to maximize the transmission at the pulse peak, the wings
are removed because of their relatively low power levels. As a result, the
output pulse becomes narrower than the input pulse. This behavior has been
observed experimentally [26]. The optimum value of 6 depends on the peak
power P,. Figure 6.3 shows Ty, asafunction of 6 for three values of ¢max. The
transmittivity can approach 90% at 0 = 36.2° for ¢max = 30.

Experimental results on pulse shaping indicate that the observed behavior
does not always agree with Eq. (6.2.18). In particular, this equation predicts
that T, = 0for 6 =45, i.e,, theinput light is blocked by the polarizer when the
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Figure 6.4 Transmittivity T as a function of input polarization angle 6 when the
effect of linear birefringenceisincluded for ABL = 2 and ¢ max = 6.57. Dashed line
shows the behavior when A3 = 0. (After Ref. [29].)

two polarization components are excited with equal amplitudes. In practice,
this is not the case. The reason for this discrepancy can be traced back to
the neglect of the last term in Egs. (6.1.11) and (6.1.12). A more accurate
theory should include this term. In the CW or the quasi-CW case for which
the dispersive effects are negligible, Egs. (6.1.11) and (6.1.12) can be solved
analytically by neglecting the time derivatives and the loss terms. The analytic
solution is given in the next section. Its use shows that Eq. (6.2.18) is quite
accurate in the case of highly birefringent fibers (ABL > 1) except near 6 =
45°. In low-birefringence fibers, the transmittivity can be quite different than
that given by Eq. (6.2.18). Figure 6.4 shows T, asafunction of 6 for ABL =2x
and ¢max = 6.57. A comparison with the prediction of Eq. (6.2.18) reveals
the importance of including linear birefringence. Physically, the linear and
nonlinear birefringence contributions to the refractive index compete with each
other, and both should be included.

6.3 Evolution of Polarization State

An accurate description of the nonlinear polarization effects in birefringent
fibers requires simultaneous consideration of both the modal birefringence and
self-induced nonlinear birefringence [29]-{46]. Evolution of the two polariza-
tion components along such fibersis governed by Egs. (6.1.11) and (6.1.12) or
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their variants. However, before turning to the case of pulse propagation, it is
useful to consider how the state of polarization evolves within the fiber when
aCW (or quasi-CW) beam islaunched at the input end.

6.3.1 Analytic Solution

In place of Egs. (6.1.11) and (6.1.12), it ismore convenient to use Egs. (6.1.15)
and (6.1.16) written in terms of the circularly polarized components. Theterms
containing time derivatives can be set to zero in the quasi-CW case. If we also
neglect fiber losses, Egs. (6.1.15) and (6.1.16) reduce to

dA, | 2
= = S(ABA+ (A P+2A A, (6.3.)
dA_ | 2
= 5(OB)A + T (AP 2A DA (6.32)

Consider first the low-power case and neglect the nonlinear effects (y = 0).
Theresulting linear equations are easily solved. Asan example, when the input
beam with power R, is o -polarized, the solution is given by

A (2) = /Pycos(nz/Lg), A_(z)=i\/Pysin(nz/Lg), (6.3.3)

where the beat length Ly = 2/(AB). The state of polarization is generally
eliptical and evolves periodically with a period equal to the beat length. The
ellipticity and the azimuth of the polarization €ellipse at any point along the
fiber can be obtained using

A=A 1 _1<A+>
=1t f=_tan 1), 6.3.4
PTAL A 2 A (634

Equations (6.3.1) and (6.3.2) can be solved analytically even when nonlin-
ear effects become important. For this purpose, we use

1/2
a= () vesestio). 635)

and obtain the following three equations satisfied by the normalized powers
p, and p_ and the phase difference y = ¢, — ¢ _:

dd% = \/2p,p_siny, (6.3.6)
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dp_ .
dLZ =—y/2p,p_siny, (6.3.7)
dy  p_—p;

— = ——=cosy+2(p_—p.), 6.3.8

where Z = (AB)z/2. These eguations have the following two quantities that
remain constant along the fiber [43]:

p=p,+p., T'=/P,P_cCOSYy+p,p_. (6.3.9)

Note that p is related to the total power Ry launched into the fiber through
p = P,/Pu, where Py is obtained from Eq. (6.3.5) and is given by

Per = 3|AB|/(2y). (6.3.10)

Because of the two constants of motion, Egs. (6.3.6)—(6.3.8) can be solved
analytically in terms of the elliptic functions. The solution for p, is[32]

p.(2) = 3p— v/mglen(x), (6.3.11)
where cn(x) is a Jacobian elliptic function with the argument
x=+/19/(AB)z+ K(m), (6.3.12)

K(m) isthe quarter period, and mand q are defined as

m=3[1-Re(@)/|q],  a=1+ pexp(iyp). (6.3.13)

Here y, is the value of y at z= 0. Both p_(z) and y(z) can be obtained
in terms of p, () using Eq. (6.3.9). The dlipticity and the azimuth of the
polarization ellipse at any point aong the fiber are then obtained from Eq.
(6.3.4) after noting that 6 = y/2.

It is useful to display evolution of the polarization state as tragjectories in
the dlipticity—azimuth phase plane. Figure 6.5 shows such phase-space trgjec-
tories in the cases of (a) low input power (p < 1) and (b) high input power
(p = 3). In the low-power case, al trgjectories close, indicating oscillatory
evolution of the polarization state [see Eq. (6.3.3)]. However, at power levels
such that p > 1, a “seperatrix” divides the phase space into two distinct re-
gions. In the region near g, = 0 and 6 = O (light polarized close to the slow
axis), trgjectories form closed orbits, and polarization evolution is qualitatively
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Figure 6.5 Phase-space trajectories representing evolution of the polarization state
along fiber for (8) p< 1 and (b) p= 3. (After Ref. [32].)

similar to the low-power case. However, when light is polarized close to the
fast axis, nonlinear rotation of the polarization ellipse leads to qualitatively dif-
ferent behavior because the fast axis corresponds to an unstable saddle point.

One can use the analytic solution to find the “fixed points’ in the phase
space. A fixed point represents a polarization state that does not change aslight
propagates inside the fiber. Below the critical power (p < 1), light polarized
linearly (e, = 0) along the slow and fast axes (6 = 0 and /2 represents two
stable fixed points. At the critical power (p = 1),the fast-axis fixed point ex-
hibits a pitchfork bifurcation. Beyond this power level, the linear-polarization
state along the fast axis becomes unstable, but two new elliptically polarized
states emerge as fixed points. These new polarization eigenstates are discussed
next using the Poincaré-sphere representation.

6.3.2 Poincaré-Sphere Representation

An alternative approach to describe evol ution of the polarization statein optical
fibersis based on the rotation of the Stokes vector on the Poincaré sphere [31].
In this case, it is better to write Egs. (6.3.1) and (6.3.2) in terms of linearly
polarized components using Eq. (6.1.14). The resulting equations are

dA, i ~ 2y(r2. 272\ Vmmo
i 2(AB)AX— 3 (IAXI +3|Ay| At AN, (6.3.14)
dA_‘y i LA NN T
5 +2(Aﬁ)Ay_ 3 <|Ay| +3|AX| Ayt A (6.3.15)
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These equations can also be obtained from Egs. (6.1.11) and (6.1.12).
At this point, we introduce the four real variables known as the Stokes
parameters and defined as

S = AP +IA, S, = A=A/

S, = 2Re(AA)), Sy = 2Im(AA), (6.3.16)

and rewrite Egs. (6.3.14) and (6.3.15) in terms of them. After considerable
algebra, we obtain

ds, _ olsl
= =0, SQS3 (6.3.17)

das, _ 2y d53
o= BPS-3SS; &~ (AB)S: (6.3.18)

It can be easily verified from Eq. (6.3.16) that =S + S+ 3. As S,
is independent of z from Eq. (6.3.17), the Stokes vector S with components
S, S,, and S; moves on the surface of a sphere of radius §, as the CW light
propagates inside the fiber. This sphere is known as the Poincaré sphere and
provides a visua description of the polarization state. In fact, Egs. (6.3.17)
and (6.3.18) can be written in the form of a single vector equation as [31]

ds

o =Wxs (6.3.19)

where the vector W = W + W, such that
W, = (AB,0,0), W, =(0,0,-2y5;/3). (6.3.20)

Equation (6.3.19) includes both linear and nonlinear birefringence. It describes
evolution of the polarization state of a CW optical field within the fiber under
quite general conditions.

Figure 6.6 shows motion of the Stokes vector on the Poincaré sphere in sev-
era different cases. In the low-power case, nonlinear effects can be neglected
by setting y= 0. AsW,,, = Ointhat case, the Stokes vector rotates around the
S, axiswith anangular velocity AB (upper |eft spherein Fig. 6.6). Thisrotation
is equivalent to the periodic solution given in Eq. (6.3.3) obtained earlier. If the
Stokes vector isinitialy oriented along the § axis, it remains fixed. This can
also be seen from the steady-state (z-invariant) solution of Egs. (6.3.17) and
(6.3.18) because (§,,0,0) and (—S,,0,0) represent their fixed points. These
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S,

Figure 6.6 Trajectories showing motion of the Stokes vector on the Poincaré sphere.
(a) Linear birefringence case (upper | eft); (b) nonlinear casewith A = O (upper right);
(c) mixed case with AB > 0 and P, > P (lower row). Left and right spheresin the
bottom row show the front and back of the Poincaré sphere. (After Ref. [31].)

two locations of the Stokes vector correspond to the linearly polarized incident
light oriented along the slow and fast axes, respectively.

In the purely nonlinear case of isotropic fibers (AB = 0), W = 0. The
Stokes vector now rotates around the the S; axis with an angular velocity
2yS,/3 (upper right sphere in Fig. 6.6). This is referred to as self-induced
ellipse rotation because it has its origin in the nonlinear birefringence. Two
fixed pointsin this case correspond to the north and south poles of the Poincaré
sphere and represent right and left circular polarizations, respectively.

In the mixed case, the behavior depends on the power level of the incident
light. Aslong as Py < Py, nonlinear effects play aminor role, and the situation
issimilar to the linear case. At higher powers levels, the motion of the Stokes
vector on the Poincaré sphere becomes quite complicated because W, is ori-
ented along the S axis while W\, is oriented along the S; axis. Moreover,
the nonlinear rotation of the Stokes vector along the S; axis depends on the
magnitude of S; itself. The bottom row in Fig. 6.6 shows motion of the Stokes
vector on the front and back of the Poincaré sphere in the case R > P.. When
input light is polarized close to the slow axis (left sphere), the situation is sim-
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ilar to the linear case. However, the behavior is qualitatively different when
input light is polarized close to the fast axis (right sphere).

To understand this asymmetry, let us find the fixed points of Egs. (6.3.17)
and (6.3.18) by setting the z derivatives to zero. The location and number of
fixed points depend on the beam power R) launched inside the fiber. More
specifically, the number of fixed points changes from two to four at a critical
power level R defined asin Eq. (6.3.10). For By < P, only two fixed points,
($,0,0) and (—S,,0,0), occur; these are identical to the low-power case. In
contrast, when By > Py, two new fixed points emerge. The components of the
Stokes vector at the location of the new fixed points on the Poincaré sphere are
given by [45]

S=-Ps, S=0, S=+,/P2-P3 (6.3.21)

These two fixed points correspond to elliptically polarized light and occur on
the back of the Poincaré sphere in Fig. 6.6 (lower right). At the same time,
the fixed point (—§,,0,0), corresponding to light polarized linearly aong the
fast axis, becomes unstable. Thisisequivalent to the pitchfork bifurcation dis-
cussed earlier. If the input beam is polarized dliptically with its Stokes vector
oriented as indicated in Eq. (6.3.21), the polarization state will not change in-
side the fiber. When the polarization state is close to the new fixed points, the
Stokes vector forms a close loop around the elliptically polarized fixed point.
This behavior corresponds to the analytic solution discussed earlier. However,
if the polarization state is close to the unstable fixed point (—S,,0,0), small

changes ininput polarization can induce large changes at the output. Thisissue
is discussed next.

6.3.3 Polarization I nstability

The polarization instability manifests as large changes in the output state of
polarization when the input power or the polarization state of a CW beam is
changed dlightly [31]{33]. The presence of polarization instability shows that
slow and fast axes of apolarization-preserving fiber are not entirely equivalent.

The origin of polarization instability can be understood from the follow-
ing qualitative argument [32]. When the input beam is polarized close to the
slow axis (x axis if n, > ny), nonlinear birefringence adds to intrinsic linear
birefringence, making the fiber more birefringent. By contrast, when the input
beam is polarized close to the fast axis, nonlinear effects decrease total bire-
fringence by an amount that depends on the input power. As aresult, the fiber
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Figure 6.7 Effective beat length as a function of input power for beams polarized
along the fast (solid line) and slow (dashed line) axes. (After Ref. [32].)

becomes less birefringent, and the effective beat length LE" increases. At a
critical value of the input power nonlinear birefringence can cancel intrinsic
birefringence completely, and Lgff becomes infinite. With afurther increase in
the input power, the fiber again becomes birefringent but the roles of the slow
and fast axes are reversed. Clearly large changes in the output polarization
state can occur when the input power is close to the critical power necessary to
balance the linear and nonlinear birefringences. Roughly speaking, the polar-
ization instability occurs when the input peak power is large enough to make
the nonlinear length L, comparable to the intrinsic beat length Lg.

The period of the elliptic function in Eq. (6.3.11) determines the effective
beat length as [32]

g _ KM, (6.3.22)
T

N

where L isthe low-power beat length, K(m) isthe quarter-period of the ellip-
tic function, and mand q are given by Eq. (6.3.13) in terms of the normalized
input power defined as p = R)/Pe. In the absence of nonlinear effects, p =0,
g =1, and we recover

LS = Ly = 27/|AB|. (6.3.23)

Figure 6.7 shows how L§" varies with p for § = 0° and 6 = 90°. The
effective beat length becomes infinite when Ry = P and 6 = 90° because of
complete cancellation between the linear and nonlinear birefringences [33].
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Figure 6.8 Transmittivity of a birefringent fiber of length L = L 5 as a function of
input power for different input angles. (After Ref. [32].)

This is the origin of polarization instability. The critical power level R. at
which L§" becomes infinite is the same at which the number of fixed points on
the Poincaré sphere changes from 2 to 4. Thus, polarization instability can be
interpreted in terms of the emergence of elliptically polarized fixed points on
the Poincaré sphere. The two viewpoints are identical.

Asaresult of large changesin LE, the output polarization state can change
drastically when Ry is close to R and the input beam is polarized close to the
fast axis. Figure 6.8 shows the transmittivity T, as a function of the input
power for several values of 6 after assuming that a crossed polarizer at the
fiber output blocks the light at low intensities (see Fig. 6.1). When 6 = or
90°, T, remains zero at all power levels. Small changes in 6 near the slow
axis still keep T, near zero. However, T, changes dramatically when 6 is
changed dlightly near the fast axis. Note the extreme sensitivity of T, to the
input polarization angle as 6 is varied from 89° to 90°. Figure 6.8 is drawn
for the case (AB)L = 2r or L = L. However, the qualitative behavior remains
the same for other fiber lengths as well.

Polarization instability was first observed in 1986 by transmitting 80-ps
pulses (at 532 nm) through a 53-cm-long fiber with a measured intrinsic beat
length Lg =~ 50 cm [35]. The input pulses were right-circularly polarized and
passed through acircular analyzer at the fiber output that transmitted only left-
circularly polarized light. The shape of output pulses was found to change
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dramatically when the peak power exceeded a critical value. The measured
critical power and the output pulse shapes were in agreement with the theo-
retical predictions. In a later experiment, polarization instability led to sig-
nificant enhancement of weak intensity modulations when the input signa
was polarized near the fast axis of a low-hirefringence fiber [42]. The 200-
ns input pulses were obtained from a Q-switched Nd:YAG laser operating at
1.06 um. The intensity of these pulses exhibited 76-MHz modul ation because
of longitudinal-mode beating inside the laser. These small-amplitude modula-
tions were unaffected when the signal was polarized near the slow axis of the
fiber, but became amplified by as much as afactor of 6 when input pulses were
polarized near the fast axis. The experimental results were in good qualitative
agreement with theory, especially when the theory was generalized to include
twisting of the fiber that resulted in elliptical birefringence [43].

The power-dependent transmittivity seen in Fig. 6.8 can be useful for op-
tical switching. Self switching of linearly polarized beams induced by polar-
ization instability has been demonstrated in silica fibers [44]. It can aso be
used to switch the polarization state of an intense beam through a weak pulse.
Polarization switching can also occur for solitons [46]. In all case, the input
power required for switching is quite large unless fibers with low modal bire-
fringence are used. A fiber with abeat length Ly = 1 m requires By ~ 1 kKW if
we use y = 10 W~1/km in Eq. (6.3.10). This value becomes larger by a factor
of 100 or more when high-birefringence fibers are used. For this reason, po-
larization instability is not of concern when highly birefringent fibers are used
because R, remains < 1 kW in most experiments.

6.3.4 Polarization Chaos

Polarization instability can lead to chaos in the output polarization state if lin-
ear hirefringence of afiber is modulated along itslength. This can occur if the
fiber isuniformly twisted while being wound onto adrum. Modulated birefrin-
gence can aso beintroduced during fiber fabrication through periodic rocking
of the preform or by means of a periodic distribution of stress. The effects of
modulated linear birefringence on evolution of the polarization state have been
studied [37]-{40]. This section considers twisted fibers briefly.

Twisting of birefringent fibers produces two effects simultaneously. First,
the principal axes are no longer fixed but rotate in a periodic manner along the
fiber length. Second, shear strain induces circular birefringence in proportion
to the twist rate. When both of these effects are included, Egs. (6.3.1) and
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(6.3.2) take the following form [43]:

dA,
E ibcA, + = (AB)eZ'“ZA LAy (|A+|2+2|A 2)A., (6.3.24)
A
ddz = ibA_ + - (AB) e 2nZA, +2W(|A 2+ 2|A,|?)A_, (6.3.25)

where be = hr;/2nis related to circular birefringence, 1, is the twist rate per
unit length, and n'is the average mode index. The parameter h has a value of
~ 0.15 for silicafibers. The preceding equations can be used to find the fixed
points, as done in Section 6.3.1 for an untwisted fiber. Above a critical power
level, we again find four fixed points. As aresult, polarization instability still
occurs along the fast axis but the critical power becomes larger.

Birefringence modulation can also be included by making the parame-
ter AB in Egs. (6.3.1) and (6.3.2) a periodic function of z such that A =
ABy[1—iecos(bmz)], where € is the amplitude and by, is the spatial frequency
of modulation [40]. The resulting equations can not be solved analytically but
one can use the phase-space or the Poincaré-sphere approach to study evolu-
tion of the polarization state approximately [37]-{40]. This approach shows
that the mation of the Stokes vector on the Poincaré sphere becomes chaotic
in the sense that polarization does not return to its origina state after each
successive period of modal birefringence Af3. Such studies are useful for esti-
mating the range of parameter values that must be maintained to avoid chaotic
switching if the fiber were to be used as an optical switch.

6.4 Vector Modulation Instability

This section extends the scalar analysis of Section 5.1 to the vector case in
which a CW beam, when launched into a birefringent fiber, excites both po-
larization components simultaneously. Similar to the scalar case, modulation
instability is expected to occur in the anomalous-GV D region of the fiber. The
main issue is whether the XPM-induced coupling can destabilize the CW state
even when the wavelength of the CW beam isin the normal-GV D regime of the
fiber. Vector modulation instability in an isotropic nonlinear medium (no bire-
fringence) was studied as early as 1970 using the coupled NLS equations [47].
In the context of birefringent fibers, it has been studied extensively since 1988,
both theoretically and experimentally [48]-{63]. Since the qualitative behav-
ior isdifferent for weakly and strongly birefringent fibers, we consider the two
cases separately.
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6.4.1 Low-Birefringence Fibers

In the case of low-birefringence fibers, one must retain the coherent-coupling
term in Egs. (6.1.11) and (6.1.12) while considering modulation instability
[48]. Asbefore, it iseasier to use Egs. (6.1.15) and (6.1.16), written in terms
of the circularly polarized components of the optical field. The steady-state or
CW solution of these equations is given in Section 6.3 but is quite complicated
to use for the analysis of modulation instability asit involves elliptic functions.
The problem becomes tractable when the polarization state of the incident CW
beam is oriented along a principal axis of the fiber.

Consider first the case in which the polarization state is oriented along the
fast axis (Ax = 0). This case is especially interesting because the polarization
instability discussed in Section 6.3 can also occur. If fiber losses are neglected
by setting o = 0, the steady-state solution becomes

A, (2) = +i\/Py/2exp(iyPy2), (6.4.1)

where P, is the input power. Following the procedure of Section 5.1, stability
of the steady state is examined by assuming a solution in the form

AL(zt) = £[i/Py/2+a.(zt)]exp(iyRy2), (6.4.2)

where a, (zt) is asmall perturbation. Using Eq. (6.4.2) in Egs. (6.1.15) and
(6.1.16) and linearizing in a, and a_, we obtain a set of two coupled linear
equations. These equations can be solved by assuming a solution of the form

a, = u, exp[i(Kz— Qt)] +iv, exp[—i(Kz— Qt)], (6.4.3)

where K is the wave number and € is the frequency of perturbation. We then
obtain a set of four algebraic equations for u, and v,.. This set has a non-
trivial solution only when the perturbation satisfies the following dispersion
relation [48]

(K= ﬁlg)z —Cyll(K— ﬁlg)z —C] =0, (6.4.4)

where
= 3B,Q%(38,Q° + 2yPy), (6.4.5)
= (3B, Q%+ AB — 2yPy/3) (38,92 + AB). (6.4.6)

As discussed in Section 5.1, the steady-state solution becomes unstable if
the wave number K has an imaginary part for some values of Q, indicating that
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aperturbation at that frequency would grow exponentially along the fiber with
the power gain g = 2Im(K). The nature of modulation instability depends
strongly on whether the input power R is below or above the polarization-
instability threshold Ry given in Eq. (6.3.10). For Ry < Py, modulation in-
stability occurs only in the case of anomalous dispersion, and the results are
similar to those of Section 5.1. The effect of XPM is to reduce the gain from
that of Eqg. (5.1.9) but the maximum gain occurs at the same value of Q (see
Fig. 5.1).

It is easy to deduce from Eq. (6.4.4) that modulation instability can occur
even in the normal-dispersion regime of the fiber (8, > 0) provided C, < O.
This condition is satisfied for frequencies in therange 0 < |Q| < Q_,, where

Q= (47/3[32)1/2\/ Po— Per. (6.4.7)

Thus, P, > Py is required for modulation instability to occur in the normal-
dispersion regime of the fiber. When this condition is satisfied, the gain is
given by

0(Q) = B, /(92 +97)(@% — 2. (6.48)

where
Qu, = (208 /By) Y. (6.4.9)

Consider now the case in which the CW beam is polarized along the slow
axis (Ay = 0). We can follow essentially the same steps to find the dispersion
relation K(Q). In fact, Egs. (6.4.4)—6.4.6) remain applicable if we change
the sign of AB. Modulation instability can still occur in the normal-dispersion
regime of the fiber but the gain exists only for frequencies in the range Q, <
|Q| < Q4, Where

Q= (4')//3[32)1/2\/ Fo+ Por. (6.4.10)
Theinstability gainis now given by

9(Q) = |Byl |/ (22, — 92)(Q% - @?). (6.4.11)

Figure 6.9 compares the gain spectrafor light polarized along the slow and
fast axes using B, = 60 ps’/km and y = 23 W~Y/km for a fiber with a beat
length Ly = 5.8 m. For these parameter values, p =1 at an input power of
70 W. At apower level of 112 W, p = 1.6 (left part) while p > 2 at 152 W
(right part). The most noteworthy feature of Fig. 6.9 is that, in contrast with
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Figure 6.9 Gain spectra of modulation instability at power levels of 112 W (left)
and 152 W (right) for a CW beam polarized along the slow or fast axis of a low-
birefringencefiber. (After Ref. [60].)

the gain spectra of Fig. 5.1, the gain does not vanish near Q = 0 when light
is polarized along the fast axis. When p < 2, the gain is in fact maximum at
Q =0, indicating that low-frequency or CW fluctuations would grow rapidly.
Thisisamanifestation of the polarization instability discussed in Section 6.3,
occurring only when the input beam is polarized along the fast axis. When
p > 2, the gain peak occurs for afinite value of Q. In that case, the CW beam
would develop spectral sidebands irrespective of whether it is polarized along
the slow or fast axis. This situation is similar to the scalar case of Section 5.1.
The new feature is that such sidebands can develop even in the normal-GVD
regime of abirefringent fiber.

6.4.2 High-Birefringence Fibers

For high-birefringence fibers, the last term representing coherent coupling (or
four-wave mixing) can be neglected in Egs. (6.1.11) and (6.1.12). These equa-
tions then reduce to Egs. (6.1.22) and (6.1.23) with B :% and exhibit a dif-
ferent kind of modulation instability [50]-{53]. This case is mathematically
similar to the two-wavelength case discussed in Chapter 7.

To obtain the steady-state solution, the time derivatives in Egs. (6.1.22)
and (6.1.23) can be set to zero. If fiber losses are neglected by setting o = 0,
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the steady-state solution is given by (see Section 6.2.1)
Al = VRexplig2)],  Ay(2) = /Rexpligy(2)], (6.4.12)
where P and R, are the constant mode powers and
o(2) = v(B+BR)z  ¢(2) = V(R +BR)z (6.4.13)

The phase shifts depend on the powers of both polarization components. In

contrast with the case of weakly birefringent fibers, this solution isvalid for a

CW beam polarized at an arbitrary angle with respect to the slow axis.
Stability of the steady state is examined assuming a time-dependent solu-

tion of the form
A= (\/EJJr aj) exp(ig;), (6.4.14)

where a;(zt) is aweak perturbation with j = x,y. We substitute Eq. (6.4.14)
in Egs. (6.1.22) and (6.1.23) and linearize them with respect to a, and a,. The
resulting linear equations can again be solved in the form

a; = u;expli(Kz— Qt) +iv; exp[—i(Kz— Qt)], (6.4.15)

where j = x,y, K isthe wave number, and Q is the frequency of perturbation.

To simplify the algebra, let us focus on the case in which the input CW
beam is polarized at 45° from the slow axis. As a result, both polarization
modes have equal powers (B, = R, = P). The dispersion relation in this case
can be written as [50]

[(K—b)?—H][(K+b)2—H]=C2, (6.4.16)
where b = (B, — B;,)€2/2 takes into account the group-velocity mismatch,
H = B,Q%(B,Q%/4+ vP), (6.4.17)
and the XPM coupling parameter C, is defined as
Cy = BB,yPQ2. (6.4.18)

As before, modulation instability occurs when K becomes complex for some
values of Q. Itsgain is obtained from g = 2Im(K).

The most important conclusion drawn from Eq. (6.4.16) isthat modulation
instability can occur irrespective of the sign of the GV D parameter. In the case
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Figure6.10 Gain spectra of modulation instability in a high-birefringencefiber when
input beam is linearly polarized at 45° from the slow axis. Four curves correspond to
(smallest to largest) for power levels of 60, 125, 250, and 500 W. (After Ref. [50].)

of normal GVD (B, > 0), the gain exists only if C, > |H — b|2. Figure 6.10
shows the gain spectra at several power levels using parameter values f§ =
65 ps’/km, y = 25.8 W—1/km, and a group-velocity mismatch of 1.6 ps/m. At
low powers, the gain spectrum isquite narrow and its peak islocated near Q=
|Bix — B1y| /B,. Asinput power increases, gain spectrum widens and its peak
shifts to lower frequencies. In all four cases shown in Fig. 6.10, the CW beam
devel ops temporal modulations at frequencies >2 THz asit propagates through
the fiber. As Q. depends on birefringence of the fiber, it can be changed
easily and provides a tuning mechanism for the modulation frequency. An
unexpected featureisthat modulation instability ceasesto occur when the input
power exceeds acritical value

Pe=3(By— ﬁ1y)2/ (4B,7). (6.4.19)

Another surprising feature is that modulation instability ceases to occur when
theinput light is polarized close to a principal axis of the fiber [51].

Both of these features can be understood qualitatively if weinterpret modu-
lation instability in terms of afour-wave-mixing process that is phase matched
by the modal birefringence of the fiber (see Section 10.3.3). In the case of nor-
mal GVD, the SPM- and XPM-induced phase shifts actually add to the GVD-
induced phase mismatch. It is the fiber birefringence that cancels the phase
mismatch. Thus, for a given value of birefringence, the phase-matching con-
dition can only be satisfied if the nonlinear phase shifts remain below certain
level. Thisisthe origin of the critical power level in Eq. (6.4.19). An inter-
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esting feature of the four-wave-mixing process is that spectral sidebands are
generated such that the low-frequency sideband at w, — Q appears along the
slow axis whereas the sideband at w,+ Q is polarized along the fast axis. This
can a so be understood from the phase-matching condition of Section 10.3.3.

6.4.3 |sotropic Fibers

As seen in the preceding, modal birefringence of fibers plays an important
role for modulation instability to occur. A natural question is whether modu-
lation instability can occur in isotropic fibers with no birefringence (i = ny).
Even though such fibers are hard to fabricate, fibers with extremely low bire-
fringence (Jn —ny| < 10~8) can be made by spinning the preform during the
drawing stage. The question is also interesting from a fundamental standpoint
and was discussed as early as 1970 [47].

The theory developed for high-hirefringence fibers cannot be used in the
limit AB = 0 because the coherent-coupling term has been neglected. In con-
trast, theory developed for low-birefringence fibers remains valid in that limit.
The main difference is that R, = 0 as polarization instability does not occur
for isotropic fibers. Asaresult, Q., = 0 while Q; = Q 5 = Q¢. The gain
spectrum of modulation instability in Eq. (6.4.8) reduces to

9(Q) = |B,Ql vV — Q2 (6.4.20)

irrespective of whether the input beam is polarized along the slow or fast axis.
Thisisthe sameresult obtained in Section 5.1 for the scalar case. It shows that
the temporal and spectral features of modulation instability should not depend
on the direction in which the input beam islinearly polarized. Thisis expected
for any isotropic nonlinear medium on physical grounds.

The situation changes when the input beam is circularly or éliptically po-
larized. We can consider this case by setting AB = 0 in Egs. (6.1.15) and
(6.1.16). Using o = 0 for simplicity, these equations reduce to the following
set of two coupled NL S equations [47]:

A, B, d%A,
dz = 2 IT?
IA_ B, d°A_
oz T2 otz

+iy' (IALP+2/A_*)A, =0, (6.4.21)

+iy (A_P+2A,2)A_=0, (6.4.22)
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where T =t — 3, zisthe reduced timeand y’ = 2y/3. The steady-state solution
of these equations is obtained easily and is given by

A, (2) = /P explioy), (6.4.23)

where P, is the input power in the two circularly polarized components and
¢.(2) = ¥ (P+ +2P,)zisthe nonlinear phase shift.
As before, we perturb the steady-state solution using

As(zt) = [/Pe+as(zt) exp(igy), (6.4.24)

where a, (zt) is asmal perturbation. By using Eq. (6.4.24) in Egs. (6.4.21)
and (6.4.22) and linearizing in a, and a_, we obtain a set of two coupled
linear equations. These equations can be solved assuming a solution in the
form of Eq. (6.4.3). We then obtain a set of four algebraic equations for u,
and v_. This set has a nontrivial solution only when the perturbation satisfies
the following dispersion relation [47]

(K—=H,)(K—H_)=Cg, (6.4.25)
where
Hy = 3B,Q%(3B,9% + ¥Py), (6.4.26)
and the XPM coupling parameter C, is now defined as
Cy = 2B,y2%/P,P_. (6.4.27)

A necessary condition for modulation instability to occur isC% > H, H_.
As C, depends on /P, P_ and vanishes for a circularly polarized beam, we
can conclude that no instability occursin that case. For an elliptically polarized
beam, the instability gain depends on the ellipticity g, defined asin Eq. (6.3.4).

6.4.4 Experimental Results

The vector modulation instability was first observed in the normal-dispersion
region of a high-birefringence fiber [50]-{52]. In one experiment, 30-ps pulses
at the 514-nm wavelength with 250-W peak power were launched into a 10-m
fiber with a45°-polarization angle [51]. At the fiber output, the pul se spectrum
exhibited modulation sidebands with a 2.1-THz spacing, and the autocorrela
tion trace showed 480-fs intensity modulation. The observed sideband spacing
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was in good agreement with the value calculated theoretically. In another ex-
periment, 600-nm input pulses were of only 9-ps duration [50]. Asthe 18-m-
long fiber had a group-velocity mismatch of ~ 1.6 ps/m, the two polarization
components would separate from each other after only 6 m of fiber. The walk-
off problem was solved by delaying the faster-moving polarization component
by 25 ps at the fiber input. The temporal and spectral measurements indi-
cated that both polarization components developed high-frequency (~3 THZz)
modulations, as expected from theory. Moreover, the modulation frequency
decreased with an increase in the peak power. This experiment also reveaded
that each polarization component of the beam develops only one sideband,
in agreement with theory. In alater experiment [52], modulation instability
developed from temporal oscillations induced by optical wave breaking (see
Section 4.2.3). This behavior can be understood from Fig. 4.12, noting that
optical wave breaking manifests as spectral sidebands. If these sidebands fall
within the bandwidth of the modulation-instability gain curve, their energy can
seed the instability process.

Modulation instability in low-birefringence fibers was observed in 1995
using 60-ps pulses (with peak powers >1 kW) obtained from a krypton-ion
laser operating at 647 nm [56]. Fibers used in the experiment were a few
meters long, and their birefringence was controlled through stress induced
by winding the fiber on a spool with a relatively small diameter. When in-
put pulses were polarized along the dow axis, the two sidebands indicative of
modulation instability had the same polarization and were polarized along the
fast axis. Their spacing could be varied over arange of 20 nm or so by sim-
ply changing the spool size—a smaller spool diameter produced more stress-
induced birefringence, resulting in larger sideband spacing. In a variation of
thisidea, fibers with periodically varying birefringence along their length were
produced by wrapping the fiber around two spools [57]. Such a periodic vari-
ation can create new sidebands through quasi-phase matching, similar to the
periodic variation of dispersion and nonlinearity discussed in Section 5.1.

A systematic study of induced modulation instability in low-birefringence
fibers was performed in 1998 using a pump-probe configuration [60]. The
probe beam was used to seed the process. In a series of experiments, the pump
beam was obtained from a dye laser operating near 575 nm and consisted of
4-ns pulses that were wide enough to realize quasi-CW operation. The pump-
probe wavelength separation was tunable; tuning allowed different regimes of
modulation instability to be investigated. The fiber was drawn using a rapidly
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Figure 6.11 Modulation-instability sidebands observed in a low-birefringence fiber.
Pump is polarized along the fast (top row) or slow axis (bottom row). Pump-probe
detuning is 0.3 THz for left and 1.2 THz for right columns. (After Ref. [60].)

rotating preform so that its intrinsic birefringence averaged out to zero. A
controlled amount of weak birefringence was introduced by winding the fiber
onto a 14.5-cm-diameter spool. The measured beat length of 5.8 mfor the fiber
corresponded to amodal birefringence of only 10~7. The critical power Py re-
quired for the onset of polarization instability [see Eq. (6.3.10)] was estimated
to be 70 W for this fiber.

Figure 6.11 shows the pump spectra measured under several different ex-
perimental conditions. In all cases, the pump power was 112 W (1.6R;) while
the probe power was kept low (~ 1 W). Consider first the case of a pump po-
larized along the fast axis (top row). For a pump-probe detuning of 0.3 THz,
the probe frequency falls within the gain spectrum of modulation instability
(see Fig. 6.9). Asaresult, the pump spectrum develops a series of sidebands
spaced apart by 0.3 THz. In contrast, the probe frequency falls outside the
gain spectrum for a detuning of 1.2 THz, and modulation instability does not
occur. When the pump is polarized along the slow axis (bottom row), the sit-
uation is reversed. Now the 0.3-THz detuning falls outside the gain spectrum,
and modulation-instability sidebands form only when the detuning is 1.2 THz.
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These experimental results are in agreement with the theory given earlier. In
the time domain, the pump pulse develops deep modulations that correspond
to atrain of dark solitons with repetition rates in the terahertz regime [59].
A dark-soliton is also formed when modulation instability occurs in high-
birefringence fibers [61]. The formation of dark solitons is not surprising if
we recall from Chapter 5 that optical fibers support only dark solitons in their
normal-GVD regime.

In al of these experiments, fiber birefringence plays an important role. As
discussed before, vector modulation instability can occur in isotropic fibers
(nx = ny) such that the gain spectrum depends on the polarization state of the
input CW beam. Unfortunately, it is difficult to make birefringence-free fibers.
As an aternative, modulation instability was observed in a bimodal fiber in
which the input beam excited two fiber modes (LF,; and LP;,) with nearly
equal power levels, and the two modes had the same group velocity [58]. Ina
1999 experiment [62], a nearly isotropic fiber was realized by winding 50 m
of “spun” fiber with alarge radius of curvature of 25 cm. The beat length for
this fiber was ~1 km, indicating a birefringence level < 10-8. Over the 50-m
length used in the experiment, the fiber was nearly isotropic. Modulation-
instability sidebands were observed when 230-ps pulses (A = 1.06 um) with
a peak power of 120 W were launched into the fiber. The recorded spectra
were almost identical when the polarization angle of linearly polarized light
was changed over a 90° range. Sidebands disappeared for circularly polarized
light. This behavior is expected since isotropic fibers have no preferred di-
rection. When input light was ellipticaly polarized, the amplitude of spectral
sidebands varied with the dllipticity, again in agreement with theory.

6.5 Birefringence and Solitons

The discussion of optical solitons in Chapter 5 neglected polarization effects
and assumed implicitly that the fiber had no birefringence. The results pre-
sented there also apply for high-birefringence fibers when the input pulse is
linearly polarized along one of the principal axes of apolarization-maintaining
fiber. This section focuses on solitons forming when the input pulse is polar-
ized at afinite angle from the slow axis [64]-{78]. There are two important
issues. First, in a weakly birefringent fiber, the peak power of the soliton
may exceed the critical power [see Eq. (6.3.10)] at which polarization instabil-
ity occurs. This instability is likely to affect the solitons launched with their
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linear-polarization state aligned along the fast axis. Second, in astrongly bire-
fringent fiber, the group-velocity mismatch between the two orthogonally po-
larized components can lead to their physical separation within the fiber. Both
of these issues are discussed in this section.

6.5.1 Low-Birefringence Fibers

Consider first the case of low-birefringence fibers. Asthe group-velocity mis-
match is relatively small in such fibers, we can set 8, ~ Bly in Egs. (6.1.11)

and (6.1.12) and use Egs. (6.1.15) and (6.1.16) when circularly polarized com-
ponents of thefield are used in place of the linear ones. These equations can be
scaled using the soliton units introduced in Section 5.2. The resulting coupled
NLS equations take the form [64]

oy, |82u+

58 T3 g T+ (U P 2u Py, =0, (6.5.1)
Lodu_ | 82 )
9 t 2502 T (U] +2u,[Au_ =0, (65.2)

whereb = (AB)Ly/2 and fiber losses are neglected. The normalized variables
&, r,and u, aredefined as

§=2/lp, T=(t-B2)/Ty U =(21p/3"?A, (6.5.3)

where Ly = TZ/|B,| is the dispersion length and T, is a measure of the pulse
width. These equations generalize the scalar NLS equation of Section 5.2 to
the vector case for low-birefringence fibers. They can be solved numerically
using the split-step Fourier method of Section 2.4.

The numerical results show that the polarization instability affects soli-
tons in a manner analogous to the CW case discussed in Section 6.2.3. If
the nonlinear length L, islarger than the beat length Ly = 2r/AB, solitons
remain stable even if they are polarized close to the fast axis. By contrast, if
Ly, < Lg, solitons polarized along the slow axis remain stable but become un-
stable if polarized along the fast axis. A linearly polarized fundamental soliton
(N = 1), launched with its polarization close to the fast axis with L, < Lg,
follows the following evolution scenario [64]. Because of the onset of polar-
ization instability, most of the pulse energy is transferred from the fast mode
to the slow mode within a few soliton periods while a part of it is dispersed
away. The pulse energy switches back and forth between the two modes a few
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times, a process similar to relaxation oscillations. Most of the input energy,
however, appears eventually in a soliton-like pulse propagating along the slow
axis. Higher-order solitons follow a somewhat different scenario. After go-
ing through an initial narrowing stage, they split into individual components, a
behavior similar to that discussed in Section 5.5. A part of the energy is then
transferred to the slow mode. A fundamental soliton eventually appears along
the dlow axis with awidth narrower than the input width.

The CW instability condition can be used to obtain a condition on the soli-
ton period. If we use Eq. (6.3.10), the condition R, > P becomes (AB)Ly, <
2, where Ly, = (yPy)~! is the nonlinear length. By using A = 27/Lg,
N2=Lp/Ly, andz, = (7/2)Lp, thiscondition can bewritten asz, < N2Lg/6.
The numerical results agree with it approximately [64]. Typicaly, Lg~1m
for weakly birefringent fibers. Thus, polarization instability affects a funda-
mental soliton (N = 1) only if zy < 1 m. Such values of z, are realized in
practice only for femtosecond pulses (T, < 100 fs).

6.5.2 High-Birefringence Fibers

In high-birefringence fibers, the group-velocity mismatch between the fast and
slow components of the input pulse cannot be neglected. Such a mismatch
would normally split a pulse into its two components polarized aong the two
principal axes if the input polarization angle 6 deviates from 0 or 90°. The
interesting question is whether such a splitting aso occurs for solitons.

The effects of group-velocity mismatch are studied by solving Egs. (6.1.22)
and (6.1.23) numerically. If we assume anomalous dispersion (f, < 0) and use
the soliton units of Section 5.2, these equations become

[ du au 102%u 2 9
[ oV oV 10%v 5 5

where u and v are the normalized amplitudes of the field components polarized
linearly along the x and y axes, respectively, and

6 = (B — B1y) To/2IB,| (6.5.6)

governs the group-velocity mismatch between the two polarization compo-
nents. The normalized time 7 = (t — f,2)/T,, where B; = 3(B;, + Bay) is
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Figure 6.12 Pulse amplitudes |u| (solid line) and |v| (dashed line) at & = 5 (upper
row) and & = 107 (lower row) for & = 30°. The parametersN = 0.8 and 6 = 0.15 for
theleft columnand N = 1.1 and 6 = 0.5 for the right column. (After Ref. [67].)

inversely related to the average group velocity. Fiber losses are ignored for
simplicity but can beincluded easily. The XPM coupling parameter B :% for
linearly birefringent fibers.

When an input pulse is launched with a polarization angle 6 (measured
from the slow axis), Egs. (6.5.4) and (6.5.5) should be solved with the input

u(0,7) = Ncos6 sech(), v(0,7) = Nsin6 sech(7), (6.5.7)

where N isthe soliton order. 1n the absence of XPM-induced coupling, the two
polarization components evolve independently and separate from each other
because of their different group velocities. The central question is how this
behavior is affected by the XPM. This question is answered by solving Egs.
(6.5.4) and (6.5.5) numerically with B = 2/3 for various values of N, 8, and 6
[65]67]. The numerical results can be summarized as follows.

When the two modes are equally excited (6 = 45°), the two components
remain bound together if N exceeds a critical value N,, that depends on §;
N, ~ 0.7 for 6 = 0.15, but N, ~ 1 for 6 = 0.5. For values of 6 ~ 1, the
threshold value exceeds 1.5. In this case, solitons can form even when N <
N,;, but the two components travels at their own group velocities and become
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widely separated. When N > N, the two components remain close to each
other but the distance between them changes in an oscillatory manner.

When 6 # 45°, the two modes have unequal amplitudes initially. In this
case, if N exceeds N,,, a qualitatively different evolution scenario occurs de-
pending on the value of 6. Figure 6.12 shows the pulse amplitudes of the two
components for 6 = 30° at & = 57 and 107z [67]. The left-hand column corre-
spondsto 6 = 0.15 and N = 0.8 while 6 = 0.5 and N = 1.1 for the right-hand
column. For the case 6 = 0.15, the smaller pulse appears to have been cap-
tured by the larger one and the two move together. However, when 6 = 0.5,
only afraction of the energy in the smaller pulse is captured by the larger one;
the remaining energy is dispersed away with propagation. Even more complex
behavior occurs for larger values of 6 and N.

The numerical results shown in Fig. 6.12 clearly indicate that under certain
conditions the two orthogonally polarized solitons move with acommon group
velocity in spite of their different modal indices or polarization-mode disper-
sion (PMD). This phenomenon is called soliton trapping and, as discussed
later, can be used for optical switching. It owesits existence solely to XPM. In
the absence of the XPM term, Egs. (6.5.4) and (6.5.5) become decoupled, indi-
cating that each polarization component would propagate at a different group
velocity dictated by the fiber birefringence. It is the XPM-induced nonlinear
coupling between them that allows the two solitons to propagate at a common
group velocity. Physically, the two solitons shift their carrier frequencies in
the opposite directions to realize such a temporal synchronization. Specifi-
cally, the soliton along the fast axis slows down while the one aong the slow
axis speeds up. Indeed, the pulse spectra corresponding to the intensity profiles
shown in Fig. 6.12 are found to be shifted exactly in such away.

Because soliton trapping requires abalance between XPM and PMD, it can
occur only when the peak power of the input pulse, or equivalently the soliton
order N, exceeds athreshold value N,,. As N, depends on both the polarization
angle 6 and 6, attempts have been made to estimate N,, analytically by solving
Egs. (6.5.4) and (6.5.5) approximately [69]-{77]. In a simple approach, the
XPM term is treated as a perturbation within the Lagrangian formulation. In
the case of equal amplitudes, realized by choosing 6 = 45° in Eq. (6.5.7), the
threshold value for soliton trapping is found to be [69]

Ny, = [2(1+ B)] 2+ (3/8B)"/25. (65.8)

For B = % the predictions of Eq. (6.5.8) are in good agreement with the nu-
merical results for small values of 6 (up to 0.5). For large values of 6, the
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threshold value is well approximated by [77] N, = [(1+382)/(1+ B)]¥/2.
Soliton trapping was first observed [79] in 1989 by launching 0.3-ps pulses
(obtained from a mode-locked color-center laser) into a 20-m single-mode
fiber with modal birefringence An~ 2.4 x 10~°, avalue leading to polarization
dispersion of 80 pskm. For this experiment, the soliton period 7, was 3.45 m
while § = 0.517. The measured pulse spectra for the orthogonally polarized
components were found to be separated by about 1 THz when the polarization
angle was 45°. The autocorrelation trace indicated that the two pulses at the
fiber output were synchronized temporally as expected for soliton trapping.

6.5.3 Soliton-Dragging L ogic Gates

An important application of XPM interaction in birefringent fibers has led to
the realization of all-optical, cascadable, ultrafast, logic gates, first demon-
strated in 1989 [80]. Since then the performance of such logic gates has been
studied extensively, both theoretically and experimentally [81]{91].

The basic idea behind the operation of fiber-optic logic gates hasits origin
in the nonlinear phenomenon of soliton trapping discussed earlier. It can be
understood asfollows. Indigita logic, each optical pulseisassigned atimesdot
whose duration is determined by the clock speed. If asignal pulse islaunched
together with an orthogonally polarized control pulse, and the control pulseis
intense enough to trap the signal pulse during a collision, then both pulses can
be dragged out of their assigned time slot because of the XPM-induced change
intheir group velocity. In other words, the absence or presence of asignal pulse
at the fiber input dictates whether the control pulse ends up arriving within the
assigned time dot or not. Thistemporal shift formsthe basic logic element and
can be used to perform more complex logic operations. Because the control
pulse propagating as a soliton is dragged out of itstime slot through the XPM
interaction, such devices are referred to as soliton-dragging logic gates. In a
network configuration, output signal pulse can be discarded while control pulse
becomes the signal pulse for the next gate. This strategy makes the switching
operation cascadable. In effect, each control pulse is used for switching only
once irrespective of the number of gatesin the network.

The experimental demonstration of various logic gates (such as exclusive
OR, AND and NOR gates), based on the concept of soliton trapping, used
femtosecond optical pulses (pulse width ~300 fs) from a mode-locked color-
center laser operating at 1.685 pum [80]-{85]. In these experiments, orthogo-
nally polarized signal and control pulses were launched into a highly birefrin-
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gent fiber. In the implementation of a NOR gate, the experimental conditions
were arranged such that the control pulse arrived in its assigned time slot of
1-psduration in the absence of signal pulses (logical “1" state). In the presence
of one or both signal pulses, the control pulse shifted by 2—4 ps because of soli-
ton dragging and missed the assigned time dlot (logical “0” state). The energy
of each signal pulse was 5.8 pJ. The energy of the control pulse was 54 pJ at
the fiber input but reduced to 35 pJ at the output, resulting in an energy gain by
afactor of six. The experimental results can be explained quite well by solving
Egs. (6.5.4) and (6.5.5) numerically [90]. Since thefirst demonstration of such
logic gates in 1989, considerable progress has been made. The use of soliton-
dragging logic gates for soliton ring networks has also been proposed [91].

6.5.4 Vector Solitons

The phenomenon of soliton trapping suggests that the coupled NL S equations
may possess exact solitary-wave solutions with the property that the orthogo-
nally polarized components propagate in abirefringent fiber without change in
shape. Such solitary waves are referred to as vector solitons to emphasize the
fact that an input pulse maintains not only itsintensity profile but also its state
of polarization even when it is not launched along one of the principa axes
of the fiber. A more general question one may ask is whether conditions exist
under which two orthogonally polarized pulses of different widths and differ-
ent peak powers propagate undistorted in spite of the XPM-induced nonlinear
coupling between them.

Consider the case of high-birefringence fibers. To obtain soliton solutions
of Egs. (6.5.4) and (6.5.5), it isuseful to simplify them using the transformation

u=GOexp(i8%2/2—id1),  v="VUexp(i6%E/2+i87). (6.5.9)
The resulting equations are independent of ¢ and take the form
J 1070

'a§+2812+(|u| +B[Y?)d=0, (6.5.10)
OV 1% o o
I£+§w+(|v| +B|U| )V—O. (6-5-11)

In the absence of XPM-induced coupling (B = 0), the two NL S equations
become decoupled and have independent soliton solutions of the form dis-
cussed in Section 5.2. When B # 0, Egs. (6.5.10) and (6.5.11) can be solved by
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the inverse scattering method only for a specific value of parameter B, namely
B = 1. Manakov obtained such a solution in 1973 [92]. In its simplest form,
the solution can be written as

G(&,7) = cosOsech(t)exp(i&/2), (6.5.12)
V(&,7) = sinOsech(t) exp(i&/2), (6.5.13)

where 6 is an arbitrary angle. A comparison with Eg. (5.2.15) shows that this
solution corresponds to a vector soliton that is identical with the fundamental
soliton (N = 1) of Section 5.2 in all respects. The angle 6 can be identified as
the polarization angle.

The vector-soliton solution predicts that a“‘sech’ pulsewith N = 1, linearly
polarized at an arbitrary angle from aprincipal axis, can maintain both its shape
and polarization provided the fiber is birefringent such that the XPM parameter
B = 1. However, as discussed in Section 6.1, unless the fiber is especialy
designed, B+ 1in practice. In particular, B= 2 for linearly birefringent fibers.
For this reason, solitary-wave solutions of Egs. (6.5.10) and (6.5.11) for B# 1
have been studied in many different contexts [93]-{117]. Such solutions are
not solitons in a strict mathematical sense but, nevertheless, exhibit the shape-
preserving property of solitons.

In the specific case of equal amplitudes (8 = 45°), asolitary-wave solution
of Egs. (6.5.10) and (6.5.11) is given by [99]

(i = ¥ = n sech[(1+ B)Y?n 1] exp[i(1+ B)n2¢ /2], (6.5.14)

where 1 represents the soliton amplitude. For B = 0, this solution reduces
to the scalar soliton of Section 5.2. For B # 0, it represents a vector soliton
polarized at 45° with respect to the principal axes of the fiber. Because of
the XPM interaction, the vector soliton is narrower by a factor of (1+ B)Y/2
compared with the scalar soliton. For such a soliton, the combination of SPM
and XPM compensates for the GVD. At the same time, the carrier frequencies
of two polarization components must be different for compensating the PMD.
This can be seen by substituting Eg. (6.5.14) in Eg. (6.5.9). The canonical
form of the vector soliton, obtained by setting n = 1 is then given by

u(é,7) = sech[(14 B)Y?t]exp[i(1+ B+ 62)&/2—i817], (6.5.15)
V(&,7) = sech[(14 B)Y27]expli(1+ B+ 8%)& /2+187].  (6.5.16)
The only difference between u(&, t) and v(&, 1) is the sign of the last phase

term involving the product 6 7. Thissign change reflects the shift of the carrier
frequency of the soliton components in the opposite directions.
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The solution given by Eq. (6.5.14) represents one of the severa solitary-
wave solutions that have been discovered in birefringent fibers by solving Egs.
(6.1.19) and (6.1.20) under various approximations. In one case, the two com-
ponents not only have an asymmetric shape but they can also have a double-
peak structure [96]. In another interesting class of solutions, two solitary waves
form bound states such that the state of polarization is not constant over the
entire pulse but changes with time [97]. In some cases the state of polariza-
tion can even evolve periodically along the fiber length [111]. Several other
solitary-wave solutions have been discovered during the 1990s [107]{117].

Similar to the case of modulation instability, one may ask whether vector
solitons exist in isotropic fibers with no birefringence. In this case, we should
use Egs. (6.5.1) and (6.5.2) with b = 0. These equations then become identical
to Egs. (6.1.17) and (6.1.18) with the choice B = 2. The only difference is
that they are written in terms of the circularly polarized components as defined
in Eq. (6.5.3). The vector soliton given in Eg. (6.5.14) thus exists even for
isotropic fibers and can be written using B=2 as

u, = u_ = nsech(v3nt)exp(3in?c/2). (6.5.17)

It corresponds to a linearly polarized pulse whose electric field vector may
be oriented at any angle in the plane transverse to the fiber axis. Elliptically
polarized solitons also exist for whom the the polarization ellipse rotates at a
fixed rate [115]. The state of polarization is not uniform across the pulse for
such solitons.

6.6 Random Birefringence

As mentioned in Section 6.1, modal birefringence in optical fibers changes
randomly over alength scale ~10 m unless polarization-maintaining fibers are
used. Because lightwave systems commonly use fibers with randomly vary-
ing birefringence, it is important to study how optical pulses are affected by
random hirefringence changes. Indeed, this issue has been investigated exten-
sively [118]-{150]. In this section we consider the effects of random birefrin-
gence for both soliton and nonsoliton pulses.

6.6.1 Polarization-Mode Dispersion

Itisintuitively clear that the polarization state of CW light propagating in fibers
with randomly varying birefringence will generally be elliptical and would
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change randomly aong the fiber during propagation. In the case of optical
pulses, the polarization state can a so be different for different parts of the pulse
unless the pulse propagates as a soliton. Such random polarization changes
typically are not of concern for lightwave systems because photodetectors used
inside optical receivers areinsensitive to the state of polarization of theincident
light (unless a coherent-detection scheme is employed). What affects such
systems is not the random polarization state but pulse broadening induced by
random changes in the birefringence. Thisisreferred to as PM D-induced pulse
broadening.

Theanalytical treatment of PMD is quite complex in general because of its
statistical nature. A simple model, first introduced in 1986 [118], divides the
fiber into a large number of segments. Both the degree of birefringence and
the orientation of the principal axes remain constant in each section but change
randomly from section to section. In effect, each fiber section can be treated as
a phase plate and a Jones matrix can be used for it [151]. Propagation of each
frequency component associated with an optical pulse through the entire fiber
length is then governed by a composite Jones matrix obtained by multiplying
individual Jones matrices for each fiber section. The composite Jones matrix
shows that two principal states of polarization exist for any fiber such that,
when a pulse is polarized aong them, the polarization state at fiber output
is frequency independent to first order, in spite of random changes in fiber
birefringence. These states are analogs of the slow and fast axes associated
with polarization-maintaining fibers. Indeed, the differential group delay AT
(relative time delay in the arrival time of the pulse) is largest for the principal
states of polarization [135].

The principa states of polarization provide a convenient basis for calcu-
lating the moments of AT [119]. The PMD-induced pulse broadening is char-
acterized by the root-mean-square (RMS) value of AT, obtained after averag-
ing over random birefringence changes. Several approaches have been used
to calculate this average using different models [119]{123]. The variance
o2 = ((AT)?) turns out to be the samein al cases and is given by [132]

02(2) = 20?1 2[exp(—2/1c) + 2/l — 1], (6.6.1)

where the intrinsic modal dispersion A' = d(Af)/dw is related to the differ-
ence in group velocities along the two principal states of polarization. The
parameter |¢ is the correlation length, defined as the length over which two
polarization components remain correlated; itstypical vaues are ~10 m.
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For short distances such that z< |, oy = A’zfrom Eq. (6.6.1), as expected
for a polarization-maintaining fiber. For distances z > 1 km, a good estimate
of pulse broadening is obtained using z > |.. For afiber of length L, oy in this
approximation becomes

or ~ A'v2L=DpVL, (6.6.2)

where Dj, is the PMD parameter. Measured values of Dy vary from fiber to
fiber, typically in the range D, = 0.1-2 ps'v'km [129]. Modern fibers are de-
signed to have low PMD, with values of Dy, as low as 0.05 ps/vkm [133].
Because of the v/L dependence, PMD-induced pulse broadening is relatively
small compared with the GVD effects. Indeed, o ~ 1 ps for fiber lengths
~100 km and can be ignored for pulse widths >10 ps. However, PMD be-
comes a limiting factor for lightwave systems designed to operate over long
distances at high bit rates near the zero-dispersion wavel ength of thefiber [130].

Several schemes can be used for compensating the PMD effects occurring
in lightwave systems [152]-{162]. In one scheme, the PMD-distorted signal
is separated into its components along the two principal states of polarization,
PMD isinferred from the measured rel ative phase, and the two components are
synchronized after introducing appropriate delays [154]. The success of this
technique depends on the ratio L /L, for afiber of length L, where Lpy,p =
(To/Dp)? isthe PMD length for pulses of width T,; considerable improvement
is expected for fibers as long as 4L, [163]. Because Ly, can approach
10,000 km for Dy, = 0.1 ps/vkm and T, = 10 ps, first-order PMD effects can
be compensated over transoceanic distances.

Several other factors need to be considered in practice. The derivation of
Eqg. (6.6.1) assumes that the fiber link has no elements exhibiting polarization-
dependent loss or gain. The presence of polarization-dependent losses can in-
duce additional broadening [134]. Similarly, the effects of second-order PMD
should be considered for fibers with relatively low values of D,. Such effects
have been studied and lead to additional distortion of optical pulses [139].
Moreover, the effects of second-oder PM D depend on the chirp associated with
an optical pulse and degrade the system performance when chirp is relatively
large [137].

6.6.2 Polarization State of Solitons

As mentioned earlier, the polarization state of a pulse in general becomes
nonuniform across the pul se because of random changes in fiber birefringence.
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At the same time, PMD leads to pulse broadening. An interesting question is
whether similar things happen to a soliton, or solitons are relatively immune to
random birefringence changes because of their particle-like nature. This issue
became important soon after solitons became a viable candidate for long-haul
lightwave systems [164]-{176].

In the case of constant birefringence, it was seen in Section 6.5 that the
orthogonally polarized components of a soliton can travel at the same speed, in
spite of different group velocities associated with them at low powers. Solitons
realize this synchronization by shifting their frequencies appropriately. It is
thus not hard to imagine that solitons may avoid splitting and PM D-induced
pulse broadening through the same mechanism. Indeed, numerical simulations
based on Egs. (6.1.11) and (6.1.12) indicate this to be the case [164] as long
as the PMD parameter is small enough to satisfy the condition D, < 0.3vD,
where D isrelated to 8, asindicated in Section 1.2.

To understand the relative insensitivity of solitons to PMD, let us discuss
how Egs. (6.1.11) and (6.1.12) can be adapted for fibers exhibiting random
birefringence changes along their length. It is more convenient to write them
in terms of the normalized amplitudes u and v defined as

u=An/1Lp €42 v=Ay /1L e %P2, (6.6.3)
If we also use soliton units and introduce normalized distance and time as

Egs. (6.1.11) and (6.1.12) become

2
<@+68“> Fhup 20Uy <|u|2+ §|v|2> ut %vzu* — 0, (665)

J¢ 2012
(0 0 02V
| (% _531) v+ 550+ (|V|2+§|U|2) VWPV =0, (666)
where
(Buc—Bay). (Box — Boy)- (6.6.7)

2|l3 | 2|l3 |

Both 6 and b vary randomly along the fiber because of random birefringence
fluctuations.
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Equations (6.6.5) and (6.6.6) can be written in a compact form by intro-
ducing a column vector U and the Pauli matrices as

U=<\‘j>, 01=<é_2>, 02=<2 (1)> "3=<i0_ci)>' (6.6.8)

In terms of the column vector U, the coupled NL S equations become [165]

+5U - %5303u, (6.6.9)

ouU 10U
ok

.dU .
I%%-Gl <bU +i0— +EW
where the Stokes parameters are defined interms of U as

s=UU=1u?+V?° s=U'qU=1u?-|v? (6.6.10)
s,=U'o,U =2Re(u*v), s;=UToU =2Im(u*v). (6.6.11)

These Stokes parameters are analogous to those introduced in Section 6.3.2 for
describing the polarization state of CW light on the Poincaré sphere. The main
difference isthat they are time dependent and describe the polarization state of
apulse. They can be reduced to those of Section 6.3.2 by integrating over time
suchthat § = [ s;(t)dt for j=0to 3.

Asinthe CW case, the Stokes vector with components s, s,, and s; moves
on the surface of the Poincaré sphere of radius s,. When birefringence of
the fiber varies randomly along the fiber, the tip of the Stokes vector moves
randomly over the Poincaré sphere. The important question is the length scale
over which such motion covers the entire surface of the Poincaré sphere and
how this length compares with the dispersion length. To answer this question,
one should consider random variations in b and 6 as well as random changes
in the orientation of the principal axes along fiber.

Random changes in b occur on a length scale ~1 m. As they only affect
the phases of u and v, it is clear that such changes leave s, unchanged. Asa
result, the Stokes vector rotates rapidly around the s; axis. Changes in the ori-
entation of the birefringence axes occur randomly over a length scale ~10 m.
Such changes leave s; unchanged and thus rotate the Stokes vector around that
axis. The combination of these two types of rotations forces the Stokes vec-
tor to fill the entire surface of the Poincaré sphere over alength scale ~1 km.
As this distance is typically much shorter than the dispersion length, soliton
parameters are not much affected by random changes in birefringence. The
situation is similar to the case of energy variations occurring when fiber losses
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are compensated periodically using optical amplifiers (see Section 5.4). We
can thus follow a similar approach and average Eq. (6.6.9) over random bire-
fringence changes. When (b) = 0 and (§) = 0, the two terms containing o,

average out to zero. Thelast term in Eq. (6.6.9) requires the average (s;05U).

This average turns out to be s;U /3 if we make use of the identity [165]

3
uu'=Yy so;. (6.6.12)
j:

After averaging over birefringence fluctuations, Eg. (6.6.9) reduces to

U 10U 8
I@ + 2972 + §SOU =0, (6.6.13)

The factor of g can be absorbed in the normalization factor used for U and
amounts to reducing the nonlinear parameter y by this factor. In terms of the
components u and v, Eg. (6.6.13) can be written as

.du 1a2U 2 2
98 T oot MIU=0 (6619
oA 10%v 2 2

Asdiscussed in Section 6.5.3, this set of two coupled NLS equationsisin-
tegrable by the inverse scattering method [92] and has the solution in the form
of afundamental vector soliton given in Egs. (6.5.12) and (6.5.13). This solu-
tion shows that a fundamental soliton maintains the same polarization across
the entire pulse “on average” in spite of random birefringence changes along
the fiber. Thisis an extraordinary result and is indicative of the particle-like
nature of solitons. In effect, solitons maintain uniform polarization across the
entire pulse and resist small random changes in birefringence [164]. Extensive
numerical simulations based on Egs. (6.6.5) and (6.6.6) confirm that solitons
can maintain auniform polarization state approximately over long fiber lengths
even when optical amplifiers are used for compensating fiber losses [165].

It isimportant to note that the vector soliton associated with Egs. (6.6.14)
and (6.6.15) represents the average behavior. The five parameters associated
with this soliton (amplitude, frequency, position, phase, and polarization angle)
will generaly fluctuate along fiber length in response to random birefringence
changes. Perturbation theory, similar to that used for scalar solitons in Section
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5.4, can be used to study hirefringence-induced changes in soliton parame-
ters [166]-{170]. For example, the amplitude of the soliton decreases and its
width increases because of perturbations produced by random birefringence.
The reason behind soliton broadening is related to the generation of disper-
sive waves (continuum radiation) and resulting energy loss. The perturbation
technique can also be used to study interaction between orthogonally polar-
ized solitons [171] and timing jitter induced by amplifier-induced fluctuations
in the polarization state of the soliton [176].

From a practical standpoint, uniformity of soliton polarization can be use-
ful for polarization-division multiplexing. In this scheme, two orthogonally
polarized bit streams are interleaved in the time domain. As aresult, aternate
pulses have orthogonal polarization states initially and are able to maintain
their orthogonality if they propagate as solitons. This allows much tighter
packing of solitons (resulting in a higher bit rate) because the interaction be-
tween two neighboring solitons is reduced when they are orthogonally polar-
ized. However, extensive numerical simulations show that the technique of
polarization-division multiplexing is useful in practice only when the PMD
parameter Dy, isrelatively small [173]. When Dy, islarge, copolarized solitons
provide an overall better system performance.

Problems

6.1 Derive an expression for the nonlinear part of the refractive index when
an optical beams propagates inside a high-birefringence optical fiber.

6.2 Prove that Egs. (6.1.15) and (6.1.16) indeed follow from Egs. (6.1.11)
and (6.1.12).

6.3 Prove that a high-birefringence fiber of length L introduces a relative
phase shift of Agy, = (yP,L/3)cos(26) between the two linearly polar-
ized components when a CW beam with peak power ) and polarization
angle 6 propagates through it. Neglect fiber losses.

6.4 Explain the operation of a Kerr shutter. What factors limit the response
time of such a shutter when optical fibers are used as the Kerr medium?

6.5 How can fiber birefringence be used to remove the low-intensity pedestal
associated with an optical pulse?

6.6 Solve Egs. (6.3.1) and (6.3.2) in terms of the elliptic functions. You can
consult Reference [43].
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6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

Prove that Egs. (6.3.14) and (6.3.15) can be written in the form of Eqg.
(6.3.19) after introducing the Stokes parameters through Eq. (6.3.16).

What is meant by polarization instability in birefringent optical fibers?
Explain the origin of thisinstability.

Derive the dispersion relation K(€2) for modulation instability to occur
in low-birefringence fibers starting from Egs. (6.1.15) and (6.1.16). Dis-
cuss the frequency range over which the gain exists when 3, > 0.

Derive the dispersion relation K(Q) for modulation instability to oc-
cur in high-birefringence fibers starting from Egs. (6.1.22) and (6.1.23).
Discuss the frequency range over which the gain exists when 3, > 0.

Solve Egs. (6.5.4) and (6.5.5) numerically by using the split-step Fourier
method. Reproduce the results shown in Fig. 6.12. Check the accuracy
of Eq. (6.5.8) for § =0.2and B=2/3.

Verify by direct substitution that the solution given by Eq. (6.5.14) sat-
isfies EQs. (6.5.4) and (6.5.5).

Explain the operation of soliton-dragging logic gates. How would you
design aNOR gate by using such atechnique?

Explain the origin of PMD in optical fibers. Why does PMD lead to
pulse broadening. Do you expect PM D-induced broadening to occur for
solitons?
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Chapter 7

Cross-Phase M odulation

So far inthisbook, only asingle electromagnetic wave is assumed to propagate
inside optical fibers. When two or more optica fields having different wave-
lengths propagate simultaneously inside a fiber, they interact with each other
through the fiber nonlinearity. In general, such an interaction can generate new
waves under appropriate conditions through a variety of nonlinear phenomena
such as stimulated Raman or Brillouin scattering, harmonic generation, and
four-wave mixing; these topics are covered in Chapters 8-10. The fiber non-
linearity can also couple two fields through cross-phase modulation (XPM)
without inducing any energy transfer between them. Cross-phase modulation
is always accompanied by self-phase modulation (SPM) and occurs because
the effective refractive index seen by an optical beam in a nonlinear medium
depends not only on the intensity of that beam but also on theintensity of other
copropagating beams [1].

The XPM-induced coupling among optical fields gives rise to a number
of interesting nonlinear effects in optical fibers. This coupling between two
fields of different wavelengths is considered in Section 7.1 where a set of two
coupled nonlinear Schrodinger (NLS) equations is obtained. These equations
are used in Section 7.2 to discuss how the XPM affects the phenomenon of
modulation instability. Similar to the analysis in Section 6.4, this instability
can occur even in the normal-dispersion regime of an optical fiber. Section
7.3 focuses on soliton pairs whose members support each other through XPM.
The effects of XPM on the shape and the spectrum of copropagating ultrashort
pulses are described in Section 7.4. Several applications of XPM-induced cou-
pling in optical fibers are discussed in Section 7.5.
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7.1 XPM-Induced Nonlinear Coupling

This section extends the theory of Section 2.3 to the case of two optical pulses
at different wavelengths copropagating inside a single-mode fiber. In general,
the two optical fields can differ not only in their wavelengths but also in their
states of polarization. To simplify the presentation, we first focus on the case
in which the two optical fields at different wavelengths are linearly polarized
along one of the principal axes of a birefringent fiber. The case of arbitrarily
polarized beams is discussed later in this section.

7.1.1 Nonlinear Refractive Index

In the quasi-monochromatic approximation, it is useful to separate the rapidly
varying part of the electric field by writing it in the form

E(r,t) = IX[E; exp(—iwt) + Eyexp(—imyt)] +c.c., (7.1.1)

where X is the polarization unit vector, @ and w, are the carrier frequencies
of the two pulses, and the corresponding amplitudes E; and E, are assumed to
be slowly varying functions of time compared with an optical period. This
assumption is equivalent to assuming that the spectral width of each pulse
satisfies the condition Aw; < o; (j = 1,2), and holds quite well for pulse
widths >0.1 ps. Evolution of the slowly varying amplitudes E, and E, is
governed by the wave equation (2.3.1) with the linear and nonlinear parts of
the induced polarization given by Egs. (2.3.5) and (2.3.6).

To see the origin of XPM, we substitute Eg. (7.1.1) in Eg. (2.3.6) and find
that the nonlinear polarization can be written as

Pa (1) = 3Py, () exp(—iat) + Py, (@,) exp(—iw,t)
+ PuL (20, — 0,) exp[—i (20, — w))t]
)]

+ Py (20, — ) exp[—i (2w, — o,)t] +C.C., (7.1.2)
where the four terms depend on E; and E, as
PuL (o) = Xeff(|E1|2 +2|E,|?)E,, (7.1.3)
PuL(@,) = Xeff(|E2|2 +2| E1|2)E27 (7.1.4)
PNL(Z(Dl ,) = XeffEfEéka (7.1.5)
PuL (20, — o)) = 24EZES, (7.1.6)
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With x4 = (3g5/4) 3, acting as an effective nonlinear parameter.

The induced nonlinear polarization in Eq. (7.1.2) has terms oscillating at
the new frequencies 2w, — w, and 2w, — w;. These terms result from the
phenomenon of four-wave mixing discussed in Chapter 10. It is necessary
to satisfy the phase-matching condition if the new frequency components are
to build up significantly, a condition not generally satisfied in practice unless
specia precautions are taken. The four-wave-mixing terms are neglected in
this chapter after assuming that phase matching does not occur. The remaining
two terms provide a nonlinear contribution to the refractive index. This can be
seen writing By, (@;) intheform (j = 1,2)

P () = €] E;, (7.1.7)

and combining it with the linear part so that the total induced polarization is
given by

P(w;) = g¢;E;|, (7.1.8)

where

L NL L 2

n'j- isthelinear part of the refractive index and An isthe change induced by the
third-order nonlinear effects. Using the approximation An < n-, the nonlinear
part of the refractive index isgiven by (j = 1,2)

An; ~ et /2n; ~ ny(|Ej*+ 2|E5_|?), (7.1.10)

where n} ~ n5 = n has been assumed. The nonlinear parameter n, is defined
asin Eq. (2.3.13).

Equation (7.1.10) shows that the refractive index seen by an optical field
inside an optical fiber depends not only on the intensity of that field but also on
the intensity of other copropagating fields [2]-{4]. Asthe optical field propa-
gates inside the fiber, it acquires an intensity-dependent nonlinear phase shift

oM (2) = (;/c)An;z=ny(e, /O) (|Ej|*+ 2E4_*)Z (7.1.12)

where j =1 or 2. Thefirst termisresponsible for SPM discussed in Chapter 4.
The second term results from phase modulation of one wave by the copropa-
gating wave and isresponsible for XPM. The factor of 2 on theright-hand side
of Eq. (7.1.11) shows that XPM is twice as effective as SPM for the same in-
tensity [1]. Itsorigin can be traced back to the number of terms that contribute
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to the triple sum implied in Eq. (2.3.6). Qualitatively speaking, the number of
terms doubles when the two optical frequencies are distinct compared with that
when the frequencies are degenerate. The XPM-induced phase shift in optical
fibers was measured as early as 1984 by injecting two continuous-wave (CW)
beams into a 15-km-long fiber [3]. Soon after, picosecond pulses were used to
observe the XPM-induced spectral changes [4]-{6].

7.1.2 Coupled NL S Equations

The pulse-propagation equations for the two optical fields can be obtained by
following the procedure of Section 2.3. Assuming that the nonlinear effects
do not affect significantly the fiber modes, the transverse dependence can be
factored out writing E;(r,t) in the form

where F; (x,y) isthe transverse distribution of the fiber mode for the jth field
(j=1,2), A (zt) isthedowly varying amplitude, and BOJ- isthe corresponding
propagation constant at the carrier frequency a. The dispersive effects are
included by expanding the frequency-dependent propagation constant ﬁ(a))
for each wave in a way similar to Eq. (2.3.23) and retaining only up to the
quadratic term. The resulting propagation equation for A (zt) becomes

; 2
%_}_ .%_}_IB_ZJ.&AJ._FﬁA.
0z U ot 2 o2 2]

= iny(o; /0)(f;;|A;17+2f, | AL, (7.1.13)

wherek # |, Blj = 1/vgj, V; isthe group velocity, ﬂzj isthe GVD coefficient,
and o; is the loss coefficient. The overlap integral f;, is defined as

. e o2 2
- JI7L R (6 V)12 F(x.y) [*dxdy (7.1.14)

(I 1Ry ey Py (17 R xy)lhy)

The differences among the overlap integrals can be significant in multi-
mode fibers if the two waves propagate in different fiber modes. Even in
single-mode fibers, f;,, f,,, and f,, differ from each other because of the fre-
quency dependence of the modal distribution F(x,y). The difference is small,
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however, and can be neglected in practice. In that case, Eq. (7.1.13) can be
written as the following set of two coupled NL S equations [7]-{10]

8A1+ 1 0A; iByd?A o

— A
9z vy ot 5 o T

= in(|A*+2/A)%)A,, (7.1.15)
IA, 1 IA, | iBpd®A, o
2t T2 e T2t

= in(|A? +2|A?)A,, (7.1.16)

where the nonlinear parameter ¥ is defined asin Eq. (2.3.28),

Y = N0 /(CAg), (=12, (7.1.17)

and Ay is the effective core area (A4 = 1/f,;), assumed to be the same for
both optical waves. Typicaly Ay = 50 um? in the 1.55-um wavelength re-
gion. The corresponding values of 1, and y, are ~1 W~1/km depending on the
frequencies w; and w,. Generally, the two pulses not only have different GVD
coefficients but also propagate at different speeds because of the difference in
their group velocities. The group-velocity mismatch plays an important role
as it limits the XPM interaction as pulses walk off from each other. One can
define the walk-off length L, using Eq. (1.2.14); it is a measure of the fiber
length during which two overlapping pulses separate from each other as are-
sult of the group-velocity mismatch.

7.1.3 Propagation in Birefringent Fibers

In a birefringent fiber, the state of polarization of both waves changes with
propagation. The orthogonally polarized components of each wave are then
mutually coupled through XPM. The total optical field can be written as

E(r.t) =1 [(RElX+9E1y)e_i“’1t + (>?E2X+9E2y)e‘i“’2t] tcc  (7.118)

The slowly varying amplitudes A, Ay Ao and Ay, can be introduced simi-
larly to Eq. (7.1.12) and the coupled amplitude equations for them are obtained
by following the same method. These equations are quite complicated in the
general case that includes the coherent-couplings terms similar to those present
in Egs. (6.1.12) and (6.1.13). However, they are considerably simplified in the
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case of high-birefringence fibers because such terms can then be neglected.
The resulting set of four coupled NL S equations becomes [11]

9z Vg, ot 2 oJt2 2
= i (A2 +2lAz 2 + BIALIE +BIA A,  (7.1.19)

Ay

a2
8A2p n 1 8A2p mﬂa A2p n ﬁ
0Z Vg, ot 2 otz 2%

= i%5(|Agpl? + 2/A ) |* + BIA 2+ BIAy2)A,,,  (7.1.20)

where p=x,y and g = X,y such that p # q. The parameter B is given in Eq.
(6.1.21) and equals 2/3 for linearly birefringent fibers. These equations reduce
to Egs. (7.1.15) and (7.1.16) when both waves are polarized along a principal
axis (A, = Ay =0).

7.2 XPM-Induced Modulation Instability

This section extends the analysis of Section 5.1 to the case in which two CW
beams of different wavelengths propagate inside afiber simultaneously. Sim-
ilar to the single-beam case, modulation instability is expected to occur in the
anomalous-GV D region of the fiber. The main issue is whether XPM-induced
coupling can destabilize the CW state even when one or both beams experience
norma GVD [12]{19].

7.2.1 Linear Stability Analysis

The following analysisis similar to that of Section 6.4.2. The main difference
is that XPM-induced coupling is stronger and the parameters 3, and y are dif-

ferent for the two beams because of their different wavelengths. As usual, the
steady-state solution is obtained by setting the time derivativesin Egs. (7.1.15)
and (7.1.16) to zero. If fiber losses are neglected, the solution is of the form

A= [P exp(io)), (7.2.0)

where j =1or 2, P istheincident optical power, and ® isthe nonlinear phase
shift acquired by the jth field and given by

¢;(2) =7, (P, +2P;_j)z (7.2.2)
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Following the procedure of Section 5.1, stability of the steady state is ex-
amined assuming atime-dependent solution of the form

Aj = (\EJF a,-) exp(ig,), (7.2.3)

where a (zt) isasmall perturbation. By using Eqg. (7.2.3) in Egs. (7.1.15) and
(7.1.16) and linearizing in & and a,, the perturbations a, and a, satisfy the
following set of two coupled linear equations:

98, | 102 ifyo%a
Jz vy ot 2 ot?
= ipPy(ay +a;) + 2y (PP,) (2, + @), (7.2.4)
92 192, ifyda
9z~ Vg ot 2 ot?
= iPy(a,+83) + 21, (P P,) 2 (ay +a)), (7.2.5)

where the last term is due to XPM.
The above set of linear equations has the following general solution:

a; = u; expli(Kz— Qt)] + iv; exp[—i(Kz— Qt)], (7.2.6)

where j = 1,2, K is the wave number and Q is the frequency of perturba-
tion. Equations (7.2.4)—(7.2.6) provide a set of four homogeneous equations
for uy,u,,v;, and v,. This set has anontrivial solution only when the perturba-
tion satisfies the following dispersion relation:

[(K = Q/vgy)? = F][(K = Q/Vgp)? — f,) = Cypus (7.2.7)

where
fy = 3B, 9°(3B, " + 21P) (728

for j = 1,2. The coupling parameter C, p, is defined as
Cxpm = 4[321[322717’2P1P294- (7.2.9)

The steady-state solution becomes unstable if for some values of Q the wave
number K has an imaginary part. The perturbations a and a, then experience
an exponential growth along the fiber length. In the absence of XPM coupling
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(Cxpum = 0), Eq. (7.2.7) shows that the analysis of Section 5.1 applies to each
wave independently.

In the presence of XPM coupling, Eq. (7.2.7) provides a fourth-degree
polynomial in K whose roots determine the conditions under which K becomes
complex. In general, these roots are obtained numerically. If the wavelengths
of the two optical beams are so close to each other that the group-velocity
mismatch is negligible or are located on opposite sides of the zero-dispersion
wavelength such that (vgl ~ vgz), the four roots are given by [12]

K =Q/vy £ {3(fy+ ) £[(f, — f,)2/4+ Cypy Y2}/, (7.2.10)

It is easy to verify that K can become complex only if G, > f;f,. Using
Egs. (7.2.8) and (7.2.9), the condition for modulation instability to occur can
be written as

[Q?/Q% + sgn(B,y)] [Q?/Q% + sgn(B,,)] < 4, (7.2.11)

where Q, and Q, are defined as
Q= (4?’1‘ Pj/|B2j |)1/2, (7.2.12)

with j =1 or 2. When the condition (7.2.11) is satisfied, the gain spectrum of
modulation instability is obtained from g(Q2) = 2Im(K).

The modulation-instability condition (7.2.11) shows that there is a range
of Q over which the gain g(Q2) exists. The steady-state solution (7.2.3) is
unstable to perturbations at those frequencies. The most important conclusion
drawn from Eq. (7.2.11) is that modulation instability can occur irrespective
of the signs of the GVD coefficients. Thus, whereas modulation instability
requires anomalous GVD in the case of a single beam (see Section 5.1), it
can occur in the two-beam case even if both beams experience normal GVD.
The frequency range over which g(Q) > 0 depends on whether 3,, and 3 ,,
are both positive, both negative, or one positive and the other negative. The
smallest frequency range corresponds to the case in which both beams are in
the normal-dispersion regime of the fiber. Because modulation instability in
that caseis due solely to XPM, only this case is discussed further.

Figure 7.1 shows the gain spectra of XPM-induced modulation instability
for silica fibersin the visible region near 0.53 um choosing sz = 60 ps’/km
and v =15 W~1/kmin Eq. (7.2.8). The group-velocity mismatch is neglected
in the left graph where different curves correspond to values of the power ratio
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Figure 7.1 Gain spectra of XPM-induced modulation instability in the normal-
dispersion regime of afiber for (i) different power ratioswith 6 = 0 and (ii) different
vaues of & with equal beam powers. (After Ref. [12].)

P, /P, intherange 0-2. Theright graph shows the effect of group-velocity mis-
match for equal beam powers by varying the parameter § = v} — v§21| in the
range 0-3 ps/m. These results show that X PM-induced modulation instability
can occur in the norma-GVD regime for relatively small values of 6. The
peak gain of about 5 M at the 100-W power level implies that the instability
can develop in fibers afew meters long.

The set of four coupled equations obtained in Section 7.1.3 should be used
to investigate XPM-induced modulation instability when two élliptically po-
larized CW beams propagate in a high-birefringence fiber. The new feature is
that the dispersion relation, Eq. (7.2.7), becomes an eighth-degree polynomial
in K. If one of the beams is polarized along a principal axis of the fiber, the
dispersion relation reduces to a sixth-degree polynomial in K. The gain spec-
trum of XPM-induced modulation instability then depends on the polarization
angle of the other beam [11]. In general, the gain bandwidth is reduced when
the two beams are not polarized along the same axis.

7.2.2 Experimental Results

The experimental attempts to observe the X PM-induced modulation instability
for normal GVD have focused mostly on the case of two polarization compo-
nents of a single beam (see Section 6.4). It appears that this instability is
difficult to observe in the case of two beams with different wavelengths. The
reason is related to the fact that Egs. (7.1.15) and (7.1.16) neglect four-wave
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mixing. The neglect of the four-wave-mixing terms can be justified when the
wavelength difference is so large that phase matching cannot occur [17]-{19].
However, to observe modulation instability, the wavelength difference needs
to be reduced to ~1 nm or less. Four-wave mixing then becomes nearly phase
matched and cannot be ignored. Indeed, a careful analysis that includes GVD
to al orders shows that XPM-induced modulation instability is not likely to
occur in the normal-dispersion region of conventional silicafibers[19]. It can
occur in especialy designed dispersion-flattened fibers in which two normal-
GVD regions are separated by an intermediate wavelength region of anoma-
lous GVD. In such fibers, it is possible to match the group velocities even
when the wavelengths of two beams differ by 100 nm or more.

The XPM-induced modulation instability has been observed when one of
the beams propagates in the normal-GV D region while the other beam expe-
riences anomalous dispersion. In one experiment [20], a pump-probe configu-
ration was used such that the 1.06-um pump pulses experienced normal GVD
while 1.32-yum probe pulses propagated in the anomalous-GVD regime of the
fiber. When the pump and probe pulses were launched simultaneously, the
probe developed modulation sidebands, with a spacing of 260 GHz at the 0.4-
W peak-power level of pump pulses, as aresult of XPM-induced modulation
instability. This configuration can be used to advantage if the pump beamisin
the form of intense pulses whereas the other beam forms a weak CW signal.
The weak CW beam can be converted into atrain of ultrashort pulses because
it isamplified through X PM-induced modulation instability only when the two
waves are present simultaneously [8].

In an experimenta realization of the preceding idea [21], 100-ps pump
pulses were obtained from a 1.06-um, mode-locked, Nd:YAG laser while
an external-cavity semiconductor laser provided the weak CW signal (power
<0.5 mW) whose wavelength was tunable over 1.43-1.56 um. The zero-
dispersion wavel ength of the 1.2-km-long optical fiber wasnear 1.273 umsuch
that the group velocities were nearly equal at 1.06 and 1.51 um. When 60-uW
signal power was coupled into the fiber together with the pump pulses (peak
power >500 W), the signal spectrum developed sidebands indicative of the
XPM-induced modulation instability. The experimental results were in quali-
tative agreement with the numerical solutions of Egs. (7.1.15) and (7.1.16) and
indicated that the CW signal was converted into atrain of picosecond pulses.

This technique has been used to generate a 10-GHz pulse train by launch-
ing the CW signal from a 1543-nm semiconductor laser into a fiber together
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with 13.7-ps pump pulses (10-GHz repetition rate) obtained from a 1558-nm,
mode-locked semiconductor laser [22]. The 11-km-long dispersion-shifted
fiber had its zero-dispersion wavelength at 1550 nm, resulting in nearly equal
group velocities at the pump and signal wavelengths. The streak-camera mea-
surements indicated that XPM-induced modulation instability converted the
CW signal into a train of 7.4-ps pulses. If pump pulses were coded to carry
digital information, signal pulses will reproduce the information faithfully be-
cause the XPM interaction requires the presence of a pump pulse. Such a de-
vice is useful for wavelength conversion of signals in optical communication
systems.

7.3 XPM-Paired Solitons

Similar to the case of vector solitons discussed in Section 6.5.3, the XPM-
induced modulation instability indicates that the coupled NL S equations may
have solitary-wave solutions in the form of two paired solitons that preserve
their shape through the XPM interaction. In fact, solitonic and periodic solu-
tions of the coupled NLS equations have been studied since 1977 [23]-{43].
Because such solutions specify intensity profiles of both pulses and always
occur in pairs, they are referred to as XPM-paired solitons (also called symbi-
otic solitons). Some of such paired solutions have been discussed in Section
6.5.3 in the context of vector solitons. However, in that case the two polariza-
tion components of a single beam experience the same GVD (either normal or
anomalous). In the general case discussed here, the carrier frequencies of two
solitons can be different enough that the two members of the soliton pair can
have different signs for the GV D parameter.

7.3.1 Bright-Dark Soliton Pair

Solitons paired by XPM represent the specific solutions of Egs. (7.1.15) and
(7.1.16) for which the pulse shape does not change with z although the phase
may vary along the fiber. Such solutions are not solitons in a strict math-
ematical sense and should be referred to more accurately as solitary waves.
The group-velocity mismatch represents the biggest hurdle for the existence of
XPM-paired solitons. Itis possible to realize equal group velocities (y; = V)

if the wavelengths of two optical waves are chosen appropriately on opposite
sides of the zero-dispersion wavelength such that one wave experiences nor-
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mal GVD while the other wave lies in the anomalous-GVD region. Indeed,
several examples of XPM-paired solitons were discovered exactly under such
operating conditions [25]-{27].

An interesting example is provided by the bright—dark soliton pair formed
when B,; < 0and B,, > 0. If fiber losses are ignored (o = o, = 0) and group
velocities are assumed to be equal by setting v, = v, = Vg in Egs. (7.1.15)
and (7.1.16), abright—dark soliton pair is given by [25]

A (zt) = Bjtanh|W(t —z/V)] exp[i(K;z— Q,t)], (7.3.1)
A,(zt) = Bysech|W(t — z/V)] exp[i(K,z— Q,t)], (7.3.2)
where the soliton amplitudes are determined from
BT = (2185 + %lBn)W?/ (31 7), (7.3.3)
B = (21lBal + 11B2)W?/ (3112), (7.34)
the wave numbers K; and K, are given by
Kl = Y1B§ - |B21|Q§/27 K2 = BZZ(QZ _WZ)/Za (7'3'5)

and the effective group velocity of the soliton pair is obtained from
V= vt — By Q) = vyt + B, (7.3.6)

As seen from Eq. (7.3.6), the frequency shifts Q; and €2, must have op-
posite signs and cannot be chosen independently. The parameter W governs
the pulse width and determines the soliton amplitudes through Egs. (7.3.3) and
(7.3.4). Thus, two members of the soliton pair have the same width, the same
group velocity, but different shapes and amplitudes such that they support each
other through the XPM coupling. In fact, their shapes correspond to bright and
dark solitons discussed in Chapter 5. The most striking feature of this soliton
pair isthat the dark soliton propagates in the anomalous-GV D regime whereas
the bright soliton propagates in the normal-GVD regime, exactly opposite of
the behavior expected in the absence of XPM. The physical mechanism be-
hind such an unusual pairing can be understood as follows. Because XPM is
twice as strong as SPM, it can counteract the temporal spreading of an opti-
cal pulse induced by the combination of SPM and norma GV D, provided the
XPM-induced chirp is of the opposite kind than that produced by SPM. A dark
soliton can generate this kind of chirp. At the same time, the XPM-induced
chirp on the dark soliton is such that the pair of bright and dark solitons can
support each other in a symbiotic manner.
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7.3.2 Bright—Gray Soliton Pair

A more general form of an XPM-coupled soliton pair can be obtained by solv-
ing Egs. (7.1.15) and (7.1.16) with the postulate

A(zt) = Q(t—z/V) expli(K;z— Q;t + ¢))], (7.3.7)

where V is the common velocity of the soliton pair, Q, governs the soliton
shape, K; and Q j represent changes in the propagation constant and the fre-
quency of two solitons, and ¢; is the phase (j = 1,2). The resulting solution
has the form [32]

Q,(t) = B,[1—b?sech®(Wt)],  Q,(1) = B,sech(W1), (7.3.8)

where 7 =t — z/V. The parameters W and b depend on the soliton amplitudes,
B, and B,, and on fiber parameters through the relations

2 2
wo (520 ) "e, oo (e pa)" % (o
2y, B — 415851 Y1Bo — 21:B51 B,

The constants K, and K, are aso fixed by various fiber parameters and soliton
amplitudes. The phase of the bright soliton is constant but the dark-soliton
phase ¢, istime-dependent. The frequency shifts €, and Q, are related to the
soliton-pair speed asin Eq. (7.3.6).

The new feature of the XPM-coupled soliton pair in Eqg. (7.3.8) is that
the dark soliton is of “gray” type. The parameter b controls the depth of the
intensity dip associated with a gray soliton. Both solitons have the same width
W but different amplitudes. A new feature is that the two GVD parameters
can be positive or negative. However, the soliton pair exists only under certain
conditions. The solution is always possible if 8,, < 0 and ,, > 0 and does
not exist when f3,; > 0 and B, < 0. As discussed before, this behavior is
opposite to what would normally be expected and is due solely to XPM. If
both solitons experience normal GVD, the bright—gray soliton pair can exist
if 7185, > 2%,8,,. Similarly, if both solitons experience anomalous GVD, the
soliton pair can exist if 2y |B,,] < V| By |-

7.3.3 Other Soliton Pairs

The soliton-pair solutions given in the preceding are not the only possible so-
lutions of Egs. (7.1.15) and (7.1.16). These equations also support pairs with
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two bright or two dark solitons depending on various parameter values [27].
Moreover, the XPM-supported soliton pairs can exist even when group ve-
locities are not equal because, similar to soliton trapping in birefringent fibers
(see Section 6.5), two pulses can shift their carrier frequencies to equalize their
group velocities. A simpleway to find the conditions under which X PM-paired
solitons can exist is to postulate an appropriate solution, substitute it in Egs.
(7.1.15) and (7.1.16), and then investigate whether soliton parameters (ampli-
tude, width, group velocity, frequency shift, and wave number) can be deter-
mined with physically possible values [32]-{34]. As an example, consider the
case when Egs. (7.3.1) and (7.3.2) describe the postulated solution. Assume
also that K; = K, and Q, = Q, so that the frequency shifts are equal. It turns
out that the postulated solution is always possible if 3, < 0 and f3,, > 0, but

exists only under certain conditionsif 3,, and 3,, have the same sign [34]. Fur-

ther, the assumption Q,; = Q, can be relaxed to obtain another set of solitary-

wave solutions. Stability of the XPM-paired solitons is not always guaranteed
and should be checked through numerical simulations.

The set of four coupled equations obtained in Section 7.1.3 should be used
to study whether the XPM-paired vector solitons exist in birefringent fibers.
By following the method discussed in the preceding, one findsthat such soliton
solutions indeed exist [11]. Depending on the parameter values, birefringent
fibers can support a pair of bright vector solitons or a pair composed of one
dark and one bright vector soliton. The XPM interaction of two elliptically
polarized beams appears to have arich variety of interesting features.

The coupled NLS equations (7.1.15) and (7.1.16) also have periodic so-
lutions that represent two pulse trains that propagate undistorted through an
optical fiber because of the XPM-induced coupling between them. One such
periodic solution in terms of the elliptic functions was found in 1989 in the
specific case in which both pulse trains have the same group velocity and ex-
perienced anomalous GVD inside the fiber [29]. By 1998, nine periodic so-
lutions, written as different combinations of the eliptic functions, have been
found [43]. All of these solutions assume equal group velocities and anoma-
lous GVD for the two pulse trains. A further generalization considers XPM-
induced coupling among more than two optica fields. In this case, one needs
to solve a set of multiple coupled NLS equations of the form

0A. 1 dA. B, J°A M
R T | 2j i _ 2\ A
az + ng at + 2 atz I (kzl,yjk|Ak| > AJa (7310)
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where j = 1-M. These equations have periodic aswell as soliton-pair solutions
for certain combinations of parameter values [44].

7.4 Spectral and Temporal Effects

This section considers the spectral and tempora changes occurring as a result
of XPM interaction between two copropagating pulses with nonoverlapping
spectra[45]-51]. For simplicity, the polarization effects areignored assuming
that the input beams preserve their polarization during propagation. Equations
(7.1.15) and (7.1.16) then govern evolution of two pulses along the fiber length
and include the effects of group-velocity mismatch, GVD, SPM, and XPM. If
fiber losses are neglected for simplicity, these equations become

OA, iB, %A,
a—zl + % 8T21 = in (A7 +2A ) A,, (7.4.1)
IA, A, B, %A,
8—22 da—Tz %sz = ip(IA)7+2|A P)A,, (7.4.2)
where v v
T—t—2, d=-9t '@ (7.4.3)
Vg1 Vg1V

Time T is measured in areference frame moving with one pulse traveling at
speed Vgt- The parameter d is a measure of group-velocity mismatch between
the two pulses.

In general, two pulses can have different widths. Using the width T of
the first pulse at the wavelength 4, as a reference, we introduce the walk-off
length L, and the dispersion length L as

Ly = To/ld], Lo = T5/|Bal- (7.4.4)

Depending on the relative magnitudes of L, Ly, and the fiber length L, the
two pulses can evolve very differently. If L is small compared to both L, and
Ly, the dispersive effects do not play a significant role and can be neglected.
This can occur for Ty > 1 nsand L < 10 m if the center wavelengths of the
two pulses are within 10 nm of each other (|d| ~ 10 ps/m). In this quasi-CW
Situation, the steady-state solution of Section 7.3 is applicable. If L, < L but
Lp > L, the second derivatives in Egs. (7.4.1) and (7.4.2) can be neglected
but the first derivatives must be retained. Even though the pulse shape does



Spectral and Temporal Effects 275

not change, the combination of group-velocity mismatch and the nonlinearity-
induced frequency chirp can affect the spectrum drastically. Thisis generaly
the case for T, ~ 100 ps, L ~ 10 m, and d < 10 ps/m. Finaly, for ultrashort
pulses (T, < 10 ps), the GVD terms should also be included; XPM then affects
both the pulse shape and the spectrum. Both of these cases are discussed in
what follows.

7.4.1 Asymmetric Spectral Broadening

Consider first the smple case L < L, for which the second-derivative terms
in Egs. (7.4.1) and (7.4.2) can be neglected. The group-velocity mismatch
is included through the parameter d assuming L, < L. As the pulse shapes
do not change in the absence of GVD, Egs. (7.4.1) and (7.4.2) can be solved
analytically. The general solution at z= L is given by [47]

A(LT)=A0T)E,  A(LT)=A,0,T —dL)e?%, (7.4.5)

where the time-dependent nonlinear phase shifts are obtained from

L

$(T)=mn (LIAl(O,T)|2+2 /0 |A2(O,T—zd)|2dz>, (7.4.6)
L

¢2(T)=72<L|A2(0,T)|2+2 /O |A1(O,T+zd)|2dz>. (7.4.7)

The physical interpretation of Eqgs. (7.4.5)—<7.4.7) is clear. Asthe pulse prop-
agates through the fiber, its phase is modulated because of the intensity de-
pendence of the refractive index. The modulated phase has two contributions.
Thefirst termin Egs. (7.4.6) and (7.4.7) is due to SPM (see Section 4.1). The
second term has its origin in XPM. Its contribution changes along the fiber
length because of the group-velocity mismatch. Thetotal XPM contribution to
the phase is obtained by integrating over the fiber length.

The integration in Egs. (7.4.6) and (7.4.7) can be carried out for specific
pulse shapes. As an illustration, consider the case of two unchirped Gaussian
pulses of the same width T, with the initial amplitudes

e vhos(f). e eI,

(7.4.8)
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Figure 7.2 Optical spectra of two copropagating pulses exhibiting XPM-induced
asymmetric spectral broadening. The parameters are y,P,L = 40, P,/P, = 0.5,
Y/ =121 =0andL/L, =5.

where P, and P, are the peak powers and T is the initial time delay between
the two pulses. Substituting Eq. (7.4.8) in Eq. (7.4.6), ¢, isgiven by

where erf(x) stands for the error function and
T T, dL
T—T—O, Td—_l_—o, 5—?0 (7410)

A similar expression can be obtained for ¢,(T) using Eq. (7.4.7).

As discussed in Section 4.1, the time dependence of the phase manifests
as spectra broadening. Similar to the case of pure SPM, the spectrum of each
pulse is expected to broaden and develop a multipeak structure. However, the
spectral shape is now governed by the combined contributions of SPM and
XPM to the pulse phase. Figure 7.2 shows the spectra of two pulses using
1PL=40,P,/P, =05, %/y; =12, 7, =0, and § = 5. These parameters
correspond to an experimental situation in which a pulse at 630 nm, with 100-
W peak power, was launched inside a fiber together with another pulse at 530
nm with 50-W peak power such that T, =0, T, = 10 ps, and L = 5m. The most
noteworthy feature of Fig. 7.2 is spectral asymmetry that is due solely to X PM.
In the absence of XPM interaction the two spectra would be symmetric and
would exhibit less broadening. The spectrum of pulse 2 is more asymmetric
because the XPM contribution is larger for this pulse (R = 2P,).
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A gualitative understanding of the spectral features seenin Fig. 7.2 can be
developed from the XPM-induced frequency chirp using

1d¢, _ nlb 2 P —(1—14)% _ o (1—74—0)2
Av, (1) = Sr T T, P, te 5 (e d e d ) ;
(7.4.11)

where Eq. (7.4.9) was used. For 7, =0 and |6| < 1 (L < Lyy), the chirp is
given by the simple relation

L
Av,(7) ~ %efz[m +Py(21 - §)). (7.4.12)

The chirp for pulse 2 is obtained following the same procedure and is given by

Avy() ~ LE e [pyr 4+ Py (20 4 8)]. (7.4.13)
Ty

For positive values of &, the chirp is larger near the leading edge for pulse 1
while the opposite occurs for pulse 2. Because the leading and trailing edges
carry red- and blue-shifted components, respectively, the spectrum of pulse
1 is shifted toward red while that of pulse 2 is shifted toward blue. This is
precisely what occursin Fig. 7.2. The spectrum of pulse 2 shifts more because
the XPM contribution is larger for itwhen P, > P,. When P, =P, and y; =~ 75,
the spectra of two pulses would be the mirror images of each other.

The qualitative features of spectral broadening can be quite different if the
two pulses do not overlap initially but have arelative time delay [47]. To iso-
late the effects of XPM, it is useful to consider the pump-probe configuration
assuming P, < P,. The pump-induced chirp imposed on the probe pulse is
obtained from Eq. (7.4.11) by neglecting the SPM contribution and is of the
form

Av,(T) = SON(8) AVimax &Xp[— (T — 14)%] —exp[— (1 — 75— §)?],  (7.4.14)
where Avinax 1S the maximum XPM-induced chirp given by

AV, — nhL _ nPlw
M T, 8] nTy

(7.4.15)

Note that Avmax IS determined by the walk-off length Ly, rather than the actual
fiber length L. Thisis expected because the XPM interaction occurs as long as
the two pulses overlap.
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Figure 7.3 Optical spectra(left column) and X PM-induced phase and chirp (right col-
umn) for a probe pulse copropagating with a faster-moving pump pulse. Probe shape
is shown by a dashed line. Three rows correspondto 7, = 0, 2, and 4, respectively.
(After Ref. [47].)

Equation (7.4.14) showsthat the XPM-induced chirp can vary significantly
along the probe pulse if 7, and 0 are of opposite signs. As aresult, the probe
spectrum can have qualitatively different features depending on the relative
values of 7, and 6. Consider, for example, the case in which the pump pulse
travels faster than the probe pulse (6 < 0) and is delayed initially (74 > 0).
Figure 7.3 shows the probe spectrum together with the phase ¢, and the chirp
Av, for 6 = —4and 7, = 0, 2, and 4. The fiber length L and the pump peak
power P, are chosen such that % P,L = 40 and L/L,, = 4. For reference, a
10-ps pump pulse with a group-velocity mismatch d = 10 pgmhas L, = 1 m.
The probe spectrum in Fig. 7.3 is shifted toward red with strong asymmetry
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for 7, = 0. For 74 = 2, it becomes symmetric while for 7y = 4 it is again
asymmetric with a shift toward blue. In fact, the spectrafor 7, =0and 7, = 4
are mirror images of each other about the central frequency v, = w, /2.

The praobe spectra can be understood physically by considering the X PM-
induced chirp shown in the right column of Fig. 7.3. For 74 = 0, the chirp
is positive across the entire probe pulse, and the maximum chirp occurs at
the pulse center. This is in contrast to the SPM case (shown in Fig. 4.1)
where the chirp is negative near the leading edge, zero at the pulse center, and
positive near the trailing edge. The differences in the SPM and XPM cases
are due to group-velocity mismatch. When 7, = 0, the slow-moving probe
pulse interacts mainly with the trailing edge of the pump pulse. Asaresult, the
XPM-induced chirp is positive and the probe spectrum has only blue-shifted
components. When 7, = 4, the pump pulse just catches up with the probe
pulse at the fiber output. Its leading edge interacts with the probe; the chirp is
therefore negative and the spectrum is shifted toward red. When 7, = 2, the
pump pulse has time not only to the catch up but pass through the probe pulse
in asymmetric manner. The chirp is zero at the pulse center similar to the case
of SPM. However, its magnitude is considerably small across the entire pulse.
Asaresult, the probe spectrum is symmetrically broadened but itstails carry a
relatively small amount of pulse energy. The probe spectrum in this symmetric
case depends quite strongly on the ratio L /L. If L/L, = 2 with 7, = 1, the
spectrum is broader with considerably more structure. By contrast, if L > Ly,
the probe spectrum remains virtually unchanged.

The XPM-induced spectral broadening has been observed experimentally
in the pump-probe configuration. In one experiment [5], the 10-ps pump pulses
were obtained from a color-center laser operating at 1.51 um while the probe
pulses at 1.61 um were generated using a fiber-Raman laser (see Section 8.2).
The walk-off length was about 80 m while the dispersion length exceeded
10 km. Both the symmetric and asymmetric probe spectrawere observed asthe
fiber length was increased from 50 to 400 m and the effective delay between
the pulses was varied using time-dispersion tuning.

In adifferent experiment, aNd: YAG laser was used to provide 33-ps pump
pulses at 1.06 um and 25-ps probe pulses at 0.53 um [46]. The delay between
two pulses was adjusted using a Mach—-Zehnder interferometer. Because of
arelatively large group-velocity mismatch (d =~ 80 ps/m), the walk-off length
was only about 25 cm. For a 1-m-long fiber used in the experiment, L/L,,, = 4.
The probe spectra were recorded by varying the delay T, and the peak power
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Figure 7.4 XPM-induced wavelength shift of a 0.53-um probe pulse as a function of
theinitial time delay of the 1.06-ym pump pulse. Open circles show the experimental
datawhile the solid line shows the theoretical prediction. (After Ref. [46].)

of the pump pulse. The spectra exhibited a shift toward the red or the blue
side with some broadening as the multiple peaks could not be resolved. Such
a XPM-induced shift is referred to as the induced frequency shift [46]. Figure
7.4 shows the induced shift as afunction of thetime delay T,. The solid lineis
the theoretical prediction of Eq. (7.4.14). The frequency shift for a given time
delay is obtained by maximizing Av;(t). The maximum occurs near 7 = 0,
and the frequency shift is given by

Av; = AVmax{&xp(—1§) — exp[— (74 + 8)°]}, (7.4.16)

where 6 ~ —4 for the experimental values of the parameters and 74 = T,/ T,
with T, =~ 20 ps. Equation (7.4.16) shows that the maximum shift Avma Occurs
for 7, = 0 and 7, = 4, while the shift vanishes for 7, = 2. These features are
in agreement with the experiment. According to Eq. (7.4.15) the maximum
shift should increase linearly with the peak power of the pump pulse. This
behavior is indeed observed experimentally as seen in Fig. 7.5. The XPM-
induced shift of the probe wavelength is about 0.1 nm/kW. It is limited by
the walk-off length and can be increased by an order of magnitude or more
if the wavelength difference between the pump and probe is reduced to a few
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Figure 7.5 XPM-induced wavelength shift of a 0.53-um probe pulse as a function of
the peak power of copropagating a 1.06-um pump pulse in the case of noinitial time
delay (T, = 0) between the two pulses. (After Ref. [46].)

nanometers. The XPM-induced frequency shifts may be useful for optical
communication applications.

7.4.2 Asymmetric Temporal Changes

In the preceding discussion the dispersion length L, was assumed to be much
larger than the fiber length L. As aresult, both pulses maintained their shape
during propagation through the fiber. If L, becomes comparable to L or the
walk-off length Ly, the combined effects of XPM, SPM, and GV D can |ead to
qualitatively new temporal changes that accompany the spectral changes dis-
cussed earlier. These temporal changes can be studied by solving Egs. (7.1.15)
and (7.1.16) numerically. It isuseful to introduce the normalization scheme of
Section 4.2 by defining

t—2z/v A.
z e A (7.4.17)

é:—’ T T 3
Lo To /P
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and write the coupled amplitude equations in the form [47]

U, i 02U,
ag ON(By) 557 = IN*(U; P +2U 1)U, (7:4.18)
U, L,oU, i 22U

0E "Ly 9t | 2By 012
where the parameter N isintroduced as

2 Lp 7’1'31-'_02

a I‘NL a |ﬁ21| .

Fiber |osses have been neglected assuming that ojL < 1 for j = 1,2. The sec-
ond term in Eq. (7.4.19) accounts for the group-velocity mismatch between the
two pulses. The choice of plus or minus depends on the sign of the parameter
d defined in Eq. (7.4.3).

To isolate the XPM effects, it is useful to consider a pump-probe config-
uration. Assuming |U,|? < |U,|?, one can neglect the term containing |U,|?
in Egs. (7.4.18) and (7.4.19). Evolution of the pump pulse, governed by Eq.
(7.4.18), isthen unaffected by the probe pulse. Evolution of the probe pulseis,
however, affected considerably by the presence of the pump pulse because of
XPM. Equation (7.4.19) governs the combined effects of XPM and GVD on
the shape and the spectrum of the probe pulse. These equations can be solved
numerically using the split-step Fourier method discussed in Section 2.4.

Figure 7.6 shows the shapes and the spectra of the pump and probe pulses
at & =0.4forthecase N =10, Ly /Ly, = 10, @/, = 1.2, and B,, = B, >
0. Both pulses at the fiber input are taken to be Gaussian of the same width
with no initial time delay between them. The pump pulse is assumed to travel
faster than the probe pulse (d > 0). The shape and the spectrum of the pump
pulse have features resulting from the combined effects of SPM and GVD (see
Section 4.2). In contrast, the shape and the spectrum of the probe pulse are
governed by the combined effects of XPM and GVD. For comparison, Fig. 7.7
shows the probe and pump spectrain the absence of GV D; asymmetric spectral
broadening of the probe spectrum toward the blue side in the absence of GVD
is discussed in Section 7.4.1. The effect of GVD is to reduce the extent of
asymmetry; apart of the pulse energy isnow carried by the red-shifted spectral
components (see Fig. 7.6).

The most notable effect of GVD is seen in the shape of the probe pulse in
Fig. 7.6. In the absence of GVD, the pulse shape remains unchanged as X PM

(7.4.20)
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Figure 7.6 Shapes (upper row) and spectra (lower row) of probe and pump pulses at
& = 0.4. Dashed line shows location of input pulses. Both pulses are Gaussian with
the same width and overlap entirely at £ = 0. (After Ref. [47].)

only affects the optical phase. However, when GVD is present, different parts
of the probe pulse propagate at different speeds because of the XPM-induced
chirp imposed on the probe pulse. This results in an asymmetric shape with
considerable structure [47]. The probe pulse develops rapid oscillations near
the trailing edge while the leading edge is largely unaffected. These oscilla-
tions are due to the phenomenon of optical wave breaking discussed in Section
4.2. There, the combination of SPM and GVD led to oscillations in the pulse
wings (see Fig. 4.10). Here, it is the combination of XPM and GVD that
results in oscillations over the entire trailing half of the probe pulse.
Thefeatures seen in Fig. 7.6 can be understood qualitatively noting that the
XPM-induced chirp is maximum at the pulse center (as seen in the top row of
Fig. 7.3). The combined effect of frequency chirp and positive GVD isto slow
down the peak of the probe pulse with respect to its tails. The XPM-induced
optical wave breaking occurs because the peak lags behind and interferes with
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Figure 7.7 Spectra of probe and pump pulses under conditions identical to those of
Fig. 7.6 except that the GVD effects are ignored. Pulse shapes are not shown as they
remain unchanged.

the trailing edge. This can also be understood by noting that the faster moving
pump pulse interacts mainly with the trailing edge of the probe pulse. In fact,
if the probe and pump wavelengths were reversed so that the slower moving
pump pulse interacts mainly with the leading edge, oscillations would develop
near the leading edge because the XPM-induced chirp would speed up the peak
of the prabe pulse with respect to itstails. The effect of initial delay between
the pump and probe pulses can lead to qualitative features quite different for
the dispersive XPM compared with those shownin Fig. 7.3. For example, even
if the pump pulse walks through the probe pulse in an asymmetric manner, the
probe spectrum is no longer symmetric when the GV D effects are included.

The experimental observation of the XPM-induced asymmetric temporal
effects requires the use of femtosecond pulses. Thisis so because Ly > 1 km
for T, > 5 ps while Ly, ~ 1 m for typical values of |d| ~ 10 ps’/m. Because
XPM occurs only during a few walk-off lengths, the interplay between the
XPM and GVD effects can occur only if Ly and L, become comparable. For
example, if T, =100 fs, L, and L,y both become ~10 cm, and the temporal
effects discussed in the preceding can occur in afiber less than one meter long.
For such short pulses, however, it becomes necessary to include the higher-
order nonlinear effects.

7.4.3 Higher-Order Nonlinear Effects

As discussed in Section 2.3, several higher-order nonlinear effects should be
considered for femtosecond optical pulses. The most important among them
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in practice is the Raman effect involving molecular vibrations. In the case of
a single pulse propagating in the anomalous-GVD region, its inclusion leads
to intrapulse Raman scattering that manifests through the Raman-induced fre-
guency shift (see Section 5.5). The issue is how intrapulse Raman scattering
affects the XPM interaction between two ultrashort optical pulses [52]-{54].

When the Raman contribution to the nonlinear polarization Py, is in-
cluded, one must use Eqg. (2.3.31) in place of Eg. (2.3.6). The coupled NLS
equations can still be obtained by following the procedure of Section 7.1 but
mathematical details become quite cumbersome. By using Eq. (2.3.34) for the
functional form of the Raman response function, the resulting equations can
be written as[53]

dA; 1 0A] By %A,
R _l’_ - -
0z j ot 2 at2

mf | dsha(s) {114 (2t =9 + [An(zt =9 Ay (21
+A]( d )Am(zet_ )exp[l(a)J _wm)S]Am(Zet)}v (7-4-21)

where j =1 or 2and m= 3— j. The parameter fy represents Raman con-
tribution (about 18%) to the nonlinear polarization, and hy(t) is the Raman
response function whose imaginary part is related to the Raman-gain spectrum
through Eq. (2.3.35).

In spite of the complexity of Eq. (7.4.21), the physical meaning of vari-
ous nonlinear terms is quite clear. On the right-hand side of Eq. (7.4.21), the
first two terms represent the SPM and XPM contributions from the electronic
response, the next two terms provide the SPM and XPM contributions from
molecular vibrations, and the last term governs the energy transfer between
the two pulses due to Raman amplification (see Chapter 8). When the Ra-
man contribution is neglected by setting f, = 0, Eq. (7.4.21) reduces to Egs.
(7.1.15) and (7.1.16). Similarly, if the two pulses are assumed to be much
wider than the Raman response time (~70 fs) and hy(t) isreplaced by a delta
function, Egs. (7.1.15) and (7.1.16) are again recovered provided the Raman
amplification term is neglected.

Equation (7.4.21) shows that the XPM-induced coupling affects ultrashort
optical pulses in several different ways when the Raman contribution is in-
cluded. Energy transfer represented by the last term is discussed in Chapter 8
in the context of stimulated Raman scattering. The novel aspect of Eq. (7.4.21)
is the SPM and XPM contributions from molecular vibrations. Similar to the

O‘J - 2 2
A =17 (1= TR (A" + 2/Am|7)A;



286 Cross-Phase M odulation

single-pul se case, these contributions lead to shift of the carrier frequency. The
most interesting feature is that such a shift results from both intrapulse and in-
terpulse Raman scattering. In the context of solitons, the self-frequency shift
is accompanied by a cross-frequency shift [53], occurring because of the si-
multaneous presence of a copropagating pulse. The self- and cross-frequency
shifts may have the same or the opposite signs depending on whether the dif-
ference w; — w, in the carrier frequencies is smaller or larger than the fre-
quency at which the Raman gain is maximum (see Chapter 8). As a result,
the XPM interaction between two solitons of different carrier frequencies can
either enhance or suppress the self-frequency shift expected when each soliton
propagates alone [7].

7.5 Applications of XPM

The nonlinear phenomenon of XPM can be both beneficial and harmful. Per-
haps its most direct impact is on the design of WDM lightwave systems where
XPM often limits the system performance. This aspect of XPM isdiscussed in
Chapter B.7. This section is devoted to other applications of XPM.

7.5.1 XPM-Induced Pulse Compression

SPM-induced chirp can be used to compress optical pulses (see Chapter B.6).
Because XPM also imposes a frequency chirp on an optical pulse, it can be
used for pulse compression as well [55]-{60]. An obvious advantage of XPM-
induced pulse compression is that, in contrast to the SPM technique requiring
the input pulse to be intense and energetic, XPM can compress weak input
pulses because the frequency chirp is produced by a copropagating intense
pump pulse. However, the XPM-induced chirp is affected by pulse walk-off
and depends critically on the initial relative pump-signal delay. As a result,
the practical use of XPM-induced pul se compression requires a careful control
of the pump-pulse parameters such as its width, peak power, wavelength, and
initial delay relative to the signal pulse.

Two cases must be distinguished depending on the relative magnitudes of
the walk-off length L,y and the dispersion length L. If Ly > L, throughout
the fiber, the GV D effects are negligible. Inthat case, an optical fiber generates
the chirp through XPM, and a grating pair is needed to compress the chirped
pulse. Equation (7.4.11) can be used to analyze the magnitude and the form of
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Figure 7.8 XPM-induced pulse compression in the normal-dispersion region of an
optical fiber realized using a pump pulse of peak power such that N = 10. Shape of
input pulsesis also shown for comparison. (After Ref. [47].)

the chirp. A nearly linear chirp can be imposed across the signal pulse when
the pump pulse is much wider compared with it [57]. The compression factor
depends on the pump-pul se energy and can easily exceed 10.

Another pulse-compression mechanism can be used when L and L,y are
comparable. In this case, the same piece of fiber that is used to impose the
XPM-induced chirp also compresses the pulse through the GVD. Interestingly,
in contrast to the SPM case where such compression can occur only in the
anomalous-GV D region, the XPM offers the possibility of pulse compression
even in the visible region (normal GV D) without the need of a grating pair.
The performance of such acompressor can be studied by solving Egs. (7.4.18)
and (7.4.19) numerically for a given set of pump and signal pulses [47]. It is
generally necessary to introduce arelative time delay 7, between the pump and
signal pulses such that the faster moving pulse overtakes the slower pulse and
passes through it. The maximum compression occurs at a distance ~ |74|Lyy
although the pulse quality is not necessarily the best at the point of maximum
compression.

In general, a trade-off exists between the magnitude and the quality of
compression. Asan example, Fig. 7.8 compares the compressed pulse with the
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input signal pulse for the case in which at the fiber input both pulses are Gaus-
sian pulses of the same width at visible wavelengths with the wavel ength ratio
A /A, = 1.2. The other parametersare N = 1, Ly /L, = 10, and 7, = —2.5.

The pulse is compressed by about a factor of 4 and, except for some ringing
on the leading edge, is pedestal-free. Even this ringing can be suppressed if
the pump pulse isinitialy wider than the signal pulse, although only at the ex-
pense of reduction in the amount of compression achievable at a given pump
power. Of course, larger compression factors can be realized by increasing the
pump power.

XPM-induced pulse compression in the normal-GV D region of afiber can
also occur when the XPM coupling is due to interaction between two orthog-
onally polarized components of a single beam [59]. An experiment in 1990
demonstrated pulse compression using just such atechnique [58]. A polariz-
ing Michelson interferometer was used to launch 2-ps pulses in a 1.4-m fiber
(with a 2.1-mm beat length) such that the peak power and the relative delay
of the two polarization components were adjustable. For a relative delay of
1.2 ps, the weak component was compressed by afactor of about 6.7 when the
peak power of the other polarization component was 1.5 KW.

When both the pump and signal pulses propagate in the normal-GVD re-
gion of the fiber, the compressed pulse is necessarily asymmetric because of
the group-velocity mismatch and the associated walk-off effects. The group
velocities can be made nearly equal when wavelengths of the two pulses lie
on opposite sides of the zero-dispersion wavelength (about 1.3 ym in conven-
tional silica fibers). One possibility consists of compressing 1.55-um pulses
by using 1.06-um pump pulses. The signal pulse by itself istoo weak to form
an optical soliton. However, the XPM-induced chirp imposed on it by a co-
propagating pump pulse can be made strong enough that the signal pulse goes
through an initial compression phase associated with higher-order solitons [8].

Figure 7.9 shows evolution of a signal pulse when the pump pulse has
the same width as the signal pulse but is intense enough that N = 30 in Eq.
(7.4.18). Because of the XPM-induced chirp, the signal pulse compresses by
about a factor of 10 before its quality degrades. Both the compression factor
and the pulse quality depend on the width and the energy of the pump pulse and
can be controlled by optimizing pump-pul se parameters. This method of pulse
compression is similar to that provided by higher-order solitons even though,
strictly speaking, the signal pulse never forms a soliton. With the use of
dispersion-shifted fibers, the technique can be used even when both pump and
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Figure 7.9 XPM-induced compression for a pulse experiencing anomalous GVD
and copropagating with a pump pulse of peak power such that N = 30. Pump pulse
propagatesin the normal-GV D regime with the same group vel ocity. (After Ref. [47].)

signal wavelengths are in the 1.55-um region as long as the zero-dispersion
wavelength of the fiber lies in the middle. In a 1993 experiment, 10.6-ps sig-
nal pulses were compressed to 4.6 ps by using 12-ps pump pulses [60]. Pump
and signal pulses were obtained from mode-locked semiconductor lasers op-
erating at 1.56 and 1.54 um, respectively, with a 5-GHz repetition rate. Pump
pulses were amplified to an average power of 17 mW with the help of afiber
amplifier. Thisexperiment demonstrates that X PM-induced pul se compression
can occur at power levels achievable with semiconductor lasers.

7.5.2 XPM-Induced Optical Switching

The XPM-induced phase shift can also be used for optical switching. Severa
interferometric schemes have been used to take advantage of the XPM-induced
phase shift for ultrafast optical switching [61]-{73]. The physics behind XPM-
induced switching can be understood by considering a generic interferometer
designed such that aweak signal pulse, divided equally between itstwo arms,
experiences identical phase shifts in each arm and is transmitted through con-
structive interference. If apump pulse at adifferent wavelength isinjected into
one of the arms of the interferometer, it would change the signal phase through
XPM inthat arm. If the XPM-induced phase shift islarge enough (closeto r),
the signal pulse will not be transmitted because of the destructive interference
occurring at the output. Thus, an intense pump pulse can switch the signal
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pulse through the XPM-induced phase shift.

XPM-induced optical switching was demonstrated in 1990 using a fiber-
loop mirror acting as a Sagnac interferometer [63]. A dichroic fiber coupler,
with 50:50 splitting ratio at 1.53 um and 100:0 splitting ratio at 1.3 um, was
used to alow for dual-wavelength operation. A 1.53-um color-center |laser
provided a low-power (~ 5 mW) CW signal. As expected, the counterprop-
agating signal beams experienced identical phase shifts, and the 500-m-long
fiber loop acted as a perfect mirror, in the absence of a pump beam. When
130-ps pump pulses, obtained from a 1.3-um Nd:YAG laser, were injected
into the clockwise direction, the XPM interaction between the pump and the
signal introduced a phase difference between the counterpropagating signal
beams. Most of the signal power was transmitted when the peak power of the
pump pulse was large enough to introduce a rr phase shift.

The XPM-induced phase shift depends not only on the width and the shape
of the pump pulse but aso on the group-velocity mismatch. In the case in
which both the pump and signal beams are pulsed, the phase shift also de-
pends on the initial relative time delay between the pump and signal pulses.
In fact, the magnitude and the duration of the XPM-induced phase shift can
be controlled through the initial delay (see Fig. 7.3). The main point to note
is that phase shift can be quite uniform over most of the signal pulse when
the two pulses are allowed to completely pass through each other, resulting in
complete switching of the signal pulse. The pump power required to produce
r phase shift is generally quite large because of the group-velocity mismatch.

The group-velocity mismatch can be reduced significantly if the pump
and signa pulses are orthogonally polarized but have the same wavelength.
Moreover, even if the XPM-induced phase shift is less than & because of the
birefringence-related pulse walk-off, the technique of cross-splicing can be
used to accumulate it over long lengths [66]. In this technique, the fiber loop
consists of multiple sections of polarization-maintaining fibers spliced together
in such away that the fast and slow axes are rotated by 90° in successive sec-
tions. Asaresult, the pump and signal pulses are forced to pass through each
other in each section of the fiber loop, and the XPM-induced phase shift is
enhanced by afactor equal to the number of sections.

7.5.3 XPM-Induced Nonreciprocity

XPM aso occurs when two beams having the same (or different) wavelengths
are propagated in opposite directions inside a fiber such that the counterprop-



Applications of XPM 291

LASER
COUPLER
DETECTOR

Figure 7.10 Schematic of a fiber gyroscope. Light from a laser is coupled through
a 50% coupler to launch counterpropagating waves in a multiturn fiber loop. The
rotation-induced phase difference is measured through a phase-sensitive detector.
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agating waves interact with each other through XPM. Such an interaction
can lead to new qualitative features, manifested through optical bistability and
other instabilities when the fiber is used to construct a nonlinear ring resonator
[74]{85]. Of particular interest is the XPM-induced nonreciprocity that can
affect the performance of fiber gyroscopes [86]—{91].

The origin of nonreciprocity between two counterpropagating waves can
be understood by following the analysis of Section 7.1. If A and A, are the
amplitudes of the forward and backward propagating waves, they satisfy the
coupled amplitude equations similar to Egs. (7.1.15) and (7.1.16),

0A; 10A; iB,0°A «

9z gt 202 T2
where the plus or minus sign corresponds to j = 1 or 2, respectively. In the
case of CW beams, this set of two equations is readily solved. If fiber losses
are neglected for simplicity, the solution is given as

A =ir(AP+2A DA, (75.)

A2) = ﬁ exp(if), (7.5.2)
where P; isthe peak power and the nonlinear phase shift is given by
¢; = yz(Pj + 2P3_j), (7.5.3)

with j = 1,2. If P, # P,, the phase shifts ¢; and ¢, are not the same for the
two counterpropagating waves. This nonreciprocity is due to the presence of
the factor of two in the XPM termin Eq. (7.5.3).

XPM-induced nonreciprocity can be detrimental for high-precision fiber
gyroscopes used to measure rotation rates as small as 0.0L per hour [92]. Fig-
ure 7.10 shows the design of afiber gyroscope schematically. Its operation is
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based on the Sagnac effect, known to introduce arotation-dependent phase dif-
ference between the counterpropagating waves [93]. The net phase difference
isthus given by

Ap = ¢ — ¢ = YL(P, — P) + 2, (7.5.4)

where L is the total fiber length, Q is the rotation rate, and Sis a scale fac-
tor that depends on the fiber length L as well as on the radius of the fiber
loop [92]. If the powers P, and P, were constant, the XPM term in Eq. (7.5.4)
would be of little concern. However, the power levels can fluctuate in practice.
Even a power difference of 1 uW between the counterpropagating waves can
change A¢ by ~ 1 x 107 rad if we use y ~ 10 W—1/km and L ~ 100 m. This
value typically corresponds to an equivalent rotation rate of 0.1° per hour. For
this reason, XPM severely limits the sensitivity of fiber gyroscopes unless the
power levels are controlled to within 10 nW.

Several schemes can be used to mitigate the XPM problem and improve the
gyroscope performance. In one scheme, the laser power is modulated before
the counterpropagating waves are launched inside a fiber loop [87]. Because
of the time dependence of optical fields, this case is analyzed by solving Eq.
(7.5.1) with the appropriate boundary conditions [91]. The results show that
the effect of nonreciprocity is reduced drastically if modulation frequency is
chosen suitably. This can be understood physically by noting that XPM occurs
only if the two pulses overlap temporally. On amore fundamental level, XPM-
induced nonreciprocity results from interference between the counterpropagat-
ing waves. Modulation reduces the coherence between the counterpropagating
waves, thereby reducing the effectiveness of such an interference. Indeed, the
same result can also be obtained by using broadband sources with a limited
coherence time [88]-{90]. Thermal sources or light-emitting diodes have been
used for this purpose [92].

Let us consider briefly the effect of XPM on optical bistability. Any non-
linear medium placed inside a cavity can exhibit bistability [94], and optical
fibers are no exception. If afiber-ring cavity is used for thi